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Chapter 1

Introduction

Quantum chemistry is a discipline which relies on very expensive computations. The
scalings of wave function methods lie between O

(
N5) and O

(
N8), where N is pro-

portional to the number of electrons in the system. Therefore, performing accurate
calculations requires both approximations that can reduce the scaling, and an e�cient
implementation that can take advantage of modern architectures. The work presented
in this thesis is more centered on this last aspect.

In 1965, Gordon Moore predicted that the number of transistors in an integrated
circuit would double about every two years (the so-called Moore’s law).[2] Rapidly, this
“law” was interpreted as an expected 2× gain in performance every 18 months, which
became an industrial goal. The development of today’s most popular codes of the
community (Molpro[3], Molcas[4], or Gaussian[5]. . . ) was initiated in the 1990’s. At
that time, the increase of computational power from one generation of supercomput-
ers to the next one was mostly due to the increase of the frequency of the processors.
the amount of random access memory was small, the time to access data from disk
was slow, and the energy consumption of the most powerful computer was 236kW,
which was not an economical concern.[6] At the beginning of the years 2000, having
increased continuously both the number of processors and their frequency raised the
power consumption of supercomputers by two orders of magnitude, raising accord-
ingly the annual electricity bill. The only way to slow down this need for electric-
ity while keeping alive Moore’s law was to keep the frequency �xed (between 1 and
4 GHz), and increase the number of CPU cores. The consequence of such a choice
was that “free lunch” was over, and the programmers now had to parallelize their pro-
grams to make them run faster.[7] At the same time, computer scientists realized that
the increase of performance in memory access was slower than the increase in com-
putational power,[8] and that the �oating-point operation (or �op) count would soon
not be the bottleneck, and that data movement would be the concern. This change was
called the memory wall.

So today, the situation is completely di�erent from the 1990’s. Moore’s law has
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ended,[9] the CPU frequency tends to decrease, hundreds of thousands of cores need
to be handled, data movement is the principal concern, and disk access times are pro-
hibitively high. The work presented in this thesis is in the context of this change of
paradigm that has been going on for the last decade. The traditional sequential algo-
rithms of quantum chemistry are currently being redesigned so as to be replaced by
parallel equivalents by multiple groups around the world, and this has also an in�uence
on methodological development.

Initially, this work may been have expected to focus on methods that are by design
adapted to massively parallel architectures, such as Monte-Carlo methods (stochastic
methods), which are composed of a large number of independent tasks (embarrass-
ingly parallel algorithms). In addition, they often are able to yield a satisfactory result
for just a fraction of the cost of the equivalent deterministic, exact computation. An
example of the move toward this type of method is the recently developed Full Con�g-
uration Interaction Quantum Monte Carlo (FCIQMC).[10] FCIQMC can be interpreted
as a Monte-Carlo variant of older selected con�guration interaction algorithms such
as CIPSI,[11] that are iterative and thus a priori not well adapted to massively paral-
lel architectures. But things turn out di�erently, and the focus of this thesis was to
investigate how to make con�guration interaction (CI) methods e�cient on modern
supercomputers.

The �antum Package [12] developed at the LCPQ is a suite of wave function
quantum chemistry methods, that strives to allow easy implementation and experi-
mentation of new methods, and to make parallel computation as simple and e�cient
as possible. The main purpose of this package is to make experimentation on code de-
sign, algorithms and methods, more than to be used massively in production. Hence,
the initial choice of the �antum Package was to go in the direction of determinant-
driven algorithms, as opposed to the more traditional integral-driven algorithms. A
determinant-driven approach essentially implies that the wave function is expressed
as a linear combination of determinants, and that the outermost loops of the algorithms
loop over determinants. On the other hand, integral-driven algorithms have their out-
ermost loop on the two-electron integrals which appear in the expression of the matrix
elements in the determinant basis. In the context of con�guration interaction or per-
turbative methods, the determinant-driven approach simpli�es the development and
allows the researchers to test new ideas very quickly. These algorithms allow more
�exibility than their integral-driven counterparts,[13] but they have been known for
years to be less e�cient for solving problems that can be solved with an integral-driven
variant. High-precision calculations are in a regime where the number of determinants
is larger than the number of integrals, which justi�es the integral-driven choice. Today,
programming imposes parallelism, and if determinant-driven calculations prove to be
better adapted to parallelism, such methods could regain in popularity. The work pre-
sented in this thesis focuses on determinant-driven approaches via the improvement
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of the �antum Package from the methodological, algorithmic and the implementa-
tional points of views.

Somewhat logically, the �rst focus was the acceleration and parallelization of the
Davidson diagonalization, which is a pivotal point for CI methods. A naive determinant-
driven algorithm implies a quadratic scaling with the number of determinants, while
the integral-driven algorithm is expected to scale linearly. This fact gave us some in-
sight that there was room for improvement in this step.

The second focus was the improvement of the determinant selection algorithm
which is the main method used by the �antum Package to build compact wave
functions suitable for determinant-driven computations. In a nutshell, the principle is
to incrementally build a variational wave function by scavenging its external space for
determinants that interact with it. While the signi�cant improvement that was brought
to this implementation was in itself the most important part of this work, it also turned
out to be the basis for the subsequent implementation of other algorithms. Indeed,
e�ciently implementing this method raised the fundamental question of connecting
a variational wave function to its external space ; that is, gathering data to go beyond
what is readily available in it. The next steps were partly guided by the aversion to
waste data gathered during the selection.

Our selection algorithm, CIPSI, implies computing a perturbative contribution for
external determinants, and including those with the largest contributions into the in-
ternal space in which the variational wave function is expressed. EPT2, the sum of all
the contributions of the external determinants, approximates how much energy the
variational wave function is missing compared to the exact solution in the same basis
set, namely the Full Con�guration Interaction or Full CI. However to perform an ac-
ceptably accurate selection, not all external determinants need to be considered, nor
does each contribution need to be known with a great accuracy.[14] This allows for
approximations too severe for the sum of all computed contributions to yield an ac-
curate estimation EPT2, and incidentally the computation of EPT2 is much more time
consuming than determinant selection. To make this step more a�ordable, we designed
a hybrid deterministic-stochastic scheme which enabled us to get an accurate value for
EPT2 by computing just a few percent of all the contributions.

The computation of EPT2 allows to correct the energy of the wave function by
taking into account its external space. Unfortunately, it only improves the energy, but
leaves the wave function unchanged. Based on the shifted-Bk algorithm, using our
CIPSI implementation and the hybrid deterministic-stochastic scheme we were able to
re�ne the wave function under the e�ect of a stochastically estimated external space
using a Hamiltonian dressed by a matrix computed semi-stochastically.

In addition, we set up a general framework to enable the re�ning of the variational
wave function under the e�ect of any external space, with a stochastic estimation.
This was experimented by implementing a stochastic selected multi-reference coupled
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cluster with singe and double substitutions (MR-CCSD).
The e�ciency of the implemented algorithms is exposed, and the code was used in

numerous applications, in particular to obtain reference excitation energies for di�cult
molecular systems. The high quality and compactness of the CIPSI wave function was
also used for quantum Monte Carlo calculations to characterize the ground state of the
Fe–S molecule.

Of course, the technical considerations were not the focus of the di�erent articles
that were produced. Because my work focused on the actual implementation of the
methods at least as much as on the theory behind them, this thesis is an opportunity
to discuss in depth the implementation. I hope this document will be one of the major
pieces of documentation for developers willing to understand deeply the implementa-
tion of the �antum Package , so I decided to write this thesis in English.
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Chapter 2

Wave function methods

Contents
2.1 Slater determinants . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Electron correlation . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Matrix elements of Ĥ . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Two-electron integrals . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Variational post-Hartree-Fock methods . . . . . . . . . . . . . 16
2.6 Perturbative methods . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Selected CI methods . . . . . . . . . . . . . . . . . . . . . . . . . 19

Quantum chemistry aims at describing the electronic structure of molecular sys-
tems. The velocity of the nuclei is considered negligible compared to that of the elec-
trons (Born-Oppenheimer approximation), and for atoms of the �rst rows of the peri-
odic table relativistic e�ects can be neglected. In this context, the model system is a
cloud of Nelec electrons and a set of M nuclei considered punctual, immobile charges.
It can be described by solving Shrödinger’s equation for electrons :

ĤΨ(x1, . . . , xNelec) = EΨ(x1, . . . , xNelec) (2.1)

where Ψ is the electronic wave function, E the associated energy, and xi = (r, ms)
contains the spatial coordinates of the electron r, as well as a spin variable ms. Ĥ is
the non-relativistic electronic Hamiltonian operator

Ĥ =
Nelec

∑
i=1

(
− 1

2
∆i −

M

∑
j=1

Zj

|ri − Rj|
)
+

Nelec

∑
i=1

Nelec

∑
k>i

1
|ri − rk|

(2.2)

where Rj and Zj are respectively the spatial coordinate and charge of nucleus j.
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2.1 Slater determinants
The simplest description of the wave function is the Hartree product. This consists in
building the product of orthonormal one-electron functions, each function describing
the state of one electron:

ΨHartree(x1, . . . , xNelec) =
Nelec

∏
i=1

φi(xi). (2.3)

Because of the fermionic nature of electrons, Ψ must satisfy the condition of being
antisymmetric with respect to the permutation of electrons coordinates, which is not
veri�ed by the Hartree product. Antisymmetrizing the Hartree product yields the so-
called Slater determinant:

Ψ(x1, . . . , xNelec) =
1√

Nelec!

∣∣∣∣∣∣∣

φ1(x1) . . . φ1(xNelec)... . . . ...
φNelec(x1) . . . φN(xNelec)

∣∣∣∣∣∣∣
(2.4)

which is the simplest possible antisymmetric wave function. The functions φi are
called spinorbitals:

φi(x) = ϕi(r) σi(ms) (2.5)

where ϕi is a spatial function, or molecular orbital (MO), and σi is a discrete spin func-
tion describing the spin state of the electron (ms = ±1

2 ). The spin function can be
either α(ms) or β(ms) de�ned as

α

(
1
2

)
= 1 ; α

(
−1

2

)
= 0 (2.6)

β

(
1
2

)
= 0 ; β

(
−1

2

)
= 1,

and for convenience, one will rewrite

φi(x) = ϕi(r)α(ms) ↑ spinorbitals (2.7)
φi(x) = ϕi(r)β(ms) ↓ spinorbitals

Packing together the ↑ spinorbitals, and then the ↓ spinorbitals in the representa-
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tion of the determinant, one can express the Slater determinant as

1√
Nelec!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) . . . φ1(xN↑elec
) φ1(xN↑elec+1) . . . φ1(xNelec)

... . . . ... ... . . . ...
φN↑elec

(x1) . . . φN↑elec
(xN↑elec

) φN↑elec
(xN↑elec+1) . . . φN↑elec

(xNelec)

φN↑elec+1(x1) . . . φN↑elec+1(xN↑elec
) φN↑elec+1(xN↑elec+1) . . . φN↑elec+1(xNelec)

... . . . ... ... . . . ...
φNelec

(x1) . . . φNelec
(xN↑elec

) φNelec
(xN↑elec+1) . . . φNelec

(xNelec)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.8)

where N↑elec is the number of ↑ electrons, i.e. the number of electrons with ms = 1/2.
By convention, we choose N↑elec ≥ N↓elec. If one chooses the permutation in which the
�rst N↑elec electrons have ms = 1/2, and the other electrons have ms = −1/2, one
always has

φi(xj) = 0 for 1 ≤ i ≤ N↑elec and N↑elec < j ≤ Nelec (2.9)

φi(xj) = 0 for N↑elec < i ≤ Nelec and 1 ≤ j ≤ N↑elec,

and the Slater determinant is the determinant of a block-diagonal matrix:

1√
Nelec!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) . . . φ1(xN↑elec
)

... . . . ... 0
φN↑elec

(x1) . . . φN↑elec
(xN↑elec

)

φN↑elec+1(xN↑elec+1) . . . φN↑elec+1(xNelec)

0
... . . . ...

φNelec
(xN↑elec+1) . . . φNelec

(xNelec)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(2.10)
This allows us to rewrite the Slater determinant in a spin-free formalism as the Waller-
Hartree double determinant,[15] namely the product of two determinants associated
with ↑ and ↓ electrons respectively.

[
ΨHF(r1, . . . , rN↑elec

, rN↑elec+1, . . . , rNelec ; 1
2 , . . . , 1

2 ,−1
2 , . . . ,−1

2)
]2

=
1√

Nelec! Ψ↑(r1, . . . , rN↑elec
)×Ψ↓(rN↑elec+1, . . . , rNelec) =

1√
Nelec!

∣∣∣∣∣∣∣∣

ϕ1(r1) . . . ϕ1(rN↑elec
)

... . . . ...
ϕN↑elec

(r1) . . . ϕN↑elec
(rN↑elec

)

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

ϕ1(rN↑elec+1) . . . ϕ1(rNelec)

... . . . ...
ϕNβ

(rN↑elec+1) . . . ϕNβ
(rNelec)

∣∣∣∣∣∣∣∣
(2.11)
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Molecular orbitals are typically de�ned as linear combinations of atomic orbitals,
or AO, here noted χk

ϕi(r) = ∑
k

Cikχk(r). (2.12)

These functions qualify the used one-electron basis set, and are usually themselves
pre-de�ned linear combinations of Gaussian functions. This is a restriction put on the
form of the wave function, therefore it is known as the �nite basis set approximation.
In the Hartree-Fock method, the wave function is a single Slater determinant, where
the Cik coe�cients associated with molecular orbitals are optimized so as to minimize
the energy. This method, however is missing some important physical e�ects. For
instance, using Eq. (2.11) one can see that in this model opposite-spin electrons are
statistically independent (or uncorrelated):

[
ΨHF(r1, . . . , rN↑elec

, rN↑elec+1, . . . , rNelec ; 1
2 , . . . , 1

2 ,−1
2 , . . . ,−1

2)
]2

=

[
Ψ↑(r1, . . . , rN↑elec

)×Ψ↓(rN↑elec+1, . . . , rNelec)
]2

=

[
Ψ↑(r1, . . . , rN↑elec

)
]2
×
[
Ψ↓(rN↑elec+1, . . . , rNelec)

]2
.

(2.13)

2.2 Electron correlation
Electron correlation is de�ned as[16]

Ecorr = Eexact − EHF (2.14)

where EHF is the Hartree-Fock limit, i.e. the limit to which the Hartree-Fock energy
converges when the size of the one-electron basis set increases.

To include electron correlation e�ects, Ψ may be expanded in {|DI〉}, the set of
all the possible Slater determinants that can be built by putting N↑elec electrons in Norb
orbitals and N↓elec electrons in Norb orbitals. The eigenvectors of Ĥ are consequently
expressed as linear combinations of Slater determinants

|Ψn〉 = ∑
I

cn
I |DI〉 . (2.15)

Solving the eigenvalue equations in this basis is referred to as Full Con�gurations In-
teraction (FCI) and yields solutions for Schrödinger’s equation that are exact for the
given atomic basis set. But the FCI is usually computationally intractable because of
its scaling with the size of the basis set. Indeed, the size of the FCI space is

NFCI =
Norb!

N↑elec!(Norb − N↑elec)!
× Norb!

N↓elec!(Norb − N↓elec)!
. (2.16)
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Post-Hartree-Fock methods are trying to circumvent this problem, and therefore are
essentially approximations of FCI.

2.3 Matrix elements of Ĥ
In the N-electron basis of Slater determinants, one expects the matrix elements of Ĥ
to be integrals over 3N dimensions. However, given the two-electron nature of the
Hamiltonian, and because the set of molecular orbitals is orthogonal, Slater determi-
nants that di�er by more than two electrons yield a zero matrix element, and the other
elements can be expressed as sums of integrals over 3 or 6 spatial dimensions, which
can be computed for a reasonable cost. These simpli�cations are known as Slater-
Condon’s rules:

〈D|Ĥ|D〉 = ∑
i∈|D〉

〈i|ĥ|i〉+ 1
2 ∑

i∈|D〉
∑

j∈|D〉

[
(ii|jj)− (ij|ij)

]
(2.17)

〈
D
∣∣∣Ĥ
∣∣∣Dr

p

〉
= 〈p|ĥ|r〉+ ∑

i∈|D〉

[
(pr|ii)− (pi|ri)

]
(2.18)

〈
D
∣∣∣Ĥ
∣∣∣Drs

pq

〉
= (pr|qs)− (ps|qr) (2.19)

where ĥ is the one-electron part of the Hamiltonian (kinetic energy and electron-
nucleus potential),

〈p|ĥ|r〉 =
∫

dx φ∗p(x)
(
−1

2
∇+ V1(x)

)
φh(x), (2.20)

i ∈ |D〉 means that φi belongs to the Slater determinant |D〉,
∣∣∣Drs

pq

〉
is a determinant

obtained from |D〉 by substituting orbitals φp and φq by φr and φs, and

(ij|kl) =
∫

dx1

∫
dx2 φ∗i (x1)φj(x1)

1
|r1 − r2|

φ∗k (x2)φl(x2). (2.21)

2.4 Two-electron integrals
In the Hartree-Fock method, Roothaan’s equations allow to solve the problem in the
basis of atomic orbitals.[17] In this context, one needs to compute theO

(
Norb

4
)

two-
electron integrals (pq|rs) over the atomic orbitals. Thanks to a large e�ort in algo-
rithmic development and implementation,[18, 19, 20, 21, 22, 23, 24] these integrals can
now be computed very fast on modern computers.
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But for post-Hartree-Fock methods, the computation of the two-electron integrals
is a potential bottleneck. Indeed, when computing matrix elements of the Hamiltonian
in the basis of Slater determinants, integrals over molecular orbitals are desired. Using
Eq. (2.12), the cost of computing a single integral scales as O

(
Norb

4
)

:

(ij|kl) = ∑
pqrs

CpiCqjCrkCsl(pq|rs) (2.22)

A naive computation of all integrals in the MO basis would cost O(Norb
8). For-

tunately, computing all of them can be scaled down to O(N5) by transforming the
indices one by one:[25]

(iq|rs) = ∑
p

Cpi(pq|rs)

(iq|ks) = ∑
r

Crk(iq|rs) semi-transformed integrals (2.23)

(ij|ks) = ∑
q

Cqj(iq|ks)

(ij|kl) = ∑
s

Csl(ij|ks) fully transformed integrals (2.24)

This step is known as the four-index integral transformation. In addition to being very
costly, this step is no easy to parallelize in distributed way, because it implies multiple
collective communications.[26, 27, 28, 29]

2.5 Variational post-Hartree-Fock methods
In variational methods, one tries to minimize the variational energy

Evar =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 ≥ EFCI (2.25)

by optimizing the parameters of the wave function. Generally speaking, solving Schrö-
dinger’s equation in a basis of Slater determinants is called Con�guration Interaction
(CI). In these methods, the molecular orbitals are kept �xed and the variational param-
eters are the coe�cients associated with the Slater determinants. The general idea of
CI methods is to select a priori a relevant subset of Slater determinants in which the
CI problem will be solved, the FCI being the particular case where the whole {|Di〉}
set is used.

One usual approach is to perform a FCI by allowing excitations from a reference
determinant only within a reduced set of molecular orbitals. This is referred to as
Complete Active Space Con�guration Interaction (CAS-CI). Choosing the CAS orbitals
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often requires some chemical expertise. The CAS-SCF method minimizes the energy
by performing iteratively a CAS-CI and optimizing the molecular orbitals.

Another usual CI approach is to select determinants according to their excitation
degree — by how many occupied orbitals they di�er — with respect to some reference.
If the reference is the Hartree-Fock determinant and if only single and double excita-
tions are considered, the method is known as Con�guration Interaction with Single and
Double excitations (CISD). Alternatively, the reference can be a CAS-CI, in which case
it is known as Multi-Reference Con�guration Interaction (MR-CI).

Regardless of the method, integrals involving all orbitals implied in at least one
Slater determinant need to be computed in order to diagonalize Ĥ. Therefore CI meth-
ods cost at least O

(
Norb

5), due to the four-index transformation. In addition, the cost
for fully diagonalizing Ĥ is O

(
Ndet

3) with Ndet the number of determinants in the
considered subspace, which can be up to a few billion. This is usually not feasible,
but only the few eigenvectors associated with lowest eigenvalues are typically of in-
terest, so iterative methods can be used. The standard choice in quantum chemistry
is to use the Davidson diagonalization originally developed by Ernest R. Davidson[30]
speci�cally for CI methods.

2.6 Perturbative methods
One de�nes a zeroth-order Hamiltonian Ĥ(0) as an approximate Hamiltonian which
carries the dominant information of the exact Hamiltonian Ĥ, and for which all the
eigenvalues and eigenvectors are known.

Ĥ(0)
∣∣∣Ψ(0)

〉
= E(0)

∣∣∣Ψ(0)
〉

(2.26)

The di�erence between Ĥ and Ĥ(0) is small enough to be considered as a perturba-
tion V̂:

Ĥ = Ĥ(0) + λV̂ (2.27)
with λ a scalar connecting smoothly the approximate Hamiltonian (λ = 0) and the
exact Hamiltonian (λ = 1). We will try to solve

(
Ĥ(0) + λV̂

)
|Ψ(λ)〉 = E(λ) |Ψ(λ)〉 (2.28)

assuming that solutions for H(λ) can be written as a power series:

E(λ) =
∞

∑
l=0

λle(l) (2.29)

|Ψ(λ)〉 =
∞

∑
l=0

λl
∣∣∣ψ(l)

〉
(2.30)

17



Eq. (2.28) becomes
(

Ĥ(0) + λV
)( ∞

∑
l=0

λl
∣∣∣ψ(l)

〉)
=

(
∞

∑
l=0

λle(l)
)(

∞

∑
l=0

λl
∣∣∣ψ(l)

〉)
(2.31)

and equation at order n is obtained by isolating all terms that are multiplied by λn. For
n = 0, we �nd Eq. (2.26). For n = 1 we have

λ
[

Ĥ(0)
∣∣∣ψ(1)

〉
+ V

∣∣∣ψ(0)
〉]

= λ
[
e(0)

∣∣∣ψ(1)
〉
+ e(1)

∣∣∣ψ(0)
〉]

(2.32)

and so on. . .
The equation of order n involves all e(m≤n) and

∣∣∣ψ(m≤n)
〉

. It is possible to itera-

tively solve the equations up a given value of n, each iteration i yielding e(i) and
∣∣∣ψ(i)

〉
.

Then the wave function and energy corrected at order n can be written

E(n) =
n

∑
i=0

e(i) (2.33)

∣∣∣Ψ(n)
〉
=

n

∑
i=0

∣∣∣ψ(i)
〉

(2.34)

The perturbation theory that is used is characterized by the choice of Ĥ(0). If the
zeroth-order (symmetric) Hamiltonian is chosen as the exact Hamiltonian on a subset
of determinants (1 ≤ I ≤ J ≤ Ndet), and diagonal on the rest (|α〉 = DK>Ndet),

〈
DI
∣∣Ĥ(0)∣∣DJ

〉
=
〈

DI
∣∣Ĥ
∣∣DJ
〉

(2.35)
〈DI |Ĥ(0)|α〉 = 0 (2.36)
〈α|Ĥ(0)|α〉 = 〈α|Ĥ|α〉 , (2.37)

(2.38)

the zeroth-order Hamiltonian is the so-called Epstein-Nesbet Hamiltonian. In that case,

〈DI |V̂|α〉 = 〈DI |Ĥ|α〉 (2.39)
〈

DI
∣∣V̂
∣∣DJ
〉
= 0 (2.40)

(2.41)

In Epstein-Nesbet perturbation theory, e(0) is the variational energy of the zeroth-order
wave function, e(1) = 0, and one needs to go to the second order to get an improvement
on the energy:

EPT2 = e(2) = ∑
α

〈
α
∣∣∣Ĥ
∣∣∣Ψ(0)

〉2

E(0) − 〈α|Ĥ|α〉 (2.42)
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2.7 Selected CI methods
These methods rely on the same principle as the usual CI approaches, except that de-
terminants aren’t chosen a priori based on an occupation or excitation criterion, but
selected on the �y among the entire set of determinants based on their estimated contri-
bution to the FCI wave function. Conventional CI methods can be seen as an exact res-
olution of Schrödinger’s equation for a complete, well-de�ned subset of determinants
(and for a given atomic basis set), while selected CI methods are more of a truncation of
the FCI. The main advantages of these methods compared to the more conventional a
priori selected ones, are that since the most relevant determinants are considered, they
will typically yield a more accurate description of physical phenomena, and a much
lower energy for an equivalent number of determinants. It has been noticed long ago
that, even inside a prede�ned subspace of determinants, only a small number signif-
icantly contributes to the wave function.[31, 32] Therefore, an on the �y selection of
determinants is a rather natural idea that has been proposed in the late 60’s by Bender
and Davidson[33] as well as Whitten and Hackmeyer[34] and is still very much under
investigation, we can cite its stochastic variant the MC3I method[35] or the very recent
Machine Learning Con�guration Interaction (MLCI).[36]

The approach we are using is based on the Con�guration Interaction using a Pertur-
bative Selection (CIPSI) developed by Huron, Rancurel and Malrieu,[11] that iteratively
selects external determinants |α〉 (determinants which are not present in the wave
function |Ψ〉) using a perturbative criterion

eα =
〈Ψ|Ĥ|α〉2

Evar − 〈α|Ĥ|α〉
(2.43)

with |α〉 the external determinant being considered, and eα the estimated gain in cor-
relation energy that would be brought by the inclusion of |α〉 in the wave function.
EPT2 is an estimation of the total missing correlation energy:

EPT2 = ∑
α

eα (2.44)

EFCI ≈ Evar + EPT2 (2.45)

There is however a computational downside. In a priori selected methods, the rule
by which determinants are selected is known a priori, and therefore, one can map a
particular determinant to some row or column index.[37] As a consequence, it can be
systematically determined to which matrix element of Ĥ a two-electron integral con-
tributes. This allows for the implementation of so-called integral-driven methods, that
work essentially by iterating over integrals. On the contrary, in selected methods an
explicit list has to be maintained, and there is no immediate way to know whether a de-
terminant has been selected, or what its index is. Consequently, so-called determinant-
driven approaches will be used, in which iteration is done over determinants rather
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than integrals. This can be a lot more expensive, since the number of determinants
is typically much larger than the number of integrals. The number of determinants
scales as O(Norb!) while the number of integrals scales as O

(
Norb

4
)

with the num-
ber of MOs. Furthermore, determinant-driven methods require an e�ective way to
compare determinants in order to extract the corresponding excitation operators, and
a way to rapidly fetch the associated integrals involved, as described in section 2.3.

Because of this high computational cost, approximations have been proposed.[14]
And recently, theHeat-Bath Con�guration Interaction (HCI) algorithm has taken farther
the idea of a more approximate but extremely cheap selection.[38, 39] Compared to
CIPSI, the selection criterion is simpli�ed to

eHCI
α = max

(∣∣cI 〈DI |Ĥ|α〉
∣∣) (2.46)

This algorithmically allows for an extremely fast selection of doubly excited determi-
nants by an integral-driven approach.

Full Con�guration Interaction Quantum Monte Carlo (FCI-QMC) is an alternate
approach to selection recently proposed in 2009 by Alavi et al.,[10, 40, 41] where signed
walkers spawn from one determinant to connected ones, with a probability that is a
function of the associated matrix element. The average proportion of walkers on a
determinant converges to its coe�cient in the FCI wave function.

A more “bruteforce” approach at stochastic selection is Monte-Carlo CI (MCCI),[42,
43] where determinants are randomly added to the variational wave function. After
diagonalization, the determinants of smaller coe�cient are removed, and new random
determinants are added.
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Chapter 3

Determinant-driven computation of
the matrix elements

Contents
3.1 Storage of the two-electron integrals . . . . . . . . . . . . . . . 22
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Generally speaking, implementing a wave function method requires iterations over
either two-electron integrals, or determinants. Those approaches are referred to as
integral-driven and determinant-driven. Because the number of determinants grows
much faster than the number of double excitations, an e�cient implementation would
likely favor an integral driven approach. However, in most cases, the determinant-
driven approach is more intuitive, as it stays closer to the basic CI equations. The
�antum Package is intended for developers, and thus prioritizes the approach that
is easier for designing new methods.

For performance, it is vital that some basic operations are done e�ciently. Notably,
the computation of matrix elements of the Hamiltonian. This raises some questions
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about the data structures used to represent the two-electron integrals and determi-
nants, as well as their consequences from an algorithmic point of view.

This chapter is going to address these questions, by going through the basic con-
cepts of our approach to determinant-driven computation.

3.1 Storage of the two-electron integrals
In all the algorithms presented, all the needed two-electron integrals are kept in mem-
ory and require a fast random access. A hash table is the natural choice which allows
the storage of only non-zero values with a retrieval of data in nearly constant time,[44]
but standard hashing algorithms tend to shu�e the data to limit the probability of col-
lisions. Here, we favor instead the locality of the data over the probability of collision
using the hash function given in Algorithm 1. It returns the same value for all the keys
which are related by the permutation symmetry of the indices, keeps some locality in
the storage of the data, and can be evaluated in the order of 10 CPU cycles if the integer
division by two is replaced by a right bit shift instruction.

1 Function HASH(i, j, k, l): /* Hash function for two-electron
integrals. */

Data: i, j, k, l are the orbital indices
Result: The corresponding hash

2 p← min(i, k) ;
3 r ← max(i, k) ;
4 t← p + 1

2r(r− 1) ;
5 q← min(j, l) ;
6 s← max(j, l) ;
7 u← q + 1

2 s(s− 1) ;
8 v← min(t, u) ;
9 w← max(t, u) ;

10 return v + 1
2 w(w− 1) ;

Algorithm 1: Hash function that maps the all the quartets of orbital indices re-
lated by permutation symmetry to a unique integer.

The hash table is such that each bucket can potentially store 215 consecutive key-
value pairs. The 15 least signi�cant bits of the hash value are removed to give the index
of the bucket (ibucket = bhash(i, j, k, l)/215c), and only those 15 bits need to be stored
in the bucket for the storage of the key (hash(i, j, k, l) mod 216). Hence, the storage
of the keys only requires two bytes per key. The keys within a bucket are sorted in
increasing order, enabling a binary search within the bucket. The search of the key is
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Table 3.1: Time to access the integrals (in nanoseconds/integral) with di�erent access patterns. The
time to generate random numbers (measured as 67 ns/integral) was not counted in the random access
results.

Access Array Hash table
i, j, k, l 9.72 125.79
i, j, l, k 9.72 120.64
i, k, j, l 10.29 144.65
l, k, j, i 88.62 125.79
l, k, i, j 88.62 120.64
Random 170.00 370.00

always fast since the binary search is bounded by 15 misses and the maximum size of
the array of keys is 64 kiB, the typical size of the L1 cache.

The e�ciency of the storage as a hash table was measured on a dual socket Intel
Xeon E5-2680 v2 @ 2.80GHz processor, taking the water molecule with the cc-pVQZ
basis set (115 molecular orbitals). The time to access all the integrals was measured
by looping over all integrals using di�erent loop orderings. The results are given in
table 3.1, the reference being the storage as a plain four-dimensional array.

In the array storage, the value of 170 ns/integral in the random access case is typical
of the latency to fetch a value in the RAM modules when the data is not in any level
of cache. When the data is accessed with a stride of one (the i, j, l, k storage) the cache
levels accelerate the access by a factor of 18×, down to 9.71 ns/integral, corresponding
mostly to the overhead of the function call, the retrieval of the data being negligible.

With the hash table, the random access is only 2.18× slower than the random ac-
cess in the array. Indeed, two random accesses are required: one for the �rst element
of the bucket of keys one for the corresponding value. The rest of the extra time corre-
sponds to the binary search. The locality of the data can be exploited: when the access
is done with a regular access pattern, the data is fetched ∼ 3× faster than using a
random access.

A CIPSI calculation was run with the array storage and with the hash table storage.
With the hash storage, the total wall clock time was increased only by a factor of two.

So to accelerate the access to the most frequently used integrals, all the integrals
involving the 128 MOs closest to the Fermi level are copied in a dense array of 1284

elements (2 GiB).
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3.2 Internal representation of determinants
Determinants can be written as a string of creation operators applied to the vacuum
state |〉.

a†
i a†

j a†
k |〉 = |I〉 (3.1)

Because of the fermionic nature of electrons, a permutation of two contiguous creation
operators results in a sign change, which makes their ordering relevant.

a†
j a†

i = −a†
i a†

j (3.2)

a†
j a†

i a†
k |〉 = − |I〉 (3.3)

This e�ectively allows to make any Nperm permutations and always get −1Nperm |I〉 .
A determinant can be broken down into two pieces of information:

• A set of creation operators, corresponding to the set of occupied spinorbitals in
the determinant.

• An ordering of the creation operators, responsible for the sign of the determi-
nant. Once an ordering operator Ô is chosen and applied to all the determinants,
it is su�cient to store the sign change that occurs when applying this operator to
the string of creation operators. This sign will be referred to as the phase factor.

Determinants are always associated with a coe�cient. So if the determinants are al-
ways built after applying them the same ordering operator, we don’t need to make the
phase factor part of the determinant’s internal representation. The sign may simply
be reported on the associated coe�cient.

All the determinants will be built using the order where all the ↑ spinorbitals are
placed before the ↓ spinorbitals, as in the Waller-Hartree determinant representation:

Ô |I〉 = Î|〉 = Î↑ Î↓|〉 (3.4)

and within each operator Î↑ and Î↓, the creation operators are sorted with increas-
ing indices. For instance, consider the determinant built from the set of spinorbitals
{i, j, k, ī} with i < j < k,

|J〉 = a†
j a†

k a†
ī a†

i |〉. (3.5)

If we happen to encounter such a determinant, our choice of representation imposes
us to consider its re-ordered expression

Ô |J〉 = −a†
i a†

j a†
k a†

ī |〉 = − |J〉 (3.6)

and the sign change (or phase factor) will need to be handled.
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The indices of the creation operators (or equivalently the occupations of the spinor-
bitals), are stored using the so-called bitstring encoding. A bitstring is an array of bits ;
typically, the 64-bit binary representation of an integer is a bitstring of size 64. Quite
simply, the idea is to map each spinorbital to a single bit, with a value is set to its occu-
pation number. In other words0 and1 are associated with the unoccupied and occupied
states. By this de�nition, bitstrings encode the indices of the occupied spinorbitals.

For simplicity and performance considerations, the occupations of the ↑ and ↓
spinorbitals are stored on di�erent bitstrings, rather than interleaved or otherwise
merged in the same one. This allows to straightforwardly map orbital index n to bit
index n− 1 (orbitals are usually indexed from 1, while bits are indexed from 0), and
makes a bitstring a set of orbitals. This makes the representation of a determinant a
tuple of two bitstrings, associated with respectively ↑ and ↓ spinorbitals. Such objects
are referred to as ↑↓-bitstrings, and generally de�ne a set of spinorbitals. When used
to de�ne a determinant, they imply the previously de�ned ordering.

• I is the ↑↓-bitstring representation of |I〉

• I↑ is the bitstring representation of the set of occupied ↑ spinorbitals of |I〉

• I↓ is the bitstring representation of the set of occupied ↓ spinorbitals of |I〉

The storage space required for a single determinant is, in principle, one bit per
spinorbital, or 2×Norb bits. However, because CPUs are designed to handle e�ciently
64-bit integers, each spin part is stored as an array of 64-bit integers, the unused space
being padded with zeros. The actual storage needed for a determinant is 2× 64×Nint
bits, where Nint is the number of 64-bits integers needed to store one spin part:

Nint =

⌊
Norb − 1

64

⌋
+ 1. (3.7)

The Fortran representation of a bitstring is an array of Nint integer*8 (64-bit
integers). The Fortran representation of an ↑↓-bitstring is a two dimensional array of
integer*8, the �rst dimension of size Nint and the second of size 2, corresponding
to the ↑ and ↓ spin parts.

! I is an updown-bitstring
! I_up and I_down are bitstrings

integer*8 :: I(N_int, 2)
integer*8 :: I_up(N_int), I_down(N_int)

... ! load some determinant in I
I_up (:) = I(:,1)
I_down (:) = I(:,2)
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In formulas or algorithms, depending on the level of detail desired, a bitstring or
↑↓-bitstring may also be treated as a single mathematical integer (in Z), avoiding the
cumbersome separation into 64-bit packs. However, in algorithms we will usually try
to stay closer to the actual implementation. I being the ↑↓-bitstring associated with
|I〉, we can explicitly refer to a single element of the 64-bit integer array as

Iσ[i] ; σ ∈ {↑, ↓} ; 0 ≤ i < Nint (3.8)

which is the bitstring representation of the σ spinorbitals of determinant |I〉 in the
range [1 + i× 64, min ((i + 1)× 64, Norb)], indexed from 0 to 63.

3.3 Bit manipulation
The bitstring encoding is a compact way of storing determinants, but it is more than
just a data structure. It allows to perform a variety of operations on determinants by
taking advantage of CPU’s hardware aptitude to perform e�ciently bitwise operations
on integers.

In many of the presented algorithms, some Fortran intrinsics will be of use. Each
of those maps to a CPU instruction that is available on modern CPUs.

• POPCNT(I) : Returns the number of non-zero bits for a given integer I.
POPCNT(000110002) = 2.

• TRAILZ(I) : Returns the number of trailing zero bits for a given integer I.
TRAILZ(000001002) = 2.

• IBCLR(I, n) : Returns the value of I with the bit at the n-th position set to zero
(the rightmost bit is at position zero).
IBCLR(000011112, 2) = 000010112.

• IOR(I, J) : Bitwise OR logical operation.
IOR(11002, 10102) = 11102.

• IEOR(I, J) : Bitwise XOR (exclusive or) logical operation.
IEOR(11002, 10102) = 01102.

• IAND(I, J) : Bitwise AND logical operation.
IAND(11002, 10102) = 10002.

• NOT(I) : Bitwise NOT logical operation.
NOT(000011002) = 111100112.
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• ISHFT(I, n) : Returns I with bits shifted |n| places to the left if n > 0, other-
wise to the right. Bits shifted out of the range are lost. Zeros are shifted from
the opposite end.
ISHFT(010011102, 2) = 001110002,
ISHFT(010011102,−2) = 000100112.

• BTEST(I, n) : Returns TRUE if the n-th bit of I is set, otherwise FALSE.
BTEST(000010002, 3) = TRUE.

Those intrinsics apply to integers with at most 64-bits. This however is a purely
implementational limitation, so depending on the level of detail desired, this constraint
can be unambiguously lifted in formulas or algorithms. Di�erent notations will be
used for the 64-bit and the Z cases, as they are not always equivalent. For example,
the ISHFT(_, _) Fortran intrinsic always returns zero for shifts larger than 64 bits,
which is not the case for the shift_left(_, _) function over mathematical integers. All
binary operators are of same precedence and left-associative.

64-bit variant mathematical variant
ISHFT(I, n) shift_left(I, n)
TRAILZ(I) trailing_zeros(I)
IBCLR(I, n) bit_clear(I, n)
BTEST(I, n) bit_test(I, n)
NOT(I) ¬I
IAND(I, J) I ∧ J
IOR(I, J) I ∨ J
IEOR(I, J) I ⊕ J
POPCNT(I) ‖I‖

Some examples of how these instructions can be used are given below. They are
key to understand how we can determine the holes and particles involved in the T̂I→J
excitation operator de�ned by

|J〉 = T̂I→J |I〉 . (3.9)

Let I and J be the bitstring representations of |I〉 and |J〉, and P a bitstring with Nint =
1.

• I↑ : bitstring representation of the set of ↑ spinorbitals of |I〉
•
∥∥I↑
∥∥ : number of spinorbitals in I↑ (equal to the number of ↑ electrons).

• I↑ ⊕ J↑ : bitstring representation of the set of ↑ spinorbitals that are present in
either I↑ or J↑, but not in both (exclusive disjunction). This operator identi�es
all the ↑ spinorbitals involved in the excitation from |I〉 to |J〉.
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• I↑∧
(

I↑ ⊕ J↑
)

: bitstring representation of the set of ↑ spinorbitals of |I〉 involved
in the excitation from |I〉 to |J〉. This corresponds to the indices of the holes in
the excitation T̂I→J or to the particles in T̂J→I .

•
∥∥I↑ ⊕ J↑

∥∥/2 : because the excitation of an electron involves 2 spinorbitals (one
hole and one particle), this is the ↑ excitation degree between |I〉 and |J〉.

• TRAILZ(P) + 1 : the index of the lowest orbital in P if P 6= 0. If P = 0, this
function returns 65.

• IBCLR(P,TRAILZ(P)) : P without its orbital of lowest index.

3.4 Identi�cation of holes and particles
An algorithm used to compute the excitation degree is presented as algorithm 2, and
one to compute the sets of created holes and particles as algorithm 3. Algorithm 3,
however, returns the sets as bitstrings. Extracting the indices from a bitstring is another
basic operation, presented as algorithm 4. Because computing excitations is a hotspot
of the program, and because we are typically interested in double excitations at most,
a more specialized algorithm can be used.[45]

1 Function EXC_DEGREE(I, J):
Data: I, J: bitstring representations of determinants |I〉 and |J〉.
Result: Returns the excitation degree between |I〉 and |J〉, namely

1
2‖I ⊕ J‖

2 X ← 0 ;
3 for σ ∈ {↑, ↓} do
4 for i← 0, Nint − 1 do
5 X ← X + POPCNT(IEOR(Iσ[i], Jσ[i])) ;
6 end
7 end
8 return X/2;
Algorithm 2: Returns the degree of excitation between two determinants.
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1 Function EXC(I,J):
Data: I, J: the bitstring representations of determinants |I〉 and

|J〉 = T̂I→J |I〉
Result: Returns a tuple (P, H), where P and H are respectively the sets of

particles and holes created by T̂I→J , as ↑↓-bitstrings.
2 for σ ∈ {↑, ↓} do
3 for i← 0, Nint − 1 do
4 C ← IEOR(Iσ[i], Jσ[i],);
5 Pσ[i]← IAND(C, Jσ[i],);
6 Hσ[i]← IAND(C, Iσ[i],);
7 end
8 end
9 return (P, H);
Algorithm 3: Returns the holes and particles created in an excitation as bit-
strings.

1 Function LIST_FROM_BITSTRING(P):
Data: P a bitstring. On output, P is destroyed.
Result: L the list of orbital indices in P in increasing order.

2 k← 0 ;
3 for i← 0, Nint − 1 do
4 while P[i] 6= 0 do
5 e← TRAILZ(P[i]) + 1;
6 P[i]← IBCLR(P[i], e);
7 L[k]← e + i× 64;
8 k← k + 1;
9 end

10 /* L contains k elements */
11 return L
12 end

Algorithm 4: Transforms a bitstring into a list of orbital indices.

3.5 Phase factors
The computation of phase factors is slightly more complex. The following explanation
is limited to one spin part. More detail will be given later about why spin parts can be
treated independently. As we have seen in section 3.2, the ↑↓-bitstring representation
of determinants implies an ordering of creation operators : �rst all the ↑ operators,
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then all the ↓, both with increasing orbital indices.
Whenever we build a new determinant by applying an excitation operator, we ob-

tain a determinant that is initially expressed not just with a di�erent ordering, but with
a mix of creation and annihilation operators.

First of all, we have to make this initial expression unambiguous by precisely de�n-
ing excitation operators. We have de�ned an implicit ordering for the expression of
determinants, we also need an implicit ordering for the expression of excitation oper-
ators. Like for determinants, we pack together ↑ and ↓ operators.

T̂ = T̂↑T̂↓. (3.10)

Within T̂↑ and T̂↓, the creation and annihilation operators are separately sorted with
increasing indices, then interleaved starting with a creation. In other words, T̂↑ and
T̂↓ are written as products of single excitations, lowest particle with lowest hole, then
second lowest particle with second lowest hole, etc, and we arbitrarily chose to put
creation before annihilation operators. For example, the double excitation T̂cd

ab with
a < b < c < d is expressed as

T̂cd
ab = a†

c aaa†
dab = T̂c

a T̂d
b . (3.11)

We can now express T̂ as a series of operators. In most cases, permuting contiguous
operators will still just result in a sign change.

ajai = −aiaj (3.12)

a†
j ai =

{
−aia†

j i 6= j
1− aia†

i i = j.
(3.13)

A particular case is the permutation of a creation and an annihilation operator with
the same index. Indeed, if spinorbital l is unoccupied in |I〉,

ala†
l |I〉 = |I〉 (3.14)

a†
l al |I〉 = 0. (3.15)

In the �rst case, a particle is created then annihilated, resulting in the same determi-
nant. In the second case, there is an attempt at annihilating a particle that does not
exist, resulting in 0. It is of course the opposite if l is occupied in |I〉. These formulas
will be used to remove annihilation operators from the expression of a determinant.

Let |I〉 and |K〉 be two determinants with spinorbitals ordered as in the ↑↓-bitstring
representation:

|I〉 = a†
i a†

j a†
k |〉 (3.16)

|K〉 = a†
i a†

k a†
l |〉 (3.17)
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with i < j < k < l. When one applies the excitation operator T̂l
j to |I〉,

T̂l
j |I〉 = a†

l aja†
i a†

j a†
k |〉. (3.18)

To build the corresponding ↑↓-bitstring, one needs to reorder the operators by per-
muting contiguous operators. It takes n = 1 permutation to bring aj behind a†

j :

T̂l
j |I〉 = −a†

l a†
i aja†

j a†
k |〉. (3.19)

Using equation 3.14,
T̂l

j |I〉 = −a†
l a†

i a†
k |〉. (3.20)

Then, it takes again n permutations to bring a†
l to the position formerly occupied by

a†
j , and x = 1 more permutation to bring it at its �nal position.

T̂l
j |I〉 = −a†

i a†
k a†

l |〉 = − |J〉 . (3.21)

The total number of permutations needed is Nperm = 2n + x. The parity of Nperm
is the parity of x. As can be seen, x is the number of spinorbitals with indices in the
]j, l[ range in |I〉 (regardless of whether l > j or l < j). In our case, there was one
occupied spinorbital k, so Nperm is odd and we ended with a negative phase factor,
−1Nperm = −1.

Figure 3.1: Computation of the phase factor.

3.5.1 Treating spin parts separately
It is not immediately obvious that ↑ and ↓ spin parts can be treated independently. It is
possible because our ordering packs together operators of same spin in the expression
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of both determinants (Eq. (3.4)) and excitations (Eq. (3.10)), and also because we never
consider excitations where the spin is changed (spin-�ips).

T̂ |I〉 = T̂↑T̂↓ Î↑ Î↓|〉 (3.22)
=
(
T̂↑ Î↑

)(
T̂↓ Î↓

)
|〉 = Ĵ↑ Ĵ↓|〉 = ± |J〉 . (3.23)

The number of creation and annihilation operators in an excitation operator is
always even. Hence, going from Eq. (3.22) to Eq. (3.23) by permuting T̂↓ with Î↑ always
requires an even number of permutations, keeping the phase factor unchanged. So the
phase factors can be easily computed by reordering separately T̂↑ Î↑ and T̂↓ Î↓.

3.5.2 Single excitations

For a given determinant |I〉 and a singly excited determinant |J〉 = ÔT̂ j′

i′ |I〉 where
both use the ordering of spinorbitals de�ned previously, the phase factor can be deter-
mined by the parity of

N I
ij =

j−1

∑
k=i+1

occ(k, I) (3.24)

where i = min(i′, j′), j = max(i′, j′) and

occ(k, I) = δ
(

a†
k ak |I〉 − |I〉

)
=

{
1 if a†

k ak |I〉 = |I〉
0 otherwise

(3.25)

is the occupation number of spinorbital k in determinant |I〉.1 We will use the fact that
the parity of an integer X can be obtained by extracting the least signi�cant bit of its
binary representation:

p(X) = X ∧ 1 =

{
1 if X is odd
0 if X is even.

. (3.26)

A bitstring Rij, containing all orbitals in a given range ]i, j > i[ can be built as

Rij = shift_left(¬0, i)⊕ shift_left(¬0, j− 1) (3.27)

where ¬0 denotes the bitstring where all the bits are set to one.
1Note that occupation numbers in |I〉 and |J〉 are by construction equal for any spinorbital k 6= i 6= j,

so while we will use |I〉 in the following, we could as well use |J〉.
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Let I be the bitstring representation of |I〉, the number of σ-spinorbitals in |I〉 in
the given orbital range can be evaluated as

N I
ij =

∥∥Iσ ∧ Rij
∥∥. (3.28)

So the phase factor to be applied when going from |I〉 to |J〉 is

Φ(|I〉 → |J〉) = −1p(N I
ij). (3.29)

Using the above formulas and taking into account the internal representation of ↑↓-
bitstring as arrays of Nint integer*8, we get algorithm 5.

1 Function PHASE_SINGLE(Iσ, a, b):
Data: Iσ the bitstring representation of σ ∈ {↑, ↓} spinorbitals of |I〉
Data: a, b indices of a hole and a particle created in σ spinorbitals of |I〉
Result: The phase factor associated with ÔT̂b

a |I〉
2 high← max(a, b)− 1 ;
3 low← min(a, b)− 1 ;
4 il ← low

64 ;
5 ih← high

64 ;
6 l ← low mod 64 ;
7 h← high mod 64 ;
8 for i← il, ih− 1 do
9 mask[i] = NOT(0);

10 end
11 mask[ih]← ISHFT(NOT(0), h + 1) ;
12 mask[il]← IEOR(mask[il],ISHFT(NOT(0), l)) ;
13 Nperm ← 0 ;
14 for i← il, ih do
15 Nperm ← Nperm + POPCNT(IAND(Ii,mask[i])) ;
16 end
17 phase[0 : 1] = [1.0 ; −1.0] ;
18 return phase[IAND(Nperm, 1)] ;

Algorithm 5: Returns the phase factor of ÔT̂b
a |I〉.

3.5.3 Phase masks
Algorithm 5 is a general one, e�cient for computing the phase factor for arbitrary
determinants. However, a phase computation is typically needed every time two de-
terminants are compared, resulting in a vast amount of computational power being
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consumed. When only this method was used in the �antum Package , it was not
uncommon to �nd that a large fraction of the computational time was spent in phase
computations. Advantage can be taken of the fact that, in most cases, the consid-
ered determinants aren’t actually arbitrary. Usually, the phase computation will be
performed repeatedly with the same determinant. For a fairly modest computational
price, it is possible to compress the phase information from a particular determinant
and make it cheaper to extract. The underlying principle is little more than a cumu-
lative sum. If, for a determinant |I〉 that is going to be used repeatedly for phase
computations, we pre-compute

EI
i =

i

∑
k=1

occ(k, I) (3.30)

we can access N I
ij for any i and j > i with no need to loop over k as

N I
ij = EI

j−1 − EI
i . (3.31)

This requires to store EI which is an integer array of size 2× (Norb + 1). This
may be somewhat memory consuming if we want to pre-compute and store E for each
determinant. However, because the actual information needed isn’t N I

ij, but merely its
parity, we only need to store the so-called “phase mask” array PI

PI
i = p(EI

i ) (3.32)

which is 1 bit of information per spinorbital, as opposed to an integer big enough to
accommodate a number of electrons.

EI
i = 2×

⌊EI
i

2

⌋
+ PI

i (3.33)

N I
ij = EI

j−1 − EI
i (3.34)

= 2×
(⌊EI

j−1

2

⌋
−
⌊EI

i
2

⌋)
+ PI

j−1 − PI
i (3.35)

In the last equation, N I
ij is expressed as a sum of three terms. The �rst one being

even by construction, the parity of N I
ij is the parity of the rest of the sum:

p(N I
ij) = p(PI

j−1 − PI
i ) (3.36)

This can be rewritten in a slightly more e�cient way as

p(N I
ij) = PI

j−1 ⊕ PI
i (3.37)
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We have used sorted indices i < j. In practice, we know which index refers to the
particle and which refers to the hole. With an excitation operator T̂p

h applied to |I〉,
noticing that

• if p > h we have

p(N I
hp) = PI

p−1 ⊕ PI
h (3.38)

= PI
p ⊕ PI

h ⊕ occ(p, I) (3.39)
= PI

p ⊕ PI
h (3.40)

• if h > p we have

p(N I
ph) = PI

h−1 ⊕ PI
p (3.41)

= PI
h ⊕ PI

p ⊕ occ(h, I) (3.42)
= PI

h ⊕ PI
p ⊕ 1 (3.43)

the phase factor can be computed as

Φ
(
|I〉 → ÔT̂p

h |I〉
)
=

{
(−1)PI

h⊕PI
p if p > h

−(−1)PI
h⊕PI

p if h > p
(3.44)

Currently, the �antum Package does not store a phase mask for each determi-
nant of the wave function, but recomputes it whenever needed before a loop. The
algorithm for computing PI as a bitstring is shown as algorithm 6. It uses a trick to
get the phase mask of a single integer with logarithmic complexity (loop at line 6 of
the algorithm). With P0 a single-integer bitstring for which we want to compute the
phase mask, bits being indexed from 0:

1. P1 ← P0 ⊕ shift_left(P0, 20).

P1
i =

{
p(P0

i ) if i < 1
p(P0

i−1 + P0
i ) if i ≥ 1

(3.45)

P1
i = p




i

∑
j=max(i−1,0)

P0
j


 (3.46)
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1 Function PHASEMASK(I):
Data: I the bitstring representation of |I〉
Result: P is the phase mask associated with |I〉, as described in Eq. (3.32),

as a bitstring.
2 for σ ∈ {↑, ↓} do
3 r ← 0 ;
4 for i← 0, Nint − 1 do
5 Pσ[i]← IEOR(Iσ[i], ISHFT(Iσ[i], 1) ;
6 for d← 0, 5 do
7 Pσ[i]← IEOR(Pσ[i], ISHFT(Pσ[i], 2d) ;
8 end
9 Pσ[i]← IEOR(Pσ[i], r) ;

10 if IAND(POPCNT(Iσ[i]), 1) == 1 then
11 r ← NOT(r) ;
12 end
13 end
14 end
15 return P ;

Algorithm 6: Returns a phase mask as a bitstring.

2. P2 ← P1 ⊕ shift_left(P1, 21).

P2
i =

{
p(P1

i ) if i < 2
p(P1

i + P1
i−2) if i ≥ 2

(3.47)

P2
i = p




i

∑
j=max(i−3,0)

P0
j


 (3.48)

3. P3 ← P2 ⊕ shift_left(P2, 22).

P3
i =

{
p(P2

i ) if i < 4
p(P2

i + P2
i−4) if i ≥ 4

(3.49)

P3
i = p




i

∑
j=max(i−7,0)

P0
j


 (3.50)

4. etc...
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1 Function PHASE_PHASEMASK(PI , i, j):
Data: PI is the phase mask array associated with |I〉, as described in

Eq. (3.32). i and j are spinorbitals of spin σ ∈ {↑, ↓} so that
T̂ j

i |I〉 6= 0.
Result: The phase factor associated with ÔT̂ j

i |I〉.
2 if j < i then
3 c← 0 ;
4 else
5 c← 1 ;
6 end
7 in ← (i− 1)/64 ;
8 jn ← (j− 1)/64 ;
9 ib ← (i− 1) mod 64 ;

10 jb ← (j− 1) mod 64 ;
11 B← ISHFT(PI

σ[in],−ib)⊕ ISHFT(PI
σ[jn],−jb) ;

12 if B ∧ 1 = c then
13 return −1;
14 else
15 return 1 ;
16 end
Algorithm 7: Returns a phase factor associated with a single excitation using a
phase mask. This routine may be optimized by replacing the integer divisions by
bit shifts and the modulo by an AND instruction.
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Figure 3.2: Illustrative exemple of phase mask use. h and p are the hole and particle involved in the
excitation. ES

i is the number of electrons in spinorbitals i and below (of same spin), PS
i is its parity.

Because h > p, ES
h−1 − ES

p gives the number of electrons that are “crossed” during the excitation. The
phase factor is computed according to Eq.3.44

For a 64-bit integer we have to go to

P6
i<64 = p

(
i

∑
j=0

P0
j

)
(3.51)

which is the de�nition of a phase mask (here indexed from 0).
The method to compute the phase factor associated with a single excitation from a

phase mask is shown as algorithm 7. With this method, the cost of computing a phase
factor — after paying the overhead of computing P — is accessing two bits and applying
the IEOR function to them, in addition to the tests. Unlike the general method, its cost
doesn’t depend on Nint, and doesn’t require to deal with the cumbersome boundaries
of 64-bit integers.

3.5.4 Double excitations
A double excitation can be expressed as a product of two single excitations. In the case
of an ↑↓ double excitation, the two single excitations are independent, so the phase
factor is merely the product of the phase factors computed for each spin part.

Φ
(
|I〉 → ÔT̂rs̄

pq̄ |I〉
)
= Φ

(
|I〉 → ÔT̂r

p |I〉
)
×Φ

(
|I〉 → ÔT̂ s̄

q̄ |I〉
)

(3.52)
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There is a slight complication for ↑↑ or ↓↓ excitations. The ordering we de�ned
for excitation operators is of importance. In order to write a double excitation as a
product of two single excitations, it must be ensured that the ordering matches the
one we de�ned : lowest particle with lowest hole, highest particle with highest hole.

As far as phase computation goes, it is irrelevant which index of an excitation
operator is a creation and which is an annihilation. So, for convenience, we can de�ne

T̃ab = T̂b
a + T̂a

b (3.53)

since at most one of T̂b
a or T̂a

b can be applied to a determinant.
Considering a double excitation T̃2 involving 4 spinorbitals p, q, r, s of same spin,

there are two possible situations, shown in �gure 3.3.

• It can be expressed as two single excitations that do not cross, i.e.

T̃2 = T̃prT̃qs ; p < r < q < s (3.54)

In this case, the numbers of particles in the ranges ]p, r[ and ]q, s[ remain un-
changed, so we can write

Φ
(
|I〉 → ÔT̃2 |I〉

)
= Φ

(
|I〉 → ÔT̃pr |I〉

)
×Φ

(
|I〉 → ÔT̃qs |I〉

)
(3.55)

• It can be expressed as two single excitations that cross, i.e.

T̃2 = T̃prT̃qs ; p < q < r < s (3.56)

As we can see in �gure 3.3, applying T̃qs results in a particle being created or
annihilated in the range ]p, r[, resulting in a change of parity for the number of
particles in that range. Therefore,

Φ
(
ÔT̃qs |I〉 → ÔT̃prT̃qs |I〉

)
= −Φ

(
|I〉 → ÔT̃pr |I〉

)
(3.57)

Φ
(
|I〉 → ÔT̃2 |I〉

)
= −Φ

(
|I〉 → ÔT̃pr |I〉

)
×Φ

(
|I〉 → ÔT̃qs |I〉

)
(3.58)

In practice, because LIST_FROM_BITSTRING returns indices with increasing or-
der, if we determine an excitation operator T̂rs

pq so that T̂rs
pq |I〉 = ± |J〉, we know p < q

and r < s. So for a ↑↑ or ↓↓ double excitation, we compute the phase factor from PI

the phase mask associated with I, as

Φ
(
|I〉 → ÔT̂rs

pq |I〉
)
=

{
κ if ¬(max(p, r) > min(q, s))
−κ if (max(p, r) > min(q, s))

(3.59)

with

κ = PHASE_PHASEMASK(PI , p, r)× PHASE_PHASEMASK(PI , q, s) (3.60)
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Figure 3.3: Crossing of two single excitations. The third situation doesn’t �t the ordering we imposed
on excitation operators. p↔ s is either lowest electron to highest orbital, or highest electron to lowest
orbital.

3.6 Summary
Taking advantage of low-level hardware instructions, we are able, for a minimal cost,
to �nd T̂ so that T̂ |I〉 = |J〉, which yields the i, j, k, l indices of the associated two-
electron integral(s). Then, fetching its value can be done quickly using the proposed
hash table. Because of the data structure we are using to store determinants, we also
need to compute a phase factor, which can be done e�ciently using the introduced
phase masks.

Thanks to the algorithms presented in this chapter, we are able to e�ciently com-
pute the matrix elements of Ĥ, which are the basic ingredients of determinant-driven
methods. The instructions and functions we have de�ned here will be used in the
following chapters for many di�erent purposes.
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Chapter 4

Diagonalization with Davidson’s
algorithm
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Finding eigenvectors associated with the lowest eigenvalues of the Hamiltonian is a
necessary step in con�guration interaction. Standard diagonalization algorithms scale
as O

(
Ndet

3) in terms of computation, and O
(

Ndet
2) in terms of storage, so the cost

of the full diagonalization is prohibitive as Ndet ranges usually between a few million
and a few billion.

Fortunately, not all the spectrum of Ĥ is required: only the few lowest eigenstates
are of interest. The Davidson algorithm[30, 46, 47, 48, 49] is an iterative algorithm
which aims at extracting the �rst few Nstates lowest eigenstates of a large matrix. This
algorithm reduces the cost of the computation to O

(
NstatesNdet

2), and of the storage
to O(NstatesNdet). It is presented as algorithm 8.
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1 Function DAVIDSON_DIAG(Nstates, U):
Data: Nstates : Number of requested states
Data: Ndet : Number of determinants
Data: U : Guess vectors, Ndet × Nstates
Result: Nstates lowest eigenvalues eigenvectors of H

2 converged← FALSE ;
3 while ¬converged do
4 Gram-Schmidt orthonormalization of U ;
5 W← H U ;
6 h← U† W ;
7 Diagonalize h : eigenvalues E and eigenvectors y ;
8 U′ ← U y ;
9 W′ ← W y ;

10 for k← 1, Nstates do
11 for i← 1, Ndet do
12 Rik ← EkU′ik−W′ik

Hii−Ek
;

13 end
14 end
15 converged← ‖R‖ < ε ;
16 U← [U, R] ;
17 end
18 return U;

Algorithm 8: Davidson’s diagonalization algorithm

42



4.1 The computational bottleneck
Algorithmically, the expensive part of the Davidson diagonalization is the computa-
tion of the matrix product H U. Determinants are connected by H only if they di�er
by no more than two spinorbitals. Therefore, the number of non-zero elements per
line of H is equal to the number of single and double excitation operators, namely

O
(

N↑elec
2 × (Norb − N↑elec)

2
)

. As H is symmetric, the number of non-zero elements
per column is identical. This makes the H matrix very sparse, but for large basis sets
the whole H matrix may still not �t in the memory of a single node, as the number

of non-zero entries to store is O
(

Ndet × N↑elec
2 × (Norb − N↑elec)

2
)

. One possibility
would be to distribute the storage of Hamiltonian among multiple compute nodes, and
use a distributed library such as PBLAS[50] to perform the matrix-vector operations.
Another approach is to use a so-called direct algorithm, where the matrix elements are
computed on the �y, and this is the approach chosen in the �antum Package .

This e�ectively means iterating over all pairs of determinants |DI〉 an
∣∣DJ
〉
, check-

ing whether |DI〉 and
∣∣DJ
〉

are connected by H and if they are, accessing the corre-
sponding integral(s) and computing the phase factor. Even though we presented in
section 3.4 a very e�cient method to compute the excitation degree between two de-
terminants, the number of such computations to be made scales as Ndet

2, which can
still be prohibitively high. To get an e�cient determinant-driven implementation it
is mandatory to �lter out all pairs of determinants that are not connected by H, and
iterate only over connected pairs. To reach this goal, we have implemented an algo-
rithm similar to the Direct Selected Con�guration Interaction Using Strings (DISCIUS)
algorithm.[13]

The �nality is to build the matrix W as

WIk = ∑
J

HI J UJk. (4.1)

The diagonal of H is precomputed and stored in a one-dimensional array, as it is used
both for the calculation of W and the residual R. W is initialized with WIk = HI I UIk,
and each time a connected pair of determinants (I, J 6= I) is found, the I-th component
of all states k stored in W is updated accordingly. To make this step e�cient memory-
wise, U and W are stored transposed, such that the state indices k are contiguous in
memory.

We present our algorithm for iterating over only o�-diagonal non-zero elements
of H — in other words, pairs of connected determinants — as algorithms 9 and 10.

We de�ne N↑det and N↓det as the number of di�erent ↑ and ↓ spin parts present in
the expression of the wave function. Computing the contributions the same-spin single
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Data: N↑det the number of unique ↑ spin parts present in |Ψ〉
Data: D is the array of determinants present in |Ψ〉, sorted by ↑-major order

(all determinants sharing the same ↑ part are next to each other)
Data: A the array so that A[n] is the index of the �rst occurence of the nth

unique ↑ spin part in D. For algorithmic convenience we set
A[N↑det + 1] = Ndet + 1

1 for a← 1, N↑det do
2 /* All determinants sharing D[A(a)]↑ ↑-spin part are in the

range [A(a), A(a + 1)− 1] */
3 for b1← A(a), A(a + 1)− 1 do
4 for b2← b1 + 1, A(a + 1)− 1 do
5 if EXC_DEGREE(D[b1]↓, D[b2]↓) ≤ 2 then
6 |D[b1]〉 connected to |D[b2]〉 by single or double ↓ excitation.
7 end
8 end
9 end

10 end
11 /* Single and double ↑ excitations are found by the same

algorithm after flipping spins */

Algorithm 9: Find internal determinants connected by purely ↑ or purely ↓ sin-
gle or double excitations
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Data: see algorithm 9
1 for a1← 1, N↑det do
2 for a2← a1 + 1, N↑det do
3 if EXC_DEGREE(D[A(a1)]↑, D[A(a2)]↑) 6= 1 then
4 cycle a2 loop;
5 end
6 for b1← A(a1), A(a1 + 1)− 1 do
7 for b2← A(a2), A(a2 + 1)− 1 do
8 if EXC_DEGREE(D[b1]↓, D[b2]↓) = 1 then
9 |D[b1]〉 connected to |D[b2]〉 by ↑↓ excitation.

10 end
11 end
12 end
13 end
14 end
Algorithm 10: Find internal determinants connected by ↑↓ double excitations
(sequential, using the symmetry of H).

and double excitations (algorithm 9) scales as O
(

N↑det
2
)

, which is equal to O(Ndet).

Indeed, when the FCI is reached Ndet = N↑det × N↓det.
The ↑↓ double excitations are the most expensive (algorithm 10) as they scale

as O
(

N↑detN
↓
det

2
)

= O
(

N↑det
3
)

. Indeed, the cycle instruction at line 4 makes

the iterations over b1 and b2 do the computation only a number of times bounded by
the number of possible single excitations (N↑elec×

(
Norb − N↑elec

)
). So at the FCI level,

this step scales as O
(

Ndet
3/2
)

.
One can remark that during the computation of the contributions of the single

excitations, one can store the lists of all singly-excited determinants for all ↑ and ↓
spin parts. These lists can be reused in the computation of the contributions of the
↑↓ double excitations, so as to loop only over the single excitations on D↑, and on the
single excitations on D↓. As the lengths of the lists of single excitations are bounded
by N↑elec ×

(
Norb − N↑elec

)
, the algorithm then scales linearly with Ndet. However, in

practice the CIPSI selection produces wave functions where N↑det and N↓det are much
larger that Ndet

1/2, and the storage of the single excitations can become a memory
bottleneck that we want to avoid at the cost of more computation.
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4.2 Sorting
The presented algorithm requires to sort the determinants by ↑-major order : all de-
terminants sharing the same ↑ spin part next to each other. To perform this sort, we
simply consider the bitstring representation of the determinants as tuples of integers
and sort the list of tuples.

Surprisingly, the sort can be done in O(Ndet) instead of O(Ndet log(Ndet)) with
the radix sort algorithm.[51] The principle of the radix sort is presented in algorithm 11.
The key feature enabling the transition fromO(Ndet) toO(Ndet log(Ndet)) is the fact
that the set of sorted integers is bounded, and one can easily verify that the number
of operations is proportional to 64× Ndet. So sorting the determinants of the wave
function is not a bottleneck, and the �op-optimal algorithm still scales as O(Ndet).

4.3 Parallelization
To minimize the network communication, we separate the calculation in tasks such
that the tasks build disjoint pieces of the result. A task corresponds a range of indices I
in Eq (4.1). Therefore, the communication for the result isO(Ndet), and independent of
the number of compute nodes. However, each task needs the complete U matrix, so its
needs to be broadcast e�ciently on every compute node at the beginning of the calcu-
lation. This broadcast if performed via an MPI library call for optimal performance,[52]
and we use one MPI process per node such that the amount of communication scales
with the number of nodes and not with the number of cores.

