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Abstract

Steerable wheeled mobile robots (SWMR) gain mobility by employing fully steer-
able conventional wheels, having two active joints, one for steering, and another for
driving. Despite having only one degree of mobility (DOM) (defined here as the
instantaneously accessible degrees of freedom DOF), corresponding to the rotation
about the instantaneous center of rotation (ICR), such robots can perform complex
2D planar trajectories. They are cheaper and have higher load carrying capacity than
non-conventional wheels (e.g., Sweedish or Omni-directional), and as such preferred
for industrial applications. However, this type of mobile robot structure presents
challenging basic control issues of steering coordination to avoid actuator fighting,
avoiding kinematic (ICR at the steering joint axis) and representation (from the
mathematical model) singularities. In addition to solving the basic control problems,
this thesis also focuses attention and presents solutions to application level problems.
Specifically we deal with two problems: the first is the necessity to "discontinuously"
reconfigure the steer joints, once discontinuity in the robot trajectory occurs. Such
situation - discontinuity in robot motion - is more likely to happen nowadays, in the
emerging field of human-robot collaboration. Mobile robots working in the vicinity of
fast moving human workers, will usually encounter discontinuity in the online com-
puted trajectory. The second appears in applications requiring that some heading
angle is to be maintained, some object or feature stays in the field of view (e.g., for
vision-based tasks), or the translation verse changes. Then, the ICR point is required
to move long distances from one extreme of the workspace to the other, usually pass-
ing by the robot geometric center, where the feasible robot velocity is limited. In these
application scenarios, the state-of-art ICR based controllers will lead to unsatisfac-
tory behavior/results. In this thesis, given a SWMR with maximum steering velocity
and acceleration bounds, an algorithmic controller is designed to allow following -
as faithfully as possible - a desired non-smooth (discontinuous), 3D Cartesian veloc-
ity trajectory assuming the no-slip, no-skid kinematic constraints are well respected,
while being robust against kinematic and representation singularities. Our findings
has been validated experimentally on an industrial mobile base.
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Résumé

Les robots mobiles orientables à roues gagnent en mobilité en utilisant des roues
conventionnelles entièrement orientables, ayant deux articulations actives, une pour
la direction et une autre pour la conduite. En dépit d’un seul degré de mobilité
(DOM) (défini ici comme les degrés de liberté instantanément accessibles DOF), cor-
respondant à la rotation autour du centre de rotation instantané (ICR), de tels robots
peuvent réaliser des trajectoires complexes 2D planaires. Ils sont moins chers et ont
une capacité de charge plus élevée que les roues non conventionnelles (par exemple
Sweedish ou Omni-directional), et sont donc préférés pour des applications indus-
trielles. Cependant, ce type de structure de robot mobile présente des problèmes de
contrôle de la coordination de la direction pour éviter la lutte contre les actionneurs,
en évitant les singularités cinématiques (ICR à l’axe de direction) et de représen-
tation (à partir du modèle mathématique). En plus de résoudre les problèmes de
contrôle basic, cette thèse concentre également l’attention et présente des solutions
aux problèmes de niveau d’application. En particulier, nous traitons de deux prob-
lèmes: le premier est la nécessité de reconfigurer "de façon discontinue" les joints de
direction, une fois que la trajectoire du robot est discontinue. Une telle situation - la
discontinuité dans le mouvement du robot - est plus susceptible de se produire de nos
jours, dans le domaine émergent de la collaboration homme-robot. Les robots mobiles
travaillant à proximité de travailleurs humains en déplacement rapide rencontreront
généralement une discontinuité dans la trajectoire calculée en ligne. La seconde ap-
paraît dans les applications nécessitant qu’un certain angle de cap soit maintenu, un
objet ou une caractéristique reste dans le champ de vision (par exemple, pour des
tâches basées sur la vision), ou le verset de traduction change. Ensuite, le point ICR
est nécessaire pour déplacer de longues distances d’un extrême de l’espace de travail à
l’autre, en passant généralement par le centre géométrique du robot, où la vitesse du
robot est limitée. Dans ces scénarios d’application, les contrôleurs à base d’ICR à la
pointe de la technologie conduiront à des comportements / résultats insatisfaisants.
Dans cette thèse, nous résolvons les problèmes de niveau d’application mentionnés
ci-dessus; à savoir la discontinuité dans les commandes de vitesse du robot, et une
planification meilleure / efficace pour le contrôle du mouvement du point ICR tout
en respectant les limites maximales de performance des articulations directrices et en
évitant les singularités cinématiques et représentatives. Nos résultats ont été validés
expérimentalement sur une base mobile industrielle.
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Chapter 1

Introduction

Contents
1.1 Motivation: kitting in the automotive industry . . . . . 1

1.2 Wheeled Mobile Robots . . . . . . . . . . . . . . . . . . . 2

1.3 Fully Omni-directional Robots . . . . . . . . . . . . . . . . 3

1.4 Steerable Mobile Robots . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Motivation: kitting in the automotive industry

In the automotive industry, final assembly operations are highly dominated by
human operators with automation level lower than 30% [HTKR+15]. However some
of these assembly tasks are of structured nature, consider for example the post-kitting
tasks. The term kitting refers to the process of collecting the parts to be assembled
in a bigger component, and inserting them into pockets of a mobile platform, named
the kit. The kit then proceeds to the assembly line, where all the carried parts are
assembled in the bigger automobile component. Examples include the door, or to
one bigger entity on board of the kit itself like the dashboard, shown in Fig. 1.1.
In the latter application, the kit containing the parts to be assembled, as well as
the dashboard itself are in a state of continuous motion between several posts along
the assembly line. Such motion can be discontinuous, due to human-worker safety
protocols implemented on the kit-porting mobile platform.

The general objective of this thesis, is to robotize more assembly tasks and to
increase the automation level. In this particular application, several robotic tech-
nologies are required, e.g., to identify the object to be assembled from the kit using
vision, for vision-aided grasping, then dual arm manipulation to fit the part inside the
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CHAPTER 1. INTRODUCTION 2

bigger entity (here the dashboard). All these steps are to be done while the kit/cart
is in motion. Such objective requires the utilization of robust and highly maneuver-
able mobile robots in addition to developing new controllers taking into account the
frequent human-worker presence in the robot workspace. This presence can cause
highly discontinuous velocity commands to be sent to the mobile robot, and this is
the target and main contribution of the thesis in hand. In what follows, we briefly
introduce available mobile robot structures and come to a conclusion of the one most
suitable to perform the desired task.

1.2 Wheeled Mobile Robots

Mobile robots are autonomous vehicles that are capable of navigating in target
environments, being indoor, outdoor with smooth or rough terrain, and programmed
to perform a variety of tasks depending on the application. They are used in rehabili-
tation/health care [LL00,YBB+09,SL09,LMD+17], surveillance [US16,RO18], home-
/personal service [GHS04,BO08,PTC+15], factory automation [HNB+11,HBMK09],
agriculture [BJ04,MF00] to name only a few applications. Wheeled mobile robots em-
ploy wheels as means of navigation, a distinct classification from treaded and legged
robots (tanks, humanoids, hexapods, ... etc.). These in turn are mainly classified as
conventional or non-conventional wheeled robots according to the wheel type, with
the former being the famous standard flat disk wheel/tire, and the latter being in-
cluding other wheel nature, e.g., omni-directional, Swedish, ball wheels to name only
a few.

Figure 1.1: Moving cart holding the automobile dashboard and the kit (colored white
in the left picture), photo courtesy of PSA.
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Conventional wheeled mobile robot structure is classified based on the degrees of
mobility and steerability into 5 types, according to the pioneering work of [CBN96].
Although this classification is not comprehensive (as it doesn’t handle the case steer-
able wheels with offset), it covers most of the commonly used conventional wheeled
mobile robots available nowadays. It is worth pointing out that the classification
is not flawless. Differential drive system is classified as being of type (2, 0) with 2

being the degree of mobility (the immediately accessible degrees of freedom) and 0

as the degree of steerability (the number of independently steerable wheels), the tri-
cycle structure is of type (1, 1), and the steerable mobile robots (synchronous drive)
which is the focus of this thesis is designated as type (1, 2). For these three examples,
the classification does not indicate which is better in terms of mobility/maneuver-
ability, ability to perform complex trajectories, as the synchronous drive is the most
perform-able although its DOM is lower than that of the differential drive. Conse-
quently, among the conventional wheeled mobile robots, the SWMR structure is the
most convenient for the application in hand.

1.3 Fully Omni-directional Robots

Fully omni-directionality means that the mobile robot has 3DOM, that is, it
can instantaneously move in any of the planar 3DOF. There are numerous ways of
obtaining full omnidirectionality, using:

• non conventional wheels,

• differential drive system with rotating offset turrets mounted on it [CY17,
ESWBB07],

• fully actuated castor wheels [Wad06,HK00].

In [ESWBB07], the authors introduced the idea of using a differential drive system
fixed to an offset turret, to obtain an omni-directional system. Comparison was held
with other omni-directional robot structures, employing powered castor wheels, and
omni-wheels. In [CY17], the geometric parameters of such robot configuration were
optimized based on the "mobility ellipsoid" introduce in the same work in analogy to
the "manipulability ellipsoid" of arm manipulation [Yos85]. A comparison between
different omni-directional wheel structures can be found in [FRC96]. The second
and third methods (based on differential drive or Castor wheels) rely on conventional
wheels in operation, which in turn can avoid operational problems of non-conventional
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wheels (detailed in the sequel). However, there exist no commercially available FOMR
employing these mobile robot structures, making them practically impossible to use
in industrial setups in the near future.

Fully omni-directional mobile robots with non conventional wheels use:

• orthogonal wheels (also known as omni-directional wheels) as in [PK94]; these
consist of several "perpendicular" small rollers mounted on the circumference
of a conventional wheel, enabling side motion of the wheel and hence being
holonomic,

• ball wheel mechanisms as in [WA95,CCT+13,TNFM12,MC02],

• Mecanum wheels, which are by far the most popular among non-conventional
wheel types.

The Mecanum wheel (named after the Mecanum company) or Swedish wheel was
invented by the Swedish engineer Bengt Ilon in 1973 [Ilo75]. Its design [Gfr08] varies
from the omni-wheel by orienting the rollers at an angle other than 90o (usually 45o),
providing smoother performance than omni-directional ones, and was first used in
constructing the mobile robot “Uranus” [MN87a]. However, Swedish wheels require
special attention in their design, to avoid vibration due to discontinuous wheel contact
with the ground [BS03,DBB+02]. Other modifications are proposed to allow access of
Mecanum wheels in rough terrains [RSK10]. Disadvantages of the Mecanum wheels
include:

• poor odometry estimation without exteroceptive sensors [HKL10],

• vibration due to spaces between rollers,

• high cost,

• lower load carrying capacity than conventional wheels.

1.4 Steerable Mobile Robots

Also known in the literature by the names: synchronous drive, pseudo omni-
directional, non-holonomic omni-directional, quasi omni-directional robots, steerable
wheeled mobile robots consist of two or more independently and fully steerable con-
ventional wheels. A fully steerable wheel contains two actuated degrees of freedom,
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Figure 1.2: Neobotix-MPO700 steerable mobile robot used in this thesis.

one for steering, and the other for driving (wheel motion). In practice, SWMR exist
in a configuration of 3 or more fully steerable wheels for robot mechanical stability.

Research topics in SWMR include but are not limited to:

• Kinematic modeling and control [SN11]

• Estimation of the ICR point [CLM10, LQXX09] and behavior in case of com-
pliant actuators [SCSB06]

• Design and kinematic analysis [MLA+03, MLA+05, LNL+06a, FCF+10, BJ04,
MF00].

• Extending the conventional car driving steering wheel (as interface for human
driver) from the car like vehicles to the pseudo omni-directional ones [LQXX09].

Conventional wheeled mobile robots are classified according to their degrees of
mobility and steerability defined in the pioneer work [CBN96]. Based on this clas-
sification, SWMR are of the Type (1, 2) having one degree of mobility (DOM) and
two degrees of steerability. The available DOM corresponds to the rotation about the

Figure 1.3: EZ10 bi-steerable vehicle used in [NTLM16].
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instantaneous center of rotation (ICR) point. In the literature we can find two types
of steerable mobile robots.

The first type utilizes 2 sets of mechanically coupled steerable wheels, the front
and rear steering systems [MT90,AS93,AS03,HS03]. This type of robots are called bi-
steerable vehicles, and an example is shown in Fig. 1.3. They are most commonly used
for outdoor applications like autonomous cars [NTLM16], and agriculture [CLTB09,
LTCM06], since their mechanical structure is simplified and these applications do not
require high maneuverability.

The second type of steerable mobile robots utilizes 2 (but most practically a mini-
mum of 3) or more fully steerable wheels, with no hardware coupling among the wheels
(an example is shown in Fig. 1.2). Although both types have the same DOM, the
second is more challenging since coordination between the independently controlled
steering axes is needed, to achieve proper operation with least possible actuator fight-
ing. Furthermore, the second type has almost no constraints on the location of the
ICR, and as such uses the maneuver-ability of the mobile robot structure at its full.

Steerable mobile robots are expected to be smoother in performance at lower cost
for the same load capacity, as compared to Mecanum wheel based robots (at the
cost of having less mobility). As such, they are more convenient for the application
in hand (kitting for the automotive industry). The objective of this work is to de-
velop a SWMR kinematic controller that is suited for discontinuous trajectories, while
respecting the robot kinematic constraints and actuation limits.

1.5 Thesis Outline

In this section, we present the general outline of the chapters of this thesis. The
motivation behind each chapter will be presented in the sequel (Chapter 2), after
exploring the state of the art for better understanding of the latest development in
the subject and its defeciency with respect to the problem in hand. This thesis is
organized as follows:

• Chapter 2 presents the current state-of-art in mobile robotics and in particular
in steerable wheeled mobile robots.

• Chapter 3 presents the kinematic modeling of SWMR based on the 3D planar
Cartesian velocity formalism. In addition, a kinematic singularity treatment is
introduced and shown to have a damping effect on the joint space velocities at
singular configurations.
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• Chapter 4 introduces our new algorithmic ICR-based controller that deter-
mines the "next sample time" steering coordinates in the presence of velocity
commands discontinuity. This controller also respects the maximum steer per-
formance limits in terms of velocity and acceleration.

• Chapter 5 presents our new idea of complementary ICR route, as opposed to
the direct ICR route used in the literature. We also present a methodology to
evaluate both routes in terms of the expected time efficiency (convergence to
desired ICR point), so that the shortest route is utilized.

• Chapter 6 summarizes the main contributions of this thesis on SWMR. Con-
clusions are drawn and recommendations for future research directions are high-
lighted.
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State of the Art

Contents
2.1 SWMR Platforms . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Gaps in the Literature . . . . . . . . . . . . . . . . . . . . 12
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2.3.2 Discontinuity Robust ICR Based Controller . . . . . . . . . 14

2.3.3 Complementary ICR Route . . . . . . . . . . . . . . . . . . 15

This chapter reviews the state of the art in hardware and control of steerable
wheeled mobile robots. It shows the gaps and downsides in the literature, that mo-
tivate the contributions of this thesis. In SWMR, two types of singularities are most
common in the literature (and will be mentioned frequently throughout this Chap-
ter), designated as kinematic and representation singularities. The former refers to
the state of the robot when the steer joint configuration corresponds to an ICR point
at one of the steering axes, while the latter depends on the mathematical model used
to represent the robot behavior which at some velocity values can be singular.

