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I. Introduction 

1. General introduction 

Bacteria are organisms able to live in a wide range of environments. The 

conditions they face are constantly changing in terms of resource availability, 

competition, abiotic factors... therefore bacteria have to adjust quickly and precisely 

their metabolism. Such adjustments must be fast and mainly depend on 

transcriptional and translational regulation. Hence, to adapt to environmental 

changes, gene expression must remain functional despite stresses.  

Bacteria have developed specific regulations to cope with stressful conditions 

involving all steps of gene expression. Multiple mechanisms affecting transcription, 

translation and post-translational modifications are known, involving regulatory 

proteins, regulatory RNAs and enzymes altering proteins.  

The ribosome performs protein synthesis and is a highly conserved machinery. 

Translation involves many factors and is tightly regulated. Mechanisms regulating 

translation mainly consist of aborting or favouring it using regulatory RNAs, 

riboswitches, proteins… During stress response, they act to adjust protein synthesis 

in order to redirect the metabolism. Thus translation is a key process and must 

remain efficient despite the conditions. We aim to study how the ribosome itself could 

modulate its activity. This machinery is known to bear modifications in its ribosomal 

RNAs. These modifications are conserved among species and even among the three 

kingdoms for some, suggesting a crucial role. Nevertheless, their physiological 

function and the regulation of the modification enzymes remain mainly 

uncharacterized, particularly during stress adaptation. In this work, we aimed to study 

the importance of some rRNA methylations in stress adaptation and translation 

fidelity during stress.  
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2. The ribosome and the translation process in Escherichia coli 

Gene expression can be described as the processes leading to production of 

gene functional supports (which can be either proteins or non-coding RNA). It is 

composed of transcription of one gene into a messenger RNA (mRNA) subsequently 

translated into a protein. The translation process is realized by a complex cellular 

machinery called the ribosome.  

 

2.1. The bacterial ribosome 

Bacterial ribosomes have a sedimentation coefficient of 70 Svedberg (S). This 

machinery is a ribonucleoprotein complex, composed of two-third RNA and one third 

protein (Deutscher, 2009). It is asymmetrical and made up of two sub-units: a large 

one (50S) and a smaller one (30S) (Figure 1). The large sub-unit contains 33 proteins 

(L1-L36) and two ribosomal RNAs (rRNAs), 23S (2904 nt) and 5S (120 nt). The 30S 

subunit is composed of 21 proteins (S1-S21) and one RNA, the 16S rRNA (1542 nt). 

The two subunits assemble during translation initiation to form the 70S particle. 

 

Interestingly, the catalytic activity of the ribosome is due to the RNA 

components, hence the ribosome is a ribozyme. In addition, the two subunits hold 

different activities. The small subunit is responsible for binding the mRNA and 

decoding the 3-letter code it is bearing while the 50S subunit is capable of forming 

peptide bond between the nascent peptide and the incoming amino acid. Those two 

reactions are performed by the ribosome together with aminoacyl transfer RNAs 

(tRNAs). tRNAs are charged with the correct amino acid by specific aminoacyl-tRNA 

synthetases (aaRSs). Those charged tRNAs can be considered as substrates for the 

ribosome and provide it with amino acids. There are three sites for tRNA binding on 

the ribosome: the A-site where aminoacyl-tRNA binds and is decoded, the P-site 

holds the tRNA carrying the growing nascent polypeptide chain and the E-site for the 

exit of the uncharged tRNA (Figure 1).  
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Figure 1: The bacterial ribosome and its subunits. A: the 70S ribosome with an mRNA 

(in black) and tRNAs in A-, P- and E- site. B: the 30S subunit and C: the 50S subunit, 

tRNAs are also pictured to indicate the position of the sites (adapted from Schmeing 

and Ramakrishnan, 2009) 

16S, 23S and 5S rRNAs are synthesized in a single transcript. This precursor 

RNA has to undergo nucleolytic processing by several RNases to produce the three 

mature rRNAs. Their maturation is concomitant with transcription, folding of 

secondary structures and binding of ribosomal proteins (Shajani et al., 2011). 

Moreover, during their maturation, rRNAs are chemically modified at several specific 

positions. Different types of post-transcriptional modifications can be found such as 

base and ribose methylations or isomerization of uridines into pseudouridines and will 

be discussed in another chapter.  

 

C.

A.

B.
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2.2. The translation process in bacteria 

The bacterial translation can be divided into four main steps: initiation, 

elongation, termination and recycling (Figure 2). 

 

 

Figure 2: Overview of the translation process in Escherichia coli. The four main steps 

(initiation, elongation, termination and recycling) are represented (from Schmeing and 

Ramakrishnan, 2009). 

 

a. Initiation 

To initiate translation, the 30S subunit needs to recruit several actors such as 

the three initiation factors (IF), the mRNA, the initiator tRNA fMet-tRNAfMet and the 

large subunit (Figure 2). Indeed, translation initiation starts with the formation of the 

30S initiation complex (30SIC) in which the mRNA start codon and the anticodon of 

the initiator tRNA are correctly positioned in the P-site. Subsequently, the large 

subunit is recruited to form the 70S initiation complex (70SIC) which is able to 

perform peptide bond formation and then elongation (Gualerzi and Pon, 2015). 
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Canonical mRNAs carry two characteristic features: a start codon on which 

translation specifically begins and a ribosome biding site (RBS) to recruit the small 

subunit. The most frequent initiation codon is AUG although several other triplets can 

be used. Indeed, in E. coli, AUG coding for methionine is used as a start codon in 

82% mRNAs, the valine codon GUG in 13.8% and the leucine codon UUG in 4.35% 

(Hecht et al., 2017). The other important region of the mRNA, the RBS, is 

characterized by the Shine-Dalgarno (SD) sequence, localized in the 5’ untranslated 

region (UTR), about five to nine nucleotides upstream of the start codon (Ringquist et 

al., 1992). As this region is partially complementary to the anti-SD located at the 3’ 

end of the 16S rRNA (Shine and Dalgarno, 1974), the interaction between SD and 

anti-SD recruits the ribosome to the RBS. However, there are mRNAs, called 

leaderless mRNAs (lmRNAs), which completely lack the 5’ UTR. They start directly 

with a start codon and do not have any SD sequence, but can still be translated 

(Udagawa et al., 2004). The existence of such mRNAs underlines the fact that the 

SD sequence is not necessary for translation initiation. Although they seem to be 

largely spread (Srivastava et al., 2016; Zheng et al., 2011), only a few are naturally 

present in E. coli (for example lambda repressor cI (Balakin et al., 1992)). 

 

Concerning canonical mRNAs, the initiation factors (IF 1 to 3) allow for correct 

positioning of fMet-tRNAfMet over the start codon within the P-site leading to the 

formation of the 30SIC. IF3 binds the small subunit in the E-site and prevents binding 

of the 50S subunit. The mRNA is recruited thanks to the interactions between SD and 

anti-SD and the start codon is positioned in the P-site. IF1 binds to the empty A site 

to prevent binding of aminoacyl tRNA. Then IF2*GTP interacts with the 30S subunit 

and helps positioning fMet-tRNAfMet in the P site. Decoding of the start codon occurs 

in the P-site where IF3 discriminates for the correct codon-anticodon interaction 

(Grigoriadou et al., 2007). Then, the 50S subunit joins, helped by IF2*GTP, and upon 

GTP hydrolysis the three IFs are released: the 70S initiation complex is formed 

(Caban et al., 2017).  

 

Yamamoto et al. described another mechanism for translation initiation that 

they called “70S scanning initiation” in which the 70S ribosome does not dissociate at 



 

 

7 

the end of a translation cycle and directly re-enters a new one (Yamamoto et al., 

2016). Here, the three initiation factors and the initiator tRNA bind the 70S ribosome 

and allow it for scanning the mRNA in order to find the start codon and the SD 

sequence. IF1 would inhibit binding of aminoacyl tRNA and EF-Tu, thus permitting 

the 70S to continue scanning. Eventually, the ribosome would find the start codon 

and the initiation factors would dissociate to form the 70SIC. 

 

Translation initiation of leaderless mRNAs differs from canonical mRNAs. As 

leaderless mRNAs do not bear SD sequence, their binding to the 30S subunit 

strongly depends on IF2 and fMet-tRNAfMet (Grill et al., 2001) but is inhibited by IF3 

(Grill et al., 2001; Tedin et al., 1999). Moreover, 5’ phosphorylated AUG stabilizes 

their association with the small subunit as well as the formation of 70SIC (Giliberti et 

al., 2012). Other studies also showed that lmRNAs translation can be initiated directly 

with 70S monomers (Moll et al., 2004; O’Donnell and Janssen, 2002). In that case, 

lmRNA binding depends on recognition of their AUG start codon by ribosomes and 

this interaction is stabilized by fMet-tRNAfMet (Brock et al., 2008).  

 

b. Elongation 

Once the 70SIC is formed, the ribosome is ready to enter the elongation cycle. 

During this step, new amino acids are added to the nascent peptide chain. The 

ribosome contains the initiator tRNA in the P-site and the A-site is empty. Thus, with 

the help of several elongation factors (EF), it needs to recruit the second aminoacyl 

tRNA, decode it, add the second amino acid to the nascent chain and translocates all 

tRNA to free the A-site in order to re-enter a new cycle (Figure 2). 

  

First, EF-Tu*GTP, bound to an aminoacyl tRNA in a ternary complex, is 

recruited in the A-site. There, within the decoding centre, the correct aminoacyl tRNA 

in accordance with the mRNA codon is selected. This process is termed decoding 

and leads to codon-anticodon interaction between mRNA and tRNA (Demeshkina et 

al., 2012; Ogle et al., 2001). This interaction induces conformational rearrangements 

which have several consequences (Rodnina et al., 1995): it results in GTP hydrolysis 

and dissociation of EF-Tu*GDP from the ribosome (Villa et al., 2009) followed by 
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accommodation of the aminoacyl tRNA in the peptidyl transferase centre (PTC) 

(Valle et al., 2003). 

 

The first peptide bond is then synthesized between fMet and the second 

amino acid. This peptidyl transferase reaction consists in a nucleophilic attack of the 

ester carbon of the peptidyl-tRNA (here, fMet-tRNAfMet) by the amino group of 

aminoacyl tRNA (Lang et al., 2008). As a consequence, the nascent peptide chain is 

transferred to the tRNA in the A-site. 

  

Subsequently, the ribosome needs to move A- and P-site tRNAs to the P-site 

and E-site respectively. This translocation process has to be synchronized with the 

mRNA that shifts by exactly one codon in order to maintain the open reading frame. 

Errors or programmed frameshifts can occur at this stage leading to lecture of an 

overlapping codon thus changing the reading frame.  

 

Following peptide bond formation, tRNAs in A and P sites move 

spontaneously: their position on the 30S subunit is not changed (A and P sites) while 

their 3’ extremities are moved to the P and E sites of the large subunit respectively. 

These hybrid tRNA states lead to a movement of ratchet of the small subunit. 

Subsequently, the elongation factor EF-G associated with GTP binds the ribosome. 

GTP hydrolysis triggers mRNA and tRNAs movement relative to the 30S subunit 

(Rodnina et al., 1997). It also induces a movement of reverse ratchet and as a result 

the ribosome is in its canonical form. The A-site is now empty for the next tRNA to be 

recruited and the ribosome is ready for the next round of elongation. 

 

c. Termination and recycling 

The elongation cycle continues until the ribosome reaches a stop codon, the 

signal of the end of the coding sequence. Termination and recycling steps result in 

the release of the neo-synthesized protein and in dissociation of the 30S and 50S 

subunits. Consequently, after recycling, the ribosome is able to initiate another round 

of translation.  
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There are three stop codons: UAA, UAG, and UGA which are not recognized 

by any tRNA but by a class I release factor (RF) RF1 or RF2. RF1 recognizes UAA 

and UAG while RF2 recognizes UAA and UGA (Scolnick et al., 1968). Their specifity 

relies on a “tripeptide anticodon”: PXT in RF1 and SPF in RF2 (Ito et al., 2000). Both 

release factors also have a conserved GGQ motif which plays a role in peptide 

hydrolysis.  

 

When a stop codon reaches the empty A-site, RF1 or RF2 binds the ribosome 

resulting in conformational rearrangements of the ribosome. Those changes allow for 

interactions between RF1/2 peptidic anticodon and the stop codon in the decoding 

centre and also lead to positioning of the GGQ motif in the PTC (Laurberg et al., 

2008; Weixlbaumer et al., 2008). Release of the polypeptide chain is triggered by 

RF1/2 nucleophilic attack of the ester bond between the peptide and the P-site tRNA 

(Jin et al., 2010). 

 

The class II release factor RF3 permits dissociation of RF1 or RF2. This factor 

is a GTPase and can bind either GDP or GTP with an equivalent affinity (Koutmou et 

al., 2014). The complex ribosome-tRNA-RF1/2 recruits RF3 associated with GDP. 

Subsequently, GDP is exchanged for GTP resulting in conformational changes of the 

ribosome (Gao et al., 2007). It induces destabilization of RF1/2 binding and their 

release. GTP is then hydrolysed by RF3 leading to its dissociation from the ribosome. 

 

After RF3 release, a deacylated tRNA is in the P-site and the mRNA is still 

associated with the ribosome. Thus, to initiate another round of translation, the two 

subunits of the ribosome have to be recycled. This step is realized by the ribosome 

recycling factor (RRF) together with EF-G*GTP. First, RRF is recruited in the A-site, 

then EF-G*GTP binds the complex and GTP hydrolysis promotes the dissociation of 

the two subunits (Zhang et al., 2015). Finally, IF3 binds the complex 30 S-mRNA-

tRNA and promotes their release. Thus, the small subunit is ready for a new round of 

initiation (Schmeing and Ramakrishnan, 2009). 

 

Other studies tend to show that 70S splitting induced by RRF and EF-G is not 

necessary for translation initiation (Orelle et al., 2015; Qin et al., 2016; Yamamoto et 
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al., 2016). Indeed, ribosomes bearing covalently linked subunits, which cannot be 

split, can perform translation in vitro. E. coli cells are able to grow with such 

ribosomes although they are less active than wild type ribosomes (Orelle et al., 

2015). Qin et al., (2016) showed that neither in vitro nor in vivo translation of a 

second cistron of a bicistronic mRNA requires RRF activity. As 70S scanning was 

described as highly dependent on fMet-tRNA availability, they propose that when the 

initiator tRNA is not available then RRF-dependant recycling takes place.  

 

d. Ribosomal errors 

Aforesaid, during translation, the ribosome discriminates against correct and 

incorrect aminoacyl tRNAs. This discrimination is due to the exclusion of incorrect 

tRNAs by the fact that ribosome control the stabilities of the codon-anticodon 

complexes and increase the rate of GTP hydrolysis. Many residues of the 16S rRNA 

are involved in the stability of the interaction of anticodon stem-loop fragments of 

tRNA and the codon triplets in the decoding site: adenines A1493 and 1492 in helix 

44 of 16S rRNA, G518 and G530 in helix 18 of 16S rRNA, G1054 from helix 34 and 

ribosomal protein S12 (Ogle et al., 2001). Such mechanism prevents 

misincorporations of amino acid within the nascent chain. Missense errors can also 

be caused by mistakes in aminoacylation of tRNAs. Taken together, 

misincorporations are considered to happen with a rate of one mistake per 104 

codons in E. coli (Kurland, 1992; Reynolds et al., 2010). The ribosome is susceptible 

to make other types of errors such as stop-codon read-through or frameshifting. They 

are thought to happen with rates of 10-2 and 10-5 respectively (Evans et al., 2018).  

Frameshifting is more costly for the cell than misincorporations. Once the 

ribosome changed reading frame, there is no way to re-establish it leading to 

translation of an erroneous and truncated protein which has to be degraded 

afterwards. However, in some specific cases, frameshifting can be used to regulate 

translation. In such cases, the rate of frameshifting is much higher (50 to 80% (Chen 

et al., 2017; Tsuchihashi and Brown, 1992)) and uses signals to drive the ribosome to 

change frame. In E. coli, two genes use programmed frameshifting to regulate their 

translation: prfB and dnaX.  
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dnaX codes for two different products: gamma γ and tau τ subunits of DNA 

polymerase III (Blinkowa and Walker, 1990; Flower and McHenry, 1990; Tsuchihashi 

and Kornberg, 1990). The coding sequence of the τ subunit is in the canonical coding 

frame (0 frame) and the protein produced out of it contains 643 amino acids. A 

programmed -1 frameshift event (the reading frame is changed by one nucleotide in 

the 5’ direction of the mRNA) is required to express the γ subunit (431 amino acids). 

It causes early termination of translation due to the presence of a stop codon 

downstream the slippery sequence. Consequently the γ subunit lacks the last two 

domains of τ subunit. 

 

Figure 3: Signals of dnaX programmed frameshifting. The sequence of dnaX mRNA is 

represented with the SD-like sequence in the yellow box, the slippery sequence in the 

red box and the stem loop. The protein sequence in the canonical frame (0 frame) is 

indicated below as well as the sequence in the -1 frame following frameshifting 

(adapted from Caliskan et al., 2015).  

Three elements are essential for dnaX programmed frameshift: an internal SD-

like sequence, a slippery site and a stem-loop (Figure 3) (Dunkle and Dunham, 

2015). Frameshifting happens on the slippery site of which the in-frame sequence is 

A.AAA.AAG, decoded by two Lys tRNAs (Tsuchihashi and Brown, 1992). Codon-

anticodon interactions at this site are unstable, and can lead to dissociation of the 

0 frame ……………………………….    K       K S       E …………………    

5‘ …..AG GGA GCA ACC AAA GCA AAA AAG AGU GAA

-1 frame………………………………….   K       K E    Stop 

C-G

G-C

G-C

C-G

C-G

C-G

G-C

C-G

C-G

G-C
A       G

C

C

A

U

C

U…… 3’

SD sequence Slippery site
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first tRNALys (decoding AAA) that reassociates with the overlapping -1 codon (A.AA). 

The stem loop is located downstream of this site and slows down translation leading 

the ribosome to pause on the slippery sequence (Larsen et al., 1997). It is also 

thought to obstruct tRNAs translocation. The internal SD-like sequence positioned 

upstream of the slippery site enhances frameshifting (Larsen et al., 1994), probably 

by inhibiting translocation as well (Chen et al., 2014).  

 

 prfB encodes release factor 2 (RF2) and, in order to  produce active RF2, a +1 

programmed frameshifting is required (the ribosome bypasses one nucleotide in the 

3’ direction of the mRNA). There are two signals driving the ribosome to change 

frame on prfB mRNA: an SD-like sequence and the slippery site CUU.UGA bearing 

an UGA stop codon (Donly et al., 1990) (Figure 4).  

 

 

Figure 4: prfB signals driving +1 programmed frameshifting. The sequence of prfB 

mRNA is represented with the SD-like sequence in the yellow box and the slippery 

sequence in the red box. The protein sequence in the canonical frame (0 frame) is 

indicated below as well as the sequence in the +1 frame following frameshifting 

(adapted from Farabaugh, 1996).  

 

The UGA stop codon is in frame and can be recognized by RF2 which therefore 

autoregulates its expression (Adamski et al., 1993). Indeed, when RF2 is abundant 

enough, it recognizes the UGA codon and translation stops. However, when the 

levels of RF2 are low, the ribosome pauses at the UGA codon. Interactions between 

codon-anticodon in the decoding centre are perturbed and a rearrangement can 

occur leading the peptidyl-tRNA decoding CUU to read the UU.U overlapping codon 

(Liao et al., 2008). The SD-like sequence, positioned upstream of the slippery site, 

AGG-GGG-UAU-CUU-UGA-C5’

3’

Slippery 

sequence

0 frame:….. R       G       Y       L    Stop

+1 frame: …………………………  L  N …………....

SD sequence
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interacts with the anti-SD of the ribosome and drives its repositioning in the +1 frame 

(Dinman, 2012).  

 

2.3. Impact of stresses on the translational machinery 

Environmental variations can induce damages to biological macromolecules, 

such as ribosomes, thus compromising their functions. These environmental changes 

could impact directly the two principal functions of the ribosome governed by rRNAs 

(decoding and peptide bond formation) as well as functions that are controlled 

directly by ribosomal proteins. Oxidative, osmotic, heat and cold stresses induce 

transcriptional responses with dedicated regulations and/or translational responses 

that can be due to ribosome-associated factors, toxin actions or direct and indirect 

variations at the ribosome level. 

 

a. Oxidative stress induces mistranslation and translational arrest 

Oxidative stress may be defined as a disruption of the balance between free 

radicals (reactive oxygen species, ROSs) and antioxidant defences. Different studies 

have shown that ROSs could decrease translational fidelity. Indeed, ROSs can 

oxidize amino acids leading to the addition of a hydroxyl group, for example. Those 

damaged amino acids can be erroneously charged on tRNAs by aminoacyl-tRNA 

synthetases (aaRSs) and then incorporated into proteins. Usually, aaRSs have the 

ability to edit misacylated tRNAs with modified amino acids such as homocysteine, 

norleucine, α-aminobutyrate and meta-tyrosine (m-Tyr).  

For instance, m-Tyr can be charged on tRNAPhe but PheRS is able to edit this 

misacylated tRNA and thus prevents its incorporation into proteins (Bullwinkle et al., 

2014). Under oxidative stress, m-Tyr accumulates in E. coli cells and PheRS editing 

activity becomes essential for survival. However, Bullwinkle et al., 2014 showed that 

m-Tyr can escape PheRS editing in such conditions and that incorporation of m-Tyr 

into proteins is toxic for E. coli. They assumed that this residue is a target of ROSs 

and induces oxidation of proteins when cells are submitted to oxidative stress. Thus, 

incorporation of m-Tyr in the oxidized proteome is a threat to translational integrity. 

In the same way, the translational fidelity has been shown to be reduced 

because of ROSs damages on the editing activity of threonyl-tRNA synthetase (Ling 

and Söll, 2010). This phenomenon of misacylation of tRNAs has been also observed 
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in eukaryotic cells where the level of Met-misacylated tRNAs increased up to tenfold 

upon exposure to oxidative stress (Netzer et al., 2009).  

 

Elongation factor G (EF-G) can also be impaired by oxidative stress. This key 

protein in elongation of translation is strongly oxidized when E. coli cells are treated 

with H2O2 (Tamarit et al., 1998) and in a sod-mutant strain (Dukan and Nyström, 

1999). The oxidation of EF-G results in the formation of a disulphide bond between 

two Cys residues (Cys114 and Cys 266) and inhibits its activity (Nagano et al., 2012) 

leading to a translational arrest. Nagano et al., 2015 have shown that oxidation of 

EF-G suppresses the hydrolysis of GTP and does not allow dissociation of EF-G from 

the ribosome resulting in a defect in EF-G turnover.  