When idle, an MPI process requests a task to the server, and computes the corre-
sponding result in parallel with OpenMP.[53] This allows the sharing of the U matrix,
as well as the result array for W, but also of all the large constant data needed for the
calculation, such as the two-electron integrals. The OpenMP parallelization is made
on the outermost loop, so each OpenMP thread loops over a smaller range of I (algo-
rithm 12). The write access to the result is guaranteed to be safe, without requiring a
lock. As the OpenMP tasks are not guaranteed to be balanced, we have used a dynamic
scheduling, with a chunk size of 64 elements. The reason for this chunk size is to force
that multiple threads accumulate their results in memory addresses far apart, avoiding
the so-called false sharing performance degradation that occurs when multiple threads
write simultaneously in the same cache line.[54] When the result is fully computed, it
is sent back to the master process and a new task is requested, until the task queue is
empty.
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1 Function RADIX_SORT(D, N):
Data: D: Array of integers to sort in input, sorted in output
Data: N: Length of the array D

2 RADIX_SORT_rec(D, N, 64) ;
3 Function RADIX_SORT_rec(D, N, i):

Data: D: Array of integers to sort in input, sorted in output
Data: N: Length of the array D
Data: r: index of the inspected bit

4 if r ≥ 0 then
5 Allocate temporary arrays D0(1 : N) and D1(1 : N);
6 l ← 1 ;
7 r ← 1 ;
8 for k← 1, N do
9 if bit_test(D(k), i) then

10 D1[l]← D[k] ;
11 l ← l + 1 ;
12 else
13 D0[r]← D[k] ;
14 r ← r + 1 ;
15 end
16 end
17 RADIX_SORT_rec(D0, r, i− 1) ;
18 RADIX_SORT_rec(D1, l, i− 1) ;
19 for k← 1, l do
20 D(k)← D0(k) ;
21 end
22 r ← 1 ;
23 for k← l + 1, N do
24 D(k)← D1(r) ;
25 r ← r + 1 ;
26 end
27 end

Algorithm 11: Radix sort algorithm for non-negative integers
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Data: see algorithm 9
Data: �rst, last : the boundaries of the range of determinants (in D) processed

by the current OpenMP thread.
1 for a1← 1, N↑det do
2 if A(a1 + 1)− 1 < �rst then
3 cycle a1 loop;
4 end
5 if A(a1) > last) then
6 return ;
7 end
8 f ← max(�rst, A(a1)) ;
9 t← min(last, A(a1 + 1)− 1) ;

10 for a2← 1, N↑det do
11 if EXC_DEGREE(D[A(a1)]↑, D[A(a2)]↑) 6= 1 then
12 cycle a2 loop;
13 end
14 for b1← f , t do
15 for b2← A(a2), A(a2 + 1)− 1 do
16 if EXC_DEGREE(D[b1]↓, D[b2]↓) = 1 then
17 |D[b1]〉 connected to |D[b2]〉 by ↑↓ excitation.
18 end
19 end
20 end
21 end
22 end
Algorithm 12: Find internal determinants connected by ↑↓ double excitations,
one in the range [�rst, last] the other in the range [�rst, Ndet]
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4.4 Symmetry of the Hamiltonian matrix
Taking into account the symmetry of Ĥ, each pair should be found only once, and the
associated update would be

WIk ←WIk + UJkHI J (4.2)
WJk ←WJk + UIkHI J (4.3)

This reduces the computational e�ort by a factor of two, but the result of each task now
has a size of Ndet and no more the reduced size of Ndet/Ntask, since all the elements
of W can potentially be modi�ed. This increase of communication has the e�ect of
killing the parallel e�ciency.

There are some additional drawbacks. First, in the non-symmetric case, a thread
accumulates data in WIk, a memory location which is the same for multiple consecutive
accesses, and in which no other thread can write. This pattern is memory-e�cient.
In the symmetric case, there is also an access to WJk. The access to WJk are non-
contiguous and don’t have a predictable pattern by the hardware. Such memory access
patterns are terribly ine�cient, especially when writing. In addition, a global memory
lock should be acquired since there is no guarantee than another thread is not writing
in that memory location at the same time. To avoid the lock, another solution is to use
an output vector which is private to the thread, but it would make the memory grow
as NCPU × Nstates × Ndet, which is what we wanted to avoid using shared memory
parallelism.

For a large number of nodes it is indisputably preferable not to use the symmetry
of H, even though it might seem surprising that increasing the number of operations
can give a better time to solution.

4.5 Ensuring the solutions have the desired spin state
When working in a truncated space of determinants, there is no guarantee that the
eigenstate of Ĥ will also be eigenstates of the spin operator Ŝ2. And when the proper
conditions are ful�lled (see section 5.8), all the lowest eigenvectors may be of di�erent
spin states.

To help �nd solutions of the desired spin state, we use a penalty method in the
diagonalization.[55] We modify the Hamiltonian as

H̃ = H + γ
(

S2 − I〈S2〉target
)2

(4.4)

where γ is a �xed parameter. In the Davidson algorithm, this requires the additional
computation of S U, for which the cost is expected to be the same as the cost of H U
as the expensive part is the search for the connections.
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We have modi�ed the function computing H U so that it also computes S U on the
�y. Indeed, once a pair of connected determinants has been found, if they correspond
to an ↑↓ double excitation or to a diagonal term, the Ŝ2 contribution is added to an
extra output vector, with almost no extra computational cost.

4.6 Summary
Davidson’s diagonalization algorithm was implemented in its multi-state version. A
direct algorithm was designed for arbitrary sets of determinants, and the formal scal-
ing was reduced to O

(
Ndet

3/2
)

, and can be further reduced to O(Ndet) at the cost
of additional storage. The implementation was parallelized using two levels of paral-
lelism, MPI and OpenMP, keeping in mind the reduction of the communication. The
empirical speedup measurements are presented in chapter 9.
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Chapter 5

Selection with the CIPSI criterion
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5.1 The basic algorithm
My initial and most important work has been the improvement of the implementation
of the CIPSI algorithm present in the �antum Package , that had been implemented
by my predecessor.[56] As was brie�y described in section 2.7, it is an on the �y iterative
selection algorithm, where determinants are added to the variational wave function
according to a perturbative criterion. Because it gathers a large amount of information,
this CIPSI implementation has been the basis for other subsequent works presented in
the next chapters.

The nth iteration of CIPSI can be described like so:
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1. The variational function
∣∣∣Ψ(n)

〉
is de�ned over a set of determinants {|DI〉}(n)

in which we diagonalize Ĥ
∣∣∣Ψ(n)

〉
= ∑

I
c(n)I |DI〉 (5.1)

The determinants in {|DI〉}(n) will be characterized as internal.

2. For all external determinants |α〉 /∈ {|DI〉}(n), we compute the perturbative
contribution

eα =

〈
Ψ(n)

∣∣∣Ĥ
∣∣∣α
〉2

E(n) − 〈α|Ĥ|α〉 . (5.2)

As we use Epstein-Nesbet perturbation theory, E(n) = E(n)
var is the variational en-

ergy of the wave function at the current iteration (note that another perturbation
theory could be used here).

3. Summing the contributions of all the external determinants gives the second
order perturbative correction

E(n)
PT2 = ∑

α

eα (5.3)

and the FCI energy EFCI can be estimated

EFCI ≈ E(n)
var + E(n)

PT2 (5.4)

4. We extract {|α?〉}(n) the subset of determinants |α〉 with the largest contribu-
tions eα, and add them to the variational space

{|DI〉}(n+1) = {|DI〉}(n) ∪ {|α?〉}(n) (5.5)

5. Go to iteration n + 1, or exit on some criterion (number of determinants in the
wave function, low E(n)

PT2, . . . ).

As can be seen, CIPSI involves the creation of an external space and a precise
knowledge of how it interacts with the internal space. Algorithmically speaking, we
will need to enumerate all connections between all internal and all external determi-
nants. There are, perhaps schematically, two ways to do this :

• “external to internal”, looping over all possible |α〉 and computing eα.
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• “internal to external”, looping over all internal determinants |DI〉 and all single
or double excitations T̂, creating |α〉 = δ(〈Ψ|α〉)ÔT̂|DI〉, then incrementing ẽα

by cI 〈DI |Ĥ|α〉. Finally get eα = ẽ2
α

E(n)−Hαα
.

The �rst approach is less tempting, as it means �nding connections between the
arbitrary set of internal determinants, and another arbitrary set of |α〉 typically orders
of magnitude larger.

While the second approach sounds more straightforward, it has the obvious issue
of requiring all eα to be stored in memory simultaneously. Unfortunately this is usually

not feasible, since their number scales as O
(

Ndet × N↑elec
2 ×

(
Norb − N↑elec

)2
)

. The
�rst approach therefore seems simpler when it comes to computing eα, but it begs the
question of how to generate all possible |α〉 with no duplicates.

Both our former and newer implementations of CIPSI generate the external space
in an “internal to external” way, that is, by applying single and double excitations to
internal determinants ; a determinant used to generate |α〉 is referred to as a generator.
Ensuring each eα is considered only once is done by checking that all the determinants
|α〉 generated by the generator |DI〉 are not connected to any of the generators in
{
∣∣DJ<I

〉
}. If a connection T̂ is found, it means that |α〉 is generated from

∣∣DJ
〉

as
ÔT̂
∣∣DJ
〉
, and should not be considered by the current generator.

5.2 Approximations
Given the qualitative nature of this procedure — each |α〉 is either selected or not — it
is possible to save a vast amount of computational time with minimal approximations.
These were present in the original implementation and retained in the new one.

From now on, we will consider that the determinants are sorted such that

c2
I ≥ c2

I+1 (5.6)

Two approximations are made :

• The �rst approximation restricts the set {|α〉}. It is very unlikely |α〉 will be
selected if it is not connected to any |DI〉with a large coe�cient. Therefore, it is
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possible to only consider the determinants of larger coe�cient as generators. We
choose a number of generators Ngen and only consider

∣∣∣DI≤Ngen

〉
as generators.

In practice we set Ngen according to a norm threshold ng, picking Ngen as the
highest value ful�lling

∑
I≤Ngen

c2
I ≤ ng. (5.7)

This approximation is a variant of the three-class CIPSI,[14] and typically ng =
0.99 is used in the calculations.

• The second approximation reduces the cost of eα. We do not need extremely
accurate values for eα as small di�erences are unlikely to substantially change
the subset of the largest ones. So connections to |DI〉with small coe�cients |cI |
can be neglected in the expression of eα. This approximation is achieved in a
similar way by de�ning a threshold ns on the norm of the wave function, and
Nsel ≥ Ngen a number of so-called selectors. We approximate

〈Ψ|Ĥ|α〉 ≈ ∑
I≤Nsel

cI 〈DI |Ĥ|α〉 . (5.8)

Typically, we use ns = 0.999.

Note that generator determinants are a subset of selector determinants. See �gure
5.1.

Figure 5.1: Determinants are sorted by decreasing c2
I ; generator and selector subsets are de�ned.

5.3 Initial implementation
Originally, the �antum Package generated the external space in a “internal to ex-
ternal” way, by applying all excitations on all determinants ; but the computation of
eα itself was a straightforward “external to internal”, computing a single eα at a time,
avoiding the problem of keeping track of all eα simultaneously.
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Data: |Ψ〉 with c2
I sorted in decreasing order.

Result: Guarantees all eα are computed only once.
1 for g← 1, Ngen do
2 /* apply all double excitations on |Dg〉 */
3 forall |α〉 ; 〈Dg|H|α〉 6= 0 do
4 for p← 1, g− 1 do
5 if |α〉 connected to

∣∣Dp
〉
then

6 /* |α〉 has already been generated by
∣∣Dp

〉
*/

7 discard this |α〉 ;
8 end
9 end

10 if |α〉 ∈ {DNsel+1, . . . , DNdet} then
11 /* |α〉 ∈ D */
12 discard this |α〉
13 end
14 R← 0 ;
15 for s← g, Nsel do
16 R← R + cs 〈Ds|Ĥ|α〉 ;
17 /* |Ds〉 = |α〉 is noticed when computing 〈Ds|Ĥ|α〉 */
18 if |Ds〉 = |α〉 then
19 /* |α〉 ∈ D */
20 discard this |α〉
21 end
22 end
23 assert R = 〈Ψ|Ĥ|α〉 ;
24 eα = R2

Evar−〈α|Ĥ|α〉
25 end
26 end

Algorithm 13: Simple CIPSI
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While this relatively simple implementation has been abandoned, it is brie�y pre-
sented for pedagogical reasons. A slightly more detailed algorithmic version is shown
as algorithm 13.

1. Loop over generators |G〉 ∈
{∣∣∣DI≤Ngen

〉}
.

2. Generate all singly and doubly excited determinants connected to |G〉.
3. From this set, discard those that appear in {|DI〉}. This is now a set of |α〉.
4. From this set, discard those that are connected {

∣∣DJ≤I
〉
}. This is now a set of

unique |α〉.

5. Compute eα = 〈Ψ|Ĥ|α〉2
Evar−〈α|Ĥ|α〉 for those new |α〉.

5.4 Principle of the new algorithm
The current approach is intermediate between computing eα one by one, and keeping
track of all of them at the same time. It creates a subset, or batch of external determi-
nants small enough to �t into memory, and importantly, that isn’t arbitrary. A batch
Gpq is de�ned by a doubly ionized generator

∣∣Gpq
〉
= apaq |G〉 . (5.9)

Determinants contained in the Gpq batch, some of which may be unique |α〉, can be
systematically de�ned by two indices r and s with

Ôa†
r a†

s apaq |G〉 =
∣∣∣Grs

pq

〉
. (5.10)

Essentially, determinants in a batch are de�ned by their di�erence to
∣∣Gpq

〉
. There-

fore, comparing
∣∣Gpq

〉
to a selector determinant allows to systematically determine

which |α〉 of the batch it will connect to, and by what excitation. Additional �ltering
mechanisms are set up to avoid considering selectors that do not interact with the cur-
rent batch. Those will be made explicit later on. Comparing �gures 5.2 and 5.3 hints
the di�erences between the former an newer algorithm. Note that because generators
are a subset of selectors, a particular |α〉 generated from

∣∣Dg
〉

must be checked for
connection to all selectors either as generators or as selectors.

• {|DI〉 ; I < g } as generators to check if |α〉 has been previously generated

• {|DI〉 ; g ≤ I ≤ Nsel } as selectors to compute 〈Ψ|Ĥ|α〉.
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Figure 5.2: Original CIPSI schematic representation, some details omitted

Figure 5.3: New CIPSI schematic representation, some details omitted.

5.4.1 Un�ltered algorithm
Filtering of selectors is a somewhat natural idea that was actually implemented before
the batch approach. It however can easily be understood as something added “on top”
of it, so it will be detailed in the next section and ignored in this one.

1. Iterate over |G〉 ∈
{∣∣∣DI≤Ngen

〉}
.

2. Iterate over all possible apaq |G〉 =
∣∣Gpq

〉
.

3. Allocate a zero-initialized array for the matrix P(Gpq) indexed by r and s. Each
cell is associated with Ôa†

r a†
s apaq |G〉 =

∣∣∣Grs
pq

〉
. Some cells will be tagged as not

being associated with a unique |α〉, but either one of :

• a determinant already present in the wave function

• an exclusion principle violating determinant (EPV), i.e.
∣∣∣Grs

pq

〉
= 0
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• a non-unique |α〉 (either a double excitation of a previous generator, or a
single excitation of the current one)

4. Since two electrons cannot occupy the same spinorbital, tag cells where r or s is
occupied in

∣∣Gpq
〉

as well as those with r = s.

5. Apply single excitation tagging. This ensures single excitations of |G〉 are gen-
erated exactly once. It is described in section 5.4.3.

6. selector loop: Iterate over |S〉 ∈
{∣∣DJ≤Nsel

〉}

7. Determine whether there is an (r, s) pair so that |S〉 =
∣∣∣Grs

pq

〉
. In other words,

look for |S〉 in the current batch. If it is found, tag the corresponding cell,∣∣∣Grs
pq

〉
∈ {|DI〉}.

8. Determine (r, s) pairs so that
∣∣∣Grs

pq

〉
is connected to |S〉

9. If J < I, tag the corresponding cells ;
∣∣∣Grs

pq

〉
is generated by

∣∣DJ
〉
.

10. If J ≥ I, increment all untagged Prs(Gpq) matrix elements by ∆Prs(Gpq) =

cJ

〈
S
∣∣∣Ĥ
∣∣∣Grs

pq

〉
. Note that the excitation operator T̂ so that |S〉 = ±T̂

∣∣∣Grs
pq

〉
,

useful for computing the associated matrix element, can be determined at the
same time as the (r, s) pair.

11. End selector loop. All untagged cells are guaranteed to be associated with a
unique |α〉 and Prs(Gpq) =

〈
Ψ
∣∣∣Ĥ
∣∣∣Grs

pq

〉
. eα’s for the current batch can be

computed, with |α〉 =
∣∣∣Grs

pq

〉
, as

eα =
Prs(Gpq)2

Evar − 〈α|Ĥ|α〉
(5.11)

12. End of other loops. All eα have been computed a single time.

5.4.2 Tagging
Tagged cells are simply tracked using a boolean matrix B(Gpq) with Brs(Gpq) keeping
the tag status of

∣∣∣Grs
pq

〉
, defaulting to FALSE. In some cases, full columns/rows are

to be tagged. Keeping track of fully tagged rows or columns is useful for performance
purpose, as it allows to bypass some loop iterations. A simple way to do it, is to add an
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extra column and an extra row of index 0 to B ; B0s(Gpq) = TRUE means the whole
s column is tagged, Br0(Gpq) = TRUE means the whole r line is tagged. The actual
tag status of

∣∣∣Grs
pq

〉
becomes

Br0(Gpq) ∨ B0s(Gpq) ∨ Brs(Gpq). (5.12)

While signi�cant, this optimization is fairly simple to set up and use, so for simpli�ca-
tion purpose, it will be ignored in the text.

5.4.3 Single excitation tagging

The algorithm is designed to generate all
∣∣∣Grs

pq

〉
, which are doubly excited from |G〉.

The singly excited determinants are not explicitly generated, but are formally present
as
∣∣Gps

pq
〉
. The issue is that

∣∣Gps
pq
〉

refers to the same determinant Ôa†
s aq |G〉 regardless

of p, and the base algorithm only tags
∣∣∣Grs

pq

〉
with |G〉 = |DI〉 as duplicate if it can be

generated by |K〉 =
∣∣DJ<I

〉
, i.e. if

∣∣∣Grs
pq

〉
=
∣∣∣Kr′s′

p′q′

〉
. (5.13)

As can be seen this doesn’t cover the case where
∣∣Gps

pq
〉
=
∣∣∣Gp′s

p′q

〉
.

To solve this issue, we default to tag
∣∣Gps

pq
〉
, which prevents generating single ex-

citations, and selectively untag in certain cases:

• Untagging all ↑-spin single excitations of |G〉 exactly once:
Pick P any “non-frozen” ↓ spinorbital occupied in |G〉. We arbitrarily choose
the lowest one. Untag

∣∣∣GPs
Pq

〉
whenever q, s are of ↑ spin. Any ↑-spin single

excitation q→ s is untagged a single time.
P cannot be chosen of ↑ spin, because single excitations P → s and q → P
would be formally present as

∣∣GPs
PP
〉

and
∣∣∣GPP

Pq

〉
, which aren’t ever generated,

since for obvious reasons the base algorithm never considers the batch
∣∣Gqq

〉
or

the determinants
∣∣∣Grr

pq

〉
.

• Untagging all ↓-spin single excitations of |G〉 exactly once:
Pick Q any “non-frozen” ↑ spinorbital occupied in |G〉. Again we arbitrarily
choose the lowest one. If p, q are of ↓ spin, untag

∣∣∣GrQ
pQ

〉
. Any ↓-spin single

excitation p→ r is untagged a single time.
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5.5 Systematic determination of connections

Figure 5.4: Illustrative example of systematic determination of the connection between a selector |S〉
and determinants of the

∣∣Gpq
〉

batch when p and q have the same spin. cS is the coe�cient of |S〉 in
|Ψ〉.

The systematic determination of connections between |S〉 and determinants from
the Gpq batch is done by comparing |S〉 to the doubly ionized determinant

∣∣Gpq
〉
. This

yields a set of spinorbitals whose occupation status di�er. Remembering |S〉 has two
extra electrons compared to

∣∣Gpq
〉
, there are 4 cases of interest:

• i,j are occupied in |S〉 but not in
∣∣Gpq

〉

• i,j,k are occupied in |S〉 but not in
∣∣Gpq

〉
; a is occupied in

∣∣Gpq
〉
, but not in |S〉

• i,j,k,l are occupied in |S〉 but not in
∣∣Gpq

〉
; a,b are occupied in

∣∣Gpq
〉
, but not in

|S〉

• More di�erences : |S〉 isn’t connected to any
∣∣∣Grs

pq

〉
and can be ignored.

Based on these indices, it is possible to immediately deduce any (r, s) pair so that∣∣∣Grs
pq

〉
is at most a double excitation of |S〉, as well as the excitation operator T̂ so that∣∣∣Grs

pq

〉
= ÔT̂ |S〉. Figures 5.4 and 5.5 show two possible cases as examples.
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Figure 5.5: Illustrative example of systematic determination of the connection between a selector |S〉
and determinants of the

∣∣Gpq
〉

batch when p and q are of di�erent spins. cS is the coe�cient of |S〉 in
|Ψ〉.

While this could be done in a more compact way, we took a “case by case” ap-
proach, allowing more specialized code for each situation. Taking spin into account,
the di�erent cases are listed in table 5.1.

It is noticeable that, because of the “wildcard” indices X and Y :

• Cases of the form a, ijk cause full rows/columns of P(Gpq) to be tagged or in-
cremented.

• Cases of the form ij cause the whole P(Gpq) matrix to be tagged or incremented.
Obviously, tagging the whole matrix means stopping the computation for Gpq.

5.6 Filtering and loop breaking
A large amount of CPU time is wasted because every doubly ionized generator

∣∣Gpq
〉

is compared to all internal determinants. In the vast majority of cases, it will show
no connection can be made and the internal determinant will be ignored. Thus, it is
interesting to �lter internal determinants in the outermost loops (loop over generators,
and loop over �rst ionization).

This can be done using the distance f B
A = f A

B , de�ned as the minimal number of
operations — moving, annihilating or creating an electron — that must be done to go
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1 /* For simplification purpose, a determinant |S〉 is here
represented by a single bitstring S of size 2Norb where
each bit is associated with a spinorbital */

Data: |Ψ〉, i.e. {DI} the set of internal determinants and their coe�cients cI
Data: Ngen, Nsel, Ndet
Result: eα 6= 0 has been computed exactly once for any |α〉 /∈ {DI}

2 for g← 1, Ngen do
3 forall (p, q) ; apaq

∣∣Dg
〉
6= 0 do

4
∣∣Gpq

〉
← Ôapaq

∣∣Dg
〉
;

5 /* B and P are indexed by spinrobitals */
6 B a FALSE-initialized boolean matrix of size 2Norb × 2Norb ;
7 P a zero-initialized real matrix size 2Norb × 2Norb ;
8 Apply EPV and single excitations tagging (algorithm 15) ;
9 for t← 1, Ndet do

10 |S〉 ← |Dt〉 ;
11 C ← S ∧ ¬Gpq ;
12 if ||C|| = 2 then
13 e← LIST_FROM_BITSTRING(C);
14 Be[0] e[1] ← TRUE;
15 end
16 /* see table 5.1 for (r, s) pairs */
17 if t < g then
18 forall (r, s) ;

〈
S
∣∣∣Ĥ
∣∣∣Grs

pq

〉
6= 0 do

19 Brs ← TRUE ;
20 end
21 else if t ≤ Nsel then
22 forall (r, s) ; ¬Brs ∧

〈
S
∣∣∣Ĥ
∣∣∣Grs

pq

〉
6= 0 do

23 Prs ← Prs + ct

〈
S
∣∣∣Ĥ
∣∣∣Grs

pq

〉
;

24 end
25 end
26 end
27 forall (r, s) ; ¬Brs do
28 |α〉 =

∣∣∣Grs
pq

〉
is a unique |α〉 ;

29 eα = Prs
2

Evar−〈α|Ĥ|α〉 ;
30 end
31 end
32 end

Algorithm 14: Un�ltered CIPSI selection
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Data: B, q, p and
∣∣Gpq

〉
from outer scope.

Result: Updates B so as to tag EPVs, and determinants that are generated by a
generator of lower index from a single excitation on |G〉

1 /* tag EPV */
2 forall r do
3 Brr ← TRUE ;
4 end
5 forall r ; (ar

∣∣Gpq
〉
6= 0) ∨ (r = p) ∨ (r = q) do

6 B∗r ← TRUE ;
7 Br∗ ← TRUE ;
8 end
9 /* tag duplicate single excitations */

10 if (q is ↑) ∧ (p is the lowest “non-frozen” occupied ↓ spinorbital in |G〉) then
11 B∗p ← FALSE ;
12 Bp∗ ← FALSE ;
13 end
14 if (p is ↓) ∧ (q is the lowest “non-frozen” occupied ↑ spinorbital in |G〉) then
15 B∗q ← FALSE ;
16 Bq∗ ← FALSE ;
17 end

Algorithm 15: EPV and single excitations tagging
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from a determinant |A〉 to a determinant ± |B〉 (i.e. ignoring the phase factor) with
respectively nA and nB electrons. Alternatively, it can be de�ned as the maximum
between the number of annihilations and the number of creations required to go from
|A〉 to ± |B〉.

f B
A =

∥∥A↑ ⊕ B↑
∥∥+

∥∥A↓ ⊕ B↓
∥∥+ |nA − nB|

2
(5.14)

Considering |S〉 a selector determinant and |X〉 a generator determinant in a state
of ionization from 0 to 2 (it essentially is a wildcard for |G〉, ap |G〉 or apaq |G〉 =∣∣Gpq

〉
).

• f α
X + f S

α ≥ f S
X

• |α〉 can be generated from |X〉 i� f α
X ≤ 2

• |α〉 is connected to |S〉 i� f S
α ≤ 2

• 0 ≤
(

f S
Y − f S

X
)
≤ 1 with |Y〉 = ap |X〉

From the rules above, we can deduce that given any |X〉 and |S〉, there exists an
|α〉 generated from |X〉 so that 〈α|Ĥ|S〉 6= 0 only if f S

X ≤ 4. Based on this, a �ltering
mechanism can be set up, as shown on �gure 5.6. The diagram is somewhat convoluted
and deserves comments.

Internal determinants’ path A triple loop is shown

1. over generators |G〉

2. over p a �rst ionization
∣∣Gp
〉

3. over q a second ionization
∣∣Gpq

〉
, i.e. over batches.

In each one some �ltering takes place. The internal determinants “�ow” from the
top {|DI〉} into intermediate lists, that are fully constructed before proceeding to the
inner loop, as they will be the sources of determinants for that inner loop. A selector
can only be duplicated at the node denoted by a black circle. Otherwise, it follows a
single path, always going for the horizontal path if it satis�es the associated condition.
If it doesn’t satisfy the condition of a horizontal path, and there is no further vertical
path, it is discarded.
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“Drop” instructions Drop instructions are reached when, predictably, the current
loop iteration will not yield any unique |α〉. If a determinant reaches a drop, the current
loop iteration ends immediately.

• drop Gpq is reached in the case where the whole P(Gpq) matrix is to be tagged,
i.e. the possible values for (r, s) given by table 5.1 are two wildcards (X, Y and
X, Ȳ). This corresponds to the case where

∣∣Gpq
〉

has already been created from
a previous generator |K〉, i.e.

∣∣Gpq
〉
=
∣∣∣Kp′q′

〉
, therefore for any pair (r, s) we

have
∣∣∣Krs

p′q′

〉
=
∣∣∣Grs

pq

〉
.

• drop Gp, in the same fashion, is reached when ap |G〉 =
∣∣Gp
〉

has already been
created from a previous generator |K〉, i.e.

∣∣Gp
〉
=
∣∣∣Kp′

〉
. For any (q, r, s) triplet

there will be
∣∣∣Krs

p′q

〉
=
∣∣∣Grs

pq

〉
, so no new |α〉 will be created.

Paths and loops There are roughly a left and a right path. The reason for this, is
that we want to reach drop instructions as fast as possible. Incidentally, in each loop,
the implementation should prioritize operations that may cause a reach to drop.

1. The �rst loop discards some internal determinants and separates the others in
two disjoint categories.

• Right branch : determinants that may contribute to the P(Gpq) matrix or
tag previously generated |α〉. In other words, selectors that may connect
to some

∣∣∣Grs
pq

〉
.

• Left branch : Determinants that aren’t selectors, but are equal to some∣∣∣Grs
pq

〉
. Being non-selectors, those will not be checked for connection to

any
∣∣∣Grs

pq

〉
, but they still must be checked for equality in order to ensure∣∣∣Grs

pq

〉
/∈ {|DI〉}

This step sets the complexity of the algorithm with respect to Ndet. Naively, f S
G

must be computed for all pairs of internal determinants, setting the complexity
to O(Ndet

2).
Our current implementation quickly discards f S

G > 4 by using a method similar
to what we used in the Davidson diagonalization, adapted to seek excitation
degrees ≤ 4 rather than ≤ 2. The key di�erence is that, for parallelism reasons,
the research has to be done individually for each generator ; that is, we are not
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Data: |G〉: a generator determinant.
Data: N↑det: the number of unique ↑ spin parts present in |Ψ〉.
Data: D↑: the array of determinants present in |Ψ〉, sorted by ↑-major order (all

determinants sharing the same ↑ part are next to each other).
Data: A↑: the arrays so that A↑[n] is the index of the �rst occurence of the nth

unique ↑ spin part in D↑. For algorithmic convenience we set
A↑[N↑det + 1] = Ndet + 1.

Data: N↓det, D↓, A↓: the ↓ counterparts.
1 for a← 1, N↑det do
2 e← EXC_DEGREE(D↑[A↑(a)]↑, G↑) ;
3 if e ≤ 2 then
4 for b← A↑(a), A↑(a + 1)− 1 do
5 if e + EXC_DEGREE(D↑[b]↓, G↓) ≤ 4 then
6 retain D↑[b] ;
7 end
8 end
9 end

10 end
11 for a← 1, N↓det do
12 e← EXC_DEGREE(D↓[A↓(a)]↓, G↓) ;
13 if e ≤ 1 then
14 for b← A↓(a), A↓(a + 1)− 1 do
15 if e + EXC_DEGREE(D↓[b]↑, G↑) ≤ 4 then
16 retain D↓[b] ;
17 end
18 end
19 end
20 end

Algorithm 16: Filter internal determinants |S〉 so that f S
G ≤ 4
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computing all f S
G at the same time, but all f S

G for a given |G〉 separately. The
procedure is shown as algorithm 16. The complexity is reduced from O

(
Ndet

2)

to O
(

Ndet
3/2
)

.

Note that the only point of separating those two categories rather than merging
them in the same list, is to avoid additional past and selector tests in the second
loop. This most likely is of little interest, depending on the implementation. But
because it is the actual implementation and because it reduces the number of
operations, it is still shown.

2. The second loop discards some internal determinants and separates the other in
two categories, this time not disjoint.

• Right branch : Selectors that may connect to some 〈Ψ|Ĥ|α〉.
• Left branch : Determinants that may be equal to some

∣∣∣Grs
pq

〉
. Those can

be found in both lists built in the �rst loop.

As previously discussed, if there is a previous generator |K〉 so that ap′ |K〉 =
ap |G〉, it will result in P(Gpq) being fully tagged for any q, hence a need to reach
drop Gp to avoid unnecessary computations. The reach for drop Gp can be put
on the path between the right list of the �rst loop and the left list of the second
loop.
Indeed, ap′ |K〉 = ap |G〉 with |K〉 a previous generator translates to

(
f K
Gp

= 1
)
∧ past (5.15)

The right list of the �rst loop contains all internal determinants so that
(

f K
G ≤ 4

)
∧ selector (5.16)

However
f K
Gp

= 1 =⇒ f K
G ≤ 1 =⇒ f K

G ≤ 4 (5.17)

past =⇒ selector (5.18)
(

f K
Gp

= 1
)
∧ past =⇒

(
f K
G ≤ 4

)
∧ selector (5.19)

Therefore any internal determinant able to reach drop Gp will be present in that
list. Trivially, from there it will always take the left path because f K

Gp
= 1 =⇒

f K
Gp
≤ 2.
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3. Third loop :

• Right branch : Final �ltering to keep only selectors that do connect to some∣∣∣Grs
pq

〉

• Left branch : f S
Gpq

= 2 implies there exists (r, s) so that |S〉 =
∣∣∣Grs

pq

〉
.

When one is found :
– If past

|S〉 =
∣∣∣Grs

pq

〉
=⇒ |Srs〉 =

∣∣Gpq
〉

(5.20)

As explained above, it leads to P(Gpq) being fully tagged, and thus
drop Gpq can be reached.

– If ¬past,
∣∣∣Grs

pq

〉
must be tagged for referring to a determinant of the

internal space.
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Table 5.1: Systematic “case by case” determination of connections between a selector |S〉 and determi-
nants of a batch Gpq

|S〉 r, s T̂ such that T̂ |S〉 = ±
∣∣∣Grs

pq

〉

a†
ij

∣∣Gpq
〉

X, Y ij→ XY
X, i j→ X
i, j 1̂

aaa†
ijk

∣∣Gpq
〉

X, i aX → jk
i, j a→ k

aāa†
ī jk

∣∣Gpq
〉

X, j āk→ īX
j, k ā→ ī

aaba†
ijkl

∣∣Gpq
〉

i, j ab→ kl

aab̄a†
ijkl̄

∣∣Gpq
〉

i, j ab̄→ kl̄

aāb̄a†
ijk̄l̄

∣∣Gpq
〉

i, j āb̄→ k̄l̄

|S〉 r, s̄ T̂; T̂ |S〉 =
∣∣∣Grs̄

pq̄

〉

a†
i j̄

∣∣Gpq̄
〉

X, Ȳ i j̄→ XȲ
i, X̄ j̄→ X̄
X, j̄ i→ X
i, j̄ 1̂

aaa†
ijk̄

∣∣Gpq̄
〉

X, k̄ aX → ij
i, k̄ a→ j
i, X̄ ak̄→ jX̄

aaba†
ijkl̄

∣∣Gpq̄
〉

i, l̄ ab→ jk

aab̄a†
ijkl̄

∣∣Gpq̄
〉

i, j ab̄→ kl̄

aab̄a†
ijk̄l̄

∣∣Gpq̄
〉

i, k̄ ab̄→ jl̄

• the bar notation ā is
used to indicate rel-
ative spins

• aij... is a compact
notation for aiaj . . .

• X and Y are “wild-
card” indices refer-
ring to any spinor-
bital unoccupied in
both |S〉 and

∣∣Gpq
〉
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{|DI〉}

|S〉 = |DJ〉
G = DI

fS
G ≤ 2

(fS
G ≤ 4)∧ selector

Gp

drop Gp

fS
Gp
≤ 2 fS

Gp
≤ 4fS

Gp
≤ 2

(fS
Gp

= 1)∧ past

Gpq

|S〉 = a†ia
†
j|Gpq〉

tag Pij(Gpq)

fS
Gpq

= 2

drop Gpq

past

increment P (Gpq)

fS
Gpq
≤ 4

tag P (Gpq)

past

S : determinant in {|DI〉}
G : generator
Gp : singly ionized generator
Gpq : doubly ionized generator

X : loop over all possible X
c

: path taken if c is true

drop X : cycle loop over X

past : J < I, so S has already been treated as a generator

selector : S is a selector
fS
X : Excitation degree between X and S

: Filtered list of determinants to be used in the inner loop

: Possible duplication of S

Figure 5.6: |S〉 is the internal determinant currently �owing down the chart. Tagging is fully computed,
and drop instructions eventually reached before any update is done to P(Gpq).
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5.7 Parallel computation
Arguably the simplest way to make an algorithm parallel is, whenever possible, to cre-
ate independent tasks corresponding to one iteration of the outermost loop. As �gure
5.6 suggests, iterations for the outermost loop — over generators — are independent.
This is due to our choice to perform the initial �ltering on a “generator by generator”
basis (algorithm 16). The cost for this initial �ltering could be reduced with a “spin part
by spin part” basis as in our Davidson algorithm, but since the CIPSI selection is more
expensive than the Davidson diagonalization, the �ltering steps only account for a few
percent of the total CPU time, so for simplicity and load balancing we stuck to 1 task
= 1 generator. Even so, the cost for di�erent tasks is still very much unbalanced, the
�rst few generators with large coe�cients being very expensive, and the cost quickly
decreasing.

For a better load balancing, we split the �rst, expensive tasks into smaller fragments,
using a fairly simple approach. Essentially, some tasks will require computing just a
subset of the Gpq batches associated with a generator |G〉, as opposed to all of them.
This implies some overhead, since some �ltering steps will be duplicated. Fortunately,
only a relatively small number of expensive tasks need to be split.

Each generator |Di〉 de�nes as a “logical” task i, and for each one we de�ne Fi a
fragmentation level, de�ning the number of independent “actual” tasks it should be
decomposed in. We have empirically chosen the following expression for the frag-
mentation of the tasks:

Fmax = 1 + min
(

Nelec(Nelec − 1)/2, b
√

Nselc/10
)

(5.21)

Fi = 1 + Fmax

(
Nstatesmax
k=1
|cik|1/2

)
(5.22)

where Fi is an estimated cost of task i. In practice Fi = 1 for the majority.
Task i is put in the task queue Fi times, each time associated with a ‘fragment”

index s ranging from 0 to Fi − 1, which together with Fi de�nes the subset of batches
this task corresponds to.

This fragmentation scheme can be shown in a simpler and more general way when
used to compute EPT2 in chapter 6. In a nutshell, we can see it as a toy problem where
we want to print for each generator the sum of eα over all unique |α〉 it has generated.
The algorithms for this on the master side and slave side are shown as algorithms 17
and 18 respectively.

For the determinant selection, we still use the mixed MPI/OpenMP paradigm, where
one MPI process per node is used for e�cient broadcasting of the replicated data.
But, as opposed the Davidson implementation where each task was parallelized with
OpenMP, here each OpenMP thread handles independently a task, computed with a
single core. The �rst reason is that the number of tasks is larger than Ndet, which
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1 /* A logical task is the computation of e[i], the sum of eα over
all unique |α〉 generated from generator |Di〉 */

2 choose Fi for all i;
3 for i← 1, Ngen do
4 for s← 0, Fi − 1 do
5 add task (i, s) to the queue
6 end
7 end
8 f ,e are arrays size Ngen initialized with 0 ;
9 while not all e[i] printed do

10 get (i, sum) from a slave ;
11 e[i]← e[i] + sum ;
12 f [i]← f [i] + 1 ;
13 if f [i] = Fi then
14 print e[i] ;
15 end
16 end

Algorithm 17: Task splitting, pseudocode for master.

1 while do
2 get task (i, s ∈ [0, Fi − 1]) from the queue ;
3 E← 0 ;
4 c← 0 ;
5 G ← Di ;
6 /* duplicated computation if Fi > 1 */
7 �ltering for G (see �gure 5.6) ;
8 foreach Gp do
9 /* duplicated computation if Fi > 1 */

10 �ltering for Gp (see �gure 5.6) ;
11 foreach Gpq do
12 c← c + 1 ;
13 if s = c mod Fi then
14 increment E with all unique eα in this batch ;
15 end
16 end
17 end
18 send (i, E) to master ;
19 end

Algorithm 18: Task splitting, pseudocode for slave.
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is usually orders of magnitude larger than the number of CPU cores. Moreover, the
computation of a task in parallel would require a synchronization barrier at the begin-
ning and the end of the OpenMP section. Here, all the OpenMP threads are completely
independent during the whole calculation of the selection, and this explains the very
good scaling properties of the implementation, as shown in chapter 9.

5.8 Obtaining spin-pure states
The presented algorithm generates a wave function which is expressed on a truncated
space of Slater determinants. Determinants are not necessarily eigenfunctions of the
Ŝ2 operator, so the eigenfunctions of the truncated Hamiltonian are not guaranteed to
be also eigenfunctions of Ŝ2.

A conventional solution to avoid this issue is to work in the basis of Con�gura-
tion State Functions (CSFs). These are linear combinations of determinants which are
eigenfunctions of Ŝ2, and with the desired eigenvalue. Diagonalizing Ĥ in this basis
ensures that the solution is spin pure.

Working with CSFs instead of determinants has the additional advantage that the
space of CSFs is smaller than the space of determinants. CSFs could in principle be used
for CIPSI, but that makes the computation of the matrix elements of Ĥ less straight-
forward.

We have chosen a more practical solution.[31] After the selection step, we add
to the variational space all the determinants that are necessary to obtain a spin pure
solution. These determinants correspond to all the possible spin �ips in open shell
determinants with the constraint that N↑elec and N↓elec are constant. The diagonalization
of Ĥ will automatically yield spin pure eigenfunctions at the cost of increasing the size
of the wave function with many determinants with very small weights.

5.9 Conclusion
The novel implementation of the CIPSI algorithm runs orders of magnitude faster than
the former one thanks to several key improvements.

• Excitations do not need to be computed explicitly using algorithms such as those
presented in chapter 3. However the associated phase factors still have to be
computed.

• Although not directly related to the CIPSI algorithm, the computation of the
phase factors has been made much cheaper thanks to the use of phase masks
(see section 3.5.3).
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• Selector determinants are simultaneously compared to
(

Norb − N↑elec

)2
external

determinants |α〉 thanks to the batch approach.

• Selector determinants go through a �ltering mechanism that narrows down the
number of selector determinants to be considered against a particular |α〉 (a par-
ticular batch of |α〉).

This made way for applications that were not a�ordable before, such as those pre-
sented in chapter 10, as well as an additional application to copper complexes.[57] The
algorithms presented in this chapter also lead to the methods presented in the next
chapters.
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Chapter 6

Computation of the second-order
perturbative correction
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6.6 Hybrid stochastic-deterministic calculation of the second-order
perturbative contribution ofmultireference perturbation the-
ory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Introduction
In the literature, the computation of EPT2 is part of the CIPSI method. This is under-
standable, as the selection and the computation of EPT2 involve gathering the same
data.

EPT2 = ∑
α

〈Ψ|Ĥ|α〉2
∆Eα

(6.1)

It is essentially the sum all eα that are computed during a CIPSI selection.

EPT2 = ∑
α

eα (6.2)

We have seen in section 5.2 that approximate calculations could be done to accelerate
the selection. However, these approximations don’t apply to the computation of EPT2,
so we designed a hybrid stochastic-deterministic scheme to get an accurate estimation
of EPT2 for a much more reasonable cost.

The selection of determinants and the calculation of EPT2, all approximations aside,
both imply the computation of eα for all |α〉, so both can be computed at the same time.
The selection is about identifying the set of the most important contributions, EPT2 is
about computing the sum over all of them. There are two main consequences to this:

EPT2 is one iteration behind the selection At iteration n, identifying the most
signi�cant |α〉 is about building

∣∣∣Ψ(n+1)
〉

while summing the contributions is about

estimating the distance to full-CI for
∣∣∣Ψ(n)

〉
. Computing EPT2 for a “�nal” wave func-

tion therefore requires an extra iteration, which applies to a larger number of determi-
nants and thus is more expensive. Note that if only EPT2 is required, a more e�cient
algorithm can be used.[58]

The selection can take more approximations The computation of the sum has
to be more costly than just identifying the largest terms. As was said in chapter 5, the
CIPSI algorithm can take pretty drastic approximations for the selection.[14]

• Ngen allows to explore a reduced subset of |α〉 in which we are almost sure to
�nd those of interest.
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• Nsel allows for a less accurate and less expensive computation of eα, which is
unlikely to signi�cantly change the identi�ed set.

These approximations do not apply when computing EPT2. The very large number
of smaller contributions makes them impossible to neglect without introducing a bias,
and increasing the ng and ns thresholds dramatically increases the computational cost.

Unfortunately, a truncated computation of EPT2 always yields in a biased result.
Since eα is the contribution to the correlation energy brought by |α〉, it is necessarily
negative. Hence, EPT2 is a sum of same-sign contributions, and when the sum of eα is
truncated some correlation energy is missing.

Before the stochastic computation of EPT2 was implemented, our best choice was
to set low values of ng and ns while performing the selection, and accept very approx-
imate values for EPT2 for intermediate wave functions. Then, once the selection was
completed, we would raise them just for a �nal, very expensive “EPT2 only” iteration.
In fact, an exact computation with Ngen = Nsel = Ndet was often prohibitively long,
so the �nal EPT2 was still biased, and the biases were not well controlled. The e�ect
was particularly important when computing atomization energies, where the EPT2 val-
ues were much more approximate on the molecule than on the atoms. A practical way
to circumvent this problem was already proposed 20 years ago, by giving an extrapo-
lation of EPT2 when ng goes to one.[59] However, the algorithm we propose here has
the advantage of giving an unbiased result within a statistical con�dence interval.

6.2 Stochastic estimation of EPT2

We eventually solved the previously discussed problem by turning the bias into an
error bar. The basic idea is that, instead of trying to get the largest possible chunk of
contribution, we can randomly pick eα contributions and make a Monte-Carlo estimate
for the sum over all |α〉. In this case, to avoid any bias we must set

Ngen = Nsel = Ndet
? (6.3)

with Ndet
? the number of internal determinants with non-zero coe�cient. Not only

the estimate will be unbiased and much closer to the actual EPT2, but we will have an
estimate for the error. Because EPT2 is itself used as an approximation

Evar + EPT2 ' EFCI, (6.4)

an error signi�cantly smaller than the typical accuracy of Evar + EPT2 vs EFCI is cer-
tainly acceptable. Drawing randomly external determinants would probably not be
e�cient enough to improve signi�cantly the computational time, so the algorithm we
have designed is more convoluted.
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6.2.1 Monte-Carlo sampling
We generally want to compute a quantity F which may be expressed as the expected
value of a function f (x) with respect to a probability distribution function p(x):

F =
∫ ∞

−∞
f (x)p(x)dx (6.5)

with ∫ ∞

−∞
p(x)dx = 1. (6.6)

When Xi are samples randomly distributed according to p,

F = 〈 f 〉p = lim
M→∞

1
M

M

∑
i=1

f (Xi) (6.7)

So if one is able to draw M samples Xi with probability p(Xi), F may be approximated
as

F̄ =
1
M

M

∑
i=1

f (Xi) (6.8)

The Central Limit Theorem states that when independent random variables are
added together, their normalized sum tends to a normal distribution. The variance
of this normal distribution,

σ2(F) = lim
M→∞

1
M

M

∑
i=1

( f (Xi)− F)2, (6.9)

re�ects the dispersion of the Xi. For a �nite number of samples, the variance can be
estimated as

σ̄2(F) =
1

M− 1

M

∑
i=1

( f (Xi)− F̄)2, (6.10)

and the 68.2% con�dence interval (statistical error) is F̄±
√

σ̄2(F)
M .

The simplest way to compute EPT2 with a Monte Carlo algorithm is to express EPT2
as

EPT2 =
Nα

∑
α=1

eα =
1

Nα

Nα

∑
α=1

Nαeα = 〈Nα eα〉 =
Nα

∑
α=1

p(α)Nαeα (6.11)

with p(α) = 1/Nα. This corresponds to a uniform sampling of the |α〉 determinants.
The largest the variance of eα, the slowest the convergence. Changing the sam-

pling can reduce the variance, and one can make the sampling optimal by choosing
the probability density

p(α) =
eα

N (6.12)
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and computing

EPT2 =
Nα

∑
α=1

p(α)×N (6.13)

Unfortunately in this case, the normalization constant N = ∑α eα = EPT2, and this
would require to know already EPT2 before doing the calculation.

Choosing a probability density which can be computed very fast and which approx-
imates eα/EPT2 is expected to improve the convergence. If one takes the expression
of

EPT2 = ∑
α

eα = ∑
I

∑
J

cIcJ

(
∑
α

〈DI |Ĥ|α〉
〈
α
∣∣Ĥ
∣∣DJ
〉

∆Eα

)
, (6.14)

one can remark that

1. As the determinants were selected with a CIPSI criterion, all the eα are expected
to be small. In this regime, all the ∆Eα are expected to be large, and large enough
to consider that 1/∆Eα is almost constant.

2. when I = J, each contribution to eα has a negative sign due to the denomina-
tor. But when I 6= J, the sum is a sum of terms with alternating signs, almost
cancelling each other. Hence, the dominant term of the sum is the diagonal term

∑
I

c2
I

(
∑
α

〈DI |Ĥ|α〉2
∆Eα

)
. (6.15)

3. ∑α 〈DI |Ĥ|α〉2 /∆Eα can be seen as the correlation energy of determinant |DI〉,
and this quantity is expected to be of the same order of magnitude among all the
determinants.

Therefore, we propose to pack together contributions of α such that the random vari-
able becomes a quantity eI indexed by I instead of α

eI = ∑
α∈AI

eα (6.16)

and use as a probability distribution

p(eI) = c2
I . (6.17)
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|D1〉 |α1〉
|α2〉
|α3〉
|α4〉

A1

|D2〉 |α5〉
|α6〉
|α7〉

A2

|D3〉 |α8〉
|α9〉

A3

...
...

Figure 6.1: Construction of batches of |α〉: disjoint sets related to the generator determinant.

6.2.2 Packing of eα into elementary contributions eI

Individual eα are expensive to compute. In the CIPSI algorithm, each generator de-
terminant creates a number of unique |α〉, and computes eα for each one of them.
Essentially, the set of |α〉 is split in Ngen disjoint sets, each associated with a generator
determinant, as shown in �gure 6.1.

AI =
{

eα ; 〈DI |Ĥ|α〉 6= 0 ; ∀J < I,
〈

DJ
∣∣Ĥ
∣∣α
〉
= 0

}
. (6.18)

Because of the numerous tricks described in chapter 5, we are able to compute all the
eα of a set considerably faster than if we had to compute each contribution separately.
Fortunately, this partition of {|α〉} ful�lls the requirement of Eq. (6.16) and a large part
of the implementation of the selection will be shared for the computation of the eI to
make the stochastic computation of EPT2 e�cient.

To draw samples distributed with p(eI), we use the inverse transform sampling
method.[60] The representation we are going to use is a collection of Ndet boxes of
width wI , containing the determinant of index I. The determinant index I associated
with drawing a random number u ∈ [0, 1)R is noted w[u]. It is determined using the
cumulative probability distribution function W

WI = ∑
J≤I

wJ (6.19)

w(u) = I ; WI−1 ≤ u < WI . (6.20)

To sample with p(eI), we set wI = p(eI).
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Figure 6.2: Schematic representation of Values inside the boxes are generator indices. Values outside are
probabilities and drawn random numbers. Drawing the random number u using the probability density
w yields generator index I = w(u).

Figure 6.3: Contribution |eI | (left) and |eI |/c2
I (right) as a function of the uniform random number u

drawn. The green horizontal line is EPT2.

Figure 6.3 con�rms that using p(eI) = c2
I as a probability density gives less �uctu-

ations in the samples than when using a uniform sampling. The decreasing aspect of
the curve comes from the elimination of the duplicate |α〉, which makes the eI smaller
and smaller with respect to the correlation energy of |DI〉.

To simplify the implementation, the actual distribution wI we use isn’t exactly c2
I .

This will be detailed in section 6.4.2.

6.2.3 Memoization of eI’s
Each contribution is now associated with a generator determinant. As a consequence,
there are only Ngen elementary contributions to compute, but the computational cost of
each contribution is increased. The number of contributions is small enough to make
all the eI ’s �t in memory, so when a eI contribution is computed, its value is stored
and simply reused if the same generator is drawn again. This optimization technique
is known as memoization,[61] and can make exponentially-scaling algorithms become
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polynomial.[62]
In our case, this optimization also leads to a drastic improvement in the compu-

tational time: it takes an in�nite time for a Monte Carlo calculation to reach a zero
statistical error, but using the memoization technique the exact result will eventually
be known in �nite time, once every contribution has been computed. The cost for
the exact computation will essentially be the same as that of the purely determinis-
tic full computation, with a negligible additional cost due to the Monte-Carlo related
computations (drawing random numbers, �nding the associated generators. . . ).

6.3 Deterministic and stochastic ranges
Because eI decreases rapidly, most of the contribution is contained in the �rst few
eI . We can compute the exact energy contribution for the �rst eI , and only make a
stochastic estimation for the sum over the smaller ones. This e�ectively splits the
space of generators in two ranges, a deterministic one DD, then a stochastic one DS
(hence the hybrid characteristic of this method). Being ranges, they are always made
of contiguous generators. The estimated energy can be written as

EPT2 = ED + ES (6.21)

with ED the exact energy for DD, and ES the estimated energy for DS. The error bar
only applies to ES, which is typically much smaller than ED. The number of generators
in DD increases during the computation. Initially, DD = T0 the initial deterministic
range, for which the total weight is u0.

∑
I∈T0

wI = u0 (6.22)

T0 is always computed before any stochastic estimation can take place.

6.3.1 Partition of the stochastic range in Nteeth teeth
Generator determinants are sorted with decreasing values of c2

I . As can be seen in
�gure 6.3, the values of eI span many orders of magnitude and decrease rapidly with
I, in an exponential-like way. Smoothed values for eI are shown in �gure 6.4. There
are a few reasons for that.

• The values for the denominator ∆Eα used in the computation of eα tend to in-
crease, as internal determinants tend to be more and more excited and to popu-
late higher orbitals
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Figure 6.4: Contribution eI associated with each generator, where the generators are sorted in decreasing
order of c2

I . The determinant space is divided into equal probability ranges, according do c2
I .

• The number of unique |α〉 per generator decreases. Indeed, the higher I, the like-
lier it is that the external determinants were were generated by other generators
in {

∣∣DJ<I
〉
}.

• Unique |α〉 are, by construction, disconnected from all previous generators, which
mean they connect to a set of selectors with a decreasing norm.

Because of its original nature, this algorithm casts some ambiguity on what should
be referred to as a sample. We are going to estimate a sum of elementary contributions
eI , compute and store them individually, and draw them based on a probability distri-
bution function ; therefore they will be referred to as the samples and shown as such in
the previously introduced representation. But the actual sample values are sums over
several eI , referred to as combs.

In a comb, the space of generators, minus the initial deterministic range T0, is split
into ranges of equal probability (see ranges T1, . . . T4 in �gure 6.4), and one sample is
drawn in each range. Then, all those eI are added together to make the contribution
of the comb. Because the function eI decreases smoothly, the contributions of the
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Figure 6.5: Comb contributions as a function of the uniform random number u drawn. The green
horizontal line is EPT2.

combs �uctuate less than the individual contributions, and the variance can be further
reduced, as shown in �gure 6.5.

As seen in section 6.3.1, because eI
wI

overall decreases, a range has a lower variance
than the whole domain. The stochastic range is split in Nteeth ranges referred to as
teeth, noted T1, . . . , TNteeth (called Dt in the presented article) and sharing the same
total weight WT

∑
I∈Tt≥1

wI = WT. (6.23)

Figure 6.6: Partitioning of the generator space. The generator space is partitioned in so-called teeth from
T0 to TNteeth , T0 of total weight u0, the others of total weight WT

The partition of the generator space is as shown in �gure 6.6. Intuitively, the sum
of “one large, one medium and one small” has a lower variance than the sum of “three
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at random”. Instead of drawing individual indices, we are going to draw “combs” of
indices, which are correlated sets of 1 index from each tooth. The associated sample
value is the sum of eI

wI
over those indices that are inDS. The expression for this sample

value is given below in Eq. (6.24).

6.3.2 Fully-computed teeth aremoved to the deterministic range
Remembering we store eI , given the �rst tooth Tt that contains an unknown eI , the
deterministic range extends to all Tp<t. This makes Tt the �rst non-deterministic tooth.
The number or generators in the deterministic range, therefore, is function of a tooth
index t, and noted n0(t), as seen in �gure 6.7

Figure 6.7: Boundaries of a tooth index-wise and probability-wise

Comb values We can write the expression of Bt(u) the sample value associated
with a comb. It is function of a random number u ∈ [0, 1)R and t the index of the �rst
non-deterministic tooth.

Bt(u) = WT

Nteeth−1

∑
i=t−1

ey(u+i)

wy(u+i)
(6.24)

y(x) = w[u0 + WT × x, W] (6.25)

An illustrative example is given as �gure 6.8.

Estimation of EPT2 After drawing n random numbers forming the set {U}, and
given Tt the �rst non-deterministic tooth, EPT2 can be estimated as

EPT2 =
n0(t)

∑
I=1

eI +
St

n
± err (6.26)
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Figure 6.8: Illustrative example of drawing n = 2 combs a and b. Contributions that have been computed
are greyed. T1 has been fully computed and is thus moved toDD . The �rst non-deterministic/not fully-
computed tooth is Tt=2. ED = e1 + e2 + e3, Bt(a) = WT

(
e6
w6

+ e10
w10

)
; Bt(b) = WT

(
e6
w6

+ e11
w11

)
,

ES = Bt(a)+Bt(b)
n

where the error is given by

err =

√
S(2)

t − St
2

n− 1
(6.27)

St = ∑
u∈{U}

Bt(u) S(2)
t = ∑

u∈{U}
Bt(u)2 (6.28)

6.4 Technical considerations

6.4.1 Point of the initial deterministic part
The initial deterministic range T0 is a technical constraint. Because generators are
sorted with decreasing p(eI), it is guaranteed that |Tt>t′ | ≥ |Tt′ 6=0| − 1 with |Tt| the
cardinality of Tt. For each comb, we draw a sample in each tooth, and when a tooth
is entirely computed, it is moved to DD. Thus, it is immediately obvious that a tooth
containing a single generator makes no sense, as it will be instantly moved to DD ; it
can as well be considered part of it. Because it is common practice to require at least
30 samples for the distribution of the average to become close enough to a Gaussian
distribution,[63] we can go further and consider that a tooth with fewer than 5-10
generators will be moved to DD too fast to be of real interest. Because the �rst c2

I are
usually disproportionately large, it is not possible to �t that many in a tooth. Therefore
they are immediately considered part of DD.
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6.4.2 Desired vs e�ective distribution function
We have de�ned all teeth (except the special T0) as sharing the same total weight WT .
This is a constraint on our desired distribution function p(eI) = c2

I that will lead to
the e�ective distribution function wI .

We are sampling comb values, but we have de�ned p(eI) a distribution function
for eI . Since we impose that the same number of eI are drawn in each tooth — one
per comb — the relative weight of teeth becomes irrelevant, and we e�ectively give all
teeth the same weight

WT =
1− u0

Nteeth
(6.29)

in the Monte-Carlo scheme. Therefore, the e�ective weight given to I ∈ Tt is

wI∈Tt = WT ×
p(eI)

∑J∈Tt p(eJ)
(6.30)

To leave the distribution function unaltered, we need all teeth to actually weigh
WT

∑
J∈Tt

p(eJ) = WT. (6.31)

Clearly this is not going to be the case for any distribution function p(eI). Schemat-
ically, as seen in �gure 6.9, it would require the boundary between two teeth to exactly
match the boundary between two generators. It is possible to arti�cially split in two
a generator to get a matching boundary, but this adds some complexity in the imple-
mentation.

We have enforced that all teeth contain at least 5− 10 generators and they usually
contain a lot more, up to hundreds of thousands. Therefore, a simpler solution is to
“round” the teeth boundaries to the eI thresholds directly above, which will result in
teeth with weights close to WT , and thus the e�ective distribution function will be little
di�erent from the desired one. Since our distribution function is an extremely rough
estimation of eI , this is unlikely to cause any signi�cant change in the convergence
rate.

Essentially, we will use p(eI) only to de�ne the Tt sets, then use w as the actual
distribution function. This gives us, by de�nition, teeth weighing exactly WT . This is
illustrated in �gure 6.9.

6.4.3 Tooth �lling
This is an empirical mechanism to balance the stochastic and deterministic aspect of
this method. For a tooth containing n generators of equal probability, full computation
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Figure 6.9: Modifying p(eI) such that the boundaries of the teeth match with the boundaries of the
generators, and so as to satisfy ∑I∈Tt 6=0

wI = WT .

is achieved after on average
n−1

∑
i=0

n
n− i

(6.32)

combs are drawn. Thus, teeth containing thousands of determinants are very hard
to move to DD. A tooth containing 10 000 generators with a single non-computed
contribution only needs that particular generator to be drawn in order to be moved
to DD, but it will take on average 10 000 more combs to be drawn until this happens
by chance. With the non-uniform sampling, the situation is even worse. A convenient
way to avoid this frustrating situation is, every time a comb is drawn, to additionally
compute the �rst non-computed contribution of the whole space. This ensures smooth
�lling of teeth, and that that the full deterministic computation will be achieved before
Ngen combs are drawn.

6.4.4 Comb drawing order
It must be noted that combs can only be taken into account in an initially de�ned ran-
dom order (that is, the order of u[i]). It can happen that a comb becomes computable
as its eI are already computed, even though it appears �rst later down the list. Taking
it into account would introduce a bias, as the subset of “computable combs” is biased
toward the presence certain generators — those for which the contributions were com-
puted — and thus isn’t a random set of combs.
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6.5 Implementation

6.5.1 Inverse Transform Sampling
The algorithm to �nd a generator index associated with drawing u in with a distribu-
tion function w is shown as algorithm 19.

1 Function FIND_SAMPLE(u,W):
Data: 0 ≤ u < 1
Data: W �oat array of size N with W[0] = 0, W[N] = 1, W[n + 1] > W[n]
Result: Returns i so that W[i− 1] ≤ u < W[i]

2 /* The result must be in the range [l, r]Z. We set them for
the most general case. */

3 l ← 0 ;
4 r ← N ;
5 while r− l > 1 do
6 i← b(r + l)/2c ;
7 if W[i] < u then
8 l ← i ;
9 else

10 r ← i ;
11 end
12 end
13 return r ;
Algorithm 19: Finds generator index associated with drawing random value u
in a cumulative probability distribution W

6.5.2 Building teeth

Input
• p(eI): The desired distribution function, which we chose to be c2

I .
• Nteeth: A desired number of teeth
• minDetInT1 > 1: A desired minimal number of generators in the �rst

tooth. All subsequent teeth are guaranteed to contain minDetInT1− 1 gen-
erators.

Output
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• wI : The e�ective distribution function
• n0(t): An array of size Nteeth + 1 so that n0(t) is the number of samples in
DD with Tt the �rst non-deterministic tooth. For algorithmic convenience,
n0(Nteeth + 1) = Ngen.

There is no trivial way to ensure teeth building will succeed with a given set of
parameters. With n0(1) the size of the initial deterministic set T0, teeth building is
sure to fail if

Ngen − n0(1) < (minDetInT1− 1)× Nteeth + 1 (6.33)
However, the opposite doesn’t guarantee success. Because samples are sorted with
decreasing p(eI), each tooth is guaranteed to contain at least minDetInT1− 1 samples,
so building will success if |T1| ≥ minDetInT1. Relying on the fact that relative values
of p(eI) get closer and closer, we increment n0(1) until either the �rst tooth contains
minDetInT1 samples, or the impossibility condition is reached. If teeth building fails,
we retry will Nteeth− 1 teeth (build always succeeds with Nteeth = 1). Then, n0(t) and
the e�ective distribution function wI can be fully computed. Teeth building is show as
algorithms 20 and 21.

6.5.3 Building the task queue
Using memoization adds di�culties for the parallel implementation. In a standard
Monte Carlo parallel implementation, all the CPU cores would repeatedly do the fol-
lowing independently: draw a random number, compute the associated eI and send the
result to the master process. The naive implementation of memoization would allocate
a local memo array on each compute node, with shared memory. This would require
to have locks in the write access to the memo array, and multiple contributions would
be computed independently on di�erent nodes, as the memo array would be local.

To avoid these issues while still conserving the bene�ts of memoization, we have
chosen that only the master process performs the Monte Carlo sampling. The slave
processes help by computing the contributions eI . This is realized as follows. The
master process draws combs, and each time a generator is drawn for the �rst time, it
is appended to the task queue as a new task to be computed. When the results of the
tasks are transmitted back, the master process is able to compute the running average
and the error bar by identifying which combs were computed. With this scheme, each
contribution eI is computed at most once and all the CPU cores can work indepen-
dently.

Because of the tooth �lling mechanism, we know we will need at most Ngen combs.

• Q: is the task queue, Q[I] the index of the Ith sample eI that must be computed.

• d: keeps track of the computed samples. d[I] = TRUE i� eI has already been
computed.
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Data: p(eI), Nteeth, minDetInT1 as previously described
Result: n0(1), u0, WT

1 PI ← ∑J≤I p(eJ) ;
2 n0(1)← 0 ;
3 while do
4 u0 ← P[n0(1)];
5 r ← P[n0(1) + minDetInT1] ;
6 WT ← 1−u0

Nteeth
;

7 if WT ≥ r− u0 then
8 break loop;
9 end

10 n0(1)← n0(1) + 1 ;
11 if Ngen − n0(1) < (minDetInT1− 1)× Nteeth then
12 /* Cannot compute with those parameters */
13 Try with fewer teeth. ;
14 end
15 end
16 for t← 2, Nteeth do
17 r ← u0 + WT × (t− 1) ;
18 n0(t)← FIND_SAMPLE(r, P) ;
19 end
20 /* For convenience */
21 n0(Nteeth + 1)← Ngen ;

Algorithm 20: Compute teeth weights and boundaries

Data: p(eI), n0, WT
Result: wi

1 PI ← ∑J≤I p(eJ) ;
2 wI≤n0(1) ← p

(
eI≤n0(1)

)
;

3 for t← 1, Nteeth do
4 tooth_width← Pn0(t+1) − Pn0(t) ;
5 for I ← n0(t) + 1, n0(t + 1) do
6 wI ← p(eI)× WT

tooth_width ;
7 end
8 end

Algorithm 21: Compute e�ective distribution function
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• NQ: is the number of tasks currently created. When the task queue is fully
computed NQ = Ngen.

• Nc: is the number of combs currently drawn.

• R: is an array of integer size Ngen, keeping track of available combs at any point
of the computation. The collector node checks R[j] when the �rst j tasks have
been computed (for all j with increasing order). If R[j] = c 6= 0, all samples for
comb c have just become available.

Algorithm 22 shows the computation of the task queue.

1 /* See section 6.5.3 for variables description */
2 R← array of size Ngen initialized to 0 ;
3 Nc ← 0 ;
4 NQ ← n0(1) ;
5 for I ← 1, n0(1) do
6 d[I]← TRUE ;
7 Q[I]← I ;
8 end
9 /* Ngen is an upper bound of the maximum number of combs. */

10 for i← 1, Ngen do
11 u[i]← random value in [0, 1)R ;
12 end
13 F ← 0 ;
14 while NQ < Ngen do
15 ADD_COMB shown as algorithm 23;
16 R[NQ]← Nc ;
17 FILL_TOOTH shown as algorithm 24 ;
18 end
19 /* For convenience, pretend the last comb is available when

the last task is done (last task may be a tooth filling).
*/

20 if Ngen > 1 then
21 R[NQ − 1]← 0 ;
22 R[NQ]← Nc ;
23 end

Algorithm 22: Building the task queue.
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Data: Nc, u[Nc], F, d, NQ, Q as in the scope of the calling function
Data: M̃ as in the scope of the calling function if de�ned, otherwise ignored

1 Nc ← Nc + 1 ;
2 for t← 0, Nteeth − 1 do
3 v← u0 + WT × (t + u[Nc]) ;
4 i← FIND_SAMPLE(v, W) ;
5 M̃i ← M̃i + 1 ;
6 if not d[i] then
7 NQ ← NQ + 1 ;
8 Q[NQ]← i ;
9 d[i]← TRUE ;

10 end
11 end

Algorithm 23: ADD_COMB, called by algorithm 22.

