
HAL Id: tel-02090738
https://theses.hal.science/tel-02090738

Submitted on 5 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards smart services with reusable and adaptable
connected objects : An application to wearable

non-invasive biomedical sensors
Arthur Gatouillat

To cite this version:
Arthur Gatouillat. Towards smart services with reusable and adaptable connected objects : An appli-
cation to wearable non-invasive biomedical sensors. Other [cs.OH]. Université de Lyon, 2018. English.
�NNT : 2018LYSEI123�. �tel-02090738�

https://theses.hal.science/tel-02090738
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2018LYSEI123

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de

INSA-Lyon

Ecole Doctorale N° 512
InfoMaths

Spécialité/discipline de doctorat :
Informatique

Soutenue publiquement le 20/12/2018, par :
Arthur Yves Étienne GATOUILLAT

Towards Smart Services with Reusable
and Adaptable Connected Objects:

An Application to Wearable Non-Invasive Biomedical
Sensors.

Devant le jury composé de :

SONG, Ye-Qiong Professeur des Universités, Université de Lorraine Rapporteur
RIVENQ, Atika Professeure des Universités, UPHF Rapporteure
MALENFANT, Jacques Professeur des Universités, Sorbonne Université Examinateur
GUESSOUM, Zahia Maître de Conférences HDR, Sorbonne Université Examinatrice

BADR, Youakim Maître de Conférences HDR, INSA-Lyon Directeur de thèse
MASSOT, Bertrand Maître de Conférences, INSA-Lyon Co-encadrant de thèse

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Département FEDORA – INSA Lyon - Ecoles Doctorales – Quinquennal 2016-2020

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

CHIMIE CHIMIE DE LYON

http://www.edchimie-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
secretariat@edchimie-lyon.fr
INSA : R. GOURDON

M. Stéphane DANIELE
Institut de recherches sur la catalyse et l’environnement de Lyon
IRCELYON-UMR 5256
Équipe CDFA
2 Avenue Albert EINSTEIN
69 626 Villeurbanne CEDEX
directeur@edchimie-lyon.fr

E.E.A. ÉLECTRONIQUE,
ÉLECTROTECHNIQUE,
AUTOMATIQUE

http://edeea.ec-lyon.fr
Sec. : M.C. HAVGOUDOUKIAN
ecole-doctorale.eea@ec-lyon.fr

M. Gérard SCORLETTI
École Centrale de Lyon
36 Avenue Guy DE COLLONGUE
69 134 Écully
Tél : 04.72.18.60.97 Fax 04.78.43.37.17
gerard.scorletti@ec-lyon.fr

E2M2 ÉVOLUTION, ÉCOSYSTÈME,

MICROBIOLOGIE, MODÉLISATION

http://e2m2.universite-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
INSA : H. CHARLES
secretariat.e2m2@univ-lyon1.fr

M. Philippe NORMAND
UMR 5557 Lab. d’Ecologie Microbienne
Université Claude Bernard Lyon 1
Bâtiment Mendel
43, boulevard du 11 Novembre 1918
69 622 Villeurbanne CEDEX
philippe.normand@univ-lyon1.fr

EDISS INTERDISCIPLINAIRE

SCIENCES-SANTÉ

http://www.ediss-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
INSA : M. LAGARDE
secretariat.ediss@univ-lyon1.fr

Mme Emmanuelle CANET-SOULAS
INSERM U1060, CarMeN lab, Univ. Lyon 1
Bâtiment IMBL
11 Avenue Jean CAPELLE INSA de Lyon
69 621 Villeurbanne
Tél : 04.72.68.49.09 Fax : 04.72.68.49.16
emmanuelle.canet@univ-lyon1.fr

INFOMATHS INFORMATIQUE ET

MATHÉMATIQUES

http://edinfomaths.universite-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
Tél : 04.72.43.80.46 Fax : 04.72.43.16.87
infomaths@univ-lyon1.fr

M. Luca ZAMBONI
Bât. Braconnier
43 Boulevard du 11 novembre 1918
69 622 Villeurbanne CEDEX
Tél : 04.26.23.45.52
zamboni@maths.univ-lyon1.fr

Matériaux

MATÉRIAUX DE LYON

http://ed34.universite-lyon.fr
Sec. : Marion COMBE
Tél : 04.72.43.71.70 Fax : 04.72.43.87.12
Bât. Direction
ed.materiaux@insa-lyon.fr

M. Jean-Yves BUFFIÈRE
INSA de Lyon
MATEIS - Bât. Saint-Exupéry
7 Avenue Jean CAPELLE
69 621 Villeurbanne CEDEX
Tél : 04.72.43.71.70 Fax : 04.72.43.85.28
jean-yves.buffiere@insa-lyon.fr

MEGA MÉCANIQUE, ÉNERGÉTIQUE,

GÉNIE CIVIL, ACOUSTIQUE

http://edmega.universite-lyon.fr
Sec. : Marion COMBE
Tél : 04.72.43.71.70 Fax : 04.72.43.87.12
Bât. Direction
mega@insa-lyon.fr

M. Jocelyn BONJOUR
INSA de Lyon
Laboratoire CETHIL
Bâtiment Sadi-Carnot
9, rue de la Physique
69 621 Villeurbanne CEDEX
jocelyn.bonjour@insa-lyon.fr

ScSo ScSo*

http://ed483.univ-lyon2.fr
Sec. : Viviane POLSINELLI
Brigitte DUBOIS
INSA : J.Y. TOUSSAINT
Tél : 04.78.69.72.76
viviane.polsinelli@univ-lyon2.fr

M. Christian MONTES
Université Lyon 2
86 Rue Pasteur
69 365 Lyon CEDEX 07
christian.montes@univ-lyon2.fr

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

i

Abstract

The rapid growth of fixed and mobile smart objects raises the issue of their
integration in everyday environment, e.g. in e-health or home-automation con-
texts. The main challenges of these objects are the interoperability, the handling of
the massive amount of data that they generate, and their limited resources. Our
goal is to take a bottom-up approach in order to improve the integration of smart
devices to smart services. To ensure the efficient development of our approach,
we start with the study of the design process of such devices regardless of specific
hardware or software through the consideration of their cyber-physical properties.
We thus develop two research directions: the specification of a service-oriented
design method for smart devices with formal considerations in order to validate
their behavior, and the proposal of a self-adaptation framework in order to han-
dle changing operating context through self-reasoning and the definition of a
declarative self-adaptation objectives specification language. The testing of these
contributions will be realized through the development of a large-scale experimen-
tal framework based on a remote diagnostics case-study relying on non-invasive
wearable biomedical sensors.

Keywords — Internet-of-Things ; Smart devices ; Design method ; Self-adaptation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

iii

Résumé

La prolifération des objets communicants fixes et mobiles soulève la ques-
tion de leur intégration dans les environnements quotidiens, par exemple dans le
cadre de la e-santé ou de la domotique. Les principaux défis soulevés relèvent de
l’interconnexion et de la gestion de la masse de donnée produite par ces objets
intelligents. Notre premier objectif est d’adopter une démarche des couches basses
vers les couches hautes pour faciliter l’intégration de ces objets à des services intel-
ligents. Afin de développer celle-ci, il est nécessaire de d’étudier le processus de
conception des objets intelligents indépendamment de considérations matérielles
et logicielles, au travers de la considération de leur propriétés cyber-physiques.
Pour mener à bien la réalisation de services intelligents à partir d’objets connectés,
les deux axes de recherche suivant seront développés : la définition d’une méthode
de conception orientée service pour les objets connectés intégrant une dimension
formelle ainsi de valider le comportement de ceux-ci, l’auto-adaptation intelli-
gente dans un contexte évolutif permettant aux objets de raisonner sur eux même
au travers d’un langage déclaratif pour spécifier les stratégies d’adaptation. La
validation de ces contributions s’effectuera par le biais du développement et de
l’expérimentation à grandeur nature d’un service de diagnostic médical continu
basé sur la collecte de données médicales en masse par des réseaux non-intrusifs
de capteurs biomédicaux portables sur le corps humain.

Mot-clefs — Internet des objets ; Objets intelligents ; Méthode de conception ;
Auto-adaptation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

To Yves Menguy and Étienne Gatouillat.
To my family.

v

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Acknowledgements

I would like to thank Dr. Youakim BADR and Dr. Bertrand MASSOT

for their guidance during my PhD. I am also deeply grateful to

Dr. Ervin SEJDIĆ from University of Pittsburgh for his precious

advice and collaborations. Their mentorship was of tremendous

help during the three years of my PhD.

In addition, I would like to thank the members of the service-

oriented computing team at LIRIS and the members of the

biomedical sensors team at INL. More specifically, I express my

gratitude towards Dr. Claudine GEHIN, Dr. Amalric MONTALIBET,

Pr. Norbert NOURY and Pr. Eric MCADAMS, Arthur CLAUDE and

Dr. Loïc SEVRIN. Our discussions were always extremely educa-

tional and rewarding. I would also like to thank Dr. Maroun ABI

ASSAF and Xiaoyang ZHU, who were of valued help on numerous

occasions.

Finally, I would like to thank my friends and family. First and fore-

most I most sincerely thank my parents, who gave me an excellent

education and continue to give me continuous encouragement

and support. I also want to mention my brother and sister, who

are always by my side and represent a tremendous motivation.

Finally, I thank all my friends and family for their great patience

and listening during my times of doubts, and also for their un-

derstanding during my times of unavailability. I have a special

thought for Pierre, Ingrid, Timothée, Chloé, Océane, Emmanuel,

Howard, Clara, Jonathan, Hélène, and all the others I forgot to

mention.

Last but not least, I can’t thank Felipe DIAS enough for his contin-

uous support, presence and company. We’re a great team.

vii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

List of Figures

1.1 Layer-based representation of the IoT . 2

1.2 Layer-based OSI stack . 6

1.3 Dissertation outline diagram . 11

2.1 Services orchestration vs choreography . 18

2.2 Comparison of OSI, TCP/IP, Internet and CoAP-based stacks 20

2.3 Illustration of the FRACTAL component model 22

2.4 Illustration of a simple Node-RED program 23

2.5 Illustration of a timed automaton . 25

2.6 Illustration of model checking . 26

2.7 Exemplified taxonomy of typical smart devices digital hardware 32

2.8 Classical feedback loop architecture . 36

2.9 MAPE-K feedback loop . 39

2.10 DYNAMICO reference model . 40

2.11 OSGi architecture . 41

2.12 Asynchronous vs synchronous reactive systems 43

3.1 Smart devices detailed ontology with a class instance toy example 55

3.2 Smart device detailed resources ontology . 56

3.3 Method lifecycle . 57

3.4 Mutual constraints relationship . 58

3.5 Modular architectural simple generic example 60

3.6 Cardiorespiratory sensor modular architecture 65

3.7 Specifications of heart rate detection, processing, and integration 66

3.8 Heart Rate service specification: PlusCal and automatically generated TLA+ 68

3.9 First version of the cardiorespiratory sensor prototype 69

4.1 Illustration of personalized healthcare for our case study 74

4.2 Simplified block diagram of the sensor . 77

4.3 Mounted PCB (a.), body placement (b.) and encased sensor (c.) 78

4.4 Hardware vs software signal processing . 80

4.5 Diagram of hardware-based RR interval detection 82

4.6 Cardiorespiratory sensor LTS . 86

4.7 Screenshot of the developed Android companion application 87

4.8 Sensor evaluation using synthetic ECG . 88

4.9 Impact of the BLE latency parameter on global power consumption 89

4.10 Electrodes’ placement (a.) and nature (b.) evaluation 91

4.11 Bland-Altman diagram (a.) and comparative tachograms (b.) 93

viii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

List of Figures ix

4.12 Ambulatory HR and RWF . 94

4.13 Ambulatory HRV parameters . 94

5.1 Detailed QoS-driven self-adaptation framework 103

5.2 SLA ontology . 105

5.3 Cardiorespiratory sensor LTS . 107

5.4 Fine and gross position sensors LTSs . 108

5.5 EDA sensor LTS (a.) and its Heptagon/BZR specification (b.) 109

5.6 Heptagon/BZR control contract example . 110

5.7 Discrete controller synthesis workflow . 110

5.8 Self-adaptation language Backus-Naur form grammar 114

5.9 Simplified sample adaptation goals using our rule-based language 115

5.10 Simplified hybrid self-adaptation framework 118

6.1 Basic Drools rule syntax example . 127

6.2 Simplified implementation diagram . 131

6.3 Implementation dependency graph . 132

6.4 Objectives feedback loop class diagram . 132

6.5 Objectives feedback loop activity diagram . 133

6.6 Adaptation feedback loop class diagram . 134

6.7 Adaptation feedback loop activity diagram 134

6.8 Monitoring feedback loop class diagram . 135

6.9 Monitoring feedback loop activity diagram 136

6.10 Deployment life cycle . 138

6.11 GUI welcome screen . 139

6.12 Global view . 140

6.13 Physiological data view . 140

6.14 System administrator view . 141

6.15 Objectives analysis duration as a function of number of rules 142

6.16 Objectives analysis duration as a function of number of rules 143

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

List of Tables

2.1 Summary of IoT challenges and solutions from SOA, MDE, CPS 28

3.1 Detailed integration test description . 61

4.1 HRV paramters description . 76

4.2 Static power characterization of IoT states . 89

4.3 Precision and sensitivity of the sensor . 92

6.1 Prototype dependencies names and versions 131

x

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Contents

1 Introduction 1

1.1 IoT and Smart Devices Generalities . 1

1.2 IoT Research Challenges . 3

1.2.1 Unconventional Characteristics of Smart Devices 3

1.2.2 Global IoT Heterogeneity . 6

1.2.3 The IoT from a Multidisciplinary Research Perspective 7

1.3 Research Strategies . 8

1.3.1 Research Statement . 8

1.3.2 Improving Smart Devices Design to facilitate IoT Integration . . 9

1.3.3 Self-Adaptation: a Requirements of Smart Services 10

1.4 Dissertation Outline . 11

2 State of the Art 13

2.1 Introduction . 13

2.2 The IoT: Horizontal Solutions . 16

2.2.1 Service-Oriented Architectures in the IoT 17

2.2.2 Model-Based and Graphical Development in the IoT 20

2.2.3 IoT Smart Devices as Cyber-Physical Systems 24

2.2.4 Summary of Horizontal Contributions 27

2.3 Designing Embedded Systems . 28

2.3.1 Systems Design Methods . 29

2.3.2 Hardware Solutions for Smart Devices 32

2.4 Self-Adaptation Solutions . 35

2.4.1 Classical Control: Theory and Tools 35

2.4.2 Autonomic Computing: Self-Adaptive Software Systems 38

2.4.3 Reactive Systems and Discrete Controller Synthesis 42

2.5 Summary and Conclusion . 46

3 Design Method for Service Oriented Smart Devices 49

3.1 Introduction . 49

3.2 Method Overview . 52

3.2.1 Generalities . 52

3.2.2 Smart Devices Ontology . 54

3.3 Comprehensive Method Description . 56

3.3.1 Smart Device Requirements Analysis 58

3.3.2 Smart Device Constraints Analysis 58

3.3.3 Modular Architecture Design . 59

xi

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

xii Contents

3.3.4 Modules Formal Specification . 60

3.3.5 Smart Component Formal Specification and Verification 60

3.3.6 Modules Implementation and Integration 61

3.3.7 Smart Device Testing . 61

3.3.8 Smart Device Production . 62

3.3.9 Adding Self-Adaptive Behavior as a System-Wide Requirement . 62

3.4 Medical Smart Device Design . 63

3.4.1 Smart Device Analysis . 63

3.4.2 Smart Device Specification . 65

3.4.3 Smart Device Implementation: an Overview 67

3.5 Summary and Conclusion . 69

4 Smart Device Hardware Design and Implementation 73

4.1 Introduction . 73

4.2 Sensor Scope Statement . 75

4.3 Sensor Design . 76

4.3.1 Hardware Architecture . 76

4.3.2 Embedded Hardware and Software Signal Processing 79

4.3.3 Integrating Self-Adaptive Behavior 84

4.3.4 Development of an Android Companion Application 86

4.4 Sensor Evaluation . 87

4.4.1 Evaluation on Synthetic Signals 87

4.4.2 Energy Consumption . 88

4.4.3 Sensor Precision Evaluation . 90

4.4.4 Mobility Evaluation . 93

4.5 Conclusion . 95

5 Self-Adaptation Framework for Smart Devices 97

5.1 Introduction . 97

5.2 Self-Adaptation Case-Study . 100

5.3 Dynamic and Synchronous QoS-Driven Self-Adaptation for the IoT . . 101

5.3.1 Managing Dynamic Objectives and Monitoring Infrastructure . 102

5.3.2 Synchronous Programming Languages 106

5.4 Adaptation Objectives Specification . 111

5.4.1 Declarative Self-Adaptation Specification 111

5.4.2 Specifying Adaptation Objectives with a Rule-Based Language . 113

5.5 From Synchronous to Hybrid Self-Adaptation 116

5.6 Conclusion . 118

6 Implementing the Self-Adaptation Framework 121

6.1 Introduction . 121

6.2 Selected Technical Solutions . 123

6.2.1 The Data Distribution Service Standard 123

6.2.2 Asynchronous Reactive Systems Using Vert.x 125

6.2.3 The Drools Rule Engine . 127

6.2.4 The Maven Software Management Tool 129

6.2.5 MongoDB Database . 129

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Contents xiii

6.3 Implementation Architecture . 130

6.3.1 Global Architecture . 130

6.3.2 Implementation Model . 131

6.3.3 Implementing the GUI . 136

6.3.4 Deployment Life Cycle . 137

6.4 Implementation Evaluation . 137

6.4.1 Case Study . 138

6.4.2 Experimental Results . 139

6.5 Conclusion . 143

7 Conclusion and Perspectives 145

7.1 Summary of the Contributions . 145

7.1.1 Service-Oriented Design Method for Smart Devices 146

7.1.2 Dynamic Self-Adaptation Framework 147

7.2 Future Research Directions . 148

A Résumé Long en Français 151

A.1 Introduction . 151

A.2 Méthode de Conception Orientée Service pour Objets Intelligents . . . 156

A.2.1 Description Générale . 156

A.2.2 Application de la Méthode à un Capteur Cardiorespiratoire . . . 160

A.3 Infrastructure d’Auto-Adaptation Dédiée aux Objets Intelligents 162

A.3.1 Présentation de l’Infrastructure Hybride 164

A.3.2 Implémentation de l’Infrastructure d’Auto-Adaptation 166

A.4 Conclusion . 168

B Cardiorespiratory Sensor Schematic 171

Bibliography 175

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

CHAPTER 1
Introduction

Contents

1.1 IoT and Smart Devices Generalities . 1

1.2 IoT Research Challenges . 3

1.2.1 Unconventional Characteristics of Smart Devices 3

1.2.2 Global IoT Heterogeneity . 6

1.2.3 The IoT from a Multidisciplinary Research Perspective 7

1.3 Research Strategies . 8

1.3.1 Research Statement . 8

1.3.2 Improving Smart Devices Design to facilitate IoT Integration . . 9

1.3.3 Self-Adaptation: a Requirements of Smart Services 10

1.4 Dissertation Outline . 11

1.1 IoT and Smart Devices Generalities

The Internet-of-Things, also called the IoT, designates the interconnection of virtually

any objects from the physical world, and their integration to wide-scale Internet-based

frameworks. The IoT is rapidly growing, and 20 billions of connected devices are esti-

mated to be available in 2020 [Cer+15]. This growth is also expected to have tremendous

economic impact, as total hardware spending related to the IoT is expected to reach

$2.9 trillion by 2020 [Gar17].

In addition to economic impacts, the IoT is also going to cause major societal

changes. Indeed, IoT-based solutions can be used for a variety of applications and

services, such as healthcare [BXA17], traffic control [CZ16], smart cities [Zan+14] just

to mention a few. Because these applications and services are strongly related to the

physical world, purely software solutions are not able to provide comprehensive repre-

sentations of all the problems faced in this cyber-physical context. For instance, smart

healthcare systems must be able to monitor a wide variety of physiological functions

through sensors, or be able to change patients’ physiological functions using drugs.

This proximity to the physical world brings new requirements on smart devices and

IoT-based systems (e.g., limited resources, mobility, human-in-the loop, etc.).

1

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2 Chapter 1. Introduction

IoT-based applications come with very different challenges and requirements. How-

ever, they also share a common set of requirements [Sta14], especially in terms of system

reliability, safety and security:

• Reliability: a system is considered reliable if functional requirements are verified

at all times. More specifically, reliability implies that unexpected system failures

must not occur under normal operating conditions. This requirement is partic-

ularly true for IoT-based systems as they are often used in critical applications

(e.g., healthcare, traffic control, etc.), where system failures could have potential

life-threatening consequences.

• Safety: a safe system is defined as not causing harm to its environment. This

characteristic is extremely important in IoT-based systems, as the IoT is strongly

related to the physical world in which damages can have disastrous consequences

(e.g., misestimation of system’s parameters could cause life-threatening acci-

dents).

• Security: a secure system is robust to external and internal malicious attacks. In

order to be secure, systems must either be designed with security features as

functional requirements (security by design), or by enabling threat detection and

resilience during systems’ execution (security at run time). Security is thus a

major concern of IoT-based systems, further emphasized by their often-critical

nature.

Without loss of generality, the IoT relies on the use of numerous smart devices to

build large scale intelligent and interconnected applications. Smart devices are phys-

ical objects embedded with wireless connectivity, computing capabilities, and smart

behavior. The democratization of smart devices is principally driven by progress in vari-

ous technological areas such as microcontrollers, low-energy wireless communication

protocols, power management, etc. Consequently, smart devices are often designed

using such hardware and protocols, and can be integrated into large scale frameworks

through peer-to-peer or Internet-based networks.

Figure 1.1 – Layer-based representation of the IoT

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

1.2. IoT Research Challenges 3

However, the IoT is more than a sum of smart devices interacting with each other.

Indeed, it raises higher-level challenges such as its ability to scale-up, to manage the

massive amount of data generated by smart devices, to perform advanced data analytics

in order to make decisions and trigger actions in the physical world, etc. In addition,

IoT-based systems often interact with Internet components such as Web services, Web

servers, or the Cloud in order to provide end-users with interfaces to manage or retrieve

information about smart devices through high-level applications.

In this dissertation, we illustrate the IoT architecture with respect to three layers,

as depicted in Figure 1.1. The smart devices layer focuses on smart devices design and

implementation, whereas the integration layer describes communication capabilities

between smart devices and high-level software components. It also allows their inte-

gration to build wider-scale frameworks. Eventually, the application layer focuses on

business logic to develop application-based IoT services. This layer is typically based on

Internet technologies, in particularly, the service-oriented architectural paradigm and

Web services in order to build reusable and interoperable IoT applicaitons and services.

1.2 IoT Research Challenges

Even though layer-based representations are valid models of the IoT [LXZ15], one must

realize that it does not preclude IoT-based systems to be considered as a whole, and

that holistic visions of the IoT improve safety, reliability and security. Indeed, each layer

comes with its own set of characteristics and requirements, which must be carefully

studied and understood in order to provide comprehensive solutions for IoT-based

systems, but also in order to have a comprehensive vision of such systems.

As above mentioned, the entire IoT paradigm relies on the use of smart devices to

interact with the physical world. These devices exhibit unconventional characteris-

tics, that are comprehensively discussed in the remaining sections of the Introduction.

Additionally, the IoT is extremely heterogeneous in terms of hardware, software (both

embedded and high level) and communication protocols. This heterogeneity remains

a bottleneck challenge as it prevents large-scale and system-wide integration of smart

devices, and it may cause interoperability issues. Furthermore, IoT heterogeneity re-

quires the collaboration of several research communities, namely the computer science

community to tackle challenges at the higher IoT layers and the electrical engineer-

ing community to investigate challenges in the lower level layers at the edge between

physical and digital world, which makes it a multidisciplinary issue. Without loss of gen-

erality, many additional communities such as signal processing, telecommunications or

social and business considerations can contribute to build holistic and interoperable

IoT-based systems.

1.2.1 Unconventional Characteristics of Smart Devices

The definition of smart devices is wide and encompasses extremely heterogeneous

devices. For instance, an industrial robot can be considered as a smart device, but

this is also the case of a wearable medical sensors. Even though those devices both

fall under the smart devices, they are very different in terms of available computing

capabilities, energy consumption and their potential impact on the physical world. By

focusing on the most constrained cases (i.e., devices with strong resources limitations)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

4 Chapter 1. Introduction

through the integration of resources management as a requirement, we are able to

generalize IoT-based frameworks to all kinds of capable and more constrained smart

devices, effectively resulting in comprehensive solutions for the design and study of

IoT-based systems.

In many IoT scenarios, smart devices must simultaneously tackle the following

challenges:

• Limited resources: Even though the scope of what can be considered a smart device

is broad, and ranges from small button-cell powered sensors to continuously-

powered small computers, available resources are often limited and represent a

major challenge. These limitations can be observed in terms of computational

power (i.e., microcontroller clock speed limited to the megahertz range), storage

(i.e., flash memory not exceeding a few hundreds of kilobytes), Random Access

Memory (RAM) (i.e., memory rarely surpasses a few tens of kilobytes), or battery

(i.e., from few tens of mAh to a few thousands mAh). These limitations impact

the devices’ processing power, their autonomy, as well as their connectivity. In-

deed, the processing power is correlated with the microcontroller clock frequency,

and higher clock speed causes higher energy consumption. A trade-off between

computing capabilities and energy consumption must thus be achieved while

designing smart devices. Moreover, the processing power has also direct impact

on the complexity of wireless communication protocols used by smart devices.

Sophisticated Internet Protocol (IP) -based communication protocols such as TCP

introduce communication overhead because of their complex message structures,

and thus requiring more computational resources than non-IP communication

protocols, such as Zigbee, Bluetooth Low Energy (BLE) or Near Field Communica-

tion (NFC). Consequently, resources limitation must be taken into consideration

in order to improve the optimization of smart devices.

• Hardware heterogeneity: the wide variety of hardware used to implement smart

devices remains an open research challenge. The democratization of low-cost

development boards (e.g., Arduino boards, Intel Edison, Raspberry Pi) has opened

the electronics development to numerous hobbyists and Do-It-Yourself (DIY)

makers [Raz+16]. Even though such devices are not representative of microproces-

sors used in massively manufactured IoT devices, they are already heterogeneous

(i.e., the Arduino Uno is based on a 8 bit Atmel AVR microcontroller, while the

Intel Edison board is based on a 32 bit x86 dual core microprocessor, while the

latest Raspberry Pi is built around a 64 bit Cortex-A53 core). A wide variety of

programming languages and technologies are also available for low-cost develop-

ment boards, ranging from the C-based Arduino programming language, to more

advanced languages such as Python, Java or Node.js on Raspberry Pi and Intel

Edison. The hardware heterogeneity imply challenges in terms of programming

languages (e.g., object oriented programming for Java, event-driven programming

for Node.js, etc.). Despite various development boards bring used in numerous

DIY and research projects, they are still not suited for wide-scale production of

hundred of thousands of units because of their size (i.e., the minimal size of for

the Intel Edison board is 35.5×25×3.9 mm) or their greedy power consumption

of at least a few hundreds of milliwatts in average [DST16; TVL17; KGH14]. In

general, if we consider all IoT technologies that we can use to build distributed

and interconnected smart devices, the heterogeneity becomes even bigger, and

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

1.2. IoT Research Challenges 5

represents a major challenge for the design of IoT-based systems. It is worth

noting that there is a wide variety of microcontrollers available on the market,

which includes 8 bit Intel 8051 and Atmel AVR microcontrollers, 16 bit power

efficient MSP430 from Texas Instruments, 32 bit Cortex Core-Mx from Silicon

Labs, STMicroelectronics, etc. Every microcontroller comes with its own char-

acteristics and configurations parameters, which makes generalization in this

field very difficult. Additionally, one should realize that microcontrollers are only

one of numerous Integrated Circuits (IC) involved in the design of smart objects.

Indeed, they are often equipped with application-specific peripherals such as

Analog Front-Ends (AFE), which handle signal conditioning, Analog-to-Digital

Converters (ADC), or Digital Signal Processors (DSP), etc. All these peripherals

have their own communication protocols and configurations parameters, which

increases the smart devices hardware heterogeneity. As a result, smart device

designers have to chose the best hardware for their projects, while simultaneously

keeping in mind the overall power consumption, processing capabilities and

manufacturing cost without relying on any kind of decision-making assistance

tools.

In addition to ICs heterogeneity, there is also a wide variety of hardware buses

that can be implemented for cross-IC communications. Serial buses, for example,

are the preferred low-level protocols, and hardware manufacturers often embed

them in their ICs. This adds another hardware heterogeneity issue that must

be addressed at the lowest layer of smart devices development. Smart devices

designers must thus pay a particular attention at the communication protocols

used by the ICs embedded in their prototypes. In sum, hardware heterogeneity is

due to several causes, ranging from microcontrollers to communication buses,

but also supply voltage or data format. Hardware heterogeneity thus prevents the

use of common tools that could make smart devices development easier.

• Hardware-software design methods: The hardware heterogeneity described herein

above require appropriate design methods in order to improve smart devices

reliability, safety and security. Design methods (sometimes also called design

methodologies) are traditionally defined as organized approaches used for sys-

tem development [WR97]. They provide guidelines, methodological steps and

tools to assist system development, including formal verification and validation

techniques into design methods can provide additional guarantees on system

properties (e.g., data type compatibility, reachability analysis, etc.), and helps to

match specifications. However, design methods must be easy to use and practi-

cal, especially for smart devices development because of short time-to-market

constraints. As smart devices make use of rapidly changing technologies, design

methods must be generic enough in order to handle such changes without the

need for extensive revisions. Reliability, safety and security requirements of smart

devices can be considered by integrating appropriate logical and mathematical

formalisms into the design methods, thus leading to smart devices being reliable,

safe and secure by-design.

In sum, smart devices are faced with challenges and unconventional characteristics.

Constrained resources, hardware heterogeneity and the lack of design methods for

smart devices raise drastic challenges as how to build reliable, safe and secure smart

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

6 Chapter 1. Introduction

devices. In addition to these low-level concerns of the IoT, researchers are also faced

with higher level challenges and research roadblocks.

1.2.2 Global IoT Heterogeneity

Similar to hardware heterogeneity for smart devices as defined herein-above, the IoT

also faces a global heterogeneity challenge. The integration and application layers of

the IoT are subject to the proliferation of protocols, frameworks, standard initiatives.

This leads to heterogeneity from software (e.g., different architectural and programming

paradigms, variety in the resources requirements of the frameworks, etc.) and larger-

scale hardware perspectives.

Indeed, numerous high level communication protocols are developed for IoT appli-

cations. One basic way to categorize those protocols is whether they are dependent or

not on the IP stack, as numerous non-IP protocol are emerging. For instance, Bluetooth,

Zigbee, ANT protocols are not based on the traditional IP stack. Other examples are the

ZWave or EnOcean protocols, which are both targeted at home automation applications

and have been developed for integration in application-specific products. In general,

the energy consumption of such protocols is low (i.e., few tens of milliwatts [Dem+13]),

and their range is relatively short (i.e., up to a few tens of meters [LSS07]). Consequently,

such protocols can be used to build short-range Body Area Networks (BAN) or Personal

Area Networks (PAN). BANs are defined as wearable and small scale (e.g., maximum

of 8 devices for BLE) computer networks, while PANs designate computer networks

covering a range of a few tens of meters (i.e., at a single room scale or small building

scale). It is worth noting that low-power wide-area network protocols such as LoRaWAN

or Sigfox, provide a wide range connectivity up to a few tens of kilometers [RKS17] while

keeping a low power consumption. Nevertheless, these protocols are not compatible

with each other, and interconnectivity must be provided using dedicated proxies to

handle packet translations. In addition, non IP-based protocols usually implement a

full customized version of the OSI stack [Zim80] (displayed in Figure 1.2).

Figure 1.2 – Layer-based OSI stack

IP-based protocols are also widely available and follow the IP network layer. These

protocols are typically implementing IPv4 or IPv6 over IEEE 802 -based data link and

physical layers, such as 802.11 (known as Wi-Fi). Most smart devices use IP-based

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

1.2. IoT Research Challenges 7

protocols in order to be easily integrated in already-existing Internet-based infrastruc-

tures. Typical application layer IP-based protocols used in IoT devices are the Message

Queuing Telemetry Transport (MQTT) protocol, the Constrained Application Proto-

col (CoAP) protocol and the Hypertext Transfer Protocol (HTTP) protocol. MQTT is a

publish-subscribe protocol based on the Transmission Control Protocol (TCP) transport,

while CoAP and HTTP are RESTful protocols respectively based on the User Datagram

Protocol (UDP) and the TCP transport in their typical implementations. The main

difference between publish-subscribe and RESTful protocols is the way data is accessed.

In publish-subscribe protocols, publishers send data to subscribers asynchronously,

which makes them ideal for event-driven frameworks, as all data transfers occur as mes-

saging events. In RESTful protocols, data is accessed and modified synchronously using

Uniform Resource Identifiers (URI), and they assume client-server architectures [PZL08].

Difference regarding data accesses (publisher-subscriber vs RESTful) is a source of het-

erogeneity, and software gateways must be implemented if both protocols coexist in

real-world applications.

As a result, the global IoT heterogeneity is a major research challenge because it

prevents the development of IoT-based systems at a large scale. Frameworks for the

implementation of IoT-based systems must be generic, and should not rest on assump-

tions such as the adoption of a single communication protocol for cross smart devices

interactions. Combing challenges at the high-level and the lower-level, described in the

previous section, make cross-disciplinary tools, models, and methods appealing as they

provide comprehensive solutions to tackle IoT-related research challenges.

1.2.3 The IoT from a Multidisciplinary Research Perspective

IoT research problems are a combination of low-level and high-level challenges related

to the layer-based IoT architecture depicted in Figure 1.1. Indeed, the design and

development of smart devices require the collaboration of electrical engineers, signal

processing experts or even mechanical engineers (in cases where complex physical

actuation is necessary). In addition, the networking of smart devices is studied by

computer scientists while data analytics experts can provide insights on collected data

generated by large scale IoT-based systems. They also study the integration of devices

into smart services, in order to offer full-stack smart applications, solving complex

real-world problems.

However, most communities consider IoT-related problems from a horizontal point

of view, meaning IoT challenges are traditionally considered within a single layer. For

example, electrical engineers focus on smart devices components such as System-on-

Chips (SoC) or smart devices design, while computer scientists focus on smart devices

networking and orchestration.

In order to simultaneously tackle both low-level and high-level IoT challenges, we

promote the adoption of a multidisciplinary and holistic approach to design and im-

plement smart devices. Indeed, the main problem caused by disciplinary partitioning

is that researchers dealing with low-level layers of the IoT do not necessarily address

concerns of researchers dealing with higher level layers. Typically, they deal with im-

provements and hardware optimizations as priorities, while system integration and

services are not considered as a major concern. Nevertheless, researchers who are

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

8 Chapter 1. Introduction

working on the lower layers of the IoT have a good understanding of smart devices

constrained resources (i.e., energy consumption or computational capabilities).

In opposition, researchers dealing with high-level challenges of the IoT often con-

sider smart devices as black-boxes, which are commonly abstracted using interfaces

without accurate resources modeling and understanding. They however have major

contributions when it comes to smart devices integration, and the handling a massive

amount of devices (i.e., in the range of hundreds or thousands of devices for a single

IoT-based system).

Researchers who have a good understanding of high level technologies commonly

used in the design of real-world IoT-based systems. Such technologies can be Internet-

based such as cloud, fog and edge computing. Additionally, IoT-based systems become

smarter if techniques such as autonomic computing and data analytics are embedded in

such systems. Indeed, one of the many definitions of system intelligence is its ability to

handle changing environments, and autonomic computing provides a paradigm which

can be used to build self-adaptable and robust systems. Many other fields of computer

science can be used in the IoT context: artificial intelligence, data analytics, distributed

systems, etc. However, these fields only provide software solutions, and thus do not

accurately represent the hybrid nature of the IoT.

Consequently, our research strategy attempts to combine concerns from all IoT

layers in order to provide comprehensive solutions to build full-stack IoT-based systems.

1.3 Research Strategies

In our brief introduction of IoT research challenges, we identify key research challenges

and directions that must be investigated to provide full-stack solutions when designing

and building a smarter IoT. Our research strategy seeks to design interoperable smart

devices and self-adaptable to changes.

1.3.1 Research Statement

We summarize our research problem as follows: How to design reusable, self-adaptable

smart devices and how to integrate these devices in smart services taking into account IoT

characteristics? Our research question includes several IoT concerns and challenges,

namely through reusability and self-adaptability. Indeed, reusability tackles interoper-

ability between resource-constrained smart devices and illustrates the need for better

design methods targeted at the construction smart devices by considering interoperabil-

ity as a design requirement. In addition, self-adaptability is an enabling step towards

the construction of smarter devices and systems. By being able to adapt devices to

environmental changes, IoT systems can operate under a wider range of execution

contexts and are thus more robust, and be easily integrated to smart services.

In our research strategy, we attempt to combine advanced techniques from the com-

puter science community and contributions from the electrical engineering community

to improve lower layer interoperability and overall system integration. Our strategy

seeks to:

• Improve smart devices design, which subsequently improves their integration into

smart services. Indeed, by considering interoperability by-design, we are able to

tackle hardware and software heterogeneity by emphasizing the importance of

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

1.3. Research Strategies 9

uniform smart devices data and configuration access. This simultaneously tackle

the hardware and software heterogeneity challenges, and we promote the use

of computer science methods such as Service-Oriented Architectures (SOA) as

means of achieving better interoperability though a multidisciplinary approach.

Additionally, because we consider smart device design as a low-level problem, we

are still able to capture resources limitations and constraints.

• Provide self-adaptation mechanism to smart devices, which improves IoT-based

systems intelligence, but also their reliability and safety. Indeed, since such

systems are in constant interaction with the physical world, which is in turn con-

tinually evolving, they must be robust to a wide variety of changes and operating

conditions. Reliability and safety can be achieved though the consideration of self-

adaptive behavior, which aims at adapting smart devices in reaction to physical

alterations in order to preserve expected system behavior.

1.3.2 Improving Smart Devices Design to facilitate IoT Integration

Our first contribution is the proposition of a design method for service-oriented smart

devices. Our design method aims at improving the reliability and safety of smart devices,

while being generic and easy-to-use to promote its adoption by system designers.

Because smart devices are typically used in critical contexts such as healthcare or

traffic control, designers must be able to provide guarantees about their devices’ safety

and reliability under a variety of nominal use-cases. Our design method first focuses on

precise specifications of smart devices functional and Non-Functional Properties (NFP),

with a particular focus on NFPs as they are the true factors of safety and reliability.

From smart device specifications, we derive a hybrid hardware-software modular

architecture, which provides an overall perspective on the design of reusable and adapt-

able devices. This modular architecture is based on hybrid hardware-software modules,

each of which is formally specified and verified, before being integrated into a full smart

device specification that is also verified.

In addition, interoperability is enabled by the adoption of a service-oriented hard-

ware description. Using this approach, we are able to abstract hardware components as

technology-agnostic services, thus improving overall interoperability of smart devices.

By integrating formal verification and validation as mandatory methodological steps in

the design method, we provide additional guarantees on smart devices reliability and

safety. We thus propose extensive testing methods based on smart devices category

(i.e., sensor, actuator or gateway). Both unit testing and integration testing are provided

by the method. In addition, we also introduce the concept of real-life testing on small

batches of production-level prototypes in order to validate smart devices behavior in

real-life conditions. This is particularly important for wearable smart devices, as the

operating conditions during daily activities is very different from operating condition in

laboratory settings. Finally, our design method, because it emphasizes the importance

of the NFPs of smart devices, can be used to build devices with globally optimal Quality

of Service (QoS).

In order to showcase the practicality of our design method, we develop a medical-

grade cardiorespiratory smart sensor. Our sensor is built with an early emphasis on

NFPs in the design process. Non-functional requirements include extended battery life

(i.e., at least 24 hours of battery life), and medical grade accuracy and precision. The

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

10 Chapter 1. Introduction

latter characteristics are key components when developing sensor, and respectively

designate the sensor ability to provide measurements that accurately represent the

physical phenomenon being measured, with a controlled standard deviation. This

sensor was extensively tested and characterized in accordance with the design method

steps. We also developed our sensor with a particular focus on its non-functional

characteristics and its ability to self-adapt with respect to both internal or external

contexts. We also support interoperability by using of common and acknowledged

standards (namely, BLE) so that our sensor can easily be integrated into already-existing

IoT-based infrastructures.

1.3.3 Self-Adaptation: a Requirements of Smart Services

As mentioned above, self-adaptation is an enabling characteristic of full-stack IoT smart

systems. Indeed, the definition of “smart” is wide, but we consider that the ability for a

system to be able to appropriately react to external and internal changes is a first step

toward global IoT-based intelligent systems. In addition, self-adaptation maximizes the

use of smart devices in a wide variety of contexts and applications, making them more

versatile when new use-cases are considered.

In this dissertation, we consider a vertical approach to deal self-adaptation problems.

We start by bringing self-adaptability to smart devices with a focus on NFPs and QoS

preservation. Practically, we propose the adoption of Labeled Transition Systems (LTS)

to model smart device behaviors. This discrete model is generic enough to accurately

represent smart devices heterogeneity. We also propose a rule-based language for

self-adaptation objectives specification. Our main motivation for such language is

the declarative nature of rule-based specifications. Indeed, the potentially massive

size of IoT-based systems requires maintainability, and the fact that end-users of such

systems are generally not experts compels the development of easy-to-use languages.

These concerns are answered by our rule-based language, because end-users only

need to specify what the system should achieve (in opposition to the specification

of how to achieve such objectives in imperative languages). The combination of our

rule-based language and LTS-based models of smart devices are the basis of automatic

discrete controller synthesis, which are then used to enforce self-adaptive behaviors in

distributed environments.

At the IoT higher layers, we propose a framework specifically addressing the dy-

namic nature of the IoT. Indeed, because IoT-based systems are intrinsically subject to

numerous changes (e.g., changes in the physical world, dynamic addition of sensors

and actuators, etc.), static self-adaptation solutions are not appropriate. Using separa-

tion of concerns between self-adaptation strategies, adaptation goals management and

monitoring infrastructure dynamism, we are able to provide a comprehensive solution

to the IoT-based system self-adaptation.

As a Proof-of-Concept (PoC), we developed a prototype and applied it to a healthcare

case-study. We considered a wide-scale remote patient monitoring with consistent QoS

which is based on a network of smart homes. We also focus on their health status,

which should be robustly monitored in order to trigger appropriate medical response

if deemed necessary. Our prototype features fully distributed self-adaptation policies,

with the ability to deal with dynamic adaptation objectives and monitoring probes, while

preserving smart devices interoperability and taking into account their limited resources.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

1.4. Dissertation Outline 11

Discrete controller synthesis was implemented using a Synchronous Programming

Language (SPL), along with a basic parser to translate rule-based control objectives into

synchronous control contracts.

Consequently, we present a vertical solution to IoT-based systems self-adaptation.

Advantages of our contributions consist of declarative and distributed formalisms under

the form of LTS-based models of smart devices, and the use of SPLs.

1.4 Dissertation Outline

The remaining of this dissertation is organized as follows: In Chapter 2, we present an

extensive state of the art with respect to the challenges identified in this chapter. We thus

investigate how different communities deal with IoT research problems towards design,

integration and interoperability. In Chapter 3, we introduce our first contribution: a

design method for service oriented smart devices.

The practicality of our design method is then illustrated in Chapter 4, where we

describe its application during the design and implementation of a medical-grade smart

cardiorespiratory sensor. A main component of this smart device is its ability to be

integrated into wider-scale scale systems, embedded with self-adaptation capabilities,

and a dynamic self-adaptation system for smart devices is described in Chapter 5. Our

sensor deals with changing control objectives and monitoring infrastructure, and dy-

namically updates adaptation strategies in response to changes. A comprehensive

implementation of our dynamic self-adaptation system is presented in Chapter 6. Even-

tually, we summarize the work described in this dissertation in Chapter 7, and we also

discuss promising research directions related to self-adaptation, formalism and unified

IoT-related modeling framework. Figure 1.3 illustrates a diagram of relationships and

dependencies between chapters.

Figure 1.3 – Dissertation outline diagram

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

12 Chapter 1. Introduction

Contributions introduced in this dissertation were disseminated in the following

conferences and journals, and these documents will be used and referenced in this

dissertation:

• A. Gatouillat, Y. Badr, “Verifiable and Resource-Aware Component Model for IoT

Devices.” In Proceedings of the 9th International Conference on Management of

Digital EcoSystems (MEDES), November 2017, Bangkok, Thailand, pp. 235–242.

Invited Paper.

• A. Gatouillat, Y. Badr, B. Massot, “QoS-Driven Self-Adaptation for Critical IoT-

Based Systems.” Proceedings of the 2nd Workshop on Adaptive Service-oriented

and Cloud Applications (ASOCA), November 2017, Màlaga, Spain, pp. 93–105.

• A. Gatouillat, B. Massot, Y. Badr, E. Sejdić and C. Gehin, “Building IoT-Enabled

Wearable Medical Devices: An Application to a Wearable, Multiparametric, Car-

diorespiratory Sensor.” Proceedings of the 11th International Joint Conference on

Biomedical Engineering Systems and Technologies (BIOSTEC) – Volume 1: BIODE-

VICES, January 2018, Funchal, Portugal, pp. 109–118.

• A. Gatouillat, Y. Badr, B. Massot, “Hybrid Controller Synthesis for the IoT.” Pro-

ceedings of the 33rd ACM/SIGAPP Symposium On Applied Computing (ACM SAC),

April 2018, Pau, France, pp. 778–785.

• A. Gatouillat, B. Massot, Y. Badr, E. Sejdić, C. Gehin, “Evaluation of a real-time

low-power cardiorespiratory sensor for the IoT,” 40th International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBC), July 2018, Honolulu,

USA, pp. 1–4.

• A. Gatouillat, Y. Badr, B. Massot, “Smart and Safe Self-Adaption of Connected

Devices Based on Discrete Controllers.” IET Software, Special Issue based on

Adaptive Service-Oriented and Cloud Applications, 2018, pp 1–11.

• A. Gatouillat, B. Massot, Y. Badr, E. Sejdić, “Internet of Medical Things: A Review

of Recent Contributions Dealing with Cyber-Physical Systems in Medicine.” IEEE

Internet of Things Journal, vol. 5, no. 5, 2018, pp. 3810–3822.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

CHAPTER2
State of the Art

Contents

2.1 Introduction . 13

2.2 The IoT: Horizontal Solutions . 16

2.2.1 Service-Oriented Architectures in the IoT 17

2.2.2 Model-Based and Graphical Development in the IoT 20

2.2.3 IoT Smart Devices as Cyber-Physical Systems 24

2.2.4 Summary of Horizontal Contributions 27

2.3 Designing Embedded Systems . 28

2.3.1 Systems Design Methods . 29

2.3.2 Hardware Solutions for Smart Devices 32

2.4 Self-Adaptation Solutions . 35

2.4.1 Classical Control: Theory and Tools 35

2.4.2 Autonomic Computing: Self-Adaptive Software Systems 38

2.4.3 Reactive Systems and Discrete Controller Synthesis 42

2.5 Summary and Conclusion . 46

2.1 Introduction

As mentioned in the Introduction chapter, the IoT is a broad field of study, with contribu-

tions from many research communities such as computer science, electrical engineering,

signal processing, control theory, social sciences, etc. These communities have very

different views of the IoT. For instance, computer scientists typically consider the IoT

problems and services at the networking scale or at the application scale. More specif-

ically, they study the networking of numerous IoT devices in order to improve global

reliability, safety or energy consumption of distributed systems and services. In addition,

they also study the integration of the IoT into traditional application frameworks in order

to be used in real-world use cases. Nevertheless, the electrical engineering community

considers the IoT from device-oriented and hardware perspectives. Typical concerns of

this community are the optimization of energy consumption, networking capabilities,

or processing capabilities of IoT-based smart devices. Electrical engineering IoT-related

contributions are wide, ranging from Integrated Circuit (IC) design to IC integration

13

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

14 Chapter 2. State of the Art

to Printed Circuit Board (PCB) in order to build advanced smart devices. Yet another

concern of electrical engineering researchers is the investigation of design methods in

order to improve hardware safety and reliability while reducing production cost and

time-to-market of these devices.

In our state of the art, we thus focus on disciplinary-specific approaches to IoT prob-

lems, with a strong emphasis on horizontal contributions (i.e., contribution focusing on

a single layer of the layer-based representation of the IoT, thus leading to lack of holistic

approaches and technological silos). We start with a top-down approach to identify IoT-

related research challenges. This approach starts with the high layer of the IoT (namely

the application layer), as displayed in Figure 1.1. At this layer, computer scientists focus

on smart devices integration, their coordination and collaboration in order to build

real-world IoT systems. They also focus on reliability and safety characterizations of

such systems to guarantee global system requirementsQuality of Service (QoS). The

application layer strongly relies on purely software solutions to implement IoT solutions,

which leads to a proliferation of standards, tools and techniques. Among software solu-

tions, we have identified a few key concepts and technologies that provide interesting

insights on IoT-related problems. Namely, Service-Oriented Architectures (SOA) which

provides solutions for some IoT challenges. Indeed, the SOA provide an architectural

style based on self-contained and loosely coupled software components [Bel08], thus

improving system-wide interoperability. Another recent trend in the SOA community is

the adoption of microservices architectures, as they provide improvements over tradi-

tional SOAs. In fact, microservices are defined as self-contained, functionally-limited

components interacting with external tiers through messages [Dra+17]. A microservice

architecture is thus characterized as a messaging-based choreography of numerous

microservices. Their functionalities can consequently improve the modularity and flexi-

bility of IoT-based systems, as they are based on self-contained, specialized, software

components.