2.1 SWMR Platforms

The authors of [RCF+09] have developed the mobile service robot "Care-O-bot-
3", shown in Fig. 2.1. This applies a two side concept, where the manipulation
part is away from the user when s/he is being served, offered a drink, etc, and only
the tray and the drink are facing the user during the interaction phase of operation.
The "Care-O-bot-3" employs a 4 wheeled pseudo omni-directional structure for its
mobility.

8



CHAPTER 2. STATE OF THE ART 9

Figure 2.1: The Care-O-bot-3 service robot in [RCF+09] employs a pseudo omni-
directional mobile structure.

In [CPHV08], the authors present their controller for the mobile base of the
same robot, using a new representation for the ICR point, based on spherical coor-
dinates to avoid singularities of the ICR representation in the Cartesian coordinates.
In [CPHV09], they have added repulsive potential fields around the steering axes as a
solution to the kinematic singularity and actuator saturation. In [CHB+10,CPHV10],
the authors have added model predictive control (MPC) to address the sensitivity to
local minima problems that arise due to the potential fields employed in [CPHV09].
However, later on in [CHV12], the authors revealed the existence of representational
singularities in their spherical coordinate representation, leading to the need for co-
ordinate switching to avoid such singularity.

Authors in [OGM13,OAGM13] developed the iMoro mobile manipulator (shown
in Fig. 2.2a), employing a Pseudo omni-directional mobile robot structure. They

(a) (b)

Figure 2.2: The iMoro steerable wheeled mobile manipulator [OGM13] (a), and (b)
the ExoMars rover 6 wheeled SWMR of the European Space Agency [SPS12].
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Figure 2.3: Azimut SWMR development. Azimut-1 of [LNL+06a] (left), Azimut-2
of [LNL+06b] (middle) and Azimut-3 of [CLM10] (right).

propose a non linear controller, which acts on the robot velocity and the path followed
by the robot, so that it respects the steering and driving velocity bounds. The
results have shown that the steering velocity is well bounded at kinematic singularity,
although the singular steer joint keeps operating at the maximum limit. The authors
have extended the controller to take into account the steer acceleration bounds also in
[OGM14], which was further generalized to other mobile robot structures in [OGM15].
Figure 2.2b shows the ExoMars rover, a 6 wheeled SWMR of the European Space
Agency which was the experimental platform used in [SPS12]. The authors use special
spherical coordinates of the ICR to develop the kinematic model. In the study, the
authors implement repulsive potential field at singular kinematic configurations and
attractive ones at the target ICR point. Maximum acceleration limits were taken
into account, however handling joint position limits is ambiguous although stated as
a critical problem in the ExoMars rover structure.

The authors in [LNL+06a,LNL+06b,CLM10] have developed three versions of the
SWMR named Azimut1-3 (showin in Fig. 2.3), where the ICR space is divided into 7

zones with 7 modes of operation. In [CBC+10], the authors have developed a motion
planner based on rapidly exploring random trees algorithm in order to find robot
paths avoiding steer joint limits/restrictions.

In [SN11], steering angle and drive rate constraints are developed based on the
information of path geometry to be followed and on the current robot velocity. Then,
a path tracking controller is developed to take into account the same information in
addition to such constraints. However, critical problems as singularity avoidance/han-
dling and the maximum joint performance limits are not tackled in that study.

The team at the Institute of Robotics and Mechatronics, DLR, has developed the
dual arm research platform for mobile and dexterous manipulation named Rollin’
Justin, shown in Fig. 2.4. It employs a unique steerable wheeled mobile base with
movable legs. The kinematic model and control of both the conventional SWMR,
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Figure 2.4: Rollin’ Justin variable footprint SWMR. The dual arm mobile manipula-
tion system [BOW+07,FBG+09] (left), legged SWMR extended [GFASH09] (middle)
and folded (right)

and the additional movable leg structures has been introduced in [GFASH09] using
the 3D Cartesian robot velocity formulation. However, this work clearly avoided the
kinematic singularity case. In [DWASH11], the same team switched to an ICR based
controller, and tackled the problem of kinematic singularity by constraining the ICR
space, applying a repulsive potential field around the steering axes.

In [GH14], a motion controller based on static input-output linearization is devel-
oped and experimentally tested on the 2 wheeled SWMR shown in Fig. 2.5a. In this
work, however, both kinematic singularity and maximum steering performance limits
were neglected. In [SMG15], robustness against kinematic singularity is enhanced
by developing a second order model with regular parameterization depending on the
robot path. The downside of such controller, implemented on the robot shown in Fig.
2.5b, are the assumptions that the robot will not stop at singular configuration, and
that the steer joint velocity/acceleration limits are negligible.

Two more wheeled steerable robot named HERMIES-III (shown in Fig. 2.6a)
have been developed in [WBE+90]. Their control was introduced in [RU93]. In that
work, constraint force control has been introduced and was claimed to improve the
odometry error by a factor of more than 20 times. Again, handling singularities
nor actuation maximum limits was considered. In [TNM96], kinematic singularity
has been treated as a non-allowed constraint to robot motion. Instead, in [BC96],
representational singularities have been treated by switching between the choice of
the two master wheels used in computing the kinematic model. The other wheels are
steered depending on the master wheels. In both [TNM96,BC96], the maximum joint
performance limit is not taken into account.
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A backstepping controller is used in the field steerable mobile robots in [CLTB09]
together with predictive control to account for time delays. The developed kinematic
model accounts for sliding effects. The mobile robot, shown in Fig. 2.7, weighs 600Kg,
and in such case, respecting the maximum steering limit or even respecting the wheel
lateral skidding constraint can be completely out of question. The same applies for the
6 wheeled field SWMR of [MF00], shown in Fig. 2.6b. Nevertheless, these SWMR are
provided here for the sake of completeness, and to show the versatility of applications
for such mobile robot structure.

2.2 Gaps in the Literature

Problems with SWMR can be summarized as follows:

• representation singularity,

• kinematic singularity,

• respecting maximum steering limits,

• handling discontinuity in velocity commands.

Representation singularity is present in all methods for developing the mathemati-
cal (kinematic) model. In [CPHV08,CPHV09], attempts were made to develop a rep-
resentation singularity-free model (no matter how complex its formulation) based on
the ICR point formalism. This turned out to have the same problem later in [CHV12]
requiring switching between different models. The same policy was adopted in [BC96]

(a) (b)

Figure 2.5: The experimental 2 wheeled SWMR used in [GH14] (a), and (b) another
2 wheeled steerable mobile manipulator used in [SMG15].
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(a) (b)

Figure 2.6: HERMIES-III robot, 2 wheeled SWMR used in [RU93] (a), and (b) six
wheeled field SWMR of [MF00].

using two master wheels in developing the kinematic model, and switching between
each pair of wheels depending on the current steer configuration.

Kinematic singularity usually refers to the case where the ICR point approaches
(and eventually coincides with) one of the steering axes. At such steer configuration,
the singular steer joint value is undefined, and usually the velocity output by the
kinematic model for such joint is unbounded. This configuration has been treated
as a restricted area in the 3D robot velocity space in [DWASH11,CPHV09, SPS12]
by applying repulsive potential fields around the steering axes, or as a constraint to
robot motion in [TNM96]. Obviously these methods limit the robot maneuverability.
In [OGM13,OGM14], the velocity and acceleration of the singular steer joint were
bounded which makes use of the full velocity space of the robot, but shortens the
hardware lifespan by allowing the steer joints to work at maximum limit during such

Figure 2.7: Field Steerable mobile vehicle used in [CLTB09].
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configurations.
Discontinuity in robot velocity commands is a new challenge for SWMR due to

the nature of the application in hand, where human worker and robot are sharing the
same workspace. Unfortunately, the current state of art will fail to provide proper
solutions.

2.3 Thesis Contributions

In this thesis, given a SWMR with maximum steering velocity and acceleration
bounds, an algorithmic controller is designed to allow following - as faithfully as
possible - a desired non-smooth (discontinuous), 3D Cartesian velocity trajectory
assuming the no-slip, no-skid kinematic constraints are well respected, while being
robust against kinematic and representation singularities. Our findings has been val-
idated experimentally on an industrial mobile base. In what follows, we give a short
summary of the main contributions of the thesis, that should cover the gaps presented
above. Details are presented in the respective chapters.

2.3.1 Singularity-free 3D Cartesian Space Model

The problem is usually solved either by taking into account the representational
and kinematic singularities of this kind of mobile robot structure at either the motion
(trajectory) planning phase or the control phase. In Chapter 3, as a first contribution
we propose a solution in the kinematic modeling phase. It is known that kinematic
model using the 3D Cartesian space robot velocity formalism employing 3 or more
steerable wheels is free from representation singularity [DWASH11]. We then provide
numeric treatment for the kinematic singularity by adding a damping term to the
denominator of such kinematic model, providing an opposite behavior to the singular
one, where the steering velocity slows down to zero at kinematic singularity.

2.3.2 Discontinuity Robust ICR Based Controller

To the best of the authors knowledge, no thorough investigation has been con-
ducted on the issue of reorienting the wheels, when discontinuities occur in the robot
trajectory. Usually, steer reconfiguration is performed in a manual fashion, depending
on the test trajectory, and the initial condition is set in an initial phase. This is found
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in the literature under various designations, e.g. "initial phase" in [GFASH09], "open-
loop starting procedure" in [TNM96], and "perfect matching condition" in [GFASH09].
Although an ICR-based controller is the most suited to handle such cases, the work
in [OGM13] and [OGM14] is limited by the assumption of continuous and differen-
tiable desired signal, whereas in [SPS12] the singularities imposed by the ICR-based
model are handled by reducing the robot maneuverability.

Such situation - discontinuity in robot motion - is more likely to happen nowadays,
in the emerging field of human-robot collaboration. Mobile robots working in the
vicinity of fast moving human workers, will usually encounter discontinuity in the
online computed trajectory. In case of static obstacles, the online planner can be less
restricted in the form of the output trajectory, so that smooth behavior can always
be expected. Instead, here, sudden appearance of an active worker can result in
prohibiting motion, and re-routing to follow other trajectories. In such cases, the
state of art methods will fail to provide proper solutions. In chapter 4, we propose a
kinematic control framework that is:

1. robust against trajectory discontinuity,

2. capable of handling kinematic singularity,

3. compliant with the maximum steer joint limits in terms of velocity and accel-
eration (or jerk, seamlessly).

2.3.3 Complementary ICR Route

In applications requiring that some heading angle is to be maintained, that some
object or feature stays in the field of view (e.g., for vision-based tasks), or that the
translation verse changes, the ICR point is required to move long distances from one
extreme of the workspace to the other, usually passing by the robot geometric center,
where the feasible robot velocity is limited. In such scenarios, the state-of-art ICR
based controllers will lead to unsatisfactory behavior/results.

To solve this problem, in chapter 5 we propose a comparison between the direct
and complementary ICR routes, the former (state-of-art approach) being the shortest
straight line connecting the current and desired ICR points, while the latter (proposed
here) connecting the ICR extreme borders via a border ICR point that is chosen to
minimize the total ICR distance moved across borders. The 4 borders define the
maximum values that the ICR point is allowed to take on the x and y axes of the
geometrically centered robot frame. Instead of moving directly to the desired ICR,
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the complementary route will move first to the optimum border point lying on the
nearest border line, switch borders, for example: from the +y to the −y border line
in one sample period, then move to the desired ICR point.
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3.1 Introduction

This chapter presents the kinematic model of steerable wheeled mobile robots (SWMR).
Section 3.2.1 gives the 3D Cartesian space model formulation, that outputs the inverse
actuation kinematic model (IAKM) giving the joint space velocities (steer and drive)

17
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in function of the task space velocities. Then, the forward kinematics model (used
for robot odometry) is formulated in Section 3.2.2. In Section 3.3, we propose a nu-
meric treatment of the kinematic model, that robustifies it with regards to kinematic
singularities. In Section 3.4, a benchmark test trajectory is proposed to evaluate the
numerically treated kinematic model against all kinds of singularities. Experiments
are carried out on the industrial mobile robot Neobotix-MPO700 and results of the
proposed treatment on the benchmark trajectory are provided in Section 3.5. In the
same section, we compare the performance of the Neobotix-MPO700 embedded mod-
el/controller against the same benchmark. Conclusions are finally given in Section
3.7.

3.2 Kinematic Modeling

The kinematic model presented hereby is inspired by the pioneer work of Muir
[MN87b], Campion [CBN96], Betourne [BC96] and Low et al. [LL05]. The schematic
of a SWMR is shown in Fig. 3.1 for a 4 wheeled robot. However, the model is generic
for SWMR with number of wheels N ≥ 3.

3.2.1 Cartesian Space Model Formulation

Let F I = (oI | xI ,yI , zI) be the inertial frame, F b = (ob | xb,yb, zb) the mobile base
frame, with origin ob located at the base geometric center (the mid point between all
steering axes), Fhi = (ohi | xhi,yhi, zhi) the ith hip frame (i = 1, . . . , N), attached
to the fixed part of the steering joint, and related to the base frame by a fixed
transformation matrix, and F si = (osi | xsi,ysi, zsi) the steering frame, attached to
the movable part. The hip and steering frames share the same origin, with relative
orientation βi (the steering angle). Frame Fwi = (owi | xwi,ywi, zwi) is attached to
(but not rotating with) the ith wheel, assigned such that xwi points along the heading
of the wheel, which rotates about ywi by the driving angle φi. All the frames have
the z axis pointing upwards. Let the mobile base pose w.r.t. the inertial frame define
the 3D task space coordinates ξ =

[
x y θ

]T . A left superscript is added to indicate
the frame in which the pose is expressed, for instance Iξ and bξ denote the robot
pose, expressed in the inertial and base frames respectively. In the sequel, the left
superscript is omitted in case of vectors expressed in the base frame to lighten the
notation, unless otherwise specified.

