
HAL Id: tel-02089718
https://theses.hal.science/tel-02089718

Submitted on 4 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software-level analysis and optimization to mitigate the
cost of write operations on non-volatile memories

Rabab Bouziane

To cite this version:
Rabab Bouziane. Software-level analysis and optimization to mitigate the cost of write operations
on non-volatile memories. Performance [cs.PF]. Université de Rennes, 2018. English. �NNT :
2018REN1S073�. �tel-02089718�

https://theses.hal.science/tel-02089718
https://hal.archives-ouvertes.fr

���������������������
�
�
�
�������������������������
��������������������������������
�
������������������������
���
��
��
�

���
���������� ��������������� ��������
�
�
��
���������������������������
������������

����

���������������

�������������������������������
�
������������������� ���
��������������� ��������������������������������
�
�����������������������
�
������������ ���������������� �����������������������������������
������������������������������� �����������������������������������

�������������� ��������������������������������
�
���������������� ������������ � ��
��
�
����������
����������� ��������������������������������������

i

Abstract
Traditional memories such as SRAM, DRAM and Flash have faced during the last years,

critical challenges related to what modern computing systems required: high performance,

high storage density and low power. As the number of CMOS transistors is increasing, the

leakage power consumption becomes a critical issue for energy-efficient systems. SRAM

and DRAM consume too much energy and have low density and Flash memories have a

limited write endurance. Therefore, these technologies can no longer ensure the needs in both

embedded and high-performance computing domains. The future memory systems must

respect the energy and performance requirements. Since Non Volatile Memories (NVMs)

appeared, many studies have shown prominent features where such technologies can be a

potential replacement of the conventional memories used on-chip and off-chip. NVMs have

important qualities in storage density, scalability, leakage power, access performance and

write endurance. Many research works have proposed designs based on NVMs, whether on

main memory or on cache memories. Nevertheless, there are still some critical drawbacks

of these new technologies. The main drawback is the cost of write operations in terms of

latency and energy consumption. Ideally, we want to replace traditional technologies with

NVMs to benefit from storage density and very low leakage but eventually without the write

operations overhead.

The scope of this work is to exploit the advantages of NVMs employed mainly on cache

memories by mitigating the cost of write operations. Obviously, reducing the number of write

operations in a program will help in reducing the energy consumption of that program. Many

approaches about reducing writes operations exist at circuit level, architectural level and

software level. We propose a compiler-level optimization that reduces the number of write

operations by eliminating the execution of redundant stores, called silent stores. A store is

silent if it’s writing in a memory address the same value that is already stored at this address.

The LLVM-based optimization eliminates the identified silent stores in a program by not

executing them.

Furthermore, the cost of a write operation is highly dependent on the used NVM and

its non-volatility called retention time; when the retention time is high then the latency and

the energetic cost of a write operation are considerably high and vice versa. Based on this

characteristic, we propose an approach applicable in a multi-bank NVM where each bank is

designed with a specific retention time. We analyze a program and we compute the worst-case

lifetime of a store instruction. The worst-case lifetime will help to allocate data to the most

appropriate NVM bank.

iii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor M. Erven ROHOU for the

continuous support of my Ph.D study. Beside my advisor, I would like to thank M. Abdoulaye

GAMATIE for his co-supervision.

A special thanks to my parents, my brother, my sister and my friends for supporting me

throughout writing this thesis. Thanks for all your encouragement!

I dedicate this work to my Dad who is my inspiration in life.

v

Contents

Abstract i

Acknowledgements iii

1 Resumé 1

2 Introduction 5

2.1 Context and problematic . 5

2.1.1 Challenges facing traditional memory technologies 6

2.1.2 Challenges facing emerging NVMs technologies 7

2.2 Thesis objectives . 7

2.3 Contributions . 9

2.4 Outline . 10

3 Energy consumption in today’s computing systems 11

3.1 The issue of energy consumption . 11

3.2 Dealing with energy consumption issue 12

3.2.1 Compiler optimizations . 13

3.2.2 Dynamic voltage and frequency scaling (DVFS) 14

3.2.3 Power modes . 14

3.2.4 Microarchitectural techniques . 15

3.2.5 Circuit level techniques . 16

3.3 Energy consumption issue in emerging NVMs 17

3.3.1 Quick introduction to NVMs basic features 17

Magnetic Tunnel Junction Device 19

3.3.2 Dealing with energy consumption issues related to NVM caches 22

Software-level optimizations via compiler techniques 22

Architecture-level designs . 24

Circuit-level approaches . 29

3.4 Empirical energy evaluation for STT-RAM caches with compiler opti-

mizations . 30

vi

3.4.1 Typical loop optimizations: tiling and permutation 31

3.4.2 Experimental setup . 32

3.4.3 Impact of code optimization on performance and energy 33

Observations . 34

3.5 Why advocating software-level techniques for mitigating the energy-

issue on NVMs? . 36

4 Redundant memory write elimination 39

4.1 Introduction . 39

4.2 Related Work . 40

4.2.1 Profiling-based approaches . 41

4.2.2 Static Analysis approaches . 41

4.3 Silent-store elimination . 42

4.3.1 Definition and general principle 42

4.3.2 Implementation . 43

4.3.3 Micro-architectural and compilation considerations 44

4.4 Profitability threshold . 47

4.5 Preliminary evaluation based on a cycle-accurate simulator 48

4.5.1 Application to a simple example 49

4.5.2 Optimization profitability w.r.t. number of silent stores 51

4.6 Comprehensive evaluation based on an analytic approach 54

4.6.1 Distribution of silent stores . 54

4.6.2 Impact of the silent-store elimination 55

4.7 Towards relaxed silent-stores . 60

4.8 Conclusion . 62

5 Variable retention times in a multi-bank NVM 65

5.1 Introduction . 65

5.2 Exploiting variable data retention times 66

5.3 Motivation for δ-WCET Estimates . 67

Performance debugging . 68

Energy-efficiency . 69

5.4 Worst-Case stores lifetimes . 70

5.4.1 Motivational Example . 71

5.4.2 Related work . 73

WCET estimation techniques . 73

Background: the Heptane Tool 74

vii

5.4.3 Proposed Methodology . 75

δ-WCET Estimation . 76

Linking δ-WCET to NVM Allocation 78

5.5 Validation on Mälardalen Benchmark-suite 80

5.5.1 Experimental setup . 80

5.5.2 Architectural setup for IoT domain 81

5.5.3 Lifetimes Evaluation on Benchmarks 85

5.5.4 Gain evaluation . 87

5.6 Conclusion . 89

6 Conclusion 93

6.1 Achieved results . 93

6.2 Perspectives . 94

ix

List of Figures

1.1 Élimination des silent stores: le code d’origine ecrit val à l’adresse de x;

Le code transformé charge d’abord la valeur à l’adresse x et la compare

à la valeur à écrire. Si elle est égale, l’exécution du store est annulée. . . 2

1.2 L’implementation de l’optimization dans LLVM 2

1.3 Gain d’énergie en fonction du seuil de silentness des applications

Rodinia et de leur rapport r = αW/αR associé, où αW et αR représentent

respectivement les couts des opérations d’écritures et de lectures. . . . 3

1.4 Outil Heptane étendu avec l’analyse δ-WCET. 4

1.5 Économies d’énergie basées sur deux configurations différentes par

rapport à une mémoire STT-RAM ayant une non-volatilité de 4,27

années. 4

2.1 Memory hierarchy model . 7

3.1 Typical memory access latency (Intel Xeon i7-5600U, 2.6 GHz). 12

3.2 Comparison of traditional memory and NVM technologies [122]. . . . 18

3.3 Magnetic tunnel junction (a) Parallel state, (b) Anti-parallel state, (c)

Equivalent circuit . 20

3.4 Relaxing the non-volatility of STT-RAM [102], dotted border is the

optimal scenario and black line is representing the comparison to SRAM 21

3.5 Extract of modified syr2k code. 30

3.6 Evaluated loop optimization and parallelization. 32

3.7 Performance/energy trade-off with 4 Cortex-A15 cores operating at

1.0 GHz. The reference case, denoted as ref-* is the syr2k-omp program.

The other programs are optimized version of syr2k-omp 35

4.1 Silent store elimination: original code stores val at address of x; trans-

formed code first loads the value at address of x and compares it with

the value to be written, if equal, the branch instruction skips the store

execution. 43

4.2 Implementation of the optimization in LLVM 43

x

4.3 Design of the compilation framework 44

4.4 A superscalar execution: the original sequential code is transformed

to exploit parallelism by hiding the new instructions added by our

transformation . 45

4.5 Example of predicated execution . 46

4.6 Silent store elimination: (a) original code stores val at address of x; (b)

transformed code first loads the value at address of x and compares it

with the value to be written, if equal, the branch instruction skips the

store execution; (c) when the instruction set supports predication, the

branch can be avoided and the store made conditional. 46

4.7 Dedicated kernel. The volatile keyword forces the compiler to keep

the memory access on x, while other variables may be promoted to

registers. The assignment in the loop repeatedly writes the same value

0 to the same memory location . 50

4.8 Determination of the profitability threshold of silent store elimination. 52

4.9 Percentage of silentness on the basis of the percentage of static positions

in the code . 55

4.10 Percentage of silentness on the basis of the percentage of silent in-

stances in the code . 56

4.11 Energy gain according to the silentness threshold of Rodinia applica-

tions, and their associated r = αW/αR ratio: most sensitive applications. 58

4.12 Energy gain according to the silentness threshold of Rodinia appli-

cations, and their associated r = αW/αR ratio: marginally sensitive

applications. 59

4.13 Binary representation of floating-point numbers as defined by IEEE

754 – 32-bit floats. The mantissa (or significant) is 24-bit long. The two

values differ only by their last 3 bits. 60

4.14 Checking for Relaxed Silent-Stores . 60

4.15 Strict vs. relaxed silent-stores – Rodinia/myocyte 61

5.1 Examples of cache memory configurations comparing SRAM and STT-

RAM [106]. 66

5.2 Examples of cache memory configurations comparing SRAM and STT-

RAM [106]. 67

5.3 Data lifetime distributions for backprop, kmeans and myocyte. 68

5.4 Motivation for δ-WCET on sample control-flow graphs. 69

xi

5.5 A sample program (a), with its associated Control Flow Graph - CFG

(b). The loop iterates ten times. ANNOT_MAXITER is a macro that

stores this information in a dedicated ELF section of the binary, re-

trieved by the Heptane tool [27] and attached to the CFG. 70

5.6 Duration of the lifetimes created by each store instruction, for different

numbers of iterations of the loop, and 10 ms threshold, for the example

shown in Figure 5.5. 71

5.7 Heptane tool extended with δ-WCET analysis (blue dashed-box com-

ponents added by current work). 75

5.8 Sketch of our framework (input: C code). 76

5.9 Handling of maxiter . 78

5.10 Example of reaching definitions . 79

5.11 MCU containing a processor, SRAM, embedded Flash, and programmable

I/O peripherals . 80

5.12 Worst-case lifetimes of static store instructions for write-light work-

loads from the Mälardalen benchmark-suite: the X and Y axes respec-

tively represent the write occurrences and their corresponding worst-

case lifetime in cycles at 40 MHz. Two duration thresholds are made

explicit along the Y axis (26.5 µs and 3.24 s). 82

5.13 Worst-case lifetimes of static store instructions for write-light work-

loads from the Mälardalen benchmark-suite: the X and Y axes respec-

tively represent the write occurrences and their corresponding worst-

case lifetime in cycles at 40 MHz. Two duration thresholds are made

explicit along the Y axis (26.5 µs and 3.24 s). 83

5.14 Worst-case lifetimes of static store instructions for write-intensive work-

loads from the Mälardalen benchmark-suite: the X and Y axes respec-

tively represent the write instructions and their corresponding worst-

case lifetime in cycles at 40 MHz. Two duration thresholds are made

explicit along the Y axis (26.5µs and 3.24s). 84

5.15 Worst-case lifetimes of static store instructions for write-intensive work-

loads from the Mälardalen benchmark-suite: the X and Y axes respec-

tively represent the write instructions and their corresponding worst-

case lifetime in cycles at 40 MHz. Two duration thresholds are made

explicit along the Y axis (26.5µs and 3.24s). 85

5.16 Lifetime distribution in sqrt for different values of MAXITER (i.e., N) . 86

xii

5.17 Energy savings based on Tables 5.3 and 5.2 setup w.r.t. a 4.27 yr STT-

RAM memory . 88

5.18 Plots showing how many times each static store instruction has been

executed (NW) and how many times the stored value has been read

(NR), before getting rewritten. X, Y-left and Y-right axes respectively

correspond to store identifiers, lifetimes in cycles and thresholds for

NR and NW. 89

5.19 Plots showing how many times each static store instruction has been

executed (NW) and how many times the stored value has been read

(NR), before getting rewritten. X, Y-left and Y-right axes respectively

correspond to store identifiers, lifetimes in cycles and thresholds for

NR and NW. 90

5.20 Plots showing how many times each static store instruction has been

executed (NW) and how many times the stored value has been read

(NR), before getting rewritten. X, Y-left and Y-right axes respectively

correspond to store identifiers, lifetimes in cycles and thresholds for

NR and NW. 91

5.21 Plots showing how many times each static store instruction has been

executed (NW) and how many times the stored value has been read

(NR), before getting rewritten. X, Y-left and Y-right axes respectively

correspond to store identifiers, lifetimes in cycles and thresholds for

NR and NW. 92

xiii

List of Tables

3.1 Example thermal factors ∆ for a range of retention times at 300K [102] 21

3.2 Some important approaches for minimizing/avoiding write operations 24

3.3 Some important approaches for mitigating the cost of writes at archi-

tectural level . 25

3.4 Some important approaches at circuit-level 29

4.1 Relative energy cost of write/read in literature 48

4.2 32 KB SRAM and STT-RAM memory estimation with NVSim 48

4.3 Evaluations of dedicated kernel: execution of original code with full

SRAM L1 cache (ref.); execution of original and optimized codes with

full STT-RAM L1 cache. 50

4.4 Number of loads in Rodinia benchmarks profiled with gem5 before

and after optimization (only stores with 60 % silentness probability are

transformed). 51

4.5 Number of stores in Rodinia benchmarks profiled with gem5 before

and after optimization (only stores with 60 % silentness probability are

transformed). 52

4.6 Energy gain projection w.r.t. specific NVM technologies. 53

4.7 Fraction of silent stores (strict and relaxed) at selected silentness thresh-

olds – Rodinia/myocyte) . 61

5.1 Two 512 KB NVM memory retention times [45] 72

5.2 4 MB NVM memory retention times [106] 86

5.3 32 KB NVM memory retention times [106] 87

1

Chapter 1

Resumé

La consommation énergétique est devenue un défi majeur dans les domaines de

l’informatique embarquée et haute performance. Différentes approches ont été étudiées

pour résoudre ce problème, entre autres, la gestion du système pendant son exécution,

les systèmes multicœurs hétérogènes et la gestion de la consommation au niveau des

périphériques.

Cette étude cible les technologies de mémoire par le biais de mémoires non

volatiles (NVMs) émergentes, qui présentent intrinsèquement une consommation

statique quasi nulle. Cela permet de réduire la consommation énergétique statique,

qui tend à devenir dominante dans les systèmes modernes. L’utilisation des NVMs

dans la hiérarchie de la mémoire se fait cependant au prix d’opérations d’écriture

coûteuses en termes de latence et d’énergie.

Dans un premier temps, nous proposons une approche de compilation pour at-

ténuer l’impact des opérations d’écriture lors de l’intégration de STT-RAM dans la

mémoire cache. Une optimisation qui vise à réduire le nombre d’opérations d’écritures

est implémentée en utilisant LLVM afin de réduire ce qu’on appelle les silent stores,

c’est-à-dire les instances d’instructions d’écriture qui écrivent dans un emplacement

mémoire une valeur qui s’y trouve déjà. Cela rend notre optimisation portable sur

toute architecture supportant LLVM. La validation expérimentale montre des ré-

sultats prometteurs selon le niveau de silentness des instructions d’écritures dans

les benchmarks étudiés. Certaines considérations de conception sont analysées au

niveau de la compilation et de la microarchitecture afin de tirer le meilleur parti de

l’optimisation.

Le principe de l’implementation est inspiré par le travail initial de Lepak et al. [54]

sur l’élimination des silent stores à travers des mécanismes matériels, pour améliorer

le speedup sur une architecture monoprocesseur et réduire le trafic sur le bus de

données sur une architecture multiprocesseur. Nous considérons une variante de

compilation de cette optimisation. Notre approche consiste à transformer un code

2 Chapter 1. Resumé

donné en insérant des vérification de silentness avant chaque operation d’écriture qui a

été identifiée comme potentiellement silent, comme décrit sur la Fig.1.1. La vérification

comprend les instructions suivantes:

1. une instruction de lecture à l’adresse de l’écriture,

2. une instruction de comparaison, pour comparer la valeur écrite à la valeur déjà

écrite,

3. une branche conditionnelle pour ignorer l’opération d’écriture si nécessaire.

1 s t o r e @x = val

1 load y = @val

2 cmp val , y

3 bEQ next

4 s t o r e @x , val

5 next :

(a) original (b) transformé

FIGURE 1.1: Élimination des silent stores: le code d’origine ecrit val à l’adresse de x; Le code
transformé charge d’abord la valeur à l’adresse x et la compare à la valeur à écrire. Si elle est
égale, l’exécution du store est annulée.

Nous avons implémenté la transformation ci-dessus dans LLVM en utilisant la

représentation intermédiaire du code, décrit sur la Fig.1.2. L’approche est accomplie

en deux étapes : un profiling des silent stores basé sur les accès mémoire observés,

suivi par l’application de l’optimisation uniquement sur les silent stores qui sont

silent à une certaine probabilité donnée et qui exprime combien de fois une opération

d’écriture est silent. Une opération d’écriture qui est silent et qui est souvent exécutée

aura un haut niveau de silentness et sera donc bénéfique pour une telle optimisation.

FIGURE 1.2: Implementation de l’optimization dans LLVM

Cette approche est validée dans la suite de benchmarks de Rodinia et des réduc-

tions significatives d’énergie dynamique de la mémoire (jusqu’à 42%) sont observées

Chapter 1. Resumé 3

en fonction des charactéristiques des programmes et de la technologie NVM. La

figure 1.3 représente le gain énergétique de deux programmes Rodinia.

(A) backprop (B) bfs

FIGURE 1.3: Gain d’énergie en fonction du seuil de silentness des applications Rodinia et
de leur rapport r = αW/αR associé, où αW et αR représentent respectivement les couts des
opérations d’écritures et de lectures.

Dans un second temps, nous proposons une approche qui s’appuie sur l’analyse

des programmes pour estimer des pire temps d’exécution partiaux , dénomés δ-WCET.

À partir de l’analyse des programmes, δ-WCETs sont déterminés et utilisés pour

allouer en toute sécurité des données aux bancs de mémoire NVM avec des temps

de rétention des données variables. L’analyse δ-WCET calcule le WCET entre deux

endroits quelconques dans un programe, comme entre deux blocs de base ou deux

instructions. Ensuite, les pires durées de vie des variables peuvent être déterminées

et utilisées pour décider l’affectation des variables aux bancs de mémoire les plus

appropriées.

L’implementation de cette partie a été faite sur Heptane, comme décrit sur la

Fig.1.4, qui est un outil d’estimation statique de WCET. À partir d’un CFG, Heptane

génère un problème ILP suite à une série d’analyses. Ce problème ILP est ensuite

résolu en utilisant un solveur comme Cplex ou lp_solve. Le concept de notre approche

se base sur l’utilisation du def-use (reaching definitions) qui permet d’identifier pour

une opération d’écriture, toutes les opérations de lecture qui lui correspondent. Cela

permet de construire un sous-graphe du CFG initial du programme. Ce sous-graphe

représentera par la suite le graphe que Heptane va traiter et un nouveau problème

ILP est généré pour le calcul du δ- WCET.

Notre approche est validée dans la suite de benchmarks de Mälardalen et des

4 Chapter 1. Resumé

FIGURE 1.4: Outil Heptane étendu avec l’analyse δ-WCET.

réductions significatives d’énergie dynamique de la mémoire (jusqu’à 80% et 66% en

moyenne, comme présentés sur Fig.1.5) sont observées en fonction des charactéris-

tiques des programmes.

FIGURE 1.5: Économies d’énergie basées sur deux configurations différentes par rapport à
une mémoire STT-RAM ayant une non-volatilité de 4,27 années.

5

Chapter 2

Introduction

2.1 Context and problematic

The trade-off between performance and energy consumption is one of the most chal-

lenging issues in embedded systems and high-performance systems. The ideal design

would be a design providing the best computing performance while reducing as

much as possible the energy consumption. As the integration of new functionalities

requires high performance, the number of cores started increasing to meet the require-

ments. Advanced cache memory architectures including several levels have been a

way to hide memory latency and to enable fast memory accesses, improving thus

the performance. The current conventional memory technology used for both cache

memory and registers is SRAM because of the short data access latency it provides

compared to other technologies. However, as technology scales down, the leakage

power in CMOS technology of the widely used SRAM-based cache gets increased,

which is a major issue to energy-efficiency. An energy-efficient system refers in this

work to a system where the amount of energy (in Joules) used by a program to

achieve a computation is minimized. Hence, we don’t consider the conventional

definition which is the number of flops/watt for HPC systems or MIPS/watt.

Emerging Non-Volatile Memories (NVMs) are technologies that envisage address-

ing the energy consumption issue in future systems. In contrary to the traditional

memory technologies that are volatile such as SRAM and DRAM, NVMs present

prominent opportunities in favor of power consumption reduction by their almost

zero leakage power and their non-volatility. Nevertheless, these emerging NVMs

have shown critical drawbacks as well.

In the following, the challenges facing the conventional memory technologies

are introduced. In addition, the challenges facing the emerging NVMs are presented.

In Section 2.2, the objectives of this thesis are presented and in Section 2.3, the

contributions are briefly presented.

6 Chapter 2. Introduction

2.1.1 Challenges facing traditional memory technologies

Traditional memories such as SRAM, DRAM and Flash have faced during the last

years critical challenges related to what modern computing systems required: high

performance, high storage density and low power. Memory system has become an

important contributor in the overall energy consumption of modern on-chip archi-

tectures. As the traditional processor-memory gap is continuously increasing, which

refers to the growing increase in number of processor cycles to get data from off-

chip memory into the CPU, the imbalance between processor and memory speed is

currently a drawback in modern computer system performance. The improvement

of processor speed is much faster than the DRAM’s one. The performance of the

processor-memory interface is defined by two parameters: the latency and the band-

width. The latency is the time between the memory request and its reply (request

service), while the bandwidth, also called throughput, is the rate at which data is

transferred to or from the memory system. The problem of the growing performance

gap between the processor and DRAM is a latency problem. In order to deal with it,

cache memory was introduced between the microprocessor and the memory based

on SRAM, as a way to hide memory latency.

SRAM is widely used in on-chip memories close to the CPU, such as Scratchpad

Memory (SPM), L1 cache and L2 cache. It is characterized by its rapid access latency

less than 10 ns and by its endurance (number of write operations) which can go

up to 1018. Modern high performance Chip Multiprocessor (CMP) systems include

large on-chip cache hierarchies, e.g., L1, L2, L3,... cache levels, as illustrated in Figure

2.1. Since SRAM suffers from the leakage power that makes it an energy hungry

technology, an important part of the overall energy consumption comes from the

multi-level on-chip cache hierarchy. In fact, as technology scales down, the leakage

power in CMOS technology of the widely used SRAM-based cache gets increased,

which degrades the system energy-efficiency. This motivates the need of efficient

memory power management techniques able to address the issue.

Researches about the emerging NVM technologies have made a significant progress

in recent years. With the attractive features of these emerging technologies, NVMs

have the potential to replace the traditional memory technologies. Their high storage

density, low leakage and scalability, make them very good candidates to replace the

application of conventional SRAM, DRAM and Flash.

2.2. Thesis objectives 7

FIGURE 2.1: Memory hierarchy model

2.1.2 Challenges facing emerging NVMs technologies

Although many of the emerging NVM technologies are considered as mature tech-

nologies, they still suffer from an important downside which is their expensive write

operations. Writing on an NVM is consuming both in latency and energy. Hence,

this could neutralize the static energetic gain obtained thanks to the low leakage of

such technologies. Therefore, the application of NVMs for on-chip memory needs

effective techniques for mitigating their costly write operations in order to take advan-

tages of NVMs features. Many previous works have proposed to employ new NVM

technologies, such as PCM and STT-RAM, to replace the application of conventional

SRAM, DRAM and Flash. Many approaches studied the application of STT-RAM

and PCM in different ways: fist-level cache, middle or last level cache, hybrid caches

with different technologies at the same cache level, e.g SRAM + STT-RAM, or at

different cache levels, e.g SRAM(L2)+STT-RAM(L3). Different cache management

techniques for energy saving have been proposed addressing the issue of expensive

write operations: minimizing/avoiding the number of writes, cache partitioning,

reducing refresh operations...

2.2 Thesis objectives

Through this thesis, we want to leverage the role of compiler optimizations and

software analysis to take advantage of the NVMs features, mainly their low leakage.

The current work aims to fill the gap between known compile-time techniques and

successful NVM integration in upcoming energy-efficient computer architectures.

Compilers, traditionally, are not directly exposed to energy aspects. However,

with all the weight given to energy consumption, it is worthy to investigate how the

8 Chapter 2. Introduction

compiler optimizations could have tremendous impacts on the overall energy con-

sumption. Energy considerations are relatively recent in compilation, which is tradi-

tionally focusing more on size and speed. As the main factor for activity on processor

and memory systems, software has a significant effect on the energy consumption

of the entire system. Still, developing new power-aware compiler optimizations and

combining them with performance-oriented compiler optimizations is the focus of

several researches. As software execution corresponds to performing operations on

hardware, as well as accessing and storing data, it requires power dissipation for

computation, storage and communication. Beside the fact that the energy consumed

during execution is very important, reducing the code size and thus, the storage

cost of a program, is the classical goal of compilers. The energy cost of executing a

program relies on the machine code and the target machine. Therefore, for a target

architecture, energy cost is bound to machine code and consequently to compilation.