Data: F,d,NQ,Q as in the scope of the calling function
1 while F < Ngen do
2 F ← F + 1 ;
3 if not d[F] then
4 NQ ← NQ + 1 ;
5 Q[NQ]← F ;
6 d[F]← TRUE ;
7 break ;
8 end
9 end

Algorithm 24: FILL_TOOTH, called in algorithm 22.
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6.5.4 Computing the average and error
The algorithm for the master thread is shown as algorithm 25. The slave threads take
a generator and a “fragment” index, and returns the result to the master thread.
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1 n← 1 ;
2 t← 0 ;
3 U ← 0 ;
4 f integer array of size Ngen initialized with F the fragmentation. ;
5 d logical array of size Ngen + 1 initialized with FALSE ;
6 S and S(2) �oat arrays size Nteeth + 1 initialized with 0 ;
7 error← 0 ;
8 while n ≤ Ngen do
9 if f [Q[n]] = 0 then

10 d[Q[n]]← TRUE ;
11 while d[U + 1] do
12 U ← U + 1 ;
13 end
14 /* Short-circuit boolean evaluation is required to

prevent out of bound access to n0 */
15 while t ≤ Nteeth ∧U ≥ n0(t + 1) do
16 t← t + 1 ;
17 E0 ← ∑I<n0(t) eI ;
18 end
19 if R[n] 6= 0 then
20 c← R[n] ;
21 /* Updating S and S(2) is costly if done naively */
22 S∗ ← S∗ + B∗(u[c]) ;
23 S(2)

∗ ← S(2)
∗ + B∗(u[c])2 ;

24 E← E0 + St/c ;
25 if c>1 then

26 error←
√(

S(2)
t − St

2
)
(c− 1)−1 ;

27 exit on acceptable error ;
28 end
29 end
30 n← n + 1 ;
31 else
32 retrieve I and eI ;
33 store eI ;
34 f [I]← f [I]− 1 ;
35 end
36 end
37 /* Estimated energy E± error */

Algorithm 25: Master node in EPT2 computation

95



1 /* Done naively, updating S∗ ← S∗ + B∗(u) and S(2)
∗ ← S(2)

∗ + B∗(u)2

scales as O(Nteeth
2 log Ngen). */

2 x ← 0 ;
3 for t← Nteeth, 1 by −1 do
4 I ← FIND_SAMPLE(u0 + WT × (u + t− 1), W) ;
5 x ← x + WT × eI

wI
;

6 St ← St + x ;
7 S(2)

t ← S(2)
t + x2 ;

8 end

Algorithm 26: Update S and S(2) of algorithm 25.
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6.6 Hybrid stochastic-deterministic calculation of the
second-order perturbative contribution of mul-
tireference perturbation theory
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A hybrid stochastic-deterministic approach for computing the second-order perturbative contribution
E(2) within multireference perturbation theory (MRPT) is presented. The idea at the heart of our
hybrid scheme—based on a reformulation of E(2) as a sum of elementary contributions associated
with each determinant of the MR wave function—is to split E(2) into a stochastic and a deterministic
part. During the simulation, the stochastic part is gradually reduced by dynamically increasing the
deterministic part until one reaches the desired accuracy. In sharp contrast with a purely stochastic
Monte Carlo scheme where the error decreases indefinitely as t�1/2 (where t is the computational
time), the statistical error in our hybrid algorithm displays a polynomial decay ∼t−n with n = 3–4
in the examples considered here. If desired, the calculation can be carried on until the stochastic
part entirely vanishes. In that case, the exact result is obtained with no error bar and no noticeable
computational overhead compared to the fully deterministic calculation. The method is illustrated
on the F2 and Cr2 molecules. Even for the largest case corresponding to the Cr2 molecule treated
with the cc-pVQZ basis set, very accurate results are obtained for E(2) for an active space of (28e,
176o) and a MR wave function including up to 2 × 107 determinants. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4992127]

I. INTRODUCTION

Multireference (MR) approaches are based upon the dis-
tinction between non-dynamical (or static) and dynamical
correlation effects. Though such a clear-cut distinction is ques-
tionable, it is convenient to discriminate between the so-called
static correlation effects emerging whenever the description
of the molecular system using a single configuration breaks
down (excited-states, transition-metal compounds, systems far
from their equilibrium geometry, etc.)1 and the dynamical
correlation effects resulting from the short-range part of the
electron-electron repulsion.2

To quantitatively establish this distinction, the Hamilto-
nian is decomposed as

Ĥ = Ĥ (0) + V̂ , (1)

where the zeroth-order Hamiltonian Ĥ (0) is chosen in con-
junction with an MR wave function including the most chem-
ically relevant configurations at the origin of static correlation
effects, and

V̂ = Ĥ − Ĥ (0) (2)

is the residual part describing the bulk of dynamical correlation
effects. The plethora of MR methods found in the literature
results from the large freedom in choosing Ĥ (0), and the fact
that V̂ may or may not be treated perturbatively. Among the
non-perturbative approaches, let us cite the two most common
ones, namely, the MR configuration interaction (MRCI)1,3,4

and the MR coupled cluster (MRCC)5–8 approaches. However,

a)Author to whom correspondence should be addressed: scemama@irsamc.
ups-tlse.fr

because of their high computational cost, these methods are
usually limited to systems of moderate size.

To overcome the computational burden associated with
these methods—yet still capturing the main physical effects—
a natural idea is to treat the potential as a perturbation, enter-
ing the realm of MR perturbation theories (MRPTs). Sev-
eral flavors of MRPT exist depending on the choice of Ĥ (0)

(Epstein-Nesbet decomposition,9,10 Dyall Hamiltonian,11,12

Fink’s partitioning,13,14 etc.). Among the most commonly
used approaches, we have the CASPT215,16 and NEVPT211,12

methods. Regarding the construction of the zeroth-order
part, CASSCF-type approaches are the most widely used
schemes,17–19 but other methods, such as Complete Active
Space Configuration Interaction (CASCI), selected CI (see
Refs. 20 and 21 and the references therein), Full Configu-
ration Interaction Quantum Monte Carlo (FCIQMC),22–24 or
DMRG-type approaches25–27 can also be employed.

In this work, we shall consider MRPTs limited to the
second order in perturbation (MRPT2).15 We address the
important problem of calculating efficiently the second-order
perturbative contribution E(2) in situations where standard cal-
culations become challenging. Here, we suppose that the MR
wave function has already been constructed by any method of
choice.

Although the present method can be easily generalized
to any externally decontracted MRPT approach (such as the
recently introduced JM-MRPT2 method28), for the sake of
simplicity, we shall restrict ourselves here to MR Epstein-
Nesbet perturbation theory. Extension to externally contracted
methods, such as CASPT2 or NEVPT2, is less obvious—
although not impossible—since the excited contracted wave
functions are non-orthogonal.

0021-9606/2017/147(3)/034101/9/$30.00 147, 034101-1 Published by AIP Publishing.
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The computational cost of MRPT2 can rapidly become
unbearable when the number of electrons Nel and the number
of one-electron basis functions Nbas become large. The cost is
indeed proportional to the number of reference determinants
Ndet times the total number of singly and doubly excited deter-
minants (scaling as N2

elN
2
bas). Because our main goal is to treat

large, chemically relevant systems, the development of fast
and accurate schemes for computing E(2) becomes paramount.
Of course, in actual calculations, a trade-off must be found
between the price to pay to build the MR wave function and
the effort needed to evaluate E(2). Increasing Ndet (i.e., improv-
ing the MR wave function) may appear as the natural thing to
do as the magnitude of E(2) decreases and the contribution of
the neglected higher orders is made smaller. However, its com-
putational price (proportional to Ndet) increases stiffly, and the
calculation becomes rapidly unfeasible. Of course, this bal-
ance is strongly dependent on the method used to generate the
MR wave function and on the ability to compute rapidly and
accurately E(2).

In this work, we present a simple and efficient Monte
Carlo (MC) method for computing the second-order perturba-
tive contribution E(2). For all the systems reported here, the
reference space is constructed using the Configuration Inter-
action using a Perturbative Selection done Iteratively (CIPSI)
method,20,21,29 a selected CI approach where important deter-
minants are selected perturbatively. However, other variants
of selected CI approaches or any other method for construct-
ing the reference wave function may, of course, be used. Note
that, in this study, the reported wall-clock times only refer to
the computation of E(2), i.e., they do not take into account the
preliminary calculation of the reference wave function.

A natural idea to evaluate E(2) with some targeted accuracy
is to truncate the perturbational sum over excited determinants.
However, since all the terms of the second-order sum have the
same (negative) sign, the truncation will inevitably introduce
a bias which is difficult to control. A way to circumvent this
problem is to resort to a stochastic sampling of the various
contributions. In this case, the systematic bias is removed at
the price of introducing a statistical error. The key property is
that this error can now be controlled, thanks to the central-limit
theorem. However, in practice, to make the statistical average
converge rapidly and to get statistical error small enough, care
has to be taken in the way the statistical estimator is built and
how the sampling is performed. The purpose of the present
work is to propose a practical solution to this problem.

Note that the proposal of computing stochastically per-
turbative contributions is not new. In the context of second-
order Møller-Plesset (MP2) theory, where the reference
Hamiltonian reduces to the Hartree-Fock Hamiltonian, Hirata
and coworkers have proposed a MC scheme for calculat-
ing the MP2 correlation energy.30,31 However, we point out
that this approach, based on a single-reference wave func-
tion, samples a 13-dimensional integral (in time and space)
and has no direct relation with the present method. In a
recent study, Sharma et al.32 address the very same prob-
lem of computing stochastically the second-order perturbative
contribution of Epstein-Nesbet MRPT. Similarly to what is
proposed here, E(2) is recast as a sum over contributions asso-
ciated with each reference determinant, and contributions are

stochastically sampled. However, the definition of the quan-
tities to be averaged and the way the sampling is performed
are totally different. Finally, let us mention the recent work of
Jeanmairet et al.33 addressing a similar problem in a differ-
ent way. Within the framework of the recently proposed linear
CC MRPT, it is shown that both the zeroth-order and first-
order wave functions can be sampled using a generalization of
the FCIQMC approach. Here also, E(2) can be expressed as a
stochastic average.

The present paper is organized as follows. In Sec.
II, we report notations and basic definitions for MRPT2.
Section III proposes an original reformulation of the second-
order contribution allowing an efficient MC sampling. The
expression of the MC estimator is given, and a hybrid
stochastic-deterministic approach greatly reducing the statisti-
cal fluctuations is presented. In Sec. IV, some illustrative appli-
cations for the F2 and Cr2 molecules are discussed. Finally,
some concluding remarks are given in Sec. V.

II. SECOND-ORDER MULTIREFERENCE
PERTURBATION THEORY
A. Second-order energy contribution

In MR Epstein-Nesbet perturbation theory, the reference
Hamiltonian is chosen to be

Ĥ (0) = E(0) |Ψ〉 〈Ψ| +
∑

α∈A
Hαα |α〉 〈α | , (3)

where Hαα = 〈α |Ĥ |α〉 and

|Ψ〉 =
∑

I ∈D
cI |I〉 (4)

is the reference wave function expressed as a sum of Ndet

determinants belonging to the reference space

D = {|I〉 , I = 1, . . . , Ndet} , (5)

and

E(0) =
〈Ψ|Ĥ |Ψ〉
〈Ψ|Ψ〉 (6)

is the corresponding (variational) energy. The sum in Eq. (3)
is over the set of determinants |α〉 that do not belong to D but
are connected to D via Ĥ,

A = {|α〉 < D ∧ (∃ |I〉 ∈ D | HαI , 0)} . (7)

Due to the two-body character of the interaction, the determi-
nants |α〉 are either singly or doubly excited with respect to (at
least) one reference determinant.34 However, several reference
determinants can be connected to the same |α〉.

Using such notations, the second-order perturbative con-
tribution is written as

E(2) =
∑

α∈A

|〈α |Ĥ |Ψ〉|2
∆Eα

, (8)

with ∆Eα = E(0) − Hαα.

B. Partition of A
The first step of the method—instrumental in the MC algo-

rithm efficiency—is the partition of A into Ndet subsets AI
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associated with each reference determinant |I〉,

A =
Ndet⋃

I=1

AI with AI ∩AJ = ∅ if I , J . (9)

To defineAI , the determinants |I〉 are first sorted in descending
order according to the weight

wI =
c2

I

〈Ψ|Ψ〉 . (10)

The partition ofA starts withA1 defined as the set of deter-
minants |α〉 ∈ A connected to the first reference determinant
(i.e., I = 1). Then,A2 is constructed as the set of determinants
of A connected to the determinant corresponding to I = 2,
but not belonging to A1. The process is carried on up to the
last determinant. This partition is schematically illustrated in
Fig. 1. Mathematically, it can be written as

AI = {|α〉 ∈ A | HαI , 0 ∧ (∀ J < I , |α〉 < AJ )} . (11)

Because of the way they are constructed, the size of AI is
expected to decrease rapidly as a function of I, except for a
possible transient regime for very small I.

A key point in the construction of the partition of A is to
avoid both the computation of redundant contributions and the
storage of unnecessary intermediates. First, when a determi-
nant |α〉 is generated by applying a single or double excitation
operator to a reference determinant |I〉, one has to check that
|α〉 does not belong to D. If the reference determinants are
stored in a hash table, the presence of |α〉 inD can be checked
in constant time. Next, one has to know if |α〉 has already been
generated via another reference determinant |J〉. To do so, one
must compute the number of holes and particles between |α〉
and each determinant preceding |I〉 in D. As soon as an exci-
tation degree lower than 3 is found, the search can be aborted
since the contribution is known to have been considered before.
In the worst-case scenario, this step scales as O (Ndet), and
the prefactor is very small since finding the excitation degree
between two determinants can be performed in less than 20
CPU cycles35 (comparable to a floating-point division). Fur-
thermore, the asymptotic scaling can be further reduced by

FIG. 1. Iterative construction of the subsets AI . Arrows indicate a non-zero
matrix element HIα = 〈I |Ĥ |α〉. Solid arrows: the determinant |α〉 is accepted
as a member of the subset AI . Dotted arrows: the determinant |α〉 already
belongs to a previous subset AJ<I and is therefore not incorporated into AI .

TABLE I. Convergence of E(2) for the Cr2 molecule with bond length 1.68
Å as a function of the wall-clock time for various basis sets (800 CPU cores).

Basis E(2) Wall-clock time

cc-pVDZ �0.068 3(1) 14 min
�0.068 36(1) 55 min
�0.068 361(1) 2.4 h
�0.068 360 604 3 h

cc-pVTZ �0.124 4(5) 19 min
�0.124 7(1) 58 min
�0.124 63(1) 3.5 h
�0.124 642(1) 8.7 h

. . . ∼15 h (estimated)

cc-pVQZ �0.155 8(5) 56 min
�0.155 9(1) 2.5 h
�0.155 95(1) 9.0 h
�0.155 952(1) 18.5 h

. . . ∼29 h (estimated)

sorting the determinants in groups with the same spin string.
Indeed, one only has to probe determinants |J〉 that are no
more than quadruply excited with respect to |I〉, and if the
search is restricted to groups with the same spin-up string, the
asymptotic scaling reduces to O

(√
Ndet

)
. To provide a quan-

titative illustration of the computational effort associated with
the construction of the partitioning, using 2 × 107 determi-
nants (as in the case of Cr2 presented below), this preliminary
step is negligible: on a single 2.7 GHz core, the calculation
takes 20 cycles × N3/2

det /(2.7 × 109 cycles/s) ∼ 663 s (CPU
time), while the total execution time (wall-clock time) of the
entire run ranges from 14 min to 18.5 h using 800 cores (see
Table I).

C. Partition of E (2)

Thanks to the partition of A [see Eq. (11)], the sum (8)
can be decomposed into a sum over the reference determinants
|I〉,

E(2) =

Ndet∑

I=1

eI , (12)

where

eI =
∑

α∈AI

|〈α |Ĥ |Ψ〉|2
∆Eα

. (13)

Moreover, noticing that by construction, the determinants |α〉
belonging to AI are not connected to the part of the reference
function expanded over the preceding reference determinants;
we have

eI =
∑

α∈AI

|〈α |Ĥ |ΨI 〉|2
∆Eα

, (14)

where

|ΨI 〉 =
Ndet∑

J=I

cJ |J〉 (15)

is a truncated reference wave function. Our final working
expression for the second-order contribution E(2) is thus
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FIG. 2. �eI as a function of I for the first 20 000 determinants selected by the
CIPSI method for the F2 molecule at equilibrium geometry with the cc-pVQZ
basis set. The two sets of data are obtained by averaging either by groups of
20 (point cloud) or 100 (solid line) values.

written as

E(2) =

Ndet∑

I=1

eI =

Ndet∑

I=1

∑

α∈AI

|〈α |Ĥ |ΨI 〉|2
∆Eα

. (16)

A key property at the origin of the efficiency of the MC
simulations presented below is that eI ’s take their largest values
at very small I. Then, they decay very rapidly as I increases.

This important property is illustrated in Fig. 2. The data
have been obtained for the F2 molecule at the equilibrium
bond length of RF−F = 1.4119 Å using Dunning’s cc-pVQZ
basis set.36 The multideterminant reference space is built by
selecting determinants using the CIPSI algorithm. Figure 2
displays eI ’s for the first 20 000 selected determinants. As
one can see, eI ’s decay very rapidly with I. Of course, at the
scale of individual determinants, there is no guarantee of a
strictly monotonic decay, and it is indeed what we observe. By
averaging groups of successive eI ’s, the curve can be smoothed
out. The two data sets presented in Fig. 2 have been obtained
by averaging either by groups of 20 (point cloud) or 100 (solid
line) values.

It is important to note that the rapid decay of eI ’s is a direct
consequence of the way we have chosen to decompose A. To
be more precise, we note that in Eq. (14), the decay has three
different origins:

• the number of determinants involved in the sum over
|α〉 decreases as a function of I;

• the excitation energies ∆Eα increase with I;
• the norm of the truncated wave function ΨI decreases

rapidly (as c2
I ) when I increases.

In addition, as a consequence of the first point, we note that
the computation of eI becomes faster when I increases.

III. MONTE CARLO METHOD
A. Monte Carlo estimator

To get an expression of E(2) suitable for MC simulations,
the second-order contribution is recast as

E(2) =

Ndet∑

I=1

pI

(
eI

pI

)
(17)

and is thus rewritten as the following MC estimator:

E(2) =

〈
eI

pI

〉

pI

. (18)

Here, pI is an arbitrary probability distribution. The optimal
choice for pI is given by the zero-variance condition, i.e.,

popt
I =

eI

E(2)
. (19)

Note that eI and E(2) being both negative, the probability
distribution pI is positive, as it should be.

To build a reasonable approximation of pI , we note that
the magnitude of eI , as expressed in Eq. (14), is essentially
given by the norm of the truncated wave function ΨI [see
Eq. (15)]. Thus, a natural choice for the probability distribution
is

pI =
〈ΨI |ΨI 〉∑Ndet

J=1〈ΨJ |ΨJ〉
=

∑Ndet
J=I c2

J∑Ndet
J=1

∑Ndet
K=J c2

K

. (20)

In our simulations, we have observed that summing totally or
partially the squared coefficients in the numerator does not
change significantly the statistical fluctuations. As a conse-
quence, we restrict the summation in Eq. (20) to the leading
term, i.e.,

pI =
c2

I∑Ndet
J=1 c2

J

= wI . (21)

Let us emphasize that performing a MC simulation in the
eI space is highly beneficial since the number of eI is always
small enough to make them all fit in memory. Hence, one can
follow the so-called lazy evaluation strategy:37 the value of eI

is computed only once when needed for the first time, and its
value is then stored. If the same eI is requested later, the stored
value will be returned.

B. Improved Monte Carlo sampling

The stochastic calculation of E(2), Eq. (18), can be done
in a standard way by sampling the probability distribution and
averaging the successive values of eI /pI . In practice, the sam-
pling can be realized by drawing, at each MC step, a uniform
random number u ∈ [0, 1] and selecting the determinant |I〉
verifying

R(I − 1) ≤ u ≤ R(I), (22)

where R is the cumulative distribution function of the proba-
bility distribution defined as

R(I) =
I∑

J=1

pJ , (23)

with R(0) = 0.
At this stage, it is useful to take advantage of the fact that,

thanks to the way eI ’s have been constructed, the quantity to
be averaged, eI /pI , is a slowly varying function of I (providing
that the small-scale fluctuations present at the level of indi-
vidual determinants have been averaged out). This property,
which is well illustrated by Fig. 2, is shared by pI ∼ c2

I , hence
by the ratio eI /pI . Thus, an efficient way to reduce the statistical
fluctuations consists in sampling piece-wiselyD by decompos-
ing it into subdomains where the integrand is a slowly varying
function [see the justification of this statement after Eq. (30)].
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To implement this idea, the interval [0, 1] is divided into M
equally spaced intervalsUk and a “comb” of correlated random
numbers

uk =
k − 1 + u

M
, for k = 1, . . . , M, (24)

covering uniformly [0, 1] is created (where u is a single uniform
random number). At each MC step, a M-tuple of determinants
(I1, I2, . . . , IM ) verifying

R(Ik − 1) ≤ uk ≤ R(Ik), for k = 1, . . . , M (25)

is drawn.
Defining Dk as the subset of determinants |Ik〉 satisfying

R(Ik) ∈ Uk , we introduce the following partition:

D =
M⋃

k=1

Dk with Dk ∩Dl = ∅, ∀ k , l (26)

and express E(2) as a sum of M contributions associated with
each Dk ,

E(2) =

M∑

k=1

∑

Ik ∈Dk

eIk . (27)

Using the process described above [Eqs. (24) and (25)], the
second-order energy can be rewritten as the following MC
estimator:

E(2) =

〈
1
M

M∑

k=1

eIk

pIk

〉

p(I1,...,IM )

, (28)

where p(I1, . . . , IM ) denotes the normalized probability dis-
tribution corresponding to Eqs. (24) and (25). Equation (28)
follows from the fact that, by construction, pIk is the kth
marginal distribution of p(I1, . . . , IM ),

∑

I1

· · ·
∑

Ik−1

∑

Ik+1

· · ·
∑

IM

p(I1, . . . , IM ) = MpIk , (29)

with ∑

Ik ∈Dk

pIk =
1
M

. (30)

By drawing determinants on separate subsetsDk , the sum to be
averaged in Eq. (28) is expected to fluctuate less than the very
same sum computed by independently drawing determinants
overD. This remarkable property can be explained as follows.
For large M, the fluctuations of the sum based on independent
drawings behave as in any MC scheme, i.e., as M�1/2. Using a
comb covering evenly (with weight pI ) the determinant space,
the situation is different since the sum can now be seen as a
Riemann sum over D with a residual error behaving as M�1.
As a consequence, the overall reduction in statistical noise
resulting from the use of the comb is expected to be of the
order of

√
M. We emphasize that such an attractive feature is

only observed because eI /pI is a slowly varying function of
I (as mentioned above). In the opposite case, the gain would
vanish. In the application on the F2 molecule presented below
(see Fig. 5), the numerical results confirm this: a decrease of
about one order of magnitude in statistical error is obtained
when using M = 100. Note that using a comb reduces the
estimator’s variance but does not change the typical inverse
square root behavior of the statistical error with respect to the
number of MC steps.

Note that Eq. (26) is actually not correct when some deter-
minants (first and/or last determinant of a given subset) belong
to more than one subset. Thus, special care has to be taken for
determinants at the boundary of two subsets, but this difficulty
can be easily circumvented by formally duplicating each of
these determinants into copies with suitable weights.

C. Hybrid stochastic-deterministic scheme

In practice, because the first few determinants are respon-
sible for the most significant contribution in Eq. (17), it is
advantageous not to sample the entire reference space but
to remove from the stochastic sampling the leading determi-
nants. Consequently, E(2) is split into a deterministic E(2)

D and

a stochastic E(2)
S component, such as

E(2) = E(2)
D + E(2)

S

=
∑

J∈DD

eJ +

〈
1
M

M∑

k=1

eIk

pIk

〉

p(I1,...,IM )

,
(31)

whereDD is the set of determinants in the deterministic space,
and DS = D \DD is its stochastic counterpart.

At a given point of the simulation, some determinants have
been drawn, and some have not. If we keep track of the list of
the drawn determinants, we can check periodically, for each
Dk , whether or not all elements have been drawn at least once.
If that is the case, the full set of determinants is moved to DD

and the corresponding contribution
∑

Ik
eIk is added to E(2)

D . The
statistical average and error bar are then updated accordingly.
The expression of the E(2) estimator is now time-dependent
and, at the mth MC step, the deterministic part is given by

E(2)
D (m) =

M∑

k=1

Θk(m)
∑

Ik

eIk , (32)

where

Θk(m) =


1, if Dk ⊂ DD at step m,

0, otherwise.
(33)

On the other hand, the stochastic part is now given by

E(2)
S (m) =

1
M

M∑

k=1

[1 − Θk(m)]
∑

Ik ∈Dk

w(m)
Ik

eIk

pIk

, (34)

where

w(m)
Ik
=

n(m)
Ik∑

Jk ∈Dk
n(m)

Jk

, (35)

and n(m)
Ik

denotes the number of times the determinant Ik has
been drawn at iteration m.

If desired, the calculation can be carried on until the
stochastic part entirely vanishes. In that case, all the deter-
minants are inDD, and the exact value of E(2) is obtained with
zero statistical fluctuations.

Finally, to make sure that a given set Dk does not stay in
the stochastic part because a very small number of its determi-
nants have not been drawn, we have implemented an additional
step as follows. At each MC iteration (where a new comb is
created), the contribution eI of the first not-yet-sampled deter-
minant (i.e., corresponding to the smallest I value in the sorted
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determinant list) is calculated and stored. By doing this, the
convergence of the hybrid stochastic-deterministic estimator
is significantly improved. Moreover, after Ndet MC steps, it is
now guaranteed that the exact deterministic value is reached.

D. Upper bound on the computational time

In the present method, the vast majority of the compu-
tational time is spent calculating eI ’s. A crucial point which
makes the algorithm particularly efficient is the lazy evaluation
of these quantities. This implies that, in practice, the stochastic
calculation will never be longer than the time needed to com-
pute all the individual eI ’s (i.e., the time necessary to complete
the fully deterministic calculation) due to the negligible time
required by the MC sampling (drawing 100 × 106 random
numbers takes less than 3 s on a single CPU core).

Finally, it is noteworthy that the final expression of E(2)

can be very easily decomposed into (strictly) independent cal-
culations. The algorithm presented here is thus embarrassingly
parallel (see Sec. IV C).

IV. NUMERICAL TESTS

The present algorithm has been implemented in our Quan-
tum Package code.38 The perturbatively selected CI algorithm
CIPSI,20,29 as described in Ref. 21, is used to build the multi-
determinant reference space. In all the calculations performed
in this section, we have chosen to use a comb with M = 100. All
the simulations were performed on the Curie supercomputer
(TGCC/CEA/GENCI) where each node is a dual socket Xeon
E5-2680 at 2.70 GHz with 64 GB of RAM, interconnected
with an Infiniband QDR network.

A. F2 molecule

As a first illustrative example, we consider the calculation
of E(2) for the F2 molecule in its 1Σ+

g electronic ground state
at equilibrium geometry. The two 1s core electrons are kept
frozen, and Dunning’s cc-pVQZ basis set is used. The Hilbert
space is built by distributing the 14 active electrons within the
108 non-frozen molecular orbitals for a total of more than 1020

determinants.
Despite the huge size of the Hilbert space, the selected CI

approach is able to reach the full CI (FCI) limit with a very
good accuracy. The convergence of the variational energy E(0)

and that of the total energy (given by the sum of the variational
and second-order contribution E(0) + E(2)) with respect to the

FIG. 3. F2 molecule at equilibrium geometry. Convergence of the variational
energy E(0) (red curve) as a function of the number of selected determinants
Ndet obtained with the CIPSI method and the cc-pVQZ basis set. The blue
curve is obtained by adding the second-order energy contribution E(2) to the
variational one E(0). The full CI (FCI) value (green curve) is reported as
a reference. The wall-clock time (in minutes) needed to compute E(2) for
various values of Ndet is also reported (black numbers underneath the blue
curve).

number of selected determinants are presented in Fig. 3. The
maximum number of determinants we have selected is 4×106.
For this value, E(0) is not converged but is already a reason-
able approximation to the FCI energy with an error of about
18 mEh. In sharp contrast, the total energy including the
second-order correction converges very rapidly: millihartree
accuracy is reached with about 2 × 106 determinants. For
Ndet = 4 × 106, the best value obtained is �199.3594 a.u.,
in quantitative agreement with the estimated FCI value of
�199.3598(2) a.u. obtained by Cleland et al. with FCIQMC.23

For this system and the maximum number of selected
determinants considered, it is actually possible to calculate
exactly E(2) by explicit evaluation of the entire sum (determin-
istic method). The corresponding wall-clock times (in minutes)
using 50 nodes (800 cores) are reported directly in Fig. 3. For
Ndet = 104, the calculation takes a few seconds, while for the
largest number of Ndet = 4 × 106 about 35 min are needed.

We now consider the hybrid stochastic-deterministic eval-
uation of E(2). The left graph of Fig. 4 shows the evolution of
E(2) as a function of the wall-clock time (in minutes). Data
are given for the cc-pVQZ basis and Ndet = 4 × 106. Simi-
lar curves are obtained with the two other basis sets. As one
can see, the rate of convergence of the error is striking, and
eventually, the exact value is obtained with very small fluctua-
tions. If chemical accuracy is targeted (error of roughly 1 mEh),

FIG. 4. Convergence of E(2) as a function of the wall-clock time for the F2 molecule (left) with Ndet = 4× 106 (cc-pVQZ basis set) and the Cr2 molecule (right)
with Ndet = 2 × 107 (cc-pVTZ basis set). Both graphs are obtained with 800 CPU cores. The grey line corresponds to the exact (deterministic) value for F2 and
to the value with the lowest statistical error for Cr2. The error bars correspond to one standard deviation.
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FIG. 5. Statistical error of E(2) as a function of the wall-
clock time for the F2 molecule obtained with the cc-pVQZ
basis and Ndet = 4 × 106 with different schemes.

3 min are needed using 800 cores. This value has to be com-
pared with the ∼35 min needed to evaluate the exact value (see
Fig. 3).

To have a better look at the fluctuations, the statistical
error as a function of the wall-clock time is reported in Fig. 5.
We have reported four curves to show the effects of the differ-
ent strategies used in our algorithm. The first one (in green)
is the curve one would typically obtain using a standard MC
algorithm where the contributions are always recomputed (no
lazy evaluation). Note that, for this particular curve, we have
not performed the calculation, but we have plotted an arbitrary
σ1/
√

t curve to illustrate its decay rate. The light blue curve is
obtained using the MC estimator proposed in Sec. III A. The
slope is steeper than that for the standard MC scheme, thanks
to the lazy evaluation strategy. The introduction of the comb
(Sec. III B) reduces the statistical error by an order of magni-
tude and produces the dark blue curve. Finally, incorporating
the hybrid deterministic/stochastic scheme (Sec. III C) yields
the red curve.

Quite remarkably, the overall convergence of the red curve
is extremely rapid. Because of the irregular convergence, it is
not easy to extract the exact mathematical form of the decay.
However, it is clear that a typical polynomial decay is observed.
Fitting the curve of the hybrid scheme gives a decrease of the
error bar between t�3.1 and t�3.6, which is significantly faster
than the t�1/2 behavior of the standard MC algorithm. Note also
that some discontinuities in the statistical error are regularly
observed. Such sudden drops occur each time a subset Dk is
entirely filled and its contribution is transferred to the deter-
ministic part. Comparison with the standard MC algorithm
illustrates that obtaining an arbitrary accuracy with a standard
MC sampling can rapidly become prohibitively expensive.
Most importantly, the wall-clock time would rapidly become
larger than the time required to compute exactly (i.e., deter-
ministically) E(2), which is not the case with the here-proposed
method.

B. Cr2 molecule

We now consider the challenging example of the Cr2

molecule in its 1Σ+
g ground state. The internuclear distance

is chosen to be close to its experimental equilibrium geome-
try, i.e., RCr−Cr = 1.68 Å. Full-valence calculations including
28 active electrons (two frozen neon cores) are performed.
The cc-pVDZ, TZ, and QZ basis sets39 are employed, and
the associated active spaces corresponding to (28e, 76o), (28e,
126o), and (28e, 176o) include more than 1029, 1036, and 1042

determinants, respectively. For all the basis sets, the molecular
orbitals (MOs) were obtained with the GAMESS40 program
using a CASSCF calculation with 12 electrons in 12 orbitals,
and 2 × 107 determinants were selected in the FCI space
with the CIPSI algorithm implemented in Quantum Package.
In the cc-pVQZ basis set, we had to remove the h func-
tions of the basis set since the version of GAMESS we used
(prior to 2013) does not handle the corresponding two-electron
integrals.

The right graph of Fig. 4 shows the convergence of E(2)

as a function of the wall-clock time for the cc-pVTZ basis set
and Ndet = 2 × 107. Again, similar curves are obtained with
the two other basis sets. Similarly to F2, the convergence is
remarkably fast with a steep decrease of the statistical error
with respect to the wall-clock time (for quantitative results,
see Table I). Note that the maximum energy range in the right
graph of Fig. 4 is only 0.35 mEh.

Table II reports the quantitative results obtained with the
three basis sets. One can observe that very accurate results for
E(2) can be obtained even with the largest QZ basis set. For
the three basis sets, the statistical error obtained is 10�6 Eh.
However, it is clear that in practical applications, we do not
need such high level of accuracy as the finite-size basis effects
as well as the high-order perturbative contributions are much
larger. If, more reasonably, we target an accuracy of about
0.1 mEh, we see in Table I that the wall-clock time needed is

TABLE II. Variational ground-state energy E(0) and second-order contribution E(2) of the Cr2 molecule with
bond length 1.68 Å computed with various basis sets. For all basis sets, the reference is composed of 2 × 107

determinants selected in the valence FCI space (28 electrons).

Reference Basis Active space E(0) E(2) E(0) + E(2)

CIPSI cc-pVDZ (28e, 76o) �2087.227 883 3 �0.068 334(1) �2087.296 217(1)
cc-pVTZ (28e, 126o) �2087.449 781 7 �0.124 676(1) �2087.574 423(1)
cc-pVQZ (28e, 176o) �2087.513 373 3 �0.155 957(1) �2087.669 330(1)
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FIG. 6. Parallel speedup of our implementation using 800, 4000, and 8000
cores. The reference is the 800-core run.

about 14 min, 1 h, and 2.5 h with 800 CPU cores for the DZ,
TZ, and QZ basis sets, respectively. Finally, we note that, in
contrast with F2, the absolute value of E(2) remains large even
when relatively large MR wave functions are employed. This
result clearly reflects the difficulty in treating accurately Cr2.
We postpone to a forthcoming paper the detailed analysis of
this system and the calculation of the entire potential energy
curve.

C. Parallel speedup

To measure the parallel speedup of the present imple-
mentation of our algorithm, we have measured the wall-clock
time needed to reach a target statistical error of 10�6 a.u. with
800, 4000, and 8000 cores (50, 250, and 500 nodes) using
the Cr2/cc-pVQZ wave function with Ndet = 2 × 107. The
speedup is calculated using the 800-core run as the reference,
and the results are shown in Fig. 6. Going from 800 to 4000
cores gives a speedup of 4.95, and the 8000-core run exhibits a
speedup of 9.82. These values are extremely close to the ideal
values of 5 and 10. Therefore, we believe that this method is
a good candidate for running on exascale machines in a near
future.

V. CONCLUSIONS

In this work, a hybrid stochastic-deterministic algorithm
to compute the second-order energy contribution E(2) within
the Epstein-Nesbet MRPT has been introduced. Two main
ideas are at the heart of the method. First, the reformulation of
the standard expression of E(2), Eq. (8), into Eq. (16). Thanks
to the unique property of the elementary contributions eI ; the
latter expression turns out to be particularly well-suited for
low-variance MC calculations. The second idea, which greatly
enhances the convergence of the calculation, is to decom-
pose E(2) as a sum of a deterministic and a stochastic part,
the deterministic part being dynamically updated during the
calculation.

We have observed that the size of the stochastic part (as
well as the statistical error) decays in time with a polynomial
behavior. If desired, the calculation can be carried on until the
stochastic part entirely vanishes. In that case, the exact (deter-
ministic) result is obtained with no error bar and no noticeable

computational overhead compared to the fully deterministic
calculation. Such a remarkable result is in sharp contrast with
standard MC calculations where the statistical error decreases
indefinitely as the inverse square root of the simulation
time.

The numerical applications presented for the F2 and Cr2

molecules illustrate the great efficiency of the method. The
largest calculation on Cr2 (cc-pVQZ basis set) has an active
space of (28e, 176o), corresponding to a Hilbert space con-
sisting of approximately 1042 determinants and a multirefer-
ence wave function containing 2 × 107 determinants. Even
in this extreme case, E(2) can easily be calculated with sub-
millihartree accuracy using a fully and massively parallel
version of the algorithm.

As a final comment, we would like to mention that,
although we have only considered two illustrative examples
in the present manuscript, our method has been shown to be
highly successful in all the cases we have considered.
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Chapter 7

Stochastic matrix dressing
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7.1 Principle of matrix dressing
So far we have used the second order perturbation to build a zeroth-order wave func-
tion |Ψ〉 using CISPI, and estimate its distance to the FCI energy with a stochastic
estimation of EPT2.

In both cases we have computed the interaction between |Ψ〉 and the external
space, but we have not let |Ψ〉 be revised under those interactions. This idea is based
on the so-called Bk approximation proposed by Gershgorn and Shavitt.[64]

This can be achieved using the intermediate Hamiltonian theory,[65] intermediate
Hamiltonians being a class of e�ective Hamiltonians[66] where not all roots are exact
eigenvalues of the full Hamiltonian. The principle is to build a so-called intermedi-
ate Hamiltonian H̃ which, when diagonalized, yields a wave function that takes into
account the e�ect of an external space on the internal space.

Sticking to the state-speci�c case, the general principle can be understood as fol-
lows. This formulation, as it is limited to the state-speci�c case, is somewhat di�erent
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and wishes to be more intuitive than the one presented in the article presented in sec-
tion 7.4. Fully taking into account the external space requires to solve

(
H(0) h
h† H(1)

)(
c
cα

)
= E

(
c
cα

)
(7.1)

with H(0) and H(1) the zeroth and �rst-order Hamiltonians, h the coupling term be-
tween zeroth and �rst order spaces, c the coe�cients for the zeroth-order space and
cα the coe�cients for the external space.

This diagonalization is normally not feasible due to the external space being too
large. However, if we are willing to neglect the external-to-external and internal-to-
external in�uences — in other words, if we freeze the external space — we can only
solve the eigenequations associated with internal determinants. As usual, associating
I and J to internal determinants and α to external ones, for line I we have

(
H(0)

I I − E
)

cI + ∑
J 6=I

cJ H(0)
I J + ∑

α

cαhIα = 0. (7.2)

Obviously, since we froze the external space, we need some way to estimate cα. In
the presented paper, we used a perturbative estimation consistently with what we used
in CIPSI and EPT2. Because of this, whenever c is revised, cα needs to be recomputed
as well. This makes Bk an iterative method.

Because the cα coe�cients are frozen, ∑α cαHIα is merely a constant added to the
eigenequation of line I. Renaming this term δI , we can rewrite Eq.(7.2) as

(
H(0)

I I − E +
δI

cI

)
cI + ∑

J 6=I
cJ H(0)

I J = 0. (7.3)

It appears solving this new system of linear equations is equivalent to diagonalizing

H̃ = H(0) + ∆ (7.4)

with ∆ a diagonal matrix {
∆I I =

δI
cI

∆I J = 0 if I 6= J.
(7.5)

Here H̃ is the intermediate Hamiltonian and ∆ the so-called dressing matrix. Con-
sequently H̃ may be referred to as a dressed Hamiltonian. Note that the dressing matrix
is diagonal because of an arbitrary rewriting of Eq. (7.2) into Eq. (7.3). We can actually
build ∆ in any way that ful�lls

∑
J

cJ∆I J = δI . (7.6)
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While the choice of which elements of ∆ are non-zero is arbitrary, it can be of
importance for numerical reasons (in addition to obvious storage reasons). However,
because we diagonalize H̃ using a Davidson diagonalization, this is of no concern to
us. Indeed, Davidson’s diagonalization only requires the knowledge of H̃c and of the
diagonal of H̃

H̃c = H(0) c + ∆ c. (7.7)
Because of Eq. (7.6), we have by construction

∆ c = δδδ (7.8)

with δδδ the vector (δ1, . . . , δNdet). Algorithmically, it boils down to computing δδδ, which
is more expensive to compute than the product H̃ U needed for Davidson’s diagonal-
ization. But unlike H̃ U which is too large to be stored, and needs to be re-computed
on the �y at each Davidson iteration, δδδ is �xed and can easily be stored.

An improved version to this original idea was proposed by Davidson and co-workers
under the name shifted-Bk ,[67, 68, 69, 70, 71, 72, 73] which is the one we implemented.
Details about this improvement and on how it can be generalized to a multi-state case
are available in the presented article (section 7.4).

7.2 Implementation

7.2.1 From EPT2 to matrix dressing
In some respect, computing the dressing matrix is akin to computing EPT2. The dress-
ing matrix can be decomposed as a sum of elementary dressing matrices δδδα, each one
associated with a particular |α〉, just like EPT2 is a sum of eα. It is possible to pack those
elementary matrices together like we packed |α〉 together for EPT2.

δδδI = ∑
α∈AI

δδδα (7.9)

δδδ = ∑
I

δδδI (7.10)

So as we only need H̃c for Davidson’s algorithm, the quantity we sample is

δδδI = ∆I c = ∑
α∈AI

δδδα c (7.11)

Thus, δδδI is a sum over external determinants, and requires to �nd connections be-
tween those determinants and the wave function. Presumably, the elementary dressing
vectors δδδI will have a norm decreasing like eI . Indeed,

eI =
c† ∆I c

c†c
= c†δδδI (7.12)
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Using the Cauchy–Schwarz inequality

eI ≤
√(

δδδ†
IδδδI
)
(c†c) ≤ ‖δδδI‖. (7.13)

With that in mind, is seems possible, theoretically, to generalize our hybrid stochastic-
deterministic PT2 for computing dressing vectors. However there are a few signi�cant
di�erences.

• We were estimating a scalar, now we are estimating a vector. How can we quickly
estimate the running error? To address this problem, we decided to compute the
statistical error associated with E∆, the energy contribution of ∆. Our dressed
matrix being H + ∆, the energy is

〈Ψ|Ĥ + ∆̂|Ψ〉
〈Ψ|Ψ〉 =

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 +

〈Ψ|∆̂|Ψ〉
〈Ψ|Ψ〉 = Evar + E∆ (7.14)

where E∆ is estimated the same way as EPT2 was, based on individual contribu-
tions eI (see eq. (7.12)).

• In both cases we have Ngen samples, however in the case of EPT2 each sample
is a scalar, here each sample is a vector of size Ndet. It is easy to store Ngen
scalars, not to store Ngen vectors of size Ndet. In addition, these vectors must
be transmitted from slave nodes to a master node, creating a potential network
bottleneck, scaling with Ndet.

• In the case of EPT2, each connection found only requires an increment of some
elements of P(Gpq). At no point two connections need to be known at the same
time. This is di�erent for methods implemented with matrix dressing. It is pos-
sible that one needs to know the detail of which internal determinants an |α〉
connects to, in order to be able to compute δδδα.

Implementationally speaking, just like the state-speci�c version requires comput-
ing a single δδδ vector, the multi-state version requires a δδδ(k) vector to be computed for
each desired state k. This, in principle, should come with minimal cost, since the loop
over states can be set as the innermost one.

In practice, since the exact computation of δδδ(k) is as expensive as that of EPT2, we
need to use the same hybrid stochastic-deterministic approach. Unfortunately, using
state-average coe�cients for the sampling did not yield satisfying results, so we have to
stick to state-speci�c sampling and thus compute each δδδ(k) individually. Therefore we
will ignore the state from now on. The multi-state Davidson diagonalization, however,
is done a single time per shifted-Bk iteration.
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7.2.2 Reduction of the memory bottleneck
The core idea to reduce the required storage is that, in a Monte-Carlo scheme, even an
“exotic” one like our hybrid approach, the estimated result has to be a linear combina-
tion of all samples. At any point m of the Monte-Carlo computation corresponding to
Mm combs having been drawn, we can write our estimated dressing vector δδδm as :

δδδm =
Ngen

∑
I=1

µm
I δδδI (7.15)

The values for µm
I have no dependence on those of δδδI . They only depend on what

samples have been drawn so far. Since we decide beforehand which combs are going
to be drawn, we can compute the µµµ vector for any point of the Monte-Carlo before
any sample has been computed. The values we chose for Mm act as predetermined
checkpoints.

They can be set at any arbitrary point, but they must be determined beforehand
and cannot be changed during the computation ; we will only be able to get results at
those points. For checkpoint m, we start with a zero-initialized vector for δδδm, and we
increment it each time an elementary vector δδδI is computed:

δδδm ← δδδm + µm
I δδδI . (7.16)

Once this has been done, δδδI can be discarded. Indeed, when checkpoint m is reached,
δδδm has its �nal value, as obviously µm

I = 0 for any δδδI sample that hasn’t yet been
drawn at checkpoint m. For convenience, some parameters can be de�ned as functions
of a checkpoint reached: ṫm, the �rst non-deterministic tooth when checkpoint m is
reached, and

ṅ0(m) = n0(ṫm), (7.17)

the size of the deterministic range when m is reached. µm
I is de�ned as follows

µm
I =

{
1 if I ≤ ṅ0(m)
WT×Mm,I
wI×Mm

if I > ṅ0(m)
(7.18)

with Mm,I the number of times generator I has been drawn at checkpoint m.
The memory cost for a checkpoint m is 2× Ndet �oats, corresponding to the stor-

age of µµµm and δδδm. This cost is small enough to allow setting up quite a few checkpoints.
However, in addition to this memory cost, comes some computational cost. If we set
up Ncp checkpoints, it implies each time a sample is computed, we will have, theoret-
ically, to increment Ncp vectors of size Ndet. For quicker tasks, this price may not be
negligible. It gets worse if, as was the case in our �rst implementation, a collector is in
charge of updating checkpoints for multiple slaves.
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We can drastically reduce the amount of writing required for each sample by rewrit-
ing δδδm. First, we de�ne δδδD,t as the total dressing contribution for tooth Tt

δδδD,t = ∑
I∈Tt

δδδI . (7.19)

We rewrite δδδm as

δδδm =
ṫm−1

∑
t=0

δδδD,t +
1

Mm
∑

I
γm

I δδδI . (7.20)

The second term being δδδm without its deterministic contribution, we can write, de�n-
ing γ0

I = 0 for convenience,

γm
I =

{
0 if I ≤ ṅ0(m) ∨m = 0
µm

I ×Mm =
WT×Mm,I

wI
if I > ṅ0(m) ∧m 6= 0

. (7.21)

We de�ne

δδδS,m = ∑
I
(γm

I − γm−1
I )δδδI , (7.22)

we can rewrite the second term of Eq. (7.20)

1
Mm

∑
I

γm
I δδδI =

1
Mm

m

∑
p=1

δδδS,p (7.23)

and write the �nal form or δδδm as

δδδm =
ṫm−1

∑
t=0

δδδD,t +
1

Mm

m

∑
p=1

δδδS,p. (7.24)

The vectors we need to store are δδδD,t and δδδS,m. Each time we compute an elemen-
tary dressing vector δδδI , the need for update goes as follows

• δδδD,t with I ∈ Tt. This is exactly one write.

• δδδS,m where γm
I − γm−1

I 6= 0. This is

– No write if generator |DI〉 is moved toDD in the same checkpoint it is �rst
drawn or computed for tooth �lling.

– Otherwise, one write per checkpoint in which I is drawn until the one
where it is moved to DD, inclusive.
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While this increases the theoretical maximum of writes to Ncp + 1 per sample,
it is much lower in practice.

For convenience we de�ne

µ̃m
I = γm

I − γm−1
I . (7.25)

The task queue is built similarly to the one for EPT2 computation, with some di�er-
ences.

• Mm,I are evaluated for the computation of µ̃m
I .

• Instead of R we evaluate R−1, based on indices of checkpoints rather than of
combs. In the algorithm for EPT2, when the �rst j tasks are completed, the R[j]-
th comb is available. Here, when the �rst R−1[m] tasks have been completed,
checkpoint m has just become computable.

• We create sample subsets Pm associated with checkpoints. I ∈ Pm i�

R−1[m− 1] < j ≤ R−1[m] ; R−1[0] = 0 (7.26)

with j the task index associated with I, i.e. Q[j] = I. These sets are tracked
using an array P so that P[I] = m i� I ∈ Pm.

Figure 7.1: Task queue divided in checkpoints Pm. The task array Q contains the indices of samples to
be computed. When all tasks in sets Pp≤m have been computed, checkpoint m is computable.

Algorithm 27 presents the computation of the task queue, which can be (optionally)
optimized with algorithm 28, which ensures results for a checkpoint are available as
quickly as possible, without altering them. Computation for other needed variables is
shown as algorithm 29. Finally, algorithms 30 and 31 show the pseudo-code for the
master and slave processes, respectively.
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Data: Mm the desired numbers of combs for checkpoints. M0 = 0 for
convenience. Mn+1 > Mn, ∃Mn > Ngen

Result: Q the task array, Ncp the number of checkpoints, P the array so that
P[I] = m i� I ∈ Pm, R−1 the array so that checkpoint m becomes
available when the �rst R−1[m] tasks have been computed.

1 M̃ array of size Ndet initialized with 0;
2 u array of size Ngen initialized with random numbers ∈ [0, 1)R ;
3 d a boolean array of size Ngen initialized with FALSE.
4 R−1[0]← 0 ;
5 Nc ← 0 ;
6 NQ ← n0(1) ;
7 for i← 1, NQ do
8 d[i]← TRUE ;
9 Q[i]← i ;

10 end
11 Ncp ← 0 ;
12 F ← NQ + 1 ;
13 while NQ < Ngen do
14 ADD_COMB shown as algorithm 24 ;
15 FILL_TOOTH shown as algorithm 23 ;
16 if MNcp+1 = Nc then
17 Ncp ← Ncp + 1 ;
18 R−1[Ncp]← NQ ;
19 MNcp,∗ ← M̃ ;
20 end
21 end
22 if R−1[Ncp] 6= NQ then
23 /* Adds a final checkpoint. */
24 Ncp ← Ncp + 1 ;
25 R−1[Ncp] = NQ ;
26 end
27 optimize task queue with algorithm 28 ;
28 for m← 1, Ncp do
29 for i← R−1[m− 1] + 1, R−1[m] do
30 P[Q[i]]← m ;
31 end
32 end
Algorithm 27: Compute task queue and checkpoints. Tasks are fragmented as
described in section 5.7 (not shown).
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Result: Modi�es Q the task array and R−1 the array de�ning the boundaries of
checkpoints in Q.

1 for m← 1, Ncp do
2 Nmoved← 0 ;
3 f irstTask← R−1[m− 1] + 1 ;
4 for j← f irstTask, R−1[m] do
5 if Mm,Q[j] = 0∧Q[j] > ṅ0(m) then
6 /* Ensures moved tasks are at the end of the

checkpoint once sorted. */
7 Q[j]← Q[j] + Ngen ;
8 Nmoved← Nmoved + 1 ;
9 end

10 end
11 Sort array Q from f irstTask to R−1[m], inclusive ;
12 /* Moved tasks are sent to the next checkpoint. */

13 R−1[m]← R−1[m]− Nmoved ;
14 /* Restores the original values of moved tasks. */

15 for j← R−1[m] + 1, R−1[m] + Nmoved do
16 Q[j]← Q[j]− Ngen ;
17 end
18 end

Algorithm 28: Optimize checkpoints so that they are available faster.
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• Because no result is available between two checkpoints, the order in which tasks
are processed between two checkpoints is irrelevant for the result. So, as is usu-
ally the case with parallel tasks, we would like to do the longest tasks �rst, so
that we don’t get a load imbalance due to a massive task being done last. There-
fore, tasks should always be in ascending order (descending computational time)
between two checkpoints.

• Because of the “tooth �lling”, sometimes samples computed inside a checkpoint
are not involved in its result. Since tooth �lling picks the �rst non-computed
tasks, they tend to be of high computational cost. The algorithm iterates over
checkpoints in ascending order, each time moving such a sample to the next
checkpoint. Thus, every sample is moved to the �rst checkpoint it is actually
involved in, either deterministically or stochastically.

7.3 Conclusion
In this chapter we have implemented a stochastic version of the shifted-Bk algorithm,
using the same algorithm we used for computation of EPT2, and were able to get ac-
ceptable accuracies performing a few percent of the full computation. The additional
di�culties of estimating a vector rather than a scalar were solved by setting a limited
number of pre-determined checkpoints between which no result is available.

The fact that we implemented the shifted-Bk method boils down to our choice to
build the external space using Epstein-Nesbet perturbative estimation for cα. How-
ever, the proposed algorithm does not put any particular restriction on cα. From this
stemmed the idea of a more general framework to allow easy experimentation of the
e�ect of di�erent external spaces, which was used to design an MR-CCSD method as
shown in chapter 8.
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Data: Q, R−1, n0, Nteeth
Result: µ̃, ṫ and ṅ0

1 µ̃∗∗ ← 0 ;
2 F ← n0(1) + 1 ;
3 for m← 1, Ncp do
4 for i← R−1[m− 1] + 1, R−1[m] do
5 d[Q[i]]← true ;
6 end
7 while d(U + 1) do
8 U ← U + 1 ;
9 end

10 ṫm ← Nteeth + 1 ;
11 ṅ0(m)← Ngen ;
12 for t← 2, Nteeth + 1 do
13 if U < n0(t) then
14 ṫm ← t− 1 ;
15 ṅ0(m)← n0(t− 1) ;
16 break loop ;
17 end
18 end
19 for I ← ṅ0(m) + 1, Ngen do
20 γm

I ←
WT×Mm,I

w[I] ;
21 end
22 end
23 µ̃1

∗ ← γ1
∗ ;

24 for m← 2, Ncp do
25 µ̃m

∗ ← γm
∗ − γm−1

∗ ;
26 end

Algorithm 29: Computation of µ̃, ṫ and ṅ0.
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1 S and S(2) �oat arrays size Nteeth + 1 initialized with 0 ;
2 ḟ integer array of size Ncp initialized with ḟ [m] = ∑I∈Pp≤m

FI ;
3 m← 1 ;
4 c← 1 ;
5 error ← 0 ;
6 e∗ ← 0 ;
7 while do
8 if ḟ [m] = 0 then
9 while c ≤ Mm do

10 S∗ ← S∗ + B∗(u[c]) ;
11 S(2)

∗ ← S(2)
∗ + B∗(u[c])2 ;

12 c← c + 1 ;
13 end
14 /* E for printing purpose */
15 E← ∑I≤ṅ0(m) eI + St/c ;
16 t← ṫm ;
17 if c>1 then

18 error←
√
(S(2)

t − St
2)(c− 1)−1 ;

19 end
20 exit loop if m = Ncp ;
21 /* Choose to not exit if next checkpoint is available */
22 exit loop if acceptable error and f [m + 1] 6= 0;
23 m← m + 1 ;
24 else
25 retrieve (l, δ̆δδ

l , ĕI∈Pl , f̆ ) ;
26 increment eI∈Pl with ĕI∈Pl ;
27 increment δδδl with δ̆δδ

l ;
28 decrement ḟ [l] with f̆ ;
29 end
30 end
31 δδδm is the estimated dressing vector ;

Algorithm 30: Master node for stochastic estimation of δδδ

118



1 cp_done, cp_sent: shared scalars initialized to 0 ;
2 cp_max: shared array of size Nproc initialized to 0 ;
3 f : shared array of size Ngen initialized to 0 ;
4 m← 0 ;
5 /* Loop for each core iproc */
6 while cp_done > cp_sent∨m < Ncp + 1 do
7 Try to get task (I, s) from queue ;
8 if task was available then
9 m so that I ∈ Pm ;

10 else
11 m← Ncp + 1 ;
12 end
13 will_send← 0 ;
14 – OMP CRITICAL – ;
15 cp_max[iproc]← m ;
16 cp_done← min(cp_max)− 1 ;
17 if cp_done > cp_sent then
18 cp_sent← cp_sent + 1 ;
19 will_send← cp_sent ;
20 end
21 – OMP END CRITICAL – ;
22 if will_send 6= 0 then
23 Send δδδwill_send (shown in algorithm 33)
24 end
25 if m < Ncp + 1 then
26 Perform task (I, s) (shown in algorithm 32) ;
27 end
28 end
Algorithm 31: Main matrix dressing code for a slave node, parallelized with
OpenMP.
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Data: global shared scope (at node level): δδδD,t and δδδS,m initialized with 0, f an
array of size Ngen initialized with 0 (fragment count).

Data: from outer scope : s, I

1 m so that I ∈ Pm ;
2 t so that I ∈ Tt ;
3 Compute δδδI,s (fragment s of δδδI);
4 /* Lock global arrays before update */

5 δδδD,t ← δδδD,t + δδδI,s ;
6 for p← m, Ncp do
7 if µ̃

p
I 6= 0 then

8 δδδS,p ← δδδS,p + µ̃
p
I δδδI,s ;

9 end
10 end
11 x ← c · δδδI,s ;
12 – OMP ATOMIC – ;
13 eI ← eI + x ;
14 – OMP ATOMIC – ;
15 f [I]← f [I] + 1 ;
Algorithm 32: Perform task (I, s), that is, update “node-local” partial values of
δδδD,t and δδδS,m.
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Data: global shared scope (at node level): δδδD,t and δδδS,m initialized with 0, f an
array of size Ngen initialized with 0 (fragment count).

Data: from outer scope : will_send
1 m← will_send ;
2 ḟ ← ∑I∈Pp≤m

f [I] ;
3 if ḟ = 0 then
4 return ;
5 end
6 /* Compute partial value of δδδm with partial values of δδδD,t and

δδδS,m */
7 δδδm ← 0 ;
8 /* Reverse loop for numerical precision */
9 for p← m, 1 by −1 do

10 δδδm ← δδδm + δδδS,p

11 end
12 δδδm ← δδδm

Mm
;

13 for t← ṫm − 1, 0 by −1 do
14 δδδm ← δδδm + δδδD,t ;
15 end
16 /* Sending partial information for checkpoint m */

17 send (m, δδδm, eI∈Pm , ḟ ) ;
Algorithm 33: Build δδδm and send it to the master process.
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7.4 Selected con�guration interaction dressed byper-
turbation
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Selected configuration interaction (sCI) methods including second-order perturbative corrections pro-
vide near full CI (FCI) quality energies with only a small fraction of the determinants of the FCI space.
Here, we introduce both a state-specific and a multi-state sCI method based on the configuration inter-
action using a perturbative selection made iteratively (CIPSI) algorithm. The present method revises
the reference (internal) space under the effect of its interaction with the outer space via the construc-
tion of an effective Hamiltonian, following the shifted-Bk philosophy of Davidson and co-workers. In
particular, the multi-state algorithm removes the storage bottleneck of the effective Hamiltonian via a
low-rank factorization of the dressing matrix. Illustrative examples are reported for the state-specific
and multi-state versions. Published by AIP Publishing. https://doi.org/10.1063/1.5044503

I. INTRODUCTION

Recently, selected configuration interaction (sCI) meth-
ods have demonstrated their ability to reach, for moderate
size basis sets, near full CI (FCI) quality energies for small
organic and transition metal-containing molecules.1–13 Select-
ing iteratively the most relevant determinants of the FCI
space is an old idea that, to the best of our knowledge, dates
back to the pioneering studies of Bender and Davidson14

and Whitten and Hackmeyer15 in 1969. A few years later,
Huron et al.16 proposed the so-called CIPSI (Configuration
Interaction using a Perturbative Selection made Iteratively)
approach to complement the variational sCI energy with a
second-order Epstein-Nesbet perturbative correction. This has
demonstrated to be a particularly efficient way of approaching
the FCI limit.8,11–13,17,18 Over these last few years, we have
witnessed a resurgence of sCI methods under various vari-
ants and acronyms. In short, their main differences lie in the
way (i) the determinant selection is done and (ii) the second-
order contribution is computed. The selection can be done
purely stochastically as in FCIQMC19 or deterministically as
in CIPSI or other variants, such as heat-bath CI,7–10 adaptive
sampling CI (ASCI),20–22 or iterative CI (ICI).23 Similarly, the
second-order correction can be computed either purely deter-
ministically or semi-stochastically by a Monte Carlo (MC)
sampling.4,8,18 Here, we shall use the CIPSI method16 to gen-
erate the model space, but any other sCI variants could be
employed.

For a given electronic state k, the ensemble of determi-
nants |I〉, which constitutes the zeroth-order (normalized) wave
function

|Ψ(0)
k 〉 =

Ndet∑

I=1

c(0)
Ik |I〉 (1)

a)Author to whom correspondence should be addressed: loos@irsamc.ups-
tlse.fr

of (variational) zeroth-order energy

E(0)
k = 〈Ψ(0)

k |Ĥ |Ψ(0)
k 〉 = †c(0)

k H(0)c(0)
k (2)

(where †c(0)
k are the transposed coefficients), defines the

(zeroth-order) reference model space or internal space. The
remaining determinants of the FCI space belong to the exter-
nal space or outer space. In particular, the ensemble of
determinants |α〉 connected to Ψ(0)

k , i.e., 〈α |Ĥ |Ψ(0)
k 〉 , 0

and 〈α |Ψ(0)
k 〉 = 0—the so-called “perturbers”—defines the

(first-order) perturbative space, such as

|Ψ(1)
k 〉 =

∑

α

c(1)
αk |α〉, c(1)

k = (E(0)
k 1 − D(1))−1hc(0)

k , (3)

where 1 is the identity matrix and D(1) is a diagonal matrix with
elements D(1)

αα = 〈α |Ĥ |α〉 and hαI = 〈α|Ĥ |I〉. Within CIPSI, the
“distance” to the FCI solution is estimated via a second-order
Epstein-Nesbet perturbative energy correction

E(2)
k = 〈Ψ(0)

k |Ĥ |Ψ(1)
k 〉 = †c(0)

k
†h c(1)

k . (4)

The second-order correction (4) has obvious advantages
and can be computed efficiently using diagrammatic24 or
hybrid stochastic-deterministic approaches.8,17,18 However, it
has also an obvious disadvantage: the internal space is not
revised under the effect of its interaction with the outer space.
Here, thanks to intermediate effective Hamiltonian theory,25

we propose to build and diagonalize an effective Hamiltonian
taking into account the effect of the perturbative space.26,27

This idea is based on the so-called Bk method, originally
proposed by Gershgorn and Shavitt28 and later refined and
rebranded shifted-Bk (sBk) by Davidson and co-workers.29–38

(See also Refs. 39–42.) All these studies lie on the semi-
nal idea of Löwdin on the partition of the FCI Hamiltonian
matrix.43 Initially, Gershgorn and Shavitt28 introduced sev-
eral approximations, two of them being denoted as Ak and
Bk. Both use a partitioning of the CI matrix based on the
selection of a dominant subset of (primary) configurations.
The Ak method, which is related to earlier work by Claverie,
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Diner, and Malrieu,44 estimates the contribution of the config-
urations left out of the CI expansion, an idea very similar to the
computation of the second-order correction [see Eq. (4)].14,45

Compared to the Ak method, the coefficients of the primary
configurations are allowed to relax in the Bk method. The
different flavours of Bk methods are usually due to the dis-
tinct partition of the Hamiltonian matrix and the reference
energy used to define the perturbers [see Eq. (3) and discussion
below].26,27,29–42

To the best of our knowledge, the shifted-Bk method
has never been coupled with CIPSI-like sCI methods. More-
over, in addition to its convergence acceleration to the FCI
limit, one of the interesting advantages of shifted-Bk is to
provide an explicit revised wave function that one can use,
for example, as a trial wave function within quantum Monte
Carlo.1,2,5,6,11,13 In the present manuscript, we propose both a
state-specific and a multi-state formulation which remove the
storage bottleneck of the effective Hamiltonian. Furthermore,
the present computations are performed semi-stochastically as
in our recently proposed hybrid stochastic-deterministic algo-
rithm for the computation of E(2).17 Unless otherwise stated,
atomic units are used throughout (see Sec. III).

II. SHIFTED-Bk
A. State-specific shifted-Bk

For a given electronic state k, in order to solve the
Schrödinger equation Hck = Ekck in the FCI space, the
eigenvalue problem may be partitioned as

*....,

H(0) †h 0

h H(1) †g

0 g H(2)

+////-
*....,

c(0)
k

c(1)
k

c(2)
k

+////-
− Ek

*....,

c(0)
k

c(1)
k

c(2)
k

+////-
=

*....,

0

0

0

+////-
, (5)

where H(2) is the second-order Hamiltonian corresponding to
the external configurations excluding the perturbers and g is the
coupling matrix between first- and second-order spaces. Equa-
tion (5) can be recast as an “effective” Schrödinger equation
Heff

k c(0)
k = Ekc(0)

k with the effective Hamiltonian

Heff
k = H(0) + ∆k , (6)

and dressing matrix

∆k =
†h

[
(Ek1 −H(1)) − †g(Ek1 −H(2))−1g

]−1
h. (7)

Within the state-specific version of the Bk method introduced
by Gershgorn and Shavitt,28 for each target electronic state k,
we (i) approximate H(1) by its (diagonal) zeroth-order approx-
imation D(1) and (ii) neglect the influence of the second-order
space H(2). Hence, the state-specific Bk dressing matrix is
defined as

∆Bk
k =

†h(Ek1 − D(1))−1h, (8)

which naturally yields to a Brillouin-Wigner perturbation
approximation.28

The shifted-Bk method of Davidson and co-workers29–33

still approximates H(1) by its diagonal D(1), but “shifts” (hence
the name) the energy at the denominator of Eq. (7) to take

into account the influence of the second-order term †g(Ek1 −
H(2))−1g; in other words,

Ek1 − †g(Ek1 −H(2))−1g ≈ E(0)
k 1. (9)

Therefore, the state-specific shifted-Bk dressing matrix is

∆sBk
k = †h(E(0)

k 1 − D(1))−1h, (10)

which leads to the Epstein-Nesbet variant of Rayleigh-
Schrödinger perturbation theory.31,32 Compared to the Bk
method, its shifted variant has the indisputable advantage
of correcting some of the size-consistency error.31 However,
as expected, the present methodology is only nearly size-
consistent. Note that the shifted-Bk method is an iterative
method as, thanks to the influence of the entire external space,
both the zeroth-order coefficients c(0)

k and energy E(0)
k [given

by Eq. (2)] are revised at each iteration.
For small CI expansions, it is possible to store the entire

dressed Hamiltonian matrix Heff
k of size Ndet ×Ndet. However,

when the CI expansion gets large, Heff
k becomes too large to be

stored in memory. Thankfully, it is not necessary to explicitly
build Heff

k . Indeed, for large CI expansions, we switch to a
Davidson diagonalization procedure46 which only requires the
computation of the vectors H(0)c(0)

k and ∆sBk
k c(0)

k of size Ndet.

B. Multi-state shifted-Bk

In a multi-state calculation, one has to adopt a different
strategy in order to dress the Hamiltonian for all the target
states simultaneously. This is particularly important in prac-
tice, for instance, to determine accurate vertical transition
energies. An unbalanced treatment of the ground and excited
states, even for states with different spatial or spin symmetries,
could have significant effects on the accuracy of these energy
differences.12

For the sake of simplicity, let us assume that our aim is
to calculate the dressed energy of the N st lowest electronic
states. For 1 ≤ k ≤ N st, we wish to find a multi-state effective
Hamiltonian Heff and a dressing matrix ∆sBk, with Heff = H(0)

+ ∆sBk, such that, when applied to the kth state coefficient
vector c(0)

k , one recovers the kth state-specific dressing matrix

∆sBk
k times the same vector c(0)

k , i.e.,

∆sBk c(0)
k = ∆

sBk
k c(0)

k . (11)

A solution obeying Eq. (11) is

∆sBk =
∑

kl

∆sBk
k c(0)

k (S−1)kl
†c(0)

l , (12)

where (S−1)kl = 〈c(0)
k |c(0)

l 〉. In contrast to the state-specific
case, Heff is non-Hermitian as a consequence of the non-
orthogonality of the exact state projections on the model
space.25 In practice, we have found that a robust algorithm can
be defined by symmetrizing the multi-state dressing matrix as

∆̃
sBk
=

(†∆sBk + ∆sBk
)
/2. (13)

The eigenstates being now orthonormal, the dressing matrix
reduces to

∆sBk = δsBk †c(0), (14)
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which is reminiscent of a low-rank factorization. Here,

c(0) =
[
c(0)

1 , . . . , c(0)
Nst

]
, (15a)

δsBk =
[
∆sBk

1 c(0)
1 , . . . ,∆sBk

Nst
c(0)

Nst

]
(15b)

are both of size Ndet × N st.
Two key remarks are in order here: (i) at first order,

the symmetrization error is strictly zero, i.e., †c(0)
k (∆sBk −

∆̃
sBk

)c(0)
k = 0, and (ii) the symmetrization error becomes

vanishingly small for large CI expansions. Consequently, the
symmetrization error can be safely neglected in practice. Our
preliminary tests have corroborated these theoretical justifi-
cations. Also, it can be further estimated via second-order
perturbation theory. However, it requires the energies and coef-
ficients of the entire internal space which is only possible for
relatively small CI expansions.

