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Shape and dynamics of elastically strained quantum dots

Introduction

The study of elastically strained semiconductor thin films is appealing from the theoretical and applied point of views. The growth dynamics of self-organized quantum dots or islands, has attracted a lot of interest due to their opto-electronic properties for light-emitting diode and quantum dots laser [1][2][3]. Nowadays, quantum dots are actively studied due to their promising applications in electronics or optics, as, for example, single photon emitters [4,5]. The development of a model that can predict the sizes, the shape and the surface density of strained islands remains a challenging task, since it involves the dynamic interplay of elastic, capillary, wetting, facceting and alloying effects [6][7][8][9][10][11][12][13][14]. Two phenomena are essential for the morphological development of self-organized islands. The first one is the development of the spatial instability, which selects a size. The second one is a coarsening phenomenom which unfortunately broadens the size distribution of the islands. Coarsening is a general phenomenon in which the size of a pattern increases and whose description requires a deep understanding of the transport mechanisms between each island or cellular structure [15][16][17][18].

Here we study the fundamental aspects of the coarsening dynamics of strained semiconductor quantum dot as the gallium-aluminum-nitride or silicon-germanium islands [9,[19][20][21][22][23][24][25][26][27][28][29][30]. The potential properties and applications of quantum dots assembly depend on their composition and their size distribution. In particular, the homogeneity of size of self-organized quantum dots can be strongly affected by coarsening effect [30].

The formation of self-organized quantum dots results from the Stranski-Krastanov grows mode [31]. A thin semiconductor film is deposited and growth as a planar layer. Above a critical thickness, islands emerge from this layer. This formation is explained by a partial relaxation of the elastic stress of the strained film, which is also submitted to capillarity and wetting effects [24,32]. For low misfit [33,34], the instability is reminiscent of the Asaro-Tiller-Grinfeld (ATG) instability [7,[35][36][37][38]. After its initial growth, the assembly of islands undergoes coarsening, driven by the efficient elastic relaxation of the largest islands. The initially rough isotropic islands (prepyramids) hence ripen and, as they display steep enough slopes, they transform into anisotropic quantum dots of various sizes, especially pyramids and domes [39].

The main subject of this thesis is related to the control of the quantum dots size, their spatial distribution and the coarsening dynamics. This process is complex and involves instabilities, nonlinear phenomena and coarsening [30]. In particular it is of interest to reach high surface density with a reasonably sharp size density distribution. For the initial isotropic islands [40][41][42], various theories predict a power-law evolution of the surface roughness and island density at constant mass (annealing). However the exponents of these power laws are clearly different from the classical Ostwald exponents [30]. In addition, the coarsening might be impacted by the growth dynamics [43] and the anisotropy of the surface energy [9,39,[44][45][46][47][48].

Different theoretical models have been developed using a strong anisotropy surface energy. The predicted self-organized strained islands display a coarsening dynamics which slows down numerically because of the presence of the surface energy anisotropy [9,39,49,50]. All these CONTENTS models have shown a major influence of anisotropy, in particular the interruption of the coarsening. Without anisotropy, the model does not show this effect. The cause of the freezing of the coarsening is therefore a question of actual interest that we want to address in this thesis. The complexity of the system renders the analytical approach difficult, but we were able to obtain analytical results for a one-dimensional system [51,52]. Our results are also comforted and completed by direct numerical simulation of the heteroepitaxy equation.

Recent experiments [START_REF] Damilano | Formation of gan quantum dots by molecular beam epitaxy using NH 3 as nitrogen source[END_REF][START_REF] Brault | Investigation of Al y Ga 1-y N/Al 0.5 Ga 0.5 q N quantum dot properties for the design of ultraviolet emitters[END_REF][55] have reported that atomic evaporation takes place during coarsening phenomena. The evaporation rate depends on the facet orientation of the crystal and on the thermodynamic parameters, such as the temperature. The experiment shows that this preferential evaporation depends on the temperature of annealing and for pyramid islands; the evaporation of the wetting layer is ten times the evaporation of the facets. This behavior leads to the evaporation of the wetting layer, where only isolated islands remain in the system. This unusual behavior of vanishing wetting layer is different from the Stransky-Krastanov growth mode, since the islands remain in the system without a wetting layer. It is observed experimentally that structures without wetting layer display a strong improvement in their electronic and optical properties. To our knowledge, no theoretical works have analyzed the evaporation problem.

In the present manuscript we will study the shape, the size, the surface density and the coarsening dynamics of quantum dots. For that, we provide the physical ingredients which permit to solve the heteroepitaxial equation, which is described by a surface diffusion equation. The diffusion has two contributions, one induced by the elastic stress and the other due to the surface energy. These two effects compete in order to shape the morphology of the quantum dots.

In chapter 1, we describe the experimental context for the growth of QDs, in SiGe system and GaN/AlN semiconductors. We also recall the different models for the modeling of the crystal surfaces dynamics in heteroepitaxy.

In chapter 2, we present the theoretical framework which permits to derive the heteroepitaxy equation. We introduce the linear instability named Asaro-Tiller-Grinfeld instability, and we analyze the effect of anisotropy on the growth rate of the surface perturbation.

In chapter 3, we present the theoretical results obtained for isotropic islands. In this chapter, we will study analytically and numerically the coarsening dynamics of strained isotropic islands. We will first describe its stationary equilibrium shape by a simple ansatz. This simple ansatz considers a single island fitted by a polynomial lying over a constant wetting layer. This ansatz takes into account the equality of the chemical potential value between the top of the island and the wetting layer. The island height, the mass (or surface) and the chemical potential are analytically predicted. We report the existence of a continuous family of solution for the island shape as a function of the mass. We also show that the wetting interaction yields the existence of a minimal island height. Since the localized structure are well understood, we study analytically and numerically the coarsening dynamics of two islands. We reduce it to a simple model, taking into account the results obtained of isolated stationary islands. The difficulty of the problem is that after the ATG instability has developed, non-linear analysis is required because of the presence of the wetting potential. The complexity of the dynamics also come from the non-local behavior of the elastic effect. We show here that the dynamics can be understood using a quasi-steady approach, based on equilibrium solutions corresponding to isolated islands. As expected, the important quantity is the gradient of the chemical potential, in order to build a simple model. We numerically integrate our simple model, which leads to the final stage is a single island which lies over a wetting layer. We will show that coarsening is characterized by a two-step evolution, with two specific time scales. The first stage is related to the mass transfer from the small island goes to the big island. This transfer is characterized by the chemical potential gradient. This dynamics is associated with an exponential evolution of the island's heights, with a characteristic time scale t c proportional to the separating distance d between islands. The second coarsening stage occurs once the smallest island is smaller than the minimal stable island height, and therefore quickly dissolves in the wetting layer. It is associated to the time scale τ that describes the diffusion dynamics of a perturbation on a wetting layer, and it is related to the system size. This two-stage dynamical evolution compares favorably with the direct numerical simulations. We have published in Ref. [51] our results for the characterization of isotropic islands and the coarsening of two islands. Taking into account the two islands problem, we will study the coarsening dynamics of three islands. We will develop the same approach for two islands, but we will neglect mass transfer between the most distant islands, neither periodic interaction. We solve analytically the first stage of the coarsening when the smallest island vanishes. We will present the different coarsening modes of three islands. In particular, we prove the existence of configurations in which the biggest initial island also vanishes at the end of the coarsening. We will finally present a simple model of N coarsening islands. Taking into account that at each step half of the islands remain in the system, so that the distance between islands duplicate each step. As the coarsening time depends on the distance, it will also be duplicated for each step. We obtain a scaling law for the number of islands as a function of the time. However, these results are different than those reported due to its over simplicity.

In chapter 4, we first propose a model for the surface energy anisotropy, which has two minimal values that will favor well defined facets of the islands. We use an ansatz similar to what we used in chapter 3, but we fix the free parameters using a variational approach. Our new approach exhibits a small variation of the island width for isotropic islands. For anisotropic systems, the island's width increases linearly with respect to the island height. For the isolated island stationary problem, we compute analytically and numerically the chemical potential as a function of the height, and also the driving force as a function of the height. In addition, we will show that the chemical potential convexity increases with the presence of the surface energy anisotropy. Finally, we study numerically and analytically the influence of the surface energy anisotropy in the coarsening of two islands. We will show that the surface energy anisotropy can have two different effects on the coarsening time, either acceleration or slowing down depending on the island height. We explain this effect by demonstrating that the surface energy anisotropy changes the convexity of the chemical potential. The results obtained for the anisotropic island and the coarsening dynamics of two islands are published in Ref. [52].

In the last chapter 5, we investigate the evolution of quantum dots submitted to evaporation during their growth process. Indeed, experiments in AlGaN quantum in J. Brault's team at the CRHEA revealed that under some conditions, quantum dots a priori grown within the Stransky-Krastanov growth mode, exist without a wetting layer between them. More precisely, the evaporation drives the disappearance of the wetting layer. As a consequence, even if the film initially grew within flat layers before quantum dots appear, the backward evolution under evaporation follows a different pathway, that is not the reversed pathway of the growing film. As the surface morphology results from an out-of-equilibrium process, this morphological hysteresis is a complex issue that we investigate in this chapter. We first derive a model to describe the systems under experimental scrutiny and study some of its crucial features, and then investigate the influence of an evaporation flux on the surface evolution. We derive a three-dimensional model for surface diffusion that accounts for the hexagonal symmetry of the experimental quantum dots. Consequently, we choose an anisotropic surface energy with 6 facet-like preferential orientations, in addition to the substrate (001) orientation. We first study the system without evaporation and investigate the effect of the initial substrate orientation stiffness, showing that it triggers the instability speed. We also show that thick deposited film, have a faster time evolution, as the wetting interactions are less efficient. We finally show the resulting shapes (hexagonal islands, truncated pyramids, elongated pyramids, etc.) to be subtly linked to the surface energy anisotropy. We analyze the effect of the evaporation that is known to be relevant in the III-V semiconductors under study. We model an anisotropic evaporation as facets have a priori different properties. With an evaporation model, the system indeed evolves with the disappearance of the wetting layer, while quantum dots keep their faceted shapes. We predict the time for the wetting layer to dissolve as a function of the evaporation flux, and show that it behaves with a simple power law. These results will have an important for the modeling of quantum dots displaying a high photo-luminescence emission in the UV spectrum.

Introduction:

La traduction en français de l'intro sera faite à plus tard CHAPTER 1. GROWTH OF QUANTUM DOTS

Epitaxial growth

There are different ways to growth quantum dots (QDs), for example by lithography, colloidal chemistry or epitaxy. Epitaxy comes from Greek and means epi (above) and taxy (arrangement). In this manuscript, we study the formation of heteroepitaxial QDs. This means that the crystal growth is based on the deposition of an epitaxial layer of one semiconductor over a substrate of another kind of semiconductor. The difference of the lattice size of the different semiconductors provides a strain in the system and the relaxation shape the QDs. If the film deposited is of the same material as the substrate, the process is called homoepitaxy. We will consider growth without dislocation. This can be a good approximation in SiGe system and for III-V system, this should be matter of interesting debate.

There are three different epitaxial growth modes for thin films. In the Volmer-Weber mode, the interaction with the deposited semiconductor is stronger than with the substrate, leading to the formation of three-dimensional isolated islands. In the Frank-van der Merwe, the interaction between the film and the substrate is favorable, developing layer-layer growth. The last growth mode is the Stranski-Krastanov as display in Fig. 1.1. It is characterized by a 2D and 3D island growth. During deposition of a film above a substrate, when the film reach a critical height, the formation of isolated island over a thin wetting layer is favorable. Our work is based in the Stranski-Krastanov crystal growth mode. In order to develop an epitaxy growth, several techniques were developed depending on the system under study. The Liquid Phase Epitaxy (LPE) the deposition comes from a liquid phase, or Vapor Phase Epitaxy (VPE) from vapor, Chemical Vapor Deposition (CVD) and Molecular Beam Epitaxy (MBE). The difference between the MBE and CVD is that in MBE is possible to control the thickness of the film down to fractions of monolayers. With the CVD the precision goes down to fractions of nanometers, but is cheaper to develop with CVD.

The MBE is a technique invented in 1960 at Bell Laboratory by A.Y. Cho and J.R. Arthur [56], in which atoms or molecules are evaporated from solid sources. As the advantage of the MBE is the slow deposition, it must be performed in ultra-high vacuum, so that the evaporated atoms do not interact with other gases until reach the wafer. This technique is very precise, but very expensive, and in comparison with the others epitaxial growth that are chemical, this is a physical-based technique. In this chapter, we describe the mechanisms associated to the morphological evolution of a film-substrate system. Its dynamics is governed by a simple surface diffusion model. We take into account several effects that compete in order to develop the islands, such as elasticity, capillarity, wetting and anisotropy effects. We solve exactly the elastic field with the typical hetero-epitaxy boundary conditions. We also study the effects of the wetting potential and of the surface anisotropy. We derive the dynamic equation that governs the evolution of the free film surface.

The modeling of a crystal surface depends on the scale of interest. The atomistic scale can be modeled by electronic properties taking into account quantum effects and using a density functional theory. This method requires a lot of computational power in order to solve the problem under study. Also it could be studied by a lattice model, where translation and rotational effective motions are driven by a kinetic Monte Carlo simulation [START_REF] Gaillard | Kinetic monte carlo simulations of the growth of silicon germanium pyramids[END_REF]. This method is faster, because it considers effective moves and does not take into account electronic or atomic dynamics. In comparison with the atomistic approach, the crystal surface can be modeled by a continuum model: the dynamics of the surface diffusion is captured by modelling elastic, capillarity, anisotropy or other effects. The reduction of the problem here D is the diffusion coefficient. The evolution equation (2.1) becomes:

∂ t h = D 1 + |∇h| 2 ∆ s µ. (2.3)
The chemical potential is the variation of the Gibbs free energy (F) with respect to the number of atoms in the system (N ), at pressure (P ) and entropy (S) constants, µ = δF δN | P,S . Consider the addition of a layer of matter of local thickness δh: we have δN = δh/Ω, where Ω is the local volume per atom. We rewrite this relation in order to work with the thickness variation of the film δh [START_REF] James | Energy variations in diffusive cavity growth[END_REF][START_REF] Saito | Statistical Physics of Crystal Growth[END_REF],

µ = Ω δF δh . (2.4) 
In order to calculate the chemical potential µ, we must consider the contributions to the free energy F. These contributions are the surface free energy F s and the elastic free energy due to the misfit F el :

F = F s + F el . (2.5)
The surface free energy reads:

F s = γ(h, h x , h y ) 1 + |∇h| 2 dxdy. (2.6)
Here γ(h, h x , h y ) is the surface energy that can depend on the thickness h and its slope h x ≡ ∂h ∂x and h y ≡ ∂h ∂y . The elastic free energy reads:

F el = z<h(x,y) E el (x, y, z)dxdydz.
(2.7)

Here E el is the elastic energy density that can be computed using the stress tensor σ ij and the strain tensor e ij as:

E el = 1 2 σ ij e ij . (2.8) 
We obtain the chemical potential µ = µ s + µ el given in Eq. (2.4) using Eq. (2.6) and Eq. (2.7). The elastic chemical potential and the surface chemical potential read:

µ el = ΩE el [x, y, z = h(x, y)] = Ω 2 σ ij ǫ ij (2.9) µ s = Ω δF s δh = Ω δ δh γ(h, h x , h y ) 1 + |∇h| 2 dxdy .
(2.10)

Surface chemical potential

The surface chemical potential µ s presented in Eq. (2.10) quantifies the energy that the system requires to destroy the molecular bonds. The system under study is composed by a thin film deposited above a flat substrate. When the film thickness is of the order of few atoms, wetting interactions between the film and the substrate are appreciable and they can stabilize a flat film. These wetting interactions depend on the system height h, and we denote the wetting surface energy as γ w (h). Another feature of the crystal is that it shows preferential facets (orientations). This preferential orientations are induced by the surface energy anisotropy. For example, in the lattice size as presented in Fig. 2.5. The intrinsic strain η, takes into account the reference is the substrate as the reference state. This intrinsic strain (misfit) can be computed as The linear strain-displacement relation for the substrate reads:

η = a f -a s a s . ( 2 
ǫ s ij = ∂ i u j + ∂ j u i 2 .
(2.16)

Here u i is the displacement in the i direction. For the film reads:

ǫ f ij = ∂ i u j + ∂ j u i 2 -ηδ ij .
(2.17)

Assuming that the two semiconductos are Hookean solids, we write the stress-strain relatio,

σ α ij = Y (1 + ν) ǫ α ij + Y ν (1 + ν)(1 -2ν) ǫ α kk δ ij , (2.18) 
where Y is the Young's modulus and ν the Poisson rate [START_REF] Landau | Theory of Elasticity[END_REF]. Here α is an indicator that assign the film or the substrate stress for α = f or α = s respectively.

Mechanical equilibrium

The mechanical equilibrium problem can be solved analytically [42]. The mechanical equilibrium is supposed to be achieved on a time scale much shorter than the time scale of the instability. As a consequence, the Navier-Lamé equations for the substrate and the film are simplified into:

∂ j σ α ij = 0 . (2.19) like u α 1 =   w α 1 (z) w α 2 (z) w α 3 (z)
  e -i(kxx+kyy)+kz .

(2.28)

Here k = k 2 x + k 2 y .
The displacement has to satisfy the Navier-Lamé equations given in Eq. (2.20). The unknown functions w α i are solutions of the following set of equations:

w α 1 (z) k 2 y (1 -2ν) -2k 2 x (ν -1) + k x k y w α 2 (z) + ik x w α 3 ′(z) + 2νw α 1 ′′(z) -w α 1 ′′(z) = 0 , w α 2 (z) k 2 x (1 -2ν) -2k 2 y (ν -1) + k x k y w α 1 (z) + ik y w α 3 ′(z) + 2νw α 2 ′′(z) -w α 2 ′′(z) = 0 ,(2.29) w α 3 (z)(2ν -1) -k 2 x -k 2 y + ik x w α 1 ′(z) + ik y w α 2 ′(z) + 2νw α 3 ′′(z) -2w α 3 ′′(z) = 0 .
Here the prime is ′ ≡ d dz . This set of equations needs twelve integration constants (C s i for the substrate and C f i for the film, with i = 1, .., 6). The solution for w α i reads:

w α 1 (z) = e -kz 8k 3 2C α 4 k 2 k 2 x z 1 -e 2kz + 2k(2σ -1) e 2kz + 1 2σ -1 + C α 1 4k 2 (σ -1) e 2kz -1 -kk 2 x z e 2kz + 1 + k 2 x e 2kz -1 σ -1 - 2C α 5 k 2 k x k y z e 2kz -1 2σ -1 - 2iC α 3 k 2 k x z e 2kz -1 2σ -1 - iC α 6 k 2 k x kz + e 2kz (kz -1) + 1 σ -1 - C α 2 k x k y kz + e 2kz (kz -1) + 1 σ -1 . (2.30) w α 2 (z) = e -kz 8k 3 - 2C α 5 k 2 k 2 z e 2kz -1 -k 2 x z e 2kz -1 -2k(2σ -1) e 2kz + 1 2σ -1 - 2C α 4 k 2 k x k y z e 2kz -1 2σ -1 - 2iC α 3 k 2 k y z e 2kz -1 2σ -1 - iC α 6 k 2 k y kz + e 2kz (kz -1) + 1 σ -1 + C α 2 k 3 z -e 2kz + 1 + k 2 (4σ -3) e 2kz -1 + kk 2 x z e 2kz + 1 + k 2 x 1 -e 2kz σ -1 - C α 1 k x k y kz + e 2kz (kz -1) + 1 σ -1 .
(2.31)

w α 3 (z) = e -kz 8k(σ -1)(2σ -1) C α 6 (2σ -1)z k 2 -k 2 x e 2kz -1 + C α 6 k 2 x (2σ -1)z e 2kz -1 -ik x z C α 1 (2σ -1) e 2kz -1 + 2C α 4 k(σ -1) e 2kz + 1 -2C α 4 (σ -1) e 2kz -1 -ik y z C α 2 (2σ -1) e 2kz -1 + 2C α 5 k(σ -1) e 2kz + 1 -2C α 5 (σ -1) e 2kz -1 +2(σ -1) C α 3 e 2kz (kz + 4σ -3) + kz -4σ + 3 +2C α 6 k(2σ -1) e 2kz + 1 . (2.32)
The boundary condition of vanishing displacement for the semi-infinity substrate Eq. (2.21), enforce the three following condition for the constants (C s 1 , C s 2 , C s 3 ):

C s 1 = k x (C s 4 k x + C s 5 k y ) k(3 -4σ) + C s 4 k + iC s 6 k x 3 -4σ , C s 2 = k(4C s 5 k(σ -1) -iC s 6 k y ) + C s 5 k 2 x -C s 4 k x k y k(4σ -3) , (2.33) 
C s 3 = 2C s 6 k(1 -2σ) + iC s 4 k x + iC s 5 k y 3 -4σ .
The second condition (2.22) is the displacement continuity between the substrate and the film. It enforces the following relations between C s 4 ,

C s 5 , C s 6 and C f 4 , C f 5 , C f 6 : C s 4 = C f 4 , C s 5 = C f 5 , (2.34) C s 6 = C f 6 .
The third condition (2.23) is the continuity of the force. With this condition, the relation between the constants

(C f 1 , C f 2 , C f 3 ) and (C f 4 , C f 5 , C f 6 ) reads: C f 1 = k x (C f 4 k x + C f 5 k y ) k(3 -4ν) + C f 4 k + iC f 6 k x 3 -4ν , C f 2 = k(4C f 5 k(ν -1) -iC f 6 k y ) + C f 5 k 2 x -C f 4 k x k y k(4ν -3) , (2.35) 
C f 3 = 2C f 6 k(1 -2ν) + iC f 4 k x + iC f 5 k y 3 -4ν .
The last condition (2.24) needs the vertical displacement of the film free surface. We propose a constant displacement h 0 plus a periodic perturbation in the x and y axes:

h(x, y, z) = h 0 + h 1 (x, y, z) = h 0 + h 1 e -i(kxx+kyy)+kz .
(2.36)

The last condition (2.24) reflects the absence of normal stress on the free film surface Eq. (2.24), and fixes the last relation between the constants (C f 4 , C f 5 , C f 6 ) and the physical parameters of the system,

C f 4 = iηh 1 k x (ν + 1)e -h 0 k (h 0 k + 2ν -2) k(ν -1) , C f 5 = iηh 1 k y (ν + 1)e -h 0 k (h 0 k + 2ν -2) k(ν -1) , (2.37) 
C f 6 = - ηh 1 (ν + 1)e -h 0 k (h 0 k -2ν + 1) ν -1 .
We need the displacement of the free surface in order to compute the elastic energy. We write the displacement of the film as a function of the physical parameters and the position.