 

The effect of ROSs on the translational fidelity seems to be essentially caused 

by incorporation of altered amino acids. Some authors argue that incorporation of 

non-proteinogenic amino acids would give aberrant peptides that are prone to 

oxidative modification and would be part of the resistance mechanism to oxidative 

stress. Increasing misincorporation of Met residues into proteins could protect them 

against ROS-mediated damages (Netzer et al., 2009). Mistranslation could then be 

beneficial under oxidative stress conditions. Fan et al., 2015 also observed that an 

rpsD variant (I199N), harbouring higher levels of UAG read-through, has a better 

survival to H2O2 challenge than the wild type strain. 

 

b. Variations of translation under osmotic stress 

The so-called osmotic stress corresponds to differences between external and 

internal osmolality. In most studies, hyperosmotic stresses are realized by increasing 

concentrations of salts such as NaCl in the medium. The consequence of such stress 

is an instantaneous exit of water to equilibrate internal and external osmotic pressure 

inducing plasmolysis. The cell adaptation to this condition consists in turgor pressure 

recovery via accumulation within the cell of high levels of potassium glutamate and 

compatible solutes by neosynthesis of trehalose or by active uptake if those solutes 

are present in the medium (glycine betaine, ectoine…) (Wood et al., 2001). 

Potassium glutamate accumulation is transient (roughly 15 min) and induces an 

increase of ionic strength, followed by the accumulation of organic osmolytes called 
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compatible solutes because they are neutral for cell metabolism. Briefly, the genetic 

response of the cell corresponds to an upregulation of genes (proV, proP, proX, 

proW, otsA…) encoding enzymes related to trehalose synthesis and active 

transporters of osmoprotective solutes (Weber et al., 2006; Wood et al., 2001). Ionic 

strength and compatible solutes exert a strong influence on translation in vitro: salts 

reduce translation efficiency while compatible solutes increased it (Brigotti et al., 

2003). 

In vivo analysis of elevated hyperosmotic stresses, generated by different 

NaCl concentrations (0.1 M to 0.6 M) in minimal medium, showed that the 

translational elongation rate decreased by 50% but could be compensated by an 

increase of the ribosome content compared to the effect of nutrient starvation. The 

explanation for this slowdown of the elongation rate could be the reduced binding 

rate of tRNA ternary complexes (aminoacyl-tRNA/EF-Tu/GTP) (Dai et al., 2018). A 

new approach consisting of comparative analysis of transcriptome and ribosome 

profiling allowed Bartholomäus et al., (2016) to observe a correlated increase of 

transcription and translation of osmoprotective genes despite a global reduction of 

transcripts. Moreover, the transitionally up-regulated genes under osmotic stress 

correspond to genes encoding amino acid synthesis and iron transport even if those 

genes are in polycistronic mRNAs. Analysis of ribosome-protected fragments showed 

that ribosomes accumulate upstream of the start codon near the SD sequence of the 

translated genes.  

 

In response to variations of external osmolality, the expression of translation 

factors and ribosome associated proteins is also affected. The initiation factor 2 (IF-2) 

accumulated significantly within the first 10 minutes after the application of the stress 

(Weber et al., 2006). This raising would be linked with the transitory arrest of 

translation during plasmolysis. Another protein, RsgA, which facilitates the maturation 

of the small subunit decreases under salt stress. The absence of this protein 

conferred a better salt resistance to E. coli cells and a shortened lag phase after the 

application of salt stress. Deletion of RsgA permitted the suppression of impaired 

maturation occurring under salt stress in wild type cells (Hase et al., 2009). Thus, 

when cells are submitted to salt variations, the maturation of ribosomes would be 

independent of RsgA which is indispensable in isotonic environments. The same 
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phenomenon of shortened lag phase after the application of osmotic stress has been 

observed in cells carrying deletions of genes encoding ribosomal maturation factors 

(RimM, RbfA), rRNA modification enzyme (RlmE that catalyses the 2'-O-methylation 

of ribose at the position U2552 of the 23S rRNA) or ribosomal protein S6 

(RpsF)(Hase et al., 2013).  

 

Moreover, osmotic stress induces an increase of expression of another 

ribosome-associated protein, Rmf (ribosome modulation factor) which transforms 

active 70S ribosomes to dimeric forms. This higher expression is associated with a 

decrease in translational activity, in either E. coli or Pseudomonas aeruginosa cells 

(Aspedon et al., 2006; Bartholomäus et al., 2016). 

 

c. Variations of translation under temperature changes 

In response to sudden temperature elevation, bacteria have evolved a 

transient induction of a group of heat shock genes encoding heat shock proteins. 

This heat shock also causes accumulation of unfolded proteins and aggregation of 

proteins. Thus, the response is a ubiquitous strategy to allow, on the one hand, 

removal of denaturated proteins and in the other hand correct folding of 

neosynthetized proteins and low-damaged proteins.  

Concerning the effects of sudden rise of temperature on ribosomes, several 

phenomena are involved. Erroneous dissociation of translating ribosome can occur 

resulting in a 50S subunit carrying a tRNA still attached to the nascent polypeptide 

chain (Jiang et al., 2009). Hydrolysis of the peptidyl-tRNA is carried out by a small 

heat shock protein HslR (Hsp15). This protein HslR may interact with helix 84 of the 

23S rRNA and peptidyl-tRNA to allow translocation. Such interaction allows 

optimized hydrolysis by termination release factor RF2. HslR would also participate to 

the rescue of the ribosome through a concerted action with ArfB (Giudice and Gillet, 

2013).  

Another protein has been shown to interact with the 30S subunit when cells 

are submitted to heat stress, BipA protein (deLivron and Robinson, 2008). BipA is a 

ribosome-dependant GTPase which is also involved in the assembly of the large 

subunit at low temperatures. Moreover, BipA is essential for the assembly of the 
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ribosome in a mutant lacking RluC (23S rRNA pseudouridine955/2504/2580 synthase) 

(Choudhury and Flower, 2015). 

 

Another aspect concerns the role of a chaperone protein such as DnaK which 

could be considered as a factor involved in ribosome assembly. At elevated 

temperatures, E. coli dnaK mutants show defective ribosome assembly and 

accumulation of 21S particles (precursors to mature 30S subunits) and 32S and 45S 

particles (precursors of mature 50S subunits) (Al Refaii and Alix, 2009; El Hage and 

Alix, 2004). René and Alix observed that the late steps of ribosome assembly are 

also arrested in wild type strain after a temperature rise. They explained that the mis-

folded and degraded proteins resulting from this temperature rise would monopolize 

the chaperones and DnaK-dependent late stages in ribosome assembly would be 

restrained (René and Alix, 2011).   

 

In a recent study using ribosome profiling, Zhang et al., (2018) have noticed 

that some genes are up-regulated at the transcriptional level while others are 

regulated at the translational level. They also observed that this translational 

regulation is independent of the position of the ORF in a polycistronic mRNA. In this 

study, it has been noticed that the translational level of infA (coding for translation 

initiation factor IF1) was reduced by half during heat stress. Other genes were more 

translated under such conditions namely RstA, GadX, PheM, SdhC, and RelB. The 

increase of such proteins is related to response to acidic conditions, electron transfer 

and cleavage of mRNA in the site A of the ribosome. Moreover, upon heat shock, the 

ribosome-protected fragments are more numerous around the starting region of a 

coding sequence suggesting that ribosomes may pause in this region.  

 

Regarding cold stress, when cells from a culture in exponential phase are 

submitted to reduced temperature (37°C to 10°C), cell growth stops during 6 hours 

and is correlated with a significant decrease of protein synthesis (Jones et al., 1987). 

In a recent publication, Zhang et al., 2018 have analysed quantitatively and 

temporally the translational ability during this acclimation phase. A 50-fold decrease 

in protein synthesis rate was observed 3 minutes after the cold shock and about a 

total 200-fold decrease was obvious after 30 minutes. After this 6 hours incubation, 
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translation resumes with a 3.5-fold increase in protein synthesis rate. Using ribosome 

profiling, Zhang et al., 2017 showed that the initiation of translation is compromised 

which is in agreement with the findings of Gualerzi et al., 2011. In vitro experiments 

showed that translation variations could be due to either cis- or trans-acting 

elements. The cis-acting elements correspond mainly to the mRNA conformation that 

could result in exposure of the SD sequence and the presence of an AU-rich S1 

binding region. The trans-acting elements gather essentially the cold shock protein 

(CSP) such as CspA and initiation factors such as IF1, IF2 and IF3. After a cold 

shock, during the acclimation phase, these factors show an increased synthesis and 

the ratio IFs/ribosome rises (2 to 3-fold after 2 to 4 hours of cold shock) (Gualerzi et 

al., 2011). Zhang et al., 2018 also reported that CSPs involved in the modulation of 

the mRNA structure have high fold change: from 500- to 18,5-fold increase. This 

increase concerns CspB, CspG, CspH, CspF, CspI and CspA. Concerning CspA, it is 

quite abundant in unstressed cells as well: about 50-fold higher to CspG, 125-fold for 

CspB and around 750-fold higher for all other Csps. In this publication, it could be 

mentioned that RNaseR, which is required for mRNA degradation, shows a 14,35-

fold change. The increased synthesis of Csps is to be related to the fact that Csps 

control mRNA structure and participate in the modulation of the translation efficiency 

that is necessary to cope with cold stress and to maintain an efficient translation also 

at normal temperature.  

Cold shock also affects tRNAs maturation which could thus have an impact on 

translation. Indeed, during cold adaptation, the fidelity of tRNA nucleotidyl-

transferases (enzymes adding the CCA triplet at tRNAs 3’ end) decreases (Ernst et 

al., 2018).  
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3. Ribosomal RNA methyltransferases  

As previously mentioned, rRNAs can be post-transcriptionally modified during 

their biosynthesis. There are three major types of modifications in rRNAs: uridine can 

be converted into pseudouridine, riboses can be methylated on their 2’ hydroxyl 

groups and nucleotide bases can be methylated at different positions (Figure 5). 

Specific enzymes are required to catalyse those modifications, namely pseudouridine 

synthases and methyltransferases. Methyltransferases need a methyl donor in order 

to transfer the methyl group to its target while pseudouridine synthases catalyse the 

isomerization of the target. Almost all methyltransferases use S-adenosyl-L-

methionine (SAM) as donor. 

 

Figure 5: rRNA modifications and their possible localizations in base or ribose: A. 

pseudouridine, B. ribose methylation and C. base methylation; arrows indicate the 

positions that can be methylated (adapted from Decatur and Fournier, 2002). 

 

Table 1: Overview of rRNA modifications (pseudouridines, ribose methylations and 

base methylation) in different organisms (from Sergiev et al., 2011). 

 Human Yeast E. coli 

Pseudouridines 91 44 10 

Ribose methylations 105 54 4 

Base methylations 10 10 19 

 

C.

A. B.
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Interestingly, the number of rRNA modifications is correlated with the 

complexity of a given organism (Table 1). Indeed, while human ribosomes contain 

more than two hundred modifications, Escherichia coli ribosomes exhibit less than 

forty. Moreover, ratios of those modifications are completely different. For instance, 

there is a majority of base methylations in E. coli rRNAs and a minority of ribose 

methylations while it is the opposite in human and yeast, which also contain 

proportionally more pseudouridines.  

 

This observation can be explained by the different machineries. In fact, E. coli 

uses site-specific methyltransferases and pseudouridine synthases meaning that one 

enzyme will modify one (or two) nucleotides. As a consequence, deletion of one 

enzyme leads to the absence of the related modification. This modification 

mechanism would be too costly in eukaryotes regarding the number of modified 

nucleotides within their rRNA. Consequently, they use instead “guided” enzymes that 

consist in ribonucleoproteic complexes containing a core methyltransferase or 

pseudouridine synthase associated with a specific small RNA. The latter is 

complementary to the target thus it is a “guide” that confers the specificity of the 

enzyme (Decatur and Fournier, 2002).  This modification mechanism allows 

eukaryotes to have a limited number of ribose methyltransferases or pseudouridine 

synthases. Nevertheless, they still use site-specific methyltransferases for base 

methylation (Motorin and Helm, 2011). 

 

Modifications of ribose and bases may confer new and different chemical 

properties to rRNA molecules. Pseudouridines share with uridines the ability to form 

Watson-Crick interactions with adenosines but have an additional hydrogen donor at 

position 5 (N-H as depicted in Figure 5) where uridines exhibit a C-H at this position. 

As a result, pseudouridines may form new hydrogen bonds and they are also known 

to form stacking interactions, both could contribute in rRNA structure and stability 

(Hamma and Ferré-D’Amaré, 2006). Concerning 2’-O-methylation of the ribose, the 

methyl group replaces a hydroxyl group which is a potential hydrogen bond donor. 

The methyl group is also bulkier than hydrogen. Consequently 2’-O-methylation can 

be involved in hydrophobic contacts in one hand and can introduce steric effects 

within rRNA structure in the other hand. Bases can be modified at different positions, 
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even simultaneously (bimethylated nucleotides for instance). As well as 2’-O-

methylations, they are involved in hydrophobic contact and steric effect. In addition 

some dimethylated nucleotides can prevent Watson-Crick pairing (Helm, 2006).  

 

3.1. Modifications in Escherichia coli rRNAs 

The 70S ribosome of E. coli contains 36 modified nucleosides (listed in Table 

2). They are all clustered in the active sites of the ribosome: decoding centre, peptidyl 

transferase centre, subunit bridges and exit tunnel (Figure 6). This localization tends 

to underline their functional relevance during translation. 

 

 

Figure 6: E. coli 70S ribosome and localization of rRNA modifications. The initiator 

fMet-tRNAfMet is depicted in green in the P-site. DC: deconding centre, PTC: peptidyl 

transferase centre (adapted from Fischer et al., 2015). 

So far, there are eleven modifications identified within E. coli 16S rRNA: 10 

methylations and one pseudouridylation (Table 2 and Figure 6). Among them, there 

are six methylated residues within the decoding centre (m2G966, m5C967, 

m4Cm1402, m3U1498, m6
2A1519 and m6

2A1518) (Figure 7). Recent structural 

studies pointed out their relevance in E. coli and Thermus thermophilus ribosomes 

(Fischer et al., 2015; Polikanov et al., 2015). Indeed, they are in contact with the 

mRNA or the t-RNA and thus could regulate their interactions with the 16S rRNA 

(Figure 7).  
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Table 2: Modified nucleosides in E. coli rRNAs and their associated enzymes 

 

  

Modified nucleoside in 

the 16S rRNA 
Modification enzyme 

Modified nucleoside in 

the 23S rRNA 
Modification enzyme 

  m
1
G745  RlmAI 

ᵠ516 RsuA ᵠ746  RluA 

 m
7
G527 RsmG m

5
U747  RlmC 

m
2
G966  RsmD ᵠ955  RluC 

m
5
C967  RsmB m

6
A1618  RlmF 

m
2
G1207  RsmC m

2
G1835  RlmG 

 m
4
Cm1402 RsmH, RsmI  ᵠ1911 RluD 

m
5
C1407  RsmF  m

3ᵠ1915 RluD, RlmH 

 m
3
U1498 RsmE  ᵠ1917 RluD 

 m
2
G1516 RsmJ  m

5
U1939 RlmD 

 m
6

2A1518 RsmA (KsgA)  m
5
C1962 RlmI 

m
6

2A1519  RsmA (KsgA)  m
6
A2030 RlmJ 

   m
7
G2069 RlmKL 

   Gm2251 RlmB 

   m
2
G2445 RlmKL 

   hU2449  

   ᵠ2457 RluE 

   Cm2498 RlmM 

   oh
5
C2501 RlhA 

   m
2
A2503 RlmN 

   ᵠ2504 RluC 

   Um2552 RlmE 

   ᵠ2580 RluC 

   ᵠ2604 RluF 

   ᵠ2605 RluB 
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Figure 7: E. coli decoding centre. Methylations clustered within the decoding centre are 

depicted in yellow, mRNA in orange and initiator fMet-tRNAfMet in green. Methylations 

form hydrophobic contacts (red dashed lines) (adapted from Fischer et al., 2015). 

 

As depicted in Figure 7, methylation at position G966 may interact with the 

initiator fMet-tRNAfMet restricting its mobility. The correct orientation of m2G966 

allowing for such role is due to base stacking interactions caused by the methyl group 

of m5C967.  

The base modifications m4Cm1402, m3U1498, m6
2A1519 and m6

2A1518 form 

together a network of hydrophobic interactions which could stabilize the binding of 

the mRNA to the P-site. m4Cm1402 and m3U1498 are in contact with the mRNA 

codon held in the P-site and their orientation is maintained by the dimethylated 

m6
2A1519 and m6

2A1518.  

  

In conclusion, rRNA modifications seem to be of particular relevance. Their 

positions within the functional regions of the ribosome tend to highlight their probable 

role in the translation process. However, taken one by one, none of them is 

necessary neither for cell survival nor translation (Sergiev et al., 2011). Moreover, the 

16S rRNA can be in vitro transcribed, thus lacking modifications, and can be 

recruited for in vitro translation although such ribosomes are less efficient than wild 

type ones  (Fritz et al., 2015; Jewett et al., 2013; Krzyzosiak et al., 1987).  
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No functional and physiological roles have been attributed yet to those 

modifications. Nevertheless, structural studies tend to answer this question. Indeed, 

according to the high-resolution structure, methylations of the decoding centre could 

play an important role in initiation of translation or during decoding. Here, we will 

describe the different modifications located within the decoding centre and their 

associated methyltransferases. 

 

a. RsmA modifies m6
2A1518 and m6

2A1519 

 

Figure 8: RsmA dimethylates the two nucleotides m6
2A1518 and m6

2A1519 in the 

decoding centre (adapted from Fischer et al., 2015) 

RsmA modifies two adjacent nucleotides located close to the 16S rRNA 3’ end 

in helix 45: A1518 and A1519 (Figure 8). The modification catalysed by RsmA 

actually consists in dimethylation of m6
2A1518 and m6

2A1519 (Poldermans et al., 

1979). Interestingly, those dimethylations are highly conserved among bacteria, 

archaea and eukaryotes (O’Farrell et al., 2006). Moreover, the enzyme family is also 

conserved. In fact, RsmA ortholog Dim1p from Saccharomyces cerevisiae can 

methylate E.coli 16S rRNA in vivo (Lafontaine et al., 1994).  

This conservation probably explains why this enzyme and its mode of action 

have been extensively studied compared to other rRNA methyltransferases. RsmA 

modifies the rRNA at a late step of biogenesis but before 30S subunit is fully 

matured. Indeed, in vitro studies showed that it requires ribosomal proteins S6, S8, 

S11, S15, and S18 but S21 and IF3 are inhibitory (Thammana and Held, 1974) 

furthermore it does not act on either naked 16S rRNA or the active 30S subunit 

(Desai and Rife, 2006). It was suggested that methylation triggers the release of 

RsmA
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RsmA (Connolly et al., 2008) which is consistent with the fact that its affinity is lower 

for the methylated rRNA (Poldermans et al., 1979). It was shown that in a rsmA- 

mutant strain there is an accumulation of 16S rRNA precursors while overexpression 

of the enzyme leads to accumulation of free 30S subunits (Connolly et al., 2008). 

Connolly et al. suggested that RsmA could play an important role in maturation of the 

30S subunit in a translational active form.  

Other structural studies investigated further this hypothesis. Crystal structure 

of unmethylated ribosomes from Thermus thermophilus has been determined and 

suggests that the dimethylations added by RsmA participate in the correct formation 

of helices 44 and 45 (Demirci et al., 2010). Thus they would allow proper packing of 

the decoding centre and their lack would perturb A- and P-sites structure. Thereafter 

the cryo-electron microscopy structure of RsmA bound to an inactive 30S subunit has 

been solved (Boehringer et al., 2012). RsmA would prevent binding of 50S thus 70S 

formation and permit final rRNA processing and conformation. Those structural 

studies concluded that RsmA could act as a checkpoint in ribosome assembly: the 

enzyme would bind a late but inactive rRNA precursor and the dimethylations would 

allow a correct packing of the rRNA and its final processing, thus RsmA would 

prevent immature 30S subunit to enter initiation of translation. 

 However, neither the enzyme nor the modifications are essential. In fact, early 

studies detected that some strains naturally lack the dimethylations making them 

resistant to the antibiotic kasugamycin (Helser et al., 1972). Compared to a wild type 

strain, absence of those modifications does not have any effect in growth at 37°C, 

however, it induces a cold hypersensitivity (Connolly et al., 2008). Although canonical 

translation is similar to the wild type, the mutant strain also exhibits a higher level of 

translation with non-AUG initiation codons (O’Connor et al., 1997) and an increased 

level of stop codon read-through and frameshifting (van Buul et al., 1984). 

Das et al., (2008) investigated on discrimination of the initiator tRNAfMet, which 

possesses three consecutive G-C base pairs in the anticodon loop. This 

characteristic feature seems to be essential for translation initiation and is highly 

conserved. They built a plasmid coding for tRNAfMet with an AUC anticodon that 

permits specific initiation of a chloramphenicol acetyl transferase (CAT) gene 

harbouring an UAG as initiation codon. The three G-C pairs of this initiator tRNA 

were changed with the pairs found in the anticodon loop of elongator tRNAMet. Such 
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mutant tRNAfMet is deficient in initiating translation in a wild type strain. They 

observed that the mutant strain ∆rsmA is able to translate the cat gene using this 

mutant initiator tRNAfMet. Consequently, dimethylations m6
2A1518 and m6

2A1519 

seems to play a role in accuracy of translation initiation. Moreover, they found that a 

mutation in folD gene enables translation initiation of the cat reporter gene with the 

mutant tRNAfMet. This folD mutation also leads to reduced levels of SAM (the methyl 

donor of rRNA methyltransferases) resulting in lower levels of rRNA methylations. 

 

 

b. Modifcations added by RsmB and RsmD modulate interactions with tRNA 

 

Figure 9: RsmB modifies m5C967 and RsmD methylates m2G966 in the decoding 

centre (adapted from Fischer et al., 2015). 

RsmB is responsible of the modification of m5C967 (Tscherne et al., 1999) and 

the adjacent G966 is also methylated by the methyltransferase RsmD at the N2 

position of the guanosine (Lesnyak et al., 2007) (Figure 9). Those two enzymes are 

highly specific for their respective nucleotide position in 16S rRNA and display 

mutually exclusive specificities (Weitzmann et al., 1991). Indeed, RsmB is the only 

16S rRNA methyltransferase to act in vitro on naked 16S rRNA and binding of 

ribosomal proteins S7 and S19 inhibits its methyltransferase activity (Gu et al., 1999; 

Weitzmann et al., 1991). On the other hand, RsmD uses the assembled 30S 

ribosomal subunit as preferential substrate in vitro (Lesnyak et al., 2007; Sergeeva et 

al., 2012). Thus, while RsmB could also be considered as a checkpoint in ribosome 

assembly, RsmD has to act on the 30S subunit prior to translation. Structural data 

suggest that they could play a role in tRNA binding (Fischer et al., 2015) and their 

involvement in initiation of translation or accuracy have been investigated. 