The energies of the first N st states, E =
(
E1, . . . , ENst

)
,

are obtained by a Davidson diagonalization of the multi-state

effective Hamiltonian Heff = H(0) + ∆̃
sBk

. Similar to the state-
specific case, technically, one is able to store the vectors δsBk

and c(0), but ∆̃
sBk

(or ∆sBk) is potentially too large to be stored
in memory. Luckily, compared to a standard CI calculation,
the Davidson diagonalization procedure only requires, at each
iteration, the extra knowledge of

∆̃
sBk

U =
(
c(0) †δsBk U + δsBk †c(0)U

)
/2, (16)

where U is a Ndet ×Ndav matrix gathering the Ndav vectors con-
sidered in the Davidson diagonalization algorithm at a given
iteration (with N st ≤ Ndav � Ndet). Thanks to Eq. (14), this
term can be efficiently evaluated in a O(Ndet) computational
cost and storage via two successive matrix multiplications, for
instance,

c(0) †δsBk U =
[
c(0) ×

(†δsBk × U
)]

.

A pseudo-code of our iterative multi-state dressing algorithm
is presented in the supplementary material. For N st = 1,
the present multi-state algorithm reduces to the state-specific
version.

III. HYBRID STOCHASTIC/DETERMINISTIC
DRESSINGS

In Ref. 17, we proposed to express

E(2) =

Ndet∑

I=1

E(2)
[I] (17)

as a sum of Ndet contributions E(2)
[I] , each of them associated

with a determinant of the model space, and to compute it
efficiently via a Monte Carlo (MC) algorithm. Thanks to the
relatively small size of the MC space (Ndet), one is able to
store each single contribution. Hence, during the MC simula-
tion, if the contribution of a determinant is required and has
never been computed previously, it is computed and stored.
Otherwise, the value is retrieved from memory. This tech-
nique, known as memoization, drastically accelerates the MC
calculation as each contribution needs to be computed only
once. Moreover, we decompose the energy into a determin-
istic part and a stochastic part, making the deterministic part

grow along the calculation until one reaches the desired accu-
racy. If desired, the calculation can be carried on until the
stochastic part entirely vanishes. In that case, the exact result
is obtained with no error bar and no noticeable computa-
tional overhead compared to the fully deterministic calcula-
tion. To summarize, this algorithm allows us to compute a
truncated sum with no bias, but with a statistical error bar
instead.

This algorithm is very general and is not limited to the
calculation of E(2). Similar to Eq. (17), we express the dressing
matrix (14) as the sum of dressing matrices

∆sBk =

Ndet∑

I=1

∆sBk
[I] . (18)

Because the matrices ∆sBk
[I] are too large to fit in memory, we

sample the vectors δsBk
[I] [see Eq. (15b)], which are required for

the Davidson diagonalization. During the sampling, one can
monitor the “dressed” energy as

Ek = 〈Ψ(0)
k |Heff

k |Ψ(0)
k 〉 = E(0)

k + †c(0)〈δsBk〉, (19)

as well as its accuracy by computing the corresponding statis-
tical error. In Sec. IV, all sBk calculations have been carried
on until the statistical error is below 10−5 a.u. Let us empha-
size once again that the primary purpose of the present MC
algorithm is to accelerate the computation of the dressing
matrix. The same results would have been obtained via its
deterministic version.

IV. ILLUSTRATIVE CALCULATIONS

Unless otherwise stated, all the calculations presented
here have been performed with the electronic structure soft-
ware quantum package,47 developed in our group and freely
available. The sCI wave functions are generated with the
CIPSI algorithm, as described in Refs. 1 and 3 in the frozen-
core approximation. The extrapolated FCI results, labeled as
exFCI, have been obtained via the method recently proposed
by Holmes, Umrigar, and Sharma9 in the context of the heat-
bath method.7–9 This method has been shown to be robust
even for challenging chemical situations,10–13 and we refer
the interested readers to Ref. 11 for additional details.

A. State-specific example

To illustrate the improvement brought by the shifted-Bk
approach in its state-specific version (see Sec. II A), we have
computed the total electronic energy of the 2Πg ground state
of CuCl2 with the 6-31G basis set. The geometry has been
taken from Ref. 2 where additional information can be found
on this system. For this particular example, we have chosen a
small basis set in order to be able to easily reach the FCI limit.
A larger basis set will be considered in the next (multi-state)
example (see Sec. IV B). The molecular orbitals have been
obtained at the restricted open-shell Hartree-Fock (ROHF)
level, and the 15 lowest doubly occupied orbitals have been
frozen. This corresponds to a sCI calculation of 33 electrons
in 38 orbitals. sCI-PT2 stands for a sCI calculation where we
have added to the (zeroth-order) variational energy E(0) defined
in Eq. (2) the value of the second-order correction E(2) given
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FIG. 1. Deviation from the extrapolated FCI energy EexFCI of the total energy
E of CuCl2 (in hartree) as a function of the number of determinants Ndet in
the sCI wave function for various methods.

by Eq. (4). The one-shot non-iterative shifted-Bk procedure
will be labeled as sCI-sBk0, while its self-consistent version
is simply labeled as sCI-sBk.

Figure 1 shows the convergence of the total energy of
CuCl2 as a function of the number of determinants Ndet

in the sCI wave function for the variational sCI results, as

well as sCI-PT2, sCI-sBk0, and sCI-sBk. The corresponding
numerical values are reported in Table I. As expected, the
sCI-PT2, sCI-sBk0, and sCI-sBk energies are not variational
as perturbative energies and energies obtained by projection
are not guaranteed to be an upper bound of the FCI energy.
Nonetheless, all of these corrections drastically improve the
rate of convergence compared to the variational sCI results
(note the logarithmic scale in Fig. 1). As shown in the bottom
graph of Fig. 1, for small values of Ndet, the three methods
yield very similar total energies. However, for Ndet & 103,
results start to deviate due to the inclusion of an important con-
figuration corresponding to a ligand-to-metal charge transfer
(LMCT) state.48 This LMCT configuration induces a strong
revision of the model space wave function Ψ(0). Because the
LMCT configuration corresponds to a singly excited determi-
nant with respect to the ROHF determinant, it is not included
in the CIPSI expansion for small Ndet values as it does not
directly interact with the ROHF reference (a2b→ ab2 excita-
tion for which Brillouin’s theorem does apply49). Therefore,
the double excitations which are strongly coupled with the
ROHF configuration are first selected by the CIPSI algorithm.
Then, the LMCT configuration is included via its connec-
tion with the doubles. In particular, the double excitations
corresponding to a single excitation on top of the LMCT con-
figuration have been found to strongly interact with it. The
key observation here is that the sCI-sBk energy converges
much faster to the FCI limit than the sCI-PT2 energy. More-
over, the significant difference between sCI-sBk and sCI-sBk0

highlights the importance of the revision of the internal wave
function brought by the self-consistent nature of the shifted-Bk
method.

Table I also reports the overlap of the sCI and sCI-sBk
wave functions with respect to the largest sCI wave function
obtained for Ndet = 26 493 179. These results also highlight the
faster convergence of sCI-sBk and illustrate that the shifted-Bk

TABLE I. Deviation (in millihartree) from the extrapolated FCI energy (EexFCI = �2558.006 880 a.u.) for various
methods as a function of the number of determinants Ndet in the CIPSI expansion for the CuCl2 molecule and the
6-31G basis set. The second-order correction E(2) is also reported. The error bar corresponding to one standard
deviation is reported in parentheses. The exFCI energy has been obtained via a linear extrapolation using the
energies of the two largest wave functions (see the supplementary material). The two rightmost columns report
the overlap with respect to the largest sCI wave function.

∆E Overlap

Ndet E(2) sCI-PT2 sCI-sBk0 sCI-sBk sCI sCI-sBk

97 �213.039(0) �1.778(0) �1.93(0) �2.25(0) 0.9275 0.9275
138 �191.914(0) +1.698(0) +1.68(0) +1.65(0) 0.9295 0.9295
309 �157.491(0) +7.799(0) +7.74(0) +7.59(0) 0.9345 0.9345
789 �116.025(0) +12.654(0) +12.45(0) +11.81(0) 0.9438 0.9447
1 708 �86.208(2) +10.807(2) +9.89(0) +5.83(0) 0.9579 0.9671
2 167 �76.249(8) +10.232(8) +9.23(1) +5.15(1) 0.9610 0.9700
5 428 �45.49(3) +6.19(3) +4.90(3) +0.72(3) 0.9777 0.9854
13 803 �30.87(9) +4.00(9) +2.83(9) �0.97(9) 0.9853 0.9912
46 327 �24.48(9) +2.98(9) +2.02(9) �0.68(9) 0.9913 0.9952
223 089 �18.13(9) +2.31(9) +1.76(9) +0.03(9) 0.9956 0.9975
1 125 547 �11.18(9) +1.46(9) +1.12(9) +0.36(9) 0.9984 0.9990
5 615 264 �5.84(2) +0.79(2) +0.61(2) +0.26(2) 0.9996 0.9997
26 493 179 �3.34(2) +0.45(2) . . . . . . 1.0000 . . .
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method could potentially provide better quality trial wave
functions for quantum Monte Carlo.1,2,5,6,11,13

Although Ψ(0)
k may be an eigenfunction of Ŝ2, the way

Ψ
(1)
k is built does not enforce this property. The expectation

value of Ŝ2 can be monitored by

〈Ψ(0)
k |Ŝ2 |Ψ(1)

k 〉 = †c(0)
k
†(s2) c(1)

k . (20)

As expected, the deviation from the eigenvalue is always small,
with a maximum deviation of the order of 10−4 a.u. in the case
of CuCl2.

B. Multi-state example

We have chosen to illustrate the multi-state shifted-
Bk algorithm presented in Sec. II B by computing the
first singlet transition energy of two cyanine dyes: CN3
(H2N−−CH==NH+

2) and CN5 (H2N−−CH==CH−−CH==NH+
2).

These types of dyes are known to be particularly challeng-
ing for electronic structure methods and especially time-
dependent density-functional theory.50–53 The geometry of
CN5 has been extracted from Ref. 51 and we have opti-
mized CN3 at the same level of theory (PBE0/cc-pVQZ).
Here, we use Dunning’s aug-cc-pVDZ basis set which has
been shown to be flexible enough to quantitatively model
such transitions thanks to the weak basis dependency of this
valence π→ π? transition.12,50 In order to treat the two singlet
electronic states on equal footing, a common set of deter-
minants is used for both states. In addition, state-averaged
complete active space self-consistent field [CASSCF(2,2)]
molecular orbitals, obtained with the GAMESS package,54 are
employed.

The difficulty of accurately modeling this vertical transi-
tion lies in the strong coupling between the σ and π spaces.
To assess this peculiar effect, we have performed several
calculations and our results are gathered in Table II. (The
corresponding total energies can be found in the supplemen-
tary material.) For comparison purposes, Table II also reports
reference calculations extracted from Ref. 50. First, we have
performed CAS-CI calculations taking into account only the
set of molecular orbitals with π symmetry. We refer to these
calculations as CAS(π). For CN3 and CN5, there are, respec-
tively, 4 and 6 electrons as well as 32 and 50 orbitals in the
CAS(π) space. This results in multideterminant wave functions
containing 11 296 and 670 630 determinants, respectively. To
quantify the strong coupling between the σ and π space, we
have also computed full-valence exFCI energies [denoted as
exFCI(σ + π)].11,12 These values fit nicely with the exCC3(σ
+ π) benchmark values reported by Send et al.,50 in agree-
ment with our previous study which shows that, at least for
compact compounds, CC3 and exFCI yield similar excitation
energies.12

The difference between CAS(π) and exFCI(σ + π) is of
the order of half an eV (slightly less for CN5), showing that
the relaxation of the σ orbitals plays a central role here, this
effect becoming less pronounced when the number of carbon
atoms increases. Note that our CAS(π) excitation energies are
extremely close to the CASSCF results reported in Table II.
The diffusion Monte Carlo (DMC) estimates of Send et al.50

are probably off by 0.2 eV due to the lack of direct σ − π

TABLE II. Vertical excitation energy (in eV) of cyanines for various meth-
ods. The error bar corresponding to one standard deviation is reported in
parentheses.

Method CN3 CN5 References

CAS(π)a 7.62 5.27 This work
CAS(π) + PT2 7.43 5.02 This work
CAS(π) + sBk0 7.40 4.98 This work
CAS(π) + sBk 7.17 4.77 This work
exFCI(σ + π)b 7.17 4.89 This work

CASSCF(π)c 7.59 5.25 50
CASPT2(π)d 7.26 4.74 50
CC3(σ + π)e 7.27 4.89 50

DMCf 7.38(2) 5.03(2) 50
exCC3(σ + π)g 7.16 4.84 50

aCAS-CI/aug-cc-pVDZ calculations: CAS(4,32) and CAS(6,50) for CN3 and CN5,
respectively.
bExtrapolated CIPSI/aug-cc-pVDZ calculations (see the supplementary material).
cCASSCF/ANO-L-VDZP calculations with optimal active spaces: CAS(4,6) and
CAS(6,10) for CN3 and CN5, respectively.
dCASPT2/ANO-L-VDZP calculations with the standard IPEA Hamiltonian and optimal
active spaces: CAS(4,6) and CAS(6,10) for CN3 and CN5, respectively.
eCC3/ANO-L-VDZP excitation energies.
fDiffusion Monte Carlo results based on optimal active space CASSCF trial wave func-
tions obtained using the T′+ basis set and a Jastrow factor including electron-nuclear and
electron-electron terms.
gExtrapolated CC3 excitation energies obtained by adding the difference between the
CC3/ANO-L-VDZP and CC2/ANO-L-VDZP values to the CC2/ANO-L-VTZP results.

coupling in the active space, which is only partially recovered
by the Jastrow factor and the orbital optimization.

In CAS(π) + PT2, the second-order correction E(2), com-
puted by taking into account all the determinants from the FCI
space connected to the CAS(π) reference space, is added to
the CAS(π) result. This correction goes in the right direction
and recovers 0.19 and 0.25 eV for CN3 and CN5, respectively,
bringing the excitation energies within 0.25 and 0.13 eV to the
exFCI(σ + π) values.

Similarly, CAS(π) + sBk0 and CAS(π) + sBk correspond
to sBk and sBk0 calculations where the CAS(π) model space
is renormalized by the effect of the perturbers. Like in the
case of CuCl2, CAS(π) + sBk0 recovers slightly more than
CAS(π) + PT2, while CAS(π) + sBk is spot on for CN3 and
overshoots slightly the exFCI(σ + π) values for CN5 with
an error of 0.12 eV. These results show that the shifted-Bk
method associated with a CIPSI-like sCI algorithm is able to
recover a large fraction of the missing correlation energy, even
with relatively small model spaces.

SUPPLEMENTARY MATERIAL

See supplementary material for the pseudo-code of the
multi-state algorithm, total energies associated with Table II,
and exFCI extrapolations.
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FIG. 1. Extrapolation of the sCI energies to the FCI limit (i.e. E(2) = 0) for the ground state of the CuCl2 molecule obtained with the 6-31G
basis set. �e last two points (corresponding to the the two largest wave functions, that is, having the smallest E(2) values) are taken into
account in the linear extrapolation.

TABLE I. Total energies (in hartree) of cyanines for various methods. �e error bar corresponding to one standard deviation is reported in
parenthesis.

Method Ground state Excited state
CN3 CN5 CN3 CN5

CAS(π)a −149.535 876 −226.477 375 −149.255 678 −226.283 870
CAS(π)+PT2 −150.050 696(0) −227.231 239(3) −149.777 783(0) −227.046 760(4)
CAS(π)+sBk0 −150.052 063(0) −227.234 134(2) −149.780 238(0) −227.051 134(3)
CAS(π)+sBk −150.056 70 −227.241 99 −149.793 39 −227.066 59
exFCIb −150.019 253 −227.219 823 −149.755 922 −227.040 256

a CAS-CI/aug-cc-pVDZ calculations: CAS(4,32) and CAS(6,50) for CN3 and CN5, respectively.
b Extrapolated CIPSI/aug-cc-pVDZ calculations.

a)Corresponding author: loos@irsamc.ups-tlse.fr
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TABLE II. Zeroth-order energy E(0) and second-order energy E(2) (both in hartree) of the ground and �rst excited states of CN3 and CN5
as a function of the number of determinants Ndet in the sCI expansion. �e excitation energies (in eV) are also reported. �e error bar
corresponding to one standard deviation is reported in parenthesis.

Molecule Ndet Ground state Excited state Excitation
E(0) E(2) E(0) E(2) energy (eV)

CN3 1 837 −149.496 568 −0.646 732(0) −149.198 560 −0.720 103(0) 6.11
3 654 −149.662 402 −0.386 269(0) −149.368 197 −0.420 330(2) 7.08
8 254 −149.746 405 −0.280 72(8) −149.448 207 −0.318 53(6) 7.09

19 311 −149.810 865 −0.207 1(2) −149.516 943 −0.237 31(9) 7.18
45 730 −149.860 116 −0.154 2(1) −149.574 193 −0.174 5(2) 7.23

108 321 −149.897 832 −0.115 52(8) −149.616 166 −0.131 2(1) 7.24
265 615 −149.923 376 −0.090 36(7) −149.647 107 −0.100 27(8) 7.25
713 756 −149.942 653 −0.071 80(7) −149.669 387 −0.078 73(7) 7.25

2 240 887 −149.958 296 −0.056 94(5) −149.687 113 −0.061 93(6) 7.24
8 287 086 −149.972 592 −0.043 27(4) −149.702 834 −0.047 39(5) 7.23

CN5 4 453 −226.404 926 −1.013 276(0) −226.193 101 −1.088 160(0) 3.73
8 818 −226.591 687 −0.685 258(5) −226.372 170 −0.743 445(6) 4.39

21 356 −226.678 085 −0.565 791(9) −226.458 189 −0.618 783(9) 4.54
51 557 −226.751 503 −0.473 218(8) −226.533 681 −0.519 42(1) 4.67

124 732 −226.818 047 −0.394 998(1) −226.599 394 −0.439 147(8) 4.75
306 926 −226.879 535 −0.326 711(1) −226.662 318 −0.366 750(1) 4.82
763 320 −226.937 031 −0.265 417(4) −226.722 332 −0.301 120(2) 4.87

1 912 184 −226.988 127 −0.212 58(1) −226.778 410 −0.242 12(2) 4.90
4 880 107 −227.030 753 −0.170 4(1) −226.827 065 −0.193 6(1) 4.91

13 631 497 −227.063 119 −0.140 20(8) −226.866 875 −0.155 6(1) 4.92
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FIG. 2. Extrapolation of the sCI energies to the FCI limit (i.e. E(2) = 0) for the ground state and the �rst singlet excited state of CN3 and CN5
obtained with the aug-cc-pVDZ basis set. �e last �ve points (corresponding to the the �ve largest wave functions, that is, having the smallest
E(2) values) are taken into account in the quadratic extrapolation.
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1: procedure ms sBk
2: Perform CI calculation to get energies E(0)

k and coe�cients c(0)k for 1 ≤ k ≤ Nst

3: Form E(0) =
(

E(0)
1 , . . . , E(0)

Nst

)
and c(0) =

[
c(0)1 , . . . , c(0)Nst

]

4: n← 0 ; E(n)← E(0) ; ∆E← ∞
5: while maxk |∆Ek| > τ do . sBk iterations
6: Build δsBk using Eq. (15b) . [Ndet × Nst]
7: U ← guess vectors . [Ndet × Ndav]
8: for k = 1, . . . , Nst do
9: Uk ← c(0)
10: end for
11: R← ∞
12: while maxk ‖Rk‖ > τ′ do . Davidson iterations
13: Orthonormalize U
14: W ← H.U . [Ndet × Ndav]
15: T ← †c(0).U . [Nst × Ndav]
16: W ←W + 1

2 δsBk.T
17: T ′ ← †δsBk.U . [Nst × Ndav]
18: W ←W + 1

2 c(0).T ′

19: h← †U.W . [Ndav × Ndav]
20: Diagonalize h to get energies E and eigenvectors y
21: Compute the residual R . [Ndet × Nst]
22: Append correction vectors to U
23: Ndav ← Ndav + Nst
24: end while
25: y← the Nst lowest eigenvectors in y . [Ndet × Nst]

26: c(0) ← U.y
27: Compute E(0) via Eq. (2) and set E(n)← E(0)

28: Set ∆E = E(n)− E(n− 1) and n← n + 1
29: end while
30: return E and c(0)
31: end procedure

FIG. 3. Pseudo-code for the multi-state self-consistent shi�ed-Bk algorithm. �e dimensions of the matrices are given as comments. τ and τ′
are user-de�ned thresholds set as 10−5 and 10−10 respectively.



Chapter 8

Application of stochastic matrix
dressing to MR-CCSD

Contents
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8.1 Coupled-cluster approach
While CI methods are common ways to account for electron correlation, they su�er a
severe size consistency problem.

The logics of the electronic Many-Body problem has been clari�ed a long time ago
in the situations where the wave function may be generated from a single determinant
(or single reference). Perturbative developments, translated in terms of diagrams, led to
the formulation of the fundamental linked cluster theorem,[74] and clari�ed the defects
of truncated Con�guration Interaction methods. The conditions for a good scaling of
the correlation energy and for the strict separability into closed shell fragments were
established.

By strict separability (which is less ambiguous than the terms size-extensivity and
size consistency) we mean that at the non-interacting limit of an A · · · B problem the
energies are additive, EAB = EA + EB, and that the amplitudes associated with the
single and double excitation operators are the same as those obtained for the isolated
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A and B problems. Why this is not the case in CI methods can be easily understood as
the absence of some excitations occurring simultaneously on all subsystems.

Consider a supersystem AB made of two non-interacting subsystems A and B, and
write its CID wave function (Hartree-Fock determinant and all its double excitations).

ΨAB = ΨAB
HF + ΨAB

D (8.1)

with ΨAB
HF the Hartree-Fock determinant for system AB, and ΨAB

D the sum of all double
excitation with respect to ΨAB

HF .
If we now write ΨA···B the product of the two separate CID wave functions for A

and B

ΨA···B =ΨA ×ΨB (8.2)
=ΨA

HFΨB
HF + ΨA

HFΨB
D + ΨA

DΨB
HF + ΨA

DΨB
D (8.3)

As can be seen, ΨAB isn’t described as the product of ΨA and ΨB as it should, since
simultaneous double excitations on A and B cannot be accounted for.

Some methods aim at partially or fully correcting this size-consistency error by
eliminating the unlinked e�ects of the CISD: the so-called Davidson corrections, that
are essentially correction to the energy[75, 76], and the so-called Coupled Electron Pair
Approximations (CEPA) that correct the CI equations[77, 78, 79, 80, 81, 82]. Many dif-
ferent variations have been proposed, for a review see [83].

An alternative to CI approaches is the so-called Coupled-Cluster (CC) approach,
that does not su�er this problem. The wave function is given an exponential structure

|Ψ〉 = eT̂ |HF〉 (8.4)

with T̂ a so-called cluster operator. In the widely usedCoupled Cluster Single and Double
(CCSD) method, the cluster operators is

T̂ = T̂1 + T̂2 (8.5)

with T̂1 and T̂2 the one and two orbitals cluster operators

T̂1 = ∑
pr

tr
pT̂r

p (8.6)

T̂2 = ∑
pqrs

trs
pqT̂rs

pq (8.7)

with the indices p, q running on occupied MOs and r, s running on virtual MOs. T̂rs
pq

is the usual excitation operator, and trs
pq the so-called amplitude associated with it.

Again considering a system made of two in�nitely non-interacting sub-systems A
and B, thanks to the exponential expression, if one uses local orbitals — that is, the
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reference determinant |HF〉 is factorizable in |HFA〉 and |HFB〉 determinants isolated
on A and B — the energy and wave function on the isolated fragments will be the
same as on the A · · · B supersystem. Indeed, amplitudes associated with excitations
involving orbitals for both fragments will be zero due to the absence of interaction.
Therefore T̂ can be split in T̂A and T̂B the cluster operators involving one fragment.

|Ψ〉 = eT̂ |HF〉 = |Ψ〉 = eT̂A+T̂B |HF〉 = eT̂A |HFA〉 eT̂B |HFB〉 (8.8)

The wave function of the supersystem is the product of the wave functions for the
isolated subsystems.

In the article presented in section 8.2, we have proposed a de�nition for amplitudes
for coupled cluster in a multi-reference context. The somewhat “brute force” initial
implementation of our Multi-Reference Coupled Cluster (MR-CCSD) was re-written as
a stochastic matrix dressing, based on our Shifted-Bk implementation.
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8.2 Alternative de�nition of excitation amplitudes in
multi-reference state-speci�c coupled cluster
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A central difficulty of state-specific Multi-Reference Coupled Cluster (MR-CC) in the multi-
exponential Jeziorski-Monkhorst formalism concerns the definition of the amplitudes of the single
and double excitation operators appearing in the exponential wave operators. If the reference space
is a complete active space (CAS), the number of these amplitudes is larger than the number of singly
and doubly excited determinants on which one may project the eigenequation, and one must impose
additional conditions. The present work first defines a state-specific reference-independent operator
ˆ̃Tm which acting on the CAS component of the wave function |Ψm

0 〉 maximizes the overlap between

(1 + ˆ̃Tm)|Ψm
0 〉 and the eigenvector of the CAS-SD (Singles and Doubles) Configuration Interaction

(CI) matrix |Ψm
CAS–SD〉. This operator may be used to generate approximate coefficients of the triples

and quadruples, and a dressing of the CAS-SD CI matrix, according to the intermediate Hamiltonian
formalism. The process may be iterated to convergence. As a refinement towards a strict coupled clus-

ter formalism, one may exploit reference-independent amplitudes provided by (1 + ˆ̃Tm)|Ψm
0 〉 to define

a reference-dependent operator T̂m by fitting the eigenvector of the (dressed) CAS-SD CI matrix. The
two variants, which are internally uncontracted, give rather similar results. The new MR-CC version
has been tested on the ground state potential energy curves of 6 molecules (up to triple-bond breaking)
and two excited states. The non-parallelism error with respect to the full-CI curves is of the order of
1 mEh. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4980034]

I. INTRODUCTION

The single-reference Coupled Cluster (CC) formalism1–4

is the standard technique in the study of the ground state of
closed-shell molecules, i.e., those for which a mean-field treat-
ment provides a reasonable zeroth-order single-determinant
wave-function Φ0. This method incorporates the leading con-
tributions to the correlation energy in a given basis set; it is
based on the linked-cluster theorem5 and is size-extensive
since it is free from unlinked contributions. The method gener-
ates an approximate wave function under the action of a wave
operator Ω̂ acting on the single-determinant referenceΦ0, and
assumes an exponential character to the wave operator

Ψ = Ω̂Φ0 = eT̂Φ0. (1)

The most popular version only introduces single and dou-
ble excitation operators in T̂ , and is known as the Coupled
Cluster Singles and Doubles (CCSD) approximation. It incor-
porates the fourth-order correction of the quadruply excited
determinants. The lacking fourth-order contribution concerns
the triply excited determinants, which may be added in a per-
turbative manner. The CC equations, obtained by projecting
the eigenequation on each of the Singles and Doubles (SD),
lead to coupled quartic equations. In practice, guess values of

a)Electronic mail: scemama@irsamc.ups-tlse.fr

the amplitudes of the T̂0→i operators appearing in the T̂ opera-
tor may be taken as the coefficients of the singles and doubles
|i〉 in the intermediate normalization of the SD Configuration
Interaction (CI) vector. The solution of the CC equations may
be obtained by treating the effect of the triples and quadruples
as an iterative dressing of the SD CI matrix,6 according to the
Intermediate Effective Hamiltonian (IEH) theory.7,8 The field
of application of this method, which satisfies formal require-
ments and is numerically efficient, is however limited to the
systems and the situations where a single-determinant zeroth-
order description is relevant. This is no longer the case when
chemical bonds are broken, creating open shells, as occurs in
most of the chemical reactions. The magnetic systems gener-
ally present several open shells, and the low spin-multiplicity
states are inherently of multiple-determinant character. Due
to near degeneracies, most of the excited states are not only
of multi-determinantal but of multi-configurational character.
The conception of a multi-reference (MR) counterpart of the
CCSD formalism is highly desirable, and has been the subject
of intense research. The most comprehensive review has been
given by Bartlett and his colleagues.9 For formal reasons and
in particular to treat correctly the breaking of bonds, the ref-
erence space, or model space, is usually taken as a Complete
Active Space (CAS), i.e., the Full-CI (FCI) of a well-defined
number of electrons (the active electrons) in a well-defined
set of orbitals (the active MOs). The other MOs are called

0021-9606/2017/146(15)/154107/11/$30.00 146, 154107-1 Published by AIP Publishing.
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inactive. Let us label |I〉, |J〉, . . . the reference determinants.
The determinants |i〉, |j〉, . . . which interact with the reference
space are obtained under purely inactive or semi-active single
and double excitations; they generate the CAS-SD CI space,
the diagonalization of which provides a size-inconsistent
energy Em

CAS-SD and the corresponding eigenvector,

|Ψm
CAS-SD〉 = |Ψm

0 〉 + |Ψm
SD〉

=
∑

I ∈CAS

Cm
I |I〉 +

∑

i<CAS

cm
i |i〉 (2)

with 〈Ψm
CAS-SD |Ψm

CAS-SD〉 = 1.
One strategy, which is not very aesthetic since it breaks

the symmetry between degenerate reference determinants, but
which has given rather satisfactory results, consists in selecting
(eventually in an arbitrary manner) a specific single reference
and in introducing in the wave operator the multiple excitations
which generate the other references (the other determinants of
the model space).10 A similar procedure was proposed by Li
and Paldus which uses specific three and four body ampli-
tudes issued from a MR-CISD function.11 The other strategies
consider all the references on an equal footing, and are really
multi-reference. Let us call N the number of references, and
n the number of SD determinants. If the treatment pretended
to provide N eigenvectors simultaneously, one might define
the N × n amplitudes sending from the references to the outer-
space determinants, in a unique manner but this state-universal
approach is not practicable when the model space is a CAS.

Most of the proposed formalisms are state-specific. In this
case one faces the famous multi-parentage problem. This prob-
lem is recalled in Section II A. Sufficiency conditions have to
be imposed.12 One solution was proposed by Mukherjee and
co-workers, and has been widely tested.13–15 Another one had
been proposed earlier by one of us (JPM) and co-workers.16 It
consists, for a given outer-space determinant, in scaling the
amplitudes of the various excitation operators T̂I→i on the
interaction between the outer-space determinant and its par-
ents. A recent work has implemented this second solution of
the state-specific Multi-Reference Coupled Cluster (MR-CC)
problem and has tested its accuracy and robustness on a series
of molecular benchmarks, comparing its results to the full-CI
energies.17 In the text, we will refer to this method as λ-MR-
CCSD. The present work proposes an alternative process to
define the amplitudes of the excitation operators, and this new
method will be called µ-MR-CCSD.

The state-specific MR-CC formalisms are usually based
on the Jeziorski-Monkhorst18 splitting of the wave operator
into a sum of operators acting individually on the various
references

T̂m =
∑

I

T̂m
I |I〉〈I |. (3)

We shall leave in a first time this assumption and define in
Section II B a reference-independent operator T̂ which acting
on the component of the desired state in the model space,
|Ψm

0 〉, provides a vector as close as possible to the CAS-
SD eigenvector. This solution, defining reference-independent
amplitudes of the excitations, may be exploited directly to gen-
erate approximate values of the coefficients of the triply and
quadruply excited determinants, according to the exponential

structure of the wave operator. From these coefficients, one
may dress the CAS-SD CI matrix, redefine amplitudes, and
iterate the process to convergence. This solution, presented in
Section II C, is not an MR-CC technique; one may call it an
exponential dressing of the CAS-SD CI matrix. Section II D
redefines reference-dependent excitation amplitudes from the
reference-independent amplitudes by a fitting of the previous
amplitudes on the coefficients of the singles and doubles of the
(dressed) CAS-SD CI eigenvector. This represents an alterna-
tive solution to multi-parentage problem and opens the way
to a strict MR-CC formalism. Section III presents a series of
numerical tests on the bond breaking of single, double, and
triple bonds in ground states of molecules as well as a few
tests on excited states. The results are compared to our pre-
vious proposal and with Full Configuration Interaction (FCI)
results.

II. FORMALISMS

In this section, all the presented formalisms are state-
specific. To simplify the notations we will consider that the
state superscript m is implicit for the wave functions (Ψm → Ψ)
and for the excitation operators (T̂m → T̂ ).

A. The multi-parentage problem
in the Jeziorski-Monkhorst approach

Since one wants to produce a MR-CCSD method, one
may start from a preliminary CAS-SD CI calculation which
will help to fix guess values of the amplitudes of the excitation
operators. Let us call |I〉, |J〉, . . . the determinants of the CAS,
i.e., the so-called reference vectors, and |i〉, |j〉, . . . the singles
and doubles which do not belong to the CAS and interact with
them. The resulting approximate wave function of the targeted
state |Ψ〉 is written as

|ΨCAS–SD〉 =
∑

I

CI |I〉 +
∑

i

ci |i〉. (4)

Although this function is not size consistent, one may note that
the coefficients on the CAS determinants are no longer those
of the CAS-CI: they incorporate the effect of the dynamical
correlation on the composition of the CAS component of the
wave function.

In CC formalisms the wave operator Ω̂ is assumed to take
an exponential form

Ω̂ = exp(T̂ ) (5)

and in our previous MR-CC formalism17 the Jeziorski-
Monkhorst multi-exponential structure of the wave operator
was adopted, introducing reference-specific wave operators
acting specifically on each reference vector (Eq. (3)). One
may exploit the knowledge of the CAS-SD CI eigenvector
to determine guess operators T̂I defined in such a manner that

|ΨCAS–SD〉 =
∑

I

CI T̂I |I〉. (6)

Each of the T̂I operators is a sum of single and double
excitations T̂I→i possible on |I〉, multiplied by an amplitude
tI→i,

T̂I =
∑

i

tI→iT̂I→i. (7)
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In the single-reference CC, the amplitudes of the excitation
operators are obtained by projecting the eigenequation on
the singly and doubly excited determinants; the number of
unknowns is equal to the number of equations. This is no longer
the case in the MR context: projecting the eigenequation on
each of the singly or doubly excited vectors |i〉 is not suffi-
cient to define the amplitudes tI→i since for many classes of
excitation, an outer-space determinant interacts with several
references, |i〉 = T̂I→i |I〉 = T̂J→i |J〉. The condition

Ci =
∑

I

tI→i CI (8)

is not sufficient to define the amplitudes, even if one restricts
the excitation operators to single and double excitations. Addi-
tional constraints have to be introduced to fix the amplitudes,
and this is the famous multi-parentage problem. The number
of amplitudes is larger than the number of outer-space deter-
minants so that one cannot determine directly the guess values
of the amplitudes from Eq. (6). Different additional constraints
have been proposed. One of them consists in scaling the ampli-
tudes on the Hamiltonian interactions between the references
and the outer space determinants,

tI→i

tJ→i
=
〈i|Ĥ |I〉
〈i|Ĥ |J〉 . (9)

This constraint is expressed as

tI→i = λi〈i|Ĥ |I〉, (10)

where
λi =

ci

〈i|Ĥ |Ψ0〉
. (11)

This solution has been recently implemented17 and shown
to provide excellent agreements with full-CI results on a series
of molecular problems. From now on, we will refer to this
method as the λ-MR-CCSD.

When the term 〈i|Ĥ |Ψ0〉 is small, the λ-MR-CCSD
presents minor stability problems which may introduce some
jitter in the potential energy surfaces. A more important prob-
lem of the λ-MRCC is illustrated by considering the case
of a non-interacting A · · ·B system with localized MOs on
A and B. The 2-hole 2-particle inactive double excitations of
the type T̂iAjB→rAsB have zero amplitude in the λ-MRCC for-
malism since the integral 〈iAjB |rAsB〉 = 0. The coefficient of
the determinant T̂iAjB→rAsB |I〉 is not zero but it is equal to the
product tiA→rA tjB→sB cI . In Sec. II B, we propose an alternative
solution to the multi-parentage problem to define amplitudes
which do not suffer from this pathological behavior.

B. Introduction of reference-independent amplitudes

The present method differs from the λ-MR-CCSD in the
definition of the amplitudes, introduced in this section. The
formalism will leave in the first step the Jeziorski-Monkhorst
formulation of the wave operator and will consider the possi-
bility to define a unique state-specific reference-independent
operator T̂ , written as a sum of single and double excitation
operators,

T̂ =
∑

mnpq

tmn→pq a†pa†qanam +
∑

mp

tm→p a†pam, (12a)

=
∑

mnpq

tmn→pq T̂mn→pq +
∑

mp

tm→p T̂m→p, (12b)

where the indices p and q run on the virtual and active MOs
and the indices m and n run on the inactive occupied and active
MOs, excluding the possible occurrence of 4 active MOs. An
operator of this kind (but keeping only the linearly indepen-
dent combinations of the elementary operators) is used in the
internally contracted MR-CC method (ic-MRCC) by Evange-
lista and Gauss,19 and by Hanauer and Köhn.20 A similar and
more compact formulation was already suggested by Mahap-
atra et al.21 Our formalism differs by both the determination
of the amplitudes and by the way we use them, as will appear
later. The ic-MRCC method determines the amplitudes of the
excitations by solving the projected coupled cluster equations,
where the amplitudes appear up to quartic terms. Hereafter
we exploit the knowledge of the CAS-SD CI eigenvector
to determine the guess values of the reference-independent
amplitudes. These excitation amplitudes will be used later on
to estimate the coefficients of the triples and quadruples, and
perform an iterative dressing of the CAS-SD CI matrix intro-
ducing the coupling between the singles and doubles with the
triples and quadruples.

We propose a criterion to fix the amplitudes t
= {tmn→pq, tm→p}. Given the fact that we have at our disposal
the CAS-SD wave function, a natural way to solve this overde-
termined problem is to minimize the distance between the
CAS-SD vector and the vector obtained by applying the (1+T̂ )
operator on the CAS wave function

arg min
t
‖(1 + T̂ )|Ψ0〉 − |ΨCAS–SD〉‖

= arg min
t
‖T̂ |Ψ0〉 − |ΨSD〉‖, (13)

T̂ |Ψ0〉 being normalized such that ‖T̂ |Ψ0〉‖ = ‖|ΨSD〉‖.
To perform the minimization, we build the NSD × Nt trans-

formation matrix Ai,mn→pq = 〈i|T̂mn→pq |Ψ0〉 which maps from
the outer space of determinants {|i〉} to the space of excited
wave functions {T̂mn→pq |Ψ0〉}, and we search for the vector of
amplitudes t which minimizes ‖A.t−c‖ by solving the normal
equations,

(A†A)t = A†c. (14)

Note that in the single-reference case, A is a permutation
matrix and the CAS-SD wave function is exactly recovered.

The matrix A is usually so large that the use of standard
singular value decomposition (SVD) routines to obtain the
least squares solution is prohibitive.

Let us first consider the most numerous 2-hole-2-particle
inactive double excitations T̂jk→rs. These excitations consist
in creating two holes in the doubly occupied orbitals and
two particles in the unoccupied orbitals. For each excitation
of this kind, as all the involved orbitals are outside of the
active space, the number of determinants originating from this
process is equal to the number of determinants in the refer-
ence. Moreover, each one of these excited determinants is
doubly excited with respect to only one determinant |I〉 of
the reference, and the excitation degree with respect to all
other reference determinants is necessarily higher than two.
Therefore, all excited determinants created by such a 2-hole-
2-particle process have only one parent in the reference, and
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the corresponding rows of A contain only one non-zero ele-
ment located in the jk → rs column with value Ai,jk→rs =CI .
The condition fixing the amplitude tjk→rs is given by

arg min
tjk→rs

‖T̂jk→rs |Ψ0〉tjk→rs − |ΨSD〉‖ (15)

which is obtained by minimizing

min
tjk→rs

*,
∑

I

*,CI tjk→rs −
∑

i

ci〈i|T̂jk→rs |I〉+-+-
2

(16)

using Eq. (14), and this condition turns out to be satisfied using
only one non-zero coefficient ci with

tjk→rs =

∑
I CI ci∑

I C2
I

. (17)

One may notice that this is the weighted average of the ratios
between the coefficients of the doubly excited determinants |i〉
and the coefficient of their unique reference generator,

tjk→rs =
1

∑
I C2

I

*,
∑

I

C2
I

(
ci

CI

)+- . (18)

The maximum number of non-zero elements per row of
A is equal to the number of reference determinants since each
excitation operator applied on a reference produces no more
than one excited determinant. Hence, for all the remaining
active excitations, A remains sparse and we solve Eq. (14)
using Richardson’s iterative procedure22


t0 = A†c,
tn+1 = A†c +

(
I − A†A

)
tn,

(19)

which may be implemented very efficiently using sparse
matrix products.

There are cases where multiple amplitudes applied to
different references lead to same determinant: T̂jk→rs |I〉
= T̂lm→tv |J〉= |i〉. The linear system is underdetermined, so
there are infinitely many possible amplitudes verifying the
equations. Among the infinity of possibilities, the SVD picks
one particular solution given by A+c, where A+ is the pseudo-
inverse of A. As this solution minimizes the norm of the
amplitude vector,23 the arbitrariness brought by the null space
of A is minimized and one obtains the most sensible solution.

C. Evaluation of the coefficients of triples
and quadruples and iterative dressing
of the CAS-SD CI matrix

This section recalls the procedure described in our previ-
ous work.17 The so-determined excitation operator T̂ may be
used to generate the approximate values of the coefficients of
the triples and quadruples as obtained by the action of 1

2 T̂2.
Actually one may assume, in the spirit of the internally con-
tracted MR-CC methods, that the wave operator Ω̂ generating
the correlated wave function Ψ from Ψ0,

Ψ = Ω̂Ψ0, (20)

has an exponential structure,

Ω̂ = exp(T̂ ). (21)

But this form will be simply used to estimate the coefficients
of the triply and quadruply excited determinants {|α〉}, leav-
ing the internally contracted structure of the outer-space. The
coefficients of these determinants are estimated as

cα =
1
2
〈α |T̂2 |Ψ0〉. (22)

All the determinants {|α〉} are generated by applying all
the single and double substitutions on the singles and dou-
bles, and filtering out the determinants which are already in
the wave function. For each |α〉 one searches for the reference
determinants {|I〉}α which differ by no more than 4 orbital
substitutions from |α〉 (its grand-parents). One then identifies
the set of all possible complementary excitations as the prod-
ucts of excitations T̂p and T̂q, which generate |α〉 from every
member |I〉 of the set {|I〉}α, i.e.,

Sα =
{
(p, q, I) : ∀|I〉 ∈ {|I〉}α,

(
T̂pT̂q |I〉 = |α〉

)}
. (23)

It now straightforward to find the set of singles and doubles
with which |α〉 interacts through the matrix elements 〈i|Ĥ |α〉,
namely,

{|i〉}α =
{
|i〉 : ∀(p, ·, ·)∈ Sα,

(
|i〉 = T̂†p |α〉

)}
. (24)

For each |i〉, in the eigenequation
(
〈i|Ĥ |i〉 − E

)
ci +

∑

J

〈i|Ĥ |J〉CJ +
∑

j,i

〈i|Ĥ |j〉cj

+
∑

α

〈i|Ĥ |α〉cα = 0, (25)

the coefficient cα is given by the genealogy of |α〉,
cα =

∑

(p,q,I)∈Sα
(−1)n(I→α)tptqCI , (26)

n(I → α) being given by the number of permutations needed
to go from |I〉 to |α〉. One may replace the sum over the α by
a dressing of the matrix elements between the determinant |i〉
and the references which are grand-parents of |α〉,

〈i|∆̂|I〉 =
∑

α

〈i|Ĥ |α〉 *.,
∑

(p,q,J)∈Sα :(J=I)

(−1)n(I→α)tptq
+/- (27)

since ∑

I

〈i|∆̂|I〉CI =
∑

α

〈i|Ĥ |α〉cα. (28)

The effect of the triples and quadruples is thus incorporated as a
change of the columns of the CAS-SD CI matrix corresponding
to the interaction between the references and the singles and
doubles,

(
〈i|Ĥ |i〉 − E

)
ci +

∑

J

〈i|(Ĥ + ∆̂)|J〉CJ +
∑

j

〈i|Ĥ |j〉cj. (29)

This type of dressing was already employed in our pre-
vious MR-CC implementation.17 One will find in the same
reference the practical procedure to make the dressed matrix
Hermitian without any loss of information. Of course the whole
process may be iterated. The diagonalization of the dressed
CAS-SD CI matrix provides new values of the coefficients, not
only of the singles and doubles which no longer suffer from
the truncation but also those of the references: the method is
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fully decontracted. From the new wave function new ampli-
tudes are obtained, a new dressing is defined and the process
is repeated till convergence, which is usually rapidly obtained
(3-4 iterations).

As opposed to the λ-MR-CCSD method which uses
reference-specific amplitudes, the amplitudes introduced in
Sec. II B are reference-independent. As a consequence, the
formalism is not a strict MR-CC method since we exploit the
CAS-SD CI function which slightly differs from the vector
resulting from the action of T̂ on the vector. Although the dis-
tance between these two vectors has been minimized, they are
not identical, (1 + T̂ )|Ψ0〉 , |ΨCAS–SD〉.

Once the T̂ operator has been obtained, one might imag-
ine a contracted exponential formalism calculating T̂2 |Ψ0〉 and
the interaction between T̂ |Ψ0〉 and T̂2 |Ψ0〉, but this calculation
requires to return to the determinants. This formalism would
remain internally contracted and would be less accurate than
the decontracted procedure we propose. Actually in this ver-
sion, the deviations of the approximate reference-independent
amplitudes from optimal ones, those which would generate
the exact coefficients of the singles and doubles, only affect
the evaluation of the coefficients of the triples and quadruples,
and these deviations represent a minor source of error in the
correction restoring the size extensivity. This reliability will
be illustrated in the numerical tests.

D. State-specific MR-CC variant

In order to return to MR-CC formalism, one may sim-
ply exploit the reference-independent amplitudes as an initial
guess to define reference-dependent amplitudes. Currently the
determinant |i〉 belonging to the singles and doubles has a
coefficient c̃i in T̂ |Ψ0〉,

c̃i = 〈i|T̂ |Ψ0〉 =
∑

{(p,I):(T̂p |I〉= |i〉)}
tp CI , (30)

which differs from the coefficient ci in |ΨSD〉. One can define
a parameter µi, specific of the determinant |i〉,

µi =
ci

c̃i
, (31)

which multiplying with c̃i will produce the exact coefficient ci

of |i〉 in the (dressed) CAS-SD CI eigenvector. So the pre-
vious reference-independent amplitudes have now become
reference-dependent. The excitation T̂p which excites |I〉 to
|i〉 (|i〉 = T̂p |I〉) receives a reference-dependent amplitude

tI→i = tp,I = µitp . (32)

The same excitation will receive a somewhat different
amplitude when it acts on another reference tp,J , tp,I . This
version returns to the Jeziorski-Monkhorst formalism as the
wave operator again is a sum of reference-specific operators.
The so-obtained amplitudes may be exploited to generate the
coefficients of the triples and quadruples, and one may follow
the same strategy as in our previous formalism, with an iter-
ative column dressing of the interactions between the singles
and doubles and the references. In what follows, we will refer
to this method as µ-MR-CCSD as it involves the µi (Eq. (31)).

As the overlap between (1 + T̂ )|Ψ0〉 and |ΨCAS–SD〉 has
been maximized, the coefficients c̃i and ci are expected to

be very close in particular if ci is large, and the parameter
µi should be close to 1, at least for the determinants which
contribute significantly to the wave function. In practice we
observe this tendency, but the smallest coefficients are sacri-
ficed during the maximization of the overlap and their µi can be
very far from 1. This introduces some instabilities in the itera-
tions, so we chose to limit the values of µi in the [−µmax

i , µmax
i ]

range, with

µmax
i = 2 + 100 × exp

(
−20

|ci |
maxj |cj |

)
. (33)

In this way, when ��ci
�� is large µi is constrained in the [�2,2]

range, and when ��ci
�� is small, µi is constrained in [�102,102].

The effect on the stability of the iterations is significant, and
the effect on the energy differences is not noticeable, as seen
in Sec. III.

Our procedure makes use of an (non-compulsory but con-
venient) approximation, namely, the fact that we have not
subtracted the product of the single excitations (the T̂2

1 contri-
butions) from coefficients of the doubles to fix the T̂2 ampli-
tudes. From a perturbation expansion, one sees that this neglect
only introduces fifth-order errors on the energy, which are
responsible for small deviations from strict additivity of the
energies. Notice that a correct treatment of the T̂n

1 operations,
although tedious, is perfectly conceivable in our formalism
and would insure a perfect MR-CC character.

III. NUMERICAL TESTS

In this section, we first numerically evaluate the errors
made by the different approximations. Then, we compare
the here-proposed dressed CAS-SD and µ-MR-CCSD to the
λ-MR-CCSD presented in Ref. 17 on standard benchmark
systems.13,15,19,20,24–33

The basis set used is Dunning’s cc-pVDZ,34 and the
molecular orbitals were obtained using the CAS-SCF code
present in GAMESS.35 All the following calculations were
made using the Quantum Package,36 an open-source program
developed in our group. Full-CI energies were obtained using
the CIPSI algorithm.37–39 In all the calculations (full-CI, CAS-
SD, and MR-CC), only the valence electrons are correlated
(frozen core approximation).

A. Approximations

1. T̂2
1 × T̂2, T̂3

1 , and T̂4
1

To estimate the errors due to the approximate treatment of
the T̂2

1 × T̂2, T̂3
1 , and T̂4

1 operators, we chose a single-reference
example in which the single excitations are important at the
CISD level. In the single reference case, all the excitations
are of the 2 hole-2 particle type, so the normal equations
(Eq. (14)) are solved exactly and all the values of µ are equal
to 1. The only difference to standard CCSD is the approximate
treatment of the T̂3

1 and T̂4
1 , as explained in Section II D.

We have calculated the energy of the FH molecule at a
distance of 1.2 Å with the single-reference CCSD programs of
GAMESS40 and Gaussian 09,41 and our µ-MR-CCSD imple-
mentation using the Hartree-Fock determinant as reference.
The results are presented in Table I. The Hartree-Fock and
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TABLE I. Comparison of the single-reference energies obtained with Gaus-
sian 09, GAMESS, and the Quantum Package for FH at 1.2 Å, cc-pVDZ. All
energies are converged below 10�10 a.u.

Hartree-Fock CISD CCSD

Gaussian 09 �99.959 526 039 �100.170 216 059 �100.178 425 609
GAMESS �99.959 526 065 �100.170 216 086 �100.178 425 629
Quantum package �99.959 526 065 �100.170 216 097 �100.178 426 538

CISD energies agree up to 10�8 a.u., but our implementation
differs from the CCSD by almost ∼−10−6 a.u. We attribute
this difference to the approximation in the T̂2

1 × T̂2, T̂3
1 , and T̂4

1
operators, and it represents a relative error of 4.4 × 10�6 on
the correlation energy.

To measure the effect of this approximation on the size
consistency, we have calculated the energy of the CH3 radical,
with C–H bond lengths of 1.103 Å and H–C–H bond angles
of 107.69◦ in the 6-31G basis set. We have also calculated the
energy of the dimer with an intermolecular distance of 100 Å.
The active space of the monomer contains only the singly
occupied orbital, and the dimer is an open shell singlet with a
CAS(2,2) wave function. For the µ-MR-CCSD calculation, we
have constrained the µi as in Eq. (33) or we have let it uncon-
strained. The results are given in Table II and show that the
deviation to additivity of the energy is reduced by an order of
magnitude going from the CAS-SD to the dressed CAS-SD,
and by two orders of magnitude when including the µi fac-
tors. The constraint on the µi introduces a small error which
is below 10�4 a.u.

B. Bond breaking

For all the applications we compare the dressed CAS-
SD and µ-MR-CCSD with the λ-MR-CCSD and the CAS-SD
values. Results are also given using the reference-independent
dressing of the CAS-SD CI matrix. All the applications are pre-
sented as energy differences with respect to the full-CI energy
estimated by a CIPSI calculation with a second-order pertur-
bative correction. The smallest and largest values of the CIPSI
perturbative corrections along the curves are given in Table III.
We empirically estimate the error to the FCI energy to be in the
order of 10% of the largest contribution. For ethane and twisted
ethylene, which have the largest perturbative corrections, we
have performed a larger CIPSI calculation at the point with
the largest PT2 contribution. For ethylene the PT2 contribu-
tion was reduced to �5.6 mEh, but the total energy changed by
only 0.08 mEh. In this case, we can consider that the CIPSI
energy of ethylene is converged. In the case of ethylene, the

TABLE III. Second-order perturbative correction in the CIPSI calculations.
Minimum and maximum values among all the points of the potential energy
curve.

EPT2 (Eh)

Smallest Largest

C2H6 �13.4 × 10�3
�17.8 × 10�3

C2H4 twisted �3.37 × 10�3
�9.86 × 10�3

C2H4 �2.41 × 10�3
�6.85 × 10�3

F2
3Σ+

u �0.31 × 10�3
�1.42 × 10�3

F2 �0.13 × 10�3
�0.47 × 10�3

N2 �61.1 × 10�6
�0.41 × 10�3

BeH2 �12.3 × 10�6
�35.4 × 10�6

H2O �1.59 × 10�6
�69.1 × 10�6

FH �0.23 × 10�6
�55.1 × 10�6

LiF �0.17 × 10�6
�12.3 × 10�6

largest calculation dropped the PT2 value to �6.7 mEh and
the total energies differed by 1.4 mEh. So we estimate that
the CIPSI curve of ethane has an accuracy less than 2 mEh in
total energy, and all the other curves have an accuracy below
the mEh. The non-parallelism errors (NPEs) of all the CIPSI
curves are estimated with an error below the mEh.

For the full series of compounds, Figure 1 shows the
energy difference with respect to the full-CI along the reaction
coordinate. Table IV summarizes the non-parallelism errors
(NPEs) and the maximum of the error obtained along the curve.
The MR-CC treatment reduces the average and maximum error
of the CAS-SD with respect to the full-CI by a factor close
to 4. The correction is larger when the system involves an
important number of inactive electrons (F2, C2H6) than when
this number is small (BeH2, N2). One actually knows that the
size-consistency error of the CAS-SD treatment increases with
the number of inactive electrons; this error disappears in the
MRCC treatment, which essentially misses some fourth-order
connected effects of the triples.

1. Single-bond breaking

We present here the single bond breaking of theσ bonds of
the C2H6 and F2 molecules and of the π bond of ethylene. The
active spaces were chosen with two electrons in two MOs, the
minimal wavefunctions to describe properly the dissociation
of the molecules. In the case of ethane, the NPE of the CAS-SD
is 5.1 mEh, and is reduced to 3.5 mEh with the µ-MR-CCSD.
The curve of the dressed CAS-SD has the lowest NPE (1.3
mEh). The curves obtained by both MR-CCSD methods give
equivalent results, with NPEs of 3.5 and 3.6 mEh.

TABLE II. Evaluation of the size-consistency error in the dressed CAS-SD and the µ-MR-CCSD, 6-31G basis
set.

Dressed µ-MR-CCSD µ-MR-CCSD
CAS-SCF CAS-SD CAS-SD µ ∈ Eq. (33) unconstrained µ

·CH3 �39.528 586 5 �39.622 437 9 �39.625 570 2 �39.625 570 2 �39.625 570 2
·CH3 ×2 �79.057 173 0 �79.244 875 8 �79.251 140 3 �79.251 140 3 �79.251 140 3
H3C· · ·CH3 �79.057 173 0 �79.237 098 2 �79.250 695 7 �79.251 039 3 �79.251 107 3

Error 7.78 × 10�3 4.44 × 10�4 1.01 × 10�4 3.29 × 10�5
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FIG. 1. Dissociation curves. Differ-
ence with respect to the full-CI energy
using the MR-CCSD method presented
in Ref. 17 and with the MR-CCSD
method proposed in this work, as well as
the CAS-SD and the dressed CAS-SD.

In the case of F2 the NPE of the dressed CAS-SD is
0.9 mEh and the NPE of the µ-MR-CCSD is 1.5 mEh; both
are better than the NPE of the λ-MR-CCSD which is 3.1 mEh.
Also, one can remark here some numerical instabilities in the
λ-MR-CCSD where the curve is not smooth.

In the next example, the π bond of ethylene is broken by
the rotation of the CH2 fragments. The CAS-SD has an NPE
of 1.5 mEh, and using the dressed CAS-SD reduces the NPE
to 0.7 mEh. The µ-MR-CCSD gives an NPE of 0.5 mEh, and
the NPE obtained with the λ-MR-CCSD is slightly better with
a value of 0.3 mEh.

2. Insertion of Be in H2

We present the results obtained by the insertion of a beryl-
lium atom into the H2 molecule, which is a popular benchmark
for MR-CC methods. The reference is still a CAS(2,2) for
comparison with the literature, even though this choice of

reference is not the most appropriate for a correct description
of the reaction. The geometries are given by the relation

z = 2.54 − 0.46x (a.u.), (34)

where the beryllium atom is at the origin and the hydrogen
atoms are at the coordinates (x, 0,±z). In this particular case,
the µ-MR-CCSD gives an NPE of 1.7 mEh which is larger than
the NPE of 1.3 mEh obtained by the λ-MR-CCSD. This is due
to only one point of the curve, the maximum which is higher
by 0.3 mEh; all the other points being very close by less than
0.1 mEh. Here, the dressed CAS-SD and the µ-MR-CCSD are
equivalent.

3. Two bond breaking

For breaking two bonds we have used CAS(4,4) wave
functions as the reference space. The first example is the
simultaneous breaking of the two O–H bonds of the water
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TABLE IV. Non-parallelism errors (NPEs) and maximum errors with respect to the full-CI potential energy
surface (mEh).

CAS-SD λ-MR-CCSD Dressed CAS-SD µ-MR-CCSD

NPE Max error NPE Max error NPE Max error NPE Max error

C2H6 5.1 35.5 3.6 8.4 1.3 8.3 3.5 8.3
F2 3.8 19.8 3.1 4.0 0.9 4.2 1.5 3.8
C2H4 twist 1.5 27.7 0.3 6.7 0.7 7.1 0.5 6.5
BeH2 2.9 4.1 1.3 1.8 2.0 2.4 1.7 2.1
H2O 1.9 4.8 0.7 1.2 0.2 1.3 0.5 1.3
C2H4 stretch 2.7 20.0 1.6 5.2 1.7 6.2 1.8 6.0
N2 1.7 9.0 0.9 2.2 1.7 3.8 0.3 2.3

F2
3Σ+

u (ms = 1) 2.6 18.6 1.3 3.3 1.2 3.5 1.2 3.3
F2

3Σ+
u (ms = 0) 2.6 18.6 1.2 1.8 1.3 3.5 1.1 3.3

FH (ground state) 2.6 14.6 1.8 4.0 2.1 4.5 1.8 4.0
FH (excited state) 3.3 20.9 8.8 8.5 10.5 10.1 7.1 8.3

F2 (local) 3.8 19.8 1.2 3.2 1.5 3.5 0.9 3.0
N2 (local) 1.7 9.0 3.6 5.0 1.1 3.5 0.4 1.8

molecule by stretching. Here, the CAS-SD exhibits an NPE
of 1.9 mEh which is significantly improved to 0.2 mEh with
the dressed CAS-SD. The µ-MR-CCSD, with an NPE of
0.5 mEh, is slightly more parallel to the full-CI curve than
the λ-MR-CCSD which has an NPE of 0.7 mEh.

The second example is the double-bond breaking of ethy-
lene by stretching. One should first clarify that the energy
differences in the figure do not match those of the torsion along
the bond because in the former example the reference was a
CAS(2,2), and here it is a CAS(4,4). Dressing the CAS-SD
reduces the NPE from 2.7 mEh to 1.7 mEh. One can remark
a discontinuity in the curve at large distances. The µ-MR-
CCSD and λ-MR-CCSD slightly improve the NPE to values of
1.7 mEh and 1.8 mEh.

4. Triple-bond breaking

N2 is the typical benchmark for breaking a triple bond.
Here, we have used a CAS(6,6) reference wave function. At the
CAS-SD level, the NPE is 1.7 mEh, and the dressed CAS-SD
does not reduce the NPE. Here, it is necessary to use reference-
dependant amplitudes to recover a low NPE: 0.9 mEh with the
λ-MR-CCSD, and 0.3 mEh with the µ-MR-CCSD.

C. Excited states
1. Triplet state of F2

We report here calculations on the triplet state 3Σ+
u of F2.

The reference wave function was prepared in two different
ways, both using restricted open-shell Hartree-Fock molecular
orbitals. The first reference wave function labeled ms = 1 is a
single open-shell determinant, and the second wave function
is the triplet ms = 0, made of two determinants 1/

√
2(αβ− βα).

To ensure that the CAS-SD is a strict eigenfunction of the
Ŝ2 operator, we have included inΨSD all the determinants with
the same space part as the singles and doubles with respect to
the CAS. These determinants are treated in the same way as
singles and doubles and are treated variationally in the diag-
onalizations. Of course, those which are triples or quadruples

with respect to Ψref are excluded from the set of the {α} and
have no effect in the dressing.

To reduce the computational cost, the triples and quadru-
ples were not augmented with all the determinants with the
same space part. The absence of some determinants gives rise
to a slight deviation (<10−6 a.u.) of 〈Ŝ2〉 from the desired eigen-
value, and it is expected to have some impact on the iterative
dressing. It is worth checking the effect of this deviation from
the exact spin multiplicity. The first test concerns the com-
parison of the ms = 0 and ms = 1 components of a triplet
state.

According to Figure 2, in all the cases, the NPE of the
CAS-SD (2.6 mEh) is improved to a value of 1.1–1.3 mEh. As
expected the dressed CASSD and the µ-MR-CCSD are strictly
equivalent for ms = 1. Indeed, for both variants, the usual
single-reference amplitudes ci/c0 are recovered. The ampli-
tudes of the λ-MR-CCSD lower the curve by 1 mEh when
going from ms = 1 to ms = 0. The dressed CAS-SD gives
a slightly higher energy by only 0.3 mEh, and introducing
the reference-dependence via the µi reduces the difference to
0.2 mEh.

If one considers the error on the singlet-triplet gap
with respect to the full-CI reference, it appears clearly
that the µ-MR-CCSD with ms = 0 gives the most accurate
results, with errors lying between 0 and 0.9 mEh along the
curve.

2. Avoided crossing in FH and LiF

We have calculated the potential energy surfaces of the
two lowest 1Σ+ states of FH, using as reference wave function
the CAS(2,2) with state-averaged CAS-SCF molecular orbitals
in the aug-cc-pVDZ basis set. Figure 3 shows the NPEs of
the ground and excited states. In the ground state, the NPE is
1.8 mEh for both MR-CCSD variants, but the λ-MR-CCSD
shows some numerical instabilities, as opposed to the µ-MR-
CCSD which gives a very smooth curve.

In the excited state, the situation is different: surprisingly
the best NPE is obtained by the CAS-SD. The reason is the
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FIG. 2. F2
3Σ+

u . Difference with respect to the full-CI
energy for the ms = 0 and ms = 1 wave functions (top), and
error on the singlet-triplet gap ∆E = E(3Σ+

u )−E(1Σ+
g )

(bottom). On both graphics, the two curves of the dressed
CAS-SD coincide.

FIG. 3. Difference with respect to the full-CI energy for the two lowest 1Σ+

states of FH.

following. At large distances, the CAS-SD description is cor-
rect, but the size-consistency error raises the energy. At short
distances, the CAS-SD description of the excited state is not
as accurate as for large distances since there are determinants
with a large coefficient which are not in the active space: the
CAS contributes by 0.85 to the norm of the FCI wave func-
tion, but in the case of the CAS-SD its contribution is 0.91.
This bad description of the CAS-SD raises also the energy at
short distances, and the errors compensate along the curve.
All the other methods correct the size-consistency error, so
the long range errors are corrected but not the error due to
the incompleteness of the CAS at short range. This explains
why the deviations to the FCI decrease with the distance, and
why the NPEs are so large. The two variants of the MR-CCSD
agree at short and long distances, but they differ significantly
between 1.5 and 2.5 Å; the region of the avoided crossing. To
understand these differences, we have plotted in Figure 4 the
two eigenvalues of the two state-specific Hamiltonians—one
dressed for the ground state and one dressed for the excited
state. It appears that the state of interest is very well described,
but the dressing for other root has a much lower quality. This
strong state-specific character is due to the fitting procedure
which is implicitly weighted by the state of interest. The large
coefficients have a higher quality in the amplitudes, but the
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FIG. 4. Potential energy surfaces of the two lowest 1Σ+ states of FH with the
µ-MR-CCSD method. The energy of the state corresponding to the dressing
is plotted in plain curves, and the energy of the other state is plotted in dashed
curves.

important determinants of the second root are usually not
the same as in the state of interest. The λ-MR-CCSD has
amplitudes which depend less on the wave function, so the
quality is comparable on both states, and the choice of
these amplitudes is better suited for calculating excited states
within the same symmetry, as will be confirmed by the next
example.

In Figure 5 we have represented the avoided crossing
of LiF, also calculated with the aug-cc-pVDZ basis set. The
physical situation is similar to FH, but the energy difference
between the ground and the excited states is much smaller. A
striking result is that the λ-MR-CCSD, although being state-
specific, is able to reproduce very well the whole potential
energy surfaces of both states. The position of the avoided
crossing is very well reproduced by the three methods: the
CAS-SD crosses at 6.3 Å, the full-CI crosses at 6.8 Å, and
the dressed CAS-SD and the two MR-CCSD variants cross
at 6.9 Å. The µ-MR-CCSD and λ-MR-CCSD coincide in the
short-range (≤5 Å) and in the long range (≥7.2 Å), but when
the two states become very close in energy in the region of the
crossing the dressed CAS-SD and the µ-MR-CCSD are unable
to give reasonable values. This disappointing result motivates
a future work on a multi-state µ-MR-CCSD.

D. Sensitivity to the choice molecular orbitals

The µ-MR-CCSD algorithm we propose is in the
Jeziorski-Monkhorst framework, so it is not invariant with
respect to the choice of molecular orbitals. In this section,
we checked its sensitivity to the choice of the MO set by

FIG. 5. Potential energy surfaces of the two lowest 1Σ+ states of LiF.

FIG. 6. Comparison between pseudo-canonical (dashed curves) and localized
(plain curves) MOs in F2 and N2. Difference with respect to the full-CI energy.

comparing results obtained with pseudo-canonical CAS-SCF
orbitals and with localized MOs in the F2 and N2 molecules
(Figure 6).

In the F2 molecule, using localized MOs is a better choice
than the pseudo-canonical MOs. The best NPE is obtained
by the µ-MR-CCSD method with a value of 0.9 mEh. In the
case of N2, the situation is different: the NPE of the λ-MR-
CCSD goes from 0.9 mEh to 3.6 mEh, and the NPE of the
µ-MR-CCSD is relatively stable around 0.3–0.4 mEh. On the
other hand, the dressed CAS-SD gives a better NPE with local
orbitals, going from 1.7 mEh to 1.1 mEh.

The fact that the µ-MR-CCSD is less sensitive to the MO
set than the λ-MR-CCSD can be understood. By changing
the MO set, a single excitation rotates into a combination of
single and double excitations. In the λ-MR-CCSD method, the
amplitudes are calculated by taking into account the matrix
elements of the Hamiltonian, which are of different nature
depending on the degree of excitation, so the amplitudes are
expected to change significantly. In the µ-MR-CCSD variant,
the amplitudes are adjusted in such a way that they fit the CAS-
SD wave function, which is invariant by rotation of the MOs.
Therefore, it is expected to be more robust with respect to the
change of MO set.