The solution taking into account the previous boundary condition, reads:

u f = u f 0 +   ik x (k(h 0 -z) + 2(ν -1)) ik y (k(h 0 -z) + 2(ν -1)) k(k(z -h 0 ) + 2ν -1)   ηh 1 (ν + 1) k(ν -1) e k(z-h 0 )-ikxx-ikyy . (2.38)
The elastic energy given in Eq. (2.7) depends on the strain tensor presented in Eq. (2.16) and the stress tensor presented in Eq. (2.18), that depends on the displacement given in Eq. (2.38). The elastic energy reads:

E el = 2η 2 Y (1 + ν) 1 -ν - 4η 2 Y (1 + ν) 2 1 -ν h 1 k + O(h 1 ) 2 . (2.39)
Here the first term is the elastic energy for a flat film. The second term represents the elastic energy due to a small perturbation around the flat solution. For simplicity we rewrite Eq.

(2.39) like:

E el = E 0 (1 -2(1 + ν)h 1 k) , (2.40) 
where

E 0 = 2η 2 Y (1+ν) 1-ν
is the characteristic elastic energy. Under this normalization, the elastic chemical potential reads:

µ el /E 0 = 1 -ωH ii (h) , (2.41) 
where ω = 2(1 + ν). Since we have assumed h > 0, the nonlocal operator H, linked to the long-range elastic interactions is given by

H ij [h] = F -1 [(k i k j /|k|) ĥ(k) . (2.42)
Here the operator F is the Fourier transform, and ĥ

(k) = ∞ -∞ h(x)e -2πikx dx.
We also obtain the total elastic energy given in Eq. (2.7), that is the integration of the elastic energy density. At first order it reads

F el = E 0 -dr h(r)ωH ii [h(r)] 2 + E 0 h 0 dr . (2.43) 

Surface diffusion equations

We now derive the 3D dimensionless evolution equation. The evolution equation comes from Eq. (2.3) where µ = µ s + µ el and µ s and µ el are respectively given in Eqs. (2.12) and (2.41). The units of length l 0 and of time t 0 are commonly chosen as defined below [39]. The space scale l 0

l 0 = γ f / [2(1 + ν)E 0 ] , (2.44) 
results from the balance between the two chemical potential µ s and µ el . By balancing time evolution to space variation in the mass conservation equation, we deduce the characteristic time t 0 :

t 0 = l 4 0 /(DΩγ f ) , (2.45) 
where D is the surface diffusion coefficient. The dimensionless equation reads:

∂h ∂t = ∆ -(1 + γ w + γ a )κ + 1 1 + |∇h| 2 dγ h dh - 1 1 + |∇h| 2 2 (h x h xx + h y h xy ) ∂γ a ∂h x + 2 (h x h xy + h y h yy ) ∂γ a ∂h y -1 + |∇h| 2 h xx ∂ 2 γ a ∂h 2 x + h yy ∂ 2 γ a ∂h 2 y + 2h xy ∂ 2 γ a ∂h x ∂h y + -ω(H xx (h) + H yy (h)) } .
(2.46)

Isotropic case

We now present the isotropic (1 + 1) space-time evolution equation. The elastic chemical potential simplifies into:

µ el /E 0 = 1 -ωH[h x ], (2.47) 
where the function H is the Hilbert transform. It reads:

H(h x ) = 1 π - h y (y)
xy dy .

(2.48)

The Hilbert transform corresponds to a simple multiplication by k in the Fourier space, like presented in Eq. (2.42)

The surface chemical potential for the small slope approximation, and taking into account the wetting contribution presented in Eq. (2.14) simplifies to

µ s = -h xx - c w δ e -h/δ . (2.49)
We write the (1 + 1)space-time evolution equation from Eq. (2.46). For simplicity we consider ω = 1 for the elastic chemical potential given in Eq. (2.48), so that the evolution equation reads:

∂h ∂t = ∂ xx -h xx - c w δ e -h/δ -H[h x ] . (2.50) 

Anisotropic case

Relaxing the small slope approximation and the absence of surface energy anisotropy characterize the isotropic evolution in Eq. (2.50). The (1+1) evolution equation taking into account the surface energy anisotropic effect reads:

∂h ∂t = ∂ xx 1 1 + h 2 x dγ w dh -2h x h xx ∂γ a ∂h x - h xx 1 + h 2 x 3 -1 + h 2 x h xx ∂ 2 γ a ∂h 2 x -H[h x ] . (2.51) 
Here, in principle we can not make the small slope approximation for the surface chemical contribution given in Eq. (2.12) because the anisotropic effects are leading by not so small slopes of h. As it will be presented in chapter 4, we will work with a polynomial surface energy anisotropy γ a (h x , h y ), so we must pay attention to the order of the approximation.

Asaro-Tiller-Grinfeld instability: linear analysis

The system of a thin film semiconductor deposited on a semiconductor substrate presents a surface morphological instability. This instability was first studied within the framework of liquid epitaxy by Asaro and Tiller [35] and re-derived by Grinfeld [36]. The film diffuses in order to shape an undulated surface. This may only happen for film thickness above a characteristic value that we will derive subsequently. We emphasize that this instability develops thanks to surface diffusion driven by the strain resulting from the difference of the lattice size between the film and the substrate. The instability starts with an undulation that develops in time. This undulation takes place at the film free surface. If there is enough matter, the undulation transforms in bellshaped islands.

Near the instability regime, the free interface is almost flat and the diffusion equation (2.1) is simplified into:

∂ t h = -D∆µ , (2.52) 
here ∆ = ∇ 2 = ∂ xx + ∂ yy and µ is the chemical potential. The chemical potential has a surface and an elastic contribution given respectively in Eqs. (2.12) and (2.41) from the previous section. The chemical potential reads:

µ = Ωγ f κ + Ω dγ dh 1 1 + |∇h| 2 + µ el , (2.53) 
here µ el = -E 0 H ii (h) is the linear contribution to the elastic energy that is defined in Eq.

(2.41) and γ is the surface energy.

Without wetting potential

The 3D evolution equation for the isotropic case is given by the Eqs. (2.52) and (2.53). In absence of wetting effects (c w = 0), the surface energy reduces to:

γ(h) = γ f , (2.54) 
so that the chemical potential (2.53) is simplified:

µ = Ωγ f κ + µ el . (2.55) 
In the small slope approximation, the curvature is κ = -∆h = -(h xx + h yy ). Assuming an exponential form, the height of the film free surface h(x, y, t) is h(x, y, t) = h 0 + Ae σt+k.r , here k = {k x , k y } and r = {x, y}. The growth rate σ reads:

σ = DΩ(-γ f k 4 + E 1 el |k| 3 ), (2.56) 
where

E 1 el = 4 η 2 Y (1+ν) 2 1-ν
is the energy of the perturbation of a flat film, and the k 3 represents dominant order of the elastic energy given in Eq. (2.39). We compact the growth rate (2.56) into:

σ = A|u| 3 k 4 0 (1 -|u|), (2.57) 
where

A = DΩγ f , k 0 = E 1 el γ f and u = k/k 0 .
The growth rate presents a maximum for a critical wavenumber k c = 3k 0 4 . The length and time dimensional parameters defined as l 0 and t 0 respectively in Eqs. (2.44) and (2.45) have the following relation with A and k 0 ,

l 0 = 1/k 0 , (2.58) t 0 = 1/(Ak 4 0 ). (2.59)
We plot in Fig. 2.6 the growth rate σ as a function of the wavenumber k given in Eq. (2.57).

Here the ATG wavenumber is k c l 0 = 

Improving the model: wetting effect

We must take into account wetting interactions of thin films of few atoms. The wetting interaction between the film and the substrate varies as a function of the thickness of the film h. We model this variation as an exponential decay of range δ [39,51]. The surface energy now reads:

γ(h) = γ f 1 + c w e -h δ .
(2.60)

By adding this dependence of the surface energy with the island height h, we obtain the second term of the r.h.s. in Eq. (2.53). We approximate this term within small perturbations h 1 of the height h, around a constant value h 0 : h(x, t) = h 0 + h 1 (x, y, t).

(2.61)

Under this assumption, the wetting contribution reads:

Ω dγ dh 1 1 + |∇h| 2 ≈ - Ωγ f c w δ e -h δ ≈ -ΩW 1 - h 1 δ .
(2.62)

Here W = ∂ 2 γ ∂h 2 | h=h 0 = γ f cw δ 2 e -h 0 δ .
Taking into account this approximated effect, the growth rate is modified:

σ = DΩ(-γ f k 4 + E 1 el |k| 3 -W k 2 ). (2.63)
Here we have a new term in comparison with the previous growth rate (2.57). This new term results from the wetting effects that depends on the system height h 0 . For c w = 0, the parameter W is equal to zero, so we recover the previous growth rate (2.57). As we show in Fig. 2.7, when W/γ f increase, the maximum growth rate decreases. Above a critical value, we only obtain negative values of growth rate, and the system becomes stable in this limit.

As a consequence of the wetting potential, the growth rate σ given in Eq. (2.63) depends on the film thickness h 0 . The growth rate is always negative for small h 0 , so the instability (2.63). From top to bottom the blue curve represent the growth rate for W γ f = 0 as presented in Fig. 2.6, the orange curve for W γ f = 1 4 (critical height) and the green curve for W γ f = 1 2 .

can not develop. For h 0 larger than some wetting critical thickness h c , the growth rate presents positive values in a finite wavenumber interval and the instability develops. The critical thickness h c is characterized by σ = 0 and ∂σ/∂k = 0:

h c = δ ln ac w δ 2 , (2.64) 
where a =

4γ f E 1 el
. The same analysis can be performed with the 3D equation and we obtain the same result.

Consequence of the anisotropy effect

The anisotropy plays a role in the ATG instability. It was shown experimentally that it can develop on Si (001) and not on Si (111) and that the (105) facets quickly appear on the islands. When one accounts for both anisotropy and wetting effects γ = γ(h, hx, hy) and the surface chemical potential which results from the functional derivative reads as given in Eq. (2.12)

µ s = γκ + ∂γ ∂h 1 1 + |∇h| 2 - 2 1 + |∇h| 2 h i h ij ∂γ ∂h i -1 + |∇h| 2 h ij ∂ 2 γ ∂h i ∂h j + h i ∂ 2 γ ∂h∂h i ,
(2.65) The linear analysis of the evolution equation, considering anisotropy effects, leads to the following growth rate:

σ = - 1 γ f ∂ 2 γ(h, h x , h y ) ∂h 2 h=hc k 2 + |k| 3 - γ(h c , h x , h y ) γ f k 4 . (2.66)
Here the surface stiffness is defined as γ = γ + ∂ 2 γ ∂h i ∂h i . Typically, γ > 1 so that it weakens the growth rate, as illustrated by the green curve in Fig. 2.8. ) Figure 2.8: Growth rate σ as a function of the wavenumber k given in Eq. (2.66). We choose

1 γ f ∂ 2 γ ∂h 2 = 1
4 (critical value in Fig. 2.7). From top to bottom the blue curve represent the growth rate for γ/γ f = 0.8 (blue curve), γ/γ f = 1 (orange curve) (as the orange curve in Fig. 2.7) and the green curve γ/γ f = 1.2.

Island coarsening and numerical simulations

In the work of Aqua, Frisch and Verga [42], Eq. (2.46) was solved numerically for the isotropic case in two and three dimensions. We plot in Fig. 2.9 the island evolution and the roughness. They obtain a non-interrupted coarsening dynamics, and numerically obtain a power law for the roughness as a function of the time. They also numerically measure a power law for the number of islands as a function of time: for a 2D system N = 1/t 0.59 and for a 3D system N = 1/t 1.3 . Furthermore, they have taken into account the anisotropy of the surface energy in [39]. The results of this article are plotted in Fig. 2.10 where the roughness is plotted for several initial heights. They found that the presence of a surface energy anisotropy stopped the coarsening and this was interpreted using a two islands model [39] in which the driving force for coarsening was reduced due to the presence of the surface energy anisotropy. In this chapter, we study mainly the equilibrium island shapes and the dynamics of two interacting isotropic islands. The equilibrium is characterized by the constant value of the chemical potential along the space. After determining the chemical potential dependency with the island height, we study the coarsening dynamics of two islands. These dynamics is composed of two stages. The first stage results from the diffusion of mass from the small island to the larger island. When the small island vanishes, the system is out of equilibrium, so the second stage starts when the wetting layer diffuse to the remaining island in order to reach the equilibrium. We analytically find that the time in which the system reaches the equilibrium (coarsening time) is proportional to the distance between the islands. Finally, we extend our analysis to the coarsening of three and N islands. The three islands problem is interesting because we found that the initial condition plays an important role on the coarsening: it is possible to have a system in which the larger island vanish. We also propose a simple model in order to predict the coarsening time for the N islands problem: we found a scaling law for the number of islands as a function of the time.

Analytical analysis of one island

The goal of this section is to study the shape of one island in the equilibrium state. As presented in the previous chapter, above a critical height h c (given in Eq. (2.64)), the system evolves the ATG instability. The temporal evolution of the system obeys to the equation:

∂ t h = ∆µ . (3.1)
For asymptotic times, only remain one island of height h 0 , lying on top of a thin wetting layer of thickness h w . This solution is characterized by a constant chemical potential µ on the surface as seen in Eq. (3.1) and Eq. (2.50), the chemical potential reads:

µ = - ∂ xx h Curvature effect - c w δ e -h δ Wetting effect -H[∂ x h] Elastic effect . (3.2)
In the following two subsections, we will focus our efforts to solve this equation numerically and analytically in order to obtain the island shape for the equilibrium problem.

Equilibrium solution

We perform numerical simulations1 of Eq. (3.1). In order to study the profile of an isolated island, we let the system evolve untill it reaches the equilibrium state, where one island remains in the system. The initial condition for the numerical simulation is a constant height h i plus a Gaussian perturbation2 :

h(t = 0, x) = h i + e -x 2 2σ 2 -A (3.3) 
Here A = √ 2πσ 2 is chosen to be the value for which the mean value is < h(t = 0, x) >= Lh i and L the system size.

We perform different simulations by varying the value of the initial height h i , and we show the converged profiles in Fig. 3.1. This model has a no free parameters and can be parametrized by the total surface of the system S = L/2 -L/2 h(x, t)dx with L the system size: S = Lh i due to the fact that the Gaussian perturbation is in average zero. Thus, islands of different height h 0 ≡ h(x = 0) can be generated numerically by varying the control parameter h i (or S) in the initial condition.

Once we obtain the stationary numerical solution, in order to understand the influence of the different contributions of the chemical potential given in Eq. (3.2), we plot in Fig. 3.2 the elastic, wetting and capillarity contributions. We observe two different regions. The first region, is the island region where only the contribution of the elastic and the capillarity play a role. The second region is the foot of the island and outside the island, where the three contributions are important. This means that the elasticity will compete with the capillarity in order to develop the island and the height of the island will depend on this two effects. But as the foot of the island is characterized also with the wetting potential, it will play an important role in order to develop a flat film outside the island. We describe a detail study of the non-local behaviour of the elastic field in appendix A. The complexity of the equation (non-lineal, non-local) makes the challenge of solving it of special importance as we will see in the next section. Solving the complex Eq. (3.2) is a challenging task, and its resolution will provide insights in the coarsening dynamics. (h i = 0.2). We plot the different contributions to the chemical potential. The blue curve is the curvature (∂ xx h), the orange curve is the wetting chemical potential (c w e -h/δ /δ) and the green curve is the elastic chemical potential (H[∂ x h]).

Ansatz for the system profile

Based on the numerical simulation, the island is characterized by a maximum height h 0 and a width W (see Fig. 3.1). We propose the following ansatz to solve the stationary Eq. (3.2)

h(x) =    (h 0 -h w ) 2 W 6 W 2 2 -x 2 3 + h w |x| < W/2 h w |x| > W/2 . (3.4)
This ansatz satisfies the continuity of the function at |x| = W/2 and the continuity of the first and second derivatives at |x| = W/2. This is fundamental since the chemical potential must be continuous, and it depends on the second spatial derivative. The value of h 0 is taken from the numerical data and the corresponding value of h w is obtained from Eq. (3.8).
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We have two unknown parameters, the island height h 0 and the island width W . The ansatz presented in Eq. (3.4) must satisfy the chemical potential equation given in Eq. (3.2). The evaluation of the curvature and the wetting effect is straightforward. The elastic effect depends on the first derivative of the height h. Our ansatz has a constant value of the height outside the island 3 , so that the integration will be only in the island region (-W/2 < x < W/2). The non-locality behavior of the Hilbert transform induces the integration in three regions, the first is the left region outside the island (x < -W/2), the second is the island region (-W/2 x W/2) and the last is the right region outside the island (W/2 < x). We do a Taylor expansion of the chemical potential (3.2) around the position x = 0 (top of the island) up to second order in x. This Taylor expansion requires the calculation of the three terms of the chemical potential. We obtain at order x 0 the following relation between the island height h 0 , the height of the wetting layer h w , the width of the island W and the chemical potential µ:

h 0 = h w - 5πW 2 8(15π -8W ) µ . (3.5) 
At order x 2 , we obtain the following relation for the width of the island

W = 9π 4 (3.6)
The chemical potential is a function of the height h and its first and second derivative (h x and h xx ), as shown in Eq. (3.2). Far away from the island, the first derivative h x , and the second derivative h xx vanish, and only the wetting potential term remains dominant, so that, as the chemical potential is a constant, this value reads:

µ = - c w δ e -hw/δ . (3.7)
Now that we computed the island width (3.6) and the chemical potential (3.7) as a function of the wetting layer height h w , we can rewrite the island height h 0 (3.5) as a function of the wetting layer height h w . It reads:

h 0 = h w + 135π 2 128 c w δ e -hw/δ . (3.8)
We compare in Fig. 3.3 the profile of a stationary island obtained by numerical simulation of Eq. (3.1) with the ansatz (3.4) which only depends on the wetting layer height h w , and the wetting parameters δ and c w . The remaining control parameter h w , is related with the surface of the system, which is the control parameter in our numerical simulation. The agreement between the two is rather good with small discrepancies located on a small zone at the foot of the island.
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.4: Height of the island h 0 as a function of the wetting layer height h w . Dots are obtained by simulations of Eq. (3.1) and the curve is the prediction of Eq. (3.8). The value of h * 0 is defined on the figure. The dots are obtained by performing simulations for different value of the initial height h i (or surface S). The value of the parameters L, c w and δ are the same then the one used in Fig. 1. The minimal value of h * 0 is defined in Eq. (3.9) .

We plot in Fig. 3.4 the height of the island h 0 at equilibrium as a function of the wetting layer height h w given in Eq. (3.8). This function has a minimal critical value h * 0 , defined by the relation ∂h 0 ∂hw = 0. This critical height h * 0 is the smallest island that can be developed. Its value is: Therefore, islands with height smaller than h * 0 are not stable. The presence of wetting interactions enforce the existence of minimal value of the equilibrium island surface, in addition to the existence of a minimal film thickness h c . The critical island height h * 0 will be important in the description of the coarsening process.

h * 0 = δ 1 + ln c w 135π 2 δ 2 128 . ( 3 
We mentioned previously that islands are parametrized by the surface S (or the initial average height h ). Now that we have the profile of the island (3.4), we calculate its surface S:

S = h w L + 243π 3 224 c w δ e -hw/δ ≡ h L . (3.11)
The total surface S can thus be varied by changing the mean height h or the size L of the system. In order to study the impact of the physical parameters onto the surface, we will vary the initial height, while keeping the system size fixed.

• • • • • • • • • ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� � � � • • • • • • • • • ��� ��� ��� ��� ��� ��� ��� ���� ����� ����� ����� ����� � � � Figure 3
.5: Height h 0 as a function of the surface S = h L with L being fixed. The dots are obtained by numerical integration of Eq. (3.1). The curve corresponds to the analytical solution obtained in Eq. (3.8) and Eq. (3.11). The inset is the height h w as a function of S. The system size is L = 128, c w = 0.045 and δ = 0.005.

We plot in Fig. 3.5, the island maximum height h 0 and the height of the wetting layer h w versus the surface S by varying h . As expected, we observe in Fig. 3.5 that the maximum height of the island increases as the surface S increase. As h 0 is a decreasing function of h w , see Fig. 3.4, we also find that h w is decreasing function of the island surface S (see inset of Fig. 3.5). This tendency may be rationalized with the larger relaxation of the larger islands that are in equilibrium with a more stable thin wetting layer.

We also plot in Fig. 3.6, half of the island width W versus the surface S by varying h . We define the position of the island's width as the place where we obtain the minimum value near the island's foot. We observe that the island's width obtained by numerical simulation of Eq. (3.1) is quasi-constant, whose value is in good agreement with the constant obtained analytically given in Eq. (3.6). 

Chemical potential

The stationary island-like solution is characterized by the constant value of the chemical potential, as regarding Eq. (3.1). We recall the value of the chemical potential from Eq. (3.7):

µ i/f = - c w δ e -hw/δ . (3.12)
Here we use the notion µ i/f because we will exploit this value for the chemical potential of the island and of the film. At equilibrium, µ i = µ f . Therefore the simple knowledge of h w can lead to the determination of the chemical potential and reciprocally. We have deduced in Eq. (3.9) the height h * 0 of the smallest island that can be develop. Using its correspondent wetting layer height h * w (Eq. (3.10)) and the value of the chemical potential given in Eq. (3.12), we find that the critical chemical potential µ * reads

µ * = -δ 128 135π 2 . (3.13)
Consequently, the chemical potential presents 2 regimes:

• When h 0 < h * 0 , only the flat films exist, its chemical potential is entirely given by Eq. (3.12). We plot this chemical potential as a function of h w in Fig. 3.7 represented by µ f . It is an increasing function of h w as enforced by the (attractive) wetting interactions. At equilibrium, for h > h c , here h c is defined in Eq. (2.64), an island of thickness h 0 coexist with a wetting layer of thickness h w , which have the same chemical potential.