RsmD

m2G966

m5C967
RsmB
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Translation with non-AUG initiation codon has been studied for the mutant 

strains ∆rsmB, ∆rsmD and the double mutant ∆rsmBD (Arora et al., 2013a). For most 

codons, translation in wild type and mutant strains was similar but was higher with 

AUU codons (about half more in ∆rsmB and twice more in ∆rsmD and ∆rsmBD). 

Moreover Burakosky et al. also implicated the modifications m5C967 and m2G966 in 

binding of initiator tRNAfMet. Indeed, it seems that ribosomes lacking both 

methylations are deficient in the formation of the 30S IC in vitro due to increased 

fMet-tRNAfMet dissociation (Burakovsky et al., 2012).  Methylations m5C967 and 

m2G966 seems to have different effects on spontaneous frameshifting. In ∆rsmB 

mutant strain, neither +1 nor -1 frameshifting was affected compared to a wild type 

strain while both increased in ∆rsmD (Arora et al., 2013b).  

Absence of RsmB and RsmD has a slight effect on growth, indeed doubling 

time in ∆rsmB, ∆rsmD and ∆rsmBD is slightly higher than in the wild type. The double 

mutant ∆rsmBD was shown to be cold sensitive and could not compete with the wild 

type, when grown together (Burakovsky et al., 2012).  

 

c. RsmE methylates m3U1498 which contact the mRNA 

 

Figure 10: RsmE modifies nucleotide m3U1498 in the decoding centre (adapted from 

Fischer et al., 2015). 

RsmE is responsible of the methylation of m3U1498, located on the top of helix 

44 (Basturea et al., 2006) (Figure 10). The enzyme was first characterized in 2006 

and although it shares structural features of the SPOUT family, it defines a new 

family of RNA methyltransferases and has its own specific motifs (Basturea et al., 

m3U1498

RsmE
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2006; Zhang et al., 2012). It methylates preferentially the assembled 30S ribosomal 

subunit (or a late and highly structured assembly intermediate) (Basturea and 

Deutscher, 2007). 

Compared to a wild type strain, rsmE mutant does not have any difference in 

growth but, interestingly, is less competitive when both strains are cultured together 

(Basturea et al., 2006). The methylation m3U1498 also seems to play a role in 

initiator tRNA selection: in the folD genetic background (with a reduced level of SAM), 

∆rsmE mutant strain exhibited higher translation of an orthogonal CAT gene using its 

specific orthogonal initiator tRNA  (Das et al., 2008).  

 

d. Base methylation m4Cm1402 catalysed by RsmH interacts with the mRNA  

 

Figure 11: RsmH methylates the base of nucleotide C1402 in the decoding centre 

(adapted from Fischer et al., 2015). 

The nucleotide at position C1402 undergoes two different modifications: an N4-

methylation catalysed by RsmH and a 2’-O-methylation added by RsmI (Figure 11). 

Both enzymes use the 30S subunit as preferential substrate (Kimura and Suzuki, 

2010). The modification catalysed by RsmH is part of a network of interaction within 

the decoding centre while the ribose methylation is more buried inside the 30S 

subunit (Figure 11) (Fischer et al., 2015). Thus, regarding our interest for the 

decoding centre in particular, we will focus on the base methylation added by RsmH. 

Kimura and Suzuki (2010) studied several translational features (non AUG 

initiation, stop codon read-through, ORF maintenance) on wild type and ∆rsmH 

mutant strains. Interestingly, ∆rsmH mutant exhibited a decrease in stop codon read-

through and in +1 frameshift while -1 frameshift and AUU initiation increased. The 

RsmH
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mutant strain also showed a slight increase of its doubling time in LB medium 

compared to the wild type. 

 

3.2. Variations in expression of rRNA modification genes during stress 

This part focuses on data relative to the variations of the expression of 

methyltransferases RsmA, RsmB, RsmD, RsmE and RsmH under stressful 

conditions such as oxidative, osmotic and changes in temperature. Different studies 

showed that, after the application of stresses, expression of these methyltransferases 

varied at the level of either transcription or translation. Thus, under stresses, the pool 

of ribosomes could vary, at least for methylation of 16S rRNA nucleotides positioned 

in the decoding centre.  

 

a. Variations of expressions of methyltransferases under oxidative stress 

Analysis of data from Jozefczuk et al., 2010 shows that RsmA has a 3-fold 

decreased rate of transcripts under oxidative stress mediated by addition of hydrogen 

peroxide. In this study, RsmD has a 2-fold increased rate of transcripts which is in 

accordance with the results of Bojanovič et al., 2017 who analysed the global 

transcriptional responses to oxidative stress in Pseudomonas putida. The expression 

of the other methyltransferases (RsmB, RsmE and RsmH) does not change during 

hydrogen peroxide challenge. 

 

b. Variations of expressions of methyltransferases under osmotic stress 

About osmotic shift, there was no variation in transcription of the 

methyltransferases of interest according to either Gunasekera et al., (2008) or 

Shabala et al., (2009). Study on the uropathogenic E. coli CFT073 strain in minimal 

medium with 0,3 M NaCl cultured at 30°C show that only rsmD and rsmE 

transcriptions were slightly downregulated (about 2-3 fold change) whereas the 

transcriptions of rsmA, rsmB and rsmH did not change (Withman et al., 2013). In 

Pseudomonas putida, after addition of 0,5M of NaCl in minimal medium, transcription 

of rsmH varies slightly (Bojanovič et al., 2017). 
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c. Variations of expressions of methyltransferases under temperature changes 

During heat stress, transcription of rsmA decreases with a 5-fold rate after 10 

minutes of temperature rising from 30°C to 45°C (Jozefczuk et al., 2010; Zhao et al., 

2005). This transcription decrease is also correlated to a significant fold change of 

the enzyme production using ribosome profiling (Zhang et al., 2017). Concerning the 

methyltransferase RsmB, Jozefzuck et al. (2010) have also shown that the 

transcription has a 5-fold decreased rate which correlates with a decrease in the 

production of this methyltransferase (Zhang et al., 2017). The two methyltransferases 

RsmD and RsmE do not present any change either using transcriptomic data or 

ribosome profiling analysis (Jozefczuk et al., 2010; Zhang et al., 2017). However, the 

data concerning the methyltransferase RsmH are relatively discordant: Jozefzuck et 

al., 2010 found a 3-fold increase in terms of transcription and Zhang et al., 2017 did 

not reveal any noticeable change using ribosome profiling analysis. 

 

The cold stress does not seem to affect the expression of methyltransferases. 

The analysis of data from Jozefzuck et al. (2010) allow to notice a 2-fold decreased 

rate of transcription of rsmE, but no significant variation in protein abundance was 

detected after cold change (Zhang et al., 2018). 
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4. Toxin-Antitoxin modules and stress 

Toxin-antitoxin (TA) modules are small genetic elements that are frequently 

found in plasmids and prophages where they are involved in post-segregational 

killing. Therefore, they were first considered as addiction modules. They are also 

abundant in bacterial genomes, they belong to the pool of genetic elements that are 

frequently transferred horizontally (Harms et al., 2018). 

Typically, TA systems encode a stable toxic protein and a labile antitoxin on 

an operon (Page and Peti, 2016). During favourable growth conditions, the antitoxin 

counteracts the deleterious effect of the toxin and represses transcription of the 

operon. Hence, degradation of the antitoxin results in the relief of the autoregulation 

and leads to production of the toxin (Harms et al., 2018).  

 

 

Figure 12: Different types of toxin antitoxin modules and their targets. Toxins are 

depicted in orange, antitoxins in blue (Page and Peti, 2016). 
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Different types of toxin-antitoxin modules have been defined regarding the 

nature of the antitoxin and its mode of action on the associated toxin (Figure 12). In 

types I and III, antitoxins are RNA molecules controlling toxins by inhibition of 

translation or direct binding respectively. Type II antitoxins are proteins that bind and 

inhibit their targeted toxin protein. In type IV, both components are proteins as well 

but inhibition of toxins by antitoxins is indirect, the antitoxin prevents action of the 

toxin by stabilizing its cellular targets (Harms et al., 2018). More recently, types V and 

VI were described and each family contains a single occurrence, so far. Type V 

GhoS/GhoT with antitoxin GhoS is an antisense with endoribonuclease activity 

cleaves ghoT toxin mRNA (Wang et al., 2012). Type VI, SocA/SocB, consists of 

antitoxin presenting toxin to ClpXP for proteolysis (Aakre et al., 2013). 

 

Their role in bacterial physiology is mainly considered as related to stress 

adaptation and metabolism management (Buts et al., 2005). Transcriptional 

regulation of TA modules is integrated into cellular signalling pathways, allowing a 

direct connection between stress perception and toxin activation. This includes 

transcriptional control of the operon by stress as described for SOS inducible TA by 

LexA repressor, or CRP and Sxy for hicAB operon in E. coli (Turnbull and Gerdes, 

2017) but also antitoxin stability affected by ppGpp and proteases whose amounts 

increased under stress (Muthuramalingam et al., 2016). 

 

Toxins have a wide variety of actions, either direct or indirect (Figure 13): they 

can inhibit DNA replication, destabilize cell wall and inhibit protein synthesis by 

interacting with the ribosome or as endoribonucleases degrading bulk mRNAs 

(Harms et al., 2018). The main known mechanisms concern endonucleolytic 

cleavage as performed by RelE, MazF, HicA and SymE, action on tRNA (HipA, 

VapC, TacT, AtaT), direct action on the ribosome (RatA, VapC) or EF-Tu (Doc) and 

synthesis of antisense RNA which promotes mRNA cleavage (Darfeuille et al., 2007; 

Harms et al., 2018). Among the thirteen type II TA systems of E. coli, the RNases are 

well represented: seven belonging to the RelE family toxin, two fitting in the MazF/Kid 

family and one encoding a toxin from HicA family. 
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Figure 13: Actions and cellular targets of toxins (Harms et al., 2018). 

 Toxins belonging to the MazF/Kid family have been well described and are 

considered as ribosome-independent mRNA endonucleases. They target sequences 

(three to seven nucleotides), and contribute to mainly abolish translation and 

generate specific mRNAs such as leaderless mRNAs and specialized ribosomes.

 mazEF is a type II toxin-antitoxin system encoding a labile antitoxin (MazE) 

which can bind to the stable toxin (MazF) preventing its lethal action. mazEF 

expression is negatively auto-regulated, since the fixation of either MazE or MazE-

MazF complex prevents transcription of these genes (Marianovsky et al., 2001). The 

expression of mazE and mazF is also regulated by environmental stress. Upon 

stress, the production of MazE is stopped and the antitoxin is degraded by ClpPX 

(Aizenman et al., 1996). This permits MazF to exert its toxic function as 

endoribonuclease that specifically cleaves single-stranded RNAs at ACA-sites 

(Zhang et al., 2003). As a result, during stress conditions MazF rapidly degrades bulk 

mRNA resulting in a severe inhibition of protein synthesis (Culviner and Laub, 2018).  

It was observed that about 10% proteins were still produced after mazF 

induction (Amitai et al., 2009). That means that not all mRNAs are completely 
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degraded by MazF. Distinct mRNAs are cleaved at ACA-sites just upstream of the 

translational start-codon, removing the 5’ untranslated region (UTR) containing the 

SD sequence, leading to production of leaderless mRNAs. Moreover, MazF is also 

able to cleave the 16S rRNA in the context of the ribosome, upstream of the position 

1500, thus removing the last 43 nucleotides from its 3’-end. This leads to the loss of 

the anti-SD sequence (Vesper et al., 2011). The ribosomes harbouring the truncated 

16S rRNA (70SΔ43) are unable to initiate translation of canonical mRNA (which still 

contain the 5’UTR including the SD sequence) due to the absence of the SD/anti-SD 

interaction. However, lmRNAs are selectively translated by 70SΔ43, the so-called 

“stress ribosomes” (Vesper et al., 2011).  

Another type II TA system, the hic AB system is broadly found in bacteria, 

where HicA RNase toxin and HicB the antitoxin. Mutation in hicB was shown to 

suppress SigmaE lethality (Jørgensen et al., 2009). HicA activity results in a 

bacteriostatic effect. The induction of HicA inhibits translation and induces cleavage 

of mRNAs and also of transfer-messenger RNA (tmRNA) (Jørgensen et al., 2009) 

which is involved in the rescue of stalled ribosomes (Giudice and Gillet, 2013). When 

examining the regulation of this TA system, Winter et al., (2018) have shown that the 

interactions between the toxin HicA and the antitoxin HicB are quite complex and 

modulate the binding to the operator sites of the operon hic AB. Moreover, Winter et 

al. (2018) have demonstrated that the binding sites of HicB overlap the predicted -10 

and CRP-binding sequences. This fact highlights the connection between the 

induction of HicA and metabolic changes. 
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II. Aims and relevance 

 

A major challenge is to apprehend the regulation of protein synthesis in 

bacteria dividing in a permissive optimal environment and bacteria facing harmful 

conditions due to temperature, osmotic, oxidative and other changes. 

Numerous previous studies explored either transcriptomic or proteomic 

variations induced by such changes and, more recently, translatomic differences 

using the new method of ribosome profiling. However, transcript levels are sparsely 

correlated to protein abundance (Guimaraes et al., 2014). When Lu et al., (2007) 

examined, in E. coli, the differences of protein levels in correlation with transcripts, 

they stated that 47% of the protein abundance could be explained by the mRNA 

levels. Therefore, 53 % of the protein content would originate from post-

transcriptional regulation which includes regulatory RNA-mediated, riboswitches, so-

called translational regulations including the regulations directly due to the ribosomal 

variations that we could name ribosomal regulation. 

This ribosomal regulation has to be connected to the concept of ribosome 

heterogeneity that emerges during the last years in prokaryotes (Byrgazov et al., 

2013; Sauert et al., 2015) and in eukaryotes (reviewed in Genuth and Barna, 2018). 

Such regulation could have important implications in bacterial antibiotic resistance 

and in some human ribosomopathies associated with variations of either eukaryotic 

or mitochondrial ribosomes. Thus, some evidence shown there are functional 

selective ribosomal subpopulations with modifications in either rRNA or r-proteins 

content and composition. Of course, other ribosomal associated factors are involved, 

directly or indirectly (modified or altered factors), in modulation of the translation 

activity and in stress response. 

One element could have its importance in ribosome heterogeneity: the 

modifications added post-transcriptionnally, such as nucleobases modifications. 

Modifications of the 16S rRNA occur on either naked 16S rRNA (with a link with the 

ribosome biogenesis) or on 30S particles (with a link with translation activity and 

stability). In this work, we focused on methylations clustered in the decoding centre, 

catalysed by the methyltransferases RsmA, RsmB, RsmD, RsmE and RsmH. 

Analysis of expressions (from transcriptome and translatome data) of those 

methyltransferases indicates that variations occur in immediate response and 
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adaptation to stresses. Globally, the transcription and the translation of these 

methyltransferases are affected with a tendency to decrease upon stresses such as 

temperature, oxidative and osmotic changes. In this context, we aim to understand 

the implications of the methylations of the decoding centre in protein synthesis. We 

studied their effects on canonical and non-canonical translation with a focus on 

leaderless mRNAs translation and frameshifting, when cells are in either favourable 

or stressful conditions. 

 

Another great impact during stresses is the implication of toxin-antitoxin (TA) 

modules with the delivery of toxins from their counteracting antitoxins. Among these 

TA modules, one well-known system, MazEF is involved in the modulation of the 

translation in response to stressful conditions. MazF toxin could produce specialized 

ribosomes (without the anti-SD) and leaderless mRNAs. The impact of such toxins, 

i.e. endoribonucleases, would have to be analysed on translation. The main difficulty 

to analyse endoribonucleases effects is that induction of such toxins promotes, 

generally, growth arrest. In this way, a strategy would be to use a heterologous 

system (HicAB of Sinorhizobium meliloti) with an inducible expression in order to 

produce truncated mRNAs in E. coli and evaluate trans-translation in the future.  

In this context, this work is composed of two parts: one part focusing on the 

effects of methyltransferases targeting the decoding centre and the second part 

aiming the characterization of the TA module HicAB of Sinorhizobium meliloti.  
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III. Chapter I: Implication of 16S rRNA methyltransferases 

in translation in Escherichia coli 

 

1. Introduction 

In all organisms, every type of RNA molecules (mRNAs, tRNAs, tmRNA and 

rRNAs) are post-transcriptionally modified. The Escherichia coli 70S ribosome 

contains 36 modified nucleotides of particular relevance. They are all located in the 

functional centres of the ribosome (decoding centre, interface of the subunits, 

peptidyl transferase centre and exit tunnel) and are very conserved, underlying their 

potential importance. Although the biological function of these modified bases is still 

unclear. Therefore we investigated their possible role during stress response. We 

specifically focused on the six 16S rRNA methylations that are located in the 

decoding centre at positions 966, 967, 1402, 1498, 1518 and 1519. We aimed to 

evaluate their implication in translation. 

 

 

2. Materials and methods 

2.1. Bacterial strains 

The bacterial strains used in this study are listed in Table 3. The strains were 

grown at 37 °C in Luria Bertani (LB) (Miller, 1972) or in the minimal media M9 

(supplemented with 20 mM glucose or L-arabinose) and 12 g/L of agar for solid 

media. Antibiotics were added as needed at the following concentrations: 100 μg/mL 

of ampicillin (Amp), 30 μg/mL of chloramphenicol (Cm), 25 μg/mL of kanamycin 

(Kan), 10 µg/mL tetracycline (Tet). 
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Table 3: Bacterial strains used in this study. 

Strains Genotype Reference 

MG1655 F-, λ-, ilvG- rfb-50 rph-1 Blattner et al., 1997 

STL14025 F-, lacZ4823, mhpC281::Tn10, λ-, rph-1 Seier et al., 2011 

BW25113 
Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ-, rph-1, Δ(rhaD-rhaB)568, 

hsdR514 
Baba et al., 2006 

JW0050-3 BW25113 ksgA733::kan Baba et al., 2006 

JW3250-2 BW25113 rsmB725::kan Baba et al., 2006 

JW3430-4 BW25113 rsmD720::kan Baba et al., 2006 

JW2913-1 BW25113 rsmE721::kan Baba et al., 2006 

JW0080-1 BW25113 rsmH788::kan Baba et al., 2006 

MG6006 MG1655 (F-, λ-, ilvG- rfb-50 rph-1, rpsB-HIS6, rpsT-STREP) Laboratory collection 

MG6416 6006 lacZ4823, mhpC281::Tn10 This study 

ΔrsmA::kan MG1655 ksgA733::kan This study 

ΔrsmB::kan MG1655 rsmB725::kan This study 

ΔrsmD::kan MG1655 rsmD720::kan This study 

ΔrsmE::kan MG1655 rsmE721::kan This study 

ΔrsmH::kan MG1655 rsmH788::kan This study 

ΔrsmA 6417 6416 ΔrsmA This study 

ΔrsmB 6418 6416 ΔrsmB This study 

ΔrsmD 6419 6416 ΔrsmD This study 

ΔrsmE 6420 6416 ΔrsmE This study 

ΔrsmA MG1655 ΔrsmA This study 

ΔrsmB MG1655 ΔrsmB This study 

ΔrsmD MG1655 ΔrsmD This study 

ΔrsmE MG1655 ΔrsmE This study 

ΔrsmH MG1655 ΔrsmH This study 

 

 

 

2.2. Plasmids and oligonucleotides 

Plasmids, oligonucleotides and gene fragments used in this study are listed in 

Table 4, 5 and 6 respectively. 
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Table 4: Plasmids used in this study. 

Plasmids Characteristics Reference 

pBAD24 Ori pBR322, araC, PBAD , bla (Guzman et al., 1995) 

pKD46 oriR101 w/repA101ts, araC, Para , bla, λ(γ,β,exo) Datensko and Wanner 

(2000) 

pCP20 FLP+λ ci857+ λ pR rep101Ts, bla, cat 
(Cherepanov and 

Wackernagel, 1995) 

pBAD24Nde+1 pBAD24 with NdeI site at transcriptional start of Para This study 

pmut3 Ori ColE1, PtacII , gfpmut3 Laboratory collection 

pmut3+1 pmut3 gfpmut3:T16 This study 

pmut3-1 pmut3 gfpmut3∆A15 This study 

pF38lacZSD pBAD24Nde+1 lacZ with SD This study 

pF45lacZLL pBAD24Nde+1 lacZ without 5’ UTR This study 

pB01 Ori pBR322, bla, PtacII , mcherry, gfpmut3 This study 

pB11dnaX pB01 with dnaX::gfpmut3 This study 

pB14prfB pB01 with prfB::gfpmut3 This study 

pB18gfp+1 pB01 with gfpmut3:T16 This study 

pB19gfp-1 pB01 with gfpmut3∆A15 This study 

 

Table 5: Oligonucleotides used in this study. 

Oligonucleotide Targeted region Sequence 

BADNdeD 
Transcription start site 

of pBAD24 

GATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCC

ATATGCGTTTTTTTGGG 

BADNdeR 
Transcription start site 

of pBAD24 

CTAGCCCAAAAAAACGCATATGGAGAAACAGTAGAGAGTTG

CGATAAAAAGCGTCAGGTAG 

lacZNdeF lacZ TGAGATCTGAGGAGCTAGcatATGCTGACTCTG 

lacZSDEcoF lacZ CATGGCATGGATGAatTCTACAAATAATG 

lacZSmaR lacZ CTCAAAGGTTACCCCgGgTGGGGCAC 

mut3EcoF gfp aatgaattcAAAATGAGTAAAGGAGA 

mut3XhoR gfp tatctcgagTTATTTGTATAGTTCAT 

mut3SacF gfp caagagctcAGTAAAGGAGA 

prfBEcoF prfB AAGgaattcATCatgTTTGAAATTAATCC 

prfBSacR prfB aaagagctcCTGCAGATACCCCCTAA   

rsmA F rsmA CCGATGTCGGCAGTTTTATT 

rsmA R rsmA CAGATTGCGTATGGTTACGG 

rsmB F rsmB GAACCTGCTCTCGTTACAACCT 

rsmB R rsmB CCGTTGGTATCGACAACAGTAA 

rsmD F rsmD TATGTGTTATCTGGCGGATTGA 

rsmD R rsmD CAGAGCATTAACAAACGACCAA 

rsmE F rsmE CGCGAAAGAGCTAACCTACACT 

rsmE R rsmE GCCGAGCTTGATCATTATTCTT 

rsmH F rsmH GATATCGACGCAGAGCAGTT 

rsmH R rsmH AAATCGCAAAAGATCGTCAC 

gfp0_F 
gfp0 for in vitro 

translation 

GCGAATTAATACGACTCACTATAGGGCTTAAGTATAAGGAG

GAAAAAATATGAGTAAAGGAGAAGAACTTTTCACT 
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gfp-1_F 
gfp-1 for in vitro 

translation 

GCGAATTAATACGACTCACTATAGGGCTTAAGTATAAGGAG

GAAAAAATATGAGTAAAGGAGAGAACTTTTCACT 

gfp+1_F 
gfp+1 for in vitro 

translation 

GCGAATTAATACGACTCACTATAGGGCTTAAGTATAAGGAG

GAAAAAATATGAGTAAAGGAGAATGAACTTTTCAC 

gfp_R 
gfp for in vitro 

translation 

AAACCCCTCCGTTTAGAGAGGGGTTATGCTAGttaTTTGTATA

GTTCATCCATGCCATG 

 

Table 6: Genes synthesized used in this study.  