Another contribution is Model Driven Engineering (MDE), which emphasizes on the

use of advanced models to improve software quality. The two fundamental contributions

of MDE are the development of domain-specific modeling languages and the use of

transformation or execution engines and code generators [Sch06]. Domain-specific

modeling languages formally describe application requirements and behaviors, which

can be validated and verified. They are typically provided as meta-models to accurately

represent constraints and semantics of a specific application domain. These domain-

specific models are then processed by transformation or execution engines, but also

code generators, in order to provide correct-by-construction solutions for complex

software problems. Contributions from the MDE community can be used for the IoT

as they share common concerns, namely the validation and verification of complex

systems, and beause they provide guarantees in terms of expected system behavior.

However, MDE stays strongly software-oriented and lacks typical concerns of the IoT

such as resources limitation and hybrid hardware/software components.

In contrast, contributions related to the low layer of the IoT architecture strongly

emphasizes the modeling and simulation of hardware used in smart devices. Indeed,

contributions range from ICs simulation and manufacturing to cross-IC communica-

tion modeling and simulation. Researchers also focus on the representation of hybrid

systems, more particularly under the scope of Cyber-Physical Systems (CPS). CPS are

defined as systems simultaneously integrating cyber (i.e., digital) and physical prop-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.1. Introduction 15

erties [Lee08]. The goal of the CPS community is to provide comprehensive modeling

and simulation frameworks of such hybrid systems. By being able to capture both the

digital and physical nature of CPS, exhaustive and quantitative system characterizations

can be performed. This information can then be used not only to build accurate digital

controllers for physical processes, but also to guarantee global system-wide QoS. Be-

cause smart devices are computationally augmented physical devices, they fall under

the CPS definition and can be studied under this perspective. However, the scope of

systems traditionally considered as CPS are relatively small, and is typically constrained

to standalone single smart devices. As result, it limits the adoption of this research strat-

egy to large IoT-based systems. Methods and tools developed by this community are

however relatively theoretical, and do not emphasize on real-life smart devices design

and implementations.

In addition to horizontal solutions mentioned above, we also investigated design

methods for smart devices. Indeed, we consider the IoT under a practical perspective,

which mandates the study of how smart devices are traditionally implemented. For

that purpose, we present traditional embedded systems design methods, along with

hardware solutions available for the construction of smart devices. In terms of design

methods for embedded systems, numerous contributions dealing with both low level

and high level aspects can be found in the literature. For instance, the hardware/software

codesign community focuses on the lower layer of embedded systems, and aims at

optimizing system-level objectives by simultaneously designing software and hardware

components [DG97].

This field investigates compromises between extremely energy efficient, computa-

tionally powerful hardware-only implementations and sub-optimal but generic and

flexible software-only solutions for digital systems. Practically, hardware/system code-

sign proposes a balance between Application-Specific Integrated Circuits (ASIC) im-

plemented using Hardware Description Languages (HDL) (e.g., Verilog, VHDL, etc.)

and programs running on microprocessors implemented in high-level programming

languages (e.g., C, C++, etc.) [Sch10c].

Such design methods are relevant in a smart device context, as they must compro-

mise between application-specific and energy efficient or being generic in order to

increase interoperability. However, tools and techniques developed by the hardware/-

software codesign community are mostly targeted at very low-level applications such as

the design and implementation of application-specific ICs such as System-on-Chips

(SoC). The SoC is defined as a single IC embedding several high-level hardware functions,

such as a central microcontroller and several peripherals (e.g., encryption accelerators,

serial buses interfaces, etc.) [Sch10b]. We also study more generic high-level system

design solutions taking roots in the systems engineering community, which provide

modeling frameworks for software-intensive systems.

In order to clarify the wide variety of hardware platforms available for smart devices

development, we realize an extensive state of the art study of development boards,

microcontrollers, or SoCs that designers traditionally use to implement their devices. As

an outcome, we specify the limitations of each hardware platform in terms of scaling to

mass production, ease-of-use and available resources.

We conclude with the investigation of contributions dealing with self-adaptation of

smart devices. In order to accurately capture all self-adaptation solutions and see how

existing contributions can be of help in the IoT context, we voluntarily kept the definition

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

16 Chapter 2. State of the Art

of self-adaptation wide. We thus start with the root of self-adaptive systems: classical

control. The classical control community was the first to deal with the study of system

reactions to external disturbances caused by changes in the physical world. Typically,

systems are integrated in closed feedback loops which integrate a tuned controller to

provide predictable system behavior under a wide range of operating conditions [Oga10].

Classical control researchers usually focus on continuous time systems controlled by

either continuous or discrete time controllers, and they use state-space system models,

transfer functions and differential equations.

In the upcoming sections, we explore how classical control standard architectures

can be applied to software systems, and we make a transition to contributions on

self-adaptive software systems, also known as autonomic computing. Autonomic com-

puting provides solutions for automatic system self-configuration, self-optimization,

self-protection and self-healing [KC03]. Practically, autonomic elements are organized

as MAPE-K feedback loops (Monitor, Analyze, Plan, Execute over shared Knowledge).

Autonomic computing is thus the result of interactions between several MAPE-K loops.

However, it does not provide a comprehensive solution to self-adaptation in the context

of IoT-based systems as MAPE-K loops are often high level software components and do

not capture the cyber-physical nature of smart devices. Finally, the survey of IoT-based

self-adaptation leads us to the study of reactive systems, which are defined as systems

that continuously react to events from the external world [HP85]. Typically, they can

exhibit either synchronous or asynchronous behaviors.

The reactive systems community offers various tools such as Synchronous Program-

ming Languages (SPL), which are considered as the basis of discrete controller synthesis.

With controller synthesis, controllers for reactive discrete systems are automatically

generated from system models and sets of control objectives. Such approaches are of

particular interest for the IoT as smart devices tend to be strongly event-based, and

must react to changes in the physical world while presenting digital (and thus discrete)

interfaces to external tiers.

In the following sections, we first cover mono-disciplinary horizontal solutions for

the IoT. We then consider design methods for embedded systems as they can help

to improve smart devices safety, reliability and security. In addition, we explore self-

adaptation contributions and see how they can play a role in the establishment of full-

stack self-adaptive smart devices and IoT-based systems. Finally, we identify limitations

of existing contributions with respect to our research statement on how to design

reusable, self-adaptable smart devices, and show how our research strategy contribute

towards these limitations.

2.2 The IoT: Horizontal Solutions

Since the apparition of the IoT, many research contributions considered IoT-related

problems from a horizontal perspective (i.e., mono-disciplinary and dispersed ap-

proaches). It is worth noting that our contributions through this dissertation are at

the intersection of electrical engineering and computer science. For this reason, we

investigate horizontal solutions with respect to these two disciplines. More particularly,

we focus on the adoption of computing paradigms such as SOAs and model-driven engi-

neering in the context of the IoT. As a matter of fact, SOAs and model-driven engineering

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.2. The IoT: Horizontal Solutions 17

are typically software-only solutions, and do not accurately deal the cyber-physical

nature of smart devices. To this end, we investigate contributions related to CPS, which

use hybrid models to represent both digital and physical aspects of smart devices. We

however show that these approaches, while presenting solutions to some IoT problems,

often lack cross-cutting considerations (i.e. the integration of concerns from other layers

of the IoT stack).

2.2.1 Service-Oriented Architectures in the IoT

SOAs emerged at the beginning of the 2000s, and have been widely used by the computer

science community ever since. They are defined as an architectural style providing

design principles, and they are based on loosely-coupled, self-contained, technology-

agnostic, reusable and contract-based services [Bel08]. The definition of a service is

not trivial and can be seen under two perspectives: a business perspective (i.e., what

does a service provide to potential buyers) and a technical perspective (i.e., what should

be implemented in order to respect clients’ requirements) [PL03]. In this section, we

focus on the technical aspect of services and how they are applied to the IoT. The design

principles of SOAs are particularly relevant for Web-based applications, which resulted

in the rise of Web services [Alo+04]. Web services are defined as self-contained modular

applications exposed through Internet-based standards [UDD01]. This definition puts a

particular emphasis on respecting Web standards, which thus becomes integral parts

of Web services. The success of this architectural style is due to the ability of Web

services to automate software integration through a process called composition. Services

composition simply describes the combination of Web services in order to achieve a

high-level application or business logic [Alo+04]. Web services implementations are

based on numerous standard technologies:

• The Extensible Markup Language (XML), which is often used as message formats

cross-services;

• The Simple Object Access Protocol (SOAP), which is used as a messaging protocol;

• The Web Services Description Language (WSDL) which is typically used as a

service description language, specifying Web services invocation mechanisms.

Finally, service descriptions are stored in Universal Description, Discovery, and Integra-

tion (UDDI) registries in order to be discovered and selected by external tiers.

When it comes to Web services composition, two main approaches were developed,

and are illustrated in Figure 2.1 [Pel03]:

• Services orchestration: In this approach, Web service composition is seen as

an executable process. Practically, this means services orchestration relies on

remote procedure call to invoke remote services. Orchestration flow is typically

specified using standards such as Business Process Execution Language for Web

Services (BPEL4WS) or Business Process Model and Notation (BPMN). Web service

composition is thus described as an execution flow with classical components

such as sequential or parallel executions. It uses various independent services in

order to achieve high-level application logic.

• Services choreography: This approach of cross-service interactions relies on a

collaborative message-driven behavior. Essentially, services choreography is im-

plemented through the observation of message sequences between services, that

are used to trigger business-oriented actions. Message sequences can be specified

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

18 Chapter 2. State of the Art

using standards such as Web Service Choreography Interface (WSCI), which asso-

ciates actions to particular messages (or sequences of messages). It is worth noting

that communications between services occur through an Enterprise Service Bus

(ESB), which integrates heterogeneous services thus providing interoperability.

Figure 2.1 – Services orchestration vs choreography, adapted from [Pel03]

In addition to service compositions, the SOA community focuses on problems such

as Web services discovery (i.e., remotely discover services based on their functional

capabilities) [Ben+05] and Web services selection (which describes the step where

discovered services are filtered based on their non-functional capabilities in order

to meet expected global QoS) [MS04]. However, Web service architectures based on

XML, SOAP and WSDL are considered to be heavy and complex [Gar+16]. In fact,

the deployment of classical SOAs based on those protocols is monolithic because of

potential contract-based cross-services dependencies [CDP17].

In order to reduce the potential monolithic nature of some SOAs, microservices

architectures were proposed. They are presented as an improvement over traditional

SOAs [Dra+17]. In this paradigm, services are reduced to a message-based software

components answering to single and simple functional concerns [Dra+17; CDP17].

Because they are message-based, microservices are preferably choreographed rather

than orchestrated [CDP17]. In addition, microservices architecture typically rely on

technologies such as software containers (e.g., Docker) without the need for a global

and commonly-shared middleware. Microservices tend to drop XML for other lan-

guages such as JavaScript Object Notation (JSON) or Protocol buffers (also called proto-

buf) [SCL16] for messages, while they generally use Hypertext Transfer Protocol (HTTP)

and Representational State Transfer (REST) for synchronous communication [SCL16].

In conclusion, microservices promote finer granularity than traditional SOAs, and adopt

a practical approach driven by real world requirements and practices [SCL16].

SOAs offer interesting solutions to IoT-related problems. More particularly, the

promotion of concepts such as loose coupling or self-containment are relevant in an

IoT context, as smart devices can easily be considered as loosely coupled and self-

contained entities. Additionally, SOAs can handle potential interoperability issues

considering the various technologies that can be used to implement services and the

variety of communication protocols utilized for communications (e.g., SOAP vs REST

for synchronous protocols). This is the main motivation to the development of service-

oriented IoT.

A first approach of service-oriented IoT is the use of service-oriented middleware

to integrate device services. In such approach, smart device functionalities are ab-

stracted as services [Iss+16] that interact with each other through middleware. Nu-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.2. The IoT: Horizontal Solutions 19

merous service-oriented middleware for the IoT were developed. For instance, the

SOCRADES middleware proposes a smart devices integration architecture based on

Web services technologies (i.e., SOAP, WSDL, etc.) [Spi+09; Gui+10]. It implements

devices discovery, selection and composition. It is particularly aimed at the integration

of smart devices to traditional business processes. Other Web services -inspired middle-

ware include ubiSOAP [CRI12], which takes into account QoS during network selection,

and HYDRA [ERA10], which implements ontology-based discovery. Cloud-based mid-

dleware using virtual representations of sensors were also investigated. For example,

virtual sensors in [Per+14a] are implemented using a stream-based Domain-Specific

Language (DSL). More advanced middleware, such as MobIoT, use ontologies and prob-

ability theory to implement devices discovery [HPI14; Iss+16]. They can be augmented

with advanced graph-based composition algorithms and service buses [Iss+16]. It is

worth noting that these solutions rely on smart devices orchestrations, which present

drawbacks such as being monolithic and lacking flexibility. In opposition, middleware

targeting large scale multi-services choreography were also developed [Vin+10; Tei+11].

In these solutions, choreography is based on distributed services buses using the De-

vices Profile for Web Services (DPWS) standard, which features a resources-constraints

aware description of smart devices capabilities.

Another approach of service-oriented IoT is the use of service-oriented devices. In

such contributions, services are integrated at the device level, and smart devices directly

expose their services to external tiers. Such idea was first exposed in [dDeu+06], where

authors describe the modeling of devices as services with the ability to be integrated to

ESBs. With this approach, devices can directly interact with other traditional and purely

software services. Authors in [dDeu+06] point out the need for devices adapters, which

are provided by devices suppliers according to their work, to seamlessly integrate to

generic ESBs.

However, this work remains theoretical and implementations are not provided. This

is a drawback since the IoT is strongly driven by real-world practical problems. The pro-

liferation of low-cost and easy-to-use development boards shifted research work from

theoretical SOAs to service-oriented devices implementations. For instance, [Kyu+13]

implement a full SOAP stack on resources constrained devices (based on a 16-bit mi-

crocontroller), and quantify resources needed for their implementation (namely, about

5 kB of Random Access Memory (RAM) and 120 kB of program memory). In addition to

traditional Web services protocols, implementations of more recent RESTful or publish-

subscribe protocols for constrained devices were also proposed. Typically, [Cas+11;

DTD17; Raz+13] implement the Constrained Application Protocol (CoAP) RESTful pro-

tocol on various microcontrollers (please refer to Figure 2.2 for an illustration of a typical

CoAP-based constrained environment IP stack). The wide adoption of this protocol

in resources-constrained devices is mainly caused by its reliance on User Datagram

Protocol (UDP) transport, which does not require constant connection between clients

and servers (in opposition to Transmission Control Protocol (TCP) transport used in

Message Queuing Telemetry Transport (MQTT)). Services choreography between CoAP-

based smart devices was also proposed [BIT17], and authors define observers in CoAP.

After registration, observers are notified of every state changes in smart devices. Please

note that the list of observed streams are stored on the devices.

In conclusion, SOAs provide solutions dealing with some IoT-related challenges.

Namely, challenges such as interoperability and heterogeneity are familiar topics to the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

20 Chapter 2. State of the Art

Figure 2.2 – Comparison of OSI, TCP/IP, Internet and CoAP-based stacks

SOAs community. These research problems are addressed by considering services as

self-contained, loosely-coupled and contract-based entities, and can thus be applied to

smart devices. Additionally, lightweight Web-based protocols such as CoAP are used in

smart devices in order to provide Internet connectivity even in the lower layer of the IoT.

However, SOAs are still heavily software-oriented, consequently making the integration

of hybrid components challenging, especially if components are resource-constrained

or based on non-IP technologies. Finally, SOAs only provide an architectural framework

describing the organization of services to achieve high level application objectives, and

services implementations are not particularly discussed except for the fact that they

must rely on standard Web technologies. The exploration of tools targeted at safe and

reliable software implementation are the concern of the MDE community, and will be

detailed in the next section.

2.2.2 Model-Based and Graphical Development in the IoT

In this section, we focus on MDE and graphical programming languages, and see how

they can be used in an IoT-related context. MDE aims at improving software developers

productivity by promoting the use of models and code generators. This field relies on

the use of meta-models in order to simultaneously represent system objectives and

implementations.

Historically, MDE is the extension of Computer-Aided Software Engineering (CASE),

which appeared in the 1980s as a solution to improve software quality [Sch06]. CASE

uses graphical-based representation in computer systems. They are then analyzed and

verified to provide insights on various system properties (e.g., complexity, non-blocking

nature, etc.). Even though it was a popular research topic, it was not widely used in

practical applications because of numerous limitations, such as poor code generation

capabilities, poor scalability and difficulty to represent complex systems, or the lack of

support for concurrent computing [Sch06], etc.

These drawbacks along with the increasing diversity of programming languages and

deployment infrastructures were the main motivations for the development of MDE.

Principal modeling languages supporting the MDE community include, but are not

limited to, the Unified Modeling Language (UML) [Obj18e] and BPMN [Obj18a], both

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.2. The IoT: Horizontal Solutions 21

initiated by Object Management Group (OMG). UML is a generic software modeling

language, while BPMN focuses on the modeling of business processes [Rod15], and they

both are the basis of comprehensive MDE frameworks, such as Model Driven Architec-

ture (MDA) [Obj18c] or Eclipse Modeling Framework (EMF) [Ecl18]. MDA is a reference

architecture providing a set of guidelines for model-based software specifications, and

its aims at providing technology agnosticism by separating business and application

logic and lower level implementation technology. EMF provides a full-fledged frame-

work for modeling and code generation of any defined modeling language. Practically,

modeling languages are specified as meta-models using the XML Metadata Interchange

(XMI) standard, and the specification is used to build code generators that can then be

used by end-users. The main limitation of UML stems form strongly software-oriented

aspects, which make it heavy and difficult to use at its full extent. In order to tackle

this limitation, and to model a wider variety of problems, Systems Modeling Language

(SysML) was introduced. This language uses seven of UML diagrams, and defines

additional requirements and parametric diagrams [Obj18d].

The use of modeling languages in the IoT is common, and numerous contributions

promote their use in order to improve smart devices reusability. For instance, authors

of [HLR17] use an IoT-dedicated SysML extension called SysML4IoT [Cos+16], which is

a SysML representation of the IoT-A reference architecture [Bau+13]. In both this model-

ing language and architecture, smart devices and IoT-based frameworks are modeled in

terms of their software, hardware and hybrid components. In particular, [HLR17] details

the development of a model-based self-adaptive IoT infrastructure, which makes use

of SysML4IoT models of the target system to perform automatic Java code generation,

ensuring the verification of adaptation goals. In [TC16], authors define a UML profile

based on the LWM2M protocol targeted at the integration of smart devices to industrial-

grade IoT-based systems. Authors proceed with a similar approach as in [TC16], and

use their UML profile to automatically generate code which handles the integration of

IoT-ready devices in the considered industrial framework. Authors of [CS17] adopt a

similar approach and propose a MDA framework, which is then utilized in combination

with the Modeling and Analysis of Real-Time and Embedded systems (MARTE) UML

profile to implement a smart lightning system. In addition, because MDE provides

advanced tools for model checking and automatic code generation, they can be used to

design mission-critical IoT-based systems [Cic+17], where systems properties such as

safety and reliability must be verified both at design time and at run time.

In order to handle the proliferation of modeling languages in the IoT, initiatives

such as GEMOC were developed. This initiative aims at improving heterogeneous

modeling languages integration and coordination [Com+13; Bou+16]. Practically, an

open-source tool called GEMOC Studio is used to represent various software-oriented

or hardware-oriented modeling languages. Additionally, this tool provides a framework

for the coordination and execution of heterogeneous models. When it comes to the

IoT, GEMOC studio was used to model the Arduino Uno development board [GEM18].

The instantiation of such models are then used to execute Arduino programs without

the need for the target physical platform. However, extensive modeling work must be

performed in order to integrate systems into this framework. In our opinion, this can be

a drawback in the IoT-related context considering hardware and software heterogeneity

featured by smart devices and IoT-based systems.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

22 Chapter 2. State of the Art

Another challenge handled by the MDE community is the modeling of smart devices

life cycle. Tools such as the PauWare engine [Bar06] use state chart XML and UML states

machines in order to model and simulate devices life cycle. Such modeling languages

can be used to represent software systems’ reactions to internal and external events.

Nevertheless, the PauWare engine is a software-oriented tool and cannot be used to

precisely model software and hardware resources consumption through the object life

cycle.

In the context of MDE, it is worth noting that Component-Based Software Engineer-

ing (CBSE) also contributes to the design of software using already-existing components

enabled by separation of concerns [Cai+00], and it can be applied to the IoT. In fact, a

component is defined as software entity implementing a set of functionalities accessed

through interfaces. Many component models were defined, some of the most common

being FRACTAL [Bru+06] (depicted in Figure 2.3), Palladio [BKR09], the Common Object

Request Broker Architecture (CORBA) component model [Obj18b] or the Component

Object Model (COM) [Mic18]. All these components share similar characteristics, such

as the enclosure of their code (called content in Figure 2.3) in a container (described as

membrane in Figure 2.3).

In Figure 2.3, interfaces are typed (types I , J and K) and present a client-server

topology. In fact, a server interface (represented as a T-shaped sign) is responsible for

the transmission of relevant data to the appropriate client interface (represented as a

dashed T-shaped sign). CBSE was applied to IoT-related contexts: for instance, authors

of [KHS10] have developed a component-based framework called EIToolkit in order to

provide cross-device interoperability. In [AWB14; Fou+12], authors describe Kevoree

and µ-Kevoree, which are dynamic component model targeted at self-adaptive sys-

tems. They demonstrated the practical use of their adaptation framework on resource-

constrained Arduino boards, which proves component-based architectures can be used

in smart devices with limited resources. Additionally, authors of [Rom+13] describe a

component-based home-automation infrastructure. The infrastructure is implemented

using the FraSCAti middleware, which uses a Service Component Architecture (SCA)

with FRACTAL components. Finally, [Nai+10] used a component based approach for the

integration of IoT devices to traditional Internet infrastructure.

Figure 2.3 – Illustration of the FRACTAL component model, adapted from [Bru+06]

In extension to contributions of the CBSE field to IoT-related problems, we discuss

the use of graphical programming languages in an IoT context. Graphical programming

languages for the IoT are relatively recent, and numerous tools were developed in order

to graphically generate executable code for either the coordination of smart devices, or

smart device firmware execution [Ray17]. Programming the coordination or interactions

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.2. The IoT: Horizontal Solutions 23

between smart devices rely on graphical flow-based languages. Node-RED [Nod18]

(supported by the JS Foundation), NetLab ToolKit [vAll18] or Octoblu Flows [Oct18] are

typical examples of graphical programming languages for the IoT. However, we establish

a distinction between languages such as NetLab ToolKit which focuses on resources-

constrained development boards such as Arduino, while Node-RED and Octoblu aim

at higher level smart devices coordination. In addition, Node-RED only offers flow-

based coordination of smart devices through the support of standard Internet protocols

such as MQTT or HTTP, while Octoblu promotes the use of their dedicated messaging

platform called Meshblu (even though they provide bindings to traditional protocols). A

simple example of a Node-RED program is given in Figure 2.4. This program subscribes

to two MQTT topics, on which are published JSON data containing temperature values

from two sensors in the same room. The temperature is then averaged, compared to a

threshold and a heating actuation is published on the relevant MQTT topic if necessary.

Figure 2.4 – Illustration of a simple Node-RED program

Another category of graphical programming languages undertakes a different ap-

proach by offering imperative programming capabilities for smart devices. Typical

examples include ArduBlock [LH18], Modkit [Mod18] or Wyliodrin [Wyl18]. In such

languages, a block-based approach is considered for the development of smart devices.

Yet another interesting feature of these graphical programming languages comes from

the fact they typically target lower layers of the IoT, in opposition to flow-based program-

ming languages. For example, most of them deploy their code on Arduino development

boards, and even on simple microcontrollers (for instance, Modkit supports some mi-

crocontrollers of the MSP430 family). In this block-based approach, the entire flow of

execution is imperatively specified using various block structures to implement loops,

branching or input/output operation.

While such initiatives are welcome as solutions for rapid prototyping or for edu-

cational purposes, they are not ready yet for large scale deployment in the industry.

Indeed, graphical approaches do not easily scale because diagrammatic representation

of systems can become intricate if they comprise an important amount of components.

Considering IoT-based systems typically account for hundreds, or even thousands of

devices, graphical languages cannot be used in this context as it would cause poor

system maintainability. Another strong limitation is the limited compatibility of such

languages regarding the thousands of different microcontrollers available for the im-

plementation of smart devices. In addition, even though the graphical programming

languages described above are easy to use, they are not equipped with formalism, and as

a result they lack guarantees related to the verification on functional or non-functional

properties of the programmed systems.

In conclusion, the study of MDE, CBSE and graphical programming languages in

IoT-related context performed in this section demonstrated that they are still heavily

focused on software-only architectures, and that they do not account for smart devices’

limited resources and physical properties. This leads us to the study of the CPS field,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

24 Chapter 2. State of the Art

which typically aims at modeling both the digital and physical aspects of smart devices.

In the following sections, we provide details on how this field contributes to the IoT.

2.2.3 IoT Smart Devices as Cyber-Physical Systems

Considering smart objects are physical objects embedded with computational and

communication capabilities, they can be described as CPS. In fact, smart devices are

often used in various environments to realize a range of heterogeneous applications,

including telemedicine, traffic control, or smart cities [Lee10; Lee08].

In such applications, cyber systems (i.e., digital systems) are used to measure and

control physical phenomenons, which results in a continuous interaction between the

digital and physical worlds [Lee10]. Such systems thus fall under the CPS category. As

emphasized in the Introduction chapter, smart devices are typically used in critical

applications (e.g., healthcare, traffic control, etc.), and they must satisfy three properties

both at design time and at run time [Raj+10]:

• Smart devices must be robust, reliable and secure. In particular, the continuously

evolving nature of the physical world requires CPS to be able to maintain a safe

behavior by appropriately reacting to physical changes and maintaining a prede-

fined global QoS. Since CPS are typically used to regulate applications in domains

where partial or total system failures can have life-threatening consequences,

their security must be guaranteed. They must consequently be able to resist a

variety of internal and external malicious attacks [Car+09; Wan+10].

• CPS rely on comprehensive models of hybrid systems. Considering CPS are at

the intersection of the digital and physical worlds, they require models that si-

multaneously represent characteristics from both these worlds. In addition, the

use of model-based design methodologies offers capabilities such as simulation,

which improves systems reliability and safety. The difficulty of hybrid system

modeling comes from the fact that both continuous and discrete behavior must

be simultaneously considered in representative models. Indeed, physical systems

models rely on a continuous time representations, while digital systems are typi-

cally represented using discrete time representations. CPS modeling framework

must thus be able to simultaneously model both continuous and discrete time

representations.

• Finally, CPS must be equipped with validation and verification mechanisms,

which can be used to provide guarantees on final smart devices’ functional and

non-functional characteristics.

Numerous IoT-related applications can benefit from the CPS approach, and they

have been used to model and verify a wide variety of systems. This is for instance the

case of smart grids, which offer an extensive example of how the previously-identified

CPS properties apply to real-world situations [Raj+10]. Indeed, smart grids should be

able to handle a wide variety of perturbations such as power surges or power lines

damages (typically caused by storms or other weather-related events). Additionally,

they must continue to distribute power to consumers even with partial system failures

or under extreme external disturbances. This mandates the study of global system ro-

bustness and reliability, and it can typically be achieved using advanced hybrid models

such as in [LLP12]. However, modeling of such large-scale distributed systems is a chal-

lenging task, which mandates the use of experimental test beds to validate the hybrid

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.2. The IoT: Horizontal Solutions 25

models [Sta+13]. Smart grids security can also be studied under a CPS perspective. For

examples, authors of [SHG12] have developed a comprehensive risk evaluation frame-

work for power distribution infrastructures, while authors of [Yil+12] used numerical

attack models to detect and counteract cyber-attacks, thus protecting the power grid

system.

Another example of a critical CPS can found in Internet-operated surgical robots,

on which surgeons can remotely connect in order to operate on patients. For obvious

reasons, designers of such systems must be able to provide guarantees in terms of

reliability, robustness and security. Precise models of the robots’ physical characteristics

must be developed in order to design advanced command laws, which are then used

to improve surgical safety. These models can also be used to study overall system

robustness to a wide range of perturbations. Eventually, verification and validation can

be used to prove formal system properties ensuring global system behavior.

In order to improve CPS’ reliability, robustness and security, numerous design

methods have been developed in the literature. Such methods heavily rely on hybrid

modeling approaches to provide validation, verification and simulation frameworks that

guarantee appropriate system behavior [JCL11]. In order to accurately model hybrid

systems, one must start with precise continuous time systems modeling [LS17]. In such

systems, designers typically use differential equations to model system dynamics since

the input/output relationship of a given system can be expressed as a differential equa-

tion. Continuous time systems can then be integrated into feedback loops described by

classical control theory to ensure desired system behaviors. In contrast, discrete systems

can be represented using state machines [LS17]. State machine -based representations

are the foundation of numerous models of hybrid systems, such as timed automata,

which simply mix real-valued clocks with classical state-based automata.

Typically, the physical plant (i.e., the physical system being controlled) evolves

in a continuous state space, while its controller presents a discrete behavior [ASL93].

Figure 2.5 illustrates a simple thermostat modeled as a timed automaton. A hysteresis

is introduced in the system through the condition on s(t) associated to transitions in

order to represent a real-valued clock. In addition to this timing condition, transitions

are also associated with conditions related to the temperature, τ(t). The controller then

switches between two discrete states, which altogether describes a cooling or heating

actuation.

Figure 2.5 – Illustration of a timed automaton, adapted from [LS17]

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

26 Chapter 2. State of the Art

Numerous tools were developed for modeling, simulating and verifying hybrid sys-

tems. Typical examples are the Ptolemy II project [Pto14], KeYmaera [Pla10] and its

newer implementation KeYmaera X [Pla18], or UPPAAL [LPY97]. The Ptolemy II fo-

cuses on the design of embedded systems though modeling and simulation, particularly

by the interconnection of concurrent components. This framework accounts for nu-

merous modeling languages, ranging from continuous time models to hybrid models,

along with a variety of models of computation. Because of its flexibility, the Ptolemy II

framework is used to verify embedded CPS in miscellaneous application fields, such as

healthcare [Sil+15] or traffic control [Bag+17].

The KeYmaera theorem prover takes another approach on CPS modeling, and

promotes the use of a single language called differential dynamic logic [Pla10]. This

logic specifies systems with simultaneous continuous and discrete dynamics, and the

prover provides certified proofs of systems’ properties. For example, the differential

dynamic logic was used to prove the various safety properties of autonomous ground

robots [Mit+17b] or train braking systems [Mit+17a].

UPPAAL is a toolbox for modeling and verification of real-time CPS. It features

advanced model checking capabilities, which can be used to verify system properties

and iteratively improve system behavior, as displayed in Figure 2.6. It uses networked

time automata extended with advanced data structures (such as arrays) in order to

model and analyze CPS. The UPPAAL toolbox is used in several applications such as

medical devices [Jee+10; Lee+12] and aircraft landing management systems [JM12].

Figure 2.6 – Illustration of model checking

Even though Ptolemy II, KeYmaera and UPPAAL aim at modeling and verifying

CPS, they are not equivalent, and they can provide advantages for certain situations in

different ways. Typically, Ptolemy II is able to simulate a variety of heterogeneous models

of computation, and is consequently a tool of choice for modeling and verifying systems

with numerous computing components. In contrast, KeYmaera and its differential

dynamic logic are oriented at the modeling of physical devices with advanced dynamics

(i.e., moving physical devices) with some mild discrete behaviors (typically a continuous

controller switching strategy). KeYmaera is thus a relevant framework for modeling of

robots or any moving devices. The UPPAAL relies on advanced formalism to model

hybrid systems and is thus a good fit if formal specification and validation is expected

(for example, the development of industrial solutions in which safety must be proved).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.2. The IoT: Horizontal Solutions 27

These tools and frameworks have been extended and applied to IoT-based appli-

cations. For instance, Lee et al. extended Ptolemy II to build an actor-based solution

for the IoT [Bro+18; LL15]. They introduce two important notions: the IoT space is re-

ferred as a swarmlet and accessors. A swarmlet represents a composition of components

named actors. Accessors, which are a special category of actors, are seen as proxies

between virtual components and implemented services or smart devices. Ptolemy II

is then used as a simulation and execution environment for the coordination between

actors. Such solution present a clear advantage over purely graphical languages such as

Node-RED since advanced Ptolemy II tools ensure system validation and verification.

It is worth noting that accessors generate requests attached to callbacks to perform

service invocation (i.e., request-based invocation). As a consequence, they cannot be

used to capture flow-based approaches of the IoT where smart devices are intelligent

enough to decide when data should be sent. Indeed, flow-based approaches rely on

subscription-based mechanisms instead of request-based solutions as promoted by

accessors.

In conclusion, CPS provide a comprehensive theoretical framework for smart devices

because they can model both physical and digital characteristics. Nevertheless, the CPS

approach shows some drawbacks when higher-level problems are considered. Indeed,

models developed in the CPS context lack genericity and reusability, which becomes

a problem when large-scale IoT-based systems are under study. More particularly, IoT

systems can use hundreds or even thousands of extremely heterogeneous devices, which

makes extensive and comprehensive modeling of every smart devices an extremely

time-consuming task. Additionally, CPS tools provide highly specific models of low level

systems, and the modeling process must be reiterated at every system change. The

lack of genericity and reusability is a strong drawback when considering a full-stack

IoT-based approach because they do not provide a generic description of what is a smart

object, and thus prevent higher-level analysis of entire IoT-based systems.

2.2.4 Summary of Horizontal Contributions

In summary, we focused on contributions from three communities with respect to

IoT-related challenges such as smart devices reusability and interoperability along with

their hybrid hardware/software nature and limited resources. In addition, we covered

internal and external self-adaptation of devices with respect to the physical world. These

challenges are discussed from three different perspectives as summarized in Table 2.1.

Researchers who are focusing on SOAs are able to provide service-based solutions

simultaneously tackling smart devices reusability, interoperability and adaptation. The

use of services is particularly relevant in the context of the IoT as services are loosely

coupled, self-contained, and reusable entities. This make them appealing to build

large-scale and distributed IoT-based systems.

However, SOAs are typically software-centric architectures, and they do not account

for resources limitation or hybrid hardware/software constraints. Similar observations

can be drawn from MDE-based solutions when they are applied to IoT. Indeed, they

remain limited to software development and neglect hardware aspects. Technologies

such as component-based software and graphical programming languages provide

interesting solutions regarding IoT-based system design since they facilitate the coordi-

nation of smart devices. Nevertheless, they present the same lacks as SOAs. In addition,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

28 Chapter 2. State of the Art

graphical approaches have the drawback of being poorly maintainable when IoT-based

systems grow beyond a dozen of devices.

Conversely, CPS-based systems are modeling frameworks of choice because they

can simultaneously model both digital and physical system aspects. Because phys-

ical models can be established, systems designer can simulate and verify resources

consumption, which is a clear advantage given the fact that smart devices are often

resources constrained. However, CPS modeling is a time-consuming task. The design

of accurate physical models usually derives from a set of practical measurements of a

physical phenomenon. It thus requires a deep understanding of the physical processes

driving system dynamics. For example, simple electromechanical system models can

be derived from various well-known continuous-time equations. Additionally, models

developed for CPS lack genericity, and cannot be easily reused in different applications.

These aspects are clear barriers for the development of the IoT, and urge solutions

improving modularity and flexibility while taking into account software and hardware

heterogeneity.

Table 2.1 – Summary of IoT challenges and solutions from SOA, MDE, CPS

IoT Challenges SOA MDE CPS

Reusability 3 3

Hybrid HW/SW 3

Limited resources 3

Interoperability 3

Adaptation 3 3

In conclusion horizontal solutions provide interesting-but-partial answers to IoT-

related challenges. Indeed, such solutions commonly lack one or several IoT-related

characteristics (e.g., genericity, heterogeneity, modularity, etc.). This is our main motiva-

tion for the integration of more vertical methods and frameworks for the IoT. Improving

solutions verticality’ can be achieved by multidisciplinary approaches, where all the IoT

layers integrate characteristics and requirements of the other layers, thus resulting in

better vertical integration.

2.3 Designing Embedded Systems

Embedded systems can be defined as the embedding of microcontroller or micropro-

cessor based computer systems into electrical or mechanical systems [Hea02]. They can

range from very complex, computationally powerful and interconnected systems (e.g.,

avionics systems, smart cars, etc.) to very simple self-contained systems (e.g., television

remote, smart temperature sensor, etc.). By this definition, embedded systems can

be seen as systems controlling the physical world using digital processing and control

strategies. Consequently, smart IoT devices can be seen as a sub-category of embedded

systems, as they are in close relationship with the physical world (i.e., they can sense or

change the physical world through sensor or actuators).

The design of smart devices can thus be studied under an embedded systems per-

spective. In this section, we will detail traditional embedded systems design methods

and discuss their relevance with respect to smart devices design. We will also introduce

traditional hardware platforms available for smart IoT devices design.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.3. Designing Embedded Systems 29

2.3.1 Systems Design Methods

In this section, we discuss systems design methods from a top-down perspective with a

particular focus on embedded systems design. First, we introduce our service-oriented

vision of smart devices, and we thus present design methods from the SOA domain.

Then, we consider traditional embedded systems, regardless of their size, and discuss

low-level software and hardware design methods. Indeed, smart devices are commonly

built around a central processing unit, which coordinates interactions between its

associated peripherals. These peripherals implement functions such as analog-to-

digital and digital-to-analog conversions, and/or radio communication. Practically,

this architectural organization can be considered as an orchestration of peripherals

achieved by a central microcontroller [ZW06; TA05; Arm+05]. Because this approach is

monolithic, it features reduced modularity and reusability. The microcontroller load

is usually higher considering its constant orchestration all of its internal and external

peripherals. There is thus a need for more modular design methods for smart devices,

and we will thus position existing methods regarding their modularity. Important

parameters such as formalism and the ability to describe functional and non-functional

parameters on the systems are also discussed.

As reported in the previous section, SOAs are architectures of choice in terms of flex-

ibility and modularity. For this reason, we start by exploring contributions related to the

development of service-oriented systems. Numerous service-oriented design methods

were developed [GL11], including SOMA [Ars+08], SOAD [ZKG04], just to mention a few.

Other examples can be found in [PH06] and [CK07], where authors focus on methods

for designing and implementing Web services -based SOAs [PH06] and adaptive SOAs

based on the SOAD methodology [CK07]. All these methods are strongly oriented at

software aspects and neglect hardware considerations. Additionally, even though au-

thors mention the importance of non-functional requirements in the design of such

system, most do not detail their practical integration within the methodological frame-

works [GL11]. Furthermore, none of these methodologies integrate formalism [GL11],

which is restricting for a use in often-critical IoT-based applications.

However, SOAs provide modularity and flexibility, which is particularly interesting

for the IoT, and service-oriented design methods targeted specifically at the IoT were

developed. For example, authors of [PA16] propose a design method for RESTful in-

terfaces for IoT-based applications. In [Fan+14], authors introduce an ontology-based

automated design method for the IoT, and they apply it to a specific IoT-based reha-

bilitation case study. However, the discussed ontologies are domain-specific, and this

design methodology is thus confined at small-scale and application-specific IoT-based

application.

Regarding general systems engineering (e.g., without the reliance on a service-

oriented paradigm), several approaches have been proposed such as Harmony [Hof14;

Est07], Object-Oriented Systems Engineering Method (OOSEM) [FIM07; Est07], and Ra-

tional Unified Process for Systems Engineering (RUP SE) [Rat03; Est07] just to mention

a few. All these methods are not expressly directed at embedded systems develop-

ment. They often rely on the use of SysML or UML, and are thus suited for the software

development of embedded systems. We however particularly emphasize on the differ-

ence between modeling tools such as SysML or UML, and their use in design methods.

Indeed, such tools by themselves only provide a modeling framework for systems de-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

30 Chapter 2. State of the Art

velopment, and are not associated with any set of guidelines and design steps usually

found in design methods. Contributions such as [dNOW07; Mhe+14] have used SysML

and UML meta-models for the development of electromechanical systems. However,

all the aforementioned design methods adopt a monolithic view of systems implemen-

tation, which is a limitation in the smart devices context as they call for modularity in

order to decrease development time. In addition, they commonly rely on a functional

description of system goals, and non-functional properties are often not taken into

account during the design and implementation phases. Authors of [JP12] propose a

design method to simultaneously deal with functional and non-functional requirements

by using annotated graphs (i.e., the class diagram is augmented with a series of notes

describing the impact of each class on the overall QoS), but the described approach is

still monolithic. A software-only vision is acceptable for wide-scale embedded systems,

where computing components can abstract most of the hardware-related challenges.

However, for small-scale systems such as smart devices, a lower-level approach must

be also considered. Consequently, we study design methods related to the systems’

hardware.

Design methods for low-level embedded systems remain a wide field of study with

numerous explored approaches. One of the principal design method of embedded sys-

tems is the hardware/software codesign method. This method emerged in the late 1980s

as an attempt to bring more automation to the development of embedded systems in

order to handle increased systems complexity and the need for shorter development life

cycle [Wol94; Wol03]. The principal concern of the codesign community is the optimiza-

tion of functions with respect to their hardware or software implementations, also called

hardware/software partitioning. The motivation behind such division comes from the

fact that hardware-only implementations are commonly more energy-efficient and

faster than software-only solutions [Sch10a]. Hardware implementations are however

less flexible, more expensive, and less generic than software approaches [Sch10a].

Early contributions in the field of hardware/software codesign principally focused on

the development of algorithms and tools, and lead to the emergence of two approaches.

Namely, [GD93] consider hardware-only solutions, and incrementally add software

components to decrease the development cost, while [EHB93] start with a software-

only implementation and progressively add hardware components in order to increase

overall system performance. In [KL93], authors describe a digital signal processing

-specific Ptolemy-based design method, and emphasize the need for simulation and

automatic code generation as means of reducing design time.

Other initiatives such as SystemCoDesigner [Kei+09] or [Döm+08] highlight the

relevance of hardware/software system synthesis. Authors in [Kei+09] rely on SystemC

models of the target systems to perform design space exploration and hardware/soft-

ware synthesis. SystemC 1 is a C-like system modeling language often used in numerous

design methodologies related to the electronic system-level design and verification

methodology [BMP07]. This methodology is generic and targeted at the verification of

low-level digital hardware systems. However, it lacks hardware synthesis capabilities,

which is provided by SystemCoDesigner [Kei+09]. Authors in [Döm+08] adopt a different

C-based system modeling language called SpecC. Both design methods feature a similar

1. SystemC specification: http://www.accellera.org/downloads/standards/systemc (vis-
ited on 06/27/2018)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

http://www.accellera.org/downloads/standards/systemc

2.3. Designing Embedded Systems 31

life cycle, where C-based system models are used to generate transaction-level models,

which are in turn used to synthesize both hardware and software. Transaction-level

models designate system descriptions by which separation of concerns is performed

between communicating system modules and the actual module implementation. As

a result, they focus on a transactional modeling of embedded systems. This leads to

hardware architectures based on several blocks communicating through various buses.

In terms of hardware synthesis, both [Döm+08] and [Kei+09] rely on a register-transfer

level representation of digital circuits, which models systems in terms of hardware

registers and logical gates. Practical hardware implementations can then be synthesized

directly from the system representation. The PeaCE Ptolemy extension [Ha+07] gives

another example of a low-level design method for embedded systems, emphasizing on

the simulation of generated hardware and software.

However, these design methods, even though they aim at being used for the design

of any kind of embedded systems, are typically targeted at the design of ICs and SoCs.

Higher-level applications of hardware/software codesign have been proposed in an IoT-

related context: authors of [Bab+11] propose a design framework integrating security

concerns at every design step, while [Hsi+14] describe a Field-Programmable Gate

Arrays (FPGA)-based mote for wireless sensor networks. Both these methods have

limitations when it comes to their use in the smart devices design. For example, the

method described in [Bab+11] is extremely generic and practical implementations of the

method are not discussed. Additionally, [Hsi+14] is located in the area of wireless sensor

networks, which promotes the deployment of identical sensors and is consequently a

poor fit considering the heterogeneity of IoT-based applications.

Furthermore, hardware/software codesign assumes that both hardware and software

can be automatically generated. While this is true in the case of ICs development, it

is not the case for smart devices hardware development. Indeed, the objectives of ICs

manufacturers is to design and implement self-contained components that can be sold

to various companies that are integrating these ICs in their design. Smart devices design

and manufacturing should thus be considered, from a computer scientist perspective, as

the integration of several ICs in order to meet functional and non-functional objectives.

Practically, the integration of ICs is realized through a PCB, which interconnects all the

electronic circuits according to a schematic specified by the smart device designers.

While automation techniques such as hardware and software synthesis exist for the

development of ICs, such tools are not common for ICs integration. First, while ICs

manufacturers can rely on numerous hardware libraries (i.e., hardware components

specified using HDLs), the variety of components available for higher-level system

design represent a challenge (for instance, hundreds or even thousands of ARM Cortex-

M microcontrollers can be purchased from numerous manufacturers). The proliferation

of components makes their selection very difficult, which is the main reason why

component selection is still typically performed by human experts. While PCB design

automation tools such as autorouting exist, their use is not recommended for full PCB

routing, and they should only be used to route non-critical parts of the boards [Nat17].

In conclusion, this section discusses system design methods using a top-down

approach. Since flexibility and modularity are crucial requirements for smart-devices,

we focused on the study of design methods applied to SOAs. Then, because SOAs are

mainly software-oriented architectures, we investigated generic system design methods

which can be utilized for embedded software development. We also investigated design

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

32 Chapter 2. State of the Art

methods targeted at low-level hardware/software codesign. These design methods are

either only dedicated to the software development or relying on hardware and software

synthesis, which are not applicable to smart devices design. In fact, smart devices

design relies on ICs integration rather than actual ICs design, and numerous electronic

components can be used for their implementations. Such components are discussed

and classified in the next section.

2.3.2 Hardware Solutions for Smart Devices

In this section, we study existing hardware solutions for implementing smart devices,

and we consequently focus on technical solutions rather research contributions. We

start by clarifying the vocabulary dealing with hardware peripherals typically used in

the IoT context, and we then discuss their limitations or domain of application.

Recently, the proliferation of manufacturers such as Arduino 2, Raspberry Pi 3 or

Beagleboard 4 offering a variety of development platforms helped to lower the costs and

difficulty of electronics development. However, the variety of this ecosystem is often the

source of confusion regarding their capacity, both in terms of technical characteristics

and usage. A taxonomy of traditional hardware used in smart devices is given in Fig-

ure 2.7. As depicted in the figure, the four main available computing circuits are Digital

Signal Processors (DSP), microcontrollers, FPGAs or microprocessors [EK16; MY11].

Figure 2.7 – Exempli�ed taxonomy of typical smart devices digital hardware

Microcontrollers are the most often used, and they designate ICs combining at least

a central processing unit and a limited amount of RAM and flash memory. They also

usually feature various peripherals such as timers, digital buses, or clock generation

and management circuitry. Typical microcontrollers families include the MSP430 family

from Texas Instruments, the AVR family from Microchip and the Cortex-M family from

ARM. Microcontrollers are cheap (usually a few euros, at most a few tens of euros) and

have a low power consumption (from a few milliwatts to a few hundreds of milliwatts).

Nevertheless, they have reduced computing and memory capabilities. They are usually

programmed using Assembly, C or more rarely C++ with development kits provided

by the microcontrollers’ manufacturers. Two kind of programming philosophy can

be applied to microcontrollers: bare metal programming, which designates the direct

programming of the hardware using low-level libraries provided by manufacturers; or

2. Arduino website: https://www.arduino.cc/ (visited on 06/22/2018)
3. Raspberry Pi website: https://www.raspberrypi.org/ (visited on 06/22/2018)
4. Beagleboard: https://beagleboard.org/ (visited on 06/22/2018)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

https://www.arduino.cc/
https://www.raspberrypi.org/
https://beagleboard.org/

2.3. Designing Embedded Systems 33

the use of a Real-Time Operating System (RTOS), such as the open source initiatives

Zephyr 5, Mbed OS 6, FreeRTOS 7, or RIOT 8). RTOS provide higher-level programming

and concurrent execution capabilities to microcontrollers [Alt14; Sim15]. RTOS typically

feature a small code footprint (a few tens of kilobytes), and are consequently able to run

on resources-constrained microcontrollers.

Microprocessors can be used when the considered smart device does not require

low energy consumption, or when more processing power is necessary. In opposition

with microcontrollers, microprocessors only embed one or several central processing

units, without any RAM or flash memory except low-level cache. They are however more

computationally powerful than microcontrollers, and can thus be used in applications

requiring advanced computational resources. Typical examples of microprocessors

are the ARM Cortex-A family, the Intel x86 family or the IBM PowerPC family. They

are typically integrated into full-fledged computers, and are usually operated though

operating systems such as Windows, macOS or Linux. Microprocessors are however

more expensive than microcontrollers, and they consume more energy, which can make

them unsuitable in highly mobile applications, or for applications with limited energy

availability.

