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Introduction

Perception in living beings

Most living beings benefit from their capacity to successfully navigate in space
largely thanks to their capacity of localise themselves. This localisation cannot be
separated from perception and from the development of sensors with new capabil-
ities. Good examples of the aforementioned sensors are the eyes of animal species
which differ from each other (Fig. 1) according to needs in terms of survival and in
terms of the environment in which they live (e.g. on the surface / under water/ ...).

However, living beings do not only rely on a single sensor but rather have a
multitude of sensors that are used together in a complex way that has not been
fully understood yet. A simple way to understand how crucial sensor fusion is in
our everyday life is to consider the importance of the inner ear for navigation pur-
poses. The inner ear (see Fig. 2) is not only responsible for sound detection and
the balance of our body but also for the perception of the head’s angular position
and its acceleration. A failure in this sensor can cause the loss of balance and
therefore difficulties to navigate in one’s environment. Furthermore, the Human
proprioception includes the sense of the relative position of one’s own parts of the
body and strength of effort being employed in movement [Glanze 1994]. Proprio-
ceptors are present in our muscles, tendons and joints to provide us with the sense
of pain, hunger or the position of our members and giving rise to the kinesthetic
sense. [Bloom 1988] defines kinesthesis as part of the somatosensory system that
is conscious bodily perception distributed throughout the whole body. Kinesthesis
is the subject of various studies concerning its relation to movements [Young 1945]
alone or with other senses [Lovelace 1989,Day 1964].

Let us take the example of a cheetah chasing a prey. Its sensors are acquiring
much information about not only the world around (structure of the ground, posi-
tion and velocity of the prey, ...) but also its internal state (position of limbs, forces
applied on the body, interaction with the environment, ...). The central nervous
system is then responsible for managing all the incoming information and taking a
decision. In some cases, the central nervous system may even not take action as it
is the case for reflex. This complex sensory system then allows to react to changes
in the system, may it be internal changes or related to the environment itself. We
can mention the specific case of the unintended (and maybe unexpected) slippage
of paws during running. We could say with cautions that the cheetah is then able
to dynamically adapt its motion to balance the effect introduced by the slippage.

Perception in robotics

As for human beings, estimating the position of a mobile robot and its configuration
is a mandatory step performed through the processing of available information. In-
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(a) Fly (b) Frog

(c) Hogna Wolf spider

Figure 1: Photos of the eyes of different species.

Figure 2: Vestibular apparatus. Tomography 3D of the vestibular system.
The yellow parts are the three semicircular canals in charge of sensing rotational
movements. Otolithic organs are located at the base of the semicircular canal
system. They sense the linear accelerations of the head.

formation are provided by various sensors that can be separated into two categories:

proprioceptive sensors measuring values internal to the robot which can be for
example the joint angles of the robot, the motor speed, its temperature or
its battery voltage level. Examples of such sensors are encoders, gyroscopes,
potentiometers, etc.

exteroceptive sensors acquiring measurements from their observation of the out-
side world. We can cite sonar sensors, ultrasonic distance sensors, cameras
or accelerometers due to the measure of the gravity vector as examples. The
gathered data must be interpreted to extract a meaningful feature.

The data must then be processed to have an estimation of the state of the robot
that would be as close as possible to the reality. However, robots are required to
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(a) Atlas
Boston Dynamics

(b) HRP-2
Kawada Industries

Figure 3: Humanoid robots. Illustration of some humanoid robots cited in this
manuscript.

navigate in a changing environment and to interact with it to gain access to some
parts inside it or in order to modify it. For this reason, we are likely to ask not
only for a precise localisation but we may also need it at a high update rate.

Mobile robots usually have a wide variety of sensors (both exteroceptive and
proprioceptive) integrated in their systems. Fig. 4 shows examples of sensors
integrated in some mobile robots while Fig. 5 hightlights one possible solution for
the design of a humanoid robot. The kinematic chain of the robot is formed of the
succession of joints and encoders are used to move each segment. Force and torque
sensors are usualy placed at end-effectors while a high-quality inertial measurement
unit (IMU) is located in the chest of the robot. Cameras are also placed on the
head of the robot. Other designs are possible and other sensors can be placed on
the robot. At the end, these sensors will be providing some information that will be
used in order to achieve specific tasks such as keeping the robot correctly balanced,
reaching a point in space or localising the robot in its environment.

Regarding the localisation problem, each sensor has its own qualities and draw-
backs. Localisation techniques such as Global Positioning System (GPS) have been
investigated mostly for mobile robot navigation [Ohno 2003,Ohno 2004,Reina 2007].
GPS provides absolute measurements but is not well suited for indoor localisation.
A popular alternative to GPS is the use of odometry which integrates information
provided by a given sensor. Some examples are:

• Encoder odometry integrating all small displacements provided by robot en-
coders to describe the robot’s trajectory. For example, in the case of a wheeled
robot, the odometry uses the rotations of the wheels to estimate the trajectory
of the robot.

• Visual odometry through the use of cameras extracting information from the
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Figure 4: [Siegwart 2011] Examples of robots with multi-sensor systems: (a)
HelpMate from Transition Research Corp, (b) B21 from Real World Interface, (c)
Roboart II, built by H.R. Everett [Everett 1995], (d) The Savannah River Site
nuclear surveillance robot

images (e.g. in [Comport 2010]). Visual odometry methods are still used not
only in mobile robotics but also for unmanned aerial navigation, pedestrian
navigation and others. For example, this method can be used for visual ser-
voing [Tsakiris 1997,Chaumette 1991].

If odometry is a theoretically possible solution, the perfect sensor assumption makes
its use unrealistic and results in estimations drifting from the real state. Imperfec-
tions and errors due to sensors can also be produced by the data processing step.
Estimators tend to tackle these problems by defining sensor models working under
more realistic assumptions used to simplify the problem. Besides, sensor fusion
is used to get complementary information enhancing the state estimates. We can
distinguish two main categories of estimators: filters and batch optimisation esti-
mators. On the one hand, filtering methods compute the state of the robot using
the data on top of the last estimate of the robot. During this estimation, all past
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Figure 5: Simplified representation of the structure of a humanoid robot. This
figure only shows one possible design.

poses are marginalised out and the information gained over time is summarised as
a probability distribution. The idea of such filters is based on the principle of the
Bayes Filter that will be introduced in Section 1.2. Kalman Filters are the most
popular solution of this category. The popularity of Kalman Filter based solutions
can be explained by both their performances and their simple implementation. On
the other hand, methods belonging to the batch optimisation category tend not to
marginalise out past poses but rather to keep this information in the system. The
estimation does not only concern the last poses but rather all selected poses repre-
sented by the so called: "key-frames" along the trajectory. The most naive way to
work with these methods is to estimate the states of all the key-frames. The more
key-frames are estimated, the more computationally expensive and time consum-
ing the estimation will be. Key-frames not involved in the estimation are rather
ignored than marginalised out, implying a different sparsification of the problem
when compared to filter based methods.

Thesis overview

Rationale

Sensory input and data management form a core problem in robotics since they
are at the root of all solutions. The common solution for the design of legged
robots is very similar to the one presented in Fig. 5. The encoders are then used
to move the robot while the high-quality IMU located in the chest can be used to
estimate the pose of the chest and cameras are used to estimate the pose of the
robot in its environment. Although we can now find impressive demonstrations of
legged robots running, jumping and performing various tasks, we can hardly claim
to achieve locomotion tasks or to design perception systems that are as effective as
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Figure 6: Snapshots of the cheetah robot jumping over an obstacle.

for living beings. Thus let us take again the slippage example while recalling that
this phenomenon is mostly unexpected and undesired in robotics. Some strategies
need to be used to tackle the slippage problem since it introduces problems in terms
of balance, control but also localisation. In 2010, Boston Dynamics released a video
showing the Bigdog robot walking in different outdoor scenarii including a frozen
floor. However, to tackle efficiently the locomotion problem on slipping floors is
still a challenge. In [Park 2015], the authors presented a framework that enables
the Cheetah robot to autonomously run over obstacles up to 40 cm in height as
illustrated in Fig. 6. We can also notice that the robot jumps again right after the
landing phase before reaching the normal running phase. However, how would we
manage slippage in this situation taking into account that motion planning methods
usually make the no-slippage assumption? This question might be relevant in real
case scnearii.

Therefore we can wonder whether a different design could help to achieve better
performances. IMUs (introduced in Chapter 2) can provide a localised perception
that we could benefit of at high rates. Thereby the question that we can raise is
whether placing multiple IMUs on the robot and specifically on the end-effectors
could be interesting. This localised perception would provide information that could
be used along with the other sensors in the robot through sensor fusion methods to
have a better estimate of the state of the system. More specifically, this perception
could bring some information to be used along with more generalised perception
method such as SLAM (Simultaneous Localization And Mapping) methods that
will be introduced in Section 1.1. This thesis is an attempt to build the first block
that may be used to answer this question.

In order to get an interesting solution, we may need a perception system that
can acquire data at a high frequency so that the realtime estimates can be used in a
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control loop. Since placing multiple IMUs providing high quality measurements may
become very costly, we investigate the use of low-cost IMUs. Although we mentioned
the performance related issues, evaluating them is application-dependant. However,
we tend to require solutions that can run in real-time. Hence, in this thesis, we focus
on the use of a single IMU with the following constraints:

• use a low-cost IMU

• data are provided at 1 kHz

• the solution should be usable for real-time applications

Despite the apparent weaknesses of batch optimisation based methods regarding
real-time applications, we tend to think that these solutions are suited to achieve
our goals when working in a coherent framework. If this can be achieved, then we
would have an optimal estimator with all the advantages when compared to filtering
methods but with some disadvantages regarding the time-consuming estimation
part. Efforts on formulating the problem and on an efficient use of the information
provided by sensors are required to reach our goals.

A more detailed presentation of both filtering and batch optimisation methods
is provided in the upcoming chapters. Our contribution is to apply the batch
optimisation approach to problems mostly tackled with filtering methods while
proposing a method that will allow to efficiently integrate new sensors as well as
the information they provide. Hence our approach will be used for pedestrian
localisation problems and extended to its use with a humanoid robot (Fig. 3b).

Thesis organisation

Overview

The three contributions presented in this thesis are composed of:

• The development of the quaternion-based preintegration methods and its ap-
plication to pedestrian tracking along with a factor graph formulation of the
problem. This contribution is developed in Chapter 3 and is published as a
conference paper [Atchuthan 2018].

• The investigations of similar techniques for use on a humanoid robot.

• A self-calibration procedure extending lessons learned from the preintegration
method to its use with other manifolds detailed in Chapter 4 and published
with extended materials in [Solà 2018].

Historical narrative

Since we focus primarily on the use of IMUs for pose estimation while formu-
lating the problem with a factor graph, we first need an effective way to use
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the IMU. This is the purpose of the preintegration method proposed in [Lup-
ton 2009] and applied to IMUs using direct preintegration with Euler angles. The
preintegration method was improved in [Forster 2017] with preintegration on the
SO(3) manifold. The novelty and interest of the work can be recognized through
the different contributions using this preintegration method can it be for naviga-
tion [Caruso 2017, Liu 2017, Hartley 2018] or calibration techniques [Kim 2018].
This preintegration method is explained using rotation matrices and cumbersome
derivatives regarding the jacobians that could possibly lead to misunderstandings.
Thus we first propose a quaternion-based preintegration method due to specific
interests regarding the quaternion representation to represent orientations and pro-
vide simpler and clear derivatives using the chain rule. We believe that this new
and elegant formulation makes the understanding of the preintegration method eas-
ier, thus resulting in fewer errors and the possibility to imagine other applications
with similar methods. Secondly, we generalise the preintegration method to its use
with any kind of manifolds. This work is a step further towards splitting things
and acting more rationnaly with the chain rule while giving a clear definition of
Jacobians in manifolds as opposed to the algebraic way presented in [Forster 2017].
We illustrate the use of this generalised preintegration method through its use for
sensor self-calibration.

Chapter organisation and contributions

This thesis is organised as follows. Chapter 1 introduces the optimal estimation
theory by underlining the similarities and differences between the main popular
filtering methods and the batch optimisation approach. It is both a tutorial and
a state-of-the-art chapter. It relies on [Sola 2016], [Sola 2007] and [Koller 2009] as
main sources, yet the content of the chapter is not fully covered by these sources.

Chapter 2 then introduces the IMU (acronym for Inertial Measurement Unit)
technology due to its importance in this thesis. Chapter 3 details the IMU prein-
tegration method derived from a proposal of [Forster 2016] and also introduces
some implementation on a humanoid robot. The development of the method was
conducted in collaboration with Joan Solà and I am the author of its software imple-
mentation. This chapter partially relies on a submitted conference paper of which
I am the main author.

Chapter 4 extends some solutions driven by remarks upon the preintegration
method proposed in Chapter 3 to the usage of any kind of manifold. Joan Solà is
the leader of this work in which I contributed in a software implementation and
experimentation point of view. This work is published with extended materials
in [Solà 2018].

Finally, Chapter 5 introduces the long-term project this work is part of in
the GEPETTO team as well as the localisation library (WOLF) in on-going de-
velopment to which I contributed equally with Joan Solà (lead developer), Joan
Vallvé, Angel Santamaria-Navarro, and Jeremy Deray, as well as other secondary
developers.
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Estimation as filtering or online
batch-optimisation problems
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1.1 Definition of the problem

Let us suppose that you are walking in a haunted house attraction. Everything
goes fine until you enter a new room at t0 = 0. You can see a door you want to
reach on the opposite wall, it is automatically included in your mind map as a point
of reference to localise yourself in the room along with other objects you may have
noticed. Suddenly, the lights are turned off and you lose all visual information.
Because you had a map of the room at t0 (before the lights are turned off) and did
not move, you can assume to know where the door is and you can navigate towards
it in the dark. This may seem like a very easy experiment! However, experiments
show that walking straight forward to an objective with no visual information is a
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Figure 1.1: Representation of 88 trajectories acquired with 15 human subjects who
were asked to walk straight forward during an experiment, c©Jean-René Cazalets

difficult task even for Humans as shown in Fig. 1.1 [Bestaven 2012]. In robotics,
generating controls so that the robot follows a precise trajectory is still a challenging
problem faced not only on the control part but also on the estimation point of view.
When one generates a sequence of control designed to make the robot move from
a place to another, the estimation of the state of the robot given only the initial
position and the control sequence is called odometry.

Going back to our haunted house example, if the lights were still turned on
then reaching the door would have been easy for us. This can be explained by the
correction of the trajectory given our visual perception of the world. In robotics,
this problem is called Simultaneous Localisation And Mapping (SLAM).

This thesis is written in the context of estimation of the state of a mobile robot
in an unknown environment. While our contributions mostly address the problem
of localising the robot, and not that much of reconstructing the environment, we be-
lieve that our work naturally extends to the full localisation and mapping problem.
It is important to understand the extended context before digging in our personal
contributions.

1.1.1 Motivation and main concepts

The broader view is given by considering the problem of reconstructing the struc-
ture of the environment from camera motion. Structure-from-Motion (SfM) prob-
lems are dealing with the reconstruction of the three-dimensional (3D) structure
of a (stationary) scene from a set of measurements extracted in two-dimensional
(2D) images. Those measurements are specific features (point of interests, corners,
lines, ...) detected in the images and projected onto the camera frame. The data-
association step extracts matching features from one image (or frame) to another.
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These associations are used to estimate the relative camera poses and thus cam-
era motion between related frames. The minimisation of the re-projection error
then leads to the reconstruction of the desired 3D structure. SfM is still a research
field into which much effort is put. [Longuet-Higgins 1981] describes a simple algo-
rithm to recover the 3D structure of a scene assuming that the association problem
is solved, thus describing the problem as finding the relative orientations of the
different view points.

SfM can be considered as a monocular visual Simultaneous Localisation And
Mapping (SLAM) problem. Yet there is a slight difference between SfM and SLAM
problems. While SfM problems are, generally speaking, about the reconstruction
of the environment, SLAM is centred around the problem of localisation in the
environment. In SLAM, the features extracted from images are stored to create a
map of the environment. The map is not only used to infer the current position of
the camera but it is also re-estimated due to new information added in the map.
After all, the features are extracted from imperfect sensors and uncertainties about
the relative positions of the features cannot be neglected. One way to express these
uncertainties is to use a probabilistic formulation as it is often done for SLAM.

Since we are mostly concerned about the localisation part of the problem, the
probabilistic formulation will be introduced to the reader using a SLAM example
hereafter. Parallels to localisation and calibration problems treated in the next
chapters are straightforward. State estimators are used in mobile robotics to es-
timate both intrinsic and extrinsic states. Their importance led to many efforts
in the study of their limits and to improve them. We can distinguish two main
categories of estimators: filters and batch optimisation methods. A nice review is
proposed in [Strasdat 2010] and compares both categories applied to SfM problems.
We discuss filtering and optimisation next.

Let’s go back to our initial (haunted house) example and note xTt =
[
xt yt θt

]

the vector containing your pose (2D position and orientation) in the room at time
t. Since the visual part and the mapping of the environment have not been used
for this thesis, the formulation will take the example of a blind navigation for a
better coherence with the rest of the thesis. However, the similarities make the
transposition to a SLAM problem straightforward. Thus, the theory presented
hereafter is inspired by SLAM courses [Stachniss 2013,Sola 2016].

1.1.2 Sequences of states and measurements

The pose of a robot is denoted by xt where t denotes the time step we are considering
and expressing both position and orientation relative to a reference frame. Under

the flat ground assumption, the pose is a 3-components vector xt =
[
xt yt θt

]T
.

If we consider the exploration of a 3D environment, we get to a minimal repre-
sentation of the pose containing six components. The position is described by

pt =
[
xt yt zt

]T
while the orientation is also represented by a 3-components vec-

tor in the minimal form. One possible choice is the Euler angles ot =
[
φt θt ψt

]T
.
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In this work, rotations will be represented by four dimension quaternion vectors in-
troduced with more details in Appendix B. In both 2D and 3D cases, we still can
consider the pose vector as a concatenation of both position and orientation vectors

(xt =
[
pTt oTt

]T
).

The whole trajectory of the robot from time step t0 = 0 to time step T is the
complete set of poses described by

x0:T = {x0,x1, ...,xT } (1.1)

While navigating in its environment, the robot may compute its odometry using
embedded sensors, thus measuring the motion between time steps. This measure
can be considered as an estimate of the trajectory and is usually noted ut and
interpreted as the control sequence from time step t − 1 up to time step t. Thus
the complete sequence of measurements from t0 to T is given by

u1:T = {u1,u2, ...,uT } (1.2)

Under the assumption that the odometer is perfect, the relation between both poses
and odometry sequences would be straightforward. Indeed, integrating the succes-
sive odometry measurements would describe the overall trajectory of the robot.

x1 = x0 ⊕ x0→1 = x0 ⊕ u1 (1.3)

xn = x0 ⊕
n∑

i=1

xi−1→i = x0 ⊕
N∑

i=1

ui (1.4)

1.1.3 Some noise in the sensors

However, as explained in the Introduction chapter, measurements are imperfect
not only due to the sensor but it may also not take into account some specific
phenomena that can occur during navigation such as slipping. Fig. 1.1 illustrates
the growth of uncertainty using odometry when a mobile robot has to navigate.
The difference between both red and blue trajectories can be explained not only by
imperfections in sensors but also by unexpected events due to the environment as
for example the wheels slipping on the floor.

When considering real applications, imperfections in the sensor need to be
taken into account. A popular assumption in robotics [Thrun 2005] when design-
ing the sensor model is to consider that it is affected by white noise and thus
it can be described by a Gaussian model with zero mean. Although paramet-
ric and non-parametric inference techniques were investigated for SLAM applica-
tions [Sim 2005, Eade 2006], the Gaussian distribution assumption has not only
proven to be the most effective but also simplifies a lot the theory behind state es-
timation while it seems to represent uncertainties in an acceptable way. Thanks to
the Gaussian distribution assumption, the probability density of a random variable
x follows (A.8).
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t t+1 t+2

ut ut+1

xt→t+1 xt+1→t+2

Figure 1.2: Representation of the growth of uncertainties in odometry due to sensor
imperfections and the environment itself. The red trajectory is the one desired and
thus the one the control sequence should lead to follow. However, due to errors
and unexpected events, the real trajectory is described by the blue path. In orange
ellipses here are represented the 2D covariances of the estimated states. Without
any further information to better estimate the pose of the robot, this covariance
only keeps growing with time.

Odometry sequences are not the only information available to most modern
robots to estimate their position. We can cite for example the use of tactile sensors
giving specific features and information about the environment [Kawasaki 1999,
Kerpa 2003], or more generally RFID sensors that may be reading informa-
tion [Agarwal 2018, Codas 2010]. That information could be anything like for ex-
ample the current position of the robot or the position of the marker itself. Let us
denote zt the sensor measurements giving additional information related to the pose
of the robot at time step t. We now consider two sources of measurements: u are the
odometry measurements coming from the motion model that we know as a prior, z
are the sensors in general (actually, u and z can be considered alike; however we find
it convenient to distinguish them from the start). Given this information the state
estimation problem is to estimate the posterior state given available information.

p(xt|u1:T , z1:T ) (1.5)

1.1.4 Refactoring using Markov and Bayes

The application of Bayes’ Rule (A.9) then leads to

p(xt|u1:t, z1:t) = ηp(zt|xt,u1:t, z1:t−1)p(xt|u1:t, z1:t−1) (1.6)

An additional assumption made at this stage of the theory is the Markov as-
sumption according to which the state xt contains all the relevant information up
to time t. In other words, given the present state of the system all the future states
are independent of the past states. This assumption is the basis of the recursive
estimation theory.

p(zt|xt,u1:t, z1:t−1)Markov= p(zt|xt) (1.7)

where p(z|x) is the measurement model. The second part of the equation (1.6) can
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Figure 1.3: SLAM process representation. 1: The problem is initialised. New
landmarks are detected and added in the map with their respective covariance
due to sensor specifications. 2: Computation of the predicted states for the state
composed of both robot’s and landmarks’ pose. These states are computed using
the control sequence between 1 and 2 only thus resulting in an increase of pose
uncertainties for the estimated states. 3: Landmarks are detected and a data
association method is used to assign the landmarks to those already present in the
map. Assuming that the data association is correct for 100 % of the landmarks, the
new observation is used to compute the most probable state for all the states. Newly
detected landmarks are added to the map. 4: The pose correction is associated to
a decrease of uncertainties represented by the ellipses boundaries.
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also be written as

p(xt|u1:t, z1:t−1)Markov= p(xt|xt−1,ut)p(xt−1|u1:t, z1:t−1) (1.8)

This corresponds to the prediction at step t − 1, or motion model. With (1.7)
and (1.8) we can rewrite (1.6) as

p(xt|u1:t, z1:t) = ηp(zt|xt)p(xt|xt−1,ut)p(xt−1|u1:t, z1:t−1) (1.9)

Here, ut can be omitted in p(xt−1|u1:t, z1:t−1) since it does not take part in esti-
mating the state xt−1. Thus this equation becomes

p(xt|u1:t, z1:t) = ηp(zt|xt)p(xt|xt−1,ut)p(xt−1|u1:t−1, z1:t−1) (1.10)

One can note how the Markov assumption led to a recursive formulation for this
estimation problem. Indeed, the last part of the right term of (1.9) is exactly the
posterior probability expressed at one step in the past. Its expression can be written
like (1.9) as

p(xt−1|u1:t−1, z1:t−1) = ηp(zt−1|xt−1)p(xt−1|xt−2,ut−1)p(xt−2|u1:t−1, z1:t−2)
(1.11)

The recursive formulation in (1.9) can thus be expressed as

p(xt|u1:t, z1:t) = ηp(zt|xt)p(xt|xt−1,ut)p(xt−1|u1:t, z1:t−1) (1.12)

where η is a normalisation factor used to represent the denominator resulting in
the application of Bayes’ rule. Finally, by considering p(x0) as a prior knowledge
on the initial position of the robot and following the same method for all the past
posterior probabilities, one can find the generalised recursive formulation for (1.9)
which is

p(xt|u1:t, z1:t) = ηp(x0)
t∏

i=1

p(zi|xi)p(xi|xi−1,ui) (1.13)

To cite [Thrun 2005], “state estimation addresses the problem of estimating
quantities from sensor data that are not directly observable, but that can be in-
ferred”. Solving the localisation and by extension the SLAM problems leads to find-
ing the most likely (or probable) values that all the estimated states (robot states
and features locations for map estimation in SLAM) would take given information
provided by the sensors. This is the crucial and complex job of the estimator.

1.1.5 And the map?

The problem described above is a subset of the general SLAM problem formula-
tion. Indeed, SLAM additionally includes the mapping part processed with fea-
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tures extracted from exteroceptive sensors. The exact location of these features
remains unknown and thus their positions in the environment have to be estimated
(see Fig. 1.3). The map must be corrected with new estimations of features’ loca-
tions. Thus, if we denote by m the map, it enters in the posterior formula as

p(xt,m|u1:T , z1:T ) (1.14)

1.1.6 Should we filter or optimise?

Estimators are main components of any robotic systems. Their place for the system
is just as important as the brain is to any living creature. Estimators are used not
only to estimate internal and/or external states but also to realise the multi-sensor
fusion. Their importance pushed the research community to put a lot of efforts in
designing new estimators, study existing ones, correction some specific parts and
trying to cancel limitations to get an estimator that would get better. However, at
some point, two communities were formed based on the preferred philosophy that
is using filtering methods or sparse optimisation. Both methodologies have been
used extensively by SLAM and SfM communities.

[Azarbayejani 1995] already uses an Extended Kalman Filter (EKF), that is a
recursive estimation method, to not only solve the SfM problem, that is recovering
the motion and the structure of the environment, but also to correctly estimate
the focal length of the camera from feature correspondences tracked through the
image sequence. Although they use EKF, they also put emphasis on the fact that
an equivalent solution can be found using other estimators. Closely related to
this example are the work of [Oliensis 1991, Soatto 1993] that are using EKF as
a smoothing filter. In the search of better performances, some work investigated
the use of optimisation methods based on the minimisation of a nonlinear func-
tion [Kumar 1989, Spetsakis 1991, Weng 1993]. Making a choice between recursive
estimation and sparse optimisation methods in the SfM community is still a prob-
lem nowadays. [Chiuso 2002] also uses recursive estimation method to improve
SfM results due to the sub-minimal model presented in [Azarbayejani 1995]. While
looking for a real-time application of the SfM problem, they chose the filtering
methods because of the need to process data on-line.

[Triggs 1999] is giving an overview of different global bundle adjustment algo-
rithms which objective is to solve the "problem of refining a visual reconstruction
to produce jointly optimal structure and viewing parameter estimates". The sub-
ject is definitely complex due to all the parameters that have to be taken into
account during the implementation of such algorithms with the hope to make the
estimation as robust as needed and the computation as effective as possible. If
we had to summarise in a single sentence, we would say that bundle adjustment
aims at estimating the parameters of a large sparse problem by minimising cost
functions. Further details about the optimisation-based methods are given in sec-
tion 1.3. Bundle adjustment methods are often said to be extremely costly regarding
the computation time. The reason may be not only because taking advantage of the
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sparseness of the problem is not straightforward, but also because these methods re-
quire the inversion of linear systems whose sizes grow with the number of estimated
parameters. Although there exist examples of SfM using bundle adjustment with
nonlinear least square minimisation [Szeliski 1994,Shum 1999], using global bundle
adjustment still remained a challenge due to the time-consuming estimation. Some
authors approached a more efficient way to use bundle adjustment. [Steedly 2001]
used an incremental reconstruction method, readjusting only a subset of parame-
ters, or [Mouragnon 2009] using local bundle adjustment each time a new camera
pose is added for real-time SfM.

This choice is also present in the SLAM community. [Davison 2003] uses the re-
cursive filtering method and achieve real-time performances with specific strategies
concerning the mapping part to take advantage of the sparseness of the problem
and a top-down Bayesian estimation approach. More recently, [Roussillon 2011]
proposed a generic and practical solution using the EKF for real-time visual SLAM
on robots. Other approaches attempting to propose a SLAM method that would
also be effective in large-scale navigation have been proposed [Eade 2006, Monte-
merlo 2007].

Some authors have also focused on using sparse optimisation methods in SLAM
to achieve better accuracy than recursive estimation based ones. Efforts have also be
made to reduce the computational cost of bundle adjustment estimation by reducing
the complexity of the problem. Indeed [Konolige 2008] introduced the reduction of
the parameter space in FrameSLAM through a marginalisation procedure. Other
methods are using local maps for estimation purposes [Ni 2007,Ni 2010].

Finally, making a choice between bundle adjustment based methods or recur-
sive filtering estimation is still today a question of trade-offs. On the one hand,
recursive filter based methods are known to be faster to implement and allow real-
time applications. But their main drawback as regards sparse optimisation based
solutions seems to be the accuracy of the estimation. On the other hand, these
last ones have the reputation to be complex to implement and to require higher
computation time despite recent advances allowing to considerably reduce this last
parameter. Trade-offs are also application dependent. For instance, both SfM and
SLAM are subject specific trade-offs. For SfM, the problem may be summarised
as to find a balance between an easier relative orientation estimation or an easier
correspondence problem between features in the images. With disparate viewpoints
between the images, finding the relative orientation is made easy but the features
correspondence problem will be more complex. On the other hand, if the view-
points are close enough then the correspondence problem will be easy but finding
the relative orientation will be harder due to approximations and accuracy.