• For h 0 h * 0 , there exists an equilibrium island solution. Its chemical potential is determined by Eq. (3.12) in terms of the wetting layer thickness h w . We also obtain a relation between the island height h 0 and the wetting layer height h w give in Eq. (3.8). We can invert this relation numerically in order to plot in Fig. 3.7 the chemical potential µ as a function of the island height h 0 . As the island height increases, the
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0 , the dash-doted line is the chemical potential µ = -cw δ e -h/δ as a function height for the flat film. For h > h * 0 , the horizontal axis h = h 0 . The dots represent the numerical simulation for the equilibrium state of an island given by Eq. (3.1). The continuous curve is the prediction given using Eq. (3.8) and Eq. (3.12) for the chemical potential of the island. The dashed curve is linear approximation given by Eq. (3.14). chemical potential naturally decreases, because of the larger elastic relaxation of larger islands.

As expected, the chemical potential has a maximum value µ * , given by Eq. (3.13), associated with the minimal value of the surface height h * 0 . The dashed curve in Fig. 3.7 represents the linear approximation to the chemical potential of an island µ i given by:

µ l i ≃ -c(h 0 -h * 0 ) + µ * , (3.14) 
that has been obtained combining Eq. (3.8) and Eq. (3.12), here c = 128 135π 2 . We observe in Fig. 3.7 that the numerical solution plotted by the black dots are in good agreement with the linear approximation given in Eq. (3.14) (dashed curve), and the numerical solution of Eqs. (3.8 and 3.12) (continuous curve). The important parameter which connects the equilibrium solution with the dynamics is the slope of the chemical potential ∂µ/∂h 0 , as we will explain in the following section.

During the formation of one island, its height and its chemical potential vary, till reach the equilibrium. In Fig. 3.7, we plot the relation between the chemical potential and the island height in equilibrium. We now plot in Fig. 3.8 the chemical potential as a function of the island height, for the equilibrium state and its dynamics till reach equilibrium. We observe that the dynamics follows the equilibrium solution, so that we make a quasi-stationary approximation to study the coarsening of two islands using the relation of the chemical potential presented in Eq. (3.14). This approach is describer in details in the next section. 

Coarsening of two islands: numerical simulation and simple model

In this section we study the dynamics of two islands. Because of the dissipative nature of Eq. (3.1), the system evolves until the equilibrium is reached. The elapsed time to reach the stationary profile is of special interest, and we will call it the coarsening time. In order to relate this important quantity to the physical parameters, we numerically integrate the complete system and we will propose a simple model to link the coarsening time to the distance separating the islands.

Numerical simulation

We numerically study the coarsening dynamics of two islands with slightly different initial heights and separated a distance d. The initial condition is prepared as following. We use a single island in equilibrium of height h 1 , as shown in the last section. For the second island we translate the first island a distance d, we multiply this island shape by a constant value near unity in order to impose a slightly different height h 2 , and we let this system evolves in order to reach equilibrium. The two islands have slightly different heights, where we quantify this small difference with a constant ǫ, so that the heights can be written as h 1 = h iǫ and h 2 = h i + ǫ. We can control the initial position of each island, as well as the distance d between them. We perform numerical simulations, for different distances d using the following equation:

∂ t h = -∂ xx ∂ xx h + c w δ e -h/δ + H [∂ x h] . (3.15) 
We plot the evolution of the two islands in Fig. 3.9. We observe two regimes. The first regime takes place when the island of height h 1 vanishes at expense of the growth of the large island h 2 . This is represented in Fig. 3.9 from (a) to (d). In Fig. 3.9 (d), the smallest island reaches the critical island height h * 0 given in Eq. (3.9) at time t c . The second regime is defined by t > t c . The remaining mass in the vicinity of the disappeared island diffuses towards the remaining island in order to reach the equilibrium state.

We also plot in Fig. 3.10 the time evolution of the chemical potential at the same times as in Fig. 3.9. The initial islands have slightly different value of the chemical potential at their top. Since the chemical potential is not homogeneous in space, the system evolves until µ reaches a constant value along the spatial axis.

We observe that during the evolution, the chemical potential of the small island increases while the small island height decreases. We also observe that before t c , the chemical potential between the islands has a linear dependence with the space. When the chemical potential of the small island reaches the value µ * , its height is h * 0 . This happens at t = t c . For t > t c , the larger island continues to growth at expense of a remaining mass in the wetting layer. This second regime evolves until the system reaches equilibrium.

Two islands coarsening model

In order to explain the two stage observed in the coarsening, we develop a simple model, where islands are represented by an object of varying height (or surface since the width of the island is constant). We assume here a quasi steady evolution, in which each island is closely related to the stationary structure, in which its height can evolve smoothly.

In this model that the island has a constant width defined in Eq. (3.6), and that the chemical potential disctribution between the two islands is linear. The value of the chemical potential for each island is given by Eq. (3.14). We also assume that the dynamics follow the equilibrium (as presented in Fig. 3.8), so that we exploit our results on stationary island.
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First regime

For t < t c , we model the dynamics of the height of each island based on the flux of matter induced by the chemical potential gradient between the two islands. This spatial gradient takes place on a length scale of order d. For simplicity, we neglect finite size effects which leads to small terms in d/L due to the presence of periodic boundary conditions. If we integrate Eq. (3.1) it is possible to rewrite a differential equation for each island height:

αW ∂ t h 1 = µ i (h 2 )-µ i (h 1 ) d αW ∂ t h 2 = µ i (h 1 )-µ i (h 2 ) d , (3.16) 
Here we have assumed d/L ≪ 1, h 1 is the height of the small island, h 2 the height of the large one, W their width and α a geometrical factor. In this case we obtain α =

W/2 -W/2 h(x)dx/h 0 W = 0.4636.
Furthermore, we assume in the following that the island chemical potential might follow the equilibrium state, so that it is given by the linear form given in Eq. (3.14). Hence, the system (3.16) simplifies into

αW ∂ t h 1 = -c(h 2 -h 1 ) d αW ∂ t h 2 = -c(h 1 -h 2 ) d , (3.17) 
where c = 128 135π 2 is defined by the slope of Eq. (3.12). Let us write the amplitude of the islands as

h 1 (t) = h i -ǫ h(t) h 2 (t) = h i + ǫ h(t) , (3.18) 
which implies that h 1 (t) + h 2 (t) = 2h i (mass conservation) and h is the perturbation of the stationary state. Solving (3.17), we deduce that the perturbation increase exponentially

h(t) = e 2c dαW t , (3.19) 
in the first temporal regime. This regime extends up to t c , such as h 1 (t c ) = h * 0 which leads to h * 0 = h iǫe 2c dαW tc . Hence, we find that the characteristic time t c reads:

t c = t e ln h i -h * 0 ǫ , (3.20) 
where t e = dαW 2c .
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.11: Amplitude h 1 and h 2 of the islands as a function of time. The curves are the theoretical prediction given in Eqs. (3.18, 3.19, 3.20 and 3.23) and the disks are obtained by the numerical integration of Eq. (3.15). The times t c and t f are represented on the figure. τ is defined as the time since t c for which the amplitude h 2 of the large island has reach 0.99 of its equilibrium value.

As shown on Fig. 3.11, for the first stage there is a good agreement between the numerical simulation and the exponential solution presented in Eqs. (3.18), (3.19) and (3.20).

Second regime

The second regime starts when the amplitude of the small island becomes smaller than the critical height h * 0 (given in Eq. (3.9)), h 1 < h * 0 at t > t c . Mass diffusion then occurs on the wetting layer. The characteristic time τ of this second regime depends essentially on the full size of the system L and only weakly on the distance d. We propose a simple mass conservation model in order to obtain the second characteristic time τ . We write the mass conservation equation as

β(L -W )h 1 + αW h 2 = S, (3.21) 
where α = 0.4636 and β = 0.22 are geometrical factors respectively for the island and for the wetting layer while S is fixed by the initial conditions. From this relation, we deduce that

∂ t h 1 = - αW β(L -W ) ∂ t h 2 . (3.22)
Again, we have assumed that the growth rate of the island is proportional to the gradient of chemical potential. This gradient occurs on a scale of order L/2 so that

αW ∂ t h 2 = 2[µ f (h 1 ) -µ l i (h 2 )] L . (3.23) 
Here µ f (h 1 ) = -cw δ e -h 1 /δ is the chemical potential of the wetting layer.

* * * * * * * * * * * * * * * * * * * * * * * * • • • • • • • • • • • • • • • • • • • • • • • • �� �� �� �� �� �� � ���� ���� ���� ���� ���� ���� � � � � � � Figure 3
.12: Characteristic times t c and t f ( * and • respectively), as a function of the distance d between the islands, obtained by numerical simulation of Eq. (3.15). The line is t c from Eq. (3.20) and the dashed line is the t f + τ , where τ is obtained with the numerical solution of Eq. (3.23). The system size is L = 128. The time t f for the disappearance of the two islands increases with the system size, it is linear when d/L ≪ 1. When d increases and becomes of the order of L there are deviation from the linear law due to the effect of the periodic boundary conditions. In order to obtain the time evolution of h 1 (t) and h 2 (t) for t > t c , we have numerically integrated the Eqs. (3.22,3.23). As shown on Fig. 3.11, the system of Eqs. (3.22,3.23) captures well the numerical evolution of Eq. (3.15). The amplitude of the remaining island increases with time untill it reaches a constant value close to the prediction for a single island.

In order to quantify this coarsening process, we define the time t f as the time at which the amplitude of the large island has reached 99% of its equilibrium value. In addition, we define τ such as t f = (τ + t c ). In Fig. 3.12, we plot the different times t c and t f as a function of the distance d between the islands using the numerical and the analytic results Eq. (3.20). We observe, as long as d/L is small, that t c increases linearly with the distance d as predicted by Eq. (3.20). When d increases and becomes of the order of L the relation is not anymore linear because the periodical images start to play a role.

In Fig. 3.13, we show that the time τ is almost independent of the distance d between the islands, since τ is the time that characterize the diffusion from the wetting layer to the remaining island, so the constant d does not play any role in this regime. Based on the study of the coarsening of two islands, we propose a near neighbor interaction between three islands, that we number from 1 to 3. The three equations for the island height h 1 , h 2 and h 3 are

• • • • • • • • • • • • • • • • • • • • • • • • � �� �� �� �� ��
∂ t h 1 = c(h 2 -h 1 )/d, ∂ t h 2 = c(h 1 -h 2 )/d + c(h 3 -h 2 )/d and ∂ t h 3 = c(h 2 -h 3 )/d.
Here the distance between the islands is d, and c = -128π 2 135 . The three islands evolution can be written in matrix form as

∂H ∂t = c d   -1 1 0 1 -2 1 0 1 -1   H = AH. (3.24) H =   h 1 h 2 h 3   (3.25)
The upper and lower bidiagonal of the matrix A represent the interaction between the nearest islands. The zero value in the position A 1,3 and A 3,1 represent the absence of interaction between the island 1 and the island 3. The solution of this system of matrix is written as

         h 1 (t) = 1 6 2(C 1 + C 2 + C 3 ) + 3e ct d (C 1 -C 3 ) + e 3ct d (C 1 -2C 2 + C 3 ) h 2 (t) = 1 6 2(C 1 + C 2 + C 3 ) + 0e ct d (C 1 -C 3 ) -2e 3ct d (C 1 -2C 2 + C 3 ) h 3 (t) = 1 6 2(C 1 + C 2 + C 3 ) -3e ct d (C 1 -C 3 ) + e 3ct d (C 1 -2C 2 + C 3 ) . (3.26)
The initial condition for each island are:

   h 1 (0) = C 1 h 2 (0) = C 2 h 3 (0) = C 3 . (3.27) 
The solution presented in Eq. (3.26) has three growth modes, depending on the initial condition. The first mode is the constant solution, so that the three amplitudes remains constants during the dynamics. If the three initial amplitudes are the same C 1 = C 2 = C 3 , the solution of the Eq. 3.26 gives the same height for all the islands.

The second mode of movement can be thought as the following. The first island diffuses to the second, and also there are diffusion between the second and the third, so that the middle island's amplitude remain constant. If we want to observe this pure mode, the relation between the initial amplitudes must be C 1 -2C 2 + C 3 = 0. Also the heights of the extreme islands must be different (C 1 = C 3 ). We define the growth rate as the time that take to the smallest island to reach zero, and it reads for this mode:

t 2 c = d c log h m -1 3 (C 1 + C 2 + C 3 ) -3|C 1 -C 3 | , (3.28) 
where the modulus cames if we chose

C 1 > C 3 or C 1 < C 3 . This system can be C 1 < C 2 < C 3 or C 1 > C 2 > C 3 .
The third mode correspond to the diffusion from the middle island to the sides islands (or from the sides islands to the middle one). The initial amplitudes of the sides islands have to be the sames C 1 = C 3 and the amplitude of the middle island C 2 = C 1 = C 2 . If the middle island have a biggest initial amplitude that the others C 2 > C 1 = C 3 , the growth rate for this case is:

t 3 c = d 3c log h m -1 3 (C 1 + C 2 + C 3 ) (C 1 -2C 2 + C 3 ) , (3.29) 
In summary, the eigenvalues and eigenvectors of the corresponding solutions can be expressed as Interestingly, we can construct a initial condition of three equidistant islands by a combination of these three modes, for which the largest island will not be the one that remains at the end of the dynamics.

3c d c d 0 {1, -2, 1} {-1, 0, 1} {1, 1, 1} (3.30 
For this we numerically study the dynamics resulting from three islands of slightly different initial heights, as shown in Fig. 3.14. The initial condition is prepared as described in the case of two islands. We plot in Fig. 3.15 the amplitudes of the islands obtained numerically and we compare those results with the model described in Eq. (3.26). We observe that the largest island starts by increasing its height h 1 , but in some time the middle island height h 2 increases faster and it becomes larger than h 1 . Finally it remains only one island which was not initially the largest one.

N islands problem

In this section we study the coarsening time of N islands. We perform a numerical simulation of a large system as shown in Fig. 3.16, from which we obtain the number of islands N as a function of the time. The initial condition is a random noise plus a constant initial height h i = 0.048 In the coarsening process, we observe in Fig. 3.16 that islands vanish in order to favor the size of the other islands. In Fig. 3.17, we sketch a toy model which is characterized by the out-going flux from an island in the position j.

We propose a simple model: at each step, half of the islands disappear in the system, so that we can express this like:

N n = N n-1 2 . (3.31)
This process takes a time t n for which an important parameter is the distance between islands. We also know that the distance between the islands for each step will be proportional to the system size L and inversely proportional to the number of islands. It reads:

d n ∼ L N n . (3.32)
We now take into account that the time that take an island to vanish is a linear function of the distance, as we found in the previous section 3.2.2, so that the coarsening time will depend of the number of islands as:

t n+1 ∼ 1 N n . (3.33) h j-2 h j-1 h j h i+1 h j+2 h j-2 h j-1 h j+1 h j+2 d j-2 d j-1 d j d j+1 d * j-2 d * j-1 =d j-1 +d j d * j =d j+1
out-going fluxes t n Figure 3.17: Toy model. Sketch of the flux of matter from small island to the nearest ones. We define the island heights and the distances between the islands. The small island flux goes to the near islands in the left and right position. It takes a time t n to vanish.

Hence we obtain that the number of islands is inversely proportional to the time. It reads: We plot in Fig. 3.18 the number of islands as a function of the time. We compare the numerical resolution and the scaling law of Eq. (3.34). We obtain a good agreement between the numerical resolution and the simple model presented previously. The result presents in the work [42], they numerically obtain a power law for a 2D system, where the number of islands as a function of the time scales like: N ∼ 1/t 0.59 . We attribute the discrepancy with our result, to the fact that here we have neglected non linear terms.

N ∼ 1 t . ( 3 

Conclusion

In this chapter, we have studied the shape of an island and the coarsening dynamics of two islands. We propose an ansatz for the island shape that fits the numerical simulations.

We also compute the chemical potential as a function of the island height. This analytical formula is important, because it helps us to solve a simple model of two islands of slightly different initial height. We assume a quasi steady evolution, in which each coarsening island is approximated to a stationary solution whose parameter varies slowly in time. We study the coarsening time of a system of two islands and we observed that the dynamics is characterized by two regimes. A first regime where the smallest island disappear in favor of the biggest one and a second stage where the remaining island relaxes toward the equilibrium. We predicted analytically the elapsed time of the first stage. This time has a linear dependency on the distance between the islands d. The second stage is characterized by the diffusion of the wetting layer to the remaining island. This diffusion time has no dependency with the distance between the islands. We have also investigated a problem of three islands: the main result is that it is possible to provide initial conditions yielding to the disappearance of the largest island. This model predicts a scaling law for the coarsening time. We have constructed a simple model to determine the dynamics of interacting N islands.

We investigate the formation and the coarsening dynamics of islands in a strained epitaxial semiconductor film. These islands are commonly observed in thin films undergoing a morphological instability due to the presence of the elastocapillary effect. We first describe both analytically and numerically the formation of an equilibrium island using a two-dimensional continuous model. We have found that these equilibrium island-like solutions have a maximum height h 0 and they sit on top of a flat wetting layer with a thickness h w . We then consider two islands, and we report that they undergo a noninterrupted coarsening that follows a two stage dynamics. The first stage may be depicted by a quasistatic dynamics, where the mass transfers are proportional to the chemical potential difference of the islands. It is associated with a time scale t c that is a function of the distance d between the islands and leads to the shrinkage of the smallest island. Once its height becomes smaller than a minimal equilibrium height h * 0 , its mass spreads over the entire system. Our results pave the way for a future analysis of coarsening of an assembly of islands. DOI: 10.1103/PhysRevE.94.042808

I. INTRODUCTION

Understanding the dynamics of coarsening and its effect on self-organization is a central question in nonequilibrium physics and solid-state physics since its experimental discovery by Ostwald at the end of the 19th century [1] and the seminal theoretical papers of Lishitz and Slyosov and Wagner [2,3] in the late 1960s (see also [4]). Coarsening is a general phenomenon in which the natural size of a pattern increases with time in a continuous manner over a large range of time scales [5][6][7][8]. From a more applied point of view, coarsening has a significant impact on properties of matter such as the size of grains in polycrystalline solids, the hardening of metallic alloys, foam dynamics, sintering, sand dunes, etc. We focus here on the fundamental aspect of coarsening of strained semiconductor quantum dots, such as the gallium-aluminum nitride or silicon-germanium islands [9][10][11][12][13][14][15][16][17][18][19][20]. These islands are extensively under scrutiny both for their present and promising applications in electronics or optics, such as single photons emitters, and for their insights into the fundamental processes of epitaxial growth. The properties and potential applications of quantum dot assembly are indeed crucially dependent on the amount of coarsening, which may critically affect the size homogeneity of such structures [19]. Moreover, the coarsening of such islands seems to be out of the classical description of Ostwald coarsening and requires more investigation.

The formation of self-organized semiconductor quantum dots results from the Stranski-Krastanov growth mode [21]. In this scheme, growth initially proceeds as planar layers that transform above a given critical thickness h c into islands separated by a wetting layer. These islands enable a partial relaxation of the elastic stress of the strained film, which overcomes capillary and wetting effects. In SiGe systems, this growth mode includes, in fact, two different kinetic pathways. The seminal work of Lagally [22] showed that at large misfit, i.e., for a large enough Ge composition x,i na * thomas.frisch@unice.fr Si 1-x Ge x film, the island growth initiates via the nucleation of large enough fluctuations [23]. On the other hand, at low enough misfit (i.e., low enough x), further experiments [24,25] revealed that the island growth begins with a nucleationless instability, reminiscent of the Asaro-Tiller-Grinfeld (ATG) instability [26][27][28][29][30]. In this case, the film becomes unstable above the critical height h c , and an initial surface corrugation increases and transforms after some time into an assembly of quantum dots [24,25,[31][32][33][34][35][36][37]. After its initial growth, the assembly of islands undergoes some coarsening, driven by the more efficient elastic relaxation of the largest islands. The initial roughly isotropic islands (prepyramids) thence ripen, and as they display steep enough slopes, they transform into anisotropic quantum dots of various sizes, especially pyramids and domes. Even in the paradigmatic SiGe systems, the nature of the island coarsening is still a matter of debate and uncertainty [19]. For the initial isotropic islands [38][39][40], various theories predict a power-law evolution of the surface roughness and island density at constant mass (annealing); however, the exponents of these power laws are clearly different from the classical Ostwald exponents [19]. In addition, the coarsening might be impacted by the growth dynamics [41], the anisotropy of the surface energy [20,[42][43][44][45][46][47], alloying, and compositional effects.

In this article, we investigate analytically and numerically the basic but still challenging issue of the coarsening of strained islands in isotropic systems that results from the ATG instability. We have found that the island shape can be described by a simple analytical expression, and we report the existence of a continuous family of solutions for the island shape as a function of the system mass. Moreover, we have found that the dynamics of coarsening of two islands can be reduced to a simple two-step model. If the surface evolution might be well described initially in the framework of the linear theory of the ATG instability, the dynamics leads after some time to islands that require a nonlinear analysis. The complexity of the dynamics describing the coarsening of such islands lies in the combination of out-of-equilibrium properties and the long-range elastic effects. Furthermore, the power-law behavior mentioned before arises in the late time dynamics where nonlinear effects cannot be neglected. We show here that this dynamics is intimately connected to the static equilibrium shapes of the islands and to the gradient of the chemical potential between two islands. This article is organized as follows. In the first part, we describe the model under scrutiny, which is a (1+1)dimensional strained film that evolves via surface diffusion. In the second part, we characterize analytically the stationary equilibrium solutions of our model. This solution corresponds to a single island sitting on top of a wetting layer, whose characteristics [maximum height h 0 , surface (or mass) S, chemical potential μ] are analytically predicted. In particular, we show that the wetting interactions yield the existence of a minimal island height. In the third part, we numerically integrate the evolution equation of a simple system composed of two islands with slightly different heights, whose interaction leads to a single island after complete coarsening. In the last part, we derive an analytical model that describes the twoisland coarsening dynamics. We show that it is characterized by a two-step evolution, with two specific time scales. The first step is well described by a quasistatic approach where each island chemical potential (whose gradient rules the mass transfer between them) is determined by the steady state values. It is associated with an exponential evolution of the island heights, with a characteristic time scale t c proportional to the chemical potential gradients, i.e., to the difference of the island chemical potentials divided by their separating distance d. The second coarsening step occurs once the smallest island is smaller than the minimal stable island height and therefore quickly dissolves on the wetting layer. It is associated with a second characteristic time scale τ that describes the dynamics of diffusion of a perturbation on a wetting layer and that depends on the system size. This two-step dynamical evolution compares favorably with the direct numerical simulation of the coarsening dynamics. The two islands' coarsening can be simply modeled by a system of differential equations for each island height. Conclusions and perspectives are drawn in the last part, where this study is promoted with respect to the more general study of the coarsening of an assembly of islands.