DSPs can be used for signal processing -intensive applications. They are application-

specific microcontrollers optimized for the operations performed in digital signal pro-

cessing. Even though such ICs can be programmed using C, they are often programmed

in Assembly for optimization purposes. They are used for the implementation of a

wide range of functionalities related to real-time signal processing, such as filtering,

compression or time-to-frequency domain conversions. The usage of DSPs in smart

devices is however not as widespread as classical microcontrollers and microprocessors,

mainly because advanced signal processing operations are not always required. In

addition, their programming is more difficult and must usually be performed by expert

programmers with extensive signal processing knowledge [Kar+09].

FPGAs are also relevant for smart devices implementation. They consist of an array

of logic gates that can be programmatically interconnected to implement a desired func-

tion [MY11]. Practically, FPGAs are programmed using HDLs such as VHDL or Verilog,

which are used to specify and configure logical functions. They can implement any

computing function, especially in applications mandating highly parallel computations.

FPGAs are however not suited for applications with limited energy supply, as they still

feature high power consumptions [Vie+03; TGD14]. For examples of FPGAs, please refer

to Figure 2.7.

Nowadays, hardware components are often packaged with several other peripherals

in what is called a SoC. A SoC is defined as an IC which embeds one or several computing

units along with several analog and digital peripherals [Fur00]. Because integration

is improved through packaging of several hardware functions into a single IC, such

components are characterized with smaller PCB size, energy optimization or better time

to market. Typical examples of SoC are the Cypress PSoC family, where the PSoC5LP 9

5. Zephyr website: https://www.zephyrproject.org/ (visited on 06/26/2018)
6. Mbed website: https://os.mbed.com/ (visited on 06/26/2018)
7. FreeRTOS website: https://www.freertos.org/ (visited on 06/26/2018)
8. RIOT website: https://www.riot-os.org/ (visited on 06/26/2018)
9. PSoC5 website: http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp

(visited on 09/01/2018)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

https://www.zephyrproject.org/
https://os.mbed.com/
https://www.freertos.org/
https://www.riot-os.org/
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp

34 Chapter 2. State of the Art

embeds a microcontroller, a small FPGA and a small DSP in a single package. Other

examples are the ESP8266, a popular low-cost SoC embedding a full Wi-Fi stack, or the

Xilinx Zynq family, which embeds powerful FPGAs and Cortex-A microprocessors.

To improve the adoption of their hardware peripherals, manufacturers often offer

development boards for all these components. Boards contains required hardware to

utilize the ICs, such as power management, ICs hardware programming interface, etc.

Additionally, development boards often implement a wide variety of functions showcas-

ing the full capabilities of their main ICs. Typical examples are a set of screens, LEDs,

various input mechanisms, etc. The motivation for implementing these functionalities

is to demonstrate the entire spectrum of ICs capabilities. However, development boards

are only for rapid prototyping and are never used in the mass production of smart

devices .

We then consider single-board microcontrollers (i.e., Arduino or Micro:bit boards).

Such platform have gained a lot of visibility in the recent years, partly because they are

easy to use and cheap. Such boards are based on a central microcontroller (e.g., AT-

mega328P for Arduino Uno, SAMD21 for Arduino M0, or nRF51822 for Micro:bit), and

implement all necessary hardware for power management, input/output operation or

microcontroller programming. They usually do not only provide hardware, but also a

full fledged development infrastructure with various software libraries and Integrated

Development Environments (IDE). For instance, the Arduino ecosystem offers a de-

velopment environment along with a variety of library which makes the integration of

external peripherals easier. Additionally, the success of Arduino boards promoted it

as a “standard” in the Do-It-Yourself (DIY) community, and numerous manufacturers

now advertise on the compatibility of their platforms with the Arduino pinouts (i.e., the

spatial organization of the inputs/outputs on the board).

This is further accentuated by the numerous Arduino shields, which are plugged on

Arduino boards to provide additional functionalities (such as Wi-Fi, Bluetooth, motor

drivers, etc.). Even though single-board microcontrollers have been presented as an

enabler of the IoT, such as in [Sol+13; Per+14b; AlF+15], they lack the ability to scale

up to billions of devices as expected by 2020 [Gar17]. Indeed, while we acknowledge

that such boards are good solutions for the rapid prototyping of smart devices, they

are confined to the DIY community as they do not represent nor space effective or

cost effective solutions for the wide scale production of such devices. For instance, an

Arduino Uno board cost Around 20 €, while the microprocessor it uses cost less than 2 €.

In addition, Arduino boards embed hardware that might not be relevant for a specific

implementation of a smart devices, and thus represent a suboptimal solution in terms

of energy efficiency or PCB surface.

Eventually, we discuss the recent trend of single-board computers such as Rasp-

berry Pi or Beaglebone families. Such devices embed powerful microprocessors and

are powered by full-fledged operating systems, such as Linux distributions (e.g., Rasp-

bian, Ubuntu Core, Yocto Linux, etc.), Android Things, or Windows IoT Core. They are

commonly more powerful than single-board microcontrollers, as they embed powerful

microprocessors (e.g., a 64-bit quad-core Broadcom BCM2837B0 for Raspberry Pi 3 B+

or a 32-bit single core TI AM3352 for the Beaglebone Black) and a large amount of RAM

(from a few hundreds of megabytes to a few gigabytes). Single-board computers are

flexible as their operating systems can easily changed or updated, and they can be inter-

faced with the physical world without difficulty thanks to a wide range of input/outputs

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.4. Self-Adaptation Solutions 35

present on the boards. However, they do not accurately capture resources constraints of

some IoT devices as they are full-fledged computers with advanced microprocessors, a

large amount of RAM (in comparison with microcontrollers), and powerful operating

systems. Single-board computers can however be used as low-cost gateways in an IoT

context, as they often embed wireless communication capabilities and can easily be

extended with additional protocols with the use of shields or USB dongles.

In conclusion, this section discussed the variety of computing components available

for the implementation of smart devices. We presented the hardware-related vocabulary,

and established clear boundaries between actual ICs such as microcontrollers and

microprocessors, and their inclusion in single-board microcontrollers or single-board

(i.e, Arduino boards or Raspberry Pis). Indeed, even though Arduino boards and similar

products provide solutions for rapid prototyping of smart devices, they do not scale up

to an industrial production. Even though the DIY community is extremely active, DIY

devices are too complex for end-users both in their implementation and their usage.

In our opinion, the IoT will be driven by industrial products, which can directly be

integrated into wider-scale systems with effortless configurations and without requiring

advanced technical knowledge.

2.4 Self-Adaptation Solutions

In this section, we detail contributions with respect to the self-adaptation of systems. We

explore the classical control theory, which describes the adaptation of physical systems

and discuss contributions related to autonomic computing. This research area focuses

on the self-adaptation of software systems in order to improve their robustness and

safety with respect to changes in their external environments. Eventually, we study

the literature related to reactive systems, which defines a new category of systems and

provides solutions for their specification and verification. Contributions dealing with

reactive systems have developed interesting tools such as Discrete Controller Synthesis,

which is typically used for the automatic generation of controllers ensuring predefined

control objectives.

2.4.1 Classical Control: Theory and Tools

Control theory is a well-studied research area with contributions dating back to the

beginning of the 20th century [Oga10]. Important elements of control theory are: plant,

which designates a physical system to be controlled; controlled variable, effectively

describing the physical phenomenon being acquired and controlled; control signal,

which defines the variable being changed by the controller to meet control objectives

with respect to the controlled variable; and eventually feedback control, designating the

use of closed feedback loops as the architectural basis of controlled systems. A generic

example of a feedback control loop is given in Figure 2.8. Traditionally, all components

of this loop are continuous and described using transfer functions. A typical example of

the use of classical closed feedback loop would be the regulation of the rotational speed

of an electrical motor, where a target speed is provided as an input. The objective of

closed loop control is to ensure that the desired speed is achieved. To do so, a differential

equation based on electromechanical models of electrical motors is established and is

used for the design of controllers. Controllers can be implemented in order to produce

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

36 Chapter 2. State of the Art

a desired control signal (typically a voltage or a current) with the measured error, which

is defined as the difference between the measured and desired rotational speeds.

Figure 2.8 – Classical feedback loop architecture

The first class of controllers described by classical control theory are Proportional

Integral Derivative (PID) controllers. Such controllers feature a continuous dynamic

based on proportional, and integral and derivative components. They are consequently

associated with three parameters (one for each component), which must be adjusted in

order to verify the desired behavior. Typical adjustment criteria are closed-loop system

stability, response time, overshoot, [Oga10] etc. Numerous techniques for PID controller

tuning were developed, usually based on a set of rules such as in [Sko03] or using ad-

vanced algorithms such as in [KMS08]. It is worth noting that numerous controllers can

be built on components defined in the PID architecture, such as proportional derivate

(PD) or proportional integral (PI) controllers. A major limitation of such controllers

stems from their static nature, meaning that they are not able to self-adapt to system

changes. This is a strong drawback as systems might change for a wide variety of reasons.

Such examples can be found in the aviation field, where the mass of plane vary greatly

during long-haul flights because of fuel consumption.

In order to solve such problems, adaptive control was introduced and aims at provid-

ing guarantees on global behavior despite changes in the controlled system. Adaptive

control is commonly implemented using Model Reference Adaptive Control (MRAC) or

Model Identification Adaptive Control (MIAC). In both approaches, a reference model of

the system is established, and the system is continuously monitored in order to decide

if the controller needs to be adapted [Bru+09]. Other categories of adaptive control have

used self-tuning feedback control architectures, such as in [CG79] or [Ath99], where

systems parameters have been estimated through general purpose algorithms.

Even though such controllers were traditionally implemented using analog electron-

ics (i.e., amplifiers, capacitors or resistors), technological advances in microcontrollers

in terms of processing speed and cost made discrete controller implementations a

practical reality [PNC15]. In order to implement a digitally-controlled physical system,

developers typically rely on well-studied continuous-time control architectures (such as

classical feedback loops) along with appropriate analog-to-digital and digital-to-analog

conversions [PNC15]. Systems designer can then rely on discrete system theoretical

frameworks, which provide tools such as the Z-transform, to study a wide range of sys-

tem property (e.g., stability) and parameters (e.g., sampling rate of the analog-to-digital

conversion).

Numerous other control methods have been proposed by the classical control com-

munity. For instance, optimal control introduces techniques such as model predictive

control (which is able to handle multivariate systems which are difficult to control using

simple controllers such as PID controllers) or linear quadratic regulators (which opti-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.4. Self-Adaptation Solutions 37

mizes system adaptation using a quadratic cost function) [Bem+02]. Please note that

optimal control still requires detailed mathematical models of controlled systems, which

can be challenging if systems are extremely heterogeneous. Additionally, intelligent

control is introduced and relies on artificial intelligence tools such as fuzzy logic, neural

networks or genetic algorithms [Ste93] in order to implement control systems. The ap-

plication of such fields to the control of systems improves complex controlled systems

characteristics such as robustness or reliability by the introduction of formally-derived

controllers in the feedback control loop.

Traditional control infrastructures tend to be monolithic systems: even though

controlled systems might be large, they are commonly driven by a single and centralized

controller. The extremely distributed nature of the IoT represents a severe limitation

regarding the use of classical control techniques for IoT-related applications. In order to

tackle this issue, distributed control was developed, and it targets large-scale industrial

systems. In fact, distributed control assumes that local regulators share partial infor-

mation about the controlled systems that are then used to implement local adaptive

behavior [Sca09; NM14]. In contrast to hierarchical control, distributed control does not

rely on an upper control layer in charge of computing and transmitting local adaptation

goals to the distributed regulators [Sca09; NM14]. Distributed control is heavily oriented

towards model predictive control, principally because it features the capability to be

used in large scale systems with numerous inputs and numerous outputs, in opposition

to other control techniques [May14].

Traditionally, tools and methods described above are applied to the control of

physical systems. However, classical control was also applied to software self-adaptation.

The principal difficulty when utilizing such strategies becomes the accurate modeling of

software systems within a constrained framework. Examples of software self-adaptation

using classical control can be found in [Ang+16], where authors applied model predictive

control for the self adaptation of a meeting scheduling software. Authors in [Pat+12] also

used model predictive control for QoS and resources adaptation in software systems.

More particularly, they used a non-linear model of a software flight reservation system

along with a model predictive control strategy in order to ensure constant system

response time under varying workloads. In [Pen+12], authors describe the use of a

traditional PID controller for the self-adaptation of a course registration system. Self-

tuning of controllers targeted at software systems was also explored, such as in [Fil+12]

where authors used relay-based auto-tuning of a proportional integral controller for

software load balancing. Contributions mentioned in this paragraph are only software-

centric and do not take into consideration system physical aspects.

Classical control is used widely in smart devices. For instance, authors of [Kou+16]

implement an Arduino-based connected drone using PID flight controllers. At a wider

scale, [Dom+16b] describes the use of a PID-inspired network routing algorithm. Sim-

ilarly, [RL15] use a feedback control loop for the control of smart power grids using

Internet-related technologies. Building automation also relies on control theory, partic-

ularly in the field of heating, ventilation, and air conditioning. Numerous contributions

can be found and typically rely on predictive controls (i.e., model predictive control

and its variations) in order to implement intelligent temperature management sys-

tems [Thi+17]. Additionally, most continuous-time actuators need controllers in order

to ensure expected output.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

38 Chapter 2. State of the Art

Eventually, researchers at the intersection of the control community and the IoT

emphasize the importance of the human element in the design of IoT-based systems

through the concept of human in the loop. In this concept, humans are considered as

parts of the feedback control loop, and systems are built by considering human intents

and actions [SZS15]. Humans can be integrated into every element of the feedback

control loop (e.g., humans can be considered as controllers if they have direct impact

on the actuations over a system, or they can be considered as sensors if they are used

as a data source, etc.), and this has a direct impact on they way IoT-based systems are

designed. For instance, authors of [Dom+16a] describe soft actuations applied in a smart

home environment. In this concept, control systems only present humans suggestions

of actions on their living environments (e.g., turn off the light if external sunlight can

illuminate the room, close the window if the heat is turned on, etc.). Humans are thus

considered as controllers in the feedback control loop. Additionally, this system can

be expanded with habits-learning capabilities in order to offer personalized and more

relevant suggestions. In [Guo+15], authors describe a comprehensive framework for

mobile crowd sensing, where mobile phones carried by human users are used as an

information source. Mobile crowd sensing is particularly useful in urban contexts, and

they can be used as an information source for various advanced applications such

as traffic prediction, itinerary recommendations, etc. In this framework, humans are

considered as an information source and are thus representing the sensing element of

the feedback control loop.

In conclusion, classical control theory provides well studied tool for the adaptation

of physical systems. The objectives of control theory aim at ensuring controlled systems

behave in accordance with a given control input, which designates desired functional

metrics on the system outputs. Typical examples of control techniques are based on

feedback loops, which can be extended to provide adaptive control, optimal control

or intelligent control. Traditional control is also used in software-centric contexts to

preserve overall QoS over varying execution environments.

However, techniques described above commonly rely on extended mathematical

models of the controlled systems, which represent a limitation for their use in the

IoT. Indeed, the IoT heterogeneity in terms of protocol or available resources makes

the comprehensive modeling of IoT-based system challenging. Additionally, control

techniques lack modularity as they typically define static control architectures with non-

standard elements, which can be constraining for IoT-related applications considering

IoT-based control systems must be able to scale up in order to handle numerous smart

devices. This leads us to study the field of autonomic computing, which defines elements

for the self-adaptation of software systems.

2.4.2 Autonomic Computing: Self-Adaptive Software Systems

MAPE-K feedback loops are considered as a standard reference model for self-adaptive

software systems [ARS15; Vil+13; WMA10], and a graphical representation is depicted in

Figure 2.9. MAPE-K stands for Monitor, Analyzer, Planner, Executor and Knowledge, as

they constitute the architectural elements of the feedback loop. This reference model

was initially developed by autonomic computing researchers in order to implement

systems that could react to their external executing environment [KC03]. A MAPE-K

loop consists of four components realizing the following actions:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.4. Self-Adaptation Solutions 39

• Monitor: To perform this action, context monitors are implemented in the system.

Typically, they come as software probes measuring relevant indicators in a specific

adaptive context (e.g., if the system should self-adapt to user load, the number

simultaneous connection should be measured).

• Analyze: This action analyzes the measured context and outputs a set of adaptive

actions if deemed necessary. Analyzers can be implemented in a variety of ways,

from simple thresholds to complex probabilistic models. They can also be used

to analyze information coming from numerous monitors in order to compute

the best adaptive action with respect to a complex and multi-variable executing

environment.

• Plan: The planning action implements the actual self-adaptive process. Practically,

it defines technical ways of meeting the self-adaptation goals by specifying how

the system must be changed in order to meet these goals.

• Execute: The execution action describes the actual deployment of the self adapta-

tion through a set of software executors. For instance, executions can be system re-

configuration, changes in resources allocation, partial system redeployment, etc.

The four actions described above operate over shared knowledge (depicted in Fig-

ure 2.9), which designates system information relevant to self-adaptive strategies. For

example, when self-adaptation occurs through a system reconfiguration, all possible sys-

tem configurations must be known in order to provide relevant self-adaptive behavior

and prevent forbidden system configurations.

Figure 2.9 – MAPE-K feedback loop, adapted from [KC03]

MAPE-K feedback loops are particularly relevant for the IoT because of the modular-

ity and the generic nature of their components. Indeed, MAPE-K loops are architectural

models depicting the basic components of autonomic computing along with their or-

ganization, without any constraints on their actual implementations. In opposition,

feedback loops from the classical control community are architecturally strict, and they

define specific components architecture and implementation.

Several implementations of MAPE-K feedback loops include agent-based imple-

mentations in which components of the feedback loop are self-contained agents and

interactions between agents occur through standard interfaces [ARS15]. Another imple-

mentation of MAPE-K feedback loops can be found in the FORMS framework [WMA10].

This framework introduces a formal reference model for self-adaptive software systems,

and it was applied to MAPE-K loops. The FORMS structure is formally verified through

the specification and verification of generic self-adaptive modules in the standard Z

specification language. This framework was improved in [IW14] under the name Ac-

tivFORMS, and improvements consisted in offering model-checking of self adaptation

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

40 Chapter 2. State of the Art

at run time. ActivFORMS was practically used for IoT self-adaptation in [Ift+17]. Nev-

ertheless, these contributions propose imperative adaptation strategies specification,

thus limiting their scalability and maintainability. In order to provide better scalability,

declarative approaches are required because of their smaller code-base for large-scale

systems, resulting in a better maintainability.

In order to handle changes in the monitoring infrastructure or in the control objec-

tives, the DYNAMICO reference model was specified in [Vil+13]. This model applies sep-

aration of concerns between control objectives, adaptation strategies and monitoring

infrastructure by implementing three interacting MAPE-K loops, as illustrated in Fig-

ure 2.10. The DYNAMICO model consequently combines the flexibility of MAPE-K loops

and architectural integrity of traditional feedback control loops. Indeed, this model

interconnects three independent MAPE-K loops through classical control feedback

loops, thus providing an architectural solution to manage changing system objectives,

changing monitoring framework and system adaptation. Nevertheless, the DYNAMICO

model is typically oriented at software self-adaptive systems, and needs to be adapted

in order to be used for self-adaptation of the IoT.

Figure 2.10 – DYNAMICO reference model, adapted from [Vil+13]

In addition, MAPE-K feedback loops are confined in the high levels of the IoT ar-

chitecture, as illustrated in contributions such as [Vou+14], which uses MAPE-K com-

ponents for ontology-based adaptation of flow-based social IoT. Likewise, MAPE-K

derived self-adaptation in workflow-based IoT was described in [SHA17], which handle

self-healing properties of traditional workflows used for the specification of IoT-based

systems. Authors of [Ala+14] implement a MAPE-K based plugin for the self-adaptation

of IoT architectures. A similar plugin-based integration of MAPE-K loops into semantic-

based IoT frameworks is exposed in [Sey+16], and authors propose ontology-based

self-adaptation (i.e., ontologies are used by every module of the MAPE-K loop in order to

provide self-adaptation strategies). In [Car+17], authors describe a framework based on

MAPE-K loops and Business Process Execution Language (BPEL) for the execution of self-

adaptive strategies. Finally, MAPE-K feedback loops are purely-software solutions, and

are consequently not appropriate for the self-adaptation of hybrid software-hardware

systems. They are thus a poor fit for IoT-based systems. MAPE-K loops, even though

their use is widespread, are not the only solution for self-adaptive software systems.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.4. Self-Adaptation Solutions 41

In order to tackle self-adaptation in a SOA context, self-adaptive service-oriented

software systems were studied. In these systems, SOAs and their properties such as

self-containment or loose coupling are utilized as enablers of self-adaptation in soft-

ware systems. Self-adaptive service-oriented software systems were introduced in 2006

by [Den+06], and authors propose a Finite-State Machine (FSM) -based algorithm to

replace defected services with other services sharing similar functionalities. In this work,

adaptation is discussed both at the functional level and at the protocol level (meaning

the overall SOA should be able to replace a service with another even if they do not

use the same protocols). Following this preliminary work, comprehensive self-adaptive

service-oriented framework were developed. Typical examples of such frameworks are

SASSY (Self-Architecting Software SYtems) [Men+11] or MUSIC [Rou+09]. In SASSY, a

model-driven approach is considered in order to create service-oriented self-adaptive

systems. Nevertheless, this framework relies on the use of IP-based networks and

technologies, which are not always available in the IoT. Indeed, non-IP networks are

sometimes used for energy-saving purposes in smart devices. Similar observations can

be drawn for the MUSIC self-adaptive middleware [Rou+09], which is implemented us-

ing the Open Service Gateway initiative (OSGi) service platform. OSGi is a specification

of a modular service-based platform relying on Java technologies, and its architec-

ture is given in Figure 2.11. The OSGi framework is represented by the blue and red

blocks, while the other components describe parts and processes of the considered

system. Because of its genericity and modularity, this framework was used in different

of IoT-related projects. For instance, an OSGi-compliant middleware called HYDRA

was described in [ERA10], while [GTD12] used the OSGi architecture to create an IoT

platform relying on radio-frequency identification technologies. However, even though

OSGi is an enabler of ubiquitous connectivity between smart devices, it relies on the Java

Virtual Machine (JVM), which is not deployable in resources constrained environments.

Figure 2.11 – OSGi architecture, adapted from [OSG07]

Models at run time (sometimes also called models@run.time or models@runtime)

provide self-adaptation capabilities for software systems. This approach is related to

the MDE community, and researchers define models@runtime as self-representing

model of a given system with a particular emphasis on system’s goals, behavior and

structure [BBF09]. These models can then be integrated to already-existing MDE tools

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

42 Chapter 2. State of the Art

to provide self-adaptive behaviors to the systems. This philosophy was used in miscella-

neous contexts: for instance, authors of [Mor+09] describe a models@runtime-based

architecture for dynamic software product lines through the use of complex event

processing, goal-based reasoning and a configuration manager to implement their

solution. Additionally, models@runtime were also used in IoT-related contexts such as

wireless sensor networks, where authors of [GFA11] implemented a self-adaptive frame-

work targeted at the reconfiguration of identical motes used in such network. Their

solution is based on a MAPE-K loop, and models@runtime are used in the planning

component of the loop to compute the appropriate reconfiguration of the network.

However, it is worth noting that wireless sensor networks are only a subset of the IoT,

and they often assume that interconnected devices present similar hardware and soft-

ware architectures (i.e., a set of distributed identical devices). This assumption is not

applicable for IoT-based applications since smart devices are usually heterogeneous.

As discussed earlier in the state of the art, authors in [Fou+12; AWB14] proposed the

models@runtime-inspired Kevoree framework to compute appropriate reconfiguration

of resources-limited components. In conclusion, models@runtime are a MDE-based

take on self-adaptation. Researchers using models@runtime rely on accurate models of

their system in order to automatically compute appropriate self-adaptive actions. Con-

sidering models@runtime are embedded into MDE, they present same limitations with

respect to the IoT, namely their software-orientation and lack of hardware modeling.

In conclusion, the autonomic computing community provides modular and flexible

solutions for software system self-adaptation: the MAPE-K feedback loop, self-adaptive

service-oriented systems and models@runtime. The MAPE-K loop defines the nec-

essary components to implement self-adaptive behavior in software systems. These

components are independent and loosely coupled, which makes the MAPE-K loop

modular and flexible. Because such loops are only reference architectures, practical

implementations are not restricted to any specific technology.

We also reviewed contributions from the MDE community to deal with self-adap-

tation problem, namely the models@runtime approach. In this approach, systems self-

representations are used to automatically decide on self-adaptive actions. However, the

contributions described above are strongly software-oriented, and usually target high-

level application layers. Consequently, they are ill-suited in a resources-constrained

smart devices context. Considering smart devices are in continuous interactions with

the physical world, they must react to a wide variety of external events, and reactions

must be integrated to self-adaptation strategies. Following this idea, we studied reactive

systems and discrete controller synthesis, and their applications to the IoT as explained

in the following section.

2.4.3 Reactive Systems and Discrete Controller Synthesis

Reactive systems are defined as being faced with continuous solicitations from the

external world and by their need to react to such solicitations [HP85]. They are the

opposite of transformational systems, which designate simple input/output-based sys-

tems (e.g., systems associated with a transfer function such as filters, electromechanical

systems, etc.). Smart devices are systems in constant bi-directional interactions with the

physical world (through the acts of sensing and actuating), and can thus be considered

as reactive systems. Such systems have received a constant research effort since their

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.4. Self-Adaptation Solutions 43

first mention three decades ago [HP85]. Researchers put a strong emphasis on the verifi-

cation of reactive systems, and have proposed the use of various tools such as temporal

logic [Pnu86], or SPL as exhaustive models of the systems associated with compilers act-

ing as verification components [BB91]. Researchers dealing with reactive systems came

to the conclusion that a synchronous representation of such systems presents a good

theoretical framework for their formal study [BB91]. Practically, synchronous reactive

systems are represented using statecharts [HP85; Har+90], mode-automata [MR98], or

simple deterministic [MR01] or probabilistic (meaning transitions are associated with

probabilities) [Seg06] Labeled Transition Systems (LTS).

A system can be defined as synchronous if the computation time of a reaction is

negligible in comparison with the rate of events [Gam10], and this property is called the

synchrony hypothesis. Practically, this means that the system must be powerful enough

to compute the output between two input acquisitions. A comparative illustration of

synchronous and asynchronous systems is given in Figure 2.12. In contrast to asyn-

chronous systems, which are based on physical discrete time, synchronous systems

use logical time, which means the only important timing notion in such systems is the

input acquisition rate. In addition, Figure 2.12 illustrates the fact that in asynchronous

systems, events can occur at any instant, and the reaction time to those events can vary.

For instance, a factor which can influence the response time is the overall system load,

meaning that if a system is concurrently executing several processes, the response time

might be delayed if the system load is important. In opposition, in synchronous reactive

systems, reaction to inputs occurs instantaneously. The synchrony hypothesis is strong

constraint, but many small-sized microcontroller-based systems fall under this category,

considering the microcontroller clock frequency is much higher than the sampling rate

used to sense the physical world, and that microcontroller are usually dedicated at the

implementation of real-time applications. It is worth noting that this hypothesis is also

a good representation of the usual implementation of simple embedded systems, where

the firmware typically consist of a main infinite loop that coordinates peripherals at a

specific rate (e.g., [Ben12; Fer+10; WK07]). The main advantage of using synchronous

systems is that they have smaller state space than asynchronous systems, which makes

state space exploration for verification possible [BB91].

Figure 2.12 – Asynchronous vs synchronous reactive systems, adapted from [Gam10]

As specified above, synchronous systems can be represented as a variety of graphical

models, such as statecharts or LTSs. However, graphical approaches feature limited

maintainability (they are suitable for simple system but rapidly become extremely com-

plex as systems grow bigger), and textual SPLs were developed. The motivating idea

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

44 Chapter 2. State of the Art

behind SPLs is the ability to textually describe synchronous reactive systems in order

to generate either code or executable binaries. Numerous SPLs are available, with

the most common historical solutions being ESTEREL [BdS91], LUSTRE [Hal+91] or

SIGNAL [BLJ91]. ESTEREL takes an imperative approach to reactive programming,

while both LUSTRE and SIGNAL are dataflow languages (i.e., programs specify oper-

ations on data and connections between elements) [Hal+91; Poi+98]. The principal

difference between LUSTRE and SIGNAL is that the first uses a more functional-based

view of reactive programming, in opposition to the second which is constraints-based.

More recent initiatives are the imperative Quartz language [SB17] integrated into the

Averest [RGS13] MDE framework or Heptagon/BZR [DR10], which extends dataflow

programming languages such as LUSTRE with imperative capabilities [CPP05]. All these

SPLs can describe reactive synchronous systems, and generate code structures (either

typical C or Java software code, or HDL code such as VHDL or Verilog). Because smart

devices are traditionally designed as a microcontroller which coordinates various pe-

ripherals, it is possible to use SPLs as models for devices, and such solutions should be

considered in an IoT context.

In addition to the specification of individual synchronous devices, the rigorous

coordination of several devices is also challenging and can be solved using Discrete

Controller Synthesis (DCS). It is related to the idea of distributed reactive systems [PR90]

and more generally to the control of discrete systems [RW89]. The objectives of DCS is

to use synchronous models of individual systems to generate correct-by-construction

discrete controllers [Mar+00]. In other words, provided with models of a system and a

set of adaptation goals (also called control objectives), DCS must compute the controller

which will provide the desired closed-loop behavior. DCS was originally defined for any

discrete systems [AMP95] (authors used a game-theory derived algorithm to solve the

synthesis problem for discrete and timed systems), and was extended to the special

case of synchronous reactive systems [Mar+00; DMR10; DRM13] (both contributions

implement DCS with a tool called Sigali). The controller synthesizer Sigali is integrated

with both the Signal and Heptagon/BZR SPLs. It relies on Boolean symbolic transition

system encoding of LTSs to avoid the need for comprehensive state space exploration

when computing the controller in order to prevent state space explosion [Mar+00;

DRM13]. This Boolean representation is however constraining, as systems may need an

infinite variable domain (meaning variables cannot be enumerated during state space

exploration). ReaX, a tool for DCS of infinite synchronous reactive systems based on

arithmetic symbolic transition system was introduced in [BM14], and is integrated to

the Heptagon/BZR toolbox.

Considering smart objects in the IoT can be considered as synchronous systems

typically coordinated by a central gateway, and that this gateway is powerful enough

to handle the streams of events generated by the objects it controls synchronously,

DCS can be used. Contributions such as [Zha+13; Zha+14; SLR17; Syl+17] use discrete

controllers in home or building automation. In particular, authors of [Zha+13; Zha+14]

use Heptagon/BZR for self-adaptation of home appliances, with a strong focus on func-

tional adaptation (e.g. if a presence is detected in a room, lights are switched on, etc.)

and a minor discussion of non-functional adaptation (particularly with respect to global

energy consumption). Overall QoS is not considered. In addition, they also propose

ontology-based hierarchical relationships between appliances, which are used to map

physical properties (such as the lightning state of a room) to physical actuation (such

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.4. Self-Adaptation Solutions 45

as the action to switch a lamp on or off). By such, the system can automatically infer

the actuation of a particular physical parameter (typically, the need to actuate lamps in

order to change the lightning). Authors of [SLR17; Syl+17] take a different approach to

the use of DCS in an IoT-related context by integrating it into MAPE-K feedback loops

for the management of smart buildings. In summary, analysis and planning blocks are

replaced by discrete controllers, and the implementation relies on LINC (an IoT-oriented

transactional middleware), and PUTUTU (a device abstraction framework). These con-

tributions also discuss the implementation of systems handling changing adaptation

goals using a controller switching-based approach. Controllers are replaced by others if

changes in the control objectives mandating a controller adjustment are detected by the

system. The coordination and composition of several MAPE-K loops is also discussed,

and is presented as a solution for the up-scaling of the control system in response to an

increase in controlled devices number. Similar to authors of [Zha+13; Zha+14], authors

of [SLR17; Syl+17] only consider functional properties and QoS preservation is not dis-

cussed. Please note that adaptation goals in Heptagon/BZR are contract-based, and are

expressed though a series of declarative first-order logic statements specifying desired

global system behavior. In addition, DCS in Heptagon/BZR requires the distinction

between controllable and non-controllable transitions in LTSs. Practically, controllable

transitions can be triggered by the external controller in order to achieve adaptive behav-

ior, while non-controllable transitions describe internal synchronous module behaviors.

DCS thus computes actuation on controllable transitions to guarantee the verification of

controlled objectives. Event-Condition-Action (ECA) rules-based DCS was also explored

through the translation of a ECA rules-based high-level to BZR contracts in order to

perform controller synthesis [CDR14; Can+14].

Even though the synchronous hypothesis provides a theoretical framework for the

study of reactive systems, it is not suitable for all systems falling under that category,

and some systems must be studied with an asynchronous perspective. Synthesis of

asynchronous finite reactive modules is presented in [PR89a], and automated reasoning

of temporal logic can be used to verify such systems [Eme96]. Advanced toolboxes such

as CADP [Gar+13] were developed, along with tools such as LNT [GLS17], a high level

specification language for distributed system. Capabilities of the CADP toolbox are wide,

as it offers distributed model checking of concurrent asynchronous systems. CADP was

used in combination with LNT for DCS of asynchronous systems in [ASD17] and applied

to the coordination of autonomic managers.

In this section, we demonstrated that smart devices can be modeled as reactive

systems, as they continuously interact with the physical world. The reactive systems

community provides formal tools to both verify and synthesize such systems, but also

to coordinate several reactive systems. Because synchronous reactive systems are more

studied than asynchronous ones, and because advanced tools such as SPLs are available

for the specification and design of such systems, we promote solutions which verify

the synchrony hypothesis when developing smart devices. In addition, SPLs and DCS

provide a comprehensive formal framework which guarantees global system behavior,

which is necessary considering the critical nature of most IoT-based systems.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

46 Chapter 2. State of the Art

2.5 Summary and Conclusion

In this chapter, we presented a broad view of the fields, tools and techniques from vari-

ous communities related to the design and adaptation of smart devices in an IoT context.

First, we explored IoT horizontal contributions from the computer science and electrical

engineering communities. In particular, we demonstrated that SOAs, which organize

software systems around services, provide promising solutions to handle IoT challenges

related to modularity and interoperability. Indeed, because SOAs emphasize on the use

of modular, self-contained and loosely coupled services, they can improve system-wide

interoperability even when faced with heterogeneous technologies. However, SOAs are

purely software solutions, which do not take into consideration resources limitation

and physical characteristics of smart devices.

Additionally, contributions from the MDEs community have shed light on the IoT

development lifecycle. Indeed, the critical nature of IoT-based system mandates the

presence of formalism in their development life cycle in order to provide guarantees

regarding their functional and non-functional properties. MDE proposes modeling

languages along with analytical and execution frameworks which can help producing

such guarantees. Furthermore, the formal definition of software-oriented components

by the CBSE community improves smart devices flexibility and modularity as they can

be seen as a set of interacting and self-contained software entities. The main difference

between components defined by CBSE and services described in SOAs lies in the fact

that components deal with implementations, whereas services deal with higher-level

and technology-agnostic specifications.

To conclude our review of horizontal solutions for the IoT, we explored the field

of CPS and studied hybrid physical and digital systems through modeling, simulation

and verification. To achieve such objectives, advanced hybrid modeling languages

were developed, focusing on low-level characteristics of smart devices. Such model

can then be simulated in order to verify various digital and physical system properties.

However, physical modeling is time-consuming because it commonly relies on practical

experimentation for the computation of accurate models. This is a strong limitation

when we attempt to scale them by considering hundreds or even thousands of devices.

In sum, horizontal solutions are not able to provide comprehensive solutions to the

IoT-related challenges defined in the Introduction chapter. This motivates our vision of

a vertical approach to IoT-based systems, by which we can improve integration between

different IoT layers. In the remaining of this dissertation, we thus adopt a bottom-up

perspective to build our solutions for adaptable and reusable smart devices. This is why

we start with the hardware layer to design and build devices with strong constraints on

their functional and non-functional requirements. Indeed, smart devices are usually

resources constrained, and their hybrid nature combined with their connectivity repre-

sent a design challenge, which can benefit from a service-oriented approach. We thus

attempt to apply service-oriented concepts to the design of smart devices through new

design principles.

Contributions related to systems design methods were also explored. We demon-

strated that even though they provide insights for the design of modular and flexible

systems, SOAs design methods are heavily software-oriented, and do not capture accu-

rately the hybrid nature of smart devices. We also focused on generic systems design

methods based on tools such as UML or SysML because they can be used for embedded

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

2.5. Summary and Conclusion 47

systems software development. However, these methods are targeted at monolithic

systems, which do not support the modular and flexible nature of smart devices. Eventu-

ally, methods targeted as low-level hardware/software codesign were investigated. Such

methods provide tools and frameworks for the specification, simulation and implemen-

tation of hybrid embedded systems. Nevertheless, they are oriented at the design and

manufacturing of ICs, and are consequently not suited at smart devices development.

Indeed, the design of smart devices typically focuses on the integration of several ICs

rather than the development of application-specific SoCs. We consequently demon-

strated that there are opportunities for the development of a new design methodology

focusing on ICs integration using a service oriented perspective. By such, we aim at

providing both formal guarantees on final smart devices behavior while preserving

acceptable modularity and flexibility.

We then continue our state of the art with a bottom-up approach to self-adaptation

of smart devices and of the systems built around them. In this context, we consider that

self-adaptation is an enabler of vertical system intelligence, and that the construction

of smart services should rely on self-adaptive devices. This motivated our study of

self-adaptation strategies and classical control theory, which hinges on the adaptation

of physical systems using continuous-time models and controllers. However, most

classical control solutions rely on detailed models of physical systems, which are not

always available as the design of such models represent a time-consuming task due

to their experimental nature. We then discussed contributions from the autonomic

computing community, which defines a standard architecture for feedback control loops

known as MAPE-K. This architecture is generic, and can be adapted to a wild variety of

use cases, as proved by the numerous practical implementations detailed above. The

genericity of MAPE-K feedback loops can then be combined with formal methods to

provide feedback control with guarantees on adaptation objectives. We thus focused

on formal methods for the control of discrete systems, and discussed contributions

from the reactive systems community. These systems are in continuous interaction

with their external environment and are consequently appealing for the representation

of adaptable smart devices. Formal models of reactive systems can then be used to

automatically synthesize discrete controllers, in order to ensure the verification of their

adaptation goals. We consequently chose to combine the versatility of MAPE-K feedback

loops with the formal guarantees provided by discrete controller synthesizers.

Since our contributions consider a service-oriented approach as low as the device

layer of the IoT, we are able to improve smart devices interoperability while considering

limited resources and hardware/software aspects with an appropriate smart device

design method. In addition, we propose to embed internal and external self-adaptive

behaviors in smart devices, as self-adaptation is a step towards building smart services,

with a particular emphasis on QoS preservation because of the often-critical nature

of IoT-based systems. In order to provide formal guarantees about the verification of

systems adaptation goals, we rely on theoretical and practical tools developed by the

reactive systems community.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

CHAPTER3
Design Method for Service Oriented

Smart Devices

Contents

3.1 Introduction . 49

3.2 Method Overview . 52

3.2.1 Generalities . 52

3.2.2 Smart Devices Ontology . 54

3.3 Comprehensive Method Description . 56

3.3.1 Smart Device Requirements Analysis 58

3.3.2 Smart Device Constraints Analysis 58

3.3.3 Modular Architecture Design . 59

3.3.4 Modules Formal Specification . 60

3.3.5 Smart Component Formal Specification and Verification 60

3.3.6 Modules Implementation and Integration 61

3.3.7 Smart Device Testing . 61

3.3.8 Smart Device Production . 62

3.3.9 Adding Self-Adaptive Behavior as a System-Wide Requirement . 62

3.4 Medical Smart Device Design . 63

3.4.1 Smart Device Analysis . 63

3.4.2 Smart Device Specification . 65

3.4.3 Smart Device Implementation: an Overview 67

3.5 Summary and Conclusion . 69

3.1 Introduction

Smart devices are building blocks of the IoT, and all IoT-based systems rely on the use

of such devices to interact with the physical world. They cover a wide spectrum of

sensors, actuators, robots, unmanned vehicles or even wearable devices, which come

with specific requirements and characteristics, namely:

• Limited resources: even though smart devices are diverse in nature, they are usu-

ally resources constrained. More specifically, microcontrollers typically found in

49

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

50 Chapter 3. Design Method for Service Oriented Smart Devices

smart devices only feature minimal amounts of Random Access Memory (RAM)

and ROM (i.e., from a few tens of kilobytes to a few megabytes), but they also have

reduced clock speed (usually a few tens of megahertz), which limits their compu-

tational power. The use of resources-constrained hardware is driven by energy

savings motivations (less powerful microcontrollers are less power-hungry) as well

as cost saving reasons since constrained microcontrollers tend to be cheaper than

more powerful solutions. Furthermore, smart devices are often battery-powered,

and a compromise must be achieved between computational power, size of the

device, and battery life.

• Hardware and software heterogeneity: The IoT ecosystem is broad, and a wide

variety of protocols can be used for the implementation of smart devices. For

instance, they can use various communication protocols such as Wi-Fi, Bluetooth

Low Energy (BLE), NFC, Zigbee, implemented on a variety of microcontrollers

(e.g., controllers from the MSP430 or ARM Cortex-M families, Intel 8051-based

System-on-Chips (SoC), etc.). All these components come with their own pro-

gramming tools and development environment (usually provided by the man-

ufacturers), and they are not inter-compatible. Additionally, regardless recent

standardization efforts, IoT standards remain highly fragmented, which leads to

divergence in vocabularies, methods and models (e.g., OneM2M, IoT reference

architecture, etc.) [Bau+13; Sic+15].

As a result, the design of smart devices must simultaneously account for all these spe-

cific requirements and characteristics, with an additional emphasis on the development

of flexible and modular solutions, promoting the reusability of devices architectures

and capacities in a wide variety of applications. Furthermore, the critical nature of most

IoT-based system requires the integration of formal verification and validation methods

and techniques within their design lifecycle, in order to be able to provide guarantees

on final smart devices behavior.

When it comes to interoperability challenges, Service-Oriented Architectures (SOA)

provide solutions by using self-contained, loosely couple and technology-agnostic

services. Indeed, SOAs provide a theoretical framework and design concepts for the

implementation of distributed software systems. They tackle interoperability issues by

promoting the use of standard technologies such as Web services -related standards and

the use of adaptors to integrate legacy applications [PvdH07] to service-oriented systems.

It turns out that the service model is a good fit for smart devices, as several similarities

can be established between them, such as their self-contained and independent nature,

but also the fact that their integration to wider scale framework should not depend on

their implementation (i.e., technology agnostic integration).

However, even if some similarities can be drawn between SOAs and smart devices,

the former can not directly be applied to the latter because of a variety of reasons. First,

traditional SOAs design methods such as SOMA or SOUP [Est07] adopt top-down design

lifecycles and are not able to accurately model and take into account smart devices

limited resources and hardware constrains. Additionally, such methods are often heavily

software-oriented, and hardware is considered as a black box providing all needed tasks

through low level Application Programming Interfaces (APIs). Finally, SOAs usually rely

on heavy and verbose protocols such as Web Services Description Language (WSDL),

and require a full TCP/IP stack, which is not always available for resources-constrained

smart devices.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

3.1. Introduction 51

Conversely, lower-level design methods such as hardware/software codesign can

accurately model, simulate and synthesize hybrid systems. Methods developed in this

context, such as [Kei+09] or [Döm+08], offer a comprehensive design lifecycle for the

creation of hardware/software systems. However, these methods hypothesize that both

hardware and software can be automatically generated. If this is the case for Integrated

Circuits (IC) development, the hypothesis does not hold in the context of smart devices’

design. Indeed, smart devices are commonly implemented through the integration of

several ICs on a single Printed Circuit Board (PCB), where automation is not widespread

and man-crafted design is still preferred by system creators rather than the use assisted

tools and automation processes.

In order to simultaneously tackle limitations of design methods defined for both

hardware/software codesign and traditional SOAs, we propose a new design method

with key concepts originating from SOAs and applied to the development of hard-

ware/software smart devices. Our design method emphasizes on the need for better

interoperability, while still being applicable in resources-constrained smart devices in

order to improve their integration to wide-scale IoT-based infrastructures. Consequently,

we propose a comprehensive SOA-based design method to build service-oriented smart

devices. This method brings all the key concepts of SOAs at the smart device level in

terms of modularity, interoperability and reusability; while preserving accurate rep-

resentations of smart devices’ limited resources and conditions of operations. The

outcome of this method leads to the design and manufacturing of interoperable smart

devices, which expose low-level hardware-software services (that we also call hardware

services). Our method seeks to improve smart devices’ integration into a wide variety

of IoT-based applications through middleware, and their aggregation with businesses

services for the construction of smart services.

More specifically, our design method for service-oriented smart devices comprises

methodological steps to:

1. Build an internal modular architecture by decoupling hardware/software com-

ponents into self-contained modules with well-defined interfaces. By such, each

module can be easily developed and tested separately or later substituted without

the need for a complete architectural redesign.

2. Apply the service concept to smart devices in order to expose their functionalities

as hardware-level services, ensuring external modularity and interoperability, or

to manage their constrained resources and capabilities.

3. Apply a V-shaped development lifecycle by which testing activities like require-

ment analysis, design tests and system integration are validated and corrected

well before hardware implementation and software programming. This ensures a

higher chance of design success over waterfall lifecycle models, which are often

used in SOA design methods and hardware/software codesign methods.

4. Integrate formal hardware and software specifications at the design phase, fol-

lowed by validation and verification through model checking to ensure desired

smart devices properties (i.e., safety and liveness).

5. Refer to a full-fledged ontology for smart devices in order to share common con-

cepts among all participants from different disciplines in the design process.

Practically, shared ontology instances are used when expressing functional re-

quirements, Quality of Service (QoS) constraints, or verification and validation

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

52 Chapter 3. Design Method for Service Oriented Smart Devices

statements. By such, ontologies reduce ambiguity and ensures global consistency

at each phase of our design method.

The remaining of this chapter is organized as follows: Section 3.2 gives a broad

overview of guidelines and methodological concepts used in our design method, but

also introduces a smart devices ontology which is then instantiated and used in the

remaining methodological steps. Section 3.3 generically details each phase our method,

which is then applied to a specific medical smart device use case in section 3.4. Finally,

we conclude our work in Section 3.5, and we identify limitations and possible research

directions.

3.2 Method Overview

In this section, we further present our motivations for the foundation of our design

method. Additionally, we introduce simple ontologies that can be used within our

method to assist smart devices designers with some methodological steps. We also

introduce a set of guidelines supporting the main idea behind our design method,

namely hardware/software module compartmentalization for better smart devices

modularity and flexibility.

3.2.1 Generalities

The rise of the IoT and the democratization of various boards, sensors and actuators

available in the market are a strong driver of the Do-It-Yourself (DIY) movement. As

mentioned in the state of the art, single-board microcontrollers and computers such

as Arduino boards or Raspberry Pis represent low-cost options for the development

of smart devices by hobbyist developers. Nevertheless, smart devices development

based on such boards is empirical, and lacks formalism ensuring devices’ safety and

reliability. Additionally, the DIY approach to smart devices design does not scale to mass

production (i.e., manufacturers usually manufacture thousands of devices), neither is

suitable for industrial deployment. As a result, the design of smart devices should be

subject to a rigorous design method, accounting for both functional and non-functional

requirements, along with constraints on limited resources, formal specification and

verification, and eventually hardware and software testing. These methodological steps

are preliminaries to the mass production of smart devices and help to provide guarantees

on smart devices behavior in a wide variety of applications.

To meet all these requirements, the design of smart devices (e.g., medical sensors

or actuators, home automation devices, etc.) comprises two stages. The first stage

deals with smart devices prototyping, which relies on the use of various SoCs and ICs,

and defines verifiable hardware-software services. The second stage is defined with

respect to the mass production smart devices, which are in fact PCBs mounted with ICs

organized into assembly lines.

Our design method implements these two stages, and introduces a V-shaped design

and development life-cycle. It also advocates that different hardware and software com-

ponents should be organized as a choreography in order to provide a service-oriented

modular hybrid architecture. We define different architectural hardware elements as a

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

3.2. Method Overview 53

tuple:

HW architecture = < DAC, ADC, µC, DSP, Radio, Memory, Energy, Bus > (3.1)

where DAC designates Digital-to-Analog Converters (DAC), which convert digital do-

main information to physical domain actions, while ADC labels Analog-to-Digital Con-

verters (ADC), which provide the opposite conversion. DSP and µC respectively repre-

sent dedicated low-level digital signal processors and general purpose microcontrollers.

The Radio element of the tuple designates communication-oriented SoCs, while the

Memory element defines storage-dedicated components. The Energy member of the tu-

ple is used to designate the energy capabilities of the device, and finally the Bus element

defines the hardware buses used by different ICs to communicate.

Each component corresponds to a different hardware entity, and they all are con-

sidered as independent and self-contained entities with potential hardware/software

interfaces. Several software components can be deployed on each of these hardware

parts, resulting in hybrid hardware/software entities, which we refer as modules in the

remaining of this chapter. As mentioned herein above, traditional design methods see

microcontrollers as central parts of the devices, where they act as orchestrators between

the hardware components.