Considering the ith wheel velocity vci =
[
vti vni 0

]T at the ground contact point
oci (expressed in the wheel frame Fwi), with vti and vni respectively the ith tangential
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Figure 3.1: Schematic model of a four wheeled SWMR.

and normal velocities, we can obtain:

vci = ξ̇ + θ̇k̂b ×
⇀
oboci + β̇ik̂si ×

⇀
osioci + φ̇iĵwi ×

⇀
owioci, (3.1)

where k̂b, k̂si, and ĵwi are unit vectors along the zb, zsi, and ywi axes respectively.
Equation (3.1) is then expressed in the ith wheel frame Fwi as follows:

vci = wiRb(ξ̇ + θ̇k̂b × b ⇀
oboci + β̇i

bRsik̂si × si ⇀
osioci) + φ̇iĵwi × wi ⇀

owioci, (3.2)

where wiRb = rot(zb,−βi) and bRsi = rot(zb, βi) are 3D rotation matrices represent-
ing the orientation of F b with respect to (wrt) Fwi, and F si wrt F b respectively,
wiRb,

bRsi ∈ SO(3), b ⇀
oboci, si

⇀
osioci, and wi ⇀

owioci are 3×1 position vectors (colored red
in Fig. 3.1) detailed as follows:

wi ⇀
owioci =

 0
0
−rw

 ,
si ⇀
osioci = si ⇀

osiowi + siRwi
wi ⇀
owioci =

 0
−d
−rw

 ,
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b ⇀
oboci = b ⇀

obohi + bRsi
si ⇀
osioci =

hxi + d sin(βi)
hyi − d cos(βi)

−rw

 .
In the above equations, hxi = ±b and hyi = ±a denote the position of the ith hip
frame origin ohi in the base frame F b, a, b ∈ R+. Parameters d and rw are respectively
the steerable wheel offset and wheel radius. Substituting by these position vectors in
(3.2) we get the following expressions for the contact point velocities:

vti = f(βi)ξ̇ + dβ̇i − rwφ̇i,

f(βi) =
[
cos(βi) sin(βi) d− hyi cos(βi) + hxi sin(βi)

]
,

(3.3)

vni = g(βi)ξ̇,

g(βi) =
[
− sin(βi) cos(βi) hxi cos(βi) + hyi sin(βi)

]
.

(3.4)

Setting vti = 0 and vni = 0, (3.3) and (3.4) represent the rolling with no slipping
and the no lateral skidding kinematic constraint assumptions, respectively. The no
skidding constraint imposes restrictions on the robot motion (the wheel cannot move
sideways), and forces the existence of a unique ICR point, around which the base
frame and all wheels must rotate. From such constraint, we construct the kinematic
constraint matrix G(β) that will be used in the sequel as:

G(β)N×3 =
[
g(β1)

T ... g(βN)T
]T
. (3.5)

For joint position controlled robots, the steering angles corresponding to Cartesian
velocity commands can be evaluated using (3.4) when vni = 0 as:

βi = arctan
( ẏ + hxiθ̇

ẋ− hyiθ̇

)
. (3.6)

For joint rate controlled robots, (3.4) should differentiated w.r.t time, and then rear-
ranged to evaluate the required steer joint rate when vni = 0 as:

β̇i =
−g(βi)ξ̈
dg(βi)
d(βi)

ξ̇
. (3.7)

Then, the wheel drive rate is obtained from (3.3), when vti = 0:

φ̇i =
1

rw
f(βi)ξ̇ +

d

rw
β̇i. (3.8)

Equations (3.7) and (3.8) represent the SWMR inverse actuation kinematic model
(IAKM).
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3.2.2 Odometry Model

To compute the task space velocity response from the joint space velocity mea-
surements, we need the odometry model, or the forward actuation kinematic model
(FAKM). This can be written as:

ˆ̇ξ = F+
(d)(β̂)(rw

ˆ̇
φ− d ˆ̇

β), (3.9)

F (β̂)N×3 =
[
f(β̂1)

T ... f(β̂N)T
]T
,

where the hat symbolˆindicates a measurement value and F+
(d)(∗) denotes the damped

pseudo-inverse of F (∗), evaluated using [NH86] and [Wam86]:

F+
(d)(∗) = (F T (∗)F (∗) + δ2I3×3)

−1F T (∗).

Parameter δ ∈ R∗ is the damping factor. We use the damped pseudo-inverse to
overcome algorithmic singularities, occurring when the mobile base moves with null
angular velocity (all steer angles identical) since, in such case, F (β̂) loses rank.

3.2.3 2D ICR Space to 3D Cartesian Space Mapping

The conversion from the 2D ICR point space to the 3D Cartesian velocity space (and
vice versa), will be used in the experiments, here we provide such relation. We use the
laws of rigid body mechanics. Recall that an object rotating at an angular velocity
ω about a fixed ICR point located at a distance r, will have the linear velocity:

v = ω × r, (3.10)

where,

v =

ẋẏ
0

 , ω =

0
0

θ̇

 , r =

XICR

YICR
0

 .
Using (3.10), we can easily deduce:

ẋ = −YICR θ̇,

ẏ = XICR θ̇.
(3.11)

The relation in (3.11) is non-injective, where we still need one more information to
retrieve the Cartesian robot velocity corresponding to a given ICR point, where the
robot can rotate about such point at any arbitrary angular velocity θ̇. We use (3.11)
in the experiments in this chapter and the next one only, where we know the angular
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velocity command sent to the robot. In the developed controllers in chapters 4, and
5, we make sure not to use (3.11). The opposite (injective) relation is biven by:

XICR =
−ẏ
θ̇
, YICR =

ẋ

θ̇
, (3.12)

which is singular for θ̇ = 0.

3.3 Kinematic Singularity Treatment

Singularities related to this kind of mobile robots are divided into two categories:
kinematic and representational. While the latter (for 3 or more steerable WMR)
is solved using the Cartesian coordinates of the base frame [DWASH11], the former
still presents a challenging problem. Kinematic singularity refers usually to the case
where the ICR passes by (or near) any of the steering axes. In such case, the steer
angle βi in not uniquely defined, as there exist infinite values respecting the kinematic
constraints. While passing this configuration, the steering rate shall grow unbounded
from the “nearby” to the “at” singular configuration. This is shown mathematically
in (3.6), where the denominator of the argument of the arctan() function decreases
to zero at this singularity.

In our work, we fix this problem with a very simple, yet effective, numerical
treatment, by adding the damping parameters δ1 ∈ R+ and δ2 ∈ R to the denominator
of (3.6), and (3.7) respectively. This is explained hereby. For the steering rate, we
use a formulation alternative to (3.7) by partial differentiation of (3.6). Then, the
damping term is added, while evaluating the partial derivatives:

β̇i =
∂βi
∂ẋ

ẍ+
∂βi
∂ẏ

ÿ +
∂βi

∂θ̇
θ̈,

∂βi
∂ẋ

=
−ỹi

x̃2i + ỹ2i + δ2
,

∂βi
∂ẏ

=
x̃i

x̃2i + ỹ2i + δ2
,

∂βi

∂θ̇
=

hxiẋ+ hyiẏ

x̃2i + ỹ2i + δ2
,

(3.13)

with x̃i = ẋ− hyiθ̇, ỹi = ẏ + hxiθ̇. The steering angle is then evaluated as:

βi = arctan
( ỹi
x̃i + δ1sign(x̃i)

)
. (3.14)

The value of δ1 can be chosen arbitrarily small. Instead, δ2 must respect the accel-
eration limits of the steer joints (in case of centered WMRs) or of the steer/drive
joints (in case of off-centered WMRs). Such effect is shown in Fig. 3.2. Once tuned,
δ2 provides a damping effect that is completely opposite to the singular behavior.
Using (3.13) the steering rate will decrease to zero from the “nearby” to the “at”
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Figure 3.2: Effect of different values of δ2 on the steering velocity while passing
kinematic singularity. The lower the value, the more the required acceleration.

singular configuration. To tune δ2 in order to respect the steer acceleration limits,
we differentiate (3.13) with respect to time, neglecting higher order derivatives, to
obtain:

β̈i =
ki(ξ̇, ξ̈)

(x̃2i + ỹ2i + δ2)2
, (3.15)

where
ki(ξ̇, ξ̈) = 2(ỹi ˙̃xi − x̃i ˙̃yi)(x̃i ˙̃xi + ỹi ˙̃yi) (3.16)

is a function of the robot trajectory ξ̇, ξ̈, that is assumed to be continuous.

Proposition 3.3.1. Using (3.15) we define a candidate value for δ2 (called δ2c) as:

δ2c =

√
|ki(ξ̇, ξ̈)|
β̈i(max)

− (x̃2i + ỹ2i ), (3.17)

where β̈i(max) is the ith steer joint acceleration limit in centered steerable robots, or
the smallest acceleration limit of the steer/drive joint in off-centered steerable robots
(since in this robot structure, steering requires moving the corresponding wheel as
well, see (3.8)) and | ∗ | is the Euclidean norm. Although the value obtained in
(3.17) depends on the trajectory, to respect the acceleration limits at all times, we
can conservatively use, for δ2, the maximum value over all possible trajectories in
a bounded domain around the singularity. In applications involving human-robot
collaboration, the trajectory is generally unknown a priori. For such applications,
we therefore need to evaluate the maximum δ2c online. To this end, we define the
following max() function:

max(xk) =

{
xk, if xk > xk−1

xk−1, otherwise
,
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with (∗)k and (∗)k−1 the values at current and previous sampling instances, respec-
tively. The max() function will store the input argument with highest magnitude.
Furthermore, (3.17) was shown (empirically) to evaluate to a positive value in the
neighborhood of kinematic singularity. In this region of interest, where respecting
the acceleration limits becomes critical, we set

δ2 = max(δ2c). (3.18)

Let us point out that this is the minimum value that can be used in (3.13), while
respecting the joint acceleration limit. Indeed, we need the minimum value to ob-
tain the highest accuracy in evaluating the steer rate command. Finally, the online
evaluation of δ2 is done using:

δ2 =

{
δ1, ∀δ2c ≤ 0

max(δ2c), ∀δ2c > 0
. (3.19)

With (3.19), the smallest δ2 value can be obtained online and set only in the vicinity
of singular configurations at which the acceleration limits are to be monitored. Away
from the critical zone (around singularity), this formula provides negligibly small
value (δ1) for δ2, and consequently much higher accuracy for (3.13). The proof that
(3.19) guarantees respecting the joint acceleration limits is provided in Appendix A.

3.4 Benchmark Test Trajectory

In this section, we propose a set of Cartesian velocity trajectories (commands) to
benchmark test the model and controller performances w.r.t all representational and
kinematic singularities for this mobile robot structure. The test is composed of five
distinct motion profiles, all defined in the robot frame and depicted in Fig. 3.3. In
what follows, we detail each one of them. Since each set of velocity commands requires
a different initial steering configuration, there is a transition phase between each two
successive sets of commands, during which the required initial steering reconfiguration
is realized.

3.4.1 Parabolic ICR position profile

This first test excites steer joint motion in the vicinity of kinematic singularity, to
check if it will respect the joint limits. It comprises a set of Cartesian velocity com-
mands corresponding to a parabolic ICR-point motion profile with vertex at one of
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frame velocity 

Figure 3.3: Schematic model of the 5 benchmark test trajectories.

the steering axes. Note that a straight line motion would impose no motion on the
steering joint.

The parabolic ICR path shown in Fig. 3.3 (in green) has its x-axis component
XICR ranging from 0 to 2hx2. We convert it to a motion profile by assigning it the
following time law:

XICR = Tl5b(XICR(i) = 0, XICR(f) = 2hx2, ti, tf , t), (3.20)

In (3.20), Tl5b is an online - linear with 5th order blends - trajectory generator function,
taking the initial position XICR(i), the final position XICR(f), the initial trajectory
time ti, the final trajectory time tf , and the current time instant t as arguments. It
is shown in Fig. 3.4, computed as:

Tl5b =


a0 + a1δt1 + a2δt

2
1 + a3δt

3
1 + a4δt

4
1 + a5δt

5
1, ti ≤ t < t1

a6 + a7δt2, t1 ≤ t < t2

a0 + a1δt3 + a2δt
2
3 + a3δt

3
3 + a4δt

4
3 + a5δt

5
3, t2 ≤ t < tf .

where,
δt1 = t− ti,

δt2 = t− t1,

δt3 = t− t2,

t1 = ti + 0.1 ∗ (tf − ti),

t2 = tf − 0.1 ∗ (tf − ti).
Coefficients a0 ... a7, are computed by setting the initial and final positions to

XICR(i) and XICR(f) respectively, and the velocity/acceleration/jerk (boundary con-
ditions) to zero. The y-axis component of the ICR motion profile is then computed
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time (seconds)

Figure 3.4: Linear with fifth order blends ICR point motion trajectory in first exper-
iment (upper), its first derivative being a constant with fourth order blends (middle),
and the second derivative (lower).

using:
YICR = (XICR + hx2)

2 + hy2. (3.21)

With (3.21), (XICR, YICR) is a parabola with vertex located at the 2nd steer joint
axis (kinematic singularity). From (3.11), (3.4.1), and (3.21), by setting θ̇ = −1, we
finally obtain the Cartesian velocity commands for this test:

ξ̇∗ =

 −(ẏ − hx2)2 − hy2
Tl5b(ẏi = 0, ẏf = 2hx2, ti, tf , t)

−1

 . (3.22)
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3.4.2 ICR point at kinematic singularity

This test reveals the behavior of the steer joint exactly at kinematic singularity. Will
it respect the maximum steer joint performance limits? Will it keep operating at
the maximum limits or move at "low" velocity? The latter is preferable, in terms of
energy consumption and hardware safety.

The following velocity command corresponds to an ICR point at the second steer-
ing axis (red in Fig. 3.3):

ξ̇∗ =
[
hy2 −hx2 1

]T
. (3.23)

3.4.3 Pure linear motion

This trajectory is needed to test robustness against representational singularity in
ICR-based models and controllers, that usually employ θ̇ in the denominator, by
sending "zero angular velocity" and arbitrary linear velocity (var1, var2):

ξ̇∗ =
[
var1 var2 0

]T
. (3.24)

3.4.4 Straight line motion of the ICR between steering axes

This test consists in moving the ICR along a straight line connecting each two steering
axes (i.e., six straight lines for a 4 SWMR). This tests the performance of Cartesian
space kinematic models, developed using only two steerable wheels, since an ICR
motion on the line connecting them will result in undefined motion for the other
steering joints. The test is realized using the following command sequence:

ξ̇∗ =
[
hy1 −hx1 1

]T
,

ξ̇∗ =
[
hy2 −hx2 1

]T
,

ξ̇∗ =
[
hy3 −hx3 1

]T
,

ξ̇∗ =
[
hy4 −hx4 1

]T
,

ξ̇∗ =
[
hy2 −hx2 1

]T
,

ξ̇∗ =
[
hy1 −hx1 1

]T
,

ξ̇∗ =
[
hy4 −hx4 1

]T
,

ξ̇∗ =
[
hy3 −hx3 1

]T
,

ξ̇∗ =
[
hy1 −hx1 1

]T
.

(3.25)
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3.4.5 Zero Velocity

This trajectory is used to test robustness against representation singularity in Carte-
sian velocity based models employing ẋ, ẏ, and θ̇ in the denominator of (3.7). We
simply use:

ξ̇∗ =
[
0 0 0

]T
. (3.26)

3.5 Experiments and Results

In this section, the benchmark test trajectory presented in 3.4 is used to evaluate the
proposed singularity robust methods developed in 3.2.1 and 3.3. We also compare
the performance of our method with that of the embedded controller/model. The
experiments are carried out on the industrial mobile robot Neobotix-MPO700 (shown
in Fig. 3.5). All parameters used in the experiments are provided in Table 3.1.
A video of the experiment can be found on the IDH YouTube channel 1. In this
experiment, the 4th benchmark test (3.25) is not implemented since the developed
kinematic model uses the 4 wheels.