[Strasdat 2010, Strasdat 2012] first compare filtering and sparse optimisation
methods applied to SLAM problems and underline the differences of these two
approaches. The representation of both methods as given in Fig. 1.4 is a good start
to understand the differences and what it implies to prefer one solution over the
other one.

While some filtering methods and sparse optimisation will be presented with
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Figure 1.4: Problem representation and relation between data depending on the
chosen estimation strategy [Strasdat 2010]. (a): Bayesian network for a usual
SLAM/SfM problem. (b): Equivalent graph problem represented as a Markov ran-
dom field without the measurements zi (c): Visualisation of the effect of marginal-
isation on the inference in filtering methods (d): Visualisation of the effect of
estimating selective states in key-frame-based bundle adjustment techniques on in-
ference.

more details in the following sections, let us keep in mind some major points:

1. The sparseness of the problem is different in both cases. This detail has con-
sequences on the computation of the joint probabilities and their propagation.

2. Filtering methods use the Markov assumption to marginalise out past poses
and to summarise all the information gained over time with a probability dis-
tribution whereas sparse optimisation methods are using key-frames to select
specific states to be estimated. Non-estimated key-frames are rather ignored
than marginalised out, thus keeping the problem sparse and the optimisation
relatively efficient.

3. Both methods are using approximations.

4. There exist a wide variety of methods mixing both philosophies. We could cite
for example the multi-state Kalman Filter which is an attempt to overcome
some limitations of filtering methods with inspiration from sparse optimisation
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at the cost of more time-consuming estimations. More examples are given in
subsection 1.3.4.

In the next two sections, we reformulate the estimation problem as either a
filtering or an optimisation problem, by either marginalising over the past states
(filtering) or extracting from the Bayesian network the underlying factor graph
(optimisation). This will motivate our choice of using an optimisation approach in
the rest of the thesis, but also explains how our contributions can in fact be quite
directly transferred into a filtering method.

1.2 Filtering Approach

1.2.1 Bayes’ Filter Algorithm

The Bayes’ filter is the most general algorithm to compute posterior probabilities
and gives a good overview of most recursive filters. The pseudo-algorithm of Bayes’
filter is presented in Algorithm 1. It highlights the two steps that are at the core
of the recursive estimation methods : the prediction and correction steps.

The prediction step
The prediction step aims at computing a prior density before using the measurement
at time step t and right after using the control measurement ut. This step predicts
the state xt on the basis of z1:t−1 the measurement information up to time t − 1
and the latest control measurement ut.

p(x̄t|u1:t, z1:t−1) =
∫
p(xt|xt−1,ut)︸ ︷︷ ︸
state transition

p(xt−1|u1:t−1, z1:t−1)︸ ︷︷ ︸
posterior probability at step t-1

dxt−1 (1.15)

The state transition is given by the dynamics of the system. We can also easily
give an expression of the posterior probability at step t − 1 using (1.8). A way to
interpret this prediction step is to say that it computes the most probable evolution
for the state of the system given the previously computed posterior probability and
the dynamic model of the system.

The correction step
Once the prediction is made, it is time for the system to use the last measurement
zt and correct the prediction with the newly provided information. This correc-
tion step, also called measurement update, is basically a product of the probability
density functions describing the posterior probability computed in the prediction
step (1.15) and the one associated with the measurement zt, p(zt,xt). The compu-
tation of the new posterior probability is exactly given by (1.9). We give here the
complete form of this equation.

p(xt|u1:t, z1:t) =
p(zt|xt)p(xt|xt−1,ut)p(x0:t−1|u1:t, z1:t−1)

p(zt|z1:t−1,u1:t)
(1.16)
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Algorithm 1: BayesFilter(xt−1, ut, zt)
1: loop
2: {Prediction(xt−1, ut, Σt−1):}
3: Get control sequence ut
4: p(x̄t | u1:t, z1:t−1) =

∫
p(xt | xt−1,ut)p(xt−1 | u1:t−1, z1:t−1)dxt−1

5: {Correction(x̄t, zt):}
6: Get measurements zt
7: p(xt | u1:t, z1:t) = η p(zt | xt)p(x̄t | u1:t, z1:t−1)
8: return xt,Σt

9: end loop

Now that the Bayes’ Filter is introduced, the next section will present the
most popular estimators designed on the principles described above. All of them
are built on top of the theory of Bayes’ Filters. Variations can be introduced
concerning the probabilities that have been described sooner. The reason why
assumptions are made concerning the probabilities involved in Bayes’ Filter is due to
the impossibility to compute exacts beliefs for general problems. Thus assumptions
are a way to approximate the posterior probabilities. However, most of the filters
are using the Gaussian distribution to design the dynamics and the measurement
models, meaning that all probability density functions can be described by (A.8).
Thus, the following filters are also known as Gaussian Filters.

1.2.2 Kalman Filter

The Kalman Filter (KF) [Kalman 1960] is an implementation of Bayes’ Filter that
can be used to compute the posterior probabilities of continuous states only. In
addition to both Markov and Gaussian distribution assumptions, this implemen-
tation assumes the dynamic and measurement models of the system to be linear.
Mathematical translation of this new assumption gives

xt = f(xt−1,ut) = Atxt−1 + Btut + εxt (1.17)

where εxt is the process noise expressing the uncertainty in the state transition
through perturbations in the system. This process noise is defined by a Gaussian
distribution ( (A.8)). Similarly, the measurement model is given by the function

zt = h(xt) = Ctxt + εzt (1.18)
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where εzt is the Gaussian measurement noise expressing the noise related to the
sensor measurement (due to sensor specifications).

p(εxt) ∼ N (εxt ,Qt) (1.19)

p(εzt) ∼ N (εzt ,Rt) (1.20)

p(x0) = N (x0,Σ0) (1.21)

The linear evolution constraint leads to finite dimensions for matrices At, Bt

and Ct. If we note n, m and p the dimensions of respectively xt, ut and zt, then
one can find that those three matrices are respectively of dimension n × n, n ×m
and p×n. We can also give an explanation of the meaning of the different matrices
in this model. At describes how the state evolves from t − 1 to t without controls
or noises while Bt describes the changes in the control from t − 1 to t. Finally,
Ct can be understood as the description that allows one to map the state xt to an
observation zt If we think about it, (1.17) relates to the state transition in (1.15)
while (1.18) is related to p(zt|xt) and we can express both densities as

p(xt|u1:t−1, z1:t−1) =
1

det(Qt)
1
2 (2π)

n
2

exp
(
−1

2
(xt − x̄t)TQ−1

t (xt − x̄t)
)

(1.22)

p(zt,xt) =
1

det(Rt)
1
2 (2π)

n
2

exp
(
−1

2
(zt − z̄t)TR−1

t (zt − z̄t)
)

(1.23)

where

x̄t
∆= E[xt] = Atxt−1 + Btut

z̄t
∆= E[zt] = Ctxt

the expression of the prior knowledge on the position of the robot is all that remains
to be defined to be able to express (1.13). This prior is also described by a Gaussian
distribution (p(x0) ∼ N (µ0, Σ0)) due to the properties of Gaussian densities. Given
all these details, we can say that the KF algorithm presented in Alg. 2 aims at
computing the mean and the covariance of the states in a closed-loop of prediction-
correction steps every time a new measurement and/or control sequence arrives.
The interested reader is given a more detailed view of both prediction and correction
steps in the following.

KF prediction step
With the Gaussian distribution assumption for probability densities, the prediction
step (1.15) yields to

p(x̄t|u1:t, z1:t−1) = η

∫
exp

(
−Lt

)
dxt−1 (1.24)
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with

Lt =
1
2

((xt − x̄t)TQ−1
t (xt − x̄t) + (xt−1 − x̄t−1)TΣ−1

t−1(xt−1 − x̄t−1)) (1.25)

Going back to (1.17), one can show from (1.15) that

x̂t|t−1
∆= E[xt|u1:t, z1:t−1] = x̄t (1.26)

Σt|t−1
∆= E[(xt − x̂t|t−1)(xt − x̂t|t−1)T ] = AtΣt−1AT

t + BtQtBT
t (1.27)

Although the details are not presented here, the interested reader can find the
mathematical derivations leading to equations above in [Thrun 2005]. We will note
here that the posterior probability at step t − 1 is a prior probability used to pre-
dict the future mean and covariances of the state xt. This prior is described by a
Gaussian distribution (N (x̄t−1,Σt−1)) and used in the state transition part. Fur-
thermore, the state transition in itself is affected by a Gaussian noise of covariance
Rt due to the imperfections in the control sequence so that p(ut) ∼ N (ut − 0; Q).
Another expression for Rt is BtQtBT

t under the Gaussian distribution assumption.

KF correction step
Now let’s consider the correction step which probabilistic expression is given
by (1.16) or alternatively by (1.9). Again, similarly to (1.24), the posterior proba-
bility p(xt|u1:t, z1:t) can be expressed with an exponential function as

p(xt|u1:t, z1:t) = η exp
(
−Jt

)
(1.28)

where

Jt =
1
2

(
(zt −Ctxt)TQ−1

t (zt −Ctxt) + (xt − µ̄t)T Σ̄−1
t (xt − µ̄t)

)
(1.29)

One can show that the covariance characterising the Gaussian distribution of the
posterior probability in (1.28) is given by

Σt = Ct Q−1
t CT

t + Σ̄−1
t (1.30)

The correction step aims at incorporating measurement information in the sys-
tem and correct the prediction. Therefore we need to be able to express how much
new information is added to the system for the correction step to be complete and
compute both mean and covariance of the posterior probability. This is done by
using the Kalman Gain at time step t noted Kt. This Kalman Gain can be found by
minimising the first derivative of Jt and by noting that the value of xt will actually
be the mean µt of p(xt). Thus we can substitute both terms. This method leads
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Algorithm 2: Kalman Filter(µt−1, ut, zt, Σt−1)
1: loop
2: {Prediction(µt−1, ut, Σt−1):}
3: µ̄t = At µt−1 + Bt ut
4: Σ̄t = At Σt−1AT

t + Rt

5: {Correction(µ̄t, zt, Σ̄t):}
6: Kt

∆= Σ̄t CT
t (Ct Σ̄t CT

t + Qt)−1

7: µt = µ̄t + Kt (zt −Ctµ̄t)
8: Σt = Σ̄t(I−KtCt)
9: return µt,Σt

10: end loop

to the following expression of the corrected mean µt

µt = µ̄t︸︷︷︸
predicted mean

+ Kt(zt −Ctµ̄t)︸ ︷︷ ︸
correction

(1.31)

with

Kt = ΣtCT
t Q−1

t (1.32)

However, expressing Kt as a function of Σt is not convenient. A transformation
leads us to another definition that makes the use of the gain possible in practice

Kt
∆= Σ̄t CT

t (Ct Σ̄t CT
t + Qt)−1 (1.33)

from (1.31) we can easily deduce a new expression of Σt expressed as a Σ̄t correction
operation

Σt = Σ̄t(I−KtCt) (1.34)

From (1.31) and (1.34), an intuitive way to understand the role of the Kalman
Gain is then to see it as a translation of how much the new measurement will be
integrated in the system.

1.2.3 Extended Kalman Filter

The Extended Kalman Filter (EKF) aims at correcting the major drawback of KF
that is the assumption of linear dynamic and observation models. Such a hard
requirement makes the filter difficult to use in real systems that are subject to noise
and nonlinearities. This is done by modelling both observation and dynamic of the
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system with nonlinear functions so that

xt = f(xt−1,ut) + εxt (1.35)

zt = h(xt) + εzt (1.36)

p(εxt) ∼ N (εxt − ε̄xt ,Qt) (1.37)

p(εzt) ∼ N (εzt − ε̄zt ,Rt) (1.38)

p(x0) = N (x0 − x̄0,Σ0) (1.39)

However, due to the introduction of nonlinear functions, the probability densities
at stake here cannot be ensured to be Gaussian. Despite this, the EKF algorithm
still considers the distributions to be Gaussian by approximations and most of the
prediction-correction loop of the KF algorithm is applied.

In order to apply prediction-correction scheme of Bayes’ Filter, the Gaussian
distribution approximation is realised through a linearisation step on the most re-
cent estimate we have. The best estimate is also the value the variable is the most
likely to take, that is the mean of the distribution. Thus, f(.) and g(.) nonlin-
ear functions are approximated locally by a linear function with assumed Gaussian
posterior. The linearisation is realised in practice thanks to a first-order Taylor
expansion defined as

f(x) = f(x0) + Fx(x− x0) (1.40)

where Fx is the Jacobian matrix defined for f(.) by

Fx(x− x0) ∆=
∂f
∂xT

∣∣∣∣
x0

(1.41)

EKF prediction step
The state prediction state begins with the linearisation of the state transition func-
tion f(.). This linearisation is realised around the most recent best estimate µt−1

so that

f(xt−1,ut)
Taylor
= f(µt−1,ut) + Fx(xt−1 − µt−1) (1.42)

Σt|t−1 = Σ̄t = FxΣt−1Fx
T + Qt (1.43)

As underlined sooner, Q is a Gaussian approximation of the real distribution Q̌ by
means of the Taylor expansion.

EKF correction step
The correction step also implies the use of the linearisation procedure of the mea-
surement function (1.36) around the best estimate for the input parameter xt that
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is µ̄t. Thus (1.36), (1.30), (1.46) and (1.31) become

h(xt)
Taylor
= h(µ̄t) + Hx(xt − µ̄t) (1.44)

Σt = Hx Σ̄t Hx
T + R (1.45)

Kt = ΣtHx
TQ−1

t (1.46)

µt = µ̄t︸︷︷︸
predicted mean

+ Kt(zt − h(xt))︸ ︷︷ ︸
correction

(1.47)

The EKF algorithm is presented hereafter in Alg. 3. As for Kt in the KF
algorithm (1.33), it is possible by transformation to deduce a new expression of the
EKF Kalman Gain

Kt
∆= Σ̄t HT

t (Ht Σ̄t HT
t + Qt)−1 (1.48)

where

Ht
∆= Hx(xt − µ̄t) (1.49)

Algorithm 3: Extended Kalman Filter(µt−1, ut, zt, Σt−1)
1: loop
2: {Prediction(µt−1, ut, Σt−1):}
3: µ̄t = f(µ̄t) + Fx(µ̄t)
4: Σ̄t = Fxt Σt−1 Fx

T
t + Rt

5: {Correction(µ̄t, zt, Σ̄t):}
6: Kt

∆= Σ̄t HT
t (Ht Σ̄t HT

t + Qt)−1

7: µt = µ̄t + Kt (zt − h(µ̄t))
8: Σt = Σ̄t(I−KtHt)
9: return µt,Σt

10: end loop

Despite the introduction of nonlinear functions in the system’s model of the
EKF, the linearisation process introduces growing errors through approxima-
tions as illustrated in Fig. 1.5. This undesired behaviour led to the develop-
ment of alternative filters based on the EKF formulation e.g. the Robust Ex-
tended Kalman Filter [Einicke 1999, Kwon 2015], the Unscented Kalman Fil-
ter [Wan 2000,Brossard 2017] and the Particle Filter described hereafter.

1.2.4 The particle filter

The Particle Filter [Doucet 2001, Doucet 2000] is another method that is used to
bypass the linearisation step of EKF. Besides, this method is designed to work with
non-Gaussian distributions. Instead of linearisation, the Particle Filter uses a se-
quential Monte Carlo method that generates estimates of the state and innovations



26
Chapter 1. Estimation as filtering or online batch-optimisation

problems

Figure 1.5: Possible introduction of errors in EKF due to linearisation and the
Gaussian distribution assumption. (Left): In the case of the linear system the
EKF works as well as the EKF. (Centre): The linearisation with Gaussian ap-
proximation works fine because the system is almost linear in this region. (Right):
The system is far from linear in the region of linearisation. Linearisation with
the Gaussian approximation is not suited for this case. EKF will perform the op-
eration sketched in dashed line to estimate the output while the true density is
represented by the solid line. As a result, the estimates are biased and the filter
diverges.(Source: [Sola 2007])

instead of deriving the analytic equations as Kalman does. This estimation with a
set of particles that are independent random samples described by Dirac functions

δ(x− a) ∆= lim
σ→0
N (x− a, σ2) (1.50)

The system can be described through the following equations

xt = f(xt−1,ut) + εxt (1.51)

zt = h(xt) + εzt (1.52)

p(εxt) = any distribution (1.53)

p(εzt) ∼ N (εzt − ε̄zt ,Rt) (1.54)

p(x0) =
N∑

i=1

ρiδ(x0 − xi0) (1.55)

where the prior p(x0) is described by a set of N particles.

Particle Filters prediction step
Let’s consider (1.15), the aforementioned algorithms were predicting the next most
likely state value given the assumption of Gaussian distribution for the posterior
probabilities. This time, the prior posterior probability is a sum of N independent
particles where each of them follows a randomly generated perturbation distribution
so that

p(xt|z0:t−1) =
∑

ρiδ(xt − xi) (1.56)
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where ρi is the weight of each particle. At the end of this prediction stage, we don’t
have only a single most likely value but a set of N particles.

The prediction step consists of a sampling process (first step of any particle
filter algorithm). The general particle filter algorithm is creating particles based
on a proposal distribution (also called conditional density), which is a distribution
that may not be the real probability distribution describing the random value we
want to estimate but from which it is possible to sample efficiently (for example,
the proposal distribution could be Gaussian). When it comes to localisation using
Monte Carlo, this sampling process is done by applying the motion model (1.51).
to each particle in the set (1.56) with a proposal distribution for p(εxt) so that we
get a new set of N particles in which each sample has a state hypothesis, that is a
possible prediction.

Particle Filters correction step

One may notice that the only assumption made until there is in the proposal
distribution. The correction step aims at correcting this proposal using the measure-
ment zt thanks to which it is possible to compute the importance weight ρi of each
particle. This importance weight takes into account the probability distribution we
actually want to approximate and is defined by

ρ
[i]
t =

target distribution
proposal distribution

∝ p(x[i]
t |u1:t, z1:t)

p(x[i]
t |x

[i]
1:t−1,u1:t)

∝ p(zt|x[i]
t ) (1.57)

ρ
[i]
t =

ρ(x[i]
0:t)∑N

j=1 ρ(x(j)
0:t )

(1.58)

where (1.58) gives the normalised version of the weights while (1.57) corrects each
weight depending on how different the proposal and the real distributions are.

Before running the prediction step for the next step, the particle filter requires to
resample the N particles given the current set of samples with replacement. There
exists different methods for resampling [Douc 2005] but we will describe here the
basic Sequential Monte Carlo (SMC) approach. This resampling step creates a new
set that has as many particles as in the previous normalised one. The new particles
are distributed according to the posterior probability p(zt|xt) also meaning that
the higher the weight of a particle the more likely it is to draw a particle in the
corresponding area, and they all get a new weight 1

N . This operation allows to keep
a fixed size of particles and to eliminate the less likely possibilities that explain the
trajectory of the robot, thus keeping the computational cost under some limits.

Particle Filter algorithms have been used extensively in robotics. One can
find interesting use based on the particle filter in SLAM ( [Grisetti 2007a, Mon-
temerlo 2007, Dissanayake 2000]), or to track moving entities [Montemerlo 2002,
Schulz 2001, Germa 2010]. Despite the major advantages of these methods, they
also have limitations:
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Algorithm 4: Particle Filter(Πt−1, ut, zt)
1: loop
2: {Prediction(Πt−1, ut):}
3: clean set: Π̄t = Πt = ∅

4: for j = 1 to N do do
5: sample: x[j]

t given p(xt | x[j]
t−1,ut)

6: compute particle weight: w[j]
t = p(zt | x[j]

t )
7: add particle to the set: Π̄t = Π̄t+ < x[j]

t , w
[j]
t >

8: end for
9: {Correction(µ̄t, zt, Σ̄t):}

10: for j = 1 to N do do
11: correct weight with observation: ρ[j]

t ∝ p(zt|x
[j]
t )

12: draw particle j with probability ∝ ρ[j]
t

13: end for
14: Resample Πt with N new particles
15: return Πt

16: end loop

• There is no assumption made on the distribution of the motion model.

• As a consequence of the previous point, there is no linearisation step.

• The performance depends on how many particles are used. The more particles
are used better the accuracy will be.

The filtering methods presented in these sections highlight the recursive con-
cept that is used to reduce the computational cost of these estimation techniques.
Despite this can be a major advantage when considering real-time applications, it
comes with drawbacks whose specificities will depend on the filter itself.

1.3 Online Batch Optimisation Based Approach

The optimal estimation approach relying on sparse optimisation techniques is based
on a more general approach for data fusion and estimation. In particular, last
decades saw the emergence of graph-based methods especially in the vision commu-
nity since SLAM and SfM problems can be posed in terms of inference on a graph.
Such methods require the use of two main blocs:

• the front-end is the problem building block taking care of all the data pro-
cessing part. This part of the system is establishing the relationship between
the sensor data. It is not only responsible for transforming data so that it can
be used in an optimisation process but also takes care of the data association,
sensor fusion and building the graph itself. This graph is then translated into
a cost-function.
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• the back-end part optimises the problem built by the front-end and extremises
the cost-function. It is a complex task requiring a good mathematical under-
standing of various methods to choose the best suited for one application or
another. State-of-the art methods often use iterative methods to solve the
problem.

This division between front and back ends is indeed a nice property. It separates
the expert knowledge about the estimation problem, written as a knowledge graph
in the front end, from the agnostic solver, in the back end, which often requires
less expert knowledge about the robotic problem, but strong skills in mathematics.
Let’s first see how this separation is implemented in the literature. We will then
continue our tutorial by describing the methods behind both ends.

1.3.1 Back and front-ends in the literature

Every existing SLAM solution comes with its own front-end motivated by choices
of features detection, outliers rejection, data association methods, etc. In [En-
dres 2012] the authors proposed their own front-end due to the novelty of their
feature localisation and localisation approach. [Goncalves 2005] introduced a sys-
tem to select unique and recognisable landmarks for pose estimation. [Olson 2008]
designed a specific front-end in which the outliers rejection is based on spectral
clustering. [Thrun 2006] relies on factorisation to reduce the dimensionality of the
problem before solving. Relying on the information provided by the front-end, the
accuracy and the efficiency of the back-end is also crucial. There exists a variety of
back-end solutions implementing various strategies for a more efficient and accurate
problem solving. Depending on the provided information, the back-end may fall into
a local minimum or even diverge during optimisation. Lu and Milios in [Lu 1997]
were the first to propose the optimisation-based approach for the SLAM problem.
Since this work, new examples of back-ends have been proposed by the SLAM
community. [Olson 2006] used a variant of stochastic Gradient Descent (SGD) to
propose a back-end while improving the robustness to wrong initial guesses. This
work was further improved to propose TORO [Grisetti 2007b] using a tree param-
eterisation. Examples of popular recent back-ends are also

√
SAM [Dellaert 2006],

iSAM [Kaess 2008b], iSAM2 [Kaess 2012] and g2o [Kümmerle 2011].
As we focused on the front-end part, it will be described with more details

hereafter. The back-end will also be introduced for sake of completeness.

1.3.2 Graph-Based optimisation

Graphical model is now a common tool used to describe the complex structure of a
problem so that one can intuitively understand the relationship between the vari-
ables playing a role in the estimation process. This graph is converted into a cost
function that will be minimised during the optimisation process. Graphical models
are commonly used in smoothing methods, as opposed to filtering estimation meth-
ods. In SLAM community, the graphical model abstractly describes the process of
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xi−1 xi

ui

zi

p (xi | xi−1, ui)

p (zi | xi)

p (xi−1, xi | ui, zi) = p(xi−1)p (xi | xi−1, ui) p (zi | xi)

Figure 1.6: Representation of the DBN focusing on the relationship between state
xi (the current state to estimate) and the variables used for this purpose : xi−1

(prior), ui (control sequence) and zi (measurement). As a consequence this DBN
is a representation of the joint probability p(xi−1,xi|ui, zi). In this case, the prior
is supposed to be independent from any other variable. This joint probability is a
sub-part of the general equation given by (1.13).

the front-end, but also very literally guides the way it is implemented, in particular
defining the way knowledge are stored in memory.

To introduce the graph formulation, we first need to introduce the Bayesian
representation also known as Dynamic Bayes Network (DBN) before moving to the
Factor Graph representation that we used in this work. For a detailed introduc-
tion to probabilistic graphical models, the interested reader can find explanations
in [Koller 2009].

1.3.2.1 The Dynamic Bayes Network (DBN)

A DBN is a directed graph in which the variables are represented by nodes with
their conditional dependencies represented by oriented edges. The dependency is
represented with an arrow so that A→ B means that the variable B depends on A.
A graphical representation of (1.13) with a DBN in the case of a robot having only
one sensor providing control sequences u and another sensor for measurements z is
given in Fig. 1.6.

This representation can easily be adapted to a multi-sensor situation for both
control sequences and measurements. To do this we keep in mind that the overall
joint probability is obtained by the product of all the conditional dependencies.
We can notice here that the prior is an independent variable. Therefore one can
construct the DBN of a system carrying J controllers and K measurement sensors
(see Fig. 1.7).

The equivalent graph in the case of a longer trajectory is straightforward
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Figure 1.7: Representation of the DBN focusing on the multi-sensor aspect. The
state xi is not only dependent of the prior xi−1 (prior), but also on J control
sequences uj=1:J

i and K measurements zk=1:K
i . As a consequence this DBN is a

representation of the joint probability p(xi−1,xi|uj=1:J
i , zk=1:K

i ). In this case, the
prior is supposed to be independent from any other variable.

(see Fig. 1.8). The graph for a multi-sensor case on a complete trajectory can
be easily deduced from figures Fig. 1.7 and Fig. 1.8.

DBN represents the knowledge relations. For defining the optimisation problem,
another graph, the Factor Graph, is extracted from the DBN. We describe it now.

1.3.2.2 The Factor Graphs

Factor graphs are bipartite and use two different representations to highlight the
relationship between variables. Nodes represent state variables that are estimated
while factors represent the relation between those states linked by edges. Whether
it is in Fig. 1.6, 1.8 or 1.7, the joint probability is expressed as a product of factors
of the type p(xi|xi−1,ui). This allows the factorisation of all the conditional prob-
abilities that imply two or more specific states. Indeed let us consider the following
models that are assuming Gaussian distribution noises:
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x0 x1

u1

z1

p(xi=0:N | u1:N , z1:N ) = p(x0)
∏N
i=1 p (xi | xi−1, ui) p(zi | xi)

. . . xi

ui

zi

. . . xN

uN

zN

Figure 1.8: Representation of the DBN on a full trajectory. Here we made the
assumption that each state except the prior has a dependency link with only one
control sequence and one measurement. As a consequence this DBN is a repre-
sentation of the joint probability p(x0:N |u1:N , z1:N ) which is given by the product
of every single joint probability as described in Fig. 1.6. The most general graph
implying a different number of control sequences and measurements by states is
straightforwardly obtained from this figure and Fig. 1.7.

xi = fi(xi−1,ui−1) + εxi
(1.59)

εxi
∼ N (0,Σxi) (1.60)

zi = hi(xi) + εzi
(1.61)

εzi
∼ N (0,Σzi) (1.62)

This set of equations yields to

e(xi−1,xi) = xi − fi(xi−1,ui−1) = εxi
(1.63)

e(xi, zi) = zi − hi(xi) = εzi
(1.64)

At this point, the Gaussian distribution assumption (see (A.7)) allows one to express
the distributions in the general form

p(.|.) ∝ exp(−1
2

eTΣ−1e) (1.65)

where e refers to either (1.63) or (1.64) depending on the context. Similarly, Σ
refers to either Σxi or Σzi. Σ−1 is referred to as the information matrix and φ is
called factor. We will use φ to denote a factor so that

φ = eTΣ−1e (1.66)
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A factor φ has the property to contain all the conditional dependencies related
to two or more specific states by factorising all the factors into a single one as
illustrated by Fig. 1.9. In this example we have the following set of probability
distributions:

p(x1|x0,u1
1) ∝ exp(−1

2
eT1 Σx

−1
1 e1)

p(x1|x0,u2
1) ∝ exp(−1

2
eT2 Σx

−1
2 e2)

p(z1|x1, l1) ∝ exp(−1
2

eT3 Σz
−1e3)

The u1 factor of Fig. 1.9b factorising the first two probabilities so that

p(x1|x0,u1) = p(x1|x0,u1
1) p(x1|x0,u2

1)

∝ exp
(
−1

2
(eT1 Σx

−1
1 e1 + eT2 Σx

−1
2 e2)

)
= exp(φ1 + φ2)

As one can see, the Factor Graph allows to efficiently represent the relationship
between the variables and thus have a better understanding of the problem. If we
consider K to be the number of different factors φ in the graph, then the overall
joint probability is given by

p(x, z) =
K∏

k=1

exp(φk) ∝
K∏

k=1

exp(−1
2

eTk Σ−1
k ek) (1.67)

In graph-based optimisation, the joint probability described by (1.67) then needs
to be maximised which is equivalent to minimising the negative log-likelihood of this
same function so that

−log
(
p(x, z)

)
=

K∑

k=1

φk ≈
K∑

k=1

eTk Σ−1
k ek (1.68)

The problem as formulated here can be solved using nonlinear least square optimi-
sation that will be introduced in the section coming hereafter.