From a software point of view, the architectural elements can be defined as a tuple:

SW architecture = < firmware, bootstrap, interrupts > (3.2)

In order to ensure an internal modular hardware architecture, we provide a set of

guidelines and best practices, decoupling hardware/software components into self-

contained modules with well-defined hardware/software interfaces:

1. Decouple hardware and software modules in order to decrease the processing

load of the microcontroller by implementing each of the software functions on

dedicated components (i.e., signal processing functions implemented on a DSP,

radio communication function on a radio-oriented co-processor, etc.)

2. Use Direct Memory Access (DMA) and interrupts to communicate between compo-

nents as a mean for the microcontroller to stay in a sleep (and thus low-power)

state during communication phases between digital components, consequently

optimizing energy consumption.

3. Serialize data exchanges. With data serialization, the exchanged data becomes

self-descriptive and causes better self-containment of each of the hardware com-

ponents. Binary data serialization (such as MessagePack, CBOR or BSON) is

preferred because of its relative compactness when compared to plain-text serial-

ization.

4. Specify hardware services in the radio component. Hardware services expose smart

device functionalities to the external world as independent and reusable services.

They describe functional properties, internal resource management or on-the-fly

configuration of hardware modules during execution. It is worth to mention that

hardware services are exposed through radio communication to external smart

devices:

HW services = < actuation service, sensing service, resources mgmt. > (3.3)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

54 Chapter 3. Design Method for Service Oriented Smart Devices

5. Enabling security in the radio component: Security remains a major challenge

in IoT, but many hardware cryptographic accelerators for data encryption and

decryption are available as standalone or integrated hardware peripherals. Since

we recommend the radio component to provide hardware functionalities as ser-

vices (hardware-as-service), it should ideally handle data encryption/decryption

with a dedicated accelerator. In this context, the main microcontroller does not

have to implement software-based cryptographic functions, which thus reduce

active time and energy consumption. Additionally, it is worth noting that some

microcontrollers such as Cortex-Mx also embed cryptographic accelerators, and

that data can consequently be encrypted end-to-end.

3.2.2 Smart Devices Ontology

The design of smart devices requires the collaboration of designers with various skills

and backgrounds, which leads to a complex hardware and software design process.

Furthermore, the complex hardware and software design process introduces a rich

vocabulary along with various concepts, which can be ambiguous and where misinter-

pretation can occur at any step of the methodological lifecycle. As a solution to this

problem, we specify a comprehensive-yet-simple ontology for smart devices, which can

be used as a shared knowledge source between all designers and developers involved in

smart devices design. When implementing a specific smart device, the ontology can be

instanced using the device’s type (i.e., sensor or actuator) along with its resources. This

instance is particularly useful to express functional and non-functional requirements

(i.e., QoS requirements), and can be used to decide which properties should go through

the validation and verification process. Consequently, we expect our ontology to reduce

ambiguity between systems designers, and to improve global consistency in all steps of

the design method.

Our ontology is given in Figure 3.1. It divides smart devices categories into three

sections, which are not mutually exclusive (i.e., a smart device can belong to several

categories):

• Sensor: A sensor is a device that converts a physical phenomenon to a digital

representation. Commonly, physical phenomena are transduced to electrical

properties (e.g., voltage, current, impedance), which are subsequently converted

to digital representations though appropriate analog signal conditioning and

ADCs. Our ontology details various properties of sensors as illustrated in Fig-

ure 3.1. The closest property from the physical world is the unit of the physical

phenomenon being measured by the sensor, as depicted in the ontology. Get-

ting closer to higher-level services, the sampling rate of a given sensor is another

critical point with impacts on the smart devices modular architecture, as higher

sampling rates require more storage and processing power. The output property

represents the data format of sensor measurement (i.e., number of bits, signed vs

unsigned, etc.). Sensor management and behavior can then be described using

one or a combination of the following properties: real time, event-based or query-

based. A real-time sensor simply sends measurements at a predefined regular

rate, while an event-based sensor only sends relevant information under some

predefined conditions derived from the sensor physical context. A query-based

sensor only transmits measurements if requested by an external tier. Eventually,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

3.2. Method Overview 55

the sensor is accessed through a single access point represented by the sensing

service.

• Actuator: An actuator is the functional opposite of a sensor as it transforms

information from the digital domain to the physical world through actuation. The

highest-level elements of actuators take the form of actuation services, which

represent actuation interfaces to the external world. Then, the input property

in our ontology represents the data format leading to physical world actuation.

Actuation can either be continuous (e.g., motor speed control) or binary (e.g.,

turning a light on or off). A binary actuation can also be monostable or bistable.

Eventually, the transduction of digital information to the physical world is realized

by a DAC.

• Gateway: This smart device class is used to categorize devices that perform digital-

to-digital conversions such as signal processing or protocol translation. It is

characterized, similar to sensors and actuators, by a set of both input and output

that describe the different expected data formats.

The purpose of the ontology-based description of smart devices is to enrich subse-

quent steps in the design method, and thus directly depends on concepts assigned to

the smart device. From the set of requirements provided by step 0 of the method (see

the detailed design method depicted in Figure 3.3), an ontological concepts (also called

classes) matching is performed and the resulting output classes are used as objectives

for the subsequent modular architecture design.

Figure 3.1 – Smart devices detailed ontology with a class instance toy example

Additionally, we detail a comprehensive smart devices’ resources ontology in Fig-

ure 3.2. This ontology describes resources characteristics and their constraints, but also

defines four distinct concepts: connectivity, energy, memory and computation.

First, smart devices connectivity is divided into three sub-classes (or sub-concepts).

The port connectivity sub-class designates the physical connectivity of a given smart

device (e.g., USB, Ethernet, etc.), while the transmission connectivity sub-class charac-

terizes its wireless capabilities. These properties are key elements for smart devices inter-

action with external tiers. The interconnected bused sub-class describes the capability

of devices to connect to higher level publish/subscribe buses, which are particularly

suited for smart devices inter-connectivity.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

56 Chapter 3. Design Method for Service Oriented Smart Devices

Then, the energy sub-class describes battery power management along with some

key battery characteristics, such as the maximum electrical charge (usually given in

mAh) and the current electrical charge. The battery management services represents

self-awareness regarding battery level and can be used as a basis for smart self-adaptive

behavior.

The memory and computation sub-classes represent smart devices’ capabilities to

store, buffer or process data. Computation can be performed using common 8 to 32-bits

micro-controllers (from small 8051 cores to powerful ARM microcontrollers), with a

wide range of clock frequency (from a few megahertz to a few hundred of megahertz).

Dedicated signal processors can also be used to perform real-time low-energy computa-

tion. The two sub-classes related to memory and storage are divided into volatile RAM

and persistent ROM. Typical amounts of RAM range from a few tens of kilobytes to a

few hundreds, while common amounts of ROM range from a few hundreds of kilobytes

to a few thousands. More memory typically requires discrete ICs (usually either flash

memory or a micro-SD card port), and the management of such component (e.g., RAM

buffering followed by batch memory writing) is described by the memory management

service.

Figure 3.2 – Smart device detailed resources ontology

Ontologies for smart devices, sensor networks, or generic IoT-based systems have

been developed in standard bodies and the academic literature (i.e. FIPA-Device on-

tology 1 or the SSN ontology 2). However, they lack accurate representation of smart

devices’ hardware. Since our design method relies on a comprehensive knowledge

of smart devices’ hardware capabilities, our ontology attempts at the simultaneous

modeling both smart devices and their limited resources.

3.3 Comprehensive Method Description

The design method lifecycle is given in Figure 3.3. It can be divided into three major

phases: preliminary smart devices analysis (represented in blue in Figure 3.3), smart

1. FIPA-Device ontology website: http://www.fipa.org/specs/fipa00091/PC00091A.html (vis-
ited on 06/29/2018)

2. SSN ontology website: http://w3c.github.io/sdw/ssn/ (visited on 06/29/2018)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

http://www.fipa.org/specs/fipa00091/PC00091A.html
http://w3c.github.io/sdw/ssn/

3.3. Comprehensive Method Description 57

devices specification and verification (in red) and eventually smart devices implementa-

tion and testing (in green). The first phase focuses on the study of the targeted smart

device from different perspectives such as functional and non-function characteristics.

An ontological analysis the device being designed is performed and used to assist sys-

tem designers in the subsequent methodological steps. Finally, the phase ends with

the definition of a reference modular architecture by which hybrid hardware-software

modules are defined and articulated in order to fulfill functional goals while considering

smart devices resources constraints.

The second phase is related to formal specification and validation of smart devices,

represented as hardware/software hybrid smart components. The formal verification is

mandated by the critical nature of smart devices: indeed, they are commonly used in

various scenarios such as remote health monitoring or smart houses, where errors or

failures can have disastrous consequences (e.g., loss of diagnostically relevant medical

data, house security breach, etc.). Formal specification and subsequent verification

helps to detect and correct design errors before devices implementation.

Eventually, the third and last phase consists of the implementation of the specified

modules, along with their integration followinf to the predefined modular architecture,

and prototype testing. Test procedures depend on the smart devices’ category. By

passing all defined tests, the device becomes ready for final production. Because of their

self-containment and interoperability, modules can be considered as services, and the

modular architecture thus relies an event-driven choreography of concurrent services,

coordinated in order to achieve a predefined goal.

Figure 3.3 – Method lifecycle

As shown in Figure 3.3, the three phased (by color) steps are divided into individual

method steps, and we will describe them extensively bellow.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

58 Chapter 3. Design Method for Service Oriented Smart Devices

3.3.1 Smart Device Requirements Analysis

The requirement analysis is closely tied with the functional analysis, and it establishes a

list of various system properties. This requirement analysis can be performed through

brainstorming, and it mainly answers the following questions: what is the purpose of

the smart device, how is the device achieving this goal, what for is the smart device

manufactured, and eventually who is it targeted to. By answering these questions, a list

of functional and non-functional requirements can be created, and that list is used as

an input for the subsequent step of the method lifecycle.

3.3.2 Smart Device Constraints Analysis

The smart devices constraints analysis is based on the resources ontology given in

Figure 3.2, and a constraint list given bellow. Available resources for smart devices

design are defined from the requirements analysis performed in step 0 of the method,

and a summary of mutual relationships between constraints is given in Figure 3.4. The

main constraints for smart devices are:

• Size, which can be represented by the final volume of the smart devices, usually

expressed in cubed centimeters. This constrain directly impacts the battery life,

because smaller sizes implies smaller batteries. The volume also impacts storage

and computing capabilities because reducing global volume compels a smaller

electronic footprint, and smaller components are commonly less powerful than

their larger counterparts.

• Computing capabilities, which is usually evaluated using the microcontroller

clock speed. The clock speed is usually configurable, and high speeds negatively

impact battery life as they cause higher energy consumption [Wei+96].

• Battery lifetime, which is measured in hours, and is usually derived from the global

hardware consumption of the circuit and the maximal battery electric charge.

• Connectivity: Connectivity impacts both battery life and computing capabilities.

More advanced connectivity commonly results in higher microcontroller over-

head, and conversely more powerful microcontrollers can be used to provide

higher level connectivity.

• Storage: Larger storage implies larger electronic footprint, and it decreases battery

life because of the energy cost of the writing and reading operation.

Figure 3.4 – Mutual constraints relationship

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

3.3. Comprehensive Method Description 59

Both the constraint analysis introduced in this part and the requirement analysis

introduced in step 0 support decisions of smart devices designers in order to produce a

list of ICs, and to subsequently map software functions and services to the selected hard-

ware components. This mapping results in the definition of hybrid software-hardware

modules, that are organized together in the subsequent methodological step in order

to produce the expected functional results. Finally, the outcome of this step is a list

of hardware components carefully selected through the requirement and constraints

analysis. This list can be considered as an optimum with respect to the different con-

straints presented above, and it is used as the basis for the next methodological step:

the definition of a modular architecture.

3.3.3 Modular Architecture Design

In this step of our method, the smart devices ontology given in Figure 3.1 is used as a

support to strengthen the device analysis. Using the ontology, manufacturers can assign

one or several categories to the smart device, and the workflow is adapted consequently.

This methodological step aims at instantiating classes from the ontology with respect to

the smart device under development. A simple example of a class instance is given in

the lower right corner of Figure 3.1. Comprehensive classes instances are used to define

the modular architecture of smart devices.

The modular architecture design comprises the definition and organization of hy-

brid hardware/software modules that are, most of the time, concurrently executed using

an event-based paradigm. This means modules execution is triggered by external events.

Our event-driven modular architecture is typically implemented using interrupts, which

must be classified by priority in order to avoid interrupt clashes. The scope of inter-

rupts is however wider than a specific module, as they typically occur for an entire

hardware component. For instance, if a microcontroller implements several modules,

interrupts still occur at the microcontroller level, and designers must take that element

into account. In addition to the modular architecture, smart devices designers should

consequently produce a list of interrupts associated with a uniquely-defined priority.

Furthermore, we define two kinds of modularity: internal and external. Internal

modularity is the result of the smart devices’ internal organization into self-contained

hybrid modules that communicate trough buses, as illustrated in Figure 3.5. External

modularity is achieved through the exposition of hardware services as standard inter-

faces. In our case, we chose to use a JavaScript Object Notation (JSON) description of

hardware services, as depicted in Figure 3.5. The use of a standard serialization language

provides descriptions of available services and enables interoperability. Hybrid modules

communicate through hardware buses, and serialized communication occurs through

DMA to minimize microcontroller usage. Modules expose their functional and non-

functional characteristics through input or output ports. They are capable of processing

data to achieve functional goals (i.e., convert a voltage into numerical information, and

then convert digital information to semantically-annotated data).

This modular architecture presents a fractal property because a module can be

specified with several sub-modules. We thus empower smart devices designers with

the capacity to chose the level of granularity they deem appropriate for their specific

design, keeping in mind that highly optimized architectures often require a very small

granularity to maximize hardware proximity.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

60 Chapter 3. Design Method for Service Oriented Smart Devices

Figure 3.5 – Modular architectural simple generic example

3.3.4 Modules Formal Speci�cation

In this methodological step, the modules outlined in the modular architecture are

formally specified using a formal modeling language in order to establish a formal model

that smart device designers can use in their implementation. Practically, every module

need to be formally specified in order to achieve a comprehensive description of their

behavior. This results in guarantees over the modules’ behavior when implemented,

hence resulting in a solid basis for more complex full smart component specification.

Consequently, the activity of this design step consists of writing formal specifications

for each module. As a result, it produces self-contained module specifications, which

are later used for modules integration specification and verification.

3.3.5 Smart Component Formal Speci�cation and Veri�cation

Considered as a whole, smart components can be seen as distributed concurrent sys-

tems where all modules are running simultaneously. Communication between modules

is, in the vast majority of cases, asynchronous, thus resulting in a strongly event-driven

global architecture. Self-containing modules integration is then specified based on

the models written in the previous methodological step, and model checking can be

performed to verify if the system satisfies a set of predefined properties. The set of prop-

erties to be verified through model checking can be any formally specified properties

such as system safety and liveness. Safety is informally defined as ensuring that a “bad”

event never happens during the execution of a system, while the liveness definition is

that a “good” event eventually happens [AS87]. If errors or deadlocks occur, they are

identified during the model checking step, and the error trace provides a way for smart

devices designers to identify and correct errors in their specification. The module and

system specifications are inputs for the next methodological step, effectively defining

references to be followed for the software and hardware implementations.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

3.3. Comprehensive Method Description 61

3.3.6 Modules Implementation and Integration

In this step, smart devices designers develop all modules as defined in the modular

architecture, following the specifications produced in the step 3. Because of system

modularity, each hardware component typically comes with its own development toolkit

(i.e., IDE, compilation chain, programming protocols), and system developers use the ap-

propriate tools for each hardware sub-system. Languages used to develop the modules

can also vary, as ICs manufacturers offer several options for their products: traditional

C or less commonly C++ for microcontrollers, assembly for highly specialized signal

processors, or even some proprietary and optimized scripting language for dedicated

communication-oriented SoCs. The development of all modules produces programs

than can be use in the subsequent step of the method, which deals with modules inte-

gration. Because of the hybrid nature of smart devices, the integration can happen both

at the hardware or at the software level. For modules that are hosted by the same IC, the

integration occurs at the software level, while for modules implemented on separate

hardware components, the integration must be applied at the hardware level. The final

smart component integration is the result of this methodological step.

3.3.7 Smart Device Testing

In our method, we propose the to use integration testing as traditionally used in software

development. Even though formal specification and verification should prevent unex-

pected bugs to be discovered during the testing phase, complexity added by combining

hardware discrete component still makes this methodological step mandatory. Since we

want to test if the integration of discrete modules achieves predetermined functional

and non-functional goals, we should test if the integration of modules is correct, and we

thus perform integration testing. The testing procedure is summarized in Table 3.1, and

depends on the ontological analysis of the smart device being designed. It is divided

into four distinct cases: sensors, actuators, gateway, and integrated sensors and actua-

tors. This categorization results from the similar domain transformations introduced

by these cases, as displayed in Table 3.1. For instance, if sensors and gateways’ classes

are assigned, this will result in a physical → digital → digital transformation, that can

be reduced to a physical → digital transformation from an integration point of view.

Similar domain compression can be made for the other two classes assignment.

Table 3.1 – Detailed integration test description
Ontological analysis Transformation Testing to be performed

Sensor Physical→ Digital Input: physical simulated signal
Test: comparison of system digital output to expected output

Actuator Digital→ Physical Input: digital signal
Test: comparison of measured physical output to expected output

Gateway Digital→ Digital Input: digital signal
Test: comparison of digital output to expected digital output

Sensor & Actuator Physical→ Physical Input: physical simulated signal
Test: comparison of measured physical output to expected output

Testing helps to discover potential integration errors overlooked in formal specifi-

cation and verification. Indeed, previous methodological steps are only related to the

specification of the device, and misinterpretation of this specification by smart devices

designers can still occur during the implementation, which can result in errors in the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

62 Chapter 3. Design Method for Service Oriented Smart Devices

smart device implementation. If further testing is required, a set of scenarios can be

defined and the response of smart devices to the test scenario can be evaluated. In the

case where testing is successful, smart device prototypes can be considered as final

and the last methodological step can be performed. If pure software testing must be

performed, typical testing procedures from the software engineering community can be

applied, such as unit testing or traditional integration testing.

3.3.8 Smart Device Production

This last step transforms the prototype into the final product. To this end, an electrical

schematic of the device is drawn, a precise bill-of-materials is established and PCB

routing is performed. Final embedded software development is also realized. These

documents can then be used to subcontract manufacturing to specialized electronics

production companies.

We introduced our detailed design method for service-oriented smart devices, seen

as a smart component made of a set of modular hybrid software and hardware compo-

nent, with low-level services exposed using the communicating capabilities of the smart

device. To demonstrate the efficiency of our proposed method in the context of smart

devices development, we applied it to the design of a medical-grade electrocardiogram

(ECG)-based cardiorespiratory sensor.

3.3.9 Adding Self-Adaptive Behavior as a System-Wide Requirement

As mentioned in the introduction chapter, self-adaptive behavior is an enabler for the

construction of more intelligent devices, as it provides a mechanism for IoT-based

systems to adapt to their external environments. As we promote the integration of

self-adaptation mechanism in the smart devices layers of the IoT, they must integrate

the capability to be either internally or externally reconfigured.

Practically, the integration of self-adaptive behavior can be seen as a constraint over

Non-Functional Properties (NFP). Indeed, similar to sampling rate or battery life, self-

adaptive behavior can be seen as a non-functional requirement pushing towards specific

technical choices. Self-adaptation typically occurs through system reconfiguration,

meaning that system designers must chose easily-reconfigurable SoCs. This can be

done by preferably selecting digital industrial and integrated solutions rather than in-

company analog development (i.e., choosing an already-existing IC over a new design

derived from discrete components).

In addition to its impact on hardware choices, integrating a self-adaptive behavior

into devices also requires specific software organization. In order to better match con-

tributions dealing with the adaptation of reactive systems, we promote the integration

of software state machines, corresponding to Labeled Transition System (LTS)-based

models typically used by the reactive systems community. By such, transitions can then

be associated with events, which typically take the form of interrupts associated with

conditions in microcontroller-based reactive systems.

Eventually, self-adaptation can be seen as the reconfiguration, or reorganization, of

the modular architecture defined in the methodology. Indeed, by defining self-contained

hybrid modules, we can adapt smart devices simply by appropriately reconfiguring all

the modules involved in the achievement of a specific adaptation goal.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

3.4. Medical Smart Device Design 63

3.4 Medical Smart Device Design

In this section, we illustrate the application of our method to the design of a medical-

grade cardiorespiratory smart device. This sensor was developed in this thesis, and it is

explained in details in the next chapter. In these design and development activities, all

the methodological steps are illustrated, but we chose to treat them as phases rather

than detailed steps for conciseness purposes.

3.4.1 Smart Device Analysis

The first step of our design method is smart device analysis, and we answer the four

questions given above:

• What: measures Heart Rate (HR) and Heart Rate Variability (HRV) parameters,

along with the Respiration Waveform (RWF), with at least 48 hours of autonomy.

All measurements must be securely transmitted.

• How: based on ECG measurement and impedance pneumography, the smart

device must be small and lightweight in order to achieve a reusable chest-patch

form-factor.

• What for: perform real-time mobile monitoring of vital data for clinical studies.

• Who: biomedical and clinical researchers.

As a consequence from these answers, the functional requirements are the mea-

surement of the HR and HRV parameters along with the RWF. The non-functional

requirements are: the RWF is sent once every second by batch of three 24-bits values,

the HRV parameters are transmitted every 5 minutes, the heart rate must be sent as

soon as it is detected, and the autonomy must be of at least 48 hours. Additionally, the

sensor should be self-adaptable in order to facilitate its integration to smart services,

and this self-adaptive behavior should not impact quality of measurements. The ex-

pected QoS is that no data is lost during transmission, but also that the connection must

be robust enough in order to maintain itself during 48 hours (if the transmitter is within

the receiver range), and finally that data must be encrypted during the transmission.

Our smart device’s ontological analysis is straightforward, and it is assigned to the

sensor class. The sensor is both event-based and real-time. The reason for the first

property is the fact that HR values are sent as soon as a new heartbeat is detected, and

our smart device fits the real-time property because the RWF and HRV parameters are

transmitted as soon are they are available. Battery levels can be requested by external

tiers, thus making the sensor query based. Such external tiers can also be notified if

the battery is low by subscribing to this notification channel. In terms of classes closer

to the physical world, the analog-to-digital conversion occurs on two channels: the

first channel is the direct measurement of the voltage produced by cardiac activity,

while the second channel injects a high-frequency electrical current and measures the

resulting voltage, thus effectively measuring the impedance variations between the two

electrodes, which is correlated to respiratory activity. Since the sensor measures several

phenomena, the unit class is a set: the HR unit is beats per minutes (BPM), the HRV

parameters are given in milliseconds and percentages, and the RWF does not have any

unit (also abbreviated as n.u. in this dissertation). The output of the analog-to-digital

conversion is provided as two signed 24-bits frames (one for each channel), which

corresponds to medical-grade resolution.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

64 Chapter 3. Design Method for Service Oriented Smart Devices

The next method step is smart devices resources analysis. With the assistance from

our ontology, we assign the connectivity class to the transmission connectivity sub-

class. Indeed, the goal of our smart device is to perform real-time medical-grade mobile

measurement, so a port connectivity is not appropriate, and the constraints in terms of

size and battery life prevents the deployment of a power-hungry Transmission Control

Protocol (TCP)-based bused connectivity. Based on a state of the art of traditional

low-power wireless connectivity protocols [Dem+13], we chose to utilize BLE to pro-

vide wireless connectivity. Our motivation was principally its widespread adoption in

everyday devices such as smartphones, but also its low energy consumption. In terms

of practical implementation, we used a Silicon Labs BLE113 SoC, which includes a

fully programmable BLE stack with a relatively low surface footprint and low power

requirements. All the communication-oriented functions of the sensor can be directly

implemented on that circuit in order to reduce the load of other hardware, and we

give more details about this implementation in the next chapter. When it comes to

the energy class, the maximal electrical charge sub-class was assigned to the value of

300 mAh. This battery capacity represents an acceptable compromise between a small

and lightweight targeted form factor and the desired autonomy of 48 hours. The battery

management service simply consists of a battery level information available to external

tiers. Since data is transmitted as soon as it is available, memory requirements are low

as it does not need to be stored for extended periods of time. The strongest memory

constraint is the need to store a 5 minutes long buffer of HR in order to compute the

HRV parameters. There is no memory management services since there is no need to

implement any storage-dedicated hardware.

The requirements in terms of computation are higher than most smart devices

because of the relative computational complexity of real-time ECG processing. In-

deed, ECG signal is acquired and processed at a rate of a 1000 samples per seconds

(SPS). To reduce microcontroller load, it is better to process this data on a dedicated

signal processor. We chose the PSoC5LP SoC as the computational hardware in our

solution, because it features a powerful ARM Cortex-M3 microcontroller, a dedicated

programmable signal co-processor and a fully programmable logic gates matrix, while

remaining relatively low-power. Since most of the heavy real-time signal processing is

performed by a dedicated power-optimized hardware, namely a programmable Digital

Filter Block (DFB), the microcontroller frequency can be kept to a minimal 3 MHz, while

being in sleep mode most of the time, thus saving energy.

The low-power yet high-quality analog signal acquisition requirements resulted in

the choice of the ADS1292R for our ADC. This IC is an energy-efficient Analog Front-End

(AFE) specifically dedicated at biomedical signal acquisition. Signals are acquired at a

sampling rate of 1 kSPS, with 24-bits resolution. This component can also handle mod-

ulation and demodulation necessary for impedance pneumography. It is also entirely

configurable, and communicates with the microcontroller using a Serial Peripheral

Interface (SPI) serial communication.

The next methodological step is the definition of a modular architecture, which is

illustrated in Figure 3.6. This diagram is simplified to include only the signal-processing

path between the different modules. The analog-to-digital conversion is realized by a

dedicated configurable front-end, which communicates with both the ARM core and

signal co-processor using a serial bus and DMAs. The signal co-processor takes the raw

ECG signal as an input and outputs a smoothed squared derivative of this signal, which

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

3.4. Medical Smart Device Design 65

Figure 3.6 – Cardiorespiratory sensor modular architecture

will be used for heartbeat detection implemented using a set of programmable logic

functions. This heartbeat detector determines the time interval between two heartbeats

and communicates it to the microcontroller using a DMA bus, which are represented

as memory buses on the figure. The HR, HRV parameters and RWF are computed by

the microcontroller and communicated to the communication-oriented SoC using a

Universal Asynchronous Receiver Transmitter (UART) serial bus. The BLE113 integrated

circuit handles all the communication-oriented tasks of the sensor, such as external

tier connection/disconnection, hardware services advertisement, HR value and HRV

parameters communication, etc.

Further details about our smart devices implementation are given in the next chap-

ter, with a strong focus on signal processing and peak detection. In addition, we also

cover also the integration of self-adaptive capabilities in order to improve our sensor’s

intelligence.

The before-mentioned modules are concurrent with asynchronous communications.

Please note that even though some buses used (such as the SPI bus) in our implementa-

tion are defined as synchronous because devices share a clock signal, we still consider

interactions to be asynchronous because we implement an event-based mechanism

rather than a polling approach. In the next section, we complete our medical smart

device design with a formal specification developed for each module.

3.4.2 Smart Device Speci�cation

Once the modules are defined and organized, our design method imposes a formal

specification of each module. This results in the definition of a precise set of procedural

steps a module must follow in order to achieve its goal-oriented objective. Several formal

specification frameworks exist (e.g., UPPAAL, PRISM, TLA+, etc.). In our method we

chose the temporal logic of action (TLA+) [Lam93]. In fact, this specification framework

was chosen principally because it does not require advanced knowledge of complex

mathematical concepts, consequently resulting in faster specification writing and higher

return on investment, as this framework can be used to express a wide range of complex

concurrent systems [New14]. Additionally, this framework was proven to be efficient for

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

66 Chapter 3. Design Method for Service Oriented Smart Devices

both high level software specifications [New14] and low level hardware modeling [BL03]

in industrial use-cases.

In this section, we introduce a sample specification for two modules of our medical

smart device, along with an example of integration of two modules. For an illustration

purpose, we chose to specify the heartbeat detection along with the HR computation

from the microcontroller. The full specification is given in Figure 3.7. Heartbeat detec-

tion is specified in the module called HRD. Its specification is pretty straightforward, and

it basically verifies if the condition to detect a heartbeat is satisfied or not. Every-time

this condition is not satisfied, a counter is incremented, the current value of this counter

is buffered, and a new value is loaded. Additional details about this algorithm are given

in the next chapter. The condition simply states that the old sample of processed ECG

must be greater than the new version of the sample, while the new sample is higher than

a constant threshold and the counter is higher than 250. If this condition is verified,

a Boolean variable is set to true. The heart rate processing specification is given in

the Proc module. This module straightforwardly converts the interval between two

heart beats in milliseconds to a HR value in BPM by dividing 60,000 by the variable

rrinterval. A wrapper for the HRD module was written in order to keep the old and

new variables of the module internal, as they should not be exposed to the external

world. With this wrapper, the HRD module exposes only the Boolean flag representing a

heartbeat detection and the counter value at the time of the heartbeat. The Proc module

exposes both rrinterval (interval between two heartbeats) and bpm (HR value) variables.

Figure 3.7 – Speci�cations of heart rate detection, processing, and integration

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

3.4. Medical Smart Device Design 67

Modules integration result in a distributed concurrent architecture, and TLA+ is

the ideal framework to specify our modules’ integration because it was created to

represent and analyze distributed and concurrent systems. Specifications of modules

can be integrated as parts of the smart device model. Global specification is only the

description of how the modules communicate in order to execute the functional goals

of the smart device being designed. The model checker provided in the TLA+ toolbox

verifies the safety and the liveness of the smart device. If more advanced devices’

properties need to be verified, the TLA+ proof system can be used to derive hierarchical

proofs, consequently adding a degree of trust that the smart device will behave as

expected.

Going back to Figure 3.7, the Integration module describes how the two individual

modules described above are articulated. Modules integration occurs through a DMA

channel, using the channel specification detailed in [Lam02]. When a heartbeat occurs,

a DMA transaction between the HRD module and the Proc module is initiated, and the

counter value is transferred from the HRD module to the Proc module. Upon transfer

finalization, the computation of the HR in BPM is triggered. The Integration module is

then model checked for two system characteristics: deadlock and type correctness. The

first property describes the lack of situation where the system encounters states in which

no progress can be made, while the second characteristic gives the assurance than the

values produced by the system are within an expected range. Model checking resulted in

a state space of 5002 distinct states, and no deadlocks neither boundaries violations were

found. The sample specification and model checking thus gives the system developer

guarantees that the smart device cannot be in an irremediable blocking state and that

no value overflows will occur. This formal specification serves as the basis for module

development and system integration, and developers must pay a particular attention to

follow the specification.

Services exposed to the external world can also be specified. Here, we use the HR

service as an example to illustrate how such specification can be used. We used the

PlusCal specification language to demonstrate the versatility and ease-of-use of the TLA+

toolbox. PlusCal is a specification language that can be used to specify algorithms, and

that transpiles to TLA+ specifications for the model checking process. The HR service is

quite straightforward: when a new message is received from the microcontroller, the

service checks the message header to verify if it corresponds to the appropriate HR

message identifier. If it does, the service updates its HR value, which is then notified

to external tiers or remotely accessed upon request. This service was specified using

PlusCal and transpiled to TLA+, as shown in Figure 3.8. Model checking was performed

and no errors were found.

3.4.3 Smart Device Implementation: an Overview

In this section, we briefly explain our hardware architecture leading to a first version

of our real-world prototype. We however explain the final steps of our design method

(namely testing and industrial-level production) in the next chapter, where details

about the implementation and testing of our cardiorespiratory sensor are extensively

described. We implemented our sensor using our method, and we thus adopted a

module-by-module approach during the design and development lifecycle. These

modules were implemented using the technology (in terms of languages, Integrated

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

68 Chapter 3. Design Method for Service Oriented Smart Devices

Figure 3.8 – Heart Rate service speci�cation: PlusCal and automatically generated TLA+

Development Environments (IDE), etc.) provided by each hardware manufacturer, in

accordance with the specification developed in the previous section.

The communication modules to be deployed on the BLE113 were developed using

the proprietary scripting language and compilation tool-chain provided by Silicon Labs.

The implemented modules were: services advertising on system startup, connection

management, deconnection management and transmission of the measured param-

eters using the appropriate hardware services. During idle periods, the BLE113 goes

to a low-power sleep mode and it is woken-up by the microcontroller if new measure-

ments are available and ready to be transmitted. The modules defined as being part of

the PSoC5LP were developed using the IDE provided by the manufacturer (i.e., PSoC

Creator). This tool chain can be used to simultaneously develop C code deployed on the

ARM Cortex-M3 core and domain-specific assembly code for the signal co-processor.

Logical functions arrangements to be deployed on the programmable logic gates ma-

trix can either be programmed using a graphical interface or Verilog (i.e., a common

Hardware Description Language (HDL)). Each of the modules were consequently im-

plemented using their dedicated language, and deployed on the PSoC5LP IC before

being interfaced with other modules. The ADC is programmed by the microcontroller

through serial communication on bootstrap startup, and it is configured to run using its

internal clock and to provide two samples from both channels every one millisecond.

New sample availability is advertised by changing a logical level on a specific pin of the

circuit, which triggers clock generation for serial communication on the PSoC5LP.

From a hardware standpoint, the first prototyping step consists of the integration of

each IC’s development board, as depicted in Figure 3.9. The preliminary prototype was

used to perform a series of tests, which will be described in the next chapter. In addition,

we describe sensor miniaturization, and how to convert a development board -based

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

3.5. Summary and Conclusion 69

Figure 3.9 – First version of the cardiorespiratory sensor prototype

prototype (rendering it relatively useless for real-world applications) into a full-fledged

mobile smart device.

3.5 Summary and Conclusion

In this chapter, we present a service-oriented design method for smart devices. Our prin-

cipal motivation for this contribution stems from the fact that smart devices have unique

features, principally due to their hybrid nature, but also because they are commonly

used in critical applications in the context of IoT-based systems.

Even though numerous design methods have been described in the scientific lit-

erature, we found them to be lacking key characteristics when it comes to the design

of smart devices. Namely, we emphasize on the need for such devices to be interop-

erable, modular and reusable in order to promote their integration in a wide variety

of applications. To this end, we focus our research on SOAs and related concepts of

self-contained, modular and interoperable services. The numerous design methods

aimed at the development of service-oriented systems typically lack accurate hardware

representation. Indeed, SOAs focus on software systems, and use tools which are often

resources-hungry preventing their integration to resources-constrained devices. We

however reuse the service concept in order to improve the modularity and flexibility

of smart devices. In addition, other design methods targeted at the development of

embedded software were created, but they are typically targeted at wide scale systems

(e.g., flight control systems, industrial production lines automation, etc.), and are thus a

poor fit for smart devices considering they are typically small-scale physical objects.

Other design methods focused on the simultaneous design of hardware and software

under the name of hardware/software codesign have advanced modeling for both

domains. They can also be used to validate and verify the systems being designed.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

70 Chapter 3. Design Method for Service Oriented Smart Devices

However, such design methods usually assume that both hardware and software are

automatically generated, which is the case for SoC or IC design. Nevertheless, this

assumption does not hold anymore when it comes to smart devices design, which can

be seen as the integration of several ICs rather than their actual design.

Consequently, there is a real gap between high-level service-oriented design meth-

ods and low-level hardware/software codesign methods. Our proposed method at-

tempts at bridging these two domains to provide a full-fledged design method for

service-oriented smart devices, with a strong focus on functional and non-functional

properties. To this end, we rely on a modular architecture based on hybrid hardware/-

software modules exposed to the external world through a set of hardware services. We

also integrate formal specification and verification as dedicated steps of our design

method in order to provide guarantees on final smart device behavior. Our method

adopts a V-shaped lifecycle, which provides advantages over a waterfall lifecycle. Indeed,

V-shaped approaches introduce dependencies between the development phase and

the design phase. In opposition, a method step from a waterfall lifecycle only depends

on the previous step, with the risk of not designing appropriate testing processes or

to discover bugs late in the design lifecycle. By specifying (and sometimes perform-

ing) tests at the beginning of the design process, V-shaped methods minimize such

risks. Additionally, we introduce resources and smart devices ontologies to assist system

designers in their design and implementation of devices.

In summary, our method introduces a novel service-oriented approach regarding

the smart devices design process, with a particular emphasis on formal specification

and testing. This work focuses on providing a practical design method, while keeping in

mind that the whole design process consists of the integration of several application-

specific ICs in order to achieve functional goals with acceptable QoS. Even though we

apply our method using the TLA+ specification language, it is not a tool-oriented. In

our opinion, lack of tools represents a limitation considering system designers still have

to chose tools on their own. This choice is sometimes not trivial, and it may be hard to

differentiate between the numerous formal verification tools available on the market.

Another limitation comes from the use of a V-shaped lifecycle. Even though it provides

numerous advantages by integrating testing procedures early in the design process,

V-shaped lifecycles were progressively replaced by agile methods, which emphasize

aspects such as the wide-scale collaboration of cross-disciplinary teams in software

engineering. However, the static nature of hardware make the adoption of design

methods with an agile lifecycle challenging, and we believe the V-shaped lifecycle is an

acceptable compromise in terms of flexibility and ease-of-use. Additionally, concepts

such as continuous improvement in agile design methods can not easily be transferred

at the hardware level because it is less dynamic than software, and the disastrous

implications in terms of development time that a hardware change can have. For

instance, the development of new bare metal code for a different microcontroller implies

deep modification in the code as peripherals addresses and various libraries vary from a

manufacturer to the other.

Finally, our design method is limited by its high-level nature. Indeed, we only intro-

duced a sequence of design steps and identified potential tools that can assist system

designers in the conception of a smart object, but our method lacks comprehensive

and global tooling. Moreover, the lack of tools makes the method’s verification harder,

as smart device designers are not provided with means to verify the compliance of

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

3.5. Summary and Conclusion 71

their design process with our service-oriented method. A potential solution would

be the inclusion of tools and techniques from the Model Driven Engineering (MDE)

community, as they force smart device designers to adopt a specific modeling frame-

work, which consequently makes the development of helper tools easier. However, the

strong hardware heterogeneity and the lack of global abstraction for low-level resource-

constrained systems is still an open research challenge preventing generic models from

being developed, and this needs to be addressed before being included in our design

method.

In the next chapter, we further present the application of our service-oriented design

method with a particular emphasis on practical design and testing procedures, resulting

in the final implementation of our cardiorespiratory sensor.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

CHAPTER4
Smart Device Hardware Design and

Implementation
A multiparametric cardiorespiratory sensor

Contents

4.1 Introduction . 73

4.2 Sensor Scope Statement . 75

4.3 Sensor Design . 76

4.3.1 Hardware Architecture . 76

4.3.2 Embedded Hardware and Software Signal Processing 79

4.3.3 Integrating Self-Adaptive Behavior 84

4.3.4 Development of an Android Companion Application 86

4.4 Sensor Evaluation . 87

4.4.1 Evaluation on Synthetic Signals 87

4.4.2 Energy Consumption . 88

4.4.3 Sensor Precision Evaluation . 90

4.4.4 Mobility Evaluation . 93

4.5 Conclusion . 95

4.1 Introduction

In this chapter, we detail the implementation of a cardiorespiratory sensor following our

design method. Theoretical parts of sensor development such as modules specifications

and verifications were already treated in the previous chapter, and we consequently

focus on the practical aspects, namely sensor testing, and the integration of self-adaptive

properties into our sensor with a detailed study of their impact on overall performance.

The development of a cardiorespiratory sensor was motivated by the clinical relevance of

cardiac activity monitoring, which can be used as a predictor of several diseases through

the computation of Heart Rate (HR) and Heart Rate Variability (HRV) parameters [Tas96].

The sensor is however not designed to be used as a standalone device, but rather to

be integrated in a personalized healthcare framework where a hospital manages the

73

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

74 Chapter 4. Smart Device Hardware Design and Implementation

Figure 4.1 – Illustration of personalized healthcare for our case study

remote care of many patients by equipping them and their home with wearable and

environmental sensors, as succinctly illustrated in Figure 4.1.

Even though such sensors are common and have already been described in the

literature, all the identified wearable electrocardiogram (ECG)-based cardiorespiratory

sensors do no feature advanced-enough connectivity and functionality to be integrated

into wide-scale personalized healthcare framework. Indeed, this integration calls for

continuous wireless communication with the external world through interoperable

protocols, but also for the inclusion of self-adaptive behavior (typically through remote

configuration) in order to build smarter systems and medical-grade accuracy in preci-

sion in order to provide guarantees about the clinical relevancy of the collected data. In

a brief literature review, we focus on recently developed wearable ECG or ECG-based

cardiac activity sensors because they can be used to accurately derive short term cardiac

activity parameters [SV13]. For instance, authors of [Mag+14] implemented a wearable

HR and respiration rate sensor with simultaneous Bluetooth Low Energy (BLE) and

proprietary 802.15.4-based connectivity by integrating several development boards.

This sensor however lacks remote self-adaptation capabilities and a self-contained

prototype, which both are necessary for real-world usage. Another example can be

found in [Tuo+17], where authors built a remotely configurable ECG sensor with local

storage (i.e., data is stored on a SD card). This makes this sensor difficultly usable

in personalized healthcare frameworks as data is stored locally and not streamed to

external tiers. In [Izu+15] the construction of a remotely configurable ECG sensor is

described. Both data and remote configuration are transmitted using Near Field Com-

munication (NFC). Nevertheless, the short range of NFC is a strong limitation to sensor

integration to healthcare systems since it implies a NFC transceiver must be periodically

brought in proximity to the sensor to collect data or perform reconfiguration. Eventually,

a HR and HRV parameters sensor is described by authors of [Mas+15], and it offers

embedded signal processing in order to achieve on-board computation of both HR and

HRV parameters. The measured variables are then transmitted using a wireless BLE

communication. Nevertheless, this sensor does not embed self-adaptation capabilities,

which limits its potential use as the basis of smart healthcare services. In addition, the

recent study consider

In addition, the IoT was recently promoted as a technical solution to the design and

implementation of large-scale personalized health systems as it features the capability

to interconnect and manage numerous smart devices [Gub+13]. In this chapter and

this manuscript, we define smart devices as physical objects embedded with computa-

tional capabilities, wireless communication and self-adaptive behavior. Particularly, we

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

4.2. Sensor Scope Statement 75

emphasize the importance of performing signal processing at the lower level of the IoT

stack (see Figure 1.1) in order to only transmit relevant information to the upper layer

of the system, which is similar to what computer scientists describe under the term of

edge computing [Shi+16]. Eventually, the combination of on-board signal processing

along with both internal and external self-adaptive behavior represents a key element

for the design of more intelligent devices, which can then be used as atomic elements

for the creation of smart services.

In summary, this chapter will describe the implementation of a novel smart car-

diorespiratory sensor following the design method detailed in the previous chapter, with

a particular emphasis on the three following characteristics:

• Medical grade precision: Since our sensor is designed with medical applications in

mind, it needs to be precise-enough. This can be achieved by using pre-certified

medical-grade System-on-Chip (SoC), and is confirmed by the careful analysis of

our sensor quantitative performances.

• Self-adaptive behavior: In order to be integrated to wide scale IoT framework, our

sensor needs to implement both internal and external self-adaptive behavior, and

it must be taken into account as a smart device-wide non-functional property.

• Embedded signal processing: By performing signal processing operations on

board, our sensor only streams relevant data to external tiers. This approach

reduces considerably the amount of transmitted information. By doing so, we

are able to provide global bandwidth savings and can ensure systems built using

embedded signal processing can scale up more easily than systems where raw

data is continuously streamed at a much higher rate.

The remaining of this chapter is organized as follows: Section 4.2 extends the brief

sensor functional analysis given in the previous chapter and discusses all the computed

parameters along with their clinical relevancy. Section 4.3 discusses sensor hybrid

architecture and details signal processing steps and algorithms embedded on our smart

device. We then introduce in Section 4.4 the exhaustive testing procedures our sensor

went through, both in terms of quantitative measurement analysis, but also in terms of

longevity, mobility and energy consumption. Indeed, since the goal of our method is

to provide smart devices usable in a variety of situation, extended testing of our sensor

under real-life conditions should be performed. Eventually, our work dealing with the

cardiorespiratory sensor is concluded in Section 4.5, where we discuss limitations and

possible research directions.

4.2 Sensor Scope Statement

The first methodological step introduced in Chapter 3 is the definition of a set of require-

ments for the smart device being designed. Our high-level functional requirements

for this sensor is to simultaneously measure HR and HRV along with the Respiration

Waveform (RWF). Non-functional requirements are an extended battery life (i.e., at least

48 hours), internal and external self-adaptive behavior, medical-grade precision and

being compact enough to be considered as a wearable product. The sensor should also

be easily interoperable and should connect to usual appliances, practically meaning

that the sensor should adopt a widespread wireless communication protocol. All of

these requirements are necessary for our sensor to be easily included in telemedicine

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

76 Chapter 4. Smart Device Hardware Design and Implementation

systems or wider-scale Internet of Medical Things systems, where patients need to be

continuously remotely monitored.

Real-time and on-board computed HRV parameters are described in Table 4.1. In

summary, we compute the most common parameters both in the time and frequency

domain, which results in comprehensive characterization of the RR intervals tachogram.

Practically, HRV information can then be tied to various higher-level functions of the sub-

ject, such as stress [Lee+07] or physical activity, or more generally to autonomic nervous

system balance [Hen+09]. However, HRV parameters estimation is a computationally in-

tensive task because it requires time-to-frequency domain transformation. Additionally,

the RR intervals tachogram is irregularly sampled (because HR are, by nature, irregular),

and Power Spectral Density (PSD) estimation requires advances algorithms such as the

Lomb-Scargle periodogram.

Table 4.1 – HRV parameters description
Variable Unit Domain Description

SSDN ms Time Standard deviation of RR intervals
RMSSD ms Time Quadratic mean of di�erences between consecutive RR inter-

vals
LF/HF n.u. Freq. Ratio of the low-frequency (0.04 to 0.15 Hz) to high-frequency

(0.15 to 0.4 Hz) components of the PSD of the RR intervals
Norm. LF % Freq. Normalized low-frequency components to sum of low- and

high-frequency components of the PSD ratio, i.e., LF/(LF+HF)

In conclusion, the combination of functional and non-functional properties drove

us to the adoption of highly energy-efficient Integrated Circuits (IC) and SoCs, in order

to simultaneously meet requirements over battery life and on-board of signal processing

capabilities, and technical choices and indications about how they help to achieve

desired functional and non-functional requirements are given in the next section.

4.3 Sensor Design

In this section, we detail how the modular architecture we detailed in the previous

chapter is implemented. Additionally, we discuss the impact of technical choices over

these architectures, but also over non-functional properties.

4.3.1 Hardware Architecture

The overall architecture of the sensor is displayed in Figure 4.2, which is only a simplified

version of the modular architecture described earlier. This figure puts a particular

emphasis on the digital communication buses used to interface the components, and

illustrates modules interoperability. Because of the overhead introduced by the addition

of self-adaptive characteristic to our device and the on-board signal processing, we

selected components in order to maximize their computational and power efficiency.

Because microcontroller load and microcontroller active period reduction were

important requirements of our sensor, real-time signal processing was performed us-

ing dedicated hardware. Indeed, by minimizing microcontroller active periods, we

can put it in a sleep state most of the time, leading to important energy savings. To

this end, we chose the PSoC5LP (Cypress Semiconductor, San Jose, CA) microcon-

troller. Indeed, this IC offers both an ARM Cortex-M3 core and a programmable Digital

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

4.3. Sensor Design 77

Figure 4.2 – Simpli�ed block diagram of the sensor

Filter Block (DFB) in a single package. The DFB can be used as a dedicated signal

co-processor, effectively reducing CPU load and thus decreasing overall power con-

sumption. Because of the widespread adoption of BLE in smart devices [Har+16], it

was selected to provide wireless connectivity to our sensor, thus providing optimal

interoperability and ease-of-connection to external tiers. In addition, BLE is specifi-

cally designed for resources constrained applications, thus providing further energy

savings at the smart device scale. We chose to use the BLE113 RF-dedicated SoC (Sil-

icon Labs, Austin, TX) as the communication-dedicated microprocessor because it

integrates both a full hardware and software BLE stack with integrated antenna design

in a small 15.75 mm×9.15 mm×1.9 mm package. This IC is programmable, and it can

handle all communication-dedicated code in a self-contained fashion, thus reducing

the microprocessor computing load.

Practically, we used BGScript, a scripting language from Silicon Labs, to code the

BLE113’s firmware. We implemented a GATT server exposing hardware services de-

scribed in the previous chapter (i.e., HR service, HRV parameters service, RWF service,

battery service and adaptation service). We did not implement the security features

of our smart device as a service, but we require an encrypted connection when a BLE

device attempts to connect to our smart device. The additional mandatory (from the

BLE standard) generic application profile and device information services were also

implemented, and the HR service follows the official BLE specification.

In order to simultaneously measure both ECG and respiration signals, we selected

the ADS1292R (Texas Instruments, Dallas, TX). This low-power Analog Front-End (AFE)

integrates two differential amplifiers and two 24 bits Analog-to-Digital Converters (ADC).