Figure 3.6 (top) shows the 3D Cartesian robot velocity commands corresponding
to the benchmark trajectory, where the encircled numbers denote:

1. the parabolic ICR motion profile (3.22) during period t = [4, 8[s,

2. ICR point at kinematic singularity (3.23) during period t = [12, 15[s,

3. pure linear motion (3.24) during period t = [18, 20[s,

4. zero velocity command (3.26) during period t = [20, 22[s.

In Fig. 3.6 (middle, bottom), the corresponding steer joint space velocities and accel-
erations are provided. The curves clearly show that using (3.19) results in respecting
the maximum steer acceleration limit. The initialization phase (denoted by the en-
circled letter I in Fig. 3.6, bottom) during periods t = [0, 3[s, t = [9, 12[s, and
t = [15, 18[s, is dedicated to reconfiguring the steer joints, to meet the required initial
conditions before implementing the following test. In the same figure, it can be seen
that such phase corresponds to null robot velocity, but still results in some steer-
ing action as shown in Fig. 3.6 (middle, bottom). During intervals t = [3, 4[s and
t = [8, 9[s (respectively) the robot velocity increases from 0 to the initial value of test
1, and decreases from the final value of test 1 to 0.
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Figure 3.5: Photograph of the Neobotix MPO700 industrial SWMR.

The robot driver allows two command modes: joint velocity or robot velocity
modes. We use the former to test the proposed model, while the latter (employing the
embedded model/controller) is used in the comparative study. In a first experiment,
the test trajectory shown in Fig. 3.6 (top) is sent in robot velocity mode, to evaluate
the joint commands output by the embedded model. In a second experiment, the
output of our inverse kinematic model shown in Fig. 3.6 (middle) is used to control
the robot in joint velocity mode.

Figures 3.7 and 3.8 respectively show the results for the embedded and developed
controllers. For test 1 (parabolic motion of the ICR), the embedded controller gives
a velocity peak of the steering joint in the neighborhood of the kinematic singularity
(green curve, at 6.3s on Fig. 3.7c). This corresponds to a steer angle change of 180◦ in
a very short time, implying that the embedded model probably employs steer position,
rather than steer velocity control. The corresponding wheel velocity response can be
seen in Fig. 3.7d, and the effect of such behavior on the velocity error is evident in
Fig. 3.7b. The Cartesian robot velocity estimate shown in 3.7a is obtained utilizing
the odometry model presented in (3.9). The other steer velocity peaks in Fig. 3.7a are
due to the fact that the embedded controller moves to each initial steer joint space
configuration (corresponding to each test) as quickly as possible.

1https://www.youtube.com/watch?v=9RCOUp24Gvs

Table 3.1: Robot and model parameters used in the singularity treatment experi-
ments.

a 0.19m b 0.24m d 0.045m
rw 0.09m δ 0.001 δ1 1−9

β̈max 5rad./s2 ts 25ms
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Figure 3.6: Output commands of the kinematic model employing the proposed sin-
gularity treatment, and excited with the benchmark test trajectory.

The effect of the proposed model on the steering joint velocity is shown in Fig.
3.8c. As shown, when approaching kinematic singularity, the velocity of the singular
steer joint slows down to 0rad/s at the kinematic singularity, with damped steer/drive
rates in vicinity. Such effect is favorable, as it makes all the velocity space of the robot
accessible, with minimum power consumption and with no risk of damage to motors
performing at their top limits. Such damped behavior in the steering and driving
(3.8d) results in much smaller velocity error w.r.t the desired trajectory as shown in
Fig. 3.8a,b. Both models show satisfactory response in the 3 other tests.
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Figure 3.7: Measured response of the experiments employing the embedded controller,
while executing the benchmark test trajectory.

3.6 Drawbacks

Although the numeric treatment for the kinematic singularity provides the desirable
damping effect, it affects the accuracy of the steering commands. As such, after
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Figure 3.8: Measured response of the experiments employing the kinematic model
plus singularity treatment, while executing the benchmark test trajectory.

extended periods of robot operation, significant steer joint error will appear due to
accumulation of steering velocity errors. Another major drawback is that it is not
easy to extend the kinematic model formulation in the 3D Cartesian space to handle
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discontinuity in the robot velocity commands. Where it will be specially difficult to
take into account both the maximum steering velocity and acceleration. Additionally,
since both the steering and driving velocities are computed using the Cartesian space
velocity command, this will result in limiting the maximum potential of either the
steering or the driving. Usually the drive joints are the ones carrying all the load,
and as such will have lower maximum performance limit as compared to the steering
joints. This will result in lower performance of the steering system below its true
potential. This is highly unacceptable, since the ability to perform steering as fast
as possible, makes such mobile robot structure as close as possible towards being
omnidirectional, which is the major merit of such structure.

3.7 Conclusion

A complete kinematic model for steerable wheeled mobile robots has been presented
in terms of forward (odometry) and inverse (actuation) kinematics. The inverse kine-
matic model presented is free of representational singularities. Additionally, a nu-
meric treatment is provided to solve the kinematic singularity, providing a completely
singular-free model. A benchmark velocity trajectory is proposed, to evaluate the per-
formance of the developed model in all singular conditions that can be encountered
by such systems. Using the proposed benchmark test, the developed model has been
tested on the Neobotix-MPO700 industrial mobile robot, to show superior results, as
compared to the embedded controller.

3.8 Link with Next Chapter

This chapter assumes continuous velocity trajectory commands are sent to the robot,
however, such assumption is not valid in the application in hand. We require a
control framework that is robust against discontinuous commands provisioned by
sharing workspace with humans, this motivates the next chapter.
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4.1 Introduction

In this chapter, we present a control framework for injecting the steer joint initial-
ization in the trajectory performed by SWMR, and for handling run-time trajectory
discontinuities, which depending on the application can be often necessary, especially
in human robot interaction tasks.

34
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4.1.1 Motivation

Steerable wheeled mobile robots (SWMR) are able to perform arbitrary 3D planar
trajectories, only after initializing the steer joint vector to the proper values. These
robots employ fully steerable conventional wheels. Hence, they have higher load
carrying capacity than their holonomic counterparts, and as such are preferable for
industrial applications. Industrial setups nowadays are being prepared for the emerg-
ing field of human-robot collaboration/cooperation. Such field is highly dynamic, due
to fast moving human workers, sharing the operation space with the robots. This im-
poses the need for human safe trajectory generators, that can lead to frequent halts in
motion, re-planning, and sudden, discontinuous changes in the position of the robot’s
instantaneous center of rotation (ICR). All this requires steer joint reconfiguration
to the newly computed trajectory. This issue is almost ignored in the literature, and
motivates the work presented in this chapter.

Furthermore, to the best of our knowledge, no thorough investigation has been
conducted on the issue of reorienting the wheels, once discontinuity in the robot
trajectory occurs. Usually, steer reconfiguration is performed in a manual fashion,
depending on the test trajectory. This is found in the literature under various des-
ignations, e.g. "initial phase" in [GFASH09], and "open-loop starting procedure"
in [TNM96]. Although an ICR-based controller is the most suited to handle such
cases, the work in [OGM13] and [OGM14] is limited by the assumption of continuous
and differentiable desired trajectory, whereas in [SPS12] the singularities imposed by
the ICR-based model are handled by reducing the robot maneuverability. As such,
the state of the art will fail to provide proper solutions.
In this chapter, we propose an ICR based kinematic control framework that is:

1. robust against trajectory discontinuity,

2. capable of handling kinematic singularity in the ICR space (as opposed to the
Cartesian velocity space method developed in Chapter 3),

3. compliant with the maximum steer joint limits in terms of velocity and accel-
eration (or seamlessly, jerk).

The framework consists of two decoupled kinematic controllers: a Cartesian-velocity
based controller, and an ICR-based one. The former is used to control the drive rate
"wheel speed", employing a Cartesian space kinematic model. The latter controls the
steering rate, while respecting the maximum steer joint limits, by using optimization
to locate the "next sample time" ICR coordinates. The benefit of using separate
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kinematic controllers for the drive and steering rates, is that it is not necessary to
map the 2D ICR-coordinate space to the 3D Cartesian space, so associated singu-
larities and inconveniences (non injectiveness) are avoided. The 3D Cartesian space
kinematic model developed in Section 3.2.1 is free from representational singularity,
while the kinematic singularities are being handled in the 2D ICR space controller.

4.1.2 Proposed control framework

The proposed control framework is depicted in Fig. 4.1. The desired 3D Cartesian
space robot motion (ξ̇∗, and ξ̈∗), is generated by a high level perception controller
(out of the scope of this thesis). This is then mapped to the 2D ICR space, and the
output desired ICR motion (ICR∗, and ˙ICR

∗
) is fed to the ICR velocity controller,

along with the current ICR coordinates ICRcurr. The output reference signal of the
contoller ICRref is then fed to an optimization algorithm that determines the "next
sample time" ICR coordinates ICRnext that will minimize the quadratic cost error:
‖ICRref − ICRnext‖22 while respecting the joint performance limits formulated as
linear constraints. We use the ICRref rather than ICR∗ in the cost function in order
to obtain smooth behavior since it is error dependant, otherwise the steering joint
will keep operating at its maximum limit, either velocity or acceleration, to go from
the current steering angle to the desired one. When the ICR point reaches the desired
value (while operating at maximum velocity), it cannot stop since it has to respect
the maximum deceleration, so it keeps oscillating about the desired steering angle and
eventually stops, this can result in instability, and as such it is more adequate to use
an error based signal such as ICRref . The corresponding steer joint reference signal
βref is then evaluated (while fixing the numeric issues involved) and differentiated, to
obtain the β̇ref that is sent to the motor drivers. At the same time, a decoupled robot
velocity controller is implemented, the initial output of which ξ̇ref(init) is projected
onto the null space of the "next sample time" robot configuration (represented by the
kinematic constraint matrix G(βref ) defined in (3.5)), to obtain the feasible control
signal ξ̇ref . The reference wheel rate φ̇ref is then obtained using the IAKM in (3.8).
The blocks in Fig. 4.1 are detailed in each of the following sections.

4.2 ICR Velocity Controller

In Fig. 4.1, the desired base frame motion is the output of the perception (or motion
planning) block. As shown in Fig. 4.2, the corresponding desired ICR coordinates,
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expressed in base frame, ICR∗ =
[
X∗ Y ∗

]T , are usually evaluated using (3.12):

X∗ = −ẏ∗/θ̇∗, Y ∗ = ẋ∗/θ̇∗.

However, this formula is singular in pure translation motion (when θ̇∗ = 0). Al-
ternatively, here we propose to use:

X∗ = R∞ tanh

(( −ẏ∗

θ̇∗ + sign(θ̇∗)δ1

)
/R∞

)
,

Y ∗ = R∞ tanh

(( ẋ∗

θ̇∗ + sign(θ̇∗)δ1

)
/R∞

)
,

(4.1)

sign(θ̇∗) =

{
+1, ∀θ̇∗ ≥ 0

−1, ∀θ̇∗ < 0
,

with R∞ a large positive scalar that should be chosen carefully, to avoid numerical
instability when computing the corresponding steer joint values using the arctan()

function. On the other hand, δ1 is an infinitesimally small positive scalar value.

Definition 4.2.1. R∞ ∈ ]0,∞[ is a parameter representing the radius of curvature
of the path followed by the robot, corresponding to pure translation motion. It serves
as an upper limit to the values allowed for the X and Y components of the ICR.

Remark 4.2.2. Setting R∞ to a value other than ∞ will result in non pure transla-
tion motion: there will always exist a rotation velocity component. Shall the desired
command correspond to pure translation, the controller proposed in this work will
provide the necessary corrective action.

Equation (4.1) is both singularity free, and provides bounded ICR∗ components
thanks to the tanh() function. Similarly, the desired ICR velocity, ˙ICR

∗
can be

computed using:

Ẋ∗ = V̇max tanh

((−ÿ∗θ̇∗ + ẏ∗θ̈∗

(θ̇∗)
2

+ δ1

)
/V̇max

)
,

Ẏ ∗ = V̇max tanh

(( ẍ∗θ̇∗ − ẋ∗θ̈∗
(θ̇∗)

2
+ δ1

)
/V̇max

)
,

(4.2)

where V̇max limits ˙ICR
∗
.

On the other hand, the current ICR coordinates ICRcurr =
[
Xcurr Ycurr

]T are
computed using the current "measured" steer joint configuration, β̂. We assume
that this configuration corresponds to a unique valid ICR point, i.e., that the motor
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driver properly tracks the reference steer rate β̇ref , and as such the measured steer
joint values correspond to a "unique" ICRcurr. For numeric robustness, we use the
pair of steer joints with the biggest angular difference (see Fig. 4.2). Their indexes
i, j ∈ {1, . . . , N} are given by:

[i, j] =

max
i,j

(
β̂i − β̂j

)
, ∀β̂i − β̂j ≤ π/2

max
i,j

(
β̂i − β̂j − π

)
, ∀β̂i − β̂j > π/2

,

then:

Ycurr =

{
R∞ cos(β̂i), ∀β̂i < βth
hxi−hxj+hyi tan(β̂i)−hyj tan(β̂j)

tan(β̂i)−tan(β̂j)
, otherwise

,

Xcurr =

{
R∞ sin(β̂i), ∀β̂i < βth

hxi − (Ycurr − hyi) tan(β̂i), otherwise
,

(4.3)

where βth is a small threshold value. The result of (4.3) is saturated to ±R∞ to obtain
Xcurr and Ycurr. Finally, the ICR-Point Velocity Controller is formulated as:

˙ICRref = ˙ICR
∗

+ λICRerr,

ICRerr = ICR∗ − ICRcurr,
(4.4)

where λ is a positive scalar proportional gain, and ICRerr is the error between
the desired and current ICR coordinates. Such controller is known to guarantee
asymptotic convergence.

4.3 Handling Kinematic Singularity

Kinematic singularity occurs whenever the ICR point approaches any of the steering
axes (where Yref ≈ hyi, and Xref ≈ hxi ), since evaluating the singular steer angle
using:

βi = arctan 2
(
Yref − hyi, Xref − hxi

)
− π/2,

will give an undefined value. In such case, the steering rate grows unbounded. This
is handled in the literature either by constraining the robot velocity space [TNM96,
DWASH11,CPHV09, SPS12], so that the ICR never passes by any steering axis, or
by saturating the steer rate at singularity [OGM13]. In Section 3.3, we developed
a method to dampen such effect: the steer rate slows down, and is zeroed, as the
ICR approaches and then reaches the steer axis [SCPF16]. However, that method
cannot be applied here, as we control steer joints in the 2D ICR space, rather than
in Cartesian space.
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Figure 4.2: Relationship between the 3D Cartesian velocity space and the 2D ICR
coordinate space. The steer joint pair with the biggest angular difference δβij =
|βi − βj| is used to compute ICRcurr.

To handle this kinematic singularity in the 2D ICR space, we construct a singu-
larity zone (circle with fixed radius Rzone) around each steering axis (the 2nd steer
joint zone, in Fig. 4.3). If the ICR enters the circle, ICRref is set on the opposite
side, along the straight line normal to the singular wheel. Thanks to this approach,
the motion of the singular joint is minimal. The ICRref is modified as:

Xref = Xcurr + 2Rzone cos(βs + π/2),

Yref = Ycurr + 2Rzone sin(βs + π/2),
(4.5)

with Rzone, the zone radius, and βs, the singular steer angle.