II. CONTINUUM MODEL

We study a film-substrate system, made of a thin film lying on a substrate evolving only via surface diffusion. For studying the formation and the dynamics of the island, we use a standard surface diffusion model whose dynamics is governed by [29] 

∂h ∂t = D 1 + h 2 x ∂ 2 μ ∂s 2 , ( 1 
)
where D is the surface diffusion coefficient, ∂/∂s is the surface gradient, and μ is the chemical potential, which depends on the elastic and surface energies. The upper film boundary is free and localized at z = h(x), while the film-substrate interface at z = 0 is coherent. We solve the Lamé mechanic equilibrium equations with linear isotropic relations. For simplification, we assume that the film and substrate share the same elastic constants. When the film is flat h(x) = cte, it is subject to an elastic stress measured in units of the volumetric elastic energy

E 0 = Eη 2 /(1 -ν).
Here η = (a f -a s )/a s is the misfit where a f (a s ) is the film (substrate) lattice spacing, E is Young's modulus, and ν is Poisson's coefficient. In the general case, when h(x) displays small slopes, the mechanical equilibrium problem can be solved analytically (see, e.g., [40]), and its solution is given in terms of the Hilbert transform H of the surface profile. In addition, wetting interactions between the film and its substrate prove to be crucial in thin films. They might be described by a height-dependent surface energy γ (h) [38,[48][49][50][51]. In semiconductor systems, one can consider a smooth γ (h) with the generic form characterized by a length δ and amplitude c w , γ (h)

= γ f [1 + c w f (h/δ)], where f (h → ∞) = 0.
Here δ is of the order of the wetting layer (a few angstroms). Adding the elastic and capillary effects, one finds the chemical potential:

μ(x) = E[h] + γ (h) ∂ 2 h ∂x 2 + γ ′ (h)/ 1 + h 2 x , (2) 
where E[h] is the volumetric elastic energy on the surface and the third term in Eq. ( 2) is due to wetting, where γ ′ (h) = ∂γ ∂h .By balancing the elastic energy to the surface energy, we deduce the characteristic length l 0 = γ f /[2(1 + ν)E 0 ] describing the typical size of a horizontal surface undulation and the associated time scale t 0 = l 4 0 /(Dγ f ). For example, for a Si 0.75 Ge 0.25 film on Si, we find l 0 = 27 nm and t 0 = 23 s at 700 • C(see [52] for an estimate of surface diffusion coefficients). In the small slope approximation, we obtain the following dimensionless equation for the surface evolution:

∂ t h =-∂ xx ∂ xx h + c w δ e -h/δ + H[∂ x h] , (3) 
where H[∂ x h] is the Hilbert transform of the spatial derivative of h(x,t), defined as F -1 (|k|F(h)), where F is the Fourier transform [40]. The first term on the right-hand side of Eq. ( 3) represents the stabilizing effect of the surface energy, the second term is the wetting potential, and the third term represents the destabilizing effect of the elastic strain. Note that Eq. ( 3) represents a conservation equation, and the integral h(x)dx (which represents the total amount of deposited material) is constant. This equation is nonlinear, and we use a pseudospectral method to solve it numerically [40]. Moreover, as we shall see, an analytical insight can be obtained from an analysis of the stationary solution of Eq. (3). As shown previously [40], there exists a critical height h c above which a flat film becomes unstable with respect to infinitesimal perturbations,

h c =-δ ln(δ 2 /4c w ). ( 4 
)
For an initial height above h c , the initial perturbation evolves towards an assembly of islands that display a noninterrupted coarsening [40] leading to one stationary island. We describe analytically the characteristics of such a stationary island in next section.

III. THE STATIONARY ISLAND

The goal of this section is to study the equilibrium stationary solutions of Eq. ( 3), in particular the island profile. Indeed, above the critical height h c , the evolution of the surface is characterized by a noninterrupted coarsening that eventually leads to a one-island solution [40]. This stationary profile is ---

( ) FIG. 1.
Island-like solution resulting from the long time evolution of an initially small surface perturbation. The dots are the stationary profile obtained with numerical simulation of Eq. (3). The system size is L = 32,c w = 0.045, and δ = 0.005. The time is T = 1000. The horizontal and vertical axes are in units of l 0 . The line is the ansatzgi v eninEq.( 6), with a width W = 9π/4. The value of h 0 is taken from the top of the island, and the corresponding value of h w is obtained from Eq. ( 7). The value of the area S = L/2 -L/2 h(x,t)dx = 1.5 is conserved throughout the dynamics.

given by one island of height h 0 lying on top of a wetting layer of thickness h w (see Fig 1). It is characterized by a constant chemical potential μ on the surface,

μ =-∂ xx h - c w δ e -h/δ -H[∂ x h] . (5) 
The stationary island characteristics maximum height h 0 and width W can be predicted by the use of a simple model. This model has a no free parameters and can be characterized by the total surface of the system S = L/2 -L/2 h(x,t)dx, with L being the system size. Thus islands of different heights h 0 can be generated numerically by varying the control parameter S in the initial condition. Motivated by the result of the numerical simulation of Eq. (3), we choose the following ansatz for the stationary solution of Eq. (3). For |x| <W/2,

h(x) = (h 0 -h w ) 2 W 6 W 2 2 -x 2 3 + h w , (6) 
while for |x| >W/2, we choose h(x) = h w . This ansatz satisfies the continuity of the function at |x|=W/2 and the continuity of the first and second derivatives as required by Eq. ( 5). After substitution of this ansatz in Eq. ( 5) and using a simple polynomial expansion around the point x = 0upto second order in x, we obtain at order x 0 the following relation between the island height h 0 and the height of the wetting layer h w :

h 0 = h w + 135π 2 128 c w δ e -h w /δ . (7) 
At order x 2 , we obtain the relation for the width of the island W = 9π 4 [START_REF] Damilano | Formation of gan quantum dots by molecular beam epitaxy using NH 3 as nitrogen source[END_REF]. In Fig. 1, we compare the profile of a stationary island obtained with numerical simulation of Eq. ( 3) with this ansatz. The agreement between the two is rather good, with small * * FIG. 2. Height of the island h 0 as a function of h w in units of l 0 . Dots are obtained by simulations of Eq. ( 3), and the solid line is the ansatzgi veninEq. (6). The value of h * 0 is defined in the figure. The different points are obtained by performing different simulations for different value of the initial surface S. The values of the parameters L,c w ,a n dδ are the same as the ones used in Fig. 1. The minimal value of h * 0 is defined in Eq. ( 8)

discrepancies located in a small zone at the foot of the island [START_REF] Brault | Investigation of Al y Ga 1-y N/Al 0.5 Ga 0.5 q N quantum dot properties for the design of ultraviolet emitters[END_REF]. We also plot in Fig. 2 the height of the island h 0 at equilibrium as a function of the height of the wetting layer far away from the island h w . The simulation values are obtained by varying the system surfaces S, while the ansatz result follows from Eq. ( 7). Again, the agreement is rather good. Of special interest is the fact that h 0 has a minimal value h * 0 . The critical height h * 0 is defined by the relation ∂h 0 ∂ hw = 0; this leads, using Eq. ( 7), to the result

h * 0 = δ 1 + ln c w 135π 2 δ 2 128 , (8) 
while the associated wetting thickness is

h * w = δ ln c w 135π 2 δ 2 128 . (9) 
As we observed numerically, islands with h 0 smaller then h * 0 are not stable. Hence, the presence of wetting interactions enforces the existence of a minimal value of the equilibrium island surface in addition to the existence of a minimal film thickness h c . The critical island height can be observed experimentally, and it will be important in the description of the coarsening process.

In regard to the chemical potential, each island-like stationary solution of Eq. ( 5) is defined by

μ i =- c w δ e -h w /δ . ( 10 
)
This result comes from the fact that far from the island the film is rather flat, so that h x and h xx vanish, and only the wetting potential term remains dominant in Eq. ( 5). Therefore, the simple knowledge of h w can lead to the determination of the chemical potential and vice versa. Using Eqs. ( 9) and ( 10), we find that the critical chemical potential μ * associated with 042808-3 SCHIFANI, FRISCH, ARGENTINA, AND AQUA

PHYSICAL REVIEW E 94, 042808 (2016) FIG. 3. The height h 0 as a function of the surface S = h L, with L being fixed. The horizontal and vertical axes are in units of l 2 0 and l 0 , respectively. The dots are obtained by numerical simulation of Eq. ( 3). The curve corresponds to Eqs. ( 12)and (7). The inset is the height h w as a function of S. The system size is L = 128,c w = 0.045, and δ = 0.005. the critical solution with h * 0 reads

μ * =-δ 128 135π 2 . ( 11 
)
We mentioned previously that islands are uniquely characterized by the surface S. Now that we have the profile of the island given in Eq. ( 6), we can calculate its surface S,

S = h w L + 243π 3 224 c w δ e -h w /δ ≡ h L. (12) 
The total surface (mass) S can thus be varied by varying the mean height h or the size L of the system. We plot in Fig. 3 the island maximum height h 0 and the height of the wetting layer h w versus the surface S by varying h . As expected, we observe in Fig. 3 that the maximum height of the island increases as the surface S increase. As h 0 is a decreasing function of h w (see Fig. 2), we also find that h w is a decreasing function of the island surface S,assho wn in the inset of Fig. 3. This may be associated with the larger relaxation of the larger islands that are in equilibrium with a more stable thin wetting layer.

We now study the chemical potential associated with the one island solution. For h 0 h * 0 , there exists an equilibrium island solution. Its chemical potential is given by Eq. (10) in terms of the wetting layer thickness h w . The equilibrium island chemical potential is plotted as a function of h 0 in Fig. 4. As the island surface increases, h 0 increases, and the island chemical potential naturally decreases, showing the larger elastic relaxation of large islands. This conclusion was also found in the three-dimensional island under study in [40]. When h 0 <h * 0 , only the flat film solution exists; its chemical potential is entirely given by Eq. (11). We also plot this chemical potential as a function of h w in Fig. 4.I ti s an increasing function of h w as enforced by the (attractive) wetting interactions. At equilibrium, for h>h c , an island of thickness h 0 coexists with a wetting layer of thickness h w , which has the same chemical potential. In Fig. 4,w ea g a i n find good agreement between the numerical simulation and our theoretical prediction. As expected, the chemical potential has a maximum value μ * , given by Eq. ( 11), associated with 0 , the dash-dotted line is the chemical potential μ =-cw δ e -h/δ as a function of height for the flat film. The units of the vertical axis are in E 0 = Eη 2 /(1 -ν) = 6.7 × 10 7 J/m 3 , and the units of the horizontal axis are in l 0 .Forh>h * 0 , the horizontal axis h = h 0 . The dots represent the numerical simulation for the equilibrium state of an island given by Eq. ( 3). The solid curve is the prediction given using Eqs. ( 7)and (10) for the chemical potential of the island. The dashed curve is given by Eq. ( 13).

the minimal value of the surface height h * 0 . The dashed curve in Fig. 4 represents the linear approximation to μ i ,

μ l i ≃-c(h 0 -h * 0 ) + μ * , (13) 
which has been obtained using Eqs. ( 7) and (10); here c = 128 135π 2 .

IV. COARSENING OF TWO ISLANDS

We now address the question of coarsening of two islands of slightly different amplitudes (heights) separated by a distance d.Leth 1 and h 2 be the heights of the small and large islands, respectively (left and right peaks in Fig. 5). These quantities will evolve with time. In Fig. 5, we represent the time evolution of the two islands as enforced by the dynamical evolution equation (3). The initial conditions for the simulations of the two island problem are created by duplicating a single island equilibrium solution numerically made in a system of size L/2. In addition, each island solution is multiplied by a constant factor very close to unity. The heights of the two islands are h 1 = h i -ǫ and h 2 = h i + ǫ. We find a first regime where the height of the small island decreases while the height of the large island increases. Then, the small island reaches the critical height h * 0 at time t c [Fig. 5(d)]. In the second regime for t>t c [Fig. 5(e)], the remaining mass in the wetting layer diffuses towards the larger island, which relaxes towards its equilibrium state [Fig. 5(f)]. The largest island height h 2 constantly increases during the whole coarsening process.

In Fig. 6, we plot the temporal evolution of the local chemical potential associated with the evolution given by Eq. ( 3). The chemical potential on the small island increases when its height decreases as it becomes less and less stable, with the converse for the large island. Before t c , the chemical potential μ between the two islands is a linear decreasing function of space, as shown in Figs. 6(b) and Fig. 6(c). Furthermore, when t<t c , outside the islands, the chemical potential has variations in the scale of the system L.T h i s is due to finite size effects that can be neglected as long as d ≪ L. When the critical height of the small island is reached 042808-4 [Fig. 6(d)] at time t = t c , the chemical potential of the small island is equal to μ * , and the height of the small island h 1 is h * 0 .F o rt>t c , while h 2 is growing, the diffusion in the

--- ( ) (a) --- ( ) (b) --- ( ) (c) --- ( ) (d) --- ( ) (e 
(a) (b) (c) (d) (e) (f) 
FIG. 6. Numerical evolution of Eq. ( 3) for the chemical potential of two interacting islands corresponding to Fig. 5. The units of the vertical axis are E 0 = 6.7 × 10 7 J/m 3 . The horizontal axis is in units of l 0 .

wetting layer takes place on a scale of the order of L.T h i s second regime relaxes towards equilibrium, where, finally, the chemical potential is constant [Fig. 6(f)].

V. MODEL OF COARSENING

We now develop a simple mean-field model that describes the coarsening phenomena in two stages. In this model the islands are represented by a punctual object of varying surface. The advantage of this model is that it requires only a small number of input parameters such as the width of the island W and the chemical potential difference between the two islands. We make the assumption that the dynamics is close to equilibrium, so that the results for the stationary island can be exploited. The first coarsening stage is defined for t<t c when the two islands coexist, while for t>t c ,t h e smaller island has disappeared and perturbation of the wetting layer diffuses towards the larger island.

For t<t c , we model the dynamics of the height of each island based on the flux of matter induced by the chemical potential gradient between the two islands. This spatial gradient takes place on a length scale of order d.Mass conservation enforces in this approximation [55] 

αW∂ t h 1 = μ i (h 2 ) -μ i (h 1 ) d , αW∂ t h 2 = μ i (h 1 ) -μ i (h 2 ) d , (14) 
where h 1 is the height of the small island, h 2 is the height of the large one, W is their width, and α is a constant geometrical factor which is of order 1 [56]. Furthermore, we assume in the following that the island chemical potential might be given by the linear form given in Eq. (13). Hence, the system (14) simplifies to

αW∂ t h 1 =- c(h 2 -h 1 ) d , αW∂ t h 2 =- c(h 1 -h 2 ) d , (15) 
where c = 128 135π 2 , given by the slope of Eq. ( 13). Let us write the amplitude of the islands

h 1 (t) = h i -ǫ h(t), h 2 (t) = h i + ǫ h(t), (16) 
which implies that h 1 (t) + h 2 (t) = 2h i and h is the perturbation of the stationary state. Solving (15), we deduce that the perturbation increases exponentially,

h(t) = e 2c dαW t , (17) 
in the first temporal regime. This regime extends up to t c , such that h 1 (t c ) = h * 0 , which leads to h * 0 = h i -ǫe 2c dαW t c . Hence, we find that the characteristic time t c reads

t c = t e ln h i -h * 0 ǫ , (18) 
where t e = dαW 2c . As shown in Fig. 7, there is good agreement between the numerical simulation and this estimate. Solid curves are the theoretical prediction, and the dotted curve is the numerical simulation. The times t c and t f are represented on the figure. τ is defined as the time since t c for which the amplitude h 2 of the large island has reached 99% of its equilibrium value. The horizontal and vertical axes are in units of t 0 and l 0 , respectively.

The second regime is reached when the amplitude of the small island becomes smaller than the critical height h * 0 ,h 1 <h * 0 at t>t c . Mass diffusion then occurs in the wetting layer. The characteristic time τ of this second regime then depends essentially on the full size of the system L and only weakly on the distance d. To quantify, we write the mass conservation equation as

β(L -W )h 1 + αWh 2 = S, (19) 
where α and β are geometrical factors for the island and for the wetting layer, respectively, while S is fixed by the initial conditions. From this relation, we deduce that 8. Characteristic times t c (asterisks) and t f (dots) as a function of the distance d between the islands, obtained with numerical simulation. The solid line is t c from Eq. ( 18), and the dashed line is t f + τ ,whereτ is obtained with the numerical solution of Eq. (21). The system size is L = 128. The time t f for the disappearance of the two islands increases with the system size; it is linear when d/L ≪ 1. When d increases and becomes of the order of L, there is a deviation from the linear law due to the effect of the periodic boundary conditions. The horizontal and vertical axes are in units of l 0 and t 0 , respectively. FIG. 9. Characteristic time τ as a function of the distance d between the islands, obtained with numerical simulation of Eq. (3). The line is the time τ obtained with the solution of Eq. ( 21). The horizontal and vertical axes are in units of l 0 and t 0 , respectively. Again, we have assumed that the growth rate of the island is proportional to the gradient of the chemical potential. This gradient occurs on a scale of order L, so that

∂ t h 1 =-A∂ t h 2 ,A = αW β(L -W ) . (20) 
αW∂ t h 2 = 2 μ f (h 1 ) -μ l i (h 2 ) L . (21) 
Here μ f (h 1 ) =-c w δ e -h 1 /δ is the approximate wetting chemical potential of the wetting layer. In order to obtain the time evolution of h 1 (t) and h 2 (t), we have integrated numerically Eqs. ( 20) and (21). As shown in Fig. 7, the system of equations ( 20) and (21) captures well the numerical evolution of Eq. ( 3). The amplitude of the island increases with time before saturating at a value close to the predicted value, which depends on the value of S, as shown in Fig 3.

In order to quantify this coarsening process, we define the time t f as the time at which the amplitude of the large island has reached 99% of its equilibrium value. In addition, we define τ such that t f = (τ + t c ).

In Fig. 8, we plot the different times t c and t f as a function of the distance d between the islands using the numerical and analytic results (18). We observe that as long as d/L is small, t c increases linearly with the distance d as predicted by Eq. ( 18). When d increases and becomes of the order of L, there are deviations from the linear law in d due to the image interaction since our numerical simulation is performed in a periodic system. In Fig. 9, we show that the time τ is almost independent of the distance d separating the islands.

As a conclusion, Figs. 8 and9 show that τ is independent of d, while t f and t c increase linearly with d.

VI. CONCLUSION AND PERSPECTIVES

We have studied in this article the dynamics and the coarsening of strained islands. We first obtained an approximate analytical equation for a stationary island lying on a wetting layer. This approach allows us to predict the width W of the island and to relate the island amplitude to the height of the wetting layer. We have shown that the presence of the wetting potential leads to the existence of a critical island height 042808-6 h * 0 below which the island does not exist. The comparison between the approximate analytical solution and the stationary state resulting from the numerical integration of the mass diffusion equation is good. Second, we have investigated the dynamics of coarsening of two islands, and we have found that this coarsening is noninterrupted; the small island disappears in favor of the largest one. As observed numerically, in the first regime the height of the largest island increases exponentially until a time t c at which the smallest island becomes unstable. The characteristic time t c scales like the distance d between the islands. In the second regime, which lasts for a time τ ,the perturbation in the wetting layer diffuses, and the amplitude of the remaining island grows until it reaches its equilibrium value. This second regime is quite independent of the distance d between the initial islands. In order to model this dynamics, we propose a simple model based on a quasistatic hypothesis with mass currents driven by the gradient of the chemical potential. These results pave the way for a description of coarsening in strained systems with long-range interactions. We will extend this analysis to the problem of coarsening of an array of N islands as generated by the Asaro-Tiller-Grinfeld instability by generalizing the set of equations ( 14)toN islands. An extension of this analytical work to three-dimensional islands with the inclusion of the surface energy anisotropy will be considered in the future.

In this chapter, we will study the effect of the surface energy anisotropy on an elastically strained semi-conductor film and in particular its role on the coarsening dynamics. To study the dynamics, we add an anisotropic effect to our previous model derived in chapter 2. We first construct an approximate stationary solution of the island using a variational method and an appropriate ansatz. This stationary solution is used to compute the chemical potential relation on the island height. In particular, we find that the surface energy anisotropy increases the convexity of the chemical potential. Secondly, we study the coarsening dynamic of two islands by means of numerical simulations. We find that anisotropy may increase or decrease the coarsening time of the system. We show that this phenomena depends on the initial island heights. We thus highlight that the driving force for coarsening is leads by the variation of the chemical potential with respect to the islands height.

Continuum model

In order to derive the evolution equation, we need to calculate the chemical potential. The chemical potential µ at the surface is defined by:

µ = δF/δh . (4.1)
Here F is the free energy of the system, which takes into account the surface and the elastic contribution, noted F s and F el respectively : Surface stiffness γ = (γ(h, h x ) + γ ′′ (h, h x ))/γ f obtained using Eq. (4.4) and Eq. (4.5) as a function of h x . The wetting layer potential γ w (h) having no dependance on h x is not represented here. For h x < 0 the surface stiffness is an even function of the slope h x . The horizontal (blue color online) curve represents the surface stiffness for the isotropic case (α = 0). The (orange color online) curve represents the stiffness for the anisotropic case (α = 0.01 and θ e = π/9). The surface stiffness is always positive so that no missing orientations takes place.