It also embeds a right-leg drive (RLD) amplifier implementing common mode rejection

[WW83]. Circuitry handling lead-off detection and respiration signal modulation and

demodulation is also present. Measurements are sent over a Serial Peripheral Interface

(SPI) bus at a predetermined and configurable sampling rate (from 125 to 8000 samples

per seconds). Transmitted data are divided into three 24-bit words: the first is a status

word, which principally contains information about lead-off states, while the second

and third words contain digital measurements of ECG or respiration signal, depending

on the configuration of the IC.

In the default state, the AFE is configured to measure both the respiration signal on

channel 1 and the ECG signal on channel 2 at a sampling rate of a 1000 SPS using the

internal clock of the IC. This sampling rate provides a resolution of 1 ms for RR interval

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

78 Chapter 4. Smart Device Hardware Design and Implementation

measurements. The RLD amplifier and lead-off detection circuitry are both enabled,

along with the respiration modulation and demodulation modules.

The first iteration of our prototype consisted in an assembly of development boards

as displayed in the previous chapter. However, this preliminary step is not enough be-

cause it cannot be used in real world experiments, which are necessary to test our smart

device mobility and precision in ambulatory applications. To this end, we developed a

comprehensive electrical schematic of the sensor. We subsequently performed manual

Printed Circuit Board (PCB) routing, and we subcontracted PCB manufacturing to an

electronic manufacturer. This resulted in the mounted PCB displayed in Figure 4.3.(a),

measuring only 40 mm×20 mm×6 mm. Additionally, we 3D-printed a compact casing,

and the final smart device is displayed in Figure 4.3.(c). The final sensor dimension are

45 mm×30 mm×16 mm for a weight of 26.7 g. Consequently, our final smart device is

small enough to be worn during daily activities, and we promote a sensor placement as

displayed in Figure 4.3.(b).

Figure 4.3 – Mounted PCB (a.), body placement (b.) and encased sensor (c.)

In the next section, we describe the division between hardware and software signal

processing. Indeed, even though we tried to maximize the proportion of processing

occurring on application-specific components of the SoC, not all functions are im-

plementable using this approach. Indeed, the signal co-processor of the PSoC5LP is

relatively small, and can only perform real-time filtering operations, which lead to the

delegation of some signal processing computations to the ARM Cortex-M3 microcon-

troller.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

4.3. Sensor Design 79

4.3.2 Embedded Hardware and Software Signal Processing

The comprehensive signal processing chain is displayed in Figure 4.4. This graphic

should be read from top to bottom: the upper part of the figure shows low-level (i.e.,

hardware or low-level software such as assembly) signal processing, while the lower part

shoes the algorithm handling high-level signal processing operations.

Low-level signal processing is performed by a combination of pure hardware pro-

grammable logic and the PSoC5LP digital signal co-processor. The functional goals of

this signal processing it to perform reliable and robust heart beat detection from the raw

ECG signal, which is formally defined as the time interval between two R peaks (ECG

signal is traditionally partitioned using letter indexes from Q to T, in the alphabetical

order). The R peak corresponds to the sharper peak of the ECG, and is consequently

easier to detect.

HR detection from the ECG signal is a widely explored field of study, and numerous

solutions can be found in the literature, such as wavelet transform [CCC95] or Hilbert

transform [Ben+00] based approaches, or pre-trained algorithms [AL12]. In our par-

ticular case, we chose to use the Pan and Tompkins [PT85] peak detection algorithm.

Our choice was motivated by its real-time nature and relative simplicity, making an em-

bedded implementation a practical reality. This algorithm consist of signal processing

operations followed by simple peak detection based on Boolean conditions. The original

algorithm specifies the chaining of a band-pass filter, a linear differentiator, a squaring

function, and eventually a moving average filter [PT85]. In our specific use case, band-

pass filtering is included in the ADS1292R, but we implement an additional low-pass

filter, namely a moving average, in order to remove residual high-frequency artifacts

from the ECG signal. This average is computed using 96 samples (i.e., the window width

is 96 ms, and the optimal size was determined from experimental results). After this

step, the Pan and Tompkins algorithm is thus reduced to differentiation, squaring and

moving average, and these three steps are implemented on the PSoC5LP’s DFB (which

is also called Digital Signal Processor (DSP) or signal co-processor at it is dedicated at

digital signal processing).

In terms of signal processing, the filters implemented are straightforward. The

differentiation filter exhibits the following difference equation, which corresponds to an

unweighted numerical differentiation:

d [n] =
Nd∑
j=1

x
[
n + j

]− Nd∑
j=1

x
[
n − j

]
(4.1)

where d [n] is the output of the differentiator at sample n, x[·] is the input and Nd is the

differentiator’s order.

The squaring function is trivially implemented as:

s[n] = (x[n])2 (4.2)

where s[n] and x[n] are respectively the output and input of the squaring function.

Eventually, the difference equation of the unweighted moving average is:

a[n] =
Na−1∑

j=1
x[n − j] (4.3)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

80 Chapter 4. Smart Device Hardware Design and Implementation

Figure 4.4 – Hardware vs software signal processing

where a[n] is the output of the moving average filter at sample n, x[·] is the input and

Na is the filter’s order.

Please note that the original implementation use weighted versions of the differ-

entiator and the moving average, but we chose to utilize unweighted versions because

the dynamic range of the DFB is wide enough (i.e., 24-bit) with respect to the fastest

variation of the ECG signal. Additionally, the AFE features a remotely-configurable gain,

which can be adjusted to correct overflow in extreme cases. Finally, the final equation

implemented on the DFB can be summarized as:

y[n] = a [s [d [x [n]]]] (4.4)

where y[·] is the output of the DFB.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

4.3. Sensor Design 81

After empirical experimentation using the first version of the prototype (depicted in

the previous chapter), we concluded that the best order for our specific use-case were:Nd = 9 ⇔ 9 ms

Na = 64 ⇔ 64 ms
(4.5)

Such coefficients were carefully selected in order to avoid traditional pitfalls of

poorly configured Pan and Tompkins algorithms, such as the presence of multiple slope

inversions during the peak produced by the algorithm, or the merging of the T wave

with the QRS complex [PT85].

Practically, we implemented the equations introduced above using the application-

specific assembly-like language provided by Cypress Semiconductor. An informal rep-

resentation of the DFB’s output in response to a typical ECG signal is given in blue in

Figure 4.4. Please note that even though the raw ECG signal is provided as a signed

24-bit integer and the DFB operates on 24-bit data, we only use the 8 most significant

bits of the output to perform peak detection. This technical choice was motivated by the

fact that the processing of 8-bit data by the programmable logical gate matrix consumes

less energy than the processing of the full 24-bit signal because fewer gates need to be

powered to perform the hardware signal processing operations.

The next step of the Pan and Tompkins algorithm is peak detection, which can be

used to determine RR intervals (defined as the time interval between two peaks). To this

end, we implemented a hardware-only solution using the PSoC5LP’s programmable

logic gate matrix because this approach minimizes microcontroller wake-up time and

logical gate feature minimal power consumption. The diagram of our solution is given in

Figure 4.5, but is also verbosely detailed in Figure 4.4. Peak detection is straightforward

and is based on a set of three simple conditions, which must be simultaneously verified

in order for a heart beat to be detected: the current output of the DFB must be directly

less than the anterior output (indicating a change in the output’s slope sign), the same

current output must be above an adaptive threshold, and a counter must be above

a certain value (in our case 250). The first condition is relatively trivial, and denotes

a local maximum in the DFB signal. The threshold condition makes peak detection

more robust to motion artifacts, which can introduce low-amplitude local peaks on

the filtered ECG signal. Eventually, the counter is a key element of this hardware peak

detection as it determines the actual value of the RR interval. It is incremented every

one millisecond, and its output upon peak detection corresponds to the time interval

(in millisecond) between the two R peaks because it is reset after each peak detection.

The counter output is transferred to the microcontroller using a Direct Memory Access

(DMA) channel (illustrated as the DMA1 block on Figure 4.5) at every peak detection

(before counter reset). The comparison with a value of 250 prevents the consecutive

detection of unrealistically close peaks (250 ms corresponds to 240 BPM), consequently

improving overall robustness. Additionally, the sensor is configured to automatically

reset after 2.5 s. The comparators, and logical gate and counter are all implemented

as hardware blocks using the graphical Integrated Development Environment (IDE)

provided by the PSoC5LP’s manufacturer.

As illustrated in Figure 4.5, the threshold value is adaptive. Our motivation for choos-

ing adaptive threshold over fixed threshold came from the observation of important

variations on the DFB’s output amplitude. Such variation are typically caused by vari-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

82 Chapter 4. Smart Device Hardware Design and Implementation

Figure 4.5 – Diagram of hardware-based RR interval detection

ous physical phenomena: skin-electrode contact impedance variations, evolving skin

conductivity, etc. These phenomena are further increased by long term monitoring,

mandating the use of an adaptive threshold approach, which is implemented as an

exponential filter [Mas+15]:

t [n +1] =α ·β ·p[n]+ (1−α) · t [n] (4.6)

where t [·] is the threshold value, α such that α< 1 is the filtering coefficient, and β is

the scaling factor for current peak p[n]. Practically, we chose α= 0.5 and β= 0.5. We

implemented the hardware adaptive threshold using the Verilog Hardware Description

Language (HDL), which is subsequently synthesized as a hardware arrangement of

logical gates when compiled.

As a consequence, of real-time signal processing is performed either using the dedi-

cated signal co-processor (i.e., the DFB) or the programmable logical gate matrix, and

the PSoC5LP’s microcontroller is put in an energy-saving sleep mode during most signal

processing operations. The ARM Cortex-M3 core is only activated through the interrup-

tion depicted in Figure 4.5 when a heart beat is detected. The interrupt service routine

associated with peak detection only sets a flag, which is then handled appropriately by

the main program (depending on the non-functional state of the sensor, which will be

described later in this chapter).

Software signal processing is in charge of the computation of the four HRV parame-

ters, but also the conversion of RR intervals into a HR value in BPM. The calculation of

the HR is straightforward:

HR = 60,000

RRint
(4.7)

where HR denotes the Heart Rate in beats per minute, while RRint is the RR interval in

milliseconds which is transferred from the hardware counter to the microcontroller’s

RAM using a DMA channel. This operation is performed by the microcontroller and is

implemented using C code.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

4.3. Sensor Design 83

The computation of HRVs parameters is more complex, and requires advanced

signal processing operations. In opposition to heart beat detection and HR calculation,

HRV parameters must be computed offline, meaning we need to have a history of HR

values in order to process them. Practically, we use a buffer of the last 5 minutes of HR

recordings, following the clinical recommendations of [Tas96]. The buffer was statically

allocated with a size of 2048 values, which improves our smart device’s robustness to

segmentation faults. Indeed, considering the minimal RR interval is set to be 250 ms by

the signal processing hardware, we need at least 1,200 values to represent a 5 minutes

buffer and to prevent potential buffer overflow. Eventually, HRV parameters processing

occurs when the buffer contains 5 minutes of HR values, and the relevant number

of samples within the buffer vary since the HR is a continuously-evolving physical

parameter.

The computation of the time-domain parameters is trivial, and we used traditional

formulas to compute the standard deviation of RR intervals and the quadratic mean of

differences between consecutive RR intervals. The processing of frequency-domain pa-

rameters is more complex, and it requires computationally intensive time-to-frequency

domain conversion. First, HR data is not evenly sampled because heart beats occur at

different intervals. Practically, this means we can not use traditional PSD estimations

such as the Fast Fourier Transform (FFT). Methods using interpolation as means of

obtaining an evenly sampled signal followed by a FFT have been proposed, but they are

known to introduce high-frequency distortions on the PSD, which introduces errors in

the computation of HRV parameters [CT05].

The calculation of the PSD of unevenly sampled data was studied by Lomb [Lom76],

and further improved by Scargle [Sca82]. This method is a modified version of the

classical periodogram, and it introduces specific weights along with a phase shift τ

in order to provide a PSD estimate for this category of data. The expression of the

Lomb-Scargle periodogram is defined as [Sca82]:

PX (ω) = 1

2

[∑
j

X j cos
(
ω

(
t j −τ

))]2

∑
j

[
cos

(
ω

(
t j −τ

))]2 + 1

2

[∑
j

X j sin
(
ω

(
t j −τ

))]2

∑
j

[
sin

(
ω

(
t j −τ

))]2 (4.8)

with τ defined as:

tan(2ωτ) =

∑
j

sin
(
2ωt j

)
∑

j
cos

(
2ωt j

) (4.9)

The weights mentioned above correspond to the denominators of each term of the

formula. The Lomb-Scargle periodogram is equivalent to the classical periodogram if

data is evenly sampled. Even though this method can precisely calculate the PSD of

the HR data, its naive implementation computationally intensive and requires complex

trigonometric computations. Nevertheless, literature showed that the Lomb-Scargle

periodogram can be computed as fast as the processing of two FFT [PR89b], and we

adopted this approach for our implementation of the time-to-frequency domain con-

version. Once the PSD is computed, frequency-domain HRV parameters can be trivially

calculated using sums and ratios.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

84 Chapter 4. Smart Device Hardware Design and Implementation

Considering the computations HRV parameters are only performed periodically

using buffered RR intervals, we do not consider them as real-time signal processing.

These operations are however computationally intensive, as they require the use of

floating-point operations. Additionally, the ARM Cortex-M3 embedded in the PSoC5LP

does not feature a floating-point unit, which considerable slows down the computation

of the parameters, resulting in a processing time of about 2 seconds [Mas+16].

The last signal software signal processing operation is the filtering of the RWF.

Practically, our smart device buffers the respiration signal in the PSoC5LP’s RAM and

transmits it every second. Because real-time streaming of 24-bit data at a rate of 1 kSPS

(which is the sampling rate of the RWF) would consume too much energy considering

the targeted battery life, we chose to downsample the RWF to 6 SPS. This new sampling

frequency of 6 Hz results in a Nyquist rate of 3 Hz, which is within the bandwidth of

typical respiratory signals (the upper bound of this bandwidth is 1.5 Hz) [ZRF94]. Upon

downsampling, the RWF is low-passed filtered using an exponential filter:

y[n] = (1−α)y[n −1]−αx[n] (4.10)

where x[n] represents current sample, and y[·] designates the output of the filter. The

parameter α is used to control the smoothing strength, and we chose α= 0.5 for our

smart device.

In summary, our sensor features advanced on-board signal processing performed

either using pure hardware mixed with the DFB, or using C software and the ARM

Cortex-M3 microcontroller. The signal processing is modularized according to the

design method specified in the previous chapter. Indeed, we separate real-time and

offline signal processing, which constitute two separate modules in the architecture of

the sensor. Such signal processing is used to only transmit relevant information about

HR and HRV parameters instead of streaming the raw ECG data. All these modules

can be formally specified and verified through model checking, as mentioned in the

service-oriented design method. Additionally, HR and HRV parameters are exposed to

external tiers using BLE services. These services can be read remotely, but they also are

associated with notification channels which transmit new data as soon as it is available.

Similar observation can be drawn from the RWF.

4.3.3 Integrating Self-Adaptive Behavior

As mentioned here-in above, self-adaptive behavior is a non-functional requirement of

our smart device. The integration of self-adaptation capabilities, along with on-board

signal processing, is a technological enabler of smarter IoT devices. Our smart device

must thus be able to measure internal and external characteristics in order to take

appropriate action, but it must also feature the ability to be integrated in wider-scale

self adaptive frameworks.

To this end, we listed two principal non-functional characteristics that would benefit

self-adaptive behavior: the detection of sensor attachment (i.e., our smart device should

be able to detect if it is connected to electrodes on patient), but also the monitoring of

battery charge level. Sensor unattachment detection was trivially implemented using

internal capabilities of the AFE which was selected as the ADC of our device. Practically,

a small electrical current (in the range of a few µA) is injected from one electrode, and

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

4.3. Sensor Design 85

returns to the measurement circuitry if all electrodes are properly connected, thus

having little impact on ECG measurement [Cal15]. However, if an electrode is not

properly connected, the injected current directly feeds the ECG amplifier, which results

in a lead-off detection. In the ADS1292R, this unattachement detection is transmitted

through the first 24-bit frame of the SPI bus, which is processed using hardware in order

to generate an interrupt notifying the microprocessor of electrode unattachement.

In terms of battery level monitoring, we chose to use a voltage measurement asso-

ciated with a lookup table for voltage-to-percentage conversion in order to decrease

PCB surface and energy consumption. Battery level is measured just before HRV pa-

rameters processing, every 5 minutes, which prevent unnecessary wake-ups of the

microcontroller.

From both these parameters, we implemented a self-adaptive Labeled Transition

System (LTS) detailed in Figure 4.6. Transitions between the different states of the LTS are

either controllable or non-controllable. The first category designates transitions which

can be remotely triggered (i.e., they can be used in global self-adaptive scenarios by

external controllers), while second category defines transitions which are automatically

triggered by the sensor depending on its internal state and context. As a convention,

a transition written as “a \ b” describes the internal triggering of the transition on

internal event a, or the external triggering of the transition caused by the remote call

of service b. When a transition is only labeled with a single event, we assume that this

event is internal. More theoretical details about the LTS model of computation will be

detailed in the next chapter.

Practically, our smart devices comprises 5 states:

• Initialization: This state constitutes operations performed during bootstrap start-

up of our smart device. Namely, we send appropriate configuration from the

ARM Cortex-M3 microcontroller to the ADS1292R AFE. A software reset operation

is also performed on the BLE113 communication-oriented SoC. The sensor is

automatically placed in the normal state upon initialization completion.

• Normal: This represents the default state of the sensor. In this state, both ECG

and RWF are sampled and processed. HR values are transmitted to external tiers

as soon as they are computed, and the HRV parameters are calculated every

5 minutes. Additionally, the RWF is processed and sent every second.

• Failsoft: This is the energy-saving state of our sensor. This state is accessed either

on external request, or if the battery level is less than 20 %. In this state, HRV

parameters processing, lead-off detection, and RWF acquisition are disabled in

order to decrease power consumption. In addition, HR is not transmitted at every

heart beat anymore, but it is internally buffered during 5 minutes. When the buffer

is full, it is averaged and this value is transmitted to external tiers. The decrease in

transmission frequency causes energy savings, as wireless data transfer implies

important peak consumption during transmission periods.

• Unattached: The smart device is placed in this state if a lead-off event occurs.

Please note that it can only be accessed from the normal state as lead-off detection

is disabled in all other states. Upon state access, a timer is launched, an is used to

place the sensor into the stop state after 1 minute of smart device unattachement.

• Stop: Eventually, the last sensor state designates sensor power-off. In normal use,

this state should be avoided as long as possible as it can be only exited though

hardware reset (i.e., a press on the hardware reset button). It is accessed if the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

86 Chapter 4. Smart Device Hardware Design and Implementation

battery reaches a critically low level (namely, 5 %), or if the sensor is not connected

to any BLE device for more than 1 minute. The sensor can also be externally placed

in the stop mode for convenience reasons. Please note that in this state, the sensor

is only placed in a deep-sleep mode rather than a complete off mode. The stopped

state can also be used to save energy when the sensor is not in use.

Figure 4.6 – Cardiorespiratory sensor Labeled Transition System

We implemented this LTS on the PSoC5LP’s ARM Cortex-M3 microcontroller, and

events are either generated internally (from interrupts), or forwarded by the BLE113 in

the case of external remote state change request.

Please note that the AFE gain can be changed in the normal and failsoft states,

improving the flexibility of our smart device. Indeed, cross-patient variability impact

amplitude of the DFB signal, and optimization can be performed at run time though

the remote configuration of the AFE gain. This value is stored in the non-volatile

PSoC5LP’s EEPROM, and it is accessed and read at every sensor hardware reset. The

overall firmware size (i.e., ROM usage) is 29,312 bytes with a RAM memory occupation

of 30,625 bytes.

This concludes our discussion of the integration of the self-adaption non-functional

properties to our smart device. Additionally, the LTS approach introduces negligible

processing overhead, making it particularly efficient when the increase in energy con-

sumption to added value ratio is considered. Since this self-adaptive behavior only

reconfigures various modules of the hybrid modular architecture, it does not impact the

medical-grade precision of the device.

4.3.4 Development of an Android Companion Application

In order to facilitate experimentations based on our sensor, we developed a companion

Android application. Indeed, Android phones represent ideal gateways to perform

mobile performance assessment of our smart device. Additionally, smartphones are

continuously connected to the Internet, which is ideal for real-time remote data col-

lection. This Android application can connect to the sensor, but it also plots collected

data and stores it on the phone memory. Our application is based on the nRF Toolbox

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

4.4. Sensor Evaluation 87

open-source application 1 developed by Nordic Semiconductor (Oslo, Norway), and a

screenshot of the application is given in Figure 4.7.

Figure 4.7 – Screenshot of the developed Android companion application

Even though the signal processing modules developed in previous sections are

specified and verified in the methodological framework, it is necessary to perform

various testing in order to provide additional guarantees on the functional and non-

functional properties of the final product, and these various testing processed are

detailed in the next section. Our application acts as a facilitator for testing procedures,

as it can be used to easily connect to the sensor and collect data.

4.4 Sensor Evaluation

Although the design methodology emphasizes the formal specification and verification

of service-oriented smart devices, testing is still required for various reasons. First, for-

malism is only introduced at the specification level, which does not provide guarantees

over actual implementation. Indeed, system designers can still make errors during

devices’ implementation. Then, numerous non-functional properties are difficultly

verifiable using traditional model checking tools, which mandates further testing in

experimentation in order to practically verify these properties. We consequently per-

formed various testing of both the preliminary and final prototypes of our smart device,

and the process is detailed bellow.

4.4.1 Evaluation on Synthetic Signals

The first experiment, performed using the preliminary prototype depicted at the end of

the previous chapter, was used to perform acquisition on synthetic ECG signal. Indeed,

the testing procedures specified in the design method mandate the study of devices

assigned to the sensor ontological class against reference physical signals. In our case,

this is simplified by the fact ECG signal is already an electrical signal, and we must only

verify that provided a reference synthetic ECG, our sensor provides the expected results.

1. nRF Toolbox open-source application sources: https://github.com/NordicSemiconductor/
Android-nRF-Toolbox (visited on 02/23/2018)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

https://github.com/NordicSemiconductor/Android-nRF-Toolbox
https://github.com/NordicSemiconductor/Android-nRF-Toolbox

88 Chapter 4. Smart Device Hardware Design and Implementation

To this end, we generated a realistic ECG signal using an Agilent 33220A (Santa

Clara, CA, USA) arbitrary waveform generator. The advantage of this approach is we

can comprehensively parameter the generated signal, and we can consequently quickly

verify various smart device parameters. This first experiment consisted in the simulation

of heart rate variability using triangular frequency modulation to the synthetic ECG

signal. The parameters were:

base frequency = 1.25 Hz

frequency deviation = 200 mHz

frequency sweep = 50 mHz

(4.11)

which results in RR intervals ranging between:

RRint < 1000

1.25−0.2
≈ 952.4 ms

and, RRint > 1000

1.25+0.2
≈ 689.7 ms

(4.12)

Results from this experiment are displayed in Figure 4.8. As expected, measured RR

intervals are between 688 and 953 milliseconds, and the time between two consecutive

peaks is 20 seconds, which corresponds to the sweep frequency of 50 mHz.

Figure 4.8 – Sensor evaluation using synthetic ECG

Synthetic ECG was also used to perform connectivity robustness testing. To this end,

we continuously collected data during 1 day, 17 hours and 9 minutes to test for BLE

disconnections. To log the event, we used a Raspberry Pi and a simple Python script. A

total of 185,153 HR values were recorded. We performed simple data analysis to verify

for data points outside of the theoretical range mentioned above (with a tolerance of

1 % over the limits), and we found that no record did violate these bounds.

4.4.2 Energy Consumption

In order to verify the battery life non-functional property, we measured our sensor’s

power consumption. Measurements were carried out using a Keithley 2400 sourcemeter

(Beaverton, OR, USA). We first performed a static power consumption evaluation of the

normal, failsoft and stop states, ignoring the initial state because it is only accessed

after hardware reset for a brief amount of time, but also discarding the unattached

state because the sensor is in the same configuration as in the normal state. This static

characterization was achieved using default Android 7.0 BLE connection parameters

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

4.4. Sensor Evaluation 89

(i.e., connection interval of 48.75 ms, timeout of 20 s and latency of 0), and results are

displayed in Table 4.2. The measured power consumptions imply a 75 hours battery life

in the normal state and a 85 hours battery life in the failsoft state (assuming a 300 mAh

battery). In the stop mode, the sensor can last more than two months on a fully charged

battery.

Table 4.2 – Static power characterization of IoT states

IoT state Power consumption (mW)

Normal 10.53
Failsoft 9.18
Stop 0.505

We also studied the influence of the BLE connection’s parameters in order to deepen

our understanding of the overall power consumption of our smart device. The BLE

standard describes three connection parameters: interval, latency and timeout. First,

the connection interval defines the period between two requests from the BLE master to

the BLE slave (in our particular case, the BLE master is the phone or gateway our smart

device connects to, which is in turn considered as a slave). Then, the latency parameter

characterizes the number (given as an integer) of connection intervals that can be safely

ignored by the slave. Finally, the connection timeout parameter describes the time

period after which the BLE master will consider the connection to the slave as lost, and

it is only after that period has elapsed that the master can attempt a reconnection to

the lost slave. For our smart device, we chose to fix connection timeout and connection

interval. Data was collected using a Raspberry Pi, because its BLE implementation

always accepts changes of the connection parameters by the BLE slave (in opposition

to Android phones, which tend to force default values for the connection parameters).

After fixing the connection interval and timeout, we progressively changed the latency

parameter in order to measure its influence on the global power consumption of our

device.

Figure 4.9 – Impact of the BLE latency parameter on global power consumption

The result of this experiment are given in Figure 4.9, where the consumption of

the normal, failsoft and stop states are plotted against latency parameter value. For all

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

90 Chapter 4. Smart Device Hardware Design and Implementation

states, an increase in the latency parameter value resulted in a decrease in the global

power consumption, with a sharper diminishing for smaller latency values. Please note

that for a latency value of 8, we observed connection instability (meaning the sensor

would at time disconnect from the BLE master). In order to reduce power consumption

while preserving acceptable connectivity stability, we configured the BLE113 SoC so that

it requests a latency value of 2 when a new connection is established. Nevertheless, BLE

masters such as Android phones can refuse connection parameters changes requests,

and set their own set of parameters, which usually cause higher power consumption

because of smaller connection intervals, latency parameters and connection timeouts.

This problem was tackled by a slight oversizing the battery capacity in order to guarantee

at least 48 hours of battery life.

4.4.3 Sensor Precision Evaluation

One of the most important test when it comes to the design of medical-grade smart

devices is sensor precision evaluation. The term precision is however relatively vague,

and we must consequently define quantitative characteristics that we will use to evaluate

our smart device. In this section, we consider precision as defined by the information

retrieval (i.e., in terms of true positives and negatives, but also false positives and

negatives), and a formal definition is given bellow.

Sensor Sensitivity and Precision Evaluation

Our first experiment consisted in the evaluation of optimal electrodes’ placement for

our smart device. Indeed, the mobile nature of our sensor mandates the study of elec-

trodes’ placements in order to propose the placement resulting in minimal movement

artifacts, which is particularly important for real-life use. All the evaluated placements

are depicted in Figure 4.10.(a.). We chose to evaluate the Left Arm (LA) - Right Arm (RA)

derivation because of the emergence of patch-like form-factors in mobile ECG sensors,

and such sensors are traditionally worn by patients on their upper chest area. The

Left Leg (LL) - RA placement coincides with the standard lead-II derivation of traditional

3-electrodes ECG devices. Finally, the last derivation to be tested is referred as the

“abdominal configuration,” where the medial electrode is placed in proximity to the

lower limit of the xiphoid process. The lateral electrodes are then placed 5 cm from each

side of the central electrode.

We also performed a second experiment aimed at the evaluation of the influence

of the electrodes’ nature of measurements quality. We evaluated three categories of

electrodes: ConMed Softrace Large electrodes (also used in the first experiment), Ambu

(Ballerup, Denmark) Blue Sensor L electrodes and a Polar (Kempele, Finland) dry elec-

trodes belt. This experiment is displayed in Figure 4.10.(b.).

As medical-grade precision is required, we need gold standard instrumentation

to collect reference ECG signal. This signal can then be used as a baseline our sensor

should be tested against. For both experiments, the reference ECG was recorded using

an an ADInstruments (Sydney, Australia) PowerLab 26T data acquisition apparatus

using the standard LL-RA derivation. Reference ECG was recorded at a 4 kSPS sampling

rate, and we processed this signal using a bandpass filter (bandwidth: 5 to 20 Hz) in

order to remove high- and low-frequency artifacts.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

4.4. Sensor Evaluation 91

Figure 4.10 – Electrodes’ placement (a.) and nature (b.) evaluation

For these two experiments, reference ECG and smart device data were collected on 8

consenting voluntary subjects. Three of the subjects self-reported as females, while 5 of

the subjects self-reported as males. Ages ranged from 22 to 47 years (average: 31 years).

Subjects were requested to complete the same three-minutes-long exercise. During the

first minute of the experiment, they performed a baseline rest period where subjects

had to sit still. For the second minute, they stood still, and for the third and last minute

of the experiment, subjects sat back down and carried out a series of arms rotations

in the coronal (or frontal) plane in order to test our sensor’s robustness to movement

artifacts.

Our sensor was quantitatively evaluated in terms of sensitivity and precision. The

sensitivity is defined as the ratio between true positives and the sum of true positives

and false negatives, while the precision is the ratio between true positives and the

sum of true positives and false positives. In our specific application, true positives are

characterized as heart beats correctly identified as such. False positives are defined as

heart beats detected by our sensor while no heart beat is detected in the reference ECG

signal. Finally, false negatives are heat beats present in the referenceECG missed by our

smart device. Heart beat detection on the reference ECG signal was achieved using the

following conditions:

Peak detected ⇐⇒


xn−1 −xn < 0

xn > xthres

tm − tm−1 > 250 ms

(4.13)

where xn denotes the reference ECG signal, xthres designates a manually-adjusted and

predefined threshold (manual adjustment was performed for each subject, as cross-

subject variability introduces variations in the ECG signal amplitude). Finally, tm rep-

resents time occurrences of the detected peaks. The first condition coincides with a

local maximum in the ECG signal, and the second condition is utilized to detect R peaks

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

92 Chapter 4. Smart Device Hardware Design and Implementation

in this signal. Eventually, the third condition enhances peak detection’s robustness by

rejecting consecutive peaks separated by less than 250 ms. After ECG signal analysis, RR

intervals can be computed and compared to RR intervals measured by our smart device.

In summary, we extracted and manually validated a total of 9,428 heart beats from

reference ECG apparatus, which we subsequently compared to RR intervals from our

sensor. We calculated true positive, false positive and false negative rates in order

to estimate sensor sensitivity and precision, and results from both experiments are

given in Table 4.3. It is worth noting that, except for the LA-RA configuration, all tests

produced sensitivities and precisions higher than 99 %. Optimal electrode placement

is the abdominal position using ConMed Softrace Large electrodes, which features a

precision of 99.89 % and a sensitivity of 99.95 %. Based on these measurements, we

promote the use of the abdominal positioning of our sensor.

The LA-RA placement yielded in poor results both in terms of precision (89.39 %)

and sensitivity (94.57 %), and this points towards the fact that patch-based form-factors

for ECG sensors may result in unaccurate measurements. The robustness of our sensor

with respect to motion artifacts is probably caused by electromyographic interference

introduced by movements. Indeed, the negative effect of electromyographic signals

on the ECG is well-known, and attempts at artifact reduction can be found in the

literature [CD99; JVT13]. Nevertheless, these methods can commonly be applied only

on full (i.e., offline) ECG signal, rendering their embedded implementation difficult

and resources-consuming. Poor results or the LA-RA placement is likely caused by

the proximity of pectoral muscles when our sensor is placed in this position. These

muscles introduce strong electromyographic signal, which in turns introduces errors in

heart beat detection, consequently increasing false positives and negatives. This can be

corrected by placing the sensor lower on the rib cage, such as in the abdominal position,

because muscle thickness is typically lower than in the LA-RA case.

Table 4.3 – Precision and sensitivity of the sensor

Con�guration Sensitivity Precision

LL-RA 99.47% 99.89%
LA-RA 94.57% 89.39%
Abd. (I)1 99.95% 99.89%
Abd. (II)2 99.89% 99.84%
Abd. (III)3 99.47% 99.31%
1Abdominal position using ConMed electrodes
2Abdominal position using Ambu electrodes
3Abdominal position using Polar dry electrodes belt

We found that the abdominal placement yielded in the best results, with very little

impact of the electrodes’ nature (maximal differences between best and worst perfor-

mance in terms of sensitivity and precision are respectively of 0.48 % and 0.58 %). This

concludes our evaluation of the influence of electrodes’ nature and placement on our

smart device performance in terms of sensitivity and precision.

Quantitative Measurements Agreement Evaluation

The principal drawback of the sensitivity- and precision-based approach is it does not

quantify the agreement between gold-standard instrumentation and our smart device.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

4.4. Sensor Evaluation 93

Agreement is here used to define the quantitative difference between measurements

from two different apparatus measuring the same physical phenomena. To measure

agreement between our sensor and reference instrumentation, we performed an addi-

tional experiment where a single subject was requested to sit still during 10 minutes,

and we collected both reference ECG signal and RR intervals from our sensor. Our smart

device was placed in the abdominal position using Ambu Blue Sensor L electrodes. Data

was processed using the same algorithm as in the previous experiments, a Bland-Altman

plot was created from the collected measurements, and it is displayed in Figure 4.11.(a.).

Figure 4.11 – Bland-Altman diagram (a.) and comparative tachograms (b.)

For illustrative purposes, we also graphed tachogram using data from the reference

ECG and from our sensor in Figure 4.11.(b.), and one can notice there is the two plots

look identical. Getting back to the Bland-Altman plot in Figure 4.11, one can observe that

the greatest positive difference is of 5.25 ms for an average measurement of 783.6 ms,

and that the greatest negative difference is of −2.25 ms for an average measurement

of 668.9 ms. Both these differences results in a relative error smaller than 1 %. It is

worth noting the presence of an average positive shift of 1.396 ms in measurements

difference, which can be explained by the precision of the internal clock of the AFE used

as sampling frequency, which is of only 1.5 % on the IC’s standard temperature range.

We used this internal clock rather than a more precise external clock for energy saving

and PCB surface minimization purposes.

In conclusion, we quantitatively evaluated our smart device’s agreement against a

reference gold-standard instrumentation. Results were satisfactory, as we observed a

maximal relative error of less than 1 % between the two measurement apparatus. We

are thus confident in our sensor’s capabilities to deliver medical-grade HR estimations.

4.4.4 Mobility Evaluation

Our final experiment dealt with the evaluation of the performance of our sensor in

ambulatory conditions. This was driven by the mobility non-functional property listed

during the preliminary steps of our service-oriented design method. To verify such

property, a healthy patient was asked to wear our smart device during one hour while

performing normal daily activities. Sensor data was recorded using the Android com-

panion application described above.

The collected RR intervals and normalized RWF are given in Figure 4.12, and no

measurement artifact occurred during the whole experimentation as no abnormal

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

94 Chapter 4. Smart Device Hardware Design and Implementation

Figure 4.12 – Ambulatory HR and RWF

values were observed (i.e., biologically aberrant values). Please note that during this

test, the sensor was placed in the abdominal position in order to minimize the chance

of movement artifacts. Additionally, one may notice the respiration signal accounts

for a slowly-evolving (i.e., low frequency) component. This is caused by the fact RWF

measurements are using impedance, which slowly evolves over time because of physical

changes occurring at the electrode-skin interface. Such alterations are induced by

various phenomena such as the presence of sweat, ambient humidity, etc. The low-

frequency component can be corrected with offline high-pass filtering.

Furthermore, Figure 4.13 depicts the four HRV parameters plotted as a function of

time. These parameters coincide with HR measurements displayed in Figure 4.12, and

fall within the typical ranges defined by the literature [NSB10].

Figure 4.13 – Ambulatory HRV parameters

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

4.5. Conclusion 95

This concludes the comprehensive testing of our sensor with respect to various non-

functional properties. We measured a variety of parameters such as energy consumption,

response of the sensor to synthetic ECG signal, and we evaluated our smart device’s

precision in order to guarantee medical-grade measurements. This testing process

provides additional assurances about overall sensor behavior, and can help to detect

implementations errors.

4.5 Conclusion

This chapter detailed the application of our service-oriented design method to a car-

diorespiratory sensor. From the modular hybrid architecture described in the previous

chapter, we built hardware and software implementing the formally specified hybrid

modules. A careful selection of appropriate ICs and SoCs was performed in order to

simultaneously verify functional and non-functional properties. We also put a particular

emphasis on the development of embedded signal processing algorithm, and used low-

level application specific hardware to perform real-time signal processing, along with

software algorithm to carry out higher-level offline calculations of the HRV parameters.

Eventually, we extensively described the testing of our smart device. Power con-

sumption measurements resulted in a maximal consumed power of 10.52 mW when

connected to an Android phone using default BLE connection parameters, which results

in a battery life of more than 3 days. Additionally, we used synthetic ECG signal in

order to verify both measurement conformance with expected results, but also BLE

connection robustness. Testing was further performed in order to determinate optimal

electrodes’ placement and nature, but also to quantitatively measure our sensor per-

formance against gold-standard medical-grade ECG measurement instrumentation.

With a maximal sensitivity of 99.95 %, precision of 99.89 %, and relative error of less

than 1 %, we are confident that our sensor can provide medical-grade estimations of HR

and HRV parameters. We also evaluated our smart device performance during real-life

ambulatory conditions, and no artifact were observed during this experiment.

However, our smart device presents several limitations. For instance, flexibility could

be improved by the addition of Over-the-Air (OTA) update capabilities. OTA updates

designate the capability for a smart device to be remotely updated, which in terms of

implementation designates the capability to wirelessly transfer a new version of the

smart device’s firmware. To achieve this, a bootloader needs to be implemented so that

the microcontroller can either be booted using its classical firmware or using an update

mode, which typically receives the new firmware using a classical serial communication

bus. Adding a bootloader to a microcontroller implies reserving a portion of program

memory (i.e., ROM) to the bootloader, which reduces the amount of available memory

for the principal firmware. Particular attention must be paid when developing such

feature as OTA update can have disastrous consequences if an error occurs, and it can

ultimately result in unusable smart devices.

Furthermore, we discuss the integration of internal and external self-adaptation

capabilities as a non-functional property of our smart device. The integration of such

feature was implemented through a simple embedded state machine, which is used to

describe various sensor configurations associated with different Quality of Service (QoS).

Indeed, self-adaptive behavior at the lower levels can be seen as a preliminary form of

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

96 Chapter 4. Smart Device Hardware Design and Implementation

device intelligence, and it facilitates integration of smart devices to higher-level smart

services. Even though we integrated internal self-adaptive behavior which makes our

sensor self-aware about its environment, self-adaptation is only fully leveraged when

it is also considered from a higher level perspective. This higher-level self-adaptation

mandates the study of adaptive framework applied to the IoT, and we extensively detail

the integration of smart devices to such framework in the next chapter.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

CHAPTER5
Self-Adaptation Framework for

Smart Devices

Contents

5.1 Introduction . 97

5.2 Self-Adaptation Case-Study . 100

5.3 Dynamic and Synchronous QoS-Driven Self-Adaptation for the IoT . . 101

5.3.1 Managing Dynamic Objectives and Monitoring Infrastructure . 102

5.3.2 Synchronous Programming Languages 106

5.4 Adaptation Objectives Specification . 111

5.4.1 Declarative Self-Adaptation Specification 111

5.4.2 Specifying Adaptation Objectives with a Rule-Based Language . 113

5.5 From Synchronous to Hybrid Self-Adaptation 116

5.6 Conclusion . 118

5.1 Introduction

IoT-based systems are, by nature, in continuous interaction with the physical world.

As physical phenomena are in constant evolution, IoT-based systems must be able to

appropriately react to both internal and external changes in order to maintain expected

behavior under a wide range of situations. To do so, self-adaptive behavior must be

considered and integrated in smart devices at design time. Indeed, self-adaptation

describes the capability for self-contained systems to adapt to internal or external

contextual changes in order to verify a set of adaptation goals (also called control

objectives). Additionally, IoT-based systems are dynamic networks, and smart devices

can be added or leave the network at any moment, which further strengthen the need

for self-adaptability.

In our work, we emphasize the importance of self-adaptive behavior as a preliminary

solution to the improvement of IoT devices intelligence. Indeed, by being able to appro-

priately react to a variety of unpredictable situations, smart devices minimize the need

for human intervention, consequently making IoT-based systems more autonomous.

97

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

98 Chapter 5. Self-Adaptation Framework for Smart Devices

Even though we have discussed the importance of the integration of self-adaptive be-

haviors at the smart device level, it should also be integrated to higher-level layers of the

IoT in order to unlock the capability of building full-scale smart services using smart

devices as their basis. To do so, we must study self-adaptation at the device integration

level at design time.

The study of self-adaptive systems is traditionally performed under a software per-

spective. In such systems, researchers deal with the self-adaptation of complex and dis-

tributed software applications in response to changing execution environment [Zha+13;

Zha+14; Vil+13; WMA10]. The principal motivation for self-adaptation is to reduce the

need for human intervention when systems are confronted with changes in both inter-

nal and external context. Typical solutions of self-adaptive software frameworks rely on

variations of feedback loops. Practically, such systems are enabled with self-monitoring

through various software probes, and self-adapt based on a variety of thresholds and

adaptation goals. Self-adaptation can typically be defined with respect to an expected

target behavior (i.e., functional properties), but also related to Quality of Service (QoS)

preservation (i.e., the monitoring of Non-Functional Properties (NFP) to ensure the

system stays within the desired non-functional range) [Vil+11]. Typical examples of QoS

preservation are the minimization of response time or the study of the scaling capabili-

ties of the system just to mention a few. Such self-adaptation framework commonly use

imperative specifications of adaptation goals and mechanisms [IW14; Tam+13].

Aforementioned specifications mandate the comprehensive modeling of the entire

self-adaptive execution flow, which limits their use in large systems since the complexity

of this flow increases along with system size. This increasing complexity can be the

source of a variety of problems, such as unmaintainable code bases or difficultly debug-

gable adaptation mechanisms. The scalability concern can be solved using declarative

specifications, where systems designers specify what are the system’s objectives rather

than how to achieve them, and it is a particularly good fit for self-adaptation frameworks

as designers are only required to specify adaptation goals.

In an IoT-related context, self-adaptation is an intrinsic and important property of

smart devices. Indeed, they should be remotely-configurable in order to account for a

variety of potentially extreme situations to ensure system’s objectives verification, where

objectives are typically specified in terms of system-wide Service Level Agreements

(SLA).

Additionally, the dynamic nature of the IoT network increases self-adaptation diffi-

culty, as systems objectives might change at run time because of alterations in smart

devices’ context or non-functional requirements. Such changes influence associated

thresholds, monitoring variables or even the entire monitoring logic if contextual vari-

ables are added or removed from the system. Consequently, when adaptation goals

evolve at run time, both monitoring logic and self-adaptation flow may become invalid

because self-adaptive behavior may rely on outdated goals, or because monitoring logic

utilizes probes irrelevant to the new adaptation goals.

In addition, we highlight the difference between functional and non-functional

self-adaptation. The former deals with self-adaptive behavior of IoT-based systems

under a purely functional perspective (e.g., if a presence is detected in a room, the lights

should be turned on, if a window is opened, the heater should be turned off, etc.). The

latter are used to guarantee consistent QoS over a variety of operating conditions (e.g.,

if a sensor fails, it should be replaced by a functional one, if network latency increases,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

5.1. Introduction 99

irrelevant sensors should stop streaming data, etc.). Rule-based functional adaptation

has already been discussed in the literature [Zha+13; Zha+14; SLR17; Syl+17], but non-

functional requirements are often elapsed or very succinctly treated. Nevertheless, QoS

preservation is a salient property of critical IoT-based systems such as the ones used for

healthcare or traffic-control applications. Therefore, we put a particular emphasis on

non-functional self-adaptation as a mean to increase systems’ robustness and reliability.

Additionally, IoT-based self-adaptation should consider smart devices limited re-

sources. To do so, our proposed framework is made resources-aware by the modeling

of limited and consumable smart devices’ resources. Such modeling approach can

then be used as the basis for self-adaptive behavior, in which conditions of devices’

internal context (i.e., internal resources) can be monitored and compared to predefined

thresholds in order for smart devices to self-adapt and preserve appropriate QoS.

In summary, we develop a novel self-adaptation framework for IoT-based systems,

particularly emphasizing on the following characteristic:

• Declarative adaptation goals specification: By using declarative specifications for

representing goals, we not only tackle the scalability issue brought by imperative

approaches, but also reduce the difficulty of self-adaptive systems implementa-

tion in distributed environments. Indeed, it is easier for end-users to only specify

what a system should be doing rather than explicitly describe its entire execution

flow using procedural instructions. Declarative programming -like approaches

however need to rely on detailed systems model, which is discussed bellow.

• Formal self-adaptation models: Declarative approaches typically rely on models

to derive actual execution flows from high-level objectives specification. For our

specific use-case, which uses wearable devices, the utilization of models also

increases the degree of certitude that systems will behave as expected. Indeed,

formal objectives specification provides additional guarantees over global sys-

tem correctness, which ensures that adaptation goals will be achieved for any

situations specified in the models of our systems. We consequently use formally-

defined models of computation as representations of smart device behaviors, (i.e.,

run time behaviors) which are then used to build self-adaptation strategies.

• Automated controller generation: We also integrate advanced automation and

controller synthesis to our self-adaptation framework. Indeed, as IoT-based sys-

tems grow bigger, the development time of self-adaptive behavior increases. In

order to minimize this time, we emphasize on the importance of automating the

self-adaption process by automatically generating controllers and remotely de-

ploy them in response to any changes in the objective goals. By such, we are able

to handle potentially large systems accounting for hundreds or even thousands of

devices.

• Ability to handle dynamic self-adaptation scenarios: As before-mentioned, the

dynamic nature of IoT-based systems requires the integration of the capability to

handle changing adaptation objectives and monitoring logic. To this end, we apply

separation of concerns between adaptation goals, the actual adaptation loop

and the monitoring infrastructure as an intrinsic solution in our self-adaptation

framework.

The remaining of this chapter is organized as follows: Section 5.2 details an illus-

trative case-study from the healthcare domain based on wearable devices, that will be

used throughout the upcoming chapters to demonstrate our self-adaptation framework.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

100 Chapter 5. Self-Adaptation Framework for Smart Devices

Section 5.3 subsequently focuses on the integration of synchronous self-adaptive be-

havior with dynamic adaptation goals and monitoring infrastructure capabilities, while

Section 5.4 extensively presents rule-based adaptation goals specification. Eventually,

the extension of our self-adaptation framework with hybrid capabilities is considered in

Section 5.5. We conclude our chapter in Section 5.6 and summarize our contributions

while shedding light on their limitations.

5.2 Self-Adaptation Case-Study

In this section, we extensively present a healthcare-based self-adaptation case study,

which will be used as a background for the non-functional adaptation of critical IoT-

based systems. We consequently consider the remote monitoring of patients at risk

for myocardial infarction recurrence, for which patients require continuous monitor-

ing of various physiological parameters as means to detect cardiac malfunctions and

subsequently trigger rapid medical response. Continuous supervision of physiological

parameters is accomplished using battery-powered wearable sensors. Additionally,

we also consider the remote monitoring of the patients’ living environment using ei-

ther continuously-powered or battery-powered environmental sensors. In order to

realistically represent typical IoT-based systems, we assume that both wearable and

environmental smart devices are resources-constrained, with limited computing, stor-

age and RAM capabilities. Such limitations also have implications on communication

protocols, and we consider that devices are using energy-saving and simple protocols in

order to minimize computing overhead and energy consumption.

This case-study particularly focuses on the robust detection of cardiac malfunctions

and the consecutive generation of alarm signals to trigger urgent medical response.

Robustness requirements are two-fold: false positives cardiac malfunction detection

(i.e., detecting a cardiac malfunction while none occurred) should be avoided, and more

importantly the detection of heart failure should occur even if the system does not

operate at full capacity.

Our case-study focuses on self-adaptive properties. Indeed, the global adaptation

goal is to guarantee the patients’ safety property by maintaining appropriate QoS of

both physiological and environmental data continuous monitoring. To satisfy this safety

objective, we define it in terms of several factors: the resource-awareness factor, the

resilience factor (i.e., the substitution of defected objects with normally-operating alter-

natives) and eventually the healthcare-awareness factor (i.e., the request for medical

assistance in case of myocardial infarction or technical intervention if a sensor reports

abnormal values). As a consequence, our case study details safety-enabled smart homes

which support self-adaptation objectives based on resources consumption, resilience

and external medical and technical assistance. In such system, self-adaptation is imple-

mented through the remote configuration of smart devices based on internal resources

monitoring and the substitution of failed devices with other devices in working order,

but also the triggering of medical response if abnormal physiological parameters are

measured. Namely, the monitored variables in this specific case-study are: battery

levels, sensors states and sensors values. From these data, various thresholds can be

established and can be used to trigger self-adaptive actions.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

5.3. Dynamic and Synchronous QoS-Driven Self-Adaptation for the IoT 101

Practically, we assume that patients and smart homes each account for the following

wearable and environmental sensors:

• Battery-operated cardiorespiratory sensors. As mentioned in previous chapters,

this smart device monitors Heart Rate (HR), Heart Rate Variability (HRV) param-

eters and Respiration Waveform (RWF). They are also able to self-monitor their

battery level, and to determine if they are unattached. Such sensors embed a

self-adaptive state machine, which includes an energy-saving failsoft state. In this

state, respiration measurements and HRV parameters computation are stopped,

and the average HR is transmitted every five minutes.