IV. CONCLUSIONS

We have proposed a method to determine reference-
independent amplitudes by fitting the CAS-SD CI vector.
These amplitudes may be used to perform a state-specific iter-
ative dressing of the CAS-SD Hamiltonian in order to take into
account the effect of the triples and quadruples in the spirit of
the coupled cluster formalism. Alternatively, these amplitudes
may be rescaled to reproduce the exact coefficients of the sin-
gles and doubles to introduce a reference-dependent character.
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In that case, the CAS-SD CI vector is recovered by the appli-
cation of (1 + T̂ ) on the reference wave function, so we reach
here the Jeziorski-Monkhorst coupled cluster formalism.

The CAS-SD dressed with reference-independent ampli-
tudes gives excellent results for single-bond breaking (F2 and
ethane) and the simultaneous breaking of the two O–H bonds
of water, with a non-parallelism error lower than the milli-
Hartree. When the active space becomes larger, it is necessary
to go to the reference-dependent MR-CCSD introducing the µ
factors in Eq. (31). In the case of ethylene and N2, this keeps
the NPE to a value close to the milli-Hartree.

We have shown numerically that the here-proposed ampli-
tudes are not very sensitive to the value of ms for open-shell
systems, and to the choice of the molecular orbitals. This is
clearly an improvement compared the amplitudes proposed
earlier.17 But we have also shown that the former amplitudes
are a better choice when computing excited states of the same
symmetry because the here-proposed amplitudes have a much
more pronounced state-specific character which may be disad-
vantageous if the states are too close in energy. This problem
can be cured by leaving the state-specific formalism for a
multi-state formalism,42 and this will be the object of a future
work.
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8.3 Computing cα for matrix dressing
Whether the matrix dressing algorithm performs a Shifted-Bk , an MR-CCSD or some
other method, depends on the external space, i.e. the cα coe�cients. Our goal is to
set up a framework in which stochastic matrix dressing can be done e�ciently using
an external space only de�ned by Z(α, Ψ, . . .) a function that takes a determinant
|α〉 and the wave function |Ψ〉, and returns the cα it should be associated with. The
“. . .” notation indicates that the returned value may depend on any number of global
parameters, such as approximation thresholds, etc. . .

Looking at the expression of cα for Shifted-Bk , it looks like the computation re-
quired is the exact same as the one performed by our CIPSI

cα =
〈α|Ĥ|Ψ〉

∆Eα
=

Ndet

∑
I=1

cI
〈α|Ĥ|DI〉

∆Eα
, (8.9)

but the expression of cα for Shifted-Bk has a particularity that lifts a constraint com-
pared to the general case: as can be seen, while for any |α〉 we need to �nd all internal
determinants it connects to, we do not need to know them at the same time, i.e. cα can
be incrementally built from terms that only involve one internal determinant at a time.
This is not generally the case, and isn’t the case for MR-CCSD.

Thus, matrix dressing generally requires the knowledge of all internal determinants
a particular |α〉 connects to, before cα — and thus the associated increment to δδδ — can
be computed. For e�ciency, as well as simplicity, this list must absolutely be computed
upstream the computation of Z(α, Ψ, . . .), making it in practice Z?(α, Ψc, . . .) with Ψc
the variational wave function stripped of all determinants that do not connect to |α〉
(thus not normalized). In practice, it is a list of internal determinant indices.

This is a lot like the former implementation of CIPSI : considering one |α〉 at a time,
enumerate its connections to selectors. The new, more e�cient algorithm, however,
considers a batch of up to Nvirt =

(
Norb − N↑elec

)2
rather than a single one. The

solution is conceptually simple. Neglecting connections to determinants that are not
selectors :

1. Loop over all Gpq batches in the same way as in the CIPSI algorithm (building
the Brs tag matrix).

2. For each batch, create (2Norb)
2 sets of internal determinant indices Crs, each

associated with
∣∣∣Grs

pq

〉
.

3. When a connection between a selector |DI〉 and |α〉 =
∣∣∣Grs

pq

〉
is found, add I to

Crs (instead of incrementing P(Gpq)).
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4. When the computation of batch Gpq is completed, Crs is the set of all indices of
selectors connected to |α〉 =

∣∣∣Grs
pq

〉
. For each untagged |α〉:

(a) cα ← Z?(α, Crs, . . .).
(b) For each index K ∈ Crs increment δK with cα 〈α|Ĥ|DK〉.

Figure 8.1: Build lists of connected selectors for unique |α〉’s in batch Gpq.

As can be seen, this is very similar to the implementation of CIPSI, except we are
building sets instead of incrementing scalars. This, of course, adds complexity to the
implementation as the sizes of the Crs sets aren’t known in advance. More importantly,
the storage space required may be prohibitive. Noticing that

• all
∣∣∣Grs

pq

〉
in a batch are connected to each other,

• there are Nvirt
2 non-zero

∣∣∣Grs
pq

〉
in a batch,

and considering a particular case where

• Gpq is the �rst batch (all generated |α〉’s are unique)

• half of
∣∣∣Grs

pq

〉
are internal determinants,

we have 1
2 Nvirt

2 unique |α〉’s in the batch each one connecting to at least 1
2 Nvirt

2 inter-
nal determinants, for a total storage space of at least 1

4 Nvirt
4. This case isn’t unrealistic,

with |G〉 the Hartree-Fock determinant and (p, q) the highest occupied spinorbitals.
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Another issue is the high number of non-contiguous writes in memory, especially
with the selectors that connect to all determinants of the batch ; they need to be added
to Nvirt

2 sets, which is Nvirt
2 non-contiguous writes for a single selector.

We can solve the storage issue and mitigate the number of non-contiguous writes,
by creating sets of |α〉 that are subsets of several Crs. Table 5.1 indicates which |α〉 =∣∣∣Grs

pq

〉
of the current batch a selector |S〉 connects to. In some cases, there are “wild-

card” indices X and Y. Instead of looping over the possible values for those wildcards
and adding |S〉 to all the corresponding Crs sets, we are going to give wildcard indices
the special value 0 and build intermediate sets C̃rs. For example, in the case where
both r and s are wildcards for a selector |DI〉, instead of adding I to all Crs sets, we
will add it to a single set C̃00. When computation for the batch is completed, Crs can
be evaluated as

Crs ← C̃rs ∪ C̃r0 ∪ C̃s0 ∪ C̃00 (8.10)

Among these intermediate sets only C̃r0 and C̃s0 may share common elements.
Given its frequency, it is important that this computation is e�cient. As is sometimes
the case, e�ciency implies Crs are not computed individually, but become available
inside a loop. An implementation is proposed as algorithm 34, which tries to reuse
shared C̃rs as much as possible.

8.4 E�cient application to multi-reference coupled
cluster

The equation for cα as well as the procedure for computing amplitudes is detailed in
the article presented in section 8.2. In particular, Eq.(26) shows the formula to compute
cα as a sum over what can be described as “diamond” structures.

With |α〉 the external determinant being considered, |DI〉 and
∣∣DJ
〉

internal de-
terminants, and |Rr〉 a reference determinant. Parallel arrows indicate connections
(excitation degree at most 2) by the same excitation, the vertical arrow indicates |Rr〉
and |α〉 aren’t connected (excitation degree at least 3). More generally, we only con-
sider |α〉 determinants that are not connected to any |Rr〉. All the determinants we are
considering are ordered according to Ô.
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Data: C̃rs the intermediate sets assumed to be sorted in increasing order, Brs the
tag matrix

Result: Crs is computed for all
∣∣∣Grs

pq

〉
of Gpq batch that are unique |α〉

1 /* C̃rs and Crs are considered arrays, the syntax Crs[i . . . j] is used
to denote a segment of array, |Crs| is the cardinality of Crs

*/
2 L an array of determinants size Nsel ;
3 i1 ← |C̃00| ;
4 L[1 . . . i1]← C̃00[1 . . . i1] ;
5 /* Br0 = TRUE if column r is entirely tagged */
6 forall r;¬Br0 do
7 i2 ← i1 + |C̃r0| ;
8 L[i1 + 1 . . . i2]← C̃r0 ;
9 forall s;¬(Brs ∨ B0s) do

10 i3 ← i2 ;
11 j← 1 ;
12 k← 1 ;
13 while k ≤ |C̃s0| do
14 if (j > |C̃r0|) ∨ (C̃s0[k] < C̃r0[j]) then
15 i3 ← i3 + 1 ;
16 L[i3]← C̃s0[k] ;
17 k← k + 1 ;
18 else if C̃s0[k] > C̃r0[j] then
19 j← j + 1 ;
20 else
21 j← j + 1 ;
22 k← k + 1 ;
23 end
24 end
25 i4 ← i3 + |C̃rs| ;
26 L[i3 + 1 . . . i4]← C̃rs ;
27 /* L = Crs */

28 end
29 end

Algorithm 34: Build Crs from C̃rs
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Data: |α〉 the considered external determinant
Data: |DI〉 the list of N internal determinants connected to |α〉, sorted with

increasing integer value
Data: |Rr〉 the list of Nref reference determinants sorted with increasing integer

value and cRr the associated coe�cients
Data: tRr→DI the used amplitudes
Result: cα

1 cα ← 0 ;
2 Discard Rr when EXC_DEGREE(Rr, α) > 4 ;
3 If Rr so that EXC_DEGREE(Rr, α) ≤ 2 was found, discard |α〉 ;
4 forall DJ do
5 /* Note that Φ

(∣∣DJ
〉
→ |α〉

)
may be pre-computed here */

6 δ← α− DJ ;
7 i← 1 ;
8 r ← 1 ;
9 while i ≤ N ∧ r ≤ Nre f do

10 if DI − Rr > δ then
11 r ← r + 1 ;
12 else if DI − Rr < δ then
13 i← i + 1 ;
14 else
15 if Rr ⊕ DI ⊕ DJ ⊕ α = 0 then
16 /* diamond found */

17 ϕ← Φ
(∣∣DJ

〉
→ |α〉

)
×Φ(|Rr〉 → |DI〉) ;

18 cα ← cα + ϕ× cRr × (tRr→DI )× (tRr→DJ ) ;
19 end
20 r ← r + 1 ;
21 i← i + 1 ;
22 end
23 end
24 end

Algorithm 35: Compute a cα for MR-CCSD
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The matrix dressing implementation supplies {D} the complete set of the N in-
ternal determinants that connect to |α〉. We call {R} the set of the Nref reference
determinants.

A naive way to �nd those diamonds, would be to loop over all unordered triplets

(DI ∈ {D}, DJ ∈ {D}, Rr ∈ {R}) (8.11)

so that
T̂Rr→DI T̂Rr→DJ |Rr〉 = ±|α〉 (8.12)

with T̂Rr→DI the excitation operator so that T̂Rr→DI |R〉r = |DI〉.
Using excitation operators, a diamond can be identi�ed by only verifying

T̂Rr→DI = ±T̂DJ→α (8.13)

or in other words, that T̂Rr→DI and T̂DJ→α involve the same holes and particles. We
�rst set up a method to identify a diamond, then two methods to “locate” them.

Identifying diamonds For implementational e�ciency, we are going to express
excitations using f̂p an operator that �ips the occupation status of a spinorbital p.

{
f̂p |A〉 = Ôap |A〉 if ap |A〉 6= 0
f̂p |A〉 = Ôa†

p |A〉 if a†
p |A〉 6= 0

(8.14)

or in a less verbose formulation

f̂p = Ôap + Ôa†
p (8.15)

This avoids the burden of making a distinction between annihilation and creation op-
erator, and of checking whether they can be applied to a determinant. This also ignores
phase factors.

The notation f̂ab... will be used as a shortcut for f̂a f̂b . . ., and we de�ne F̂A→B =
F̂B→A as the set of f̂ operators that �ips all spinorbitals whose occupation di�er be-
tween |A〉 and |B〉.

Clearly a set of f̂ operators does not univocally correspond to an excitation, but
it is demonstrable that in this particular case, we can use F̂ instead of the excitation
operator T̂, i.e. we can ensure (Rr, DI , DJ , α) are forming a diamond by only verifying

F̂Rr→DI = F̂DJ→α (8.16)

It is easy to understand from Eq. (8.13) how this is a necessary condition, it is
less obvious that it is also a su�cient one, i.e. that this can only happen if there is
a diamond. In fact, it is not generally true. It is demonstrable in this particular case
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thanks to the known excitation degrees. It is known |DI〉 and
∣∣DJ
〉

are connected by
at most a double excitation to |α〉, therefore at most 4 orbitals have their occupation
status �ipping, two of them occupied and two unoccupied in |α〉. For later clarity we
use the dot (ȧ) notation to denote indices of spinorbitals that are occupied in |α〉.

F̂DI→α = F̂Rr→DJ = f̂ ȧḃcd ; F̂DJ→α = F̂Rr→DI = f̂ ė ḟ gh (8.17)

The reference determinant |Rr〉 is reached from |α〉 after chaining the two “�ip-
pings”.

F̂R→α = ( f̂ ȧḃcd)( f̂ ė ḟ gh) (8.18)

If indices ȧ, ḃ, c, d, ė, ḟ , g, h are all unique, T̂R→DI and T̂DJ→α are independent and
thus can be chained, so the diamond is valid. If they are not, the diamond is still known
to be valid thanks to our knowledge that |α〉 is at least a triple excitation from |Rr〉,
and therefore at least 6 orbitals must �ip.

It is trivial that

f̂aa = 1̂ (8.19)
so only 2 among the 8 indices can refer to the same spinorbital x (which we arbi-

trarily choose unoccupied in |α〉). For obvious reasons one is found among (ȧ, ḃ, c, d)
and the other among (ė, ḟ , g, h).

F̂R→α = ( f̂ ȧḃcx)( f̂ ė ḟ gx) = ( f̂ ȧḃc)( f̂ ė ḟ g) (8.20)

As can be seen, applying ( f̂ ȧḃc)( f̂ ė ḟ g) to |α〉 will �ip four occupied spinorbitals
versus only two unoccupied ones ; this implies |α〉 has two extra electrons compared
to |Rr〉. Because we know this not to be the case, we know such a situation cannot
happen.

Now that we know Eq. (8.16) is su�cient to identify a diamond, we have to write its
implementational expression, which is straightforward. The set of spinorbitals whose
occupation status di�er between |A〉 and |B〉 can be computed as a bitstring as

A⊕ B (8.21)

with A a single bitstring associated with |A〉 — the association between a spinorbital
and a bit is arbitrary.

Eq. (8.16) is veri�ed i�
Rr ⊕ DI = DJ ⊕ α (8.22)

or alternatively, since A⊕ A = 0

Rr ⊕ DI ⊕ DJ ⊕ α = 0 (8.23)
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Locating diamonds by binary search Now that we expressed the identi�cation of
a diamond in a simple way, we must �gure a strategy to �nd them fast. Eq. (8.23) can
be rewritten as

DJ = Rr ⊕ DI ⊕ α (8.24)
which implies a simple algorithm that �nds the diamonds in O(N × Nref × log(N)):

1. Iterate over (Rr, DI)

2. Binary search for DJ>I = (Rr ⊕ DI ⊕ α) in {D} if ||DJ || = Nelec.

Depending on the sizes of the {D} and {R} sets, an alternative variant can also
be used, giving a complexity of O(N2 × log(Nref)):

1. Iterate over unordered pairs (DI , DJ)

2. Binary search for Rr = (DI ⊕ DJ ⊕ α) in {R} if ||Rr|| = Nelec.

Those are desirable if one of {D} or {R} is relatively small, in particular, in case
of single-reference computation, i.e. N = 1, the former variant is ideal. For larger sets,
however, a more complex variant with a complexityO(N× (N + Nref)) is introduced
next.

Locating diamonds by rewriting excitations as additions Although the method
could be chosen on a “by-α” basis depending on N and Nref, only this one is currently
used in the �antum Package as it works for larger sets. Unlike the previous one,
this method may yield false positives, thus it uses Eq. (8.23) for con�rmation. The idea
is to express an excitation as an addition. As was said, bitstrings can be interpreted as
integers, so they can be added, substracted and compared as such. As in the case of
the f̂ operator, this approach entirely ignores phase factors. We can easily associate
the integer value TA→B to excitation ±T̂A→B.

TA→B = B− A (8.25)
TA→B + A = B (8.26)

With A the bitstring associated with |A〉 as a single integer — the association between
a spinorbital and a bit is arbitrary. It is a necessary but not su�cient condition for a
diamond that

TR→DI = TDJ→α (8.27)
Indeed,

±T̂ |A〉 = |B〉 =⇒ T + A = B (8.28)
T + A = B 6=⇒ ±T̂ |A〉 = |B〉 (8.29)
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with T the integer associated with excitation±T̂. If±T̂ |A〉 = 0, in most cases T + A
will yield a bitstring with a wrong number of bits/electrons, but this is not guaranteed,
hence the rare presence of false positives.

Eq. (8.13) implies
DI − Rr = α− DJ (8.30)

Finding all (DI , Rr) pairs that verify this, assuming {D} and {R} are sorted in as-
cending order, can be achieved with linear complexity.

1. Initialize I and r to 1

2. Loop while both I and r are not out of bounds

3. If DI − Rr < α− DJ , increment I and loop

4. If DI − Rr > α− DJ , increment r and loop

5. If DI − Rr = α− DJ , a (DI , Rr) pair has been found. Check if a diamond can
be formed using Eq. (8.23). Increment I and r, and loop.

The complexity is O(N × (N + Nref)).
For implementational ease and e�ciency, two things are worth noting:

• Integer over�ows do not need to be handled. The size of integers being limited
to 64 bits essentially means an unsigned integer I is represented as I mod 264.
Quite fortunately modulus has the properties of compatibility with addition and
substraction.

a1 + a2 ≡ b1 + b2 (mod n) (8.31)
a1 − a2 ≡ b1 − b2 (mod n) (8.32)

with a1 ≡ b1 (mod n), and a2 ≡ b2 (mod n). When it comes to addition and
substraction, signed and unsigned integers are equivalent, so signed integers can
be used as well.

• It is not required to handle bitstrings as actual arbitrary size integers when it
comes to addition and substraction. While addition to a bitstring was intro-
duced as being associated with an excitation, it can actually be associated with
any combination of creation and annihilation operators. It is therefore valid to
consider each 64-bit integer as an independent “sub-bitstring” on which a subset
of the operators will be applied. In short, additions and substraction can be done
integer-wise, without the overhead of handling carries.

When it comes to comparison, since the 64-bit integers corresponding to the lower
orbitals will typically have more mobile electrons, they should be given more weight
in order to resolve comparison as fast as possible.
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Computing the phase factor So far we have ignored phase factors, but we need
to know the sign of |α〉 in each found diamond. This can be tricky, since confusion
can easily arise from reference-dependent and reference-independent notations. To
keep generality, we use reference-dependent notations, unlike Eq. (26) of the presented
article.

Assuming
T̂rs

pq |I〉 = ± |i〉 (8.33)

reference-independent notation for amplitude tpq→rs and reference-dependent nota-
tion tI→i could be wrongfully assumed equivalent. This is not the case, since tpq→rs is
associated with excitation T̂rs

pq as described in chapter 3 — with a particular ordering
for creation an annihilation operators — while tI→i is associated with T̂I→i so that

T̂I→i |I〉 = |i〉 (8.34)

preserving the phase factor of |i〉. Therefore

tI→i =
tpq→rs

Φ(|I〉 → |i〉) (8.35)

In order to compute the contribution of a diamond to cα, we are required to compute
the phase factor

Φ(|Rr〉 → |α〉) = Φ(|Rr〉 → |DI〉)Φ(|DI〉 → |α〉) (8.36)

which is noted (−1)n(I→α) in Eq. (26) of the presented article, with I the reference
determinant. The article uses the reference-independent notation for amplitudes. If
we re-write the formula with reference-dependent notations, the contribution for each
diamond becomes

crΦ(|Rr〉 → |α〉)
tRr→DI

Φ(|Rr〉 → |DI〉)
tDI→α

Φ(|DI〉 → |α〉)
= crtRr→DI tDI→α (8.37)

with cr the coe�cient of |Rr〉. The amplitudes for tDI→α of course cannot be stored
and would be too expensive to compute on the �y. Because T̂DI→α involves the same
orbitals as T̂Rr→DJ , their associated amplitudes are the same up to the phase factor

tDI→α = tRr→DJ Φ
(
|Rr〉 →

∣∣DJ
〉)

Φ(|DI〉 → |α〉) (8.38)

So we can �nally rewrite the contribution to cα for each diamond

crtRr→DI tRr→DJ Φ
(
|Rr〉 →

∣∣DJ
〉)

Φ(|DI〉 → |α〉) (8.39)
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Chapter 9

Performance measurements

Contents
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In this chapter, we discuss the e�ciency of the implementation. The system we
chose for these numerical experiments is a cyanine dye,

H2N
+ NH2

in its ground state and in its �rst excited state. The geometry is the equilibrium geom-
etry of the ground state, optimized at the PBE0/cc-pVQZ level. The ground state is a
closed shell, well described by a single reference, and the excited state is singly excited
and requires two determinants in the reference (1/

√
2(ab̄ + bā)). The calculations

were performed in the aug-cc-pVDZ basis set with state-averaged natural orbitals ob-
tained from an initial CIPSI calculation. The 1s orbitals of the carbon and the nitrogen
atoms were frozen, so the FCI space which is explored is a CAS(18,111). The reference
excitation energy, obtained at the CC3/ANO-L-VQZP level is 7.18 eV.[84] The mea-
surements were made on the Olympe supercomputer (CALMIP). Each node is a dual-
socket Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz with 192GiB of RAM, and contains
36 physical CPU cores. Parallel speedup curves are made with up to 1 800 cores for
the four main parts presented in this manuscript, namely the Davidson diagonaliza-
tion, the CIPSI selection, the hybrid stochastic/deterministic computation of EPT2 and
the matrix dressing.
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In �gure 9.1, we plot the convergence of the energies of the ground and excited
states as a function of the number of determinants, with and without the second order
perturbative contribution. From these data, one can see that although EPT2 is still
large (∼ 0.02 au) the excitation energies both at the variational level and with the
perturbative correction converge to a value of 7.20 eV compatible with the reference
energy obtained in a larger basis set.

-150.2

-150.1

-150

-149.9

-149.8

-149.7

-149.6

-149.5

-149.4

-149.3

-149.2

 10  100  1000  10000  100000  1x106  1x107  1x108

E
n
e
rg

y
 (

a
u
)

Number of determinants

Excited state, Evar
Ground state, Evar

Excited state, Evar+PT2
Ground state, Evar+PT2

Figure 9.1: Convergence of the energy of the ground and excited states with respect to the number of
determinants in the variational space.
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Table 9.1: Energies and second-order perturbative corrections for increasingly large wave functions. ∆E
is the energy di�erence between the ground state and the excited state.

Ndet Ground state Excited state ∆E (eV)
Evar

7 −149.489 186 −149.207 354 7.67
123 −149.536 265 −149.261 860 7.47

3 083 −149.685 606 −149.404 450 7.65
29 409 −149.826 151 −149.547 275 7.59

168 595 −149.900 352 −149.626 058 7.46
1 322 537 −149.946 655 −149.675 032 7.39
8 495 334 −149.972 032 −149.704 145 7.29
9 356 952 −149.973 375 −149.706 822 7.25

42 779 636 −149.987 370 −149.721 470 7.24
186 978 487 −149.998 582 −149.733 039 7.23

Evar + EPT2
7 −150.161 107 −149.904 883 6.97

123 −150.116 958 −149.849 465 7.28
3 083 −150.043 5(2) −149.780 8(2) 7.15

29 409 −150.022 2(2) −149.758 3(2) 7.18
168 595 −150.019 9(1) −149.754 5(1) 7.22

1 322 537 −150.017 89(7) −149.752 55(7) 7.22
8 495 334 −150.015 97(4) −149.750 87(5) 7.21
9 356 952 −150.015 89(3) −149.750 66(3) 7.22

42 959 496 −150.016 75(2) −149.751 88(2) 7.21
186 978 487 −150.017 51(2) −149.752 90(2) 7.20
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9.1 Davidson’s diagonalization
First, we measure the time required to compute one iteration of the Davidson algorithm
with increasingly large wave functions. The results are reported in table 9.2.

Plotting this data with a log-log scale (�gure 9.2) shows an agreement with the
predicted O

(
Ndet

3/2
)

scaling.
Then, we took the two largest wave functions. One with 9 356 952 and one with

42 959 496 determinants, and measured the wall-clock time required to perform one it-
eration of the Davidson diagonalization, with an increasing number of compute nodes.

The timings are reported in table 9.3 and the parallel speedup curve is represented
in �gure 9.3. As the communication scales as O(Ndet) and the computation scales
as O

(
Ndet

3/2
)

, the parallel e�ciency increases together with Ndet, as shown on �g-
ure 9.3. For the largest wave function a parallel e�ciency of 76% is obtained on 50
nodes for the largest wave function.

Table 9.2: Wall-clock time (in seconds) to run one Davidson’s iteration in parallel with increasingly
large wave functions.

Ndet seconds
29 409 2.72

168 595 4.21
1 322 537 56.24
9 356 952 775.55

42 959 496 11 198.70

Table 9.3: Wall-clock time (in seconds) to run one Davidson’s iteration in parallel on two di�erent wave
functions with an increasing number of 36-core compute nodes.

Nodes 9 356 952 determinants 42 959 496 determinants
1 775.55 11 198.70
5 169.88 2 288.58

10 93.22 1 213.95
20 56.86 626.41
30 43.76 445.65
40 36.18 350.25
50 33.67 295.25
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Figure 9.2: Wall-clock time of one Davidson iteration as a function of the number of determinants in
the wave function.
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9.2 Selection
We have measured the time necessary to realize a selection step, with an increasing
number of determinants in the variational space. Figure 9.5 shows a near-linear scaling
with the number of determinants. This is due to the threshold ng which tends to make
the number of external determinants constant when the wave function becomes large
enough.

The parallel speedup was also measured with up to 50 nodes, showing an almost
ideal speedup curve with 95% of parallel e�ciency with 50 nodes. This is in part due
to the tuning of the fragmentation of the tasks which gives a very well balanced task
queue.

Table 9.4: Single-node (36-core) CIPSI selection for increasingly large wave functions. Time is given in
seconds.

Ndet seconds
123 0.14

3 083 0.59
29 409 42.67

168 595 239.21
1 322 537 2 008.76
9 356 952 22 560.33

Table 9.5: Time (in seconds) to run parallel CIPSI selections on the 9 356 952-determinant wave function
with an increasing number of 36-core compute nodes.

Nodes seconds
1 22 560.33
5 4 468.28

10 2 245.00
20 1 137.67
30 769.58
40 582.62
50 472.33
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Figure 9.4: Wall-clock time of the selection as a function of the number of determinants in the wave
function.
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9.3 PT2 calculations
The algorithms for the computation EPT2 are very similar to those of the CIPSI se-
lection. Therefore, we expect a similar behavior with Ndet and with the number of
nodes. The stopping criterion of the calculation of the EPT2 contribution was a relative
statistical error below 1/1000-th. Hence, the error bar decreases with the EPT2 correc-
tion when the number of determinants in the internal space increases, but the fraction
of the full deterministic calculation required to reach this criterion is relatively stable
around 5%.

Table 9.6 reports the wall-clock time required to compute EPT2 on a single node.
From these data, one can evaluate the scaling of the cost of EPT2 with the number of
determinants, as plotted in �gure 9.6, which is close to linear. This can be understood,
since the number of |α〉 determinants is proportional to the number of determinants
in the variational wave function, and each |α〉 needs to be compared to all the deter-
minants in the computation of 〈α|H|Ψ〉. But when the wave function becomes large
enough, the second point is not true any more because only a limited number of de-
terminants |I〉 of Ψ have a non-zero value 〈α|H|I〉, and this number is bounded by
the number of single and double excitations, characteristic of the basis set. Fitting the
last points with a log-log plot shows an asymptotic scaling as O

(
Ndet

1.07
)

, which is
compatible with the expected linear scaling for very large numbers of determinants.

To analyze the parallel e�ciency of the EPT2 calculation, we have made the parallel
speedup curve using up to 50 nodes (1800 CPU cores), plotted in �gure 9.7. With 50
nodes, one obtains a speedup with respect to the single-node reference of 40× for both
the ground and excited states. This corresponds to a parallel e�ciency of 80%, which
is less satisfactory than the almost ideal speedup obtained for the selection.

There are two reasons for this disappointing speedup. The �rst one is that the
calculation is aborted when the target precision is below a given threshold. So when
more compute nodes are used, more samples are gathered at the end of the calcula-
tion and the computation is more precise. In the limit of Ndet CPU cores, only the
deterministic calculation can be done, whatever the stopping criterion. So the compu-
tation of the speedup is not 100% fair. The second reason for the non-ideal speedup is
the pre-computation of the combs on the master process which delays the start of the
computation of the tasks.
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Figure 9.6: Wall clock time required to compute EPT2 for the ground and the excited states, as a function
of the number of determinants in the wave function.

Table 9.6: Single-node (36-core) EPT2 calculations for increasingly large wave functions. Time is given
in seconds.

Ndet Ground state Excited state
123 0.51 0.56

3 083 2.33 2.34
29 409 13.83 16.21

168 595 75.62 103.26
1 322 537 708.53 818.58
8 495 334 5 578.76 6 751.25
9 356 952 7 883.74 9 829.19
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Table 9.7: Time (in seconds) to run parallel EPT2 calculations on the largest wave function with an
increasing number of 36-core compute nodes.

Nodes Ground state Excited state
1 7 883.74 9 829.19
5 1 629.06 2 022.36

10 832.89 1 029.91
20 440.76 537.37
30 303.31 378.69
40 246.12 296.31
50 201.84 241.55
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Figure 9.7: Parallel speedup for the calculation of the EPT2 contribution of the ground state using the
largest wave function. Each node contains 36 physical CPU cores.
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9.4 Matrix dressing
The algorithms for the matrix dressing are similar to those of EPT2. Therefore, we
expect a similar behavior with Ndet and with the number of nodes.

The time necessary to build the dressing matrix in the Shifted-Bk method was mea-
sured on a single 36-core node with an increasing number of determinants (table 9.8
and �gure 9.8). As for EPT2, the stopping criterion was an estimated relative error on
〈Ψ|∆̂|Ψ〉, the dressed energy, equal to 0.001.

Using the log-log plot, the scaling with the number of determinants was found to
be O

(
Ndet

1.15
)

. This scaling is slightly higher than the O
(

Ndet
1.07
)

measured for
EPT2, but close to linear, as expected. The additional overhead is due to the handling
of the checkpoints which eliminates the communication bottleneck.

Then, the parallel speedup was measured using the wave function with 9 356 952
determinants. The results are plotted in �gure 9.9.

Table 9.8: Single-node (36-core) Shifted-Bk iteration for increasingly large wave functions. Time is given
in seconds.

Ndet Ground state Excited state
123 0.80 0.78

3 083 4.06 5.38
29 409 20.58 28.81

168 595 188.58 204.48
1 322 537 1 871.66 2 123.38
9 356 952 19 881.30 22 082.60

Nodes Ground state Excited state
1 19 881.30 22 082.60
5 4 015.11 4 445.86

10 2 038.46 2 267.52
20 1 063.41 1 176.05
30 738.96 814.86
40 589.65 633.00
50 514.53 544.50
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Chapter 10

Applications

Contents
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In this chapter, we present applications that were made possible thanks by the
optimized CIPSI implementation presented in this thesis, and the hybrid stochastic-
deterministic algorithm. We �rst present a di�cult benchmark of excited states, and
then the use of CIPSI wave functions for quantum Monte Carlo calculations.

10.1 Excited states benchmark
On �gure 9.1, one can see that both Evar and Evar + EPT2 converge to the FCI energy
when the number of determinants increases. A convenient extrapolation introduced
by Holmes et al[85] is Evar as a function of EPT2. Indeed, at the FCI limit EPT2 = 0
and Evar = EFCI. Such an extrapolation was used to estimate the FCI energies of the
ground and excited states of the molecules of the benchmark.

Another important point is to obtain a balanced description of both states, such that
the errors due to the approximations cancel nicely when looking at energy di�erences.
A way to achieve this goal is to select determinants for all states simultaneously in a
state-averaged fashion. Here, our selection criterion for the external determinants was
to take the maximum of the contribution εα among all the considered states.
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ABSTRACT: Striving to define very accurate vertical transition
energies, we perform both high-level coupled cluster (CC) calculations
(up to CCSDTQP) and selected configuration interaction (sCI)
calculations (up to several millions of determinants) for 18 small
compounds (water, hydrogen sulfide, ammonia, hydrogen chloride,
dinitrogen, carbon monoxide, acetylene, ethylene, formaldehyde,
methanimine, thioformaldehyde, acetaldehyde, cyclopropene, diazo-
methane, formamide, ketene, nitrosomethane, and the smallest
streptocyanine). By systematically increasing the order of the CC
expansion, the number of determinants in the CI expansion as well as
the size of the one-electron basis set, we have been able to reach near full CI (FCI) quality transition energies. These
calculations are carried out on CC3/aug-cc-pVTZ geometries, using a series of increasingly large atomic basis sets systematically
including diffuse functions. In this way, we define a list of 110 transition energies for states of various characters (valence,
Rydberg, n → π*, π → π*, singlet, triplet, etc.) to be used as references for further calculations. Benchmark transition energies
are provided at the aug-cc-pVTZ level as well as with additional basis set corrections, in order to obtain results close to the
complete basis set limit. These reference data are used to benchmark a series of 12 excited-state wave function methods
accounting for double and triple contributions, namely ADC(2), ADC(3), CIS(D), CIS(D∞), CC2, STEOM-CCSD, CCSD,
CCSDR(3), CCSDT-3, CC3, CCSDT., and CCSDTQ. It turns out that CCSDTQ yields a negligible difference with the
extrapolated CI values with a mean absolute error as small as 0.01 eV, whereas the coupled cluster approaches including
iterative triples are also very accurate (mean absolute error of 0.03 eV). Consequently, CCSDT-3 and CC3 can be used to
define reliable benchmarks. This observation does not hold for ADC(3) that delivers quite large errors for this set of small
compounds, with a clear tendency to overcorrect its second-order version, ADC(2). Finally, we discuss the possibility to use
basis set extrapolation approaches so as to tackle more easily larger compounds.

1. INTRODUCTION

Defining an effective method reliably providing accurate
excited-state energies and properties remains a major challenge
in theoretical chemistry. For practical applications, the most
popular approaches are the complete active space self-
consistent field (CASSCF)1,2 and the time-dependent density
functional theory (TD-DFT)3,4 methods for systems domi-
nated by static and dynamic electron correlation effects,
respectively. When these schemes are not sufficiently accurate,
one often uses methods including second-order perturbative
corrections. For CASSCF, a natural choice is CASPT2,5 but
this method rapidly becomes impractical for large compounds.
If a single-reference method is sufficient, the most popular
second-order approaches are probably the second-order
algebraic diagrammatic construction, ADC(2),6 and the
second-order coupled cluster, CC2, methods,7,8 that both
offer an attractive N( )5 scaling (where N is the number of
basis functions) allowing applications up to systems compris-

ing ca. 100 atoms. Compared to TD-DFT,9 these approaches
have the indisputable advantage of being free of the choice of a
specific exchange-correlation functional. Using ADC(2) or
CC2 generally provides more systematic errors with respect to
reference values than TD-DFT, although the improvements in
terms of error magnitude are often rather moderate (at least
for valence singlet states).10−12 Importantly, both ADC(n) and
CCn offer a systematic pathway for improvement via an
increase of the expansion order n. For example, using CCSD,
CCSDT, CCSDTQ, etc., allows to check the quality of the
obtained estimates. However, in practice, one can only
contemplate such systematic approach and the ultimate choice
of a method for excited-state calculations is often guided by
previous benchmarks. These benchmark studies are either
performed using experimental or theoretical reference values.
While the former approach allows in principle to rely on an

Received: April 28, 2018
Published: July 2, 2018

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2018, 14, 4360−4379

© 2018 American Chemical Society 4360 DOI: 10.1021/acs.jctc.8b00406
J. Chem. Theory Comput. 2018, 14, 4360−4379

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 T

O
U

L
O

U
SE

 I
II

 -
 P

A
U

L
 S

A
B

A
T

IE
R

 o
n 

Se
pt

em
be

r 
17

, 2
01

8 
at

 1
2:

11
:1

3 
(U

T
C

).
 

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.
 



almost infinite pool of reference data, most measurements are
performed in solution and provide absorption bands that can
be compared to theory only with the use of extra
approximations for modeling environmental and vibronic
effects. In addition, the most accurate experimental data are
obtained for 0−0 energies, whereas obtaining trustworthy
experimental estimates of vertical transition energies is an
extremely difficult task, generally requiring to back-transform
spectroscopic vibronic data through a numerical process,13 an
approach that is typically only applicable to diatomics.
Consequently, it is easier to use first-principle reference values
as benchmarks, as they allow to assess theoretical methods
more consistently (vertical values, same geometries, no
environmental effects, etc.). This is well illustrated by the
recent contribution of Schwabe and Goerigk,14 who decided to
compute third-order response CC (CC3)15,16 reference values
instead of using the previously collected experimental values
for the test set originally proposed by Gordon’s group.17

While many benchmark sets have been proposed for excited
states,10,11,17−29 the most praised database of theoretical
excited state energies is undoubtedly the one set up by Thiel
and his co-workers. In 2008, they proposed a large set of
theoretical best estimates (TBE) for 28 small and medium
CNOH organic compounds.30 More precisely, using some
literature values but mainly their own CC3/TZVP and
CASPT2/TZVP results computed on MP2/6-31G(d) geo-
metries, these authors determined 104 singlet and 63 triplet
reference excitation energies. The same group soon proposed
aug-cc-pVTZ TBE for the same set of compounds,31,32 though
some CC3/aug-cc-pVTZ reference values were estimated by a
basis set extrapolation technique. In their conclusion, they
stated that they “expect this benchmark set to be useful for
validation and development purposes, and anticipate future
improvements and extensions of this set through further high-
level calculations”.30 The first prediction was soon realized.
Indeed, both the TZVP and aug-cc-pVTZ TBE were applied to
benchmark various computationally effective methods, includ-
ing semiempirical approaches,33−35 TD-DFT,24,25,36−46 the
second-order polarization propagator approximation
(SOPPA),47 ADC(2),48 the second order N-electron valence
perturbation theory (NEVPT2),49 the random phase approx-
imation (RPA),50 as well as several CC variants.51−56 In
contrast, even a decade after the original work appeared, the
progresses aiming at improving and/or extending Thiel’s set
have been much less numerous. To the best of our knowledge,
these extensions are limited to the more compact TZVP basis
set,48,52,57,58 but in one case.59 This diffuse-less basis set offers
clear computational advantages and avoids some state mixing.
However, it has a clear tendency to overestimate transition
energies, especially for Rydberg states, and it makes
comparisons between methods more difficult as basis set
dependencies are significantly different in wave function-based
and density-based methods.60

Let us now briefly review these efforts. In 2013, Watson et
al. obtained with the TZVP basis set and CCSDT-3a
method employing an iterative approximation of the triples 
transition energies very similar to the CC3 values.57 Never-
theless, as noted the same year by Nooijen and co-workers who
also reported CCSDT-3/TZVP values,52 “the relative accuracy
of EOM-CCSDT-3 versus CC3 compared to full CI (or EOM-
CCSDT) is not well established”. In 2014, Dreuw and co-
workers performed ADC(3) calculations on Thiel’s set and
concluded that “based on the quality of the existing benchmark set

it is practically not possible to judge whether ADC(3) or CC3 is
more accurate”. The same year, Kannar and Szalay, revisited
Thiel’s set and proposed CCSDT/TZVP reference energies for
17 singlet states of six molecules.58 Recently the same group
reported CCSDT/aug-cc-pVTZ transition energies for valence
and Rydberg states of five compact molecules,59 and used these
values to benchmark several simpler CC approaches. To the
best of our knowledge, these stand as the highest-level values
reported to date. However, it remains difficult to know if these
CCSDT transition energies are significantly more accurate
than their CC3, CCSDT-3 or ADC(3) counterparts. Indeed,
for the π → π* valence singlet excited state of ethylene, the
CC3/TZVP, CCSDT/TZVP and CCSDTQ/TZVP estimates
of 8.37, 8.38, and 8.36 eV (respectively) are nearly identical.58

Herein, we propose to continue the quest for ultra-accurate
excited-state reference energies. First, although this prevents
direct comparisons with previously published data, we decided
to use more accurate CC3/aug-cc-pVTZ geometries for all the
compounds considered here. Second, we employ only diffuse-
containing Dunning basis sets to be reasonably close from the
complete basis set limit. Third, we climb the mountain via two
faces following: (i) the CC route (up to the highest
computationally possible order) and (ii) the configuration
interaction (CI) route with the help of selected CI (sCI)
methods. By comparing the results of these two approaches, it
is possible to get some reliable information about how far our
results are from the full CI (FCI) ones. Fourth, in order not to
limit our investigation to vertical absorption, we also report, in
a few cases, fluorescence energies. Of course, such extreme
choices impose drastic restrictions on the size of the molecules
one can treat. However, we claim here that they allow to
accurately estimate the FCI result for most excited states.

2. COMPUTATIONAL DETAILS
2.1. Geometries. All geometries are obtained at the CC3/

aug-cc-pVTZ level without applying the frozen core approx-
imation. These geometries are available in the Supporting
Information. While several structures are extracted from ref 61
(acetylene, diazomethane, ethylene, formaldehyde, ketene,
nitrosomethane, thioformaldehyde and streptocyanine-C1),
additional optimizations are performed here following the
same protocol as in that earlier work. First, we optimize the
structures and compute the vibrational spectra at the CCSD/
def2-TZVPP level62 with Gaussian16.63 These calculations
confirm the minima nature of the obtained geometries.64 We
then reoptimize the structures at the CC3/aug-cc-pVTZ
level15,16 using Dalton65 and/or CFOUR,66 depending on
the size and symmetry of the molecule. CFOUR advanta-
geously provides analytical CC3 gradients for ground-state
structures. For the CCSD calculations, the energy and
geometry convergence thresholds are systematically tightened
to 10−10−10−11 au for the SCF energy, 10−8−10−9 au for the
CCSD energy, and 10−7−10−8 au for the EOM-CCSD energy
in the case of excited-state geometry optimizations. To check
that the structures correspond to genuine minima, the (EOM-
)CCSD gradients are differentiated numerically to obtain the
vibrational frequencies. The CC3 optimizations are performed
with the default convergence thresholds of Dalton or CFOUR
without applying the frozen core approximation.

2.2. Coupled Cluster Calculations. Unless otherwise
stated, the CC transition energies67 are computed in the
frozen-core approximation (large cores for Cl and S). We use
several codes to achieve our objectives, namely CFOUR,66
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Dalton,65 Gaussian16,63 Orca,68 MRCC,69,70 and Q-Chem.71

Globally, we use CFOUR for both CCSDT-372,73 and
CCSDT74 calculations, Dalton to perform the CIS(D),75,76

CC2,7,8 CCSD,62 CCSDR(3),77 and CC315,16 calculations,
Gaussian for the CIS(D)75,76 and CCSD,62 Orca for the
similarity-transformed EOM-CCSD (STEOM-CCSD)56,78

calculations, Q-Chem for ADC(2) and ADC(3) calculations,
and MRCC for the CIS(D∞),

79 CCSDT,74 and CCSDTQ80

(and higher) calculations. As we mainly report transition
energies, it is worth noting that the linear-response (LR) and
equation-of-motion (EOM) formalisms provide identical
results. Nevertheless, the oscillator strengths characterizing
the excited states are obtained at the (LR) CC3 level with
Dalton. Default program setting are generally applied, and
when modified they are tightened. For the STEOM-CCSD
calculations which relies on natural transition orbitals, it was
checked that each state is characterized by an active character
percentage of 98% or larger (states not matching this criterion
are not reported). Nevertheless, the obtained results do slightly
depend on the number of states included in the calculations,
and we found typical variations of ±0.01−0.05 eV. For all

calculations, we use the well-known Dunning’s aug-cc-pVXZ
(X = D, T, Q and 5) atomic basis sets, as well as some doubly-
and triply augmented basis sets of the same series (d-aug-cc-
pVXZ and t-aug-cc-pVXZ).

2.3. Selected Configuration Interaction Methods.
Alternatively to CC, we also compute transition energies
using a selected CI (sCI) approach, an idea that goes back to
1969 in the pioneering works of Bender and Davidson,81 and
Whitten and Hackmeyer.82 Recently, sCI methods have
demonstrated their ability to reach near FCI quality energies
for small organic and transition metal-containing mole-
cules.83−92 To avoid the exponential increase of the size of
the CI expansion, we employ the sCI algorithm CIPSI83,93,94

(Configuration Interaction using a Perturbative Selection made
Iteratively) to retain only the energetically relevant determi-
nants. To do so, the CIPSI algorithm uses a second-order
energetic criterion to select perturbatively determinants in the
FCI space.83,85,87,92 In the numerical examples presented
below, our CI expansions contain typically about a few millions
of determinants. We refer the interested readers to refs 92 and

Table 1. Vertical Transition Energies for the Three Lowest Singlet and Three Lowest Triplet Excited States of Water (Top),
the Four Lowest Singlet and the Lowest Triplet States of Ammonia (Center), and the Lowest Singlet State of Hydrogen
Chloride (Bottom)m

water

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ lit.

state CC3 CCSDT CCSDTQ CCSDTQP exFCI CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI exp.a th.b th.c

1B1(n → 3s) 7.51 7.50 7.53 7.53 7.53 7.60 7.59 7.62 7.62 7.65 7.64 7.68 7.41 7.81 7.57
1A2(n → 3p) 9.29 9.28 9.31 9.32 9.32 9.38 9.37 9.40 9.41 9.43 9.41 9.46 9.20 9.30 9.33
1A1(n → 3s) 9.92 9.90 9.94 9.94 9.94 9.97 9.95 9.98 9.99 10.00 9.98 10.02 9.67 9.91 9.91
3B1(n → 3s) 7.13 7.11 7.14 7.14 7.14 7.23 7.22 7.24 7.25 7.28 7.26 7.30 7.20 7.42 7.21
3A2(n → 3p) 9.12 9.11 9.14 9.14 9.14 9.22 9.20 9.23 9.24 9.26 9.25 9.28 8.90 9.42 9.19
3A1(n → 3s) 9.47 9.45 9.48 9.49 9.49 9.52 9.50 9.53 9.54 9.56 9.54 9.58 9.46 9.78 9.50

hydrogen sulfide

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ lit.

state CC3 CCSDT CCSDTQ CCSDTQP exFCI CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI exp.d exp.e th..f

1A2(n → 4p) 6.29 6.29 6.29 6.29 6.29 6.19 6.18 6.18 6.18 6.16 6.15 6.15 6.12
1B1(n → 4s) 6.10 6.10 6.10 6.10 6.10 6.24 6.24 6.24 6.24 6.29 6.29 6.29 6.33 6.27
3A2(n → 4p) 5.91 5.90 5.90 5.90 5.90 5.82 5.81 5.81 5.81 5.80 5.79 5.79 5.8 5.78
3B1(n → 4s) 5.75 5.75 5.75 5.75 5.75 5.88 5.88 5.88 5.89 5.93 5.93 5.93 5.4 5.92

ammonia

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ lit.

state CC3 CCSDT CCSDTQ CCSDTQP exFCI CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI exp.g exp.h th.i

1A2(n → 3s) 6.46 6.46 6.48 6.48 6.48 6.57 6.57 6.59 6.59 6.61 6.61 6.64 6.38 6.39 6.48
1E(n → 3p) 8.06 8.06 8.08 8.08 8.08 8.15 8.14 8.16 8.16 8.18 8.17 8.22 7.90 7.93 8.02
1A1(n → 3p) 9.66 9.66 9.68 9.68 9.68 9.32 9.31 9.33 9.11 9.10 9.14 8.14 8.26 8.50
1A2(n → 4s) 10.40 10.39 10.41 10.41 10.41 9.95 9.94 9.96 9.77 9.77 9.03
3A2(n → 3s) 6.18 6.18 6.19 6.19 6.19 6.29 6.29 6.30 6.31 6.33 6.33 6.35 6.02j

hydrogen chloride

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ lit.

state CC3 CCSDT CCSDTQ CCSDTQP exFCI CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI th.k

1Π (CT) 7.82 7.81 7.82 7.82 7.82 7.84 7.83 7.84 7.84 7.89 7.88l 7.88 8.23
aEnergy loss experiment from ref 98. bMRCI+Q/aug-cc-pVTZ calculations from ref 99. cMRCC/aug-cc-pVTZ calculations from ref 100. dVUV
experiment from ref 101. eElectron impact experiment from ref 102. fCASPT2/d-aug-cc-pVQZ results from ref 103. gElectron impact experiment
from ref 104. hElectron impact experiment from ref 105. iEOM-CCSD(T̃)/aug-cc-pVTZ with extra dif fuse calculations from ref 106. jDeduced
from the 6.38 eV value of the 1A2(n → 3s) state and the −0.36 eV shift reported for the 0−0 energies compared to the corresponding singlet state
in ref 107, a splitting consistent with an earlier estimate of −0.39 eV given in ref 108. kCC2/cc-pVTZ from ref 22.; lThe CCSDTQ/aug-cc-pVQZ
value is 7.88 eV as well. mAll states of water and ammonia have a Rydberg character, whereas the lowest state of hydrogen chloride is a charge-
transfer state. All values are in eV.
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95 for more details about the general philosophy of sCI
methods.
In order to treat the electronic states of a given spin

manifold on equal footing, a common set of determinants is
used for all states. Moreover, to speed up convergence to the
FCI limit, a common set of natural orbitals issued from a
preliminary (smaller) sCI calculation is employed. All sCI
calculations have been performed in the frozen-core approx-
imation. For a given basis set, we estimate the FCI limit using
the approach introduced recently by Holmes et al.90 in the
context of the (selected) heat-bath CI method, and used with
success, even for challenging chemical situations.89,91,92 More
precisely, we linearly extrapolate the sCI energy EsCI as a
function of EPT2, which is an estimate of the truncation error in
the sCI algorithm, i.e., EPT2 ≈ EFCI − EsCI. When EPT2 = 0, the
FCI limit has effectively been reached. Here, EPT2 is efficiently
evaluated with a recently proposed hybrid stochastic-
deterministic algorithm.96 Note that we do not report error
bars because the statistical errors originating from this
algorithm are orders of magnitude smaller than the
extrapolation errors. In practice, the extrapolation is based
on the two largest sCI wave functions; i.e., we perform a two-
point extrapolation, which is justified here because of the
quasi-linear behavior of the sCI energy as a function of EPT2.
Estimating the extrapolation error is a complicated task with
no well-defined method to do so. In practice, we have observed
that this extrapolation procedure is robust and provides FCI
estimates within ±0.02 eV. When the convergence to the FCI
limit is too slow to provide reliable estimates, the number of
significant digits reported has been reduced accordingly. From
herein, the extrapolated FCI results are simply labeled exFCI.
Several illustrative examples are reported in Supporting
Information where we compare different types of extrapola-
tions for several molecules (see Figure S1 and Table S11). In
particular, diazomethane and streptocyanine-C1 can be
considered as “difficult” cases (vide inf ra), and the results
reported in Supporting Information show that, even in these
challenging situations, the two-point linear extrapolation is
fairly robust. Moreover, additional points do not significantly
alter the exFCI estimates (typically 0.01 eV or less).
All the sCI calculations are performed with the electronic

structure software QUANTUM PACKAGE, developed in Toulouse
and freely available.97 Additional information about the sCI
wave functions, excitations energies as well as their
extrapolated values can be found at the end of the Supporting
Information.

3. RESULTS AND DISCUSSION
In the discussion below, we first discuss specific molecules of
increasing size and compare the results obtained with exFCI
and CC approaches, starting with the CC3 method for the
latter. This first part is performed applying systematically the
frozen-core approximation. We next define two series of TBE,
one at the frozen-core aug-cc-pVTZ level, and one close to
complete basis set limit by applying corrections for frozen-core
and basis set effects. In a following stage, we assess the
performances of several popular wave function methods using
the former benchmark as reference. Finally, we discuss the
performances of basis set extrapolation approaches starting
from a compact basis. Unless otherwise stated, we considered
the exFCI values as benchmarks.
3.1. Water, Hydrogen Sulfide, Ammonia, and Hydro-

gen Chloride. Because of its small size and ubiquitous role in

life, water is often used as a test case for Rydberg excitations.
Indeed, it is part of Head−Gordon’s,21 Gordon’s17 and
Truhlar−Gagliardi’s29 data sets of compounds, and it has
been investigated at many levels of theory.99,100,103,109 Our
results are collected in Table 1. With the aug-cc-pVDZ basis,
there is an nearly perfect agreement between the exFCI values
and the transition energies obtained with the two largest CC
expansions, namely CCSDTQ and CCSDTQP. Indeed, the
largest discrepancy is as small as 0.01 eV, and it is therefore
reasonable to state that the FCI limit has been reached with
that specific basis set. Compared to the exFCI results, the
CCSDT values are systematically too low, with an average
error of −0.03 eV. The same trend of underestimation is found
with CC3, though with smaller absolute deviations for all
states. Unsurprisingly, for Rydberg states, increasing the basis
set size has a significant impact, and it tends to increase the
computed transition energies in water. However, this effect is
very similar for all methods listed in Table 1. This means that,
on the one hand, the tendency of CCSDT to provide slightly
too small transition energies pertains with both aug-cc-pVTZ
and aug-cc-pVQZ, and, on the other hand, that estimating the
basis set effect with a “cheap” method is possible. Indeed,
adding to the exFCI/aug-cc-pVDZ energies, the difference
between CC3/aug-cc-pVQZ and CC3/aug-cc-pVDZ results
would deliver estimates systematically within 0.01 eV of the
actual exFCI/aug-cc-pVQZ values. Such basis set extrapolation
approach was already advocated for lower-order CC
expansions,31,110 and it is therefore not surprising that it can
be applied with refined models. As it can be seen in Table S1 in
the Supporting Information, further extension of the basis set
or correlation of the 1s electron have small impacts, except for
the Rydberg 1A1 state. Eventually, as evidenced by the data
from the rightmost columns of Table 1, the present estimates
are in good agreement with previous MRCC values
determined on the experimental geometry,100 whereas the
experimental values offer qualitative comparisons only, for
reasons discussed elsewhere.98 We underline that some of the
2013 measurements reported in Table 1 significantly differ
from previous electron impact data,111 that were used
previously as references,17 with, e.g., a 0.2 eV discrepancy
between the two experiments for the lowest triplet state.
As water, hydrogen sulfide was also the subject of several

high-level theoretical investigations,103,112−114 which are
necessary because there are either no (lowest 1A2 state) or
only a few experimental data available for the Rydberg states of
H2S,

101,102,115,116 especially as no accurate value could be
measured for the first 1A2 state. As can be seen in Table 1, for a
given basis set all tested CC methods provide very similar
results, systematically within 0.01 eV of the exFCI results. In
contrast, the basis set has a significant impact, e.g., the two
lowest singlet states switch order when going from aug-cc-
pVDZ to aug-cc-pVTZ and the same is true for the two lowest
triplet states. Our results are also very consistent with the
CASPT2/d-aug-cc-pVQZ values given in ref 103, confirming
that a near FCI limit has been reached.
Ammonia is also another popular molecule for evaluating

Rydberg excitations, and it was previously investigated at
several levels of theory.14,21,106,117 As in the case of water, we
note a nearly perfect match between the CCSDTQ and exFCI
estimates with both the aug-cc-pVDZ and aug-cc-pVTZ atomic
basis sets, indicating that the FCI limit is reached. Both CC3
and CCSDT are close to this limit, and the former model
slightly outperforms the latter. For ammonia, the basis set
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effects are particularly strong for the third and fourth singlet
excited states but these basis set effects are nearly transferrable
from one method to another. In fact, as hinted by the large
differences between the aug-cc-pVTZ and aug-cc-pVQZ results
in Table 1, these two high-lying states require the use of
additional diffuse orbitals to attain convergence. The CC3/t-
aug-cc-pVQZ values of 8.60 and 9.15 eV (see Table S1 in the
Supporting Information), are close from the previous results of
Bartlett and co-workers,106 who also applied extra diffuse
orbitals in their calculations relying on approximate triples (see
the footnotes in Table 1). As in water, the experimental values
do not provide sufficiently clear-cut results to ultimately decide
which method is the most accurate. Indeed, the vertical
experimental estimates reported in Table 1 differ significantly
from the more trustworthy adiabatic values with variations of
ca. 0.5 eV.106 Consequently, a good match between an
experimental measurement and a theoretical calculation
determined with a compact basis set is, in the present case, a
sign of lucky cancellation of errors.
Hydrogen chloride was less frequently used in previous

benchmarks, but is included in Tozer’s set as an example of
charge-transfer (CT) state.22 Again, the results listed at the
bottom of Table 1 demonstrate a remarkable consistency
between the various theories. Though large frozen cores are
used during the calculations, this does not strongly impact the
results, as can be deduced from the data of Table S1. As
expected, the absorption band corresponding to this CT state
is very broad experimentally (starting at 5.5 eV and peaking at
8.1 eV),118 making direct comparisons tricky.
3.2. Dinitrogen and Carbon Monoxide. Dinitrogen is a

simple diatomic compound for which the low-lying valence
and Rydberg states have been investigated at several levels of
theory.13,22,119,121 With a numerical solution of the nuclear

Schrödinger equation, it is possible to treat the experimental
spectroscopic constants,118 so as to obtain reliable vertical
estimates, and this procedure was applied previously.13,119,123

While such approach is supposedly providing experimental
vertical excited-state energies with a ca. 0.01 eV error only, it
remains that significant excitation energy differences have been
reported for the two lowest 1Πu states (see Table 2). As in the
previous cases, we find a remarkable agreement between the
CCSDTQ and exFCI estimates for most cases in which both
could be determined. The only exceptions are the two 1Πu
states with the aug-cc-pVTZ basis, but in these two cases, the
CC expansion is also converging more slowly than usual, which
is consistent with the relatively small degree of single excitation
character in these two states (82.9 and 87.4% according to
CC3). In contrast to water and ammonia, CCSDT outper-
forms CC3 with respective mean absolute deviation (MAD)
compared to exFCI of 0.02 and 0.04 eV, when using the aug-
cc-pVDZ basis set. As it can be deduced from Table S2 in the
Supporting Information, the basis set corrections are negligible
for all valence states, but significant for some of the Rydberg
states, especially 1Σg

+, that requires two sets of diffuse orbitals
to be reasonably close from the basis set limit. Applying CC3/
d-aug-cc-pV5Z corrections to the most accurate exFCI data,
once can determine TBE values (vide inf ra) that deviate only
by 0.02 eV on (absolute) average compared to the
experimental estimates for the seven valence states of
dinitrogen. Considering the expected inaccuracy of 0.01 eV
of the reference values, chemical accuracy is obviously reached
without any experimental input. The deviations are about twice
larger for the Rydberg states. Nevertheless, for the two 1Πu
states, our TBE values, determined on the basis of exFCI/aug-
cc-pVTZ results are 12.73 and 13.27 eV (vide inf ra). This
indicates that for the lowest 1Πu state the estimate of ref 13

Table 3. Vertical (Absorption) Transition Energies for the Five Lowest Low-Lying Valence Excited States of Acetylene (Top)
and the Three Lowest Singlet and Triplet Excited States of Ethylene (Bottom)g

acetylene

aug-cc-pVDZ aug-cc-pVTZ lit.

state CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI exp.a th.b th.c

1Σu
− (π → π*) 7.21 7.21 7.21 7.20 7.09 7.09 7.10 7.1 6.96 7.10

1Δu(π → π*) 7.51 7.52 7.52 7.51 7.42 7.43 7.44 7.2 7.30 7.43
3Σu

+ (π → π*) 5.48 5.49 5.50 5.50 5.50 5.51 5.53 5.2 5.26 5.58
3Δu(π → π*) 6.46 6.46 6.46 6.46 6.40 6.39 6.40 6.0 6.20 6.41
3Σu

− (π → π*) 7.13 7.14 7.14 7.14 7.07 7.08 7.1 6.90 7.05
1Au [F](π → π*) 3.70 3.72 3.70 3.71 3.64 3.66 3.64
1A2 [F](π → π*) 3.92 3.94 3.93 3.93 3.84 3.86 3.85

ethylene

aug-cc-pVDZ aug-cc-pVTZ lit.

state CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI exp.d th.e

1B3u(π → 3s) 7.29 7.29 7.30 7.31 7.35 7.37 7.39 7.11 7.45
1B1u(π → π*) 7.94 7.94 7.93 7.93 7.91 7.92 7.93 7.60 8.00
1B1g(π → 3p) 7.97 7.98 7.99 8.00 8.03 8.04 8.08 7.80 8.06
3B1u(π → π*) 4.53 4.54 4.54 4.55 4.53 4.53 4.54 4.36 4.55
3B3u(π → 3s) 7.17 7.18 7.18 7.16 7.24 7.25 f 6.98 7.29
3B1g(π → 3p) 7.93 7.94 7.94 7.93 7.98 7.99 f 7.79 8.02

aElectron impact experiment from ref 129. Note that the 7.1 eV value for the Σu
− singlet and triplet states should be viewed as a tentative

assignment. bLS-CASPT2/aug-ANO calculations from ref 124. cMR-AQCC/extrap. calculations from ref 126. dExperimental values collected from
various sources from ref 116. (see discussions in refs 30, 130, and 131). eBest composite theory from ref 131, close to FCI. fCI convergence too
slow to provide estimates reliable to 0.01 eV. gFor acetylene, we also report the vertical emission (denoted [F]) obtained from the lowest trans and
cis isomers. All values are in eV.
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(12.78 eV) is probably more accurate than the one of ref 119
(12.90 eV), whereas the opposite is likely true for the highest
1Πu state that was reported to be located at 13.10 and 13.24 eV
in refs 13 and 119, respectively. One could argue that reaching
agreement between CI and CC is particularly challenging for
these two states. However, performing the basis set
extrapolation starting from the CCSDTQP/aug-cc-pVDZ
results would yield similar TBE of 12.77 and 13.22 eV.
For the isoelectronic carbon monoxide, experimental vertical

energies deduced from rovibronic data118 using a numerical
approach are also available.22,120 With the aug-cc-pVTZ (aug-
cc-pVQZ) atomic basis set, the CCSDT and CC3 results are
within 0.02 eV (0.03 eV) and 0.03 eV (0.03 eV) of the exFCI
results, whereas the errors made by both CCSDTQ and
CCSDTQP are again trifling. As for dinitrogen, all the valence
states are rather close from the basis set limit with aug-cc-
pVTZ, whereas larger basis sets are required for the Rydberg
states (Table S2). By correcting the exFCI/aug-cc-pVQZ
(exFCI/aug-cc-pVTZ for the highest triplet state) data with
basis set effects determined at the CC3/d-aug-cc-pV5Z level,
we obtain TBE values that can be compared to the

experimental estimates. The computed MAD is 0.05 eV, the
largest deviations being obtained for the Δ and Σ− excited
states of both spin symmetries. The agreement between theory
and experiment is therefore very satisfying though slightly less
impressive than for N2. We note that the CC3/aug-cc-pVTZ
C = O bond length (1.134 Å) is 0.006 Å larger than the
experimental re value of 1.128 Å,118 whereas the discrepancy is
twice smaller for dinitrogen: 1.101 Å for CC3/aug-cc-pVTZ
compared to 1.098 Å experimentally. This might partially
explained the larger deviations noticed for carbon monoxide.