Hence, it is the compilation process itself that strikes energy consumption.

Traditional optimizations on SRAM-based memories such as common subexpres-

sion elimination, partial redundancy elimination, silent stores elimination or dead

code elimination, increase the performance of a program by reducing the computa-

tions during program execution [79, 2]. Memory optimizations play with latency and

data placement. Optimizations such as loop tiling and register allocation try to keep

data closer to the processor in order be accessed more faster. Memory optimizations

contribute also in reducing energy consumption. Loop tiling tries to keep a value in

an on-chip cache instead of an off-chip memory and register allocation optimization

try to allocate data in a register instead of the cache. Both techniques allow to save

power/energy due to reduced switching activities and switching capacitance [39].

In the wake of what was said above, the main directions involved in this thesis

are related to compilation opportunities and software analysis, as the following:

• Evaluating the use of NVM-based cache memory: can we replace the SRAM-

based caches by NVM-based caches? How traditional optimizations that have

shown interesting results on SRAM-based caches, will behave with these new

emerging technologies?.

• Energy-efficiency improvement by addressing the asymmetric nature of NVM’s

access: read and write latencies are asymmetric and write operations have an

energetic cost higher than the SRAM’s one. To mitigate this drawback, the

number of write operations on NVM should be reduced.

2.3. Contributions 9

• Reducing energy consumption via retention time relaxation: the cost of write

operation (latency and energy) is related to the retention time which is the non

volatility time. The higher is the retention time, the higher is the cost of a write

operation. We studied a multi-retention NVM that has different banks with

different retention times.

2.3 Contributions

In this work, we address the general question of improving system energy-efficiency

by applying compile-time analysis and optimization techniques in presence of NVMs

(here, Spin Transfer Torque RAM – STT-RAM, since STT-RAM are quite mature as test

chips already exist [33, 81] and show reasonable performance at device level compared

to SRAM) within memory hierarchy. The NVMs properties offer complementary

advantages for meeting the performance and power consumption requirements.

We explore compile-time analyses and optimization and software analysis, as a pos-

sible alternative to leverage the low leakage current inherent to emerging NVM

technologies for energy-efficiency. A major advantage is the flexibility and portability

across various hardware architectures enabled by such an approach, compared to

the hardware-oriented techniques found in literature. Our proposal is inspired by

some existing techniques such as the silent store elimination technique introduced by

Lepak et al. [55] and worst-case execution time analysis techniques [113].

The two main contributions are considered as follows:

• As writes on NVMs are generally more expensive than reads, we advocate a

compile-time optimization by consistently reducing the number of writes on

memory. Here, writes identified as redundant are eliminated, i.e.: when a strictly

or approximately identical value is overwritten in the same memory location,

respectively referred to as strict and relaxed silent stores. We discuss the effective-

ness of this first direction from the architecture and compiler viewpoints, in "R.

Bouziane, A. Gamatié, E. Rohou. How could compile-time program analysis

help leveraging emerging NVM features?. EDIS 2017" [11], see Chapters 4 and 5

and "R.Bouziane, A.Gamatié, E.Rohou. Compile-Time Silent-Store Elimination

for Energy Efficiency: an Analytic Evaluation for Non-Volatile Cache Memory.

RAPIDO’18" [12], see Chapter 4.

• Given the possibility of relaxing the data retention time of NVMs, we leverage

a design-time analysis on the lifetime of program variables so as to map them

on NVM memory banks with customized retention capacities. This enables to

10 Chapter 2. Introduction

accommodate NVM features with program execution requirements while favor-

ing energy-efficiency, in "R. Bouziane, A. Gamatié, E. Rohou. Energy-Efficient

Memory Mappings based on Partial WCET Analysis and Multi-Retention Time

STT-RAM. RTNS’18" [13], see Chapter 5.

2.4 Outline

The reminder of this thesis is organized as follows:

In Chapter 3, we review the issue of energy consumption in traditional technolo-

gies and in the emerging NVMs.

In Chapter 4, we present our silent stores elimination approach that eliminates

the execution of silent stores in a program.

In Chapter 5, we present our worst-case data lifetimes methodology to allocate

each store in a program to the appropriate bank in multi-retention and multi-bank

NVMs.

Finally, in Chapter 6, we present a conclusion and some perspectives.

11

Chapter 3

Energy consumption in today’s

computing systems

3.1 The issue of energy consumption

The performance gap between processor’s performance and memory speeds has

been constantly growing in modern computer systems. State-of-the-art processors

from both high-performance computing domain (e.g., Intel Xeon) and embedded

computing domain (e.g., ARM Cortex-A57 processor) are able to provide their target

applications with high on-chip compute power. At the same time, implemented

memory systems do not show similar improvements as the cost of the access to usual

off-chip main memory is hardly mitigated. This is often referred to as the memory

wall problem in literature. The design and management of the memory system,

from registers to remote memories hosted on input/output devices, is therefore

an important challenge to address for enabling high system performance. Figure

3.1 illustrates the typical access latency growth across the memory hierarchy by

considering the lmbench benchmark [72]. Here, as long as the memory accesses reach

larger size memories (e.g., main memory), the duration of data retrieval increases

accordingly.

Different approaches can be considered for addressing the performance issue

related to the memory system. The organization of the memory hierarchy into mul-

tiple levels reduces as much as possible the access to the memory levels requiring

high latency, e.g., the main memory. Software-level techniques can also mitigate the

aforementioned memory access bottleneck. In particular, compile-time optimizations

contribute in improving data locality in programs. Typically, it is the case of loop

tiling or loop fusion transformations [4], which favor a majority of accesses to lower

cache levels such as L1 or L2 caches. More generally, compilation techniques aim to

improve the performance of programs by reducing as much as possible the usual

12 Chapter 3. Energy consumption in today’s computing systems

FIGURE 3.1: Typical memory access latency (Intel Xeon i7-5600U, 2.6 GHz).

costly memory accesses.

Beyond the performance issue pointed out previously regarding the memory

access, it is obvious that the energy-efficiency of a system is also concerned. Indeed,

higher access latency inevitably induces higher dynamic and static power consump-

tion. The mitigation of the memory access bottleneck is therefore beneficial to the

system energy-efficiency. On the other hand, as the static power consumption is

becoming dominant over the dynamic power consumption in advanced chip technol-

ogy nodes, an aggressive power reduction can be reached by considering memory

technologies such as NVMs. A main advantage of NVMs is that they have a quasi-

zero static power consumption thanks to their negligible leakage current. Therefore,

potential optimization techniques for NVMs should mainly target their dynamic

activity, characterized by their high read/write latency and power consumption,

compared to classical SRAM and DRAM technologies. While it is a commonplace to

consider quasi-similar costs for read and write accesses in the latter technologies, it is

not the case with NVMs where the cost of a write often is several times bigger than

that of a read. The gap about these costs varies according to the NVM technology

parameters, which determine their degree of non volatility [101]. As a matter of fact,

decreasing the data retention time of NVMs reduces the latency and energy related

to their access. In addition, it decreases the gap between the read/write costs.

3.2 Dealing with energy consumption issue

The techniques for managing power consumption are involved at different levels.

Although it has been studied for a long time in hardware, energy optimization is

more recent in software. In the following, some memory and compiler optimizations

are presented, followed by other techniques applied at the architectural level and

circuit-level. For sake of brevity, only few works are cited here. The objective of this

3.2. Dealing with energy consumption issue 13

section is to provide an overview of the existing techniques without covering the

details.

3.2.1 Compiler optimizations

At the software-level, many directions have been conducted into compiler techniques.

Yang et al. [117] studied the contribution of compiler optimizations to energy re-

duction. They investigated the impact of low-level loop optimizations; such as loop

unrolling and software pipelining, and high-level loop optimizations; such as loop

permutation and tiling, in terms of performance and power trade-offs. They showed

that loop unrolling reduces execution time through effective exploitation of ILP from

different iterations and results in energy reduction. Loop transformation such as loop

permutation, loop tiling and loop fusion contribute significantly to energy reduction,

by reducing the total execution time and the total main memory activities (due to

improved cache locality).

Kandemir et al. [41] studied the effect of loop transformations in multi-bank

memory architectures with low-power operating modes. They investigated how

these transformations can be tuned to take into account the banked nature of the

memory structure and the existence of low-power modes. They implemented three

loop transformation techniques (loop fission/fusion, linear loop transformations and

loop tiling) adapted to multi-bank memory. They showed that the modified loop

transformations result in large energy savings in both cacheless and cache-based

system.

Ştirb et al. [125] presented a new loop optimization called loop fusion designed for

LLVM and studied its impact on both performance and energy consumption. Loop

fusion merges two successive loops by adding the content of the second loop into the

first loop and deleting the second loop. The two loops must have the same number

of iterations and there should be no code between the two loops. Moreover, there

should be no data dependencies between the two loops. They showed that the fusion

of two loops cuts in half the number of threads that would be otherwise required to

execute them. By decreasing the number of threads, the parallelization overhead is

reduced, thus the energy consumption is decreased.

Mehta et al.[73] investigated the effect of loop unrolling, software pipelining and

recursion elimination on CPU energy consumption. Then, they proposed a novel

compiler technique that reduces energy consumption by proper register labeling

during the compilation phase. The idea behind this technique is to reduce the energy

of the processor by reducing the energy of the instruction register and the register file

14 Chapter 3. Energy consumption in today’s computing systems

decoder by encoding the register labels such that the amount of switching in those

structures is minimized.

Ramanujam et al.[95] addressed the problem of estimating the amount of memory

needed for transfers of data in embedded systems. Their technique estimates the

number of distinct array accesses and the minimum amount of memory in nested

loops, and reduces this number through loop-level transformations.

3.2.2 Dynamic voltage and frequency scaling (DVFS)

DVFS is a technique for altering the voltage and/or frequency of a computing system

based on performance and power requirements. For CMOS circuits, dynamic power

is related with voltage and frequency as P = C × V2 × f where C is the effective

load capacitance,V the supply voltage and f the clock frequency. Thus, by changing

the voltage and frequency, the power dissipation of the processor can be managed,

according to workload at run-time to reduce dynamic power and save energy.

Hua et al. [31] studied saving energy in embedded systems using DVFS. Since

supporting a large number of voltage levels causes overhead, their approach inves-

tigated the optimal number of voltage levels and their values to implement on the

multiple-voltage system for achieving energy efficiency. They showed that systems

with 3 or 4 voltages are almost as systems with more voltage levels. DVFS technique

can be applied to scheduled applications for energy reduction. DVFS uses slack times

in the schedule to slow down processes and save energy.

In real time systems, DVFS technique is strongly related to tasks scheduling. The

timing deadlines must be respected. Since reducing the frequency will lead to an

increase in the execution time, which may make a task not finishing its execution

before its deadline. Hence, many works have studied power-aware scheduling based

techniques. Kianzad et al. [47] presented a framework called CASPER (combined as-

signment, scheduling, and power-management) which is based on genetic algorithm

to integrate task scheduling and voltage scaling under a single iterative optimiza-

tion loop. Their technique generates a schedule such that deadline constraints are

respected and the power consumption is minimized and distributes the slack time

proportionally to different tasks.

3.2.3 Power modes

In embedded systems, a set of operating modes is provided in order to save energy.

Different modes consume different amount of power and have different transition

time to return back to the normal mode. The lower is the power mode, the higher is

3.2. Dealing with energy consumption issue 15

the transition time and vice versa. Therefore, switching from one mode to another

should be done carefully. Otherwise, the transition time may have a negative impact

on systems with timing constraints.

Li et al. [56] proposed an approach for modeling and selecting the power modes

for the optimal system-power management of embedded systems under timing and

power constraints. Their approach determines the schedule of mode transitions such

that the system can meet its power and timing constraints.

Niu et al. [80] proposed a technique to save both leakage and dynamic energy

in hard real-time system scheduled by the earliest deadline first (EDF) strategy.

To balance the dynamic and leakage energy consumption, higher-than-necessary

processor speeds may be required when executing real-time tasks, which can result

in a large number of idle intervals. In order to use these idle times, they proposed

a technique that can effectively merge these scattered intervals into larger ones

by making the coming tasks delayed as much as possible, without causing any

deadline miss. Large idle intervals lead to reduced mode transition overhead, since

the processor can stay in either idle or active state continuously for longer time.

3.2.4 Microarchitectural techniques

At the architectural level, Kaxiras et al.[44] presented a method to reduce cache

leakage energy consumption by turning off cache lines that likely will not be used

again. The authors were able to reduce L1 cache leakage energy by 5x for certain

benchmarks with no overhead impact on performance. Zhang et al. [120] proposed

a highly-configurable cache architecture for facilitating dynamic reconfiguration to

save energy in embedded systems. The cache can be configured by software to be

direct-mapped, two-way, or four-way set associative, using a technique they call way

concatenation, having very little size or performance overhead. They showed that

the proposed cache architecture reduces energy caused by dynamic power compared

to a way-shutdown cache.

Hajimiri et al. [25] presented cache reconfiguration and code compression to

improve both performance and energy efficiency of embedded systems. For a single-

level cache hierarchy, their technique carries out an exhaustive research for the best

configuration to minimize energy consumption though an exploration of the cache

by varying different parameters such as line size, associativity and total size; and

simulating each one of the resultant configuration. The code compression scheme is

combined with cache reconfiguration, since code compression improves performance

16 Chapter 3. Energy consumption in today’s computing systems

by reducing memory traffic and bandwidth usage. Hence, the performance loss due

to the cache reconfiguration can be neutralized.

Tsai et al.[107] proposed a memory structure called Trace Reuse (TR) Cache to

serve as an alternative source for instruction delivery. Through an effective scheme

to reuse the retired instructions from the pipeline back-end of a processor, the TR

cache presents improvement both in performance and power efficiency by achieving

a higher instruction rate.

Some researchers have used scratchpad memory for saving energy in embedded

systems. Scratchpad memory refers to on-chip SRAM that is mapped into an address

space disjoint from the off-chip memory but connected to the same address and data

buses. Compared to off-chip memory, both cache and scratchpad allow much faster

access. The main difference between the cache and scratchpad is that the cache access

may lead to either hit or miss, while the scratchpad guarantees a single-cycle access

time. Steinke et al. [103] proposed a new software technique which supports the

use of an on-chip scratchpad memory by dynamically copying program parts into it

and then executes the program from the scratchpad itself. This reduces the access to

cache and therefore leads to saving of energy. The set of selected program parts are

determined with an optimal algorithm using integer linear programming.

Benini et al. [7] presented their design of application specific memory to save

energy in embedded systems. Their technique consists on mapping most frequently

accessed locations onto a small memory (ASM). This small memory can be placed

on-chip and be very close to the processor, thus, the access to it will cost less than ac-

cessing large memory. Their technique does not use cache. The use of such a memory

instead of a traditional cache is advantageous because memory accesses become less

energy consuming. The memory architecture that implements the proposed scheme

exploits an ad hoc decoder that maps processor addresses onto ASM addresses. Such

a decoder manages the communication with the processor by signaling whether

or not the current address is accessing an ASM location. Their local memory and

decoding logic ensure that most frequently accessed data are stored in a small number

of contiguous memory addresses.

3.2.5 Circuit level techniques

At the circuit-level, Powel et al.[91] proposed an approach to reduce the leakage

energy dissipation in instruction caches. They propose, gated-Vdd, a circuit-level

technique to gate the supply voltage and reduce leakage in unused SRAM cells.

Ye et al.[119] developed a method of transistor stacking in order to reduce leakage

3.3. Energy consumption issue in emerging NVMs 17

energy consumption while maintaining high performance. Leakage reduction is

achieved with minimal overheads in area, power and process technology. Lee et al.[53]

proposed a new method that uses a combined approach of sleep-state assignment

and threshold voltage (Vt) assignment in a dual-Vt process. They were the first to

combine these two methods. By combining Vt and sleep-state assignment, leakage

current is reduced since the circuit is in a known state in standby-mode and only

transistors that are off need to be considered for high-Vt assignment.

So far, various directions have been investigated in order to reduce energy con-

sumption on conventional memory technologies. However, the emerging NVMs

technologies with the features of low leakage power and high density, present new

ways of addressing the memory leakage power consumption issue.

3.3 Energy consumption issue in emerging NVMs

In this section, we introduce the characteristics of the emerging NVMs, in particular

STT-RAM and we present some important research directions devoted for energy

consumption in architectures using NVMs.

3.3.1 Quick introduction to NVMs basic features

For the last few decades, computer memory systems have been studied based on

characteristics, such as technology, volatility and speed. The classical memory tech-

nologies that have been traditionally used for their high speed like SRAM for caches

and DRAM for main memory are volatile memories. In the other hand, memories

like magnetic disks for data storage and low speed/low energy flash memory that

are used in embedded systems, are non-volatile memories

With the increasing concern about energy consumption in both embedded and

high-performance systems, new memory technologies have appeared, such as Phase-

Change RAM (PCRAM), Spin-Transfer Torque RAM (STT-RAM) and Resistive RAM

(RRAM), that present prominent features and open new opportunities for improving

the energy-efficiency of computer systems. Indeed, their very low leakage power,

makes them very good candidates for optimized energy consumption, as studied in

both academia and industry [77]. NVMs have zero standby power, high density and

non-volatility. However, they also have the following limitations:

• Relatively long and asymmetric access latencies,

• High dynamic power consumption for write operations,

18 Chapter 3. Energy consumption in today’s computing systems

FIGURE 3.2: Comparison of traditional memory and NVM technologies [122].

• Limited write endurance.

Current NVM technologies have different performance, energy and endurance

properties as shown in Figure 3.2. For instance, PCRAM and RRAM, have limited

endurance that is much lower than SRAM and DRAM. However, with current tech-

nology, STT-MRAM has an endurance similar to SRAM, making it conceivable to

design cache hierarchies in non-volatile technologies, including the first level.

From a comparative view, we observe the following:

• Compared to SRAM and DRAM, PCM and STT-RAM have four main ad-

vantages: higher storage density, lower leakage power, better scalability and

non-volatility,

• Compared to Flash, PCM and STT-RAM have better access performance and

better write endurance,

• PCM has higher storage density and STT-RAM has better access performance

and better write endurance.

Thus, using NVM can enable significantly larger caches which will lead to fewer

cache misses and consequently reduced cache miss rate. Therefore, the NVMs per-

formance will be better than the performance on SRAM-based caches. Using NVMs

can also reduce the leakage energy, hence reducing the total energy consumption.

Since PCM and STT-RAM are presenting prominent features to replace the traditional

memory technologies such as SRAM, DRAM and Flash, many research works have

been studying the usage of STT-RAM in cache memories and PCM in ScratchPad

memories and in main memory.

3.3. Energy consumption issue in emerging NVMs 19

Nevertheless, the emerging NVMs have one drawback which is their high write

overhead in terms of latency and power consumption, especially compared with

their counterpart SRAM. This makes NVMs a priori less favorable for write-intensive

workloads. Therefore, a straightforward use of NVMs in place of SRAM would

inevitably lead to a performance degradation and dynamic power increase that

would in turn become energy-detrimental despite the leakage power saving.

In this work, we focus on a typical emerging NVM technology which is STT-RAM.

STT-RAM uses a Magnetic Tunnel Junction (MTJ) as the memory storage. We focus

on this technology to pursue the rest of this work. Nevertheless, as we mainly address

a common feature to all types of NVMs which is the access asymmetry, we assume

the applicability of our approaches to all NVMs.

Magnetic Tunnel Junction Device

Unlike charge-based memories such as DRAM, STT-RAM uses Magnetic Tunnel

Junction (MTJ) [123] as the information carrier and store data in the form of change

in physical state. Each MTJ contains two ferromagnetic layer, hard layer and free layer,

separated by an oxide barrier layer. The magnetization direction of the hard layer

is fixed, while the one of the free layer can be changed by passing a spin-polarized

current flowing through the MTJ.

When the polarities of the two layers are aligned, which represents the parallel

state, electrons that have a polarity anti-parallel to the two layers (fixed and free) can

move easily through the MTJ, while electrons with the same polarity as the two layers

are dispersed. Inversely, when the two layers have anti-parallel polarities, which

represents the anti-parallel state, electrons are largely dispersed by one of the two

layers, whether their polarity is parallel or anti-parallel, leading to higher resistance.

These low and high resistances are used to represent different logic value, [23].

Based on the current direction, i.e the spin of the electrons in the free layer, the

spin polarity of the free layer will be either parallel or anti-parallel to the hard layer’s

one. Depending on whether the free layer is parallel or anti-parallel to the magnetic

orientation of the hard layer, as shown in Figures 3.3(a) and 3.3(b), respectively, the

applied voltage can lead to low or high current. This is due to the asymmetry of the

current needed to switch the MTJ from the parallel state to the anti- parallel state and

inversely [43].

The transition from the parallel to the anti-parallel state requires more current

than the transition in the other way. Based on this feature, a value (’0’ or ’1’) is stored

in an STT-RAM cell, using the following logic, see Figure 3.3(c):

20 Chapter 3. Energy consumption in today’s computing systems

a) Low resistance b) High resistance c) Equivalent circuit

FIGURE 3.3: Magnetic tunnel junction (a) Parallel state, (b) Anti-parallel state, (c) Equivalent
circuit

• when writing ’1’ into the STT-RAM cell, a positive voltage is applied between

the source-line (SL) and the bit-line (BL), which will therefore produce a high-

resistance state.

• when writing a ’0’ into the STT-RAM cell, a negative voltage is applied between

the SL and the BL, which will therefore produce a low-resistance state.

As the free layer needs no current to maintain its state, MTJs have no inherent

leakage current. The MTJ is usually modeled as a current-dependent resistor in the

circuit schematic.

STT-RAM uses spin transfer torque to change the direction of the free layer by

passing an important and directional write current through the MTJ. The switching

process is managed by a random thermal process, meaning that the free layer could

change state at any time. However, the MTJ magnetic properties and design are

conceived in order to make this event improbable [102]. Performing a write requires

that the write current is maintained for a certain amount of time, to guarantee that

the free layer has changed state.

The thermal stability of the MTJ is the feature that determines the predicted time

of a random bit-flip. The expected time is what we call the retention time. When

the stability is high, the random bit-flips are unlikely to happen which makes write

operations difficult and therefore high currents are required.

The stability is estimated by the thermal factor, ∆ and the retention time T of a

MTJ is determined by ∆, such as:

T =
1
f0

e∆

3.3. Energy consumption issue in emerging NVMs 21

FIGURE 3.4: Relaxing the non-volatility of STT-RAM [102], dotted border is the optimal
scenario and black line is representing the comparison to SRAM

where f0 is the thermal attempt frequency.

For that reason, the thermal instability can lead to data loss which reduces the

retention time. As wee see in Table 3.1, the lower is ∆, the lower is the retention time

which means when the ∆ decreases, the data loss is rapid.

In another part, studies have also shown that the working temperature has also

an impact on data retention time. When the temperature increases, the retention time

decreases exponentially [106]. Increasing the temperature from 300K to 350K allows

to reduce the retention time to less than a month [96].

Figure 3.4 shows the impact of relaxing the retention time on energy and perfor-

mance. Shorter retention times can be obtained by reducing the area of the free layer

of the MTJ, making a significant write power saving as the cost of writing to a cell

becomes less expensive [106].

Therefore, as a write operation to an NVM requires changing the physical state of

the NVM, the cost of this write will be high since it consumes larger time and energy

than a read operation, showing the read/write asymmetry of such technologies. In

the same direction, the write-latency and energy cost of 1 → 0 transition are higher

than that the ones of 0 → 1, leading to 0/1 write asymmetry [9].

Data retention time ∆

10 years 40.29
1 year 37.99

1 month 35.52
1 week 34.04
1 day 32.09
1 hour 38.91

1 minute 24.82
1 second 20.72

TABLE 3.1: Example thermal factors ∆ for a range of retention times at 300K [102]

22 Chapter 3. Energy consumption in today’s computing systems

3.3.2 Dealing with energy consumption issues related to NVM caches

We discuss in this section some important approaches addressing energy consump-

tion of caches designed with emerging NVMs. The common point between these

approaches is to overcome the shortcomings of such technologies. We present here

some compiler-level approaches, followed by architectural-level approaches. Then,

some works that exploit reducing the retention time are presented. Tables 3.2, 3.3 and

3.4 present an overview of different approaches targeting NVMs at different level,

software/compiler, architecture and circuit, respectively.

Software-level optimizations via compiler techniques

Chen et al. [17] proposed an SRAM-STT-RAM hybrid cache design which aims to

minimize the number of writes to the STT-RAM. Their cache management technique

uses the compiler to provide static hints to guide initial data placement such that

the write-intensive data are placed into SRAM and the rest of data are placed into

STT-RAM. Knowing that the compiler hints may be inaccurate due to lack of runtime

information, the authors used hardware-support to correct the inaccurate hints pro-

vided by the compiler. Thus, if a write-intensive block is placed in the STT-RAM, it is

moved to SRAM and replaced by an SRAM block that contains a less write intensive

data.

In hybrid caches, many approaches considered employing migration based policy

to mitigate the drawbacks of NVMs. Migration techniques employ additional reads

and writes to ensure the data movement, therefore penalizing the performance and

energy efficiency of STT-RAM based hybrid cache. For that purpose, Li et al. [62]

proposed a migration-aware compilation for STT-RAM-based hybrid cache, by re-

arranging data layout to reduce the overhead of migrations. In [64], they addressed

this issue through a compilation method called migration-aware code motion where

data access patterns are changed in memory blocks in order to minimize the overhead

of migrations.

Li et al. [65] proposed a compiler-assisted approach, called preferred caching, to

reduce the overhead due to migration in hybrid caches. Their technique consists on

giving migration-intensive memory blocks the preference for the SRAM part of the

hybrid cache. The authors proposed a data assignment technique to improve the

efficiency of preferred caching.

Li et al. [63] proposed two compilation-based approaches to improve the energy

efficiency and performance of STT-RAM-based hybrid cache by reducing the migra-

tion overheads. The first approach, called migration-aware data layout, is proposed

3.3. Energy consumption issue in emerging NVMs 23

to reduce the migrations by rearranging the data layout. The second approach, called

migration-aware cache locking, is proposed to reduce the migrations by locking

migration-intensive memory blocks into SRAM part of hybrid cache. The authors

showed that the combination of these two techniques can reduce furthermore migra-

tions.