1.3.3 Nonlinear least square optimisation

Solving the graph is in practice done by iterative nonlinear optimisation. An equiv-
alence to (1.68) is given by

F(x) =
∑

<i,j> ∈ C

φij ≈
∑

<i,j> ∈ C

e(xi,xj)T Ωij e(xi,xj) (1.69)

where C is the set of all pairs of indices < i, j > for which a constraint is defined in
the graph and Ωij is the information matrix so that Ωij = Σ−1

ij . The purpose of the
optimisation and thus of solving the problem in a maximum likelihood approach
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x0 x1

u1
1

z1

u2
1

l1

(a) DBN version

x0 x1

z1

l1

u1

(b) Factor Graph version

Figure 1.9: Factor graph and DBN representations of the same problem. We take
an example derived from SLAM problems. l1 is a landmark that is measured by a
sensor through z1 and which pose must be estimated. Two control sequences are
used to estimate the transition from xi−1 to xi to be used as an example. Left: DBN
representation of the corresponding problem. Right: Factor graph representation
of the same problem. Factors corresponding to u1

1 and u2
1 are encapsulated in a

single factor u1.

is to find the configuration of states x∗ such that the negative log-likelihood as
expressed by (1.69) is minimised. Another way to say this is that the optimisation
process aims at solving the following equation:

x∗ = argmin
x

F(x) (1.70)

Keeping the objective in mind, the nonlinear least square methods aim at reducing
iteratively the residual defined by the sum of the factors φk. The minimisation
first involves approximating F(x) around an estimate x̆ and to find a step ∆x to
approach the optimal configuration x∗ while minimising the cost function. This
step is used to update the estimate so that x̆← x̆+∆x and approximate F(x) once
again to repeat this process until convergence. By noting xn and ∆xn with n ∈ N

respectively the state estimate and step at iteration n, this iterative process can be
described by

xn = xn−1 + ∆xn, lim
n →∞

xn = x∗ (1.71)

Various iterative methods for nonlinear least square optimisation will be pre-
sented below starting with the Gradient Descent method. We will then introduce
the Gauss-Newton and Levenberg-Marquardt methods. The introduction to the
methods presented hereafter are taken from [Sola 2016].
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1.3.3.1 The Gradient Descent method

The Gradient Descent method, also called steepest descent method in the literature
is a minimisation method aiming at updating the state configuration in the direction
given by the opposite of the gradient of the cost function ∇F. The first order Taylor
expansion of the cost function around the current state estimate x̆ gives

F(x̆ + ∆x)
Taylor
= F(x̆) +∇F ∆x (1.72)

with

∇F ∆=
∂F
∂x̆

∣∣∣∣
x̆

(1.73)

By definition of the gradient, ∇F gives the direction of the steepest ascend. Hence
by going in the opposite direction that one can think of as the downhill direction,
the estimation should converge towards the minimum. Therefore the optimum step
is computed as

∆x∗
GD = −α∇FT (1.74)

where the parameter α is used to determine the length of the step in the steepest
descent direction which also has to be computed, e.g. by dichotomy. The search
directions computed by this method are completely independent from one iteration
to another. Fixing a priori α results in poor convergence rate. This behaviour
can be fixed by changing the value of the parameter α with line search method.
Yet, even with the optimal α (which is typically too costly to compute) the rate
of convergence is linear (i.e. super slow). Newton-based methods would be better
alternatives in particular with better rates (at least in the convex basin).

1.3.3.2 The Newton method

In the Newton method, the cost function, also called objective function, is approx-
imated by its second order Taylor expansion around the current estimate x̆

F(x̆ + ∆x)
Taylor
= F(x̆) +∇F ∆x +

1
2

∆xT HF ∆x (1.75)

where

HF = ∇2F (1.76)

The function given in (1.75) is a paraboloid from which we want to find the min-
imum to find the optimum step ∆x∗. This search for the minimum implies to
differentiate (1.75) and find the step so that

∇FT + HF ∆x∗ = 0 (1.77)
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yielding to a second-order step when HF > 0 defined by

∆x∗ = −HF
−1 ∇FT (1.78)

This method can show quadratic (i.e. fast and effective) convergence when the
initial guess is close enough to the solution. Like the gradient descent, Newton
method is local, i.e. would be trapped in the first local minimum, however it is
also more sensitive than the gradient descent, in particular requesting the cost
function to be strictly convex. If not sufficiently convex, some eigen values of H will
collapse, leading to improper numerical behaviours. A first situation illustrating
this undesired behaviour is the one where the curvature of the cost function is
too low, implying that the Hessian HF will get too small and thus its inverse will
be bigger than desired. The second situation is involving the cases when HF is
negative. This can happen in concave zones and then the step ∆x goes to the
direction opposite to the minimum, thus increasing the cost function. To prevent
unacceptable effects when some eigen values become non-positive, the hessian would
be regularised, i.e. a small positive value is added to the hessian to guarantee its
strict positivity. Before discussing regularisation let’s first mention why in our case
we at least have non-negative values.

1.3.3.3 The Gauss-Newton method

The Gauss-Newton method can be applied to objective function that square function
of the error e(x) so that

F(x) =
1
2

e(x)TΩe(x) (1.79)

where Ω is a symmetric positive-definite matrix. This method is similar to Newton’s
method excepted that it does not require the second derivatives to compute the
optimum step as we will see now. The gradient vector ∇F and the Hessian matrix
HF are defined from (1.79) as

∇F =
∂F
∂x

∣∣∣∣
x̆

=
(

eTΩ
∂e
∂x

)∣∣∣∣
x̆

= ĕTΩ J (1.80)

HF =
∂2F
∂x2

∣∣∣∣
x̆

=
(
∂e
∂x

T

Ω
∂e
∂x

+ eTΩ
∂2e
∂x2

)∣∣∣∣
x̆

= JTΩ J + ĕTΩ H (1.81)

where ĕ, J and H are respectively the column error vector, the jacobian matrix of
first derivatives and the Hessian tensor of second derivative around current state
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estimate x̆ so that

ĕ ∆= e(x̆) (1.82)

J ∆=
∂e
∂x

∣∣∣∣
x̆

(1.83)

H ∆=
∂2e
∂x2

∣∣∣∣
x̆

(1.84)

Supposing ĕ being small and J to vary slowly (hence the Hessian is small as well),
we can neglect the second order term in (1.81). Thus, we do not need to compute
the Hessian tensor H to approximate the Hessian matrix HF as

HF ≈ JTΩ J (1.85)

By replacing those terms in (1.75), we get the following approximation of the cost
function defined by (1.79),

F(x̆ + ∆x) ≈ 1
2

ĕTΩ ĕ + ĕTΩ J ∆x +
1
2

∆xT JT Ω J ∆x (1.86)

And again by substituting the terms in (1.78) by their definition, we get the follow-
ing expression of the optimum step in the Gauss-Newton method

∆x∗
GN = −(JTΩ J)−1 (ĕTΩ J)T = −(JTΩ J)−1 JT Ω ĕ (1.87)

where the matrix

J#Ω ∆= −(JTΩ J)−1 JT Ω (1.88)

is the left weighted generalised inverse of J, leading to

∆x∗
GN = J#Ω ĕ (1.89)

This descent step does not imply the computation of second derivatives. Moreover
it induces super-linear convergence rate, i.e. nearly as good as plain Newton (and
much better than Gradient Descent) when computing the optimum step as defined
here.The weighted inverse J#Ω should not be evaluated explicitly. The linear system
should be solved using methods designed to reduce the complexity of the problem
such as the QR or the Cholesky factorisation methods. These factorisation methods
will not be discussed here but the reader will find plenty of resources in the literature
( [Golub 2012, Sola 2016, Guennebaud 2010]) for details about QR and Cholesky
methods.

1.3.3.4 The Levenberg-Marquardt method

Both Newton and Gauss-Newton methods are valid when the starting point is close
enough to the solution, i.e. in the same convex basin of F. If this condition is not



38
Chapter 1. Estimation as filtering or online batch-optimisation

problems

satisfied then the computed step length ∆x may lead the estimation into a local
minimum due to a too low curvature of the approximated paraboloid given by the
approximation of the cost function. The idea behind the Levenberg-Marquardt is to
act more like the Gradient Descent algorithm when the current state estimate is far
from the minimum and take advantage of the Newton-based methods convergence
as we approach this minimum. To get to this behaviour, the first idea is to change
the optimum step computation as given in (1.78) so that

∆x∗
L = −α(HF + µI)−1 ∇FT (1.90)

where α can be used to change the step length and µ is the parameter used to give
a Gradient Descent like behaviour. Indeed, when the curvature of the paraboloid
is too low, the Hessian approximated as HF = JTΩ J is very small and thus if µ is
large enough then the Hessian can be neglected and the optimum step is given by the
gradient ∇FT . Small values of the parameter µ result in a Gauss-Newton update. µ
is usually initialised to be large, resulting in small steps for the first updates in the
direction given by the gradient descent algorithm. If at some point the computed op-
timum step results in a higher cost, then this parameter is increased. Otherwise µ is
decreased as the solution improves to approach the behaviour of the Gauss-Newton
method and get a faster convergence towards the local minimum [Lourakis 2005].
This optimum step is improved by Marquardt’s idea [Marquardt 1963] to replace
the identity term I by the diagonal of the approximated Hessian.

∆x∗
LM = −α(HF + µ diag(HF))−1 ∇FT (1.91)

so that the damping of the approximated Hessian matrix affects each direction of
the state differently depending on the curvature of the cost function along that
direction.

1.3.4 Conclusion

In robotics, we are facing the double challenge of facing a complex problem with
the objective of running it on real-time. Filtering methods are not only known
for being able to produce real-time estimation, they are also easier to implement,
well studied in the literature and the estimation one can get may be satisfying
depending on the application. However the remaining issue would be to find the
best suited approach among all the different filters that now exist as each new filter
often corresponds to some particular new hypothesis or approximation, each of
them bringing some drawbacks, limitations or condition of use. In contrast, batch-
optimisation methods are indisputable for off-line treatments. In visual SLAM,
it is now accepted that batch-optimisation only offers advantages with respect to
filtering, except for minimal systems [Strasdat 2012]. Is this also true when less
rich sensors and no map are involved? In [Mirzaei 2008] the authors compared the
results of an EKF algorithm for an IMU-Camera calibration problem with a bundle
Adjustment that they consider as giving the ’best achievable (offline) estimates.
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Their results indicate that the EKF method and the batch least-square estimator
are achieving similar results. However, they are not mentioning anything about the
computation time. The main distinction between both filtering and online batch-
optimisation methods might be the way to treat past data. Filtering methods tend
to summarise the information gained with past historic of poses and measurements
and propagate the joint probability distributions through time. Batch-optimisation
methods discard unused measurements and historic poses to reduce the complexity
of the problem and make the optimisation possible while the propagation of the
probability distributions through time is made unnecessary.

There is also a broad middle ground between filtering and smoothing meth-
ods. However, if one tries to define the best possible filter by modifying
the standard approach, one would converge more and more towards online
batch-optimisation [Strasdat 2012]. On the one hand, filtering methods have
shown promising improvements these last years in terms of estimation accuracy.
In [Mourikis 2007] the authors proposed a multi-state Kalman Filter and applied
the estimator to a vision-aided inertial navigation problem providing results of
nearly equal quality to batch-based methods. [Li 2013] is yet another example of
EKF-based algorithm showing similar results than batch-optimisation methods in
real-time. On the other hand, batch-optimisation methods have also been able to
reach realtime operation [Leutenegger 2015,Mourikis 2009,Leutenegger 2015].

In this thesis we will focus on estimating the state of one rigid body under IMU,
contact and odometry measurements. Considering only this information, we might
have considered filtering approach for its simplicity. However we have worked in
the broader context of later enriching the IMU measurements with visual data (yet
left as a perspective, but on which we are currently working). We are also willing to
contribute to a generic framework of estimation in robotics, by considering a system
that does not need to be deeply refactored each time a new sensor is attached to
the robot. We do not see that happening with filtering. For all these reasons, our
work is bound to the online batch-optimisation approach, where our contributions
take place. Let us insist again on the fact that filtering and optimisation are finally
two faces of the same coin, as filtering is often a linear numeric solver on top of
some clever marginalisation, but with the same underlying knowledge graph. Our
contributions are then likely to be nearly directly useful in filtering.
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2.1 Measurements

The IMU provides a measurement of the proper acceleration as well as the angular
velocity of the sensor itself in an inertial frame. Thus the IMU is a combination
of at least both 3-axis accelerometer and 3-axis gyroscope. A 3-axis magnetometer
measuring the magnetic field intensity along the axis of the IMU is sometimes
also included. The acceleration is measured through the displacement of a mass
retained by a spring as illustrated in Fig. 2.2a. The magnitude of this acceleration
is then proportional to a force via the relation to the elasticity of the spring, itself
proportional to the acceleration via the principle of dynamics. A simplified scheme
of both gyroscopes and accelerometers in IMU is given in Fig. 2.1. An IMU at rest
on the surface of the Earth will measure an upward acceleration of 9.81 m.s-1 due
to the gravity force. The angular velocity is obtained by detecting the changes of
dynamics of an oscillating or rotating system via the Coriolis forces (Fig. 2.2b).

IMU sensors are very popular in robotics as they have been used for inertial-
only navigation [Barshan 1995, Nilsson 2014a], visual-inertial navigation [Roussil-
lon 2011,Konolige 2008], attitude estimation [Hamel 2006] or even applications using
smartphones [Li 2013]. Indeed, by means of time integration of the provided mea-
surements, it is possible to estimate the trajectory of the IMU or to detect events
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Figure 2.1: Simplified scheme of gyroscopes and accelerometers in an
IMU [Tedaldi 2013].

such as slippage in the applications we are concerned with. In our case, we are using
IMUs based on MEMS (micro electromechanical systems) technology resulting in
micro scale sensors. There has been a rapid growth in the development of such
sensors due to their extensive use in machines as the computers and smartphones
while the production cost kept decreasing. These sensors have advantages such as
compactness and relatively high bandwidth. However, they are also suffering from
drawbacks such as non-neglect able biases in their measurements and also their sen-
sitivity to temperature. Several characteristics must be taken into account when
choosing an IMU. In addition to its precision, the operating range is an important
criterion and can be limited due to physical factors coming from the mechanical
elements the IMU is built with and that have their own limitations. Other criteria
that can be taken into account are usually the axis misalignments, the biases ranges
or the scale factor errors. The calibration process refers to the identification of these
parameters. There are commercial IMUs that are factory calibrated. However, this
implies that the manufacturer performed data acquisition with IMUs attached to a
specific machine and performing motions so that all these errors are made observ-
able to estimate it. Naturally, these processes increase considerably the cost of the
IMUs since each sensor is usually sold with its own calibration parameters stored
inside a non-volatile memory or in the firmware itself. As a result, the hardware
itself is only a fraction of the final cost of these IMUs but the process leading to
provide off the shelf accurate measurement is what people are actually buying to
these companies.
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(a) A mechanical accelerometer
(source: [Titterton 2004])

(b) A mechanical gyroscope
(source: [Titterton 2004])

Figure 2.2: Mechanical representation of an accelerometer and a gyroscope.

2.2 The sources of errors

2.2.1 Misalignment errors

In an ideal IMU, the 3 axes of the accelerometers are orthogonal and aligned with
the 3 axes of the gyroscope. The accelerometer measures the accelerations distinctly
along these 3 axes while the gyroscope measures the angular velocity around each of
the 3 distinct axes. However, in real MEMS IMUs and due to assembly inaccuracies,
the axes may be not only non-orthogonal but also misaligned (see Fig. 2.3). Let us
call the ideal orthogonal accelerometer and gyroscope frames respectively AB and
WB and the real (non-orthogonal) frames AS and WS . By thinking separately about
the accelerometer and the gyroscope, these frames can be described by the sets of
axes (xB, yB, zB) for AB (respectively WB) and (xS , yS , zS) for AS (respectively
WS) in Fig. 2.3. Acceleration (respectively angular velocity) measurements are
acquired in the non-orthogonal frame AS (respectively WS). Depending on the
amplitude of the misalignments and how far the frame is from an orthogonal one, a
correction might be required to express the output measurements in the orthogonal
frame. For small angles, this correction is expressed by a transformation matrix
M given angles as described in Fig. 2.3. Thus if aS denotes the 3D acceleration
measurements expressed in AS , then aB the corresponding measurement expressed
in AB is given by

aB = M aS (2.1)

with

M =




1 −βyz βzy
βxz 1 −βzx
−βxy βyx 1


 (2.2)
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Figure 2.3: Representation of the misalignment and non-orthogonality of accelerom-
eter and gyroscope axes in an IMU [Tedaldi 2013]. The 3D frame formed by the set
of axes (xB, yB, zB) is orthogonal while the frame formed by the axes (xS , yS , zS)
is misaligned and non-orthogonal.

The exact same relation can be written for the gyroscope measurements. Finally,
misalignments and orthogonality for accelerometers and gyroscopes are different.
Thus specific transformation matrices Ma and Mω might be required to correct
respectively acceleration and rate of turn data.

aB = Ma aS , ωω = Mω ωS (2.3)

In the ideal case Ma and Mω are the identity matrix.

2.2.2 Scale factor errors

The scale factor error is the relation between the input and the output. In an ideal
IMU, we expect the input and the output to be equal. However in a real IMU, the
output might be affected by a linear effect resulting in an output that is proportional
to the input. The scale factors on each axis of the IMU are independent so that we
can define two scaling matrices Ka and Kω so that the accelerometer and gyroscope
outputs can be described respectively by

aB = Ka aS (2.4)

ωB = Kω ωS (2.5)
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where

Ka =



sax 0 0
0 say 0
0 0 saz


 , Kω =



sωx 0 0
0 sωy 0
0 0 sωz


 (2.6)

With (2.3), (2.4) and (2.4), we get the following IMU model error

aB = Ma Ka aS (2.7)

ωB = Mω Kω ωS (2.8)

Scale factor effects are most apparent in times of high acceleration and rotation.

2.2.3 Biases

The output measurements of IMUs are affected by biases for both acceleration
and rate of turn components. Each axis of the IMU is affected by its own offset
that is independent from the other axis. Thus the bias can be modelled with six
components or by two vectors ab and ωb defined as

ab =




ab,x
ab,y
ab,z


 , ωb =




ωb,x

ωb,y

ωb,z


 (2.9)

These biases take part in the sensor error model as additive terms directly on the
inputs so that

aSoutput = aSinput + ab (2.10)

ωS
output = ωS

input + ωb (2.11)

The complexity of the bias estimation can come from two major points. First
of all, for each power up of the IMU, the initial bias is different. These changes
are partially due to modifications of the physical properties of the IMU itself and
different initial conditions. A higher bias repeatability tends to allow a better initial
tuning of the IMU’s parameters thus leading to a faster convergence towards good
bias estimates. At the opposite, a higher variability leads to more difficult bias
estimations. Furthermore, the biases change over time making their estimation even
more important and difficult. The changes in bias can be related to temperature,
time or even mechanical stress applied on the system. The evolution of the biases
over time can be modelled as a random walk which depends on the quality of the
IMU. The higher the quality of the IMU the stabler we can expect the biases to be
over time. For a proper use of the sensor, the biases need to be removed from the
sensor measurements before the data are used. Using equations (2.7), (2.8), (2.10)
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and (2.11) we get the following IMU error model.

aB = Ma Ka aS + ab (2.12)

ωB = Mω Kω ωS + ωb (2.13)

2.2.4 Noises

Finally, IMUs do not make an exception among sensors as they are also affected by
measurement noises. The noise affecting each axis of the IMU is independent from
the others thus also resulting in two noise vectors an and ωn so that

aSoutput = aSinput + an (2.14)

ωS
output = ωS

input + ωn (2.15)

with

an =




an,x
an,y
an,z


 , ωn =




ωn,x

ωn,y

ωn,z


 (2.16)

where each component can be described with a Gaussian distribution.

an ∼ N(0,Σa,n) , ωn ∼ N(0,Σω,n) (2.17)

Σa,n and Σω,n are different and depend on the sensor itself. Finally, us-
ing (2.12), (2.13) and (2.16) the complete sensor error model becomes

aB = Ma Ka aS + ab + an (2.18)

ωB = Mω Kω ωS + ωb + ωn (2.19)

2.2.5 Used IMU sensor model

The effects of aforementioned errors are not the same given the experimental con-
ditions. The scale factor error in IMU is usually not a large contributor to the total
errors. The contribution of the accelerometer scale-factor error increases with the
input acceleration. Furthermore, it causes position and velocity calculation errors
through the integration of the errors but also inaccuracies on the estimation of
pitch and roll angles. In a similar way, the gyroscope’s scale-factor error is larger
when the input increases, that is during motions with large angular velocities. The
effect one can expect from this source of error is difficulties to track highly dynamic
motions. Velocity and position errors due to the accelerometer scale-factor can be
expressed as

verror = asf_error ∗ g ∗ t (2.20)

perror =
g ∗ t2

2
∗ asf_error (2.21)
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where asf_error and ωsf_error are respectively the accelerometer and gyroscope scale-
factor errors while g and t are the gravity and the integration time.

Compared to the other possible sources of errors, both accelerometer and gyro-
scope biases are significant contributors to position, velocity and orientation errors.
This major contribution is due not only to the difficulty to estimate time-varying
biases made only more complex through their observability conditions requiring
various poses and motion dynamics but also to the integration of these errors for
position and velocity estimation. Besides, these errors occur during any motion of
the IMU. Thus we decide to neglect other sources of error than biases and noises.
The resulting IMU error model is described by

aSoutput = aSinput + ab + an (2.22)

ωS
output = ωS

input + ωb + ωn (2.23)

2.3 Calibration of the sensor

2.3.1 Introduction

The calibration process usually consists in placing the device in different configu-
rations to apply different stimuli on it. These different excitements introduced as
input measures to the IMU enhance the observability of the different parameters
thus allowing to determine the actual error in each measurement. There are differ-
ent calibration methods to estimate the parameters of the IMU. The first methods
were based on the use of mechanical equipment. Then came methods going towards
estimation using sensor fusion instead of a specific costly equipment.

2.3.2 Calibration based on the use of mechanical equipment

Factory calibration processes are still using specific and costly mechanical equip-
ment. Different equipment may be required to estimate the different parameters
of the IMU. Thus accelerometer calibration can be performed by rotating the sen-
sor so that each axis is aligned with the known gravity. This process can be done
using a dividing-head precision device that is able to rotate precisely. The gyro-
scope calibration can be performed using a high precision rate table. There exist
different types of rate tables according to the number of degrees of freedom they
can operate in. The higher the degree of freedom the more complex the generated
motions can be and the quicker the calibration process is expected to be. Once all
the measurements are made, a batch linear least square or a Kalman Filter can be
used to estimate the optimal calibration parameters while minimising the errors.

In [Magnussen 2015] the authors are describing the calibration process using a
6 degree of freedom hexapod for a strapdown integration of the IMU on an Un-
manned Aerial Vehicle (UAV). This calibration process is used to estimate the
internal parameters of the IMU and the position offset due to the pose of the
IMU on the UAV. [Skog 2006] proposes a calibration method that requires no me-
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(a) 3-Axis Rate Table Series
AC3337-TC from ACUTRONIC.
The rate table is specifically de-
signed for testing IMUs. Accuracy
and high rate control as well as rate
stability are very important features
for rate tables.

(b) The IMU array is placed inside
the icosahedron. The different faces
of the icosahedron allow to mea-
sure the Earth’s gravity when the
IMU is placed in different orienta-
tion while leaving the sensor still in
an even distribution of unknown ori-
entations. [Nilsson 2014b]

Figure 2.4: Tools designed for calibration purposes

chanical equipment for the accelerometer but a rate table for the gyroscope. The
proposed method is based on the measurement properties of the IMU resulting in
an equality of the norm of the measured output of the accelerometers (respectively
of the gyroscopes) clusters and the magnitude of force (the rotational velocity re-
spectively). Further calibration methods using mechanical equipment are described
in [Cho 2005,Pittelkau 2006,Beravs 2012] with different methods.

2.3.3 Calibration without mechanical equipment

With the increase of potential applications using IMUs, more effort has been made
towards easier calibration of inertial measurements units. [Fong 2008] proposed a
calibration method for both accelerometer and gyroscope that does not require
any mechanical equipment. This method is also used to compensate both axis
misalignment and scale factor errors using the Earth’s gravity as a stable physical
force applied on the IMU and arbitrary motions. To be more specific, the idea
behind is to calibrate the gyroscope by comparing the estimated orientation and the
output of the accelerometer measurements. A similar idea is used in [Cheuk 2012]
to extend the calibration to the magnetometers. The importance of calibration
procedures for low-cost IMUs also increased the interests for an easy estimation of
IMU’s parameters. Thus [Nilsson 2014b] proposed a device to calibrate single-chip
IMUs that can be used to correct the misalignment errors. This method is based on
static measurements taken while the IMU is placed in different orientations. The
measurements are made easy thanks to a printable device that is an icosahedron
solid (see Fig. 2.4b) where the IMU can be placed in and available for download.
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The recorded data used to estimate the misalignment of the axis, the gain and biases
using a maximum likelihood based approach. Unfortunately, the method requires
the IMU to be still in the solid designed for a specific array on which it is placed.

2.3.4 Self-calibration

Alternatively, calibration can be performed online, in real-time alongside all other
operations of the system, in what is known as self-calibration. For this, the system
needs to use additional sensors that, when operating together, render the parameters
to calibrate observable.

We will be presenting self-calibration methods with more details in Chapter 4,
after the IMU particular case developed in Chapter 3. Indeed, in Chapter 3 we
apply these methods to the self-calibration of the IMU in SO(3) in applications of
pedestrians and humanoid walking. In Chapter 4, we generalise the methodology
for self-calibrating motion sensors in the framework of graph-based optimisation on
manifold.





Chapter 3

Graph based IMU
preintegration on the S

3

manifold, with application to
localisation

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Graph-based inertial-kinematic odometry . . . . . . . . . . . 56

3.2.1 Graph-based iterative optimisation . . . . . . . . . . . . . . . 56

3.2.2 Where to put Keyframes? . . . . . . . . . . . . . . . . . . . . 57

3.2.3 Description of factors . . . . . . . . . . . . . . . . . . . . . . 58

3.3 IMU pre-integration in S3 and SO(3) . . . . . . . . . . . . . 59

3.3.1 State integration in the absolute reference frame . . . . . . . 59

3.3.2 Delta definitions . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Incremental delta pre-integration . . . . . . . . . . . . . . . . 62

3.3.4 Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.5 Incremental delta covariance integration . . . . . . . . . . . . 63

3.3.6 Delta correction with new bias . . . . . . . . . . . . . . . . . 63

3.3.7 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Pedestrian Localisation . . . . . . . . . . . . . . . . . . . . . . 64

3.4.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Experiments on a humanoid robot . . . . . . . . . . . . . . . 71

3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 72



52
Chapter 3. Graph based IMU preintegration on the S3 manifold, with

application to localisation

3.1 Introduction

3.1.1 Context

Indoor localisation is an open challenge in various situations: location-based life
improving services, firefighters localisation and navigation, patient tracking motion
monitoring, medical observation, accident monitoring, mobility and independence
of partially sighted or blind persons, etc. As GPS are not available indoor, and
because relying on a network of fixed sensors (cameras, RFID) also raised many
open questions, an appealing way to localize a body in space is to use odometry
information measured by embedded inertial measurement units (IMUs). In this
context, while performing the integration it is mandatory to take into account the
IMU biases. As the biases vary with time and physical conditions, it must be
estimated on-line while processing the measurements. Furthermore, it is desirable
that additional information coming from other sensors can be integrated in the same
estimation process. Similarly to the strategies adopted in simultaneous localisation
and mapping (SLAM), sparse measurements or additional information (e.g. coming
from intermittent absolute localisation, or from a sparse sensor network) would
benefit to the localisation process when available. With these requirements coming
from the context in mind, we propose to define an estimator based on graphical
models, able to accurately and efficiently integrate inertial measurements while
estimating the IMU biases. Thanks to the graphical model, the estimator will then
be able to fuse additional measurements coming from other sensors or additional
prior information provided by the application. The long-term goal is to merge
this method with visual SLAM estimates. Indeed, the method that we propose
is suitable for merging with any other source of information. While the fusion
with visual data is still work in progress, we propose here two simpler -yet useful-
experimental contexts: pedestrian indoor tracking and legged robotics.