• Wearable Photoplethysmography (PPG) sensors, which continuously stream PPG

parameters, such as average HR and long-term HRV. This sensor consequently

provides redundancy, as it is able to measure similar parameter than the cardiores-

piratory sensor. However, measured parameters are less precise, and they should

only be used as a backup in case the first sensor is failing. In these sensors, we as-

sume three self-adaptation states: the stopped state, the low sampling frequency

state and the high sampling frequency state.

• Gross position sensors, which are continuously powered and stream a gross po-

sition estimate of the patients’ (i.e., in what room or room area are the patients

located).

• Fine position sensors. They are also continuously powered, but such sensors

stream precise patients’ location (typically with an accuracy in the order of a

centimeter).

Both categories of position sensors feature only two simple self-adaptation states:

on and off, and the transitions between those states can be remotely triggered. This

case-study can be considered as a critical IoT-based system because malfunctions in

remote monitoring implies risk-patients are not accurately overseen because of the lack

of medical response if a critical health crisis occur. Additionally, we assume that patients’

health can be estimated using either the cardiorespiratory sensor (optimal case), or

using a combination of data from the other sensors (suboptimal case). Preservation

of QoS consequently means ensuring that the patients are always appropriately moni-

tored through self-adaptation. In our case-study, self-adaptive behavior is achieved by

triggering various state changes of the smart devices’ embedded state machines. In the

following sections, we give more detail about adaptation objectives specification and

controller generation.

5.3 Dynamic and Synchronous QoS-Driven Self-Adaptation for
the IoT

As mentioned earlier, IoT-based systems are dynamic: they are confronted with an

always-evolving physical world, but they are also faced with smart devices addition or

removal at run time. In order to handle such characteristics, IoT-targeted self-adaptive

systems should be able to manage changing adaptation goals, but also evolving mon-

itoring infrastructure. In this section, we present our separation of concerns based

approach as a solution for full-fledged dynamic QoS-driven self-adaptation for the IoT.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

102 Chapter 5. Self-Adaptation Framework for Smart Devices

5.3.1 Managing Dynamic Objectives and Monitoring Infrastructure

In the context of IoT-based systems, functional and static self-adaptation is a well-

explored research area [Zha+13; Zha+14; Can+14]. Nevertheless, to the best of our

knowledge and based on our survey, the study of IoT-based systems’ behavior under

dynamic adaptation goals dealing with NFPs and resources constraints is lacking.

In the context of self-adaptive software systems, the DYNAMICO reference model

details a conspicuous solution to the management of changing adaptation objectives

and monitoring infrastructures [Vil+13]. To do so, this model embeds self-adaptive

capabilities to adaptation objectives and monitoring through three distinct MAPE-K

feedback loops:

• Adaptation objectives feedback loop: This MAPE-K loop governs self-adaptation

of the software systems with respect to changing adaptation goals. It features all

reference elements of traditional MAPE-K loops (i.e., monitor, analyzer, planner

and executor), and adaptation objectives are considered under the form of SLAs.

• Adaptation feedback loop, which implements actual self-adaptive behavior in

reaction to changes in internal or external context.

• Monitoring feedback loop: This loop infers relevant context variables that should

be monitored in order to self-adapt the system. Because of the presence of feed-

back, the monitoring logic can also adapt itself if changes in the monitored vari-

ables are required.

In fact, DYNAMICO implements separation of concerns between adaptation objec-

tives, self-adaptive behavior and monitoring logic. By doing so, flexibility and modularity

is improved as each of the MAPE-K loops can be implemented as independent elements.

However, this reference architecture is only defined for software-oriented systems, and

typical implementations rely on resources-hungry infrastructures such as the SMARTER-

CONTEXT monitoring framework or the FRASCATI middleware [Tam+13], which are not

relevant for the self-adaptation of IoT-based systems using distributed, heterogeneous,

and resources-constrained smart devices.

As depicted in Figure 5.1, we propose an IoT-targeted dynamic self-adaptation

framework based on separation of concerns. Our framework comprises a distributed

self-adaptation infrastructure and a controlled IoT-based system. It includes smart

devices, which are accessed trough gateways that handle the translation between low-

energy communication protocols and higher-level Internet-oriented protocols. Gate-

ways typically access smart devices through the hardware services they expose, and

they can perform remote reconfiguration through the self-adaptation state machine

in order to guarantee contracted SLAs, usually expressed in terms of non-functional

requirements.

Adapted from DYNAMICO, our framework considers four types of interactions

between the three MAPE-K loops:

• Adaptation objectives: These interactions feed the reference adaptation goals

determined by the objectives controller to the adaptation loop and the monitoring

loop. For instance, the first resource-aware adaptation to be considered in our

case-study is related to the battery levels of the sensors, which implies a reference

input under the form BatteryLevel > 20 %. This reference will be used by the

adaptation MAPE-K loop as an element to be analyzed for potential device self-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

5.3. Dynamic and Synchronous QoS-Driven Self-Adaptation for the IoT 103

Figure 5.1 – Detailed QoS-driven self-adaptation framework

adaptation, and by the monitoring feedback loop as a reference input for context

monitoring.

• Failed monitor: Such interactions are used when the need for a change in the adap-

tation goals is detected by the monitoring MAPE-K loop. In our framework, they

are practically used to communicate failed monitors (e.g., in case of total battery

drain of one of the sensors) in order to adapt the adaptation goals appropriately.

• Adaptive action: These interactions feed adaptation-triggering events from the

monitoring feedback loop to the adaptation feedback loop. For example, a consis-

tent and faster-than-normal drain can be used as an event to trigger preemptive

self-adaptation of the system and a quicker adoption of a battery-saving failsoft

state in order to extend the duration of quasi-optimal system behavior. Such

adaptation triggering events can also be produced by the monitoring system us-

ing a combination of several NFPs from the controlled smart devices. This use

of measured NFPs to derive adaptation triggering events can be implemented in

software only using software probes.

• Internal context: Such interactions feed the internal context from the adaptation

loop to the monitoring loop. They can be used to insure system consistency after

self-adaptation. For example, in our case study, if the cardiorespiratory sensor

must be replaced by the fine position smart device for health monitoring, the

internal context interaction is utilized to ensure that fine position sensors are

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

104 Chapter 5. Self-Adaptation Framework for Smart Devices

all in the functional state after the self-adaptation, thus ensuring global system

safety.

The three feedback loops share the same architectural organization, derived from

classical MAPE-K autonomic elements. They all feature monitors, analyzers and con-

trollers, the latter resulting from the combination of planners and executors of tradi-

tional MAPE-K loops. The purpose of these architectural elements is similar in each

of the feedback loops. Monitors provide the system with information on adaptation-

triggering events. For instance, the objectives monitor of the adaptation objectives’

feedback loop check for changes in the high-level adaptation goals (i.e., the addition or

removal of adaptation rules), while the NFPs monitor subscribes to streams indicative of

the controlled systems’ QoS properties (such sensor state for instance). Such monitors

can also implement software probes that make use of the subscribed streams to derive

higher-level monitoring variables. Eventually, the adaptation feedback loop monitor’s

implements sensing probes required by self-adaptive synchronous discrete controllers

(i.e., the controller raw inputs).

The objective analyzer decides which adaptation rules must be applied using dis-

crete controllers (i.e., QoS preserving adaptation rules) and which adaptation rules

should be transferred to a rule engine, which handles all functional adaptation goals.

Please note that the rule engine is not explicitly represented on Figure 5.1 as we focus

on self-adaptation with respect to NFPs. The adaptation analyzer takes raw QoS prop-

erties and higher-level QoS properties, and feeds them to self-adaptive synchronous

discrete controllers. Finally, the NFP analyzer detects adaptation-triggering events in

the monitoring infrastructure (e.g., a smart device fails and occurrences of this device

should be removed from the adaptation objectives), and delivers such events to both

objective monitors and NFPs monitors in order for the system to suitably self-adapt to

such changes. When it comes to controllers, the objectives controller transmits rules to

the self-adaptation feedback loop. Additionally, the adaptation feedback loop’s discrete

controller is an automatically-synthesized synchronous discrete controller perform-

ing system’s self-adaptation with respect to pre-contracted QoS. Moreover, the NFP

adaptation controller provokes the subscription or unsubscription to QoS parameters’

streams.

In addition, our dynamic self-adaptation framework implements self-adaptive be-

havior using synchronous discrete controllers. By doing so, we rely on advanced formal-

ism and tools developed by the reactive systems community to provide guarantees over

targeted system behavior. Furthermore, the use of a state-based discrete approach in dis-

crete controller synthesis ensures interoperability, since no preliminary hypothesis are

made neither on cross-devices communications, nor on devices reconfiguration inter-

faces. Using discrete controllers is also realistic in an IoT-related context, as most smart

devices feature remote configuration capabilities using low-energy wireless protocols.

Practically, this entire synchronous self-adaptation framework can be deployed into

gateways, which have sufficient computational resources and can handle the event flows

generated by the IoT-systems. This is usually the case considering typical hardware used

in IoT gateways (e.g., Raspberry Pis or Intel Edisons). For example, the NFPs monitors

and adaptation monitors are realized by subscribing to the NFP hardware services of

smart devices. Such monitors can also be implemented by inferring the non-functional

state of the system by listening the environment (e.g., the overall load of the system can

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

5.3. Dynamic and Synchronous QoS-Driven Self-Adaptation for the IoT 105

be inferred from measuring the time between two events, and appropriate action can

be taken if system load becomes too high).

In addition, Figure 5.1 defines several levels of SLAs:

• System-level SLAs designate a contract between users and service providers at

the system level. Indeed, end-users of IoT-based systems do not need extensive

details to specify their requirements. By providing system-level SLAs, we can

simplify the specification of global functional and non-functional requirements

by subsequently dividing SLAs into high-level requirements that can be easily

mapped to device-level SLA for further analysis.

• Device-level SLAs define the guarantees provided by devices manufacturers about

their functional and non-functional properties. These SLAs present finer granular-

ity, and are more static, than system SLAs. Differentiation between smart devices

and simpler devices is necessary when considering device SLAs: indeed, while

SLAs of smart devices are subject to changes over time and are reconfigured by

users, SLAs of simple devices remains static. In our opinion, this is a consequence

of the black-box nature of simple devices, which are designed by manufacturers

to have functional and non-functional properties that cannot be reconfigured

during their execution lifecycle.

• Human-level SLAs characterize cross-user variability in human-centric IoT-based

systems. Integrating people in the system feedback loops substantiates the accu-

rate modeling of system properties (i.e., biological properties) to be controlled or

monitored. These system properties may differ from one individual to another

considering various diseases impact different physiological parameters.

Expressions in each of these SLAs can be mapped to QoS factors, as described by the

ontology in Figure 5.2. For example, the resource awareness QoS factor is a device-level

SLA because of resources variability between smart devices (i.e., continuously-powered

sensors do not have the need for a low battery Service Level Objective (SLO) obligations,

while battery-operated sensors do). In our framework, SLOs are typically given as a

set of rules. In opposition, the resilience QoS factor is commonly a system level SLA,

where resiliency is specified at the system-level (e.g., if a sensor is failing, it is then

substituted with other sensors of the system in order to compensate for the loss of

information). Eventually, the health awareness QoS factor is a human-level SLA because

cardiac malfunctions are associated with different diseases producing different effects

on heart activity. As a consequence, the monitored QoS should be adapted for each of

the patients in the global healthcare IoT-based system.

Figure 5.2 – SLA ontology

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

106 Chapter 5. Self-Adaptation Framework for Smart Devices

This section concludes the description of our dynamic and IoT-oriented self-adap-

tation framework. We consider gateways and their associated smart devices as syn-

chronous reactive systems, and we consequently rely on the numerous tools and meth-

ods developed by the reactive systems community to build discrete synchronous con-

trollers for smart devices with limited resources.

5.3.2 Synchronous Programming Languages

In this section, we present how we used Synchronous Programming Languages (SPL) to

achieve smart devices’ self-adaptation. First, we emphasize on the importance of the

synchrony hypothesis, introduced formerly in the state of the art chapter. The hypothe-

sis stipulates that systems can be considered synchronous if and only if the computation

time of a reaction to a set of external events is negligible when compared with the rate

of such events. In this section, we assume that IoT-base sub-systems controlled by our

framework are small-enough for this hypothesis to be valid. Additionally, the reactive

system philosophy is a good fit for the representation of IoT-based systems, as most

application cases call for the reaction of extremely distributed computer-based systems

to external or internal events occurring at any moment in time.

We thus used methods from the reactive systems community in order to provide safe

and reliable controllers for self-adaptation in the IoT. Practically, this section focuses on

the discrete controller block of Figure 5.1. Common paradigm for programming reactive

systems are SPLs. Such languages typically rely on Labeled Transition Systems (LTS) to

model system’s interaction with the external world.

Formally, a LTS is defined as a quadruple (S,L,→, si n), where S is a set of states, L is a

set of transition labels, →⊆ S ×L×S and si n the initial state. We define the set of transi-

tions labels as L = (events,actions,\), where \ ⊆ events×actions. LTSs are comprehensive

models of discrete systems, where non-controllable variables are members of the set

events and remote services invocations are members of the set actions. In our frame-

work, events are generated by monitors and actions are various remote configuration

options presented to the external world as a set of hardware services.

In the context of discrete controller synthesis applied to reactive systems, transition

labels are separated in two sets: controllable variables and non-controllable variables.

Practically, controllable variables define transitions that can be triggered remotely. They

thus can be used by the discrete controller to achieve a predefined adaptation goal. In

opposition, non-controllable variables describe transitions which can only be triggered

internally, based on self-measurements of the system the LTS is modeling. In our case,

we introduce a syntactic separation of non-functional and functional variables in order

to improve the expressivity of discrete systems models. To do so, we define the statement

“e \ a” as the control of event e by service a during the firing of the transition. When

no adaptation service is provided for a given transition, we assume that this transition

is non-controllable. For example, in battery-operated smart-devices, the transition

going from an empty battery state to a normal operation state is non-controllable as

battery must be charged externally (i.e., the system can not charge the battery by itself,

consequently mandating external human intervention).

Figure 5.3 illustrates the LTS of the cardiorespiratory sensor as it is described in

the previous chapter. Please note that this LTS differs from the one given in Figure 4.6

because some simplifications were needed in order to integrate it in typical SPLs. First,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

5.3. Dynamic and Synchronous QoS-Driven Self-Adaptation for the IoT 107

Figure 5.3 – Cardiorespiratory sensor LTS

most synchronous languages only deal with Boolean-typed transition variables. Some

attempts at the integration of other variable types were described, but they make state-

space exploration complex and computationally intensive. We thus convert all transi-

tions to Boolean-typed labels. Additionally, the initialization state is not represented, as

it is only a transitive state which always goes into the normal state.

Practically, our model takes input (see on the left-hand side of Figure 5.3) and

produces outputs (on the right-hand side of Figure 5.3). Inputs of the model are used to

trigger transitions of this LTS, while outputs are produced by the states of our LTS. The

initial state of the heart activity sensor is the normal state. In this state, our smart object

streams real-time HR data and HRV parameters values. If a low battery level is detected,

the sensor is placed into an energy-saving failsoft state. In this state, only the average

HR is transmitted every 5 minutes. It is worth observing that transitions between the

failsoft state and the normal state are controllable. This was motivated by our need

to control transitions between these states if a precise and instantaneous estimation

of cardiac health is mandated by the adaptation context (e.g., during a critical health

crisis). The two remaining states are the stop state and the unattached state. The stop

state in accessible from any of the other states. It is accessed from the normal state if

the battery is empty, if it is requested externally, or if a no connection timeout occurs,

rendering the transition from the normal to stop state controllable. This timeout is

triggered if our smart device is not connected to any external tier for more than one

minute. The stop state is reached from the failsoft state if the battery is empty, or

if a no connection timeout occurs. The unattached state is reached from the normal
state if our smart device self-detects its unattachement from the patient’s skin. Once the

device is in this state, the sensor is either placed back in the normal state if our sensor

self-detects its reattachment, or it is placed in the stop state if the unattached state

is active during a predefined amount of time (i.e., if the sensor is unattached for too

long, it is turned off for energy-saving purposes). Once our smart device is stopped, the

only way to reach the normal state again is to reset it manually, and an uncontrollable

transition is defined between the stop and the normal state.

Figure 5.4 describes LTSs for both gross and fine sensor positions, which comprise

two controllable states: on and off. These LTSs only take the controllable label c as an

input and its output corresponds to the states of the smart devices.

For our framework, we chose to use the Heptagon/BZR SPL to build the controller.

Our choice is driven by the fact that Heptagon/BZR is open-source, actively maintained,

and surrounded by many discrete controller synthesis research works (such as its ex-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

108 Chapter 5. Self-Adaptation Framework for Smart Devices

Figure 5.4 – Fine and gross position sensors LTSs

tension to handle infinite state spaces and rich data types). Figure 5.5 illustrates the

LTS of the PPG sensor along with its Heptagon/BZR specification. In Heptagon/BZR, all

the concurrent entities of the system are modeled as nodes taking inputs and returning

outputs. Figure 5.5.(b.) illustrates the specification of the node modeling the PPG sensor.

Because the battery-life of the PPG sensor is considered to be much longer than

the battery-life of the cardiorespiratory smart device (because the hardware is much

less energy consuming, and because much bigger batteries can be embedded), we

assume that all the transitions are controllable, and they are noted as c1 and c2. All

transitions should be noted as true \ c1 or true \ c2, but the true were omitted

for conciseness purposes. Some transitions are associated with the negation of the

conditions c1 and c2 because during the controller synthesis process, values of true
are preferred for controllable variables. This can consequently be used for finer control

of transition between states and global non-functional properties. For example, in our

case, negations of conditions are associated with transitions leaving the off state of

the PPG sensor. Considering the controller synthesizer prefers true values of c1 and

c2, we are able to save energy by only leaving the off state when this smart device

must be used for self-adaption purposes. In Heptagon/BZR, the PPG sensor is defined

as a node taking both controllable variables as inputs and producing three outputs,

corresponding to the sensor states. This LTS is encoded using an automaton, which

fully specifies LTSs using a very simple syntax. First, states of the automaton are defined

using the keyword state. Then, actions to be performed during the state are specified

after the keyword do. Eventually, transitions are written using the until and then
keywords. If the condition provided after until is true, the automaton goes to the state

provided after then.

When it comes to the LTS of the PPG sensor, we define three states: off, low and

high. In the off state, the smart device is turned off and does not stream any PPG

parameters. The low state can be seen as an energy- and bandwidth-saving state where

parameters are streamed at a low frequency. In opposition, in the high state, sensor

data are streamed at a high frequency in order to have better remote estimation of PPG

data.

Once all smart devices in the IoT-based sub-system are described as Heptagon/BZR

nodes, discrete controller synthesis can occur. This process relies on control contracts,

which are specified using basic logic statements. Such control contracts introduce four

keywords: contract defines the beginning of a control contract, enforce describes

the adaptation rules, assume is used to define preconditions on the adaptive actions,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

5.3. Dynamic and Synchronous QoS-Driven Self-Adaptation for the IoT 109

Figure 5.5 – PPG sensor LTS (a.) and its Heptagon/BZR speci�cation (b.)

and with designates controllable variables. An example of a BZR contract is given in

Figure 5.6. This control contract describes 5 rules, each of which corresponding to

different QoS level. Rule r1 is aimed at preserving a reasonable workload in the local

smart home network, and it stipulates that if the cardiorespiratory sensor is operating

normally, the sub-system’s controller must ensure that both the PPG and fine position

sensor are turned off. This rule improves energy savings for the PPG sensor, and keeps

the workload in the local network as low as possible by disabling fine position sensors.

Indeed, such sensors stream positions at a high rate, which might cause network throt-

tling and thus introduce latency if they are overused. Rule r2 is related to the safety QoS

because it states that if the cardiorespiratory smart devices is in the failsoft state,

gross position sensors must be turned on, and the PPG sensor must be placed in the

low sampling rate state. This rule provides enough data to the cardiac health estimation

remote service in order to compute rough estimate of the patients’ health. The state is

however suboptimal as in the failsoft state, the cardiorespiratory sensor only streams

average HR every 5 minute. Rule r3 and r4 are also used to guarantee the cardiac health

estimation service is fed enough data to be able to compute a health estimation. Practi-

cally, rule r3 states that if the cardiorespiratory smart device is unattached, the gross

position sensors should be turned on and the PPG sensor is again placed in the high

sampling rate state. Rule r4 states that if the cardiorespiratory sensor is stopped, the

fine position sensors are turned on and the PPG sensor is placed in the high sampling

rate state Rule r5 specifies that if gross sensor position are on, the fine position sensor

should be turned off, consequently minimizing redundant information.

After the specification of all system nodes along with a control contract, Discrete

Controller Synthesis (DCS) can occur. With Heptagon/BZR, two controller synthesizers

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

110 Chapter 5. Self-Adaptation Framework for Smart Devices

Figure 5.6 – Heptagon/BZR control contract example

can be used: Sigali 1 and ReaX 2. The discrete controller synthesis process is given in

Figure 5.7, where Sb and Sc respectively describe states of the system and the contract,

outputs ea and eg respectively designate an environmental model of the contract and a

contract requirements that should be enforced. Eventually, x, y and c are respectively the

system inputs, outputs and controllable variables. In Heptagon/BZR, both the contract

and system’s nodes are converted to symbolic transition systems, that are subsequently

used to perform controller synthesis through the state space exploration.

Figure 5.7 – Discrete controller synthesis work�ow, adapted from [DMR10]

1. Sigali toolbox: http://www.irisa.fr/Polychrony/Sigali.php (visited on 07/18/2018)
2. ReaX controller synthesizer: http://nberth.space/en/opam#reatk (visited on 07/18/2018)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

http://www.irisa.fr/Polychrony/Sigali.php
http://nberth.space/en/opam#reatk

5.4. Adaptation Objectives Specification 111

Practically, DCS results in a correct-by-construction C or Java program that can be

integrated to our final system and that guarantees adaptation rules are verified at all

time. Please note that, in the DCS context, correct-by-construction only means that the

generated code ensures the LTSs are correctly translated into imperative code and that

their coordination respects the control contract. Additionally, for the code execution to

be correct, the synchrony hypothesis should be verified during runtime. Hetagon/BZR

generates a reset and a step function, the former being called upon system statup

and the latter being called after system’s inputs acquisition in order to compute outputs

of the system. Output values can subsequently be used to update smart devices to

the expected states. Since the controller is synchronous, its inputs can be periodically

acquired through a simple loop.

In summary, DCS is used to build controllers using LTS-based models of the system

and a control contract. However, adaptation goals specification still require knowledge

of logical connectors and low-level knowledge on system models, such as the available

states and possible transitions.

In our opinion, this represents a limitation as IoT-based systems end-users are often

non-experts, thus calling for declarative and simple adaptation objectives specification.

To tackle this disadvantage, we introduce a new rule-based language to specify self-

adaptive behavior.

5.4 Adaptation Objectives Speci�cation

In this section, we discuss our contributions with respect to the specification of adapta-

tion objectives. This research problem must take into account a variety of challenges.

First, we emphasize the importance of adaptation objectives maintainability, which is

motivated by the fact IoT-based systems can grow to account for thousands of devices.

Adaptation objectives that specify desired devices’ behavior must consequently be able

to accurately handle large number of smart devices. They should also be easily added

and updated. In addition, adaptation objectives specification should be expressive

enough so that non-expert users can specify their own self-adaptation goals. Indeed,

IoT-based systems are often used in applications requiring the collaboration of user

with various profiles and backgrounds. For instance, healthcare-related IoT-based appli-

cations involve interactions with a wide variety of staff, such as medical doctors, nurses,

emergency medical technicians, etc. In order to democratize IoT-based systems adop-

tion, their use and adaptation should be easy-enough for non computer science experts.

Eventually, such systems can grow up to large scale and require tools and techniques,

encouraging the use of automation, as it can consequently be used to save development

time.

5.4.1 Declarative Self-Adaptation Speci�cation

The traditional approach when designing adaptable systems is that system designers

specify the flow of instructions necessary to achieve a particular adaptation goal. By

using this approach, system designers should have a global understanding of their

system in order to specify step-by-step all the instructions needed to implement the

desired systems’ specification.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

112 Chapter 5. Self-Adaptation Framework for Smart Devices

While this approach is appropriate for small- to medium- sized systems, it is the

source of several issues as IoT-based systems grow larger. Indeed, while development

paradigms such as agile methods or object-oriented programming improved code

organization and code lifecycle management, changes in the objectives of the software

or changes in the requirements can still imply important and time-consuming code

changes, where a deep and total understanding of the existing code is necessary to

implement the changes correctly. This causes difficulty for the maintenance of complex

and large systems.

As our work considers the IoT context, scalability and reusability are criterions of

paramount importance when attempting to develop solutions for IoT. Indeed, the IoT is:

• Dynamic: In IoT-based systems, changes occur constantly. Since IoT-based net-

works are based on heterogeneous smart devices using a variety of technologies

and protocols deeply embedded in the physical world, IoT-based systems con-

stantly change in reaction to variations of the physical world. Management tools

and strategies must take into account this high dynamicity, and tools developed

for the IoT must be able to manage such changes, that occur on different scale.

Indeed, changes can occur on the lower level of the IoT stack (i.e., failing devices,

network throttling, etc.), or in the higher level of the stack (changes in the goal of

the IoT systems, changing in the NFPs requirements).

• Large: Solutions developed in an IoT context must be scalable. Indeed, IoT sys-

tems can be made of hundreds, if not thousands, of devices constantly interacting

with the physical world, with each other, and with software frameworks or Cloud-

based solutions. In order to realistically answer to IoT challenges, frameworks

must thus be scalable, and be able to handle the management of potentially huge

number of devices.

• Constrained: Large systems are nothing new, and the management of highly dis-

tributed clusters or Cloud infrastructure are well discussed topics in the scientific

literature. However, a new challenge brought by the IoT is related to constraints on

resources caused by the limited computational and storage capabilities of devices

used in the IoT. These constraints must be taken into account when working in

the IoT context.

Imperative approaches show drawbacks when handling dynamicity and scalability

requirements. Indeed, the poor maintainability of imperative programming makes it

relatively static and reaction to changes is difficult, especially when large systems, with a

lot of interacting components, are considered. Imperative programming is however able

to deal accurately with constrained systems, as precise instruction flow can be specified

by experts and optimized in order to appropriately balance resources management and

systems functionalities.

In opposition, declarative approaches were developed. In such methods, system

designers do not specify detailed instruction flows, but they rather specify what a

system should do. Declarative approaches can be found in technologies such as rela-

tional databases and the Structured Query Language (SQL), functional programming

languages or business and production rules. These technologies rely on the use of a

detailed and formal model of their application domain and a declarative specification

syntax of the system objectives. Models and specification are then used in combination

to automatically implement the system goals. Advantages of these methods are two

folds:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

5.4. Adaptation Objectives Specification 113

• Reliance of formal models of systems: As mentioned above, declarative languages

often rely on comprehensive formal models of the systems being programmed.

These models are used during program executions, and can be used to provide

guarantees on system behavior.

• Improved maintainability and scalability: Because declarative languages specify

only systems’ objectives, programs are typically shorter than their imperative

counterpart. This size decrease improves maintainability and scalability because

it leads to smaller code bases.

In conclusion, we emphasize the importance of a declarative approach to the adapta-

tion of IoT-based systems. Such approach can simultaneously tackle both the scalability

and maintainability issues by focusing on the specification of systems’ objectives rather

than actual execution lifecycle specification.

5.4.2 Specifying Adaptation Objectives with a Rule-Based Language

In order to make the specification of adaptation goals easier for non-experts users, our

solution follows the classical Event-Condition-Action (ECA) pattern. We propose a rule-

based language as illustrated in Figure 5.8. Practically, our language handles devices

such as sensors, actuators and gateways (keywords SENSOR, ACTUATOR and GATEWAY),

which are the three principal smart devices categories. These devices are associated with

events (keyword EVENT), that can be filtered using time windows (keyword WINDOW).

Such devices are typed (keyword TYPE), and this can be used to perform self-adaptation

on groups of devices rather than specific smart devices instances. Similar to objects and

classes in the object-oriented paradigm, the device type is a common data structure

of similar devices. Each device is described by a set of attribute-value pairs. Attributes

may hold information about devices such as characteristics, configuration parameters,

and their sensing data from the physical environment. As outlined in the methodology

chapter, smart devices implement various services (keyword SERVICE), which are used

to access measurements or to perform remote configuration. Adaptation (keyword

RULE) is specified in terms of predicates, quality name and adaptive actions (keywords

ON and QUALITY, IF and DO). Alternate adaptive actions can optionally be defined in

case of unavailability of the smart device involved in the original self-adaptive action

through the keyword ALTERNATE. Such actions are using sensor services to access smart

devices non-functional state and remotely adapt if deemed necessary by the discrete

controller. For convenience purposes, we also integrate the capability to specify timers,

which are typically used if rule needs to be triggered periodically (e.g., a sensor might

need to be checked regularly in order to verify if it is still active).

Furthermore, we introduce the GLOBAL keyword to declare variables related to con-

textual data external to smart devices attributes. This keyword can be used to bind the

external environment to smart devices, and they can refer to external services or cached

data in memory for runtime configuration of the rule engine. In our specific case-study,

global variables save smart devices’ states in order to restore correct system configura-

tion if controller synthesis occurs because of changes in the adaptation objectives or in

the monitoring infrastructure.

The adaptation rules specified in Figure 5.6 are given in Figure 5.9 in our specification

language. Please note that this is only a simplified example and that smart device type

assignment is not explicitly displayed. A rule starts with the keyword RULE followed by

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

114 Chapter 5. Self-Adaptation Framework for Smart Devices

Figure 5.8 – Self-adaptation language Backus-Naur form grammar

the rule’s name. The line in the left-hand side of the rule is the conjunction of logical

predicates, each of which is written on a separate line. The predicate can be applied

on individual device instances or on all instances of a given device type. Predicates

work as functions with conditions (called also filter conditions) as their input parameter.

The filter condition is a logical expression on device attributes, and the logical operator

and between predicates is explicitly omitted. For instance, in Figure 5.9, a filter is

used on line 3, and it is used to select all cardiorespiratory sensor (called HRSensor for

compactness purposes) in the normal state.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

5.4. Adaptation Objectives Specification 115

Figure 5.9 – Simpli�ed sample adaptation goals using our rule-based language

The $ prefix is a binding operator, and it attaches a variable to a specific device

type or instance (i.e., $eda: EDASensorType() binds the eda variable to all sensors

of PPGSensorType). In rule R1 of our specific case-study, we use binding variables

as means of selecting PPG and fine position sensors instances related to the context

of the cardiorespiratory sensor in the normal state. There is an implicit conjunction

between HRsensorType(), PPGSensorType() and GPosSensorType() predicates.

Practically, all PPG and fine position sensors in the same sub-system as cardiorespiratory

sensors in the normal state are respectively placed in the off states. In addition,

predicates on device types are particularly useful to specify adaptation strategies at

the system level while the adaptation must only be triggered in relevant situations.

Predicates on device instances allow a fine-grained adaptation at the device level.

Rules introduced in Figure 5.9, even though they describe actions on the lower-

levels of IoT-based systems (i.e., sensors and actuators), improves the declarativity of

adaptation goals specification because the execution flow is not explicitly specified.

Indeed, the execution flow is delegated to an external rule engine, which executes rules

when deemed appropriate considering current system input. Such rule engine can then,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

116 Chapter 5. Self-Adaptation Framework for Smart Devices

though appropriate bindings, propagate its output (i.e., states change in our case) to

the devices. Maintainability is improved as end-users only have to specify what device

configurations ensure targeted QoS for a particular application. Furthermore, the set of

rules introduced in Figure 5.9 should be seen as the initial adaptation goal (i.e., the set

of adaptation objectives that is deployed when the system runs for the first time). Since

IoT-based systems are dynamics, such rule-based adaptation objectives are bound to

evolve at runtime, and this is easily tackled by our dynamic self-adaptation framework.

A common example of an event mandating self-adaptation with respect to adap-

tation objectives is the PPG sensor failure. Indeed, the PPG smart device deficiency

mandates changes in the adaptation goals in order to reflect device unavailability. In

our system displayed in Figure 5.1, this is realized though interactions “failed moni-

tors” and “adaptation objectives.” Practically, when the NFP analyzer detects a PPG

sensor failure, it forwards this information to the objectives feedback loop. Objectives

are subsequently renegotiated in order to remove the PPG sensor from the rule-based

adaptation goals so that self-adaptation can still safely occur. The objectives analyzer

then translates the high-level specification into a BZR contract, as mentioned above,

and controller resynthesis ensues. Eventually, newly generated controllers are deployed

on the sub-systems’ gateways.

In conclusion, we introduce a full-fledged rule-based self-adaptation language. Our

language is used to specify self-adaptive behavior of IoT-based systems. Its declarative

nature improves scalability and maintainability. However, our framework is strictly

confined at systems verifying the synchrony hypothesis, which is a limitation in an

IoT-based context. Indeed, as such systems grow bigger, more computational power is

necessary to handle streams of events from devices included in IoT systems, and the

synchrony hypothesis thus might not hold anymore. In order to tackle the scalability

issue, we transform our synchronous and dynamic self-adaptation framework into

hybrid systems with both synchronous and asynchronous elements, and more details

related to this matter are discussed in the following section.

5.5 From Synchronous to Hybrid Self-Adaptation

As mentioned at the beginning of this chapter, the synchrony hypothesis claims that for

a system to be considered synchronous, one must have enough computational power

to compute system reactions to external events instantaneously. While this statement

might be true for small-scale IoT-based systems (i.e., including tens of devices) because

gateways are typically order of magnitudes more computationally powerful than smart

devices, it does not hold for large-scale IoT-based systems (i.e., made of thousands or

hundreds of thousands of devices). Indeed, if the events’ transmission rate becomes

too high, controllers might not be able to compute appropriate self-adaptive actions

fast-enough. To tackle this issue, we extend our framework with fully-synchronous

system capabilities to include asynchronous coordination of synchronous sub-systems.

In this dissertation, sub-systems are defined in terms of gateways managing subsets of

smart devices.

Such approach is not new and is traditionally considered under the scope of Glob-

ally Asynchronous Locally Synchronous (GALS) systems, which exhibit a global asyn-

chronous behavior with local sub-systems adopting synchronous behaviors [MVF00].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

5.5. From Synchronous to Hybrid Self-Adaptation 117

Since IoT-based systems are still principally built around networks of gateways control-

ling sub-networks of smart devices, this model of computation is a good fit for such

systems. Indeed, because the number of events in a gateway-controlled sub-system

is limited because of the smaller number of devices in the network, the synchrony

hypothesis is locally verified. Nevertheless, when a global view of the system is adopted,

where numerous gateways are interconnected and communicate, the high number of

events generated calls for an asynchronous approach. Additionally, GALS models are

usually used for the description of very low-level systems [MVF00], and are typically

used for the hardware synthesis of Application-Specific Integrated Circuits (ASIC) or

System-on-Chips (SoC). Higher-level specification languages for GALS systems such as

SystemJ [Mal+10] make possible the description of IoT-based systems [Eli+15]. However,

SystemJ does not offer automated controller synthesis, which is a key aspect of the

controller design at a large scale in the IoT context. Indeed, the dynamic nature of IoT-

based systems, where sensors and actuators can be added or removed to the IoT at any

moments, compels the presence of automation tools for the controller generation. The

evolving nature of such systems also instructs great maintainability, which is penalized

by using centralized languages such as SystemJ.

Our hybrid and dynamic self-adaptation framework in Figure 5.10 comprises adap-

tation objectives MAPE-K loops which are now considered to be asynchronous in-

stead of synchronous. Additionally, adaptation and monitoring MAPE-K loops are now

distributed, and independently deployed on a cluster of gateways. The adaptation

objectives adaptation feedback loop is implemented in centralized servers to adapt

distributed synchronous controllers.

The hybrid nature of our self-adaptation framework comes into play when consider-

ing the global system: the asynchronous adaptation objectives manager, because of the

mass of system-generated events, queues events upon arrival and processes them using

a first-in-first-out strategy. Once the buffered events are processed asynchronously

by the manager, synchronous action can be sent to the controlled sub-systems. Sub-

systems monitoring occurs synchronously, because of the small size of the considered

sub-systems.

Interactions defined in Figure 5.1 still hold in Figure 5.10. Because of the syn-

chronous nature of the adaptation feedback loop, we can still rely on SPLs as means to

specify sub-systems and automatically generate discrete controllers. Please note that in

this specific case, we do not require intercommunicating gateways. This is motivated

by the fact that our considered IoT-based sub-systems are self-contained, and that

self-adaptation is typically bounded to a single synchronous system.

Our self adaptation architecture can be distributed to a massive amount of gate-

ways and smart devices, thus improving overall scalability. Nevertheless, the objective

feedback loop is still centralized, as system managers need a unique access point to

specify self-adaptation adaptation objectives. This does not represent a limitation to

the system scalability property, as technologies are available to manage clusters of

systems. Additionally, even though the MAPE-K loops must analyze numerous events,

tools and methods from the Complex Event Processing (CEP) community can be used to

identify and process relevant events. Indeed, CEP tools are able to handle large amount

of events, and they commonly implement a publish-subscribe-based approach in or-

der to acquire events streams [CM12]. Additionally, CEP systems generally associate

application-specific semantic for the sake of application logic specification.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

118 Chapter 5. Self-Adaptation Framework for Smart Devices

Figure 5.10 – Simpli�ed hybrid self-adaptation framework

Asynchronous CEP engines can consequently be used to analyze streams of dynamic

self-adaptation triggering events, such as failed monitors. Application logic can then

be implemented in order to redistribute event streams loads (or processed version of

the events) to relevant IoT-based sub-systems. Additionally, we also promote the use of

synchronous and lightweight CEP engines for the implementation of our synchronous

monitors as described later in the implementation chapter. Indeed, since CEP engines

generally analyze events using various application-specific rules, they can be used

to specify and implement advanced software monitors which derive relevant non-

functional data about sub-systems through the combination of several streams of events.

More details about the practical integration of CEP engines to implement monitoring

logic are given in the next chapter.

In conclusion, we extended our original synchronous dynamic self-adaptation

framework to include asynchronous adaptation objectives management capabilities.

This improves the overall system scalability as we can now consider the asynchronous

coordination of synchronous IoT-based sub-systems accessed trough gateways con-

nected to smart devices of such systems. We can consequently still rely on advanced

discrete controller synthesis capabilities provided by SPL while preserving the dynamic

nature of the framework.

5.6 Conclusion

In this chapter, we introduce our dynamic self-adaptation framework. We start with a

fully synchronous version implementing separation of concerns of adaptation objec-

tives, self-adaptation process and monitoring infrastructure. Based on this framework,

we are able to manage changes in adaptation objectives and monitoring infrastructure,

which is of particular interest in IoT-based systems since they continuously interact

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

5.6. Conclusion 119

with the always-evolving physical world and comprise dynamic networks where smart

devices can join or leave the systems at runtime.

Self-adaptive behavior is implemented with synchronous discrete controllers. Practi-

cally, we consider IoT-based systems as reactive systems reacting to external solicitations

mandating self-adaptation of the smart devices included in the systems. Each smart

device can be modeled as a specific LTS representing its self-adaptive capabilities. Such

models can be specified using SPLs, which make possible to automatically generate

discrete controllers. In fact, such controllers are C or Java imperative programs that can

be easily integrated into systems as means to provide self-adaptation.

However, we encounter limitations of the purely synchronous systems, principally

in terms of scalability. Indeed, for a system to be considered synchronous, it must be

able to acquire and process streams of input events fast enough. This represents a

disadvantage when it comes to IoT-based systems as they can account for hundreds or

thousands of devices, and the computational resources to process streams of generated

events becomes unreasonably high for an implementation on standalone gateways.

Additionally, discrete controller synthesis relies on the state space exploration, and the

time needed to perform this exploration increases with respect to the number of devices.

In order to tackle such limitation, we present our hybrid self-adaptation framework,

comprising asynchronous and synchronous capabilities. Namely, we implement asyn-

chronous adaptation objectives management along with synchronous self-adaptation

and monitoring. This leads to the asynchronous coordination of synchronous sub-

systems, and thus a Globally Asynchronous Locally Synchronous system. Synchronous

sub-systems handle asynchronous events by buffering them and processing them using

the first-in-first-out logic. This improves system scalability as we can now rely on fully

distributed self-adaptation and non-functional properties monitoring feedback loops,

along with a centralized adaptation objectives management. Centralizing adaptation

objectives adaptation cohere with the fact that most IoT-based systems are built to

answer specific problems, and unique access points for system managers are preferred.

However, our framework is confined at the adaptation of the IoT higher layer. Indeed,

we assume self-adaptation LTSs to be hard coded into the smart devices’ firmware. This

represents a limitation as advanced self-adaptive behavior may require broader change

of such devices, thus mandating modifications of the self-adaptive LTSs. Additionally, we

only use DCS as means to generate discrete controllers to be deployed in the gateways.

This mechanism is of particular interest as it generates correct-by-construction code,

and it would be interesting to include automatically generated discrete controllers to

advanced smart devices requiring the concurrent execution and coordination of several

LTSs modeled as synchronous nodes. Please note that even though the code is correct

because controller synthesizers ensure that it accurately implements the models of the

system, this should not be understood as correct execution, considering the synchrony

hypothesis might be violated during run time for a variety of reasons (e.g., increase in

network latency, smart device processor overload, etc.).

In addition, even though our rule-based adaptation objectives language improves

the declarativity of systems’ goals specification, it lacks a formal declarative seman-

tics and it is still oriented at low-level smart devices manipulation. Declarativity is

however improved as our rule-based approach shifts the focus of IoT-based systems

developer from specifying smart devices coordination’s execution flows to the specifi-

cation systems being designed objectives. The lack of declarative semantics prevents

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

120 Chapter 5. Self-Adaptation Framework for Smart Devices

comprehensive language analysis, and questions such as rules conflict or rules data

persistence cannot be formally answered. Authors such as in [CDR14] attempted at

providing solutions to avoid rules conflicts or circular execution of rules using their own

synchronous programming language, but such approach are not broad enough and lack

the formality of a full-fledged declarative semantics.

Yet another limitation comes from the fact our self-adaptation case-study only

includes sensors and gateways. Actuators are not considered, which limits its strength

from a control theory perspective. Indeed, the only interactions illustrated are simple

reconfiguration, which do not accurately capture the full dynamics of controlled systems,

where the modeling and characterization of actuation on the physical world is the

principal subject of study. However, the reconfiguration of sensors considered in our

case-study is a good representation of adaptation scenarios, as they comprehensively

represent the range of digital actions available to adapt the system to a wide variety of

scenarios. As a consequence, the comprehensive (both from theoretical and practical

standpoints) actuators to our case-study represents a promising research direction as

they represent components of interest in the broadening of our adaptation framework.

Yet another limitation comes from the fact our self-adaptation case-study only in-

cludes sensors and gateways. Actuators are not considered, which limits its strength

from a control theory perspective. Indeed, the only interactions illustrated are simple

reconfigurations, which do not accurately capture the full dynamics of controlled sys-

tems, where the modeling and characterization of actuation on the physical world is the

principal subject of study. However, the reconfiguration of sensors considered in our

case-study is a good representation of adaptation scenarios, as they comprehensively

represent the range of digital actions available to adapt the system to a wide variety of

scenarios. As a consequence, the addition (both from theoretical and practical stand-

points) actuators to our case-study constitutes a promising research direction as they

represent components of interest in the broadening of our adaptation framework.

Finally, a future research direction for our self-adaptation framework would be the

inclusion of techniques derived from control theory. Indeed, our approach lacks typical

concerns of classical control, such as the comprehensive study of the system’s dynam-

ics, inertia and stability [Dut+10]. Even though our framework offers the automatic

generation of discrete controllers, we did not consider the impact of various physical pa-

rameters such as network throttling, variations in network latency or the effect of sensors

mobility on the global performance of the system. Moreover, we assumed actuations

(i.e., reconfigurations) to be instantaneous. As a consequence, controllers generated

by our system are only considered correct by construction in use-cases where all these

parameters produce no measurable effect our framework. The study of our adaptation

infrastructure could be extended with concepts derived from queuing theory [Hel+04]

for its computationally-intensive parts such as the comprehensive characterization of

the asynchronous-to-synchronous subsystems interface, while hybrid automata from

the Cyber-Physical Systems (CPS) community could be used to study the interaction of

smart devices with the physical world.

In the next chapter, we present the prototype of our dynamic self-adaptation frame-

work, with a particular focus on tools and methods we used to implement the different

feedback loops necessary to achieve full-fledged dynamic self-adaptation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

CHAPTER 6
Implementing the Self-Adaptation

Framework
Software implementation and experiments

Contents

6.1 Introduction . 121

6.2 Selected Technical Solutions . 123

6.2.1 The Data Distribution Service Standard 123

6.2.2 Asynchronous Reactive Systems Using Vert.x 125

6.2.3 The Drools Rule Engine . 127

6.2.4 The Maven Software Management Tool 129

6.2.5 MongoDB Database . 129

6.3 Implementation Architecture . 130

6.3.1 Global Architecture . 130

6.3.2 Implementation Model . 131

6.3.3 Implementing the GUI . 136

6.3.4 Deployment Life Cycle . 137

6.4 Implementation Evaluation . 137

6.4.1 Case Study . 138

6.4.2 Experimental Results . 139

6.5 Conclusion . 143

6.1 Introduction

In this chapter, we discuss the Proof-of-Concept (PoC) of our dynamic self adapta-

tion framework and its implementation. As mentioned in the previous chapter, our

framework comprises three interacting MAPE-K loops achieving separation of concerns

between management of adaptation goals, actual self-adaptation mechanisms and

non-functional monitoring infrastructure. These loops communicate through four

121

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

122 Chapter 6. Implementing the Self-Adaptation Framework

interactions. Additionally, we deploy synchronous controllers and monitors on sim-

ple gateways such as Raspberry Pis, while the adaptation objectives management is

centralized onto a powerful server.

Several elements are of importance when it comes to the implementation of our

framework. In fact, we set requirements that assist us with the selection of appropriate

tools, protocols and software libraries:

• Scalable and reliable communication: As discussed above, the three feedback

loops defined in our system are constantly communicating. Smart devices are

generating event streams that our framework must analyze in real time in order to

decide if the adaptation of our IoT system is required, or to decide if changes in the

monitoring infrastructure or adaptation objectives should be considered. Because

IoT-based systems are often used in critical application cases, communication

must be reliable both between the feedback loops and between gateways and

smart devices. Even though it is not realistic to compel with the adoption of

any particular communication protocol between smart devices and gateways

because of the variety of existing low-energy wireless communication protocols,

we decide to promote the use of single communication protocol for the higher

level of our systems as means of minimizing interoperability issues. Because the

self adaptation framework should manage numerous devices, the communication

protocol for the higher layer must be easily scalable. This practically means that

Quality of Service (QoS) characteristics such as latency or throughput should be

independent of the amount of managed smart devices.

• Complex Event Processing (CEP) capabilities: As mentioned in the previous chap-

ter, real-time analysis of numerous concurrent streams of events can be tackled

using CEP techniques. In such techniques, end-users typically define event-

driven actions to achieve application-specific objectives. By using such technique,

we specify advanced monitoring logic, deriving relevant information about the

system’s non-functional state. We also use them to perform smart functional adap-

tation as an enabler of smart services. Additionally, CEP software are traditionally

designed to handle massive streams of events, which makes their use relevant in

an IoT-based context where multiple heterogeneous data streams are produced

by numerous smart devices.

• Interoperable: Eventually, we require our smart devices to be as interoperable as

possible. In this context, interoperability is two-fold: first, it ensures communi-

cations between all elements of the system should occur seamlessly without the

need for complex protocol conversion software. Then, we enable interoperabil-

ity regarding the generated controllers. Indeed, the dependency on automated

code generation to build discrete controllers should not be a limitation when

it comes to the deployment of our system. For instance, we consider that gen-

erated controllers should run on a wide range of gateways such as Raspberry

Pis, Intel Edisons or traditional computers. Additionally, self-contained software

deployment is particularly appreciable in distributed environments, as it prevents

concerns about dependencies installation or integration.

In addition, we require for our prototype to be lightweight, as it should execute

on low-cost and relatively resource-constrained gateways. It is worth noting that here,

resource-constrained means computational limitations when compared to state-of-the-

art computers running last generation processors. Furthermore, we aim at integrating

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

6.2. Selected Technical Solutions 123

a full-fledged Graphical User Interface (GUI) in order to empower casual users with

capabilities to specify self-adaptation strategies with minimal efforts.

Relying on Synchronous Programming Language (SPL) has implications in terms

of practical implementation of our framework. Indeed, Discrete Controller Synthesis

(DCS) and the modeling of smart devices as synchronous nodes are the cornerstone

of our self-adaptation system, and they consequently should be seamlessly integrated

with our framework. We thus adopt a middle-out approach to prototype our framework,

where we progressively implement the distributed components of our framework from

Labeled Transition Systems (LTS) -based modeling of smart devices.

With such requirements in mind, we design and implement a PoC of our dynamic

self-adaptation framework. In Section 6.2, we describe selected technologies, and

the overall framework architecture is described in Section 6.3. We then evaluate our

implementation in Section 6.4. Eventually, we conclude this chapter with an executive

summary of our prototype and discuss its limitations in Section 6.5.