3.3. Acetylene and Ethylene. Acetylene is the smallest
conjugated organic molecule possessing stable low-lying
excited-state structures, therefore allowing to investigate
vertical fluorescence. This molecule has been the subject of
previous investigations at the CASPT2,124 CCSD,125

CCSDT,59 and MR-AQCC126 levels. Our results are collected
in Table 3. With the double-ζ basis set, the differences between
the CC3, CCSDT, and CCSDTQ results are negligible, and
the latter estimates are also systematically within 0.02 eV of the
exFCI results. In contrast to water and ammonia, both CC3
and CCSDT provide similar accuracies compared to higher

Table 4. Vertical (Absorption) Transition Energies for Various Excited States of Formaldehyde (Top), Methanimine (Center),
and Thioformaldehyde (Bottom)h

formaldehyde

aug-cc-pVDZ aug-cc-pVTZ lit.

state CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI exp.a th.b th.c

1A2(n → π*) 4.00 3.99 4.00 3.99 3.97 3.95 3.98 4.07 3.98 3.88
1B2(n → 3s) 7.05 7.04 7.09 7.11 7.18 7.16 7.23 7.11 7.12
1B2(n → 3p) 8.02 8.00 8.04 8.04 8.07 8.07 8.13 7.97 7.94 8.11
1A1(n → 3p) 8.08 8.07 8.12 8.12 8.18 8.16 8.23 8.14 8.16
1A2 (n → 3p) 8.65 8.63 8.68 8.65 8.64 8.61 8.67 8.37 8.38
1B1 (σ → π*) 9.31 9.29 9.30 9.29 9.19 9.17 9.22 9.32 9.04
1A1(π → π*) 9.59 9.59 9.54 9.53 9.48 9.49 9.43 9.83 9.29
3A2(n → π*) 3.58 3.57 3.58 3.58 3.57 3.56 3.58 3.50 3.50
3A1(π → π*) 6.09 6.08 6.09 6.10 6.05 6.05 6.06 5.86 5.87
3B2(n → 3s) 6.91 6.90 6.95 6.95 7.03 7.02 7.06 6.83
3B2(n → 3p) 7.84 7.82 7.86 7.87 7.92 7.90 7.94 7.79
3A1(n → 3p) 7.97 7.95 8.00 8.01 8.08 8.06 8.10 7.96
3B1(n → 3d) 8.48 8.47 8.48 8.48 8.41 8.40 8.42
1A″[F](n → π*) 2.87 2.84 2.86 2.86 2.84 2.82 2.80

methanimine

aug-cc-pVDZ aug-cc-pVTZ lit.

state CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI th.d th.e

1A″(n → π*) 5.26 5.24 5.25 5.25 5.20 5.19 5.23 5.32 5.18
3A″(n → π*) 4.63 4.63 4.63 4.63 4.61 4.61 4.65

thioformaldehyde

aug-cc-pVDZ aug-cc-pVTZ lit.

state CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI exp.a exp.f

1A2(n → π*) 2.27 2.25 2.26 2.26 2.23 2.21 2.22 2.03
1B2(n → 4s) 5.80 5.80 5.82 5.83 5.91 5.89 5.96 5.85 5.84
1A1(π → π*) 6.62 6.60 6.51 6.5g 6.48 6.47 6.4g 6.2 5.54
3A2(n → π*) 1.97 1.96 1.96 1.97 1.94 1.93 1.94 1.80
3A1(π → π*) 3.43 3.43 3.44 3.45 3.38 3.38 3.43 3.28
3B2(n → 4s) 5.64 5.63 5.65 5.66 5.72 5.71 5.6g

1A2 [F](n → π*) 2.00 2.00 1.98 1.98 1.97 1.98 1.95
aVarious experimental sources, summarized in ref 116. bMR-AQCC-LRT calculations from ref 134. cCC3/aug-cc-pVQZ calculations from ref 30.
dDMC results form ref 135. eCCSDT/aug-cc-pVTZ calculations from ref 59. f0−0 energies collected in ref 136. gCI convergence too slow to
provide reliable estimates. hAll values are in eV.
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levels of theory. As expected, for valence states, going from
double- to triple-ζ basis set tends to slightly decrease the
computed energies (except for the lowest triplet). Nonetheless,
as with the smaller basis set, the same near-perfect
methodological match pertains with aug-cc-pVTZ. Estimating
the exFCI/aug-cc-pVTZ results from the exFCI/aug-cc-pVDZ
values and CC3 basis set effects would yield estimates with
absolute errors of 0.00−0.02 eV. One also notices that the
exFCI/aug-cc-pVTZ values are all extremely close to the
previous MR-AQCC estimates, whereas the published
CASPT2 values appear to be too low though closer from the
electron impact experiment, underlying once more the
difficulty to obtain very accurate experimental estimates for

vertical energies. This underestimating trend of standard
CASPT2 was reported before for other molecules.127,128

Although our theoretical vertical energy estimates still slightly
vary when passing from the aug-cc-pVDZ to aug-cc-pVTZ
basis sets, we claim that these vertical energies are probably
more trustworthy for further benchmarks than the available
experimental values because basis set effects beyond aug-cc-
pVTZ seem rather limited (Table S3).
Despite its small size, ethylene remains a challenging

molecu le and is inc luded in many benchmark
sets.17,26,29,30,75,132 The assignments of the experimental data
have been the subject of countless works, and we refer the
interested readers to the discussions in refs 30, 91, 116, 130,

Table 5. Vertical (Absorption) Transition Energies for Various Excited States of Diazomethane (Top) and Ketene (Bottom)v

aug-cc-pVDZ aug-cc-pVTZ lit.

molecule state CC3 CCSDT exFCI CC3 CCSDT exFCI exp. th.

acetaldehyde 1A″(n → π*) 4.34 4.32 4.34 4.31 4.29 4.31 4.27a 4.29b

3A″(n → π*) 3.96 3.95 3.98 3.95 3.94 4.0c 3.97a 3.97b

cyclopropene 1B1 (σ→ π*) 6.72 6.71 6.7c 6.68 6.68 6.6c 6.45d 6.89e

1B2 (π→ π*) 6.77 6.78 6.82 6.73 6.75 6.7c 7.00f 7.11e

3B2 (π→ π*) 4.34 4.35 4.35 4.34 4.38 4.16f 4.28g

3B1 (σ→ π*) 6.43 6.43 6.43 6.40 6.45 6.40g

diazomethane 1A2 (π→ π*) 3.10 3.10 3.09 3.07 3.07 3.14 3.14h 3.21i

1B1 (π→ 3s) 5.32 5.35 5.35 5.45 5.48 5.54 5.33i

1A1 (π→ π*) 5.80 5.82 5.79 5.84 5.86 5.90 5.9h 5.85i

3A2 (π→ π*) 2.84 2.84 2.81 2.83 2.82 2.8c 2.92j

3A1 (π→ π*) 4.05 4.04 4.03 4.03 4.02 4.05 3.97j

3B1 (π→ 3s) 5.17 5.20 5.18 5.31 5.34 5.35
3A1 (π→ 3p) 6.83 6.83 6.81 6.80 6.82 7.02j

1A″ [F] (π→ π*) 0.68 0.67 0.65 0.68 0.67 0.71

formamide 1A″(n → π*) 5.71 5.68 5.70 5.66 5.63 5.7c 5.8k 5.63l

1A′(n → 3s) 6.65 6.64 6.67 6.74 6.74 6.35k 6.62l

1A′ (π→ π*)m 7.63 7.62 7.64 7.62 7.63 7.37k 7.22l

1A′(n → 3p)m 7.31 7.29 7.40 7.38 7.73k 7.66l

3A″(n → π*) 5.42 5.39 5.42 5.38 5.4c 5.2k 5.34l

3A′ (π→ π*) 5.83 5.81 5.82 5.82 5.7c ∼6k 5.74l

ketene 1A2 (π→ π*) 3.89 3.88 3.84 3.88 3.87 3.86 3.7n 3.74o

1B1 (n → 3s) 5.83 5.86 5.88 5.96 5.99 6.01 5.86n 5.82o

1A2 (π→ 3p) 7.05 7.09 7.08 7.16 7.20 7.18 7.00o

3A2 (n → π*) 3.79 3.78 3.79 3.78 3.78 3.77 3.8p 3.62q

3A1 (π→ π*) 5.62 5.61 5.64 5.61 5.60 5.61 5p 5.42q

3B1 (n → 3s) 5.63 5.66 5.68 5.76 5.80 5.79 5.8p 5.69q

3A2 (π→ 3p) 7.01 7.05 7.07 7.12 7.17 7.12
1A″[F] (π→ π*) 1.00 0.99 0.96 1.00 1.00 1.00

nitrosomethane 1A″(n → π*) 2.00 1.98 1.99 1.96 1.95 2.0c 1.83r 1.76s

1A′ (n, n → π*,π*) 5.75 5.26 4.81 5.76 5.29 4.72 4.96s

1A′ (n → 3s/3p) 6.20 6.19 6.29 6.31 6.30 6.4c 6.54s

3A″(n → π*) 1.13 1.12 1.15 1.14 1.13 1.16 1.42t

3A′ (π→ π*) 5.54 5.54 5.56 5.51 5.60 5.55t

1A″ [F] (n → π*) 1.70 1.69 1.70 1.69 1.66 1.7c

streptocyanine-C1 1B2 (π→ π*) 7.14 7.12 7.14 7.13 7.11 7.1c 7.16u

3B2 (π→ π*) 5.48 5.47 5.47 5.48 5.47 5.52
aElectron impact experiment from ref 145. bNEVPT-PC from ref 127. cCI convergence too slow to provide more reliable estimates. dMaximum in
the gas UV from ref 146. eCCSDT/TZVP from ref 58. fElectron impact experiment from ref 147. gCC3/aug-cc-pVTZ from ref 32. hVUV maxima
from ref 148. iCCSD/6-311(3+,+)G(d) calculations from ref 149. jMR-CC/DZP calculations from ref 150. kEELS (singlet) and trapped electron
(triplet) experiments from ref 151. lnR-SI-CCSD(T) results from ref 142. mStrong state mixing. nElectron impact experiment from ref 152.
oCASPT2/6-311+G(d) results from ref 153. pElectron impact experiment from ref 116. qSTEOM-CCSD/Sad+//CCSD/Sad+ results from ref
154. rMaximum in the gas UV from ref 155. sCASPT2/ANO results from ref 156. tCASSCF/cc-pVDZ results from ref 157. uexCC3//MP2 result
from ref 128. vAll values are in eV.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00406
J. Chem. Theory Comput. 2018, 14, 4360−4379

4367



131, and 133. On the theoretical side, the most complete and
accurate investigation dedicated to the excited states of
ethylene is due to Davidson’s group, who performed refined
CI calculations.131 They indeed obtained highly accurate
transition energies for ethylene, including for the valence yet
challenging 1B1u state. From our data, collected in Table 3, one
notices that the differences between exFCI/aug-cc-pVDZ and
CCSDTQ/aug-cc-pVDZ results are again trifling, the largest
deviation being obtained for the 3B3u(π → 3s) Rydberg state
(0.02 eV). In addition, given the nice agreement between CC3,
CCSDT, and exFCI values, one can directly compare our
CC3/aug-cc-pV5Z results (Table S3) to the values of reported
in ref 131: a mean absolute deviation (MAD) of 0.03 eV is
obtained. The fact that our transition energies tend to be
slightly smaller than Davidson’s is likely due to geometrical
effects. Indeed, our CC3/aug-cc-pVTZ CC distance is
1.3338 Å, i.e., slightly longer than the best estimate provided in
Davidson’s work (1.3305 Å). Recently, a stochastic heat-bath
CI (SHCI)/ANO-L-pVTZ work reported 4.59 and 8.05 eV
values for the 3B1u and

1B1u states, respectively,
91 and we also

ascribe the differences with our results to the use of a MP2
geometry in ref 91. Interestingly, these authors found quite
large discrepancies between their SHCI and their CC results.
Indeed, they reported CR-EOMCC(2,3)D estimates signifi-
cantly larger than their SHCI results with +0.17 and +0.20 eV
upshifts for the triplet and singlet states, respectively. This
highlights that only high-level CC schemes are able to recover
the exFCI (or SHCI) results for ethylene.
3.4. Formaldehyde, Methanimine, and Thioformalde-

hyde. Similarly to ethylene, formaldehyde is a very popular
test molecule,17,22,26,29,30,59,75,76,132,137−142 and stands as the
prototype carbonyl dye with a low-lying n → π* transition.
Nevertheless, even for this particular valence state, well-
separated from higher-lying excited states, the choice of an
experimental reference remains difficult. Indeed, values of
3.94,22 4.00,26,29,138 4.07,17,75,139 and 4.1 eV,137,140 have been
used in previous theoretical benchmarks. In contrast to their
oxygen cousin, both methanimine and thioformaldehyde were
the subject of less attention from the theoretical commun-
ity.135,143,144 The results obtained for these three molecules are
collected in Table 4. Considering all transitions listed in this
table, one obtains a MAD of 0.01 eV between the CCSDTQ/
aug-cc-pVDZ and exFCI/aug-cc-pVDZ results, the largest
discrepancies of 0.03 eV being observed for two states for
which the differences between CCSDT and CCSDTQ are also
large (0.05 eV). As in water, using the exFCI/aug-cc-pVDZ
values as reference, we found that CC3 delivers slightly more
accurate transition energies (MAD of 0.02 eV, maximal
deviation of 0.06 eV) than CCSDT (MAD of 0.03 eV,
maximal deviation of 0.07 eV). By adding the difference
between CC3/aug-cc-pVTZ and CC3/aug-cc-pVDZ results to
the exFCI/aug-cc-pVDZ values, we obtain good estimates of
the actual exFCI/aug-cc-pVTZ data, with a MAD of 0.02 eV
for formaldehyde. Compared to the CC3/aug-cc-pVQZ results
of Thiel,30 the transition energies reported in Table 4 are
slightly larger, which is probably due to the influence of the
ground-state geometry rather than to basis set effects (see
Table S4). Indeed, the carbonyl bond is significantly more
contracted with CC3/aug-cc-pVTZ (1.208 Å) than with MP2/
6-31G(d) (1.221 Å). In particular, for the hallmark n → π*,
our best estimate is 3.97 eV (vide inf ra), nicely matching a
previous MR-AQCC value of 3.98 eV,134 but significantly
below the previous DMC/BLYP estimate of 4.24 eV.135 The

latter discrepancy is probably due to the use of both different
structures and pseudopotentials within DMC calculations.
For methanimine and thioformaldehyde, the basis set effects

are rather small for the states considered here (see Table S4)
and the data reported in the present work are probably the
most accurate vertical transition energies reported to date. For
the latter molecule, these vertical estimates are systematically
larger than the known experimental 0−0 energies,136 which is
the expected trend.

3.5. Larger Compounds. Let us now turn our attention to
molecules that encompass three heavy (non-hydrogen) atoms.
We have treated seven molecules of that family, and all were
previously investigated at several levels of theory: acetalde-
hyde,26,29,127,138−140,158,159 cyclopropene,30−32,58,132,160 diazo-
methane,149,150,158,161 formamide,30−32,58,59,162,163 ke-
tene,150,153,154,164 nitrosomethane,156,157,165,166 and the short-
est streptocyanine.128,167−170 The results are gathered in Table
5. Note that, for these molecules containing three heavy atoms,
it is sometimes challenging to obtain reliable exFCI estimes,
especially for the largest basis set.
Experimentally, the lowest singlet and triplet n → π*

transitions of acetaldehyde are located 0.3−0.4 eV above their
formaldehyde counterparts,116,145 and this trend is accurately
reproduced by theory, which also delivers estimates very close
to the NEVPT2 values given in ref 127.
For cyclopropene, the lowest singlet σ→ π* and π→ π* are

close from one another, and both CCSDT and exFCI predict
the former to be slightly more stabilized, which is consistent
with the large basis set CC3 results obtained by Thiel.32

For the isoelectronic diazomethane and ketene molecules
(see Table 5), one notes, yet again, consistent results with,
however, differences between the exFCI/aug-cc-pVTZ and
CCSDT/aug-cc-pVTZ results larger than 0.05 eV for the two
lowest singlet states of diazomethane. There is also a
reasonable match between our data and previous theoretical
results reported for these two molecules.149,150,153,154 The basis
set effects are significant for the Rydberg transitions, especially
for the π → 3s states of diazomethane (Table S5).
In formamide, we found strong state mixing between the

lowest singlet valence and Rydberg states of A′ symmetry. This
is consistent with the CCSDT/TZVP analysis of Kannar and
Szalay,58 who reported, for example, a larger oscillator strength
for the lowest Rydberg state than for the π → π* transition.
This state-mixing problem pertains with aug-cc-pVTZ, making
unambiguous assignments difficult. Consequently, we have
decided to classify the three lowest 1A′ transitions according to
their dominant orbital character, which gives a picture
consistent with the computed oscillator strengths (vide inf ra)
but yields state inversions compared to Thiel’s and Szalay’s
assignments.31,58 This strong state mixing also prevented the
convergence of several state energies with the exFCI/aug-cc-
pVTZ approach. Despite these uncertainties, we obtained
transition energies for the Rydberg states that are much closer
from experiment151 as well as from previous multireference CC
estimates,142 than the TZVP ones.58

Nitrosomethane is an interesting test molecule for three
reasons: (i) it presents very low-lying n → π* states of A″
symmetry, close to ca. 2.0 eV (singlet) and 1.2 eV (triplet),
among the smallest absorption energies found in a compact
molecule;171 (ii) it changes from an eclipsed to a staggered
conformation of the methyl group when going from the
ground to the lowest singlet state;157,172,173 (iii) the lowest-
lying singlet A′ state corresponds to an almost pure double
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Table 6. TBE (in eV) for Various States and Wave Function Approachese

corrected TBE

state f % T1 TBE(FC) AVTZ method corr. value

acetaldehyde 1A″(V; n → π*) 0.000 91.3 4.31 exFCI/AVTZ AVQZ 4.31
3A″(V; n → π*) 97.9 3.97a exFCI/AVDZ AVQZ 3.98

acetylene 1Σu
−(V; π → π*) 96.5 7.10 exFCI/AVTZ dAV5Z 7.10

1Δu(V; π → π*) 93.3 7.44 7.44
3Σu

+(V; π → π*) 99.2 5.53 5.56
3Δu(V; π → π*) 99.0 6.40 6.40
3Σu

−(V; π → π*) 98.8 7.08 7.09
1Au [F](V; π → π*) 95.6 3.64 3.63
1A2 [F](V; π → π*) 95.5 3.85 3.85

ammonia 1A2 (R; n → 3s) 0.086 93.5 6.59 exFCI/AVQZ dAV5Z 6.66
1E(R; n → 3p) 0.006 93.7 8.16 8.21
1A1 (R; n → 3p) 0.003 94.0 9.33 8.65
1A2 (R; n → 4s) 0.008 93.6 9.96 exFCI/AVTZ dAV5Z 9.19
3A2 (R; n → 3s) 98.2 6.31 exFCI/AVQZ dAV5Z 6.37

carbon monoxide 1Π(V; n → π*) 0.084 93.1 8.49 exFCI/AVQZ dAV5Z 8.48
1Σ−(V; π → π*) 93.3 9.92 9.98
1Δ(V; π → π*) 91.8 10.06 10.10
1Σ+ (R) 0.003 91.5 10.95 10.80
1Σ+ (R) 0.200 92.9 11.52 11.42
1Π(R) 0.053 92.4 11.72 11.55
3Π(V; n → π*) 98.7 6.28 6.28
3Σ+ (V; π → π*) 98.7 8.45 8.49
3Δ(V; π → π*) 98.4 9.27 9.28
3Σ−(V; π → π*) 97.5 9.80 9.77
3Σ+ (R) 98.0 10.47 exFCI/AVTZ dAV5Z 10.37

cyclopropene 1B1 (V;σ → π*) 0.001 92.8 6.68b CCSDT/AVTZ AVQZ 6.68
1B2 (V; π → π*) 0.071 95.1 6.79a exFCI/AVDZ AVQZ 6.78
3B2 (V; π → π*) 98.0 4.38 exFCI/AVTZ AVQZ 4.38
3B1 (V;σ → π*) 98.9 6.45 6.45

diazomethane 1A2 (V; π → π*) 90.1 3.14 exFCI/AVTZ dAVQZ 3.13
1B1 (R; π → 3s) 0.002 93.8 5.54 5.59
1A1 (V; π → π*) 0.210 91.4 5.90 5.89
3A2 (V; π → π*) 97.7 2.79a exFCI/AVDZ dAVQZ 2.80
3A1 (V; π → π*) 98.6 4.05 exFCI/AVTZ dAVQZ 4.05
3B1 (R; π → 3s) 98.0 5.35 5.40
3A1 (R; π → 3p) 98.5 6.82 6.72
1A″ [F](V; π → π*) 87.4 0.71 0.70

dinitrogen 1Πg(V; n → π*) 92.6 9.34 exFCI/AVQZ dAV5Z 9.33
1Σu

−(V; π → π*) 97.2 9.88 9.91
1Δu (V; π → π*) 0.000 95.9 10.29 10.31
1Σg

+ (R) 92.2 12.98 12.30
1Πu (R) 0.229 82.9 13.03 exFCI/AVTZ dAV5Z 12.73
1Σu

+ (R) 0.296 92.8 13.09 12.95
1Πu (R) 0.000 87.4 13.46 13.27
3Σu

+ (V; π → π*) 99.3 7.70 exFCI/AVQZ dAV5Z 7.74
3Πg (V; n → π*) 98.4 8.01 8.03
3Δu (V; π → π*) 99.3 8.87 8.88
3Σu

− (V; π → π*) 98.8 9.66 9.65

ethylene 1B3u(R; π → 3s) 0.078 95.1 7.39 exFCI/AVTZ dAV5Z 7.43
1B1u(V; π → π*) 0.346 95.8 7.93 7.92
1B1g(R; π → 3p) 95.3 8.08 8.10
3B1u(V; π → π*) 99.1 4.54 4.54
3B3u(R; π → 3s) 98.5 7.23a exFCI/AVDZ dAV5Z 7.28
3B1g(R; π → 3p) 98.4 7.98a 8.00

formaldehyde 1A2 (V; n → π*) 91.5 3.98 exFCI/AVTZ dAV5Z 3.97
1B2 (R; n → 3s) 0.021 91.7 7.23 7.30
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Table 6. continued

corrected TBE

state f % T1 TBE(FC) AVTZ method corr. value
1B2 (R; n → 3p) 0.037 92.4 8.13 8.14
1A1 (R; n → 3p) 0.052 91.9 8.23 8.27
1A2 (R; n → 3p) 91.7 8.67 8.50
1B1 (V;σ → π*) 0.001 90.8 9.22 9.21
1A1 (V; π → π*) 0.135 90.4 9.43 9.26
3A2 (V; n → π*) 98.1 3.58 3.58
3A1 (V; π → π*) 99.0 6.06 6.07
3B2 (R; n → 3s) 97.1 7.06 7.14
3B2 (R; n → 3p) 97.4 7.94 7.96
3A1 (R; n → 3p) 97.2 8.10 8.15
3B1 (R; n → 3d) 97.9 8.42 8.42
1A″ [F] (V; n → π*) 87.8 2.80 2.80

formamide 1A″ (V; n → π*) 0.000 90.8 5.65a exFCI/AVDZ AVQZ 5.63
1A′ (R; n → 3s) 0.001 88.6 6.77a 6.81
1A′ (V; π → π*) 0.251 89.3 7.63 exFCI/AVTZ AVQZ 7.64
1A′ (R; n → 3p) 0.111 89.6 7.38b CCSDT/AVTZ AVQZ 7.41
3A″(V; n → π*) 97.7 5.38c exFCI/AVDZ AVQZ 5.37
3A′ (V; π → π*) 98.2 5.81c 5.81

hydrogen chloride 1Π(CT) 0.056 94.3 7.84 exFCI/AVQZ dAV5Z 7.86

hydrogen sulfide 1A2 (R; n → 4p) 94.6 6.18 exFCI/AVQZ dAV5Z 6.10
1B1 (R; n → 4s) 0.063 94.3 6.24 6.29
3A2 (R; n → 4p) 98.7 5.81 5.74
3B1 (R; n → 4s) 98.4 5.88 5.94

ketene 1A2 (V; π → π*) 91.0 3.86 exFCI/AVTZ dAVQZ 3.86
1B1 (R; n → 3s) 0.035 93.9 6.01 6.06
1A2 (R; π → 3p) 94.4 7.18 7.19
3A2 (V; n → π*) 91.0 3.77 3.77
3A1 (V; π → π*) 98.6 5.61 5.60
3B1 (R; n → 3s) 98.1 5.79 5.85
3A2 (R; π → 3p) 94.4 7.12 7.14
1A″ [F] (V; π → π*) 87.9 1.00 1.00

methanimine 1A″(V; n → π*) 0.003 90.7 5.23 exFCI/AVTZ dAVQZ 5.21
3A″(V; n → π*) 98.1 4.65 4.64

nitrosomethane 1A″(V; n → π*) 0.000 93.0 1.96a exFCI/AVDZ AVQZ 1.95
1A′ (V; n, n → π*,π*) 0.000 2.5 4.72 exFCI/AVTZ AVQZ 4.69
1A′ (R; n → 3s/3p) 0.006 90.8 6.40a exFCI/AVDZ AVQZ 6.42
3A″(V; n → π*) 98.4 1.16 1.16
3A′ (V; π → π*) 98.9 5.60 5.61
1A″ [F] (V; n → π*) 92.7 1.67a exFCI/AVDZ AVQZ 1.66

streptocyanine-C1 1B2 (V; π → π*) 0.347 88.7 7.13a exFCI/AVDZ AVQZ 7.12
3B2 (V; π → π*) 98.3 5.52 exFCI/AVTZ AVQZ 5.52

thioformaldehyde 1A2 (V; n → π*) 89.3 2.22 exFCI/AVTZ dAVQZ 2.20
1B2 (R; n → 4s) 0.012 92.3 5.96 5.99
1A1 (V; π → π*) 0.178 90.8 6.38d CCSDTQ/AVDZ dAVQZ 6.34
3A2 (V; n → π*) 97.7 1.94 exFCI/AVTZ dAVQZ 1.94
3A1 (V; π → π*) 98.9 3.43 3.44
3B2 (R; n → 4s) 97.6 5.72a exFCI/AVDZ dAVQZ 5.76
1A2 [F] (V; n → π*) 87.2 1.95 exFCI/AVTZ dAVQZ 1.94

water 1B1 (R; n → 3s) 0.054 93.4 7.62 exFCI/AVQZ dAV5Z 7.70
1A2 (R; n → 3p) 93.6 9.41 9.47
1A1 (R; n → 3s) 0.100 93.6 9.99 9.97
3B1 (R; n → 3s) 98.1 7.25 7.33
3A2 (R; n → 3p) 98.0 9.24 9.30
3A1 (R; n → 3s) 98.2 9.54 9.59

aexCI/aug-cc-pVDZ data corrected with the difference between CCSDT/aug-cc-pVTZ and CCSDT/aug-cc-pVDZ values. bCCSDT/aug-cc-pVTZ
value. cexCI/aug-cc-pVDZ data corrected with the difference between CC3/aug-cc-pVTZ and CC3/aug-cc-pVDZ values. dCCSDTQ/aug-cc-
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excitation of (n, n) → (π*,π*) nature.156 Indeed, CC3 returns
a 2.5% single excitation character only for this second
transition, to be compared to more than 80% (and generally
more than 90%) in all other states treated in this work (vide
inf ra). For example, the notoriously difficult Ag dark state of
butadiene has a 72.8% single character.30 For the A″ state of
nitrosomethane, CC3, CCSDT and exFCI yield similar results,
and the corresponding transition energies are slightly larger
than previous CASPT2 estimates.156 In contrast, the CC
approaches are expectedly far from the spot for the (n, n) →
(π*,π*) transition: they yield values significantly blue-shifted
and large discrepancies between the CC3 and CCSDT values
are found. For this particular state, it is not surprising that the
exFCI result is indeed closer to the CASPT2 value,156 as
modeling double excitations with single-reference CC models
is not a natural choice.
Finally for the shortest model cyanine, a molecule known to

be difficult to treat with TD-DFT,170 all the theoretical results
given in Table 5 closely match each other for both the singlet
and triplet manifolds. For the former, the reported CASPT2
(with IPEA) value of 7.14 eV also fits these estimates.128

3.6. Theoretical Best Estimates. We now turn to the
definition of theoretical best estimates. We decided to provide
two sets for these estimates, one obtained in the frozen-core
approximation with the aug-cc-pVTZ atomic basis set, and one
including further corrections for basis set and “all electron”
(full) effects. This choice allows further benchmarks to either
consider a reasonably compact basis set, therefore allowing to
test many levels of theory, or to rely on values closer to the
basis set limit. For the former set, we systematically selected
exFCI/aug-cc-pVTZ values except when explicitly stated. For
the latter set, both the “all electron” correlation and the basis
set corrections (see Supporting Information for complete data)
were systematically obtained at the CC3 level of theory and
used d-aug-cc-pV5Z for the nine smallest molecules, but
slightly more compact basis sets for the larger compounds. At
least for Rydberg states, the use of d-aug-cc-pVQZ apparently
delivers results closer to basis set convergence than aug-cc-
pV5Z, and the former basis set was used when technically
possible. The interested readers may find in Supporting
Information the values obtained with and without applying the
frozen-core approximation for several basis sets. Clearly, the
largest amount of the total correction originates from basis set
effects. In other words, “full” and frozen-core transition
energies are typically within 0.01−0.02 eV of each other for
a given basis set. The results are listed in Table 6 and provide a
total of 110 transition energies. This set of states is rather
diverse with 61 singlet and 45 triplet states, 60 valence and 45
Rydberg states, 21 n → π* and 38 π → π* states, with an
energetic span from 0.70 to 13.27 eV. Among these 110
excitation energies, only 13 are characterized by a single-
excitation character smaller than 90% according to CC3. As
expected,30 the dominant single-excitation character is
particularly pronounced for triplet excited states. Therefore,
this set is adequate for evaluating single-reference methods,
though a few challenging cases are incorporated. Conse-

quently, we think that the TBE listed in Table 6 contribute to
fulfill the need of more accurate reference excited state
energies, as pointed out by Thiel one decade ago.30 However,
the focus on small compounds and the lack of charge-transfer
states constitute significant biases in the present set of
transition energies.

3.7. Benchmarks. We have used the TBE(FC)/aug-cc-
pVTZ benchmark values to assess the performances of 12 wave
function approaches, namely, ADC(2), ADC(3), CIS(D),
CIS(D∞), CC2, STEOM-CCSD, CCSD, CCSDR(3),
CCSDT-3, CC3, CCSDT, and CCSDTQ. The complete list
of results can be found in Table S6 in the Supporting
Information. As expected, only the approaches including
iterative triples, that is, ADC(3), CCSDT-3, CC3, and
CCSDT are able to predict the presence of the doubly excited
(n, n) → (π*,π*) transition in nitrosomethane (see Tables 5
and S6), but they all yield large quantitative errors. Indeed, the
TBE value of 4.72 eV is strongly underestimated by ADC(3)
(3.00 eV) and significantly overshot by the three CC models
with estimates of 6.02 eV, 5.76, and 5.29 eV with CCSDT-3,
CC3, and CCSDT, respectively. This 0.26 eV difference
between the CCSDT-3 and CC3 values is also the largest
discrepancy between these two models in the tested set.
Obviously, from a general perspective, one should not use the
standard single-reference wave function methods to describe
double excitations. Therefore, the (n, n) → (π*,π*) transition
of nitrosomethane was removed from our statistical analysis.
Likewise, for the three lowest 1A′ excited states of formamide,
strong state mixing  involving two or three states  are
found at all levels of theory, making unambiguous assignments
impossible. Consequently, they are also excluded from our
statistics.
In Table 7, we report, for the entire set of compounds, the

mean signed error (MSE), mean absolute error (MAE) root-
mean-square deviation (RMS), as well as the positive
[Max(+)] and negative [Max(−)] maximum deviations. A
graphical representation of the errors obtained with all
methods can be found in Figure 1. Note that only singlet
states could be computed with the programs used for
CCSDR(3) and CCSDT-3. As shown in Figure 1, CCSDTQ
is on the spot with tiny MSE and MAE, which is consistent
with the analysis carried out for individual molecules. With this
method, the negative and positive maximum deviations are as
small as −0.05 eV (singlet n → 4s Rydberg transition of
thioformaldehyde) and +0.06 eV (1Σu

+ Rydberg transition of
dinitrogen), respectively. The three other CC models with
iterative triples (CCSDT-3, CC3, and CCSDT) also deliver
extremely accurate transition energies with MAE of 0.03 eV
only. In agreement with the analysis of Watson and co-workers,
we do not find any significant (statistical) differences between
CCSDT-3 and CC3,57 and although the former theory is
formally closer to CCSDT, it does not seem more advanta-
geous nor disadvantageous than CC3 in practice. The very
good performance of CC3 is also consistent with the analysis
of Thiel and co-workers, who reported a strong agreement with
CASPT2,32 as well as with the conclusion of Szalay’s group

Table 6. continued

pVDZ data corrected with the difference between CCSDT/aug-cc-pVTZ and CCSDT/aug-cc-pVDZ values. eFor each state, we provide the
oscillator strength and percentage of single excitations obtained at the CC3(FC)/aug-cc-pVTZ level. Unless otherwise stated, the TBE(FC)/aug-
cc-pVTZ have been obtained directly from exFCI. For the basis-set-corrected TBE, we provide the method used to determine the starting value and
the basis set used at the CC3(full) level to correct it. CC3(full)/aug-cc-pVTZ geometries and abbreviated forms of Dunning’s basis set are
systematically used. R, V and F stand for Rydberg, valence and fluorescence, respectively.
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who found it very close to CCSDT.59 Nevertheless, CCSDT is
not, on average, significantly more accurate than CC3 nor
CCSDT-3. In other words, CCSDT is probably not a
sufficiently accurate benchmark to estimate the accuracy of
CCSDT-3 nor CC3. The perturbative inclusion of triples via
CCSDR(3) stands as a good compromise between computa-
tional cost and accuracy with a MAE of 0.04 eV, a conclusion
also drawn in the benchmark study performed by Sauer and
co-workers.51 These very small average deviations are related
to the fact that the majority of our set is constituted of large
single-excitation character transitions (see % T1 in Table 6).
Reasonably, we predict that they would slightly deteriorate for
larger compounds.
For the second-order CC series, as expected, the errors

increase when one uses more approximate models. Indeed, the
MAE are 0.08, 0.10, and 0.22 eV with CCSD, STEOM-CCSD,
and CC2, respectively. The magnitude of the CC2 average
deviation is consistent with previous estimates obtained for
Thiel’s set (0.29 eV for singlets and 0.18 eV for triplets),30 for
fluorescence energies (0.21 eV for 12 small compounds),174 as
well as for larger compounds (0.15 eV for 0−0 energies of
conjugated dyes).11 Likewise, the fact that CCSD tends to
overestimate the transition energies (positive MSE) was also
reported previously in several works.26,30,57−59,159,174 It can be
seen that Nooijen’s STEOM approach, which was much less
benchmarked previously, delivers an accuracy comparable to
CCSD, with a smaller MSE but a large dispersion. More
surprisingly, we found a MAE smaller with CCSD than with
CC2, which contrasts with the results reported for Thiel’s
set,51 but is consistent with Kannar, Tajti and Szalay
conclusion.59 We attribute this effect to the small size of the
compounds treated herein. Indeed, analyzing the TZVP values
of ref 30., it appears clearly that CC2 more regularly
outperforms CCSD for larger compounds.
As expected, the results for CIS(D∞) and ADC(2), two

closely related theories,6,144 are nearly equivalent, with only 4
(out of 106) cases for which a difference of 0.01 eV could be
evidenced (Table S6). In addition, Table 7 evidences that
ADC(2) provides an accuracy similar to CC2 for a smaller
computational cost, whereas CIS(D) is slightly less accurate.

Both outcomes perfectly fit previous benchmarks.10,11,48,144,174

Conversely, we found that ADC(3) results are rather poor with
average deviations larger than the ones obtained with ADC(2)
and a clear tendency to provide red-shifted transition energies
with a MSE of −0.15 eV. This observation is in sharp contrast
with a previous investigation which concluded that ADC(3)
and CC3 have very similar performances,48 though the
ADC(3) excitation energies were also found to be, on average,
smaller by 0.20 eV compared to their CC3 counterparts. At
this stage, it is difficult to know if the large MAE of ADC(3)
reported in Table 7 originates solely from the small size of the
compounds treated herein. However, the fact that the CCSD
MSE is relatively small compared to previous benchmarks hints
that the choice of compact compounds has a non-negligible
effect on the statistics.
Let us analyze the ADC(3) errors more thoroughly. First,

ADC(3) deviations are quite large for all subsets (vide inf ra).
Second, we have found that, for the 46 transition energies for
which ADC(2) yields an absolute error exceeding 0.15 eV
compared to our TBE, the signs of the ADC(2) and ADC(3)
errors systematically differ (see Figure 2); i.e., ADC(3) goes in
the right “direction” but has the tendency to overcorrect
ADC(2). This is clearly reminiscent of the well-known
oscillating behavior of the Møller−Plesset perturbative series
for ground state properties. Third, this overestimation of the
corrections pertains for the states in which the ADC(2)
absolute error is smaller than 0.15 eV. Indeed, in those 60
cases, there are only 10 transitions for which the ADC(3)
values are more accurate than their second-order counterpart.
As a consequence, taking the average between the ADC(2) and
ADC(3) transition energies yield rather accurate estimates
with a MAE as small as 0.10 eV for the full set, half of the MAE
obtained with the parent methods.
We provide a more detailed analysis for several subsets of

states in Table S7 in the Supporting Information. Globally, we
found no significant difference between the singlet and triplet
transitions, though all CC models (except STEOM-CCSD)
provide slightly smaller deviations for the latter transitions, in
line with their larger single-excitation character. With the
computationally lighter methods, CIS(D), CIS(D∞), ADC(2),
and CC2, the MAEs are significantly smaller for the valence
transitions (0.20, 0.15, 0.15, and 0.18 eV, respectively) than for
the Rydberg transitions (0.32, 0.29, 0.29, and 0.26 eV,
respectively). We also found MSE of opposite sign for valence
and Rydberg transitions with CC2, which fits the results of
Kannar and co-workers.59 Surprisingly, ADC(3) gives 0.28 and
0.17 eV MAE for valence and Rydberg, respectively. All CC
methods including triples deliver similar deviations for both
sets of states. All methods provide smaller (or equal) MAE for
the n → π* than for the π → π* transitions, which was already
found for Thiel’s set.30 The differences are particularly
significant with CIS(D), CC2, STEOM-CCSD, and ADC(3)
with errors twice larger for π → π* than n→ π* states. Finally,
when considering the few states with %T1 smaller than 90%,
we logically found larger statistical errors with, for example,
MAE of, e.g., 0.03 eV for CCSDTQ, 0.04 eV for CC3, and 0.06
eV for CCSDT-3.

3.8. On the Use of a Compact Basis Set. In several of
the molecules considered here, we have found that adding
corrections for basis set effects determined at the CC3 level to
exFCI/aug-cc-pVDZ results effectively provides accurate
estimates of the exFCI values directly determined with larger
bases. Nevertheless, the dreadful scalings of both exFCI and

Table 7. Mean Signed Error (MSE), Mean Absolute Error
(MAE), Root-Mean Square Deviation (RMS), Positive
[Max(+)] and Negative [Max(−)] Maximal Deviations with
Respect to TBE(FC)/aug-cc-pVTZ for the Transition
Energies Listed in Table S6a

method
no. of
states MSE MAE RMS Max(+) Max(−)

CIS(D) 106 0.10 0.25 0.32 −0.63 1.06
CIS(D∞) 106 −0.01 0.21 0.28 −0.76 0.57
CC2 106 0.03 0.22 0.28 −0.71 0.63
STEOM-CCSD 102 0.01 0.10 0.14 −0.56 0.40
CCSD 106 0.05 0.08 0.11 −0.17 0.40
CCSDR(3) 59 0.01 0.04 0.05 −0.07 0.25
CCSDT-3 58 0.01 0.03 0.05 −0.07 0.24
CC3 106 −0.01 0.03 0.04 −0.09 0.19
CCSDT 104 −0.01 0.03 0.03 −0.10 0.11
CCSDTQ 73 0.00 0.01 0.02 −0.05 0.06
ADC(2) 106 −0.01 0.21 0.28 −0.76 0.57
ADC(3) 106 −0.15 0.23 0.28 −0.79 0.39

aAll values are in eV and have been obtained with the aug-cc-pVTZ
basis set.
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CCSDTQ make the size of the atomic basis the central
bottleneck. For this reason, we have tested the use of one of
the most compact basis encompassing both diffuse and
polarization functions, namely Pople’s 6-31+G(d). We have
performed CC3, CCSDT, and CCSDTQ calculations with this
particular basis. The results are collected in the Supporting
Information (Table S8). First, we compare the 6-31+G(d)
results to those obtained with the same theoretical method in
conjunction with the aug-cc-pVTZ basis set. As expected, large
discrepancies are found with mean absolute deviation of 0.20,
0.19, and 0.25 eV, for CC3, CCSDT, and CCSDTQ,
respectively.175 Second, by adding the differences between
the CC3/aug-cc-pVTZ and CC3/6-31+G(d) results to the
CCSDT/6-31+G(d) and CCSDTQ/6-31+G(d) values, we
obtained improved values. Such procedure yields very good
estimates of the actual aug-cc-pVTZ results, as the MAE are
down to 0.01 eV with no error larger than 0.04 eV for both
CCSDT and CCSDTQ. This is a particularly remarkable result
for Rydberg states that are extremely basis set dependent. For
example, for the 3A2(n → 3p) transition in water, the
CCSDTQ/6-31+G(d) value of 10.34 eV is more than 1 eV

Figure 1. Histograms of the error patterns for several wave function methods compared to TBE(FC). Note the variation of scaling of the vertical
axes.

Figure 2. Comparison between the errors obtained with ADC(2) and
ADC(3) [compared to TBE(FC)] for the 46 states for which
ADC(2) yields an absolute deviation larger than 0.15 eV. All values
are in eV.
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above its CCSDTQ/aug-cc-pVTZ counterpart (9.23 eV, see
Table 1). Applying the CC3 basis set correction makes the
final error as small as 0.03 eV. This composite methodology
opens the way to calculations on larger systems without
significant loss of accuracy.

4. CONCLUSIONS AND OUTLOOK
We have defined a set of more than 100 vertical transition
energies, as close as possible to the FCI limit. To this end, we
have used both the coupled cluster route up to the highest
computationally possible order and the selected configuration
interaction route up to the largest technically affordable
number of determinants, that is here about few millions. These
calculations have been performed on 18 compounds
encompassing one, two or three non-hydrogen atoms, using
geometries optimized at the CC3 level and a series of diffuse
Dunning’s basis sets of increasing size. It was certainly
gratifying to find extremely good agreements between the
results obtained independently with these two distinct
approaches with typical differences as small as 0.01 eV
between CCSDTQ and exFCI transition energies. In fact,
during the course of this joint work, the two groups involved in
this study were able to detect misprints or incorrect
assignments in each others calculations even when the
differences were apparently negligible. For the two diatomic
molecules considered in this work, N2 and CO, the mean
absolute deviation between our theoretical best estimates and
the “experimental” vertical transition energies deduced from
spectroscopic measurements using a numerical solution of the
nuclear Schrödinger equation is as small as 0.04 eV, and it was
possible to resolve previous inconsistencies between these
“experimental” values. A significant share of the remaining
error is likely related to the use of theoretically determined
geometries. Although, it is not possible to provide a definitive
error bar for the 110 TBE listed in this work, our estimate,
based on the differences between the two routes as well as the
extrapolations used in the sCI procedure, is ±0.03 eV.
In another part of this work, we have used the TBE(FC)/

aug-cc-pVTZ values to benchmark a series of 12 popular wave
function approaches. For the computationally most effective
approaches, CIS(D), CIS(D∞), ADC(2), and CC2, we found
average deviations of ca. 0.21−0.25 eV with strong similarities
between the ADC(2) and CC2 results. Both conclusions are
backed up by previous works. Likewise, we obtained the
expected trend that CCSD overestimates the transition
energies, though with an amplitude that is quite small here,
likely due to the small size of the compounds investigated.
More interestingly, we could demonstrate that STEOM-CCSD
is, on average, as accurate as CCSD, and we were also able to
benchmark the methods including contributions from triples
using reliable theoretical references. Interestingly, we found no
significant differences between CCSDT-3, CC3, and CCSDT,
which all yield a MAE of 0.03 eV. In other words, we could not
demonstrate that CCSDT is statistically more accurate than its
approximated (and computationally more effective) forms, nor
highlight significant differences between CCSDT-3 and CC3.
We have observed that the use of perturbative triples, as in
CCSDR(3), allows to correct most of the CCSD error. This
evidences that CCSDR(3) is a computationally appealing
method as it gives average deviations only slightly larger than
with iterative triples. In contrast, for the present set of
molecules, ADC(3) was found significantly less accurate than
CC3, and it was showed that ADC(3) overcorrects ADC(2).

Whether this surprising result is related to the size of the
compounds or is a more general trend remains to be
confirmed.
As stated several times throughout this work, the size of the

considered molecules is certainly one of the main limitations of
the present effort, as it introduces a significant bias, e.g.,
charge-transfer over several Å are totally absent of the set.
Obviously, the respective N( )10 and e( )N formal scalings of
CCSDTQ and FCI do not offer an easy pathway to circumvent
this limit. Nevertheless, it appears that performing exFCI
calculations with a relatively compact basis, e.g., aug-cc-pVDZ
or even 6-31+G(d), and correcting the basis set effects with a
more affordable approach, e.g., CC3, might be a valuable and
efficient approach to reach accurate vertical excitations
energies for larger molecules, at least for the electronic
transitions presenting a dominant single excitation character.
Indeed, we have shown here that such basis set extrapolation
approach is trustworthy. We are currently hiking along that
path.
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D.J. acknowledges the Reǵion des Pays de la Loire for financial
support. This research used resources of (i) the GENCI-
CINES/IDRIS (Grant 2016-08s015), (ii) CCIPL (Centre de
Calcul Intensif des Pays de Loire), (iii) the Troy cluster installed
in Nantes, and (iv) CALMIP under Allocations 2018-0510 and
2018-18005 (Toulouse).

■ REFERENCES
(1) Hegarty, D.; Robb, M. A. Application of Unitary Group Methods
to Configuration Interaction Calculations. Mol. Phys. 1979, 38, 1795−
1812.
(2) Taylor, P. R. Analytical MCSCF Energy Gradients: Treatment of
Symmetry and CASSCF Applications to Propadienone. J. Comput.
Chem. 1984, 5, 589−597.
(3) Casida, M. E.; Huix-Rotllant, M. Progress in Time-Dependent
Density-Functional Theory. Annu. Rev. Phys. Chem. 2012, 63, 287−
323.
(4) Ullrich, C. Time-Dependent Density-Functional Theory: Concepts
and Applications; Oxford Graduate Texts; Oxford University Press:
New York, 2012.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00406
J. Chem. Theory Comput. 2018, 14, 4360−4379

4374



(5) Andersson, K.; Malmqvist, P. A.; Roos, B. O.; Sadlej, A. J.;
Wolinski, K. Second-Order Perturbation Theory With a CASSCF
Reference Function. J. Phys. Chem. 1990, 94, 5483−5488.
(6) Dreuw, A.; Wormit, M. The Algebraic Diagrammatic
Construction Scheme for the Polarization Propagator for the
Calculation of Excited States. WIREs Comput. Mol. Sci. 2015, 5,
82−95.
(7) Christiansen, O.; Koch, H.; Jørgensen, P. The Second-Order
Approximate Coupled Cluster Singles and Doubles Model CC2.
Chem. Phys. Lett. 1995, 243, 409−418.
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J. Juseĺius, T. Kirsch, K. Klein, W. J. Lauderdale, F. Lipparini, T.
Metzroth, L. A. Mück, D. P. O’Neill, D. R. Price, E. Prochnow, C.
Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S.
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MRSDCI Vertical Excitation Energies and MQDO Intensities for
Electronic Transitions to Rydberg States in H2S. J. Phys. Chem. A
2004, 108, 6724−6729.
(114) Gupta, M.; Baluja, K. L. Application of R-Matrix Method to
Electron-H2S Collisions in the Low Energy Range. Eur. Phys. J. D
2007, 41, 475−483.
(115) O'Brien Lantz, K.; Vaida, V. Direct Absorption Spectroscopy
of the First Excited Electronic Band of Jet-Cooled H2S. Chem. Phys.
Lett. 1993, 215, 329−335.
(116) Robin, M. B. In Higher Excited States of Polyatomic Molecules;
Robin, M. B., Ed.; Academic Press: 1985; Vol. III.
(117) Chantranupong, L.; Hirsch, G.; Buenker, R. J.; Kimura, M.;
Dillon, M. A. Theoretical Study of the Electronic Spectrum of
Ammonia: Generalized Oscillator Strength Calculations for the A-X
Transition. Chem. Phys. 1991, 154, 13−21.
(118) Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules;
Molecular Spectra and Molecular Structure; Van Nostrand: Princeton,
NJ, 1979; Vol. 4.
(119) Ben-Shlomo, S. B.; Kaldor, U. N2 Excitations Below 15 eV by
the Multireference Coupled-Cluster Method. J. Chem. Phys. 1990, 92,
3680−3682.
(120) Nielsen, E. S.; Jorgensen, P.; Oddershede, J. Transition
Moments and Dynamic Polarizabilities in a Second Order Polar-
ization Propagator Approach. J. Chem. Phys. 1980, 73, 6238−6246.
(121) Kucharski, S. A.; Włoch, M.; Musiał, M.; Bartlett, R. J.
Coupled-Cluster Theory for Excited Electronic States: The Full
Equation-Of-Motion Coupled-Cluster Single, Double, and Triple
Excitation Method. J. Chem. Phys. 2001, 115, 8263−8266.
(122) Dora, A.; Tennyson, J.; Chakrabarti, K. Higher Lying
Resonances in Low-Energy Electron Scattering with Carbon
Monoxide. Eur. Phys. J. D 2016, 70, 197.

(123) Stahel, D.; Leoni, M.; Dressler, K. Nonadiabatic Representa-
tions of the 1Σu

+ and 1Πu States of the N2 Molecule. J. Chem. Phys.
1983, 79, 2541−2558.
(124) Malsch, K.; Rebentisch, R.; Swiderek, P.; Hohlneicher, G.
Excited States of Acetylene: A CASPT2 Study. Theor. Chem. Acc.
1998, 100, 171−182.
(125) Zyubin, A. S.; Mebel, A. M. Accurate Prediction of Excitation
Energies to High-Lying Rydberg Electronic States: Rydberg States of
Acetylene as a Case Study. J. Chem. Phys. 2003, 119, 6581−6587.
(126) Ventura, E.; Dallos, M.; Lischka, H. The Valence-Excited
States T1−T4 and S1−S2 of Acetylene: A High-Level MR-CISD and
MR-AQCC Investigation of Stationary Points, Potential Energy
Surfaces, and Surface Crossings. J. Chem. Phys. 2003, 118, 1702−
1713.
(127) Angeli, C.; Borini, S.; Ferrighi, L.; Cimiraglia, R. Ab Initio N-
Electron Valence State Perturbation Theory Study of the Adiabatic
Transitions in Carbonyl Molecules: Formaldehyde, Acetaldehyde, and
Acetone. J. Chem. Phys. 2005, 122, 114304.
(128) Send, R.; Valsson, O.; Filippi, C. Electronic Excitations of
Simple Cyanine Dyes: Reconciling Density Functional and Wave
Function Methods. J. Chem. Theory Comput. 2011, 7, 444−455.
(129) Dressler, R.; Allan, M. A Dissociative Electron Attachment,
Electron Transmission, and Electron EnergyLoss Study of the
Temporary Negative Ion of Acetylene. J. Chem. Phys. 1987, 87,
4510−4518.
(130) Serrano-Andres̀, L.; Merchań, M.; Nebot-Gil, I.; Lindh, R.;
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(162) Serrano-Andreś, L.; Fülscher, M. P. Theoretical Study of the
Electronic Spectroscopy of Peptides. 1. The Peptidic Bond: Primary,
Secondary, and Tertiary Amides. J. Am. Chem. Soc. 1996, 118, 12190−
12199.

(163) Besley, N. A.; Hirst, J. D. Ab Initio Study of the Electronic
Spectrum of Formamide with Explicit Solvent. J. Am. Chem. Soc. 1999,
121, 8559−8566.
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10.2 Application to QMC : the Fe–S molecule
In a di�usion quantum Monte Carlo calculation (DMC), a trial wave function Ψ is
required. One is able to compute

EDMC =

〈
ΦFN∣∣Ĥ

∣∣Ψ
〉

〈ΦFN|Ψ〉 =

∫
ΦFN(r1, . . . , rN)ĤΨ(r1, . . . , rN)dr1 . . . drN∫
ΦFN(r1, . . . , rN)Ψ(r1, . . . , rN)dr1 . . . drN

(10.1)

=

∫
ΦFN(r1, . . . , rN)Ψ(r1, . . . , rN)

ĤΨ(r1,...,rN)
Ψ(r1,...,rN)

dr1 . . . drN∫
ΦFN(r1, . . . , rN)Ψ(r1, . . . , rN)dr1 . . . drN

(10.2)

as a stochastic average with the 3N-dimensional density Ψ×ΦFN:

EDMC =

〈
ĤΨ(r1, . . . , rN)

Ψ(r1, . . . , rN)

〉

Ψ×ΦFN
. (10.3)

ΦFN is an improved wave function of the form

ΦFN(r1, . . . , rN) = Ψ(r1, . . . , rN)× w(r1, . . . , rN) (10.4)

where w is a non-negative function, given by

w(R) = lim
t→∞

exp
(∫ t

0
dt

ĤΨ(R(t))
Ψ(R(t))

)
. (10.5)

This expression can’t be computed exactly, but it can be sampled with a di�usion pro-
cess with drift and branching.[86]

The non-negativity constraint of w implies that the nodal hyper-surfaces of ΦFN

coincide with those of Ψ, but not necessarily with those of the exact wave function.
Hence, the Di�usion Monte Carlo (DMC) method su�ers from the so-called �xed-node
approximation. But if the trial wave function has nodes which coincide with those of
the exact wave function, the exact energy is obtained.

There is no way to improve the nodes of the wave function by minimizing directly
EDMC. However, it has recently been shown[87] that for each atomic basis set there
was an EDMC associated with the FCI wave function, and increasing the size of the
basis set enabled a smooth extrapolation to the exact energy. Hence, one expects that
computing DMC energy di�erences with FCI wave functions will show an e�cient
compensation of errors.

In this work, we have introduced an extrapolation scheme, EDMC as a function
of EPT2 to estimate the EDMC we would have obtained if the trial wave function was
a FCI wave function. We have applied this scheme to the di�cult case of the Fe–S

190



molecule, for which the nature of the ground state in not clear. Two states of di�erent
symmetries, 5Σ and 5∆ are very close in energy, and the main methods of quantum
chemistry disagree. State-of-the art QMC calculations were giving the 5∆ state as the
ground state,[88] and our results agree with these conclusions.
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ABSTRACT: In diffusion Monte Carlo (DMC) methods, the nodes (or
zeroes) of the trial wave function dictate the magnitude of the fixed-node
(FN) error. In standard DMC implementations, the nodes are optimized
by stochastically optimizing a short multideterminant expansion in the
presence of an explicitly correlated Jastrow factor. Here, following a
recent proposal, we pursue a different route and consider the nodes of
selected configuration interaction (sCI) expansions built with the CIPSI
(Configuration Interaction using a Perturbative Selection made
Iteratively) algorithm. By increasing the size of the sCI expansion,
these nodes can be systematically and deterministically improved. The
present methodology is used to investigate the properties of the
transition metal sulfide molecule FeS. This apparently simple molecule
has been shown to be particularly challenging for electronic structure
theory methods due to the proximity of two low-energy quintet electronic states of different spatial symmetry and the difficulty to
treat them on equal footing from a one-electron basis set point of view. In particular, we show that, at the triple-ζ basis set level,
all sCI resultsincluding those extrapolated at the full CI (FCI) limitdisagree with experiment, yielding an electronic ground
state of 5Σ+ symmetry. Performing FN-DMC simulation with sCI nodes, we show that the correct 5Δ ground state is obtained if
sufficiently large expansions are used. Moreover, we show that one can systematically get accurate potential energy surfaces and
reproduce the experimental dissociation energy as well as other spectroscopic constants.

1. INTRODUCTION

From an experimental point of view, transition metal sulfides
have proven to be useful in a variety of fields including
biological chemistry,1 catalysis,2 and electrochemistry.3 From
the computational side, the apparently simple FeS diatomic
molecule turns out to be a challenging system for computa-
tional chemists. The major hurdle originates from the energetic
proximity of two electronic states

σ π σ δ σ π σ π σ δ σ πΔ Σ+: :5 2 4 2 3 1 2 5 2 4 2 2 2 2

with the same multiplicity competing for the ground state. To
make things worse, the equilibrium bond lengths associated
with these two states are extremely close to each other.
Experimentally, the ground state of FeS is assigned to be

5Δ,4,5 with an equilibrium bond length of re = 2.017 Å,5 and a
dissociation energy D0 = 3.31(15) eV.6 For this state, the
harmonic frequency ωe has been estimated to be 518 ± 5
cm−1.7 Very recently, a much more accurate value of the
dissociation energy D0 = 3.240(3) eV has been obtained by
Matthew et al. using the predissociation threshold technique.8

FeS has been extensively studied by density functional theory
(DFT) and post-Hartree−Fock methods. In short, most (but
not all) DFT functionals correctly predict a 5Δ ground
state,9−13 while CAS-based multireference methods such as
CASSCF/ACPF,14 CASPT2,15 or CASSCF/ICACPF16 system-
atically predict 5Σ+ lower than 5Δ.

Here, we investigate this problem using quantum Monte
Carlo (QMC). In recent years, QMC has been applied with
great success to a large variety of main group compounds (see,
e.g, refs 17−20 for recent applications). Transition metal
systems are more challenging, but a number of successful
studies have also been reported.21−41

When multireference effects are weak, QMC is seen as a very
accurate method providing benchmark results of a quality
similar or superior to the gold-standard CCSD(T). However,
when multireference effects are dominant, as is usually the case
for metallic compounds with partially filled d shells, the
situation is more complicated, and one has to revert to
multireference approaches.42−44 Indeed, the results may
depend significantly on the trial wave function ΨT used to
guide the walkers through configuration space. In theory, QMC
results should be independent of the choice of ΨT. However, it
is not true in practice because of the fixed-node (FN)
approximation, which imposes the Schrödinger equation to
be solved with the additional constraint that the solution
vanishes at the zeroes (nodes) of the trial wave function. Using
an approximate ΨT leads to approximate nodes and, thus, to an
approximate energy, known as the FN energy. The FN energy
being an upper bound of the exact energy, this gives us a
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practical and convenient variational criterion for characterizing
the nodal quality. In situations where multireference effects are
strong, getting accurate nodes may be difficult. As we shall see,
this is the main challenge we are facing in the present work.
Most QMC studies for transition metal-containing systems

have been performed with pseudopotentials. In this case, an
additional source of error, the so-called localization error, is
introduced. This error, specific to QMC, adds up to the
standard error associated with the approximate nature of
pseudopotentials. Similarly to the FN error, the localization
error depends on ΨT and vanishes only for the exact wave
function. Therefore, to get accurate and reliable QMC results,
both sources of error have to be understood and controlled.
In 2011, Petz and Lüchow reported a FN diffusion Monte

Carlo (FN-DMC) study of the energetics of diatomic transition
metal sulfides from ScS to FeS using pseudopotentials and
single-determinant trial wave functions.34 The pseudopotential
dependence was carefully investigated, and comparisons with
both DFT and CCSD(T) as well as experimental data were
performed. In short, it was found that FN-DMC shows a higher
overall accuracy than both B3LYP and CCSD(T) for all
diatomics except for CrS and FeS, which appeared to be
particularly challenging.
Very recently, Haghighi-Mood and Lüchow had a second

look at the difficult case of FeS.41 In particular, they explored
the impact of the level of optimization on the parameters of
multideterminant trial wave functions (partial or full
optimization of the Jastrow, determinant coefficients, and
molecular orbitals) on both the FN and localization errors.
Their main conclusions can be summarized as follows. Using a
single-determinant trial wave function made of B3LYP orbitals
or fully optimized orbitals in the presence of a Jastrow factor is
sufficient to yield the correct state ordering. However, in both
cases, the dissociation energy is far from the experimental value,
and thus, multideterminant trial wave functions must be
employed. Although a natural choice would be to take into
account the missing static correlation via a CASSCF-based trial
wave function, they showed that it is insufficient and that a full
optimization is essential to get both the correct electronic
ground state and reasonable estimates of the spectroscopic
constants.
In the present study, we revisit this problem within the

original QMC protocol developed in our group these past few
years.37,45−49 In the conventional protocol, prevailing in the
QMC community and employed by Haghighi-Mood and
Lüchow, the nodes of the Slater−Jastrow (SJ) trial wave
function

Ψ = ΨJexp( )T
SJ

det (1)

are obtained by partially or fully optimizing the Jastrow factor J
and the multiderminant expansion Ψdet (containing typically a
few hundreds or thousands of determinants). This step is
performed in a preliminary variational Monte Carlo calculation
by minimizing the energy, the variance of the local energy (or a
combination of both), employing one of the optimization
methods developed within the QMC context.50−53 We note
that, in practice, the optimization must be carefully monitored
because of the large number of parameters (several hundreds or
thousands), the nonlinear nature of most parameters (several
minima may appear), and the inherent presence of noise in the
function to be minimized.
Within our protocol, we rely on configuration interaction

(CI) expansions in order to get accurate nodal surfaces, without

resorting to the stochastic optimization step. Our fundamental
motivation is to take advantage of all of the machinery and
experience developed these last decades in the field of wave
function methods. In contrast to the standard protocol
described above, the CI nodes can be improved deterministically
and systematically by increasing the size of the CI expansion. In
the present work, we do not introduce any Jastrow factor,
essentially to avoid the expensive numerical quadrature
involved in the calculation of the pseudopotential and to
facilitate control of the localization error. To keep the size of
the CI expansion reasonable and retain only the most
important determinants, we propose using selected CI (sCI)
algorithms, such as CIPSI (Configuration Interaction using a
Perturbative Selection made Iteratively).45 Using a recently
proposed algorithm to handle large numbers of determinants in
FN-DMC47 we are able to consider up to a few million
determinants in our simulations.
Over the past few years, we have witnessed a rebirth of sCI

methods.36,37,45−48,54−77 Although these various approaches
appear under diverse acronyms, most of them rely on the very
same idea of selecting determinants iteratively according to
their contribution to the wave function or energy, an idea that
goes back to 1969 in the pioneering works of Bender and
Davidson,54 and Whitten and Hackmeyer.55 Importantly, we
note that any sCI variants can be employed here.
The price to pay for using sCI expansions instead of

optimized SJ trial wave functions is the need to employ much
larger multideterminant expansions in order to reach a
comparable level of statistical fluctuations. In practice, a higher
computational cost is thus required. Furthermore, because of
the absence of an optimized Jastrow factor, systematic errors,
such as the time step and basis set incompleteness errors, are
larger. Then, in our procedure, it is particularly important to
make use of extrapolation procedures for each systematic error.
However, these disadvantages are compensated by the
appealing features of sCI nodes: (i) they are built in a fully
automated way; (ii) they are unique and reproducible; (iii) they
can be systematically improved by increasing the level of
selection and/or the basis set (with the possibility of complete
basis set extrapolation48); and (iv) they easily produce smooth
potential energy surfaces.46

2. COMPUTATIONAL DETAILS
All trial wave functions have been generated with the electronic
structure software QUANTUM PACKAGE,78 while the QMC
calculations have been performed with the QMC = CHEM

suite of programs.79,80 Both softwares were developed in our
laboratory and are freely available. For all calculations, we used
the triple-ζ basis sets of Burkatzki et al.81,82 (VTZ-ANO-BFD
for Fe and VTZ-BFD for S) in conjunction with the
corresponding Burkatzki−Filippi−Dolg (BFD) small-core
pseudopotentials including scalar relativistic effects. For more
details about our implementation of pseudopotentials within
QMC, we refer the interested readers to ref 49. As pointed out
by Hammond and co-workers,83 when the trial wave function
does not include a Jastrow factor, the nonlocal pseudopotential
can be localized analytically and the usual numerical quadrature
over the angular part of the nonlocal pseudopotential can be
eschewed. In practice, calculation of the localized part of the
pseudopotential represents only a small overhead (about 15%)
with respect to a calculation without a pseudopotential (and the
same number of electrons). To check that the BFD
pseudopotentials do not introduce any serious artifact, we
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have computed the nonparallelism error between the frozen-
core FCI curves obtained with and without pseudopotentials. A
nonparallelism error of 4 mEh has been observed, which
validates the accuracy of these pseudopotentials for the present
study.
In order to compare our results for the dissociation energy of

FeS with the experimental value of Matthew et al.8 and the
(theoretical) benchmark value of Haghighi-Mood and
Lüchow,41 we have taken into account the zero-point energy
(ZPE) correction, the spin−orbit effects as well as the core−
valence correlation contribution the same way as those in ref
41. For the 5Δ state, this corresponds to an increase of the
dissociation energy by 0.06 eV and a 0.02 eV stabilization of 5Δ
compared to 5Σ+. Unless otherwise stated, atomic units are
used throughout.
2.1. Jastrow-Free Trial Wave Functions.Within the spin-

free formalism used in QMC, a CI-based trial wave function is
written as

∑ ∑Ψ = =
= =

↑ ↑ ↓ ↓R R R Rc D c D D( ) ( ) ( ) ( )
I

N

I I
I

N

I I IT
1 1

det det

(2)

where R = (r1, ..., rN) denotes the full set of electronic spatial
coordinates, R↑ and R↓ are the two subsets of spin-up (↑) and
spin-down (↓) electronic coordinates, and DI

σ(Rσ) (σ = ↑ or ↓)
are spin-specific determinants.
In practice, the various products DI

↑DI
↓ contain many identical

spin-specific determinants. For computational efficiency, it is
then advantageous to group them and compute only once their
contribution to the wave function and its derivatives.47

Therefore, the Jastrow-free CI trial wave functions employed
in the present study are rewritten in a “spin-resolved” form

∑ ∑Ψ =
= =

↑ ↑ ↓ ↓
↑ ↓

R R Rc( ) ( ) ( )
i

N

j

N

ij i jT
1 1

det det

(3)

where σ
= σ{ }i i N1,..., det

denotes the set of all distinct spin-specific
determinant appearing in eq 2.
2.2. Quantum Monte Carlo Calculations. To avoid

handling too many determinants in ΨT, a truncation scheme
has to be introduced. In most CI and/or QMC calculations, the
expansion is truncated by introducing a cutoff either on the CI
coefficients or on the norm of the wave function. Here, we use
an alternative truncation scheme knowing that most of the
computational effort lies in the calculation of the spin-specific
determinants and their derivatives. Removing a product of
determinants whose spin-specific determinants are already
present in other products does not change significantly the
computational cost. Accordingly, a natural choice is then to
truncate the wave function by removing independently spin-up
and spin-down determinants. To do so, we decompose the
norm of the wave function as

∑ ∑ ∑ ∑= | | = =
= = =

↑
=

↓
↑ ↓ ↑ ↓

c
i

N

j

N

ij
i

N

i
j

N

j
1 1

2

1 1

det det det det

(4)

A determinant ↑
i is retained in ΨT if

∑= | | > ϵ↑
=

↓

ci
j

N

ij
1

2
det

(5)

where ϵ is a user-defined threshold. A similar formula is used
for ↓

j . When ϵ = 0, the entire set of determinants is retained in
the QMC simulation.
In order to treat the two electronic states (5Σ+ and 5Δ) on

equal footing, a common set of spin-specific determinants
σ

= σ{ }i i N1,..., det
is used for both states. In addition, a common set

of molecular orbitals issued from a preliminary state-averaged
CASSCF calculation is employed. These CASSCF calculations
have been performed with the GAMESS, package84 while for
the atoms, we have performed ROHF calculations. The active
space contains 12 electrons and 9 orbitals (3d and 4s orbitals of
Fe and 3p orbitals of S). The multideterminant expansion (eq
2) has been constructed using the sCI algorithm CIPSI,56,57

which uses a second-order perturbative criterion to select the
energetically important determinants DI in the FCI
space.36,37,45−48,67 An ns-state truncated sCI expansion (here
ns = 2) is obtained via a natural generalization of the state-
specific criterion introduced in eq 5: a determinant ↑

i is
retained in ΨT if

∑ ∑= | | > ϵ↑
= =

↓

n
c

1
i

k

n

j

N

ij
k

s 1 1

( ) 2
s det

(6)

with a similar formula for ↓
j .

The characteristics of the various trial wave functions
considered here (and their acronyms) at rFeS = 2.0 Å are
presented in Table 1. For other rFeS values, the numbers of

determinants are slightly different. Our largest sCI trial wave
function contains 8 388 608 determinants and is labeled
sCI(∞). The sCI(n) wave functions with n = 4, 5, and 6 are
obtained by truncation of the sCI(∞) expansion setting ϵ =
10−n. They contain respectively 15 723, 269 393, and 1 127 071
determinants. At this stage, we are not able to use the entire
8 388 608 determinants of the sCI(∞) wave function within
our FN-DMC simulations. In comparison, Haghighi-Mood and
Lüchow’s CASSCF-based trial wave function (labeled as HML
in Table 2) only contains 630 and 500 determinants for the 5Σ+

and 5Δ states, respectively.41 However, as discussed in the
Introduction, fully optimized SJ trial wave functions require
much smaller multireference expansions.
On the basis of these trial wave functions, we performed FN-

DMC calculations with the stochastic reconfiguration algorithm
developed by Assaraf et al.85 One of the main advantages of this
particular algorithm is that the number of walkers is constant
during the simulation, hence avoiding the population control
step. Here we have used 100 walkers in our simulations.
In order to remove the time step error, all of our FN-DMC

results have been extrapolated to zero time step using a two-
point linear extrapolation with τ = 2 × 10−4 and 4 × 10−4.86

Table 1. Characteristics of the Various sCI Expansions at rFeS
= 2.0 Å for Various Levels of Truncation along with
Characteristics of the Extrapolated FCI (exFCI) Expansion

method ϵ Ndet Ndet
↑ Ndet

↓ acronym

sCI 10−4 15 723 191 188 sCI(4)
10−5 269 393 986 1 191 sCI(5)
10−6 1 127 071 3883 4623 sCI(6)
0 8 388 608 364 365 308 072 sCI(∞)

exFCI ∼1027 ∼1016 ∼1011 exFCI
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The behavior of the FN-DMC energy as a function of τ is
depicted in Figure 1 for various time step values. Note that

because the variance of the local energy is larger than that in SJ
calculations time step errors are enhanced and shorter time
steps are required.
2.3. Extrapolation Procedure. In order to extrapolate our

sCI results to the FCI limit, we have adopted the method
recently proposed by Holmes, Umrigar, and Sharma76 in the
context of the (selected) heat-bath CI method.72,75,76 It consists
of extrapolating the sCI energy EsCI as a function of the second-
order Epstein−Nesbet energy

∑ α
α α

= |⟨ | ̂ |Ψ ⟩|
− ⟨ | ̂ | ⟩α

E
H

E HPT2
sCI

2

sCI (7)

which is an estimate of the truncation error in the sCI
algorithm, i.e, EPT2 ≈ EFCI − EsCI.

56 In eq 7, the sum runs over
all external determinants |α⟩ (i.e., not belonging to the sCI
expansion) connected via Ĥ to the sCI wave function ΨsCI, i.e.,
⟨α|Ĥ|ΨsCI⟩ ≠ 0. When EPT2 = 0, the FCI limit has effectively
been reached. In our case, EPT2 is efficiently evaluated thanks to
our recently proposed hybrid stochastic−deterministic algo-
rithm,67 which explains the presence of an error bar in the
numerical values of EPT2 gathered in the tables reported in the
Supporting Information. The extrapolated FCI results are
labeled exFCI from hereon.