F = F s + F el . ( 4 
stiffness defined as γ = γ(h, h x ) + γ ′′ (h, h x ) for the isotropic (α = 0) and anisotropic case (α = 0); here the prime represents the derivatives with respect to h x . The surface stiffness is always positive so this prevents any faceting-like instabillity. However for small value of h x the surface stiffness in the anisotropic case is smaller than the one in the isotropic case while the opposite is true for large slope. As we will show later, this will have a consequence on the dynamics of the coarsening. In order to simplify Eq. ( 4.3), we use the small slope approximation h x << 1 and obtain the following equation for the surface energy:

F s = γ f L -L 1 + γ h (h) + 1 2 A(α, θ e )h 2 x + 1 12 B(α, θ e )h 4 x + 1 30 C(α, θ e )h 6 x dx . (4.6)
Here L represents the system size and the parameters A(α, θ e ), B(α, θ e ) and C(α, θ e ) are found to be:

A(α, θ e ) = 1 -4α cot 2 (θ e ) , (4.7) 
B(α, θ e ) = 12α cot 2 (θ e ) cot 2 (θ e ) -1 - 3 2 , (4.8) 
C(α, θ e ) = 15 8 8α cot 4 (θ e ) + 4α cot 2 (θ e ) + 1 . (4.9)

Using Eq. (4.1), Eq. (4.4) and Eq. ( 4.6) the chemical potential µ s = δF s /δh reads

µ s = γ f A(α, θ e ) + B(α, θ e )h 2 x + C(α, θ e )h 4 x h xx - c w δ e -h/δ . (4.10)
The elastic energy per unit length is given by

F el = E 0 L -L - h(x)H[h x (x)] 2 dx . (4.11)
Here the elastic energy density reads E 0 = Y η 2 /(1ν). The parameter η = (a fa s )/a s is the misfit parameter where a f (resp. a s ) is the film (resp. substrate) lattice spacing, Y is the Young's modulus of the film and of the substrate, and ν the Poisson's coefficient.

H[h x (x)] is the Hilbert transform of the spatial derivative of h(x, t). It can be defined as

H[h x ] = F -1 (|k|F(h))
, where F is the Fourier transform and k is the wave number [42]. In real space, the Hilbert transform reads:

H[h x ] = 1 π - L -L h y (y)
xy dy .

(4.12)

The elastic chemical potential reads :

µ el = -E 0 H[h x ] . (4.13) 
The evolution equation for the surface h(x, t) will merely follow from Eq. (2.51) and from the expressions of the surface chemical potential Eq. (4.10) and of the elastic chemical potential Eq. (4.13). It reads

∂h ∂t = D ∂ 2 (µ s + µ el ) ∂x 2 , (4.14) 
where µ s and µ el are given in Eqs. (4.10) and (4.13). In the following, the unit of length for h(x, t) and x will be fixed to l 0 and the unit of time will be fixed to t 0 . The length scale l 0 reads:

l 0 = γ f /E 0 , (4.15) 
and results from the balance of the typical surface energy γ f with the elastic energy E 0 density. The time scale t 0 reads:

t 0 = l 4 0 /(Dγ f ) , (4.16) 
where D is the surface diffusion coefficient1 . From now on, all the variables will be written in dimensionless form. Eq. (4.14) is a non-linear equation due to the presence of the non linear form of the wetting potential and of the surface energy anisotropy. Its dynamical evolution is dominated by a coarsening phenomena in which small islands disappear for the benefit of larger islands. As we will show in section 4.3, when the system reaches equilibrium, only one island remains above the wetting layer. This island will be thus characterised by the parameters of the system which are the two wetting constants c w and δ, the two anisotropy constants α and θ e and the full surface of the system S defined as

S = L -L h(x, t)dx .
(4.17)

The quantity S is constant in time because of the mass conservation. The numerical integration of Eq. (4.14) on a periodic domain of size L, can be performed with a pseudo-spectral method introduced in [39,42] which permits a simple implementation of the Hilbert transform.

Analytical analysis of one anisotropic island

In this section, we first study the equilibrium shape of a single island. The island shape results from the balance between different effects such as the elastic stress field, the capillary effects (surface energy anisotropy) and the wetting effect. Moreover, the parameter S plays an important role since it is directly related to the spatial mean of the surface height with the relation S =< h > L. We therefore investigate the shape of the islands for different values of the control parameters S and α.

Anisotropic equilibrium solution

Using a variational method, we determine the characteristics parameters of the island, such as its size and chemical potential, as a function of the island height and of the anisotropy parameter α. Our approach consists in minimizing the total energy of the system, by exploiting a simple ansatz which takes into account the constraint of constant surface S.

Ansatz for the anisotropic system profile

We propose as an approximation of the stationary island solution h(x) a simple ansatz:

h(x) =      h w -L < x < -x 1 , h in (x) = h 0 + bx 2 + cx 4 + dx 6 -x 1 ≤ x ≤ x 1 , h w x 1 < x < L , . (4.18) 
This ansatz is composed of two parts:

• an outer part, for |x| > x 1 which describes the wetting layer of constant height h w . The center part h in (x) requires the determination of five parameters x 1 , h 0 , b, c, d. Therefore, we will need five conditions to determine the 5 unknown parameters.

• a center part, h in (x) of horizontal extent x 1 , which is described by a polynomial that presents a maximum height h 0 at x = 0 (See Fig. 4.

3).

First of all, the chemical potential depends on the first and second derivatives of the free surface h(x, t), therefore we impose the continuity of h(x, t), ∂ x h(x, t) and ∂ xx h(x, t) at x = x 1 . This leads the three conditions:

h in (x 1 ) = h w , (4.19) ∂ x h in (x)| x=x 1 = 0 , (4.20) ∂ xx h in (x)| x=x 1 = 0 . (4.21)
The three unknown parameters b, c, d can be computed by solving the linear system of equations Eq. (4.19), (4.20) and (4.21). We thus obtain:

h(x) =      h w -L < x < -x 1 , h in (x) = (h 0 -h w ) (x 2 1 -x 2 ) 3 x 6 1 + h w -x 1 ≤ x ≤ x 1 , h w x 1 < x < L , . (4.22) 
Finally there remains only two unknowns which are the island width x 1 and the island height h 0 . These two parameters can be calculated by minimizing the energy F = F s + F el defined in Eq. (4.6,4.11). This minimisation is performed at constant S. 4.22) (continuous curve) for the isotropic case α = 0. The height of the island is measured by h 0 , the height of the wetting layer is h w and x 1 is the half-width of the island. The initial condition is given by a small random perturbation around a constant value of h = 0.1. The value of the surface is S = 3.25. We use as wetting parameters c w = 0.05 and δ = 0.005. The system size is L = 16.

A simple analysis of Eq. (4.17) and of Eq. (4.22) shows that the surface S reads:

S = 32h 0 x 1 35 + 2h w (L -x 1 ) + 38h w x 1 35 . (4.23) 
Which can easily inverted in order to express h w as a function of S:

h w = 35S -32h 0 x 1 2(35L -16x 1 ) . (4.24)

Energy of an anisotropic island

Using Eq. (4.22), we find that the elastic energy (4.11) becomes:

F el = - 32(8h 0 -3h w )(h 0 -h w ) 150π + 2h w (h 0 -h w ) 15πx 6 1 -15L 5 x 1 + 40L 3 x 3 1 + 15 L 2 -x 2 1 3 tanh -1 x 1 L -33Lx 5 1 + 8x 6 1 . (4.25) 
Similarly, it can be easily shown using Eq. (4.22) that the surface energy contributions F s reads: predictions are compared with our numerical simulations as shown in Figs. (4.5-4.9). For the numerics the initial thickness is a constant h perturbated by a small random initial noise. The mean height < h > is related to the total surface (mass) S = h L. In our numerical simulations, we vary the initial mean height h (or S) and the anisotropy strength α.

Isotropic and anisotropic cases

First, we study the isotropic case, α = 0. We plot in Fig. 4.5 various islands profiles obtained by numerical integrations of Eq. (4.14) for different values of the surface S. We find a good agreement between the numerical results and our analytical predictions for the island halfwidth x 1 as a function of h 0 . Moreover for α = 0, we have found that for small h 0 , x 1 is nearly constant around the value x 1 = 9π/8 (see Fig. 4.5 (b)), as found in reference [51].

We now analyse the effect of the anisotropy α on the island shape. We choose a value of α = 0.01 and a preferential angle θ e = π/9. We plot in Fig. 4.6 various islands profiles obtained by numerical integration for different values of surface S. We first observe that for small h 0 , x 1 is smaller in the anisotropic case than in the isotropic case, because the surface stiffness γ = γ + γ ′′ is smaller for the anisotropic case (see Fig. 4.2).

x 1 increases with respect to h 0 (see Fig. 4.6 (b)). This is a consequence of the surface energy anisotropy which favors an island slope h x = tan(θ e ). We obtain a good agreement between the analytical solution of Eqs. (4.27) and (4.28) and our numerical simulations. Chemical potential Moreover, we numerically determine the chemical potential of an island as a function of h 0 for the isotropic case (α = 0) and anisotropic case (α = 0.01), using the equilibrium numerical solution of Eq. (4.14). For a stationary profile, the chemical potential µ is equal to :

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
µ = - c w δ e -hw/δ , (4.29) 
where we have assumed that far from the island the film is flat, and the wetting layer height is equal to h w , as shown in Fig. 4.3. As a consequence, the terms h x and h xx can be neglected and only the wetting potential term remains dominant in Eq. (4.10, 4.13).

The chemical potential µ decays as a function of h 0 and its convexity increases with the anisotropy strength α (see Fig. 4.7). The decay of the chemical potential µ as a function of the height is mostly due to the relaxation effect of elasticity. The increase of the convexity of the chemical potential with the anisotropy strength α is explained by the dominance of the surface energy anisotropy which favorizes the slope of the island tan(θ e ) = π/9. As a consequence of this convexity, we can foresee that the coarsening rate will decrease when the island height is large enough. As we have shown previously, the coarsening rate is proportional to the mass transfer between the islands. This mass transfer is driven by the difference of the chemical potential between the islands. As the convexity increases, the slope of the chemical potential µ decreases and therefore the difference in the chemical potential between the island decreases. However for small island height, the slope of the chemical potential µ with respect to h 0 is larger when the anisotropy strength is increased, and we thus expect an acceleration of the coarsening. We remark in Fig. 4.8, that the derivative of the chemical potential with respect to the island height, which represents the driving force for coarsening, is larger for island height value which are smaller than a critical value h c . This critical value of h c depends on α. This will have a consequence on the coarsening dynamics as we will show in the next section. In Fig. 4.9, we observe that in the anisotropic case (α = 0.01), for small amount of surface S, the island height is larger than in the isotropic case. On the other hand, for large surface S, the island height h 0 is larger in the isotropic case. The agreement between the numerical simulation and the variational method is again satisfactory. 
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Comparison with previous chapter

In the previous chapter, we have studied the shape of isotropic islands and we approximated the curvature with the small slope approximation κ = -h xx . As we work with a polynomial surface energy anisotropy of fourth order, in this chapter we approximate the curvature until grade four, so now it reads:

κ = -h xx 1 - 3 2 h 2 x + 15 8 h 4 
x .

(4.30)

In Fig. 4.10 we plot the half-width of the island x 1 for the isotropic case. We compare the result obtained in the previous chapter. The width of the island now presents a small variation around the value obtained in the previous chapter. We also plot the island halfwidth obtained by the minimization of the energy, but for the curvature κ = -h xx . All the curves are similar and only have smooth variations. We also compare in Fig. 4.11 the chemical potential computed with the different methods. The chemical potential for the isotropic case, under the first order approximation of the curvature obtained by the minimization of the energy and by imposing the value of the chemical potential are similar. The only differences are the slopes that change a bit, but both are straight lines. If we work with the curvature given in Eq. (4.30), the chemical potential present a smooth variation with respect to the curvature κ = -h xx . But this variation will lead to different coarsening regimes that we will study in the next section. (4.30). We compare these results with the isotropic result obtained with the curvature κ = -h xx , given by the minimization of the energy in blue and in purple the results presented in the previous chapter (imposing the chemical potential). The presence of high order curvature (black curve) in comparison with the first order (blue and purple) makes a smooth variation that will affect the coarsening process. In this section, we characterise the coarsening of two islands and we study the influence of the anisotropy on the coarsening time. We define the coarsening time t c to be the characteristic time for the system to reach equilibrium. After this time, the system is in equilibrium and only one island remains in the system. For practical matter, we choose to define t c as the time at which the height of the remaining island has reached 99% of its final value. In order to study the coarsening dynamics, we choose for simplicity to use an initial condition composed of two equilibrium islands with slightly different heights h 1 (0) and h 2 (0). The islands are separated by a distance d, which for simplicity is half of the system size d = L/2.
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Coarsening dynamics of two anisotropic islands

Numerical simulation of two anisotropic islands

We have performed numerical simulations for two different values of initial total surface (S = 2.91 and S = 4.15), and five different values of the anisotropy strength (α = 0, α = 0.0025, α = 0.005, α = 0.0075 and α = 0.01). Our numerical simulations presented in Fig. 4.12 reveals that during the coarsening the larger island increases at expense of the smaller island until it disappears. Ultimately for t > t c , only one island remains in the system. We present the time evolution of the heights h 1 (t) and h 2 (t) of two islands obtained numerically for two regimes (small islands and large islands). In Fig. 4.13, the islands height are small whereas in Fig. 4.14 the islands height are large.
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▲▲▲ ▲▲▲ ▲▲▲ ▲▲▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲▲ ▲▲▲▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲ .13: Time evolution of the islands heights h 1 (t) and h 2 (t). We perform five numerical simulations of Eq. (4.14) for different values of the anisotropy strength α (blue dot α = 0, orange square α = 0.0025, green rhombus α = 0.005, red up-pointing triangle α = 0.0075 and violet down-pointing triangle α = 0.01). We observe that as the anisotropy increases, the coarsening time decreases. The initial system surface is S = 2.91 for the five numerical simulations.
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Coarsening time of two anisotropic islands

In Fig. 4.15, we show that for large islands, the coarsening time increases with the anisotropy while the anisotropy reduces the coarsening time for small islands. We propose here a simple argument which explains this non intuitive effect. The driving force for coarsening | ∂µ ∂h | is proportional to the difference of the chemical potential between the two islands. For small islands, (smaller than h c as defined on Fig. The system under study consists of two islands similar to the one shown in Fig. 4.12. The decreasing curve (blue disks) is obtained using the numerical simulations of Eq. (4.14) for S = 2.91 (small islands). The orange curve (square points) is obtained using the numerical simulations of Eq. (4.14) for S = 4.15 (large islands).

large islands (larger than h c ), the driving force for coarsening is smaller in the anisotropic case (|∂µ/∂h 0 | α =0 < |∂µ/∂h 0 | α=0 ) as shown in Fig. 4.8. These effects can be explained by the convexity of the chemical potential µ, which increases with the anisotropy strength α, as shown in Fig. 4.7. The boundary between these two regimes (small islands and large islands) is the point at which the two tangents to the curve µ(h 0 ) on Fig. 4.7 have the same slope and is approximately equal to be h c = 0.5. Equivalently h c is defined at the point at which the driving force for coarsening | ∂µ ∂h | has the same value in the isotropic and anisotropic case as shown in Fig. 4.8. To conclude this section, let us note that the functional dependance of h c on α can be obtained using the tools that we have presented. In particular, we conjecture that the scaling behaviour of t c versus h 0 for a fixed value of α should exhibit two different scaling regimes in h 0 separated by a crossover at h c . A natural extension of this work could realised in three dimensional system for which coarsening phenomena have been shown to be very sensitive to the functional form of the surface energy anisotropy. In particular, the strong slowing down of the coarsening predicted and observed in [9,39] still requires more deeper mathematical analysis.

Conclusion

In this chapter, we presented an analytical and a numerical study of the morphology and of the dynamics of strained semi-conductor islands in the presence of a surface energy anisotropy. We have found with a simple model that the anisotropy accelerates the coarsening time for small islands while it slows down the coarsening for large islands. In the first part of this chapter, we have shown that the main morphological feature of an island can be described by a simple ansatz whose parameters are determined by a variational method. This method permits us to compute the island shape and its chemical potential as a function of its height. Moreover, we have found that the presence of the surface energy anisotropy increases the convexity of the chemical potential of an island and this phenomena affects the driving force for coarsening. In the second part of this chapter, we have performed numerical simulations of the coarsening dynamics of two islands. We have shown numerically that the coarsening time can increase or decrease depending on the values of the island height. This effect is attributed to the change of the driving force for coarsening induced by the convexity of the chemical potential. We suggest that this behavior could be observed during experiments in quantum dots (semi-conductor islands) under annealing condition in three dimensional system.

Article

Guido Schifani, Thomas Frisch, and Médéric Argentina. We focus in this work on the effect of the surface energy anisotropy on an elastically strained semiconductor film and in particular on its role on the coarsening dynamics of elastically strained islands. To study the dynamics of a strained film, we establish a one-dimensional nonlinear and nonlocal partial differential equation which takes into account the elastic, capillary, wetting, and anisotropic effects. We first construct an approximate stationary solution of our model using a variational method and an appropriate ansatz. This stationary solution is used to compute the chemical potential dependence on the island height. In particular, we find that the surface energy anisotropy increases the convexity of the chemical potential and this is shown to have an effect on the driving force for the coarsening. Second, we study the coarsening dynamics of an islands pair by means of numerical simulations. We find that the presence of the surface energy anisotropy may increase or decrease the coarsening time of the system. We show that this phenomenon depends on the initial heights of island pairs. We thus highlight that the driving force for the coarsening is due to the variation of the chemical potential with respect to the islands height and that two different regimes are possible. DOI: 10.1103/PhysRevE.97.062805

I. INTRODUCTION

The study of elastically strained semiconductor thin films is a challenging task from both theoretical and applied points of view [1][2][3]. The observation of self-organized strained islands appearing on semiconductor films has attracted a lot of interest due to their optoelectronic properties for light emitting diode and quantum dots laser [4][5][6]. The development of a model that explains the shape and the dynamics of strained islands (quantum dots) is a demanding and stimulating task, since it involves the dynamical interplay of elastic, capillary, wetting, and alloying effects [7][8][9][10][11][12][13][14][15].

As a semiconductor film is deposited on a substrate by heteroepitaxy, an elastic stress builds, because of the atomic lattice difference between the two semiconductors. The resulting mechanical stress can lead to a morphological instability [11,[16][17][18][19][20][21][22][23][24]. This instability, known as the Asaro-Tiller-Grinfeld (ATG) instability [25,26], leads to the formation of parabolic-shaped islands (prepyramid) [27], which have been observed [20,21]. The prepyramids later evolve in pyramids as more material is deposited [27]. The control of these objects is of fundamental importance for applications, and the size selection of quantum dots is still under active research, mainly because the coarsening dynamics is complex to predict at nanoscales [10].

As shown in Refs. [10,11,[28][29][30], self-organized strained islands display a coarsening dynamics which slows down and even lead to an interruption of the coarsening because of the surface energy anisotropy. In Ref. [29], the authors have exhibited a phenomenological model using an islands pair which permits to explain phenomenologically the slowing down of the coarsening induced by the presence of the surface energy * thomas.frisch@inphyni.cnrs.fr anisotropy. This work [29] makes use of an energetic model, which describes an energetic pathway along which ripening can indeed be frozen. However, there still remains several open questions such as the influence of the shape of the surface energy anisotropy on the rate of coarsening. Here we build on our previous work [32] in which we have proposed a simple ansatz for predicting the shape of an island under elastic strain, in quantitative agreement with numerical simulations. However, in Ref. [32], the surface energy anisotropy was not included and therefore no effect of its influences could be predicted. Furthermore, the model was isotropic, a limitation, since cristalline semiconductors are intrinsically anisotropic. Here we have improved our model [32], to take into account the effect of the surface energy anisotropy on the shape of an island and on the dynamics of an islands pair. We show that the coarsening time may increase or decrease when the surface energy anisotropy increases. This phenomenon depends on the islands pair height. We explain this effect by demonstrating that the surface energy anisotropy changes the convexity of the chemical potential, which plays an important role on the coarsening rate. The cause of the freezing of the coarsening induced by the surface energy anisotropy, as found in Ref. [29], remains an open question.

This article is constructed as follows: in Sec. II, we present a one-dimensional partial differential equation, nonlinear and nonlocal, which takes into account the anisotropy of surface energy, the elastic energy and the wetting effect. We then propose in Sec. III a parametric ansatz which minimises the energy of the system. This approach links the shape and the size of a single strained island to its height. We use this stationary solution to compute the variation of the chemical potential with respect to the island height. We find that the chemical potential convexity increases with the presence of the surface energy anisotropy. In Sec. IV, we study the coarsening dynamics of two islands under elastic strain. We find that the coarsening time depends on the surface anisotropy strength and on the 2470-0045/2018/97(6)/062805 (9) 062805-1 ©2018 American Physical Society PHYSICAL REVIEW E 97, 062805 (

FIG. 1. Sketch of the system: h(x,t) is the height of the free surface of the film with respect to the substrate. initial islands heights, the coarsening time being accelerated for small islands and slowed down for large ones. This effect is displayed in Fig. 14.

II. CONTINUUM MODEL

Semiconductors film dynamics can be modeled by a mass conservation equation which takes into account the surface diffusion. The surface diffusion current is proportional to the gradient of the surface chemical potential µ. In the absence of evaporation, the 1D equation for the top surface of the film h(x,t) reads

∂h ∂t = D 1 + h 2 x ∂ 2 µ ∂s 2 , (1) 
where D is the diffusion coefficient, h x (x,t) = ∂ x h(x,t)isthe slope of the surface height, and ∂ s is the surface gradient [31,32] as shown in Fig. 1.