3.1.2 Related Work

One of the most common ways to describe the trajectory of a body in space is to use
odometry, which can be derived from a multitude of sensors, from encoders to GPS
and cameras. The quality of this information is also known to be dependent on
the sensor specifications and to accumulate measurement errors. The development
of SLAM (Simultaneous Localization And Mapping) is mature enough to resolve
this dependency over time with loop closure strategies. However, other strategies
are required to comply with the particularities of legged locomotion and physical
interactions in unstructured environments. This is particularly necessary in outdoor
or industrial applications with cluttered environment. In this case, assuming a flat
floor is not always reasonable and being able to observe the foot pose allows to
implement advanced reactive locomotion strategies.

While this problem is an open challenge in various domains, like indoor pedes-
trian tracking for life service, we mostly focus here our analysis of the litterature to
the robotics domain. In the DRC [Johnson 2017, Marion 2017, Karumanchi 2017]
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most of the teams used laser or RGB-D cameras to build a reconstruction of the
floor surface in order to plan the next feet pose. For some teams the level of ac-
curacy was not always sufficient and involved dramatic failures despite intensive
training [Kaneko 2015]. On the other hand, the IHMC team [Johnson 2017] re-
ported an important gain in terms of accuracy using their state estimator alone,
reaching an impressive 1 cm drift per every three steps for the pelvis horizontal
position, and 5 mm per every nine steps for the pelvis vertical position. Using a
quite simple state estimator, it is very interesting to note the following reported
factors for reaching this level of precision besides bug fixing: the redesign of Atlas,
coming with a significant reduction of backlash in the leg joints, improving measure-
ments using kinematics and a walking gait reducing the amount of foot slipping and
bouncing. Although the IHMC tested a localization algorithm [Pomerleau 2013],
occasional localisation errors were a problem in the overall behavior and SLAM
happened to be not necessary in this situation.

For robots where the design choices introduce flexibilities such as HRP-
2 [Nakaoka 2007], or backlashes, the system needs a state estimator being able
to take into account this uncertainty. Furthermore, the design of a robot gets even
more complex with the increase in the number of degrees of freedom (dof). Esti-
mating the state of the robot usually requires the use of successive transformation
using the kinematic chain, thus reconstructing the pose of a specific joint from the
estimation of another point in the robot such as the free flyer. In a first instance,
errors due to encoders measurements can be neglected although they accumulate
over time. However, a good pose estimation of the robot in its environment is still
needed for effective interactions with the environment, and especially for behavior
involving manipulation or multiple contact locomotion. This estimation can then
be used to compute the commands that will be sent to actuators. An accurate
model of the robot can then be considered to get better pose estimations. However,
although the identification of rigid robot’s dynamics is well studied, it is still a
complex and time-consuming task.

Localisation can be used to perform real-time planning and model predictive
control. To achieve this goal, fusion strategies with information coming from dif-
ferent sensors is needed. Fusion strategies have always been used on humanoid
robots to improve the pose estimation. [Stasse 2006] is considered as the first im-
plementation of real-time vision-based 3D SLAM applied to a humanoid robot and
using both pattern generator and inertial information with loop closing capabilities.
In [Ahn 2012] the authors propose a method for vision-based 3D motion estimation
using on-board odometry information and inertial sensing. The proposed method
is divided into two submodules that are a EKF-based odometry estimation module
and a vision-based SLAM method. They claim to improve the pose estimation given
by the second method by augmenting it with the odometry obtained by using the
forward kinematics model of the robot and information provided by encoders. The
IMU is a main component of the proposed method and operated at 100 Hz. Fallon
et al. [Fallon 2014] go further by using leg kinematics, inertial measurements and
visual perception provided by LIDAR sensor to perform drift-free state estimation
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(a)

(b)

(c)

(d)

(e)

WIMU

Figure 3.1: The flying foot trajectory is reconstructed through an IMU set on the
foot (in green), and by fusing the information coming from the kinematic chain from
the support foot to the flying one (in light brown). In the middle images (a)-(d)
shows slippage while performing a multicontacts motion depicted on the right (e)
(from [Carpentier 2016]).
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applied to ATLAS humanoid robot (Fig. 3a) while localising it in a prior map. The
distinct sensing modalities are used with two different state estimators. The first
one provides position and velocity estimates with high rate and low latency so that
these can be used for control feedback. The second estimator is using vision sensors
for long-term localisation while accepting small short-term corrections. The pre-
sented method allows them to have the robot walking over uneven terrain without
stopping for ten minutes.

Graphical methods have been extensively used to implement such fusion strate-
gies [Thrun 2006,Kaess 2008a]. They have been used for large modelling estimation
problems by means of sparse networks of constraints. In robotics, the problems of
visual odometry, and simultaneous localisation and mapping, have reached a high
degree of maturity, in great part thanks of the graphical representation. This is
so, among other aspects, because of the power of the graphical representation to
accurately model complex estimation problems. These often involve dynamics, pro-
prioceptive measures, exteroceptive measures, and self-calibration. The graphical
representation also allows for the design of powerful nonlinear estimation solvers,
which can be built taking into account the needs for accuracy, robustness and
CPU-performance. In order to keep the problem tractable and maintain real-time
performance a key point is to avoid the graph to be too large for a given time
window. However, trajectory correction using SLAM and more generally visual in-
formation implies to revise the control sequences and the planning at a much lower
frequency due to sensor imperfections and the need in SLAM for a loop-closure to
propagate uncertainty corrections.

3.1.3 Methodology

Graphical methods have been extensively used to implement such fusion strate-
gies [Thrun 2006, Kaess 2008a]. They are well-suited to gather information from
sensors and draw conclusions. The underlying principle is to consider that despite
all the information gathered from the sensors, we still have uncertainties about the
true state of the world due to imperfections of the sensors. Several states of the
world can thus be considered as probable. Relying on probabilistic formulations is a
way to find out the most probable one. Furthermore, graphical representations are
able to accurately model complex estimation problems [Koller 2009] in a versatile
way.

Graphical models have been used for large modelling estimation problems by
means of sparse networks of constraints and particularly in robotics where SLAM
and visual odometry problems have reached a high degree of maturity in great part
thanks to these tools. The graphical representation also allows for the design of
powerful nonlinear estimation solvers, which can be built taking into account the
needs for accuracy, robustness and computational performances.

In order to keep the problem tractable and maintain real-time performance,
a key point is to prevent the graph from being too large given a time window.
IMUs are challenging in this regard, as their high frequency measurement rate
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creates large sets of data. Pre-integration of IMU measurements helps to reduce
the size of the underlying graph by squeezing 100 to 1000 measures into a single
pre-integrated Bayesian node [Lupton 2009]. It was later suggested to preintegrate
data in the SO(3) manifold instead of using Euler angles [Forster 2015]. The IMU
measurements can simply be disregarded even when the initial “pre-integration”
conditions change while the numerical solver optimised the maximum-likelihood
trajectory.

3.1.4 Contributions

We propose an alternative estimation method following a similar methodology. We
define a graphical model where pre-integrated data are added at key-frame instants
(about 2 Hz), summarising IMU measurements captured at about 1 kHz. The state
that we want to estimate considers the position, orientation and linear velocity (di-
mension 9) of the IMU attached to the foot, along with the time-varying accelerom-
eter and gyroscope biases (dimension 6). We also implement the prior knowledge
that the foot lands horizontally, by adding Bayesian nodes when the foot lands and
takes off. This prior knowledge makes the considered state observable. We then
use a numerical solver to maximise the likelihood of the measurements and prior
knowledge along the past trajectory.

The first contribution is to reformulate the pre-integration method introduced
in [Forster 2015] using quaternion representation and to give a detailed and sim-
pler algebraic derivations using the chain rule. The result of this preintegration
method is a clear definition of Jacobians as well as a better understanding and thus
easier integration for future applications. The second contribution is to apply this
method for estimating the human foot-pose during walking. To this end, we build
a graphical model formulation of the problem by gathering information. Once the
formulation is completed, a nonlinear least-squares optimiser (Google Ceres [Agar-
wal ]) is used to solve the problem and find the most probable solution in the
least-square sense.

3.2 Graph-based inertial-kinematic odometry

3.2.1 Graph-based iterative optimisation

As explained in 1.3.2, the problem is represented as a graph, where the nodes refer
to the variables, and the edges, are called factors that represent the geometrical
constraints between variables due to measurements. We define here the graphical
model proposed to handle the IMU. The state x is modelled as a multi-variate
Gaussian distribution, and in our case it includes poses and velocities (p,q,v) of
the body to which the IMU is attached to and IMU biases (ab,ωb). This state
is sampled at selected key-frames along the trajectory (see Fig. 3.2). For each
factor, we have to define the corresponding measurement residual, i.e. an error or
a residual r as the discrepancy between a measurement z and its expectation given
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Figure 3.2: Detailed factor graph for the initial keyframe and two steps. Circles:
state blocks for position (p), orientation quaternion (q), velocity (v), accelerometer
bias (ab), gyrometer bias (ωb). Orange: initial pose factor. Red: kinematic factor
(deduced from additional sensors). Purple: zero-velocity factor. Green: IMU’s
delta pre-integration factor. Blue: bias drift factor. Cyan: bias absolute factor.

the involved state variables,

r(x) = h(x) + v− z, v ∼ N (0,Ω−1) (3.1)

being h(x) the sensor measurement model and Ω the information matrix of the
measurement Gaussian noise v. One of the difficulties brought by this estimation
problem is that the variables defined on manifolds, such as quaternions or rotation
matrices. We then must rewrite (3.1) as

r(x) = (h(x)⊕ v)⊖ z (3.2)

The ⊕ and ⊖ symbols correspond to the addition and subtraction operators on the
manifold that we more completely introduce in C.1.3.

As explained in 1.3.3, the maximum a posteriori estimation is obtained by iter-
atively minimising the Mahalanobis squared norm of all linearised errors

∆x∗ = arg min
∆x

∑

k

‖rk(x̆) + Jk∆x‖2
Ω−1

k

(3.3)

being x̆ the state estimate at the current iteration, and Jk the Jacobian of the k-th
residual rk(x) (with Jk = ∂(hk(x)⊖ zk)/∂∆x in the case of variables lying on a
manifold) and Ωk is the information matrix of the k-th measurement. Here we do
not have to enter in the details of the optimisation scheme, that we kept generic
(we literally used the optimiser on manifold Ceres without any additional flavour).
We just have to precisely define this function, and its derivatives J.
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3.2.2 Where to put Keyframes?

During a biped walk, we take profit of certain situations where precise and reliable
assumptions can be made. For example, the foot velocity is null during its support
phase. At these selected instants, we create the keyframes that will produce a chain
of states. These states are linked by the measurements, forming our factor graph
( Fig. 3.2). Each keyframe fi contains the following state blocks: the position of
the foot, velocity and orientation data, plus the IMU accelerometer and gyrometer
biases,

fi =
[
pi vi qi ab,i ωb,i

]⊤
. (3.4)

3.2.3 Description of factors

The types of factor considered in our graph are illustrated in Fig. 3.2. Each factor
k requires its own information matrix Ωk, and its residual function rk(x). These
residual functions are detailed hereafter.

3.2.3.1 Absolute factors

These include initial position and orientation (orange in the figure), zero velocity
(purple), and bias magnitude (cyan). Each residual depends on a single state block,
which is compared against a reference zk,

rk(φi) = φi − zk (3.5)

where φi is one among {pi,vi,ab,i,ωb,i}. For the quaternion we implement the
residual using the operator ⊖ on the sphere of dimension 3 manifold, denoted S3

(see (C.5) in Appendix C.1 for further details),

rk(qi) = qi ⊖ zk = Log(z∗
k ⊗ qi) (3.6)

3.2.3.2 Bias drift factors (blue)

These are relative factors that allow the bias estimates to drift with time at a
controlled rate. Each bias drift residual depends on two state blocks, namely

r(ab,i,ab,j) = ab,j − ab,i
r(ωb,i,ωb,j) = ωb,j − ωb,i

(3.7)

3.2.3.3 Complementary factors (red)

These relate position and orientation between two consecutive steps as it can be
provided by other sensors than IMU or methods using human walking specificities,

r(pi,qi,pj ,qj) =

[
q∗
i ⊙ (pj − pi)− yk
Log(z∗

k ⊗ q∗
i ⊗ qj)

]
(3.8)
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where yk and zk are respectively the relative position and quaternion measurements.

3.2.3.4 IMU pre-integrated factors (green)

Due to the different rates of IMU data and keyframe creations, hundreds of IMU
measurements need to be integrated to generate a motion factor linking two consec-
utive keyframes. In addition to that, the integration of the motion equations in an
absolute reference frame strongly depends on the initial conditions of orientation,
velocity and IMU bias. Therefore, the changes in the estimates of these magnitudes
(inherent to the iterative nature of the optimisation) affect the whole motion inte-
gral. Delta pre-integration theory was developed to avoid the need of re-integrating
all IMU data at each iteration [Lupton 2009, Forster 2015]. On the one hand, this
theory defines new motion magnitudes called deltas, which are independent of the
initial conditions for orientation and velocity, and thus depend only on the IMU
data and bias. On the other hand, the effect of the changes in the bias estimates is
linearised so that the deltas can be corrected a posteriori, i.e. when computing the
residual, using pre-computed Jacobians.

In the coming section, we revise the IMU pre-integration theory, providing three
contributions: 1) a segmentation of the computation pipeline (from measurements,
to body magnitudes, to the current delta, and to the integrated delta); 2) a physical
interpretation of the delta magnitudes; and 3) a simpler yet rigorous algebraic
approach, valid for both the S3 (quaternion) and SO(3) (rotation matrix) manifolds,
which takes profit of the pipeline segmentation and the chain rule to compute the
otherwise cumbersome Jacobians [Forster 2015].

Some background that are not so common in robotics can be found in ap-
pendix Appendix C.1 to help follow the developments of the preintegration equa-
tions.

3.3 IMU pre-integration in S
3 and SO(3)

3.3.1 State integration in the absolute reference frame

We define the world-referenced states of the IMU by x=(p,v,q) where p stands for
the position, v for the velocity and q for the orientation encoded as a quaternion.
The time evolution of x is governed by the kinematic equation,

ṗ = v

v̇ = g + q ⊙ a

q̇ =
1
2

q ⊗ ω

(3.9)

where g denotes the gravity vector and we identify b = (a,ω) as the body magni-
tudes, that is, the magnitudes of acceleration and angular velocity measured by the
IMU and expressed in its reference frame. These body magnitudes are obtained at
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discrete times tj from biased and noisy IMU measurements, i.e.,

aj , am,j − ab,j − an

ωj , ωm,j − ωb,j − ωn ,
(3.10)

with •m the measurements, •b the biases, and •n the noises. Assuming constant
body magnitudes within the IMU sampling period δt , tk−tj , we have the discrete-
time relation:

pk = pj + vjδt+
1
2

gδt2 +
1
2

qj ⊙ ajδt2

vk = vj + gδt+ qj ⊙ ajδt

qk = qj ⊗ Exp(ωjδt/2)

(3.11)

3.3.2 Delta definitions

Consider a non-rotating reference frame that is free-falling at the acceleration of
gravity g, and name it Gt. An ideal (unbiased and noiseless) IMU glued to this
frame would measure null linear accelerations and angular velocities. Any non-null
measurements would be due to a relative motion of the IMU with respect to Gt.
Thus, we identify the IMU deltas as being physically identifiable as the motion
increments with respect to a free-falling frame, that is, a frame that falls with
gravity as illustrated in Fig. 3.3.

At a given keyframe instant ti, we initialize Gi at xi = (pi,vi,qi). At a later
keyframe instant tj (j > i), Gj has fallen according to g, and the state of our moving
body is now at xj = (pj ,vj ,qj). The motion variation, denoted ∆ij , is defined as
the state variation in position, velocity and orientation of our body between Gi and
Gj , that is,

∆pij = q∗
i ⊙

(
pj − pi − vi∆tij −

1
2

g∆t2ij
)

∆vij = q∗
i ⊙ (vj − vi − g∆tij)

∆qij = q∗
i ⊗ qj

(3.12)

where ∆tij , tj − ti is the time duration between the two keyframes. Notice that
this definition of ∆ij is the same as provided in [Lupton 2009, Forster 2015], and
we have given it here a clear physical meaning. It is worth to notice that the deltas
form a group under the composition law ∆ik , ∆ij ⊞ ∆jk ( Fig. 3.4), defined by:

∆pik = ∆pij + ∆vij∆tjk + ∆qij ⊙∆pjk
∆vik = ∆vij + ∆qij ⊙∆vjk
∆qik = ∆qij ⊗∆qjk

(3.13)

with identity ∆0 = [(0, 0, 0), (0, 0, 0), (1, 0, 0, 0)], and inverse ∆ji , ∆−1
ij such that

∆−1 ⊕ ∆ = ∆ ⊞ ∆−1 = ∆0. At any time j we can recover the state estimate xj
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Figure 3.3: A physical interpretation of the deltas. The blue frame Gi is the initial
frame at time t = i. At this moment, the IMU is moved with an instant velocity vi
from the pose given by {pi, Ri}. If the rigid body the IMU is attached on does not
move with a proper acceleration and rate of turn from time i to j, then the trajectory
of the IMU would be given by the free-falling frame and the device would be on the
frame Gj at time t = j. However if the IMU moves with a proper acceleration and
rate of turn, then its pose at time j is given by ∆ij with respect to the free-falling
frame.

from the state estimate xi and the motion delta ∆ij :

pj = pi + vi∆tij +
1
2

g∆t2ij + qi ⊙∆pij

vj = vi + g∆tij + qi ⊙∆vij
qj = qi ⊗∆qij

(3.14)

3.3.3 Incremental delta pre-integration

Substituting the integration Eq. (3.11) in the delta definitions (3.12), we obtain the
incremental delta pre-integration,

∆pik = ∆pij + ∆vijδt+
1
2

∆qij ⊙ ajδt2

∆vik = ∆vij + ∆qij ⊙ ajδt

∆qik = ∆qij ⊗ Exp(ωjδt)

(3.15)

with ∆ii = ∆0. Interestingly, (3.15) is analogous to the motion of a body in an
inertial frame under constant acceleration and rotation rate. Notice that by letting
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xi xj

xk

∆ij

∆jk

∆ik
= ∆ij

⊞ ∆jk

Figure 3.4: A representation of the ∆ composition law.

the reference frame fall with gravity, we get rid of the dependence on gravity in the
integration equations, and only the body magnitudes drive the integral. Indeed, we
can define a proper delta δjk from the current body magnitudes bj = (aj ,ωj) ,

bm,i − bb,j − bn,j at time tj ,

δpjk =
1
2

ajδt2

δvjk = ajδt

δqjk = Exp(ωjδt)

(3.16)

and write the integration (3.15) as the composition

∆ik = ∆ij ⊞ δjk (3.17)

described in (3.13). Typically, we take the biases at the keyframe time ti, that is,
bb,j = bb,i. In the following, we will identify ∆ with the pre-integrated delta, and
δ with the current delta.

3.3.4 Jacobians

We note all Jacobians with Jyx , ∂y/∂x and refer the reader to Appendix C.1 for
details on the development of all non-trivial Jacobian blocks in this section.

3.3.4.1 Jacobians of the body magnitudes

from Eq. (3.10) we have:

Jb
bm

= I6 Jb
bb

= −I6 Jb
bn

= −I6 . (3.18)
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3.3.4.2 Jacobians of the current delta

We have from (3.16),

J
δjk

bj
=




1
2Iδt2 0
Iδt 0
0 Jr(ωjδt)δt


 ∈ R

9×6 (3.19)

where we develop the lower-right block as in Appendix C.1.5.1.

3.3.4.3 Jacobians of the delta composition

We differentiate the delta composition (3.17) described in (3.13),

J∆ik

∆ij
=




I Iδt −∆Rij

[
δpjk

]
×

0 I −∆Rij [δvjk]×
0 0 δR⊤

jk


 ∈ R

9×9 (3.20a)

J∆ik

δjk
=




∆Rij 0 0
0 ∆Rij 0
0 0 I


 ∈ R

9×9 (3.20b)

where ∆Rij and δRjk are the rotation matrix deltas corresponding to the respec-
tive quaternion deltas ∆qij and δqjk. We develop all the non-trivial blocks as
in Section C.1.5.2 and Section C.1.5.3.

3.3.5 Incremental delta covariance integration

Let Q∆ be the covariance of the pre-integrated delta, and Qn the one of the mea-
surement noise. For convenience, we first compute the covariance of the current
delta,

Qδ = Jδbn
Qn Jδbn

⊤
, (3.21)

where Jδbn
= Jδb ·Jb

bn
is the noise Jacobian, obtained with (3.18–3.19) and the chain

rule. The delta covariance is then integrated with

Q∆ik
= J∆ik

∆ij
Q∆ij

J∆ik

∆ij

⊤
+ J∆ik

δjk
Qδ J∆ik

δjk

⊤
, (3.22)

using Jacobians (3.20), and starting at Q∆ii
= 09×9.

3.3.6 Delta correction with new bias

Let ∆ and bb be respectively the pre-integrated delta and the bias values used
during pre-integration. Since the bias estimates change at each iteration of the
optimiser, we need to update the delta according to the new bias values bb. We do
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so with the linearised update,

∆ = ∆ + J∆
bb

(bb − bb) , (3.23)

where J∆
bb

is the pre-integrated bias Jacobian, computed incrementally using the
chain rule,

J∆ik

bb
= J∆ik

∆ij
J∆ij

bb
− J∆ik

δjk
J
δjk

bb
. (3.24)

with J
δjk

bb
= J

δjk

b Jb
bb

. This Jacobian starts at J∆ii

bb
= 09×9.

3.3.7 Residuals

The computation of the residuals for the IMU delta factors (see Fig. 3.2, green)
requires: the state estimates xi and xj ; the current bias estimates bb,i; the
pre-integrated delta ∆ij ; the bias used during pre-integration bb,i; and the pre-

integrated bias Jacobian J∆ij

bb
. The process is best understood if split into smaller

steps: we first compute a corrected delta ∆ij using (3.23); then we compute a
predicted delta ∆̂ij using (3.12); and finally we compute the residual with

r(xi,xj ,bb,i) =




∆pij − ∆̂pij
∆vij − ∆̂vij

Log(∆̂q
∗

ij ⊗∆qij)


 ∈ R

9 . (3.25)

Its information matrix is given by Ω = Q−1
∆ik.

3.4 Pedestrian Localisation

3.4.1 Context

Localisation of pedestrian in indoor environment remains an open problem. A
cheap and reliable sensor in this context is the inertial measurement units (IMU),
carried by the pedestrian while he/she is walking. However, due to the bias of both
the accelerometer and the gyroscope, integrating the inertial measurements directly
leads to tremendous drifts, as the state of the system (position, orientation, velocity,
bias) is not fully observable. We consider the specific case where an IMU is attached
to one of the pedestrian’s feet. We exploit specific prior knowledge (i.e. the fact
that the foot lands at zero velocity during full-contact phase (Fig. 3.5)) in order
to make the full state of the IMU observable. The inertial measurements and
these prior knowledge are gathered in a graphical model (a factor graph), and are
exploited to build a maximum-likelihood estimator. We validate these concepts
on several long-range trajectories captured with human subjects from a dataset
provided by the literature [Angermann 2010] and compare the results with ground-
truth measurements (coming from a motion capture system) and previous results
of the state of the art. This study verifies the validity of our method while not
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Figure 3.5: Cyclic phases of foot during walking (source: [Schauer 2016]).

relying on any new hardware configuration. Indeed, running tests directly on a
humanoid robot may introduce some undesirable effects with respect to the IMU
or specificities of generated motions.

3.4.2 Related Work

Pedestrian localisation using a foot-mounted IMU was first introduced in [Hutch-
ings 1998]. Since then, many developments have been made to find alternative
ways to accurately localise people. Pedestrian Dead Reckoning (PDR) methods
(also known as Personal Navigation Devices), make use of one or more IMU in-
stalled on the body of the subject. The main idea of PDR techniques is to integrate
inertial measurements with Zero Velocity Update (ZUPT) constraints to reduce er-
rors [Ojeda 2007]. This work is extensively used in IMU-based human localisation
works and various fields [Kwanmuang 2015] analyses the gait of a walking person
with PDR method to estimate the direction of the shoe, thus the walking direction,
and measure stride length.

Shoe-mounted IMU is still considered as a possible way to accurately localise
persons in an indoor environment due to lower drift errors when compared to body-
mounted solutions [Groves 2007] . One way to understand why foot-mounted IMU
is preferred to other alternatives may be given by [Groves 2007] comparing body-
mounted and foot-mounted based PDR methods. Both systems had similar per-
formances considering the position error, being lower than 10 m for 60 seconds
experiments. However, the foot-mounted shown drifts as results were compared to
GPS ground truth. We should note that the body-mounted method proved to be
usable in not only walking cases but also when the human agent was jogging or
running but with a decrease in terms of accuracy.

Various strategies can be considered to improve the localisation results of foot-
mounted IMU navigation. To achieve this goal, one way to consider is the use
of one or more IMU and define some special constraints. The main advantage
of this choice is that the solution would be easily wearable and thus usable. As
shown in [Kourogi 2010] and [Panahandeh 2012], PDR can be used to recognise
the action being carried out by the pedestrian through classification methods, but
adding this contextual information is also a way to reduce PDR localisation errors (
[Kourogi 2010]). [Wagstaff 2017] is not only using this contextual information thanks
to the training of a support vector machine (SVM) classifier using IMU data, but
also making efforts on finding optimal zero-velocity detection parameters taking into
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account a specific user and motion types. Prior information can be exploited when
merging the measurements of several IMUs, for example relative to the maximum
step length the pedestrian could do when using two foot-mounted IMUs [Skog 2012].
Thus the inequality constraints limit the distance between both IMUs to give better
position estimation results when compared to single foot-mounted IMU solution.

Fusion strategies are also used to overcome the drift observed in methods
using IMU and to obtain positioning errors of approximately 1.5 m [Ruiz 2012].
In [Chdid 2011], a foot-mounted IMU is fused with a waist-mounted visual odome-
try system to update the state of the system composed of its position, velocity and
acceleration.

More information can be structured into a map following a SLAM ap-
proach [Angermann 2012], leading to a bounded error growth to 1 metre. This
FootSLAM uses dynamic Bayesian network and loop-closure strategies. The idea
exploited here is to use the normal human behaviour consisting in relying on vi-
sual information to guide the motion and avoid obstacles. FootSLAM’s idea gave
birth to several variants for use in different conditions or slightly different purposes
( [Puyol 2012,Bruno 2011]). Hardegger et al. use contextual information to body-
mounted IMUs with a FastSLAM-base implementation in ActionSLAM, landmarks
being location-related actions [Hardegger 2012]. A foot-mounted IMU is then used
not only for inertial navigation purposes but also as a landmark observation system
through action recognition strategies by applying machine learning techniques for
motion classification. The main idea behind ActionSLAM is to consider that some
specific actions are done only at some specific locations on the map. Results tend
to show that using both foot-mounted and wrist-mounted IMUs is giving results
that are robust enough for indoor applications.

Previously cited examples tend to show how important it is for pedestrian in-
ertial navigation system to be able to deal with the localisation drifts due to the
integration of IMU’s data. Two different methods have been aforementioned to
reach this goal: fusion strategies using different complementary sensors and IMU
only based methods using specificities of human behaviour (walking patterns, action
recognition, contextual information).

From this analysis, we see that two important aspects have been investigated
to solve pedestrian localisation: i) exploiting some specificities of human behaviour
with the inertial measurements as prior knowledge and ii) fusing IMU with addi-
tional complementary sensors. We show that using a graphical model is a sane and
efficient way to encode prior knowledge about the human behaviour (horizontal
foot during zero-velocity phases). An additional feature of our approach is that it
is easy to extend the graphical model, either with additional prior knowledge, or
with measurements coming from additional sensors. For example, fusing absolute
but noisy measurements like GPS, RFID or RSSI would be straight forward.
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Figure 3.6: Representation of the method used for pedestrian tracking.

3.4.3 Experiments

Two experimental setups are proposed. First, we use the dataset made available
in [Angermann 2010] to validate our method on low-drift IMU and compare our re-
sults to those attached to the dataset and provided with a state-of-the-art Kalman
filter. Our method is applied on several scenarios from this dataset and we present
typical results obtained with two representative cases. The first sets of data corre-
spond to a human walking back and forth while the second example is related to a
walking pattern describing a eight-shape. Both IMU and motion capture data are
provided at 100 Hz.

Then, we will investigate the use of additional sensors to demonstrate the fea-
sibility of fusion strategies using a low-cost IMU running at 1 kHz (Invensense’s
MPU6050 [InvenSense ]).