Name Sequence 

mCherry 

ttattatatcgatTTGACAATTAATCATCGGCTCGTATAATGTGTGGATTTCAGGAGCTAAGGAAgcta

gcATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGG

TGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGtGAGGGtGAGGGCCGtC

CaTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCT

GGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACAT

CCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGA

GGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAA

GGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGG

CTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGC

AGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCC

AAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACA

ACGAGGACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGC

ATGGACGAGCTGTACAAGTAATAGGTTCTGTTtctagaAAGTAACTGAACCCAAAGTCGTTAGTG

ACGCTTACCTCTTAAGAGGTCACTGACCAAGgaattcattATGGAGCTCtttctcgagttatttaagctttatt

at 

mut3:T16 

GGATCCTCTAGATTTAAGAAGGAGATATACATATGAGTAAAGGAGAATGAACTTTTCACTGGA

GTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAG

AGGGTGAAGGTGATGCAACATACGGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAACT

ACCTGTTCCATGGCCC 

mut3∆A15 

GGATCCTCTAGATTTAAGAAGGAGATATACATATGAGTAAAGGAGAGAACTTTTCACTGGAGT

TGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAG

GGTGAAGGTGATGCAACATACGGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAACTAC

CTGTTCCATGGCCC 

dnaX insert 
gaattcATCATGAGTTATCAGGTCTTAGCCCGAAAATGGCGCCGCGTGCAGGGAGCAACCAAAG

CAAAAAAGAGcGAACCGGCAGCCGCTACCCGCGCGCGGCCGGTGAATTGATAgagct 

 

 

2.3. Competitive growth and stress adaptation 

Cultures of the different strains MG6416, ΔrsmA::kan, ΔrsmB::kan, 

ΔrsmD::kan, ΔrsmE::kan and ΔrsmH::kan were conducted at 30°C in M9 minimal 

medium supplemented with glucose (Glc) (20 mM) (M9-Glc). Using overnight 

precultures in M9-Glc, 10 mL cultures were inoculated at an initial optical density at 

600 nm (OD600) of 0.05 for single cultures or 0.025 for co-cultures. When the single or 

co-cultures reached OD600 of 0.5, they were ten-fold serial diluted in M9 and 10 µL of 
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each dilution were plated on M9-Glc agar plates. In the case of single cultures, the 

dilutions were spotted on (i) three M9-Glc agar plates which were incubated at 30°C 

or 43°C for 24h and 16°C for 48h; (ii) one M9-Glc agar medium containing plumbagin 

(0.2 mM); and (iii) one M9-Glc agar medium containing NaCl (0.5 M); the last two 

plates were incubated at 30°C for 24h. In the case of co-cultures, the dilutions were 

spotted on the same kind M9-Glc agar plates that above, except one set of plates 

was supplemented with tetracycline (10 µg/mL) for the selection of MG6416 and 

another set of plates was supplemented with kanamycine (25 µg/mL) to select the 

mutant strain: ΔrsmA::kan, ΔrsmB::kan, ΔrsmD::kan, ΔrsmE::kan and ΔrsmH::kan 

 

2.4. Plasmid construction 

a. Construction of lacZ vectors 

pBAD24Nde+1 is a plasmid derivative of pBAD24. This plasmid was built by 

annealing oligonucleotides BADNdeD and BADNdeR together and introducing the 

double stranded fragment between BamHI and NheI restriction sites in pBAD24. The 

resulting construction (pBAD24Nde+1) contains a unique NdeI restriction site 

(CATATG) of which the second A (from ATG) is located at the transcription start site 

of pBAD24. 

 lacZ coding sequence (from ATG to stop codon) was amplified by PCR from 

MG1655 genomic DNA using lacZNdeF and lacZSmaR primers. The PCR product 

bears lacZ coding sequence with NdeI restriction site located at the initiation codon 

and SmaI restriction site immediately after the stop codon. The PCR fragment was 

digested with NdeI and SmaI and introduced into pBAD24Nde+1, resulting in 

pF45lacZLL. 

lacZ open reading frame was amplified using primers lacZEcoF and 

lacZSmaR. The resulting fragment was introduced between EcoRI and SmaI sites in 

pBAD24Nde+1 resulting in pF38lacZSD. 

 

b. Construction of pB01 

pB01 plasmid is a derivative of pBAD24 vector. A DNA fragment harbouring 

PtacII, mcherry sequence and restriction sites (Table 6) was synthesized and inserted 

in pBAD24 between ClaI and HindIII sites resulting in loss of araC, PBAD, and multiple 
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cloning site. Subsequently, gfp coding sequence was amplified from pmut3 using 

primers mut3SacF and mut3XhoR, the fragment was digested using SacI and XhoI 

and inserted between corresponding sites to obtain pB01.     

 

c. Construction of pB18gfp+1 and pB19gfp-1 

To modify gfp sequence by addition or deletion of one nucleotide, synthetic 

gene fragments mut3:T16 and mut3∆A15 were synthesized. They correspond to the 

beginning of gfp sequence with insertion of one T at position 16 for mut3:T16 

fragment or deletion of an A at position 15 for mut3∆A15 fragment. The two 

fragments were cleaved with XbaI and NcoI enzymes and inserted between the 

corresponding sites of pmut3 plasmid resulting in pmut3+1 and pmut3-1 plasmids.  

To build pB18gfp+1 and pB19gfp-1 plasmids, gfp sequence was amplified 

from plasmids pmut3+1 and pmut3-1 using primers mut3EcoF and mut3XhoR and 

the fragments were cleaved with EcoRI and XhoI enzymes. They were then 

introduced in pB01 between the corresponding sites to substitute gfp. 

 

d. Construction pB11dnaX and pB14prfB 

dnaX frameshift signals were synthesized as synthetic gene fragment (dnaX 

insert, Table 6). prfB sequence was amplified from MG1655 genomic DNA using 

primer prfBEcoF and prfBSacR. The two products were digested by EcoRI and SacI 

and then inserted between the corresponding sites in pB01 resulting in pB11dnaX 

and pB14prfB plasmids. 

 

2.5. Generation of rsm mutant strains 

All rsm mutant strains were obtained using the method described by 

(Datsenko and Wanner, 2000). The genes of interest were amplified by PCR from 

their corresponding strains derivative of BW25113 (JW0050-3, JW3250-2, JW3430-4, 

JW2913-1 and JW0080-1) each containing one rsm gene fused to a kanamycin 

cassette (Baba et al., 2006). Oligonucleotides specific of each locus were used 

(Table 5).  The targeted strains (in which the mutation had to be transferred, namely 

MG1655 or 6416), were transformed with plasmid pKD46. The latter leads to the 

expression of the λRed homologous recombination system by addition of arabinose, 
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confers resistance to ampicillin and is thermosensitive thus is lost at 37 °C. To 

produce the recombination system, strains bearing pKD46 were grown in LB 

containing ampicillin and 20 mM L-Arabinose at 30°C until they reached OD600 of 0.6. 

Subsequently, cells were prepared for transformation of the DNA of interest (rsm 

gene fused with kanamycin cassette). They were harvested by cold centrifugation 

and washed twice with ice-cold sterile water. Cells were resuspended in 10% glycerol 

in order to obtain an OD600 of approximately 100 uDO. 100 µL of cells were mixed 

with 30 to 50 ng of the PCR product of interest. Electroporation was performed using 

Gene PulserII (Biorad) with parameters: 2.5 V, 25 µF, 5ms. Cells were resuspended 

in SOC medium (Hanahan, 1983) and incubated at 37°C for two hours. They were 

then plated on LB Kanamycin plates and incubated at 42°C overnight to lose pKD46 

and select for recombinants. Colonies resistant to kanamycin and sensitive to 

ampicillin were selected and insertion of the cassette was checked by PCR using 

primers specific to regions flanking the genes of interest. 

 

2.6. P1 transduction  

To obtain lacZ mutant strains (6416 and derivatives) for subsequent use in β-

galactosidase assays, the mutations lacZ4823, mhpC281::Tn10 were transferred 

from the donor strain STL14025 to 6006 by P1 transduction (Miller, 1972). 

Transposon Tn10 bears a tetracycline resistance gene permitting selection of 

transductants using this antibiotic, lacZ and mhpC genes being close enough. To 

produce the phage lysate containing the mutation to transduce, the donor strain 

STL14025 was infected with P1cml. This phage caries a chloramphenicol resistance 

gene and repressor of the lytic cycle is thermosensitive thus production of phages is 

inducible at 42°C. The cells were cultured in LB supplemented with 2 mM CaCl2 and 

10 mM MgSO4 at 37°C until they reached an OD600 of 0.3. Then, P1 phages were 

added and the culture was transferred to 42°C at a high agitation for 45 min to permit 

lysis of bacteria and production of phages. After lysis, 1 ml of the lysate was 

withdrawn and centrifuged to eliminate cell debris. Supernatant was transferred in a 

sterile microtube and 10 µL of CHCl3 was added. In parallel, the recipient cells 

(6006) were grown in LB at 37°C until OD600 = 1, then 2 mM CaCl2 and 10 mM 

MgSO4 were added. Aliquots of 500 µL were taken from the culture and put in contact 

with 50 or 100 µL of phage lysate for one hour at room temperature without shaking 
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to permit infection. Then, cells were harvested, washed with LB medium and plated 

on LB tetracycline plates to select for transductants. Tetracycline resistant colonies 

were isolated several times on LB Tetracycline plates to eliminate residual phages. 

Candidates were checked for loss of β-galactosidase activity on LB Tetracycline 

IPTG (isopropyl β-D-1-thiogalactopyranoside) plates. 

 

2.7. β-Galactosidase assays 

The strains derivative of 6416 (namely, MG6416, ∆rsmA 6417, ∆rsmB 6418, 

∆rsmD 6419 and ∆rsmE 6420) containing plasmid pF38 or pF45 were grown 

overnight in M9 minimal medium complemented by Glucose and Ampicillin at 30°C, 

shaking. The overnight cultures were used to inoculate 50 mL of M9 Glucose 

Ampicillin at a starting optical density at 600 nm (OD600) of 0.1. Cells were cultured at 

30 °C, shaking, until they reached OD600 = 0.5. Then, cells were washed with M9 to 

get rid of the culture medium and resuspended in 800µL M9. 200 µL of cells were 

transferred in four different media corresponding to different stresses and containing 

L-Arabinose for induction of lacZ transcription (M9 L-Ara NaCl, M9 L-Ara H2O2, M9 L-

Ara 16°C and M9 L-Ara 42 °C) at OD600 of approximately 0.3 for each. Those 

cultures were grown for an hour and a half at 30°C (or 16°C or 42°C if indicated). 

Subsequently, cells were pelleted and frozen prior to add 500 µL Sodium Phosphate 

Buffer (60 mM Na2HPO4, 40 mM NaH2PO4, pH=7). Cell walls were disrupted by 

adding 30 µL CHCl3 and 30 µL 0.1% SDS and vortexing for 15 sec. β-galactosidase 

activity was assessed at 30°C as following: 20 µL of cells were added to 180 µL of Z 

Buffer (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 0.1 mM MgSO4, 50 mM β-

mercaptoethanol, pH 7.4) supplemented with 4 mg/mL ONPG (orthonitrophenyl-β-

galactoside). Reactions were stopped by adding 100 µL 1M Na2CO3. Product 

intensity was measured at 420 nm and cell debris at 550 nm. The β-galactosidase 

activity was calculated in Miller Units (Miller, 1972) with the formula 1000 x (OD420-

1.75xOD550) x total reaction volume (mL) / t (min) x OD600 x culture volume (mL).  

 

 

2.8. Fluorescence assays  

MG1655 wild type strain and isogenic mutant strains (∆rsmA, ∆rsmB, ∆rsmD, 

∆rsmE and ∆rsmH) were transformed with plasmids pB01, pB11dnaX, pB14prfB, 
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pB18gfp+1 or pB19gfp-1. The strains carrying those plasmids were grown overnight 

in M9 minimal medium supplemented with Glucose and Ampicillin at 37°C, shaking. 

Overnight cultures were used to inoculate 5 mL of M9 with Glucose and Ampicillin. 

When they reached OD600 = 0.5, five aliquots of 200 µL of cells were taken and 

stressed (0.3 M NaCl, 10 mM H2O2, 45°C or 16°C) or not. They were incubated in 96-

well plates for 30 min at 37°C (or 16°C or 42°C if indicated). Subsequently 

fluorescence of GFP and mCherry was measured using Synergy H1 microplate 

reader (BioTek) with wavelengths of excitation 485 nm and 585 nm and of 

emission 515 nm and 612 nm respectively. As mCherry was used as internal control, 

ratios of fluorescence intensity of GFP over fluorescence intensity of mCherry 

(GFP/mCherry) were calculated.  

 

2.9. In vitro translation assays  

a. Ribosome purification 

The ribosomes from MG1655 and mutant strains ∆rsmA, ∆rsmB, ∆rsmD, 

∆rsmE and ∆rsmH were purified. Overnight cultures of the strains in M9 Glu were 

used to inoculate at 1% 2L of fresh M9 Glu. When the cultures reached OD600=1, 

cells were harvested by centrifugation 8000 rpm, 10 min, 4°C and washed in Buffer A 

(20 mM Tris HCl pH 7.5, 0.1 M NH4Cl, 3 mM β-Mercaptoethanol, 1 mM PMSF, 10 

mM MgCl2) (rotor JA-14, Beckman-Coulter). Dried pellets were frozen at -80°C 

overnight. Subsequently, pellets were resuspended in 3 mL of Buffer A and cells 

were lysed with a French Press cell (1250 PSI). Lysates were centrifuged at 13000 

rpm, 40 min, 4°C (JA-17 rotor, Beckman-Coulter) and supernatants were loaded on 

20-50% sucrose density gradients. Ultracentrifugation of the gradients was performed 

at 23000 rpm for 18h at 4°C in a SW28 rotor (Beckman-Coulter). Then, gradients 

were separated into fractions of 1 mL and their absorbance at 260 nm (A260) was 

monitored. Fractions corresponding to the 70S ribosomes were mixed together and 

diluted twice in Buffer A prior to another ultracentrifugation at 55000 rpm, 1h30, 4°C 

in a Ti70.1 rotor (Beckman-Coulter). Pellets were washed with Buffer A to remove 

sucrose and resuspended in 100 µL of Buffer A. Ribosomes were purified from three 

different cultures for each strain. 
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b. DNA matrix for in vitro translation 

Three different PCR products were produced using the Q5 Taq polymerase 

(NewEngland Biolabs). Those products correspond to the T7 promoter (for in vitro 

transcription) and gfp in frame or in the second or third frame of translation, thus they 

were named gfp0, gfp+1 and gfp-1 respectively. The different amplifications were 

performed on pB01, pB18gfp+1 or pB19gfp-1 using primers gfp0_F and gfp_R, 

gfp+1_F and gfp_R; gfp-1_F and gfp_R respectively. Size of the PCR products was 

analysed on 1% agarose gel electrophoresis and were then purified using PCR 

Purification Kit (Qiagen).  

 

c. In vitro transcription and translation  

The ribosomes obtained from the different strains (MG1655 and rsm mutant 

strains) were tested for in vitro translation. For this purpose, the purified PCR 

products (gfp0, gfp+1 and gfp-1) were used as DNA matrix for in vitro 

transcription/translation using the PURExpress ∆ribosome kit (New England Biolabs). 

Reactions were set according to the manufacturer's protocol (10 μl Solution A; 3 μl 

Factor Mix; 30 pmol Ribosomes; 250 ng Template DNA; Nuclease-free H2O up to 25 

µL) and were incubated at 37°C for 3 h. GFP fluorescence was measured using the 

LS 45 Fluorescence Spectrometer (Perkin Elmer) with excitation at 485 nm and 

emission at 510 nm.   
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3. Results 

To investigate the role of 16S rRNA methylations in translation, different 

genetic tools have been engineered. We specially focused on modifications located 

within the decoding centre. Thus, we first developed E. coli strains lacking one 

methyltransferase responsible for modification at this site. Then, we built several 

plasmids to study translation of canonical and leaderless mRNAs or frameshifting. 

The genetic tools we used in this study are presented in the first section of this 

chapter. 

Then, data we obtained for every mutant strain are shown. We chose to 

analyse the results with a focus on each strain, before to discuss them globally. Data 

obtained with ΔrsmE mutant are presented first because this strain exhibited more 

phenotypic defects. Then results obtained using the mutant strains ΔrsmB, ΔrsmD, 

ΔrsmA and ΔrsmH are analysed.  

 

3.1. Genetic tools 

Since methylations seem to modulate interactions within the decoding centre, 

we aimed to study translation by ribosomes lacking those modifications. To study the 

effects of each of those methylations, we built isogenic mutants of the E. coli 

MG1655 strain, which are deleted for a single rsm gene: ΔrsmA, ΔrsmB, ΔrsmD, 

ΔrsmE and ΔrsmH. To do so, we used BW25113 strains from the Keio collection 

(Baba et al., 2006) in which the coding sequence of each non-essential gene was 

replaced by a kanamycin cassette flanked by FRT sites. We amplified each region of 

interest: ksgA733::kan, rsmB725::kan, rsmD720::kan, rsmE721::kan, rsmH788::kan 

from mutant strains built by Baba et al. (2006). Then the PCR products were 

transferred in MG1655 using the method of one-step inactivation developed by 

Datsenko and Wanner (2000). Kanamycin resistance genes were then eliminated in 

the MG1655 mutants.  

 

a. Investigations on canonical and leaderless translation 

To investigate the role of those methyl groups during canonical translation, we 

constructed a plasmid (named pF38lacZSD) carrying a lacZ reporter. We inserted 

lacZ coding sequence in pBAD24 vector (Figure 14.A). Transcription of lacZ is under 
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control of arabinose promoter and can be induced by addition of arabinose in the 

medium. The mRNA produced carries the vector SD sequence (AGGAGG) upstream 

of the start codon. Translation of lacZ mRNA leads to production of β-Galactosidase 

whose activity can be easily assessed. lacZ is a robust reporter, which is not post-

translationally regulated. Thus, β-Galactosidase activity directly reflects of 

translational efficiency. 

 

We also hypothesized that lack of one methylation of the decoding centre 

could facilitate translation of leaderless mRNAs. To test this hypothesis, we built a 

leaderless lacZ reporter in pBAD24 vector, pF45lacZLL (Figure 14.B). To do so, we 

inserted lacZ coding sequence directly at the transcription start site of the vector. 

Thus, the transcript starts with AUG initiation codon and completely lacks 5’ UTR. 

Consequently, β-Galactosidase produced from pF45lacZLL reflects the ability of the 

ribosomes to efficiently translate leaderless mRNA.  

 

 

 

Figure 14: Schematic representation of plasmids pF38lacZSD (A) and pF45lacZLL (B) 

used for translation of canonical and leaderless mRNAs. pBR322 ori: origin of 

replication. bla: ampicillin resistance gene. PBAD: arabinose promoter (inducible with L-

arabinose). lacZ: β-galactosidase coding sequence. SD: Shine-Dalgarno sequence. 

araC: coding sequence for AraC – regulatory protein of arabinose operon. 

 

To assess β-Galactosidase activity, we constructed strains carrying a lacZ 

chromosomal mutation (MG6416 (wild type), ΔrsmA 6417, ΔrsmB 6418, ΔrsmD 6419 
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and ΔrsmE 6420). This mutation was transferred from the strain STL14025 

(harbouring a stop codon in lacZ) to MG1655 and rsm isogenic mutants by P1 

transduction. 

pF38lacZSD and pF45lacZLL were transformed in MG6416, and cells 

containing either plasmid were grown in M9 minimal medium and induced for 1h30 

using L-arabinose. Subsequently, β-Galactosidase assays were performed. MG6416 

containing pF38lacZSD had an activity of 5172+/-780 Miller units and of 133+/-35 

Miller units when transformed with pF45lacZLL. When cells were not induced 

(cultured in M9 glucose), their activity was 74.7+/-21 with pF38lacZSD and 0.3+/-0.6 

with pF45lacZLL. Consequently, even though translation of leaderless lacZ mRNA 

was about 40 times less efficient than that of canonical lacZ, it is significant when 

compared to non-induced cultures containing pF45lacZLL.  

 

b. Study of maintenance of the reading frame 

We also aimed to study how methylations would help in maintaining codon- 

anti-codon interactions in the decoding centre during the elongation step. To address 

this question we studied frameshifting in MG1655 and isogenic mutants (ΔrsmA, 

ΔrsmB, ΔrsmD, ΔrsmE and ΔrsmH). We developed a dual fluorescent reporter 

system which encodes green fluorescent protein (GFP) and mCherry (Figure 15). 

Excitation and emission properties of those proteins are very different and allow for a 

simultaneous detection. Thus, fluorescence is detected directly in the bacterial 

growing culture.  

 All constructions were built from pB01 which harbours a wild type GFP and so 

was used as control construction (Figure 15.A). 

Genes coding for mCherry and GFP are co-transcribed using a single 

constitutive promoter (PtacII) to minimize variations in their transcription (Figure 15). 

They have the same SD sequence (AAGGAA), six nucleotides upstream of their 

AUG initiation codon. mCherry coding sequence and GFP SD sequence are 

separated by a 80 nt spacer so that translation initiation of both proteins can be 

independent. Translation of mCherry reflects canonical translation. Subsequently, we 

used GFP as a reporter for programmed or spontaneous frameshift events.  

 



 

 

50 

 

Figure 15: Schematic representation of pB01 plasmid (A) and general organization the 

dual fluorescent reporter with mcherry and gfp coding sequences (B). Restriction sites 

used for the cloning are indicated by grey dashed arrows. Red box: mcherry coding 

sequence, green box: gfp coding sequence, PtacII: constitutive promoter, yellow box: 

Shine-Dalgarno sequence. 

 

To test whether both fluorescent proteins can be expressed from pB01, the 

plasmid was transformed in MG1655. Cells were cultured in M9 glucose at 37°C until 

they reached the exponential phase (OD600 of 0.5) and fluorescence was measured. 