3. RESULTS AND DISCUSSION
In Table 2, we report FN-DMC energies at equilibrium
geometry as well as other quantities of interest such as the

dissociation energy D0, the equilibrium distance re, and the
harmonic frequency ωe obtained with various trial wave
functions. These values are obtained via the standard four-
parameter Morse potential representation of the numerical
values gathered in the Supporting Information. (The error bars
have been obtained by fitting a large set of energy curves. Each
of these curves is obtained from independent realizations of the
statistical noise. Note that due to the absence of correlations in
the statistical noise, the error bars obtained in this way are
certainly overestimated.) For comparison purposes, Haghighi-
Mood and Lüchow’s results are also reported based on their
best trial wave function.41 When available, the experimental
result is also reported.5−8 The value of D0 is always calculated
with respect to the 5Δ state, adding the corresponding
corrections for ZPE, spin−orbit effects, and core−valence
correlation, as described above (see section 2.1). (The
dissociation energies are calculated by treating the atoms and
the molecule at the same level of theory, i.e., at the same
truncation order.) The dissociation profile of FeS obtained with
FN-DMC is depicted in Figure 2 for various trial wave
functions.
The first observation we would like to make is that at the

variational level the 5Δ state is never found lower in energy
than the 5Σ+ state, even after performing extrapolation to the
FCI limit. This is illustrated by the left panel of Figure 3, which
shows the behavior of the sCI energy as a function of EPT2 as
well as the extrapolated FCI value The extrapolated value has
been obtained via a three-point linear extrapolation of the sCI
energy as a function of EPT2 using the sCI(5), sCI(6), and
sCI(∞) results. (The raw data can be found in the Supporting
Information.) It is clear from these results that the 5Σ+ and 5Δ
do not cross, even at the FCI limit. Because all post-Hartree−
Fock methods are indeed an approximation of FCI, they are
expected to predict a 5Σ+ ground state for this particular basis
set. This observation is in agreement with the CASPT2 results
previously published in the literature.14−16 Thus, one can
attribute the wrong state ordering to basis set incompleteness,
the only remaining approximation.
To obtain the FN-DMC curve with an ef fective FCI trial wave

function, we have generalized the extrapolation procedure
described in the previous section, and we have performed a
three-point linear extrapolation of the FN-DMC energy as a
function of EexFCI − EsCI using the sCI(4), sCI(5), and sCI(6)
results (see the right panel of Figure 3). Contrary to the sCI
results, at the FN-DMC level, the 5Δ state does eventually
become lower in energy than the 5Σ+ state. However, one must
include at least a few hundred thousand determinants in order
to find the proper ground state. For larger ϵ values (10−4 and
10−5), D0 is underestimated due to the unbalanced treatment of
the isolated atoms compared to the dimer at equilibrium

Table 2. FN-DMC Energies EDMC (in hartrees) at Equilibrium Geometry, Dissociation Energy D0 (in eV), Equilibrium Distance
re (in Å), and Harmonic Frequency ωe (in cm−1) for the 5Σ+ and 5Δ of FeS Obtained with Various Trial Wave Functions ΨT

a

FeS (5Σ+) FeS (5Δ) Fe (5D) S (3P)

ΨT EDMC re ωe EDMC re ωe EDMC EDMC D0 ref

HML −134.0571(4) 2.00(1) 518(7) −134.0579(4) 2.031(7) 499(11) −123.8126(4) −10.1314(1) 3.159(15) 41

sCI(4) −134.0101(8) 1.994(7) 532(20) −134.0040(7) 2.029(7) 502(15) −123.8028(9) −10.1279(2) 2.055(20) this work

sCI(5) −134.0479(10) 1.992(8) 551(24) −134.0402(10) 2.048(11) 489(21) −123.8234(10) −10.1312(2) 2.389(28) this work

sCI(6) −134.061 (14) 1.994(12) 497(35) −134.0671(14) 2.004(11) 550(32) −123.8300(12) −10.1334(3) 3.062(39) this work

exFCI −134.0863(15) 1.990(12) 523(37) −134.0885(18) 2.016(14) 525(40) −123.8372(12) −10.1336(3) 3.267(49) this work

exp. 2.017 518(5) 3.240(3) 5, 7, 8
aThe error bar corresponding to one standard error is reported in parentheses.

Figure 1. EDMC (in hartrees) for the 5Σ+ state of FeS as a function of
the time step τ at rFeS = 2.0 Å. The linear extrapolation between τ = 2
× 10−4 and 4 × 10−4 is represented as a dashed read line. The error bar
corresponds to one standard error.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b01250
J. Chem. Theory Comput. 2018, 14, 1395−1402

1398



geometry. Indeed, for a given number of determinants, the
energy of the atomic species is much closer to the FCI limit
than the energy of FeS.
For ϵ = 10−6, our approach correctly predicts a 5Δ ground

state. However, although our FN-DMC energies are much
lower than those obtained with the HML trial wave function,
our estimate of the dissociation energy (D0 = 3.062(39) eV) is
still below the experimental value. This underestimation of D0

can be ultimately tracked to the lack of size-consistency of the
truncated CI wave function. With more than 106 determinants
in the variational space, the wave function is still 150 mEh

higher than the exFCI wave function, while the atoms are much
better described by the sCI wave function. To remove the size-
consistency error, we then extrapolate the FN-DMC energies to
the (size-consistent) FCI limit of the trial wave function, as
described above.
In that case, using the extrapolated FN-DMC energies of the

molecule and isolated atoms reported in Table 2, we obtain a
value of D0 = 3.267(49) eV, which nestles nicely between the
experimental values of Matthew et al.8 (3.240(3) eV) and
Drowart et al.6 (3.31(15) eV). As a final remark, we note that
other spectroscopic constants, such as the equilibrium

Figure 2. EDMC (in hartrees) for the 5Σ+ (solid) and 5Δ (dashed) states of FeS as a function of rFeS (in Å) for various trial wave functions. The error
bar corresponds to one standard error.

Figure 3. Three-point linear extrapolation of EsCI (left) and EDMC (right) to the FCI limit (EPT2 = 0 and EexFCI − EsCI = 0, respectively) for the 5Σ+

(red) and 5Δ (blue) states of FeS at rFeS = 2.0 Å. The error bar corresponds to one standard error.
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geometry and the harmonic frequency, are fairly well
reproduced by our approach. However, increasing the number
of determinants in the trial wave function does not systemati-
cally improve the equilibrium distances. The same comment
can be made for the harmonic frequencies. Overall, we found
that our values of ωe and re for the

5Δ state are closer to the
experimental results5,7 than HML’s values.

4. CONCLUSIONS

In this article, the potential energy curves of two electronic
states5Δ and 5Σ+of the FeS molecule have been calculated
using the sCI algorithm CIPSI and the stochastic FN-DMC
method. In all of our sCI calculations, 5Σ+ is found to be the
ground state, in disagreement with experiment. It is not only
true for all CIPSI expansions with up to 8 million determinants
but also for the estimated FCI limit obtained using the
extrapolation procedure recently proposed by Holmes et al.76

This conclusion agrees with other high-level ab initio wave
function calculations, which all wrongly predict a ground state
of 5Σ+ symmetry. FN-DMC calculations have been performed
using CIPSI expansions including up to 1 127 071 selected
determinants as trial wave functions. Contrary to standard
QMC calculations, we do not introduce any Jastrow factor: the
CI expansions have been used as they are (no optimization). It
is found that, when the number of determinants in the trial
wave function reaches a few hundred thousand, the FN-DMC
ground state switches from the 5Σ+ state to the correct 5Δ state,
as predicted experimentally.
Generalizing the extrapolation procedure of Holmes et al.,76

an estimate of the FN-DMC potential energy curves
corresponding to the FCI nodes can be obtained. The resulting
dissociation energy is found to be 3.267(49) eV, in agreement
with the recent experimental value of Matthew et al. (3.240(3)
eV).8 As already observed in previous applications, the FN-
DMC energy obtained with CIPSI nodes is found to
systematically decrease as a function of the number of selected
determinants.36,37,45,46,48,49 For the largest expansion, our FN
energies are lower than the values recently reported by
Haghighi-Mood and Lüchow41 using a fully optimized SJ trial
wave function. This important result illustrates that “pure” sCI
nodes are a realistic alternative to stochastically optimized SJ
trial wave functions (although more computationally demand-
ing), even for a challenging system such as FeS. A similar
conclusion had already been drawn in our recent study of the
water molecule.48
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Landau, D. P., Mon, K. K., Schüttler, H. B., Eds.; Springer: Berlin,
1993; p 94.
(23) Belohorec, P.; Rothstein, S. M.; Vrbik, J. Infinitesimal differential
diffusion quantum Monte Carlo study of CuH spectroscopic
constants. J. Chem. Phys. 1993, 98, 6401−6405.
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(29) Buendía, E.; Gaĺvez, F.; Sarsa, A. Correlated wave functions for
the ground state of the atoms Li through Kr. Chem. Phys. Lett. 2006,
428, 241−244.
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Chapter 11

Summary and outlook

Signi�cant improvements were brought to the �antum Package . Some were single-
core optimizations, and others were for adapting the algorithms for a better load bal-
ancing in the parallel regime. Today, the code has a parallel e�ciency that enables
routinely to realize runs on ∼ 2000 CPU cores, with hundreds of millions of deter-
minants in the variational space, and such a gain in e�ciency will lead to many more
challenging chemical applications.

The Davidson diagonalization, which is at the center of variational methods, suf-
fers from the impossibility to fully store the Hamiltonian in the memory of a single
node. The solution we adopted was to resort to direct methods, recomputing the ma-
trix elements on the �y at each iteration. While an extremely fast method was already
available to detect zero matrix elements,[45] the former implementation still had to
iterate over the ∼ Ndet

2 matrix elements to search the interacting determinant pairs.
Now, determinants are split in disjoint sets, which are often identi�able as entirely dis-
connected from one another. Thus only a small fraction of the matrix elements need to
be explored, and a linear-scaling algorithm was proposed. Although this algorithm was
not kept as the actual implementation in the program because of it important mem-
ory footprint, the candidate we kept has a scaling in O

(
Ndet

3/2
)

, which is already a
signi�cant improvement. While the parallelization of this method was somewhat chal-
lenging, due to the elementary tasks being extremely unbalanced, a distributed imple-
mentation was realized with satisfying parallel speedups, typically 35× for 50 nodes
(1 800 cores) with respect to the 36-core single-node reference. Our implementation
could be further improved by using together the linear-scaling and the present algo-
rithms, keeping track of an estimate of the allocated memory and switching smoothly
between the two variants.

The CIPSI selection algorithm, for which the previous implementation examined
the external determinants one by one, was enormously improved, allowing for appli-
cations that were not feasible so far.[57, 89] Several di�erent optimizations were used,
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reducing the cost of �nding connections between external and internal determinants
(batch approach, �ltering), as well as the cost of computing the corresponding ma-
trix element in the Hamiltonian (phase mask, systematic determination of excitations).
Again, a distributed implementation was realized after solving the problems related to
load imbalance. For the selection algorithm, the speedup is almost ideal with 50 nodes.
Despite the implementational improvements we have shown, there is still space for im-
provement from an algorithmic point of view. For instance, the selection step could be
dramatically accelerated without reducing its quality by using a combination of CIPSI
and of the Heat-Bath CI algorithm[90], by simply splitting the orbital space. The CIPSI
selection, more expensive but more precise, would be used only where it is necessary,
namely for excitations involving orbitals close to the Fermi level where the role of the
denominator is crucial, and the Heat-Bath selection algorithm would be used the for
the rest of the space.

A large improvement was also realized in the computation of the second order
perturbative correction to the energy, EPT2. The computation of EPT2 and the determi-
nant selection were originally done with the same algorithm, but EPT2 did not allow
for many approximations and thus was much more expensive. A natural idea to take
into account a tremendous amount of tiny contributions was to imagine a stochastic
approach. EPT2 being in itself an approximation for the Full-CI energy, an exact value
with all the digits is indeed not required, as long as the value is unbiased and as the
introduced statistical error is kept under control. The development of stochastic meth-
ods for quantum chemistry is one of the strengths of the LCPQ via Michel Ca�arel’s
group, so we collaborated in the development of the hybrid stochastic/deterministic
algorithm for the computation of EPT2. Our scheme allows to compute EPT2 with an
error bar smaller than the typical error of Evar + EPT2 versus the Full-CI energy, for a
few percent of the cost of the full deterministic computation. Now, the time to com-
pute EPT2 is roughly similar to the time needed for the determinant selection. To push
even further the e�ciency of the CIPSI method, it would make sense to make the de-
terminant selection along with the computation of EPT2. In that case, the determinant
selection would be free. Doing a stochastic selection has further advantages: at a given
iteration, any external determinant can be potentially generated, so the algorithm will
naturally converge to the unbiased Full-CI solution. This is not exactly the case with
our current 3-class CIPSI-like implementation, where the determinants with small co-
e�cients will never generate external determinants. This truncation is the source of a
small but spurious size-consistence error.

To get the best of the data we were already able to compute, we implemented the
shifted-Bk method, which uses the energy contributions computed by EPT2 to re�ne
the wave function. It essentially creates an external space of determinants |α〉 whose
coe�cients are perturbatively estimated, and allows them to act on the coe�cients
of the wave function in the internal space. This method requires the computation of
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a dressing matrix, which we could estimate stochastically in a way similar to what
we proposed for EPT2 (stochastic matrix dressing). The challenge in this case was to
estimate, instead of a scalar, a vector of size Ndet, which can be up to a few million
elements. The storage and network issues could be solved by setting up a system of
prede�ned checkpoints, a modest drawback being the impossibility to get an estimated
dressing matrix outside of those checkpoints.

Finally, this stochastic matrix dressing computation was extended to another exter-
nal space, that of the Multi-Reference Coupled-Cluster we had previously implemented
deterministically,[91] which allowed to explore some possibilities of the bitstring-based
determinant-driven approach. This was done by �rst setting up a framework to limit
the implementational e�ort needed to build an external space ; essentially, one only
needs to de�ne a function mapping an external determinant to its desired coe�cient.
While this was proven convenient, in its current state it lacks some �exibility ; for in-
stance, in the Multi-Reference Coupled-Cluster external space, external determinants
generated from reference determinants are known to be of zero coe�cient, but there is
no simple way to inform the framework that a generator should be ignored. This issue,
however minor, can be solved by a simple callback function to “ask” the programmer
if the forthcoming generator is of interest. Setting up a few such callback functions
could improve the e�ciency for more speci�c situations. There is also no simple way
to retrieve some custom information from a remote node ; the base algorithm only
sends the partial δδδI vectors, but the user may be interested in some other information.
For instance the sum over generated cα

2 which hints the weight of the external space
versus internal space. This functionality is currently being worked on.

During the multiple steps of evolution of the program, more and more applica-
tions were made possible.[1, 57, 89, 91, 92, 93, 94] This gave to the �antum Package
more visibility, and it was selected as a benchmark code for the choice of the new su-
percomputer of the CALMIP center. Moreover, di�erent groups started to use it for
applications and use it to develop new ideas. For example, Claudia Filippi’s group in
the Netherlands is now using CIPSI wave functions as a starting point for quantum
Monte Carlo calculations,[95] and the Argonne group is currently implementing com-
plex orbitals to adapt the �antum Package to solids.[96]
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The present paper introduces a new multi-reference perturbation approach developed at second order,
based on a Jeziorski-Mokhorst expansion using individual Slater determinants as perturbers. Thanks
to this choice of perturbers, an effective Hamiltonian may be built, allowing for the dressing of the
Hamiltonian matrix within the reference space, assumed here to be a CAS-CI. Such a formulation
accounts then for the coupling between the static and dynamic correlation effects. With our new
definition of zeroth-order energies, these two approaches are strictly size-extensive provided that
local orbitals are used, as numerically illustrated here and formally demonstrated in the Appendix.
Also, the present formalism allows for the factorization of all double excitation operators, just as in
internally contracted approaches, strongly reducing the computational cost of these two approaches
with respect to other determinant-based perturbation theories. The accuracy of these methods has been
investigated on ground-state potential curves up to full dissociation limits for a set of six molecules
involving single, double, and triple bond breaking together with an excited state calculation. The
spectroscopic constants obtained with the present methods are found to be in very good agreement
with the full configuration interaction results. As the present formalism does not use any parameter
or numerically unstable operation, the curves obtained with the two methods are smooth all along the
dissociation path. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984616]

I. INTRODUCTION

The research of the ground-state wave function of closed-
shell molecules follows well-established paths. The pertur-
bative expansions from the mean-field Hartree-Fock single
determinant usually converge and may be used as basic
tools, especially when adopting a mono-electronic zero-order
Hamiltonian known as the Møller-Plesset Hamiltonian.1 In
this approach, the wave function and the energy may be
understood in terms of diagrams, which lead to the fun-
damental linked-cluster theorem.2 The understanding of the
size-consistency problem led to the suggestion of the cou-
pled cluster approximation,3–7 which is now considered as
the standard and most efficient tool in the study of such sys-
tems in their ground state, especially in its CCSD(T) version
where linked corrections by triple excitations are added per-
turbatively.8 The situation is less evident when considering
excited states, chemical reactions, and molecular dissocia-
tions, since it then becomes impossible to find a relevant single
determinant zero-order wave function. These situations exhibit
an intrinsic Multi-Reference (MR) character. A generalized
linked-cluster theorem has been established by Brandow,9

which gives a basis to the understanding of the size-consistency

a)Author to whom correspondence should be addressed: E.Giner@fkf.mpg.de

problem in this context, but the conditions for establishing this
theorem are severe. They require a Complete Active Space
(CAS) model space and a mono-electronic zero-order Hamil-
tonian. Consequently, the corresponding Quasi-Degenerate
Perturbation Theory (QDPT) expansion cannot converge in
most of the molecular MR situations.10–12 The research of
theoretically satisfying (size-consistent) and numerically effi-
cient MR treatments remains a very active field in quantum
chemistry, as summarized in recent review articles concerning
either perturbative13 or coupled-cluster14 methods.

The present work concentrates on the search of a new MR
perturbative approach at second order (MRPT2). Of course,
pragmatic proposals have been rapidly formulated, consisting
first in the identification of a reference model space, defined
on the set of single determinants having large components
in the desired eigenstates of the problem. Diagonalizing the
Hamiltonian in this reference space delivers a zero-order wave
function. Then one must define the vectors of the outer space
to be used in the development and, in a perturbative context,
choose a zero-order Hamiltonian. The simplest approach con-
sists in using single determinants as outer-space eigenvectors,
and this has been used in the CIPSI method15,16 which is iter-
ative, increasing the model space from the selection of the
perturbing determinant of largest coefficients and their addi-
tion to the model space. From a practical point of view, this
method is very efficient and is now employed to reach near
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exact Full Configuration Interaction (FCI) energies on small
molecules17,18 and also as trial wave function in the context of
quantum Monte Carlo.19–22 But the method suffers two main
defects: (i) it is not size-consistent and (ii) it does not revise
the model-space component of the wave function under the
effect of its interaction with the outer-space. This last defect
is avoided if one expresses the effect of the perturbation as a
change of the matrix elements of the model space CI matrix,
according to the Intermediate Effective Hamiltonian (IEH)
theory,23 as done in the state-specific24 or multi-state25 ver-
sions. Other methods which start from a CAS model space and
use multi-determinantal outer-space vectors have been pro-
posed later on and are now broadly used. The first one is the
CASPT2 method,26,27 which employs a mono-electronic zero-
order Hamiltonian. The method suffers from intruder state
problems, to be cured in a pragmatic manner through the intro-
duction of some parameters, and is not strictly size-consistent.
The NEVPT2 method28–30 also uses multi-determinantal per-
turbers [defined in two different ways in its partially (pc-
NEVPT2) and strongly contracted (sc-NRVPT2) versions], it
makes use of a more sophisticated bi-electronic Hamiltonian
(the Dyall Hamiltonian31) to define the zero-order energies of
these perturbers, it is parameter-free, intruder-state free, and
size-consistent. Both methods are implemented in several pop-
ular codes and use a contracted description of the model space
component of the desired eigenfunction (fixed by the diago-
nalization of the Hamiltonian in the model space). Still in the
spirit of the NEVPT2 approaches, a recent work of Sokolov
and Chan32 has allowed one to remove any contractions in the
perturber space, thanks to the use of matrix product states and
time-dependent perturbation theory (see Sec. III A for a com-
parison with the present work). Multi-state versions exist to
give some flexibility to the model space component, in particu-
lar around weakly avoided crossings, but this flexibility is very
limited.33,34 If one returns to methods using single-determinant
perturbers, the origin of their size-inconsistency problem has
been identified as due to the unbalance between the multi-
determinant character of the zero-order wave function and
the single determinant character of the perturbers.35 It is in
principle possible to find size consistent formulations but they
require rather complex formulations36–39 and face some risk
of numerical instabilities since they involve divisions by pos-
sibly small coefficients, the amplitudes of which may be small.
Finally, one should mention the approaches based on the lin-
earized internally contracted multi-reference coupled cluster
(MRCC) theory using matrix product states40,41 and stochas-
tic techniques.42 Such approaches use a much richer zeroth-
order Hamiltonian (the Fink Hamiltonian) which provides very
accurate results, to the price of a higher computational cost than
the methods based on the Dyall Hamiltonian.

The present paper is composed as follows. In Sec. II, the
here-proposed formalism is presented, whose main features
are as follows:

1. it considers a CAS model space (to achieve the strict
separability requirement), usually obtained from a pre-
liminary CASSCF calculation;

2. the perturbers are single determinants (the method is
externally non-contracted, according to the usual termi-
nology);

3. it is state-specific and strictly separable when localized
active MOs are used (see formal demonstration in the
Appendix);

4. it makes use of the Dyall Hamiltonian to define the exci-
tation energies appearing in the energy denominators;

5. it is based on a Jeziorski-Monkhorst43 (JM) expression
of the wave operator and proceeds through reference-
specific partitionings of the zero-order Hamiltonian,
as it has been previously suggested in the so-called
Multi-Partitionning44–46 (MUPA) and also in the UGA-
SSMPRT2.39 Consequently, it does not define a unique
zero-order energy to the outer-space determinants (see a
brief discussion in the Appendix);

6. it can be expressed either as a second-order energy cor-
rection or as a dressing of the CAS-CI matrix, which
offers a full flexibility in the treatment of the feed-back
effect of the post-CAS-CI correlation on the model space
component of the wave function;

7. the contributions of the various classes of excitations
are easily identified (as in the CASPT2 and NEVPT2
methods);

8. thanks to our definition of the zeroth-order energies, all
processes involving double excitations can be treated
by using only the one- and two-boy density matrices,
avoiding to loop on the perturbers;

9. given a set of molecular orbitals, it is parameter free
and does not contain any threshold to avoid numerical
instabilities.

After having presented the working equations of the present
formalism in Sec. II, Sec. III proposes a comparison with other
existing MR approaches, such as some special cases of multi-
reference coupled cluster (MRCC) and MRPT2. Section IV
discusses the computational aspects of the two methods pro-
posed here. Then, Sec. V presents the numerical results for the
ground state potential energy curves of six molecules involv-
ing single, double, and triple bond breaking together with
an excited state calculation with both the JM-MRPT2 and
JM-HeffPT2 methods. A numerical test of size-extensivity is
provided, together with the investigation of the dependency of
the results on the locality of the active orbitals. Finally, Sec. VI
summarizes the main results and presents its tentative develop-
ments. The reader can find in Sec. VI B a mathematical proof
of strong separability of the JM-MRPT2 method.

II. WORKING EQUATIONS FOR THE PERTURBATION
AND EFFECTIVE HAMILTONIAN AT SECOND ORDER

As demonstrated previously by one of the present authors
and his collaborators,35 the size-consistency problem in any
multi-reference perturbative expansion using single Slater
determinants as perturbers comes from the unbalanced zeroth
order energies that occur in the denominators. More precisely,
if the zeroth order wave function is a CAS-CI eigenvector,
the zeroth order energy is stabilized by all the interactions
within the active space. A perturber treated as a single Slater
determinant does not take into account the correlation effects
included in the zeroth order wave function, and consequently
its zeroth order energies are unbalanced with respect to the
one of the CAS-CI eigenvector. Nevertheless, if instead of a
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FIG. 1. Example of interactions: the two determinants of the CAS interact
through a bi-electronic operator involving the two active orbitals a and b, just
as the two perturber determinants generated by the same excitation operator
T r

i on the two CAS determinants.

unique perturber determinant, one considers the wave func-
tion created by the application of a given excitation operator
on the whole CAS-CI wave function, most of the interactions
found within the active space will also occur within this excited
wave function (see Fig. 1 for a pictorial example). Therefore,
the use of linear combinations of Slater determinants as per-
turbers together with a bi-electronic zeroth order operator, as
it is the case in the NEVPT2 framework which uses the Dyall
zeroth order operator, leads to balanced energy differences and
removes the size-consistency problem.

On the basis of such considerations, the present work
proposes an approach that uses single Slater determinants as
perturbers and takes benefits of a new definition of energy
denominators as expectation values of the Dyall zeroth order
Hamiltonian over a specific class of linear combinations of
Slater determinants. We first expose the definition of this per-
turbation theory, namely, the JM-MRPT2 method, which is
strictly separable provided that local orbitals are used.

A large benefit from this new definition is that one may
go beyond the sole calculation of the energy and improve the
reference wave function by taking into account, in a strictly
size-consistent way, the correlation effects brought by the per-
turbers on the reference space. In a second step, we reformulate
the approach as a dressing of the Hamiltonian matrix within
the set of Slater determinants belonging to the reference wave
function, which is diagonalized. This approach will be referred
to as the JM-HeffPT2 method.

A. The JM-MRPT2 method
1. First-order perturbed wave function
and second-order energy

The formalism presented here is state specific and is not
therefore restricted to ground state calculations. Nevertheless,
for the sake of clarity and compactness, we omit the index
referring explicitly to a specific eigenstate.

The zeroth order wave function |ψ(0)〉 is assumed to
be a CAS-CI eigenvector expanded on the set of reference
determinants |I〉,

��ψ(0)〉 =
∑

I ∈CAS−CI

cI |I〉 . (1)

Such a wave function has a variational energy e(0),

e(0) =
〈ψ(0) |H|ψ(0)〉
〈ψ(0)|ψ(0)〉 . (2)

Starting from a normalized |ψ(0)〉 (i.e., 〈ψ(0) |ψ(0) 〉 = 1), we
assume that the exact wave function can be expressed as

|Ψ〉 = |ψ(0)〉 +
∑

µ <CAS−CI

cµ|µ〉 , (3)

where |µ〉 are all possible Slater determinants not belonging
to the CAS-CI space. One should notice that such a form is in
principle not exact, as some changes of the coefficients within
the CAS-CI space can formally occur when passing from the
CAS-CI eigenvector to the FCI one, but such an approximated
form for the exact wave function is the basis of many MRPT2
approaches like NEVPT2, CASPT2, or CIPSI.

As in any projection technique, the exact energy can be
obtained by projecting the Schrödinger equation on |ψ(0)〉,

E = 〈ψ(0)|H|Ψ〉 = e(0) +
∑

µ <CAS- CI

cµ 〈ψ(0)|H|µ〉 , (4)

and one only needs to compute the coefficients of | µ〉 that inter-
act with |ψ(0)〉, which consist in all individual Slater determi-
nants being singly or doubly excited with respect to any Slater
determinant in the CAS-CI space. From now on, we implicitly
refer to |µ〉 as any single Slater determinant belonging to such
a space.

The coefficients cµ are then written according to the JM
ansatz,43 whose general expression for wave function is not
explicitly needed here, and will be therefore given in Sec. III B
when the comparison of the present method with other multi-
reference methodologies will be investigated. The JM ansatz
introduces the genealogy of the coefficients cµ with respect to
the Slater determinants within the CAS-CI space

cµ =
∑

I

cI tIµ, (5)

where the quantity tIµ is the excitation amplitude related to the
excitation process TIµ that leads from |I〉 to |µ〉,

TIµ |I〉 = |µ〉 . (6)

Here, we restrict TIµ to be a single or double excitation opera-
tor. Within this JM formulation of cµ, a very general first order
approximation of the amplitudes t(1)

Iµ can be expressed as

t(1)
Iµ =

〈I |H|µ〉
e(0) − E(0)

Iµ

=
〈I|H|µ〉
∆E(0)

Iµ

, (7)

where the excitation energy ∆E(0)
Iµ depends explicitly on the

couple (|I〉 , |µ〉). In that regard, a given Slater determinant
|µ〉 will have different zeroth-order energies according to
the parent |I〉 from which it is generated, implying that the
zeroth-order Hamiltonian explicitly depends on the refer-
ence determinant | I〉, just as was initially proposed in the
MUPA approaches44–46 (the interested reader could find in
the Appendix a more detailed discussion of that aspect). Such
a definition is different from other determinant-based MRPT2
like the CIPSI or shifted-Bk where the excitation energy does
not depend on the couple (|I〉 , |µ〉) but only on |µ〉. With this
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definition of t(1)
Iµ , one can write the second-order correction to

the energy e(2) as

e(2) = 〈ψ(0)|H|ψ(1)〉 =
∑

µ

∑

I

cI
〈I|H|µ〉
∆E(0)

Iµ

〈ψ(0)|H|µ〉

=
∑

µ

∑

I J

cI
〈I|H|µ〉 〈µ |H|J〉
∆E(0)

Iµ

cJ, (8)

and the total second-order energy E(2),

E(2) = 〈ψ(0)|H|ψ(0)〉 + 〈ψ(0) |H|ψ(1)〉 = e(0) + e(2). (9)

2. Definition of the energy denominators

The first-order wave function can be written explicitly in
terms of the excitation operators TIµ,

|ψ(1)〉 =
∑

µ

c(1)
µ |µ〉 =

∑

µ

∑

I

cI
〈I|H TIµ | I〉
∆E(0)

Iµ

TIµ | I〉 . (10)

However, one can notice that

1. the excitation operators TIµ do not explicitly depend on |I〉
as they are general single or double excitation operators,
just as in the Hamiltonian for instance;

2. a given excitation operator T contributes to the coeffi-
cients of several |µ〉 (TIµ = TJν = T );

3. the application of all the single and double excitation
operators T on each |I〉 generates the entire set of |µ〉 as
the reference is a CAS.

Therefore one can rewrite the first-order perturbed wave func-
tion directly in terms of excitation operators T applied on the
each CAS-CI Slater determinant as

|ψ(1)〉 =
∑

T

|ψ(1)
T 〉 , (11)

where |ψ(1)
T 〉 is the part of the first-order wave function

associated with the excitation process T,

|ψ(1)
T 〉 =

∑

I

cI
〈I|H T|I〉
∆E(0)

I T I

T|I〉 . (12)

In order to fully define our perturbation theory and inter-
mediate Hamiltonian theory, one needs to select an expression
for the energy denominators occurring in the definition of
|ψ(1)

T 〉. We propose to take a quantity that does not depend
explicitly on the reference determinant | I〉 but only depends
on the excitation process T,

∆E(0)
I T I = ∆E(0)

T ∀ I. (13)

Consequently, in the expression of |ψ(1)
T 〉 [see Eq. (12)], the

energy denominator can be factorized

|ψ(1)
T 〉 =

1

∆E(0)
T

∑

I

cI 〈I|H T|I〉 T|I〉 = 1

∆E(0)
T

|ψ̃(1)
T 〉 , (14)

where |ψ̃(1)
T 〉 is simply

|ψ̃(1)
T 〉 =

∑

I

cI 〈I|H T|I〉 T|I〉 . (15)

Also, one can notice that as |ψ̃(1)
T 〉 and |ψ(1)

T 〉 differ by a simple
constant factor, they have the same normalized expectation
values

〈ψ(1)
T |HD |ψ(1)

T 〉
〈ψ(1)

T |ψ(1)
T 〉

=
〈ψ̃(1)

T |HD |ψ̃(1)
T 〉

〈ψ̃(1)
T |ψ̃(1)

T 〉
. (16)

Then, the excitation energy ∆E(0)
T is simply taken as the dif-

ference of the normalized expectation values of the Dyall
Hamiltonian HD over |ψ(0)〉 and |ψ̃(1)

T 〉,

∆E(0)
T =

〈ψ(0) |HD |ψ(0)〉
〈ψ(0) |ψ(0)〉 − 〈ψ̃

(1)
T |HD |ψ̃(1)

T 〉
〈ψ̃(1)

T |ψ̃(1)
T 〉

=
〈ψ(0) |HD |ψ(0)〉
〈ψ(0) |ψ(0)〉 − 〈ψ

(1)
T |HD |ψ(1)

T 〉
〈ψ(1)

T |ψ(1)
T 〉

. (17)

This ensures the strong separability when localized orbitals
are used, as will be illustrated numerically in Sec. V.

The Dyall Hamiltonian is nothing but the exact Hamilto-
nian over the active orbitals and a Møller-Plesset type operator
over the doubly occupied and virtual orbitals. If one labels a, b,
c, and d as the active spin-orbitals, i, j the spin-orbitals that are
always occupied, and v , r the virtual spin-orbitals, the Dyall
Hamiltonian can be written explicitly as

HD = HD
iv + HD

a , (18)



HD
a =

∑

ab

heff
ab a†aab +

1
2

∑

abcd

(ad |bc) a†aa†bacad

HD
iv =

∑

i

ε i a†i ai +
∑

v

ε v a†vav + C

, (19)

where ε i and ε v are defined as the spin-orbital energies asso-
ciated with the density given by |ψ(0)〉, and the effective active
one-electron operator heff

ab = 〈a|h +
∑

i (Ji − Ki) |b〉. With a
proper choice of the constant C in Eq. (19),

C =
∑

i

〈 i|h|i〉 +
1
2

∑

i,j

((ii|jj) − (ij |ij)) , (20)

one has

〈ψ(0) |HD |ψ(0)〉
〈ψ(0) |ψ(0)〉 =

〈ψ(0) |H |ψ(0)〉
〈ψ(0) |ψ(0)〉 = e(0). (21)

Because the Dyall Hamiltonian acts differently on the active
and inactive-virtual orbitals, the excitation energy ∆E(0)

T is the

sum of an excitation energy ∆E(0) iv
T associated with the inac-

tive and virtual orbitals and of an excitation energy ∆E(0) a
T

associated with the active orbitals

∆E(0)
T = ∆E(0) a

T + ∆E(0) iv
T . (22)

Also, it is useful to differentiate the active part from the
inactive-virtual part of the excitation T,

T = TaTiv . (23)

The inactive-virtual excitation energy ∆E(0) iv
T is simply

∆E(0) iv
T =

∑

i ∈ T

ε i −
∑

v ∈ T

ε v , (24)

where i ∈ T and v ∈ T refer to, respectively, the inactive and
virtual spin-orbitals involved in the excitation operator T.
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Conversely, the active excitation energy ∆E(0) a
T has a more

complex expression, namely,

∆E(0) a
T

= e(0) −
∑

I J
(
cI 〈I��H T ��I〉) 〈I��T†a HD Ta

��J〉 (cJ 〈J��H T ��J〉)∑
I
(
cI 〈I��H T ��I〉)2 〈I|T†T |I〉

.

(25)

3. Practical consequences: The difference between
single and double excitation operators

From Eq. (25), one must differentiate the class of the pure
single excitation operators from the pure double excitation
operators. For the sake of clarity, we define the spin-adapted
bielectronic integrals ((mn|pq)) as

((mn|pq)) =

{
(mn|pq) if σ(m, p),σ(n, q)
(mn|pq) − (mp|nq) if σ(m, p) = σ(n, q)

, (26)

where σ(m, p) is the spin variable of the spin orbitals m and
p. If one considers a given double excitation involving four
different spin orbitals m, n, p, and q,

Tnq
mp = a†na†qapam m, n, p, q, (27)

one can notice that the Hamiltonian matrix elements associated
with this double excitation only depend, up to a phase factor,
on the four indices m, n, p, and q involved in Tnq

mp. Indeed, if
Tnq

mp is possible on both |I〉 and |J〉, one has

〈I|H Tnq
mp |I〉 = ((mn|pq)) 〈I|

(
Tnq

mp

)†
Tnq

mp |I〉 ,

〈J|H Tnq
mp |J〉 = ((mn|pq)) 〈J|

(
Tnq

mp

)†
Tnq

mp |J〉 ,
(28)

and as

〈I|
(
Tnq

mp

)†
Tnq

mp |I〉 = 〈J|
(
Tnq

mp

)†
Tnq

mp |J〉
= 1,

(29)

it becomes
〈J|H Tnq

mp |J〉 = 〈I|H Tnq
mp |I〉 . (30)

Therefore, as the Hamiltonian matrix elements of type
〈J|H Tnq

mp |J〉 can be factorized both in the numerator and the
dominator of the expression of the active part of the excitation
energy [see Eq. (25)]. Finally, the expression of the active part
of the excitation energy for a given double excitation Tnq

mp is
simply

∆E(0) a
Tnq

mp
= e(0) −

∑
I J cI 〈I|T†a HD Ta |J〉 cJ∑

I c2
I 〈I|T†a Ta |I〉

= e(0) − 〈ψ
(0) |T†a HD Ta |ψ(0) 〉
〈ψ(0) |T†a Ta |ψ(0) 〉

. (31)

As a consequence, the amplitudes tITqp
mnI and tJTqp

mnJ associated
with the same excitation Tqp

mn for different parents |I〉 and |J〉
are also equal,

tITqp
mnI =

〈I|H Tqp
mn |I〉

∆E(0)
Tqp

mn

,

tJTqp
mnJ=
〈J|H Tqp

mn |J〉
∆E(0)

Tqp
mn

,

(32)

and one can define a unique excitation operator T qp
mn

(1) which
does not depend on the reference determinant on which it
acts. The explicit form of the reference-independent excitation
operator T qp

mn
(1) is

T qp
mn

(1)
=

((mq|np))

∆E(0)
Tqp

mn

a†qa†panam. (33)

In the case where T is a pure single excitation operator,
the term 〈I|H T |I〉 may strongly depend on |I〉 and Eq. (25)
cannot be simplified.

4. Precaution for spin symmetry

As the formalism proposed here deals with Slater determi-
nants, it cannot formally ensure to provide spin eigenfunctions.
In order to ensure the invariance of the energy with the Sz value
of a given spin multiplicity, we introduced a slightly modified
version of the Dyall Hamiltonian which does not consider the
following:

1. any exchange terms in the Hamiltonian matrix elements
when active orbitals are involved,

2. any exchange terms involving two electrons of opposite
spins (namely, a†bαa†aβabβaaα and a†bβa†aαabαaaβ).

B. The JM-HeffPT2 method

An advantage of a determinant-based multi-reference per-
turbation theory is that it can be easily written as a dressing
of the Hamiltonian matrix within the reference space. Starting
from the Schrödinger equation projected on a given reference
determinant |I〉, one has

cI 〈I|H|I〉 +
∑

J,I

cJ 〈I|H|J〉
∑

µ

c(1)
µ 〈I|H|µ〉 = E(2)c I. (34)

Using the expression for the first order coefficients c(1)
µ , it

becomes

cI
*.,〈I|H|I〉 +

∑

µ

〈I|H|µ〉2
∆E(0)

Iµ

+/-
+
∑

J,I

cJ
*.,〈I|H| J〉 +

〈I|H|µ〉 〈µ|H|J〉
∆E(0)

Jµ

+/- = E(2)c I. (35)

Therefore, one can define an non-Hermitian operator ∆H (2),

〈I|∆H (2) |J〉 =
∑

µ

〈I|H|µ〉 〈µ|H| J〉
∆E(0)

Jµ

, (36)

and a dressed HamiltonianH as

〈I|H(2) |J〉 = 〈I|H| J〉 + 〈I|∆H (2) |J〉 , (37)

such that Eq. (35) becomes a non-symmetric linear eigenvalue
equation within the CAS-CI space

cI 〈I|H(2) |I〉 +
∑

J,I

cJ 〈I|H(2) |J〉 = E(2)c I. (38)

The second-order correction to the energy e(2) can be simply
obtained as the expectation value of ∆H (2) over the zeroth-
order wave function

e(2) = 〈ψ(0) |∆H (2) |ψ(0) 〉
=

∑

µ

∑

I J

cI
〈I|H|µ〉 〈µ|H| J〉
∆E(0)

Jµ

cJ. (39)
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Finally, one can define a Hermitian operator H̃ (2),

〈I|H̃ (2) |J〉 = 1
2

(
〈I|H(2) |J〉 + 〈J|H(2) |I〉

)
, (40)

and a corresponding eigenpair (|Ψ̃2 〉, Ẽ(2)) verifying

H̃ (2) |Ψ̃2 〉 = Ẽ(2) |Ψ̃2 〉 . (41)

The diagonalization of such a Hamiltonian allows then to
improve the CAS-CI wave function by treating the coupling
that can exist between the correlation effects within and outside
the CAS-CI space.

III. LINKS WITH OTHER MULTI-REFERENCE
METHODS
A. MRPT2 based on the Dyall Hamiltonian

It is interesting to understand the similarities and dif-
ferences between the present JM-MPRT2 and other strictly
size-consistent MRPT2 methods based on the Dyall zeroth-
order Hamiltonian. The most flexible solution of such MRPT2
makes use of the exact solution for the Dyall Hamiltonian
with N + 1, N + 2, N � 1, and N � 2 electrons in the active
space (where N is the number of electrons in the active
space) as perturbers. Such a formulation is totally uncon-
tracted in the perturber space, which implies a high com-
putational cost, but a solution as been recently proposed by
Sokolov and Chan.32 using a time-dependent formulation and
matrix product state techniques. Then, one can use the par-
tially contracted NEVPT2 (pc-NEVPT2) which is compu-
tationally less demanding and provides very similar results,
as shown by Sokolov and Chan.32 Finally, when comparing
JM-MRPT2, the nearest version of NEVPT2 is certainly the
strongly contracted one and the present paragraph focusses on
their differences and similarities.

JM-MRPT2 uses perturbers that are individual Slater
determinants, whereas all versions of NEVPT2 use linear com-
binations of Slater determinants. However, in SC-NEVPT2,
the contraction coefficients are closely related to the Hamil-
tonian matrix elements, just as in the JM-MRPT2 method.
In order to better understand the differences between SC-
NEVPT2 and JM-MRPT2, let us take a practical example.
Here, i, j are the inactive spin-orbitals, a, b are the active spin-
orbitals, and r, s are the virtual spin-orbitals. Considering a
given semi-active double excitation Tav

ij = a†aa†vajai, the first-

order amplitude tav
ij

(1) associated with Tav
ij in the JM-MRPT2

formalism is given by

tav
ij

(1)
=

((ia|jv))

ε i + ε j − ε v + ∆E(0)

a†a

, (42)

where the active part of the excitation energy ∆E(0)

a†a
directly

comes from Eq. (31)

∆E(0)

a†a
= e(0) − 〈ψ

(0) |aa HD a†a |ψ(0) 〉
〈ψ(0) |aaa†a |ψ(0) 〉

. (43)

Note that such a quantity can be thought as an approximation
of the electron affinity of the molecule, as it is the change
in energy when one introduces “brutally” an electron in spin
orbital a without relaxing the wave function. Consequently, as

it has been emphasized in Sec. II A [see Eq. (33)], one can
consider the part of the first-order perturbed wave function
generated by the excitation Tav

ij ,

|ψ(1)
Tav

ij
〉 =

∑

I

cI tav
ij

(1) Tav
ij |I〉 , (44)

which turns out to be

|ψ(1)
Tav

ij
〉 = ((ia|jv))

ε i + ε j − ε v + ∆E(0)

a†a

∑

I

cI Tav
ij |I〉

=
((ia|jv))

ε i + ε j − ε v + ∆E(0)

a†a

Tav
ij |ψ(0) 〉 . (45)

In the SC-NEVPT2 framework, one does not consider explic-
itly a given Tav

ij but has to consider a unique excitation T vij
which is a linear combination of all possible Tav

ij for all active
spin orbitals a, with proper contraction coefficients. To be more
precise, the first-order perturbed wave function associated with
T vij is

|ψ(1)
T v

ij
〉 = 1

∆E(0)
T v

ij

∑

a

((ia| jv)) Tav
ij |ψ(0) 〉 , (46)

where the excitation energy∆E(0)
T v

ij
associated withT vij is unique

for all the excitation operators Tav
ij and can be thought as an

average excitation energy over all a. Consequently, one can
express the part of |ψ(1)

T v
ij
〉 that comes from the Tav

ij as

|ψ(1)
Tav

ij
〉(SC- NEVPT2)

=
((ia|jv))

∆E(0)
T v

ij

Tav
ij |ψ(0) 〉 , (47)

which we can compare to Eq. (45) in the case of the JM-
MRPT2 method. Then, the only difference between SC-
NEVPT2 and JM-MRPT2 is the definition of the excitation
energy occurring in Eqs. (45) and (47). In the SC-NEVPT2
method, the excitation energy ∆E(0)

T v
ij

is closely related to the

excitation energy defined in JM-MRPT2

∆E(0)
T v

ij
= e(0) −

〈ψ(1)
T v

ij
|HD |ψ(1)

T v
ij
〉

〈ψ(1)
T v

ij
|ψ(1)
T v

ij
〉

= ε i + ε j − ε v + ∆E(0)SC–NEVPT2
a† , (48)

where the quantity ∆E(0)SC–NEVPT2
a† is the same for all active

orbitals and defined as

∆E(0)SC–NEVPT2
a†

= e(0) −
∑

a
∑

b((ia|jv))((ib|jv)) 〈ψ(0) |ab HD a†a |ψ(0) 〉
∑

a ((ia|jv))2 〈ψ(0) |aaa†a |ψ(0) 〉
.

(49)

Under this perspective, one sees that the quantity
∆E(0)SC–NEVPT2

a† is related to ∆E(0)

a†a
defined in Eq. (43):

• in the JM-MRPT2 method, the quantity∆E(0)

a†a
explicitly

refers to the “brutal” addition of an electron in orbital
a, whatever the inactive orbitals i, j or virtual orbitals v
involved in Tav

ij ;
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• the quantity ∆E(0)SC–NEVPT2
a† involved in SC-NEVPT2

is an average electronic affinity over all possible exci-
tation processes a†a within the active space, but keeping
a trace of the inactive and virtual excitation processes
involved in Tav

ij , thanks to the interaction (ia|jv).

Consequently, the quantity ∆E(0)SC–NEVPT2
a† contains also the

interactions between various a†a |ψ(0) 〉. To summarize, on one
hand, JM-MRPT2 gives a different but rather crude excitation
energy for each Tav

ij , and on the other hand, SC-NEVPT2 has
a unique and sophisticated excitation energy for all Tav

ij . Of
course, one can extend this comparison to all the other classes
of double excitations.

Finally, one should notice that the effective Hamiltonian
formulation of JM-MRPT2 leads to the revision of the zeroth-
order wave function, which is not allowed by the NEVPT2
framework, whatever its degree of contraction in the perturber
space.

B. Multi-reference coupled cluster methods

The present formalism has also several links with other
multi-reference methods. First of all, as it uses a JM genealog-
ical definition for the coefficients c(1)

µ [see Eqs. (5) and (7)],
the wave function corrected at first order |Ψ(1) 〉 can be written
as

|Ψ(1) 〉 = |ψ(0) 〉 + |ψ(1) 〉
=

∑

I

cI |I〉 +
∑

µ

∑

I

cI t(1)
Iµ TIµ |I〉

=
∑

I

cI
*.,1 +

∑

µ

t(1)
Iµ TIµ

+/- |I〉 . (50)

By introducing the excitation operator T (1)
I acting only on |I〉

as
T (1)

I =
∑

µ

t(1)
Iµ T Iµ, (51)

the expression of |Ψ(1) 〉 in Eq. (50) becomes

|Ψ(1) 〉 =
∑

I

cI

(
1 + T (1)

I

)
|I〉 . (52)

Such a parameterization for the first-order corrected wave
function |Ψ(1) 〉 recalls immediately a first-order Taylor expan-
sion of the general JM-MRCC ansatz

|JM −MRCC〉 =
∑

I

cI eTI |I〉. (53)

Nevertheless, based on the JM-MRPT2 expression for the
amplitudes, one might imagine to divide the general T I oper-
ator into a reference-dependent single excitation operator and
a reference-independent double excitation operator. The JM-
MRPT2 amplitudes might be used as a guess to start the
iterative research of the MRCC equations.

Also, within the present formalism, the class of the dou-
ble excitations can be factorized as shown in Sec. II A [see
Eq. (33)]. Therefore, using the reference-independent ampli-
tudes defined in Eq. (33), one can define a unique double
excitation operator T (1)

D as

T (1)
D =

∑

m,n,p,q

T qp
mn

(1), (54)

recalling thus the formalism of the internally contracted-
MRCC58–61 (ic-MRCC) which uses a unique excitation oper-
ator T as in the single-reference coupled-cluster

|ic −MRCC〉 = eT |ψ(0) 〉 = eT
∑

I

cI |I〉 . (55)

In such a perspective, as the energy provided by the JM-
MRPT2 equations is size-extensive, it can be seen as a lin-
earized coupled cluster version using a hybrid parameteri-
zation of the wave function: internally contracted ansatz for
the double excitation operators and JM ansatz for the single
excitation operators.

C. Determinant-based multi-reference
perturbation theories

JM-MRPT2 presented here can be directly compared to
the CIPSI method, just as the JM-HeffPT2 can be directly
compared to the shifted-Bk method.48–50 Indeed, by using the
following amplitudes:

tCIPSI
Iµ =

〈I|H|µ〉
e(0) − 〈µ |H| µ〉 , (56)

in the equation of the second-order correction on the energy
[see Eq. (8)], one obtains the CIPSI energy, and by introducing
tCIPSI
Iµ in the definition of the dressed Hamiltonian H̃ (2), one

obtains

〈I|H (2)
Shifted−Bk

|J〉 = 〈J |H| J〉 +
∑

µ

〈I|H|µ〉 〈µ |H| J〉
e(0) − 〈µ |H| µ〉 , (57)

which defines the shifted-Bk Hamiltonian and corresponding
energy once H (2)

Shifted−Bk
is diagonalized. As mentioned pre-

viously, it has been shown that the size-consistency error of
these methods comes from the unbalanced treatment between
the variational energy of a multi-reference wave function such
as |ψ(0) 〉 and the variational energy of the single Slater deter-
minant |µ〉. Such an error is not present within the definitions
of the excitation energies in the JM-MRPT2 method as the
latter introduces expectation values of the Hamiltonian over
linear combinations of perturber Slater determinants.

In a similar context, one can compare the JM-HeffPT2
method to the Split-GAS47 of Li Manni et al. whose definition
of the amplitude is

tSplit−GAS
Iµ =

〈I|H|µ〉
e(0) + e(2) − 〈µ |H| µ〉 . (58)

In the Split-GAS framework, the correlation energy e(2)

brought by the perturbers is included in the energy denom-
inator, which introduces self consistent equations as in the
Brillouin-Wigner perturbation theory.51 However, the size-
consistency error in such a method is even more severe than in
the shifted-Bk as the excitation energies are much larger due
to the presence of the total correlation energy e(2).

IV. COMPUTATIONAL COST
A. Mathematical complexity and memory requirements

Compared to other size-extensive MRPT2 methods, a
clear advantage of JM-MRPT2 is its simplicity. The NEVPT2
approach requires to handle the four-body density matrix and
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the CASPT2 needs to handle the three-body density matrix.
Both of these computationally intensive phases can be skipped
in our formalism as one only needs to compute expectation val-
ues whose number is relatively small compared to NEVPT2
and CASPT2. The most involved quantity to be computed is

∆E(0)
ir = e(0) −

∑
I
∑

J cI 〈I|H a†r ai |I〉 〈I|H| J〉 〈J|H a†r ai |J〉 cJ(∑
I cI 〈I|H a†r ai | I〉

)2
,

(59)
for all pairs (i, r) where i is an inactive orbital and r is a virtual
orbital. These quantities need to be only computed once since
they can all fit in memory. Each ∆E(0)

ir is, from the computa-
tional point of view, equivalent to an expectation value over
the CASSCF wave function. As all ∆E(0)

ir are independent, the
computation of these quantities can be trivially parallelized.
Regarding the memory footprint of the JM-MRPT2 method,
it scales as O(n3

a) (na being the number of active orbitals) for
the storage of the ∆E(0)

a†aa†bac
and ∆E(0)

a†aabac
quantities.

Regarding the complexity of the equations for the ampli-
tudes, it is clear that once computed the active part of the
denominator, JM-MRPT2 is just a simple sum of contribu-
tions. This is in contrast with the UGA-SSMRPT2 equations
which involve the handling of coupled amplitude equations.

B. Removal of the determinant-based
computational cost

The present formalisms are formally determinant-based
methods, which implies that the computational cost should
be proportional to the number of perturbers |µ〉 that one has
to generate to compute the corrections to the energy or the
dressing of the Hamiltonian matrix, just as in the CIPSI,
shifted-Bk , or UGA-SSMRPT2 methods. To understand the
main computational costs, one can divide the excitation classes
according to the difference dedicated CI (DDCI) framework,52

which classifies the Slater determinants in terms of numbers
of holes in the doubly occupied orbitals and particles in the
virtual orbitals. If NCAS is the number of Slater determinants
of the CAS-CI zeroth order wave function, no, na, and nv ,
respectively, the number of doubly occupied, active and virtual
orbitals, one can then classify each excitation class according
to the number of perturbers needed to compute their con-
tribution to the second-order perturbation correction to the
energy:

1. the two-holes-two-particles excitation class (2h2p)
which scales as NCAS × n2

o × n2
v ;

2. the one-hole-two-particles excitation class (1h2p) which
scales as NCAS × no × na × n2

v ;
3. the two-holes-one-particle excitation class (2h1p) which

scales as NCAS × n2
o × na × nv ;

4. the two-particles excitation class (2p) which scales as
NCAS × n2

v ;
5. the two-holes excitation class (2h) which scales as NCAS

× n2
o;

6. the one-hole-one-particle excitation class (1h1p) which
scales as NCAS × no × nv ;

7. the one-particle excitation class (1p) which scales as
NCAS × nv ;

8. the one-hole excitation class (1h) which scales as NCAS

× no.

Nevertheless, our formalism presents several mathematical
simplifications that allow one to basically remove any brows-
ing over the Slater determinants |µ〉, and once more there
is a difference between the single and double excitations
processes.

C. Factorization of the most numerous double
excitation processes

As the five most computationally demanding excitation
classes involve only double excitation operators in their equa-
tions, their contribution can be formalized directly, thanks
to the one- and two-body density matrices of the zeroth-
order wave function. To understand how one can write the
second-order correction to the energy as

e(2)
double exc.

=
∑

m, n, p, q

∑

I

cI 〈ψ(0) |H a†qa†panam |I〉 ((mq|np))

∆E(0)

a†qa†panam

=
∑

m, n, p, q

∑

I, J

cIcJ 〈J|H a†qa†panam |I〉 ((mq|np))

∆E(0)

a†qa†panam

. (60)

Consequently, as 〈J |H a†qa†panam |I〉 is necessarily of type

〈J|H a†qa†panam |I〉 = ((ef |gh)) 〈J|a†f a†hagae a†qa†panam |I〉 ,
(61)

one can reformulate the second-order correction to the energy
in terms of many-body density matrices

e(2)
double exc. =

∑

m, n, p, q, e, f , g, h

〈ψ(0) |a†f a†hagae a†qa†panam |ψ(0) 〉

× ((mq|np)) ((ef |gh))

∆E(0)

a†qa†panam

. (62)

Such a formulation avoids completely to run over Slater deter-
minants and consequently kills the prefactor in NCAS involved
in each of the excitation classes, just as in the internally con-
tracted formalisms. Of course, because of the restrictions in
terms of holes and particles in the inactive and virtual orbitals,
the handling of the four-body density matrix never occurs
in our formalism. We report here the explicit equations for
the energetic corrections of the five most numerous double
excitation classes

e(2)
2h2p =

1
2

∑

i,j,v,r

3(iv |jr)2 + (ir |jv)2 − 2(iv |jr)(ir |jv)
ε i + ε j − ε v − ε r

, (63)

e(2)
1h2p =

1
2

∑

i,v,r,a,b

〈ψ(0) |aaa†b |ψ(0) 〉 ((ir |av))((ir |bv))

ε i + ∆E(0)

a†a
− ε r − ε v

, (64)

e(2)
2h1p =

1
2

∑

i,j,r,a,b

〈ψ(0) |a†aab |ψ(0) 〉 ((ir |aj))((ir |bj))

ε i + ε j + ∆E(0)
aa
− ε r

, (65)

e(2)
2p =

1
2

∑

r,v,a,b,c,d

〈ψ(0) |a†aa†bacad |ψ(0) 〉 ((ar |bv))((cr |dv))

∆E(0)
acad
− ε r − ε v

,

(66)
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TABLE I. Geometries used for the ethane and ethylene molecules.

Geometrical parameters C2H6 C2H4

C–H (Å) 1.103 1.089
H–C–C (◦) 111.2 120.0
H–C–H (◦) 107.6 120.0
H–C–C–H (◦) 180.0 180.0

e(2)
2h =

1
2

∑

i,j,a,b,c,d

〈ψ(0) |aaaba†ca†d |ψ(0) 〉 ((ai|bj))((ci|dj))

ε i + ε j + ∆E(0)

a†c a†d

.

(67)

D. Simplification for the 1h1p excitation class

Thanks to the factorization of the most numerous dou-
ble excitations processes, the remaining main computational
cost comes from the single excitations involved in the 1h1p
excitation class. In the case of single excitation processes, the
factorization cannot be applied as the Hamiltonian matrix ele-
ments depend on the Slater determinant on which the single
excitation is applied. The total energetic correction brought by
the single excitation processes involved in the 1h1p excitation
class can be expressed as follows:

e(2) Single exc.
1h1p =

∑

i, r

∑

I

〈ψ(0) |H a†r ai |I〉 cI
〈I|H a†r ai |I〉
∆E(0)

ir

=
∑

i, r

∑

I, J

cJ 〈J|H a†r ai |I〉 cI
〈I|H a†r ai |I〉
∆E(0)

ir

. (68)

As the Hamiltonian matrix elements 〈J|H a†r ai |I〉 are simply

〈J |H a†r ai |I〉 = ((ir |ab)) 〈J|a†baa |I〉 , (69)

one can reformulate the sum as

e(2) Single exc.
1h1p =

∑

I, J

cJcI

∑

a, b

F I
ab 〈J|a†baa |I〉 , (70)

where the quantityFI
ab is the effective Fock operator associated

with the Slater determinant |I〉 involving the active orbitals a
and b,

FI
ab =

∑

i, r

((ir |ab))
〈I|H a†r ai |I〉
∆E(0)

ir

. (71)

Of course, as 〈I|H a†r ai |I〉 depends on the occupation of |I〉,
there is one effective Fock operator for each reference determi-
nant |I〉which would suggest to compute explicitly these quan-
tities for each Slater determinant within the CAS-CI space.
Nevertheless, one can notice that 〈I|H a†r ai |I〉 is just a sum of
terms

〈I|H a†r ai |I〉 =
∑

m occupied in |I〉
((ir |mm)). (72)

Considering that the inactive orbitals are always doubly occu-
pied in |I〉, this sum can be split into an inactive and an active
contribution, namely,

〈I|H a†r ai |I〉 = Fc.s.
ir + FI

ir , (73)

where Fcs
ir and FI

ir are defined as

Fcs
ir =

∑

j doubly occupied in |I〉
2(ir |jj) − (rj |ij), (74)

FI
ir =

∑

c occupied in |I〉
((ir |cc)). (75)

Therefore, one can first compute the effective Fock operator
associated with the closed shell orbitals

Fcs
ab =

∑

i, r

((ir |ab))
Fcs

ir

∆E(0)
ir

, (76)

TABLE II. Non-parallelism errors and spectroscopic constants computed from the potential energy curves obtained at different computational levels for the F2,
C2H6, and FH molecules. NPE and D0 are reported in mH, Req in Å, and k in hartree/Å2.

F2 C2H6 FH

NPE D0 Req k NPE D0 Req k NPE D0 Req k

CASSCF 30.7 22.1 1.53 0.43 27.7 154.0 1.55 0.99 35.3 180.0 0.92 2.15

JM-MRPT2 6.7 46.3 1.44 0.85 2.5 179.0 1.53 1.06 9.7 220.4 0.93 2.11
JM-MRPT2 (deloc) 11.4 51.1 1.43 0.93 4.5 181.6 1.54 1.06 13.1 224.3 0.93 2.13
SC-NEVPT2 8.5 48.1 1.44 0.88 2.6 179.2 1.54 1.07 9.5 220.5 0.93 2.11
PC-NEVPT2 8.5 48.2 1.44 0.88 2.5 179.2 1.54 1.07 9.5 220.5 0.93 2.11
CASPT2 (IPEA = 0) 2.6 44.1 1.46 0.74 3.6 175.0 1.53 1.08 3.1 214.1 0.92 2.16
CASPT2 (IPEA = 0.25) 3.9 44.3 1.46 0.75 3.4 177.8 1.53 1.09 4.0 214.5 0.92 2.17
Mk-MRPT2a . . . 47.2 1.44 0.60 . . . . . . . . . . . . . . . . . . . . . . . .
Mk-MRPT2 (deloc)a . . . 48.4 1.44 0.71 . . . . . . . . . . . . . . . . . . . . . . . .

JM-HeffPT2 7.4 50.1 1.45 0.87 2.4 179.4 1.53 1.05 8.9 221.9 0.93 2.11
JM-HeffPT2 (deloc) 14.2 56.2 1.44 0.94 5.4 182.2 1.54 1.05 14.5 226.1 0.94 2.14
Shifted Bk 6.6 50.1 1.48 0.80 8.6 136.4 1.64 0.75 44.3 216.4 0.93 2.11
Shifted Bk (deloc) 5.7 91.8 1.41 1.26 4.7 220.5 1.53 1.09 26.7 236.1 0.94 2.31

FCIb . . . 45.1 1.46 0.77 . . . 177.7 1.53 1.06 . . . 214.4 0.92 2.16

aResults from Ref. 62.
bResults obtained with CIPSI calculations converged up to a second-order perturbative correction lower than 10�4 hartree.
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which is common for all the Slater determinants |I〉within the
CAS-CI space. Then, what differentiates the effective Fock
operator between two different determinants |I〉 and |J〉 is the
active part

FI
ab =

∑

i, r

((ir |ab))
FI

ir

∆E(0)
ir

. (77)

One can then notice that the active part of the Fock operator FI
ir

is just a sum over all active orbitals occupied in |I〉 of quantities
that only depend on the active orbitals

FI
ab =

∑

c occupied in |I〉
Fc

ab, (78)

where Fc
ab is nothing but

Fc
ab =

∑

i, r

((ir |ab))
((ir |cc))

∆E(0)
ir

. (79)

Therefore, by computing and storing all possible Fc
ab together

withF cs
ab , one can then easily rebuild the total effective operator

of a given Slater determinant |I〉,
F I

ab = F cs
ab +

∑

c occupied in |I〉
Fc

ab, (80)

and consequently compute the total second-order correction to
the energy e(2) Single exc.

1h1p as a simple expectation value. To sum-

marize, a computational step scaling as N2
CAS × no × nv [see Eq.

(68)] is replaced by a first calculation scaling as n3
act × no × nv

[see Eq. (79)], followed by the computation of an expectation
value scaling as N2

CAS, independent of the number of doubly
occupied and virtual orbitals.

V. NUMERICAL RESULTS

The present section spells out the numerical results
obtained for the potential energy curves and corresponding
spectroscopic constants of six molecules involving a single,
double, and triple bond breaking, which are F2, FH, C2H6,
C2H4, H2O, and N2. We also report the computation of the
1Ag→1B1u excitation energy of the ethylene molecule and
compare it to the near FCI value obtained by Daday and co-
workers53 with the FCI-Quantum Monte Carlo (FCI-QMC)
approach. A numerical test of strong separability is also
provided in the case of the F2 · · · FH molecule.

A. General computational details

The cc-pVDZ basis set has been used in all cases, except
for the FH molecule for which the aug-cc-pVDZ basis set was
retained, and pure spherical harmonics were used for all cal-
culations. The frozen core approximation has been used, and
consequently the 1s electrons were systematically frozen for
all non-hydrogen atoms. The near FCI reference values were
obtained using the CIPSI algorithm developed in the program
Quantum Package54 and all calculations were converged below
0.1 mH. The shifted-Bk , JM-MRPT2, and JM-HeffPT2 have
been implemented in the Quantum Package, and all CASSCF
calculations were performed using the GAMESS(US)55

software. The CASPT2 calculations were performed with
MOLCAS 7.8,56 while the NEVPT2 results were obtained
using stand-alone codes developed at the University of Ferrara

and interfaced with MOLCAS 7.8. The geometrical parame-
ters used for the C2H6 and C2H4 molecules can be found in
Table I, and the H–O–H angle of the H2O molecule has been
set to 110.6◦. Concerning the excitation energy calculation
of the ethylene molecule, we used the experimental geome-
try and the ANO-L-VDZ basis set57 in order to compare to
one of the values obtained within the FCI-QMC method in
Ref. 53.

In order to compare the performance of the here pro-
posed formalisms with other determinant-based MPRT2 meth-
ods, we have also performed calculations using the shifted-
Bk method using an Epstein-Nesbet zeroth order Hamilto-
nian, and we also report results obtained at the Mk-MPRT262

and UGA-SSMRPT239 level of theories when available. For

FIG. 2. Comparison of different MR-PT2 schemes with the FCI energy along
the potential energy curves of C2H6, F2, with the cc-pVDZ basis set, and FH
with the aug-cc-pVDZ basis set. Energy differences in atomic units.
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the sake of comparison with other state-of-the-art methods,
we also report the spectroscopic constants and the error
with respect to FCI obtained at the strongly contracted (SC-
NEVPT2) and partially contracted (PC-NEVPT2) NEVPT2
using delocalized orbitals, together with CASPT2 with two
different IPEA values. The IPEA values were chosen as 0 as in
the original formulation of CASPT2, and 0.25 corresponding
to the nowadays standard CASPT2 method.

B. Definition of the active spaces and localized orbitals

All MRPT2 calculations started with a minimal valence
CASSCF involving the bonding and anti-bonding orbitals of
each bond being broken along the potential energy curve.
In the case of the single bond breaking, it simply implies
a CASSCF(2,2) with the σ and σ∗ orbitals. The following
minimal valence active spaces are used for the three systems
involving multiple bond breaking: for the H2O molecule, a
CASSCF(4,4) with four orbitals of valence character (using
the C2v symmetry point group, two orbitals of the A1 irrep
and two orbitals of the B2 irrep having a C–H bonding charac-
ter); for the C2H4 molecule, a CAS(4, 4) has been performed
using the bonding and anti-bonding orbitals of both the σ and
π C–C bonds; and for the N2 molecule, a CAS(6, 6) has been
used with the bonding and anti-bonding orbitals of the σ and
the two π bonds.

Nevertheless, as it is the case for many multi-reference
perturbation theories, our formalism is not invariant through
orbital rotations within each orbital space (active, inactive, and
virtual). Therefore one can choose to use delocalized orbitals,
as the canonical ones, or localized orbitals. The present for-
malism is strictly separable when localized orbitals are used,
so it seems therefore natural to use localized active orbitals
rather than the canonical ones. In the case, F2, N2, C2H6, and
C2H4, these orbitals are simply obtained by a rotation of π/4
between the bonding and anti-bonding active orbitals (σ and
σ∗ for the σ bond, π and π∗ for the π bonds, and so on). In the
case of the FH and H2O molecules, the active orbitals were
obtained, thanks to a rotation of the canonical active MOs in
order to maximize the overlap with reference localized orbitals
following chemical intuition: for the FH molecule, they consist

in the 2pz atomic orbital of the fluorine and 1s atomic orbital
of the hydrogen atom, and for the H2O molecule they consist
in the two 1s atomic orbitals of the hydrogen atoms and of two
simple linear combinations of the 2px and 2py orbitals, each
one pointing to a given hydrogen atom.

Even if the present formalism is strictly separable only
using localized orbitals, we nevertheless investigate the depen-
dency of the choice of the active orbitals for the three molecules
involving a single bond breaking (F2, FH and C2H6) for which
we report calculations both with canonical delocalized active
orbitals (which are referred as “deloc”) and localized active
orbitals.

C. Single bond breaking

Table II presents the spectroscopic constants, namely,
equilibrium distance (Req), the bond energy (D0), and the sec-
ond derivative (k) at Req, for the F2, C2H6, and FH molecules
at different computational levels. Also, we represent in Fig. 2
the difference of the FCI energy along the potential energy
curves of those systems. From these data, several trends
can be observed, both regarding the quality of the potential
energy curves and the dependency on the choice of the active
orbitals.