4.4 Optimal next sample time ICR Point

The reference control signal ICRref obtained from (4.4) is error driven. When trajec-
tory discontinuity occurs or the initial motion commands (with high error) are being
sent, excessive joint velocity/acceleration is needed. This drives the ICR reference
point far from the current one. In this section, a quadratic programming optimiza-
tion problem is formulated to determine the best feasible "next sample time" ICR
coordinates ICRnext among a feasible set. Such set is constructed by formulating
the maximum and minimum "next sample time" steer angles as linear constraints
depending on the current steer joint state and on its maximum performance (here,
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𝒙𝑏 

𝒚𝑏 
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Figure 4.3: ICR point approaching the singularity zone (in red) of the 2nd steer joint.
ICR motion direction is indicated by the top arrow.

velocity and acceleration) limits. Then, ICRnext will replace ICRref in computing
the steer joint commands.

Fig. 4.4 shows the feasible change, in one sample time period ts, in each of the
steer joints (in positive and negative directions) based on:

1. the position of ICRcurr,

2. the maximum steer joint velocity and acceleration.

Indeed, the feasible set of ICRnext is within the intersection of the extreme feasible
changes of all steer joints. The feasible region for ICRnext shown in Fig. 4.4.a
corresponds to a stationary ICRcurr, which can move arbitrarily in any direction
within the indicated feasible set. Instead, Fig. 4.4.b depicts the case of moving
ICRcurr (i.e., ˙ICRcurr 6= 0). In such case, the maximum steering deceleration
constraints (shown in Fig. 4.4.b as βi(t+ts)min+ and βi(t+ts)min− for minimum change
in steer angle in positive and negative directions, respectively) will apply, to further
restrict the feasible set, dividing it into four regions based on the current steer rate
direction. Figure 4.4.c shows a particular case of Fig. 4.4.b where β̇2 > 0 and β̇3 > 0.
Also, the case of discontinuous change in the desired motion trajectory is depicted,
where a new reference ICR point ICRref is required, while ICRcurr is following (and
converging towards) an old one ICRref(old). Thanks to this approach, discontinuity
in velocity commands can be handled seamlessly with the same formulation, and no
steer joint reconfiguration is needed.

All cases can be addressed by formulating a quadratic optimization problem, sub-
ject to linear constraints, to minimize the error between the ICR reference signal
ICRref and the best feasible ICR at the next sample time ICRnext =

[
Xnext Ynext

]T .
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Figure 4.4: Feasible set of solutions for the ICR coordinates, respecting the maximum
steer joint performance with: (a) stationary ICR, (b) moving ICR (general case), and
(c) moving ICR (particular case) with β̇2 > 0 and β̇3 > 0, ts is the sample time.

The latter is also the decision variable:

minimize
ICRnext

‖ICRref − ICRnext‖22

subject to (−1)qi(min)Ai(min)(ICRnext − hi) ≥ 0,

(−1)qi(max)+1Ai(max)(ICRnext − hi) ≤ 0,

where ‖ ∗ ‖22 is the squared Euclidean norm, Ai(max/min) =
[
cot(βi(max/min)) 1

]
, hi =[

hxi hyi
]T , and qi(max/min) is a parameter indicating the βi(max/min) quadrature:

qi(max/min) =

{
0, if βi(max/min) ∈ 1st ∨ 4th quadrant,
1, if βi(max/min) ∈ 2nd ∨ 3rd quadrant.

The value of ICRref is obtained either from (4.4) by numeric integration, or from
(4.5) in case of kinematic singularity. Using ICRref instead of ICR∗ provides
smooth damped behavior, since its computation depends on ICRerr (refer again
to (4.4)). The constraints are the straight lines of slopes βi(max) and βi(min):

β̇i(max)(ref) =

{
β̇i + β̈max ∗ ts, β̇i(max)(ref) < β̇max

β̇max, otherwise
,

β̇i(min)(ref) =

{
β̇i − β̈max ∗ ts, β̇i(min)(ref) > −β̇max
−β̇max, otherwise

,

βi(max/min) = βi + β̇(max/min)(ref) ∗ ts. (4.6)

Finally, using the optimal ICRnext, the next best steer angles are computed:

βi(next) = arctan 2
(
Ynext − hyi, Xnext − hxi

)
− π

2
. (4.7)
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4.5 Fixing Numeric Issues

Two numeric issues can be observed, when employing the previously described con-
troller. The first originates from the arctan 2() function in (4.7) whenever βi(next)
moves between 4th and 1st, or between 2nd and 3rd quadrants. This results in 2π

jumps in the computed angle. The second occurs when the ICR passes by kinematic
singularity: moving on a straight line passing by a steer joint axis, and then moving
from one side of that axis to the other, will require a π jump in βi(next). This problem
has been avoided previously in Section 3.3, by employing the steer joint rate. How-
ever, a different method is necessary here, since we compute the joint angle rather
than its rate in (4.7). To handle these two issues, we use ∆βi = βi(next)− βi to detect
and fix the jumps:

β̇i(ref) =


(∆βi + lπ)/ts, ∆βi < −lπ + 2β̇maxts

(∆βi − lπ)/ts, ∆βi > lπ − 2β̇maxts

∆βi/ts, otherwise,
(4.8)

with l ∈ {1, 2} depending on the case being handled, and β̇i(ref) the joint-space
steering reference/command signal.

4.6 The Driving Rate

To compute the wheel drive rate φ̇i(ref) from (3.8), the reference velocity vector ξ̇ref
equivalent to ICRnext is needed. However, this is not feasible, since one information
is missing when mapping from the 2D space of ICRnext to the 3D space of ξ̇ref .
To avoid such inconvenience, we propose a separate 3D Cartesian Space Velocity
Controller (see Fig. 4.1), to compute the driving rate. First, a simple proportional
controller is used to evaluate the reference signal ξ̈ref(init) (the subscript init indicates
that this is an initial value, not yet the final one to be applied to the robot):

ξ̈ref(init) = Kp(ξ̇
∗ − ξ̇), (4.9)

with Kp a positive scalar gain, and ξ̇∗ the desired robot velocity output by the task
controller. The corresponding ξ̇ref(init) (obtained by numeric integration of (4.9))
may be incompatible with the "next sample time" robot configuration obtained by
substituting βref (obtained by integrating (4.8)) in the kinematic constraint matrix
(3.5), where Gref = G(βref ). Hence, ξ̇ref is obtained by projecting ξ̇ref(init) onto the
null-space of Gref :

ξ̇ref = (I −G+
ref(d)Gref )ξ̇ref(init). (4.10)
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Substituting by ξ̇ref in (3.8), we finally obtain φ̇i(ref).

4.7 Experiments

In this section, the benchmark test trajectory presented in Section 3.4 is used again,
to evaluate our discontinuity robust control framework on the industrial mobile robot
Neobotix MPO700 (shown in Fig. 3.5). All parameters used in the experiments are
provided in Table 5.1. A video of the experiment can be found on the IDH YouTube
channel 1

4.7.1 Benchmark trajectory

The benchmark trajectory proposed in Section 3.4 and depicted in Fig. 3.3, will be
employed to test the robustness of the proposed controller against both representation
and kinematic singularities. It consists of 5 distinct velocity trajectories, with connec-
tions not tailored. Hence, the performance against commanded velocity discontinuity
can also be verified. In the following, we detail each of the 5 velocity trajectories (the
desired acceleration is the derivative of the provided velocity).

4.7.1.1 Parabolic ICR position profile

A parabolic ICR-point motion with vertex at one of the steering axes is used, and
implemented smoothly using a constant velocity profile:

ẋ∗ = 0.5 ∗ (2ẏ + hx2)
2 + hy2

ẏ∗ = Tc4b(ẏi = 0, ẏf = −hx2, ti = 2, tf = 6, t)

θ̇∗ = 0.5.
(4.11)

1https://youtu.be/P9aIIwz6qLE

Table 4.1: Robot and Controller parameters used in the singularity-robust control
framework experiments.

δ 0.001 V̇max 10m/s βth 0.005rad.

λ 3.7 Rzone 0.015m β̇max 2rad./s

β̈max 25rad./s2 ts 25ms Kp 2
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Here, Tc4b is a 4th order trajectory, taking initial velocity ẏi, final velocity ẏf , initial
time ti, final time tf , and current time t as arguments:

Tc4b =


a0 + a1δt1 + a2δt

2
1 + a3δt

3
1 + a4δt

4
1, ti ≤ t < t1

a5, t1 ≤ t < t2

a0 + a1δt3 + a2δt
2
3 + a3δt

3
3 + a4δt

4
3, t2 ≤ t < tf .

Coefficients a0 ... a5, are computed by setting the initial and final acceleration/jerk
(boundary conditions) to zero, δt1 = t − ti, δt2 = t − t1, and δt3 = t − t2, while
t1 = ti + 0.1 ∗ (tf − ti), and t2 = tf − 0.1 ∗ (tf − ti). Before employing the velocity
profile in (4.11), the following velocity command is applied, to guarantee that the
parabolic ICR profile starts at the correct initial condition:

ξ̇∗ = 0.5 ∗
[
h2x2 + hy2 0 1

]T
, 0 ≤ t < 2.

4.7.1.2 ICR point at kinematic singularity

Cartesian robot velocity used:

ξ̇∗ = 0.5 ∗
[
hy1 −hx1 1

]T
, 6 ≤ t < 8.

4.7.1.3 Pure linear motion

Done by sending "zero angular velocity" and arbitrary linear velocity var:

ξ̇∗ =
[
var1 var2 0

]T
, 8 ≤ t < 10.

4.7.1.4 Straight line motion of the ICR between steering axes

Consists in moving the ICR along a straight line connecting any two steering axes
(i.e., six straight lines for the 4 SWMR), realized by the following command sequence:

ξ̇∗ = 0.5 ∗
[
hy1 −hx1 1

]T
, 10 ≤ t < 12,

ξ̇∗ = 0.5 ∗
[
hy2 −hx2 1

]T
, 12 ≤ t < 14,

ξ̇∗ = 0.5 ∗
[
hy3 −hx3 1

]T
, 14 ≤ t < 16,

ξ̇∗ = 0.5 ∗
[
hy4 −hx4 1

]T
, 16 ≤ t < 18,

ξ̇∗ = 0.5 ∗
[
hy2 −hx2 1

]T
, 18 ≤ t < 20,

ξ̇∗ = 0.5 ∗
[
hy1 −hx1 1

]T
, 20 ≤ t < 22,

ξ̇∗ = 0.5 ∗
[
hy4 −hx4 1

]T
, 22 ≤ t < 24,

ξ̇∗ = 0.5 ∗
[
hy3 −hx3 1

]T
, 24 ≤ t < 26,

ξ̇∗ = 0.5 ∗
[
hy1 −hx1 1

]T
, 26 ≤ t < 28.
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4.7.1.5 Zero Velocity

Cartesian robot velocity command used:

ξ̇∗ =
[
0 0 0

]T
, 28 ≤ t < 30.

4.7.2 Results and Discussion

Applying the benchmark test trajectory shown in Fig. 4.5a and Fig. 4.5b to the
proposed controller, we obtain the steer joint velocity and acceleration commands
in Fig. 4.5c and Fig. 4.5d, respectively. As shown, these commands respect the
maximum joint performance limits. The corresponding Cartesian space velocity is
also shown in Fig. 4.5a and Fig. 4.5b, where a deviation from the trajectory is
autonomously performed to accommodate for the "planned discontinuity".

When implemented on the Neobotix-MPO700, the steer joint velocity response is
obtained as in Fig. 4.6a, showing some overshoot due to the embedded controller.
However, better tuning of the embedded controller parameters, to improve the re-
sponse, is still an open technical issue. Similarly, the command and response signals
of the wheel drive joints are shown in Fig. 4.5e and Fig. 4.6b, respectively. In Fig.
4.5c, we can see that during the parabolic ICR motion, while passing the singular
configuration, the second steer joint velocity grows, while respecting the maximum
limit. In the second test, where the robot must rotate about the first steer joint axis
(kinematic singularity), we can observe that:

1. The singular joint does not rotate at the maximum limit, which is favorable as
noted earlier,

2. low amplitude vibration (chattering) exists in the steering joints other than the
singular one (see also test 4).

The second result is due to the singularity treatment algorithm, which keeps driving
ICRref from one side of the singular zone circle to the other. Where the benchmark
test explicitly requires the ICR point to be "at" kinematic singularity, which is not
allowed in the way kinematic singularity is handled in section 4.3. Although such
chattering behavior looks ugly and can result in vibration of the stter joint mechanical
system, it can be a promising solution by decreasing the controller sample time ts,
below the response time of the mechanical system (the sample time can be as low as
1 milliseconds on a CORE i7 processor). However, this was not achievable without
rewriting the embedded actuation controller, a task that we plan to do in future work.
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𝑥 ∗ 
𝑦 ∗ 
𝑥 𝑟𝑒𝑓 

𝑥 𝑟𝑒𝑓 

(a) Linear velocity: desired and output by the proposed controller.

 

𝜃 ∗ 

𝜃 𝑟𝑒𝑓 

(b) Angular velocity: desired and output by the proposed controller.

𝛽 1𝑟𝑒𝑓 

𝛽 2𝑟𝑒𝑓 

𝛽 3𝑟𝑒𝑓 

𝛽 4𝑟𝑒𝑓 

(c) Output steering velocity command of the proposed controller.

𝛽 1𝑟𝑒𝑓 

𝛽 2𝑟𝑒𝑓 

𝛽 3𝑟𝑒𝑓 

𝛽 4𝑟𝑒𝑓 

(d) Output steering acceleration command of the proposed controller.

𝜑 1𝑟𝑒𝑓 

𝜑 2𝑟𝑒𝑓  
𝜑 3𝑟𝑒𝑓 

𝜑 4𝑟𝑒𝑓 

(e) Output drive speed command of the proposed controller.

Figure 4.5: Results of the proposed controller along the “discontinuous” benchmark
trajectory.

The vibration frequency can also be attenuated by taking into account the maximum
steering jerk in the QP formulation. Finally, it is worth noting that our kinematic
controller assumes a high performance joint space dynamic controller implemented on
the mobile robot in hand (very small joint space position/velocity error is assumed).
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𝛽 1𝑟𝑒𝑠 

𝛽 2𝑟𝑒𝑠 
𝛽 3𝑟𝑒𝑠 

𝛽 4𝑟𝑒𝑠 

(a) Output steering velocity response of the proposed controller.

𝜑 1𝑟𝑒𝑠 
𝜑 2𝑟𝑒𝑠 
𝜑 3𝑟𝑒𝑠 
𝜑 4𝑟𝑒𝑠 

(b) Output drive speed response of the proposed controller.

Figure 4.6: Joint space response results of the proposed controller, applied to the
MPO700 industrial mobile robot.

4.8 Conclusion

A motion-discontinuity robust controller has been developed and successfully tested
on an industrial mobile robot. A discontinuous benchmark test trajectory that excites
representation and kinematic singularities has been successfully performed, using the
proposed controller. Maximum steer joint performance limits are taken into account
and have shown to be respected throughout the experiments. In future work, the
drive joint maximum performance limits will be added to the proposed framework.