GFP fluorescence normalized by OD600 reached a value of 1113+/-187 GFP relative 

fluorescence units (GFPRLU) and mCherry fluorescence was 9562+/-990 mCherry 

relative fluorescence units (mCRLU). Thus, both proteins are produced from pB01. As 

mCherry is meant to be used as internal control, we calculated the ratio of 

GFP/mCherry which was about 0.12 for pB01. 
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• Programmed frameshifting 

Programmed frameshifting uses slippery sequences to disrupt codon-

anticodon interactions and promote re-association of the aminoacyl tRNA with an 

overlapping codon. As a consequence, ribosomes shift from one frame to another. 

Such signals for ribosomal frameshifting are present within the mRNA sequence and 

their efficiency in frameshifting can be improved by internal SD-like sequences and 

stem loops. To study programmed frameshifting, we inserted variant sequences of 

the genes dnaX or prfB upstream of gfp (between EcoRI and SacI restriction sites) 

(Figure 16). In both constructions, the ATG start codon was removed from gfp coding 

sequence. 

In plasmid pB14prfB, we inserted the first 79 nt of prfB gene of E. coli (Figure 

16.C). The slippery site of this gene is located at position 63 of which sequence is 

CUU-UGA with an in frame UGA stop codon. Frameshifting at this site makes the 

ribosome decode the UUU codon (+1 frame) and thus permits translation of the 

whole protein. There is an SD-like sequence (AGGGGG) upstream of the slippery 

site promoting the repositioning of the ribosome in the second frame of translation. 

Plasmid pB14prfB bears those signals and the coding sequence of GFP (deleted of 

its endogenous start codon) is not in frame. The ribosomes must shift to the second 

frame of translation to produce GFP. Thus, translation of active GFP from pB14prfB 

reflects +1 prfB dependent frameshifting.  

The E. coli dnaX gene contains the slippery sequence A-AAA-AAG driving the 

ribosome to change to the -1 frame and read AAA codon instead of AAG. 

Immediately downstream of this site, there is a stop codon in the third frame of 

translation. Thus, the -1 frameshift event causes early termination of translation. 

Supplementary features are necessary for efficient dnaX frameshifting: upstream of 

the slippery site there is an internal SD-like sequence, while downstream there is a 

stem loop. In plasmid pB11dnaX, we introduced a 107 nt insert upstream of GFP 

coding sequence (deleted of its ATG) (Figure 16.D). The insert contains an ATG 

initiation codon and the signals for dnaX dependant frameshifting namely the slippery 

sequence, the SD-like sequence and the stem loop. The -1 frame stop codon was 

mutated (TGA to cGA) and we inserted an additional in frame stop codon after the 

stem loop. Thus, in pB11dnaX, GFP coding sequence is in the third frame of 

translation and its production requires -1 frameshifting. 
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pB14prfB and pB11dnaX were transformed in MG1655 to check for GFP 

production. MG1655 harbouring pB14prfB showed a GFP fluorescence of 7367+/-

620 GFP GFPRLU and mCherry of 9150+/-214 mCherry mCRLU. It resulted in a 

GFP/mCherry ratio of 0.8+/-0.08. Concerning pB11dnaX, MG1655 exhibited values 

of 2362+/-720 GFPRLU and 16940+/-4730 mCRLU. The GFP/mCherry ratio with 

pB11dnaX was then about 0.14+/-0.004.  

 

 

Figure 16: Nucleotidic sequence inserted upstream of gfp to promote programmed 

frameshifting in pB14prfB and pB11dnaX. (A) Organization of pB01 and (B) sequence 

of gfp in pB01. Nucleotidic sequence upstream of gfp gene in pB14prfB (C) and 

pB11dnaX (D). The inserts were introduced between EcoRI and SacI sites. The 

different features necessary for frameshifting are indicated in boxes. Yellow boxes: SD-

like sequence, red boxes: slippery sequence, blue box: stem loop. Translation frames 

are indicated below the nucleotidic sequence, the aminoacid in a green empty box is 

the first one which is incorporated following a frameshift. GFP sequence is written in 

green. Stop codons are highlighted in red.  

 

pB01B.

pB14prfBC.

pB11dnaXD.

mcherry

PtacII

80nt spacer

ClaI NheI XbaI EcoRI XhoI HindIII

gfp

SacI

aaggaattcaatATGGAGCTCAGTAAAGGAGAA

M E  L  S  K  G  E

…

…

A.

ATGTTTGAA………AGGGGGTATCTTTGACGAGCTCAGTAAAGGAGAA

M  F  E ……… R  G  Y  L  * R  A  Q  * R  R Frame 1

C  L  K ……… G  G I  F  D  E  L  S  K  G  E Frame 2

V  * K ………  G  V  S  L  T  S  S V  K  E   Frame 3

54 nt

GFP

ATGAGT……CAGGGAGCAACCAAAGCAAAAAAGAGcGAACCG……AATTGATAGAGCTCAGTAAAGGAGAA

M  S……  Q  G   A  T  K  A  K  K S  E  P…… N * * S S V  K   E Frame 1

* …………   R  E  Q  P  K  Q  K  R  A  N  ……  I  D  R  A  Q * R   R Frame 2

E ………    G  S  N  Q  S  K  K E  R  T ……   L  I  E  L  S  K  G   E Frame 3

34 nt

Stem 

loop

GFP

27 nt
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Thus, programmed frameshifting was very efficient using prfB and dnaX 

sequences leading to detectable fluorescence signals. Moreover, ratios obtained 

from pB14prfB were higher than those from pB11dnaX. This difference was expected 

due to the bias induced by prfB regulation. Indeed, as prfB frameshifting relies on low 

concentration of RF2, we can assume that production of gfp mRNA exhibiting prfB 

signals leads to a titration of RF2 of which, content is not sufficient to inhibit 

frameshifting. 

 

• Spontaneous frameshifting 

We also built two reporters of spontaneous ribosomal frameshifting 

(pB18gfp+1 and pB19gfp-1) (Figure 17). In pB18gfp+1, a single nucleotide was 

added in gfp coding sequence at position 15; at the opposite, in pB19gfp-1, one 

nucleotide was removed at position 14 (see Figure 17.B and C). As a consequence 

the coding frame is changed to frame 2 in pB18gfp+1 and frame 3 in pB19gfp-1. 

Those mutations were inserted upstream of a hairpin (depicted in yellow in Figure 17) 

that could potentially slow down ribosomes and lead to a better frameshifting 

efficiency. Moreover, the beginning of the sequence (first 14 nucleotides) is the same 

for all 3 constructs and they all exhibit stop codons in the second and third frames of 

translation (red stars in Figure 17). As a consequence, we can assume that 

translation starts at the ATG in the first frame for all constructs and to translate an 

active GFP from pB18gfp+1 and pB19gfp-1, ribosomes need to shift to resume the 

coding frame (frame 2 or 3 respectively). Moreover, that frameshift has to happen 

before the eleventh codon for valine. Indeed, the first β-barrel (highlighted in green in 

Figure 17) starts at this position and is necessary for GFP fluorescence. Indeed, 

several studies analysed GFP fluorescence after mutagenesis and deletion of NH2 

extremity and they all agree that β-barrel is essential and does not tolerate any 

mutation or deletion. 

 

When transformed in MG1655, pB18gfp+1 and pB19gfp-1 did not lead to a 

significant production of GFP: values of GFP fluorescence reached 39.6+/-12 and 

31.7+/-11.5 respectively. This low fluorescence led to GFP/mCherry ratios of 0.005 

for pB18gfp+1 and 0.004 for pB19gfp-1 (while GFP/mCherry ratio from pB01 was 

about 0.12). Spontaneous frameshifting is a rare event happening with a probability 
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of 10-5 per codon, thus we can expect that it is hardly measurable in vivo. However, 

gfp sequence from pB18gfp+1 and pB19gfp-1 were subsequently used for in vitro 

translation assays. 

 

Figure 17: Coding sequence (first 50 nucleotides) of GFP from plasmids pB01, 

pB18gfp+1 and pB19gfp-1. (A) Organization of the dual fluorescent reporter pB01 and 

(B) coding sequence of GFP. GFP sequence was modified to build plasmids 

pB18gfp+1 and pB19gfp-1. Insertion of a single nucleotide in pB18gfp+1 (C) is 

highlighted in blue and location of the single nucleotide deletion in pB19gfp-1 (D) is 

indicated by an arrow. Nucleotidic sequence is indicated, the sequence of a hairpin is 

highlighted in yellow. Above, the three different frames of translation are represented. 

Stop codons are highlighted in red, the first amino acids of the first β-barrel of GFP is 

highlighted in green. 

  

    ATGAGTAAAG GAGAATGAAC TTTTCACTGG AGTTGTCCCA ATTCTTGTTG 

     M  S  K  G   E  *  T   F  H  W   S  C  P  N   S  C  *    Frame 1 

      *  V  K   E  N  E  L   F  T  G   V  V  P   I  L  V  E   Frame 2 

       E  *  R   R  M  N   F  S  L  E   L  S  Q   F  L  L     Frame 3 

pB18gfp+1

GFP+1

C.

    ATGAGTAAAG GAGAGAACTT TTCACTGGAG TTGTCCCAAT TCTTGTTGAA 

     M  S  K  G   E  N  F   S  L  E   L  S  Q  F   L  L  N    Frame 1 

      *  V  K   E  R  T  F   H  W  S   C  P  N   S  C  *  I   Frame 2 

       E  *  R   R  E  L   F  T  G  V   V  P  I   L  V  E     Frame 3 

pB19gfp-1

GFP-1

D.

mcherry

PtacII

80nt spacer

ClaI NheI XbaI EcoRI XhoI HindIII

gfp

SacIA.

pB01

GFP0

B.

  ATGGAGCTCAGTAAAG GAGAAGAACT TTTCACTGGA GTTGTCCCAA TTCTTGTTGA 

   M  E  L  S  K  G   E  E  L   F  T  G   V  V  P  I   L  V  E    Frame 1 

    W  S  S  V  K   E  K  N  F   S  L  E   L  S  Q   F  L  L  N   Frame 2 

     G  A  Q  *  R   R  R  T   F  H  W  S   C  P  N   S  C  *     Frame 3 
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3.2. Lack of methylation m3U1498 affects maintenance of the reading frame 

a. Absence of RsmE does not impair growth or fitness 

The methyltransferase RsmE was discovered quite recently and thus only a 

few groups studied the effects of RsmE knockout. We compared growth of an E. coli 

wild type strain, MG1655, with the isogenic mutant ΔrsmE. When cultured at 30°C in 

minimal medium M9 glucose, growth rates of both strains were similar:  

0.58+/-0.03 h-1 for the wild type and 0.58+/-0.06 h-1 for the mutant. This is in 

accordance with a previous study that also observed a comparable growth in M9 

glucose and in LB at various temperatures (25°C, 37°C and 42°C) (Basturea et al., 

2006). They also showed a deficiency in fitness of the mutant strain when grown 

together with the wild type strain in LB.  

 

We also analysed the ability of ΔrsmE mutant to grow in competition with the 

wild type. To do so, we used MG6416 and ΔrsmE::kan strains and cultured them in 

minimal medium M9 glucose in either single or co-cultures. When the cultures 

reached exponential phase, 24h- and 48h- stationary phases, cells from the three 

cultures were diluted and the serial dilutions were spotted on several M9 glucose 

plates and incubated at 30°C. To analyse growth in stressful conditions, some plates 

were incubated at 43°C and 16°C and other plates containing stresses (such as NaCl 

to induce osmotic stress or plumbagin for oxidative stress) at 30°C. After 24h 

incubation, pictures of the plates were taken (Figure 18). No difference was observed 

between cells plated from exponential or stationary phases, thus only results from 

24h-cultures are presented here. When MG6416 and ΔrsmE::kan were cultured 

together (Figure 18, bottom panel) at 30°C, we did not detect difference in the 

bacterial load. So, in those conditions, ΔrsmE mutant does not seem to have a defect 

in competitive growth. In addition, MG6416 and ΔrsmE::kan have similar behaviours 

when grown in the different stressful conditions, indicating that ΔrsmE::kan is able to 

efficiently adapt to those conditions.  
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Figure 18: Adaptation of MG6416 and ΔrsmE::kan strains to various conditions. Spots 

of 10-fold serial dilutions of cells grown in single (top panels) or co-cultures (bottom 

panels) for 24h. M9–Glc plates were incubated at different temperatures (30°C, 43°C 

for 24h or 16°C for 48h), plates containing either plumbagin (0,2mM; Ox-P) or NaCl 

(0,5M; NaCl) were incubated at 30°C during 24h. 

 

 

b. Lack of RsmE promotes translation of leaderless mRNA under heat shock  

Even if lack of RsmE does not induce a difference in growth, we hypothesized 

that translation could be affected by growth conditions. We postulated that the 

possible effects of methylations could be more pronounced under stressful 

conditions. To assess translation of the different strains we used pF38lacZSD 

carrying a canonical lacZ (Figure 14.A). Transcription of the reporter is induced by 

the addition of arabinose in the growth medium. Translation of lacZ mRNA is not 

regulated and depicts canonical translation: the mRNA exhibits an SD sequence 

upstream of the AUG start codon. Consequently, pF38lacZSD was used as a control 

for translation efficiency in each strain. 
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We also analysed the influence of rRNA methylations on leaderless mRNA 

translation. We used pF45lacZLL plasmid carrying a leaderless lacZ reporter: 

arabinose induced transcription directly starts at the ATG initiation codon resulting in 

the production of an mRNA that completely lacks 5’ UTR and so does not possess 

any SD sequence (Figure 14.B).  

 

Wild type (MG6416) and ΔrsmE 6420 mutants were transformed with 

pF38lacZSD or pF45lacZLL and cultured in M9 glucose until they reached 

exponential phase (OD600 of 0.5). Afterwards, those precultures were washed and the 

cells were resuspended in M9 supplemented with L-arabinose to induce the 

transcription of the reporter. Indeed, lacZ is transcribed from PBAD promoter which is 

induced by CRP-cAMP. The transition from a medium containing glucose to one with 

arabinose leads the cells to adapt their metabolism and thus it induces a longer time 

for full induction of the reporter. Therefore, the cultures were grown for 1h30 in  

M9 L-arabinose in order to obtain the best yield of reporter production.  

During this incubation, cultures underwent different growth conditions such as 

control condition at 30°C, osmotic stress (at 30°C), oxidative stress (at 30°C), heat 

stress (43°C) or cold stress (20°C). Afterwards, samples were taken and β-

Galactosidase activity of the reporters was assayed.  

After 1h30 incubation with stresses, bacteria divided exponentially meaning 

they were adapted to those conditions. As a consequence, those assays give 

information about long-term adaptation rather than an immediate short-term stress 

response.   
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Figure 19: Effect of the lack of methylation m3U1498 on translation of a canonical and a 

leaderless lacZ reporter. A. Decoding centre, the dashed box indicates the localization 

of m3U1498 methylated by RsmE (adapted from Fischer et al., 2015). β-Galactosidase 

assays in MG6416 (MG1655 ΔlacZ) (light blue) and ΔrsmE 6420 (dark blue) 

transformed with pF38lacZSD (B) or with pF45lacZLL (C). Different conditions were 

applied for 1h30 to the cultures: 30°C (control condition), 0.5 M NaCl, 10 mM H2O2, 

43°C or 20 °C. The average (+/- standard deviation) of three independent experiments 

is represented. The star above the values indicates a significant difference according to 

t-test (p-value lower than 0.05). 

  

In control condition (at 30°C), ΔrsmE 6420 had a lower level of translation of 

the canonical lacZ mRNA than the wild type: β-Galactosidase activity of MG6416 

reached 5172+/-780 Miller Units and that of the ΔrsmE 6420 3818 +/- 145 Miller units 

(Figure 19.B). Moreover, with the exception of heat stress, stresses negatively 

impacted translation in both strains. In fact, β-Galactosidase activity of the two strains 

drastically reduced after exposure to NaCl (582 +/- 154 Miller Units in the wild type 
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and 476 +/- 200 in ΔrsmE 6420), H2O2 (1200 +/- 170 Miller Units in the wild type and 

1700 +/- 90 in ΔrsmE 6420) and 20°C (around 1300 Miller units in both strains). 

Nevertheless, the mutant exhibited similar levels of translation than the wild type in 

those conditions. At 43°C, translation of lacZ in the two strains was not changed 

compared with levels at 30°C (5086 +/- 900 Miller units in MG6416 and 4500 +/- 

1000 Miller units in ΔrsmE 6420). Methylation m3U1498 could permit a better 

efficiency of the ribosomes in translation under normal conditions but not under 

stressful conditions.  

 

 We were able to detect translation of the leaderless lacZ reporter (Figure 

19.C). Translation of leaderless lacZ is less efficient than for the canonical mRNA but 

is significant, even if the reporter is not a natural leaderless mRNA. As we can see in 

Figure 19.C, β-Galactosidase activity was similar in both strains at 30°C: 133 +/- 35 

in wild type and 160 +/-55 in the mutant. Addition of NaCl or H2O2 and incubation at 

20°C led to a decrease of β-Galactosidase activity: around 15 +/-10 Miller units in 

NaCl assay for both strains and 50+/-10 and 80 +/- 30 Miller units at 20°C for wild 

type and ∆rsmE respectively. At 43°C, the mutant ΔrsmE 6420 exhibited the same 

level of translation than at 30°C while it decreased drastically in the wild type (Figure 

19.C). Lack of methylation m3U1498 does not impact translation of leaderless 

mRNAs under normal conditions but improved it at 43°C. 

 

c. RsmE impacts translational frameshifting in vivo and in vitro 

As ΔrsmE mutant strain seems to have a slight but significant impact on 

translation, we hypothesized that it could also be more error-prone, for instance in 

maintenance of the reading frame. We also aimed to study how stressful conditions 

impact maintenance of the reading frame in strains lacking methylations.  

To investigate further frameshifting in the mutant strains, we used plasmids 

pB01, pB18gfp+1, pB19gfp-1, pB11dnaX and pB14prfB. Those plasmids were 

transformed in MG1655 and in isogenic mutant strains ΔrsmA, ΔrsmB, ΔrsmD, 

ΔrsmE and ΔrsmH. Cells expressed both fluorescent reporters constitutively from the 

plasmids. Therefore, using this dual fluorescent system, there was no need to 

change media nor a delay for induction as for β-Galactosidase assays. Thus, using 

those constructs we investigated short term adaptation to stresses. To do so, wild 
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type and mutant strains transformed with each plasmid were cultured until they 

reached exponential phase (OD600 of 0.5) and stresses were applied for 20 min. 

We analysed ratios of GFP/mCherry fluorescence. Thus, GFP expression due 

to frameshifting is normalized by canonical expression of mCherry in every condition 

and for each strain. Those ratios permitted us to directly compare frameshifting 

between mutants and wild type which was used as a reference. 

 

To validate the system, we checked for constitutive expression of mCherry and 

GFP from pB01 in the wild type and in the mutants.   

 

 

 

Figure 20: Fluorescence of GFP and mCherry produced from pB01 plasmid. A. GFP 

fluorescence normalized by OD600 of MG1655 (dark green) and ΔrsmE (light green). B. 

mCherry fluorescence normalized by OD600 of MG1655 (dark red) and ΔrsmE (pink). C. 

Ratios of GFP/mCherry in MG1655 (light blue) and ΔrsmE (dark blue). Cells were 

grown until OD600=0.5 and were then submitted to various conditions for 20 min: 37°C 

(control conditions), 0.3 M NaCl, 10 mM H2O2, 45°C or 16°C. Values represent the 

average (+/- standard deviation) of three independent experiments and a star indicates 

a significant difference according to t-test (p-value lower than 0.05). 

 

As we can see in Figure 20 A. and B., both strains exhibited similar levels of 

GFP or mCherry fluorescence in every condition. For instance, at 37°C, GFP 

fluorescence was 1113+/-187 GFPRLU in the wild type and 1140+/-96 GFPRLU in 

ΔrsmE. We can notice that translation of the two fluorescent proteins was not 

impaired by the addition of NaCl or H2O2 but was reduced by half after exposure at 

45°C. On the other hand, at 16°C the mutant and the wild type had higher 
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fluorescence levels of GFP and mCherry compared to those observed in control 

conditions (37°C). In Figure 20 C., ratios of GFP/mCherry are represented. 

 

 

Figure 21: Effect of the lack of m3U1498 on prfB and dnaX frameshifting in vivo. Ratios 

of fluorescence of GFP/mCherry in MG1655 (light blue) and ΔrsmE (dark blue) 

transformed with pB14prfB (A) and pB11dnaX (B). Cells were grown until OD600=0.5 

and were then submitted to various conditions for 20 min: 37°C (control conditions), 

0.3 M NaCl, 10 mM H2O2, 45°C, 16°C. Values represent the average (+/- standard 

deviation) of three independent experiments and a star indicates a significant 

difference according to t-test (p-value lower than 0.05). 

 

Programmed frameshifting was very efficient using prfB and dnaX sequences 

leading to detectable fluorescence signals (Figure 21). prfB frameshifting in MG1655 

and in ΔrsmE is depicted in Figure 21.A. As we can see, fluorescence ratios were 

equivalent in the mutant and in the wild type in all conditions. As an example, values 

of GFP/mCherry ratios at 37°C were 0.81 +/- 0.08 in wild type and 0.77 +/- 0.05 in 

ΔrsmE. Thus, lack of RsmE does not impact prfB +1 frameshifting under normal or 

stressful conditions. 

In contrast, ΔrsmE had a higher level of translation of dnaX frameshifting 

reporter at 37°C (GFP/mCherry ratios: 0.14 +/- 0.004 in wild type and 0.19 +/- 0.014 

in ΔrsmE)  and at 45°C (GFP/mCherry ratios: 0.08 +/- 0.002 in wild type and 0.12 +/- 

0.008 in ΔrsmE) (Figure 21.B). Thus, m3U1498 reduces dnaX -1 frameshifting and its 

lack partially suppresses its inhibitory effect at higher temperature.  
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 GFP produced from plasmids pB18gfp+1 and pB19gfp-1 represents 

spontaneous frameshifting. Indeed, coding sequence of GFP was modified by 

addition or removal of one nucleotide, changing the frame of translation to the 

second (+1) or third one (-1) respectively. However, those plasmids did not lead to a 

significant GFP production in any strains (MG1655 and isogenic rsm mutant strains) 

(not shown). Thus to investigate spontaneous frameshifting, we purified ribosomes 

from Δrsm mutants and from the wild type and tested them for in vitro translation.  

  

 We amplified gfp sequence from pB01, pB18gfp+1 and pB19gfp-1 to produce 

templates for in vitro transcription. The three different RNAs obtained were in vitro 

translated by ribosomes lacking methylation (purified from the mutant strains) or wild 

type ribosomes. Fluorescence of GFP was then measured to evaluate levels of 

canonical translation of GFP (gfp0) and spontaneous frameshifting (gfp+1 and gfp-1). 

 

 

Figure 22: In vitro translation with ribosomes purified from MG1655 and ΔrsmE. A. 