3.4.3.1 Method

Keyframes are created at the beginning and ending of each support phase of the
selected foot according to zero-velocity instants detection provided by the dataset
(Fig. 3.6). The zero-velocity instants are often called ZUPT standing for ’Zero
velocity UPTdate’. Factors active in the graph (see Fig. 3.2) are: initial position,
yaw and velocity set to 0, minimal bias drift; and IMU pre-integration. The only
constraints applied on the first key-frame are related to the bias magnitude of the
IMU and zero velocity constraint factors. All the graph is optimised after each
keyframe creation so that these estimates can be used for future estimations with
new keyframes. Here key-frames are added at the beginning and the end of each
contact phases. Zero velocity constraints are applied as an estimated prior for the
optimiser by setting the velocity to 0, meaning that corresponding variables will
still be considered as parameters during the optimisation process. In the following
experiments, the variance of the velocity is arbitrarily fixed to a non-zero small
value. Indeed, if we use a constraint with 0 variance (i.e. the corresponding quantity
is not optimised by the solver as a decision variable but is an invariant of the
problem) then we must be super confident with this information. Otherwise we
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Figure 3.7: Visualisation of the graph in the pedestrian tracking case using only
zero-velocity detection. The same graph can be used by adding other factors due
to information provided by other possible sensors.

would be imposing a constraint inducing a wrong estimate of the trajectory.
Finally, we define motion factor. In a first set of results, we used the basic motion

prior (minimal velocity and biases variation). In a second time we show the inter-
est of data fusion by emulating a fake sensor that would measure additional data
during the flying phase, allowing the creation of an additional key frame between
contacts. We use motion capture recording to create this additional key-frame.
Such information might be provided using biological evidence on humans (e.g. us-
ing the trajectory of the foot during human walking). But it is mostly a proof of
concept of similar experience with the humanoid robot, where kinematic informa-
tion (measured by the encoders) would provide the same information. As in the
usual ZUPT-aided inertial navigation, zero-velocity constraints are imposed only
on keyframes created during contact phases. Kinematic odometry is also added
between all consecutive keyframes for this experiment (see Fig. 3.2). The optimi-
sation part is currently handled by Google Ceres optimiser [Agarwal ] using the
sparse structure of the problem.

3.4.3.2 Results

State estimation using ZUPT only

With only IMU measurements, the system is not provided with enough infor-
mation to be able to precisely estimate the vertical orientation of the IMU due to
its non-observability from the IMU measurements directly. As a consequence, the
estimation of the state of the foot is not able to converge to its real value. In other
words, the foot trajectory can be recovered up to a rotation around the gravity axis.
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In the following, we manually fixed initial translation and rotation to align the re-
sults with the motion-capture reference in order to compare our results against the
ground-truth measurements. Our system is able to estimate the state of the sys-
tem to precision close to the state-of-the-art 9-state Kalman filter [Foxlin 2005] as
shown in Fig. 3.8. Furthermore, we can notice that the level of accuracy is similar
in both cases. The initial error jump of the kalman estimate is likely to be caused
by the initialisation procedure. Indeed, the experiments starts and ends by hitting
the floor with the foot the IMU is attached on, thus resulting in high dynamic vari-
ations in the IMU and quick change for foot’s pose as given by the motion-capture
system. This allows to manually shift the data and work with coherent timestamps.
However, the data resulting from this synchronisation procedure is not removed for
the processing part although it introduces outliers. We performed a very simple
outlier rejection by deleting these synchronisation data. Results of bias estimation
using another dataset provided by the DLR are given in Fig. 3.9.

Besides, the experiment shows satisfying results in terms of computational times.
Indeed, 3.1 seconds are enough to integrate all the data corresponding to a 50
seconds experiment, that is more than 5000 IMU data, to build and to optimise
the graph each time a keyframe is created with our framework, with a total of
80 keyframes. It would be hard, if not currently impossible, to get such results
using the IMU without a proper pre-integration method. All in all, it takes 98µs in
average to read and integrate a single IMU measurement including the computation
of jacobians.

State estimation using ZUPT and sensor fusion

The strength of the optimal estimation can also be found in the fusion strate-
gies. Fig. 3.10 shows the reconstructed foot trajectories for the two cases: without
and with the flying keyframe information. Adding kinematic information between
keyframes enhances the observability of the system and allows to a better estima-
tion. A major advantage of IMU pre-integration theory is the ability to use past
pre-integrations corrected with current estimates of keyframes and biases as simply
as it takes to integrate a single IMU data. This removes the need of linearisation
of intermediate IMU data between previous and current estimates of the state on
which the integration must be performed. We also notice that the use of a flying
keyframe makes the bias estimation more stable.

3.4.4 Conclusion

We have revised the IMU pre-integration theory [Forster 2017], and proposed an
implementation in the quaternions manifold, with simpler derivations than previous
works, and with physical interpretations, which we believe go in the direction of
improving the clarity of the method. This method has been applied to pedestrian
navigation with an IMU attached to the foot and by exploiting available knowledge
extracted from the gait phases, such as zero velocity and IMU bias dynamics. As
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Figure 3.8: Top: trajectory estimation during human 8-shaped walking phases
with an IMU attached to a foot. Stars in blue and red colours are respectively
the reference estimated states provided in the dataset and the estimation with our
approach. The continuous green line is the ground truth as given by the motion
capture system. Bottom: Evolution of Euclidean distance errors between estimates
and the ground truth for this 8-shaped walking trajectory.

opposed to usual methods using filtering strategies, we take advantage of the power
of nonlinear optimisation techniques based on factor graphs while estimating the
pose of the IMU in real-time. Results showed that this estimation method is able
to properly estimate the bias, then leading to an accurate odometry where the drift
remains reasonable, even after minutes of integration. The method easily extends
to additional prior knowledge or additional sensors. Further work is needed to
make the system less critical to wrong ZUPT detections. To achieve this goal we
can change the ZUPT implementation strategy from a zero prior and arbitrarily low
variance to a computation of the variance that depends on the information provided
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Figure 3.9: Evolution of estimated IMU biases and orientation of the device during
a curved walk. Biases are estimated only for keyframes and considered as constant
between them.

by available sensors.

3.5 Experiments on a humanoid robot

3.5.1 Introduction

While the feet of many of our legged robots are equipped with force sensors, we often
only have a rough idea of their exact location in space, neither of the dynamic effects
acting on them (e.g. flexibility or inertia). Inaccuracy of the foot location, trajectory
or friction often results in rapid and unavoidable falls. We consider the problem
of accurately estimating the placement of the foot, either during the contact phase
(to assert friction and no sliding) or during the flying phase (to compensate for
flexibility in the actuation chain). We propose to attach an inertial measurement
unit (IMU) directly on the foot in order to reconstruct its position. The main
difficulty is then to recover the observability of the IMU location by integrating all
previous sensor measurements along with additional constraints coming from the
contact and the kinematic chain. A graphical representation approach is used to
integrate IMU measurements, kinematic and contact information on a humanoid
robot. Contrary to many state estimators recently proposed in the context of legged
locomotion, we propose to rely on an information graph representation to handle
observability consistency and other constraints. Since an efficient use of the IMU
data is of major importance to prevent the graph from growing too much and to use
the available information to estimate the biases online, we use the pre-integration
methods on manifolds. We validate these concepts by estimating the trajectory of
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the foot of the HRP-2 humanoid robot during various gaits, and show that we are
able to accurately reconstruct some subtle effects, such as sliding effects during the
contact and flexibility of the kinematic chain.

There are significant differences between this application and the estimation for
pedestrian navigation purposes. The first difference lies in the IMU measurements.
Indeed, the textile of the shoe the IMU can be attached to can act like a low-pass
filter eliminating possible high frequency vibrations. In contrast, the IMU mea-
surements from a sensor attached to the foot of a robot measures the vibrations of
the robot. These vibrations are distributed from the different motors to the entire
structure of the humanoid robot. These vibrations can turn out to be problematic
when considering especially high frequency estimation at up to 1 kHz. Such prob-
lems need to be investigated when considering an online experiments working as a
standalone application.

3.5.2 Experimental setup

We acquire data on the humanoid robot HRP-2 (Fig. 3.1) during different scenarii
with a low-cost IMU placed on its right foot. Before describing the results, we
quickly review the properties of the hardware and specify the precise graphical
model.

3.5.2.1 Hardware

The humanoid robot HRP-2
The HRP-2 humanoid robot (Fig. 3.1) is embedded with various sensors including
a camera (in the head), an IMU (in the chest) and force and torque sensors in
end-effectors. Due to its mechanical design, the robot has flexibilities between each
foot and the ankle it is linked to (Fig. 3.11). These flexibilities are used to absorb
some impacts during walking phases for example [Kanehira 2002]. The presence
of such flexibilities are changing the kinematics of the robot’s free flyer defined
as the body from which the robot’s pose in its environment is described. As a
result, the estimation of the foot of the robot using the kinematic chain will not
take into account these flexibilities possibly inducing wrong orientation estimates
for example.

Besides, humanoid robots are usually considered to be rigid and their inter-
actions with the environment are modelled as rigid contacts. Such a model is
convenient on a numerical point of view and enables one to simplify the dynamics
so that the control itself is made easier. However, the complete consequences of
the introduction of flexibilities on such a complex machine have yet to be under-
stood. It is a possibility that such mechanical specificities, despite the fact that
they can be useful, introduce undesired effects. If sensor measurements are one
possible source of possible errors, the interactions with the environment can also
induce some undesired behaviours such as slippage. Finally, the complexity of the
machine itself makes its a control a non-trivial task and a lot of effort is put on



3.5. Experiments on a humanoid robot 73

improving the robustness and the accuracy of the control to have all the encoders
of the robot in a specific configuration. These encoders are used to measure the
joint position of each degree of freedom of the robot. Depending on the sensors, the
measurements can be either given in an absolute frame or the information can be
relative in incremental encoders. The differences have specific implications on the
use of the sensors and their accuracy.

Force and torque sensors
The sense of touch is provided to humans through a complex system of nerves under
the skin. This information is extremely important in our everyday life to detect
contact through forces applied on the skin and thus interact with the environment.
The development of a robotic skin is an active field of research but these sensors are
not equipped on robots yet. Instead, 6-axis force and torque sensors (FT sensors)
are usually embedded in humanoid robots at each contact points that are the feet
and the hands. The use of these sensors is important to correct the balance of the
robot either during walking or in static phases and more generally to give feedback
to the robot about the end effector itself. A 6-axis FT sensor can measure both
force and torque along 3 axis. The main technology used in these sensors is based
on a deformable material with strain gauges sensitive to deformations. The strain
gauges allow to transform the deformation into a variation of electrical resistance.
The output of these gauges are only of a few millivolts and the quality of the sensor
is strongly impacted by the quality of the conditioning and the amplifier electronics.
FT sensors are usually characterised by the range of the measurements they can
provide and their resistance to impacts. On the HRP-2 robot, the force sensors
at the feet are protected by an elastic element interposed between the sole and
the sensors. Finally, FT sensors are also subject to measurement errors. Some of
them can also incorporate temperature measurements to compensate for its effect
on biases and scaling factors. The relationship between the forces and strain gauges
is determined through a calibration processes inducing higher prices.

IMU
We use a MPU6050 6-axis IMU for data acquisition. The IMU is set to provide
raw measurements at 1 kHz while mounted on the robot’s right foot. IMU data
acquisition is triggered by a STM32 microcontroller through I2C connection at
400 kHz. Finally, the microcontroller sends timestamped data to the computer via
a USB connection (Fig. 3.12).

In order to investigate a simple and non-invasive estimation method, we simply
attach the MPU6050 IMU on the top of the right foot of the robot. Some conse-
quences arise from this choice. First of all, the transformation between the point in
the robot considered as the foot end effector in the kinematic chain and the pose
of the IMU is unknown. However, we know that this transformation is fixed and
we can neglect this point in our experiments since we are more interested in com-
paring the pose estimations as given by the proposed method and through forward
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kinematics estimation.

3.5.2.2 Method

Using the IMU and the force sensor
Since further effort would be required to run the estimation method online directly
on the robot in an integration point-of-view into the robot’s system, the estimation
parts are realised offline. Timestamps of IMU and force sensors data are synchro-
nised manually by hitting slightly the foot several times before the experiments. It
is then possible to visualise the chocs on the IMU data and in the force and torque
measurements to manually shift a set of measurements.

The forward kinematics estimates are provided using Pinnochio [Carpen-
tier 2018] which is a C++ library for efficient rigid multi-body dynamics com-
putations developed by the GEPETTO Team at LAAS-CNRS. The use of a motion
capture (MOCAP) system is considered to provide ground truth displacement mea-
surements and from one point to another.

Forward Kinematics on HRP-2 Robot
Since the experiments are conducted offline, we deduce the kinematic constraint
to be added in the factor graph from robot odometry. This odometry can be
built using forward kinematics. Standard forward kinematic methods propagate
the joint angle information through the kinematic chain of the robot from the free
flyer to estimate the position of any joint of the robot in space. To this end we
use Pinocchio software implementing these methods explained with more details
in [Featherstone 2014]. However, in our case, the free-flyer of the robot is not
estimated although the robot moves. Hence if we simply use this method through
time to reconstruct the position of the foot then the results would be the same as if
the robot walked in the air while its base was fixed. As a consequence, we estimate
the position of the robot’s right foot with respect to to the left foot and versa while
fixing the position of the support foot. The modification of the support foot is
realised when a foot was in the air then finally hits the ground. The determination
of the new support phase is realised through a hysteresis filter based on the values
measured by force sensors in both feet.

Key-frame creation policy
The IMU is used along with the force sensors and the foot pose estimation through
the kinematic chain to determine instants with zero velocity. This approximation
is possible due to the fixed transformation between the IMU and the rigid body
(i.e. the foot in our case). Finally, we can investigate several key-frame creation
policies depending on the chosen strategy. Fig. 3.13 and Fig. 3.14 show a possible
solution given the hypothesis that the slippage occurs during the contact phase when
the foot hits the ground. Thus the hypothesis of reliable kinematic reconstruction
before hitting the ground can be used to create an odometry constraint during the
foot’s flying phase.
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3.5.2.3 Scenarii under investigation

We describe hereafter the different scenarii the proposed method is evaluated in.

Walking in place
The first motion investigated is a pattern test that is used for calibration purposes.
The input control sequence is here supposed to make the robot walk in place while
the position and orientation of the feet are not supposed to change. In practice, the
robot is not able to follow precisely the desired trajectory and slight changes in both
position and orientation can be observed (Fig. 3.15). Although the cause for this
error is not completely identified, we suspect that the inner stabiliser running in the
robot indirectly changes the trajectory of the robot. This effect may be intensified
by small differences between the kinematic model of the robot and its actual design.

Fig. 3.16 and Fig. 3.18 provide estimated states for the IMU with respect to
time during the experiment. These figures are to be interpreted along with Fig. 3.15
to understand the results. Indeed, Fig. 3.16 highlights possible drifts for Px and Py
but a Pz estimate that remains close to the initial pose of the IMU. This behaviour
is coherent with the experiment itself as it can be seen in Fig. 3.15. The final pose
of the foot is slightly different of the initial one (for both position and orientation).
The difference between both poses can be interpreted as a translation in X and Y

axis and a rotation around the tilt, i.e. Oz axis. The change in Oz orientation is
also observed through the estimation of the IMU states in Fig. 3.18 while both Ox
and Oy orientations ultimately remain unchanged when comparing the initial and
final states. It is also relevant to consider the change in the estimated orientation as
it is particularly visible on the Oy estimate of Fig. 3.18 during full contact phases
considering that the foot is supposed to be still. One hypothesis that may explain
this change is to consider wrong bias estimates. There are several properties that
could strengthen this hypothesis. First of all we should note that the foot gait cycle
does not imply any rotation along this Oy axis. This specificity may render the bias
estimation hard due to non-excited axis in the IMU and hence no full-observation
of the dynamics of the sensor. Another property may be the use of the zero-velocity
constraints on the states of the IMU. The variance of this constraint needs to be
small enough to actually add some relevant information in the graph and use it
to characterise the biases. However, setting the variance wrongly to a too small
value may cause undesired behaviours on the system (including the estimation of
the biases in our specific case). The zero-velocity constraint as it is usually defined
is a constraint on the instantaneous velocity of the IMU at timestamp t. The
use of this specific zero-velocity constraint on the state of the IMU is problematic
due to mechanical vibrations measured by the IMU and propagated through the
structure of the robot itself. These vibrations should not be ignored and are visible
in Fig. 3.16.

Walking forward
The second experiment that is considered is a walking forward motion on a plane
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floor. Again, observations show differences between the desired and actual final
positions and thus in the motion generated by HRP-2. Currently used methods
tend to use visual perception in order to relocalise the robot in its environment and
correct this drift due to the motion [Fallon 2014,Hartley 2018]. However, a simpler
high rate estimation method would be beneficial to close the control loop of the
robot locally. It could also be used to observe motions that cannot be estimated
by the camera in the head of the robot or by the kinematic chain relying on the
model of the robot and where all intermediate joints between the end-effector and
the base of the robot are possible sources of errors.

Given results in Fig. 3.19 and Fig. 3.20, we can note that it is feasible to estimate
the motion of the IMU. Px and Py are repectively slightly under 1 and above 0 metre.
This is due to rotations of the robot during walking around the yaw axis. However,
Pz should be closer to 0. Since our motion capture system is not able to correclty
track the pose of the foot or of the IMU itself, it is difficult to compare those results
to a ground truth. In Fig. 3.20 one can see again that the IMU is affected by
vibrations due to the motion (hitting the floor).

From previous experiments (i.e. walking in place and forward), one can already
raise some concerns about installing the IMU on the end-effector of the robot and
estimate its pose. Although the problems may be due to the use of the zero-velocity
constraint, the pose estimation is giving coherent results. It would be interesting to
test the same approach used until there on advanced experiments. However, some
strategies to bypass the use the zero-velocity constraints need to be investigated.

Due to time constraints and mechanical failure in the HRP-2 robot, these two
following experiments (i.e. walking alonf the quarter of a circle and climbing stairs)
could not be tested. However, they still remain interesting and raise specific chal-
lenges in practice.

Walking along the quarter of a circle
In an attempt to visualise the effect of slipping on the robot’s motion, we intended
to evaluate the proposed method while the robot walks describing the quarter of
a circle. This specific motion induces specific constraints on the robot due to the
rotation part in the movement. Preliminary experiments have thus shown important
slipping phases. Whereas these phases cannot be observed with methods using
odometry and forward kinematics only, the use of IMUs may be an interesting
alternative to overcome the estimation problem in this context. This experiment is
thus a way to characterise how interesting the proposed solution would be to face
problems that are due to the dynamics of the motion and the rigidity of the robot.
Furthermore, this experiment is a first step towards the design of a better slippage
detection method.

Climbing stairs
Finally, we intended to investigate the foot pose estimation while HRP-2 is set to
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climb stairs using a handrail. This is a complex motion with slippage phases and
possible undesired contacts with the environment. These contacts can be due to
not only the initial pose of the robot but also to its ability to follow the desired
trajectory (e.g. the foot of the robot hitting the stair). The previous experiment
was to test the slippage detection using data from the IMU, force sensors and the
kinematic chain. This last scenario is more challenging since it implies not only
slippage on the stairs (Fig. 3.1), but also collisions that should be detected by the
three main sensors we use.

These last experiments may conduct to further studies amongst which one ex-
ample is given hereafter. Indeed, the time window corresponding to the slippage is
very short and it will be challenging to run the detection in realtime with sensors
providing data at very different rates. Thus, it might be necessary to run the de-
tection on past data and review the keyframe creation policy. This study would be
a way to isolate the data corresponding to the slippage and still benefit from the
velocity estimation and kinematic odometry information in the other parts of the
trajectory for a more accurate estimation.
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Figure 3.10: Top: trajectory estimation during human walking with an IMU at-
tached to a foot. Continuous, dashed and dashed-dot lines are respectively: ground
truth, estimation with zero velocity constraints only, estimation using zero veloc-
ity constraints and 1 odometry measurement during foot’s flying phase. Odometry
was here built from motion capture data. Bottom: Evolution of corresponding
estimated IMU biases
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Figure 3.11: Representation of the flexibility between the robot’s foot and ankle in
HRP-2 [Mifsud 2017].

Figure 3.12: The IMU (in a white 3D-printed case) is fixed to the foot and connected
to the STM32 microcontroller by I2C.
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Figure 3.13: A quick insight to tests currently being conducted on the robot. From
left to right: The experiment starts, the foot is on the ground with zero-velocity.
Then right foot moves and we can create a key-frame while during the swing phase
by using the robot’s kinematic chain. Then the foot of the robot hits the ground,
slippage may take place, thus, given the information from the sensors, we can decide
whether to add a kinematic constraint between key-frames 1 and 2 or not. While
the left foot moves, the right foot is supposed not to move.
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Figure 3.14: Possible factor graph from an experiment conducted with the robot.
This case depicts the decision not to create a kinematic factor between key-frames
1 and 2. The key-frame created while the foot was in the air does not have any
constraint on the velocity.
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Figure 3.15: HRP2 drifts during the ’walk in place’ test. We can notice the dif-
ference in both position and orientation between the initial and final poses after
performing 5 steps with both right and left foots. The position drift is higher than
the orientation one.
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Figure 3.16: Position (Top) and velocity (Bottom) estimation of the foot of the
HRP-2 robot while walking in place. Each diamond on the graphs represents a key-
frame while bars under and over provide a way to visualise the 2σ bounds around
the estimates. We can notice that Px and Py drift away from 0. The final estimate
along Pz axis is close to 0, which is coherent taking into account that the robot
is walking on a flat floor. The variance of the zero-velocity constraint being fixed
manually to a small value, its evolution is not represented here.

Figure 3.17: Position estimation of the foot of the HRP-2 robot while walking in
place with kinematic odometry.
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Figure 3.18: Estimation of accelerometer bias ab (Top Left), gyrometer bias ωb

(Top Right) and orientation (Bottom) of the IMU with respect to time while
walking in place. Each diamond on the graphs represents a key-frame while bars
under and over provide a way to visualise the 2σ bounds around the estimates.
Although it is difficult to evaluate the estimation of the biases, the stability of
both accelerometer and gyrometer biases may tend to give the impression of a
reliable estimate. However, this stability is due also to constraints imposed over the
evolution of the biases through time. Furthermore, we note that the Oy orientation
is slowly drifting during contact phases despite the fact that the foot is supposed
to be still.
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Figure 3.19: Position (Top) and velocity (Bottom) estimation of the foot of the
HRP-2 robot while walking forward for 1 metre. Each diamond on the graphs
represents a key-frame while bars under and over provide a way to visualise the 2σ

bounds around the estimates. We can notice that Py and Pz drift slightly away
from 0. The variance of the zero-velocity constraint being fixed manually to a
small value, its evolution is not represented here. The results are coherent with the
motion described by the robot for both Px and Py axis. However, Since we suppose
the floor to be flat, Pz should be 0.
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Figure 3.20: Estimation of accelerometer bias ab (Top Left), gyrometer bias ωb

(Top Right) and orientation (Bottom) of the IMU with respect to time while
walking 1 metre forward. Each diamond on the graphs represents a key-frame
while bars under and over provide a way to visualise the 2σ bounds around the
estimates. The stability of both accelerometer and gyrometer biases may tend to
give the impression of a reliable estimate. However, this stability is due also to
constraints imposed over the evolution of the biases through time. Furthermore,
we note that the Oy orientation is slowly drifting during contact phases despite the
fact that the foot is supposed to be still. We can also clearly see the effect of the
vibrations on the IMU on this graph. The estimated value for aby (−0.55m/s2)
is also too big. Hence some doubts remain on the estimation of the biases. We
have here one possible explanation for the estimation of the biases given the motion
described by the robot and the dynamics applied on the IMU.
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4.1 Introduction

There has been a remarkable effort in the last years in the robotics community to
formulate estimation problems properly. This is motivated by an increasing demand
for precision, consistency and stability of the solutions. Indeed, a proper modelling
of the states and measurements, the functions relating them, and their uncertainties,
is crucial to achieve these goals. This has led to designs involving what has been
known as ‘manifolds’, which are no less than the topologic surfaces of the Lie groups
where the state representations evolve. Relying on the Lie group theory we are able
to construct a rigorous calculus corpus to handle uncertainties, derivatives and
integrals with precision and ease. Typically, these works have focused on the well-
known manifolds of rotation SO(3) and rigid motion SE(3). Higher-dimension
manifolds such as the IMU states have been treated as composites, though this has
not been stated this way explicitly.

When being introduced to Lie groups for the first time, it is important to try to
regard them from different points of view. The topological viewpoint, see Fig. 4.1,
involves the shape of the manifold and conveys powerful intuitions of its relation
to the tangent space and the exponential map. The algebraic viewpoint involves
the group operations and their concrete realization, allowing the exploitation of
algebraic properties to develop closed-form formulas or to simplify them. The ge-
ometrical viewpoint, particularly useful in robotics, associates group elements to
the position, velocity, orientation, and/or other modifications of bodies or refer-
ence frames. The origin frame may be identified with the group’s identity, and any
other point on the manifold represents a certain ‘local’ frame. By resorting to these
analogies, many mathematical abstractions of the Lie Theory can be brought closer
to intuitive notions in vector spaces, geometry, kinematics and other more classical
fields.

In this work, we explore the lessons learned from the development of the IMU
preintegration method presented in Section 3.3 and extend some solutions to the
usage of any kind of manifold. We purposely take an approach that escapes from
the mathematical language of the Group Theory and approaches concepts, termi-
nologies and notations of more widespread use in robotics. The reader interested
in more mathematically precise concepts may find this unfortunate, perhaps even
inconvenient, but we believe that a good way to familiarise roboticists with such
theoretical concepts is through a shared and familiar language. Excellent references
one can consult for more detailed explanations are [Chirikjian 2012] and [Eade 2013].
We believe this presentation is novel and interesting. It presents the different
Lie Group elements in a way similar to classical linearisation through Jacobians
paradigms. This alone we consider a relevant contribution. This work is closely re-
lated to Chapter 3 since the bias estimation of the IMU sensor can now be handled
as a self-calibration function, even for dynamic parameters. Furthermore, through
this generalisation, we present a way to compute Jacobians using the chain rule
exposed in 4.2.3.2. It should also be noted that the presented algorithm as well as
all the algebra related to deltas remains the same. For new sensors cases, only the
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Figure 4.1: Representation of the relation between the Lie group and the Lie algebra.
The Lie algebra TME (red plane) is the tangent space to the Lie group’s manifold
M (here represented as a blue sphere) at the identity E . Through the exponential
map, each straight path vt through the origin on the Lie algebra produces a path
exp(vt) over the manifold which runs along the respective geodesic. Conversely,
each element of the group has an equivalent in the Lie algebra. This relation is so
profound that (nearly) all operations in the group, which is curved and nonlinear,
have an exact equivalent in the Lie algebra, which is a linear vector space. Though
the sphere in R

3 is not a Lie group (we just use it as a representation that can
be drawn on paper), that in R

4 is, and describes the group of unit quaternions
—see Fig. 4.3.

sensor model equations need to be rewritten. Finally, we introduce the idea of com-
posite manifold for convenience since the IMU state is expressed in such manifold,
though this has not been stated this way explicitly.

The main contributor of this work is Joan Solà with the help of Jérémy Deray
and I. My personal contribution here lies in the development of the preintegration
method explained in Section 3.3 and help provided for the integration of the methods
in WOLF C++ library as well as an experimental validation using an IMU.

4.2 Manifold tools for robotics

4.2.1 Definition of manifold and some properties

4.2.1.1 ’Manifold’ (or ’Lie Group’)

In robotics we speak of ‘manifold’ to mean a Lie group. In mathematics, a group
(G, ◦) is a set, G, with a composition operation, ◦, that satisfies the four group
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TM(X )

M
M

TM(X )

X
X

Figure 4.2: A manifoldM and a linear vector space TM ≃ R
2 tangent at the point

X , and a convenient side-cut.

axioms:

Closure under ‘◦’ : X ◦ Y ∈ G (4.1)

Associativity : (X ◦ Y) ◦ Z = X ◦ (Y ◦ Z) (4.2)

Identity E : E ◦ X = X ◦ E = X (4.3)

Inverse X−1 : X−1 ◦ X = X ◦ X−1 = E . (4.4)

for X ,Y,Z ∈ G.

A Lie group is a group that is also a differentiable (i.e. smooth) manifold. The
reader should be able to visualise the idea of manifold (Fig. 4.2): it is like a bent,
smooth (hyper)-surface within a space of higher dimension, like e.g. the manifold of
unit quaternions, which is a spherical 3-manifold in a 4-dimensional space (Fig. 4.3).
In robotics, we say that our state vector evolves in this surface, that is, the manifold
describes or is defined by the constraints imposed on the state.

The smoothness of the manifold implies the existence of a unique linear space
tangent to any point of it: given X a point in a manifold M, we name TM(X )
the vector space tangent to M at X (Fig. 4.2). This is known as the Lie algebra
of M. The dimension m of M is the dimension of TM. The elements of TM are
non-trivial (skew-symmetric matrices, imaginary numbers, pure quaternions) but
the key aspect for us is that they can be expressed as linear combinations of some
base elements (called generators). For example, for [ω]× ∈ so(3) we have [ω]× =[

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

]
= ωx

[
0 0 0
0 0 −1
0 1 0

]
+ωy

[
0 0 1
0 0 0

−1 0 0

]
+ωz

[
0 −1 0
1 0 0
0 0 0

]
≃
[

ωx

ωy

ωz

]
∈ R

3.Therefore TM

is isomorphic to the Cartesian space R
m — one writes TM ≃ R

m. A few examples
of manifold are detailed in Table 4.1 on page 114.