Hu et al. [30] presented an approach based on region partitioning in order to

generate optimized data allocation. A program is divided into regions and before

executing each region, a data allocation is generated, which is suitable for the region.

Li et al. [67] proposed a software dispatch, a cross-layer approach to distribute data to

appropriate memory resources based on an application’s data access characteristics.

They presented an SRAM-STT-RAM hybrid cache design to increase cache capacity

and mitigate the limited write endurance problem of STT-RAM. They used compiler

and operating system support to migrate the write intensive data from STT-RAM

to SRAM. The compiler identifies the write reuse patterns of heap data objects such

as linked structures and arrays and inserts instructions to guide the hardware to

perform the migration dynamically.

Hu et al. [29] targeted embedded chip multiprocessors with scratchpad mem-

ory (SPM) and non volatile main memory. They exploited data migration and re-

computation in SPM so as to reduce the number of writes on main memory. Goswami

et al. [22] implemented an SRAM-STT-RAM hybrid share memory in GPU. Using

STT-MRAM in shared memory design, dynamic power, leakage power and area are

reduced. They proposed an additional SRAM based shared memory area that can be

configured using software level APIs to behave as cache or RAM to reduce STT-RAM

access. Using compiler assistance, last SRAM cache eviction data is forwarded to the

next level of memory avoiding STT-RAM.

Li et al. [69] presented a dual-mode STT memory cell to design a configurable L1

cache architecture termed C1C to mitigate read performance barriers with technology

scaling. Guided by application access characteristics discovered through novel com-

piler analyses, the proposed cache adaptively switches between a high performance

and a low-power access mode.

Recently, researchers proposed to improve the write performance of STT-RAM

by relaxing its non-volatility property. To avoid data loss resulting from volatility,

refresh schemes are proposed. However, refresh operations consume additional en-

ergy. Li et al. [61] proposed to reduce the number of refresh operations through

re-arranging program data layout at compilation time. Rodriguez et al.in [97] pre-

sented the steps for designing an STT-RAM-based multi-retention scratchpad and a

24 Chapter 3. Energy consumption in today’s computing systems

customized compiler-based data allocation algorithm. Qiu et al.in [93] presented a

refresh-aware loop scheduling for high performance low power volatile STT-RAM in

which a loop scheduling technique traverse loops in a new direction such that data

lifespan can be shortened.

Yang et al. [68] presented a cross-layer approaches that includes the compiler, op-

erating system, and hardware layer. Cross-layer techniques can extract characteristics

from the application that can be used to deliver the highest possible performance

while minimizing power consumption for systems using NVMs. They described

cross-layer approaches to detect data access and communication patterns within the

applications and use this information to efficiently configure hardware that uses

STT-RAM.

Table 3.2 summarizes the categories of approaches presented here.

Data migration in hybrid caches [63, 30, 29, 105, 62, 64, 22, 17, 67, 65]

Reducing refresh operations [61]

Cache reconfiguration [69, 93, 97]

Cross-layer approach [68]

TABLE 3.2: Some important approaches for minimizing/avoiding write operations

Architecture-level designs

There are a number of studies devoted to energy-efficiency of NVM-based caches. Re-

ducing the impact of their expensive write operations leads to enhance the endurance

of NVMs.

Some approaches addressed the energy-efficiency issue by considering hybrid

cache memories using hardware mechanisms to migrate data between NVM and

SRAM memory blocks. The idea is to keep as many write-intensive data in the

SRAM blocks as possible in order to reduce the number of write operations to the

NVM blocks. Xiaoxia et al. [114] evaluated two types of hybrid cache architectures:

inter cache level hybrid cache architecture, in which the levels in a cache hierarchy

can be made of different memory technologies; and intra cache level hybrid cache

architecture, where a single level of cache can be partitioned into multiple regions

where every region is designed with a certain type of memory technology. They

studied hybrid caches made of combinations of SRAM, eDRAM, MRAM and PCM.

Moreover, they proposed and evaluated low-overhead intra-cache data movement

power-aware policies and their hardware support to both improve cache performance

and reduce energy consumption.

3.3. Energy consumption issue in emerging NVMs 25

Hybrid caches [70, 104, 59, 114]
Cache management techniques [111, 37, 35, 78, 75, 76, 94, 88]

Reducing number of writes to NVMs [38, 118, 52, 1, 86, 23]
Minimizing refresh operations [58, 106]

Addressing 0/1 write-asymmetry [49]
Reducing retention time [36, 106]
Cache reconfiguration [16, 121]

Others [84]

TABLE 3.3: Some important approaches for mitigating the cost of writes at architectural level

Li et al. [59] proposed a novel hybrid cache scheme called Dual Associative

Hybrid Cache which, is capable of effectively mitigating the power dissipation of

the emerging hybrid cache, through exploiting the set-level write non-uniformity.

By organizing the SRAM blocks in the hybrid cache as a semi-independent set-

associative cache, several hybrid cache sets can efficiently share and cooperatively

use their SRAM blocks, along with the appropriate cache management policy, instead

of exclusively using the SRAM blocks in each cache set.

Chen et al. [16] proposed a novel reconfigurable hybrid cache architecture, in

which NVM is integrated in the LLC along with SRAM. The reconfigurable hybrid

cache can be reconfigured by powering on/off SRAM and/or NVM arrays at way

level. Furthermore, they provided hardware-based mechanisms to dynamically re-

configure reconfigurable hybrid cache based on the cache demand. Zhao et al. [121]

proposed a bandwidth-aware reconfigurable cache hierarchy with hybrid memory

technologies to improve the memory system with regard to bandwidth optimization.

Their approach consists of an hybrid cache hierarchy that chooses different memory

technologies to configure each level so that the bandwidth provided by the overall

hierarchy is optimized. They also presented a reconfiguration mechanism to dynami-

cally adapt the cache space of each level based on the predicted bandwidth demands

of different applications, obtained by their prediction engine.

Depending on the behavior of memory access in a program and cache replacement

strategies, a scenario of unbalanced writes to cache blocks may cause some memory

cells to fail earlier than others which leads to shortening the cache lifetime. Since

SRAM has a high write endurance, unbalanced writes do not have any impact. Hence,

the traditional cache management policies cannot be applied directly to NVM-based

on-chip caches because a large intra-set and inter-set variation may exist in the cache

writes. Therefore, the existing wear-leveling techniques are not suitable for NVMs.

Eliminating cache write variation is one of the important problems that was tackled in

the literature to design reliable NVM-based caches. To address this, new wear-leveling

26 Chapter 3. Energy consumption in today’s computing systems

techniques have been proposed which aim to improve NVMs endurance by evenly

distributing the writes to different cache blocks. Intra-set write variation increases if

the associativity increases and it can be larger than inter-set write variation. Hence,

many works have studied intra-set wear leveling techniques.

Wang et al. [111] proposed a new cache management policy that can reduce both

inter and intra-set write variations. Joo et al. [37] developed a trace-driven PCM cache

simulator that reports performance and energy as well as the accumulated number of

writes of each PCM cell. They studied a set of techniques and a set of wear leveling

schemes to design an energy and endurance-aware PCM cache. Jadidi et al. [35]

proposed cache management policies to reduce the writes on an hybrid cache. Each

cache set is composed of a limited SRAM lines and a large number of STT-RAM lines.

SRAM lines are used for frequently-written data and the rarely-written or read-only

ones are targeting the STT-RAM. Using intra-set swapping policies, the authors tried

improving the write utilization of SRAM lines and uniforming the write distribution

over STT-RAM lines within a set. Then by using inter-set policies, the rarely used

SRAM lines of a set are exploited to handle write-intensive data that are kept in

STT-RAM lines of another set.

Mittal et al. [78, 75] presented techniques to increase cache lifetime by reducing

intra-set write variation. The idea behind is to change the physical cache-block loca-

tion of a write-intensive data item within a set to achieve wear-leveling by periodically

flushing a frequently-written data-item. Hence, next time the block can be made to

load into a cold block in the set. Through this, the future writes to that data-item can

be redirected from a hot block (i.e. frequently written) block to a cold block, which

helps to achieve wear-leveling and improve cache lifetime. In another work [76],

Mittal et al. presented a technique called WriteSmoothing for mitigating intra-set

write variation in NVM caches. WriteSmoothing logically divides the cache-sets into

multiple modules. The concept is based on the fact that if the intra-set write variation

in a module is larger than a threshold, then the most frequently written cache ways

in a module are made temporarily unavailable to transfer the write-intensity to other

ways and this leads to wear-leveling which improves the cache lifetime.

Péneau et al. [88] presented an approach that mitigates the drawback of STT-RAM

by exploiting its density to increase LLC cache size and by applying an improved

cache replacement policy to reduce the LLC write-fill operations due to cache misses.

The authors applied the Hawkeye replacement policy which is designed for reducing

cache read misses. They showed that write-fill operations are undesirable sides of

read misses and they are more important than write-back operations in order to

3.3. Energy consumption issue in emerging NVMs 27

improve performance since they are on the critical path to main memory access.

Lin et al. [70] proposed a novel hybrid cache architecture that contains three types

of cache banks: SRAM banks, STT-RAM banks and STT-RAM/SRAM hybrid banks,

to consider the unbalanced write distribution among different cache partitions. Based

on their proposed hybrid cache design, they presented two access-aware policies to

mitigate unbalanced wearout of the STT-RAM region and a wearout-aware dynamic

cache partitioning scheme to dynamically partition the hybrid cache. Quan et al. [94]

proposed a new cache replacement and management policy for an STT-RAM and

SRAM Hybrid L2 cache. The proposed technique replaces the dead cache lines in

SRAM to improve the utilization ratio of SRAM and places frequently-written lines

into SRAM and move out the less-written lines from SRAM as early as possible.

Sun et al.[104] presented a read-preemptive write technique which allows an

SRAM-STT-RAM hybrid L2 cache to get performance improvements and power

reductions. They proposed a write-buffer design to address the long write latency of

L2 STT-RAM cache. The L2 may receive a request from both L1 and write buffer. The

buffer uses a read-preemptive management policy, that makes sure that a read request

gets a higher priority than a write request based on the fact that reads are performance-

critical. They showed that combining the hybrid cache with read-preemptive write-

buffer leads to additional energy saving and performance improvement.

On the other hand, Jung et al. [38] provided an architectural technique that exploits

the fact that there are a significant number of zero-valued data in many applications.

The authors proposed a cache design that appends additional flags in cache tag arrays

and set these additional bits if the corresponding data in the cache line is equal to zero.

In the proposed cache design, they leverage the predominance of zero data to reduce

the large write energy of the STT-RAM cache by not executing write operations on

STT-RAM when the to be written value is zero.

Park et al. [86] proposed a technique to reduce the write activity on a last level

STT-RAM cache. Their approaches is based on dividing the cache line into multiple

partial lines. At L1 cache, a history bit is associated to every partial line, to track

which one has changed. Then, whenever a dirty L1 block is written to last level cache,

only changed partial lines are written. Furthermore, they proposed a read energy

reduction technique exploiting the non-volatility of STT-RAM, to reduce the dynamic

energy. The technique is based on sequential tag-data access. A read operation will

only read the tag values and if it is a hit, then only the selected cache line is accessed.

Azdanshenas et al.[118] proposed a novel coding scheme for STT-RAM last level

cache based on the concept of value locality. Their technique consists on reducing

28 Chapter 3. Energy consumption in today’s computing systems

switching probability in cache by reducing the probability of memory cells being in

logical "1" (high) state and then applying early write termination [124] at circuit level

to eliminate redundant writes.

In order to mitigate the cost of writes, subbank buffers make possible to perform

differential writes [52], where only bit positions that differ from their original contents

are modified on a write. Partial writes enhance memory endurance, providing 5.6

years of lifetime for PCMs. Ahn et al. [1] proposed a novel technique called lower-bits

caches for reducing write activities STT-RAM L2 caches. Based on the fact that upper

bits of data are not changed as frequently as lower bits in many applications, their

approach tries to hide frequent bit changes in lower bits from the L2 cache.

Guo et al. [23] proposed the use of STT-RAM to design combinational logic,

register files and on-chip storage (I/D L1 caches, TLBs and L2 cache). They evaluated

multiple cache designs where STT-RAM-based L1 and STT-RAM-based L2 caches can

have the same capacity/same area as the SRAM caches. The L1 cache is optimized

for write speed while L2 cache is optimized for density and access energy. In order

to hide the write latency of STT-RAM, the authors propose sub-bank buffering that

allows the write operations to complete within each sub-bank. Their results show

that by carefully designing the pipeline, the STT-RAM based design can reduce the

leakage power and maintain the performance level close to the CMOS design.

Li et al. [58] proposed an approach to minimize refresh operations for volatile

STT-RAM, by novel modifications to cache coherence protocol. Jog et al. [36] proposed

the cache revive scheme where instead of refreshing all the cache blocks, a small buffer

is used to temporarily hold cache blocks that have been expired due to the retention

time. Afterward, the most recently used cache blocks are copied back into the cache

and refreshed.

Sun et al.in [106] proposed an L1 cache and LLC designed with STT-RAM bank

with different retention times. The L1 cache is designed with a low retention time

along with a refresh scheme called dynamic refresh scheme (DRS) (using counters

to track the lifespan of cache data blocks) to maintain the data validity and prevent

data loss, while the LLC is designed in a hybrid way with regular and non-volatility

relaxed STT-RAM banks to migrate data from one bank to another. Since the refreshing

involves multiple read/write operations to guarantee that the data is not evicted, an

overhead will limit the impact of reducing the retention time.

To address 0/1 write-asymmetry, Kwon et al. [49] proposed a technique called

AWARE, to reduce the write latency of STT-RAM cache by taking advantage of the

asymmetric write characteristics. Their idea is based on the fact that if all the cells

3.3. Energy consumption issue in emerging NVMs 29

Reducing the number of write operations [124]
Reducing the retention time [101, 102, 36]

Multi-retention NVMs [106]

TABLE 3.4: Some important approaches at circuit-level

in a block are preset to 0, then the 1 → 0 transition is not required and the effective

write latency can be reduced. The AWARE cache design introduces redundant blocks

in each row, and they are preset to the initial state that enables the faster transition.

Hence the write operations performed in these redundant blocks are much faster than

the conventional write scheme. When a write operation occurs, the redundant block

is checked and if it is preset to zero, instead of writing the data to the actual data

block, the data is written to the redundant block and the redundant block is marked

as the data block and the original data block is now marked as the the redundant

block, thus changing the position of data block and the redundant block.

Pan et al.[84] proposed NVSleep, a low-power microprocessor framework that

leverages STT-RAM to implement rapid shutdown of cores without loss of execution

state. This kind of approaches allow to use idle times to save power by turning off

frequently the cores. They presented two implementations of NVSleep: NVSleepMiss

which will turn cores off when last level cache misses make the pipeline stalls for a

certain time and NVSleepBarrier which will turn off the cores when they are blocked

on barriers.

Table 3.3 summarizes the approaches presented here.

Circuit-level approaches

An advantage of using STT-RAM is that its retention time can be traded to improve

the write energy and latency. In order to study the trade-offs between the write cost

and the MTJ’s non volatility, studies have investigated different ways to reduce the

data retention time in order to mitigate the high cost write operations. However,

sometimes, the retention time is shorter than the time for which data blocks must

stay in the cache. Hence, refreshing scheme must take place.

Zhou et al. in [124] proposed a technique called Early Write Termination for

reducing write energy with no performance penalty. It is a write process with the

capability of early termination in case of a redundant write. It is implemented at the

circuit level. Smullen et al. [101] investigated an approach that focuses on technology

level to redesign STT-RAM memory cells. They lower the data retention time in

STT-RAM, which induces the reduction of the write current on such a memory. This

enables in turn to decrease the high dynamic energy and latency of writes.

30 Chapter 3. Energy consumption in today’s computing systems

Smullen et al.[102] proposed an approach to relax the retention time by shrinking

the MTJ planar area. The found that redesigning the MTJ by using a smaller free

layer will help improving the write performance and reduce dynamic energy. They

showed how shrinking the cell surface area of the MTJ can reduce ∆, and consequently

decreases the retention time (the retention time of an MTJ is primarily impacted by

the thermal stability of its free layer, as discussed in Section 3.3.1).

Jog et al.in [36] presented an approach to reduce the retention time of STT-RAM

from 10 years to 56 µs by decreasing the thickness of the free layer and lowering the

saturation magnetization which reduces the thermal barrier of MTJ.

Table 3.4 summarizes the approaches presented here.

3.4 Empirical energy evaluation for STT-RAM caches with

compiler optimizations

0 0 : void kernel_syr2k (i n t N, i n t M,

0 1 : double C[N] [N] , double A[N] [M] ,

0 2 : double B [N] [M])

0 3 : { i n t i , j , k ;

0 4 : f o r (i = 0 ; i < N; i ++) {

0 5 : f o r (k = 0 ; k < M; k++) {

0 6 : f o r (j = 0 ; j < N; j ++) {

0 7 : C[i] [j] += A[j] [k] * B [i] [k] +

0 8 : B [j] [k] * A[i] [k] ;

0 9 : }

1 0 : }

1 1 : }

1 2 : }

FIGURE 3.5: Extract of modified syr2k code.

In order to investigate the use of NVMs in caches, we led an empirical study about

energy efficiency when integrating Spin Transfer Torque Magnetic Random Access

Memory (STT-RAM) technologies [46] in embedded multicore architectures, while

applying loop nest optimization [4] to application code. Magnetic memories are

considered as promising technologies that combine desirable properties such as good

scalability, low leakage, low access time and high density. On the other hand, loop

nest optimization has been extensively studied for decades to improve code quality

w.r.t. its performance. However, current compilers are not tuned for NVM.

3.4. Empirical energy evaluation for STT-RAM caches with compiler optimizations31

In the context of energy consumption, different loop optimizations have been

evaluated individually and collectively, taking into consideration the trade-off be-

tween performance and energy with SRAM cache memories [71, 42, 40]. In this work,

we focused on two transformations that heavily impact the locality of memory ac-

cess: loop tiling and loop permutation, and we study their impact on performance

and energy consumption in the presence of NVM, compared to a baseline scenarios

with full SRAM cache memories. The considered architecture scenarios rely on ARM

Cortex-A15 cores.

3.4.1 Typical loop optimizations: tiling and permutation

We consider the initial code extract1 described in Figure 3.5. This code is a typical

loop nest that performs a dense linear algebra computation called symmetric rank 2k

update. It mainly performs multiplications and additions of the elements from two

input matrices denoted by A and B. The result is stored into the unique output matrix

C.

Note that this code is a modified version of an original version defined in the

Polybench benchmark [90] devoted to numerical computations. The modifications are

deliberately not optimized w.r.t. the loop index ordering. This is solved by applying

one of the loop transformations considered here.

From the code extract specified in Figure 3.5, we derive two variants by applying

loop tiling and permutation to the loop nest defined in the kernel_syr2k function.

Both loop optimizations are considered in parallel versions of this function as shown

in Figure 3.6.

Loop tiling splits the iteration space of a loop into smaller chunks or blocks, in

such a way that the data used in the loop remains in the cache until it is reused.

This leads to splitting large arrays into fine grain blocks, which in turn enables the

accessed array elements to fit into the cache size. For a given loop, finding an optimal

tile size is not trivial as this depends on loop accessed array regions and on the cache

size of the target machine [48]. Figure 3.6a denotes the optimized parallel (by using

OpenMP pragmas) code resulting from loop tiling when applied to kernel_syr2k

function. They are intended for single-core and multicore architectures respectively.

Loop permutation (or interchange) consists in exchanging the order of different

iteration variables within a loop nest. It aims at improving the data locality by

accessing the elements of a multidimensional array in an order according to which

they are available in cache memory (the layout of arrays in C in row-major). Figure

1This code has been obtained from http://perso.ens-lyon.fr/tomofumi.yuki/ejcp2015.

32 Chapter 3. Energy consumption in today’s computing systems

3.6b features optimized parallel code corresponding to kernel_syr2k function after

loop permutation.

To measure the effect of the considered optimizations, the execution time for the

baseline version shown in Figure 3.5 must be relevant enough, i.e., not very small.

Thus, we did an empirical analysis based on an Odroid-XU4 [26] board which inte-

grates an Exynos-5422 System-on-Chip (SoC) [98]. This SoC contains two clusters

of ARM cores, one with four Cortex-A7 and another with four Cortex-A15. For our

experiments, we only used the latter. Given (M, N) = (450, 450) as input parameter

values, the execution time of syr2k is nearly 40 seconds, which is enough for measur-

ing the optimization effects. For the tiling optimization, an exhaustive search yields 9

as the most efficient block size corresponding to the chosen input parameter values.

0 0 : #pragma omp p a r a l l e l f o r p r i v a t e (i , j , k)

0 1 : f o r (t i = 0 ; t i < N; t i +=SI) {

0 2 : f o r (tk = 0 ; tk < M; tk+=SK) {

0 3 : f o r (t j = 0 ; t j < N; t j +=SJ) {

0 4 : f o r (i = t i ; i < t i +SI ; i ++) {

0 5 : f o r (k = tk ; k <tk+SK ; k++) {

0 6 : f o r (j = t j ; j < t j +SJ ; j ++) {

0 7 : C[i] [j] += A[j] [k] * B [i] [k] +

0 8 : B [j] [k] * A[i] [k] ;

(A) After loop tiling in OpenMP (named syr2k-omp-ptiled)

0 0 : #pragma omp p a r a l l e l f o r p r i v a t e (i , j , k)

0 1 : f o r (i = 0 ; i < N; i ++) {

0 2 : f o r (j = 0 ; j < M; j ++) {

0 3 : f o r (k = 0 ; k < N; k++) {

0 4 : C[i] [j] += A[j] [k] * B [i] [k] +

0 5 : B [j] [k] * A[i] [k] ;

(B) After loop permutation in OpenMP (named syr2k-omp-perm)

FIGURE 3.6: Evaluated loop optimization and parallelization.

3.4.2 Experimental setup

This study is conducted with NVSim [20], a circuit-level model for memory perfor-

mance and area. Beyond the classical SRAM, it supports a large variety of NVMs,

including STT-RAM, PCRAM, ReRAM and NAND Flash. Its NVMs models have

been validated against industrial prototypes. NVSim achieves within a reasonable

time an estimation of electrical features of a complete memory chip, including read-

/write access duration in seconds, read/write access energy, and static power. It is

3.4. Empirical energy evaluation for STT-RAM caches with compiler optimizations33

used here to evaluate both SRAM and STT-RAM caches. We set the suitable size,

associativity and technology parameters. In order to make the comparison between

SRAM and STT-RAM more fair, we identified the relevant architectural parameters

that have a significant impact on the efficient utilization of NVMs in a system-on-chip.

In particular, we deal with the question about the choice of the suitable operating

frequency at which data access should be considered in such a memory so as to

minimize its latency penalty. The objective is to compare SRAM to STT-RAM given

the same read latency, ideally. The results of the study have shown that the frequency

that results in identical read latencies for both memory technologies is 1.0 GHz. For

more details, please refer to [87].

Our case study is a 32 KB 4-way associative L1 cache, manufactured with 45 nm

technology. We choose this parameter so as to reflect the state-of-the-art for STT-RAM

technologies [51]. We therefore compare this cache with a 45 nm SRAM cache. The

size and associativity values reflect the actual L1 cache in the Odroid-XU4 mentioned

in Section 3.4.1.

3.4.3 Impact of code optimization on performance and energy

Since the first-level cache L1 is accessed very frequently, it should have reasonable

latencies and write endurance and that is why it has a small size compared to the

last-level cache (LLC) that is designed to reduce off-chip accesses and thus has a

larger size. For this reason, many studies have preferred using NVMs for LLC because

it is more suitable while L1 is designed using SRAM for performance reasons mainly.

Therefore, a pure usage of NVM at L1 cache must be accompanied with low write

latency that requires relaxing the retention time of the NVM.

The idea here behind the conducted experiments is to study the behavior of

the syr2k code versions discussed in Section 3.4.1 while integrating STT-RAM at

different cache hierarchy levels, i.e., L1-instruction cache, L1-data cache, and L2-

cache. We compare the resulting behaviors with the same versions on a full SRAM

cache hierarchy. In this study, we considered four cache hierarchy configurations

in terms of memory technologies: SRAM_SRAM_SRAM, SRAM_SRAM_STT-RAM,

STT-RAM_SRAM_STT-RAM and STT-RAM_STT-RAM_STT-RAM. They respectively

denote a full SRAM cache hierarchy, a cache hierarchy with only L2 cache in STT-RAM,

a cache hierarchy with both L1 instruction and L2 caches in STT-RAM, and full STT-

RAM cache hierarchy. We refer to SRAM_SRAM_STT-RAM and STT-RAM_SRAM_STT-

RAM as hybrid cache hierarchies.

34 Chapter 3. Energy consumption in today’s computing systems

Our experiments have been achieved by using an automated exploration flow,

called MAGPIE [19]. It consists of a combination of three existing tools: NVSim,

gem5 and McPAT. Odroid XU4 have been modeled in gem5 by Butko et al. [14].

We evaluate the performance and energy trade-off of the target code optimizations

through the four cache hierarchy configurations by running programs with the

gem5 cycle-approximate simulator [8] in its detailed mode. gem5 allows us to obtain

detailed statistics of our simulations, e.g., number of cache accesses, cache misses,

cache hits and branch misprediction penalties. The energy consumption is then

estimated by using the NVSim [20] and McPAT [66] tools, based on the statistics

collected from gem5 simulation. NVSim estimates the energy consumption related to

non-volatile components, while McPAT covers the remaining part of the system.

Observations

As shown in Figure 3.7, the programs that take into account code optimizations show

better results in terms of performance/energy trade-off. In full SRAM cache hierarchy,

which is the baseline scenario, we observe in Figure 3.7 that the optimized versions

are better as expected than the non-optimized version, in terms of execution time and

Energy-to-Solution (or EtoS, i.e., the energy consumed for producing the execution

results).

When considering a full STT-RAM cache hierarchy, Figure 3.7 shows the best

EtoS. However, there is an important increase in the execution time of syr2k program.