6.2 Selected Technical Solutions

In this section, we present the choice of technical solutions along with the motivation

behind their selection. More precisely, we identify the advantages of each tool, but

also how it contributes with respect to our framework requirements identified in in-

troduction section. Please note that we tend to choose open-source solutions as they

commonly feature very active development and communities, which can later benefit

the wide adoption of our framework in the IoT community. Additionally, we adopt the

Java programming languages for cross- operating systems compatibility (i.e., heteroge-

neous gateways). It is worth noting that the Heptagon/BZR SPL also generate Java codes

to deploy discrete controllers, which constitutes further motivation for the use of this

language.

6.2.1 The Data Distribution Service Standard

As mentioned in the previous section, we require that all system communications are

scalable and reliable. To this end, we avoid communication protocols featuring single

points of failure as they can potentially decrease system reliability. We adopt publish-

subscribe -based solutions as they can easily be integrated to event-driven frameworks

and typically exhibit good scalability. Another advantage of publish-subscribe solutions

is that smart devices in IoT-based systems commonly exhibit event-based behaviors

rather than query-based behaviors, where devices self-determine when measurements

should be transmitted to external tiers.

Numerous publish-subscribe -based protocols can be found in the IoT landscape,

such as Message Queuing Telemetry Transport (MQTT) 1 , Advanced Message Queuing

Protocol (AMQP) 2 or Extensible Messaging and Presence Protocol (XMPP) 3. However,

these solutions are centralized and typically rely on a central broker for message distribu-

tion. This centralized nature represents a drawback for their use in critical applications,

as failures of the broker implies failure of message distribution. Additionally, even

1. MQTT standard: http://mqtt.org/ (visited on 07/22/2018)
2. AMQP standard: https://www.amqp.org/ (visited on 07/22/2018)
3. XMPP standard: https://xmpp.org/ (visited on 07/22/2018)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

http://mqtt.org/
https://www.amqp.org/
https://xmpp.org/

124 Chapter 6. Implementing the Self-Adaptation Framework

though some broker redundancy can be introduced, this process commonly occurs

manually, and every element of the system should be reconfigured in order to include

redundant brokers addresses and configuration parameters.

In opposition, the Data Distribution Service (DDS) 4 standard is a brokerless, decen-

tralized middleware aimed at the development of distributed real-time applications.

The DDS is divided into the DDS Application Programming Interface (API), which guar-

antees source code portability independently of underlying vendor implementations,

and the DDS Interoperability Wire Protocol (abbreviated as), which ensures low-level

interoperability between different implementations.

Data exchange in the DDS relies on a fully distributed Global Data Space (GDS) with

dynamic publisher and subscriber discovery. The GDS is accessed by declaring Domain

Participants (DPs), which are indexed using integer IDs. Data flows between devices are

based on topics, which are made of a name, a type and a predefined quality-of-service.

Topics types are specified using a subset of the OMG Interface Definition Language

(IDL), which adopts a C-like definition of data types using structures. This interface

specification facilitates system integration as systems’ components communicate using

an agreed-upon data type. This comes in opposition with the MQTT protocol, where the

payload format is not specified, and system components must use external knowledge

to aggregate exchanged data.

Additionally, DDS features extremely flexible and precise QoS management through

the definition of 22 QoS policies. QoS properties can be defined either for topics, pub-

lishers (also known as writers in the DDS lexicon) or subscribers (i.e., data readers). They

are defined with respect to volability, infrastructure, delivery, user QoS, presentation,

redundancy and transport. Furthermore, even though most QoS are only defined for

specific instances of DDS elements, a number of properties can cause incompatibility

issues if communicating elements do not share the same QoS property values. For in-

stance, the reliability QoS should be the same for all system elements, and if a subscriber

does not have the same reliability parameter value that a publisher, the two elements

are not able to communicate. These flexible QoS management empowers us with the

capability to further improve the communication reliability in our IoT system.

Furthermore, DDS implementations commonly offer data reading through direct

query or by attaching a listener function to the data reader object. The listener function

is simply a callback function assigned to the reader, which is called every time new data

is available, while the query based mechanism is typically used to read data through

polling by periodically interrogating the reader for the presence of new data. Both

solutions offer advantages, but we chose the listener-based approach as it offers better

event management, minimizes processor load, and because our global architecture is

strongly event-driven.

The DDS protocol specifies hierarchical information scopes. The global information

scope is called a domain, and inter-domains communication is not specified in the

protocol and must be interceded in the user application. A domain can contain several

partitions. Partitions are finer information scopes and provide a flexible mechanism to

divide information into logical sets. Publisher and subscribers can then join partitions by

either providing the partition full name, or by providing a regular expression matching

all partitions they want to join.

4. DDS standard: http://portals.omg.org/dds/ (visited on 07/22/2018)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

http://portals.omg.org/dds/

6.2. Selected Technical Solutions 125

In addition, DDS performance evaluation confirms its relevance for its use in critical

IoT-based applications [CK16; BPM16]. Indeed, even though it introduces overhead in

order to increase communication reliability, it achieves acceptable latency and packet

loss rate. In particular, authors of [BPM16] found it performed better than MQTT and

XMPP in terms of message throughput, while authors of [CK16] showed DDS provided

better latency than MQTT in low-quality networks.

Because DDS is a standard technology, numerous implementations are available

both under commercial or open-source licensing. Since we focus on adapting open

source solutions, we have chosen OpenDDS and Vortex OpenSplice DDS. Additionally,

Real-Time Innovation (RTI) offers a free version of their product (Connext DDS) for

inclusion in open-source projects, but this product remains closed-source. OpenDDS

focuses exclusively on a C++ based implementation of the DDS protocol. Even though

bindings to the Java programming language are available through Java Native Interface

(JNI), they are difficult to configure and are a suboptimal solution. In opposition, Vortex

OpenSplice DDS Community (ADLINK Technology Inc., Taipei, Taiwan) implements

full DDS standard in several languages such as Java, C, C++ or Python. Additionally,

this DDS implementation was recently integrated to a new Eclipse project under the

name Eclipse Cyclone DDS. This leads us to choose the ADLINK DDS implementation,

as Eclipse projects are commonly well distributed and well maintained.

6.2.2 Asynchronous Reactive Systems Using Vert.x

As mentioned in the previous chapter, our system comprises asynchronous and syn-

chronous capabilities, while being strongly event-driven. While events handling could

occur manually or through polling in the synchronous case, it is more convenient to

work with a global framework in order to have homogeneous event handling. Addi-

tionally, in order to avoid overhead, we require internal events (i.e., events used for the

coordination of the elements in the feedback loop) not to use the DDS protocol.

To this end, we investigate a tool for the homogeneous implementation of reactive

systems, which led us to the choice of the Vert.x 5 tool-kit. Using Vert.x, developers can

implement flexible, scalable and lightweight reactive systems with an asynchronous non-

blocking development paradigm. In addition, Vert.x provides non-blocking libraries

for the integration of various tools and technologies, such as a basic Hypertext Transfer

Protocol (HTTP) server, HTTP templating engines, or various database systems.

Because Vert.x is only a tool-kit and not a comprehensive framework, it is effectively

lightweight (the Vert.x core only takes 650 kB of space) and runs on various hardware,

ranging from powerful servers to low-cost single board computers. Additionally, even

though the Vert.x core module needs the Java Virtual Machine (JVM) to be installed

in order to be executed, interfaces to numerous programming languages are available

(such as JavaScript, Kotlin or Ruby just to name a few).

The strength of Vert.x principally lies on its advanced computing model, namely,

non-blocking asynchronous and event-based development. Particularly, concurrency

is achieved by attaching handlers to events, which are managed by an advanced event

loop running in the background and which executes the functions attached with the

event it receives. One can trivially notice that this programming paradigm is ideal for

the specification of reactive systems, which are by nature required to react to various

5. Eclipse Vert.x tool-kit: https://vertx.io/ (visited on 07/23/2018)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

https://vertx.io/

126 Chapter 6. Implementing the Self-Adaptation Framework

sets of external events. Additionally, the use of an event-loop to manage external events

improves system scalability. Indeed, in opposition with the classical synchronous and

blocking approach by which every concurrent element of the system is assigned to a

dedicated thread, the asynchronous non-blocking approach can handle more events

using a minimal number of threads [Esc17]. Practically, Vert.x implements a variation of

the traditional reactor pattern called the multi-reactor pattern, where several event loops

are used to manage events and call appropriate handlers [Esc17]. This computational

paradigm comes with a condition: the event loop should never be blocked. In order

to tackle this strong requirement, and if blocking operations are still necessary, Vert.x

provides a mechanism to manage blocking computations safely.

Furthermore, Vert.x reactive components are specified in verticles, which are an

actor-like deployment model and can be seen as a self-contained reactive component.

Verticles specify reactions to various events, and events handler are commonly repre-

sented as callbacks. They also provide a mean to increase the modularity of Vert.x-based

solutions, as they can be used to implement self-contained modules with a single func-

tional purpose. In addition, Vert.x offers an internal communication bus called an event

bus. Essentially, this bus is the backbone of Vert.x-based asynchronous systems, and it

uses a publish-subscribe communication paradigm. A single event bus is deployed in

each Vert.x instance (i.e., instance of the Vert.x core managing events handling), and it

can be used for communication between verticles.

Other frameworks or tool-kits for the implementations of asynchronous reactive

systems can be found, such as Node.js, Netty or ReactiveX. Node.js is a JavaScript-only

non-blocking asynchronous framework for the development of Web servers. Even

though it is widely used, the poor availability of advanced debugging and code analysis

tools for JavaScript prevents its adoption in critical context, where minimal code quality

should be guaranteed. Netty is a low-level asynchronous networking framework, and

Vert.x actually relies on it for its asynchronous event management implementation.

However, Vert.x offers various high-level libraries that facilitates its integration with

external software, and consequently presents a better comprise between ease-of-use

and computational efficiency. Eventually, ReactiveX provides generic asynchronous

frameworks based on the observer pattern. It also defines observable sequence of events,

which are processed and associated with various actions. The principal advantage of

ReactiveX is that it decreases the use of callbacks, which can reduce code legibility if

overused. However, the libraries offered by ReactiveX are very generic, and do not offer

integration with external software or Web server capabilities.

As mentioned in the introduction, we require a Web-based GUI in order to empower

end-users with easy adaptation objectives specification. Vert.x offers full-fledged Web-

server capabilities, which further motivated its adoption. In addition, Vert.x supports

various Hypertext Markup Language (HTML) templating engines to dynamically gen-

erate Web pages according to internal server information. Indeed, the GUI needs to

accurately represent the system being managed, and it thus needs to change depending

on server-side information. With a templating engine, we are able to implement generic

Web pages, that are then automatically generated according to internal information

through the Thymeleaf template engine when the Vert.x server receives an appropriate

HTTP request from a client.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

6.2. Selected Technical Solutions 127

6.2.3 The Drools Rule Engine

Generalities

Drools 6 is a Business Rule Management System (BRMS), providing both rules manage-

ment and a rule execution engine. The rule execution engine is based on an improved

version of the Rete algorithm. It provides a full-fledged approach to rule specification,

and it is an open source project part of the WildFly application server. Drools defines

two core concepts of rules management and execution [SMA16]:

• Data model, which designates the global knowledge on which the rules are applied.

Practically, this is implemented under the form of a set of Java classes.

• Rules syntax: In Drools, rules have two sides, the left-hand side (LHS) and the

right-hand side (RHS). Expressions in the LHS declare constraints on the data

model (i.e., constraints on the classes’ attributes defined in the data model), and

they are also called conditions. Expressions on the RHS, also designated as actions,

declare actions to be performed on the data model.

Practically, Drools uses the KIE (Knowledge is Everything) API for knowledge rep-

resentation, management and execution. Rules are specified using the Drools Rule

Language (DRL), and the basic structure of the language is given in Figure 6.1.

Figure 6.1 – Basic Drools rule syntax example

Each rule is designated by a unique name, given after the rule keyword. Conditions

are given after thewhen keyword, and actions are specified using Java code after thethen
keyword. The package that implements the knowledge base is given after the package
keyword. Eventually, it is possible to import any Java classes using the traditional

import keyword, and global variables can also be defined after the global keyword.

Such variables are typically implemented in order to use external application objects

inside rules. They typically invoke remote services or log information in order to gain

knowledge over the system execution. This syntax allows end-users to only focus on rule

specification, without the need to specify the complete system flow to achieve desired

behavior. A complete description of the Drools rule syntax is given herein bellow.

In Drools, business knowledge and facts are embedded in a KieModule. Each

KieModule contains KieBases, which define the application’s entire knowledge (i.e.,

rules, type models, functions, etc.). All the KieBases of a given KieModule are con-

tained into a KieContainer. However, this data organization model represents offline

data. Runtime data (i.e., dynamic business data) is provided to the rule engine us-

6. Drools documentation: https://www.drools.org/ (visited on 07/22/2018)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

https://www.drools.org/

128 Chapter 6. Implementing the Self-Adaptation Framework

ing KieSessions. KieSessions are the main mechanism to provide interactions

between the rule engine and the data model, and they make use of definitions specified

in KieBases to feed the rule engine with appropriate data. Practically, KieSessions
can be instantiated directly, and the appropriate KieBases instanciation will be cached

by the API.

Drools is able to manage dynamic business logic, where rules change frequently,

using the KieScanner object. This object implements synchronous or asynchronous

changes monitoring in the compiled business assets (i.e., compiled version of business

rules). Change detection is based on a traditional versioning and follow the Apache

Maven 7 specification. These capabilities are of prime interest in our framework, since

such mechanism can be used to manage and dynamically react to changes in the

adaptation objective rules without any system downtime.

Drools Rule Language

In addition to the simple rule syntax given in Figure 6.1, the DRL features advanced ca-

pabilities that improve the declarativity of complex and large scale business applications

specification. More particularly, the DRL provides mechanisms to specify modifications

of the data embedded in instances of the data model, but also interactions with the

external world, advanced configuration parameters and rule execution control.

The main mechanism to refer to external tiers from rules are global variables, that

can be specified after the keyword global in DRL. External tiers are typically services

(e.g., Web services), and the global variable declaration syntax in DRL is similar to

traditional Java variable declaration (i.e., Type varName).

As business application grow larger, rules can become very complex, with very long

condition lists and actions. In order to improve maintainability, this must be avoided by

separating complex rules into smaller and simpler rules. As the Drools approach aims

to be as declarative as possible, there are no mechanisms that specify rule calls. The

orchestration of several rules rather happens though the modification of the data in the

working memory.

However, several imperative keywords such as import, modify, update, delete
or retract were introduced. They empower developers with more latitude regarding

the implementation of large-scale systems but are declarative in nature because they

are used to specify the rules’ flow of execution by, schematically, modifying data that

will trigger the execution of other rules. Using these keywords, rules can be chained, and

they can interact together through modifications of data in the rule engine session. As a

consequence, this approach is closer to classical imperative programming languages, it

improves the overall flexibility of systems specification.

CEP Capabilities

In addition to being an efficient and comprehensive rule engine, Drools also features

CEP capabilities. Namely, Drools is able to process streams of events in order to detect

changes requiring actions, and implements it through rule-based event processing. It

defines two categories of events: punctual events and interval events [SMA16], the first

being used to describe events that have a single occurrence in time, while the latter is

7. Apache Maven: https://maven.apache.org (visited on 07/22/2018)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

https://maven.apache.org

6.2. Selected Technical Solutions 129

used for events associated with a beginning date and an end date. Events are immutable

(i.e., they cannot be changed after storage), and are associated with a life cycle (i.e.,

events that are too old to be relevant to the application should be removed from the

knowledge base in order to save space).

Practically, information inserted in the knowledge base should be assigned the role

event to allow the rule engine to apply event-based reasoning and process it. Optionally,

events can be explicitly associated with a time stamp, a duration used to define interval

events, and an expiration date.

When it comes to event processing, Drools defines a variety of temporal operators

(e.g., after, before, overlaps, etc.). It also defines sliding windows, which can be

specified with respect to length (i.e., the discrete number of events inserted into the

knowledge session) or time. Often used in combination with sliding time windows is

the accumulate keyword, which can be used to count facts or events based on specific

filters.

In our specific application, CEP capabilities are particularly useful for the specifica-

tion of advanced non-functional monitors, which can deduce non-functional state of the

system through the analysis of events (either functional or non-functional) generated

by the smart devices included in the controlled systems.

6.2.4 The Maven Software Management Tool

Because our prototype is required to be flexible and easily deployable on a variety of

architectures, we chose to use a software management tool. When it comes to Java

development, the two principal options are Maven and Gradle. The reliance of the

Drools rule engine on Maven lead us to chose this software development over Gradle.

Maven provides full-fledged build automation for Java projects. Practically, it uses

the “convention over configuration” paradigm, which encourages software developers

to adopt specific conventions as means to decrease development time by reducing

available options. Practically, Maven specifies a standard folder architecture that devel-

opers must comply with in order to use this build automation tool. In addition, Maven

offers advanced dependency management through central repositories, and most of the

dependencies can automatically be fetched from such remote repositories and placed

into a given project. Maven also comes with numerous plugins to extend its capabilities,

and they can be used to better control the build process. Please note that it is also

possible to specify unitary tests within the build process, and that the project build will

fail if test does not complete successfully.

In Maven, the entire build process is specified in an Extensible Markup Language

(XML) file called pom.xml, placed at the root of the project directory. This file declara-

tively describes various project’s parameters (such as project name, inclusion of sub-

projects, project version, etc.), but also of the project’s dependencies and build strategy

(e.g., build only a minimal version or a self-contained version including all dependen-

cies). Practically, projects can then be built and run using very simply Maven commands.

6.2.5 MongoDB Database

Even though we emphasize the importance of a distributed architecture, there is still

a need for central information storage in case the system is shut down and must be

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

130 Chapter 6. Implementing the Self-Adaptation Framework

restarted with its previous configuration. To this end, we chose to integrate MongoDB

in our solution due to its Structured Query Language (SQL)-like queries, its replication

model favoring data consistency, and the possibility to organize documents in collec-

tions. Additional, independent benchmarking showed its optimal performance in terms

of read and write operations [PND14].

Practically, we use JavaScript Object Notation (JSON)-based description of smart

devices, which contains the synchronous specification of the node they implement

in terms of inputs, outputs and automaton. We also used JSON to store rule-based

adaptation objectives, and the structure of the data follows our language’s grammar. In

the current state of our prototype, rules are specified in terms of rule name, QoS name,

predicates and adaptive actions.

6.3 Implementation Architecture

In this section, we give a comprehensive description of the implementation of our

dynamic self-adaptation framework. We start with a global architectural overview of our

implementation, and we then proceed to the complete description of all the elements

of the implemented framework.

6.3.1 Global Architecture

The general architecture of our self-adaptation framework is given in Figure 6.2. As de-

picted in the figure, DDS is the backbone of our architecture, and it is used to implement

all interactions described in the previous chapter, namely the adaptation objectives

(called non-functional adaptation objectives in Figure 6.2), the failed monitors, the

adaptive actions and the internal context. The three MAPE-K loops of our framework

are communicating though these DDS interactions (which are, in fact, DDS topics). The

adaptation objectives feedback loop is also interacting with the objectives directory,

which stores predefined adaptation goals, which is itself interacting with our Web-based

GUI. Indeed, we chose to interface interactions between the feedback loop and the GUI

with the objectives directory, as it represents a central element storing all the existing

rules in the system. In fact, when a user adds a new adaptation rule in the system, it is

directly stored in the database. The objectives feedback loop then detects a database

change event, and propagates this new rule to all the other parts of the framework.

The adaptation feedback loops interacts with the device directory. This database

stores representations of smart devices in the IoT-based system. In our specific ap-

plication, it stores the LTSs of all smart devices, that can be used to perform discrete

controller synthesis when combined with a set of adaptation objectives. Eventually,

the monitoring feedback loop interacts with the Drools rule engine. Indeed, we used

advanced CEP capabilities of Drools to implement a declarative specification of complex

software monitors, which use event streams from the system to deduce non-functional

states.

Table 6.1 summarizes the software used to implement this prototype, along with

their versions. Please note that for Vert.x and Drools, the use of newer version simply

implies changing the version number in the Maven pom.xml file. By doing so, Maven

will automatically update the version of these libraries. For all other software, updates

should occur through the package management software (on GNU/Linux operating

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

6.3. Implementation Architecture 131

Figure 6.2 – Simpli�ed implementation diagram

systems) or manually (on Windows). Additionally, Heptagon/BZR can be updated using

opam, the OCaml package manager. Please note that backward compatibility should

however be verified before updating to newer version of the libraries.

Table 6.1 – Prototype dependencies names and versions

Software Name Version

Java JDK 1.8.0_172
Vortex OpenSplice DDS Community 6.7.180404
Maven 3.5.2
Drools 7.1.0.Final
Vert.x 3.5.1
Ocaml 6.05.00
Heptagon/BZR 1.4.00

6.3.2 Implementation Model

The Maven modules implementing the architecture given in Figure 6.2 are represented

in the dependency diagram given in Figure 6.3. The overall system comprises a single

parent module and 8 sub-modules. The parent module is called org.adapiot, and it is

only used to define framework-wise dependencies and build strategies. The three feed-

back loops are implemented in the org.adapiot.objectives, org.adapiot.moni-
toring and org.adapiot.nf_adaptation sub-modules. The GUI is implemented in

the org.adapiot.gui module. The org.adapiot.dds and org.adapiot.configu-
ration are helper modules, implementing high-level functions to either configure the

system at a global level or easily access DDS communication functions. Eventually,

the org.adapiot.logger module implements framework-wise logging mechanism,

while the org.adapiot.device is used to model devices. It is worth noting that the

three feedback loops sub-modules are not interdependent, thus making them truly

self-contained.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

132 Chapter 6. Implementing the Self-Adaptation Framework

Figure 6.3 – Implementation dependency graph

In the remaining section, we focus on the implementation of the three feedback

loops, as they are the backbone of our dynamic self-adaptation framework. These loops

comprise 17 classes, and cross-modules communications are handled using the helper

functions of each DDS-dedicated module.

Figure 6.4 – Objectives feedback loop class diagram

The first module implements the objectives feedback loop with 6 classes, detailed in

Figure 6.4 and Figure 6.5:

• The ObjectivesMonitor class, which implements a set of sensors that detect

if new objectives are added by external users in the objectives database, or if

changes in the monitoring infrastructure mandate changes in the adaptation

objectives.

• The ObjectivesAnalyzer class, which determines if the objectives are speci-

fied with respect to the functional or non-functional properties of the system.

This analysis is mandated by the different ways we handle functional and non-

functional adaptation. While functional adaptation is managed by the Drools rule

engine, non-functional adaptation rests on the use of automatically synthesized

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

6.3. Implementation Architecture 133

Figure 6.5 – Objectives feedback loop activity diagram

discrete controllers deployed on gateways, and the objectives for these separate

kind of adaptation must be handled distinctively.

• The ObjectivesController class, which is in charge of objectives deployment

in either the rule engine or in the gateways, depending on the nature of the new

objectives. The deployment occurs through the publication of a message with the

new objectives on the appropriate DDS topics.

• The ObjectivesFeedbackLoop class, which coordinates the operation of the

three classes described herein above. This class is in fact a Vert.x verticle, and the

coordination between the elements given above occurs asynchronously.

• The NFCOPub is a DDS data writer class, and it is used to publish the non-functio-

nal adaptation objectives on the appropriate DDS topic. This class implements the

interaction from the objectives feedback loop to the adaptation and monitoring

feedback loops.

• The FailedMonitorListener is used to asynchronously receive failed monitors,

thus implementing the interaction between the monitoring feedback loop and

the objective feedback loop.

Figure 6.5 illustrates the activity diagram, representing the interactions between

classes from the objectives management sub-module, and only two events trigger objec-

tives analysis and redeployment. These events are originating from the failed monitor

topic or changes in the non-functional adaptation objectives database. They both trig-

ger different actions. Events from the failed monitor topic cause the such monitors to be

analyzed in order to remove the defected smart object from the adaptation goals, while

events generated by changes in the database only trigger new objectives analysis and

integration to the relevant gateways.

In summary, the objective feedback loop sub-module (called org.adapiot.obje-
ctives) handles the dynamic management of changing adaptation objectives. It com-

municates with adaptation and monitoring feedback loops though interactions using

the DDS publishers and subscribers defined in the NFCOPub and FailedMonitorLis-
tener classes.

The next sub-module implements the non-functional adaptation feedback loop,

and it contains 5 classes, displayed in Figure 6.6:

• The AdaptationMonitor class, which implements all the necessary monitors

to perform non-functional adaptation. In particular, it subscribes to the non-

functional adaptation objectives DDS topic. This class provides bindings between

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

134 Chapter 6. Implementing the Self-Adaptation Framework

smart devices’ streaming services and synchronous controllers, handling the

preservation of an acceptable QoS in the entire controlled sub-systems.

• The BZRWrapper which is a helper class to build Heptagon/BZR programs from

non-functional adaptation objectives and smart devices description.

• TheAdaptationAnalyzer class performs the actual discrete controller synthesis

process. It is used to synthesize Java code implementing discrete controllers.

• The AdaptationController class generates a self-contained jar file, and de-

ploys it on the appropriate gateways. This executable is remotely deployed using

Secure Shell (SSH) File Transfer Protocol (SFTP), and remote operation is securely

performed using SSH. Please note that all the necessary library for discrete con-

troller operations are packaged within this file.

• Finally, the AdapatationFeedbackLoop class coordinates the operation be-

tween the adaptation monitor, adaptation analyzer, discrete controller synthesizer

and rule engine runtime classes.

Figure 6.6 – Adaptation feedback loop class diagram

Figure 6.7 – Adaptation feedback loop activity diagram

Figure 6.7 details interactions between classes. One can notice that interactions

are synchronous, because they are defined within a loop. This implies we periodically

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

6.3. Implementation Architecture 135

query data availability in order for us to detect events mandating changes in the self-

adaptation strategy. Elements triggering adaptation are the reception of new non-

functional adaptation objectives, that trigger objectives analysis, Java code generation,

and executable generation and deployment. These operations are blocking, and events

should not occur during the computation of a new controller.

In sum, this module (called org.adapiot.adaptation_fl) implements full-fled-

ged discrete controller generation for non-functional adaptation. Indeed, this feedback

loop self-generates synchronous controllers in charge of self-adaption in response to

changes in the external world in order to preserve satisfactory QoS in the controlled

systems. This package communicates with the other feedback loops (namely the mon-

itoring feedback loop and objectives feedback loop) through interactions as defined

in Figure 6.2 and implemented as DDS communication topics in the DDS dedicated

package.

The third module implements the monitoring feedback loop using 6 classes, as

depicted on Figure 6.8:

• The NFPMonitor class subscribes to the non-functional objectives feedback loop

in order to be able to deploy appropriate monitors.

• The NFCOListener class is used by the previous class to receive adaptation goals

from the objectives feedback loop.

• The NFPAnalyzer class infers monitoring rules’ relevant non-functional prop-

erties from a set of monitored system properties, that will be used in the global

self-adaptation framework to perform preventive or corrective self-adaptation.

• The NFPController implements the non-functional property soft monitors us-

ing purely software probes, implemented as a Drools rule engine instance run-

ning rules computed in the previous class. These monitors are used when a

non-functional property must be derived from other measured non-functional

variables. This class subscribes to the appropriate feeds from smart devices, and

failed monitors are published using the class described bellow.

• The FailedMonPub publishes failed monitors to the objectives feedback loop in

order to trigger control-objectives self-adaptation.

• Finally, the NFPFeedbackLoop coordinates the interactions between the three

NFPMonitor, NFPAnalyzer, and NFPController classes.

Figure 6.8 – Monitoring feedback loop class diagram

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

136 Chapter 6. Implementing the Self-Adaptation Framework

Figure 6.9 – Monitoring feedback loop activity diagram

Figure 6.9 is the activity diagram of the non-functional properties monitoring feed-

back loop. As the adaptation feedback loop, interactions are synchronous, and they are

coordinated though a loop that periodically acquires inputs mandating self-adaptation.

When such events are received (namely, non-functional adaptation objectives), new

monitoring rules are synthesized and inserted into the running Drools KieSession,

consequently deploying on-the-fly monitors on gateways.

In essence, the org.adapiot.monitoring module implements the monitoring

feedback loop that handles dynamic changes of the monitoring infrastructure. It com-

municates with the adaptation and objectives feedback loops through the four defined

interactions using appropriate DDS topics.

In conclusion, with this implementation model, we have a fully distributed self-

adaptation framework implemented in 3 principal modules and communicating using

DDS topics. Implementation was performed using traditional Java 8 in the Eclipse

development environment. In addition, we also implemented a web-based GUI for

end-users objectives specification. The GUI also notifies user about the self-adaptive

system internal functional and non-functional states, and the implementation of such

component is discussed in the next section.

6.3.3 Implementing the GUI

As mentioned in the introduction, we require our prototype to include a Web-based GUI

to offer end-users the capability to easily read information about our system, but also to

conveniently write new self-adaptation rules. The choice of Web-related technologies

over native technologies such as Qt or GTK to implement the GUI was motivated by the

interoperability of Web-based solutions, which only requires a simple Web browser to

display the interface.

We thus implement a Vert.x-based server, which generates appropriate interface

panels and interacts with the users. Because we wished our GUI to be generic and

flexible, we used the Thymeleaf templating engine to dynamically generate Web pages

according to information in the database from the server side. In addition, we used the

Bootstrap JavaScript and CSS framework to provide responsive Web pages design (i.e.,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

6.4. Implementation Evaluation 137

the GUI self-adapts to the device it is displayed on, meaning it is adapted to account

for narrower screen if it is displayed on a phone for instance). Furthermore, we use

the WebSocket protocol for real-time and event-based communication between clients

and the server. This protocol provides clients/users with real-time functional and non-

functional information regarding the system being controlled. It also forwards to the

server relevant interactions from the user with the GUI (e.g., the addition of a new rule).

Practically, the server consists of a single Vert.x verticle reacting to appropriate inter-

nal and external events. From a server point of view, external events are generated by the

clients through user interactions, and they only consist of rule addition, modification or

deletion for our preliminary PoC. If the server detects a rule-related event, it propagates

the action (i.e., addition, modification or deletion) to the MongoDB database, and the

change of the rules directory is notified to the remaining of the system in order to take

appropriate action. Events circulating from the server to clients are sensor states, but

also relevant functional information such as patients’ health data or system metrics.

6.3.4 Deployment Life Cycle

The architecture displayed in Figure 5.10 only gives a run-time representation of the

system, and does not accurately capture the deployment life-cycle, which is displayed

in Figure 6.10. This life cycle starts with adaptation objectives specification, which is

subsequently used to configure the entire system.

In the IoT system’s higher layers, the deployment targets specified in the rules (which

can be seen as a filter attribute) are used to generate a deployment strategy. Indeed,

for our PoC, we assume that rules are specified with respect to particular locations,

which can be utilized to differentiate between patients’ homes, since they are accessed

through gateways used as single access points. Then, rules associated with particular

locations are analyzed and transformed into synchronous programs, that are deployed

on appropriate gateways according to the deployment targets analyzed by the objectives

feedback loop. Eventually, QoS monitors or more advanced software probes are de-

rived from the adaptation objectives specification and are deployed on the appropriate

gateways. Please note that the adaptation objectives feedback loop is deployed as an

application running on a server, while the adaptation and monitoring feedback loops

are deployed on gateways.

However, this deployment life cycle is theoretical and applies to the final version of

the system. For the sake of our proof of concept, we implemented a simpler life cycle,

in which only the adaptation is dynamically deployed. In the current state of the PoC,

the asynchronous manager analyses adaptation objectives to check if locations filter

parameters are present. If no location is specified in the rule, we deploy the rule to all

the gateways included in the system. The software monitors are hard coded, and they

are only remotely enabled or disabled depending on the adaptation goals.

6.4 Implementation Evaluation

In this section, we present the case-study that we used for the preliminary evaluation of

our framework. Based on this case study, we subsequently discuss experimental results,

both in terms of user interface and quantitative evaluation of our framework.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

138 Chapter 6. Implementing the Self-Adaptation Framework

Figure 6.10 – Deployment life cycle

6.4.1 Case Study

Our proof of concept was built around a simple-yet-realistic case study. We suppose

our dynamic self-adaptation framework is used for the management of a flock of smart

houses coordinated from a single hospital, which follows the case-study extensively

described in the previous chapter.

As a reminder, we point out that upon system initialization, we assume that each

smart home contains a set of smart devices which are all behaving correctly:

• Cardiorespiratory smart device, which corresponds to the sensor described in the

previous chapters. Initially, this sensor is in the normal state, and it is battery

operated.

• Photoplethysmography (PPG) smart device, which measures PPG parameters. This

sensor is initially turned off. Even though it is battery operated, we suppose its

battery life to be much bigger than the one of the cardiorespiratory sensor, and

we thus consider it as line-powered.

• Gross position and fine position sensors, which are both line-powered and both

initially turned off.

When it comes to the adaptation goals that we deploy to achieve dynamic self-

adaptation, we implement the adaptation rules given in Figure 5.9. Namely, such rules

are specified for the preservation of satisfactory QoS for any state of the cardiorespi-

ratory sensor, which is the most important smart device of the system as it is the only

one directly measuring instantaneous cardiac parameters. Rules should be able to be

specified directly by end-users, but also to be dynamically added or removed depending

on the status of monitors.

When it comes to the functional aspects of the system, we only consider the remote

notification of failed cardiorespiratory sensor. The functional aspects of the prototype

was voluntarily less explored than the non-functional aspects, as most work oriented at

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

6.4. Implementation Evaluation 139

self-adaptation of IoT-based systems deal with functional adaptation, such as in [SLR17;

Syl+17; Zha+13; Zha+14], and experimental results are introduced in the next section.

6.4.2 Experimental Results

In terms of experimental results, we first display the implemented GUI, from which both

medical doctors or systems managers interact. Then, we also performed a quantitative

evaluation of the scalability of our system, both with respect to number of rules and

number of gateways included in the system.

GUI Presentation

Figure 6.11 introduces the first part of the GUI, and it is a simple login screen where

users can chose to operate as normal users or system administrator. Normal users

refer to medical practitioners which are only interested in functional and biomedical

data from the system, while the system administrators are users who configure the

system’s self-adaptation behavior. Please note that in the current state of the PoC, no

authentication mechanism is implemented, and this represent a direction for future

improvements.

Figure 6.11 – GUI welcome screen

On Figure 6.12 is displayed the global panel of the normal user perspective. In this

view, all homes of our IoT system are displayed on a map, associated with a color code

depicting the severity of QoS degradation in a specific sub-system, or the presence

of a critical health crisis. This information is delivered in real-time using the event-

based WebSocket protocol. We do not differentiate between two events as in both cases,

external human intervention is necessary in order to solve the problem. Please note

that this Web-page is dynamically generated by the templating engine. In particular,

homes are placed on the map depending on gateway information stored in the database.

On the right-hand side of the view, end-users can access home-specific information

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

140 Chapter 6. Implementing the Self-Adaptation Framework

for all the listed homes. This menu is also dynamically generated trough Thymeleaf

templating.

Figure 6.12 – Global view

Figure 6.13 details the home-specific view. In this perspective, end-users have access

to patients’ data. Since this panel does not introduce any QoS metrics measurements,

we consider collected data to be functional. We emphasize on the fact that data in this

perspective is displayed in real-time using the WebSocket protocols. This empowers

end-users with the capability to continuously and remotely know the health status of

monitored patients. In addition, since our interface is Web-based end-users can access

this data from any device with Internet access.

Figure 6.13 – Physiological data view

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

6.4. Implementation Evaluation 141

Eventually, Figure 6.14 illustrates the GUI for adaptation goals management. This

perspective can be used by end-users to administrate our dynamic self-adaptation

system, and more particularly to specify self-adaptive behavior through our rule-based

language. On the left-hand side of this view, a menu is presented listing all the rules

deployed in the system along with an option for the addition of a new rule. On the

right-hand side, already-deployed rules are displayed, and they can be modified or

deleted (which will trigger self-adaptation of the system). Eventually, on the lower part,

we implemented a logger in order to display internal information about the system, and

it can typically be used to follow the deployment of a new rule in the gateways.

It is worth noting that for our specific use-case, we only define smart devices as-

signed with the type Sensor (following the type notion introduced by our rule-based

self-adaptation language). Then, device are further filtered using a filter attribute called

deviceType, as illustrated in the Heart Failsoft rule of Figure 6.14. This two-fold specifica-

tion of device types was selected because it facilitates the specification of a JSON-based

parser, which is manually implemented for this first version of our PoC. Rules are also

making use of the $ binding operator to select devices corresponding to the correct

sub-system when self-adaptation is necessary.

Figure 6.14 – System administrator view

This concludes our presentation of our prototype’s Web-based GUI, which com-

prises two views of the system: a high-level and functional view oriented at the remote

monitoring of various parameters such as patients’ physiological signal or overall QoS

of specific subsystems, and a lower-level view oriented at the specification of non-

functional adaptation objectives.

Quantitative Results

Our next evaluation consisted in a quantitative characterization of our prototype. In-

deed, we particularly emphasize the importance of scalability for systems targeted at

IoT-based applications, as they can contain hundreds or even thousands of devices.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

142 Chapter 6. Implementing the Self-Adaptation Framework

Even though technical solutions used in our PoC were selected with scalability in mind,

experimentation regarding this characteristic is still necessary.

Our first experiment was realized to test the system scalability with respect to num-

ber of rules. Even though the number of devices, and consequently the number of rules,

included to specific subsystems are never high, it is still worth characterizing our system

with respect to the number of rules deployed on each sub-system. The reason behind

the number of rules being always reasonably low comes from the synchrony hypothesis,

which constrains number of devices and rules contained in synchronous sub-systems

to be kept low, as a high number of devices and adaptation rules might break this hy-

pothesis. Our experiment was conducted using rules illustrated in Figure 5.9. Practically,

we measured time between rules insertion in the system and Java code (i.e., discrete

controller) generation, and results are introduced in Figure 6.15.

To improve experimental consistency, we performed 10 measurements, and the plot

given in Figure 6.15 displays their average and standard deviation. The experiment was

performed on an Ubuntu 18.04 virtual machine assigned with 4 CPU threads, 8,196 MB

of RAM, and 32 GB of disk space running on a server equipped with 12 GB of RAM and

an Intel Xeon E5 CPU running at 3.7 GHz.

The first observation we can draw from this experiment is that, rather trivially,

increasing the number of rules in the system increases deployment time (about 650 ms

for a single rule up to more than 1100 ms when 5 rules are being deployed). More

interestingly, the behavior depicted in Figure 6.15 is not linear, and deployment times

for the addition of 3 to 5 rules are similar. This experiment is bounded to 5 rules because

of the complexity of correct rule specification. Indeed, because discrete controller

synthesis relies on a formal modeling and analysis of the systems’ component, some

behavior are not achievable. Practically, this can result in synthesis failure, which

prevents the redeployment of a correct discrete controller in the gateways. Adding

more rules to the system thus require a particular attention. In conclusion, the first

experiment demonstrates acceptable system scalability as the number of rules increases,

even though the amount of rules deployed in each sub-system is bound to be small. This

observation is of particular interest if computationally powerful gateways are used, since

it means they can process a higher number of event thus tackling potential synchrony

hypothesis violation. In our case, we however consider cheap and lightweight gateways

such as Raspberry Pis, and this constrains the size of the synchronous sub-systems.

Figure 6.15 – Objectives analysis duration as a function of number of rules

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

6.5. Conclusion 143

Our second experiment concerns the evaluation of our framework’s scalability with

respect to the amount of homes (or gateways) being managed. The results are intro-

duced in Figure 6.16. During this experiment, 5 rules were considered for system-wide

deployment. Identical experimental setup than the one used in the previous experiment

was used, and we also ran 10 consecutive trials as means of improving experimental

consistency. In this particular experiment, we only measured the duration between

new rules reception and rules deployment to all the relevant entities. Indeed, in the

current system state, rules are analysis is performed for each subsystem (meaning each

sub-system perform discrete controller synthesis), either in the cloud or directly on

gateways. Indeed, since our prototype features remote operation capabilities using the

SSH protocol, one can either perform analysis on the cloud and subsequently deploy the

executable discrete controller on the gateways, or the gateways can directly subscribe to

the non-functional adaptation objectives and perform synthesis and deployment locally.

Because scalability experimentation using real-world large-scale infrastructure (i.e., in

our case, using up to a hundred of Raspberry Pis) were not possible, we performed anal-

ysis in the cloud. As depicted on Figure 6.16, our system exhibits linear behavior, which

means our dynamic self-adaptation system can scale up with respect to the number of

managed synchronous sub-system, as it not subject to deployment time explosion.

Figure 6.16 – Objectives analysis duration as a function of number of rules

In conclusion, we performed scalability experiment with respect to the number of

rules and number of managed synchronous sub-systems. While number of rules for a

given sub-systems should never be high as it might compromise the verification of the

synchrony hypothesis, the measured behavior points toward good scalability when a

moderate (e.g., 5 to 10) number of rules is considered. More interestingly, our system

present linear behavior when it comes to the scalability with respect to the number of

managed sub-systems, which points toward good scaling-up properties because we are

able to avoid adaptation objectives analysis time explosion.

6.5 Conclusion

In this chapter, we describe the prototyping of our dynamic self-adaptation architecture

along with a series of preliminary experiments to evaluate its scalability. We first start

with the introduction of various external software and libraries used for the development

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

144 Chapter 6. Implementing the Self-Adaptation Framework

of our prototype. Such elements were selected because they can address scalability,

reliability, and interoperability.

Practically, we chose DDS to provide brokerless publish-subscribe communications

in the higher level of the system since it eliminates single points of failure by not relying

on a central broker to achieve message distribution. For the asynchronous adaptation

objective management and for the Web-server handling the GUI, we used the Vert.x

tool-kit. Our motivation for the inclusion of this software stems from its capability

to tackle the scalability issue by providing an implementation of the reactor pattern.

We chose MongoDB for our database, as we do not need the advanced relationship

modeling of SQL-based solution, and because it stores data as semi-structured JSON

documents. When it comes to the rule engine, we used Drools principally because it fea-

tures advanced CEP capabilities which makes it appropriate for IoT-based applications.

Our entire framework was implemented using Java and the Maven software manage-

ment framework in order to maximize compatibility. Our implementation results in

a fully distributed hybrid self-adaptation system, which differentiates from other self-

adaptive solution by its close interaction with hardware and its focus on non-functional

properties.

Our framework’s scalability was evaluated with respect to two criteria: the number of

rules and the number of managed synchronous sub-systems (i.e., number of gateways).

We found our system to be scalable for both criteria, as deployment time explosion

did not occur during our experiment. Additionally, we presented the GUI empowering

end-users with the capability to easily administrate self-adaptive behavior, but also

by providing real-time information about various patients-related or system-related

metrics.

One must however realize that our prototype is for the moment only a PoC, and

it is consequently faced with some limitations. The principal limitation comes from

the fact that our rule-based self-adaptation language is only implemented through a

simple parser, which strongly limits features such as advanced code analysis, syntactic

coloration, ability to generate binaries, etc. In the future, we plan to fully implement

this language using tools such as Eclipse Xtext 8, which is a full-fledged framework

for the implementation of Domain-Specific Language (DSL). Another limitation is

the static nature of monitors deployment, which are, for the moment, hard coded

and only remotely enabled or disabled. A potential research direction for monitors

dynamic deployment also comes from the development of an exhaustive compiler

for our rule-based language. Indeed, through advanced code analytics, relevant QoS

monitors can be inferred and automatically deployed on the relevant targets. Yet another

limitation is the lack of security considerations in the development of our prototype,

and possible solutions are the use of already-developed security protocols associated

with the framework and tools we used (e.g., the utilization of Hypertext Transfer Protocol

Secure (HTTPS) rather than HTTP for the interface, the inclusion of access control and

cryptographic techniques to the DDS publishers and subscribers, etc.).

8. Eclipse Xtext: https://www.eclipse.org/Xtext/ (visited on 08/01/2018)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

https://www.eclipse.org/Xtext/

CHAPTER 7
Conclusion and Perspectives

Contents

7.1 Summary of the Contributions . 145

7.1.1 Service-Oriented Design Method for Smart Devices 146

7.1.2 Dynamic Self-Adaptation Framework 147

7.2 Future Research Directions . 148

7.1 Summary of the Contributions

In sum, this dissertation introduces a vertical approach to build self-adaptable smart

devices for IoT-based systems. Indeed, in our state of the art, we demonstrate that

traditional IoT-related approaches are typically horizontal, and usually focus either only

on devices, communication protocols and/or services. The principal challenge of hori-

zontal approaches is that they sometimes introduce a mismatch between concerns of

each layer of the IoT architecture. For instance, high-level service-oriented frameworks

often consider smart devices as black-boxes without any insights on internal resources

availability, power consumption, or computational capabilities. While such approach

are satisfactory for ad hoc visions of the IoT, they lack scalability and represents a strong

limitation when broader IoT-based systems are considered. In addition, horizontal

solutions often lack accurate representations of multidisciplinary perspectives when

designing smart devices.

In our contribution, we consider a bottom-up approach to build IoT solutions and

services, starting from the design of service-oriented smart devices and working our

way towards devices integration in IoT systems. By taking this research direction, we are

able to introduce lower-level concerns of smart devices such as resources limitation and

deal with intrinsic properties of IoT-based systems such as self-adaptation capabilities.

Indeed, since smart devices are in constant interaction with the physical world, they are

required to be reliable and safe when reacting to changes in order to preserve expected

behaviors. In addition, we emphasize on self-adaptation as a preliminary step towards

embedded intelligence in IoT devices and systems.

Furthermore, we emphasize on the importance of a multidisciplinary approach

for IoT solutions design. For instance, our state of the art established the relevance of

145

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

146 Chapter 7. Conclusion and Perspectives

Service-Oriented Architectures (SOA) in IoT-related contexts. Indeed, by defining self-

contained, flexible, modular and interoperable services, such architectural style provides

solutions to some IoT-related challenges. However, SOAs are strongly software-oriented,

and do not account for potential hardware concerns such as resources limitation. In this

dissertation, we attempt at applying the service-oriented paradigm as low as the smart

devices’ scale. By doing so, we are not only able to improve smart devices modularity

and interoperability, but we also facilitate their integration into higher-level resources-

aware frameworks. This leads us to the definition of a service-oriented design method

for smart devices.

Pursuing our bottom-up approach, we empower the integration layer of the IoT

with self-adaptive capabilities. Namely, we focus on enhancing self-adaptive behavior

with dynamic capabilities, particularly in respect to control objectives and monitoring

infrastructure. Considering IoT-based systems are dynamic and IoT topology varies over

time due to device mobility or device inclusion and exclusion, self-adaptive solutions

must be able to appropriately manage such changes. Practically, we achieve full-fledged

dynamic self-adaptation through the separation of concerns between control objectives

management, actual self-adaptive behavior, and monitoring strategies.

7.1.1 Service-Oriented Design Method for Smart Devices

Our principal contributions with respect to the low layers of the IoT are the proposition

of a service-oriented design method for smart devices along with its application to

the design of a medical-grade cardiorespiratory sensor. Our design method adopts a

V-shaped life cycle, and integrates formal specification and validation steps. Indeed,

we emphasize on the importance of formal specification when it comes to the design

of smart devices, as it provides necessary tools to ensure expected behavior of the

devices being designed. In addition, smart devices present measuring, actuation and

configuration as a set of low-level services called hardware services, which can be used

to access internal information on devices resources. The design method starts with

specifications of functional and non-functional needs, which are then used as the

basis for the selection of appropriate Integrated Circuits (IC). Once the hardware is

selected, developers are required to design a hybrid modular architecture based on

hardware-software components, communicating serialized data through serial buses

(i.e., using Direct Memory Access (DMA) channels in the ideal case, in order to minimize

microcontroller load). Practically, such components can be seen as a hardware/software

partition, and several components can run on the same IC. Components are then

individually specified and verified through model checking, and these specifications

are subsequently used for the verification of components integration. After successful

verification, the hardware-software components are implemented and tested according

to testing procedures defined with regard to functional and non-functional requirements

specified in the early step of our design method. Once testing is passed, smart devices

can be mass-produced for wide-scale usage.

In order to test our service-oriented design method, we apply it to the design of a

medical-grade cardiorespiratory sensor. We set the functional requirements to comput-

ing Heart Rate (HR) and Heart Rate Variability (HRV) parameters from electrocardiogram

(ECG) signal and the measurement of the Respiration Waveform (RWF). Non-functional

requirements include an extended battery life (superior to 48 hours), wearable nature

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

7.1. Summary of the Contributions 147

(i.e., the smart device must be small-sized and lightweight), and the inclusion of exter-

nal and internal self-adaptive capabilities. To meet functional requirements, careful

hardware selection was performed, which resulted in the use of the PSoC5LP for its

combination of an ARM Cortex-M3 microprocessor, a Digital Filter Block (DFB) and a

small-scale programmable logic gate matrix, the BLE113 for handling Bluetooth Low

Energy (BLE) communications and the ADS1292R for analog signal conditioning and

conversions. We then proceed with the extensive testing of our sensor, which demon-

strated that expected non-functional requirements were achieved. Additionally, our

sensor was equipped with internal and external self-adaptive properties, as we fore-

see self-adaptation as being an enabler of the emergence of full-fledged intelligent

IoT-based systems.