4.2.1.2 The group actions

Importantly, Lie groups come with the power to transform elements of other sets,
producing e.g. rotations, translations, scalings, and combinations of them. These
are extensively used in robotics, both in 2D and 3D.
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θ
qS3

R
3

q = exp(θ)

θ = log(q)

S3

R
3

θq S3

R
3

θ

q = p⊕ θ

θ = q! p

q

p

Figure 4.3: The S3 manifold is a unit 3-sphere in R
4 (blue) where the unit quater-

nions ‖q‖ = 1 live. The tangent space TM is isomorphic to the hyperplane R
3

(red grid). The centre and right figures show a side-cut through the plane (dashed)
defined by the tangent vector θ (red segment) and the sphere centre. Mappings exp
and log (arrows) map elements of R3 to/from elements of S3 (blue arc). The ⊕,⊖
operators express increments between quaternions.

Given a Lie groupM and a set V, we note X · v the action of X ∈M on v ∈ V,

· : M×V → V ; (X , v) 7→ X · v . (4.5)

For · to be a group action, it must satisfy the axioms,

Identity : E · v = v (4.6)

Compatibility : (X ◦ Y) · v = X · (Y · v) . (4.7)

Common examples are the groups of rotation matrices SO(n), the group of unit
quaternions, and the groups of rigid motion SE(n). Their respective actions on
vectors satisfy

SO(n) : rotation matrix R · x , Rx

SE(n) : Euclidean matrix H · x , Rx + t

S1 : unit complex z · x , z x

S3 : unit quaternion q · x , q x q∗

The group composition (4.1) may be viewed as an action of the group on itself,
◦ :M×M →M. Another interesting action is the adjoint action, which we will
see in 4.2.2.3.

4.2.1.3 The tangent spaces and the Lie algebra

Given X (t) a point moving on a Lie group’s manifold M, its velocity Ẋ = ∂X/∂t
belongs to the space tangent to M at X (Fig. 4.2), which we note TMX . The
smoothness of the manifold, i.e., the absence of edges or spikes, implies the existence
of a unique tangent space at each point. The structure of such tangent spaces is
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S1

1

z(t)

T S1
1 = iRT S1

z

z

v
∧ = iω ∈ iR

ż = z · iω /∈ iR

1
v
∧ = iω ∈ iR

ż = iω ∈ iR

ωt

Figure 4.4: Let a point z ∈ S1 move at constant rotation rate ω, z(t) = cosωt +
i sinωt. Its velocities when passing through 1 and z are in the respective tangent
spaces, T S1

1 and T S1
z. In the case of T S1

z, the velocity is ż = z iω = −ω sinωt+
iω cosωt when expressed in the global coordinates, and zv∧ = iω when expressed
locally. Their relation is given by zv∧ = z−1ż = z∗ż. In the case of T S1

1, this
relation is the identity 1v∧ = ż = iω. Clearly, the structure of all tangent spaces is
iR, which is the Lie algebra. This is also the structure of ż at the identity, and this
is why the Lie algebra is defined as the tangent space at the identity.

the same everywhere.

The Lie algebra m

The tangent space at the identity, TME , is called the Lie algebra ofM, and noted
m,

Lie algebra : m , TME . (4.8)

Every Lie group has an associated Lie algebra. We relate the Lie group with its Lie
algebra through the following facts [Eade ] (see Fig. 4.1):

• The Lie algebra m is a vector space.1 As such, its elements can be identified
with vectors in R

m, whose dimension m is the number of degrees of freedom
of M.

• The exponential map (also called retract in the following), exp : m → M,
exactly converts elements of the Lie algebra into elements of the group. The
log map (also called lift in the following) is the inverse operation.

• Vectors of the tangent space at X can be transformed to the tangent space
at the identity E through a linear transform. This transform is called the
adjoint.

Lie algebras can be defined locally to a tangent point X , establishing local
coordinates for TMX (Fig. 4.4). We shall denote elements of the Lie algebras

1In a Lie algebra, the vector space is endowed with a non-associative product called the Lie
bracket. In this work, we will not make use of it.
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with a ‘hat’ decorator, such as v∧ for velocities or τ ∧ = (vt)∧ = v∧t for general
elements. A left superscript may also be added to specify the precise tangent
space, e.g., Xv∧ ∈ TMX and Ev∧ ∈ TME .

The structure of the Lie algebra can be found by time-differentiating the group
constraint (4.3). For multiplicative groups this yields the new constraint X−1Ẋ +

˙X−1X = 0, which applies to the elements tangent at X (the term ˙X−1 is the
derivative of the inverse). The elements of the Lie algebra are therefore of the
form,2

v∧ = X−1Ẋ = − ˙X−1X . (4.9)

The Cartesian vector space R
m The elements τ ∧ of the Lie algebra have non-

trivial structures (skew-symmetric matrices, imaginary numbers, pure quaternions,
see Table 4.1) but the key aspect for us is that they can be expressed as linear
combinations of some base elements Ei, where Ei are called the generators of m

(they are the derivatives of X around the origin in the i-th direction). It is then
handy to manipulate just the coordinates as vectors in R

m, which we shall note
simply τ . We may pass from m to R

m and vice versa through two mutually inverse
linear maps or isomorphisms, commonly called hat and vee,

Hat : R
m → m ; τ 7→ τ ∧ =

m∑

i=1

τiEi (4.10)

Vee : m→ R
m ; τ ∧ 7→ (τ ∧)∨ = τ =

m∑

i=1

τi ei , (4.11)

with ei the vectors of the base of R
m (we have e∧

i = Ei). This means that m is
isomorphic to the vector space R

m — one writes m ≃ R
m, or τ ∧ ≃ τ . Vectors

τ ∈ R
m are handier for our purposes than their isomorphics τ ∧ ∈ m, since they can

be stacked in larger state vectors, and more importantly, manipulated with linear
algebra using matrix operators. In this work, we enforce this preference of Rm over
m, to the point that most of the operators and objects that we define (specifically:
the adjoint, the Jacobians, the perturbations and their covariances matrices, as we
will see soon) are on R

m.

4.2.2 Manifold maps and operations

We have the following maps relating R
m, TM and M,

R
m ≃−⇀↽−

≃
TM(E)

retr(·)−−−−⇀↽−−−−
lift(·)

M , (4.12)

where ≃ are linear isomorphisms, and lift(·) and retr(·) map the manifold elements
to/from the tangent space (see lift and retract below). For simplicity, and since we

2For additive Lie groups the constraint X −X = 0 differentiates to Ẋ = Ẋ , that is, no constraint
affects the tangent space. This means that the tangent space is the same as the group space.
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do not require here the concepts and tools proper of the Lie algebra, we refer to
TM as the tangent space but express its elements in its isomorphic Cartesian space
R
m, so that the maps TM ⇋M are implemented algebraically as R

m ⇋M.

4.2.2.1 Lift and retract

Lift and retract map elements X ∈ M with elements τ ∈ TM(E). Retract is the
operation of wrapping the tangent space onto the manifold (as when wrapping a ball
with a paper), while lift is the unwrapping operation. For X ∈M and τ ∈ TM(E),
we say that

lift : M→ TM(E) ; X 7→ τ = lift(X ) (4.13)

retr : TM(E)→M ; τ 7→ X = retr(τ) . (4.14)

In the rigid motion groups that we consider (see Table 4.1 on page 114 and Fig. 4.3),
lift() and retr() correspond respectively to the log() and exp() maps.

4.2.2.2 Plus and minus

Plus and minus allow us to introduce differences between elements of a (nonlinear)
manifold, and express them in its (linear) tangent space. Denoted by ⊕ and ⊖,
they combine one lift/retract operation with one composition. Because of the non-
commutativity, they are defined in right- and left- versions (see Fig. 4.3-right for
the right version),

right-plus: X̃ = X ⊕ τr , X ◦ retr(τr) ∈M (4.15)

right-minus: τr = X̃ ⊖ X , lift(X−1◦X̃ ) ∈ TM(X ) (4.16)

left-plus: X̃ = τl ⊕X , retr(τl) ◦ X ∈ M (4.17)

left-minus: τl = X̃ ⊖X , lift(X̃ ◦X−1) ∈ TM(E) (4.18)

Because in (4.15) retr(τr) appears at the right-hand side of the composition, τr
belongs to the tangent space at X (see (4.16)): we say that τr is expressed in the
local frame at X . Conversely, in (4.17) retr(τl) is on the left and we have τl ∈ TM(E):
we say that τl is expressed in the global frame. Notice that while left- and right-
⊕ are distinguished by the operands order, the ⊖ notation in (4.16) and (4.18) is
ambiguous. It is typical to express perturbations locally and therefore we use the
right- forms of ⊕ and ⊖ by default.
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TM(f(X ))TN (X )

X f(X )

f : N → M X 7! f(X )

τ

X ⊕ τ f(X ⊕ τ)

σ = f(X ⊕ τ)" f(X )

σ

⊕
!

f(·)

Figure 4.5: Derivative of functions acting between two manifolds N and M. The
perturbation τ ∈ TN around X ∈ N is propagated to a perturbation σ ∈ TM

around f(X ) ∈ M through the processes of plus, apply f(), and minus (arrows).
The derivative is simply limτ→0 σ/τ .

4.2.2.3 Adjoint

The adjoint linearly relates vectors from the tangent space at a point X to vectors
of the tangent space at the origin. This may be written with these equivalent forms,

X ⊕ τ = (AdjX τ)⊕X (4.19)

X ◦ retr(τ) = retr(AdjX τ) ◦ X (4.20)

AdjX τ = lift(X ◦ retr(τ) ◦ X−1) (4.21)

Observe that from Eq. (4.15, 4.17, 4.19) we have τl = AdjX τr.

4.2.2.4 Action

We note with X · v the action of elements X ∈ M on elements v of another set V,
having

(X ◦ Y) · v = X · (Y · v) . (4.22)

For example, for vector rotation we have (QR)v = Q(Rv).

4.2.3 Derivatives on manifolds

4.2.3.1 Definition of derivatives of functions

Departing from the standard derivative definition, which applies to vector spaces,3

f : Rn → R
m,

∂f(x)
∂x

, lim
h→0

f(x + h)− f(x)
h

∈ R
m×n ,

3We use a compact notation in order to handle the n-dimensional infinitesimal h. The notation
establishes each column i of the Jacobian matrix of derivatives as Ji = limh→0

f(x+hei)−f(x)
h

, where
h is a scalar and ei is the i-th vector of the canonical basis of Rn.
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we can now use our plus and minus operators to define derivatives of functions
acting on manifolds (see Fig. 4.5),4

f : N →M,
∂f(X )
∂X , lim

τ→0

f(X ⊕ τ)⊖ f(X )
τ

∈ R
m×n . (4.23)

Notice that τ ∈ TN ≃ R
n, and the numerator of the derivative belongs to TM ≃

R
m. This derivative is then a proper Jacobian matrix R

m×n linearly mapping the
spaces TN (X )→ TM(f(X )). Remark that whenever the function f passes from one
manifold to another, the plus and minus operators must be selected appropriately:
plus for the domain N , and minus for the codomain or imageM. For small values
of τ , the following linear approximation holds,

f(X ⊕ τ) −−−→
τ→0

f(X )⊕ ∂f(X )
∂X τ ∈M . (4.24)

With (4.23), we can easily compute any derivative from the partial derivative blocks
of inversion, composition, retraction and action defined hereafter.

The inverse derivative block, i.e. for τ = X−1, is defined with (4.23) as

JX −1

X ,
∂X−1

∂X ∈ R
m×m . (4.25)

while the composition derivative block is defined as

J(X ◦Y)
X ,

∂X ◦ Y
∂X ∈ R

m×m (4.26)

J(X ◦Y)
Y ,

∂X ◦ Y
∂Y ∈ R

m×m . (4.27)

We define the right Jacobian of M as the derivative of retr(), i.e., for τ ∈
TM(E) ≃ R

m,

Jr(τ) ,
∂ retr(τ)
∂τ

∈ R
m×m , (4.28)

which is developed with (4.23) using right-⊖ in M and ‘+’ in R
m. From (4.23) it

is easy to prove that, for small δτ , the following approximations hold,

retr(τ + δτ) ≈ retr(τ) retr(Jr(τ)δτ) (4.29)

retr(τ) retr(δτ) ≈ retr(τ + J−1
r (τ) δτ) (4.30)

lift(retr(τ) retr(δτ)) ≈ τ + J−1
r (τ) δτ . (4.31)

Thus, with (4.13), (4.14), (4.23) and approximations above, the Jacobian of

4The notation ∂f(X )
∂X

is chosen in front of other alternatives in order to make the chain rule
readable, i.e., ∂Z

∂X
= ∂Z

∂Y

∂Y

∂X
. Also, Note 3 applies.
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lift, i.e. for τ = lift(X ), is defined as

Jlift(X )
X , lim

δτ→0

lift(X ⊕ δτ)− lift(X )
δτ

= lim
δτ→0

lift(retr(τ) retr(δτ))− τ
δτ

= lim
δτ→0

τ + J−1
r (τ) δτ − τ
δτ

= J−1
r (τ) = J−1

r (lift(X )) . (4.32)

Finally, noting X · v the action of X ∈M on v ∈ V, we define with the jacobian
of the group action (4.23) as

JX ·v
X ,

∂X · v
∂X , JX ·v

v ,
∂X · v
∂v

(4.33)

and all these derivatives can be used with the chain rule detailed hereafter.

4.2.3.2 Using the chain rule to compute other derivatives

The derivatives such as those defined above fulfil the chain rule according to which,
the composition of functions allows to compute derivatives by multiplying deriva-
tives in a certain way.

Lemma 4.2.1. Let’s define functions Y = f(X ) and Z = g(Y) so that Z =
g(f(X )). These functions have the following derivatives respectively: JY

X , JZ
Y and

JZ
X . Then, according to the chain rule, JZ

X = JZ
Y JY

X .

Proof. The validity of this chain rule can be proven in the case JZ
X = JZ

Y JY
X us-

ing (4.24) twice and the identity X ⊕ τ ⊖X = τ , which leads to

JZ
X , Jg(f(X ))

X , lim
τ→0

g(f(X ⊕ τ))⊖ g(f(X ))
τ

[(4.24) on f(X )] = lim
τ→0

g(f(X )⊕ JY
X τ)⊖ g(f(X ))
τ

[(4.24) on g(Y)] = lim
τ→0

g(f(X ))⊕ JZ
Y JY

X τ ⊖ g(f(X ))
τ

= lim
τ→0

lift((g(f(X )))−1 ◦ g(f(X )) ◦ retr(JZ
Y JY

X τ))
τ

= lim
τ→0

lift(retr(JZ
Y JY

X τ))
τ

= lim
τ→0

JZ
Y JY

X τ

τ
= JZ

Y JY
X . (4.34)
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The chain rule can be seen as a main tool making the expression of Jacobians
much clearer and their computation easier. As an illustrative example, the deriva-
tives of e.g. Z = X ◦ f(Y ⊕ τ) can be given through simple application of the chain
rule as,

JZ
X = J(X ◦f(Y⊕τ))

X

JZ
Y = J(X ◦f(Y⊕τ))

f(Y⊕τ) Jf(Y⊕τ)
Y⊕τ JY⊕τ

Y

JZ
τ = J(X ◦f(Y⊕τ))

f(Y⊕τ) Jf(Y⊕τ)
Y⊕τ JY⊕τ

τ ,

where Jf(X )
X must be derived from (4.23), and all other partial derivative blocks are

defined in 4.2.3.1. Derivative forms for ⊕ and ⊖ can be easily derived from the
partial derivative blocks and are defined respectively as

JX ⊕τ
X = JX ◦(retr(τ))

X (4.35)

JX ⊕τ
τ = JX ◦(retr(τ))

retr(τ) Jretr(τ)
τ = JX ◦(retr(τ))

retr(τ) Jr(τ) (4.36)

for ⊕ and

JY⊖X
X = Jlift(X −1◦Y)

(X −1◦Y) J(X −1◦Y)
X −1 JX −1

X (4.37)

JY⊖X
Y = Jlift(X −1◦Y)

(X −1◦Y) J(X −1◦Y)
Y , (4.38)

for ⊖. Once these forms or ‘blocks’ are found, all other derivatives follow by the
chain rule. Furthermore, the Jacobians are also needed to take into account the
effect of uncertainties in manifold through covariance propagation.

4.2.4 Uncertainty in manifolds, covariance propagation

Perturbations around a point X̄ ∈ N are defined in the linear space TN (X̄ ), that
is, for a local perturbation τ ,

X = X̄ ⊕ τ , τ = X ⊖ X̄ ∈ TN (X̄ ) . (4.39)

Covariances matrices can be properly defined on this tangent space at X̄ through
the standard expectation operator E[·],

cov(X ) , E[(X ⊖ X̄ )(X ⊖ X̄ )⊤] ∈ R
n×n . (4.40)

Notice that since the dimension n of TN matches the degrees of freedom of N ,
these covariances are well defined.5 Covariance propagation through a function
f : N → M;X 7→ f(X ) just requires the manifold Jacobian matrices (4.23) and

5A plain definition cov(X ) , E[(X − X̄ )(X − X̄ )⊤] is always ill-defined if size(X ) > dim(N ),
which is the case for most non-trivial manifolds.
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Figure 4.6: Motion integration on a manifold. Each motion data produces a step
τk ∈ TM(Xk−1), which is retracted to a local motion increment or ‘delta’ δk ∈ M,
and then composed with Xk−1 to yield Xk = Xk−1 ◦ retr(τk) = Xk−1 ◦ δk ∈M.

regular linear covariance propagation,

cov(f(X )) ≈ ∂f

∂X cov(X )
∂f

∂X
⊤

∈ R
m×m . (4.41)

Perturbations can also be expressed in the global reference, that is, in the tan-
gent space at the origin TN (E). Using left- plus and minus,

X = τ ⊕ X̄ , τ = X ⊖ X̄ ∈ TN (E) . (4.42)

This allows global specification of covariance matrices using left-minus in (4.40).
For example, a 3D orientation that is known up to rotations in the horizontal plane
can be associated to a covariance Q = Diag(σ2

φ, σ
2
θ ,∞) only if Q is specified in the

global reference.

4.2.5 Discrete integration on manifolds

We can construct a sound integration of a sequence of (small) steps τ1, · · · , τk ∈ TM

onto the manifold (Fig. 4.6), i.e., Xk , X0⊕τ1⊕· · ·⊕τk, which we write in recursive
form,

Xk = Xk−1 ⊕ τk = Xk−1 ◦ retr(τk) . (4.43)

Notice here that the time-derivative of a point moving on a manifold lies precisely
on the tangent space, so this space is sometimes called the velocity space. Thus,
if we are to integrate discrete velocity data, say vk, then τk = vkδt is a proper
step in the tangent space. Common examples are the integration of 3D angular
rates ω into the rotation matrix, Rk = Rk−1 exp([ωkδt]×), or into the quaternion,
qk = qk−1 ⊗ exp(ωkδt/2).
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4.2.6 Composite manifolds

One can consider more complex manifolds as composites. Take as example the space
of translations and rotations. We have for this the well-known SE(n) manifold of
rigid motions, but we can also construct the R

n× SO(n) manifold, which we call a
composite of the (trivial) R

n and the SO(n) manifolds. These are very similar, but
not equivalent.

Composite manifolds may employ operators retract, lift, plus and minus that
act either on the whole manifold, or on each of its components. Take R

3 × SO(3)
as an example, with manifold elements S = (p,R) and tangents τ = (δp, δθ). For
motion integration, it is beneficiary to use the whole manifold, as the different parts
get conveniently coupled,

S ⊕ τ ,

[
p + Rδp

R exp(δθ)

]
(4.44)

S2 ⊖ S1 ,

[
R⊤

1 (p2 − p1)
log(R⊤

1 R2)

]
(4.45)

On the contrary, for differentiation, error evaluation and uncertainty management,
it is usual to take each manifold block separately, i.e.,

S τ ,

[
p⊕ δp
R ⊕ δθ

]
=

[
p + δp

R exp(δθ)

]
(4.46)

S2 S1 ,

[
p2 ⊖ p1

R2 ⊖R1

]
=

[
p2 − p1

log(R⊤
1 R2)

]
, (4.47)

where we mark the block-operation of plus and minus with , . It is convenient
to realise that these operators are indeed simpler than the regular plus and minus
(4.44, 4.45).

The consequence of these considerations is that new derivatives can be defined,

∂f(X )
∂X , lim

τ→0

f(X ⊕ τ) f(X )
τ

. (4.48)

With this derivative, Jacobian matrices of functions acting on composite manifolds
can be determined in a per-block basis, which yields simpler expressions,

∂f

∂X =




∂f1

∂X1
· · · ∂f1

∂XM

...
∂f1

∂XN
· · · ∂fN

∂XM


 (4.49)

where M,N are respectively the number of composite blocks of X ∈M and f(X ) ∈
N . Although never explicitly stated, this is the approach taken in many IMU works
on manifolds, for example [Forster 2017]. We present this concept of composite
manifold for convenience, since this makes it possible to unify the methods presented
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into a generalised methodology.

4.3 Graph-based motion estimation on manifolds

In graph-based motion estimation (as in e.g. odometry and SLAM, Fig. 4.7) we
often have very different rates of motion sensor data and keyframe (KF) creation.
Therefore, hundreds of motion measurements need to be integrated to generate a
motion factor linking two consecutive KFs. It is convenient to integrate a relative
motion or ‘delta’ ∆ij with respect to the last KF with state xi (Fig. 4.8), so as to
have, given some composition operator ⊞,

xj = xi ⊞ ∆ij , (4.50)

and use it to generate a relative motion factor linking xi to the next KF, i.e.,
through an error eij so that

eij = ∆ij ⊖ (xj ⊟ xi) . (4.51)

The motion increment ∆ij is found by integrating small motion contributions at
the sensor data rate, i.e., at each arrival of the motion data yk, we do

∆ik = ∆ij ⊞ δk with δk = f(yk) . (4.52)

This appears rather straightforward. But only in the most basic cases these opera-
tions are trivial. In many cases, the motion data comes from uncalibrated sensors,
either in its extrinsic or intrinsic parameters. Some of these parameters may ad-
ditionally drift with time, thus requiring continuous tracking. Moreover, in some
complicated cases (e.g. IMU) the integrated deltas strongly depend on the initial
conditions of orientation and velocity. So the general situation becomes,

∆ik(xi, ci) = ∆ij(xi, ci) ⊞ f(yk,xi, ci) , (4.53)

where ci are (possibly time-varying) calibration parameters to be jointly estimated
alongside the states xi.

In all these cases, the changes in the estimates of xi and ci (inherent to the
iterative nature of the optimisation) affect the whole motion integral. To avoid
the need of re-integrating all data at each iteration of the optimisation algorithm,
the delta pre-integration theory was developed for the IMU sensor [Lupton 2009,
Forster 2017]. On the one hand, this theory defines the deltas independently of the
initial conditions of orientation and velocity, thus depending only on sensor data y
and calibration parameters c. These are pre-integrated once,

∆ik(ci) = ∆ij(ci) ⊞ f(yk, ci) . (4.54)

On the other hand, the effect of the changes in the estimates of the calibration
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Figure 4.7: Graph-based motion estimation with self-calibration. Pre-integrated
factors (black squares) link consecutive KF states and the calibration parameters
(circles). Observability is provided by other sensors observing motion at a lower rate
(wireframe squares), such as vision or LIDAR. Left: fixed calibration parameters.
Right: time-varying calibration parameters. Additional factors limiting parameter
drifts are shown in grey. See Fig. 3.2 for a real implementation.

parameters is linearised so that the deltas can be corrected a posteriori, i.e., when
computing the residual, using pre-integrated Jacobians and (4.24),

∆ij = ∆ij(ci)⊕ J∆ij
ci (ci − ci) . (4.55)

We generalise the pre-integration theory to any kind of motion sensor. We
provide several contributions:

1. a segmentation of the computation pipeline (from measurements, to body
magnitudes, to the current delta, and to the integrated delta);

2. a physical interpretation of the delta magnitudes, defined in a manifold;

3. a simple yet rigorous algebraic approach, valid for any type of manifold,
which takes profit of the pipeline segmentation and the chain rule to compute
the otherwise cumbersome [Forster 2017] Jacobians. Important complements
are provided in Subsection 4.2.2 and Section C.1 for the sake of background
and completeness.

4.3.1 Notation

We note the deltas manifold as D, with dimension d. We define the integrated delta
∆ij ∈ D and the current delta δk ∈ D, with time indices defined as in Fig. 4.8. We
define the additive and subtractive compositions on D as

∆ij ⊞ ∆jk , ∆ij ◦∆jk (4.56)

∆ik ⊟ ∆ij , ∆−1
ij ◦∆ik . (4.57)
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Figure 4.8: The pre-integrated delta ∆ij ∈ D contains all motion from the last KF
at time i, up to time j, so that xj = xi ⊞ ∆ij . The current delta δk ∈ D contains
the motion from times j to k, computed from the last motion measurement at time
k, so that xk = xj ⊞ δk = xi ⊞ ∆ij ⊞ δk = xi ⊞ ∆ik.

Similarly, we use the same symbols to define compositions between states xi and
deltas ∆ij so that

xj = xi ⊞ ∆ij (4.58)

∆ij = xj ⊟ xi , (4.59)

and notice that only in cases where the states are in the same manifold D these
compositions are the same as above. We mark pre-integrated magnitudes with
a bar, e.g. ∆ij , c. We name Qij , Qk and Qn the covariances of respectively the
pre-integrated delta, the current delta, and the measurement noise. For a function
Y = f(X ), we note the Jacobian JY

X , ∂Y
∂X = ∂f(X )

∂X in the manifold sense, i.e., (4.23).
The chain rule becomes JZ

X = JZ
Y · JY

X .

4.3.2 Pipeline

The pipeline has two distinct phases: pre-integration to create a factor, and factor
evaluation to optimise the system. During the pre-integration phase we proceed as
follows:

1. Compensate measured data with available calibration parameters. This typ-
ically results in an element of TD.

2. Compute the current motion delta δk ∈ D.

3. Pre-integrate ∆ik ∈ D, Qik, and the Jacobian J∆ik
c . Upon creation of a new

KF, a motion factor is built with the result of these integrals. Then, at each
solver iteration, we evaluate each of the factors as follows.

4. Compute the residual with the pre-integrated covariance.

These are detailed in Algs. 5-7, and described hereafter.

4.3.2.1 Delta pre-integration (Algorithm 5)

At the arrival of each motion measurement yk, we use the currently available calibra-
tion parameters c to pre-compensate the measurements. Depending on the nature
of the measurements, we may need to integrate the motion over the sampling time
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Algorithm 5: Pre-integration on the deltas manifold D
Input: i; c; Y = {yk}; Qn

∆ii = ED, Qii = 0, J∆ii
c = 0, j = i

while Not KF do
k = j + 1

Compensate motion data

bk = fc(c,yk,n, δt) ∈ TD → Jbk
c ,Jbk

n

Compute current delta and covariance

δk = retr(bk) ∈ D → Jδk

bk

Qk = Jδk
n Qn Jδk

n

⊤
, with Jδk

n = Jδk

bk
Jbk

n

Pre-integrate delta, covariance, and Jacobian

∆ik = ∆ij ⊞ δk ∈ D → J∆ik

∆ij
,J∆ik

δk

Qik = J∆ik

∆ij
Qij J∆ik

∆ij

⊤
+ J∆ik

δk
Qk J∆ik

δk

⊤

J∆ik
c = J∆ik

∆ij
J∆ij

c + J∆ik

δk
Jδk

bk
Jbk

c

j = k

Compute upper square root of information matrix Ω⊤/2
ij = L⊤ ,

with Q−1
ij = LL⊤ via Cholesky

Output: ∆ij ,Ω
⊤/2
ij ,J∆ij

c

δt. We also compute the Jacobians with respect to the calibration parameters c
and the measurements’ noise n ∼ N{0,Qn},

bk = fb(c,yk,n, δt) (4.60a)

Jbk
c =

∂bk
∂c

Jbk
n =

∂bk
∂n

(4.60b)

It is common, though not mandatory, that bk ∈ TD. The operations in fb() are
completely dependent on each particular system and cannot be generalised.