The chemical potential µ at the surface is defined by

µ = δF/δh. ( 2 
)
Here F is the free energy of the system, which takes into account the surface and the elastic contribution, noted F s and F el , respectively:

F = F s + F el . (3) 
The chemical potential µ = µ s + µ el = δF s /δh + δF el /δh has thus a contribution from the surface energy and from the elastic energy. The surface energy per unit length reads

F s = γ (h,h x ) 1 + h 2 x dx, (4) 
where γ (h,h x ) is the surface energy. It includes both wetting effects and surface energy anisotropy. As a first approximation, we examine a decomposition of the surface energy γ (h,h x ), where the wetting and anisotropic effects are independent and may be written as

γ (h,h x ) = γ f [1 + γ w (h) + γ a (h x )]. (5) 
Here γ f is the amplitude of the surface energy, γ w (h)i st h e wetting layer potential, and γ a (h x ) is a measure of the surface energy anisotropy. The wetting effects are linked to the film thickness h through the relation γ w (h) = c w exp(-h/δ). The two parameters c w and δ are, respectively, the amplitude and the range of the wetting potential [33].

FIG. 2. Plot of the surface energy anisotropy γ (h,h x )/γ f given in Eqs. (5)a n d( 6) as a function of the slope h x . The wetting layer potential γ w (h) having no dependance on h x is not represented here. The anisotropy parameters are α = 0.01 and θ e = π/9. The minimum of the surface energy is chosen at a value of h x =±tan(θ e ). The anisotropy strength α represents the amplitude of the perturbation. The vertical axis is in unit of γ f . We now assume for simplicity that the anisotropy term γ a (h x ) has only a single shallow minimum at a value h x = ± tan(θ e ) and is an even function of h x . The surface slope h x is expected to be smaller than unity to be consistent with the small slope approximation [29]. The anisotropic contribution to surface energy is thus chosen to have the following form:

γ a (h x ) =- 2αh 2 x tan 2 (θ e ) 1 - h 2 x 2tan 2 (θ e ) . (6) 
As shown in Fig. 2, this type of anisotropy weakly favors an orientation with a slope h x =±tan(θ e ). Here α, which is a dimensionless quantity, represents the anisotropy strength as it measures the depth of the minimum as shown in Fig. 2.W e plot in Fig. 3 the surface stiffness defined as γ = γ (h,h x ) + γ ′′ (h,h x ) for the isotropic (α = 0) and anisotropic case (α = 0); here the prime represents the derivatives with respect to h x . The surface stiffness is always positive so this prevents any facetinglike instabillity. However, for small value of h x the surface stiffness in the anisotropic case is smaller than the one in the isotropic case, while the opposite is true for large slope. As we will show later, this has a consequence on the dynamics of the coarsening.

To simplify Eq. ( 4), we can make use of the small slope approximation h x ≪ 1 and obtain the following equation for the surface energy:

F s = γ f L -L 1 + γ h (h) + 1 2 A(α,θ e )h 2 x + 1 12 B(α,θ e )h 4 x + 1 30 C(α,θ e )h 6 x dx. (7) 
Here L represents the system size and the parameters A(α,θ e ), B(α,θ e ), and C(α,θ e ) are found to be

A(α,θ e ) = 1 -4α cot 2 (θ e ), (8) 
B(α,θ e ) = 12α cot 2 (θ e )[cot 2 (θ e ) -1] -3 2 , (9) 
C(α,θ e ) = 15 8 [8α cot 4 (θ e ) + 4α cot 2 (θ e ) + 1]. ( 10 
) 062805-2 FIG. 3. Surface stiffness γ = [γ (h,h x ) + γ ′′ (h,h x )
]//γ f obtained using Eqs. (5)a n d( 6) as a function of h x . The wetting layer potential γ w (h) having no dependance on h x is not represented here. For h x < 0 the surface stiffness is an even function of the slope h x .The horizontal (blue color online) curve represents the surface stiffness for the isotropic case (α = 0). The (orange color online) curve represents the stiffness for the anisotropic case (α = 0.01 and θ e = π/9). The surface stiffness is always positive so that no missing orientations takes place. The vertical axis is in unit of γ f . Using Eqs. ( 2), (5), and (7), µ s = δF s /δh reads

µ s = γ f A(α,θ e )+B(α,θ e )h 2 x +C(α,θ e )h 4 x h xx - c w δ e -h/δ . (11) 
The elastic energy per unit length is given by

F el = E 0 L -L - h(x)H[h x (x)] 2 dx. (12) 
Here the elastic energy density reads E 0 = Yη 2 /(1 -ν). The parameter η = (a f -a s )/a s is the misfit parameter where a f (respectively, a s ) is the film (respectively, substrate) lattice spacing, Y is the Young's modulus of the film and of the substrate, and ν the Poisson's coefficient. H[h x (x)] is the Hilbert transform of the spatial derivative of h(x,t). It can be defined as

H[h x ] = F -1 [|k|F(h)],
where F is the Fourier transform and k is the wave number [34]. In real space, the Hilbert transform reads

H[h x ] = 1 π L -L - h y (y) x -y dy. (13) 
The elastic chemical potential reads

µ el =-E 0 H[h x ]. (14) 
The evolution equation for the surface h(x,t) merely follows from Eq. (1). With the small slope approximation, it reads

∂h ∂t = D ∂ 2 (µ s + µ el ) ∂x 2 , (15) 
where µ s and µ el are given in Eqs. ( 11) and ( 14).

In the following, we choose l 0 for the unit of length of h(x,t) and x, and t 0 for the unit of time. These are usual units (Refs. [29,32]). The length scale l 0 reads

l 0 = γ f /E 0 . (16) 
It results from the balance of the typical surface energy γ f with the elastic energy E 0 density. The timescale t 0 reads

t 0 = l 4 0 /(Dγ f ), ( 17 
)
where D is the surface diffusion coefficient [35]. From now on, all the variables will be written in dimensionless form. Equation ( 15) is a nonlinear equation due to the presence of the nonlinear form of the wetting potential and of the surface energy ansitropy. Its dynamical evolution is dominated by a coarsening phenomenon, in which small islands disappear for the benefit of larger islands. As we will show in Sec. IV, when the system reaches equilibrium, only one island remains above the wetting layer. This island will be thus characterized by the parameters of the system, which are the two wetting constants c w and δ, the two anisotropy constants α and θ e , and the total surface of the system S T , defined as

S T = L -L h(x,t)dx. (18) 
The quantity S T can be easily shown to be constant in time as a simple consequence of the conservative form of Eq. ( 15). The numerical integration of Eq. ( 15) is performed with a pseudospectral method on a periodic domain of size L which permits a simple implementation of the Hilbert transform [29,34].

III. EQUILIBRIUM CASE: ISLAND MORPHOLOGY

In this section, we first study the equilibrium shape of a single island. The island shape results from the balance between different effects such as the elastic stress field, the capillary effects (surface energy anisotropy), and the wetting effect. Moreover, the parameter S T plays an important role since it is directly related to the spatial mean of the surface height by the relation S T = h L. We investigate the shape of an island for different values of the control parameters S T and α.

Using a variational method, we determine the characteristic parameters of the island, such as its size and chemical potential, as a function of the island height and of the anisotropy parameter α. Our approach consists in the minimization of the total energy of the system using a simple ansatz which takes into account the constraint of constant surface S T .

An approximation of the stationary island solution h(x) can be obtained by the minimisation of the energy given in Eq. ( 3) using a simple ansatz. This ansatz for the surface h(x)is

h(x) = ⎧ ⎨ ⎩ h w -L<x<-x 1 , h in (x) =h 0 + bx 2 + cx 4 + dx 6 -x 1 x x 1 , h w x 1 <x<L. ( 19 
)
This ansatz is composed of two parts. A center part, h in (x)of horizontal extent x 1 , which is described by a polynomial that presents a maximum height h 0 at x = 0 (see Fig. 4). An outer part, for |x| >x 1 , which describes the wetting layer of constant height h w . The center part h in (x) requires the determination of five parameters x 1 ,h 0 ,b,c,d. Therefore, we will need five conditions to determine the five unknown parameters.

FIG. 4. Stationary solutions obtained by the numerical simulation of Eq. ( 15) (dots) compared to the ansatz proposed in Eq. ( 23) (continuous curve) for the isotropic case α = 0. The height of the island is represented by h 0 , the height of the wetting layer is represented by h w and x 1 is the half-width of the island. The initial condition is given by a small random perturbation around a constant value of h = 0.1. The value of the surface is S T = 3.25. We use as wetting parameters c w = 0.05 and δ = 0.005. The system size is L = 16. The horizontal and vertical axes are in units of l 0 .

First of all, the chemical potential depends on the first and second derivatives of the free surface h(x,t), therefore we impose the continuity of h(x,t), ∂ x h(x,t), and ∂ xx h(x,t)a t x = x 1 . This leads to the following three conditions:

h in (x 1 ) = h w , (20) 
∂ x h in (x)| x=x 1 = 0, (21) 
∂ xx h in (x)| x=x 1 = 0. ( 22 
)
The three unknown parameters b, c, and d can be found by solving the linear system of Eqs. ( 20), (21), and (22). We thus obtain

h(x) = ⎧ ⎪ ⎨ ⎪ ⎩ h w -L<x<-x 1 , h in (x) = (h 0 -h w ) (x 2 1 -x 2 ) 3 x 6 1 + h w -x 1 x x 1 , h w x 1 <x<L. (23) 
Finally there remains only two unknowns which are the island width x 1 and the island height h 0 as described in Fig 4 .  These two parameters can be found by the minimization of the energy F = F s + F el defined in Eqs. ( 7) and ( 12). This minimization is done by taking into account the constraint of fixed surface S T .

A simple analysis of Eqs. ( 18) and (23) shows that the surface S T reads

S T = 32h 0 x 1 35 + 2h w (L -x 1 ) + 38h w x 1 35 . ( 24 
)
We can easily invert Eq. ( 24) and express h w as a function of S T , it reads

h w = 35S T -32h 0 x 1 2(35L -16x 1 ) . (25) 
Using Eq. ( 23), we find that the elastic energy given in Eq. (12) reads

F el =- 32(8h 0 -3h w )(h 0 -h w ) 150π + 2h w (h 0 -h w ) -15L 5 x 1 + 40L 3 x 3 1 + 15 L 2 -x 2 1 3 tanh -1 x 1 L -33Lx 5 1 + 8x 6 1 15πx 6 1 . (26) 
Here F el is also a dimensionless quantity and is expressed in units of

γ 2 f E 0 = E 0 l 2 0 .
Similarly, it can be shown using Eq. ( 23) that the surface energy contributions F s reads F s = a s (h 0 -h w ) 6 (8α cot 4 (θ e ) + 4α cot 2 (θ e ) + 1) 4 (8α cot 4 (θ e ) -8α cot 2 (θ e ) -1)

x 5 1 + b s (h 0 -h w )
x 3 1 - c s (h 0 -h w ) 2 (4α cot 2 (θ e ) -1) x 1 + 2(L -x 1 ) 1 + c w e -hw δ + 2x 1 , (27) 
where a s , b s , and c s have the value defined in Ref. [36].

Here F s is also a dimensionless quantity and is expressed in units of

γ 2 f E 0 = γ f l 0 .
We have neglected the contribution of the wetting effect in the island region (-x 1 <x<x 1 ) because of the exponential decay of the wetting potential with the height h(x,t).

The total energy F = F el + F s is thus a function of h 0 and of x 1 .Thev alueofh 0 and x 1 are now determined by the two minimizing conditions:

∂F ∂h 0 = 0, (28) 
∂F ∂x 1 = 0. ( 29 
)
Equations ( 28) and ( 29) are two nonlinear transcendental equations for the unknowns h 0 and x 1 . These equations can be numerically solved using a simple root finding algorithm and yield the island height h 0 and the island width x 1 as a function of the total surface S T . As shown in Fig. 5, the energy landscape of F as a function of h 0 and x 1 displays a well defined minimum.

To validate our assumptions and predictions, we have performed numerical simulation of Eq. ( 15) using a pseudospectral method as used in Ref. [32]. Our predictions, compared to our numerical simulations, are shown in Figs. 678910. The numerical simulations are performed with an initial constant mean height h perturbed by a small random initial 062805-4 FIG. 5. Energy of the system given in Eq. ( 3) as a function of the island height h 0 and the island width x 1 . The wetting parameters are c w = 0.05 and δ = 0.005, and the anisotropic parameters are α = 0.01 and θ e = π/9. The system size is L = 16 and the total surface is S T = 3. The horizontal and vertical axes are in units of l 0 . The energy is in unit of γ 2

f /E 0 .

noise. The mean height h is related to the total surface (mass) given in Eq. ( 18) by the relation S T = h L. In our numerical simulation, we vary the initial mean height h (or S T ) and the anisotropy strength α.

First, we study the isotropic case, α = 0. We plot in Fig. 6 various islands profiles obtained by numerical simulation of Eq. ( 15) for different values of the surface S T . We find a good agreement between the numerical simulation and our analytical predictions given by the solution of Eqs. ( 28) and (29)f o r the island half-width x 1 as a function of the island height h 0 . Moreover for α = 0, as shown in the Fig. 6 inset, we have found that for small island height h 0 , the island half-width x 1 is nearly constant around the value x 1 = 9π/8, as found in Ref. [32].

We now analyze the effect of the anisotropy α on the island shape. We choose a value of α = 0.01 and a preferential angle θ e = π/9. We plot in Fig. 7 various islands profiles obtained by numerical simulation for different values of surface S T .We first observe that for small island height h 0 , the half-width x 1 in the anisotropic case is smaller than in the isotropic case. This is due to the fact that the surface stiffness γ = γ + γ ′′ is smaller for the anisotropic case (see Fig. 3). The behavior of the anisotropic island half-width x 1 as a function of the island height h 0 is shown in the Fig. 7 inset. The island width x 1 increases with respect to the island height h 0 .T h i si sa consequence of the surface energy anisotropy which favors an island slope h x = tan(θ e ). We obtain a good agreement between the analytical solution given in Eqs. (28) and (29) and our numerical simulations.

Moreover, we determine numerically the chemical potential of an island as a function of the island height h 0 for the isotropic case (α = 0) and anisotropic case (α = 0.01), using the equilibrium numerical solution of Eq. (15). For a stationary FIG. 6. Isotropic case: α = 0, x 1 is the half-width of the island is almost constant with respect to h 0 . Blue-curve bottom (S T = 1.5), orange (S T = 3.9), color online. The islandlike solutions (dots) resulting from the numerical simulations of Eq. ( 15) are compared to the ansatz proposed in Eq. ( 23) represented by the continuous curve. The wetting parameters are c w = 0.05 and δ = 0.005, the system size is L = 16. The horizontal and vertical axes are in units of l 0 . Inset: Island half-width x 1 as a function of the island height h 0 for t h ei s o t r o p i cc a s e( α = 0). The blue dots represents the numerical results of Eq. ( 15) surface value between S T = 1.45 and S T = 8.21. The solid blue curve is the prediction obtained using Eqs. (28)a n d (29) for the island half-width x 1 . The straight line x 1 = 9π 8 is the value obtained in Ref. [32] in which we have used a linear approximation of the film curvature. The horizontal and vertical axes are in units of l 0 . profile of Eq. ( 15), the chemical potential µ is equal to

µ =- c w δ e -h w /δ , (30) 
where we have assumed that far from the island the film is flat, and the wetting layer height is equal to h w ,a ss h o w n in Fig. 4. As a consequence, the terms h x and h xx can be neglected and only the wetting potential term remains dominant in Eqs. (11) and (14). As shown in Fig. 8,t h e chemical potential µ decays as a function of the island height h 0 and its convexity increases with the anisotropy strength α.

The decay of the chemical potential µ as a function of the height is mostly due to the relaxation effect of elasticity. The increase of the convexity of the chemical potential with the anisotropy strength α is explained by the dominance of the surface energy anisotropy which favors the slope of the island tan(θ e ) = π/9. As a consequence of this convexity, we can foresee that the coarsening rate will decrease when the island height is large enough. As we have shown previously [32], the coarsening rate is proportional to the mass transfer between the islands. This mass transfer is driven by the difference of the chemical potential between the islands. As the convexity increases, the slope of the chemical potential µ decreases, and therefore the difference in the chemical potential between the island decreases. However, for small island height, the slope of the chemical potential µ with respect to h 0 is larger when the anisotropy strength is increased, and we thus expect an acceleration of the coarsening. 15). Numerical simulations of Eq. ( 15) represented by dots, compared to the ansatz proposed in Eq. ( 23) represented by the continuous curve. We use as wetting parameters c w = 0.05 and δ = 0.005. The anisotropic strength is α = 0.01 and θ e = π/9. The system size is L = 16. From bottom to top: blue-curve bottom (S T = 1.5), orange (S T = 3.9), color online. The horizontal and vertical axes are in units of l 0 . Inset: Island half-width x 1 as a function of the island height h 0 for the anisotropic case (α = 0.01 and θ e = π/9). The results of the numerical results of Eq. ( 15) are represented by dots for different values of the surface. The surface varies from a value of S T = 1.45 to a value of S T = 8.21. The solid curve is the prediction obtained using Eqs. ( 28)and( 29) for the island half-width x 1 . The horizontal and vertical axes are in units of l 0 .

As shown in Fig. 9, the derivative of the chemical potential with respect to the island height, which represents the driving force for coarsening, is larger for island height value which are smaller than a critical value h c . This critical value of h c depends on α. This will have a consequence on the coarsening dynamics as we will show in the next section. We compare the island height h 0 for the isotropic case (α = 0) and anisotropic case (α = 0.01) as a function of the surface S T .InFig.10,we observe that in the anisotropic case, for small amount of surface S T , the island height h 0 is larger than in the isotropic case. However, for large surface S T , the island height h 0 is larger in the isotropic case. The agreement between the numerical simulation and the variational method is again satisfactory.

IV. COARSENING DYNAMICS OF TWO ISLANDS

In this section, we characterize the coarsening of two islands and we study the influence of the anisotropy on the coarsening time. We define the coarsening time t c to be the characteristic time for the system to reach equilibrium. After this time, the system is in equilibrium and only one island remains in the system. For practical matter, we choose to define t c as the time at which the height of the remaining island has reached 99% of its final value. To study the coarsening dynamics, we choose for simplicity to start with an initial condition composed of two equilibrium islands with slightly different heights h 1 (0) and h 2 (0). The islands are separated by a distance d, which for simplicity is half of the system size d = L/2.

FIG. 8. Chemical potential µ as a function of the island height h 0 for the isotropic and anisotropic case. The black dots are obtained by the numerical simulations of Eq. ( 15)forα = 0 and the red squares are obtained by the numerical simulations for α = 0.01. The continuous black curve and the red dashed curve are obtained using the analytical predictions of Eqs. ( 28)- (30), respectively, for α = 0andα = 0.01. As shown in this figure, the convexity of the chemical potential is larger for α = 0.01 (red curve) than for α = 0 (black curve). The value of the preferential slope is θ e = π/9. The horizontal axis is in units of l 0 and the vertical axis is in units of γ f . We perform numerical simulations for two different values of initial total surface S T (S T = 2.91 and S T = 4.15), and five different values of the anisotropy strength α (α = 0, α = 0.0025, α = 0.005, α = 0.0075, and α = 0.01). Our numerical simulations presented in Fig. 11 reveals that during the coarsening the larger island increases at expense of the smaller island until it disappears. Ultimately for t>t c , only one island FIG. 9. Coarsening driving force: absolute value of the derivative of the chemical potential µ with respect to the island height h 0 . The black disks and the red squares are obtained respectively from the numerical simulations of Eq. ( 15)f o rα = 0a n dα = 0.01. The continuous black curve (α = 0)andthereddashedcurve(α = 0.01) are obtained using Eqs. ( 28)- (30). The critical height h c is defined as the point at which the black curve and the red dashed curve intersect. At this point h c , the two tangents to the the curves displayed on Fig. 8, have the same slope. The value of the preferential slope is θ e = π/9. The horizontal axis is in units of l 0 and the vertical axis is in units of γ f . FIG. 10. Island height h 0 as a function of the surface S T .T h e black dots and the red squares represent, respectively, the results of the numerical simulations of Eq. ( 15)f o rα = 0a n dα = 0.01. The black solid curve (α = 0) and the red dashed curve (α = 0.01) are obtained using the resolution of Eqs. ( 24), (28), and (29). The system size is L = 16 for all the simulations. The horizontal axis is in units of l 2 0 and the vertical axis is in units of l 0 . remains in the system. We present the time evolution of the heights h 1 (t) and h 2 (t) of two islands obtained by the numerical simulations of Eq. ( 15) for two regimes (small islands and large islands). In Fig. 12 the island heights are small, whereas in Fig. 13 the island heights are large. T h ep r e v i o u sr e s u l t ss h o w no nF i g s .12 and 13 on the coarsening time shows that depending on the island height coarsening can be slowed down or accelerated and that this phenomenom depends on the islands pair height.