4.9 Link with Next Chapter

Chapter 3 introduced a kinematic model that is robust to singularities, that can be
used in controlling the SWMR in 3D Cartesian velocity space assuming continuous
velocity commands. In contrast to this approach, this Chapter employs an ICR based
controller in order to deal with discontinuity in the robot velocity commands. How-
ever, for heading control applications where a constant robot orientation is desired
(quite common in visual servoing tasks), the reference ICR (output of the ICR con-
troller) will keep changing the sign of the angular velocity, which in turn requires
moving the ICR point from one extreme of the ICR space to the other (refer to
(3.12)). The required ICR movement is long and passes by the robot geometric cen-
ter, at which ICR position, the feasible robot velocity is rotation in place, and as such
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robot motion is neither efficient nor satisfactory. Providing a solution to such issue
motivates the next Chapter.



Chapter 5

Complementary Route Based ICR
Controller
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5.1 Introduction

Kinematic modeling and control of SWMR is usually done either in the 2D ICR
space [CPHV08,CHV12, SPS12,CBC+10] or in the 3D Cartesian space [GFASH09,
BC96, SCPF16,TNM96]. In [GH14,DWASH11, SCFP17], both are combined, since
ICR space is best suited for steering coordination (to avoid actuator fighting and
wheel slippage) as it ensures the existence of a unique ICR point, while Cartesian
space is utilized for robot speed control. We also use ICR-based steer coordination,

50
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Heading
Control
Problem

2D Image

2D ICR space
border

Figure 5.1: An example of heading control application, where changing the error sign
will result in vast ICR point motion requirement.

and the focus of this chapter is precisely to enhance ICR based controllers, through
the design of a complementary route strategy.

In applications requiring that some heading angle is to be maintained, some object
or feature stays in the field of view (e.g., for vision-based tasks), or the translation
verse changes, the ICR point is required to move long distances from one extreme of
the workspace to the other, usually passing by the robot geometric center, where the
feasible robot velocity is limited. An illustration of such application is shown in Fig.
5.1, where the blue object is to be maintained in the vision cone (light red colored),
while the robot is moving from an initial pose to a final relative pose with the object.
A visual servoing controller based on the error between the current and desired object
horizontal location in the image frame (eim) is a common approach. In such case the
error sign fluctuation, will result in frequent sign change in the desired robot angular
velocity θ̇∗, that would in turn result in sign change for at least one component of the
desired ICR vector (refer to Fig. 5.2), which means large ICR motion requirement.
In such scenarios, the state-of-art ICR based controllers will lead to unsatisfactory
behavior/results.

To solve this problem, here we propose a comparison between the direct and
complementary ICR routes, the former (state-of-art approach) being the shortest
straight line connecting the current and desired ICR points, while the latter (proposed
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Figure 5.2: An example of heading control application, where changing the error sign
will result in vast ICR point motion requirement.

here) connecting the ICR extreme borders via a border ICR point that is chosen to
minimize the total ICR distance moved across borders. The 4 borders here define the
maximum values that the ICR point is allowed to take on the x and y axes of the
geometrically centered robot frame. Instead of moving directly to the desired ICR,
the complementary route will move first to the optimum border point lying on the
nearest border line, switch borders, for example: from the +y to the −y border line in
one sample period, then move to the desired ICR point. A graphical representation
of such process is shown in Fig. 5.3.

In [CHV12], the direct ICR route is stereographic projected onto a unit sphere,
where moving between complementary borders can be done at the pole of the unit
sphere. However, no investigation on border switching nor simulations showing the
joint-space performance are provided. To the best of our knowledge, the work pre-
sented in this chapter is the first connecting ICR borders for more time efficient ICR
controllers.

One of the contributions of the method adopted here is to provide a decoupled
solution from the high level command/perception controller, where the trajectory
planning doesn’t need prior knowledge of the robot structure: only the current robot
velocity and pose will suffice to close the feedback loop. Error between the command
provided and the actual capability of the robot is handled locally. In order to assess
the enhanced performance quantitatively, here, we introduce the command fulfillment
index (CFI) that is based on the robot velocity error vector, and use it to compare
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coordinates
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border 
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to:

complementary 
border point after 
border switching

complementary 
border line:

drive
joint

steer
joint

Figure 5.3: Steerable mobile robot 2D ICR space is bounded in this work by 4 border
lines corresponding to x = ±R∞ and y = ±R∞ defined in the robot frame F b with
origin at the robot center. An ICR point moving from the current to the desired
value can follow a direct route (in red), or a complementary one (in green). Here the
parameter R∞ = 10m.

the direct and complementary route controllers.
In this chapter, we extend the kinematic control framework of described in chapter

4 so that it:

1. can handle sign variations in rotational speed commands, that frequently occurr
in orientation (heading) control applications,

2. has better command fulfillment index (responsiveness),

3. results in less steering motion demand (of both velocity and acceleration).

5.2 Complementary ICR Route

In this section, the complementary ICR route algorithm is described/formulated.
First we show the difference with respect to the direct route and that in some sit-



CHAPTER 5. COMPLEMENTARY ROUTE BASED ICR CONTROLLER 54
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complementary 
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complementary 
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border switching

3 7

-6

6

-6 -3

Figure 5.4: Illustrative schematic showing the complementary versus the direct ICR
routes.

uations it can be shorter in length. Then we formulate a QP optimization problem
to find the shortest complementary route to the desired ICR point from the current
one. We then describe in detail how to implement the algorithm in conjunction with
the discontinuity-robust ICR controller developed in Chapter 4.

5.2.1 Complementary Versus Direct Routes

The direct and complementary ICR routes are depicted in Fig. 5.4 in red and green
colors respectively. The direct is the shortest direct straight line connection between
the current point ICRcurr, and the desired one ICR∗. The complementary, on the
other hand, is a concatenation of two successive straight lines interconnected (detailed
in next section) via the complementary border lines, defined below.

Definition 5.2.1. A border line defines an upper limit to the accessible workspace of
the ICR point in any of the principle axes of the Cartesian space coordinates in the
mobile base frame. As such there exist 4 border lines: x = ±R∞ and y = ±R∞.

Definition 5.2.2. A border point is any point belonging to a border line.
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x-axis

y-axis

direct 
ICR route

optimal (shortest) 
complementary 
ICR route

3 7

-6

6

-6 -3

solving for 
the constraint :

Figure 5.5: The locally optimal complementary ICR route (in green) among other
possible routes (magenta and blue) satisfying one constraint y = R∞.

Definition 5.2.3. The border is the perimeter of the square constructed from the 4
border lines.

For the particular pair of ICRcurr and ICR∗ shown in Fig. 5.4, the comple-
mentary route is the shortest and as such is expected to be time optimal. The ICR
border point ICRbor =

[
Xbor Ybor

]T used to construct the complementary route
belongs to the border line y = R∞, although any ICRbor belonging to the other
3 border lines can be used as well. Furthermore, there exist infinite points satisfy-
ing y = R∞, each resulting in a complementary route, as shown in Fig. 5.5, where
the blue and magenta lines represent alternative solutions. This reflects the need to
choose the optimal (shortest) complementary route, which in this example (and for
this particular border line), is represented by the green line. In order to find the
ICRbor corresponding to the shortest complementary route (refer to Fig. 5.6), we
use quadratic programming. Since the feasible domain is the perimeter of the square
border (constructed from the 4 border lines) as depicted in Fig. 5.6, the optimization
problem is non convex.

Property 5.2.4. The non convex feasible domain (the border) of the ICRbor is
composed of 4 convex sub-domains (the 4 border lines).
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complementary
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Figure 5.6: The global optimum complementary route (magenta) among the four
local optima, each satisfying one straight line constraint.

To simplify the problem, we divide it into four separate QP formulations having
the same cost function but different constraints, each representing one of the border
lines, shown in Fig. 5.6 with different colors. Now each formulation is convex and
can be solved easily. The general formulation is given by:

minimize
ICRi(bor)

f(ICRi(bor)) =

‖ICRcurr − ICRi(bor)‖22
+ ‖ICR∗ − ICR′i(bor)‖22,

subject to
i=[1,2,3,4]

ciICRi(bor) = (−1)iR∞,

(5.1)

where ‖ ∗ ‖22 is the squared Euclidean norm, ICRi(bor) is the ICR border point corre-
sponding to the shortest (local minimum) complementary route using the ith border
line, ICR′i(bor) = −ICRi(bor), c1,2 =

[
1 0

]
, and c3,4 =

[
0 1

]
indicate the con-

straint vectors. This QP optimization has been implemented using the QuadProg++
library [Gas]. Finally the index j corresponding to lower cost fmin is computed to
obtain the global minimum:[

fmin|j
]

= min
i=[1,2,3,4]

({
[
f(ICRi(bor))|i

]
})

ICRbor = ICRj(bor).
(5.2)
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Using (5.2), the ICRbor corresponding to the shortest complementary route is found
(colored magenta in Fig. 5.6) among the infinite points lying on the square shaped
border.

5.2.2 One Sample Period ICR Border Switching

To maintain unique ICR existence (in accordance with the steer joint configuration)
at all times, the ICR border switching has to be done in one sample period. To be
able to do this, restrictions on the value of R∞ have to be respected, depending on
the maximum change in steering angle that can be done in one sample time (δβmax
in Fig. 5.7) which is in turn related to the robot hardware (actuator) constraints. On
the other hand, R∞ is limited to certain range of upper values since the optimization
algorithm run by the motion discontinuity-robust controller will have limited freedom
in the feasible region at ICR points far from the robot center moving at high ICR
velocity ˙ICRref (refer to Fig. 5.10). In such case, the feasible region for the ICRnext

will be confined to move towards the ICR space borders, a favorable behavior for
the complementary route motion, but not for the normal (most usual) operating
conditions. To avoid such inconvenience, we introduce the extended version R∞(e)

that is only used for complementary route execution.

Definition 5.2.5. R∞(e) = {x ∈ R+ : R∞ < x < ∞}, is an extended value of the
upper limit allowed for the components of the ICR, such that border switching can
be performed in one sample period.

Definition 5.2.6. Border switching is a joint space operation where the steer joints
are reconfigured from M(ICRbor) to M(−ICRbor), where M : ICR 7→ β is a
coordinate mapping from the ICR space to the steer joint space.

From the geometry of the green triangle in Fig. 5.7, R∞(e) can be evaluated in
the worst case scenario as:

R∞(e) ≥ b ∗ tan
(π − δβmax

2

)
+ oband

δβmax = min({β̇max ∗ ts, β̈max ∗ t2s}),
(5.3)

where β̇max, and β̈max denote the maximum steering velocity and acceleration charac-
teristics of the robot respectively, oband is a positive scalar (hand tuned) band offset.
For further clarification, R∞ is usually selected in the range of 10 ∼ 20m, whereas
R∞(e) as computed using (5.3) along with the robot-controller parameters provided in
Table 5.1, evaluates to ≈ 31m at sampling time ts = 25ms (or ≈ 192m at ts = 10ms).
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x-axis

y-axis

longest st. line 
connecting a steer
axis and the robot
geometric center

Figure 5.7: Evaluating the minimum value of R∞(e) at the worst case scenario (biggest
change in steer joint δβ) to be able to perform border switching in one sample period.
The mobile base schematic is magnified w.r.t. the ICR border lines for illustrative
purposes.

5.2.3 Route Planning

To implement the complementary ICR route, its time efficiency with respect to the
direct one is first evaluated using a quantitative metric (detailed in the next sub-
section). Once the route is verified as being more time efficient, the complementary
enable flag Fce is set to 1 allowing its execution. Such route requires the following
set of 4 consecutive steps S = {S1, . . . , S4} with, S1: moving to the optimum border
point ICRbor at R∞ (Fig. 5.8a), S2: extending the border lines to R∞(e) (Fig. 5.8b),
S3: one sample period border switching (Fig. 5.8c), S4: retracting the border lines
back to R∞ (Fig. 5.8d), at which step, the complementary route algorithm is disabled
(Fce = 0) and the direct route is then utilized finally to the desired ICR∗. The ele-
ments of the Boolean set S are initialized to 1 at the beginning of the complementary
route execution. These steps are implemented by manipulating the modified ICR
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desired point ICR∗mod, and the ICR controller gain λ as follows:

∀S1 ∧ Fce ∧ (|ICRerr(c)| > cth) :{
ICR∗mod = ICRbor,

λ = λn,
(5.4)

Otherwise : S1 = 0,
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-6
-3
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(a)

x-axis

y-axis

3 7

-6

6

-6
-3

-8

8

(b)

x-axis

y-axis

3 7

-6

6

-6
-3

-8

8

(c)

x-axis

y-axis

3 7

-6

6

-6
-3

-8

8

(d)

Figure 5.8: Implementation of the complementary route; (a) step1: moving to the
optimum border point, (b) step2: extending the border lines, (c) border switching in
one sample period, and (d) retracting border line, then completion as direct route.
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∀S1 ⊕ S2 ∧ Fce ∧ (|ICRerr(e)| > eth) :{
ICR∗mod = ICRbor ∗ re,
λ = λe,

(5.5)

Otherwise : S2 = 0,

∀S1 ⊕ S2 ⊕ S3 ∧ Fce ∧ (ICRcurr 6= ICR′bor) :{
ICR∗mod = ICR′bor ∗ re, (5.6)

Otherwise : S3 = 0,

∀S1 ⊕ S2 ⊕ S3 ⊕ S4 ∧ Fce ∧ (|ICR′err(c)| > cth) :{
ICR∗mod = ICR′bor,

λ = λn,

Otherwise : (5.7)
ICR∗mod = ICR∗,

S4 = 0,

Fce = 0.