Again, this is due to the high write operation latency on L1-data and L2 caches.

Yet, in the same figure, we observe that this drawback of NVM is eliminated in the

optimized programs. This means that the application of efficient optimizations on an

NVM-based cache enables better benefit from NVMs.

For hybrid configurations, an overhead is observed in execution time and EtoS,

as depicted in Figure 3.7. Regarding the execution time, this is explained by the

higher write operation latency in the L2 cache. When integrating STT-RAM in both

L1-instruction and L2 caches, the execution time remains the same. This indicates that

using a read-only L1-instruction cache in STT-RAM does not introduce additional

penalty on execution time, but the energy consumption decreases thanks to the

improved leakage power of STT-RAM.

This suggests that applying adequate code optimizations can result in very promis-

ing energy-efficient executions on multicore platforms.

This study shows that the difficulty known for finding the optimal set of opti-

mizations for a piece of code on conventional technologies is also true in the presence

3.4. Empirical energy evaluation for STT-RAM caches with compiler optimizations35

ref-SRAM_SRAM_SRAM
ref-SRAM_SRAM_STTMRAM
ref-STTMRAM_SRAM_STTMRAM
ref-STTMRAM_STTMRAM_STTMRAM
perm-SRAM_SRAM_SRAM
perm-SRAM_SRAM_STTMRAM

perm-STTMRAM_SRAM_STMMRAM
perm-STTMRAM_STTMRAM_STTMRAM
ptiled-SRAM_SRAM_SRAM
ptiled-SRAM_SRAM_STTMRAM
ptiled-STTMRAM_SRAM_STTMRAM
ptiled-STTMRAM_STTMRAM_STTMRAM

E
n

e
rg

y
 (

J)

110

120

130

140

150

160

170

180

190

Execution Time (s)
7 8 9 10 11 12

FIGURE 3.7: Performance/energy trade-off with 4 Cortex-A15 cores operating at 1.0 GHz. The
reference case, denoted as ref-* is the syr2k-omp program. The other programs are optimized
version of syr2k-omp

36 Chapter 3. Energy consumption in today’s computing systems

of NVM: first, the type of memory adds a new dimension to the search space; second,

current compilers have been tuned to optimize for SRAM, not NVM. The produced

code is hence sub-optimal in the presence of NVM.

At this stage of the work, we presented an empirical impact analysis about energy-

efficiency when executing typical compiler-optimized codes on embedded multicore

architectures integrating STT-RAM memory technology. We considered two loop nest

optimizations (tiling and permutation) on ARM Cortex-A15 platforms to show perfor-

mance improvements. At the same time, the significant reduction in leakage power

enabled by STT-RAM compared to SRAM, decreases the overall energy consumption.

At the same time, the performance observed with SRAM has been reasonably pre-

served, only 3.4 % less on the studied multicore platform compared to a system with

a full SRAM cache hierarchy. This has been achieved through a detailed study on the

most favorable core operating frequency. A key insight gathered in this study is that

this gain in energy-efficiency depends on the correlation between NVM technologies

and their operating frequencies. More details about this work is in [87]

3.5 Why advocating software-level techniques for mitigat-

ing the energy-issue on NVMs?

As stated in the previous section, we showed how compiler optimizations have a

significant impact on energy efficiency and can help to exploit further more the

advantages of NVMs while avoiding their disadvantages. Nevertheless, there are

critical issues in replacing traditional memory technologies by NVMs. The approaches

existing in the literature have shown a variety of works done at different levels:

compiler/software, architectural and circuit levels, to mitigate the shortcomings of

NVMs. Although the number of approaches at the architecture-level is significant, the

compiler-level and software analysis approaches are more advantageous. As a matter

of fact, unlike the architectural/circuit level approaches which require the architecture

support, software-analysis and compiler optimizations are portable solutions that

can be used on any type of architecture in the presence of the necessary components.

In this work, we focus on reducing the number of write operations by eliminating

the redundant ones. Whether it is an inter cache level hybrid cache or intra cache level

hybrid cache or a non-hybrid cache, reducing the number of write operations in a

program running on an STT-RAM-based cache (or possibly on any NVM-based cache)

will reduce the energy consumption. From the literature, compiler-based approaches

3.5. Why advocating software-level techniques for mitigating the energy-issue on
NVMs?

37

were often addressing hybrid caches, while reducing the number of write operations

by eliminating them were tackled at the architectural-level and circuit-level.

Reducing the number of write operations by eliminating the redundant ones was

addressed in [124] and implemented at the circuit-level (Early Write Termination) for

STT-RAM. At the compiler-level, there is no such approach. Hence, this approach is

limited by the required architecture support. Therefore, we want to implement it (in

LLVM) to benefit from the portable aspect of a compiler optimization.

In another part, as relaxing the data retention time requires refreshing operations,

some architecture-level and compiler-level approaches tried to reduce the overhead

of refreshing in low retention and multi-retention NVM-based caches. However, from

a software point of view, there is no approach addressing the worst-time required

to retain a certain data. We want a software-analysis able to compute the worst-

lifetime for data that will be written on an NVM. Based on such analysis, which

can be used on any type of architectures designed with multi-banks NVMs with

different retention, we can allocate a write operation to the most appropriate NVM

bank, so that the energy consumed by that write operation is optimized. Although

the trade-off between writing on a low-retention NVM with refresh operations and

writing on high-retention NVMs is not addressed in this work, we suppose having a

multi-retention STT-RAM designed with different retention times and the objective is

to allocate the write operations to a specific bank based on its worst-lifetime obtained

from the software-analysis.

In summary, both approaches are at the compiler/software level. Hence, this

thesis favors a software vision to mitigate the overhead of writes, which is from our

point of view more flexible and portable in terms of applicability since there is no

hardware requirement.

39

Chapter 4

Redundant memory write

elimination

4.1 Introduction

Memory system plays a very important role in performance and power consumption

of computing devices. Previous work already pointed out that the energy related to

the cache hierarchy in a system can reach up to 40% of the overall energy budget of

corresponding chip [21]. As technology scales down, the leakage power in CMOS

technology of the widely used SRAM cache memory increases, which degrades the

system energy-efficiency. Existing memory system management techniques offer var-

ious ways to reduce the related power consumption. For instance, a technology such

as SDRAM has the ability to switch to lower power modes upon a given inactivity

threshold is reached. Further approaches, applied to embedded systems, deal with

memory organization and optimization [85] [6].

With the increasing concern about energy consumption in both embedded and

high-performance systems, emerging non-volatile memory (NVM) technologies, such

as Phase-Change RAM (PCRAM), Spin-Transfer Torque RAM (STT-RAM) and Re-

sistive RAM (RRAM), have gained high attention as they open new power saving

opportunities [77]. Indeed, their very low leakage power, makes them good candi-

dates for energy-efficiency improvement of computer systems. NVMs have variable

performance, energy and endurance properties. For instance, PCRAM and RRAM

have limited endurance compared to usual SRAM and DRAM technologies. STT-

RAM has an endurance property that is close to that of SRAM, making it an attractive

candidate for cache level integration. Nevertheless, a main limitation of NVMs at

cache level is their high write latency compared to SRAM. This can be penalizing,

especially for write-intensive workloads, as it leads to performance degradation, with

a possible increase in global energy consumption despite the low leakage power.

40 Chapter 4. Redundant memory write elimination

We investigate an effective usage of STT-RAM in cache memory such that its in-

herent overhead in write latency can be mitigated for better energy-efficiency. For this

purpose, we revisit the so-called silent store elimination [55], devoted to system perfor-

mance improvement by eliminating redundant memory writes. We target STT-RAM

because it is considered as more mature than similar emerging NVM technologies.

Test chips with STT-RAM already exist [33, 81] and show reasonable performance at

device level compared to SRAM. More generally, the silent store elimination presented

here can be applied to all NVMs for addressing their asymmetric access latencies.

It may be less beneficial for technologies with less asymmetric access latencies, e.g.,

SRAM.

An instance (or occurrence) of a store instruction is said to be silent if it writes

to memory the value that is already present at this location, i.e., it does not modify

the state of the memory. A given store instruction may be silent on some instances

and not silent on others. The silentness percentage of a store instruction therefore

characterizes the ratio between its silent and non-silent instances: high silentness

hence means a larger number of silent store instances.

While silent store elimination has been often developed in hardware, here we

rather adopt a software approach through an implementation in the LLVM com-

piler [50]. A high advantage is that the optimization becomes portable for free, to

any execution platform supporting LLVM: a program is optimized once, and run

on any execution platform while avoiding silent stores. This is not the case of the

hardware-level implementation. Thanks to this flexible implementation, we evaluate

the profitability of silent store elimination for NVM integration in cache memory.

In particular, we show that energy-efficiency improvements highly depend on the

silentness percentage in programs, and on the energy consumption ratio of read-

/write operations of NVM technologies. We validate our approach by exploring this

tarde-off on the Rodinia benchmark suite [15]. Up to 42 % gain in energy is reported

for some applications. The described validation approach is quite fast and relies

on an analytic evaluation considering typical NVM parameters extracted from the

literature.

4.2 Related Work

There are a number of studies devoted to energy-efficiency of NVM-based caches.

We evoked some of them that are implemented at circuit-level and architectural-

level, as presented in Section 3.3.2. In addition, we present here some profiling-based

approaches and an static analysis approach.

4.2. Related Work 41

4.2.1 Profiling-based approaches

We promote in this work a compile-time optimization by leveraging redundant writes

elimination on memory. While this is particularly attractive for NVMs, a few existing

works already addressed the more general question about code redundancy for pro-

gram optimization. In [112], the REDSPY profiler is proposed to pinpoint and quantify

redundant operations in program executions. It identifies both temporal and spatial

value locality and is able to identify floating-point values that are approximately the

same. The data-triggered threads (DTT) programming model [109] offers another

approach. Unlike threads in usual parallel programming models, DTT threads are

initiated when a memory location is changed. So, computations are executed only

when the data associated with their threads are modified. The authors showed that a

complex code can exploit DTT to improve its performance. In [110], they proposed

a pure software approach of DTT including a specific execution model. The initial

implementation required significant hardware support, which prevented applications

from taking advantages of the programming model. The authors built a compiler

prototype and runtime libraries, which take C/C++ programs annotated with DTT

extensions, as inputs. Finally, they proposed a dedicated compiler framework [108]

that automatically generates data-triggered threads from C/C++ programs, without

requiring any modification to the source code.

While the REDSPY tool and the DTT programming model are worth-mentioning,

their adoption in our approach has some limitations: the former is a profiling tool

that provides the user with the positions of redundant computations for possible

optimization, while the latter requires a specific programming model to benefit from

the provided code redundancy elimination (note that the DTT compiler approach

built with LLVM 2.9 is no longer available, and is not compatible with the latest

versions of LLVM). Here, we target a compile-time optimization in LLVM, i.e., silent

store elimination (introduced at hardware level by [55]), which applies independently

from any specific programming model. This optimization increases the benefits NVMs

as much as possible, by mitigating their drawbacks.

4.2.2 Static Analysis approaches

Pereira et al. [89] proposed an approach to statically predict silent stores. The authors

developed a technique that classifies write operations based on syntactic features of

programs. Each store operation is associated to a vector of features. Such features

are then used to develop different types of predictors, which determine if a store

instruction might be silent during its execution.

42 Chapter 4. Redundant memory write elimination

4.3 Silent-store elimination

In this section, we introduce the definition of silent stores and we present the principle

of our implementation. Then, we analyze the factors that help to achieve the best

outcomes of such implementation. We focus on micro-architectural and compilation

features that are in favor of our approach.

4.3.1 Definition and general principle

Silent stores have been initially proposed and studied by Lepak et al. [54]. They sug-

gested new techniques for aligning cache coherence protocols and microarchitectural

store handling techniques to exploit the value locality of stores. Their studies showed

that eliminating silent stores helps to improve uniprocessor speedup and reduce

multiprocessor data bus traffic. The initial implementation was devised in hardware,

and different mechanisms for store squashing have been proposed. Methods devoted

to removing silent stores are meant to improve the system performance by reducing

the number of write-backs. Bell et al. [5] affirmed that frequently occurring stores are

highly likely to be silent. They introduced the notion of critical silent stores and show

that all of the avoidable cache write-back can be removed by removing a subset of

silent stores that are critical.

In our study, the silent store elimination technique is leveraged at compiler-level

for reducing the energy consumption of systems with STT-RAM caches. This favors

portability and requires no change to the hardware. We remind that this technique is

not dedicated only to STT-RAM but to all NVMs. Here, STT-RAM is considered due

to its advanced maturity and performance compared to other NVM technologies. Our

approach concretely consists in modifying the code by inserting silentness verification

before stores that are identified as likely silent. As illustrated in Figure 4.1, the

verification includes the following instructions:

1. a load instruction at the address of the store;

2. a comparison instruction, to compare the to-be-written value with the already

stored value;

3. a conditional branch instruction to skip the store if needed.

4.3. Silent-store elimination 43

1 s t o r e @x = val

1 load y = @val

2 cmp val , y

3 bEQ next

4 s t o r e @x , val

5 next :

(a) original (b) transformed

FIGURE 4.1: Silent store elimination: original code stores val at address of x; transformed
code first loads the value at address of x and compares it with the value to be written, if equal,
the branch instruction skips the store execution.

4.3.2 Implementation

Our compilation process is a middle-end framework. We focused on the compiler in-

termediate representation (IR) shown in Figure 4.2, where we implemented the silent

stores optimization. While this figure describes a generic decomposition into basic

steps, its instantiation in our case only contains two LLVM “passes”, as illustrated in

Figure 4.3.

FIGURE 4.2: Implementation of the optimization in LLVM

Through the first step, we get information about all store instructions that are

present in a program (note that the current version of the optimization handles stores

on integer and floating-point data). For that, we insert new instructions in the IR in

front of every store to check whether the stored valued is equal to the already stored

value. If it is the case, we increment a counter related to this particular store. Once

the first pass is done, we run the application on representative inputs to obtain a

summary reporting how many times the stores have been executed and how many

times they have been silent. We also save their positions in the program so that we

can identify them in the next pass. The output of the first pass is a file that contains

all the characteristics of a store as described in Figure 4.3.

44 Chapter 4. Redundant memory write elimination

In a second step, where we apply the main part of the optimization: we compile

again the source code, taking into account the profiling data. For each store instruction

whose silentness is greater than a predefined threshold, we insert verification code,

as described in Section 4.3.1 and illustrated in Figure 4.1.

FIGURE 4.3: Design of the compilation framework

By working at the IR level we achieve three goals: 1) the source code of the ap-

plication remains unmodified; 2) we do not need to be concerned by the details of

the target processor and instruction set: the compiler back-end and code generator

will select the best instruction patterns to implement the code; and 3) our newly intro-

duced instructions may be optimized by the compiler, depending on the surrounding

code.

4.3.3 Micro-architectural and compilation considerations

While reducing the cost of cache access, the new instructions introduced in the above

transformation may also incur some performance overhead. Nevertheless, specific

(micro)architectural features of the considered execution platforms play an important

role in mitigating this penalty.

Superscalar and out-of-order (OoO) execution capabilities are now present in

embedded processors. In many cases, despite the availability of hardware resources,

such processors are not able to fully exploit the parallelism because of data dependen-

cies, therefore leaving empty execution slots, i.e., wasted hardware resources. When

the instructions added by our optimization are able to fit in these unexploited slots,

they do not degrade the performance. Their execution can be scheduled earlier by the

4.3. Silent-store elimination 45

(o r i g i n a l)

add r1=r2+r3
add r4=r1 +2
mul r5=r4 * r3
add r6=r5 +3
s t o r e @x=r6
sub r4=r2−r3
sub r5=r4−1

. . .

(transformed)

add r1=r2+r3 || load r0=@val
add r4=r1 +2
mul r5=r4 * r3
add r6=r5 +3
sub r4=r2−r3 || cmp r6 , r0
sub r5=r4−1 || bEQ next
s t o r e @x=r6

next :

FIGURE 4.4: A superscalar execution: the original sequential code is transformed to exploit
parallelism by hiding the new instructions added by our transformation

compiler/hardware so as to maximize instruction overlap. The resulting code then ex-

ecutes in the same number of cycles as the original one. This instruction rescheduling

is typical in OoO cores. Let us consider the example in Figure 4.4. In the original code,

each of the first five instructions depends on its predecessor. Execution is necessarily

purely sequential, even on a superscalar processor. Our newly introduced instructions

can be executed in the empty slots, as shown on the right hand side of the figure.

Note that the independent subtraction instructions in Figure 4.4 have been sched-

uled earlier by the compiler in order to maximize instruction overlap. The resulting

code executes in the same number of cycles as the original one. Compared to in-order

cores, OoO cores enable to execute instructions according to an order, which differs

from the one in the original program, as long as instruction dependencies hold. When

a high-latency instruction delays the execution of its successors, the processor can

select an independent instruction from a window of nearby instructions in order to

accelerate the code execution.

Finally, branch prediction and speculative execution are complementary features that

can contribute to improve the performance of cores. At each branch instruction, the

processing of instructions is interrupted and the processor must fetch new instructions

from a non-contiguous memory location. Due to the pipelined execution, this requires

the processor to stall for several cycles, until the target is known. Branch prediction

minimizes this penalty by guessing the target of a branch. When correctly predicted,

the processor incurs no penalty. If the store’s silentness is difficult to predict, the added

bEQ instruction in Figure 4.4 will penalize the application1. In this case, it is better to

leave the store unchanged.

On the other hand, instruction predication, e.g., supported by ARM cores, is

another helpful mechanism. The execution of predicated instructions is controlled

1Modern branch predictors, e.g., TAGE [100], can detect complex patterns.

46 Chapter 4. Redundant memory write elimination

via a condition flag that is set by a predecessor instruction. Whenever the condition is

false, the effect of the predicated instructions is simply canceled, i.e., no performance

penalty. This is shown in Figure 4.5 where the store instruction is executed only if the

preceding compare instruction returns Not Equal (NE), i.e. variables x and y are not

equal. To eliminate silent stores, LLVM automatically generates this code pattern for

ARM.

Thanks to the predication mechanism, the obtained code results in one instruction

less, thus limiting the risk to increase execution time. As a side effect, it also lowers

the number of possible branch mispredictions by eliminating the branch altogether.

Note that Thumb extension does not provide predication.

load y = @val
cmp x , y
strNE @x , val ; e x e c u t e s i f cmp r e t u r n e d f a l s e

. . .
FIGURE 4.5: Example of predicated execution

(a) original code s t o r e @x = val

load y = @x
cmp val , y
bEQ next
s t o r e @x , val

next :

load y = @x
cmp val , y
s t rne @x , val

(b) transformed code (c) with predication

FIGURE 4.6: Silent store elimination: (a) original code stores val at address of x; (b) trans-
formed code first loads the value at address of x and compares it with the value to be written,
if equal, the branch instruction skips the store execution; (c) when the instruction set supports
predication, the branch can be avoided and the store made conditional.

At compiler optimization levels, newly introduced instructions may cause two

phenomena.

1. Since the silentness-checking code requires an additional register to hold the

value to be checked, there is a risk to increase the register pressure beyond the

number of available registers. Additional spill-code could negatively impact the

performance of the optimized code. We observed that this sometimes happens

in benchmarked applications. This is easily mitigated by either assessing the

register pressure before applying the silent-store transformation; or by deciding

to revert the transformation when the register allocation fails to allocate all

values in registers.

4.4. Profitability threshold 47

2. It can happen that the load we introduce is redundant because there already

was a load at the same address before and the compiler can prove the value

has not changed in-between. In this favorable case, the added load instruction

is automatically eliminated by further optimization, resulting in additional

benefits. We observed in our benchmarks that this situation is actually rather

frequent.

4.4 Profitability threshold

Since our approach includes a verification phase consisting of an extra load (memory

read) and compare. This overhead may be penalizing if the store is not silent often

enough. Therefore, we use a pre-optimization process to identify the silent stores,

and especially the "promising" silent stores in the light of the profitability threshold.

Hence, the compilation framework consists of two steps as follows:

1. silent store profiling, based on memory profiling, collects information on all

store operations to identify the silent ones;

2. apply the optimization pass on the stores that are silent often enough.

From the data cache viewpoint (considered in isolation), the silent store optimiza-

tion transforms a write into a read, possibly followed by a write. The write must

occur when the store happens to not be silent. In the most profitable case, we replace

a write by a read, which is beneficial due to the asymmetry of STT-RAM. On the

contrary, a never-silent store results in write being replaced by a read and a write.

Thus, the profitability threshold depends on the actual costs of memory accesses. In

terms of energy cost, we want:

αread + (1 − Psilent)× αwrite ≤ αwrite

where αX denotes the cost of operation X and Psilent is the probability of this store to

be silent. This is equivalent to:

Psilent ≥
αread

αwrite

Relative costs vary significantly depending on the underlying memory technology.

Table 4.1 reports some values from literature. In our survey, the ratio in energy

consumption between αwrite and αread varies from 1.02× to 75×.

48 Chapter 4. Redundant memory write elimination

Source NVM parameters Ratio

Wu et al. [115]
Li et al. [62], [63]

Technology: 45 nm
Read: 0.4 nJ Write: 2.3 nJ

5.75

Li et al. [60] Technology: 32 nm
Read: 174 pJ Write: 316 pJ

1.8

Cheng et al. [18] Technology: not mentioned
High retention
Read: 0.083 nJ Write: 0.958 nJ
Low retention
Read: 0.035 nJ Write: 0.187 nJ

11.5,
5.3

Li et al. [92] Technology: 45 nm
Read: 0.043 nJ Write: 3.21 nJ

75

Jog et al. [36] Technology: not mentioned
Retention time = 10 years
Read: 1.035 nJ Write: 1.066 nJ
Retention time = 1 s
Read: 1.015 nJ Write: 1.036 nJ
Retention time = 10 ms
Read: 1.002 nJ Write: 1.028 nJ

1.03, 1.02,
1.025

Pan et al. [84] Technology : 32 nm
Read: 0.01 pJ/bit Write: 0.31 pJ/bit

31

TABLE 4.1: Relative energy cost of write/read in literature

4.5 Preliminary evaluation based on a cycle-accurate simula-

tor

In this section, we present an study accomplished with the cycle-accurate simulator

Gem5, through MAGPIE framework, with the configurations shown in Table 4.2:

TABLE 4.2: 32 KB SRAM and STT-RAM memory estimation with NVSim

Technology Latency Dynamic Energy Leakage

Read Write Read Write

(ns) (ns) (pJ) (pJ) (mW)

SRAM 1.31 1.19 24 6 44.70

STT-RAM 1.96 10.94 109 174 6.72

4.5. Preliminary evaluation based on a cycle-accurate simulator 49

The numbers given in Table 4.2 show a ration Ratio = 4.5 which is a low ra-

tio. Nevertheless, the presented results show interesting aspects of this study. This

preliminary evaluation aims to identify the potential gain obtained with the silent

stores elimination. We first present the application of our optimization on a simple

example. Then, we analyze the profitability based on specific characteristics of the

used configuration.

4.5.1 Application to a simple example

As a motivational example, we analyze the possible impact of memory on the energy

consumed by an on-chip system. For the sake of simplicity, we consider a simple on-

chip system model comprising a CPU, an L1 data denoted by L1d, an L1 instruction

cache denoted by L1i, a bus and a memory controller. No other cache level (e.g. L2

or L3 cache) is taken into account, while the main memory is off-chip. In order to

design and evaluate this model, we use a number of simulation and power modeling

tools already integrated in the MAGPIE automated design evaluation framework

[19]. These tools include the gem5 cycle-approximate simulator, combined with the

NVSim and McPAT power, area and latency modeling tools, which respectively target

non volatile and CMOS technologies. Here, the gem5 minor CPU model is used to

define an ARM Cortex-A7 core running at 1 GHz, associated with L1i and L1d caches,

both 32 KB and 4-way associative.

In order to assess the possible gain that one could expect from different memory

technology candidates, we consider a simple program illustrated in Figure 4.7 (C and

assembly codes). Since we are focusing on store instructions, we decided to carry

out a preliminary experimental analysis on such a dedicated kernel with different

execution scenarios. This simple code shows one store operation that is executed N

times. Later on, we will identify this store as a silent store.

50 Chapter 4. Redundant memory write elimination

(o r i g i n a l C code)

v o l a t i l e i n t x = 0 ;

for (i =0 ; i <N; i ++) {

x =0; / / s i l e n t

}

(corresponding assembly)

; i in r3 , N in r4

.L3

s t r r2 , [r1 , #0]

add r3 , r3 , #1 ; i ++

cmp r3 , r4 ; i ==N?

bNE.L3

FIGURE 4.7: Dedicated kernel. The volatile keyword forces the compiler to keep the memory
access on x, while other variables may be promoted to registers. The assignment in the loop
repeatedly writes the same value 0 to the same memory location

Let us evaluate the cost of this simple code on a Cortex-A7 in terms of execution

time, energy consumption and energy-delay product (EDP). In this work, EDP is

considered as the main figure of merit for energy-efficiency as it combines both

execution time and energy. By executing 50 million iterations of the simple program

(i.e., N = 50 × 106), we obtain the result reported in Table 4.3 and referred to as

"full-SRAM". In this reference evaluation scenario, both L1d and L1i caches are in

SRAM.

Now, by re-executing the same program while considering the L1 cache is entirely

in STT-RAM instead of SRAM, we obtain the result displayed in Table 4.3, referred to

as "full-STTRAM". Here, we observe a reduction of the energy consumption thanks

to the low static power inherent to the used non volatile memory. A very marginal

increase is observed in the execution time, which is due to the penalty expected from

higher write latency of STT-RAM compared to SRAM. Fortunately, this marginal

increase is not important enough to cancel the gain in static power enabled by STT-

RAM. As a result the EDP is improved.

While the previous system evaluation motivates the potential benefit of STT-RAM

in reducing the overall energy consumption of a system, we can however note a

TABLE 4.3: Evaluations of dedicated kernel: execution of original code with full SRAM L1
cache (ref.); execution of original and optimized codes with full STT-RAM L1 cache.