In Fig. 14, we show that for large islands, the coarsening time increases with the anisotropy, while the anisotropy reduces the coarsening time for small islands. We propose

(c) (d)
FIG. 11. Spatiotemporal evolution of two islands computed by the numerical simulation of Eq. (15). The initial condition are two islands of height h 1 = 0.51 and h 2 = 0.49 separated by a distance d = L/2, where L = 64 represents the system size. The anisotropic parameters are α = 0.01 and θ = π/9. After a time t c = 69, only one island remains in the system. The horizontal and vertical axes are in units of l 0 . FIG. 12. Time evolution of the islands heights h 1 (t)a n dh 2 (t). We perform five numerical simulations of Eq. ( 15) for different values of the anisotropy strength α (blue dot α = 0, orange square α = 0.0025, green rhombus α = 0.005, red up-pointing triangle α = 0.0075, and violet down-pointing triangle α = 0.01). We observe that as the anisotropy increases, the coarsening time decreases. The initial system surface is S T = 2.91 for the five numerical simulations. The horizontal axis is in units of t 0 and the vertical axis is in units of l 0 . here a simple argument which explains this nonintuitive effect. The driving force for coarsening | ∂µ ∂h | is proportional to the difference of the chemical potential between the two islands. For small islands (smaller than h c as defined on Fig. 9), the driving force for coarsening is larger in the anisotropic case (|∂µ/∂h 0 | α=0 < |∂µ/∂h 0 | α =0 ), as shown in Fig. 9.O nt h e contrary, for large islands (larger than h c ), the driving force for coarsening is smaller in the anisotropic case (|∂µ/∂h 0 | α =0 < |∂µ/∂h 0 | α=0 ), as shown in Fig. 9. These effects can be explained by the convexity of the chemical potential µ, which increases with the anisotropy strength α, as shown in Fig. 8.The boundary between these two regimes (small islands and large islands) is the point at which the two tangents to the curve µ(h 0 ) on Fig. 8 have the same slope and is approximately equal to be h c = 0.5. Equivalently, h c is defined at the point at which the driving force for coarsening |∂µ/∂h| has the same value in the isotropic and anisotropic case as shown in Fig. 9. To conclude FIG. 13. Time evolution of the island heights h 1 (t)a n dh 2 (t). We perform five numerical simulations of Eq. ( 15) for different values of the anisotropy strength α (blue dot α = 0, orange square α = 0.0025, green rhombus α = 0.005, red up-pointing triangle α = 0.0075, and violet down-pointing triangle α = 0.01). We observe that as the anisotropy increases, the coarsening time increases. The initial system surface is S T = 4.15 for the five numerical simulations. The horizontal axis is in units of t 0 and the vertical axis is in units of l 0 . FIG. 14. Coarsening time t c as a function of the anisotropy strength α for two different values of S T . The system under study consists of two islands similar to the one shown in Fig. 11.T h e decreasing curve (orange square) is obtained using the numerical simulations of Eq. ( 15)forS T = 2.91 (small islands). The blue curve (blue disk) is obtained using the numerical simulations of Eq. ( 15)for S T = 4.15 (large islands). The vertical axis is in units of t 0 . this section, let us note that the functional dependance of h c on α can be obtained using the tools that we have presented in this article. In particular, we conjecture that the scaling behavior of t c versus h 0 for a fixed value of α should exhibit two different scaling regimes in h 0 separated by a crossover at h c . A natural extension of this work could be realized in three dimensional system for which coarsening phenomena has been shown to be very sensitive to the functional form of the surface energy anisotropy. In particular, the strong slowing down of coarsening predicted and observed in Refs. [10,29] still requires a more deeper mathematical analysis. In particular, we believe that the results obtained in Refs. [10,29] were found in the regime of large islands heights in which coarsening is slowed down.

V. CONCLUSION

This article presents an analytical and a numerical study of the morphology and of the dynamics of strained semiconductor islands in the presence of a surface energy anisotropy. Using a simple model, we have found that the anisotropy accelerates the coarsening time for small islands while it slows down the coarsening for large islands. In the first part of this article, we have shown that the main morphological feature of an island can be described by a simple ansatz whose parameters are determined by a variational method. This method permits us to compute the island shape and its chemical potential as a function of its height. Moreover, we have found that the presence of the surface energy anisotropy increases the convexity of the chemical potential of an island and this phenomena affects the driving force for coarsening. In the second part of this article, we have performed numerical simulations of the coarsening dynamics of two islands using the model introduced in the first part. We have shown numerically that the coarsening time can increase or decrease depending on the values of the island height. This effect is attributed to the change of the driving force for coarsening induced by the convexity of the chemical potential. An extension of this work for a three-dimensional system could reveal a different behavior. The N-island problem is much more complex to handle from a purely theoretical point of view since it is a N-body problem with long-range elastic interactions, which could be solved within a mean field theory framework [22]. We believe that the islands pair problem could be a good starting point for the elaboration of a model of N interacting islands. Clearly, the two possible scenarios predicted for an islands pair will have consequence in the dynamics of a large number of islands. Furthermore, we have proposed a generic form for the surface energy anisotropy. It would be of interest to develop a similar approach for faceted systems which could explain quantitatively the freezing of the coarsening observed in Ref. [11]. In particular, the study of the freezing of the coarsening as a function of the system parameters, such as the shape around the surface anisotropy energy minimum (depth and radius of curvature), should be interesting. Finally, it seems possible that the results we have predicted for an islands pair could be compared with experiments in semiconductor islands (SiGe and AlGaN quantum dots) with a low surface density of pairs [37].

we racall that ω = 2(1 + ν) and θ ijkl is θ ijijl = 1 for any i, j = x, y whereas θ iijj = -θ ijji = ν for i = j while it vanishes otherwise. If we consider the non-linear elastic potential and the small slope approximation, we obtain the following evolution equation:

∂h ∂t = F (h x , h y ) + ∆ -(1 + γ w + γ a )∆h + 1 - 1 2 |∇h| 2 dγ h dh -2 (h x h xx + h y h xy ) ∂γ a ∂h x -2 (h x h xy + h y h yy ) ∂γ a ∂h y -h xx ∂ 2 γ a ∂h 2 x -h yy ∂ 2 γ a ∂h 2 y -2h xy ∂ 2 γ a ∂h x ∂h y -H xx (h) -H yy (h) +H xx (h) 2 + H yy (h) 2 + 2(1 -ν)H xy (h) 2 + 2νH xx (h)H yy (h) } . (5.2)
Here the length scale is l 0 = E o /γ f , where E o is the elastic energy density. We also add a preferential evaporation function F (h x , h y ) that will depend on the slope h x and h y . The system without preferential evaporation needs time to develop an instability as presented in chapter 2. This means that if we add a preferential evaporation, we need that the instability scale faster than the evaporation, if not, islands will not grow before complete evaporation occurs, which is a non-interesting case. In addition, we know that in experiments, the system first grows layer by layer during deposition, as the deposition flux is high enough.

Only after deposition, the system gives rise to islands during annealing and evaporation as these nanostructures have time to occur on a larger time scale. Consequently we will consider only this second evolution that requires modelization. The evolution equation given in Eq.

(5.2) requires the determination of the surface energy anisotropy γ a (h x , h y ), the preferential evaporation F (h x , h y ) and the wetting potential γ w (h). The two main novelty here are the account of a preferential evaporation flux and the hexagonal symmetry of the surface energy anisotropy. These two new features will be discussed hereafter.

Surface energy anisotropy

The modeling of the surface energy anisotropy is of special interest. It plays an important role to shape the islands, but also in the coarsening dynamics as we discussed in the previous chapter and in [42,52]. Following the article [39], we decided here to work with a surface energy anisotropy that describes an island with regularized facets.

γ a = - α A α exp -η α 1 -(n.n α ) 2 + ǫ α . (5.3) 
where A α characterizes the depth of the minimum for the orientation n α , η α the width and n

= 1 √ 1+h 2 
x +h 2 y {-h x , -h y , 1} is the unit vector normal to the free film surface. The parameter ǫ α is a regularization of the singularity. With this surface energy anisotropy, we have a well-defined evolution equation that describes facet-like geometries despite we add a regularization when ǫ is chosen small enough (below 0.1 or 0.01). The AlGaN quantum dots experiments are known to exhibit hexagonal pyramids with the facets (113) [START_REF] Damilano | Formation of gan quantum dots by molecular beam epitaxy using NH 3 as nitrogen source[END_REF]. Consequently, we know that the surface energy must have six minim associated with these facets. In addition, experiments start on a (001) substrate which is also a facet so that we also consider as a minimum. These preferential orientations are:

n 0 = {0, 0, 1} (5.4 
)

n k = cos π 4 + kπ 3 sin [θ] , sin π 4 + kπ 3 sin [θ] , cos [θ]
(5.5)

Wetting potential

We present here the wetting potential function that we used to characterize this effect. In the previous chapters, the wetting potential was a decaying exponential function given in Eq. (2.14), this is simple and can fit the ab initio results [42,51]. But these results are only valid for a few monolayers, therefore, we have freedom to change the wetting layer function for negative values of height h, that will not be explored physically but that will be found numerically. As we will add a preferential evaporation to the system, we have to avoid negative values for the wetting layer thickness to occur. The model proposed in Eq. (5.2) is no longer valid and not realistic for negative values of h and our simulation should be stopped. However, it is convenient to let it run even when the height h is negative and select only after, geometries where it is always positive. With the decaying wetting layer model, we encountered some numerical problems when h becomes negative as surface energy increases to steeply. To avoid these spurious and unphysical problems, we avoid these singularities by an appropriate choice of the wetting interactions. We propose the following wetting potential: For simplicity, the wetting parameters are c w = 1 and δ = 0.001.

γ w = c w e -|h|/δ (5.
In Fig. 5.6, we plot the wetting potential given in Eq. (5.8). This function is pair, is convex and continuous. As the wetting potential does not increase exponentially for negative values, and has a smooth variation for negative values, the simulation does not blow up. Despite that negative values of h the simulation is no longer valid, we can highly control the time when the height became negative and we stop the simulation at this moment.

Hexagonal islands without preferential evaporation

In this section we perform six numerical simulations of Eq. (5.2), without preferential evaporation, in which the initial condition is a constant height h 0 plus a small random perturbation. In order to test our model with an hexagonal symmetry of the surface energy anisotropy, we study the effect of different parameters in order to have the best ones that suit the experimental results. We study two different initial heights h 0 = 0.1 and h 0 = 0.35 and for each initial height, we vary the strength of the flat orientation n 0 given in Eq. (5.4), as shown in the columns Set 1, Set 2 and Set 3 of Table 5.2. The physical and numerical parameters are also presented in Table 5 We first plot in Fig. 5.7 the roughness given in Eq. (5.9) as a function of the time. The (a) figure represents the roughness for h 0 = 0.1 and the (b) figure for h 0 = 0.35.

w =< h 2 > -< h > 2
(5.9)

Here < h >= h(x, y)dxdy/L 2 , where L is the size of the system. We notice that the instability with bigger initial height h 0 develops faster than the one with small initial height. This feature is explained by the decrease of wetting interactions for large heights h. The wetting effect flattens the system and competes with the elasticity that drives the growth of islands. So if the wetting interaction are stronger, the instability will take more time to develop.

A similar behavior happens with the strength of the flat orientation (001) as shown in [46]. For systems in which the flat orientation is favorable, the development of the islands takes more time. As the flat orientation becomes a deeper local minimum, the system takes more time to go from small slopes to the facets preferential orientation. 5.2. In particular A 0 = 0.01.

We now study the coarsening for a system where the surface stiffness of the (001) orientation is weak (see Fig. 5.8), which means that the instability fastly develops and evolve over a weak wetting layer. We plot in Fig. 5.9 the islands profiles for an initial height h 0 = 0.1 and for two different times. The second figure of 5.9 is a quasi-equilibrium state. We show that as a small mass is deposited, only a few islands appear. When we increase the mass of the system, the heights of the islands increase as is plotted in Fig. 5.10. We also notice that the surface density increases as the mass increases. In this section we present the results for the numerical simulations when the surface stiffness of the (001) orientation is strong as presented in Fig. 5.11. In comparison with the previous results, here also the islands lie over a wetting layer, but the surface density of islands decreases. In order to keep constant the deposited material, the size of the islands are bigger (see Fig. 5.12). This effect can be explained by the fact that the characteristic length of the system l 0 = γ+γ ′′ Eǫ 2 is increased in this case. We also show that when we increase its volume, elongated patterns appear in the system as presented in Fig. 5.13 (a).

Experimental works have shown the existence of truncated pyramids [START_REF] Berbezier | Sige nanostructures[END_REF]. Our numerical simulations with a strong surface stiffness for the (001) orientation, also show truncated-like pyramids during coarsening dynamics.

We plot in Fig. 5.12 the islands profile for an small initial height h 0 = 0.1. During coarsening, truncated-like pyramids are presented in the system. We also show that the distance between islands increases, because the flat orientation is stronger. The increase of the initial height yields an island density increase.

We plot in Fig. 5.14 the profile of the islands at four different times. We show that during the coarsening, islands evolve into truncated pyramids (t = 450), then to elongated truncated islands (t = 490) and finally to pyramids (t = 510). Since the flat orientation is preferential, it is expected that the top of the islands are rounded. The evolution from prepyramids (PP), truncated pyramids (TP) and pyramids (P) evolution also is of real interest because it is observed experimentally [START_REF] Berbezier | Sige nanostructures[END_REF][START_REF] Rastelli | Kinetic evolution and equilibrium morphology of strained islands[END_REF]. The presence of elongated islands depends on the mass of the system. For larger quantity of mass, elongated patterns are favorable. In experiments, elongated islands are also found as the amount of mass is high enough. We finally notice that the top of the islands are rounded in comparison with the pointed previous islands, so truncated-like pyramids are favorable. This characteristic depends on the shape of the surface energy anisotropy, which allows us to find the experimental shapes.

Preferential evaporation

In this section we study the evolution of the system in presence of evaporation. Indeed, one characteristics of the III-V systems under study (as opposed to SiGe systems) is the lower bounding on the surface that leads to a significant evaporation during annealing. We take this extra-effect into account and in addition, consider anisotropic evaporation, as one knows that facets evaporate at different speed. From experimental results, one can evaluate that the (113) facets evaporate somehow 10 times less than the (001) substrate orientation. Our investigation concerns then the long-time dynamics of the system during long enough annealing/evaporation. We perform numerical simulations of Eq. (5.2) for the preferential evaporation (5.6): it will compete with the surface diffusion in the coarsening dynamics. When the evaporation is high enough, the islands do not have time to appear before the entire system is evaporated, because the surface diffusion is slower than the evaporation. When the evaporation is moderate/low, two behaviors can take place.

1. Islands could develop but as the mass evaporates, the island could dissolve into the wetting layer as when the initial height is lower than h c , the islands cannot develop.

2. The second possible behavior is that as the evaporation is preferential, the wetting layer vanishes while islands remain in the system, keeping their shape. As the morphology is a result of the system dynamics, no preferential insight can be given a priori.

The initial condition for the system under study is composed of a constant height h 0 plus a random perturbation A noise . The physical parameters for the anisotropy, wetting and evaporation effects are presented in Table 5.3. In comparison with the simulations presented in the previous section, here we choose an initial height h 0 of the order of magnitude of the typical island heights, since the evaporation will decrease the mass of the system until the mass vanishes, and in order to let the instability develops, the system will evaporate a considerable amount of mass before the instability develops. We also chose a weak surface stiffness for the (001) orientation, since the numerical simulation are faster, as we have shown previously.

We expect that for big evaporation fluxes, the instability cannot develop, because the evaporation will win against the mass diffusion, and the instability would not evolve. In the contrary, if the evaporation flux is slow, mass diffusion would win against evaporation, and the system will vanish.

We plot in Fig. 5.15 the temporal evolution of the roughness (defined in Eq. (5.9)) as a function of the time, for a system with three values of preferential evaporation F e = 0.019, F e = 0.02 and F e = 0.025 and h 0 = 1.75. We observe the roughness first increases, before it starts to decrease until becoming negative. Once the islands have their pyramidal shape, the preferential evaporation effect is more quantitative and makes the roughness decreases. We compare the roughness with experimental RHEED given in Fig. 5.16. The comparison between the numerical simulation and the experiments shows similar qualitative behaviors for the 3D diffraction intensity.

The coarsening dynamics with preferential evaporation is different from the coarsening without preferential evaporation. In Fig. 5.17 we plot the profiles for different times of the coarsening dynamics. We observe that the film evaporates meanwhile the atoms diffuse. Depending on the initial mass and the evaporation flux, hexagonal elongated patterns and hexagonal pyramids appear. The evaporation of the mass continues and the density of islands decreases. At a certain time, the height of the wetting layer become zero and a few islands remain in the system. This is surprising since this model follows the ), for the wetting potential presented in Eq. (5.8), the initial conditions parameters, the evaporation parameters for the preferential evaporation presented in Eq. (5.6) and the numerical parameters. A noise represents the amplitude of the random noise. islands do not dissolve into the wetting layer even though the layer gets thinner and even vanishes. This behavior is also observed in the experiment of J. Brault et al. [START_REF] Brault | Investigation of Al y Ga 1-y N/Al 0.5 Ga 0.5 q N quantum dot properties for the design of ultraviolet emitters[END_REF]. We will now investigate the time when the wetting layer first vanishes. 
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Conclusions and perspectives

The theoretical study of self-assembly quantum dots is a mature field of surface pattern formation physics. Nevertheless, the complexity of the coarsening dynamics still continues to be an appealing challenge. It is well known that the competition between the elasticity and capillarity shapes the islands, but fundamental questions still remain concerning their effect on the coarsening dynamics. Simple questions concerning the islands shapes, island surface density, surface anisotropy effect on coarsening time, consequence of the evaporation on the development of quantum dots are addressed and are satisfactory clarified.

In the present manuscript, we first study the morphology of an isotropic system. We describe analytically a continuum family of solution for a stationary island lying on a wetting layer. We predict a constant value for the island width, and we show that the presence of a wetting potential leads to the existence of a critical island height h * 0 below which no island could exist. We also deduce an analytical relation between the chemical potential and the island height for the equilibrium solution. This relation helps to solve the coarsening dynamics of two islands, since the driving force is given by the spatial gradient of this relation. We obtain non-interrupted coarsening of two islands. This process is characterized by two regimes.

• The first one, defined by the vanishing of the small island. By proposing a simple coarsening model, we compute an analytical solution for the time needed for the small island to vanish, and we show that this time depends linearly on the distance between islands.

• The second one when the island reaches the equilibrium, represents the relaxation to equilibrium of the remaining island: the dynamics does not depend on the distance between the islands, but is related to the system size.

All this analytical results are in good agreement with the numerical simulations. Since the key to understand the coarsening of two islands relies in the relation between the chemical potential and the island size, we follow the study of a three-island problem. We show here that it is not always the biggest island remain in the system, and that it depends on the initial condition. We finally construct a toy model in order to understand the coarsening time of N islands, and derive a simple power law relation. We continue our investigations with the study of anisotropic islands. We extend our approach of the isotropic case, by relaxing a little the small slope approximation for the curvature. We show that the main morphological feature of an island can be described by a simple ansatz whose parameters are determined by a variational method. This method permits us to compute the island shape and its chemical potential as a function of its height. Moreover, we have found that the presence of the surface energy anisotropy increases the convexity of the chemical potential of an island and this phenomenon affects the driving force for coarsening. We have numerically computed the coarsening dynamics of two islands. The coarsening time can increase or decrease depending on the values of the island height.

The interaction is attributed to the change of the driving force for coarsening induced by the convexity of the chemical potential. Our generic form for the surface energy anisotropy, can be justified with power expansion, but it would be of great interest to develop a similar approach for strongly faceted systems, in order to better approximate the physics of heteroepitaxy, in particular for in three-dimensional systems.

We finally study numerically a three-dimensional system, where the surface energy anisotropy presents a hexagonal symmetry, in order to favor hexagonal islands. We analyze the effects of the flat orientation and the effects of the initial height on the system. We find that system with more mass presents faster coarsening. This behavior is rationalized by the wetting potential effect, which tries to flatten the system, and decays exponentially with the height: so that when the initial height is bigger, the effect is weaker, and the islands evolve faster. A similar behavior occurs with the flat orientation in the surface energy anisotropy. If it is weak, a wetting layer is not preferential, so the system presents a high density of islands, and also as this orientation is weak, the coarsening will be faster. We extend our model with a preferential evaporation. Experiments show that islands facets evaporate slower than the wetting layer. Following this conduct, we add to our model a preferential evaporation. We show that depending on the evaporation flux of the wetting layer, islands have time to develop or not. If islands develop, we show that for certain times, the wetting layer vanishes. We obtain numerically a relation between the vanishing time of the wetting layer as a function of the evaporation flux. We show that this time decays by a power law when the evaporation flux increase. This feature is interesting since islands can be created without a wetting layer, and this is strongly different from the Stransky-Krastanov picture, for which islands remain above a wetting layer.

Our results open the way to new experimental and theoretical studies. An interesting perspective is the analytical study of three-dimensional systems. It is well known that the elastic effect is different in 2D with respect to 3D, and that the complexity of the threedimensional equation leads to an increase of the difficulty. We address the question of the surface energy anisotropy effect on the coarsening time. We show that a weak surface energy anisotropy can increase or decrease the coarsening time. But since it is expected to be stopped, the question of frozen coarsening is still open, but we expect that this work may help to analytically understand the frozen phenomena. We also begin the theoretical study of preferential evaporation in chapter 5. This is very interesting since it is observed experimentally that the optical properties are much more effective when the wetting layer vanishes. In our model, negatives values of the system height are not allowed and we are able to show using numerical simulations that islands without a wetting layer can exist as reported in the literature [START_REF] Brault | Investigation of Al y Ga 1-y N/Al 0.5 Ga 0.5 q N quantum dot properties for the design of ultraviolet emitters[END_REF]. A more robust model is necessary in order to completely explain this phenomenon, but our results pave a way to easily obtain a system where the wetting layer vanishes. Other general questions about the surface density of islands and transition shapes (pyramids to elongated pyramids, truncated pyramids) are of actual interest for experimental studies. Finally the direct relevance of our modeling to the experimental results on GaN quantum dots is still of intense actual interest for the UV-light emission. where we have used the fact that h in (y) is an even function, to remove the integral of order 1/x. Therefore Eq. (A.3) can be written as

∂ xx h 1 w - c w δ 2 h 1 w (x) + β/x 2 = 0 , (A.5)
where β = x 1 , h 0 , b, c, d. Therefore, we will need six equations (conditions) to determine the six unknown parameters. The six conditions can be obtained as follow. First of all, the chemical potential depends on the first and second derivatives of the free surface h(x, t), therefore we should have continuity of h(x, t), ∂ x h(x, t) and ∂ xx h(x, t) at x = x 1 . This leads to the follwing three conditions:

h in (x 1 ) = h w + h out (x 1 ) (A.7) h ′ in (x 1 ) = h ′ hout (x 1 ) (A.8) h ′′ in (x 1 ) = h ′′ hout (x 1 ) (A.9)
The three unknown parameters b, c, c out can be find by solving the linear system of equations Eq. (A.7,A.8 and A.9). The constant d can be deduced from the following conditions h ′ (x 1 ) = 0 which means the x 1 is the position of the island foot, this leads to d = Finally there remains only two unknowns which are the island width x 1 and the island height h 0 . This two parameters can be found by the imposing the value µ w of the chemical potential, around x = 0.
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 11 Figure 1.1: Heteroepitaxial crystal Stranski Krastanov growth mode (SK: layer plus island).
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 25 Figure 2.5: Sketch of the difference lattice size for the film and the substrate.
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 26 Figure 2.6: Growth rate σ as a function of wavenumber k given in Eq. (2.57).
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 27 Figure 2.7: Growth rate σ as a function of the wavenumber k given in Eq.(2.63). From top to bottom the blue curve represent the growth rate for W γ f = 0 as presented in Fig.2.6, the orange curve for W γ f = 1 4 (critical height) and the green curve for W γ f = 1 2 .