In the above, re = R∞(e)/R∞ is the extension ratio, ICRerr(c) = ICRbor−ICRcurr,
and ICRerr(e) = ICRbor ∗ re − ICRcurr are the complementary and extended error
vectors respectively, eth, and cth are the corresponding positive scalar thresholds. Two
positive scalar gains λe, and λn are used for the extended and normal ICR motion
controllers respectively. Finally, ICR′err(c) = ICR′bor − ICRcurr. Equations (5.4 -
5.7) represent the semantic core (planning) of the complementary route algorithm,
where the high level desired signal ICR∗ is modified to ICR∗mod based on the choice
of ICR route to follow. The modified desired signal will be used by the ICR controller
[SCFP17] (refer to Fig. 5.9):

˙ICRref = ˙ICR
∗

+ λICRerr,

ICRerr = ICR∗mod − ICRcurr.
(5.8)

5.2.4 Automatic Joint Space Border Switching

In (5.4), we modify the desired ICR so that it is on the complementary border, but the
actual border switching is done in the steering joint space. The switching is executed
by first checking if the ICR∗mod and the ICRcurr satisfy:

(|X∗mod ±R∞(e)| ∧ |Xcurr ∓R∞(e)|)∨

(|Y ∗mod ±R∞(e)| ∧ |Ycurr ∓R∞(e)|) ≤ oband. (5.9)
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This simply indicates that at least one component (being x or y) of both the desired
and current ICR points is in the opposite border band. Then the complementary
steer joint variables corresponding to ICR′bor = −ICRbor are evaluated using the
SWMR geometric model:

β′i(bor) = arctan 2
(
− Ybor − hyi,−Xbor − hxi

)
− π

2
. (5.10)

However we are interested in the minimum change in steering angle to achieve the
border switch, which can be obtained by first computing the required steering change
δβi(bs) using (5.10) and the current steer joint coordinates:

δβi(bs) = PosB(β′i(bor))− PosB(βi(curr)), (5.11)

PosB(δβi(bs)) =

{
δβi(bs) + 2π, ∀δβi(bs) < 0

δβi(bs) − 2π, ∀δβi(bs) ≥ 2π
,

where PosB(∗) is a function that ensures the output angles are positive and bounded
in the range [0, 2π[. The minimum change is then obtained from (5.11) as follows:

δβi(bs)(min) =


δβi(bs) − 2π, if δβi(bs) > 3π/2

δβi(bs) − π, if δβi(bs) > π/2

δβi(bs) + 2π, if δβi(bs) < −3π/2

δβi(bs) + π, if δβi(bs) < −π/2

. (5.12)

Finally, the 4D vector δβ(bs)(min) is added to the current steer position vector to
conclude the border switching phase:

βref = βcurr + δβ(bs)(min). (5.13)

5.3 Direct OR Complementary

In order to select the best route, here defined as the one that is more time efficient, we
need an estimate of the total time required by each. To do this we use the Jacobian
relating the steering velocity to that of the ICR point:

˙ICRmax = J+
(ρ)(ICRcurr) ∗ β̇max, (5.14)

J(ICR) =
[
J1 . . . JN

]T
, (5.15)

Ji =

[
−Ỹ

X̃2 + Ỹ 2 + δ3

X̃

X̃2 + Ỹ 2 + δ3

]
,
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where Ỹ = (Y − hyi), X̃ = (X − hxi), with δ3 ∈ R+ a damping factor. The Jacobian
matrix in (5.14) is obtained by substituting by ICRcurr in the general relation (5.15).
Fig. 5.10 shows the evolution of ‖ ˙ICRmax‖2 over the entire R∞ bounded ICR space,
computed using (5.14) with the parameters of the Neobotix MPO-700 mobile robot
provided in Table 5.1. As depicted, among equal length direct and complementary
routes, the latter will be more time efficient. Both routes are then divided into an
equal, even number of samples 2 ∗ np, np ∈ Z+, and at each, ˙ICRmax is computed
using (5.14) and used to estimate the time required by each route as follows:

Td =

2∗np∑
k=1

Sd

‖J+
(ρ)(ICRk(d)) ∗ β̇max‖

,

Tc =

np∑
k=1

Sc

‖J+
(ρ)(ICRk(c)) ∗ β̇max‖

(5.16)

+
S ′c

‖J+
(ρ)(ICR

′
k(c)) ∗ β̇max‖

,

ICRk(d) = ICRcurr +
k

2 ∗ np
∗ ICRerr,

ICRk(c) = ICRcurr +
k

np
∗ ICRerr(c),

ICR′k(c) = ICR′bor +
k

np
∗ (ICR∗ − ICR′bor),

where Td, and Tc are the time duration estimates, Sd = 0.5 ∗ ‖ICRerr‖/np, Sc =

‖ICRerr(c)‖/np, and S ′c = ‖ICR∗ − ICR′bor‖/np are the distance increments for
the direct, complementary part#1, and part#2 routes respectively (refer to Fig. ??,
upper). It is worth noting that the estimates provided by (5.16) are not exact and
are only useful for comparison purposes, since the error driven ICR controller will not
provide maximum ICR velocity during the whole route.

In some cases, even if the complementary ICR route is found more time consuming
than its direct counterpart, it is preferable to still use it. In particular when the direct
route will pass by/near singular configurations, triggering the singularity avoidance
algorithms [SCFP17], that in turn will consume more time by manipulating the direct
route. Moreover, in the neighbourhood of singular configurations or of the robot
geometric center, usually the feasible region for the ICRnext is very small, and it
might happen (although rarely if controller parameters are tuned well) that no feasible
solution is found. In practice, such situation occurs when the direct route passes by
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x-axis

y-axis

MPO700 
SWMR

Figure 5.10: Variation of the maximum ICR velocity with robot’s ICR position,
featuring the Neobotix-MPO700 industrial mobile robot approximately to scale, with
R∞ = 10m.

the robot footprint. To bias the decision in such cases, we construct an elliptic
footprint, light red colored in Fig. 5.11, whose geometric center coincides with the
robot frame, and semiaxes lengths w, and h (values chosen arbitrarily), formulated
as:

x2/w2 + y2/h2 = 1. (5.17)

The intersection points Pint(1,2) =
[
xint(1,2) yint(1,2)

]T of such footprint with the direct
route formulated as y = md ∗ x+ bd, would be:

xint(1,2) =
−w2mdbd ± wh

√
K1 − b2d

K1

,

yint(1,2) =
h2bd ± whmd

√
K1 − b2d

K1

,

where K1 = w2m2
d + h2. Then we use the discriminant D = K1 − b2d to determine

whether the direct route intersects the designed footprint or not (D ≥ 0 if intersection
occurs). Afterwards, we add a biasing factor Tb that is activated only if both the
current and desired ICR points are outside the ellipse. Such biasing condition is
checked by substituting by ICRcurr, and ICR∗ in (5.17) and formulated as:

Cb =

1, if
(X2

curr

w2
+
Y 2
curr

h2
≥ 1
)
∧
(X∗2
w2

+
Y ∗2

h2
≥ 1
)

0, Otherwise
.
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Figure 5.11: Intersection of the direct ICR route with the elliptic footprint of the
mobile robot should be in favor of using the complementary route.

Finally, the total time duration based route comparison is done using:

Fce =

{
1, if (Tc ≤ Td + l(D)CbTb) ∧ ˙ICR

∗ 6= 0

0, Otherwise
, (5.18)

where l(∗) is a logic function:

l(D) =

{
1, ∀D > 0

0, ∀D ≤ 0
.

In (5.18), condition ˙ICR
∗ 6= 0, ensures that we evaluate both routes and update

the flag Fce automatically only if a change in the desired ICR motion is detected,
triggering the "direct or complementary" decision making algorithm (red colored
block in Fig. 5.9).

5.4 Experiments

In this section, we describe/perform two experiments, the first (simulation) will show
how the proposed complementary route controller can enhance the performance of
the SWMR in response to diverse discontinuous velocity commands. To this end we
introduce the command fulfillment index as performance (quantitative) evaluation
metric. The second experiment will feature a particular (common) application where
the mobile base is required to reach certain relative pose with respect to a target
object, avoiding obstacles while maintaining a particular heading angle so that the
target is always in the vision cone. We show that the general performance is greatly
enhanced with the proposed controller. Both, the vision based controller and the
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obstacle avoidance algorithm are out of the scope of this work and consequently not
detailed here, and the reader is referred to [KCAP17] for more information on these.

5.4.1 Command Fulfillment Index

To better assess the quality of the required commands ξ̇ref we introduce the CFI
(dimensionless quantity) as metric for evaluation, formulated as:

CFI = 1− ‖ξ̇
∗ − ξ̇ref‖2

2‖ξ̇max‖2
, (5.19)

where ξ̇max =
[
ẋmax ẏmax θ̇max

]T
is the maximum robot velocity allowed via linear

thresholding the reference signal ξ̇ref . In (5.19), the CFI metric does not depend
on the estimated (from joint space measurements) robot velocity, since the low level
(joint dynamics) control is out of the scope of this work. Instead we aim at evaluating
how much the generated, feasible velocity commands will follow the desired one, where
in case of SWMR, the value 0 < CFI < 1 will be closer to 1 as the quality of the
controller increases.

It is worth noting that the best values for CFI are expected for a fully omnidi-
rectional robot. However, it will not maintain CFI = 1 at all times being subject
to discontinuous velocity commands: a sudden drop in the CFI value will happen
once a new (discontinuous) desired ICR point is commanded (see Fig. 5.13c, and Fig.
5.15c). It is generally expected that a FOMR will converge faster than a SWMR.
Note that the CFI formulation in (5.19) depends on the response time of both the
steering and driving joints. The FOMR structure has an advantage since it does
not need steering. On the other hand, a SWMR structure has an advantage in the
driving joint thanks to its conventional wheels that are generally expected to respond
faster (to reach a discontinuously commanded drive speed) than omnidirectional (or
Swedish) ones, due to their limited velocity/acceleration capabilities [WCGR02], and
frequent slippage [NTST00]. This argument implies that for applications subject to
frequent discontinuous velocity commands, the SWMR structure may be equivalent
or even out-perform the FOMR one.

5.4.2 Discontinuous Velocity Commands Simulation

In order to evaluate the proposed controller against discontinuous robot velocity com-
mands in different situations, we should be able to set those commands in the ICR
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space. To do this we use the kinematic relation between the 3D Cartesian velocity
space and the 2D ICR space (refer to Fig. 3.1):

v∗ =

[
ẋ∗

ẏ∗

]
=

[
Y ∗θ̇∗

−X∗θ̇∗

]
, (5.20)

where X∗, and Y ∗ are the components of each of the nine desired ICR points shown
in Fig. 5.12, and a constant rotational velocity θ̇∗ = 0.05rad/s is used throughout the
simulation. Each of the 9 velocity commands is applied for a duration of 5 seconds.
The 3D Cartesian velocity vector ξ̇∗ =

[
v∗T θ̇∗

]T
is then sent to the controller

architecture shown in Fig. 5.9.
Simulation results for the complementary route controller and the conventional

one are shown in Fig. 5.13, 5.14, and Fig. 5.15, 5.16 respectively. The first command
ICR∗ =

[
0 R∞

]T , applied during t = [0, 5[s (t is the simulation time), shown in
Fig. 5.12 requires no steering as it conforms with the initial steer joint configuration.
Among numerous reasons, the motivation behind the first command is to show that
even if no steering is required (the same case as in FOMR), the CFI is not equal
to 1 (Fig. 5.13c, 5.15c) since it depends on how fast the required driving velocity
can be reached, and in that spirit it is expected that the SWMR might out-perform
the FOMR structure at some motion requirements, due to the limited performance
capabilities [WCGR02,NTST00] of such non conventional wheel types.

The second command ICR∗ =
[
0 −R∞

]T , applied during t = [5, 10[s, requires
ICR motion from one extreme of the ICR space to the opposite in the conventional
(direct) controller. The ability to perform such discontinuous velocity command in
short time is the core motivation behind the complementary route development, since
it is very common in heading control applications, where a small variation about the

Table 5.1: Robot and Controller parameters used in the complementary route exper-
iments.

δ1 1−9 V̇max 10m/s βth 0.005rad.

λn 7.7 Rzone 0.015m β̇max 2rad./s

β̈max 25rad./s2 ts 25ms Kp 2
w 0.4m h 0.3m λe 30

ẋmax 0.5m/s ẏmax 0.5m/s θ̇max 0.5rad./s

ẍmax 0.5m/s2 ÿmax 0.5m/s2 θ̈max 0.5rad./s2

R∞(e) 33m eth 0.1R∞ cth 0.05R∞(e)

δ3 0.01 np 50 Tb 3s
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x-axis

y-axis

Figure 5.12: Desired (discontinuous) ICR points used in simulation. The relative
dimensions of the mobile base schematic as well as the points are drawn at approx-
imately 1 : 1 scale for clarification. The initial steer joint configuration corresponds
to the equivalent ICR point of the first velocity command vector.

desired heading will result in sign change in the rotational velocity command, that in
turn cause big jumps in the corresponding ICR from one extreme to the other. The X
component of the desired and reference ICR points, for the complementary and direct
routes is shown in Fig. 5.13a, 5.15a respectively. Similarly for the Y component in
Fig. 5.13b, 5.15b. Recall that the reference ICR point is a feasible signal that can
be performed by the robot taking into account its maximum performance limits. By
comparing the Yref output of both controllers in Fig. 5.13b, 5.15b we clearly see the
enhanced performance using the complementary route, where converging to the Y ∗

took only fraction of a second (0.2s), whereas in Fig. 5.15b, the direct route took
much longer to converge (2.27s).

The third ICR∗ =
[
7 6

]T , and fourth ICR∗ =
[
−6 −6

]T commands applied
during t = [10, 15[s, t = [15, 20[s respectively, correspond to the example given earlier
in Fig. 5.4. These commands confirm the superior performance of the complementary
route (refer to Fig. 5.13a, 5.15a, 5.13b, 5.15b) in terms of the convergence time of
both the X and Y components of ICRref . The 4 commands just described feature
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Figure 5.13: Simulation results using the complementary route controller with (a),
(b) the x− axis, and y − axis components respectively of the desired and reference
(output of the controller) ICR points (in meters), (c) the command fulfillment index
(dimensionless). In all plots, the abscissa represents the simulation time instant (in
seconds).

large discontinuous jumps in the desired ICR point, in which cases the performance
of the complementary route clearly surpasses that of the direct route in terms of
lowering both the time of convergence and the total Cartesian velocity error. The
latter is evident from the smaller area above curve for the CFI plots in Fig. 5.13c as
compared to Fig. 5.15c.

The fifth command ICR∗ =
[
−0.5 −0.5

]T , applied during t = [20, 25[s, lies in
the same quadrant as the fourth. Consequently there exists no advantage in using the
complementary route; this is automatically detected using (5.16), and the direct route
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Fce

(c)

Figure 5.14: Simulation results using the complementary route controller with (a),
(b) the steering velocity (in rad/s) and acceleration (in rad/s2) respectively, and (c)
the time instants at which the complementary route algorithm is active. In all plots,
the abscissa represents the simulation time instant (in seconds).

is used. The sixth command ICR∗ =
[
0.5 0.5

]T , applied during t = [25, 30[s, aims
at testing the elliptic footprint avoiding algorithm. By comparing Fig. 5.15, and Fig.
5.13 we see that the ICRref converging time for both is almost the same, although
the CFI is lower in case of the direct route. This can be adjusted by lowering the value
of the penalty factor Tb in (5.18). Instead, here, its value is intentionally left high
enough (3s) to bias the decision in favor of the complementary route for two reasons.
First: in practice, when the desired velocity is near the current one (especially near
the robot geometric center), a small increase in the error value does not affect the
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Figure 5.15: Simulation results using direct route (conventional) controller with (a),
(b) the x− axis, and y − axis components respectively of the desired and reference
(output of the controller) ICR points (in meters), (c) the command fulfillment index
(dimensionless). In all plots, the abscissa represents the simulation time instant (in
seconds).

application in hand tragically. Second: avoiding ICR motion in the robot footprint
region lowers the chances of triggering singularity avoidance algorithms, keeping the
steering to minimum as shown by comparing Fig. 5.14a, 5.14b with Fig. 5.16a, 5.16b,
which is generally favorable.