Exec. time (ms) Energy (mJ) EDP
full-SRAM (ref) 305.13 79.5 24257.83
full-STTRAM 305.31 67.8 20700.01

(+0.06 %) (-14.7 %)
full-STTRAM 305.31 64.6 19723.02
+ silent store opt (+0.06 %) (-18.7 %)

4.5. Preliminary evaluation based on a cycle-accurate simulator 51

Benchmarks Reads
Original (NR) Optimized δR

kmeans 548 491 642 548 809 242 +317 600
backprop 46 853 587 47 152 381 +298 794
heartwall 1 920 044 615 1 921 988 609 +1 943 994
srad 76 371 774 76 526 801 +155 027
b+tree 213 650 781 213 938 589 +287 808
bfs 181 175 711 180 697 730 -477 981
pathfinder 205 090 257 206 350 923 +1 260 666

TABLE 4.4: Number of loads in Rodinia benchmarks profiled with gem5 before and after
optimization (only stores with 60 % silentness probability are transformed).

possible limitation factor that could hamper the expected gains: the high write latency

of NVMs. Indeed, as shown above, this can increase system execution time, which in

turn increases the resulting energy of the system components, except for L1 cache.

On the other hand, as this high write latency also comes with a higher write energy

consumption (see Table 4.2), the overall dynamic energy consumption of the L1 cache

will be increased as well. This may ultimately cancel the benefit of NVM integration

at cache level. In order to reduce this risk, we investigate the opportunity offered

by the silent store elimination in order to mitigate the potential negative impact of

writes on the system in presence of NVMs. Let us consider again the simple dedicated

kernel shown in Figure 4.7, to which the silent store elimination has been applied.

Table 4.3 reports the resulting evaluation according to an L1 cache memory in full

STT-RAM, referred to as "full-STTRAM + silent store opt". The energy consumption

is reduced while the execution time is preserved compared to the original program

running with the same memory configuration. Here, the gain mainly comes from the

dynamic energy reduction through the removal of silent stores (i.e. redundant writes)

and their replacement with reads.

Globally, we note that the increase in execution time observed in Table 4.3 with

STT-RAM is quite marginal. This is central here as a huge penalty in execution time

would significantly increase the static power consumption of the overall on-chip

system, therefore making the optimization less beneficial. In fact, there is a trade-off

between a number of system design considerations that should be analyzed in order

to make the proposed compiler-level optimization effective when using STT-RAM

technology in cache memory.

4.5.2 Optimization profitability w.r.t. number of silent stores

From the point of view of the data cache (considered in isolation), the silent store

optimization transforms a write into a read, possibly followed by a write. The write

52 Chapter 4. Redundant memory write elimination

Benchmarks Writes
Original (NW) Optimized δW

kmeans 44 606 552 43 341 904 -1 264 648
backprop 26 354 954 24 257 754 -2 097 200
heartwall 20 198 643 14 983 887 -5 214 756
srad 49 122 503 48 892 569 -229 934
b+tree 24 094 567 23 894 250 -200 317
bfs 112 051 515 111 854 905 -196 610
pathfinder 138 368 817 137 682 697 -686 120

TABLE 4.5: Number of stores in Rodinia benchmarks profiled with gem5 before and after
optimization (only stores with 60 % silentness probability are transformed).

must occur when the store happens to not be silent.

As stated in Section 4.4, we want to satisfy the following equation:

Psilent ≥
αread

αwrite

Given the values of Table 4.2, we obtain a threshold of:

Psilent ≥ 109/174 ≈ 0.63, i.e., a silentness percentage of 63 %.

The above reasoning only considers cache memory accesses, and holds as long as

the rest of computations does not heavily impact the system energy consumption

compared to those cache memory accesses. We confirm it experimentally by consider-

ing the simple program shown in Figure 4.8, where N represents the total number of

store operations and M represents the number of silent stores. We run the program

with different values of M, so as to vary the silentness percentage. In Figure 4.8, we

observe, as expected, that higher probability of silentness reduces energy consump-

tion of the L1 data cache. The silent store elimination is beneficial when the silentness

percentage is above 63 %.

v o l a t i l e i n t x ;

for (i =0 ; i <N; i ++)

{

y =0;

i f (i >M)

y= i ;

x=y ; / / s t o r e

}

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0 20 40 60 80 100

To
ta

l
L
1

d
 E

n
e
rg

y
 (

J)

%silent

Opt with silent stores
Base

FIGURE 4.8: Determination of the profitability threshold of silent store elimination.

4.5. Preliminary evaluation based on a cycle-accurate simulator 53

Benchmarks Energy gain (%)
r = 1 r = 5 r = 10 r = 75

kmeans 0.16 0.78 1.24 2.43
backprop 2.46 5.70 6.66 7.76
heartwall 0.17 1.19 2.37 11.33
srad 0.06 0.31 0.38 0.45
b+tree -0.04 0.21 0.38 0.73
bfs 0.23 0.20 0.19 0.18
pathfinder 0.17 0.24 0.35 0.47

TABLE 4.6: Energy gain projection w.r.t. specific NVM technologies.

In their seminal 2001 study [55], Lepak and Lipasti studied the SPEC95 benchmark

suite in which high silentness percentages have been exposed. For instance, vortex

and m88ksim reach respectively 64 % and 68 % of silent stores overall on PowerPC

architecture (there was no per-store characterization in that study). Such silentness

levels could typically benefit from our optimization.

Table 4.4, 4.5 and 4.6 report an evaluation of the suggested optimization on a

subset of the Rodinia benchmark suite [15]. Only store operations with 60% silentness

probability are transformed here. The table indicates the profiled read and write

operations before and after program optimization by considering an execution on

a single ARM Cortex-A7 core, using the MAGPIE framework [19]. The expected

dynamic energy gain out of all memory access activity is computed, according to

NVM technologies associated with different ratios r in terms of read/write energy

costs αwrite and αread, as follows:

r =
αwrite

αread

These energy costs vary significantly depending on the underlying memory technol-

ogy. Table 4.1 reports some values from literature. In this survey, the ratio in energy

consumption between writes and read varies from 1.02× to 75×. Considering the

values computed in Table 4.4 and 4.5, a projection of energy gain can be computed as:

−(r × δW + δR)/(NR + r × NW), where NR and NW are respectively the total numbers

of reads and writes in an original program; and δR and δW respectively indicate the

number of reads and writes added or reduced after the optimization of a program. It

is important to notice that the energy gain projection reported here is only a partial

gain as it only results from an optimization of stores with 60 % silentness probabil-

ity for each program. Indeed, optimizing the stores with less than 60 % silentness

probability can improve the energy gain. Programs such as kmeans, heartwall, srad and

pathfinder contain more such kinds of stores.

On the other hand, looking at δR and δW , we observe that the applied optimization

54 Chapter 4. Redundant memory write elimination

improves differently the ratio between the number of reads and writes in considered

applications. Beyond the application-specific features, there are also a number of

micro-architectural and compilation features that have an impact on the results, as

discussed in the next.

4.6 Comprehensive evaluation based on an analytic approach

In this section, we present a similar analysis, uncovering silent-stores in applications,

and analytically assessing the impact of our proposal, based on their characteristics.

We study some applications from Rodinia benchmark [15], cross-compiled for ARM2

and we execute them on a single core. Rodinia is composed of applications and

kernels from various computing domains such as bioinformatics, image processing,

data mining, medical imaging and physics simulation. In addition, it provides simple

compute-intensive kernels such as LU decomposition and graph traversal. Rodinia

targets performance benchmarking of heterogeneous systems.

4.6.1 Distribution of silent stores

The impact of eliminating a given store depends on two factors: (1) its silentness, i.e.

how often this particular store is silent when it is executed; and (2) how many times

this store is executed (obviously highly silent but infrequently executed store are not

of much interest). We first study the distribution of silent-stores across applications,

and then we analyze the dynamic impact. A static distribution represents silentness

through store positions in the code, i.e., store instructions in the assembly code file,

while a dynamic distribution represents silentness throughout all the store instances

occurring during the program execution.

Figure 4.9 represents the cumulative distribution of (static) silent stores in each of

our applications. The plots show, for a given silentness (x-axis), what fraction of static

stores achieves this level of silentness. When x increases, we are more selective on the

degree of silentness, which is why all curves are decreasing. For x=100 %, we select

stores that are always silent. This is extremely rare because, typically, at least the first

instance of a store initializes a piece of data that is not already present. This explains

why almost all curves reach the value y=0 when x=100 %. Conversely, when x=0, we

select stores that are required to be silent at least 0 % of the time, i.e., all stores: the

curves start from 100 % when x=0. The points in the curves identify the silentness of

2Here, we choose ARMv7 instruction set architecture (ISA), e.g., supported by Cortex-A7 and Cortex-
A15 cores, for illustration purpose. Further ISAs could be straightforwardly targeted as well, e.g., X86.
This makes our code optimization portable on different processor architectures.

4.6. Comprehensive evaluation based on an analytic approach 55

��
��
��
��
��
��
���
���
��
��
��
���
��
��
��

�

FIGURE 4.9: Percentage of silentness on the basis of the percentage of static positions in the
code

the stores in each application. For example, we observe that in the myocyte program,

there are 53.8%, 51.6%, 47% and 0% of store instructions that are respectively 17.9%,

56.3%, 99.9% and 100% silent (see labels 1, 2, 3 and 4 in Figure 4.9).

In Figure 4.10, we take into account the weight of each store in an execution. Stores

executed many times contribute more than rarely executed ones. While the x-axis still

denotes the same threshold filter for silentness, the y-axis now represents the fraction

of total executed stores that are silent given this threshold. For the myocite program,

we observe that 58.8%, 56%, 48% and 0% of the silent instances are respectively 17.9%,

56.3%, 99.9% and 100% silent (see labels 1, 2, 3 and 4 in Figure 4.10). Also observe the

case of particlefilter where the silentness of a number of store instructions can be high,

but with a very low impact.

After studying the distribution of silent stores in a program, we can obtain an

overview of the optimization benefit. If the heaviness is not significant then the gain

will be marginal and even negative. In the next section, we describe how we formulate

the gain based on the output of the profiling of each application.

4.6.2 Impact of the silent-store elimination

The impact of the silent-store elimination relies on different factors. As explained

in Section 4.6.1, the level of silentness (high/low) and its heaviness are important.

Moreover, the relative cost of read/write operation (in Joules) is critical. The ratio

between the cost of a read denoted as αR and the cost of a write denoted as αW , can

56 Chapter 4. Redundant memory write elimination

��
��
��
��
��
��
���
���
��
���
��
��
��
��
��

�

FIGURE 4.10: Percentage of silentness on the basis of the percentage of silent instances in the
code

change the direction of the results. Indeed, given a ratio, the optimization outputs

may vary from very bad to very good. As mentioned in Table 4.1, different ratios are

presented in the literature. Based on that, we did a study to analyze how the impact

of silent stores transformation depends drastically on the used ratio. We assume that

αW = 10 and we vary αR from 1 to 10 (as shown below in the formulas, only the ratio

matters, hence our choice of synthetic values).

In order to formulate the gain obtained in energy after transformation, we define

∆ which is the difference between the energetic cost before optimization and after

optimization, denoted respectively as costbase and costopt. In other words, ∆ is the

expected benefit from the transformation. Since we replace a store with a read and

maybe a store if the store is not always silent, then: ∆i is defined as follows:

∆i = costbase − costopt = αW − (αR + αW × (1 − Pi))

where Pi is the probability of silentness. After transforming all the silent stores, then

∆ will be:

∆ = ∑
i∈{silent}

(αW − (αR + αW × (1 − Pi)))

where Pi is the probability of silentness of different transformed stores. In order to

get the effective gain, ∆ is divided by costbase which is the energetic cost of all read

4.6. Comprehensive evaluation based on an analytic approach 57

and write operations before optimization:

Gain =
∑i∈{silent}(αW − (αR + αW × (1 − Pi)))

αR × NR + αW × NW

where NR and NW are respectively the number of load and write operations, obtained

from the profiling. Considering r = αW
αR

, then we obtain:

Gain =
∑i∈{silent}(Pi − 1/r)

NW/r + NR

In Figure 4.11 and 4.12, we plot this energy gain for each benchmark and for three

values of the ratio r: 10, 5, and 1.For each configuration, we plot the gain obtained

when optimizing silent-stores whose silentness is greater than a given value (same

x-axis as in previous figures).

First, we observe that, without exception, the higher is the ratio, the higher is

the gain. In other words, the more asymmetric is the non volatile memory, the more

the transformation is beneficial. This is expected, and confirms the validity of our

approach.

Second, a ratio r = 1 means symmetric memory accesses. For this technological

node, our optimization cannot be beneficial. This is confirmed graphically: the gain

represented by the blue curve is always negative, reaching 0 only when all stores are

100 % silent.

Generally speaking, the maximum value indicates the best threshold for the silent-

store optimization. For a given non volatile memory technology, characterized by

the r value, application developers and system designers can plot such curves and

identify the best threshold.

The four Rodinia applications reported in Figure 4.11 are those which can benefit

the most from silent store elimination given their silentness thresholds and considered

r ratios. The remaining applications, displayed in Figure 4.12, only show a marginal

benefit. backprop and myocite can deliver large energy gains up to 42 % when r = 10,

while bfs can reach 16 %, and pathfinder 10 %.

In the intermediate case r = 2, the behavior basically depends on applications.

The bfs program shows a negative gain with low silentness and positive gain with

high silentness (from 48 %). The srad program shows negative gain for all silent-

ness percentages, while the myocyte program shows an interesting gain through all

silentness percentages (see Figure 4.11 and 4.12).

Depending on the silentness profile of the application, the gain can be fairly flat,

as in backprop, myocite or b+tree, or vary significantly with the silentness threshold, as

58 Chapter 4. Redundant memory write elimination

in pathfinder, or heartwall. In the latter case, the energy consumption critically depends

on the choice of the threshold.

Finally, curves typically show an ascending then descending phase. This derives

from the following phenomenon. Consider the value x = 1, i.e. the code is the original

not optimized (except for the extremely rare case where a store is silent in exactly

100 % of the cases). When lowering x, we increase the number of store instructions

that are optimized, and we increase the gain because we add highly silent stores. But

when x keeps decreasing, we start adding stores that may not be silent enough and

start causing degradation.

As a final note, remember that loads may be eliminated by compiler optimization.

This opportunity is not captured by our above analytical model. It is hence pessimistic,

and actual results should be better than our findings.

(A) backprop (B) bfs

(C) myocyte (D) pathfinder

FIGURE 4.11: Energy gain according to the silentness threshold of Rodinia applications, and
their associated r = αW/αR ratio: most sensitive applications.

4.6. Comprehensive evaluation based on an analytic approach 59

(A) heartwall (B) kmeans

(C) nw (D) b+tree

(E) srad (F) particlefilter

FIGURE 4.12: Energy gain according to the silentness threshold of Rodinia applications, and
their associated r = αW/αR ratio: marginally sensitive applications.

60 Chapter 4. Redundant memory write elimination

4.7 Towards relaxed silent-stores

Previous sections consider strict silent-stores, where the to-be-written value is exactly

the already-stored value. The recent field of approximate computing offers new

opportunities [116]. In many cases, floating-points values are not strictly equal, but

very close to each other. We claim that, in some cases, it may be beneficial to skip

storing a value when it is very close to the previous value.

FIGURE 4.13: Binary representation of floating-point numbers as defined by IEEE 754 – 32-bit
floats. The mantissa (or significant) is 24-bit long. The two values differ only by their last 3
bits.

This can be easily done as an extension of the previous strict silent-store elimina-

tion. A compiler knows the type of the data it processes, and it is straightforward

to focus on floating-point values. The transformation code shown in Figure 4.1 is

easily extended to loosen the value comparison. The representation of floating-point

numbers is precisely defined by the IEEE 754-2008 standard. Let us consider Figure

4.13 for illustrating the representation of the widely used data type float (32 bits).

With the notations s for the sign bit, m for the mantissa, e for the exponent and bias a

constant, these sequences of bits represent the number: (−1)s × 1.m × 2e−bias.

Ignoring the last bits of the mantissa is straightforward, as it typically requires only

two machine instructions. Let us consider the code in Figure 4.14: an xor (exclusive-

or) instruction only keeps the bits that differ in x and y. It is followed by a masking

and operation that drops the least significant bits (4 bits, in this example). Some

instruction sets do not require an explicit cmp instructions when comparing to the

special value 0, thus reducing the overhead to a single additional instruction.

load y = @val

xor z = x , y

and z , 0 x f f f f f f f 0

cmp z , 0

bEQ next

s t o r e @x , val

next :

FIGURE 4.14: Checking for Relaxed Silent-Stores

4.7. Towards relaxed silent-stores 61

silentness Strict Relaxed
threshold 4 bits masked 12 bits masked

0 59.03 61.08 61.14
20 58.89 61.07 61.13
56 55.74 61.07 61.12
87 52.72 55.02 55.03
90 48.06 50.35 50.36

99.9 48.00 50.30 50.35

TABLE 4.7: Fraction of silent stores (strict and relaxed) at selected silentness thresholds –
Rodinia/myocyte)

As a proof of concept of the validity of the approach, we experimented with the

Rodinia benchmarks, and we hereby report the case of myocyte application. When

checking for silentness when storing floating-point values, we tolerate a slight differ-

ence between the two values. In practice, we tried ignoring the least significant 4 and

12 bits. In Figure 4.15, we observe that this relaxed approach increases the number of

stores to be skipped, which will further reduce the energy penalty related to NVM

accesses. For myocyte, the number of masked bits has a very marginal impact on the

obtained number of candidate stores for optimization (see Table 4.7).

Note that relaxed silent-store elimination could also be applied on variables of

integer type. For example, when dealing with image processing, the grey-level can

probably be changed by one unit (out of 256) without any sensitivity to human eyes.

Integers, however, are more risky because they intrinsically represent discrete values.

A programmer annotation may be required to point at candidate variables, but this is

not in the scope of the present study.

More generally, it is important to keep in mind that the results presented in this

study regarding the silent store elimination are (pessimistic) worst-case scenarios.

Actual results are likely to be improved over our current baseline for the following

FIGURE 4.15: Strict vs. relaxed silent-stores – Rodinia/myocyte

62 Chapter 4. Redundant memory write elimination

reasons: first, we deliberately set the silentness threshold of 60 % for illustration

purpose, which is overly conservative for large values of the ratio r. This misses

a further optimization opportunities (e.g., addressing lower silentness thresholds

can also contribute in reducing more the global energy); second, the used gem5

simulation considers memory statistics beyond those related only to the user code

itself, by including also the C runtime and libraries, while our optimization only

targets silent stores in the user code. The “actual” gain should therefore be measured

over reads/writes induced by this code (unfortunately this information cannot be

extracted from gem5 statistics). Finally, the expected gain in energy is also application-

dependent: the more the user code contains silent stores, the better will be the energy

savings.

4.8 Conclusion

In this work, we presented an approach for addressing the effective usage of STT-

RAM emerging non volatile memory technology in cache memory. We proposed a

software implementation of silent store elimination through the LLVM compiler, in

order to mitigate the costly write operations on STT-RAM memory when executing

programs. A store instruction is said to be silent if it writes to a memory location

a value that is already present there. An important property of our approach is its

portability to different processor architectures, contrarily to the previous hardware-

level approach. We conducted a comprehensive evaluation of our proposal on the

Rodinia benchmark. For that, we applied an analytic evaluation of the trade-off

between the silentness threshold of stores in a given program and the energy cost

ratio of memory accesses. Depending on the silentness of evaluated applications

and typical ratios, the gain in energy consumed by memory can reach up to 42 %.

While this study mainly targeted the STT-RAM technology (due to its maturity), the

proposed silent store elimination applies as well to other NVMs with asymmetric

access latencies.

From the conducted analysis, a successful application of our compiler-level op-

timization requires a number of features for a better outcome. It provides better

energy-efficiency results when the cost of newly introduced instructions can be hid-

den adequately. This requires superscalar capability for exploiting empty instruction

slots. We also rely on the compiler to schedule these instructions at the most suitable

locations in the original sequence of instructions. This is critical for in-order cores,

while OoO cores are able to find an optimal sequence by themselves. Moreover, OoO

also generates a denser schedule, with fewer empty slots, which improves execution

4.8. Conclusion 63

performance. The use of predicated instructions is another interesting feature that en-

ables to mitigate the possible execution time overhead related to the extra instructions

introduced by our optimization.

65

Chapter 5

Variable retention times in a

multi-bank NVM

5.1 Introduction

Energy-efficiency has become one major challenge in several computing domains,

including embedded and high-performance computing domains. Examples of ap-

proaches for addressing the issue are system runtime management, heterogeneous

multicores and device-level power management.

In the particular case of embedded domain, e.g., the Internet of Things (IoT),

devices are increasingly considering non-volatile memories (NVMs) for their ability

to favor normally-off computing that aggressively powers off devices. Thanks to

their inherent non-volatility property, the information stored within the NVM can

be safely recovered when the system is powered on later. During the switch-off

period of the system, neither leakage nor refresh power are involved to preserve

the information. This property of NVMs makes them highly attractive w.r.t. classical

memory technologies such as SRAM or DRAM. In the current study, we consider

emerging non-volatile memory technologies [10], such as spin torque transfer random

access memory (STT-RAM), phase-change memory (PCM) or resistive random access

memory (ReRAM). While these technologies have quasi-null leakage, one major

challenge concerns the mitigation of their expensive write operations from both

latency and energy points of view. Indeed, depending to the NVM technology, writes

are several times more costly compared to SRAM or DRAM.

Non-volatility refers to extremely long retention time. Current non volatile RAMs

(NVRAMs) are designed with 10+ years of data retention in order to favor higher

memory reliability [101]. Yet, many other NVM technology designs are possible,

which enable to build multi-bank memories with variable retention times [106]. This

opens an interesting opportunity because memories with shorter retention times have

66 Chapter 5. Variable retention times in a multi-bank NVM

much cheaper latency and energy costs, and typical variables in programs often have

a much shorter lifetime. The next section motivates this opportunity.

5.2 Exploiting variable data retention times

Data retention time is another parameter one can consider when designing a “non-

volatile” memory. Standard STT-RAM cells usually target several years data retention

period, e.g., 10-years [101] for reliability concern. However, different designs can

target shorter retention times as illustrated in Figures 5.1 and 5.2 extracted from

literature [106]. Typically, a 32 KB L1 cache with a retention time of 3.24 s leads to

half expensive write operations than an L1 cache with 4.27 years retention time, i.e.,

shorter retention time comes with a gain in access latency and energy. We envision a

system with memory banks designed for various energy/retention time trade-offs.

Knowing at design-time the amount of time a data is needed would let a compiler

allocate data to appropriate memory banks.

As a proof-of-concept, we implemented, through a program profiling software (a

pin tool running on x86), a functionality for measuring the lifetimes of all data written

to memory. Here, the lifetime is defined as the time between a write and the last read

to the same location before another write occurs. Figure 5.3 illustrates the distribution

of lifetimes in a run of three Rodinia benchmarks: backprop, kmeans and myocyte. It

clearly appears that the different lifetimes are not evenly distributed, but grouped

rather into clusters. We claim that this property can be leveraged to reduce energy

consumption by allocating memory accesses to appropriate banks.

FIGURE 5.1: Examples of cache memory configurations comparing SRAM and STT-RAM
[106].

5.3. Motivation for δ-WCET Estimates 67

FIGURE 5.2: Examples of cache memory configurations comparing SRAM and STT-RAM
[106].

Through Figure 5.3, we observe that the maximum lifetimes are 0.16 s, 0.4 s and

0.9 s respectively for backprop, kmeans and myocyte applications. In other words, a 1 s

retention time memory bank configuration can meet the non-volatility requirements

here. To assess the impact on the energy consumed by the memory hierarchy, we

ran the obtained address traces through the Dinero cache simulator1, configured for

the hierarchy shown in Figure 5.2 (using column md2 for the L3 cache). We collected

the number of reads and writes on each cache level and weighted them by their

respective energy cost. The results show that the configuration with a retention time

of 3.24 s saves approximately half of the energy consumed by the one with a retention

time of 4.27 years. More precisely, for backprop, kmeans, and myocyte, the savings are

respectively of 44.9 %, 54.3 % and 52.7 %.

For a safe deployment of the above memory system configurations, a refresh

memory mechanism should be taken into account in case a data is unexpectedly

required beyond the corresponding lifetime estimated at design-time.

5.3 Motivation for δ-WCET Estimates

Real-time systems are composed of tasks that must deliver their results within a

well-defined time-frame. Designers of such systems compute an upper bound of the

worst-case execution time of the tasks of a system such that any execution of the task

takes less time than the estimate (the bound is said to be safe). In addition, to be useful,

the bound shall be as close as possible to the actual worst-case (the bound is tight).

Traditional WCET estimates are computed at the granularity of a function (or task).

This is convenient for both computation and exploitation of the results. Functions

are well-defined code fragments with a single entry and few exits, a few parameters,

1http://pages.cs.wisc.edu/~markhill/DineroIV/

68 Chapter 5. Variable retention times in a multi-bank NVM

FIGURE 5.3: Data lifetime distributions for backprop, kmeans and myocyte.

and one or no return value. Compilers and analysis tools have developed extensive

theory and a wealth of tools based on basic blocks, control flow graphs, and graph

theory to deal with functions.

Yet, designing computing systems requires careful attention to a number of aspects

such as performance, energy consumption, or security concerns. Computing partial

worst case execution time (δ-WCET) estimates proves useful in many contexts as

discussed below.

Performance debugging

Many tools exist to measure the actual (average) execution time of regions of interest

in code and identify performance bottlenecks. Pinpointing fragments with high

WCET is more difficult because the worst-case may occur in rare circumstances

and may not be easy to actually expose, hence usual profiling techniques do not

apply. δ-WCET is useful for developers to identify potential (worst-case) performance

bottlenecks in their applications and focus their effort in the relevant code fragments.

In multicore systems, performance can be limited by contention on shared resources

5.3. Motivation for δ-WCET Estimates 69

loop [100]

loop [100]

loop [49]

31

27

32

30

28

29

47

3748

46

40

39

38

41

45

44

43

42

25

26 33

49

3435

36

loop [255]

loop [42]

33

31 34

32

43

39 44

42

40 41

29

30

35 36

38

37

45 46

47

(a) expint benchmark (b) crc benchmark

FIGURE 5.4: Motivation for δ-WCET on sample control-flow graphs.