Translation of three different RNA reporters gfp0 (light grey), gfp+1 (grey), gfp-1 (dark 

grey) by ribosomes from MG1655 (MG) and ΔrsmE. B. Table of frameshifting rates 

calculated from values obtained via in vitro translation: Rate +1 = (translation of 

gfp+1)/(translation of gfp0); and Rate -1 = (translation of gfp-1)/(translation of gfp0). 

Values represent the average (+/- standard deviation) of three independent 

experiments and a star indicates a significant difference according to t-test (p-value 

lower than 0.05). 
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 Using in vitro produced GFP, we were able to successfully detect fluorescence 

using canonical mRNA (gfp0) and even frameshifting reporters (gfp+1 and gfp-1) 

(Figure 22). Moreover, the results obtained using true triplicates had a low variance 

meaning the assay is reproducible and results are very robust.  

 

 As we can see in Figure 22, frameshifting in the +1 direction is rather frequent 

in those conditions: it was about 1/3 (frameshifting rate: 0.34+/-0,005) compared with 

canonical translation with wild type ribosomes. However, frameshifting in -1 direction 

was much lower with a rate of 0.065 with wild type ribosomes. Ribosomes lacking 

m3U1498 translated canonical gfp0 mRNA as efficiently as wild type ribosomes: 

levels of fluorescence were 138.5+/-21 and 183+/-22 arbitrary fluorescence units 

(AFU) respectively (Figure 22.A). Translation of the frameshifting reporter gfp+1 was 

also significantly affected when performed by ribosomes from ΔrsmE. Indeed, they 

exhibited +1 frameshifting rate about twice less (frameshifting rate: 0.15+/-0.007) 

than the wild type ribosomes (frameshifting rate: 0.34+/-0.05) while rate of  

-1 frameshifting was similar with ribosomes from both strains (Figure 22.B). We could 

conclude that m3U1498 makes the ribosomes more prone to +1 frameshifting. 

 

• Conclusion 

m3U1498 contacts the mRNA thus its loss could influence mRNA binding, 

translation initiation, interactions with the anticodon and so decoding. Here, we were 

able to show a slight difference in translation in ΔrsmE mutant in vivo. First, 

methylation at position m3U1498 facilitates translation (Figure 19 B) and its absence 

does not impact translation after exposure to stresses. This modification does not 

influence translation of leaderless mRNA either under various conditions. However 

after heat stress, leaderless translation was not affected in ΔrsmE strain whereas it 

reduces dramatically in the wild type (Figure 19 C). The modification m3U1498 does 

not impact prfB +1 frameshifting but reduces dnaX -1 frameshifting (Figure 21). At the 

opposite, ribosomes lacking m3U1498 are more prone to spontaneous frameshifting 

to the second frame (+1) while frameshifting to the third frame (-1) is not impacted in 

vitro.  
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3.3. Lack of methylation m5C967 impacts canonical translation 

a. Absence of RsmB impacts adaptation to cold and heat stresses 

Lack of RsmB does not have an impact on growth, the ΔrsmB mutant strain 

had a similar growth rate (of 0.55+/-0.03 h-1) than the wild type (0.58+/-0.04 h-1) in 

minimal medium M9 glucose at 30°C.  

The competitive growth of the mutant and the wild type was also analysed. 

ΔrsmB::kan mutant and MG6416 were grown in M9 glucose in single and co-cultures 

and cells were diluted and spotted on M9 glucose agar plates (Figure 23). First, when 

both strains were grown together (bottom panel, first line), they exhibited a similar 

bacterial load than in single cultures (top panel, first line), indicating that ΔrsmB::kan 

mutant does not have a competition defect at 30°C. Concerning adaptation of 

MG6416 and ΔrsmB::kan to stresses, the two strains had similar reduction of 

bacterial load, when grown in presence of NaCl or plumbagin (Ox-P). However, 

ΔrsmB::kan seemed to be more sensitive to temperature stresses after growth in co-

culture. Indeed, a reduction of 1 to 2 log was observed when ΔrsmB::kan cells are 

spotted on M9-Glc agar plates and incubated at 16°C or at 43°C. In conclusion, 

ΔrsmB is able to compete when grown with the wild type but is more sensitive to cold 

and heat stresses which is in accordance with Burakovsky et al., 2012 who observed 

that ΔrsmBD double mutant was cold sensitive.  
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Figure 23: Adaptation of MG6416 and ΔrsmB::kan to various conditions. Spots of 10-

fold serial dilutions of cells grown in single (top panels) or co-cultures (bottom panels) 

for 24h. M9–Glc plates were incubated at different temperatures (30°C, 43°C for 24h or 

16°C for 48h), plates containing either plumbagin (0,2mM; Ox-P) or NaCl (0,5M; NaCl) 

were incubated at 30°C during 24h. 
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b. RsmB affects translation 

Under control conditions (30°C), ΔrsmB 6418 translated canonical lacZ mRNA 

about twice more than the wild type: 11339 +/- 2184 Miller Units in the mutant and 

5172+/-780 Miller Units for the MG6416 (Figure 24.B). Methylation m5C967 seems to 

reduce translation in those conditions.  

 

 

Figure 24: Effect of the lack of methylation m5C967 on translation of a canonical and a 

leaderless lacZ reporter.  A. Decoding centre, the dashed box indicates the localization 

of m5C967 methylated by RsmB (adapted from Fischer et al, 2015). β-Galactosidase 

activity in MG6416 (light blue) and ΔrsmB 6418 (grey) transformed with pF38lacZSD 

(B) or with pF45lacZLL (C). Different conditions were applied for 1h30 to the cultures: 

30°C (control condition), 0.5 M NaCl, 10 mM H2O2, 43°C or 20 °C. The average (+/- 

standard deviation) of three independent experiments is represented. The star above 

the values indicates a significant difference according to t-test (p-value lower than 

0.05). 
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Exposure to stresses had distinctive impact in the mutant and the wild type 

strains (1202 +/- 171 Miller Units in the wild type and 6070 +/- 710 in ΔrsmB 6418). 

H2O2 oxidative stress led to an equivalent reduction of β-Galactosidase activity in 

both strains meaning that translation is more efficient in the mutant strain but is lower 

due to H2O2 (1202 +/- 171 Miller Units in the wild type and 6070 +/- 710 in ΔrsmB 

6418). In contrast, translation of the reporter drastically reduced in both strains under 

osmotic stress (NaCl) (582 +/- 154 Miller Units in the wild type and 1946 +/- 1118 in 

ΔrsmB 6418) and cold stress at 20°C (1293 +/- 52 Miller Units in the wild type and 

2681 +/- 747 in ΔrsmB 6418) and no significant difference was detected. After a heat 

stress at 43°C, β-Galactosidase activity reduced dramatically to 3809 +/- 832 Miller 

Units in ΔrsmB 6418 while translation in the wild type was not impacted (5087 +/- 972 

Miller Units) compared to that at 30°C.Thus translation is more affected in the mutant 

than in the wild type after exposure to osmotic, heat and cold stresses.  

 

Translation of the leaderless lacZ reporter was slightly higher at 30°C in 

ΔrsmB 6418 than in the wild type (133 +/- 35 Miller Units in the wild type and 199 +/- 

26 in ΔrsmB 6418, with a marginal p-value of 0.0586) (Figure 24.C). No significant 

difference between the two strains was observed in the other conditions except for 

H2O2 stress for which ΔrsmB 6418 had a higher level of translation (46 +/- 6 Miller 

Units in the wild type and 118 +/- 17 in ΔrsmB 6418). Leaderless translation seems to 

be facilitated by the absence of m5C967 under normal conditions and oxidative 

stress. 

 

c. Lack of RsmB results in higher -1 programmed frameshifting in vivo 

Fluorescence of the two reporters from pB01 was the same in ΔrsmB and wild 

type strains in all conditions except at 16°C in which mCherry fluorescence was lower 

in the mutant. This led to higher GFP/mCherry ratios at 16°C (not shown).  
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Figure 25: Effect of the lack of m5C967 on prfB and dnaX programmed frameshifting in 

vivo. Ratios of fluorescence of GFP/mCherry in MG1655 (light blue) and ΔrsmB (grey) 

transformed with pB14prfB (A) and pB11dnaX (B). Cells were grown until OD600=0.5 

and were then submitted to various conditions for 20 min: 37°C (control conditions), 0.3 

M NaCl, 10 mM H2O2, 45°C, 16°C. Values represent the average (+/- standard 

deviation) of three independent experiments and a star indicates a significant 

difference according to t-test (p-value lower than 0.05). 

  

Concerning prfB dependant frameshifting (Figure 25.A), relative fluorescence 

in the wild type and in ΔrsmB were similar in all conditions. At the opposite, dnaX 

frameshifting was higher in the mutant at 37°C (0.14 +/- 0.004 in wild type and 0.17 

+/- 0.006 in ΔrsmB) and after a heat stress at 45°C (0.08 +/- 0.002 in wild type and 

0.12 +/- 0.014 in ΔrsmB) (Figure 25.B). ΔrsmB seems to be more prone to dnaX -1 

dependant frameshifting.  
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Figure 26: In vitro translation with ribosomes purified from MG1655 and ΔrsmB. A. 

Translation of three different RNA reporters gfp0 (light grey), gfp+1 (grey), gfp-1 (dark 

grey) by ribosomes from MG1655 (MG) and ΔrsmB. B. Table of frameshifting rates 

calculated from values obtained via in vitro translation: Rate +1 = (translation of 

gfp+1)/(translation of gfp0); and Rate -1 = (translation of gfp-1)/(translation of gfp0). 

Values represent the average (+/- standard deviation) of three independent 

experiments and a star values in bold indicate a significant difference according to t-

test (p-value lower than 0.05).  

 Using in vitro translation assays (Figure 26), we could not detect any 

difference in translation of the canonical reporter (gfp0) by ribosomes from ΔrsmB 

(0.141 +/-20  AFU) or wild type (183+/-22  AFU). However the rate of +1 

frameshifting was significantly higher with ribosomes lacking m5C967 while -1 

frameshifting rates were similar (Figure 26. B). 

 

• Conclusion 

In conclusion, lack of m5C967 led to higher levels of translation of canonical 

and leaderless mRNAs under control conditions (Figure 24). Stresses impacted 

canonical and leaderless translation in ΔrsmB more severely than in the wild type 

with the exception of oxidative stress. The absence of m5C967 modification also 

affected frameshifting: in vivo, dnaX -1 programmed frameshifting was higher in 

ΔrsmB (Figure 25) while in vitro, it led to more shifts to the +1 frame (frame 2) (Figure 

26). However, previous studies showed that lack of rsmB did not impact canonical 

translation nor frameshifting (Arora et al., 2013b).  
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3.4. Lack of methylation m2G966 enhances translation  

a. Absence of RsmD leads to cold sensitivity  

Wild type and ΔrsmD mutant had similar growth rates when grown at 30°C in 

M9 glucose: 0.56 +/-0.05 h-1 for ΔrsmD and 0.58 +/-0.04 h-1 for the wild type.  

Concerning competitive growth, ΔrsmD::kan did not show any defect, when 

grown together with MG6416 (Figure 27, bottom panels) compared to growth in 

single culture. Concerning adaptation to stresses, ΔrsmD::kan showed a higher 

sensitivity to NaCl and to 16°C especially when exposure followed the co-culture.  

Thus, ΔrsmD::kan is more sensitive to cold stress which is in agreement with 

Burakovsky et al., (2012) who observed that the double mutant ΔrsmBrsmD was cold 

sensitive. Moreover, ΔrsmD::kan seems to have a deficiency in osmotic stress 

adaptation.  

 

Figure 27: Adaptation of MG6416 and ΔrsmD::kan to various conditions. Spots of 10-

fold serial dilutions of cells grown in single (top panels) or co-cultures (bottom panels) 

for 24h. M9–Glc plates were incubated at different temperatures (30°C, 43°C for 24h or 

16°C for 48h), plates containing either plumbagin (0,2mM; Ox-P) or NaCl (0,5M; NaCl) 

were incubated at 30°C during 24h. 
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b. Lack of RsmD results in higher levels of translation  

 

 

Figure 28: Effect of the lack of methylation m2G966 on translation of a canonical and a 

leaderless lacZ reporter. A. Decoding centre, the dashed box indicates the localization 

of m2G966 methylated by RsmD (adapted from Fischer et al, 2015). β-Galactosidase 

assays in MG6416 (light blue) and ΔrsmD 6419 (yellow) transformed with pF38lacZSD 

(B) or with pF45lacZLL (C). Different conditions were applied for 1h30 to the cultures: 

M9 (control condition), 0.5 M NaCl, 10 mM H2O2, 43°C or 20 °C. The average (+/- 

standard deviation) of three independent experiments is represented. The star above 

the values indicates a significant difference according to t-test (p-value lower than 

0.05). 

 

Concerning canonical translation, the mutant ΔrsmD 6419 exhibited a higher 

β-Galactosidase activity (11403 +/- 2176 Miller units) than the wild type (5172 +/- 780 

Miller units) under control conditions (30°C) (Figure 28.B). We also observed a higher 

activity in the mutant after exposure to NaCl (582 +/- 154 Miller Units in the wild type 

and 2008 +/- 211 in ΔrsmD 6419), H2O2 (1202 +/- 171 Miller Units in the wild type 
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and 5573 +/- 1112 in ΔrsmD 6419) and 20°C (1293 +/- 52 Miller Units in the wild type 

and 3795 +/- 269 in ΔrsmD 6419) although translation of both strains decreased 

proportionally. At 43°C, while translation in the wild type strain was not changed, that 

of ΔrsmD 6419 was reduced about twice (4194 +/- 393 Miller units) compared to its 

β-Galactosidase activity at 30°C. 

 

Regarding translation of the leaderless reporter (Figure 28.C), no significant 

difference was observed between the two strains except for H2O2 stress in which β-

Galactosidase activity was higher in ΔrsmD 6419 (46 +/- 6 Miller Units in the wild 

type and 91 +/- 19 in ΔrsmD 6419). While translation of canonical mRNA was more 

efficient in the mutant ΔrsmD 6419 it is not the case for leaderless mRNA. However, 

under oxidative stress, lack of RsmD led to higher translation of canonical and 

leaderless mRNAs. Absence of methylation at position m2G966 is detrimental for 

translation at 43°C. 
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c. RsmD does not play a significant role in translational frameshifting 

 When transformed with pB01, wild type and ΔrsmD showed similar levels of 

GFP and mCherry fluorescence in all conditions (not shown).  

 

Figure 29: Effect of the lack of m2G966 on prfB and dnaX frameshifting in vivo. Ratios 

of fluorescence of GFP/mCherry in MG1655 (light blue) and ΔrsmD (yellow) 

transformed with pB14prfB (A) and pB11dnaX (B). Cells were grown until OD600=0.5 

and were then submitted to various conditions for 20 min: 37°C (control conditions), 0.3 

M NaCl, 10 mM H2O2, 45°C, 16°C. Values represent the average (+/- standard 

deviation) of three independent experiments and a star indicates a significant 

difference according to t-test (p-value lower than 0.05). 

Lack of m2G966 does not impact prfB nor dnaX programmed frameshifting 

(Figure 29. A and B). Indeed, we could not detect differences of fluorescence ratios 

between ΔrsmD and the wild type when transformed with pB14prfB and pB11dnaX. 

 

In contrast, in vitro translation of canonical mRNA (gfp0) was slightly lower 

with ribosomes lacking methylation m2G966 (126 +/- 10  AFU) compared to the wild 

types ones (183 +/- 22  AFU). However, both exhibited the same rates of +1 and -1 

frameshifting (Figure 30. B).   
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Figure 30: In vitro translation with ribosomes purified from MG1655 and ΔrsmD. A. 

Translation of three different RNA reporters gfp0 (light grey), gfp+1 (grey), gfp-1 (dark 

grey) by ribosomes from MG1655 (MG) and ΔrsmD. B. Table of frameshifting rates 

calculated from values obtained via in vitro translation: Rate +1 = (translation of 

gfp+1)/(translation of gfp0); and Rate -1 = (translation of gfp-1)/(translation of gfp0). 

Values represent the average (+/- standard deviation) of three independent 

experiments and a star indicates a significant difference according to t-test (p-value 

lower than 0.05). 

• Conclusion 

In ΔrsmD mutant strain, we were able to show that canonical translation was 

higher than in the wild type. However, under heat stress, translation was impacted in 

both strains and the effects were more severe in the mutant (Figure 28). Moreover, 

lack of modification did not impact programmed frameshifting (Figure 29) or 

frameshifting in vitro (Figure 30). Those results are in contrast with previous studies 

that showed that canonical translation in ΔrsmD was similar than in the wild type and 

that +1 and -1 frameshifting rates were lower in the mutant (Arora et al., 2013b). 
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3.5. Absence of m6 
21518 and m6

21519 increases frameshifting errors 

a. Lack of RsmA induces a cold sensitivity 

The wild type and ΔrsmA mutant strain grew similarly, indeed they exhibited 

similar growth rates when cultured in M9 glucose at 30°C (0.58 +/-0.04 h-1 for the wild 

type and 0.54 +/- 0.05 h-1 for ΔrsmA). 

  We also analysed growth of ΔrsmA::kan in competition with the wild type 

MG6416 and its adaptation to stresses (Figure 31). No difference was observed 

between bacterial loads of MG6416 or ΔrsmA::kan when grown together (bottom 

panel, lane 1). About adaptation to stresses, ΔrsmA::kan showed similar behaviour 

than the wild type, except after growth at 16°C. Indeed, ΔrsmA::kan bacterial load 

was reduced of 1 log at 16°C and this effect is more significant when cells from co-

culture were plated. Thus, we can conclude that ΔrsmA::kan is more sensitive to cold 

stress, which is in agreement with previous studies (Connolly et al., 2008).  

 

Figure 31: Adaptation of MG6416 and ΔrsmA::kan to various conditions. Spots of 10-

fold serial dilutions of cells grown in single (top panels) or co-cultures (bottom panels) 

for 24h. M9–Glc plates were incubated at different temperatures (30°C, 43°C for 24h or 

16°C for 48h), plates containing either plumbagin (0,2mM; Ox-P) or NaCl (0,5M; NaCl) 

were incubated at 30°C during 24h. 
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b. Translation is more efficient in ΔrsmA 

 

Figure 32: Effect of the lack of methylations m6
21518 and m6

21519 on translation of a 

canonical and a leaderless lacZ reporter. A. Decoding centre, the dashed box indicates 

the localization of m6
21518 and m6

21519 methylated by RsmA (adapted from Fischer et 

al., 2015). β-Galactosidase assays in MG6416 (light blue) and ΔrsmA 6417 (orange) 

transformed with pF38lacZSD (B) or with pF45lacZLL (C). Different conditions were 

applied for 1h30 to the cultures: 30°C (control condition), 0.5 M NaCl, 10 mM H2O2, 

43°C or 20 °C. The average (+/- standard deviation) of three independent experiments 

is represented. The star above the values indicates a significant difference according to 

t-test (p-value lower than 0.05). 

 

In every condition, ΔrsmA 6417 exhibited higher levels of translation of 

canonical lacZ mRNA compared to the wild type strain (Figure 32. B). First, under 

control conditions (30°C), β-Galactosidase activity was higher in ΔrsmA 6417 than in 

the wild type (5172 +/- 780 Miller Units in wild type and 8926 +/- 1938 in ΔrsmA 

6417). So the modifications added by RsmA inhibit canonical translation in those 

conditions  
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Translation of both strains was impacted after an osmotic stress (NaCl): β-

Galactosidase activities reached 582 +/- 154 and 1868 +/- 547 Miller Units 

respectively for wild type and ΔrsmA 6417. Cold stress (20°C) also reduced 

translation of both strains (12932 +/- 52 Miller Units in wild type and 2280 +/- 536 in 

ΔrsmA 6417). However, after a heat shock at 43°C, both strains had similar β-

Galactosidase activity than at 37°C (5087 +/- 972 Miller Units in wild type and 7493 

+/- 1144 in ΔrsmA 6417). In addition, while translation of the wild type dramatically 

reduced after H2O2 oxidative stress, translation in the mutant strain was not affected 

and showed similar activity than in control condition (1202 +/- 171 Miller Units in wild 

type and 8084 +/- 2441 Miller Units in ΔrsmA 6417). Absence of methylations 

m6
21518 and m6

21519 has a positive effect on translation after exposure to stresses, 

especially after oxidative stress. 

 

Concerning translation of leaderless lacZ mRNA (Figure 32. C), levels of β-

Galactosidase activity in the two strains were similar at 37°C (133 +/- 35 Miller Units 

in wild type and 124 +/- 34 in ΔrsmA 6417). Their levels reduced after osmotic stress 

(NaCl) (16 +/- 14 Miller Units in wild type versus 38 +/- 28 in ΔrsmA 6417), at 43°C 

(32 +/- 21 Miller Units in wild type and 15 +/- 3 in ΔrsmA 6417) or 20°C (22 +/- 11 

Miller Units in wild type and 19 +/- 19 in ΔrsmA 6417) and no difference were 

detected. Exposure to H2O2 did not affect translation significantly in ΔrsmA 6417 

while β-Galactosidase activity in the wild type decreased a lot (46 +/- 6 Miller Units in 

wild type versus 86 +/- 13 in ΔrsmA 6417). Methylations m6
21518 and m6

21519 do 

not have an effect on translation of leaderless mRNAs except after oxidative stress in 

which condition their absence is stimulatory. 
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c. Lack of RsmA has an impact on frame maintenance 

When transformed with pB01, wild type and ΔrsmA showed similar levels of 

GFP and mCherry fluorescence in all conditions (not shown). 

 

Figure 33: Effect of the lack of m6
21518 and m6

21519 on (A) prfB and (B) dnaX 

dependent frameshifting in vivo. Ratios of fluorescence of GFP/mCherry in MG1655 

(light blue) and ΔrsmA (orange) transformed with pB14prfB (A) and pB11dnaX (B). 

Cells were grown until OD600=0.5 and were then submitted to various conditions for 20 

min: 37°C (control conditions), 0.3 M NaCl, 10 mM H2O2, 45°C, 16°C. Values represent 

the average (+/- standard deviation) of three independent experiments and a star 

indicates a significant difference according to t-test (p-value lower than 0.05). 

 

 Figure 33.A depicts fluorescence ratios in the wild type and in ΔrsmA 

transformed with pB14prfB. At 37°C  ΔrsmA exhibited lower ratios than in the wild 

type (0.81 +/- 0.08 in wild type and 0.61 +/- 0.05 in ΔrsmA), similar results were 

observed after NaCl addition (0.71 +/- 0.03 in wild type and 0.56 +/- 0.02 in ΔrsmA). 

Hence, lack of RsmA reduces prfB +1 frameshifting. In contrast, compared to the wild 

type at 37°C, ΔrsmA harboured a slightly but significantly higher GFP/mCherry ratio 

when transformed with pB11dnaX (0.14 +/- 0.004 in wild type and 0.15 +/- 0.001 in 

ΔrsmA) (Figure 33.B). 
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Figure 34: In vitro translation with ribosomes purified from MG1655 and ΔrsmA. A. 