We then wrap the compensated step bk onto a delta on the manifold (Fig. 4.6),

δk = fδ(bk) ∈ D (4.61a)

Jδk

bk
=
∂δk
∂bk

∈ R
d×d (4.61b)

Notice that if bk ∈ TD, then δk = fδ(bk) = retr(bk). We then compute the delta
covariances matrix,

Qk = Jδk
n QnJδk

n

⊤ ∈ R
d×d (4.62)
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Algorithm 6: Residual evaluation, Lupton and Forster

Input: ∆ij , Ω⊤/2
ij , J∆ij

c , c, xi, xj , c
Predict delta from KFs xi and xj

∆̂ij = xj ⊟ xi ∈ D → J∆̂ij
xi ,J

∆̂ij
xj

Correct pre-integrated delta with new calibration c

∆ij = ∆ij ⊕ J∆ij
c (c− c) ∈ D → J∆ij

c

Compute delta error and residual

eij = ∆̂ij ⊖∆ij ∈ TD(∆ij) ≃ R
d → Jeij

∆̂ij

,Jeij

∆ij

rij = Ω⊤/2
ij eij ∈ R

d

Compute residual Jacobians

Jeij
xi = Jeij

∆̂ij

J∆̂ij
xi , Jeij

xj = Jeij

∆̂ij

J∆̂ij
xj , Jeij

c = Jeij

∆ij
J∆ij

c

Jrij
∗ = Ω⊤/2

ij Jeij
∗

Output: rij , Jrij
xi , Jrij

xj , Jrij
c

where Jδk
n = Jδk

bk
Jbk

n is obtained via the chain rule.
We finally incorporate the current delta onto the pre-integrated delta (Fig. 4.6),

and compute the Jacobians,

∆ik = ∆ij ⊞ δk ∈ D (4.63a)

J∆ik

∆ij
=
∂∆ik

∂∆ij
, J∆ik

δk
=
∂∆ik

∂δk
∈ R

d×d , (4.63b)

we integrate the covariances matrix on TD(∆ik),

Qik = J∆ik

∆ij
QijJ

∆ik

∆ij

⊤
+ J∆ik

δk
QkJ

∆ik

δk

⊤ ∈ R
d×d , (4.64)

and integrate the Jacobian with respect to the calibration parameters, using the
chain rule,

J∆ik
c = J∆ik

∆ij
J∆ij

c + J∆ik

δk
Jδk

bk
Jbk

c ∈ R
d×c . (4.65)

Since c ∈ R
c, this Jacobian maps R

c → TD(∆ik).

4.3.2.2 Residual evaluation (Algs. 6 and 7)

At keyframe creation, we need to produce a factor storing ∆ij , Qij , J∆ij
c , and c.

These are used to evaluate the residual, which depends on the states xi,xj of the
two KFs and the state c of the calibration parameters.

We propose two alternative algorithms. The first one (Algorithm 6) corresponds
to the original algorithm [Lupton 2009] for the IMU, adapted to the SO(3) manifold



106
Chapter 4. Generalized motion estimation in manifolds, with

application to self-calibration

Algorithm 7: Residual evaluation, our proposal

Input: ∆ij , Ω⊤/2
ij , J∆ij

c , c, xi, xj , c
Predict delta from KFs xi and xj

∆̂ij = xj ⊟ xi ∈ D → J∆̂ij
xi ,J

∆̂ij
xj

Predict delta correction step

ŝ , ∆̂ij ⊖∆ij ∈ TD(∆ij) → Jŝ

∆̂ij

, Jŝ

∆ij

Compute delta correction step from c and c

s ≈ J∆ij
c (c− c) ∈ TD(∆ij) → Js

c = J∆ij
c

Compute correction step error and residual

eij = ŝ− s ∈ TD(∆ij) ≃ R
d

rij = Ω⊤/2
ij eij ∈ R

d

Compute residual Jacobians

Jeij
xi = Jŝ

∆̂ij

J∆̂ij
xi , Jeij

xj = Jŝ

∆̂ij

J∆̂ij
xj , Jeij

c = −Js
c

Jrij
∗ = Ω⊤/2

ij Jeij
∗

Output: rij , Jrij
xi , Jrij

xj , Jrij
c

in [Forster 2017], and generalised here for any kind of motion integration. We start
by predicting a motion delta given KF’s xi and xj ,

∆̂ij = xj ⊟ xi ∈ D (4.66a)

Second, we correct the pre-integrated delta with the new calibration values c,

∆ij = ∆ij ⊕ J∆ij
c (c− c) ∈ D (4.66b)

Third, we compute the tangent delta error,

eij = ∆̂ij ⊖∆ij ∈ TD(∆ij) (4.66c)

And finally we weight it to produce the residual

rij = Ω⊤/2
ij eij ∈ TD(∆ij) ≃ R

d (4.66d)

where Ωij = Q−1
ij is the information matrix of the pre-integrated delta, defined

in TD(∆ij), and Ω⊤/2
ij is its upper triangular square root, obtained by Cholesky

factorisation.

This first algorithm has the (small) inconvenient that the pre-computed covari-
ance Qij belongs to TD(∆ij), while the computed error eij belongs to TD(∆ij), so
the weighting in (4.66d) is not proper. This can be corrected by propagating Qij to
TD(∆ij) using the Jacobian of (4.66b), but we prefer instead to evaluate the error
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directly on TD(∆ij). In our proposed algorithm (Algorithm 7), we predict a correc-
tion step ŝ given the predicted ∆̂ij and pre-integrated ∆ij deltas, and compare it
against the actual correction step s computed through the pre-integrated Jacobian,

∆̂ij = xj ⊟ xi ∈ D (4.67a)

ŝ , ∆̂ij ⊖∆ij ∈ TD(∆ij) (4.67b)

s = J∆ij
c (c− c) ∈ TD(∆ij) (4.67c)

eij = ŝ− s ∈ TD(∆ij) (4.67d)

rij = Ω⊤/2
ij eij ∈ TD(∆ij) ≃ R

d . (4.67e)

Notice that all these results belong to the same tangent space. Moreover, this
method is cheaper in that it has one fewer ⊕ (retract and compose) operation.

4.3.3 State reconstruction

Optimised states can be retrieved at any time tj , even if this tj does not correspond
to any KF,

xj = xi ⊞ (∆ij ⊕ J∆ij
c (ci − ci)) , (4.68)

where xi is the last optimised KF before tj , and ci is the optimised calibration

vector associated to xi. To do so we need to store all the history of ∆ij and J∆ij
c .

The same is true for Qij if we aim also at reconstructing the covariance trajectory.
In the next section, we present an example of application of the concepts pre-

sented until here. Thus the generalised preintegration method is used in SE(2) in
the case of the self-calibration using a differential drive model.

4.4 The generalised preintegration method for the IMU

The preintegration method initially presented in Section 3.3 uses the pipeline ex-
posed in Algs. 5 and 6. Here we show to what extent the initial preintegration
method adheres to the general one.

4.4.1 The Delta preintegration is specific to the sensor

The first step of the preintegration method is to compute the current body mag-
nitude with pre-compensation of the measurements given the current calibration
parameters c following (3.11). In the IMU case, c are the bias parameters. As it
was stated sooner, this operation and the computation of the related derivatives
(Eq. (3.10)) cannot be generalised because of dependencies on the system. Fi-
nally, the computed body magnitude is used to define the current δk as detailed in
Eq. (3.16) as well as the jacobians of the current δ. These are therefore the only
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equations that need to be coded for each new sensor providing a different set of
measurements.

All remaining operations, that are the composition in the manifold, as well as the
correction and residuals evaluation steps have a common generalised formulation. In
the specific case of the IMU, these operations are processed in a composite manifold
(see 4.2.6) of dimension 10 due to the dimension of δ itself. The corresponding
composite manifold is defined by R

3 × S(3) × R
3 with manifold elements S =

(p,q,v) and tangents τ = (δp, δq, δv). This delta preintegration step, represented
by (4.54) in the general case, is manifold dependent and thus needs to be defined
for each different preintegration method. We recall hereafter the incremental delta
preintegration for IMUs.

∆pik = ∆pij + ∆vijδt+
1
2

∆qij ⊙ δpjk
∆vik = ∆vij + ∆qij ⊙ δvjk
∆qik = ∆qij ⊗ δqjk

Similarly, the delta composition as well as the state composition or differentiation
equations implying the use of operators ⊞ or ⊟ are specific to each sensor.

4.4.2 Using the derivatives

4.4.2.1 Derivatives computation

The preintegration method implies the uses of several derivatives (Jacobians of
the body magnitude, of the current delta and Jacobians of the delta composition).
These derivatives are related to sensor specific operations that need to be redefined
for each new sensor. As a consequence, these specific derivatives need to be coded
again to use the preintegration method with a new type of sensor. The chain rule
makes it possible to generalise the computation of other Jacobians and Covariances
using the derivatives that are specific to each type of sensor. The first consequence
is that the computation of covariances is made easier and does not need to be re-
coded. Furthermore, we can notice that the jacobian with respect to the calibration
parameters i.e., the bias parameters in the IMU case, can be computed using the
chain rule (see (4.65)) and thus their computation can be generalised. In the IMU
case developed in Section 3.3, this Jacobian is the pre-integrated bias Jacobian J∆

bb

which computation we recall hereafter.

J∆ik

bb
= J∆ik

∆ij
J∆ij

bb
− J∆ik

δjk
J
δjk

bb
.

This formula matches exactly (4.65) with J
δjk

bb
= J

δjk

b Jb
bb

and Jbk
c = Jbk

bb
= −I6

(see (3.18)).
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4.4.2.2 A generalised sensor self-calibration

Thus another consequence of the generalisation of the preintegration method to any
manifold is that the self-calibration method itself is generalised. Indeed, the delta
correction with new bias given as ∆ = ∆ + J∆

bb
(bb − bb) is a formulation specific

to the IMU and yet matching the more general preintegrated delta correction with
new calibration values ∆ij = ∆ij ⊕ J∆ij

c (c − c). This correction does not depend
on the sensor and is realised in the manifold formed by the preintegrated values.
Thus it does not need to be coded again for each new type of sensor.

Only the residual evaluation of the former IMU preintegration method is dif-
ferent to the proposal as formulated in Algorithm 7. Indeed, in the first case,
the residual is defined using the computed error eij defined in TD(∆ij) instead of
TD(∆ij) where the pre-computed covariance Qij (and by extension the information
matrix Ωij) used to weight the error to produce the residual is defined. The new
expression of the residual can be deduced from the methodology proposed in Algo-
rithm 7 as

rij = Ω⊤/2
ij eij = Ω⊤/2

ij

(
(∆̂ij ∆ij)− J∆ij

c (c− c)
)

= Ω⊤/2
ij

(



∆̂pij −∆pij
∆̂vij −∆vij

Log(∆q
∗
ij ⊗ ∆̂qij)


− J∆ij

c (c− c)
)
.

This generalised preintegration method is implemented in WOLF, a library pre-
sented with more details in Chapter 5.

4.5 Self-calibration example in SE(2) for a differential
drive

The self-calibration application exposed hereafter is part of the work developed by
Jérémy Deray with the help of Joan Solà.

4.5.1 Overview

The differential drive model consists of two actuated wheels on a single axis, one on
each side of the robot base, with its origin frame located at the center of the axis.
The robot is parametrised by its wheels radii (rl, rr) and the length d of the axis. To
each of these parameters is associated a correction factor such that c = [cl cr cd]⊤

is the intrinsic parameters calibration vector. The motion is usually measured by
means of wheel encoders reporting incremental wheel angles y = [δψl, δψr]+n every
time step δt, where n is additive Gaussian noise.
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4.5.2 State and delta definitions

We define the states of position and orientation angle x = (p, θ), which act as a
compact representation of SE(2). Consequently, state increments or deltas ∆ij and
δk are also in SE(2).

4.5.3 Incremental delta pre-integration

For convenience, we define the body magnitudes b = (δl, δθ) = fb(y, c,n) as

δl = 1
2(rrcrδψr + rlclδψl)

δθ = 1
D (rrcrδψr − rlclδψl) .

(4.69)

with D = d cd. Its components, respectively, highlight the common (along track
length), and differential (turn) components of the wheels reported motions. From
the equation above, one can find the jacobians of the motion components. Their
expressions are given hereafter.

Jb
y = Jb

n =

[
1
2rlcl

1
2rrcr

−rlcl rrcr

]
∈ R

2×2 (4.70a)

Jb
c =

[
1
2ψlrl

1
2ψrrr 0

−ψlrl ψrrr − δθ
cd

]
∈ R

2×3 (4.70b)

Assuming constant control inputs over the sampling time period [tj , tk], the
robot moves along an arc of circle of radius

R =
δl

δθ
. (4.71)

The motion increment δk can be expressed in SE(2) as

δx = R sin(δθ)

δy = R(1− cos(δθ)) (4.72)

δθ = δθ ,

which is exactly δ = exp(τ) ∈ SE(2) with τ = [δl, 0, δθ] ∈ se(2), i.e., assuming no
wheel slippage. In case the robot follows a straight trajectory, we have δθ → 0, and
R→ +∞. This case is handled by means of the approximation

δx = δl cos(δθ/2)

δy = δl sin(δθ/2) (4.73)

δθ = δθ .

As it is done for the IMU case in SO(3) (Section 3.3.4.2), we can define the
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Jacobian of δ from (4.72) as

Jδk

b =




sin(δθ)
δθ R

(
cos(δθ)− sin(δθ)

δθ

)
1−cos(δθ)

δθ R
(

sin(δθ)− 1−cos(δθ)
δθ

)

0 1


 ∈ R

3×2 (4.74)

Similarly, an equivalent form can be found from (4.73),

Jδk

b =




cos(δθ/2) −1
2δl sin(δθ/2)

sin(δθ/2) 1
2δl cos(δθ/2)

0 1


 ∈ R

3×2 (4.75)

The delta integration is simply the composition in SE(2),

∆pik = ∆pij + ∆Rijδpk
∆θik = ∆θij + δθk

(4.76)

where ∆Rij = exp(∆θij) is the rotation matrix delta corresponding to the rotation
angle of ∆θij , see (C.17) in Appendix C.2, and δpk is the translation vector delta
corresponding to δk. The jacobians of the delta composition are given by

J∆ik

∆ij
=

[
I ∆Rij [1]× δpk
0 1

]
∈ R

3×3 (4.77a)

J∆ik

δk
=

[
∆Rij 0

0 1

]
∈ R

3×3 (4.77b)

with [1]× =
[

0 −1
1 0

]
, see Appendix C.2.3.

4.5.4 Integration of the delta covariance and the Jacobian

We follow the general procedure, obtaining Qk from (4.62). Here, the diagonal
measurement covariance Qn is defined by,

Qn =

[
σ2
ψl

+ α2 0
0 σ2

ψr
+ α2

]
, (4.78)

σ2
ψl

= klδψl, σ2
ψr

= krδψr, α = 1
2(µl + µr) ,

where kr and kl are constant parameters, and α acts as an offset equal to half
the wheels encoders resolution µl and µr [Siegwart 2011]. The pre-integrated delta
covariance Qik is then integrated normally with (4.64), starting at Qii = 03×3.

For the Jacobian we use (4.65), starting at J∆ii
c = 03×3.
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4.5.5 Residual

Following Algorithm 6 with for errors, we have

∆̂ij =

[
R⊤
i (pj − pi)
θj − θi

]
(4.79)

∆ij = ∆ij ⊕ J∆ij
c (ci − ci) (4.80)

r(xi,xj , ci) = Ω⊤/2
ij

[
∆̂pij −∆pij
∆̂θij −∆θij

]
∈ R

3 , (4.81)

where the angle differences must be brought to (−π, π ]. The information matrix is
given by Ωij = Q−1

∆ij . As explained sooner, this residual evaluation is not proper due
to the terms belonging to different spaces. Indeed the information matrix belongs
to TD(∆ij) while the error computed as above is defined in TD(∆ij). For a more
rigorous algebraic approach, we could also define the residuals following Algorithm 7
as

r(xi,xj , ci) = Ω⊤/2
ij eij = Ω⊤/2

ij

([
∆̂pij −∆pij
∆̂θij −∆θij

]
− J∆ij

c (c− c)
)
∈ R

3 (4.82)

where all the terms are defined in TD(∆ij) ≃ R
3.

4.6 Conclusion

In this work, we have proceeded to a selection of materials that avoids abstract
mathematical concepts as much as possible. This we hope helps focusing Lie the-
ory to make its tools easier to understand and to use. Third, we have promoted the
usage of handy operators, such as the lift() and retr() maps, and the plus and mi-
nus operators ⊕, ⊖, , . They allow us to work on the Cartesian representation
of the tangent spaces, producing formulas for derivatives and covariance handling
that greatly resemble their counterparts in standard vector spaces. Using these
tools, we have generalised the correction step of the preintegration theory to its use
on any manifold and by extension with any kind of motion sensor. Through the
presentation of this generalised method, we provide a computation pipeline for im-
plementation in real systems and that benefits to the computation of Jacobians on
which we have made a special emphasis by using the chain rule. Furthermore, the
delta magnitude defined in a manifold have a physical understanding. We believe
these contributions will help to a better understanding of the preintegration theory,
make its use easier for further applications and allow an efficient implementation of
the method on real systems. Among possible applications, we can cite the sensor
self-calibration as a side-effect of the generalisation of the theory through a gen-
eral procedure to correct preintegrated deltas taking into account new calibration
parameters. We illustrated this application with a differential drive and an IMU.
Works are being conducted to provide further sensor calibration examples as well



4.6. Conclusion 113

as experimental results. Again, the interested reader is invited to read [Solà 2018]
for further explanations as well as examples for a better understanding.
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Chapter 5

WOLF as part of the Loco3D
project

Figure 5.1: WOLF logo
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One of the current research focus in GEPETTO team is to face the multi-contact
locomotion problem of legged robots in complex environments through the Loco3D
project [Carpentier 2017]. While this is clearly a planning and control problem in
order to generate precise and complex motions for the robot to navigate and inter-
act with its environment, it is required to close the control loop through onboard
perception. SLAM methods are perfect candidates to enhance the control with
perception techniques. In this context, the library WOLF (acronym for Windowed
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Figure 5.2: Snapshots of the climbing up 15-cm high steps motion with the HRP-2
using the stair railing.

LOcalization Frames) is very useful to provide the perception side which is needed
for a complete closed-loop control scheme that does not require any external infras-
tructure (for robot localisation) or previous knowledge of the environment (thus the
need of online mapping).

5.1 The Loco3D Project

5.1.1 Introduction

Planning, adapting and executing multi-contact locomotion movements on legged
robots in complex environments remains an open problem. The Loco3D project
aims at introducing a complete pipeline to address this issue in the context of hu-
manoid robots inside industrial environments. This pipeline relies on a multi-stage
approach in order to simplify the process flow and to exploit at best state-of-the-art
techniques both in terms of contact planning, whole-body control and perception.
Loco3D stands for Locomotion in 3D, in contrast to the classic locomotion on quasi-
flat terrains, where the motion of the centre of mass of the robot is mostly limited to
a 2D plane. The main challenges lie in the choice of the different modules composing
this pipeline as well as their mutual interactions [Carpentier 2017].

5.1.2 Motivations

Many challenges remain open when it comes to applications involving the use of
legged robots. Efforts are already made on the perception of the environment and
on the interaction with it [Victorino 2003]. Amongst the challenges, we can also
cite the multi-contact locomotion of legged robots in complex environments. Indeed,
hardware limitations due to the design and constraints applied to robots may be
overcome through the use of the environment so that the robot can finally achieve a
task. For example, the use of a handrail by HRP-2 to climb stairs (Fig. 5.2) allows
it to achieve the task while reducing the power consumption by 25% [Kudruss 2015].
An example of motion requiring the use of contacts with the environment is given
in [Carpentier 2016]. The presented method allows to generate feasible contact
sequences for the robot to stand up using the proximal environment.

The multi-contact locomotion problem is hard, and the Loco3D project aims at
decoupling it into specific subproblems that are simpler to solve and able to work



5.1. The Loco3D Project 117

Figure 5.3: Overview of our two-stage framework. Given a path request between
start and goal positions (left image), P1 is the problem of computing a guide path
in the space of equilibrium feasible root configurations. We achieve this by defining
a geometric condition, the reachability condition (abstracted with the transparent
cylinders on the middle image). P2 is then the problem of extending the path into
a discrete sequence of contact configurations.

Figure 5.4: Representation of some stages in the HRP-2 standing up simulation.
The robot needs to use contacts with its environment to change poses and get to
the final goal: standing up.

together in a coherent framework. The ultimate goal of the Loco3D project is then
to define the multi-contact locomotion solution through a pipeline (see Fig. 5.3)
and apply it to both HRP-2 and the TALOS humanoid platform designed by PAL
robotics [Stasse 2017].

5.1.3 The need of a perception method

Since the generation of motions on the robot depends on the environment and the
robot’s configuration in it, a precise estimation of the surroundings of the robot
is necessary as well as an estimate of its location and the direction of the gravity
vector, which needs to be taken into account for the dynamics. Furthermore, in the
case of multi-contact locomotion, a dense representation of the environment is re-
quired to compute feasible contact sequences, e.g. in Fig. 5.4. All these perception
requirements can be fulfilled by SLAM methods. Another objective the percep-
tion method faces is the need to estimate the robot’s localisation at control-rate,
that is 1 kHz. To meet these challenges, we made the choice to contribute to the
WOLF project and design a SLAM method that we could rely on the long-term
and augment relating to future needs.
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5.2 WOLF

5.2.1 Introduction

WOLF (acronym for Windowed LOcalization Frames) is a C++ library to solve
localisation problems in mobile robotics, such as SLAM, map-based localisation, or
visual odometry. The approach contemplates the coexistence of multiple sensors of
different kinds, be them synchronised or not. WOLF organises the state vectors as a
set of key-frames, defining the robot trajectory, plus other states such as landmarks
in the environment or sensor parameters for calibration, WOLF computes error
vectors given the available measurements in that window. The philosophy developed
through WOLF is to have a structure for having the data accessible and organised,
called the WOLF Tree, plus some functionalities for managing this data. It requires,
on one side, several front-ends (one per sensor, or per sensor type), and a back-end
constituted by the solver.

Efforts are made to have WOLF interface able with many kinds of solvers, in-
cluding filters and nonlinear optimisers. Thus the choice of the solver is left to users
so that they can use filters such as EKF, error-state KF, iterative EKF, information
filters or others as well as nonlinear or incremental optimisers. The task of inter-
facing WOLF with these solvers is relegated to wrappers, which are coded out of
WOLF. WOLF is currently used with Google Ceres through such a wrapper. How-
ever, we also provide an experimental wrapper-less solver for incremental, sparse,
nonlinear optimisation based on the QR decomposition (implementing the iSAM
algorithm [Kaess 2008b]).

5.2.2 Motivations

SLAM solutions are usually provided with a specific implementation of the solver.
When the problem is tackled with a filtering approach such as one of those presented
in Section 1.2, the solution can be provided as an application relying on no other ex-
ternal requirement. A good example of such solution is RT-SLAM [Roussillon 2011]
specifically designed to provide a practical remedy for online experiments on robots
requiring real-time execution. RT-SLAM is an EKF-based solution implemented
in C++. However, if one tries to cope with providing a SLAM solution based on
nonlinear optimisation methods, it usually comes as an association of a front-end
coping with the sensory data processing, a back-end solving for the optimal solution,
with a specific philosophy regarding the structure of the problem.

The efforts put in the development of the WOLF library is motivated by the
need to propose multiple front-ends that can be used together with state-of-the-
art back-ends for optimisation purposes. Several challenges need to be faced in
order to construct the front-ends. Processing multiple sensors providing different
types of information at different rates is one part of the problem that is of main
importance. Sensor fusion is still a main topic of research as uncertainty man-
agement [Murphy 1998], fusion schemes [Kaempchen 2003, Spanos 2005], decision-
making [Klein 2004] and other problems are still open challenges. Besides, there
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is a wide range of possible applications from calibration [Olsson 2016, Hol 2011]
and robotics [De Silva 2017,Olofsson 2016,Santoso 2017,Novak 2015] to body pose
estimation [Kok 2015] and tracking problems [Chavez-Garcia 2016]. Thus there is
an interest for an easy-to-use library with a flexible architecture to take care of
sensor fusion tasks. WOLF is also designed to fulfil this demand in the context of
localisation solving.

WOLF is a collaborative project from the Institut de Robòtica i Informàtica In-
dustrial (IRI), PAL Robotics and LAAS-CNRS to propose a state-of-the-art SLAM
solution we could rely on and update ourselves for long-term projects. But it may
also be of interest to other research communities.

5.2.3 Objectives

On the application side, the objective of the WOLF development project is to
propose an open-source visual-odometry and SLAM solutions based on factor graphs
that can be extended and modified according to users’ specific needs. The initial
goal includes proposing methods to use most common sensors (cameras, LIDAR,
IMUs, . . . ) with a plug-and-play approach making their use easier. The sensors
are set to communicate one with others so that a key-frame creation results in a
coherent factor graph containing all the information from one key-frame to another
given the data timestamps provided by the sensors. The use of this library can be
extended to other purposes such as calibration, inertial navigation, simulation, or
even be used to investigate other research purposes such as Active SLAM problems
that are defined as a combination of SLAM and path planning problems.

5.2.4 Architecture

The architecture behind WOLF is complex but its global view is made intuitive.
The basic Wolf structure is a tree of base classes reproducing the elements of the
robotic problem. This is called the Wolf Tree (Fig. 5.5). It has a robot, with sensors,
with a trajectory formed by key-frames, and the map with its landmarks. These
base classes can be derived to build specialised classes with specific behaviours based
on the base classes functionalities. The Wolf Tree connectivity is augmented with
the constraints linking different parts of it, becoming a real network of relations.
This network is equivalent to the factor graph that would be solved by graphical
models and nonlinear optimisation. Wrappers are the ones transferring the Wolf
structure into a factor graph that can be provided to the solver.

Sensors produce Captures that are entities designed to contain the data pro-
vided by first ones. The use of captures is critical for state estimation process and
calibration methods. Indeed, whereas sensors contain static intrinsic and extrinsic
parameters, the captures can be given dynamic sensor parameters that are to be
estimated and taken into account all along the trajectory. Finally, the captures’
data are processed by Processor classes providing a common base to handle infor-
mation provided by captures. Processors can be used to detect specific features in
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images or for tracking purposes as well as integrating motion measurements. They
also are at the crux of the key-frame creation process and thus also the initiators
of the constraints generation in the graph.

The resulting architecture allows one to easily create a factor graph-based rep-
resentation of the problem using multiple sensors. The classes can be specialised
according to the users’ will using polymorphism, virtual inheritance and templates.
The choice of the solver is let to the user and only needs a wrapper to connect it
to WOLF.

5.2.5 Contributions

5.2.5.1 Implementation and team members

The development of WOLF is coordinated by Prof. Joan SOLÀ from IRI who also
contributed to the development of almost all the subparts of the library. Joan Vallvé
Navarro is a PhD student focusing on the aspects of information metrics for localisa-
tion and mapping. His main contributions to the project lie in his research towards
a more efficient use of factor graphs [Vallvé 2018,Vallvé 2017,Vallvé 2015] and the
expertise he could bring on the development side. He also provided the wrapper that
allows one to use WOLF with Google Ceres. Jérémie Deray is also a PhD from PAL
robotics with major contributions regarding the loop closure strategy and the im-
plementation of Bag of Words techniques in the library. Angel Santamaria Navarro
is a post-doctoral researcher working at IRI. His main research interests are related
to unmanned aerial vehicles (UAV). along with estimation methods based on visual
information [Santamaria-Navarro 2017b,Santamaria-Navarro 2017a]. He is a main
contributor to the visual perception method implementation. Finally, my main per-
sonal contributions in WOLF lie in the development of the preintegration method
(Section 3.3) and its integration the library as well as the use of IMU sensors and
both static and dynamic state estimation methods.

5.2.5.2 Related Projects

WOLF is involved in several projects as a SLAM solution provider. This SLAM
solution is to be used on straddle carriers for port scenarios in the context of the
Logimatic project [Gonzalez 2016] aiming at finding more efficient and cost-effective
ways to handle containers in ports based on innovative technical solutions. It will
also be used for autonomous vehicles in warehouses with the ASTI project as well
as for the perception side of aerial robotic system with multiple arms and advances
manipulation capabilities (AEROARMS [Ollero 2015]) to be applied in industrial
inspection and maintenance. Finally, WOLF’s SLAM solution will also be used by
the GAUSS project [Jimenez-Gonzalez 2018] for robust GNSS localisation of large
drone floats.
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Conclusion

The work presented in this thesis was motivated by the need of a high frequency
state estimation method for closed loop control of the humanoid robot HRP-2.
Our objective is to give a first part of the answer to the following question: is it
relevant to use low-cost IMUs on different places of a robot in order to get a new
sensing capability? The question behind is: can we use this new sensing capability
to overcome some estimation problems on legged robots? In order to complete
this objective, we investigated the use of inertial estimation techniques applied to
pedestrian navigation and robot locomotion using a factor graph representation
and a probabilistic formulation. We also investigated the use of IMUs on an end-
effector of the robot with the intention to give it a new sensing capability that
would be complementary with the kinematic odometry and provide some useful
motion-related information. Despite real-time requirements, we showed that batch-
optimisation techniques can be applied for estimations with a very high update rate
(1 kHz in our case). This can be achieved by using sensors in an efficient manner
and by optimising the implementations.