(caches, bus...), and interactions between tasks must be taken into account when

estimating WCET. Without precise knowledge about the occurrence of competing

events in the different cores, pessimistic values must be considered. δ-WCETs are

useful to split a task in finer grain fragments, whose executions can be proven to not

overlap. This results in fewer contentions and tighter overall WCET. Execution time

also matters for security: some software attacks consist in injecting new code in a

target application. A protection may consist in computing the WCET of a task and

verifying at runtime that the actual time does not exceed the computed value. Any

timing anomaly suggests an intrusion. Hence, if we consider the example of Figure

5.4(a) (taken from the Mälardalen benchmarks [24]) which consists of an unbalanced

if-statement: the left branch, starting at block 26, has a δ-WCET of 78 900 cycles and

the right branch, starting at block 33, has 629 524 cycles, then bounding the execution

time of the function to the latter value would be overly pessimistic when the left

branch executes. δ-WCET for each branch is much tighter.

Energy-efficiency

Energy consumption is another major concern driving the design of a computing

system. It led to the development of many techniques such as power gating, DVFS,

non-volatile memories... Knowing the WCET of the remainder of a computation

makes it possible to apply optimizations. Consider Figure 5.4(b), and assume that

the execution has reached block 38 in advance with respect to its (pessimistic) bound.

This slack time combined with the knowledge of the rest of the computation makes it

possible to apply energy saving techniques, such as reducing the clock frequency or

70 Chapter 5. Variable retention times in a multi-bank NVM

define N 10
i n t main (void)
{

i n t a , b , i ;
a = N;
b = 0 ;
for (i =0 ; i <a ; i ++) {

ANNOT_MAXITER(N) ;
b=b+ i ;

}
}

maxiter: 10

24:
 load @i
 load @a

23:
 load @i
 load @b
(3) str @b =
(4) str @i =

25:
 ret

22:
(0) str @a = 10
(1) str @i = 0
(2) str @b = 0

(a) motivational example (b) control-flow graph and memory access
instructions

FIGURE 5.5: A sample program (a), with its associated Control Flow Graph - CFG (b). The loop
iterates ten times. ANNOT_MAXITER is a macro that stores this information in a dedicated
ELF section of the binary, retrieved by the Heptane tool [27] and attached to the CFG.

switching the task to as less power hungry core (as in Arm’s big.LITTLE architecture).

In the context of Internet of Things (IoT), many systems do not have any exchange-

able battery. They harvest energy from physical phenomena (light, vibration...) into a

capacitor, and run as long as there is energy left. For these intermittently powered

systems, it is crucial to guarantee that the system stops at predefined locations. In

other words, when a fragment starts executing, we must guarantee that execution will

reach the next checkpoint where the state can be safely stored. Combining δ-WCET

estimates with an energy model of the system is a promising way to ensure that the

system makes forward progress and never runs out of power at unwanted locations.

Designers also stated incorporating non-volatile memories in their products. On

standard STT-RAM, non-volatility refers to a 10-year retention period. However,

whenever shorter retention is acceptable, cheaper designs are possible [106]. We envi-

sioned a system with several memory banks designed at various energy/retention

points [11]. By computing the WCET between a memory write and its subsequent

reads, we can assign writes to the most appropriate bank.

5.4 Worst-Case stores lifetimes

In this section, we present a simple code as a motivational example to show life-

times variations. Then we present some WCET-related works and we introduce our

proposed methodology

5.4. Worst-Case stores lifetimes 71

5.4.1 Motivational Example

Consider the example of Figure 5.5. The instructions using the three variables a, b and

i result in five different memory writes (store instructions) as shown in the control

flow graph. The first three initialize the variables in block 22, the last two update

the values of i (i++) and b (b=b+i) in block 23. The lifetime of a value is defined as

the duration between its definition (i.e., a write) and its last use (i.e., a load) before

it is redefined. The lifetimes created by all the stores are very different. Store (0) in

block 22 creates a lifetime that spans the entire duration of the program because it

is defined at the beginning and read in each iteration of the loop. Conversely, the

lifetimes defined by stores (1) and (2) in block 22 only reach the first iteration of block

23 in which they are redefined. The same holds for the data lifetimes defined at stores

(3) and (4) in block 23, alive only across one iteration. Hence, even with a large value

of N, most values written to memory only require a short retention time. This is

shown in Figure 5.6 (c): only one value increases proportionally to N.

As an example, let us assume a flat memory (i.e., no cache), with the read/write

energy costs from Khoshavi et al. [45], also summarized in Table 5.1. Let α
R
t (resp. α

W
t)

be the cost a single read (resp. write) to a memory bank with retention time t, the cost

of executing the program with a 10-years retention NVM memory is:

E0 = N × (4α
R
10yr + 2α

W
10yr) + 3α

W
10yr

If a 10 ms retention memory bank is available, stores (1), (2), (3), and (4) can be

assigned to it. For large values of N, store (0) must be assigned to the longer bank

(for N ≥ 66655, the lifetime exceed 400,002 cycles, i.e. 10 ms at 40 MHz as in our

FIGURE 5.6: Duration of the lifetimes created by each store instruction, for different numbers
of iterations of the loop, and 10 ms threshold, for the example shown in Figure 5.5.

72 Chapter 5. Variable retention times in a multi-bank NVM

Retention time Read energy (nJ): α
R Write energy (nJ): α

W

10 years 0.233 0.601
10 ms 0.233 0.269

TABLE 5.1: Two 512 KB NVM memory retention times [45]

experimental setup). The energy cost therefore becomes:

E1 = N × (3α
R
10ms + α

R
10yr + 2α

W
10ms) + α

W
10yr + 2α

W
10ms

The energy gain is E0−E1
E0

≃ 31 %.

The above simple example motivates the potential energy gain from the design

compromise enabled by NVM technologies with variable retention time. This feature

can be leveraged through multi-bank memory systems. Mapping variables to the

most appropriate memory bank will result in significant reduction of overall memory

energy. However the mapping must guarantee that the lifetimes of data stored in

memory will not exceed the retention time of their allocated memory bank, in any

circumstances.

In this work, we exploit static analysis and worst-case execution time techniques to

estimate an upper bound of the lifetime of every store instruction in programs. Given,

this information, we map each store to the most appropriate memory bank according

to the most suitable NVM retention time available. Our results show that significant

energy reduction can be obtained with only a few banks, favoring energy-efficient

memory designs.

We summarize our contribution as follows:

• an extension of program WCET analysis with the possibility to compute the

partial worst-case execution time (δ-WCET) of any portion of a program,

• exploitation of the δ-WCET analysis to compute the worst-case lifetime for

variables defined in store instructions of a program,

• multi-bank NVM memory allocation of variables based on their worst-case

lifetime characterizations and memory data retention times,

• validation of the proposed approach on the Mälardalen [24] benchmark-suite

(composed of 18 workloads) to show up to 80 % (and 66 % on average) dynamic

energy reduction on memory, while considering design calibration parameters

from NVM literature.

5.4. Worst-Case stores lifetimes 73

5.4.2 Related work

We first review existing studies devoted to energy-efficiency of NVM-based systems.

Then, we discuss the WCET estimation approach in general.

WCET estimation techniques

WCET estimation of programs provides an upper bound of task execution time,

used for guaranteeing that real-time requirements of a system are met. Traditionally,

WCETs are estimated at the granularity of a function. Many tools of WCET estimation

are proposed in the literature. Wilhelm et al. [113] presented an overview of methods

and existing tools. Two classes of methods are distinguished: static methods and

measurement-based methods. Static methods do not rely on real hardware executions.

They analyze the code itself, combine the control flow graph with a model of the

hardware architecture, and produce an upper bound of this combination. On the

other hand, measurement-based methods execute the code on real hardware or a

simulator for certain inputs. Then, based on the measured times, the minimal and

maximal execution times are derived.

The notion of partial WCET (δ-WCET) considered in the current work is recent

to the field. It has been recently addressed by Jacobs et al. [34], where they focus

on interference of concurrent tasks sharing a bus, and they compute for how many

cycles concurrent cores may be granted access to the resource in any time interval of

a given length. Avila et al. [3] also used the concept of δ-WCET, associated with the

gain time. The difference between the estimated WCET and the actual execution time

is known as gain time. Early identification of gain time requires to obtain δ-WCETs of

the code instead of considering the code as a whole. The authors placed gain points

in the program where they measured the actual execution time. These measurements

are used to identify all sources of pessimism in the WCET analysis. Oehlert et al. [82]

presented a compiler-based extraction of event arrival curves using CFGs. In order to

determine the maximum/minimum number of events in a specific time interval, all

possible paths in this CFG have to be considered. Their approach is an extension of the

work presented by Jacobs et al. [34]. Then, they suggested an alternative idea where

the objective function is set to maximize the number of events on a sub-path to be

chosen in a CFG. Our work differs from this idea in that it rather aims to maximize the

WCET in a given sub-path of the CFG. Ozaktas et al. [83] introduced two approaches

that play part in tightening the computation of WCET of a parallel program. Stall

times have an impact on WCETs and contribute to making it more pessimistic. Parallel

threads face synchronization-related delays, which challenges the timing analysis.

74 Chapter 5. Variable retention times in a multi-bank NVM

Hence, the authors proposed a refined analysis of the stall times in sequences of

critical sections (known to be a performance bottleneck in parallel programs) and a

new strategy for lock granting that is implemented in a set of primitives and aims

to minimize stall times on the worst-case path. Therefore, the authors presented a

partial WCET estimation of a sequence of the code that is an critical section. Thus, it

is not a general implementation that can be applied from any point and to any point

in a program. It is mainly an implementation dedicated for parallel programs.

There are various static WCET tools that are available. AbsInt’s aiT tool2 and

Bound-T [28] are probably the most famous and commercially successful ones. How-

ever, in this work, we consider Heptane, which is a tool implemented by some of our

team’s members.

Background: the Heptane Tool

We consider Heptane [27], a static WCET estimation tool. The aim of Heptane is

to produce upper bounds of the execution times of applications. It targets applica-

tions with hard real-time requirements (automotive, railway, aerospace domains). It

computes WCETs using static analysis at the binary code level. It is divided in two

parts: HeptaneExtract and HeptaneAnalysis. HeptaneExtract generates the control

flow graph G from a program compiled from C language. Then, it identifies the

different loops, attaches the loop bounds information provided by the programmer

and attaches the instruction addresses based on the binary file. Heptane does not

include the analysis of maximum number of loops iterations, which are not always

statically computable in the general case. Thus, loops must be annotated by the user

with their maximum number of iterations (maxiter)3. Afterwards, HeptaneAnalysis

implements IPET (Implicit Path Enumeration Technique) along with cache analysis

techniques for several cache architectures [113]. Static WCET estimation methods are

divided into two steps: high-level analysis and low-level analysis (see Figure 5.7). The

high-level analysis consists of determining the longest execution path. The low-level

analysis takes into consideration the micro architecture.

For the high-level analysis, Heptane performs an IPET analysis, based on Integer

Linear Programming (ILP) formulation of the WCET estimation problem. The pro-

gram flow is mapped into a set of graph flow constraints. An upper bound of the

program’s WCET is then obtained by maximizing the following objective function:

max ∑i ni × wi where wi is the timing information of the basic block i (constant in

2https://www.absint.com/ait/
3External tools such as oRange [74] are able to provide loops upper bounds of C programs in some

cases.

5.4. Worst-Case stores lifetimes 75

FIGURE 5.7: Heptane tool extended with δ-WCET analysis (blue dashed-box components
added by current work).

the ILP problem) determined by the low-level analysis, and ni is the number of

times the basic block i is executed (variable in the ILP problem). A basic block is

a set of sequential instructions. For the low-level analysis, Heptane performs data

address analysis, cache analysis and pipeline analysis. The pipeline analysis for all

supported architectures currently considers a simple in-order pipeline. Note that

Heptane performs context-sensitive analysis, which means that every call path of

a function is analyzed separately, e.g main → f oo → bar; and main → bar, where

bar is called directly from main but also from foo. Therefore, the objective function

will be like the following: max ∑i ni_c × wi, where wi is the timing information of

the basic block i in the context c and ni_c is the number of times the basic block i is

executed in the context c. The ILP problem is solved by a solver such as lp_solve or

cplex by maximizing the objective function and identifying the paths that lead to the

estimated WCET.

The WCET estimation depends on the structure of the program’s CFG and the

number and type of instructions inside each block, but also on the capability of

Heptane to apply address and cache analysis to bound the number of cache misses.

5.4.3 Proposed Methodology

Our methodology is a two-step process, illustrated on Figure 5.8. First, we identify

the def-use chains in the program (step referred to as “Reaching loads”). In other

words, for each store instruction, we determine all the loads that can read the value

previously written. Second, we compute the worst-case execution time between the

store and all subsequent loads (step referred to as “δ-WCET”). For this purpose we

76 Chapter 5. Variable retention times in a multi-bank NVM

Algorithm 1 General δ-WCET algorithm

1: procedure BETWEENBLOCKS(A,B)
2: L = DFS(A, B) ◃ nodes in DFS stack at completion
3: for all nodes N visited in the DFS and N /∈ L do

4: L = L ∪ DFS(N, B)

5: return L ◃ the list of nodes encountered in possible paths

6: procedure GENERATION OF THE ILP PROBLEM FROM A TO B
7: L = BetweenBlocks(A, B)
8: max ∑i ni_c × wi where i ∈ L ◃ the rest of the basic blocks are excluded by

setting their wi to 0
9: for all calls in L do

10: add to the objective function the callee nodes with their callee context

11: Modify wi based on whether A and/or B are inside a loop or not ◃ Maxiter
analysis

have developed a method to compute partial WCET estimates which we present in

this section. We then present how we apply it to the case of worst-case lifetimes. Both

steps are entirely static analyses.

FIGURE 5.8: Sketch of our framework (input: C code).

δ-WCET Estimation

A program is given as a regular executable (both ARM and MIPS instruction sets are

supported), in binary format, and an entry point (function main). Considering two

basic blocks A and B, we are interested in estimating the WCET from block A to block

B, which is the δ-WCET from A to B (item (2) of Figure 5.8).

The δ-WCET estimation is based on the WCET estimation. Considering a subgraph

of the CFG, the objective will be to make Heptane derive the δ-WCET from its analysis

for the whole CFG. Thus, we first compute the WCET estimate for the entire program,

which consists in computing for each basic block its WCET estimate, and its worst-

case execution frequency. Through this step, we obtain the system constraints of

5.4. Worst-Case stores lifetimes 77

the original ILP that we want to use later for δ-WCET estimations, as well as the

contextual analysis. Secondly, given two blocks A and B, we compute the set of blocks

and edges that can be traversed in any path from A to B. Consider the example on

Figure 5.6, where we selected block A=22 and B=25. All blocks 22, 23, 24, and 25 must

be considered, which means that all the blocks in the different paths leading to B

must be considered. We achieve this by iterating a depth-first search (DFS) on the

CFG, starting from node A, until we reach B or a block that reaches B. Note that the

WCET path from A to B is not necessarily on the overall WCET, i.e, the path from A

to B may not be a part of the longest path in the overall program, thus, the WCET

from A to B is not a sub-WCET of the program’s WCET.

Then, we compose a new ILP problem for the subgraph G′ obtained from the DFS,

to compute the WCET from A to B (see Algorithm 1 for the details). Therefore, the

objective function will include the nodes in G′ along with the callee nodes (with the

callee context) if there is a function call. Moreover, in order to tighten the WCET (make

it less pessimistic), we analyze the maxiter annotations. The potential for improvement

comes from the fact that the user annotation applies to the execution of the entire

function, while we consider only a subgraph. We take into account the following

cases, as illustrated in Figure 5.9.

1. The backedge is part of the subgraph (see example in Figure 5.9 (a)), hence the

loop may execute its maximum number of iterations on a path from A to B. This

is the case of the store instruction with ID 0 in Figure 5.6 (b). We keep the value

of maxiter unmodified.

2. The backedge is not part of subgraph (see example in Figure 5.9 (b)), as exam-

plified by the store with ID=1 in Figure 5.6 (b): the lifetime created in block

22 (initialization of variable i) is killed in block 23 by store ID=4 (i++). We

set maxiter=0 so that the ILP formulation for the subgraph does not consider

pessimistic frequencies due to the loop structure.

3. The backedge is part of subgraph, but it does not contribute to any cycle (see

example in Figure 5.9 (c)). Consider for example the lifetime created by store

with ID=3 (storing the result of b=b+i). Hence, we set maxiter=1.

So, the new ILP problem, presented as: max ∑i ni_c×wi where ni ∈ BetweenBlock(A, B),

has a new system constraints, slightly different from the original one to consider the

above cases. Note that the maxiter modification is applied to all backedges that are

not part of the subgraph. The whole implementation of the δ-WCET algorithm has

been done inside Heptane, as shown in Figure 5.7. Given a start node A and an end

78 Chapter 5. Variable retention times in a multi-bank NVM

loop [10]

25
freq: 11

24
freq: 10

B
freq: 1

A
freq: 1

loop [10]

A
freq: 11

B
freq: 10

26
freq: 1

23
freq: 1

loop [10]

B
freq: 11

n2 n3
26

freq: 1

A
freq: 10

23
freq: 1

(a) (b) (c)

FIGURE 5.9: Handling of maxiter

node B, the high-level analysis of Heptane performs IPET analysis along with the

contextual analysis to estimate WCET and then performs the depth-first search and

creates a new ILP problem using the contextual analysis related to the output of the

DFS and the maxiter analysis. The contextual analysis here consists of including in

the ILP objective function, the callee nodes with their callee context if there is any

function call in the DFS output nodes.

Linking δ-WCET to NVM Allocation

Data retention time is another parameter one can consider when designing a “non-

volatile” memory. Standard STT-RAM cells usually target several years data retention

period, e.g., 10-years [101] for reliability concern. However, different designs can

target shorter retention times, coming with gains in memory access latency and

energy as shown in Table 5.1.

We envision a system with memory banks designed for various energy/retention

time trade-offs. Knowing at design-time the amount of time a data is needed would

let a compiler allocate data to appropriate memory banks.

Assigning a write with a certain lifetime to the appropriate memory bank will

help us reduce the energy consumption by avoiding expensive write energy for

writes with low lifetimes. Identifying the subsequent reads for each write is done

through a dataflow analysis called reaching definitions which statically determines

which definitions may reach a given point in the code (item (2) of Figure 5.8).

Reaching definitions are used to compute use-def chains and def-use chains:

• use-def chain: consists of a use, U, of a variable, and all the definitions, D, of that

variable that can reach that use without any other intervening definitions

5.4. Worst-Case stores lifetimes 79

• def-use chain: consists of a definition, D, of a variable and all the uses, U, reachable

from that definition without any other intervening definition.

We use the def-use chain where a definition d is a store and the reachable uses u are

the loads. A definition d1 reaches point u1 if there is a path from d1 to u1 such that d1

is not killed along that path. In Figure 5.10, d0 is a definition that is never killed and its

use is u2, which explains why its lifetime is the highest one. However, d1 is killed by

d4. The uses of d1 are u1 and u3; hence, after d4, d1 is no longer available.

FIGURE 5.10: Example of reaching definitions

We implemented the computation of def-use chains in Heptane in order to compute

for every write instruction S the subsequent load instructions L1, L2..., Ln and to

define the subgraphs. Once this step is performed in Heptane, we create an ILP

problem for every combination S, {Li} in order to estimate the δ-WCET pi from S to

Li as shown in the Algorithm 1. Then, the lifetime of the store S is the maximum value

of pi. We repeat this step to compute the lifetimes of all stores in the given program.

Regarding the concrete implementation of variables mapping to memory banks,

both software and hardware approaches could be envisioned, as applied previously

for scratchpad memories [32]. For instance, a simple solution consists in extending

the instruction set with specialized load and store instructions, one for each memory

bank (alternatively, the load/store could be extended with an extra parameter to

specify the bank). Given the worst-case lifetimes, it is a fairly simple compiler job – or

even post-processor on the assembly – to optimize each instruction. It is important

that the code size does not change in order to maintain the validity of the analysis

carried out by Heptane. The implementation of the above mapping solution belongs

to short-term perspectives of the current work.

80 Chapter 5. Variable retention times in a multi-bank NVM

FIGURE 5.11: MCU containing a processor, SRAM, embedded Flash, and programmable I/O
peripherals

5.5 Validation on Mälardalen Benchmark-suite

We first present the experimental setup, chosen to evaluate our approach. Then, we

discuss the a potential type of architecture where our proposed methodology can

provide prominent results. After that, we detail our gain evaluation based on the

computed lifetimes.

5.5.1 Experimental setup

We experimented with the Mälardalen Benchmarks, a typical suite for WCET-related

experiments. Benchmarks were compiled for ARM using GCC. We slightly modified

the code to increase execution times which are otherwise too small: all lifetimes would

be far below our lowest threshold, making gains artificially high. As customary with

real-time systems, no optimization is applied (optimization level -O0). The reason

for this is the need to keep source-level annotations consistent with the binary repre-

sentation. Compiler optimizations heavily restructure the program representation,

to the point that the CFG representation at binary level cannot be matched with the

source level, making annotations invalid4. The ILP problems are solved by cplex. To

assess the impact on the energy consumed by the memory, we need the number of

reads and writes to all memory locations. Thus, we instrumented the benchmarks

using DynamoRIO, a runtime code manipulation system that supports code transfor-

mations on any part of a program, while it executes 5, to obtain traces of execution.

Through the traces, we count the number of occurrences for each store as well as for

its subsequent loads, to estimate the energy. The overall setup is shown on Figure 5.8.

5.5. Validation on Mälardalen Benchmark-suite 81

5.5.2 Architectural setup for IoT domain

In Internet of Things (IoT) systems, connected devices are able to sense and collect

data from the environment. These devices are typically battery powered. To maintain

a long period of autonomy, they must be able to manage their energy as long as

possible. Therefore, the energy consumption is a critical constraint in the design of

an IoT device. An IoT device is most of the time inactive, switching to low-power

mode (sleep mode) and waiting for the next task. Consequently, sleep mode power

will consumes an important part of energy and battery life, as the transition to the

active mode will required additional energy to exit the sleep mode and become

fully operational. Several Microcontrollers (MCUs) targeting low-power applications

implement several power-down modes with different transition times, depending on

from which low-power mode the MCU returns to the active mode. The most popular

choice of NVM in an MCU is an embedded-flash memory which can be used for

both code-storage and data storage applications. However, as for all types of NVM,

characterized by their density and low leakage, write operations are much expensive

than read operations. By relaxing its retention time, we can reduce the energy cost of

a write operation. Partitioning a flash memory into different blocks where each set

of blocks has a retention time can help to save an important amount of the energy

consumption.

In this work, we target an IoT architecture (see Figure 5.11), with a frequency of 40

MHz, where the read and write latency is 1 cycle and where the flash memory has a

high retention time (up to 10 years). We mainly consider the memory sub-system, as in

low-power designs, the core consumption of the core is extremely low. As an example,

the Cortus APS25s+ core [99] is rated at 17.9 µW/MHz, i.e. 716 µW at 40 MHz. The

memory systems we consider consume 2 nJ (resp. 1 nJ) per write. Assuming a write

every 10 instructions at 40 MHz, the power would be (40.106 × 2.10−9)/10 = 8.10−3W,

i.e. 8 mW (resp. 4 mW), an order of magnitude larger than the core.

4Li et al. [57] have successfully traced annotations throughout compiler optimizations, but this
requires heavy compiler machinery and it is not the focus of this work.

5http://www.dynamorio.org/

82 Chapter 5. Variable retention times in a multi-bank NVM

FIGURE 5.12: Worst-case lifetimes of static store instructions for write-light workloads from
the Mälardalen benchmark-suite: the X and Y axes respectively represent the write occurrences
and their corresponding worst-case lifetime in cycles at 40 MHz. Two duration thresholds are
made explicit along the Y axis (26.5 µs and 3.24 s).

5.5. Validation on Mälardalen Benchmark-suite 83

FIGURE 5.13: Worst-case lifetimes of static store instructions for write-light workloads from
the Mälardalen benchmark-suite: the X and Y axes respectively represent the write occurrences
and their corresponding worst-case lifetime in cycles at 40 MHz. Two duration thresholds are
made explicit along the Y axis (26.5 µs and 3.24 s).

84 Chapter 5. Variable retention times in a multi-bank NVM

FIGURE 5.14: Worst-case lifetimes of static store instructions for write-intensive workloads
from the Mälardalen benchmark-suite: the X and Y axes respectively represent the write
instructions and their corresponding worst-case lifetime in cycles at 40 MHz. Two duration
thresholds are made explicit along the Y axis (26.5µs and 3.24s).

5.5. Validation on Mälardalen Benchmark-suite 85

FIGURE 5.15: Worst-case lifetimes of static store instructions for write-intensive workloads
from the Mälardalen benchmark-suite: the X and Y axes respectively represent the write
instructions and their corresponding worst-case lifetime in cycles at 40 MHz. Two duration
thresholds are made explicit along the Y axis (26.5µs and 3.24s).

5.5.3 Lifetimes Evaluation on Benchmarks

As a prior step to data allocation in multi-retention memory, we apply the proposed δ-

WCET-based analysis to the different workloads of the Mälardalen benchmark-suite.

The expected results are the lifetimes distributions according to the benchmarks. Due

to the diversity of these benchmarks, the corresponding distributions in terms of store

instructions vary from one benchmark to another. We can categorize the distributions

according to the write-intensiveness of the benchmarks.

Figures 5.14 and 5.15 summarize the worst-case lifetimes of static store instructions

found in the subset of write-intensive workloads from the Mälardalen benchmark-

suite. The X and Y axes respectively denote the write instructions and their corre-

sponding worst-case lifetime in clock cycles, while operating at a frequency of 40 MHz.