Translation of three different RNA reporters gfp0 (light grey), gfp+1 (grey), gfp-1 (dark 

grey) by ribosomes from MG1655 (MG) and ΔrsmA. B. Table of frameshifting rates 

calculated from values obtained via in vitro translation: Rate +1 = (translation of 

gfp+1)/(translation of gfp0); and Rate -1 = (translation of gfp-1)/(translation of gfp0). 

Values represent the average (+/- standard deviation) of three independent 

experiments and a star or values in bold indicate a significant difference according to t-

test (p-value lower than 0.05). 

 

In vitro, ribosomes lacking modifications m6
21518 and m6

21519 translated gfp0 

canonical reporter as efficiently as wild type ribosomes: 0.145+/-15 and 0.183+/-22  

AFU respectively (Figure 34.A). No difference in +1 frameshifting rate was detected 

but the rate of -1 frameshifting significantly increased with ribosomes purified from 

the mutant strain (Figure 34.B). 
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• Conclusion 

Lack of RsmA leads to higher level of canonical translation compared to the 

wild type in our conditions (Figure 32). Nevertheless, previous studies did not detect 

differences in canonical translation between the mutant and the wild type (O’Connor 

et al., 1997, van Buul et al., 1984). Translation in ΔrsmA mutant strain is not affected 

by oxidative stress or heat stress. Modifications m6
21518 and m6

21519 seem to 

influence frameshifting: in the mutant strain, levels of prfB frameshifting were lower 

while dnaX frameshifting increased (Figure 33) and, in vitro, ribosomes lacking those 

dimethylations exhibited higher rates of -1 frameshifting but similar rates for +1 

frameshifting (Figure 34).   
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3.6. Lack of base methylation m4Cm1402 has strong effects on translation 

a. Absence of RsmH does not alter growth but impairs fitness 

Lack of RsmH does not impact growth: when cultured in M9 glucose at 30°C, 

ΔrsmH had a growth rate of 0.56+/-0.05 h-1 similar of that of the wild type (0.58 +/-

0.04 h-1).  

The ability of ΔrsmH to compete with the wild type and adapt to various 

stresses was also studied. Concerning competitive growth of ΔrsmH::kan versus 

MG6416, ΔrsmH::kan exhibited a drastic reduction of the bacterial load following the 

co-culture (Figure 35, bottom panel). Adaptation of ΔrsmH::kan was also extremely 

challenged after the co-culture. However, when grown as a single culture, 

ΔrsmH::kan was able to efficiently adapt to various stressful conditions (43°C, 

Plumbagin, NaCl) but exhibited a reduction of the bacterial load of 1 to 2 log at 16°C 

compared to MG6416. Thus, ΔrsmH has a fitness deficiency and is cold sensitive.  

 

Figure 35: Adaptation of MG6416 and ΔrsmH::kan to various conditions. Spots of 10-

fold serial dilutions of cells grown in single (top panels) or co-cultures (bottom panels) 

for 24h. M9–Glc plates were incubated at different temperatures (30°C, 43°C for 24h or 

16°C for 48h), plates containing either plumbagin (0,2mM; Ox-P) or NaCl (0,5M; NaCl) 

were incubated at 30°C during 24h. 
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b. Lack of RsmH impacts strongly translation and ribosomal frameshifting in vitro 

 

Figure 36: Fluorescence of GFP and mCherry produced from pB01 plasmid. A. GFP 

fluorescence normalized by OD600 of MG1655 (dark green) and ΔrsmH (light green). B. 

mCherry fluorescence normalized by OD600 of MG1655 (dark red) and ΔrsmH (pink). C. 

Ratios of GFP/mCherry in MG1655 (light blue) and ΔrsmH (green). Cells were grown 

until OD600=0.5 and were then submitted to various conditions for 20 min: 37°C (control 

condition), 0.3 M NaCl, 10 mM H2O2, 45°C or 16°C. Values represent the average (+/- 

standard deviation) of three independent experiments and a star indicates a significant 

difference according to t-test (p-value lower than 0.05). 

 

As we can see in Figure 36, mCherry and GFP expression from pB01 in 

ΔrsmH mutant were different than in the wild type (Figure 36.A and B). Indeed, the 

mutant exhibited higher levels of fluorescence of both proteins: for instance, when 

cells were cultured at 37°C, values of GFP/OD600 reached 1572+/-31 GFPRLU in 

ΔrsmH and 1112+/-187 in MG1655 while values of mCherry/OD600 were about 

16670+/-1625 mCRLU and 9562+/-990 mCRLU in ΔrsmH and the wild type 

respectively. The difference was not proportional and led to lower ratios of 

GFP/mCherry in ΔrsmH (0.099+/-0.003) compared to the wild type ones (0.127+/-

0.006) (Figure 36.C). This interval between fluorescence ratios in ΔrsmH and 

MG1655 was also observed when the strains were transformed with pB14prfB and 

pB11dnaX (Figure 37). 
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Figure 37: Effect of the lack of base methylation m4Cm1402 on prfB and dnaX 

dependent frameshifting in vivo. Ratios of GFP/mCherry fluorescence in MG1655 (light 

blue) and ΔrsmH (green) transformed with pB14prfB (A) and pB11dnaX (B). Cells were 

grown until OD600=0.5 and were then submitted to various conditions for 20 min: 37°C 

(control conditions), 0.3 M NaCl, 10 mM H2O2, 45°C, 16°C. Values represent the 

average (+/- standard deviation) of three independent experiments and a star indicates 

a significant difference according to t-test (p-value lower than 0.05). 

 

Concerning prfB and dnaX frameshifting, ΔrsmH exhibited lower GFP/mCherry 

ratios than the wild type for both reporters (Figure 37). Nevertheless, as ratios were 

different also for pB01 control plasmid, it is hard to conclude on effect on the mutation 

on frameshifting. It is rather due to the artefact observed with the control.  

 

The dual fluorescent system seems not to be adapted to analyse the effects of 

the methylation added by RsmH. However, in vitro translation can bring some 

information.  
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Figure 38: In vitro translation with ribosomes purified from MG1655 and ΔrsmH. A. 

Translation of three different RNA reporters gfp0 (light grey), gfp+1 (grey), gfp-1 (dark 

grey) by ribosomes from MG1655 (MG) and ΔrsmH. B. Table of frameshifting rates 

calculated from values obtained via in vitro translation: Rate +1 = (translation of 

gfp+1)/(translation of gfp0); and Rate -1 = (translation of gfp-1)/(translation of gfp0). 

Values represent the average (+/- standard deviation) of three independent 

experiments and a star indicates a significant difference according to t-test (p-value 

lower than 0.05). 

 

 Ribosomes purified from ΔrsmH showed a lower level of translation of gfp0 

canonical reporter (110+/-8  AFU) compared with wild type ribosomes (183+/-22  

AFU) (Figure 38.A). In addition, +1 and -1 frameshifting rates were higher with 

ribosomes from ΔrsmH compared to wild type ribosomes (Figure 29.B). 

 

• Conclusion 

Translation in ΔrsmH is strongly affected. In vivo, it seemed that translation 

was higher in ΔrsmH than in the wild type strain whereas in vitro, ribosomes purified 

from the mutant were less efficient than wild type ones (Figure 38). However, Kimura 

and Suzuki (2010) did not detect differences in canonical translation in vivo. It was 

not possible to assess frameshifting in vivo, but in vitro assays showed that +1 and -1 

frameshifting is more important with ribosomes lacking the methylation added by 

RsmH.  
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4. Discussion 

In this work, we focused on the six methylations located within the decoding 

centre of Escherichia coli catalysed by the methyltransferases RsmA, RsmB, RsmD, 

RsmE and RsmH. Those methylations appear to modulate the structure of this 

functional region of the ribosome by creating stacking and hydrophobic interactions. 

The network that methylations form is thought to influence mRNA interactions with 

the 16S rRNA, tRNA-16S interactions and interactions with initiation and elongation 

factors. Therefore, those modifications could influence docking of the mRNA, tRNA 

binding or codon-anticodon interactions and decoding. They could also affect 

functional activities of the ribosome such as accurate initiation, fidelity and efficiency. 

Moreover, most of the modifications within the decoding centre are conserved 

between bacteria and even archaea and eukaryotes (Sergiev et al., 2018). This 

evolutionary conservation tends to highlight an important role of those methylations. 

However little is known about their physiological function and how they could help 

bacteria to cope with conditions they have to face constantly. Data showing some 

variations of expression and protein abundance of those methyltransferases during 

stressful conditions are very rare. But such variations, and potential changes in the 

global level of modifications within the ribosome, could implicate ribosomal 

modifications in translational regulation of stress response. Thus, we focused on 

methylations located in the decoding centre and aimed to evaluate different aspects 

related to stress sensitivity and ribosomal activity. 

 

Methyltransferases are dispensable for growth and fitness 

First, we successfully generated E. coli mutant strains with single knockouts of 

the methyltransferase of interest (ΔrsmA, ΔrsmB, ΔrsmD, ΔrsmE and ΔrsmH). This 

reflects that methyltransferases are not essential for cell viability. In addition, the lack 

of one methylation does not influence growth in minimal medium. Moreover, ΔrsmA, 

ΔrsmB, ΔrsmD and ΔrsmE mutants are able to efficiently compete with the wild type 

when grown together. Nevertheless, ΔrsmH mutant has a deficiency in competitive 

growth, emphasizing the potential importance of this methylation. Thus, taken one by 

one, those modifications are not essential for bacteria viability or fitness.  

Some studies pointed out the role of some methyltransferases (RsmA, RsmB 

and RsmH) as checkpoint in ribosome biogenesis due to their activity on precursor of 
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the 30S subunit (Connolly et al., 2008). According to such point of view, we could 

expect a phenotypic impact as it has been shown for other enzymes implicated in 

ribosome biosynthesis (Boehringer et al., 2012; Bunner et al., 2010; Davis and 

Williamson, 2017). Moreover, in such mutants, immature and inactive subunits tend 

to accumulate. We did not detect such accumulation of free 30S and 50S during 

ribosome purification. As a consequence, we could assume that lack of one 

methyltransferase does not have such an impact on ribosome maturation under the 

growth conditions we used. 

 

Lack of methyltransferases impacts canonical translation 

Then, we addressed the question of the ribosome efficiency in translation 

when they lack one methylation. To do so, we generated several tools to analyse 

canonical translation either in vitro or in vivo. In vivo, we used two reporters (β-

galactosidase and GFP) to assess canonical translation in the mutants and the wild 

type.  

β-galactosidase was produced from a canonical lacZ gene of which, 

transcription was inducible. After 1h30 induction of reporter transcription, we detected 

significant differences in translation. At 30°C, mutant strains ΔrsmA, ΔrsmB and 

ΔrsmD have higher levels of translation than the wild type while translation in ΔrsmE 

is slightly lower. Thus, in this condition, methylation m3U1498 permits a better 

efficiency of the ribosomes in translation. On the contrary, methylations catalysed by 

RsmA, RsmB and RsmD seem to reduce translation efficiency. However, previous 

studies did not detect any difference in canonical translation of the mutants ΔrsmA, 

ΔrsmB and ΔrsmD compared to the wild type (Arora et al., 2013b, O’Connor et al., 

1997). Interestingly, they used different strains and growth conditions: cultures were 

made in LB, at 37°C and IPTG was used to induce the transcription of their reporter. 

The growth conditions we used to perform β-galactosidase assays were more 

constraining for the cells. Indeed, in our experiment, cells were cultured in minimal 

medium at 30°C and when they reached exponential phase, growth medium was 

changed for arabinose induction in order to purge glucose. As a consequence, 

bacteria had to adapt to the change of carbon source (arabinose versus glucose) 

thus other factors could also influence translation in those conditions and such effect 

would be added to the impact of lacking one methyltransferase. 
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Subsequently, we performed another assay of canonical translation, using the 

dual fluorescent reporter from pB01 plasmid. To measure fluorescence, bacteria 

were grown at 37°C until they reached exponential phase and fluorescent signals 

were detected directly in the culture avoiding any medium change. In those 

conditions, all strains exhibited similar levels of translation, except for ΔrsmH.  

Hence, the experimental conditions of those two assays were different and 

bacteria were not in the same metabolic state. In β-galactosidase assays, bacteria 

had to adapt to a different medium, leading to a lag phase during which cells were 

not dividing but redirecting their metabolism. We did not analyse whether lack of 

methylation could influence lag phase. To evaluate translation in actively growing 

cells, measurements were performed after 1h30 incubation. On the other hand, 

concerning fluorescence assays, cells were grown in the same medium, until 

exponential phase, so mutants and wild type were actively dividing at the same rates. 

Taken together, those variations between the experiments could explain the 

differences in translation observed with the two reporters. As a consequence, we can 

consider that methyltransferases could participate to metabolic changes in 

modulating translation.  

 

In vitro assays can give us information in a much simpler and controlled 

system. The Pure system for in vitro transcription/translation contains only the factors 

necessary for transcription (T7 polymerase, dNTPs...) and translation (IF, EF, RF, 

tRNAs, amino acids...). In this system, ribosomes are in excess and transcription and 

translation are not coupled. In fact, T7 RNA polymerase is highly active and 

overloads the translational machinery by running ahead of the translating ribosomes 

(Lopez et al., 1994). This phenomenon leaves part of mRNAs free of ribosomes and 

so they may fold in complex structures which could impact translation efficiency. 

Moreover if the defect of one methylation induces a slowdown of transcription, it 

could impact translational efficiency. We used a canonical gfp mRNA (derived from 

gfp from pB01) to measure translation performed by ribosomes lacking one 

methylation in comparison with wild type ones. Ribosomes purified from ΔrsmA, 

ΔrsmB, ΔrsmD and ΔrsmE show similar translational activity than wild type ones. 

However, ribosomes from ΔrsmH are about twice less efficient than wild type 
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ribosomes. Such results are similar to those obtained with the dual fluorescent 

reporter.  

 

In conclusion, in controlled environments, ribosomes lacking methylation do 

not impact translation with the exception of ΔrsmH ribosomes. Nevertheless, a 

metabolic switch has consequences on translation performed by ribosomes lacking 

one methylation. So it seems that lack of RsmA, RsmB or RsmD influences 

translation in conditions of metabolism challenge (such as medium change) while, in 

more favourable growth conditions, it does not impact translation. The methylations 

catalysed by methyltransferases RsmA, RsmB, RsmD are, in fact, modifications that 

negatively regulate the translation, or specifically modulate it.  

The methylations of the decoding centre form two different platforms: m5C967 

and m2G966 are involved in contact with tRNA (Burakovsky et al., 2012) while mRNA 

contacts m4Cm1402 and m3U1498 which form a hydrophobic network together with 

m6
2A1518 and m6

2A1519 (Figure 7) (Kimura and Suzuki, 2010, Fischer et al., 2015). 

As a consequence, we could expect that absence of one methylation would disturb 

interaction with the mRNA (deletion of RsmA, RsmE or RsmH) or with the tRNA 

(RsmB or RsmD) and so our results showing higher translation in some mutants 

could be surprising. In helix 31, methylation m2G966 forms interactions with the tRNA 

and m5C967 allows m2G966 correct orientation. Lack of either modification could 

have consequences on tRNA binding. They have been shown to facilitate initiation of 

translation in vitro, probably by promoting binding of the initiator tRNAfMet 

(Burakovsky et al., 2012). On the other hand ribosomes containing single mutations 

of G966 or C967 were considered as hyperactive (Saraiya et al., 2008). Taken 

together, those data are in accordance with our results: in vitro, translation tends to 

be lower with ribosomes lacking one of those methylations while in vivo we observed 

higher translation levels. Dimethylations m6
2A1518 and m6

2A1519 were shown to 

participate in the correct formation of helices 44 and 45 (Demirci et al., 2010). 

Lacking those dimethylations could then disrupt the structure of the decoding centre 

and the interactions with the mRNA which could make the ribosome more prone to 

translation with non-AUG initiation codons (O’Connor et al., 1997) or with non-

cognate initiator tRNA (Das et al., 2008). Methylation m3U1498 is located at the 

elbow between helices 44 and 45. Its absence seems more critical for translation 



 

 

89 

than lacking modifications of nucleotides A1518 and A1519. Indeed lack of m3U1498 

induces a faint decrease in the translation efficiency. We could hypothesize that 

lacking RsmE modification disrupts the network of hydrophobic interactions (formed 

with m4Cm1402, m6
2A1518 and m6

2A1519) and affects the stability of the mRNA 

binding and the accurate placement of the initiator tRNA  (Das et al., 2008; Fischer et 

al., 2015).  

 

Lack of methylation can improve translation under stressful conditions 

Subsequently, we studied the impact of methylations on canonical translation 

using the same reporters (β-galactosidase and dual fluorescent) under stressful 

conditions such as osmotic, oxidative, heat or cold stresses. Using those genetic 

tools, we investigated long term adaptation and immediate stress response. 

 

 Long term adaptation response 

When cells underwent a long exposure to stresses, we were able to see 

differences in translation. In fact, for β-galactosidase assays, the cultures were 

submitted to those stresses for 1h30 (during induction) and so allowing us to analyse 

the long term adaptation of the strains to those conditions. Interestingly, lack of 

different methylations had distinctive consequences on translation upon oxidative 

and heat stresses.  

Concerning heat stress, canonical translation in the strains ΔrsmB and ΔrsmD 

decreased compared to normal conditions and to the wild type strain. Consequently, 

methylations m5C967 and m2G966 (catalysed by RsmB and RsmD) are critical for 

canonical translation during heat stress. Concerning ΔrsmA, ΔrsmE and wild type, 

heat stress does not impact translation in those strains compared with levels at 30°C. 

As methylations are implied in maintaining RNA structure, we could suppose that 

such role is important at elevated temperature. Interestingly it seems that 

methylations of RsmB and RsmD are of particular relevance at this temperature. 

Absence of either RsmB or RsmD modification could impact the overall structure of 

the decoding centre and destabilize interactions with tRNA or translation factors 

leading to a decrease in translation. Heat stress induces erroneous dissociation of 

tRNA (Jiang et al., 2009) which could strengthen the structural effects due to lack of 

m5C967 and m2G966. Moreover, dissociation of tRNA results in empty A-site, 
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connecting heat stress response with stringent response (Harcum and Bentley, 

1999).  

Concerning oxidative stress, it negatively impacted canonical translation in 

every strain with the exception of ΔrsmA. Thus lack of m6
2A1518 and m6

2A1519 

makes the ribosomes more resistant to oxidative stress.  

Osmotic and cold stresses impacted all strains similarly, mutants and wild type 

which is consistent with previous studies (Brigotti et al., 2003; Dai et al., 2018; Zhang 

et al., 2018). 

 

 Immediate stress response 

We examined the immediate stress response 20 min after the application of 

stressful conditions (osmotic, oxidative, heat or cold stresses) using the dual 

fluorescent reporters system from pB01. In those conditions, translation is not 

impacted by the lack of methylation or by stresses, with the exception of heat and 

cold shock. In fact, the mutant and the wild type strains did not show any differences 

of fluorescence of mCherry or GFP synthesis. In all strains, osmotic and oxidative 

stresses did not impact translation while heat shock led to a reduction of both 

fluorescent proteins and cold shock induced higher levels of GFP and mCherry. At 

45°C, fluorescence levels of both proteins were lower and cells were growing. Thus 

we could suspect that the plasmid was unstable at this temperature leading to a 

dilution of GFP and mCherry among cell division. At the opposite, at 16°C, cells were 

not growing thus there was no such dilution.  

 

 Translation of leaderless mRNAs during stress 

Leaderless mRNAs have been described being more abundant after stresses 

(Moll and Engelberg-Kulka, 2012; Vesper et al., 2011). Using a leaderless version of 

lacZ, we were able to evaluate leaderless translation in the wild type and mutant 

strains in the same conditions as for described above β-galactosidase.  

At 30°C, all mutants were capable of translating leaderless lacZ at the same 

level as the wild type. Nevertheless, stresses impacted the wild type and the mutants 

in a different way. Indeed, after heat stress, leaderless translation reduced drastically 

in the wild type, as well as in strains ΔrsmA, ΔrsmB and ΔrsmD while it was not 

impacted in ΔrsmE. Translation of leaderless lacZ mRNA under oxidative stress was 
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dramatically affected in the wild type and ΔrsmE while in the other mutant strains it 

slightly reduced. The absence of RsmA, RsmB or RsmD led to similar results for both 

canonical and leaderless translation under oxidative or heat stress. However, in 

ΔrsmE mutant, lack of m3U1498 is not detrimental at 43°C for canonical translation 

but seems to confer an advantage in leaderless translation. 

 

Lack of methylation has distinctive impact on frameshifting 

Frameshifting was studied in different contexts. On the one hand, we used 

reporters of dnaX and prfB programmed frameshifting in vivo, leading to high rates of 

ribosomal shift. On the other hand we also used reporters of spontaneous 

frameshifting. In vivo, we could not detect fluorescent signals from the reporters of 

spontaneous frameshifting and so we tested such frameshifing in in vitro assays. 

Spontaneous frameshifting is a rather rare event (10-5 per codon) this is 

probably why we could not detect it in vivo. However, in vitro translation of frameshift 

reporters permitted to analyse this phenomenon. Indeed, the probability of a 

ribosomal frameshift is much higher in vitro: using wild type ribosomes, rates of 

frameshift increased up to one third when the ribosome moves to the second frame 

of translation (called +1) and 1/15 for a shift to the third frame (called -1). In those 

conditions, the -1 frameshift rate was less frequent than the +1 rate. Concerning -1 

rate, ribosomes purified from ΔrsmA and ΔrsmH were more prone to this error than 

wild type ribosomes. About frameshifting to the second frame (+1), ribosomes from 

ΔrsmE were less susceptible whereas ribosomes from ΔrsmB and ΔrsmH exhibited 

higher +1 rate. Ribosomes from ΔrsmD did not differ from the wild type ones. With 

the exception of ΔrsmE ribosomes, the ribosomes purified from the other mutant 

strains seem to be more prone to frameshifting errors.  

We used the signals of dnaX -1 dependant frameshifting to study how the 

absence of methylation could impact it. Compared to the wild type strain, dnaX 

frameshifting in ΔrsmD was similar while ΔrsmA, ΔrsmB had higher levels of -1 

programmed frameshifting and was higher in ΔrsmE.  

Concerning prfB programmed frameshifting, we only detected difference in 

ΔrsmA in which prfB frameshifting was lower. Taken together, those two experiments 

seem to show that ΔrsmA, ΔrsmB, and ΔrsmH are generally more error-prone than 
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the wild type, whereas ribosomes lacking m3U1498 (ΔrsmE) proceed translation with 

less error.  

  

Methyltransferases as ribosomal regulators? 