1. Dependency on the locality of the active orbitals

From the error of the potential energy curve to the FCI
reference, it appears that the JM-MRPT2 method gives sys-
tematically better spectroscopic constants and a lower error
with respect to the full-CI energy when localized orbitals are
chosen. This is consistent with the fact that these methods
are strictly separable when localized orbitals are used. There-
fore, from now on we shall only refer to the results obtained
with localized orbitals. One can remark that in the case of
the F2 molecule where Mk-MRPT2 calculations are available
in the literature,62 the JM-MRPT2 method gives very similar
results.

2. Quality of the potential energy curves

From Table II, one can observe that the results obtained
with the JM-MRPT2 method are comparable to those obtained

TABLE III. Non-parallelism errors and spectroscopic constants computed from the potential energy curves obtained at different computational levels for the
H2O, C2H4, and N2 molecules. NPE and D0 are reported in mH, Req in Å and k in hartree/Å2.

H2O C2H4 N2

NPE D0 Req k NPE D0 Req k NPE D0 Req k

CASSCF 40.9 289.3 0.96 3.74 26.2 252.6 1.36 2.03 18.2 313.7 1.11 5.34

JM-MRPT2 3.0 332.7 0.96 3.89 3.7 279.5 1.35 2.07 3.4 316.9 1.12 5.05
SC-NEVPT2 2.4 329.2 0.96 3.81 2.4 278.2 1.36 2.09 2.3 317.2 1.12 5.10
PC-NEVPT2 2.5 329.5 0.96 3.81 3.2 279.3 1.35 2.10 1.3 318.2 1.12 5.10
CASPT2 (IPEA = 0) 5.5 325.4 0.96 3.86 6.0 271.9 1.35 2.10 9.6 310.2 1.12 5.07
CASPT2 (IPEA = 0.25) 3.0 327.9 0.96 3.86 4.5 278.0 1.35 2.11 4.4 318.8 1.12 5.14

JM-HeffPT2 4.8 333.9 0.96 3.85 4.0 280.2 1.35 2.08 4.5 317.1 1.12 4.99
Shifted Bk 30.8 304.3 0.98 3.37 7.6 238.5 1.40 1.73 5.9 277.7 1.14 4.42

FCIa . . . 330.3 0.96 3.89 . . . 277.0 1.35 2.09 . . . 319.4 1.12 5.04

aResults obtained with CIPSI calculations converged up to a second-order perturbative correction lower than 10�4 hartree.
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with the well-established CAS-PT2 and NEVPT2 methods.
The largest deviation on D0 is of 6 mH for the FH molecule,
representing less than 3% of error on the total binding energy,
whereas it is of 1.2 mH and 1.3 mH which represents an error of
less than 3% and 1% on the binding energy for the F2 and C2H6

molecules, respectively. The equilibrium geometries obtained
at the JM-MRPT2 level are always within 1% of error with
respect to the FCI estimates, and so are the k values except
for the F2 molecule for which a significant deviation of 10% is
observed. Except for the quality of the results, one can observe
a systematic overestimation of the binding energy at the JM-
MRPT2 level.

The non-parallelism error (NPE) is, within the computed
points, the difference between the maximum and minimum
absolute errors with respect to FCI energies. In addition to the
the spectroscopic constants, the NPE is also a good indicator
of the quality of the results of a given method. Using localized
orbitals, the NPE obtained at JM-MRPT2 is of 6.7 mH for
the F2 molecule, 2.5 mH for C2H6, and 9.7 mH for the FH
molecule. The maximum NPE is then for the FH molecule,
which has also the largest energetic variation among the three
molecules studied here.

D. Numerical results for double and triple
bond breaking

Table III presents the spectroscopic constants obtained for
the H2O, C2H4, and N2 molecules and Fig. 3 shows the dif-
ference of the FCI energy along the potential energy curves.
From Table III, it appears that the results obtained with the
JM-MRPT2 method follow a trend similar to what has been
observed with the study of the three molecules involving a sin-
gle bond breaking: the spectroscopic constants obtained at this
level of theory are globally in good agreement with the FCI
ones, D0 obtained at the JM-MRPT2 level tends to be overesti-
mated. Also, the absolute error on D0 obtained at JM-MRPT2
is quite constant: 2.4 mH, 2.4 mH, and 2.5 mH, representing
0.7%, 0.9%, and 0.8% of the total binding energy for the H2O,
C2H4, and N2 molecules, respectively.

Regarding the curves displaying errors with respect to the
FCI energies, it appears that the JM-MRPT2 curves are smooth
and do not present any intruder state problems, with an NPE
between 3 and 4 mH.

E. Comparison of JM-HeffPT2 with shifted-Bk

Figure 4 shows the difference of the FCI for all the previ-
ously studied systems, for the JM-HeffPT2 and the shifted-Bk

methods. It is clear that in all the cases, the potential energy
curves obtained with the JM-HeffPT2 are much more paral-
lel to the FCI curve than the shifted-Bk ones. Also, it is worth
mentioning that the JM-HeffPT2 curves are smooth and do not
present any intruder state problems. The spectroscopic con-
stants and NPEs calculated with both methods are given in
Tables II and III.

In general, the energetic values obtained after diagonaliz-
ing the effective Hamiltonian are not better than those obtained
with the JM-MRPT2 method. But the main advantage of JM-
HeffPT2 over JM-MRPT2 is that it provides improved CI-
coefficients on the reference space, like the shifted-Bk method.
To illustrate the quality of the improved wave functions, we

report in Table IV the ratios ci/cn where ci and cn are the
CI-coefficients of the determinants relative to the ionic and
neutral structures of F2 obtained at the CAS-CI, JM-HeffPT2,
shifted-Bk , and CIPSI levels. As a reference, CIPSI calcula-
tions were carried out in the frozen-core FCI space, and the
number of determinants (Ndet) selected in the variational wave
function are given in Table IV. For such large wave functions,
the CI-coefficients on the reference determinants are expected
to be very close to the FCI limit. Both the JM-HeffPT2 and
shifted-Bk methods show a significant improvement of the
wave function, and JM-HeffPT2 is in very good agreement
with the FCI especially at the equilibrium distance. Similarly,
we report in Table V computations of the dipole moment along
the internuclear axis for the FH molecule and compare it to

FIG. 3. Comparison of different MR-PT2 schemes with the FCI energy along
the potential energy curves of C2H4, N2, and H2O with the cc-pVDZ basis
set. Energy differences in atomic units.
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FIG. 4. Energy difference of JM-HeffPT2 and shifted-Bk with respect to the FCI energy along the potential energy curves of C2H6, F2, C2H4, N2, and H2O
with the cc-pVDZ basis set, and FH with the aug-cc-pVDZ basis set. Energy differences in atomic units.

values obtained by projecting and normalizing large CIPSI
wave functions on the CAS-CI space (referred hereafter as
CIPSI-proj-CAS). Therefore, the dipole moment computed
with a given method only depends on the relative coefficients of
the four Slater determinants belonging to the CAS-CI space.
From these results, it clearly appears that the JM-HeffPT2
method allows one to obtain values for the dipole moment
that are in excellent agreement with that obtained at the

TABLE IV. Ratios ci/cn at different internuclear distances, for the F2
molecule (cc-pVDZ). The last row indicates in italics the number of Slater
determinants in the CIPSI wave functions.

F2 1.4119 Å 2 Å 3 Å

CAS-CI 0.572 0.212 0.024
JM-HeffPT2 0.646 0.273 0.033
Shifted-Bk 0.707 0.274 0.030

CIPSI 0.638 0.259 0.030
Ndet 6 321 822 7 889 806 12 748 141

CIPSI-proj-CAS level of theory. Also, one can notice a sig-
nificant improvement of the description of the dipole moment
going from the CAS-CI wave function to the JM-HeffPT2
wave function, implying that the diagonalization of the dressed
Hamiltonian leads to coefficients within the CAS-CI space that
are closer to the ones of the FCI wave function, which is not
the case for the shifted-Bk method.

TABLE V. Dipole moment (reported in a.u.2) along the internuclear axis
obtained at various computational levels for the FH molecule (aug-cc-pVDZ).
The last row indicates in italics the number of Slater determinants in the CIPSI
wave functions.

FH 0.95 Å 1.4 Å 1.9 Å

CAS-CI 1.07 1.87 3.20
JM-HeffPT2 1.04 1.70 2.88
Shifted-Bk 1.01 1.47 2.19

CIPSI-proj-CAS 1.05 1.71 2.92
Ndet 2 677 789 2 545 448 2 153 580
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TABLE VI. Excitation energy of the ethylene molecule for the 1B1u singlet
state computed in the ANO-L-VDZ basis set.

∆E (eV)

CASSCF(2,2) 8.83

JM-MRPT2 (loc) 8.38
JM-MRPT2 (deloc) 8.47

JM-HeffPT2 (loc) 8.42
JM-HeffPT2 (deloc) 8.53

Shifted-Bk (loc) 7.97
Shifted-Bk (deloc) 7.62

FCI-QMCa 8.25(1)

aResults obtained from Ref. 53.

F. The excited state 1B1u of the ethylene molecule

The excited state of the ethylene molecule 1B1u of sin-
glet spin symmetry has been the subject of intense debates,
both from a theoretical and experimental point of views. The
excited state 1B1u resulting from the singlet coupling of the
single π → π∗ excitation has a strong ionic character. Conse-
quently, the electronic correlation effects are much larger in
such a state than in the ground state where the neutral forms
dominate, explaining the high dependency of the excitation
energy to the level of treatment of electronic correlation.63,64

In order to test the applicability of the JM-MRPT2 method for
the computation of excited states, we performed state-specific
calculations on both the ground and the singlet 1B1u states and
compare it to the near FCI values obtained by Daday et al.53 As
1B1u is the lowest singlet of the B1u symmetry (using the D2h

point group), we optimize the orbitals of both the ground and
excited states at the CASSCF level using two electrons in the
two π and π∗ orbitals. We used the ANO-L-VDZ basis set57

and performed the calculation both with symmetry adapted and
localized active orbitals. The results are reported in Table VI.
From this table, one can notice that the maximum deviation
from the FCI-QMC result is of 0.31(1) eV using JM-HeffPT2
with delocalized orbitals, whereas the minimum deviation of
0.13(1) is obtained with JM-MRPT2 with localized orbitals.

G. Numerical evidence of strong separability

A given method based on the definition of active orbitals
is said to be strongly separable when the energy computed
for a system composed of two non interacting fragments
A · · · B with active orbitals both on system A and B coin-
cides with the sum of the energies of each sub system com-

puted individually with the corresponding active orbitals on
the fragments A and B. The present definitions of JM-MRPT2
and JM-HeffPT2 respect the property of strong separability
when localized orbitals are used. A formal proof of the strict
separability is given in the Appendix. In order to give a numer-
ical example of the strong separability property, we report
in Table VII calculations on F2 (F–F = 1.45 Å), FH (F–H
= 0.90 Å), and on the super-system of F2 · · · FH at an inter-
molecular distance of 100 Å. As the two subsystems are differ-
ent, the orbitals obtained by the CASSCF method are localized
on each system, which is a necessary condition for the strong
separability in our formalism. From Table VII, it appears that
the deviations on the computed correlated energy e(2)-JM-
MRPT2 [see Eq. (8)] between the super system with non-
interacting fragments and the sum of the two systems is lower
than 10�13 hartree, which is actually smaller than the non-
additivity of the CASSCF energies. For JM-HeffPT2, the rela-
tive error remains in the same order of magnitude than that for
the CASSCF. This shows that the effective Hamiltonian does
not introduce non-separability error. Finally, one should notice
the strong non-separability error of the shifted-Bk approach.

VI. CONCLUSIONS AND PERSPECTIVES
A. Summary of the main results

The present work has presented a new MRPT2 approach,
the JM-MRPT2 method, that uses individual Slater determi-
nants as perturbers and allows for an intermediate Hamiltonian
formulation, which is the JM-HeffPT2 approach. These meth-
ods are strictly size-consistent when localized orbitals are used,
as has been numerically illustrated here. The link of these
two new methods with other existing multi-reference theories
has been established, specially in the case of the SC-NEVPT2
level of theory. The accuracy of the methods has been investi-
gated on a series of ground state potential energy curves up to
the full dissociation limit for a set of six molecules involv-
ing single (F2, FH, and C2H6), double (H2O, C2H4), and
triple bond breaking (N2), using the cc-pVDZ basis set and
the aug-cc-pVDZ basis set in the case of FH. The two meth-
ods proposed here have been compared to near FCI energies,
thanks to large CIPSI calculations converged bellow 0.1 mH,
whose values can be found in the supplementary material.
The quality of the results has been investigated by means of
the non-parallelism error and three spectroscopic constants
(Req, D0, and k) together with absolute errors with respect to
FCI energies along the whole potential energy curves. Among
the six molecules studied here, the largest error found on the

TABLE VII. Total energies (a.u.) for the numerical separability check on F2 · · · FH.

CASSCF Shifted-Bk e(2)-JM-MRPT2 JM-HeffPT2

F2 �198.746 157 368 569 �199.122 170 300 �0.337 009 510 134 933 �199.085 305 155 169 4
FH �100.031 754 985 880 �100.289 784 498 �0.230 422 886 638 017 �100.262 424 667 296 7
F2 + FH �298.777 912 354 448 �299.411 954 798 �0.567 432 396 772 949 �299.347 729 822 466 0
F2 · · · FH �298.777 912 354 443 �299.396 752 116 �0.567 432 396 773 035 �299.347 729 822 461 6

Absolute error (a.u.) 5.0 ×10−12 1.5 ×10−2 8.6 ×10−14 4.4 ×10−12

Relative error 1.7 ×10−14 5.1 ×10−5 1.5 ×10−13 1.4 ×10−14
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binding energy at the JM-MRPT2 level of theory is of 6 mH for
the FH molecule, representing a deviation lower than 3% with
respect to the FCI value. In all other cases, the errors on D0 are
much smaller, ranging from 1.3 mH to 2.5 mH, which repre-
sents deviations between 1% and 3% with respect to the FCI
estimates. The equilibrium distance is also found to be always
within 1% of the FCI values. These results are very encourag-
ing, specially considering the simplicity of this second-order
perturbation theory, and its low computational cost. Regarding
the JM-HeffPT2 method, its intermediate Hamiltonian formu-
lation allows one to take into account the dominant part of the
coupling between the static and dynamic correlation effects.
From what has been observed in the present calculations, the
diagonalization of the symmetrized intermediate Hamiltonian
yields improved CI-coefficients on the reference determinants,
together with a very small NPE compared to the shifted-Bk

method.

B. Perspectives

Due to its flexibility, the present formalism offers a broad
field of perspectives. First, the JM-MRPT2 and JM-HeffPT2
methods can be formalized with a zeroth order wave function
that does not need to be a CAS-CI eigenvector. This opens the
way of treating much larger active spaces as one can select
the dominant configurations of a given CAS-CI space, thanks
to the use of a perturbative criterion (as in the CIPSI algo-
rithm) or by using localized orbitals. Second, the reasons of
the systematic slight overestimation of the binding energy at
the JM-MRPT2 level of theory can also be investigated, taking
benefit from localized active orbitals and of the clear reading
of the reference wave function that they offer. Moreover, this
allows one to use as zeroth-order wave function quasi diabatic
states obtained, for instance, by a unitary transformation of a
few CI eigenvectors65 (either of a CAS-CI or from a more gen-
eral CI). Also, as it has been shown that the present formulation
is connected to multi-reference coupled-cluster formalisms,
it is possible to derive the working equations starting from
the JM-MRCC ansatz. This will allow one to obtain higher
order terms which may correct the slight overestimation of
the binding energies. The coupling of the present formalism
with multi-reference coupled cluster models follows naturally.
For instance, the treatment of the most numerous excitation
classes at the JM-MRPT2 level can easily be combined with the
recently introduced JM-MRCC ansatz of some of the present
authors.66 This will allow for a drastic lowering of the com-
putational costs of the JM-MRCC ansatz, and opens the way
to the treatment of larger systems at high level of ab initio
theory.

SUPPLEMENTARY MATERIAL

See supplementary material for all the near FCI energies
obtained with the CIPSI calculations.
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APPENDIX: PROOF OF STRONG SEPARABILITY AND
LINK WITH THE MUPA APPROACH

The present appendix provides analytical derivations in
order to demonstrate analytically the size consistency property
of the JM-MRPT2 and JM-HeffPT2 methods (see part 1), and
also to show the link of these two methods with the multi-
partitioning of the Hamiltonian (see part 2).

1. Proof of separability

The present section proposes an analytical proof of strong
separability of the JM-MRPT2 method. In a MRPT2 frame-
work, the strong separability requires that an excitation TA

located on a system A gives the same contribution to the
correlation energy with or without the presence of another
system B whose zeroth-order wave function contains correla-
tion effects. To be more specific, let us define the zeroth-order
wave function and energy of a system A,

|ψ(0) A〉 =
∑

IA

cIA |IA〉 , (A1)

E(0) A =
〈ψ(0) A |HA |ψ(0) A〉
〈ψ(0) A |ψ(0) A〉 , (A2)

and the same quantities for the system B,

|ψ(0) B〉 =
∑

IB

cIB |IB〉 , (A3)

E(0) B =
〈ψ(0) B|HB|ψ(0) B〉
〈ψ(0) B |ψ(0) B〉 . (A4)

Let us consider now a given excitation TA acting only on a sys-
tem A. According to the definition of Eq. (14), the correspond-
ing contribution to the first-order perturbed wave function
is

|ψ(1) A
TA
〉 = 1

∆E(0) A
TA

| ψ̃(1) A
TA
〉 , (A5)

| ψ̃(1) A
TA
〉 =

∑

IA

cIA 〈IA |HA TA | IA〉 TA | IA〉 , (A6)

and the excitation energy ∆E(0) A
TA

characteristic of the excita-
tion TA is defined according to Eq. (17) as

∆E(0) A
TA
= E(0) A −

〈ψ̃(1) A
TA
|HA | ψ̃(1) A

TA
〉

〈ψ̃(1) A
TA
| ψ̃(1) A

TA
〉

. (A7)

Therefore, its contribution to the correlation energy of A is

e(2) A
TA
= 〈ψ(0) A|H|ψ(1) A

TA
〉 =
〈ψ(0) A|HA | ψ̃(1) A

TA
〉

∆E(0) A
TA

. (A8)

A necessary and sufficient mathematical condition for the
strong separability property of the energy is that a given exci-
tation process TA involving only the orbitals of the system A
gives the same contribution to the energy when it is considered
on the sole system A or on the super non interacting system
A · · · B. To reach such a condition, one first needs that the
zeroth-order wave function be the product of the zeroth-order
wave function of the two sub-systems A and B,

|ψ(0) A+B〉 = |ψ(0) A〉 ⊗ |ψ(0) B〉 , (A9)
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which ensures that its corresponding zeroth-order energy is the
sum of zeroth-order energies of the sub-systems A and B,

E(0) A+B =
〈ψ(0) A+B|HA + HB|ψ(0) A+B〉
〈ψ(0) A+B |ψ(0) A+B 〉

=
〈ψ(0) A|HA|ψ(0) A〉 〈ψ(0) B |ψ(0) B〉
〈ψ(0) A|ψ(0) A〉 〈ψ(0) B |ψ(0) B〉

+
〈ψ(0) B|HB |ψ(0) B 〉 〈ψ(0) A |ψ(0) A〉
〈ψ(0) B |ψ(0) B〉 〈ψ(0) A |ψ(0) A〉

= E(0) A + E(0) B, (A10)

as the total Hamiltonian can be written as the sum of HA acting
only on the orbitals of A and the corresponding HB acting
only on the orbitals of B. A CAS-CI wave function respects of
course the property of the additivity of the energy.

Starting from |ψ(0) A+B 〉, one can generate the contribution
to the first-order perturbed wave function |ψ(1) A

TA
〉 associated

with TA in the super-system A · · ·B,

|ψ(1) A+B
TA

〉 = 1

∆E(0) A+B
TA

| ψ̃(1) A+B
TA

〉 , (A11)

| ψ̃(1) A+B
TA

〉 =
∑

IA IB

cIA cIB TA | IB〉 ⊗ |IA〉

〈IA | ⊗ 〈IB | (HA + HB) TA | IB 〉 ⊗ | IA〉 , (A12)

with the following excitation energy ∆E(0) A+B
TA

:

∆E(0) A+B
TA

= E(0) A+B −
〈ψ̃(1) A+B

TA
|HA + HB| ψ̃(1) A+B

TA
〉

〈ψ̃(1) A+B
TA

| ψ̃(1) A+B
TA

〉
. (A13)

Then, the contribution of TA to the correlation energy of the
super system A · · ·B is simply

e(2) A+B
TA

=
〈ψ(0) A+B|HA + HB|ψ̃(1) A+B

TA
〉

∆E(0) A+B
TA

. (A14)

One can then notice that as TA only acts on the orbitals of A,
one has

〈IA| ⊗ 〈JB| (HA + HB) TA| JB〉 ⊗ |IA〉 = 〈JB | JB〉 〈IA|HA TA| IA〉,
(A15)

and consequently the zeroth-order wave function of system B
can be factorized in Eq. (A12)

|ψ̃(1) A+B
TA

〉 =
∑

IB

cIB | IB〉 ⊗
∑

IA

cIA 〈IA|HA TA| IA〉 TA | IA〉

= |ψ(0) B〉 ⊗ | ψ̃(1) A
TA
〉 . (A16)

This form for | ψ̃(1) A+B
TA

〉 is crucial, as it has a product structure,
implying that it will not suffer from any size consistency and
separability issues. Indeed, the numerator of Eq. (A14) simply
reduces to

〈ψ(0) A+B|HA + HB | ψ̃(1) A+B
TA

〉 = 〈ψ(0) A|HA| ψ̃(1) A
TA
〉 , (A17)

and the denominator of the same Eq. (A14) is then

∆E(0) A+B
TA

= E(0) A+B −
〈ψ̃(1) A

TA
|HA| ψ̃(1) A

TA
〉

〈ψ̃(1) A
TA
| ψ̃(1) A

TA
〉
− E(0) B

= E(0) A −
〈ψ̃(1) A

TA
|HA | ψ̃(1) A

TA
〉

〈ψ̃(1) A
TA
| ψ̃(1) A

TA
〉

= ∆E(0) A
TA

, (A18)

and therefore,
e(2) A+B

TA
= e(2) A

TA
. (A19)

Consequently, the JM-MRPT2 is strictly separable provided
that a partition of the Hamiltonian in terms of HA and HB can
be done, which supposes local orbitals.

2. Multi-partitioning of the Hamiltonian

In contrast with the CIPSI or shifted-Bk approaches, a
given perturber determinant | µ〉has as much zeroth-order ener-
gies as reference determinants | I〉 with which it interacts (i.e.,
〈µ |H| I〉,0) within the JM-MRPT2 framework. This formally
implies that the zeroth-order Hamiltonian depends on the ref-
erence determinant | I〉, just as in the MUPA approach. The
present paragraph proposes to briefly highlight the link existing
between these two approaches.

Using the JM ansatz for the wave function [see Eq. (53)]
and projecting the Schrödinger equation onto a given perturber
| µ〉 lead to

∑

I

cI
*.,〈µ|H| I〉 +

∑

µ′
〈µ|H| µ′ 〉 tIµ′+/- +R = E

∑

I

cItIµ, (A20)

where R contains all terms in the coupled cluster equation
containing higher or equal powers of T I than (TI)2. Retaining
all terms of first order in tIµ′ in Eq. (A20) leads to the equations
of linearized coupled cluster type

∑

I

cI
*.,〈µ|H| I〉 +

∑

µ′
〈µ|H| µ′ 〉 tIµ′+/- = e(0)

∑

I

cItIµ, (A21)

which can be written as

∑

I

cI
*.,〈µ|H| I〉 +

∑

µ′
〈µ|H| µ′ 〉 tIµ′ − e(0)t Iµ

+/- = 0. (A22)

Just as in the spirit of the UGA-SSMPRT2 of Mukherjee
et al., Eq. (A22) is solved independently for all references
| I〉, leading to

〈µ|H| I〉 + tIµ 〈µ|H|µ〉 +
∑

µ′,µ
〈µ|H| µ′ 〉 tIµ′ = e(0)t Iµ. (A23)

As each equation is solved independently, one can use a differ-
ent partitioning of the Hamiltonian according to the reference
determinants | I〉,

H = H (0)
I + λVI,

H (0)
I = e(0) | I〉 〈I| +

∑

µ

e(0)
Iµ | µ〉 〈µ|. (A24)

In Eq. (A24), retaining all terms at first order in λ leads to

〈µ |VI | I〉 + t(1)
Iµ 〈µ |H (0)

I | µ〉 +
∑

µ′,µ
〈µ |H (0)

I | µ′〉 t(1)
Iµ′ = e(0)t(1)

Iµ .

(A25)
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By defining the zeroth-order energies e(0)
Iµ as

e(0)
Iµ =

〈ψ̃(1)
TIµ
|HD| ψ̃(1)

TIµ
〉

〈ψ̃(1)
TIµ
| ψ̃(1)

TIµ
〉

, (A26)

where | ψ̃(1)
TIµ
〉 is defined in Eq. (15) with the excitation operator

TIµ which connects | I〉 and | µ〉 [see Eq. (6)], one can recover
the expression of the amplitudes used in the JM-MRPT2
approach

t(1)
Iµ =

〈µ |H| I〉
e(0) − e(0)

Iµ

. (A27)

Also, one can notice that the zeroth-order energies of the
MUPA and JM-MRPT2 methods coincide for the 2h2p but
also for the 1h2p and 2h1p. Indeed, the energy denominators
appearing in the two latter classes imply the generalization
of ionization potential [see Eq. (43)] and electronic affinities
whose definition is identical in the MUPA and JM-MRPT2
methods. Therefore, in the case of the double excitations
amplitudes, one can see the JM-MRPT2 method as the gen-
eralization of the MUPA method to all possible operations
appearing in the active space for the definition of energy
denominators.
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B.1 Introducion
La chimie quantique est un domaine qui nécessite d’e�ectuer des calculs de plus en plus
coûteux. En ce qui concerne les méthodes de fonction d’onde, qui sont l’objet de cette
thèse, le scaling varie entre O

(
N5) et O

(
N8), avec N le nombre d’électrons du sys-

tème. Ce scaling très élevé nécessite à la fois la mise en place d’approximations perme-
ttant de le réduire, et la conception d’algorithmes e�caces capables de tirer avantage
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des architectures informatiques modernes. C’est sur ce second aspect que les présents
travaux portent plus particulièrement.

La plupart des codes de chimique quantique encore utilisées actuellement (Molpro[3],
Molcas[4], or Gaussian[5]. . . ), ont débuté leur développement dans les années 90. À
cette époque, l’augmentation de la vitesse de calcul était liée à l’augmentation de
fréquence des processeurs. Toutefois, depuis une douzaine d’années, celle-ci se heurte
à des barrières physiques di�cilement franchissables. En conséquence, les accès mé-
moire, voir disque, ont vu leurs coûts relatifs augmenter,[8] et sont devenu le goulot
d’étranglement ; de plus, la réduction du temps d’exécution devant dorénavant passer
par la multiplication du nombre d’unités de calcul, les algorithmes doivent etre repen-
sés pour des architectures parallèles.[7] De multiples groupes travaillent actuellement
à moderniser les codes traditionnels de chimie quantique, jusque-là pensés dans un
mode séquentiel. Cette thèse s’inscrit dans cette démarche.

Certaines méthodes sont de part leur conception même adaptées aux architectures
parallèles, en particulier les méthodes de type Monte-Carlo (stochastiques), qui sont
par nature composées d’une multitudes de tâches indépendantes, ce qui en rend la
parallélisation facile et e�cace (embarassingly parallel). De plus, elles permettent
généralement de déterminer de manière approchée des valeurs dont le calcul exacte est
excessivement coûteux. Une partie du travail a consisté à intégrer un aspect Monte-
Carlo aux méthodes traditionnelles d’interaction de con�guration (IC).

Le �antum Package [12] développé au LCPQ est une suite de codes de méth-
odes de fonction d’onde, dont l’objectif premier n’est pas d’être utilisé massivement en
production, mais plutôt de permettre le développement et l’expérimentation de nou-
velles méthodes de manière simple, y compris pour ce qui est de l’aspect parallèle.
Pour cette raison, la base du code est de type determinant-driven, c’est à dire itérant
sur des déterminants, contrairement à l’approche plus habituelle qui consiste à itérer
sur des intégrales biélectroniques (on parle alors d’approche integral-driven). Bien que
l’approche determinant-driven soit typiquement moins e�cace - le nombre de déter-
minants étant généralement bien supérieur au nombre d’integrales - elle est également
moins complexe et plus �exible,[13] ce qui rejoint les objectifs du �antum Package
. Si elle s’avère mieux adaptée aux architectures parallèles, elle pourrait connaître un
regain de popularité.

La première étape a été l’accélération et la parallélisation de la diagonalisation de
Davidson, qui est un point central de toute méthode d’IC.

Par la suite, il a fallu améliorer l’algorithme de séléction de déterminants utilisé
par le �antum Package pour bâtir des fonctions d’onde compactes. En résumé, cet
algorithme de séléction appelé Con�guration Interaction using a Perturbative Selection
(CIPSI),[11] consiste à intégrer progressivement à une fonction d’onde variationnelle
les déterminants externes avec lesquelles elle interagit le plus.

Les améliorations importantes qui ont été apportées à cet algorithme sont en eux-
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même le résultat le plus important de ce travail, mais ont également servi de base aux
travaux subséquents. En e�et, implémenter cette méthode de manière e�cace soulève
le problème fondamentale de connecter la fonction d’onde à l’espace externe, c’est à
dire d’accéder aux informations qu’elle ne contient pas directement.

La problématique suivante a été de tirer parti au maximum de l’information fournie
par l’algorithme CIPSI.

L’une de ces informations est EPT2 la contribution perturbative au second ordre, si
liée que son calcul est parfois confondu avec l’algorithme CIPSI en tant que sélection.
EPT2 fournit une approximation de l’énergie de corrélation "perdue" de part la tron-
cature de la fonction d’onde ; de ce fait, si elle est ajoutée à l’énergie variationnelle,
elle donne une approximation de l’énergie Full-CI, soit l’énergie exacte du système
pour une base donnée. En e�et, le critère utilisé par CIPSI pour sélectionner de nou-
veaux déterminants, est leurs contribution perturbative au second ordre, calculée pour
chaque déterminant externe (approximations mises à part) ; la somme de ces contri-
butions n’est nul autre que EPT2, qui peut donc, en principe, être calculée au cours
de l’algorithme de sélection. Toutefois, en pratique, la sélection peut subir des ap-
proximations bien plus drastiques que le calcul de EPT2, car identi�er les contributions
les plus importantes peut se passer d’explorer des espaces de déterminants externes
dans lesquelles les contributions seront prévisiblement petites, ou même de calculer
les contributions avec précision. Calculer la somme des contributions, en revanche,
peut di�cilement se passer d’être précis et exhaustif, de part l’e�et de masse.

Pour cette raison, le calcul de EPT2 - tel qu’implémenté, comme un “sous-produit”
de la sélection - était bien plus coûteux que la sélection, et souvent trop coûteux, ce qui
conduisait en pratique à tronquer le calcul. Ce problème à pu être réglé par l’intégration
d’un aspect Monte-Carlo, a�n d’en retirer les béné�ces habituels, à savoir un résultat
d’une précision acceptable pour une fraction du coût, et une parallélisation relative-
ment simple et e�cace.

Nous avons ensuite pu déplorer que notre calcul de EPT2, alors qu’il fournit des
informations détaillées sur les interactions entre la fonction d’onde et l’espace ex-
terne, ne permette qu’une correction globale de l’énergie, et pas de la fonction d’onde
elle-même. En se basant sur la méthode dite shifted-Bk et l’utilisation de matrices
habillées,[67, 68, 69, 70, 71, 72, 73] la fonction d’onde a pu être corrigée en fonction
des informations obtenues lors du calcul de EPT2 ; puis de manière plus générale, un
système permettant de ra�ner la fonction d’onde sous l’e�et d’un espace externe es-
timé stochastiquement a été mis en place. Ce système a été testé avec l’espace ex-
terne impliqué par l’approche shifted-Bk (où les coe�cients des déterminants externes
sont estimés perturbativement) et par une approche de type MR-CCSD développée
précédemment.

Les considérations techniques de ces implémentations n’ont bien sûr pas été abor-
dées en détails dans les di�érents articles produits au cours de cette thèse. En ce qui
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me concerne, mon travail a porté sur les implémentations au moins autant que sur
la théorie sous-jacente, c’est pourquoi ce manuscrit est une opportunité d’aborder
les questions algorithmiques plus en détail. Dans la mesure où ces questions pour-
raient être d’un interet particulier pour ceux cherchant à comprendre en profondeur
l’implémentation du �antum Package , j’ai choisi de le rédiger en anglais.

B.2 Calcul determinant-driven des éléments de ma-
trice de Ĥ

Un déterminant de Slater (simplement appelé “déterminant” dans la suite du texte) peut
être vu comme un ensemble d’opérateurs de création agissant sur le vide.

a†
i a†

j a†
k |〉 = |I〉 (B.1)

De part la nature fermionique des électrons, permuter deux opérateurs conduit à
un changement de signe.

a†
j a†

i = −a†
i a†

j (B.2)

a†
j a†

i a†
k |〉 = − |I〉 (B.3)

On peut voir qu’un déterminant peut se décomposer en deux informations :

• L’ensemble des spinorbitales occupées.

• Un signe, ou “facteur de phase”.

L’approche determinant-driven implique d’itérer sur des déterminants, et par con-
séquent, nécessite de calculer explicitement et de manière intensive des éléments de
matrice de Ĥ l’hamiltonien électronique non-relativiste. C’est ce que permettent les
règles de Slater-Condon. Avec |D〉 un déterminant de Slater et

∣∣∣Drs
pq

〉
le déterminant

obtenu à partir de |D〉 par la substitution des spinorbitales p et q par les spinoribtales
r et s ; en d’autres termes par l’action de l’opérateur d’excitation T̂rs

pq :

〈D|Ĥ|D〉 = ∑
i∈|D〉

〈i|ĥ|i〉+ 1
2 ∑

i∈|D〉
∑

j∈|D〉

[
(ii|jj)− (ij|ij)

]
(B.4)

〈
D
∣∣∣Ĥ
∣∣∣Dr

p

〉
= 〈p|ĥ|r〉+ ∑

i∈|D〉

[
(pr|ii)− (pi|ri)

]
(B.5)

〈
D
∣∣∣Ĥ
∣∣∣Drs

pq

〉
= (pr|qs)− (ps|qr) (B.6)

〈
D
∣∣∣Ĥ
∣∣∣Drsu...

pqt...

〉
= 0 (B.7)
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avec ĥ la partie mono-électronique (énergie cinétique et potentiel électron-noyau),

〈p|ĥ|r〉 =
∫

dx φ∗p(x)
(
−1

2
∇+ V1(x)

)
φh(x), (B.8)

i ∈ |D〉 signi�ant que la spinorbitale i est occupée dans le déterminant |D〉, et

(ij|kl) =
∫

dx1

∫
dx2 φ∗i (x1)φj(x1)

1
|r1 − r2|

φ∗k (x2)φl(x2) (B.9)

une intégrale biélectronique. Ainsi qu’on le voit, ces calculs impliquent :

• D’être capable de déterminer l’excitation liant deux déterminants.

• De pouvoir accéder rapidement aux intégrales biélectroniques correspondantes.

Les intégrales biélectroniques étant potentiellement trop nombreuses pour être di-
rectement indicées à partir des indices d’orbitale qui la dé�nissent - cela nécessiterait
un stockage de l’ordre de Norb

4 avec Norb le nombre d’orbitales - une table de hash
est un choix naturel pour stocker et accéder aux éléments non-nuls en temps constant.
Une table de hash “maison” spéci�quement conçue pour les intégrales est implémentée
dans le �antum Package . Dans le cas où les intégrales recherchées sont aléatoires,
elle permet un accès seulement deux fois plus lent qu’un accès direct dans un tableau
à 4 dimensions. Cette di�érence s’accentue toutefois dans le cas où l’accès suit un cer-
tain schéma ; en pratique, un calcul CIPSI complet est de l’ordre de deux fois plus long
si il utilise une table de hash plutôt qu’un accès direct. Pour atténuer ce problème, les
intégrales impliquant uniquement les 128 orbitales les plus proches du niveau de Fermi
sont stockées dans un tableau à 4 indices (2 Gio).

Les déterminants sont stockés avec la représentation dite bitstring. Cette approche
est fondamentale dans l’implémentation du �antum Package . Chaque spinorbitale
est associée à un bit (contenu dans une variable de type integer 64 bits), qui prend
la valeur de son nombre d’occupation. En d’autres termes 0 est associé au statut "in-
occupé" et 1 au statut "occupé". Une variable integer de 64 bits peut donc stocker
l’occupation de 64 spinorbitales. Le nombre de variables integer nécessaire pour stocker
Norb spinorbitales est

Nint =

⌊
Norb − 1

64

⌋
+ 1. (B.10)

Pour des raisons pratiques, les spinorbitales ↑ et ↓ sont stockées sur des variables
séparées. Par conséquent, la représentation interne d’un déterminant est un tableau à
2 dimensions, la dimension externe de taille 2 (spin ↑ et ↓), et l’interne de taille Nint.

Cette représentation ne permet toutefois pas de stocker le facteur de phase, par
conséquent cette elle ne peut stocker qu’une “valeur absolue” de déterminant.
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La représentation bitstring est une manière compacte de stocker des déterminants,
mais c’est plus qu’une méthode de stockage ; en e�et, elle permet de tirer parti de la
capacité des processeurs à e�ectuer des opérations bit à bit de manière e�cace. Plutôt
que d’interpréter cette représentation comme une liste de nombres d’occupations, on
peut l’interpréter comme la dé�nition d’un ensemble.

On appel bitstring un tableau d’integers 64 bits de taille Nint, et d’une manière
générale, il peut dé�nir un ensemble d’orbitales ; les orbitales contenues dans l’ensemble
sont celles dont le bit associé est non nul. La représentation d’un déterminant peut
alors être vue comme une paire de bitstrings associés aux spinorbitales ↑ et ↓, re-
spectivement, et donc dé�nissant un ensemble de spinorbitales (en l’occurrence, les
spinorbitales occupées). On appel de tels objet des ↑↓-bitstrings.

! I est un updown-bitstring
! I_up et I_down sont des bitstrings

integer*8 :: I(N_int, 2)
integer*8 :: I_up(N_int), I_down(N_int)
...! On charge un determinant dans I
I_up (:) = I(:,1)
I_down (:) = I(:,2)

Certaines instructions disponibles sur les processeurs modernes peuvent être ra-
menées à des opérations sur des ensembles. L’instruction AND par exemple (bitwise
AND, fonction IAND en Fortran), correspond à l’intersection.

A = IAND(B, C) (B.11)

Si on interpréte A, B et C comme des bitstrings, A dé�nit l’intersection entre B et C.
A titre d’exemple, en utilisant les instructions suivantes:

• POPCNT(I) : Retourne le nombre de bits non nuls dans un integer I.
POPCNT(000110002) = 2.

• IEOR(I, J) : “ou exclusif” bit à bit.
IEOR(11002, 10102) = 01102.

• IAND(I, J) : “et” bit à bit.
IAND(11002, 10102) = 10002.

On peut déterminer le degré ainsi que les les trous et particules impliqués dans une
excitation. Avec B et C les ↑↓-bitstrings dé�nissants deux déterminants |B〉 et |C〉 (par
soucis de simpli�cation on oublie leur caractère de tableau) :

d = POPCNT(IEOR(B, C)) (B.12)
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En toutes lettres, d est le nombre de spinorbitales qui sont occupées dans exactement
l’un de |B〉 ou de |C〉, autrement dit celles dont l’occupation di�ère ; une excitation im-
pliquant un changement d’occupation dans 2 spinorbitales, le degré d’excitation entre
|B〉 et |C〉 est de d/2.

Ensuite :
A = IAND(C,IEOR(B, C)) (B.13)

Ici A est un ↑↓-bitstring qui, en toutes lettres, contient les spinorbitales présentes
dans |C〉 et dont l’occupation di�ère entre |B〉 et |C〉. Autrement dit, les particules
impliquées dans l’excitation T̂ telle que |C〉 = T̂ |B〉. De la même manière les trous
impliqués dans T̂ sont déterminés par IAND(B,IEOR(B, C))

Puisque notre représentation en ↑↓-bitstring ne stock pas le signe d’un détermi-
nant, lorsqu’une excitation est appliquée, il faut calculer un facteur de phase, qui
peut être de 1 ou −1. Pour une excitation T̂q

p , ce facteur est lié à la parité du nom-
bre d’électrons entre les spinorbitales p et q. Dans la mesure où le facteur de phase
doit être calculé de nombreuses fois sur un même déterminant, une manière e�cace
de le faire consiste à stocker pour chaque spinorbitale, le nombre d’électrons dans les
spinorbitales inférieures ; il su�t ensuite d’une soustraction pour connaître le nombre
d’électrons entre deux spinorbitales. En pratique, il n’est pas nécessaire de stocker le
nombre, mais seulement sa parité (connaissant les parités de A et B il est trivial de
déterminer la parité de A− B) ; ce type de stockage est appelé phase mask.

B.3 Diagonalisation de Davidson
D’un point de vu algorithmique, la question posée se résume au calcul (mais pas au
stockage) de la matrice hamiltonienne. Le calcul d’un élément de matrice peut être
fait e�cacement, mais le calcul de chacun des Ndet

2 éléments (avec Ndet le nombre de
déterminants dans la fonction d’onde variationnelle) reste extrêmement coûteux.

A�n de réduire le nombre d’éléments à considérer, on peut créer des sous-ensembles
de déterminants identi�ables comme entièrement déconnectés de certains autres sous-
ensembles. Ainsi, les déterminants peuvent par exemple être regroupés en fonction de
leur partie de spin ↑. Si la partie ↑ qui dé�nie un groupe, est plus que doublement
excitée par rapport à la partie ↑ qui dé�nie un autre groupe, on peut immédiatement
en déduire qu’aucune connexion ne pourra être trouvée entre les déterminants de l’un
et de l’autre groupe.

La version implémentée, pour une meilleur e�cacité, disjoint les di�érents types
d’excitation.

• Excitations ↑↑ et ↑: les déterminants liés par une telle excitation partagent par
dé�nition la même partie de spin ↓. Les déterminants sont donc regroupés en
fonction leur partie de spin ↓, et chaque déterminant n’a besoin d’être comparé
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qu’aux déterminants du même groupe. Du fait le la faible taille des groupes, cette
recherche est très peu coûteuse.

• Excitations ↓↓ et ↓ : situation symétrique avec la précedente, les déterminants
sont donc groupés en fonction de leur partie de spin ↑.

• Excitations ↑↓ : la vaste majorité du temps de calcul est consacré à celles-ci. Les
déterminants sont regroupés selon leur partie ↑ (arbitrairement). Une excita-
tion ↑↓ ne pourra être trouvée qu’entre deux groupes dont les parties ↑ qui les
dé�nissent sont simplement excitées l’une par rapport à l’autre.

B.4 Sélection avec le critère CIPSI
L’algorithme CIPSI consiste à construire itérativement la fonction d’onde variation-
nelle, en lui ajoutant à chaque itération les déterminants externes qui interagissent le
plus avec elle.

L’itération n du CIPSI peut être décrite comme suit:

1. La fonction variationnelle
∣∣∣Ψ(n)

〉
est dé�nie sur un ensemble de déterminants

{|DI〉}(n) dans lequel on diagonalise Ĥ
∣∣∣Ψ(n)

〉
= ∑

I
c(n)I |DI〉 (B.14)

2. Pour chaque déterminant |α〉 dit externe, |α〉 /∈ {|DI〉}(n), on calcul la contribu-
tion perturbative

eα =

〈
Ψ(n)

∣∣∣Ĥ
∣∣∣α
〉2

E(n) − 〈α|Ĥ|α〉 . (B.15)

E(n) dépend de la théorie de perturbation utilisée (dans notre cas, Epstein-Nesbet,
E(n) correspond à l’énergie variationnelle de

∣∣∣Ψ(n)
〉

. Toutefois une autre théorie
pourrait être utilisée).

3. On extrait {|α?〉}(n) le sous-ensemble des déterminants |α〉 de plus grande con-
tribution eα, et on les ajoute à la fonction variationnelle.

{|DI〉}(n+1) = {|DI〉}(n) ∪ {|α?〉}(n) (B.16)

4. On passe à l’itération n + 1 si un critère d’arrêt n’est pas atteint.
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L’ancienne implémentation réalisait cet algorithme de manière relativement naïve,
chaque déterminant externe étant généré individuellement puis comparé à chaque
déterminant de la fonction d’onde variationnelle. Le très important gain de perfor-
mance repose sur deux améliorations:

• Le �ltrage des déterminants internes. Les déterminants externes sont créés en
prenant un déterminant interne, quali�é de générateur, et en lui appliquant toutes
des simples et doubles excitations possibles, en d’autres termes en créant tous
les déterminants qui lui sont connectés. Chacun des déterminant externe ainsi
généré, doit être comparé à chaque déterminant interne pour le calcul de eα.
Ainsi, pour qu’un déterminant interne soit connecté à un déterminant externe,
il ne peut pas être “éloigné” du générateur par plus de 4 excitations. Par con-
séquent, tous les déterminants plus que quadruplement excités par rapport au
générateur courant, peuvent être ignorés dans le calcul des eα. Ce �ltrage peut
être ra�né quand le générateur devient un générateur doublement ionisé, ainsi
que sera discuté dans le point suivant.

• La détermination “par batch” des connexions. Plutôt que de considérer les déter-
minants externes “un par un”, l’unité de base est un générateur doublement ion-
isé
∣∣Gpq

〉
, soit |G〉 ionisé dans les spinorbitales p et q. Il implique les déter-

minants T̂rs
pq |G〉 pour toutes les valeurs de r et s ; en e�et, comparer

∣∣Gpq
〉

à
un déterminant interne, permet de déterminer systématiquement quelles sont
les valeurs de r et s qui correspondent à un déterminant connecté au dit déter-
minant interne. De même qu’on a pu �ltrer certains déterminants internes en
fonction du générateur, on peut en �ltrer en fonction des ionisations p puis q.

On peut tenter de résumer la di�érence entre l’ancienne et la nouvelle implémentation
à l’aide des �gures B.1 et B.2.

Figure B.1: Ancienne implémentation simple du CIPSI (représentation incomplète).
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Figure B.2: Implémentation actuelle du CIPSI (représentation incomplète).

B.5 Calcul de la contribution perturbative au second
ordre

La contribution perturbative au second ordre, qui donne accès à une valeur approxima-
tive de l’énergie Full-CI, est essentiellement la somme des contributions individuelles
calculées au cours de l’algorithme CIPSI. Cependant son calcul est bien plus coûteux
que celui du CIPSI, car moins d’approximations sont possibles. On peut également
noter que la valeur exacte de EPT2 ne présente que peu d’intérêt, dans la mesure où
elle ne sert que comme approximation de l’énergie Full-CI. De ce fait, un algorithme
hybride stochastique/déterministe a été implémenté, donnant accès à EPT2 avec une
précision su�sante pour une fraction du coût du calcul complet. La contribution élé-
mentaire n’est pas la contribution d’un seul déterminant externe, mais la somme pour 1
déterminant interne des contributions de tous les déterminants externes pouvant être
générés à partir de lui mais d’aucun déterminant de coe�cient supérieur en valeur
absolue. La raison est d’abord technique, la somme des contributions de déterminants
“proches” (en l’occurrence car tous connectés à un générateur particulier) peut être
calculée e�cacement. Les conséquences de ce regroupement sont:

• Le nombre de contributions élémentaires est de Ndet, et donc assez faible pour
que chacune soit stockée en mémoire. Ainsi, contrairement au cas général dans
un calcul Monte-Carlo, quand un élément est tiré, sa valeur peut être stockée et
simplement ré-utilisée si cet élément est tiré à nouveau. On peut noter que la
valeur exacte de EPT2 sera ainsi connue quand chaque élément aura été tiré, et
donc pour un coût presque égale à celui du calcul exacte déterministe.

• Les valeurs absolues de ces contributions élémentaires décroissent rapidement
avec le coe�cient du générateur associé.

Ce deuxième point guide la manière dont est conduit le calcul Monte-Carlo.
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On tri les déterminants internes par coe�cients absolus décroissants, par con-
séquent la majeure partie de la contribution est contenue dans le “début” de la fonction
d’onde ainsi trié. Dans un premier temps on partage les déterminants en un intervalle
déterministe DD et un intervalle stochastique DS.

La partie déterministe, qui regroupe les contributions les plus importantes, est cal-
culée entièrement. De ce fait la barre d’erreur ne porte que sur les plus petites con-
tributions, ce qui permet de la réduire considérablement. La partie stochastique est
séparée en intervalles appelés "dents" et notés T1, T2 ... chacune contenant des con-
tributions globalement plus faibles que celles de la dent précédente. Les valeurs qui
serviront d’échantillon au sens statistique du terme, que l’on appel des peignes, seront
des sommes d’un déterminant tiré dans chaque dent ; en bref, la somme de “un grand,
un moyen et un petit” aura en toute logique une variance plus faible que la somme de
“trois au hasard”. Lorsque toutes les contributions d’une dent ont été calculées, cette
dent est déplacée dans la partie déterministe DD, ce qui permet de réduire encore la
fraction des contributions sur laquelle porte la barre d’erreur.

La �gure ci-dessous résume ce procédé. Chaque case correspond à un déterminant
générateur, et sa largeur à la probabilité que ce déterminant soit tiré. La dent T0 est
spéciale et fait toujours partie de DD, par conséquent aucun tirage n’est fait dedans.
On a ici tiré deux peignes a et b, dont les valeurs sont la somme des contributions des
générateurs désignés par les �èches a1, a2, a3 et b1, b2, b3 respectivement.

Comme toutes les contributions de T1 ont été calculées, elles sont déplacées dans
DD, et les générateurs 2 et 3 ne sont plus utilisés dans l’estimation stochastique, qui
se fait uniquement avec les générateurs 6, 10 et 11.

B.6 Habillage stochastique de matrice
Le calcul d’un habillage de matrice repose sur le même principe que le calcul de EPT2 ;
la valeur recherchée est une somme dont chaque élément est associé à un déterminant
externe.
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De la même manière que pour le calcul de EPT2, nous allons ici regrouper les con-
tributions en Ndet ensembles chacun associé à un déterminant interne, ce qui nous
donne Ndet contributions élémentaires. Le chapitre “Stochastic matrix dressing” porte
essentiellement sur la manière dont l’estimation est calculée à partir des contributions
élémentaires ; le calcul de ces contributions élémentaires elles-mêmes, dans un cadre
général, est développé dans le chapitre suivant, “Application of stochastic matrix dress-
ing to MR-CCSD”.

Un changement majeur est que ces contributions élémentaires, qui sont des scalaires
dans le cas du calcul de EPT2, deviennent des vecteurs de taille Ndet dans le cas de
l’habillage de matrice. Cela soulève une di�culté supplémentaire: il est possible de
stocker Ndet scalaires, pas Ndet vecteurs de taille Ndet. Comment alors éviter de ré-
calculer une contribution si elle est tirée de multiples fois?

Cela a pu être réalisé par l’introduction de “checkpoints” pré-déterminés (d’une
à quelques dizaines), en dehors desquels un résultat ne peut pas être obtenu. L’idée
est que dans un schéma Monte-Carlo, même “exotique” comme notre schéma hybride
déterministe/stochastique, le résultat estimé est une combinaison linéaire des échantil-
lons. Avec δδδm l’estimation à un moment m du calcul Monte-Carlo et δδδI la contribution
élémentaire liée au déterminant interne d’indice I:

δδδm =
Ndet

∑
I=1

µm
I δδδI (B.17)

On peut pré-calculer les coe�cients µm
I de cette combinaison linéaire sans avoir

accès à aucune contribution élémentaire. δδδm peut être initialisé au vecteur nul, puis
construit incrémentalement au fur et à mesure que les contributions élémentaires sont
calculées. Lorsque la contribution δδδI est calculée, le checkpoint m et tous les autres
sont mis à jour:

δδδm ← δδδm + µm
I δδδI (B.18)

De cette manière la valeur δδδI n’a pas besoin d’être stockée.

B.7 Application de l’habillage stochastique dematrice
au MR-CCSD

L’habillage de matrice, de manière générale, permet de ra�ner la fonction d’onde vari-
ationnelle sous l’e�et d’un espace externe. Cet espace externe est dé�ni par une fonc-
tion Z(α, . . .), prenant en paramètre au minimum un déterminant externe, et retour-
nant le coe�cient à lui associer. A�n de rendre simple l’implémentation de n’importe
quel espace externe, un framework a été crée, dans lequel il su�t de dé�nir cette fonc-
tion ; l’espace externe correspondant est estimé stochastiquement selon la méthode
développée au chapitre précédent, et la fonction d’onde variationnelle est modi�ée sous
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son e�et. Dans le cas de la méthode shifted-Bk , dont il a été question dans le chapitre
précédent, les coe�cients externes sont estimés en perturbation. Dans ce chapitre, il
s’agit des coe�cients impliqués par la méthode MR-CCSD, qui avait précédemment
été implémentée dans le cadre d’une publication.

De manière générale, la détermination d’un coe�cient externe fait intervenir ses
connexions avec l’espace variationnel. Pour des raisons de performance et de sim-
plicité, il est vital que les déterminants internes auxquels se connecte le déterminant
externe considéré, soient déterminés en amont de l’appel à la fonction Z - le con-
traire contraindrait à ré-explorer la fonction d’onde entière pour chaque déterminant
externe.

Nous avons pu réutiliser la “machinerie” du calcul CIPSI. En e�et, dans ce dernier,
chaque déterminant externe est mis en rapport avec tous les déterminants internes
auxquels il se connecte, chaque connexion étant un apport à sa contribution pertur-
bative. Dans le cas présent, quand une connexion sera mise en évidence, plutôt que
d’incrémenter la contribution perturbative associée du déterminant externe impliqué,
on ajoutera le déterminant interne à une liste associée au déterminant externe. A terme
cette liste contiendra donc tous les déterminants internes connectés (voir �gure B.3).
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Figure B.3: Construction des listes de déterminants internes connectés pour tous les |α〉 d’un batch Gpq.

Dans le cas particulier du MR-CCSD, le calcul de ces coe�cients se fait en mettant
en évidence, pour chaque déterminant externe, des structures en “losange”.

Avec |α〉 le déterminant externe considéré, |Rr〉 un déterminant de la référence,
|DI〉 et

∣∣DJ
〉

deux déterminants internes. Les �èches parallèles indiquent une con-
nexion par la même excitation. La �èche verticale indique une absence de connexion
(degré d’excitation supérieur ou égale à 3). On remarque que dans ce cas particulier,
un losange peut être mis en évidence très simplement à l’aide de la fonction IEOR
présentée précédemment, le critère étant:

α⊕ DI ⊕ DJ ⊕ Rr = 0 (B.19)

Avec α, DI ,DJ et Rr les ↑↓-bitstrings dé�nissants les déterminants correspondants, et
A⊕ B = IEOR(A, B).
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B.8 Mesures de performance
L’e�cacité des implémentations est évaluée sur une cyanine,

H2N
+ NH2

dans l’état fondamental et le premier état excité, en base aug-cc-pVDZ avec les orbitales
1s des atomes C et N gelées.

La géometrie est celle de l’état fondamental, optimisée au niveau PBE0/cc-pVQZ.
L’état fondamental est de type couche fermée, bien décrit en mono-référence. L’état ex-
cité est simplement excité, et requiert deux déterminants dans la réference (1/

√
2(ab̄+

bā)).
L’espace Full-CI pour ce système est un CAS(18,111). L’énergie d’excitation de

référence, obtenue au niveau CC3/ANO-L-VQZP, est de 7.18 eV.[84]
Les calculs ont été e�ectués sur le supercalculateur Olympe (CALMIP), chaque

nœud est un dual-socket Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz avec 192Gio de
RAM et 36 cœurs physiques. Dans la �gure B.4, on trace la convergence des énergies
de l’état fondamental et de l’état excité en fonction du nombre de déterminants, avec
et sans la contribution perturbative au second ordre EPT2. On observe que, bien que
EPT2 soit relativement grand (∼ 0.02 au), l’énergie d’excitation obtenue avec ou sans la
correction perturbative est de 7.20 eV, ce qui est compatible avec l’énergie de référence
obtenue dans une base plus grande.
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Figure B.4: Convergence de l’énergie de l’état fondamental et de l’état excité en fonction du nombre de
déterminants dans l’espace variationnel.
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B.8.1 Diagonalisation de Davidson
Nous mesurons le temps nécessaire à 1 itération de Davidson en fonction du nombre
de déterminants dans la fonction d’onde variationnelle (�gure B.5).

Le scaling obtenu correspond à ce qui est attendu, à savoir O
(

Ndet
3/2
)

.
Ensuite, en utilisant les deux plus grandes fonctions d’onde, nous mesurons le

temps mural nécessaire au calcul en fonction du nombre de nœuds (�gure B.6).
Dans la mesure où la communication croît en O(Ndet) alors que le calcul croît en

O
(

Ndet
3/2
)

, l’e�cacité parallèle augmente avec Ndet.
Pour 50 nœuds avec la fonction d’onde à 42 959 496 déterminants, l’e�cacité par-

allèle est de 76%

 0.1

 1

 10

 100

 1000

 10000

 100000

 100000  1x106  1x107

W
a
ll-

cl
o
ck

 t
im

e
 (

s)

Number of determinants

α Ndet
1.5

Figure B.5: Temps mural d’une itération de Davidson en fonction du nombre de détermiants dans la
fonction d’onde.

B.8.2 CIPSI
Nous mesurons le temps nécessaire à une étape de sélection par CIPSI, en fonction
du nombre de déterminants (�gure B.7), puis du nombre de cœurs (�gure B.8) avec
la plus grande fonction d’onde (9 356 952 déterminants). L’accélération en fonction
du nombre de déterminant est presque idéale ; toutefois, cela est dû à une approxima-
tion (le seuil ng, non discuté dans ce résumé), qui fait que le nombre de déterminants
générateurs tend à devenir constant. L’accélération en fonction du nombre de nœuds
est également presque idéale, avec 95% d’e�cacité parallèle pour 50 nœuds. Cela est
en partie dû à la fragmentation qui permet des tâches équilibrées.

236



 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20  25  30  35  40

S
p
e
e
d
u
p

Number of 36-core nodes

Ideal
42 959 496 dets

9 356 952 dets

Figure B.6: Accélération pour une itération de Davidson en fonction du nombre de noeuds à 36 cœurs.
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Figure B.7: Temps mural de la sélection CIPSI en fonction du nombre de déterminants dans la fonction
d’onde.

B.8.3 Calcul de EPT2

L’algorithme du calcul de EPT2 est très similaire à celui du CIPSI. On s’attend donc à
un comportement similaire.

Le critère d’arrêt est une erreur relative de 1/1000. Puisque EPT2 diminu avec Ndet,
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Figure B.8: Accélération parallèle pour la sélection CIPSI. La référence est un unique nœuds à 36 cœurs.

l’erreur acceptable diminue également avec Ndet. Cependant, le coût du calcul stochas-
tique par rapport au calcul complet reste relativement constant, autour de 5%.

Le scaling obtenu en fonction de Ndet (�gure B.9) est presque linéaire,O
(

Ndet
1.15
)

,
pour les plus grandes fonctions. Cela peut se comprendre, dans la mesure où pour un
relativement petit nombre de déterminants, le nombre de déterminants externes pro-
duit est proportionnel à Ndet, chacun potentiellement connecté à Ndet déterminants
internes, pour un scaling attendu de l’ordre de Ndet

2. Toutefois, à mesure que la fonc-
tion variationnelle tend vers la fonction Full-CI, le nombre de déterminants internes
auxquels un déterminant externe est connecté, est limité par le nombre de doubles
excitations possibles, ce qui fait disparaître la seconde dépendance à Ndet.

Le scaling obtenu en fonction du nombre de nœuds (�gure B.10) est un peu moins
satisfaisant que celui obtenu pour le CIPSI. L’e�cacité parallèle avec 50 nœuds (1800
cœurs) est de 80%, contre 95% pour le CIPSI. On peut trouver deux raisons à cela:

• Le pré-calcul des peignes sur le processus maître délaye le début de la partie
parallèle.

• Contrairement au CIPSI, le calcul est ici interrompu de manière imprévisible, lors
que la barre d’erreur atteint le seuil requis. Par conséquent un certain nombre
de tâches “super�ues” peuvent être lancées, ce nombre étant d’autant plus grand
que le nombre de cœurs est important ; dans la limite où Ndet est égal au nombre
de cœurs, c’est de fait toujours le calcul complet qui sera réalisé, alors que dans
le mode mono-cœur aucune tâche super�ue ne sera calculée.
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Les tâches quali�ées de super�ues pouvant néanmoins être utilisées pour réduire
la barre d’erreur, ce calcul d’accélération n’est pas tout à fait pertinent car la barre
d’erreur �nale sera plus faible quand le nombre de nœuds est plus grand.
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Figure B.9: Temps mural requis pour calculer la contribution perturbative EPT2 pour l’état fondamental
et l’état excité, en fonction du nombre de déterminants dans la fonction d’onde.
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Figure B.10: Accélération parallèle pour le calcul de la contribution perturbative EPT2 pour l’état fonda-
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B.8.4 Habillage de matrice
L’algorithme d’habillage de matrice est similaire à celui du calcul de EPT2, on s’attend
donc à un comportement similaire.

Le critère d’arrêt est une erreur relative de 1/1000 sur l’énergie d’habillage 〈Ψ|∆̂|Ψ〉,
avec ∆̂ la matrice d’habillage.

Le scaling en fonction du nombre de déterminants (�gure B.11) est deO
(

Ndet
1.15
)

,
ce qui est légèrement supérieur à celui trouvé pour EPT2.

Ce coût additionnel est lié à la gestion des résultats par checkpoint, qui élimine le
goulot d’étranglement lié aux communications.

L’accélération en fonction du nombre de nœuds (�gure B.12) a été mesurée avec la
fonction d’onde à 9 356 952 déterminants.
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Figure B.11: Temps mural requis pour calculer l’habillage Shifted-Bk pour l’état fondamental et l’état
excité, en fonction du nombre de déterminants dans la fonction d’onde.

B.9 Conclusion
Des améliorations aussi bien dans le mode séquentiel que parallèle ont été apportées
au �antum Package . Il est actuellement possible de réaliser des calculs sur ∼ 2000
cœurs avec des centaines de millions de déterminants dans l’espace variationnel, ce
qui pourra conduire à la réalisation d’autres d’applications di�ciles.

La diagonalisation de Davidson, au centre des méthodes variationnelles, sou�re de
l’impossibilité de stocker la matrice hamiltonienne, ce qui nous contraint à recalculer
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Figure B.12: Accélération parallèle pour le calcul de la matrice d’habillage de l’état fondamental avec la
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les éléments de matrice on the �y à chaque itération. Malgré une méthode très e�cace
pour calculer les éléments de matrice,[45] et en particulier pour identi�er un élément
nul, l’implémentation initiale explorait chacun des ∼ Ndet

2 éléments de matrice.
À présent, les déterminants sont séparés en plusieurs ensembles disjoints et sou-

vent identi�ables comme entièrement déconnectés les uns des autres ; de ce fait, la
vaste majorité des éléments de matrice n’ont plus à être explicitement considérés, et le
scaling est ramené à O

(
Ndet

3/2
)

. Une variante de scaling linéaire est possible, mais
n’a pas été implémentée du fait d’une empreinte mémoire trop importante. Cependant,
l’implémentation pourrait être ra�née a�n d’utiliser conjointement les deux méth-
odes.

Bien que la parallélisation de l’algorithme proposé soit di�cile, l’implémentation
distribuée qui en a été réalisée o�re une accélération satisfaisante, de l’ordre de 35×
pour 50 nœuds (1 800 cœurs).

L’algorithme de sélection CIPSI a été considérablement amélioré, ce qui a rendu
possible des applications jusque là infaisables.[57, 89]

Les di�érentes optimisations réalisées portent à la fois sur la mise en évidence des
connexions entre les espaces interne et externe (approche par batch de déterminants,
�ltrage), et le coût de calcul des éléments de matrice correspondants (phase mask,
détermination implicite des excitations). L’implémentation distribuée o�re une ac-
célération presque idéale avec 50 nœuds.

D’un point de vue méthodologique, le CIPSI est toutefois d’une précision et donc
d’un coût qui ne se justi�e pas dans toutes les situations ; de meilleurs performances,
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sans perte de précision, pourraient être obtenues en combinant le CIPSI avec un al-
gorithme de sélection moins précis mais très peu coûteux, le Heat-Bath Con�guration
Interaction (HCI). [38, 39]

Le calcul de la contribution perturbative au second ordre EPT2, a également fait
l’objet d’améliorations importantes. Bien qu’étant calculé par le même algorithme que
CIPSI, obtenir EPT2 était plus coûteux car n’autorisant pas autant d’approximations.
Dans la mesure où EPT2 est une somme d’une multitude de termes, une approche
Monte-Carlo est pertinente, d’autant plus que EPT2 sert essentiellement à fournir une
approximation de l’énergie Full-CI. Par conséquent, sa valeur exacte n’a que peu d’intérêt,
l’important étant que la précision de son estimation soit supérieur à la précision typ-
ique avec laquelle Evar + EPT2 approxime l’énergie Full-CI.

L’approche Monte-Carlo proposée, originale par son caractère hybride stochas-
tique/déterministe, a été développée avec l’aide du groupe de Michel Ca�arel, et per-
met d’obtenir EPT2 avec une précision satisfaisante pour quelques pourcents du coût
du calcul exacte.

Toutefois, cette approche stochastique n’est utilisée que pour le calcul de EPT2 et pas
pour la sélection. Une sélection stochastique aurait l’avantage qu’à chaque itération,
n’importe quel déterminant externe pourrait potentiellement être généré. Ce n’est
pas le cas avec l’approche actuelle, en raison du seuil ng, les déterminants de faibles
coe�cients ne sont jamais utilisés comme générateurs, ce qui est la cause d’une légère
erreur de size-consistance.

A�n de tirer le meilleur parti des données auxquelles nous pouvions déjà accéder,
nous avons par la suite implémenté la méthode shifted-Bk , qui permet de ra�ner la
fonction d’onde en fonction des contributions énergétiques individuelles des déter-
minants externes. Cette méthode nécessite le calcul d’une matrice d’habillage, es-
timée stochastiquement de la même manière que EPT2. Toutefois, de part le fait que
l’estimation porte sur un vecteur et non plus sur un scalaire, des di�cultés supplémen-
taires ont dû être surmontées. Cela a pu être fait au prix d’un compromis relativement
modeste, consistant à pré-dé�nir, au début du calcul, un certain nombre (de l’ordre
d’une à quelques dizaines) de “checkpoints” au niveau desquels un résultat est obtenu
; entre deux checkpoints, aucun résultat n’est disponible.

Cet habillage stochastique de matrice a ensuite pu être généralisé dans un frame-
work permettant de ra�ner la fonction d’onde sous l’e�et de n’importe quel espace
externe (dé�ni par les coe�cients des déterminants externes). Une implémentation
de la méthode Multi-Reference Coupled Cluster Single and Double (MR-CCSD) a ainsi pu
être réalisée simplement,[91] et a permis d’explorer certaines possibilités de l’approche
determinant-driven.

A l’heure actuelle ce framework est commode mais o�re peu de possibilités. Cer-
taines pistes sont explorées a�n de le rendre plus �exible.

Durant les di�érentes étapes de l’évolution du �antum Package , de plus en plus
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d’applications ont été rendues possibles.[1, 57, 89, 91, 92, 93, 94]
Cela a donné au �antum Package plus de visibilité, conduisant notamment à sa

sélection en tant que benchmark dans le choix du nouveau supercalculateur du centre
CALMIP. De plus, di�érents groupes se sont mis à l’utiliser pour des applications et
le développement de nouvelles idées. Par exemple, le groupe de Claudia Filippi aux
Pays-Bas utilise maintenant des fonctions d’onde CIPSI dans le cadre de calculs Monte-
Carlo quantique,[95] et le groupe d’Argonne implémente actuellement des orbitales
complexes a�n d’adapter le �antum Package à la chimie du solide.[96]
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