We note that half of the benchmark-suite falls into this category. In order to build a few

clusters of store instructions on the base of their estimated worst-case lifetimes, we

consider three duration thresholds featuring three memory retention times: 26.5 µs,

3.24 s and 4.27 years, taken from Sun et al. [106] (see Table 5.2). It clearly appears that

the identified store instructions can be partitioned into different groups w.r.t. the three

lifetime thresholds. For instance, in the fft benchmark, all store instruction lifetimes

fall into two clusters: either below 26.5 µs threshold or below 3.24 s threshold; in the

qurt benchmark, the identified lifetimes are partitioned in three clusters: either below

26.5 µs threshold or below 3.24 s threshold or above 3.24 s threshold. Therefore, this

information can be leveraged to reduce energy consumption by allocating the stored

data memory accesses to appropriate NVM banks.

Figures 5.12 and 5.13 shows the subset of benchmarks that contain fewer static

store instructions compared to those profiled in Figures 5.14 and 5.15. While the

expected energy gain may a priori sound limited for write-light benchmarks, it is

86 Chapter 5. Variable retention times in a multi-bank NVM

Retention time Read energy (nJ) Write energy (nJ)
4.27 yr 0.085 1.916
3.24 s 0.083 0.932

26.5 µs 0.081 0.347

TABLE 5.2: 4 MB NVM memory retention times [106]

not necessarily true since a small number of static store instructions executed several

times, e.g., in a loop, could have a non negligible impact on the overall memory

energy consumption.

According to its lifetime, each store instruction will be associated with a dynamic

energy cost corresponding to the memory retention threshold targeted for this instruc-

tion. From the execution traces of benchmarks, we determine how many times such

instructions are executed, and we finally estimate the energy for each benchmark.

Evolution of lifetimes with program duration. As discussed in Section 5.4.1, not

all lifetimes are equal. Some are constant, regardless of the number of iterations (such

as lifetimes related to variables b and i of Figure 5.6(b), others vary (such as variable

a). We confirmed that the same applies beyond our motivational example. Figure 5.16

shows how lifetimes evolve when the number of iterations of the main loop grows

in sqrt. Clearly the first ten lifetimes remain unchanged, while the last six increase

proportionally, suggesting optimization potentials, even for large run times.

FIGURE 5.16: Lifetime distribution in sqrt for different values of MAXITER (i.e., N)

5.5. Validation on Mälardalen Benchmark-suite 87

Retention time Read energy (nJ) Write energy (nJ)
4.27 yr 0.083 0.958
3.24 s 0.032 0.466

26.5 µs 0.031 0.174

TABLE 5.3: 32 KB NVM memory retention times [106]

5.5.4 Gain evaluation

To evaluate how NVMs with variable retention times have prominent impact on

energy consumption, we consider different memory setups depending on the target

memory bank sizes. We already introduced one possible setup in Table 5.2 featuring

a 4 MB STT-RAM memory size. Now, let us consider another memory setup featuring

smaller memory banks with a size of 32 KB (based on the same technology [106]).

The energy consumption for this new setup according to the same retention times is

summarized in Table 5.3. Note that write energy costs overall are smaller, and read

costs are also reduced for shorter retention times.

Given the above setups, we evaluate the energy gain, which mainly comes from

the assignment of store operations to appropriate banks based on their worst lifetimes,

hence reducing the corresponding write energy. Since the leakage of NVMs is almost

null, we only focus on their dynamic energy, i.e., induced by read and write operations.

We formulate the energy consumed by loads and stores as:

E = NR × α
R + NW × α

W (5.1)

where NR and NW are respectively the number of read and write executions and

α
R and α

W are respectively the dynamic energies of a read and a write operation. In

a system where we have three different banks, we have three different α
R and α

W .

Therefore, the energy consumed by loads and stores will become as follows:

E = ∑
i∈{NVM retention times}

NR
i × α

R
i + NW

i × α
W
i (5.2)

where NR
i and NW

i are respectively the number of read and write executions on the

NVM memory bank i and α
R
i and α

W
i are respectively the dynamic energies of a read

and a write operation on the memory bank i.

By applying the above formulas, we compute the dynamic energy gain, as il-

lustrated in Figure 5.17 for the Mälardalen benchmark-suite, w.r.t. 4 MB and 32 KB

STT-RAM memory setups respectively. Here, the reported gain is computed against a

baseline setup consisting of an STT-RAM memory with a retention time of 4.27 years.

88 Chapter 5. Variable retention times in a multi-bank NVM

FIGURE 5.17: Energy savings based on Tables 5.3 and 5.2 setup w.r.t. a 4.27 yr STT-RAM
memory

Figure 5.17 shows that we achieved with the small memory configuration up to

80 % of energy gain compared to the baseline (small memory with 4.27 years retention

time) and up to 75 % with the large memory configuration. In fact, dynamic energy

of read and write operations on a small size memory are less expensive compared to

the large size memory.

Generally speaking, the energy gain depends on how many times a store is

executed on a specific bank of memory. For illustration, Figure 5.18 shows for three

benchmarks how many times each static store instruction has been executed (NW)

and how many times the stored value has been read (NR), before getting rewritten.

The trend observed for these benchmarks is representative of the overall benchmark-

suite. Please check Figure 5.19, 5.20 and 5.21 for the whole benchmark-suite.

In the ud benchmark, the major part of the store instructions is executed more than

104 times. More than half of these instructions have low lifetimes. This is beneficial

for energy saving.

The statemate benchmark, which shows more lifetimes requiring higher retention

times (falling strongly in the memory region with a retention time of 4.27 years), has

less energy savings among the three benchmarks. As expected, with both small and

large memory configurations, the lowest energy gain is for this benchmark.

In the matmult benchmark, we can notice the possible detrimental impact of high

NR values despite an important number of store instructions with short lifetimes.

This benchmark shows a gain of 60 % as shown in Figure 5.17, for the small memory

setup. However, this gain grows down to 55 % when considering the large memory

setup, in which the cost of read energy is multiplied by more than two and half.

5.6. Conclusion 89

FIGURE 5.18: Plots showing how many times each static store instruction has been executed
(NW) and how many times the stored value has been read (NR), before getting rewritten.
X, Y-left and Y-right axes respectively correspond to store identifiers, lifetimes in cycles and
thresholds for NR and NW.

5.6 Conclusion

In this work, we applied a partial worst-case execution time (δ-WCET) analysis

to programs in order to determine the worst-case lifetimes of program variables

involved in store instructions. This information is then used to safely allocate these

variables in appropriate NVM memory banks, according to their data retention

time. We validated our approach on the Mälardalen benchmark-suite, by showing a

significant reduction of memory dynamic energy (up to 80%, with an average of 66%).

This contributes to answer the energy-efficiency challenge faced in both embedded

and high-performance computing domains.

The short-term perspective to this work concerns the implementation of variables

mapping to memory banks. While both software and hardware approaches could be

considered, we plan to focus on the former approach. More precisely, we will explore

a compiler-oriented approach to post-process the assembly for deciding the mappings

based on the pre-evaluated worst-case lifetimes. Further research directions address

cache-based architectures. Indeed, the case study presented in this paper, features

a cache-less system. More generally, NVMs can be exploited at different levels of

the memory hierarchy. As discussed in Section 5.4.2, they can be leveraged through

90 Chapter 5. Variable retention times in a multi-bank NVM

hybrid designs where they are combined with traditional memory technologies, e.g.,

SRAM or DRAM. Data layout guided by worst-case lifetimes could be key to drive

each piece of data to the appropriate memory bank.

FIGURE 5.19: Plots showing how many times each static store instruction has been executed
(NW) and how many times the stored value has been read (NR), before getting rewritten.
X, Y-left and Y-right axes respectively correspond to store identifiers, lifetimes in cycles and
thresholds for NR and NW.

5.6. Conclusion 91

FIGURE 5.20: Plots showing how many times each static store instruction has been executed
(NW) and how many times the stored value has been read (NR), before getting rewritten.
X, Y-left and Y-right axes respectively correspond to store identifiers, lifetimes in cycles and
thresholds for NR and NW.

92 Chapter 5. Variable retention times in a multi-bank NVM

FIGURE 5.21: Plots showing how many times each static store instruction has been executed
(NW) and how many times the stored value has been read (NR), before getting rewritten.
X, Y-left and Y-right axes respectively correspond to store identifiers, lifetimes in cycles and
thresholds for NR and NW.

93

Chapter 6

Conclusion

As power-efficient design becomes more important, spin-transfer torque RAM (STT-

RAM) has drawn a lot of attention due to its ability to meet both high performance

and low power consumption. However, its high write energy incurs an increase of

dynamic power consumption and may offset power saving due to its low static power.

For decades, the memory technology of target systems has consisted in SRAM at

cache level, and DRAM for main memory. Emerging non-volatile memories (NVMs)

open up new opportunities (they have a quasi-zero static power consumption thanks

to their negligible leakage current), along with new design challenges. In particular,

the asymmetric cost of read/write accesses calls for adjusting existing techniques in

order to efficiently exploit NVMs. In addition, this technology makes it possible to

design memories with cheaper accesses at the cost of lower data retention times. These

features can be exploited at compile time to derive better data mappings according to

the application and data retention characteristics.

6.1 Achieved results

We considered the case of the reduction of the number of writes, and we presented

a compiler-based approach to eliminate silent stores. We showed how redundant

write elimination can be leveraged in memory systems including NVM, so as to

reduce the energy and performance penalty induced to NVMs. Another advantage

is the flexibility and portability across various hardware architectures enabled by

such compiler-level approaches, compared to the hardware-oriented techniques

found in literature. An important advantage of our approach is its portability to any

execution platform. This is not the case of the usual hardware implementation, which

only integrates the dedicated hardware mechanisms. We addressed a number of

system design considerations so as to maximize the overall energy efficiency of target

systems. This comprised the analysis of the impact of the application characteristics,

the compiler, and various microarchitectural features.

94 Chapter 6. Conclusion

Furthermore, we analyzed data lifetimes through the analysis of variables life-

times for memory bank assignment of program variables. We applied a partial worst-

case execution time (δ-WCET) analysis to programs in order to determine the worst-

case lifetimes of program variables involved in store instructions. This information

is then used to safely allocate these variables in appropriate NVM memory banks,

according to their data retention time. We validated our approach on the Mälardalen

benchmark-suite, by showing a significant reduction of memory dynamic energy (up

to 80%, with an average of 66%). This contributes to answer the energy-efficiency

challenge faced in both embedded and high-performance computing domains.

The approaches presented in this study can be positioned along with the existing

architectural approaches and circuit-level ones in a complementary way. As they are

portable, our contributions can enhance the proposed architectural designs found in

the literature and thus further mitigate the addressed drawbacks and improve the

energy consumption of NVM-based systems.

6.2 Perspectives

Future work includes a full validation of identified opportunities within an exper-

imental full-system architecture simulation environment, by considering existing

cycle-accurate simulation tools, combined with power estimation tools to evalu-

ate more precisely the gain expected from memory configurations identified as the

most energy-efficient with the present analytic approach. A candidate framework is

MAGPIE [19], built on top of gem5 [8] and NVSim [20].

The approximate silent stores identification and elimination can be detailed and

evaluated in a futur work. In this work, we showed the potential to eliminate such

stores and a further analysis may reveal interesting sides. Moreover, we can enhance

the elimination of silent stores by combining the transformation with a static predic-

tion of silent stores as proposed by Peireia et al. in [89]. By predicting silent stores, we

can apply our transformation without the profiling step, since we already identified

the stores that tend to be silent. The asymmetry of 0/1 writes is also a perspective of

this work. As we focused on the asymmetry of read/write, another side of NVMs’s

asymmetry can be addressed which is the 1/0 transitions.

Another perspective to the second part of this work (δ-WCET) concerns address-

ing cache-based architectures. Indeed, the case study presented in this work, features

a cache-less system. More generally, NVMs can be exploited at different levels of

the memory hierarchy. They can be leveraged through hybrid designs where they

are combined with traditional memory technologies, e.g., SRAM or DRAM. Data

6.2. Perspectives 95

layout guided by worst-case lifetimes could be key to drive each piece of data to the

appropriate memory bank. Furthermore, our δ-WCET approach can be also used for

other reasons. It can be used to improve the performance of a program in a hetero-

geneous architecture such as ARM big.LITTLE where there are a low-power cluster

and high-performance cluster. By computing different δ-WCETs, the user can decide

to migrate the execution of the program from one cluster to another based on some

constraints (timing, energy, ...). More generally, the computation of different δ-WCETs

can be used to help the user to take some decisions related to performance/energy or

debugging.

97

Bibliography

[1] J. Ahn and K. Choi. “Lower-bits cache for low power STT-RAM caches”. In:

2012 IEEE International Symposium on Circuits and Systems. 2012, pp. 480–483.

DOI: 10.1109/ISCAS.2012.6272069.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools (2Nd Edition). Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 2006. ISBN: 0321486811.

[3] Mathieu Avila, Maxime Glaizot, and Isabelle Puaut. “Impact of Automatic

Gain Time Identification on Tree-Based Static WCET Analysis”. In: Proceedings

of 3rd International Workshop on WCET 2003- a Sattelite Event to ECRTS 2003,

Polytechnic Institute of Porto, Portugal, July1 1, 2003. 2003.

[4] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. “Compiler Transfor-

mations for High-performance Computing”. In: ACM Comput. Surv. 26.4 (Dec.

1994), pp. 345–420. ISSN: 0360-0300. DOI: 10.1145/197405.197406.

[5] Gordon B Bell, Kevin M Lepak, and Mikko H Lipasti. “Characterization of

silent stores”. In: International Conference on Parallel Architectures and Compila-

tion Techniques (PACT). 2000.

[6] L. Benini, L. Macchiarulo, A. Macii, and M. Poncino. “Layout-driven memory

synthesis for embedded systems-on-chip”. In: IEEE Transactions on Very Large

Scale Integration (VLSI) Systems 10.2 (2002), pp. 96–105. ISSN: 1063-8210. DOI:

10.1109/92.994985.

[7] L. Benini, A. Macii, E. Macii, and M. Poncino. “Increasing energy efficiency

of embedded systems by application-specific memory hierarchy generation”.

In: IEEE Design Test of Computers 17.2 (2000), pp. 74–85. ISSN: 0740-7475. DOI:

10.1109/54.844336.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,

Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,

Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay

Vaish, Mark D. Hill, and David A. Wood. “The Gem5 Simulator”. In: SIGARCH

Comput. Archit. News 39.2 (Aug. 2011), pp. 1–7.

98 Bibliography

[9] R. Bishnoi, M. Ebrahimi, F. Oboril, and M. B. Tahoori. “Asynchronous Asym-

metrical Write Termination (AAWT) for a low power STT-MRAM”. In: 2014

Design, Automation Test in Europe Conference Exhibition (DATE). 2014, pp. 1–6.

DOI: 10.7873/DATE.2014.193.

[10] Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and Zili Shao. “Emerging

NVM: A Survey on Architectural Integration and Research Challenges”. In:

ACM Trans. Design Autom. Electr. Syst. 23.2 (2018), 14:1–14:32. DOI: 10.1145/

3131848. URL: http://doi.acm.org/10.1145/3131848.

[11] R. Bouziane, E. Rohou, and A. Gamatié. “How could compile-time program

analysis help leveraging emerging NVM features?” In: 2017 First International

Conference on Embedded Distributed Systems (EDiS). 2017, pp. 1–6. DOI: 10.1109/

EDIS.2017.8284031.

[12] Rabab Bouziane, Erven Rohou, and Abdoulaye Gamatié. “Compile-Time

Silent-Store Elimination for Energy Efficiency: an Analytic Evaluation for

Non-Volatile Cache Memory”. In: Proceedings of the RAPIDO 2018 Workshop

on Rapid Simulation and Performance Evaluation: Methods and Tools, Manchester,

UK, January 22-24, 2018. 2018, 5:1–5:8. DOI: 10.1145/3180665.3180666. URL:

http://doi.acm.org/10.1145/3180665.3180666.

[13] Rabab Bouziane, Erven Rohou, and Abdoulaye Gamatié. “Energy-Efficient

Memory Mappings based on Partial WCET Analysis and Multi-Retention

Time STT-RAM”. In: RTNS 2018 - 26th International Conference on Real-Time

Networks and Systems. Poitiers, France, Oct. 2018, pp. 1–11. DOI: 10.1145/

3273905.3273908. URL: https://hal.inria.fr/hal-01871320.

[14] A. Butko, F. Bruguier, A. Gamatié, G. Sassatelli, D. Novo, L. Torres, and

M. Robert. “Full-System Simulation of big.LITTLE Multicore Architecture

for Performance and Energy Exploration”. In: 2016 IEEE 10th International

Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSOC). 2016,

pp. 201–208. DOI: 10.1109/MCSoC.2016.20.

[15] Shuai Che, Jeremy W. Sheaffer, Michael Boyer, Lukasz G. Szafaryn, Liang

Wang, and Kevin Skadron. “A Characterization of the Rodinia Benchmark

Suite with Comparison to Contemporary CMP Workloads”. In: International

Symposium on Workload Characterization (IISWC’10). 2010. ISBN: 978-1-4244-

9297-8.

[16] Y. Chen, J. Cong, H. Huang, B. Liu, C. Liu, M. Potkonjak, and G. Reinman.

“Dynamically reconfigurable hybrid cache: An energy-efficient last-level cache

Bibliography 99

design”. In: 2012 Design, Automation Test in Europe Conference Exhibition (DATE).

2012, pp. 45–50. DOI: 10.1109/DATE.2012.6176431.

[17] Yu-Ting Chen, Jason Cong, Hui Huang, Chunyue Liu, Raghu Prabhakar, and

Glenn Reinman. “Static and dynamic co-optimizations for blocks mapping in

hybrid caches”. In: Proceedings of the 2012 international symposium on Low power

electronics and design. ACM. 2012, pp. 237–242.

[18] Wei-Kai Cheng, Yen-Heng Ciou, and Po-Yuan Shen. “Architecture and data

migration methodology for L1 cache design with hybrid SRAM and volatile

STT-RAM configuration”. In: Microprocessors and Microsystems 42 (2016).

[19] T. Delobelle, P. Péneau, A. Gamatié, F. Bruguier, S. Senni, G. Sassatelli, and

L. Torres. “MAGPIE: System-level Evaluation of Manycore Systems with

Emerging Memory Technologies”. In: Workshop on Emerging Memory Solutions

- Technology, Manufacturing, Architectures, Design and Test at Design Automation

and Test in Europe (DATE’2017), Lausanne, Switzerland. 2017.

[20] Xiangyu Dong, Cong Xu, Yuan Xie, and Norman P Jouppi. “Nvsim: A circuit-

level performance, energy, and area model for emerging nonvolatile memory”.

In: Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on 31.7 (2012), pp. 994–1007.

[21] Ricardo Gonzalez and Mark Horowitz. “Energy dissipation in general purpose

microprocessors”. In: IEEE Journal of solid-state circuits 31.9 (1996), pp. 1277–

1284.

[22] Nilanjan Goswami, Bingyi Cao, and Tao Li. “Power-performance co-optimization

of throughput core architecture using resistive memory”. In: High Performance

Computer Architecture (HPCA), IEEE 19th International Symposium on. 2013,

pp. 342–353.

[23] Xiaochen Guo, Engin Ipek, and Tolga Soyata. “Resistive Computation: Avoid-

ing the Power Wall with Low-leakage, STT-MRAM Based Computing”. In:

SIGARCH Comput. Archit. News 38.3 (June 2010), pp. 371–382. ISSN: 0163-5964.

DOI: 10.1145/1816038.1816012. URL: http://doi.acm.org/10.1145/

1816038.1816012.

[24] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen

WCET benchmarks: Past, present and future. Jan. 2010.

100 Bibliography

[25] H. Hajimiri, K. Rahmani, and P. Mishra. “Synergistic integration of dynamic

cache reconfiguration and code compression in embedded systems”. In: 2011

International Green Computing Conference and Workshops. 2011, pp. 1–8. DOI:

10.1109/IGCC.2011.6008580.

[26] HardKernel. Odroid XU4. http://www.hardkernel.com.

[27] Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. “The Heptane Static

Worst-Case Execution Time Estimation Tool”. In: 17th International Workshop

on Worst-Case Execution Time Analysis (WCET). Vol. 8. Dubrovnik, Croatia, June

2017, p. 12. DOI: 10.4230/OASIcs.WCET.2017.8. URL: http://hal.upmc.fr/

hal-01590444.

[28] Niklas Holsti and Sami Saarinen. “Status of the Bound-T WCET tool”. In: (Jan.

2002).

[29] Jingtong Hu, Chun Jason Xue, Wei-Che Tseng, Yi He, Meikang Qiu, and Edwin

H.-M. Sha. “Reducing Write Activities on Non-volatile Memories in Embed-

ded CMPs via Data Migration and Recomputation”. In: Design Automation

Conference (DAC’10). 2010.

[30] Jingtong Hu, Chun Jason Xue, Qingfeng Zhuge, Wei-Che Tseng, and Edwin

Hsing-Mean Sha. “Data Allocation Optimization for Hybrid Scratch Pad

Memory With SRAM and Nonvolatile Memory”. In: Trans. VLSI Syst. (2013).

[31] Shaoxiong Hua and Gang Qu. “Approaching the maximum energy saving

on embedded systems with multiple voltages”. In: ICCAD-2003. International

Conference on Computer Aided Design (IEEE Cat. No.03CH37486). 2003, pp. 26–29.

DOI: 10.1109/ICCAD.2003.159666.

[32] Maha Idrissi Aouad and Olivier Zendra. “A Survey of Scratch-Pad Memory

Management Techniques for low-power and -energy”. In: 2nd ECOOP Work-

shop on Implementation, Compilation, Optimization of Object-Oriented Languages,

Programs and Systems (ICOOOLPS’2007). Ed. by Olivier Zendra, Eric Jul, and

Michael Cebulla. July 2007, pp. 31–38. URL: https://hal.inria.fr/inria-

00170210.

[33] K Ikegami, H Noguchi, C Kamata, M Amano, K Abe, K Kushida, E Kitagawa,

T Ochiai, N Shimomura, A Kawasumi, H Hara, J Ito, and S Fujita. “A 4ns, 0.9V

write voltage embedded perpendicular STT-MRAM fabricated by MTJ-Last

process”. In: Procedings of Technical Progarm- 2014 International Symposium on

VLSI Technology, Systems and Application (Apr. 2014), pp. 1–2.

Bibliography 101

[34] Michael Jacobs, Sebastian Hahn, and Sebastian Hack. “WCET Analysis for

Multi-core Processors with Shared Buses and Event-driven Bus Arbitration”.

In: Proceedings of the 23rd International Conference on Real Time and Networks

Systems. RTNS. Lille, France: ACM, 2015, pp. 193–202. ISBN: 978-1-4503-3591-

1. DOI: 10.1145/2834848.2834872. URL: http://doi.acm.org/10.1145/

2834848.2834872.

[35] A. Jadidi, M. Arjomand, and H. Sarbazi-Azad. “High-endurance and performance-

efficient design of hybrid cache architectures through adaptive line replace-

ment”. In: IEEE/ACM International Symposium on Low Power Electronics and

Design. 2011, pp. 79–84. DOI: 10.1109/ISLPED.2011.5993611.

[36] Adwait Jog, Asit K. Mishra, Cong Xu, Yuan Xie, Vijaykrishnan Narayanan,

Ravishankar Iyer, and Chita R. Das. “Cache revive: architecting volatile STT-

RAM caches for enhanced performance in CMPs”. In: Annual Design Automa-

tion Conference DAC. 2012. DOI: 10.1145/2228360.2228406.

[37] Yongsoo Joo, Dimin Niu, Xiangyu Dong, Guangyu Sun, Naehyuck Chang, and

Yuan Xie. “Energy- and endurance-aware design of phase change memory

caches”. In: 2010 Design, Automation & Test in Europe Conference & Exhibition

(DATE 2010) (2010), pp. 136–141.

[38] Jinwook Jung, Y. Nakata, M. Yoshimoto, and H. Kawaguchi. “Energy-efficient

Spin-Transfer Torque RAM cache exploiting additional all-zero-data flags”. In:

International Symposium on Quality Electronic Design (ISQED). 2013, pp. 216–222.

DOI: 10.1109/ISQED.2013.6523613.

[39] Mahmut Kandemir, N. Vijaykrishnan, and Mary Jane Irwin. “Power Aware

Computing”. In: ed. by Robert Graybill and Rami Melhem. Norwell, MA,

USA: Kluwer Academic Publishers, 2002. Chap. Compiler Optimizations for

Low Power Systems, pp. 191–210. ISBN: 0-306-46786-0. URL: http://dl.acm.

org/citation.cfm?id=783060.783071.

[40] Mahmut Kandemir, N. Vijaykrishnan, Mary Jane Irwin, and Wu Ye. “Influence

of Compiler Optimizations on System Power”. In: IEEE Trans. Very Large Scale

Integr. Syst. 9.6 (Dec. 2001), pp. 801–804. ISSN: 1063-8210.

[41] Mahmut T. Kandemir, Ibrahim Kolcu, and Ismail Kadayif. “Influence of Loop

Optimizations on Energy Consumption of Multi-bank Memory Systems”. In:

Proceedings of the 11th International Conference on Compiler Construction. CC ’02.

London, UK, UK: Springer-Verlag, 2002, pp. 276–292. ISBN: 3-540-43369-4. URL:

http://dl.acm.org/citation.cfm?id=647478.727932.

102 Bibliography

[42] Mahmut T. Kandemir, Ibrahim Kolcu, and Ismail Kadayif. “Influence of Loop

Optimizations on Energy Consumption of Multi-bank Memory Systems”. In:

Proceedings of the 11th International Conference on Compiler Construction. Vol. 2304.

Lecture Notes in Computer Science. Springer International Publishing, 2002,

pp. 276–292. DOI: 10.1007/3-540-45937-5_20.

[43] S.H. Kang and K. Lee. “Emerging materials and devices in spintronic inte-

grated circuits for energy-smart mobile computing and connectivity”. English.

In: Acta Materialia 61.3 (2013), pp. 952–973. DOI: 10.1016/j.actamat.2012.10.

036.

[44] S. Kaxiras, Zhigang Hu, and M. Martonosi. “Cache decay: exploiting gen-

erational behavior to reduce cache leakage power”. In: Proceedings 28th An-

nual International Symposium on Computer Architecture. 2001, pp. 240–251. DOI:

10.1109/ISCA.2001.937453.