We demonstrated that absence of m6
2A1518 and m6

2A1519 (catalysed by 

RsmA) is not deleterious for the bacteria and can even be beneficial for translation at 

30°C as well as for long-term adaptation to oxidative and heat stresses. Concerning 

methylations m5C967 and m2G966, their lack induces higher levels of translation at 

30°C and after oxidative stress but this beneficial effect is lost after heat stress. 

Modification m5C967 is described as allowing correct orientation of m2G966 which is 

in contact with tRNA, this is in agreement with our results as ΔrsmB and ΔrsmD 

mutants exhibits very similar translation patterns. Interestingly, absence of RsmE 

modification, m3U1498, does not impact levels of translation but leads to a certain 

decrease of ribosomal frameshifting. Deletion of RsmH leads to a fitness deficiency, 

to lower translation levels and higher ribosomal frameshifting in vitro. Hence, this 

modification seems to be of particular importance for the bacteria. 

Thus, methylations of the decoding centre impact differently translation 

regarding the conditions. But can we consider methylations and methyltransferases 

as stress response modulators? Little is known about the overall level of methylations 

in the ribosome. We can suppose that there are subpopulations of undermodified 

ribosomes within the cell. Those ribosomes could bring advantages during specific 

stressfull conditions, but they would be present in very small proportions. Moreover, 

we lack information about the expression of methyltransferases during growth and 

stresses, since data concerning their expression came from global transcriptome 

analysis. Even if the expression of some methyltransferases changes upon stress, 

ribosomes fully modified or undermodified are already present. There are several 

possibilities, for instance if expression increases following exposure stress, (i) the 

methyltransferase acts on 30S precursor (like RsmA and RsmB) and thus can only 

modify neo-synthesized ribosomes, (ii) the methyltransferase acts on 30S subunit 

(like RsmD, RsmE and RsmH) and can modify all ribosomes, neo-synthesized and 

potential unmethylated ones. Moreover, so far, no bacterial demethylase of rRNA has 

been discovered therefore rRNA methylations are supposed to be permanent. 



 

 

93 

Hence, the system of rRNA modification can be considered as static but 

compensated by the degradation of ribosomes. 

In addition, we must take into account that various factors and not only the 

absence of methylations affect ribosomes during stress. We compared the effects of 

stresses between wild type and mutant strains, but we cannot exclude that 

methylations and stress factors act synergistically or in opposite ways on ribosome 

efficiency. The other actors of translation in vivo (tRNA, aminoacyl tRNA synthetases, 

initiation factors, elongation factors….) are also affected by stress. Therefore in vitro 

analysis appears as a solution to determine the impact of ribosome methylations, 

provided that all factors associated with ribosomes during stress are eliminated 

during ribosomes purification. In vivo, all those factors and their effects also influence 

the analysis of the effects of rsm mutations on translation under stressful conditions. 

Moreover, other systems can also impact translation in such conditions. This is 

particularly true for toxin-antitoxin modules that are induced by stress and can affect 

translation for instance with endoribonuclease toxins which degrade bulk mRNAs or 

redirect translation.  
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IV. Chapter II : Characterization of HicAB toxin-antitoxin 

system of Sinorhizobium meliloti 

1. Introduction 

Upon stressful conditions, TA modules are induced and the toxin can exert its 

deleterious actions. Toxins have many cellular targets, and, interestingly, the majority 

of type II TA systems impacts translation (Harms et al., 2018). Among those type II 

TA, the well-known MazF was shown to exert a crucial role during stress adaptation 

via generation of stress ribosomes depleted of the anti-SD sequence and of 

leaderless mRNAs specifically translated by this specific subpopulation of ribosomes 

(Vesper et al., 2011). Other toxins are mRNA interferases and affect translation by 

degrading bulk mRNAs. 

 A major problem in the study of TA modules resides in regulation of the toxin 

production. Indeed, as the toxin effect is buffered by the antitoxin, to overcome this 

antagonist effect, most studies analyse the toxin effect by overproducing it. However, 

such overproduction results in growth arrest: homeostasis is unbalanced too 

drastically leading to unfavourable conditions.  

Thus, the use of a heterologous toxin allows using mild conditions more 

compatible with physiological studies. As a consequence, we aimed to study the 

putative TA system HicAB of Sinorhizobium meliloti and we analysed it in Escherichia 

coli. We showed that HicAB of S. meliloti is a functional TA system, HicA is an 

RNAse and HicAB complex is affected by stress.  

 

2. HicAB study 

This work, named “Characterization of HicAB toxin-antitoxin module of 

Sinorhizobium meliloti” has been submitted to BMC Microbiology and is presented in 

this section. 
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V. Conclusion and perspectives  

 

To cope with environmental conditions, and particularly with stresses, bacteria 

have evolved many ways to adapt their physiology. Hence, stressful conditions 

influence transcription and translation to redirect bacterial metabolism quickly, for 

survival, and also for long-term adaptation.  

Translation is regulated in different ways, and, what is described the most, are 

mechanisms impeding translation (regulatory RNAs, riboswitches, attenuation…). We 

aimed to consider the ribosome itself as a regulation factor. Indeed, the ribosome is 

not an invariable entity and may vary in terms of rRNAs (from different operons), 

associated ribosomal proteins, post-translational modifications of ribosomal proteins, 

rRNAs modifications, stress ribosomes produced by MazF. Those variations lead to 

the production of heterogeneous ribosomes within the cell, and as a consequence of 

the existence of different ribosomal subpopulations.  

This work brings new insights since methylations affect ribosome efficiency 

and fidelity. Hence, it opens perspectives and new questions that must be solved in 

the future.  

 

Lack of methylation impacts translation 

We highlighted the impact of undermodified ribosomes, lacking methylations in 

the decoding centre, on translation during stress response. The main goals of this 

work were (i) to understand if those methylations could be involved in different 

translational aspects, such as translation of leaderless mRNAs (which could be 

generated by the stress-induced toxin MazF) or programmed and spontaneous 

frameshifting; and (ii) to evaluate the functional role of those methylations in 

physiological traits such as growth and fitness of the bacteria. To do so, our strategy 

was to examine these different aspects in deletion mutants of the methyltransferases 

RsmA, RsmB, RsmD, RsmE and RsmH catalysing base methylation in the decoding 

centre. Firstly, we had to develop genetic tools dedicated to evaluating canonical 

translation, leaderless mRNA translation and frameshifting. 

 Although those modifications of the decoding centre are highly conserved and 

implicated in key cellular processes, taken one by one, none of them are essential for 

growth and only one (m4Cm1402) affects fitness. In addition, surprisingly, absence of 
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some methylations can significantly impact translation. Indeed, we showed that lack 

of RsmA, RsmB or RsmD increases translation under some stressful conditions. 

Otherwise, in controlled environments, only lack of RsmH impacted translation. 

Those methylations also impact accuracy of translation: some rsm mutants exhibited 

higher levels of ribosomal frameshifting. So, we could consider that the lack of some 

methylations is beneficial for translation while inducing more ribosomal frameshifting. 

However other types of errors can occur during translation such as stop codon read-

through and missenses. We aimed to analyse these errors and to do so we 

generated genetic tools bearing a lacZ gene with single mutations in the coding 

sequence. 

 

Do levels of methylations generate subpopulation of ribosomes? 

A limitation in our study is the lack of data on quantification of each 16S rRNA 

methylation in the ribosomes. For instance, all studies consider that wild type 

ribosomes are fully and homogeneously methylated, so methylations levels are 

estimated relatively to wild type strain. It is important to estimate the absolute level of 

methylation. Our first results obtained using RT-PCR targeting the m3U1498 added 

by RsmE in wild type strain MG1655 highlighted that about 20 % of the ribosome are 

unmethylated in exponential phase (data not shown). Unfortunately this method 

could not be applied to the other methylations. Other methods must be undertaken, 

like single cell in situ hybridization (Ranasinghe et al., 2018). This method could be 

used with low amounts of bacteria in opposition to biochemical methods that need a 

high amount of cells and are not compatible with kinetic studies of various mutants 

under different growth conditions. 

 

Other ribosome associated factors have to be considered in under 

methylated ribosomes. 

Various proteins can affect ribosome activity under stress (RMF, Hpf, RaiA…) 

it is not known how they influence unmethylated ribosomes. This point must be 

studied in the future with purified ribosomes from rsm mutants. Other factors could 

affect ribosome biogenesis under stress, so the newly formed ribosomes begin to 

work after a lag time after stress. In vivo these ribosomes are in lower amount 

compared to pre-existing ribosomes so their influence is difficult to extract from a high 
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background of pre-existing ribosomes. In our in vitro study we used the total fraction 

of ribosomes, thus containing mainly ribosomes produced before stress. We plan to 

isolate ribosomes neo-synthesized after stress from the bulk and to analyse in vitro if 

they have a different behaviour compared to ribosomes produced before stress. The 

genetic tools have been constructed and tested: they use a plasmid bearing rpsT 

gene with a tag, able to repress the synthesis of chromosomal untagged rpsT gene. 

Its induction simultaneously to stresses allows isolation of neo-synthesized 

ribosomes which could be used for in vitro study.  

 

Does the absence of methyltransferases impact maturation of the 

ribosome? 

Some methylations of the 16S rRNA are added during its maturation, so it is 

important to determine if lacking methyltransferases could result in accumulation of 

30S precursors. To do so, it would be possible to use MG1655 derivative strain 6006 

and isogenic rsm mutants to purify heat-accumulated 21S particles produced during 

the lag phase of growth recovery after a heat stress. Accumulation of 21S particles is 

related to the mobilization of DnaK for folding heat induced mis-folded proteins (René 

and Alix, 2010). The strain 6006 leads to the production of two tagged ribosomal 

proteins that are assembled in the 16S rRNA in early steps during maturation for one 

and late steps for the second one. This system allows a differential purification of 

premature particles. The ribosome profiles from 6006 strain and isogenic rsm 

mutants would have to be examined to know if pre-particles accumulate or not. Then 

it would be possible to purify such premature particles and analyse them in terms of 

associated ribosomal proteins and 16S maturation. 

 

Lack of methylation and trans-translation 

Using a heterologous TA system, such as S. meliloti HicAB in E. coli, we could 

induce controlled mRNA cleavage under mild conditions more compatible with 

physiological studies. This cleavage induces stalling of the ribosomes on cleaved 

mRNAs and ribosomes must be rescued by trans-translation or by ArfA/ArfB. We 

plan to use S. meliloti HicAB to study the response of rsm mutants to mRNA 

cleavage. Moreover, their trans-translation activity also has to be evaluated. To do 

so, we already generated genetic tools with a modified tmRNA. Its messenger region, 
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coding for a proteolytic tag, was replaced by a hexamer of histidines to allow 

purification of trans-translated proteins.  

 

 

The last (but not least) perspective of this work is the use of all the constructed 

genetic tools allowing  the evaluation of leaderless mRNAs translation, frameshifting 

and trans-translation in other studies connected with the modulation or inhibition of 

translation, e.g. antimicrobial agents targeting translation and trans-translation.  
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Résumé étendu 

 

 

L'expression génétique peut être décrite comme l’ensemble des processus 

menant à la production des supports fonctionnels des gènes (qui peuvent être des 

protéines ou de l'ARN non codant). Elle se compose de la transcription d'un gène en 

un ARN messager (ARNm) qui est ensuite traduit en une protéine. Le processus de 

traduction est réalisé par une machinerie cellulaire complexe appelée ribosome. Le 

ribosome bactérien est un complexe ribonucléoprotéique asymétrique. Il se compose 

d’environ un tiers de protéines ribosomales (r-protéines) et de deux tiers d’ARN 

ribosomaux (ARNr). Le ribosome contient deux sous-unités un petite de 30S et une 

grande de 50S qui forment ensemble le complexe 70S. L'activité catalytique du 

ribosome est due aux composants de l'ARN, le ribosome est donc un ribozyme. En 

outre, les deux sous-unités ont des activités différentes. La petite sous-unité est 

responsable de la liaison de l'ARNm et du décodage du code génétique tandis que la 

sous-unité 50S est capable de former une liaison peptidique entre le peptide naissant 

et l'acide aminé entrant. Ces deux réactions sont effectuées par le ribosome avec 

l’aide des ARN de transfert (ARNt). Les ARNt sont chargés avec l’acide aminé 

correspondant et peuvent être considérés comme les substrats du ribosome qui 

fournissent les acides aminés. Il existe trois sites de liaison de l'ARNt sur le 

ribosome : le site A où l'ARNt chargé se lie et est décodé dans le centre de 

décodage, le site P qui contient l'ARNt portant la chaîne polypeptidique et le site E 

pour la sortie de l'ARNt non chargé.  

 

Même s’il a longtemps été considéré comme une particule invariable du fait de 

son rôle central, il est désormais admis que la composition du ribosome peut 

changer. En effet, des variations peuvent exister au niveau des ARNr utilisés (il 

existe différents opérons codants les ARNr chez Escherichia coli), de la composition 

en protéines ribosomales et des facteurs associés mais aussi au niveau des 

modifications de tous ces composants. Les ARNr contiennent différents types de 

modifications par exemple des pseudouridylations et des méthylations.  

 



 

 

Dans ce travail, nous avons étudié les six méthylations situées dans le centre 

de décodage du ribosome d'Escherichia coli, qui sont catalysées par les 

méthyltransférases RsmA, RsmB, RsmD, RsmE et RsmH. Ces méthylations 

semblent moduler la structure de cette région fonctionnelle du ribosome en créant un 

encombrement stérique et des interactions hydrophobes. Il est donc probable que le 

réseau formé par les méthylations influence les interactions entre l'ARNm et l'ARNr 

16S, l’ARNt et l'ARNr 16S et les interactions avec les facteurs d'initiation et 

d’élongation de la traduction. Par conséquent, ces modifications pourraient influencer 

l'ancrage de l'ARNm, la liaison de l'ARNt ou les interactions codon-anticodon et donc 

le décodage. Cela pourrait également affecter les activités fonctionnelles du 

ribosome telles que l'initiation, la fidélité et l'efficacité de la traduction. De plus, la 

plupart des modifications du centre de décodage sont conservées chez les bactéries 

(et même chez les Archaea et les eucaryotes pour certaines). Cette conservation 

évolutive tend à mettre en évidence un rôle important de ces méthylations. 

Cependant, à ce jour, peu de choses sont connues sur leur fonction physiologique et 

sur leur potentiel rôle dans la réponse des bactéries à des conditions 

environnementales en constante évolution. Les données montrant certaines 

variations de l'expression et de l'abondance protéique de ces méthyltransférases 

dans des conditions de stress sont rares. Mais de telles variations, ainsi que les 

changements potentiels dans le niveau global des modifications au sein du 

ribosome, pourraient impliquer les modifications ribosomiques dans la régulation 

traductionnelle de la réponse au stress. Ainsi, nous nous sommes concentrés sur les 

méthylations du centre de décodage et avons cherché à évaluer différents aspects 

liés à la sensibilité au stress et à l'activité ribosomique. 

 

Nous avons étudié le phénotype de souches mutantes arborant un gène de 

méthyltransférase délété : ΔrsmA, ΔrsmB, ΔrsmD, ΔrsmE et ΔrsmH. Nous avons 

ainsi pu établir que l’absence de ces modifications n’est pas essentielle aussi bien 

pour la croissance, la survie ou la compétition avec la souche sauvage, excepté pour 

la souche ΔrsmH qui montre un défaut de compétition.  

Par la suite, la traduction de ces souches mutantes a été étudiée en 

conditions stressantes ou non. Pour cela, différents rapporteurs ont été utilisés : un 

rapporteur lacZ canonique, inductible à l’arabinose, ainsi qu’un rapporteur 



 

 

fluorescent arborant les gènes de la gfp et de la mcherry exprimés de manière 

constitutive. Nous avons ainsi démontré que l’absence de certaines modifications 

(celles catalysées par RsmA, RsmB, RsmD) augmente le taux de traduction en 

condition non stressante, tandis que les souches délétées de RsmE et RsmH ont un 

taux similaire à celui de la souche sauvage. De plus, l’application de stress a 

différents effets en fonction des souches et des conditions : la traduction de la 

souche ΔrsmA n’est pas affectée par un stress oxydant tandis qu’elle diminue 

fortement dans la souche sauvage (et dans les autres souches mutantes), en 

condition de stress chaud, les souches ΔrsmB et ΔrsmD montrent une forte 

diminution de la traduction alors que ce n’est pas le cas dans les autres souches. On 

peut donc supposer que des ribosomes différemment modifiés peuvent jouer un rôle 

bénéfique lors de la réponse au stress.  

Par ailleurs, afin de mieux caractériser l’impact de l’absence de méthylations 

sur la traduction, nous avons également étudié les erreurs traductionnelles (décalage 

du cadre de lecture) dans les souches mutantes. Pour se faire, nous avons utilisé le 

double rapporteur fluorescent permettant la traduction canonique de la Mcherry alors 

que la traduction de la GFP dépend d’un événement de décalage du cadre de 

lecture. Ceci a permis de montrer que certaines souches, ΔrsmA, ΔrsmB et ΔrsmH, 

ont tendance à faire plus d’erreur que la souche sauvage tandis que ΔrsmD et 

ΔrsmE ont un taux d’erreur identique ou inférieur. Ainsi les méthylations ont un 

impact sur la traduction et les effets observés en condition de stress ou sur le taux 

d’erreur sont spécifiques à chaque méthylation.   

 

 

Dans une deuxième partie, le travail de caractérisation du système toxine-

antitoxine HicAB de Sinorhizobium meliloti est présenté. Les systèmes toxine-

antitoxine sont de petites unités génétiques généralement composées de deux 

gènes codant l'antitoxine et la toxine. Ces systèmes sont impliqués dans de 

nombreuses fonctions qui peuvent entraîner l'arrêt de la croissance et la mort 

cellulaire. Parmi les différents types de systèmes toxine-antitoxine, le type II regroupe 

les systèmes où l'antitoxine se lie directement à l’antitoxine et inhibe son action. 

Parmi ces systèmes de type II, le module HicAB est largement distribué chez les 

bactéries et les Archaea. La toxine HicA fonctionne en se liant à l’ARN et en le 



 

 

clivant. Le génome de la bactérie symbiotique Sinorhizobium meliloti code de 

nombreux systèmes toxine-antitoxine et seuls quelques-uns d'entre eux sont 

fonctionnels. Dans cette étude, nous avons caractérisé le module toxine-antitoxine 

HicAB de S. meliloti. La production de HicA de S. meliloti dans les cellules 

d'Escherichia coli inhibe la croissance et diminue la viabilité cellulaire. Nous avons 

montré que l'expression de HicB de S. meliloti neutralise la toxicité de HicA. Les 

résultats d'expériences de dosages doubles hybrides et  de co-purification ont permis 

de démontrer l'interaction de HicB avec la toxine HicA. De plus, HicA est capable de 

dégrader l'ARN ribosomal in vitro, mais pas le complexe HicAB. L'analyse des 

domaines séparés de la protéine HicB a permis de définir l'activité antitoxine et le 

domaine de liaison à l'opérateur. Ceci a mis en évidence la première caractérisation 

du système HicAB de S. meliloti avec HicA, une toxine à activité ribonucléase et HicB 

une antitoxine comprenant deux domaines : le COOH-terminal qui lie l'opérateur et le 

NH2-terminal qui inhibe la toxine. 

 

 

 



 

 

 

 

 

Titre : Stress et traduction : implication des méthylations de l’ARNr 16S chez Escherichia coli et  

                 caractérisation d’un système toxine-antitoxine de Sinorhizobium meliloti 
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Résumé : Les bactéries sont capables de vivre dans 
une grande variété d'environnements différents et sont 
confrontées à des conditions en constante évolution. Par 
conséquent, elles doivent rapidement adapter leur 
métabolisme en utilisant différentes régulations aux 
niveaux transcriptionnel et traductionnel. Ces régulations 
sont largement étudiées et bien caractérisées. Cependant, 
les implications du ribosome sur la modulation de la 
traduction au cours de la réponse aux stress commencent 
à être explorées. Dans ce contexte de régulation 
ribosomique, l'hétérogénéité de la machinerie pourrait 
jouer un rôle important. En effet, le ribosome n'est pas une 
particule invariable et ses composants (ARNr, protéines 
ribosomiques) et leurs modifications peuvent varier. Les 
modifications des ARNr sont situées dans les sites 
fonctionnels du ribosome et sont particulièrement 
conservées, ce qui sous-entend leur potentielle 
importance. 

Cependant, leur rôle physiologique n'est pas toujours 
bien défini. Nous nous sommes intéressés aux 
méthylations de l'ARNr 16S et avons étudié leur rôle 
dans la traduction, dans des conditions favorables et 
stressantes. Nous avons démontré que l'absence de 
certaines méthylations augmente la traduction dans des 
conditions stressantes et non stressantes. Ainsi, les 
ribosomes modifiés peuvent jouer un rôle bénéfique lors 
de la réponse au stress. Une autre façon d'agir sur la 
traduction dans des conditions stressantes consiste à 
cibler les ARNm. C'est notamment le cas des toxines 
endoribonucléases qui sont spécifiquement produites lors 
de conditions stressantes. Ainsi, nous avons caractérisé 
le système toxine-antitoxine HicAB de Sinorhizobium 

meliloti. Nous prévoyons d’utiliser la toxine HicA afin 
d’étudier la réponse à son activité endoribonucléase chez 
les mutants ne possédant pas certaines modifications 
ribosomiques.  

 

Title: Stress and translation: implication of 16S rRNA methylations in Escherichia coli and  

                 characterization of a toxin-antitoxin system of Sinorhizobium meliloti 

Keywords: stress, translation, ribosome, methylation 

Abstract: 
Bacteria are able to live in a large variety of environments 

and they face constantly changing conditions. Therefore 
they have to adapt quickly to their metabolism using 
different regulations at the transcriptional and translational 
levels. Those types of regulation are extensively studied 
and well characterized. However, the implications of the 
ribosome in modulation of translation during stress 
response remains poorly understood. In this context of 
ribosomal regulation, the heterogeneity of the machinery 
could play a relevant role. Indeed, the ribosome is not an 
invariable particle and its components (rRNAs, r-proteins) 
and their modifications may vary. Modifications of 
ribosomal RNAs are clustered in the functional sites of the 
ribosome and are particularly conserved, underlying their 
potential importance.    

 
However their physiological role is still unclear. We 
focused on methylations of the 16S rRNA and 
investigated their role in translation under favourable and 
stressful conditions. We successfully demonstrated that 
lack of some methylations increases translation under 
stressful and non stressful conditions. So, lack of 
methylation may give an advantage to ribosomes during 
stress response. Another way to act on translation under 
stressful conditions resides in targeting mRNAs. This is 
particularly the case for endoribonuclease toxins that are 
specifically produced during detrimental conditions. Thus, 
we characterized S. meliloti toxin-antitoxin system HicAB. 
We plan to use it in order to study the response to HicA 
toxin of mutants lacking some ribosomal modifications.   
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