The seventh ICR∗ =
[
1 0

]T , and eighth ICR∗ =
[
−1 0

]T commands applied
during t = [30, 35[s, t = [35, 40[s respectively, show that the complementary route
can be as efficient for small ICR jumps near the geometric center as it is for the far
points in the ICR space. In moving from the seventh to the eighth, the conversion
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Figure 5.16: Simulation results using direct route (conventional) controller with (a),
(b) the steering velocity (in rad/s) and acceleration (in rad/s2) respectively. In all
plots, the abscissa represents the simulation time instant (in seconds).

time duration is approximately 2.5s and 1s for the direct and complementary routes
respectively. The corresponding areas above the CFI curve are 0.047s, and 0.03s in
the same order. Finally a pure rotation velocity command ICR∗ =

[
0 0

]T is applied
during t = [40, 45[s. In Fig. 5.14c, the periods in which the complementary route
algorithm is active are shown. During the rest of the simulation period, the direct
route is active, better explaining the proposed algorithm as a correcting module to
enhance the overall performance. Aside better CFI values and shorter convergence
time of ICRref to the ICR∗, the proposed controller reduces the required steering
velocity and acceleration, as clearly shown in Fig. 5.14a, 5.14b, 5.16a, and 5.16b.

5.4.3 Practical Application Scenario and Results

The performance evaluation detailed in previous subsection (Fig. 5.13, 5.14, and
Fig. 5.15, 5.16) is a mere quantitative comparison. It shows that the complementary
route controller outperforms the direct route one. However in practice, the direct
route controller might fail in several applications or will provide unsatisfactory be-
havior at best. Here, we describe/perform one of these applications, where a mobile
robot is required to move to a relative pose with respect to a visible target, while
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Figure 5.17: V-rep scene of the practical scenario, featuring the Neobotix-MPO700
mobile robot navigating to a target while performing static obstacle avoidance. The
simulated visual cone applies a constraint on the heading of the robot so that the tar-
get is always seen by the robot, as is common in vision-based navigation. Here we ap-
ply such constraint to show the utility of the proposed controller. F t = (ot,xt,yt, zt)
denotes the target object frame.

avoiding several static obstacles on its way. During this task, the robot has to main-
tain a fixed relative heading angle with respect to the target, to maintain it within
its field of view. The V-rep simulation scene of such application is shown in Fig.
5.17. The desired velocity commands ξ̇∗ output by the visual navigation controller
(detailed in [KCAP17]), are highly discontinuous. Real experiments have been con-
ducted successfully using the complementary route controller.

The desired velocity (output by the navigation controller) is shown in Fig. 5.18a
and Fig. 5.20a for the complementary and direct route controllers, respectively. In
Figures 5.18b, and 5.20b, the output of the respective controllers is shown. As seen,
the complementary route approach is more responsive and converges faster to the
desired signal. However during the time period t = [2, 5[s in Fig. 5.18b, the comple-
mentary route algorithm is less satisfactory in terms of following the desired robot
velocity. Hence, during this period, the direct route is activated. The reason for
this can be found in Fig. 5.18c, and 5.18d showing the X and Y components of the
ICR∗, and ICRref signals respectively. During this time period, the ICR∗ is near
the robot geometric center (values of X∗, and Y ∗ are closer to 0), consequently the
direct route is computed to be more time efficient using (5.16), and since the signal is
highly discontinuous, the direct route controller output ICRref , did not have enough
time to converge to ICR∗. It is worth noting that whenever a new discontinuous
velocity command is requested, all robot velocity components are affected until they
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Figure 5.18: Simulation results of the practical application using the complementary
route controller with (a), (b), the desired and reference (output of the controller) 3D
robot velocity respectively (linear velocity in m/s and angular velocity in rad/s), (c),
(d), the x− axis, and y − axis components respectively of the desired and reference
ICR points (in meters).



CHAPTER 5. COMPLEMENTARY ROUTE BASED ICR CONTROLLER 75

CFI
CFI

(a)

β̇1
β̇2
β̇3
β̇4

(b)

Figure 5.19: Simulation results of the practical application using the complemen-
tary route controller with (a) the command fulfillment index (dimensionless) and the
evolution of its average value CFI, (b) the corresponding steering velocity (in rad/s).

converge to their corresponding desired values. This is because, in contrast with
FOMR structured robots, the robot velocity components are coupled.

The X and Y components of the ICR∗, and ICRref signals for the direct route
controller are shown in Fig. 5.20c, and 5.20d respectively. By comparing these figures
with their complementary route counterparts, the poor responsiveness of the first is
evident, especially at pure heading control during the time period t = [25, 48[s. The
controller output ICRref takes longer time to converge to the ICR∗, which in turn
is reflected on the longer simulation time required to reach its target relative pose
(48s).

The command fulfillment index is shown in Fig. 5.19a, and 5.21a respectively in
the usual order, along with the evolution of its moving average value CFI computed
using:

CFI =
Ns∑
0

CFI

Ns

,

where Ns = t/ts is the number of sampling instances (points) at time t. The CFI
metric quantitatively shows the enhanced responsiveness discussed earlier for the
complementary route controller. Recall that the area above the CFI curve (in hashed



CHAPTER 5. COMPLEMENTARY ROUTE BASED ICR CONTROLLER 76

ẋ∗

ẏ∗

θ̇∗

(a)
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Figure 5.20: Simulation results of the practical application using the direct route
(conventional) controller with (a), (b), the desired and reference (output of the con-
troller) 3D robot velocity respectively (linear velocity in m/s and angular velocity in
rad/s), (c), (d), the x − axis, and y − axis components respectively of the desired
and reference ICR points (in meters).
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Figure 5.21: Simulation results of the practical application using the direct route
(conventional) controller with (a) the command fulfillment index (dimensionless) and
the evolution of its average value CFI, (b) the corresponding steering velocity (in
rad/s).

blue and red colors in the respective figures) is directly proportional to robot velocity
error.

In Fig. 5.19b, and 5.21b, the respective steering velocity for both controllers is
shown. It is evident that the proposed algorithm is less demanding in terms of steering
joint motion, apart from the issue encountered during the time period t = [2, 5[s

where the direct route controller was activated. It is worth noting that this incident
can be avoided by further tuning parameters like the penalty factor Tbias, and/or
the dimensions of the elliptic footprint axes. However we would like to show, here,
that such behavior can be expected when the desired ICR point is near the robot’s
geometric center for a thorough performance evaluation.

Finally, this application scenario has been performed experimentally using the
Neobotix-MPO700 industrial mobile robot equipped with laser scanners. The test
using the direct route controller suffered severe vibrations due to the excessive steering
required (refer to Fig. 5.21b) and is considered as a failure. On the other hand,
the complementary route controller test was performed successfully with satisfactory
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Figure 5.22: Snap shots of the real experiment employing the complementary route
ICR controller.

behavior, as shown in the video supplied 1, snapshots of which are provided in Fig.
5.22.

5.5 Conclusion

In this paper, a complementary route based ICR controller is introduced. Its per-
formance against the conventional ICR controller is compared quantitatively using
the developed evaluation metric: "command fulfillment index". The two controllers
are also compared in two case studies. The first features simple discontinuous ve-
locity signals applied at low frequency to allow for a detailed investigation of both
controllers behavior. The second is a practical application in which command discon-
tinuity occurs at much higher frequency. The complementary route ICR controller
shows superior results in all the tests performed.

1Also visible at: https://youtu.be/qsFAlTPs1yw.
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6.1 Summary of the Thesis

In Chapter 3 we introduced a kinematic model that is robust to all kinds of sin-
gularities. The model itself is representational singularity free for 3 or more steerable
wheeled robots, thanks to the use of the 3D Cartesian space velocity formulation.
We then added a numeric treatment for such model, making it robust against kine-
matic singularities. In effect, it provides a damping behavior opposite to that of the
singular, where the singular steer joint velocity slows down to zero at the singular
configuration instead of increasing indefinitely. A formula for tuning such damping
is provided so that the steering maximum acceleration is well respected. This ap-
proach can be used to control the SWMR in 3D Cartesian velocity space, assuming
continuous velocity commands. A major merit of this development is that it provides
a solution to the all singularities at the kinematic model level which is expected to
greatly lower down the computational cost, making it most suitable for high sampling
rate controller implementation.

In contrast to the approach adopted in Chapter 3 utilizing only a 3D Cartesian
space velocity based kinematic model, Chapter 4 presents two decoupled controllers
for the steering and driving systems. The latter utilizing the model presented in
Chapter 3 for controlling the driving speed, while the former being an ICR based
steering controller, the objective of which is to handle discontinuity in the robot ve-
locity commands. Such discontinuity is highly expected in applications where both

79



CHAPTER 6. CONCLUSION AND FUTURE PERSPECTIVES 80

the human and the robot share the same workspace for safety reasons. We believe
that ICR based controllers are best suited for steering coordination since the steer
joint coordinates are computed from a unique ICR point (output of the controller),
rather than from the robot 3D velocity vector which would result in accumulating
steering position errors. The steering controller developed, employs a QP optimiza-
tion algorithm taking into account the maximum steering velocity/acceleration as
linear constraints and outputs the best feasible "next sample time" ICR point on the
move from a current to a desired one. From which point, the "next sample time"
steering joint positions are computed, differentiated to obtain the steering velocity
commands to be sent to the actuator drives. The 3D Cartesian velocity space kine-
matic controller then utilizes the output steering velocity command to compute a
compatible wheel velocity commands (since the wheel type employed is off centered
steerable). The framework has been successfully validated in simulation as well as
in real world experiments featuring discontinuous velocity commands as expected by
the target application.

Chapter 5 tackles a common problem in ICR based controllers, specifically in
heading control applications, where a constant robot orientation is desired (as in visual
servoing tasks). In such case, the output of an ICR controller will keep changing the
sign of the angular velocity in a continuous corrective action to maintain the desired
heading angle. This requires moving the ICR point from one extreme of the ICR space
to the other, leading to large ICR movement which is far from being time efficient.
On the other hand, such ICR motion results usually in the ICR point passing by
the robot geometric center, at which ICR location, the feasible robot velocity is a
rotation in place, which results in blocking the robot motion. This in practice results
in failure to accomplish the task in hand. Chapter 5 introduced a new approach to
ICR control, where moving from a current ICR point to a desired one is done in a
complementary fashion rather than the direct one, by moving across artificial ICR
space borders. We used QP optimization to find the shortest complementary ICR
route, employing square shaped ICR space. Then the obtained complementary route
is compared with the direct one in terms of expected time requirements, the shortest
of which is then chosen and followed. This method results in much faster convergence
time and is shown successful in both simulations and in real experiments.
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6.2 Conclusions and Future Work

The complementary ICR controller shows promising results in terms of conver-
gence time (from an initial ICR point to a desired one), and in overall steering motion.
We believe that such complementary route can be further enhanced to avoid issues
perturbing the robot motion, and reported in Chapter 5. Also the way we handled
kinematic singularity in the ICR space, presented in Chapter 4, can be either enhanced
or replaced to avoid the chattering effect (reported as well) in steering acceleration/ve-
locity, and to be less restrictive on the accessible ICR space. Another interesting idea
is to explore the effect of utilizing a circular shaped ICR borders instead of the square
shaped one, which might make implementation more easier/straight forward.

Handling steer joint position limit is not handled in our work due to lack of
motivation since the SWMR hardware available at our lab (Neobotix-MPO700) has
no such limitation, where the steering joints can run continuously with no trouble.
Despite this fact, we believe our framework can be extended to take into account joint
position limits seamlessly thanks to the complementary route development. Using
such controller, the ICR point can move from one quadrant of the ICR space to the
complementary one (for example, from the 1st to the 3rd or from the 2nd to the 4th or
vice-versa) with minimal steering motion (less than or equal 90o in rotation angle).
It can be shown that a SWMR with joint steering position limit ranging from 0o to
360o has full accessibility to the ICR space with no need for any further development
employing the complementary route algorithm presented in Chapter 5.

The steerable wheeled mobile robots require precise coordination of the steering
axes as well as driving rates for those employing off centered wheels. This requires
high performance motion drives for the steering/driving actuators, where the error
in following velocity (or position) commands has to be very small, this in fact lead
us to a conclusion that a dynamic model is required for such systems, not only the
kinematic one. As a future work, the dynamic model of SWMR shall be developed
and the controller shall be implemented on the robot "on-board" computer to achieve
higher sampling rate (the current sample rate used in experiments is 40 Hz).

In terms of mobile robot structure, we should hold a comparison between the
performance of SWMR and that of conventional wheeled FOMR as those employing
Castor wheels or differential drive with an offset turret. The latter being a very
promising candidate for providing omni-directional capability making full use of the
low cost, high load capacity and smooth (vibration free) operation of conventional
wheels. Differential drive system with offset turret has also an extra advantage in
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terms of hardware cost, since it requires no redundancy in actuation in contrast
to SWMR and fully motorized Castor wheeled mobile robots. It has 3 degrees of
mobility instantaneously accessible powered by 3 actuators; two for the differential
drive wheels and one for the turret rotation.



Appendix A

Singularity Treatment and
Acceleration Limits

In this appendix it is proven that the damping element δ2 computed using (3.19)
guarantees respecting the maximum acceleration limit of the steering joint, when
used in (3.13) serving as numeric treatment for kinematic singularity.

A.1 Case I: δ2c ≤ 0

From (3.17), this case corresponds to:√
|ki(ξ̇, ξ̈)|
β̈i(max)

≤ (x̃2i + ỹ2i ),

and we can propose:

x̃2i + ỹ2i =

√
|ki(ξ̇, ξ̈)|
β̈i(max)

+ c, (A.1)

where c ∈ R+ is a positive semi-definite constant. Substituting by (A.1) in (3.15),
where δ2 = δ1 from (3.19) we obtain:

β̈i =
ki(ξ̇, ξ̈)

|ki(ξ̇,ξ̈)|
β̈i(max)

+ 2c1 ∗
√
|ki(ξ̇,ξ̈)|
β̈i(max)

+ c21

, (A.2)

where c1 = c+ δ1 is also positive semi-definite. Rearranging (A.2) we obtain:

β̈i

β̈i(max)
=

ki(ξ̇, ξ̈)

|ki(ξ̇, ξ̈)|+ 2c1 ∗
√
|ki(ξ̇, ξ̈)|β̈i(max) + c21β̈i(max)

. (A.3)

From (A.3), it is evident that the right hand side is a unit fraction, and consequently
the steer joint acceleration will comply with the maximum limit.
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A.2 Case II: δ2c > 0

In this case, we assume that the value of δ2 is constant and as such the derivative in
(3.15) still holds. This is a reasonable assumption after few movements of the robot
passing by kinematic singularity, where it quickly converges to the maximum value
of δ2c. In such case, (3.17) corresponds to:√

|ki(ξ̇, ξ̈)|
β̈i(max)

> (x̃2i + ỹ2i ),

again we can propose:

x̃2i + ỹ2i =

√
|ki(ξ̇, ξ̈)|
β̈i(max)

− c. (A.4)

Substituting by (A.4) in (3.15), we obtain the same formulae in (A.2) and (A.3) with
c1 = max(δ2c) − c. However the definition of the max(∗) function guarantees that
max(δ2c) > c, so c1 > 0 and consequently β̈i > β̈i(max). Hence we conclude that
using (3.19) along with (3.13), the kinematic singular behavior is well damped while
respecting the steer joint acceleration limits.
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