Figure 3 . 1 :

 31 Figure 3.1: Numerical resolution or Eq. (3.1) for the system profile in equilibrium for five systems with initial height from bottom to top: blue-curve h i = 0.05, orange curve h i = 0.10, green-curve h i = 0.15, red-curve h i = 0.20 and purple-curve h i = 0.25. The parameters are L = 32, c w = 0.048, δ = 0.005 and σ = 1.

Figure 3 . 2 :

 32 Figure 3.2: Chemical potential along the space, for the equilibrium island shown in Fig. 3.1 (h i = 0.2). We plot the different contributions to the chemical potential. The blue curve is the curvature (∂ xx h), the orange curve is the wetting chemical potential (c w e -h/δ /δ) and the green curve is the elastic chemical potential (H[∂ x h]).
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 33 Figure 3.3: Equilibrium island profile. The dots are the stationary profile obtained with numerical simulation of Eq. (3.1). The system size is L = 32, c w = 0.045 and δ = 0.005. The time is T = 1000. The line curve is the ansatz given in Eq. (3.4), with a width W = 9π/4.The value of h 0 is taken from the numerical data and the corresponding value of h w is obtained from Eq. (3.8).
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 236 Figure 3.6: Half of the island width W as a function of the surface S. The dots represent the numerical values, obtained by numerical integration of the Eq. (3.1), and the horizontal curve represent half of the island width W obtained analytically given in Eq. (3.6).
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 38 Figure 3.8: Chemical potential as a function of the island height obtained by numerical simulation of Eq. (3.1). The blue dots represent the dynamics of one island (initial condition h i = 0.20), and the red dots represent the equilibrium solution for the initial condition presented in Fig. 3.1 (h i = 0.05, h i = 0.10, h i = 0.15 and h i = 0.25).
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 39 Figure 3.9: Numerical resolution of Eq. (3.15) for the profile evolution of two interacting islands separated by a distance d. The system size is L = 128. The initial condition consists of two islands separated by a distance d = 16 and initial amplitudes h 1 = 0.36 (left island) and h 2 = 0.37 (right island )with time a) t = 0, b) t = 700 , c) t = 1080 before t c , d) characteristic time t = t c = 1350, e) t = 1550 and f) t = 2580 when the equilibrium state is reached.
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 310 Figure 3.10: Numerical evolution of Eq. (3.15) for the chemical potential of two interacting islands corresponding to Fig. 3.9.
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 313 Figure 3.13: Characteristic time τ as a function of the distance d between the islands, obtained by numerical simulation of Eq. (3.15). The line is the time τ obtained with the solution of Eq. (3.23).
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 314 Figure 3.14: Initial profile obtained by the numerical simulation of the dynamical Eq. (3.15) for a system of size L = 64. From left to right the islands decrease their heights h 1 = 0.41, h 1 = 0.39 and h 1 = 0.37. The distance between the islands is d = 17.
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 315 Figure 3.15: Amplitude of the three islands presented in Fig. 3.14 represented by dots. The continuous curves represent the amplitudes obtained in Eq. 3.26.

Figure 3 . 16 :

 316 Figure 3.16: Numerical resolution for a big system of size L = N/4 and N = 8192. We plot four different times for the system profile.
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 318 Figure 3.18: Number of islands as a function of the time. The blue dots represent the numerical simulation of Eq. (3.15) for a system size L = N/4, N = 8192 and the initial height is h i = 0.048 plus a random noise. The black curve is the scaling presented in Eq. (3.34) and the red dots the solution of the system of Eqs. (3.31) and (3.33), where the proportionality constant between the time and the number of islands of Eq. (3.33) is 400.

FIG. 4 .

 4 FIG.4. For h<h * 0 , the dash-dotted line is the chemical potential μ =-cw δ e -h/δ as a function of height for the flat film. The units of the vertical axis are in E 0 = Eη 2 /(1 -ν) = 6.7 × 10 7 J/m 3 , and the units of the horizontal axis are in l 0 .Forh>h * 0 , the horizontal axis h = h 0 . The dots represent the numerical simulation for the equilibrium state of an island given by Eq. (3). The solid curve is the prediction given using Eqs. (7)and(10) for the chemical potential of the island. The dashed curve is given by Eq. (13).

FIG. 5 .

 5 FIG. 5. Numerical resolution of Eq. (3) for the profile evolution of two interacting islands separated by a distance d. The horizontal and vertical axes are in units of l 0 . The system size is L = 128. The initial condition consists of two islands separated by a distance d = 16 and initial amplitudes h 1 = 0.36 (left island) and h 2 = 0.37 (right island) with time (a) t = 0, (b) t = 700, (c) t = 1080 before t c , (d) characteristic time t = t c = 1350, (e) t = 1550, and (f) t = 2580 when the equilibrium state is reached.

FIG. 7 .

 7 FIG.7. Amplitudes h 1 and h 2 of the islands as a function of time. Solid curves are the theoretical prediction, and the dotted curve is the numerical simulation. The times t c and t f are represented on the figure. τ is defined as the time since t c for which the amplitude h 2 of the large island has reached 99% of its equilibrium value. The horizontal and vertical axes are in units of t 0 and l 0 , respectively.
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 42 Figure 4.2: Surface stiffness γ = (γ(h, hx ) + γ ′′ (h, h x ))/γ f obtained using Eq. (4.4) and Eq. (4.5) as a function of h x . The wetting layer potential γ w (h) having no dependance on h x is not represented here. For h x < 0 the surface stiffness is an even function of the slope h x . The horizontal (blue color online) curve represents the surface stiffness for the isotropic case (α = 0). The (orange color online) curve represents the stiffness for the anisotropic case (α = 0.01 and θ e = π/9). The surface stiffness is always positive so that no missing orientations takes place.

Figure 4 . 3 :

 43 Figure 4.3: Stationary solutions obtained by the numerical simulation of Eq. (4.14) (dots)compared to the ansatz proposed in Eq. (4.22) (continuous curve) for the isotropic case α = 0. The height of the island is measured by h 0 , the height of the wetting layer is h w and x 1 is the half-width of the island. The initial condition is given by a small random perturbation around a constant value of h = 0.1. The value of the surface is S = 3.25. We use as wetting parameters c w = 0.05 and δ = 0.005. The system size is L = 16.
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 45 Figure 4.5: (a) Isotropic case: Island-like solutions resulting from the time evolution of Eq.(4.14). Numerical integration of Eq. (4.14) represented by dots, compared to the ansatz proposed in Eq.(4.22) represented by the curve. We use as wetting parameters c w = 0.05 and δ = 0.005. The anisotropic strength is α = 0 (isotropic case). The system size is L = 16. From bottom to top: blue-curve bottom (S = 1.5), orange (S = 2.3), green (S = 3.1), red (S = 3.9), color on-line. (b) Island half-width x 1 as a function of h 0 for the isotropic case (α = 0). The numerical results of Eq. (4.14) are represented by blue dots for values of the surface between S = 1.45 and S = 8.21, for which the initial mean height are < h >= 0.045 and < h >= 0.255 respectively. The blue curve is the prediction obtained using Eqs. (4.27) and (4.28) for the island half-width x 1 . The purple straight-line x 1 = 9π 8 is the value obtained in Ref.[51] in which we have used a linear approximation of the film curvature.
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 46 Figure 4.6: (a) Anisotropic case: island-like solutions resulting from the time evolution of Eq. (4.14). Numerical simulations of Eq. (4.14) represented by dots, compared to the ansatz proposed in Eq. (4.22) represented by the curve. We use as wetting parameters c w = 0.05 and δ = 0.005. The anisotropic strength is α = 0.01 and θ e = π/9 (anisotropic case). The system size is L = 16. From bottom to top: blue-curve bottom (S = 1.5), orange (S = 2.3), green (S = 3.1), red (S = 3.9), color on-line. (b) Island half-width x 1 as a function of h 0 for the anisotropic case (α = 0.01 and θ e = π/9). The results of the numerical results of Eq. (4.14) are represented by dots for different values of the surface. The surface varies from a value of S = 1.45 to a value of S = 8.21. The solid curve is the prediction obtained using Eqs. (4.27) and (4.28) for the island half-width x 1 .
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 47 Figure 4.7: Chemical potential µ as a function of the island height h 0 for the isotropic and anisotropic case. The black dots are obtained by the numerical simulations of Eq. (4.14) for α = 0. The red squares are obtained by the numerical simulations for α = 0.01. The continuous black curve and the red dashed curve are drawn using the analytical predictions of Eqs. (4.27-4.28-4.29), respectively for α = 0 and α = 0.01. As shown in this figure, the convexity of the chemical potential is larger for α = 0.01 (red curve) than for α = 0 (black curve). The value of the preferential slope is θ e = π/9.
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 48 Figure 4.8: Coarsening driving force: absolute value of the derivative of the chemical potential µ with respect to the island height h 0 . The black disks and the red squares are obtained respectively from the numerical simulations of Eq. (4.14) for α = 0 and α = 0.01. The continuous black curve (α = 0) and the red dashed curve (α = 0.01) are obtained using Eq. (4.27-4.28-4.29). The critical height h c is defined as the point at which the black curve and the red dashed curve intersect. At the point h c , the chemical potentials have the same slope. The value of the preferential slope is θ e = π/9.

Figure 4 . 9 :

 49 Figure 4.9: Island height h 0 as a function of the surface S. The black dots and the red squares represent respectively the results of the numerical simulations of Eq. (4.14) for α = 0 and α = 0.01. The black solid curve (α = 0) and the red dashed curve (α = 0.01) are obtained using the resolution of Eqs. (4.23-4.27-4.28). The system size is L = 16 for all the simulations.
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 1410 Figure 4.10: Island half-width as a function of the island height h 0 for the isotropic case (α = 0). The blue dots and the solid blue curve are the numerical simulation and the prediction already plotted in Fig.4.5, obtained using a curvature given in Eq. (4.30). The purple line is the value obtained in the previous chapter x 1 = 9π 8 . The dashed blue curve is the half-with obtained by minimization of the energy for a curvature κ = -h xx .
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 411 Figure 4.11: Chemical potential µ as a function of the island height h 0 . The red and black curves represent the isotropic and anisotropic case respectively, as presented in Fig.4.7, for a curvature given in Eq. (4.30). We compare these results with the isotropic result obtained with the curvature κ = -h xx , given by the minimization of the energy in blue and in purple the results presented in the previous chapter (imposing the chemical potential). The presence of high order curvature (black curve) in comparison with the first order (blue and purple) makes a smooth variation that will affect the coarsening process.
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 412 Figure 4.12: Spatiotemporal evolution of two islands computed by the numerical integration of Eq. (4.14). The initial condition is composed of two islands of height h 1 = 0.51 and h 2 = 0.49 separated a distance d = L/2, with L = 64. The anisotropic parameters are α = 0.01 and θ = π/9. After a time t c = 69, only one island remains in the system.

Figure 4

 4 Figure 4.13: Time evolution of the islands heights h 1 (t) and h 2 (t). We perform five numerical simulations of Eq.(4.14) for different values of the anisotropy strength α (blue dot α = 0, orange square α = 0.0025, green rhombus α = 0.005, red up-pointing triangle α = 0.0075 and violet down-pointing triangle α = 0.01). We observe that as the anisotropy increases, the coarsening time decreases. The initial system surface is S = 2.91 for the five numerical simulations.

Figure 4

 4 Figure 4.14: Time evolution of the island heights h 1 (t) and h 2 (t). We perform five numerical simulations of Eq. (4.14) for different values of the anisotropy strength α (blue dot α = 0, orange square α = 0.0025, green rhombus α = 0.005, red up-pointing triangle α = 0.0075 and violet down-pointing triangle α = 0.01). We observe that as the anisotropy increases, the coarsening time increases. The initial system surface is S = 4.15 for the five numerical simulations.

  4.8) the driving force for coarsening is larger in the anisotropic case (|∂µ/∂h 0 | α=0 < |∂µ/∂h 0 | α =0 ) as shown in Fig. 4.8. On the contrary, for
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 415 Figure 4.15: Coarsening time t c as a function of the anisotropy strength α for two different values of S.The system under study consists of two islands similar to the one shown in Fig.4.12. The decreasing curve (blue disks) is obtained using the numerical simulations of Eq. (4.14) for S = 2.91 (small islands). The orange curve (square points) is obtained using the numerical simulations of Eq. (4.14) for S = 4.15 (large islands).
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 51567 FIG. 7. Anisotropic case:x 1 increases with respect to h 0 .I slandlike solutions resulting from the time evolution of Eq. (15). Numerical simulations of Eq. (15) represented by dots, compared to the ansatz proposed in Eq. (23) represented by the continuous curve. We use as wetting parameters c w = 0.05 and δ = 0.005. The anisotropic strength is α = 0.01 and θ e = π/9. The system size is L = 16. From bottom to top: blue-curve bottom (S T = 1.5), orange (S T = 3.9), color online. The horizontal and vertical axes are in units of l 0 . Inset: Island half-width x 1 as a function of the island height h 0 for the anisotropic case (α = 0.01 and θ e = π/9). The results of the numerical results of Eq. (15) are represented by dots for different values of the surface. The surface varies from a value of S T = 1.45 to a value of S T = 8.21. The solid curve is the prediction obtained using Eqs. (28)and(29) for the island half-width x 1 . The horizontal and vertical axes are in units of l 0 .
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 856 Figure 5.6: Wetting potential as a function of the height h. The blue curve represents the function given in Eq. (2.14), and the orange curve represents the function given in Eq. (5.8). For simplicity, the wetting parameters are c w = 1 and δ = 0.001.
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 2158 Figure 5.8: Side cut of the surface energy anisotropy given in Eq. (5.3). The thick blue curve represents the surface energy anisotropy under study in this subsection. The anisotropy parameters are presented in column Set 1 of Table5.2. In particular A 0 = 0.01.
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 22511 Figure 5.11: Side cut of the surface energy anisotropy (5.3). The thick green curve represents the surface energy anisotropy under study in this subsection. The anisotropy parameters are presented in column Set 3 of Table5.2, and A 0 = 0.5.
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 515 Figure 5.15: Roughness as a function of the time, for three different values of the evaporation flux F e . The green rhombus are for F e = 0.025, the orange squares are for F e = 0.02 and the blue disks are for F e = 0.019. The initial height is h 0 = 1.75.
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 519 Figure 5.19: Vanishing time as a function of the evaporation flux. The blue dots represent the numerical simulation results for an initial height h 0 = 1.75. The blue curve represents the scaling law given in Eq. (5.10).
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 11212 Figure A.1: Equilibrium island profile. The dots are the stationary profile obtained with numerical simulation of Eq. (2.50). The system size is L = 32, c w = 0.045 and δ = 0.005.The curve is the ansatz given in Eq.(3.3). The value of h w is taken from the numerical data.
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Table 5 .

 5 .2. 2: Required parametes for the surface energy anisotropic presented in Eq. (5.3), for the wetting potential presented in Eq. (5.8), the initial conditions parameters and the numerical parameters. A noise represents the amplitude of the random noise.

			Parameters		
			Set 1:	Set 2:	Set 3:
			Weak	Intermediate Strong
		A 0	0.2	0.35	0.5
	Anisotropy (001)	η 0	10	10	10
		ǫ 0	0.1	0.1	0.1
		A 1,...,6	0.07	0.07	0.07
	Anisotropy (113)	η 1,...,6	4	4	4
		ǫ 1,...,6	10 -3	10 -3	10 -3
		θ	π/6	π/6	π/6
	Wetting	c w δ	0.01 0.001	0.01 0.001	0.01 0.001
	Initial values	h 0 A noise	0.1/0.35 0.01h 0	0.1/0.35 0.01h 0	0.1/0.35 0.01h 0
		∂ t	0.001	0.001	0.001
	Numerical	L	32	32	32
		N	64	64	64

Table 5 .

 5 Stranski Krastanov growth mode, where islands lie over a wetting layer (SK: layer-plus-island), it means the 3: Required parameters for the surface energy anisotropic presented in Eq.(5.3

	Parameters	
			Set 1
		A 0	0.2
	Anisotropy (001)	η 0	10
		ǫ 0	0.1
		A 1,...,6	0.07
	Anisotropy (113)	η 1,...,6 ǫ 1,...,6	4 10 -3
		θ	π/6
	Wetting	c w δ	0.01 0.001
	Initial values	h 0 A noise	1.75 0.01h 0
	Evaporation	F e F f η e	0.02 → 0.06 0 150
		ǫ e	4
		∂ t	0.001
	Num Param	L	32
		N	64

For more details about the numerical method see Appendix B.

More realistic situation is to use a random perturbation instead of a Gaussian, but the result at the end is the same.

For example, for a Si 0.75 Ge 0.25 film on Si, we find l 0 =

nm and t 0 = 23 s at 700 • C (see[START_REF] Floro | Evolution of coherent islands in si 1-x ge x /Si(001)[END_REF] for an estimate of surface diffusion coefficients)
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In this chapter, we investigate the evolution of quantum dots when evaporation occurs during the growth process. Indeed, experiments on AlGaN quantum by J. Brault's team at the CRHEA (CNRS) revealed that in some conditions, quantum dots a priori grown within the Stransky-Krastanov growth mode, appear in fact without a wetting layer between them [START_REF] Damilano | Formation of gan quantum dots by molecular beam epitaxy using NH 3 as nitrogen source[END_REF][START_REF] Brault | Investigation of Al y Ga 1-y N/Al 0.5 Ga 0.5 q N quantum dot properties for the design of ultraviolet emitters[END_REF][55]. More precisely, the wetting layer first disappears by evaporation. As a consequence, even if the film initially grew flat layers by flat layers before quantum dots appear, the backward evolution under evaporation follows a different pathway, that is not the reversed pathway of the growing film. As the surface morphology results from an out-of-equilibrium process, this morphological hysteresis is a complex issue that we will investigate in this chapter. We first derive an amenable model to describe the systems under experimental scrutiny and to study some of its crucial features, and then to study the influence of an evaporation flux on the surface evolution. A particular interest of growing QDs without wetting layer is that their photo luminescence efficiency is strongly increased compared to QDs with wetting layer. Here, our numerical model is able to reproduce the presence of QDs without wetting layer.

We derive here a three-dimensional model for surface diffusion that accounts for the hexagonal symmetry of the experimental quantum dots. For this purpose, the surface energy is anisotropic with 6 facet-like preferential orientations, in addition to the substrate (001) orientation. We first study the system without evaporation and investigate the effect of the initial substrate orientation stiffness, showing that it triggers the instability speed. We also show that the increase the deposited film mass, accelerates the surface evolution, as the wetting interactions are less and less efficient. We finally show that the resulting shapes (hexagonal islands, truncated pyramids, elongated pyramids, etc.) are subtle functions of the asymmetry function used for the surface energy anisotropy. In a second stage, we analyze 
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Appendices

Appendix A Mathematical details for the equilibrium island foot shape

We have supposed that the outer solution is a constant value h w for the wetting layer height. Here we calculate the outer solution h out (x) exactly. Far from the island, it is possible to linearize the equilibrium equation (2.51) around h w and to set h out (x) = h w + h 1 w (x), we thus obtain

Here the non-local behaviour of the Hilbert transform obliges us to apply the functional to the whole system h for the elastic contribution. We approximate ∂ x h(x) by ∂ x h in (x) since the influence of the spatial gradient of the wetting potential is negligible. We rewrite Eq. (A.2) with this approximation reads:

We want to solve the wetting layer profile. Far from the island, for |x| ≫ x 1 , we can approximate the Hilbert transform by:

Eq. (A.10) and Eq. (A.11) are two non-linear transcendental equations for the unknowns h 0 and x 1 . They can be numerically computed using a simple root finding algorithm. Our ansatz becomes a functional of h w . We can impose for the analytical solution, the numerical value of the wetting layer height far away the island. The continuous curve in Fig. A.1 represent the exact solution and the dots represent the numerical solution. In Fig . A.2 we plot the detail of the island foot, in which we observe that far away from the island, the wetting layer height is constant, but since we approach to the island, the height decrease.

Appendix B Matlab Code for 1D isotropic problem B.1 Numerical method

The work of Cox an Matthews [START_REF] Cox | Exponential time differencing for stiff systems[END_REF] develops a numerical methods for stiff systems, based on the method of exponential time differencing. Here we exhibits the Runge-Kutta version of order two in time, that solves the heteroepitaxyal evolution equation for the isotropic case.

Exponential time differencing

We write the heteroepitaxial isotropic evolution Eq. (3.15) in the Fourier space

where u is the Fourier transform of the height h, u = F[h], L is a linear operator, in our case L = k 3k 4 and N [u, t] represent the non-linear terms. If we multiply Eq. (B.1) by e -Lt and integrate it between t = t n and t n+1 = t n + λ, where λ is a small time step, we obtain the following exact formula:

We approximate the nonlinear terms N [u, t] in the interval t n ≤ t ≤ t n+1 like a constant value N = N n + O(λ) where N [u n , t n ] = N n and u(t n ) = u n , so that Eq. (B.2) now reads:

For the second-order Runge-Kutta method, for the first step we define:

Then the approximation for the non-linear term reads:

So finally the the exponential time differencing method with Runge-Kutta order two reads:

B.2 Matlab code

In this Appendix we explain the Matlab code wrote by Alberto Verga, that we used to solve the one dimensional dynamical Eq. (3.15) with a pseudo-spectral method. We work in the Fourier space, since we exploit the relation between the Hilbert transform and the Fourier transform

. We use a Runge-Kutta method of order 2 given in Eq. B.6. We define a function (isotropic(Tmax,N)) that will give us the system height (uu), the chemical potential (mm) and its different contributions (Hilbert transform (hhilbert), curvature (ccourbure) and wetting (ddis)). We can change the number of points of the simulation (N), and the final time (Tmax). We also define the different physical parameters that we need to solve Eq. (3.15) 

The second step consists in defining the different parameters needed to numerically solve the differential equation. We have to treat linear terms which evolution is characterized with a linear operator (E) and non-linear terms with the operator (ENL). We impose the initial condition for the system height h (numerically we call it uu). It consists in a constant value hz with a zero average Gaussian perturbation. In the last step we save the system height and the different contributions of the chemical potential.