In Chapter 3, we described the quaternion-based preintegration technique for
an efficient use of IMU sensors giving a physical explanation to the preintegrated
values. Additional efforts were made in order to present the derivatives clearly
in the hope of helping the community to better understand and to facilitate the
implementation of this method requiring analytic derivatives to fully benefit of its
efficiency. The estimation method was presented with a factor graph containing
all the kinematic and odometry constraints. The optimisation was performed with
a nonlinear least squares solver. The proposed method was applied to pedestrian
navigation and tests have been conducted on the humanoid robot HRP-2 with an
IMU on its foot to estimate its trajectory. These investigations raised the concern of
a better integration of the IMU in the robot itself as opposed to the plug-and-play
approach that we used. However, despite the problems introduced by the mechani-
cal vibrations that are propagated through the robot, we were able to have coherent
estimates of the foot’s trajectory on simple scenarii.

In Chapter 4, we investigated self-calibration procedures on manifold using
graph-based motion estimation. This work extends some solutions usually expressed
in the mathematical language of the Group Theory to any kind of manifold while
presenting the method with a vocabulary that is more familiar to roboticists. The
described method can be used for calibration procedures using various sensors.

In Chapter 5, we presented the WOLF library to which the GEPETTO group
is contributing to in the context of the Loco3D project. Special attention was given
to the integration of IMU sensors in WOLF not only for integration and estimation
purposes with the preintegration method on manifolds, but also for the estimation
of intrinsic and extrinsic parameters.

As a result, the use of IMUs on the end-effectors of legged-robots deserves to be
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studied further. Indeed, despite the results highlighted in this thesis, the application
on a legged-robot seems to require specific cares. The estimation method explained
through this thesis was tested on the pedestrian case before it was successfully
applied on the HRP-2 robot with simple study cases. Some perspectives need to be
investigate to have a clear understanding in whether this new sensing capability is
relevant or not. And with these perspectives, new challenges are likely to be faced.

Perspectives

Short-term perspectives

Several perspectives arise from the work presented in this thesis. In the short-term,
the high frequency estimation technique should be fused with SLAM to investigate
the use of an auto-calibrating kHz SLAM method with low-cost sensors. The re-
sulting SLAM method could be of interest for applications with humanoid robots
and UAVs to close the control loop with a fast perception method. Furthermore,
the self-calibration method is currently capable of estimating intrinsic and extrinsic
parameters of a sensor. However, the intrinsinc parameters of the IMU are cur-
rently limited to the estimation of the biases. Those intrinsic parameters should be
extended to the correction of the scale factor and misalignment errors due to the
sensor in order to cope with effects introduced by motions with high dynamics. The
result would then be an easy IMU calibration method that may be of interest for
research communities using UAVs or investigating motion analysis. Furthermore,
the application presented through the pedestrian navigation estimation could be
extended to use with other sensors such as ultrawidebands [Kok 2015] or magne-
tometers [Kok 2013].

Mid-term perspectives

With regard to mid-term perspectives it would be interesting to investigate the use
of IMUs directly integrated to end-effectors for legged locomotion and interaction
with the environment. This requires specific design as low-level integration of IMU
sensors in the system which needs to be planned in advance. The investigations de-
tailed by Rotella et al. [Rotella 2016] are a first step towards a stronger integration
of inertial measurement units in robots for improved state estimation. The authors
managed to improve the quality of the velocity and acceleration estimates for the
control feedback. Furthermore, the generalisation of the preintegration method by
including the possibility to work on SE3 leads to possible investigations on closed-
loop control using velocity measurements.

Long-term perspectives

In a long-term, a logical perspective would be to improve the state estimation of a
humanoid robot with IMUs attached not only to end-effectors but to each segment
providing synchronised data. Although a state estimation providing estimates at
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control-rate may seem appealing in this context, the importance of vibrations prop-
agated through the robot and measured by the IMUs may constitute an obstacle
if tackled with low-cost sensors. Furthermore, the higher the number of sensors in-
volved in the fusion strategy, the more computationally demanding the estimation
process may be. Thus we could investigate the limits of a fusion scheme designed
for real-time whole-body control of a humanoid robots. Another interesting in-
vestigation could be the design of an estimator that would be able to not only
estimate the state of the system on a wide time interval but also to consider only
specific states of the system given sensory inputs. Such an estimator would be a
first step towards realtime reactions to unexpected events while complying with the
whole-body control phylosophy of robots.

Another long term motivational perspective oriented to biomechanical applica-
tions would be the use of several IMUs with sensor fusion methods in the context of
neuroprosthesis and exoskeletons to estimate the dynamics of the system and close
the control-loop. There are interesting works on passive prosthesis [Johnson 2009]
and powered exoskeletons [Bortole 2015, Esquenazi 2012]. Furthermore, the use
of IMUs in the design of prosthesis has been of growing interest to improve the
control of prosthetic devices [Aisen 2007,Lauretti 2016,Krasoulis 2017,Seel 2016b].
Nevertheless these researches usually only cope with standard IMU integration
and filter-based methods. Similarly, IMUs are also of interest in the analysis of the
human motions [Zhao 2016,Seel 2016a,Seel 2014]. Due to the importance recently
given to IMUs, my personal belief is that the methods presented through this
manuscript can be of interest for these research areas. Indeed, real-time control is
one of the specifications prosthetic devices need to satisfy. Various methods can
be used to achieve this objective while minimising the embedded computing power
such as the use of filters [Fakoorian 2016, Lenzi 2014] or continuous integration
along with stance phase detection [Moreno 2006]. These methods can benefit
from an IMU integration method providing real-time results. Although a unified
architecture for sensor fusion providing real-time estimates may also be useful, the
computation requirements from these applications make the development of such a
solution very challenging. The development of motion analysis systems using IMUs
along with other sensors as described in [Mueller 2011, Steins 2014, Šlajpah 2014]
seems to result in encouraging outcomes that may gain advantages from future
customisable sensor fusion solutions. Thus yet another long-term perspective
would be to make possible the use of WOLF on systems with limited computing
power.

This thesis resulted in the development of a high-rate estimation method based
on an IMU and batch-optimisation techniques. Due to the use of low-cost sensors,
special attention was required for the estimation of intrinsic parameters and we
investigated the use of a common preintegration formulation for the calibration
of various sensors. The contributions developped through this thesis come with a
sight on the preintegration subject from a roboticist point of view. Thus efforts
were made to explain this point of view in a way that roboticists may understand
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with more ease so that they can use these methods and bring their contributions
to the subject. We believe the preintegration theory and the use of multiple IMUs
to be interesting methods to be used together and with other sensors.



Appendix A

Probabilistic formulation

Hereafter are introduced main notions the reader may need to understand the work
presented in this thesis. The presented topics are not exclusive.

A.1 Probability

Probability is a mathematical formulation of knowledge, representing the proba-
bility distribution of values that are likely to be taken by random variables. The
more likely the variable is to fall in the range of a specific value the higher the
corresponding probability will be. Probabilities are given by a function encoding
the density of probability that the statement “the random variable X takes a value
in the range x± dx” becomes true relatively to the other values that can be taken.
Such function is usually called probability density function (pdf). The probability
density that X actually takes the value x is thus given by the function pX(x)

pX(x) ∆= lim
dx→0

P (|X − x| < dx)
dx

(A.1)

where P (A) ∈ [0, 1] is the probability for the event A to be true. For the sake of
clarity, pX(x) will be noted p(x) in the following.

A.2 Expectation

Expectation is a central notion of the probability theory and denotes intuitively the
long-run average value one can expect the random variable to take. The expectation
of a random variable X is a linear function defined by

E[X] ∆=
∑

x

xp(x), in discrete form (A.2)

E[X] ∆=
∫ ∞

−∞
xp(x)dx, in continuous form (A.3)
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From these definitions, we can introduce some other notions that will be used
hereafter

µx
∆= E[x] (A.4)

σx
∆=
√
E

[
(x− µ)2

]
(A.5)

V[x] ∆= σ2
x = E

[
(x− µ)2

]
(A.6)

where µx, σx and σ2
x are respectively the mean, the standard deviation and the

variance of X. They will be noted respectively µ, σ and σ2 hereafter. An intuitive
understanding of these notions is given in the following introduction related to the
Gaussian distribution.

A.3 Gaussian distribution

The Gaussian distribution (also called Gauss, Laplace-Gauss or normal distribu-
tion) is a continuous probability distribution. It is an important distribution used in
statistics to describe the densities distribution of probability density functions, used
not only to model measurement errors but also in natural and social sciences. De-
scribing the real value of a random variable whose distribution is actually unknown
with a Gaussian one is a common assumption.

The probability density of a 1D random variable x following a normal distribu-
tion is described by the mean (or expectation) µ of this distribution and its variance
σ2

p(x) ∼ N (µ, σ2)) =
1

σ
√

2π
exp

(
−1

2
(
x− µ
σ

)2
)

(A.7)

Note that σ is the standard deviation of the distribution. Its effect on the distri-
bution itself and its meaning are shown in Fig. A.1. The generalised normal distri-
bution for multidimensional random variables is usually described by the mean µ

and the covariance Σ. n being the dimension of the random variable x, we have

p(x) ∼ N (µ, Σ)) =
1

det(Σ)
1
2 (2π)

n
2

exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
(A.8)

where Σ is a n × n matrix. We can notice that if n = 1 then (A.8) simplifies
to (A.7). Fig. A.2 gives a representation of points sampled with a 2D Gaussian
distribution on a plane for visualisation purpose. This figure also helps to figure out
the meaning of the standard variation and its representation in the two-dimension
case.
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Figure A.1: Visualisation of a 1D Gaussian distribution. Left: We can see on this
figure the effect of the standard deviation, and thus the variance, on the shape of
the Gaussian distribution. As σ goes towards 0, the Gaussian distribution takes
the shape of a Dirac function. Right: The area under the Gaussian curve is a
specificity to keep in mind when one uses a Gaussian assumption to model errors to
interpret the measurements. Presenting an estimation x with a confidence interval
of σ means that the true value has a probability of about 0.68 of lying in the interval
[x − σ, x + σ] (see a)). The real value has also a probability of 0.955 and 0.997 to
be in the intervals of respectively [x− 1σ, x+ 2σ] (see b)) and [x− 3σ, x+ 3σ] (see
c)) [Leo 1988]

A.4 Bayes’ rule

Bayes’ rule (also called Bayes’ theorem or Bayes’ law), describes the probability of
an event based on prior knowledge. This law is described by a simple mathematical
formulation. Let us note A and B events, P (A) and P (B) are respectively the
likelihood for events A and B to occur. Bayes’ rule allows one to describe the
likelihood A (respectively B) to occur given prior knowledge about B (respectively
A) and noted P (A|B) (respectively P (B|A)).

P (A|B) =
P (B|A)P (A)

P (B)
(A.9)

For specific examples of how this theorem can be used, I would recommend the
interested reader to have a look at the first chapter of [Stone 2013].
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Figure A.2: Representation of a 2D Gaussian distribution with mean µ = [0, 2.5]
and the associated 2 × 2 covariance matrix with diagonal set to [1, 2] and the two
other parameters are set to 0.6. On the {x,y} plane of this figure are distributed
20000 points following the 2D Gaussian. Are also represented on this plane the σ,
2σ and 3σ confidence area respectively in red, blue and green.



Appendix B

Quaternion and rotation
representation

The following description of quaternions comes from [Solà Ortega 2016].

B.1 Definition of quaternion

Quaternions are a tool amongst others to describe orientations. Lets us note Q a
quaternion defined in the space of quaternions H. Q is defined as

Q = a+ bi+ cj + dk ∈ H (B.1)

where {a, b, c, d} ∈ R and {i, j, k} are three imaginary unit number so that

i2 = j2 = k2 = ijk = −1 (B.2)

ij = ji = k, jk = −kj = i, ki = −ik = j. (B.3)

We define numbers that we will refer to as pure quaternions in the tri-dimensional
imaginary subspace of H,

Q = bi+ cj + dk ∈ I
3 ⊂ H (B.4)

Please note that the definition mentioned above are derived from the specific quater-
nion definition in Eq. (B.1) where the real part is the first number of the quater-
nion. An alternative quaternion definition sets this scalar part at the end so that
Q = ai+ bj + ck + d.

For a more convenient use, quaternions can be defined as a sum of a scalar
number and an imaginary vector so that

Q = qw + qxi+ qyj + qzk ⇔ Q = qw + qv (B.5)

where qw is referred to as the scalar part, and qv = qxi+ qyj + qzk = (qx, qy, qz) as
the imaginary or vector part. Finally, a quaternion can be defined using a pair of
scalar and vector

Q =< qw,qv > (B.6)



132 Appendix B. Quaternion and rotation representation

or also with as a four-dimensional vector q

q ∆=

[
qw
qv

]
=




qw
qx
qy
qz


 (B.7)

and for sake of clarity, we may sometimes define the quaternions using only subscript
indices in the following so that q = (w, x, y, z). We may also abuse of the notations
so that

Q = qw + qv =

[
qw
qv

]
, qw =

[
qw
0v

]
, qv =

[
0
qv

]
(B.8)

where qw and qv are used to represent respectively real quaternions and pure quater-
nions.

B.2 quaternion properties

B.2.0.3 Sum / difference

The sum and difference of two quaternions are straightforward and defined so that

q1 ± q2 =

[
qw1

qv1

]
±
[
qw2

qv2

]
=

[
qw1 ± qw2

qv1 ± qv2

]
(B.9)

The sum is commutative and associative

q1 + q2 = q2 + q1 (B.10)

q1 + (q2 + q3) = (q1 + q2) + q3 (B.11)

where the identity operation is operated using the zero quaternion defined by q0 = 0
and the inverse quaternion is given by the negative −q.

B.2.0.4 Product

The product operator of quaternions is referred to using the symbol ⊗ and defined
so that

q1 ⊗ q2 =

[
qw1 qw2 − qTv1qv2

qw1qv2 + qw2qv1 + qv1 × qv2

]
(B.12)

The product of quaternions is not commutative in the general case due to use of
the cross-product ×

q1 ⊗ q2 6= q2 ⊗ q1 (B.13)
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The commutativity is, however, true if the cross-product term yields to 0, which
is the case when either one of the quaternions is actually a pure real quaternion
or when both vector qv1 and qv2 are parallel. The quaternion product is however
associative

(q1 ⊗ q2)⊗ q3 = q1 ⊗ (q2 ⊗ q3) (B.14)

and distributed over the sum so that

q1 ⊗ (q2 + q3) = q1 ⊗ q2 + q1 ⊗ q3 (B.15)

Quaternions endowed with the product operation ⊗ form a non-commutative group

in which the identity element is qI = 1 =

[
1
0v

]
.

B.2.1 Conjugate

The conjugate of a quaternion is defined by

q∗ ∆= qw − qv =

[
qw
−qv

]
(B.16)

with the following properties

q ⊗ q∗ = q∗ ⊗ q =

[
q2
w + q2

x + q2
y + q2

z

0v

]
(B.17)

(q1 ⊗ q2)∗ = q∗
1 ⊗ q∗

2 (B.18)

B.2.1.1 Norm

The norm of a quaternion is defined by

‖q‖ =
√

q ⊗ q∗ =
√

q∗ ⊗ q =
√
q2
w + q2

x + q2
y + q2

z (B.19)

so that

‖qw1 ⊗ qw2‖ = ‖qw1‖‖qw2‖ (B.20)

B.2.2 Inverse

The inverse quaternion q−1 is defined so that

q ⊗ q = q−1 ⊗ q = qI (B.21)

and can be computed with

q−1 = q∗/
∥∥∥q2

∥∥∥ (B.22)
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B.3 Quaternion and rotations

Let us define a vector x in R
3 and R the rotation matrix that transforms x into x′

x′ = Rx

There exist an equivalent rotation q described in the quaternion space H to perform
the same transformation so that

x̄′ = q ⊗ x̄⊗ q∗ (B.23)

where x̄ is in quaternion form, that is

x̄ = xi+ yj + zk =

[
0
x̄

]
(B.24)

However, since we can easily distinguish the context by the presence of the quater-
nion product operator ⊗, we will abuse of the notation in the following and write

x′ = q ⊗ x⊗ q∗ = Rx (B.25)

The expression of the rotation matrix that is equivalent to the quaternion can be
found by developing both q⊗x⊗q∗ and Rx and by identifying terms. This yields
to

R{q} =



q2
w + q2

x − q2
y − q2

z 2(qxqy − qwqz) 2(qxqy + qwqy)
2(qxqy + qwqz) q2

w − q2
x + q2

y − q2
z 2(qyqz − qwqx)

2(qxqz − qwqy) 2(qyqz + qwqx) q2
w − q2

x − q2
y + q2

z


 (B.26)

R{q} has the following properties with respect to quaternions

R{qI} = I (B.27)

R{−q} = R{q} (B.28)

R{q∗} = R{q}T (B.29)

R{q1 ⊗ q2} = R{q1}R{q2} (B.30)

where one can the following properties:

• the identity quaternion encodes the null rotation (B.27)

• a quaternion q and its negative encode the same rotation (B.28)

• the conjugate quaternion encodes the inverse rotation (B.29)

• the quaternion product and rotation matrices compose rotations in the same
order (B.30)
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From (B.30) we can find out how the composition of rotations work. Indeed, let us
define xA a 3D vector so that

xA = RAB RBC xC

where the chain rule makes it simple to understand the successive rotation op-
erations. The rotation matrix RBC is used to rotate the 3D vector xC into
xB = RBC xC and RAB is the rotation matrix that is used to transform xB into
xA. The equivalent transformation using quaternion is given by

xA = qAB ⊗ qBC ⊗ xC ⊗ q∗
BC ⊗ q∗

AB

and recalling (B.29), we finally get

xA = qAB ⊗ qBC︸ ︷︷ ︸
qAC

⊗ xC ⊗ qCB ⊗ qBA︸ ︷︷ ︸
q∗

AC

We define the quaternion-by-vector product ⊙ so that

q ⊙ v , q ⊗ v⊗ q∗ , (B.31)

where q∗ denotes the dual quaternion of q. The symbol ⊗ stands for the product
of quaternions and ⊙ corresponds to the quaternion-by-vector which performs a 3D
rotation of an input vector v. Notice that if R is the rotation matrix equivalent
to the quaternion q, then q ⊙ v = R v. This straightforward equivalence enables
us to define all the forthcoming IMU pre-integration algebra in a way that allows a
direct transcription between the S3 and SO(3) spaces of representation.
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Definition of derivatives on
manifolds

C.1 Definition of the derivatives in S
3 and SO(3)

C.1.1 Exp and Log maps in S
3 and SO(3)

We use vectorized versions of the exponential and logarithmic maps in the rotation
groups S3 (quaternion) and SO(3) (rotation matrix), and denote them with cap-
italized names Exp() and Log() (see Fig. C.1, left). They operate directly on the
vector space R

3, and use either quaternions for S3,

q = Exp(θ) ,

[
cos(θ/2)

u sin(θ/2)

]
∈ H (C.1a)

θu = Log(q) , 2 qv
arctan(‖qv‖, qw)

‖qv‖
∈ R

3 , (C.1b)

where (θ,u) ∈ R
3 is the angle-axis representation of the rotation, and q , (qw,qv) ∈

H is a quaternion with its real and imaginary parts. For rotation matrices in SO(3)
we have,

R = Exp(θ) , I + sin θ [u]× + (1− cos θ) [u]2× ∈ R
3×3 (C.2a)

θu = Log(R) ,
θ(R −R⊤)∨

2 sin θ
∈ R

3 , (C.2b)

with θ = cos−1
(

trace(R)−1
2

)
, and where •∨, known as the vee operator, is the inverse

of the skew operator [•]×. Their exact form (q or R) is always clear by the context.
Since the quaternion implementation is one of our contributions, in the following we
will refer to the rotation groups S3 and SO(3) with the unique name S3, although
everything applies equally to SO(3).

C.1.2 The additive and subtractive operators in S
3 and SO(3)

The ‘plus’ operator, ⊕ : S3 × R
3 → S3, composes a reference element R ∈ S3

with a (often small) rotation specified by a vector of θ ∈ R
3 that is tangent to the

S3 manifold at R, yielding an element S ∈ S3 (see Fig. C.1, right). The ‘minus’
operator, ⊖ : S3×S3 → R

3 is the inverse of the above. These operators are defined
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θ
qS
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q = exp(θ)

θ = log(q)

S
3

R
3

θq S
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θ

q = p⊕ θ

θ = q! p

q

p

Figure C.1: The S3 manifold is a unit sphere in R
4, here represented by a unit circle

(blue), where all unit quaternions live. The tangent space to the manifold is the
hyperplane R3, here represented by a line (red). The Exp() and Log() operators map
elements of R3 to/from elements of S3. The ⊕ and ⊖ operators relate elements of
the manifold with elements in the tangent space. (Likewise, these figures illustrate
the SO(3) manifold.)

for both q and R,

q = p⊕ θ , p⊗ Exp(θ) (C.3)

S = R ⊕ θ , R Exp(θ) (C.4)

θ = q ⊖ p , Log(p∗ ⊗ q) (C.5)

θ = S⊖R , Log(R⊤ S) . (C.6)

C.1.3 The four possible derivative definitions

For functions f : Rm → R
n, the derivative is defined classically using the standard

operators {+,−},

∂f(x)
∂x

, lim
δx→0

f(x + δx)− f(x)
δx

∈ R
n×m ; (C.7)

for functions g : S3 → S3, we use the operators {⊕,⊖},

∂g(R)
∂θ

, lim
δθ→0

g(R⊕ δθ)⊖ g(R)
δθ

∈ R
3×3 ; (C.8)

for functions h : Rm → S3, we use {+,⊖},

∂h(x)
∂x

, lim
δx→0

h(x + δx)⊖ h(x)
δx

∈ R
3×m ; (C.9)

and for functions k : S3 → R
n, we use {⊕,−},

∂k(R)
∂θ

, lim
δθ→0

k(R⊕ δθ)− k(R)
δθ

∈ R
n×3 . (C.10)
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Figure C.2: Representation of the derivatives operation. We consider a situation
so that variable can be either in the R

n or in one of the manifolds (blue and red
spaces). Then we define the functions f : Rm → R

n, g : S3 → S3, h : Rm → S3 and
k : S3 → R

n.

It might be worth noticing that all these Jacobians are independent of the repre-
sentation chosen (S3 or SO(3)).

C.1.4 Right Jacobian of S
3 and SO(3)

We define the right Jacobian as,

Jr(θ) ,
∂ Exp(θ)

∂θ
∈ R

3×3
, (C.11)

and implement it using (C.9). It admits the closed forms [Chirikjian 2012, pag. 40],

Jr(θ) = I− 1− cos ‖θ‖
‖θ‖2

[θ]× +
‖θ‖ − sin ‖θ‖
‖θ‖3

[θ]2× (C.12)

J−1
r (θ) = I+

1
2

[θ]×+

(
1

‖θ‖2
− 1+cos ‖θ‖

2‖θ‖ sin ‖θ‖

)
[θ]2× . (C.13)

C.1.5 Examples

Since our defined derivatives map tangent Cartesian spaces, and these spaces coin-
cide for the 3D rotation manifolds of S3 and SO(3), i.e., θ = log(q) = log(R), it
follows that the Jacobians are independent of the representation used (q or R). We
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can thus consider generic 3D rotation elements, and note them with the sans-serif
font R.

C.1.5.1 Function R
3 → S3

The function f(ω) = Exp(ωδt) produces elements of S3 from vectors ω ∈ R
3. Its

Jacobian with respect to ω follows from (C.9), but is better obtained from (C.11)
and the chain rule,

∂ Exp(ωδt)
∂ω

=
∂ Exp(ωδt)
∂(ωδt)

∂(ωδt)
∂ω

= Jr(ωδt)δt .

C.1.5.2 Function S3 × R
3 → R

3

The rotation f(R,v) = q ⊙ v = R v (coresponding to rotation action) produces
vectors of R

3 from elements R ∈ S3 and vectors v ∈ R
3. The first Jacobian is

defined by (C.10) and developed as

JR·v
R =

∂q ⊙ v
∂θ

=
∂Rv
∂θ

, lim
δθ→0

(R ⊕ δθ)v−Rv
δθ

= lim
δθ→0

R Exp(δθ)v−Rv
δθ

= lim
δθ→0

R·(I + [δθ]×)v−Rv
δθ

= lim
δθ→0

R [δθ]× v
δθ

= lim
δθ→0

−R [v]× δθ
δθ

= −R [v]×

where we used the properties Exp(δθ) ≈ I + [δθ]× and [a]× b = − [b]× a. The
second Jacobian is defined by (C.7) and yields,

∂q ⊙ v
∂v

=
∂Rv
∂v

, lim
∂v→0

R·(v + ∂v)−Rv
∂v

= R .

C.1.5.3 Function S3 × S3 → S3

The function f(Q,R) = q⊗ r = Q R produces rotation composition. Its Jacobians
are computed from (C.8), using the property Exp(Rθ) = R Exp(θ)R⊤,

JQ◦R
Q

=
∂q(θ)⊗ r

∂θ
=
∂Q(θ) R

∂θ
= lim

δθ→0

Log
(
(QR)⊤(Q Exp(δθ)R)

)

δθ

= lim
δθ→0

Log
(
R⊤ Exp(δθ)R

)

δθ

= lim
δθ→0

Log
(

Exp(R⊤δθ)
)

δθ
= R⊤ ,

JQ◦R
R

=
∂q ⊗ r(φ)

∂φ
=
∂Q R(φ)

∂φ
= lim

δφ→0

Log
(
(QR)⊤(QR Exp(δφ))

)

δφ

= lim
δφ→0

Log
(

Exp(δφ)
)

δφ
= I .
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C.1.6 Adjoint

We have from (4.21)

AdjRτ , log(R ◦ exp(τ∧) ◦ R−1)∨

= log(R exp([τ ]×)R⊤)∨

= log(exp(R [τ ]× R⊤))∨

= log(exp([(Rτ)]×))∨

= ((Rτ)∧)∨ = Rτ

therefore

AdjR = R . (C.14)

C.2 Maps, operators and derivatives of S
1 and SO(2)

C.2.1 Exp and log maps

Lift and retract are implemented via exponential maps directly from the scalar
tangent space so(2) = TSO(2) ≃ TS1 ≃ R. For S1 we have,

z = exp(θ) = cos θ + i sin θ ∈ C (C.15)

θ = log(z) = arctan(Im(z),Re(z)) ∈ R , (C.16)

whereas for SO(2),

R = exp(θ) =

[
cos θ − sin θ
sin θ cos θ

]
∈ R

2×2 (C.17)

θ = log(R) = arctan(r21, r11) ∈ R . (C.18)

C.2.2 Inverse, composition

We have

R(θ)−1 = R(−θ) (C.19)

Q ◦ R = R ◦ Q , (C.20)

since planar rotations are commutative. It follows that,

exp(θ1 + θ2) = exp(θ1) ◦ exp(θ2) (C.21)

log(Q ◦ R) = log(Q) + log(R) (C.22)

Q⊖ R = θQ − θR . (C.23)
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C.2.3 Derivative blocks

From (4.23) and the properties above, the following scalar derivative blocks become
trivial,

JR
−1

R = lim
δθ→0

(−θ − δθ)− (−θ)
δθ

= −1 (C.24)

JQ◦R
Q

= lim
δθQ→0

(θQ + δθQ + θR)− (θQ + θR)
δθQ

= 1 (C.25)

JQ◦R
R

= lim
δθR→0

(θQ + θR + δθR)− (θQ + θR)
δθR

= 1 (C.26)

Jr(θ) = lim
δθ→0

(θ + δθ)− θ
δθ

= 1 (C.27)

For the rotation action R · v we have

JR·v
R = lim

δθ→0

R exp(δθ)v−Rv
δθ

= lim
δθ→0

R(I + [δθ]×)v−Rv
δθ

= lim
δθ→0

R [δθ]× v
δθ

= R [1]× v ∈ R
2×1 (C.28)

with [θ]× =

[
0 −θ
θ 0

]
, and

JR·v
v =

∂Rv
∂v

= R . (C.29)
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Abstract:
Estimation in robotics is an important subject affected by trade-offs between
some major critera from which we can cite the computation time and the
accuracy. The importance of these two criteria are application-dependent. If
the computation time is not important for off-line methods, it becomes critical
when the application has to run on real-time. Similarly, accuracy requirements
are dependant on the applications. EKF estimators are widely used to satisfy
real-time constraints while achieving acceptable accuracies. One sensor widely
used in trajectory estimation problems remains the inertial measurement units
(IMUs) providing data at a high rate. The main contribution of this thesis
is a clear presentation of the preintegration theory yielding in a better use
IMUs. We apply this method for estimation problems in both pedestrian and
humanoid robots navigation to show that real-time estimation using a low-
cost IMU is possible with smoothing methods while formulating the problems
with a factor graph. We also investigate the calibration of the IMUs as it is a
critical part of those sensors. All the development made during this thesis was
thought with a visual-inertial SLAM background as a mid-term perspective.
Firthermore, this work tries to rise another question when it comes to legged
robots. In opposition to their usual architecture, could we use multiple low-
cost IMUs on the robot to get valuable information about the motion being
executed?
Keywords:
Factor Graph, low-cost IMU, sensor calibration, real-time state estimation, SLAM,
pedestrian navigation, IMU preintegration on manifolds, robot