[45] Navid Khoshavi, Xunchao Chen, Jun Wang, and Ronald F. DeMara. “Read-

Tuned STT-RAM and eDRAM Cache Hierarchies for Throughput and Energy

Enhancement”. In: CoRR abs/1607.08086 (2016). arXiv: 1607 . 08086. URL:

http://arxiv.org/abs/1607.08086.

[46] A V Khvalkovskiy, D Apalkov, S Watts, R Chepulskii, R S Beach, A Ong, X

Tang, A Driskill-Smith, W H Butler, P B Visscher, D Lottis, E Chen, V Nikitin,

and M Krounbi. “Basic principles of STT-MRAM cell operation in memory

arrays”. In: Journal of Physics D: Applied Physics 46.7 (2013).

[47] V. Kianzad, S. S. Bhattacharyya, and Gang Qu. “CASPER: an integrated energy-

driven approach for task graph scheduling on distributed embedded systems”.

In: 2005 IEEE International Conference on Application-Specific Systems, Architec-

ture Processors (ASAP’05). 2005, pp. 191–197. DOI: 10.1109/ASAP.2005.23.

[48] Toru Kisuki, Peter M. W. Knijnenburg, and Michael F. P. O’Boyle. “Combined

Selection of Tile Sizes and Unroll Factors Using Iterative Compilation.” In: In-

ternational Conference on Parallel Architectures and Compilation Techniques (PACT).

IEEE Computer Society, 2000, pp. 237–248. ISBN: 0-7695-0622-4.

[49] K. Kwon, S. H. Choday, Y. Kim, and K. Roy. “AWARE (Asymmetric Write

Architecture With REdundant Blocks): A High Write Speed STT-MRAM Cache

Architecture”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems 22.4 (2014), pp. 712–720. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2013.

2256945.

Bibliography 103

[50] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation”. In: International Symposium on

Code Generation and Optimization: Feedback-directed and Runtime Optimization.

CGO ’04. Palo Alto, California: IEEE Computer Society, 2004, pp. 75–. ISBN:

0-7695-2102-9.

[51] Christophe Layer, Laurent Becker, Kotb Jabeur, Sylvain Claireux, Bernard

Dieny, Guillaume Prenat, Gregory Di Pendina, Stephane Gros, Pierre Paoli,

Virgile Javerliac, Fabrice Bernard-Granger, and Loic Decloedt. “Reducing

System Power Consumption Using Check-Pointing on Nonvolatile Embedded

Magnetic Random Access Memories”. In: ACM Journal on Emerging Technologies

in Computing Systems (JETC) 12.4 (2016), p. 32.

[52] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. “Architecting

Phase Change Memory As a Scalable Dram Alternative”. In: SIGARCH Comput.

Archit. News 37.3 (June 2009), pp. 2–13. ISSN: 0163-5964. DOI: 10.1145/1555815.

1555758. URL: http://doi.acm.org/10.1145/1555815.1555758.

[53] Dongwoo Lee and David Blaauw. “Static Leakage Reduction Through Simul-

taneous Threshold Voltage and State Assignment”. In: Proceedings of the 40th

Annual Design Automation Conference. DAC ’03. Anaheim, CA, USA: ACM,

2003, pp. 191–194. ISBN: 1-58113-688-9. DOI: 10.1145/775832.775881. URL:

http://doi.acm.org/10.1145/775832.775881.

[54] Kevin M Lepak, Gordon B Bell, and Mikko H Lipasti. “Silent stores and store

value locality”. In: IEEE Transactions on Computers 50.11 (2001).

[55] Kevin M. Lepak and Mikko H. Lipasti. “On the Value Locality of Store In-

structions”. In: International Symposium on Computer Architecture (ISCA’2000),

Vancouver, British Columbia, Canada. 2000, pp. 182–191.

[56] Dexin Li, P. H. Chou, and N. Bagherzadeh. “Mode selection and mode-

dependency modeling for power-aware embedded systems”. In: Proceedings

of ASP-DAC/VLSI Design 2002. 7th Asia and South Pacific Design Automation

Conference and 15h International Conference on VLSI Design. 2002, pp. 697–704.

DOI: 10.1109/ASPDAC.2002.995016.

[57] Hanbing Li, Isabelle Puaut, and Erven Rohou. “Traceability of Flow Informa-

tion: Reconciling Compiler Optimizations and WCET Estimation”. In: RTNS

- 22nd International Conference on Real-Time Networks and Systems. Versailles,

France, Oct. 2014. DOI: 10.1145/2659787.2659805. URL: https://hal.inria.

fr/hal-01072138.

104 Bibliography

[58] J. Li, L. Shi, Q. Li, C. J. Xue, Y. Chen, and Y. Xu. “Cache coherence enabled

adaptive refresh for volatile STT-RAM”. In: 2013 Design, Automation Test in

Europe Conference Exhibition (DATE). 2013, pp. 1247–1250. DOI: 10.7873/DATE.

2013.258.

[59] J. Li, L. Shi, C. J. Xue, C. Yang, and Y. Xu. “Exploiting set-level write non-

uniformity for energy-efficient NVM-based hybrid cache”. In: 2011 9th IEEE

Symposium on Embedded Systems for Real-Time Multimedia. 2011, pp. 19–28. DOI:

10.1109/ESTIMedia.2011.6088521.

[60] Jianhua Li, Chun Jason Xue, and Yinlong Xu. “STT-RAM based energy-

efficiency hybrid cache for CMPs”. In: Int. Conf. on VLSI and SoC (VLSI-SoC’11).

Kowloon, Hong Kong, China, 2011.

[61] Qing’an Li, Yanxiang He, Jianhua Li, Liang Shi, Yiran Chen, and Chun Jason

Xue. “Compiler-Assisted Refresh Minimization for Volatile STT-RAM Cache.”

In: IEEE Trans. Computers 64.8 (2015), pp. 2169–2181.

[62] Qingan Li, Jianhua Li, Liang Shi, Chun Jason Xue, and Yanxiang He. “MAC:

Migration-aware Compilation for STT-RAM Based Hybrid Cache in Embed-

ded Systems”. In: Int. Symp. on Low Power Electronics and Design (ISLPED).

2012.

[63] Qingan Li, Jianhua Li, Liang Shi, Mengying Zhao, Chun Jason Xue, and

Yanxiang He. “Compiler-assisted STT-RAM-based hybrid cache for energy

efficient embedded systems”. In: Transactions on Very Large Scale Integration

(VLSI) Systems 22.8 (2014).

[64] Qingan Li, Liang Shi, Jianhua Li, Chun Jason Xue, and Yanxiang He. “Code

Motion for Migration Minimization in STT-RAM Based Hybrid Cache”. In:

Computer Society Annual Symposium on VLSI. 2012.

[65] Qingan Li, Mengying Zhao, Chun Jason Xue, and Yanxiang He. “Compiler-

assisted Preferred Caching for Embedded Systems with STT-RAM Based

Hybrid Cache”. In: ACM International Conference on Languages, Compilers, Tools

and Theory for Embedded Systems (LCTES ’12). 2012.

[66] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,

and Norman P. Jouppi. “McPAT: An Integrated Power, Area, and Timing Mod-

eling Framework for Multicore and Manycore Architectures”. In: Proceedings

of the 42nd Annual International Symposium on Microarchitecture. MICRO 42.

New York, New York: ACM, 2009, pp. 469–480. ISBN: 978-1-60558-798-1.

Bibliography 105

[67] Yong Li, Yiran Chen, and Alex K. Jones. “A Software Approach for Combating

Asymmetries of Non-volatile Memories”. In: Proceedings of the 2012 ACM/IEEE

International Symposium on Low Power Electronics and Design. ISLPED ’12. Re-

dondo Beach, California, USA: ACM, 2012, pp. 191–196. ISBN: 978-1-4503-1249-

3. DOI: 10.1145/2333660.2333708. URL: http://doi.acm.org/10.1145/

2333660.2333708.

[68] Yong Li and Alex K Jones. “Cross-layer techniques for optimizing systems

utilizing memories with asymmetric access characteristics”. In: VLSI (ISVLSI),

2012 IEEE Computer Society Annual Symposium on. IEEE. 2012, pp. 404–409.

[69] Yong Li, Yaojun Zhang, Hai LI, Yiran Chen, and Alex K. Jones. “C1C: A Con-

figurable, Compiler-guided STT-RAM L1 Cache”. In: ACM Trans. Archit. Code

Optim. 10.4 (Dec. 2013), 52:1–52:22. ISSN: 1544-3566. DOI: 10.1145/2555289.

2555308. URL: http://doi.acm.org/10.1145/2555289.2555308.

[70] I. Lin and J. Chiou. “High-Endurance Hybrid Cache Design in CMP Architec-

ture With Cache Partitioning and Access-Aware Policies”. In: IEEE Transactions

on Very Large Scale Integration (VLSI) Systems 23.10 (2015), pp. 2149–2161. ISSN:

1063-8210. DOI: 10.1109/TVLSI.2014.2361150.

[71] Paul Marchal, José Ignacio Gómez, and Francky Catthoor. “Optimizing the

Memory Bandwidth with Loop Fusion”. In: Proceedings of the 2nd International

Conference on Hardware/Software Codesign and System Synthesis. CODES+ISSS

’04. Stockholm, Sweden, 2004, pp. 188–193. ISBN: 1-58113-937-3.

[72] Larry McVoy and Carl Staelin. “Lmbench: Portable Tools for Performance

Analysis”. In: USENIX Annual Technical Conference. San Diego, CA: USENIX

Association, 1996, pp. 23–23.

[73] R. Mehta, R. M. Owens, M. J. Irwin, R. Chen, and D. Ghosh. “Techniques for

low energy software”. In: Proceedings of 1997 International Symposium on Low

Power Electronics and Design. 1997, pp. 72–75. DOI: 10.1145/263272.263286.

[74] M. de Michiel, A. Bonenfant, C. Ballabriga, and H. Cassé. “Partial Flow Anal-

ysis with oRange”. In: International Symposium On Leveraging Applications of

Formal Methods, Verification and Validation. LNCS 6416. 2010, pp. 479–482.

[75] S. Mittal, J. S. Vetter, and D. Li. “LastingNVCache: A Technique for Improving

the Lifetime of Non-volatile Caches”. In: 2014 IEEE Computer Society Annual

Symposium on VLSI. 2014, pp. 534–540. DOI: 10.1109/ISVLSI.2014.69.

106 Bibliography

[76] Sparsh Mittal, Jeffrey Vetter, and Dong Li. “WriteSmoothing: Improving Life-

time of Non-volatile Caches Using Intra-set Wear-leveling”. In: Proceedings of

the ACM Great Lakes Symposium on VLSI. ACM, 2014, pp. 139–144.

[77] Sparsh Mittal and Jeffrey S. Vetter. “A Survey of Software Techniques for

Using Non-Volatile Memories for Storage and Main Memory Systems”. In:

Trans. Parallel Distrib. Syst. 27.5 (2016).

[78] Sparsh Mittal and Jeffrey S. Vetter. “EqualChance: Addressing Intra-set Write

Variation to Increase Lifetime of Non-volatile Caches”. In: 2nd USENIX Work-

shop on Interactions of NVM/Flash with Operating Systems and Workloads (IN-

FLOW). Broomfield, CO, United States, Oct. 2014. URL: https://hal.archives-

ouvertes.fr/hal-01104645.

[79] Steven S. Muchnick. Advanced Compiler Design and Implementation. San Fran-

cisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997. ISBN: 1-55860-320-4.

[80] Linwei Niu and Gang Quan. “Reducing Both Dynamic and Leakage Energy

Consumption for Hard Real-time Systems”. In: Proceedings of the 2004 Interna-

tional Conference on Compilers, Architecture, and Synthesis for Embedded Systems.

CASES ’04. Washington DC, USA: ACM, 2004, pp. 140–148. ISBN: 1-58113-

890-3. DOI: 10.1145/1023833.1023854. URL: http://doi.acm.org/10.1145/

1023833.1023854.

[81] Hiroki Noguchi, Kazutaka Ikegami, Keiichi Kushida, Keiko Abe, Shogo Itai,

Satoshi Takaya, Naoharu Shimomura, Junichi Ito, Atsushi Kawasumi, Hi-

royuki Hara, and Shigeji Fujita. “A 3.3ns-access-time 71.2µW/MHz 1Mb

embedded STT-MRAM using physically eliminated read-disturb scheme and

normally-off memory architecture”. In: ISSCC. IEEE, Feb. 2015, pp. 1–3.

[82] Dominic Oehlert, Selma Saidi, and Heiko Falk. “Compiler-based Extraction of

Event Arrival Functions for Real-Time Systems Analysis”. In: 30th Euromicro

Conference on Real-Time Systems, ECRTS 2018, July 3-6, 2018, Barcelona, Spain.

2018, 4:1–4:22. DOI: 10.4230/LIPIcs.ECRTS.2018.4. URL: https://doi.org/

10.4230/LIPIcs.ECRTS.2018.4.

[83] Haluk Ozaktas, Christine Rochange, and Pascal Sainrat. “Minimizing the

Cost of Synchronisations in the WCET of Real-time Parallel Programs”. In:

Proceedings of the 17th International Workshop on Software and Compilers for

Embedded Systems. SCOPES ’14. Sankt Goar, Germany: ACM, 2014, pp. 98–

107. ISBN: 978-1-4503-2941-5. DOI: 10.1145/2609248.2609261. URL: http:

//doi.acm.org/10.1145/2609248.2609261.

Bibliography 107

[84] Xiang Pan and Radu Teodorescu. “NVSleep: Using non-volatile memory

to enable fast sleep/wakeup of idle cores”. In: International Conference on

Computer Design, ICCD. 2014. DOI: 10.1109/ICCD.2014.6974712.

[85] Preeti Ranjan Panda, Nikil D. Dutt, Alexandru Nicolau, Francky Catthoor,

Arnout Vandecappelle, Erik Brockmeyer, Chidamber Kulkarni, and Eddy de

Greef. “Data Memory Organization and Optimizations in Application-Specific

Systems”. In: IEEE Design & Test of Computers 18.3 (2001), pp. 56–68.

[86] S. P. Park, S. Gupta, N. Mojumder, A. Raghunathan, and K. Roy. “Future

cache design using STT MRAMs for improved energy efficiency: Devices,

circuits and architecture”. In: DAC Design Automation Conference 2012. 2012,

pp. 492–497.

[87] PierreYves Péneau, Rabab Bouziane, Abdoulaye Gamatié, Erven Rohou, Flo-

rent Bruguier, Gilles Sassatelli, Lionel Torres, and Sophiane Senni. “Loop

optimization in presence of STT-MRAM caches: A study of performance-

energy tradeoffs”. In: 26th International Workshop on Power and Timing Modeling,

Optimization and Simulation, PATMOS 2016, Bremen, Germany, September 21-23,

2016. 2016, pp. 162–169. DOI: 10.1109/PATMOS.2016.7833682. URL: https:

//doi.org/10.1109/PATMOS.2016.7833682.

[88] Pierre-Yves Péneau, David Novo, Florent Bruguier, Lionel Torres, Gilles Sas-

satelli, and Abdoulaye Gamatié. “Improving the Performance of STT-MRAM

LLC through Enhanced Cache Replacement Policy”. In: ARCS: Architecture

of Computing Systems. Vol. LNCS. 10793. Braunschweig, Germany, Apr. 2018,

pp. 168–180. DOI: 10.1007/978-3-319-77610-1_13. URL: https://hal-

lirmm.ccsd.cnrs.fr/lirmm-01669254.

[89] Fernando Magno Quintão Pereira, Guilherme Vieira Leobas, and Abdoulaye

Gamatié. “Static Prediction of Silent Stores”. In: URL: https://doi.org/10.

1145/.

[90] Polybench Benchmark. Ohio State University. URL: https://sourceforge.net/

projects/polybench.

[91] Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and T. N. Vi-

jaykumar. “Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep-

submicron Cache Memories”. In: Proceedings of the 2000 International Sympo-

sium on Low Power Electronics and Design. ISLPED ’00. Rapallo, Italy: ACM,

2000, pp. 90–95. ISBN: 1-58113-190-9. DOI: 10.1145/344166.344526. URL:

http://doi.acm.org/10.1145/344166.344526.

108 Bibliography

[92] Qingan Li et al. “MGC: Multiple graph-coloring for non-volatile memory

based hybrid Scratchpad Memory”. In: Workshop on Interaction between Compil-

ers and Computer Architectures (INTERACT) (2012).

[93] Keni Qiu, Junpeng Luo, Zhiyao Gong, Weigong Zhang, Jing Wang, Yuan-

chao Xu, Tao Li, and Chun Jason Xue. “Refresh-aware loop scheduling for

high performance low power volatile STT-RAM”. In: 34th IEEE International

Conference on Computer Design, ICCD 2016, Scottsdale, AZ, USA, October 2-5,

2016. 2016, pp. 209–216. DOI: 10.1109/ICCD.2016.7753282. URL: https:

//doi.org/10.1109/ICCD.2016.7753282.

[94] Baixing Quan, Tiefei Zhang, Tianzhou Chen, and Jianzhong Wu. “Predic-

tion table based management policy for STT-RAM and SRAM hybrid cache”.

In: 2012 7th International Conference on Computing and Convergence Technology

(ICCCT). 2012, pp. 1092–1097.

[95] J. Ramanujam, J. Hong, M. Kandemir, and A. Narayan. “Reducing memory

requirements of nested loops for embedded systems”. In: Proceedings of the 38th

Design Automation Conference (IEEE Cat. No.01CH37232). 2001, pp. 359–364.

DOI: 10.1145/378239.378523.

[96] N. D. Rizzo, M. DeHerrera, J. Janesky, B. Engel, J. Slaughter, and S. Tehrani.

“Thermally activated magnetization reversal in submicron magnetic tunnel

junctions for magnetoresistive random access memory”. In: Appl. Phys. Lett.

80 (2002). DOI: https://doi.org/10.1063/1.1462872.

[97] Gabriel Rodríguez, Juan Touriño, and Mahmut T. Kandemir. “Volatile STT-

RAM Scratchpad Design and Data Allocation for Low Energy”. In: TACO 11.4

(2014), 38:1–38:26. DOI: 10.1145/2669556. URL: http://doi.acm.org/10.

1145/2669556.

[98] Samsung. Exynos Octa 5422. 2015.

[99] Cortus SAS. APS25s+ – Enhanced Performance Embedded Microcontroller With

Leading Code Density. Product flyer – Online http://www.cortus.com/index.

php/ip/. 2017.

[100] André Seznec and Pierre Michaud. “A case for (partially) TAgged GEometric

history length branch prediction”. In: Journal of Instruction Level Parallelism 8

(2006).

Bibliography 109

[101] Clinton W. Smullen, Vidyabhushan Mohan, Anurag Nigam, Sudhanva Gu-

rumurthi, and Mircea R. Stan. “Relaxing Non-volatility for Fast and Energy-

efficient STT-RAM Caches”. In: Int. Symp. on High Performance Computer Archi-

tecture (HPCA). IEEE Computer Society, 2011. ISBN: 978-1-4244-9432-3.

[102] Clinton W. Smullen, Vidyabhushan Mohan, Anurag Nigam, Sudhanva Gu-

rumurthi, and Mircea R. Stan. “Relaxing Non-volatility for Fast and Energy-

efficient STT-RAM Caches”. In: Proceedings of the 2011 IEEE 17th International

Symposium on High Performance Computer Architecture. HPCA ’11. Washington,

DC, USA: IEEE Computer Society, 2011, pp. 50–61. ISBN: 978-1-4244-9432-3.

URL: http://dl.acm.org/citation.cfm?id=2014698.2014895.

[103] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan, and

P. Marwedel. “Reducing energy consumption by dynamic copying of in-

structions onto onchip memory”. In: 15th International Symposium on System

Synthesis, 2002. 2002, pp. 213–218. DOI: 10.1145/581199.581247.

[104] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen. “A novel architecture of the 3D

stacked MRAM L2 cache for CMPs”. In: 2009 IEEE 15th International Symposium

on High Performance Computer Architecture. 2009, pp. 239–249. DOI: 10.1109/

HPCA.2009.4798259.

[105] Guangyu Sun, Xiangyu Dong, Yuan Xie, Jian Li, and Yiran Chen. “A novel

architecture of the 3D stacked MRAM L2 cache for CMPs”. In: International Con-

ference on High-Performance Computer Architecture (HPCA’09). Raleigh, North

Carolina, USA, 2009, pp. 239–249.

[106] Zhenyu Sun, Xiuyuan Bi, Hai (Helen) Li, Weng-Fai Wong, Zhong-Liang Ong,

Xiaochun Zhu, and Wenqing Wu. “Multi Retention Level STT-RAM Cache

Designs with a Dynamic Refresh Scheme”. In: Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture. MICRO-44. Porto

Alegre, Brazil: ACM, 2011, pp. 329–338. ISBN: 978-1-4503-1053-6. DOI: 10.1145/

2155620.2155659. URL: http://doi.acm.org/10.1145/2155620.2155659.

[107] Y. Tsai and C. Chen. “Energy-Efficient Trace Reuse Cache for Embedded Pro-

cessors”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 19.9

(2011), pp. 1681–1694. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2010.2055908.

[108] Hung-Wei Tseng and Dean M. Tullsen. “CDTT: Compiler-generated data-

triggered threads”. In: International Symposium on High Performance Computer

Architecture HPCA. 2014. DOI: 10.1109/HPCA.2014.6835973.

110 Bibliography

[109] Hung-Wei Tseng and Dean M. Tullsen. “Data-triggered threads: Eliminat-

ing redundant computation”. In: International Conference on High-Performance

Computer Architecture (HPCA). 2011. DOI: 10.1109/HPCA.2011.5749727.

[110] Hung-Wei Tseng and Dean M. Tullsen. “Software data-triggered threads”. In:

Conference on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA. 2012. DOI: 10.1145/2384616.2384668.

[111] J. Wang, X. Dong, Y. Xie, and N. P. Jouppi. “WAP: Improving non-volatile

cache lifetime by reducing inter- and intra-set write variations”. In: 2013 IEEE

19th International Symposium on High Performance Computer Architecture (HPCA).

2013, pp. 234–245. DOI: 10.1109/HPCA.2013.6522322.

[112] Shasha Wen, Milind Chabbi, and Xu Liu. “REDSPY: Exploring Value Locality

in Software”. In: International Conference on Architectural Support for Program-

ming Languages and Operating Systems ASPLOS. 2017. DOI: 10.1145/3037697.

3037729.

[113] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-

mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschu-

lat, and Per Stenström. “The Worst-case Execution-time Problem – Overview

of Methods and Survey of Tools”. In: ACM Trans. Embed. Comput. Syst. 7.3

(May 2008), 36:1–36:53. ISSN: 1539-9087. DOI: 10.1145/1347375.1347389. URL:

http://doi.acm.org/10.1145/1347375.1347389.

[114] Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, and Yuan

Xie. “Hybrid Cache Architecture with Disparate Memory Technologies”. In:

International Symposium on Computer Architecture (ISCA). 2009.

[115] Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, and Yuan Xie. “Power and

performance of read-write aware hybrid caches with non-volatile memories”.

In: Design, Automation & Test in Europe Conf. & Exhibition (DATE). 2009.

[116] Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. “Approximate Computing:

A Survey”. In: IEEE Design & Test 33.1 (2016), pp. 8–22. DOI: 10.1109/MDAT.

2015.2505723.

[117] Hongbo Yang, Guang R. Gao, Andres Marquez, George Cai, and Ziang Hu.

“Power and Energy Impact by Loop Transformations”. In: In Proceedings of

the Workshop on Compilers and Operating Systems for Low Power 2001, Parallel

Architecture and Compilation Techniques. 2000.

Bibliography 111

[118] Sadegh Yazdanshenas, Marzieh Ranjbar Pirbasti, Mahdi Fazeli, and Ahmad

Patooghy. “Coding Last Level STT-RAM Cache for High Endurance and Low

Power”. In: IEEE Comput. Archit. Lett. 13.2 (July 2014), pp. 73–76. ISSN: 1556-

6056. DOI: 10.1109/L-CA.2013.8. URL: http://dx.doi.org/10.1109/L-

CA.2013.8.

[119] Yangyang Ye, S Borkar, and V De. “A new technique for standby leakage

reduction in high-performance circuits”. In: Symposium on VLSI Circuits. Digest

of Technical Papers (July 1998), pp. 40 –41.

[120] C. Zhang, F. Vahid, and W. Najjar. “A highly configurable cache architecture

for embedded systems”. In: 30th Annual International Symposium on Computer

Architecture, 2003. Proceedings. 2003, pp. 136–146. DOI: 10.1109/ISCA.2003.

1206995.

[121] J. Zhao, C. Xu, and Y. Xie. “Bandwidth-aware reconfigurable cache design with

hybrid memory technologies”. In: 2011 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD). 2011, pp. 48–55. DOI: 10.1109/ICCAD.2011.

6105304.

[122] Jishen Zhao, Cong Xu, Ping Chi, and Yuan Xie. “Memory and Storage System

Design with Nonvolatile Memory Technologies”. In: IPSJ Transactions on Sys-

tem LSI Design Methodology 8 (2015), pp. 2–11. DOI: 10.2197/ipsjtsldm.8.2.

[123] W. Zhao, E. Belhaire, Q. Mistral, C. Chappert, V. Javerliac, B. Dieny, and

E. Nicolle. “Macro-model of Spin-Transfer Torque based Magnetic Tunnel

Junction device for hybrid Magnetic-CMOS design”. In: 2006 IEEE International

Behavioral Modeling and Simulation Workshop. 2006, pp. 40–43. DOI: 10.1109/

BMAS.2006.283467.

[124] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. “Energy reduction for STT-

RAM using early write termination”. In: International Conference on Computer-

Aided Design. ICCAD. San Jose, CA, USA, 2009.

[125] I. Ştirb and H. Ciocârlie. “Improving performance and energy consumption

with loop fusion optimization and parallelization”. In: 2016 IEEE 17th Inter-

national Symposium on Computational Intelligence and Informatics (CINTI). 2016,

pp. 000099–000104. DOI: 10.1109/CINTI.2016.7846386.