7.1.2 Dynamic Self-Adaptation Framework

Even though self-adaptation of software systems is well-studied, the unique charac-

teristics of smart devices and IoT-based systems brings additional challenges that are

not accurately managed by software-only solutions. Namely, such solutions are usu-

ally a poor fit for resources-constrained smart devices, as they are typically based on

resources-consuming technologies such as ontological analysis, Web-based protocols

or full-fledged server-oriented frameworks. Additionally, the dynamic nature of IoT

networks and the fact that devices are in constant interaction with the ever-evolving

physical world, require IoT-based systems to accurately react to changes. Furthermore,

the critical nature of most IoT-based systems calls for the study of Quality of Service

(QoS) preservation as a way to ensure consistent behavior in a wide range of operating

conditions.

To this end, we introduce our IoT-targeted dynamic self-adaptation framework,

which is able to deal with changing control objectives and monitoring probes through

separation of concerns and by implementing three independent feedback loops: the

objectives feedback loop, monitoring feedback loop and adaptation feedback loop. In

addition, we use Discrete Controller Synthesis (DCS) and Synchronous Programming

Languages (SPL) to provide safe and correct-by-construction controllers. Indeed, SPLs

specify synchronous systems using Labeled Transition Systems (LTS), which provide

a formal framework for the modeling of smart devices. Such models are then used in

combination with advanced algorithms to generate correct-by-construction imperative

code in Java implementing self-adaptive behavior.

Furthermore, we propose a rule-based language for the declarative specifications of

self-adaptation strategies. Declarative approaches specify what a system should achieve

rather than how it should achieve it. They consequently reduce the complexity of the

specification of control objective, which in turns improves scalability by reducing the

code base.

We then tackle the scalability issue by integrating asynchronous control objectives

management while preserving synchronous adaptation and monitoring. Indeed, the

volumes of events generated by large-scale IoT-based systems might cause violation of

the synchrony hypothesis if the system running the controller is not powerful enough

to compute reactions between two time occurrences of events. Through our hybrid

approach, we are able to divide IoT-based system into synchronous sub-systems, which

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

148 Chapter 7. Conclusion and Perspectives

comprise a small-enough number of devices to ensure synchrony hypothesis verifica-

tion.

Eventually, the entire dynamic self-adaptation framework was implemented using

standard technologies such as the Data Distribution Service (DDS) for communication,

Vert.x for the implementation of asynchronous reactive control objectives management

and Java as the overall implementation language. We performed preliminary evaluation

of our prototype’s scalability and results pointing towards good scalability were obtained,

since no deployment time explosion was observed.

7.2 Future Research Directions

A first promising research direction is the establishment of a unified data and lifecycle

model for smart devices. Indeed, in our dissertation, we use LTSs as models of devices

self-adaptive behavior, which can be tied to a lifecycle model. However, data structure

is not captured by this approach. A potential solution for representing both data and

its evolution over time is to use artifacts. Artifacts, also known as business artifacts, are

entities which combine both data and their management into cohesive and modular

units [NC03]. They include informational models, consisting of attribute-value pairs, a

set of services that manipulates attributes, a set of states describing artifacts evolution

over time, and a set of transition rules that invoke services and results in changing

artifacts current states. Artifact-based approaches feature many advantages and benefits

including natural modularity and componentization of self-contained entities. Such

characteristics are particularly relevant to IoT-based systems, are they are commonly

strongly data-driven, but must still account for system evolution in order to be able to

react to changes in either the execution environment or network topology. Recent works

such as [ABA17] further extended the capabilities of artifacts with the integration of

stream-based queries, which is relevant for IoT-based applications as most smart devices

stream their data to external tiers. Additionally, matches can be established between

artifacts and proclets [Hul+11], which are in turn equivalent to Petri nets [Van+01]. Such

links can be used as the basis for formal verification of artifact models instances, which is

particularly important for IoT-related applications considering the often-critical nature

of this category of systems.

As we have discussed in our dissertation, there is a need for verified hybrid hardware

and software, especially in the context of the Internet-of-Things, as IoT-controlled sys-

tems can be extremely critical. In addition to the critical nature of the IoT-systems, they

can also account for hundreds or thousands of devices, making system management

complex and time-consuming. From these observations, we identify the need for a

verification framework which is simultaneously flexible and simple enough to model

and verify any IoT-systems. A promising direction in terms of smart device verification

can be found in the linear logic community. The linear logic, introduced by J.-Y. Girard in

the late 1980s [Gir87], is capable of modeling resources and their consumption. It is thus

of particular interest in IoT-related contexts as it offers a way to precisely model smart

devices limited resources along with their evolution over time. Applications of linear

logic targeted at automated services composition can be found in the literature, such

as in [PFW12] or [RS04]. However, such approaches only focuses on software-centric

solutions and only present examples with simple resources, such as the price of a service

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

7.2. Future Research Directions 149

invocation. Additionally, these two contributions rely on outdated automated or inter-

active provers. Interactive provers designate software tools that assist end users with

drafting correct proofs. Users are still required to manually specify each step of the proof,

and the prover warns users if a specific proof step is not valid. While this can be useful

for reasonably-sized proofs, it becomes inapplicable in cases where hundreds of ser-

vices or devices must be coordinated and verified. Such limitations can be tackled using

automated theorem provers, but, to the best of our knowledge, no provers are available

(the only exception being llprover 1, but it is strongly limited and cannot be used for

the construction of complex proofs). Advanced automated provers are however being

developed in the LLipIdO project 2, and results of such project could be used for smart

devices verification. Different potential use of the linear logic is in the higher-levels of

the IoT, and for the specification of smart services. Through proof automation, linear

logic could indeed be used for the implementation of reliable and safe resource-aware

smart services relying on the coordination of numerous smart devices.

Smart services could also benefit from the use of advanced semantic Web tech-

niques to facilitate cross-device communication and interoperability. Indeed, semantic

Web relies on machine-readable and -understandable data for easier data integration

between a variety of actors. Practically, data is annotated in order to establish machine-

understandable connections between various concepts (e.g., Paris can be annotated

with the concept city). It is usually used in coordination with ontologies establishing

definitions, relationships and properties between knowledge entities. Annotated data

can be used in coordination with the relevant ontologies as a basis for advanced rea-

soning, which can be used to infer new knowledge or relationships between apparently

unrelated data. When it comes to the IoT, such tools are of particular interest as they

provide solutions to extreme devices and data heterogeneity (e.g., two temperature

sensors might stream temperature values in Fahrenheit and Celsius, and annotation

can be used to implement automatic conversion without the need for human interven-

tion). The coordinated use of semantic Web techniques and ontologies has already been

used in IoT-related contexts, such as in [Ter+17] where authors propose self-adaptation

of IP-connected and resources-unconstrained devices using a dedicated reasoner, or

in [Ala+15] where authors improve interoperability of their framework based on an

ontological description of the system. In addition, the recent standardization of the

Semantic Sensor Network (SSN) ontology 3 pushes toward its adoption in a wide range

of semantic-oriented application for the IoT. However, semantic Web software often

rely on verbose knowledge description using the Web Ontology Language (OWL) and

Resource Description Framework (RDF) data models, which limit their use in resources-

constrained devices. More recently, initiatives such as JavaScript Object Notation (JSON)

for Linked Data (JSON-LD) facilitate the annotation of JSON documents with relation-

ship or contextual information, which easily translates to traditional RDF descriptions

used by most semantic reasoners. JSON-LD is of particular interest in our application, as

sensor model are stored as JSON semi-structured data. In combination with tools such

as JSON Schema, which implements comprehensive specification of expected JSON

1. Linear logic automated prover llprover: http://bach.istc.kobe-u.ac.jp/llprover/ (visited
on 08/02/2018)

2. LLipIdO prover project: http://perso.ens-lyon.fr/olivier.laurent/llipido/ (visited on
08/02/2018)

3. SSN ontology: http://w3c.github.io/sdw/ssn/ (08/02/2018)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

http://bach.istc.kobe-u.ac.jp/llprover/
http://perso.ens-lyon.fr/olivier.laurent/llipido/
http://w3c.github.io/sdw/ssn/

150 Chapter 7. Conclusion and Perspectives

data structure, this can be the basis of advanced high-level reasoning, thus increasing

global system intelligence and being another step towards the implementation of true

smart services.

Another potential research direction is the extension of self-adaptation to the lower

layers of the IoT. Indeed, in this dissertation, we only consider self-adaptation through

the remote coordination of smart devices, and self-adaptive behavior is consequently

implemented with respect to the coordination of devices. However, this approach does

not include the capability to change smart-devices adaptive behavior per se. Indeed,

self-adaptation is implemented through SPLs, which model smart devices as LTSs that

are subsequently used for discrete controller synthesis. In our specific application, we

use only code generation capabilities for the implementation of the discrete controller,

and devices’ LTSs are implemented manually. Nevertheless, Heptagon/BZR is also able

to generate code for each node comprised in the system, meaning it generates correct-

by-construction LTSs for each devices. Directly using this automatically-generated code

would benefit smart devices from adding a degree of certitude with respect to devices’

behavior.

Another interesting research direction is to investigate discrete controller synthesis

at the device hardware scale, meaning smart devices are specified as synchronous mod-

ules and their firmware consist of the coordination of these modules, and this approach

also provides guarantees on final behavior. The practicality of this solution has been

presented in works such as [BMM13] or [GG10]. However, all the methods detailed

herein above imply statically implemented LTSs, which limits self-adaptive capabilities.

This static implementation also implies that the self-adaptation must be considered a

priori, which might be limiting if system designers want to manage new and unforeseen

use-cases. This challenge points towards the need for remote firmware flashing through

Over-the-Air (OTA) updates. The integration of such mechanism with our dynamic self-

adaptation framework and rule-based adaptation goal specification language represent

an interesting research directions, and simultaneously brings both research and techni-

cal challenges such as the heterogeneity between OTA-updatable and non-updatable

devices, the inclusion of low-level concerns in the adaptation languages, etc.

A final noteworthy research direction can be found in IoT cybersecurity. Indeed,

the IoT brings many challenges making traditional security obsolete, such as number

of devices, limited resources, highly distributed systems, etc. In addition, the trustless

essence of the IoT infrastructure requires distributed security solutions, which do not

rely on certification from central authorities. The heterogeneity of devices, services

and people coming into play in large scale IoT-based system calls for advanced identity

management frameworks in order to enable trust relations as means of implementing

collaboration between entities to achieve business-specific objectives. Recently, many

emerging technologies such as the blockchain can be used to tackle these challenges,

and authors of [Zhu+17] propose a blockchain-based identity management system,

which provides unique identities to smart devices and link them to their owners’ identity.

Another application of the blockchain can be found in the securing of smart devices

access control as described in [OAA16], which solves potential privacy concerns by

providing end-users the capability to specify their own access control policies.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

ANNEXE A
Résumé Long en Français

Des Services Intelligents à Partir d’Objets
Connectés Réutilisables et Adaptables

Applications aux Réseaux Non-Intrusifs de Capteurs
Biomédicaux Portables

Table des Matières

A.1 Introduction . 151

A.2 Méthode de Conception Orientée Service pour Objets Intelligents . . . 156

A.2.1 Description Générale . 156

A.2.2 Application de la Méthode à un Capteur Cardiorespiratoire . . . 160

A.3 Infrastructure d’Auto-Adaptation Dédiée aux Objets Intelligents 162

A.3.1 Présentation de l’Infrastructure Hybride 164

A.3.2 Implémentation de l’Infrastructure d’Auto-Adaptation 166

A.4 Conclusion . 168

B Cardiorespiratory Sensor Schematic 171

A.1 Introduction

L’Internet des Objets (IdO) désigne l’interconnexion d’une multitude d’objets phy-

siques ainsi que leur intégration à des infrastructures à grande échelle afin de répondre

à des besoins complexes. Ce domaine est en pleine expansion, et des analystes estiment

que 20 milliards d’objets intelligents seront en circulation d’ici 2020 [Cer+15], et que

l’impact économique de ces objets sera de 2,9 mille milliards de dollars d’ici la même

date. En plus de cet impact économique, l’internet des objets va également causer de

nombreux changements sociaux. En effet, son utilisation dans des domaines tels que la

santé [BXA17], la régulation de trafic [CZ16] où la ville intelligente [Zan+14] laisse entre-

voir des révolutions en termes de réponse à des problèmes complexes ou l’interaction

entre les mondes physique et numérique est nécessaire.

151

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

152 Annexe A. Résumé Long en Français

Bien que chaque application utilisant l’internet des objets soit différente des autres,

des exigences en termes de fiabilité, sureté et sécurité sont à la racine de chaque système

basé sur l’internet des objets :

— Fiabilitié : Un système est considéré comme fiable si les exigences fonctionnelles

sont vérifiées pendant tout le cycle d’exécution de celui-ci. Plus particulièrement,

cela implique que dans des cas d’utilisation normaux, aucun dysfonctionnement

ne doit survenir. Ce besoin est amplifié par la nature critique de la plupart des

systèmes basés sur l’internet des objets (p. ex. les systèmes de santé ou de gestion

de trafic), dans lesquels un dysfonctionnement pourrait causer des accidents aux

conséquences désastreuses.

— Sureté : Celle-ci est définie comme la capacité d’un système à ne pas causer de

dommage à son environnement. Étant donné que l’internet des objets est en

constante interaction avec le monde physique, cette propriété revêt une impor-

tance particulière considérant les dommages potentiellement coûteux, aussi bien

économiquement qu’humainement, qu’un malfonctionnement des systèmes

pourrait avoir (p. ex. un système de gestion de trafic pourrait causer de graves

accident de la circulation si sa sureté n’était pas garantie).

— Sécurité : Un système sécurisé est robuste aux attaques malicieuses internes

et externes. La sécurité peut être définie comme une propriété fonctionnelle

du système (sécurité par conception), ou bien être implémentée en détectant

en temps réel diverses menaces et attaques (dans ce qui s’appelle la sécurité à

l’exécution).

En général, l’internet des objets repose sur l’intégration et la coordination de nom-

breux objets intelligents pour concevoir des systèmes à large échelle répondant à une

variété de besoins pratiques. Les objets intelligents sont définis comme des objets

(c.-à-d. appartenant de facto au monde physique) équipés de capacités de calcul, de

communication et plus largement de comportements intelligents. La multiplication

rapide de la disponibilité de cette catégorie d’objets est causée par de nombreux progrès

dans des domaines variés tels que les microcontrôleurs, les protocoles de communica-

tion sans fil et basse consommation, la gestion d’énergie, etc. Ces techniques ont permis

de faciliter la conception d’objets intelligents, qui peuvent maintenant être aisément

intégrés à des infrastructures massives en utilisant des protocoles de communication

pair-à-pair ou utilisés dans l’internet.

Afin de clarifier les différents éléments entrant en jeux dans la création de tels

systèmes, nous adoptions une vision par couches de l’internet des objets, comme illustré

dans la FIGURE A.1. La couche de plus bas niveau, désignée comme la « couche objets

intelligents », traite de l’étude et de la conception des dits objets. Au niveau intermédiaire

se trouve la « couche d’intégration », qui se concentre sur la communication entre les

objets intelligents et des logiciels de haut niveau. Finalement, la « couche applicative » a

pour sujet l’interfaçage de l’internet des objets à des technologies plus traditionnelles

couramment en utilisation dans les entreprises.

Bien que l’internet des objets soit le sujet de nombreuses études, celui-ci présente

défis à la fois en termes de recherche mais également de technologies, tels que :

— Les caractéristiques non-conventionnelles des objets intelligents, qui peuvent être

résumées par :

— Capacités limitées : Bien que l’étendue de ce qui peut être considéré comme

un objet intelligent est vaste, les ressources à disposition des objets intel-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

A.1. Introduction 153

Figure A.1 – Représentation par couches de l’internet des objets

ligents sont habituellement faibles, aussi bien en termes de puissance de

calcul que de stockage et de mémoire vive. En effet, les microcontrôleurs

communément utilisés dans les objets connectés fonctionnent seulement

avec une vitesse d’horloge variant de quelques mégahertz à quelques cen-

taines de mégahertz, et embarquent une mémoire de stockage ainsi qu’une

mémoire vive de l’ordre de quelques dizaines de kilooctets à quelques mé-

gaoctets. Ces ressources limitées se retrouvent également pour la capacité

des batteries, qui dépasse rarement les quelques centaines de milliampère-

heures. Ces faibles aptitudes ont de nombreuses implications en matière

de protocoles de communication ou de capacités à implémenter des algo-

rithmes complexes. En effet, les protocoles de communication tradition-

nellement utilisés dans l’internet des objets reposent en général sur la pile

TCP/IP, et celle-ci introduit des opérations de calcul additionnelles, ce qui

résulte en un besoin en performance et donc une consommation énergé-

tique plus importante. Si de fortes contraintes en termes de consommation

sont présentes au sein d’un objet intelligent particulier, les concepteurs de

celui-ci devront probablement se tourner vers des protocoles plus économes

et n’utilisant pas la pile TCP/IP.

— Hétérogénéité matérielle : En plus des ressources limitées des objets intelli-

gents, l’internet des objets doit également faire face à l’extrême hétérogé-

néité du matériel traditionnellement utilisé pour implémenter ces objets.

En effet, de nombreux constructeurs proposent une multitude de circuits

intégrés implémentant diverses fonctions. Par exemple, les microcontrô-

leurs utilisent généralement des architectures 8 bit (p. ex. Atmel AVR ou Intel

8051), 16 bit (p. ex. famille MSP430 de Texas Instruments) ou 32 bit (p. ex. fa-

mille Cortex-M d’ARM), ce qui implique des jeux d’instruction différents

et des capacités de calcul variées. En plus de l’hétérogénéité des microcon-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

154 Annexe A. Résumé Long en Français

trôleurs viennent s’ajouter tous les périphériques disponibles sous forme

de circuit intégrés, tels que des convertisseurs analogique-numérique et

numérique-analogique, des processeurs de traitement du signal, des front-

end analogiques, etc. Cette grande variété de composants communique au

travers de différents bus et en utilisant des formats de donnée hétérogènes,

ce qui vient ajouter une difficulté supplémentaire au développement d’ob-

jets intelligents en empêchant l’utilisation d’outils d’aide au design ou au

choix de composant.

— Méthodes de conception hybrides matériel-logiciel : L’hétérogénéité du ma-

tériel entrant dans la création d’objets intelligents nécessite l’étude et la

proposition de méthodes de design permettant de traiter à la fois de la va-

riété du matériel ainsi que de permettre d’établir des garanties en matière de

fiabilité, sureté et sécurité. Les méthodes de conception sont généralement

définies comme une série d’étapes organisées décrivant le cycle de vie de

la conception d’un système [WR97], et elles incluent en général des outils

pour la validation et la vérification des systèmes en train d’être développés.

Néanmoins, ces méthodes doivent être pratiques et faciles à utiliser, en par-

ticulier pour les objets intelligents, étant donné les fortes contraintes sur

les temps de développement afin de proposer une mise sur le marché la

plus rapide possible. Un défi additionnel pour les méthodes de conception

appliquées au design de tels objets et le fait que les technologies utilisées

durant leur création change rapidement, ce qui motive l’étude de méthodes

suffisamment génériques pouvant être appliquées à une variété de matériels

et de logiciels.

— L’hétérogénéité globale de l’internet des objets : En plus de l’hétérogénéité maté-

rielle exposée précédemment, l’internet des objets doit également faire face à

une prolifération d’infrastructures, de protocoles et de standards. En effet, de

nombreux protocoles de communication plus ou moins haut niveau sont utili-

sés dans notre contexte d’étude, et ils peuvent être catégorisés vis-à-vis de leur

implémentation de la pile TCP/IP. En effet, celle-ci n’est pas implémentée par

certains protocoles comme le Bluetooth Low Energy (BLE) ou le Zigbee, qui sont

basées sur une pile spécifique. Le principal avantage de ces protocoles repose sur

leurs faibles consommations d’énergie [Dem+13], qui est en général beaucoup

moins importante que les protocoles basés sur la pile TCP/IP classique. Ceux-ci

sont également nombreux, et on peut citer Message Queuing Telemetry Transport

(MQTT), Constrained Application Protocol (CoAP) ou Hypertext Transfer Protocol

(HTTP) comme quelques exemples de protocoles communément utilisés dans

l’internet des objets. La principale différence entre ceux-ci est la façon d’accédé

aux données : dans MQTT, les données sont publiées sur des topics en suivant

le paradigme publication-abonnement, alors que CoAP et HTTP sont de type

RESTful. Dans les protocoles de type RESTful, l’accès aux données est synchrone

et se fait au travers d’Uniform Resource Identifier (URI) [PZL08], ce qui implique

des architectures de systèmes de type client-serveur. Cette différence en termes

d’accès aux données combinée à l’existence de protocoles non-IP est un facteur

d’hétérogénéité, et des passerelles doivent être implémentées afin d’assurer leur

inter-compatibilité.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

A.1. Introduction 155

— La pluridisciplinarité de l’internet des objets : En effet, les problématiques de

recherche apportées par celui-ci sont une combinaison de défis de bas niveau

et de haut niveau. Par exemple, la conception et l’implémentation d’objets in-

telligents sont étudiées par des ingénieurs et chercheurs dans le domaine du

génie électrique, du traitement du signal, et même du génie mécanique (si des

interactions physiques complexes sont nécessaires). Les couches les plus hautes,

comme celles traitant de l’interconnexion des objets intelligents mais aussi de

leur intégration à des services intelligents de haut niveau, sont traditionnellement

étudiées par les informaticiens. De nombreuses autres spécialités peuvent être

impliquées dans l’étude de l’internet des objets, et quelques exemples sont l’ana-

lyse de données de masse, l’ergonomie ou encore la sociologie. Le principal défi

causé par la forte pluridisciplinarité de l’internet des objets se rapporte souvent

au fait que les spécialistes d’un domaine spécifique considèrent exclusivement

les problématiques se rapportant à celui-ci. Cette stratégie, bien qu’efficace pour

résoudre des problématiques très précises, ne permet pas l’étude de l’internet des

objets à une échelle plus globale. C’est pour cela que nous mettons en avant l’im-

portance d’adopter une vision pluridisciplinaire de celui-ci. En effet, la meilleure

compréhension des besoins et du vocabulaire de chaque discipline qu’apportent

ce type de vision, permet la création de systèmes basés sur l’internet des objets

plus cohérents, aussi bien à l’échelle locale qu’à l’échelle globale.

Ces trois défis de l’internet des objets nous ont amené à considérer la problématique

de recherche suivante : comment concevoir des objets intelligents auto-adaptables et

réutilisables afin de faciliter leur intégration avec des services intelligents tout en repré-

sentant leurs caractéristiques uniques ? Cette question permet de regrouper les défis de

l’internet des objets au travers des notions de réutilisabilité et d’auto-adaptation. En

effet, le premier permet l’étude des problématiques d’interopérabilité entre objets intel-

ligents, mais il illustre également le besoin de meilleures méthodes de conception afin

d’intégrer ces notions très en amont du cycle de vie de l’objet (c.-à-d. dès son design).

L’auto-adaptation permet d’augmenter l’intelligence des objets en leur permettant de

réagir aux contextes internes et externes, et peut donc être perçue comme une première

étape vers l’établissement de systèmes intelligents à toutes les échelles, de l’objet aux

services haut niveaux. Plus particulièrement, nous détaillons deux axes de recherche :

— L’amélioration de la conception des objets intelligents, qui amende également leur

intégration à des services intelligents. En effet, en considérant l’interopérabilité

dès les phases de design, nous sommes capables d’améliorer l’interopérabilité

logicielle et matérielle de tels objets. Celle-ci se fait au travers de l’utilisation

d’architectures orientées services dès les niveaux les plus bas de l’internet des

objets, tout en préservant la possibilité d’exprimer les contraintes en termes de

ressources des objets intelligents.

— L’auto-adaptation pour les objets intelligents, qui peut être perçue comme un

moyen d’améliorer la fiabilité et la sureté des systèmes de l’internet des objets. En

effet, le fait pour les objets intelligents de pouvoir s’adapter à diverses conditions

de fonctionnement les rend plus robuste aux changements constants du monde

physique dans lequel ils évoluent, ce qui rend les systèmes basés sur de tels objets

plus fiables et plus sûrs.

Dans le reste de ce résumé, nous allons détailler les contributions et résultats clefs

des recherches réalisées au cours de cette thèse. La section A.2 détaille notre méthode de

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

156 Annexe A. Résumé Long en Français

conception orientée service pour objets intelligents ainsi que son application à un cap-

teur cardiorespiratoire médical. Ensuite, la section A.3 décrit notre infrastructure pour

l’auto-adaptation des objets connectés, ainsi que son implémentation et évaluation.

Finalement, nous concluons ce résumé par la section A.4 en identifiant des directions

de recherche potentielles qui pourraient faire suite à ces travaux.

A.2 Méthode de Conception Orientée Service pour Objets Intelli-
gents

Bien que de nombreuses méthodes de conception soient communément décrites

dans la littérature scientifique, elles présentent pour la plupart des inconvénients lors-

qu’appliquées au design d’objets intelligents. En effet, les méthodes de conception

de haut niveau et orientées service, telles que SOMA [Ars+08] ou SOAD [ZKG04], ou

bien celles décrites dans [PH06] et [CK07], sont fortement orientées vers le design de

solutions purement logicielles, et ne permettent pas de capturer la nature hybride des

objets intelligents utilisés dans l’internet des objets. Des méthodes plus bas niveau,

dédiées à la conception de systèmes embarqués, traitent du design et de l’implémen-

tation de ceux-ci. Celles-ci sont nombreuses, et de nombreux exemples peuvent être

cités, comme [dNOW07; Mhe+14] qui traitent de la conception de systèmes électro-

mécaniques, ou [Kei+09; Döm+08] qui mettent l’accent sur la synthèse automatique

de systèmes hybrides basée sur la co-conception matérielle-logicielle [Wol94; Wol03].

Celle-ci est définie comme l’étude simultanée du logiciel et du matériel des systèmes

embarqués afin de décider de la forme de l’implémentation des fonctions du système

afin d’obtenir des performances optimales. Cependant, ces méthodes de co-conception

matérielle-logicielle reposent souvent sur l’hypothèse qu’il est possible de synthétiser le

matériel du système considéré. Bien que cela soit vrai pour le design de systèmes-sur-

puce, ce n’est pas le cas pour la conception d’objets intelligents, qui doit être perçue

comme l’intégration matérielle de plusieurs circuits intégrés plutôt que comme la fabri-

cation d’un de ces composants lui-même.

Par conséquent, il y a donc un manque en termes de méthode de conception qui

ne soit à la fois pas exclusivement orientée vers le logiciel, ni trop bas niveau comme

le sont les méthodes de co-conception matérielle-logicielle. De plus, afin de répondre

à la problématique de la réutilisation des objets connectés, nous souhaitons conser-

ver une dimension orientée service. En effet, en définissant des modules autonomes,

interopérables, réutilisables et modulaires sous le terme de services les chercheurs en in-

formatique ont défini les architectures orientées services. Ces architectures sont utilisées

dans l’implémentation de systèmes complexes, alors définis comme une coordination

de services répondant aux besoins d’interopérabilité et de flexibilité. De plus, les services

sont souvent définis comme indépendants de leur technologie d’implémentation, ce

qui les rend particulièrement pertinents dans un contexte relatif à l’internet des objets

considérant la grande hétérogénéité matérielle et logicielle des objets intelligents le

constituant.

A.2.1 Description Générale

Notre méthode de conception orientée service pour objets connectés est illustrée FI-

GURE A.2. Celle-ci adopte un cycle de vie en forme de V, ce qui permet de mettre l’accent

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

A.2. Méthode de Conception Orientée Service pour Objets Intelligents 157

sur l’importance des tests dès le début du processus de conception en spécifiant des

procédures de tests à diverses échelles (tests unitaires, d’intégration ou d’acceptation).

Notre méthode est divisée en trois parties majeures (illustrées en bleu, rouge et vert)

et 9 étapes (numérotées de 0 à 8). Les trois parties majeures traitent de l’analyse des

besoins et contraintes de l’objet intelligent en cours de conception ainsi que de la défi-

nition d’une architecture hybride modulaire (en bleu) ; de la spécification et vérification

formelle à la fois des modules hybrides ainsi que de leur intégration (en rouge) ; et enfin

de l’implémentation et des tests de l’objet connecté (en vert).

Figure A.2 – Cycle de vie de la méthode de conception orientée service

Plus particulièrement, nous définissons neuf étapes :

0. Définition et analyse des besoins de l’objet intelligent : Dans cette étape, les concep-

teurs spécifient (eux-mêmes ou au travers de la discussion avec des clients po-

tentiels) les besoins fonctionnels de l’objet. Ces besoins peuvent être spécifiés

au travers d’outils d’analyse fonctionnels, et se concentrent exclusivement sur

les propriétés fonctionnelles de l’objet. Cette analyse répond aux questions sui-

vantes : qu’est-ce que fait l’objet intelligent ? Comment le fait-il ? À qui celui-ci

s’adresse-t-il ? Les réponses à ces questions peuvent ensuite être utilisés afin de

sélectionner les composants électroniques permettant de réaliser les fonctions de

l’objet intelligent.

1. Définition et analyse des contraintes de l’objet intelligent : Une fois les besoins

fonctionnels établis, les besoins non-fonctionnels de l’objet doivent être déter-

minés. Ceci est réalisé au travers de la définition et l’analyse des contraintes

associées à l’objet en cours de conception, et nous les définissons en termes de

taille, capacités de calcul, autonomie, connectivité et enfin capacité de stockage.

Ces critères vont être utilisés pour filtrer les composants sélectionnés lors de

l’étape précédente afin de répondre aux besoins non-fonctionnels. En effet, des

relations de corrélation ou d’anticorrélation existent entre ces paramètres (p. ex.

un augmentation de la taille de l’objet intelligent entraine une augmentation de

l’autonomie car les concepteurs peuvent utiliser des batteries plus grandes et

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

158 Annexe A. Résumé Long en Français

de plus forte capacité), et des compromis doivent être établis afin d’obtenir une

solution optimale. Au terme de cette étape, ls concepteurs établissent donc une

liste des composants qu’ils utiliseront pour la réalisation de l’objet intelligent.

2. Conception de l’architecture modulaire hybride : Dans cette étape, les concepteurs

spécifient une architecture modulaire basée sur les composants sélectionnés, et

un exemple d’une telle architecture est donné FIGURE A.3. L’idée derrière cette

étape de conception est d’établir une architecture hybride basée sur des mo-

dules matériels-logiciels réalisant une fonctionnalité unique. Ce découpage de

l’objet connecté permet d’améliorer l’interopérabilité en maximisant les possi-

bilités d’utilisations ultérieures des modules déjà implémentés. En plus, celui-ci

se rapproche de la notion de service des architectures orientées service, qui sont

utilisées pour leur flexibilité et leur modularité.

3. Spécification et vérification des modules : Comme mentionné dans l’introduc-

tion, obtenir des garanties en termes de sureté et de fiabilité est capital pour les

systèmes basés sur l’internet des objets étant donné leur nature généralement

critique. Pour améliorer ces garanties, nous appuyons l’importance de l’utilisa-

tion de méthodes formelles, qui permettent de tester des propriétés diverses des

systèmes étudiés à partir d’un modèle mathématique de ceux-ci. Nous avons

par conséquent choisi d’intégrer une étape de spécification et de vérification des

modules définis dans l’architecture modulaire de l’étape précédente. Nous n’im-

posons cependant pas de langage de spécification formel en particulier, et laissons

à la discrétion des concepteurs le choix de cet outil parmi la variété de logiciels

disponibles, comme TLA+ [Lam93], UPPAAL [LPY97] ou KeYmaera X [Pla18].

4. Spécification et vérification de l’objet : Une fois les modules spécifiés et validés,

l’objet intelligent lui même doit être sujet au même procédé. En effet, celui-ci

peut être vu comme l’intégration des modules hybrides, et la vérification de cette

intégration permet d’ajouter un degré de certitude supplémentaire vis-à-vis du

comportement final de l’objet intelligent.

5. Implémentation des modules : Une fois l’objet complètement spécifié et vérifié,

celui-ci peut être réalisé en suivant la spécification, et en adoptant par conséquent

une approche module par module. Nous insistons sur l’importance du fait que les

concepteurs respectent au mieux la spécification formelle définie dans les étapes

précédentes. En effet, c’est sur celle-ci que reposent les garanties en termes de

sureté et de fiabilité de l’objet connecté en cours de conception, et s’écarter de la

spécification annule ces garanties et peut introduire diverses failles ou erreurs.

6. Intégration des modules : Une fois tous les modules implémentés, leur intégration

peut être réalisée. À l’issue de celle-ci, un prototype de l’objet intelligent est

produit.

7. Tests du prototype de l’objet : Le prototype produit à l’étape précédente est uti-

lisé pour réaliser une variété de tests afin de vérifier que l’objet est conforme

aux exigences initiales. En effet, bien que les étapes de spécification et vérifica-

tion formelles permettent d’examiner certaines propriétés de l’objet en cours de

conception (comme la liveness ou la sureté de celui-ci), toutes ne peuvent pas

être l’objet de cet examen. En effet, des propriétés telles que l’autonomie restent

difficiles à vérifier a priori, et nécessitent souvent des mesures expérimentales afin

d’être validées. De plus, de possibles erreurs lors de l’implémentation peuvent être

présentes. La somme de ces constatations nous motive à insister particulièrement

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

A.2. Méthode de Conception Orientée Service pour Objets Intelligents 159

sur la nécessité de procédures de tests avancées, permettant à la fois d’ajouter des

garanties vis-à-vis du comportement final de l’objet, mais également de vérifier

sa pertinence dans une variété de conditions réelles. Les erreurs détectées par le

biais des tests peuvent ensuite être, dans une certaine mesure, corrigées avant la

production finale et en masse de l’objet intelligent.

8. Production de l’objet : Cette dernière étape de notre méthodologie décrit la pro-

duction en masse de l’objet intelligent développé. Ainsi, une fois les procédures

de tests passées, les concepteurs peuvent faire appel à une variété de prestataires

pour la fabrication des circuits imprimés de cet objet, l’encapsulation ou bien la

distribution de celui-ci.

Figure A.3 – Architecture modulaire hybride du capteur cardiorespiratoire

En plus de ces étapes de conception détaillées, nous définissons également une

liste de recommandations permettant la définition des modules matériels-logiciels

autonomes exposant des interfaces bien définies :

— Découpler les modules logiciels et matériels : Cela permet de réduire la charge de

calcul du microcontrôleur en implémentant les différentes fonctions efficacement

sur des composants dédiés.

— Utiliser des accès mémoire directs et des interruptions pour la communication

inter-modules : Ces deux éléments permettent également une réduction de la

charge de calcul, étant donné que les données transitent directement par les bus

appropriés sans intervention du microcontrôleur et que la détection de nouvelles

données se fait par interruption plutôt que par attente active.

— Annoter les échanges de données : En annotant les échanges entre les modules

hybrides, ceux-ci deviennent auto-descriptifs et améliorent l’autonomie des mo-

dules, qui ne reposent plus sur une spécification haut niveau des formats de

données. Pour des raisons de compacité, des protocoles de sérialisation binaires

tels que MessagePack, CBOR ou BSON peuvent être utilisés.

— Spécifier des services matériels dans le composant radio : Ces services exposent

les fonctionnalités bas niveau des objets intelligents au monde externe, et sont

définis vis-à-vis des catégories actionnement, mesure et configuration.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

160 Annexe A. Résumé Long en Français

— Activer la sécurité dans les composants : Ce dernier point permet d’améliorer la

sécurité globale du système en activant des accélérateurs de chiffrage matériels

présents dans la plupart des composants actuels.

A.2.2 Application de la Méthode à un Capteur Cardiorespiratoire

Afin de confirmer l’aspect pratique de notre méthodologie orientée service, nous

l’avons appliqué à la conception d’un capteur cardiorespiratoire intelligent, qui doit

être capable de transmettre en temps réel la fréquence cardiaque, les paramètres de

variabilité cardiaque et l’onde respiratoire. Celui-ci doit également disposer d’une préci-

sion de grade médical, d’une autonomie de plus de 48 heures, et être suffisamment léger

pour pouvoir être attaché à une électrode collée sur le patient sans arracher celle-ci.

Ce capteur devra pouvoir être utilisé dans des conditions ambulatoires. De plus nous

souhaitons intégrer des capacités d’auto-adaptation afin d’augmenter l’intelligence de

l’objet, et nous définissons les états suivants : initial, qui représente l’initialisation de

tous les composants du capteur ; normal, dans lequel le capteur fonctionne en temps

réel et calcule tous les paramètres ; dégradé, dans lequel le capteur transmet la moyenne

de la fréquence cardiaque seulement toutes les 5 minutes pour des raisons d’écono-

mies d’énergie ; détaché, dans lequel le capteur se place lui-même s’il auto-détecte sa

déconnexion de la peau du patient ; et enfin stop, qui décrit un état d’hibernation du

capteur ou seul un reset matériel peut le redémarrer. Un diagramme représentant ces

états et les transitions associées est donné FIGURE A.4. Afin d’avoir une estimation la

plus précise possible des paramètres cardiaques, ceux-ci sont déterminés à partir de

l’électrocardiogramme. Afin d’améliorer l’interopérabilité de notre objet, et à cause

de son utilisation répandue dans les objets intelligents contraints, nous utilisons le

protocole BLE. Bien que de nombreux capteurs semblables existent dans la littérature

scientifique, comme ceux décrits dans [Mag+14; Tuo+17; Izu+15; Mas+15], à notre

connaissance aucun de ces capteurs ne disposent à la fois de capacités de transmission

en temps réels des paramètres combinées à la possibilité d’être configurés à distance.

Figure A.4 – Diagramme d’auto-adaptation

À partir des besoins fonctionnels et non-fonctionnels détaillés dans le paragraphe

précédent, nous avons sélectionné le PSoC5LP (Cypress Semiconductor, San Jose, CA)

comme système sur puce principal accompagné des composants intégrés ADS1292R

(Texas Instruments, Dallas, TX) pour l’acquisition et la conversion analogique-numéri-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

A.2. Méthode de Conception Orientée Service pour Objets Intelligents 161

que et BLE113 (Silicon Labs, Austin, TX) pour la communication sans fil. En effet, le

PSoC5LP embarque un co-processeur de traitement du signal ainsi qu’une matrice

de portes logiques programmables, ce qui nous permet d’implémenter la plupart du

traitement du signal en temps réel de l’électrocardiogramme sur ces composants dédiés,

et nous permet par conséquent de réduire la consommation électrique globale et donc

d’améliorer l’autonomie de notre capteur. Le circuit intégré ADS1292R dispose d’une

résolution et d’une fréquence d’échantillonnage de l’électrocardiogramme permettant

d’acquérir celui-ci avec des qualités comparables aux standards médicaux. Finalement,

le circuit BLE113 permet de gérer les communications sans fil de façon déportée, et par

conséquent de réduire la charge de calcul du microcontrôleur. Le capteur est alimenté

par une batterie de capacité 300 mAh. Une application Android a également été conçue

afin de faciliter la collecte de données.

Nous avons donc conçu, spécifié et vérifié ce capteur cardiorespiratoire en suivant

l’architecture modulaire illustrée FIGURE A.3, et une photo du capteur est montrée

FIGURE A.5.(a.). Dans la suite de ce résumé, nous mettons en particulier l’accent sur

les tests réalisés permettant la vérification des propriétés non-fonctionnelles, mais

également la pertinence de l’utilisation ambulatoire de notre objet intelligent. Plus

particulièrement, nous avons étudié l’impact des paramètres de la connexion BLE sur

la consommation électrique du capteur, comme illustré FIGURE A.5.(b.), ce qui nous a

permis de vérifier l’autonomie maximale visée.

Figure A.5 – (a.) Capteur développé encapsulé, (b.) Résultats des tests de consomma-
tion, (c.) Sensitivité et précision du capteur, (d.) Diagramme de Bland-Altman avec
l’instrumentation PowerLab utilisée comme référence

Afin de vérifier la pertinence de l’utilisation de notre objet intelligent dans des

contextes ambulatoires, nous avons testé l’impact de la nature et de la position des

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

162 Annexe A. Résumé Long en Français

électrodes sur la sensibilité et la précision du capteur. Cette étude a été réalisée sur

8 sujets volontaires, et les résultats sont présentés FIGURE A.5.(c.). Ceux-ci illustrent que

les positions standards et abdominales présentent toutes des sensibilités et précisions

supérieures à 98 %, alors que la position où le capteur est placée sur la partie supérieure

de la poitrine ne présente pas d’aussi bons résultats.

Finalement, nous avons évalué quantitativement la concordance entre notre capteur

et une instrumentation de référence au travers d’un diagramme de Bland-Altmand, et

les résultats sont illustrés FIGURE A.5.(d.). En résumé, il est important de remarquer que

les données de notre capteur présentent un décalage positif d’environ 1,3 ms, et celui-ci

est vraisemblablement causé par la tolérance de l’horloge interne de l’ADS1292R, qui

est seulement de 1,5 %. Néanmoins, les erreurs maximales aussi bien positivement que

négativement représentent systématiquement des variations inférieures à 1 % entre

notre capteur et l’instrumentation de référence, et cela renforce le fait que notre objet

intelligent est bien doté d’une précision de grade médical.

En conclusion, cette partie présente deux contributions : une méthode de concep-

tion orientée service pour objets intelligents, et l’application de cette méthode afin de

concevoir un capteur cardiorespiratoire temps réel et auto-adaptable. L’originalité de

ces contributions vient principalement de l’adoption d’une vision orientée service pour

les couches les plus basses de l’internet des objets, qui permet d’améliorer la flexibilité

et la modularité des objets conçus. De plus, l’addition de capacités d’auto-adaptation

améliore l’intelligence de ces objets, qui peuvent ainsi être intégrés à des infrastructures

auto-adaptables à plus large échelle, que nous décrivons dans la section suivante.

A.3 Infrastructure d’Auto-Adaptation Dédiée aux Objets Intelli-
gents

Lorsqu’il s’agit de l’adaptation tant matérielle que logicielle, de nombreuses contri-

butions ont été proposées. Les premières concernent exclusivement l’adaptation ma-

térielle, et proviennent de la théorie classique du contrôle, qui repose principalement

sur l’utilisation de boucles fermées afin de contrôler la dynamique de systèmes élec-

tromécaniques [Oga10]. La théorie du contrôle définit des architectures de boucles

et de contrôleurs classiques, comme les régulateurs proportionnels, intégraux, déri-

vés [Sko03], qui sont utilisés pour le contrôle d’une variété de matériels (p. ex. moteurs,

systèmes électrochimiques, etc.). Ces solutions reposent néanmoins sur une modéli-

sation précise des systèmes contrôlés, traditionnellement sous la forme d’équations

différentielles, et nécessitent donc une caractérisation expérimentale de ceux-ci. Ceci li-

mite fortement leurs capacités à être utilisés pour des systèmes hybrides présentant une

dynamique à la fois discrète et continue. Des solutions de la communauté des systèmes

cyber-physiques permettent de contrôler ce type de systèmes [Lee08], mais elles pré-

sentent le même type de limites que les solutions uniquement continues (c.-à-d. l’effort

nécessaire pour développer des modèles précis des systèmes à contrôler).

Les informaticiens étudient également l’auto-adaptation de systèmes logiciels, et

ont proposé une variété de solutions afin d’équiper ceux-ci de capacités de réaction aux

sollicitations à la fois internes et externes. Une contribution majeure pour l’adaptation

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

A.3. Infrastructure d’Auto-Adaptation Dédiée aux Objets Intelligents 163

de tels systèmes est la boucle MAPE-K 1 [KC03]. Celle-ci définit une architecture de

référence pour la création de composants logiciels autonomes, et les boucles MAPE-K

sont par conséquent extrêmement souples et flexibles, et elles permettent aux systèmes

logiciels de s’auto-configurer, s’auto-optimiser ou bien encore s’auto-guérir [KC03]. Des

contributions telles que [Vil+13] proposent la coordination de boucles MAPE-K pour

la gestion dynamique de l’auto-adaptation. Plus particulièrement, l’aspect dynamique

est introduit par le fait que les systèmes proposés dans [Vil+13] sont capables de réagir

aux changements d’objectifs d’adaptation ou d’infrastructure de supervision durant

l’exécution. Cependant, les contributions basées sur des boucles de type MAPE-K sont

fréquemment exclusivement logicielles, et ne sont par conséquent pas capables de

représenter les contraintes intrinsèques à l’internet des objets telles que les limitations

en termes de ressources ou la nature hybrides des objets intelligents le constituant.

Finalement, nous avons isolé une dernière catégorie de contributions intéressantes

dans le contexte de l’internet des objets, produite par la communauté dédiée à l’étude

des systèmes réactifs. Ceux-ci sont définis comme des systèmes réagissant à une variété

de sollicitations extérieures, et de nombreux outils permettant leur étude sont proposés.

C’est particulièrement le cas des systèmes synchrones, qui sont définis dans ce cadre

comme des systèmes assez puissants pour que le temps de calcul d’une réponse à une

sollicitation externe soit négligeable comparé au flux de sollicitations nécessitant une

réaction [Gam10]. Si cette hypothèse est vérifiée, les systèmes peuvent être modélisés

sous la forme de systèmes de transition d’états étiquetés, et il existe des techniques

permettant la synthèse automatique de contrôleurs discrets et synchrones pour la

coordination de plusieurs sous-systèmes de ce type. Celle-ci est généralement appelée

synthèse de contrôleurs discrets, et elle consiste en la génération automatique de code

impératif implémentant le contrôleur discret vérifiant les objectifs d’adaptation spécifiés

lors du processus de synthèse.

En conclusion, les solutions existantes ne satisfont pas tous les besoins de l’auto-

adaptation appliquée à l’internet des objets. En effet, les solutions issues de la théorie du

contrôle classique ou des systèmes cyber-physiques nécessitent la modélisation exhaus-

tive des systèmes à contrôler, ce qui n’est pas toujours réalisable pour les systèmes de

l’internet des objets. De plus, les solutions orientées logiciel comme les boucles MAPE-K

ne permettent pas de prendre en compte les contraintes des objets intelligents, mais

permettent d’établir des architectures flexibles et modulaires. Finalement, les outils

relatifs à la synthèse de contrôleurs discrets pour les systèmes réactifs synchrones ap-

portent sont pertinent dans le contexte de l’internet des objets. En effet, ceux-ci utilisent

des modèles simples à base de systèmes de transition d’états étiquetés, qui peuvent être

appliqués facilement aux objets intelligents. De plus, l’aspect automatique et formel de

ces outils permettent de produire du code correct par construction, ce qui ajoute un

degré de certitude vis-à-vis du comportement attendu des systèmes synthétisés. Notre

contribution se situe donc à l’interface de ces trois champs, et propose une solution

pour l’auto-adaptation dynamique de systèmes de l’internet des objets basée sur la

synthèse de contrôleurs discrets intégrée à des boucles de type MAPE-K, elles-mêmes

interagissant à la manière de boucles fermées issues du la théorie du contrôle classique.

1. MAPE-K : Monitor, Analyze, Plan, Execute and Knowledge - Supervise, analyse, planifie et exécute en
utilisant une base de connaissances partagée.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

164 Annexe A. Résumé Long en Français

A.3.1 Présentation de l’Infrastructure Hybride

Notre infrastructure dynamique d’auto-adaptation pour l’internet des objets est

introduite FIGURE A.6. Celle-ci se concentre particulièrement sur la préservation d’une

qualité de service satisfaisante durant tout le cycle d’exécution du système, et met donc

l’accent sur les propriétés non-fonctionnelles. Notre démarche a d’abord été d’établir

une architecture entièrement synchrone basée sur la séparation des préoccupations

entre la gestion des objectifs d’adaptation, le processus d’adaptation et l’infrastructure

de supervision du système. Ainsi, comme illustré FIGURE 5.1.(a.), nous définissons trois

boucles de contrôle basées sur la topologie MAPE-K : la boucle de contrôle des objectifs,

celle d’adaptation et enfin celle de supervision des propriétés non-fonctionnelles. Ces

trois boucles communiquent au travers de quatre interactions, qui représentent les

objectifs de contrôle, les superviseurs invalidés, le contexte interne et enfin des actions

d’adaptation préventives. Le processus d’adaptation est implémenté au travers d’un

contrôleur discret, généré automatiquement en utilisant des outils de synthèse auto-

matique. Ainsi, nous sommes capables de gérer des changements dans les objectifs

de contrôle, mais également dans l’infrastructure de supervision, ce qui est particu-

lièrement pertinent dans le contexte de l’internet des objets considérant que celui-ci

représente un réseau dynamique que les objets intelligents peuvent joindre ou quitter à

tout moment, mais aussi considérant le fait que l’internet des objets est en constante

interaction avec le monde physique, qui lui-même est en évolution permanente.

Figure A.6 – Versions synchrone (a.) et hybride (b.) de l’infrastructure d’auto-adaptation

En plus de cette infrastructure synchrone d’auto-adaptation dynamique, nous avons

également conçu un langage de spécification d’objectifs d’adaptation déclaratif à base

de règles, et un exemple est illustré FIGURE A.7. En effet, les langages impératifs pré-

sentent de fortes limites en termes de maintenance et d’évolutivité car ils sont utilisés

pour spécifier comment un système réalise des objectifs prédéfinis. En spécifiant quels

sont les objectifs à atteindre, les solutions déclaratives abrègent le processus de déve-

loppement car il n’est plus nécessaire de caractériser l’intégralité du déroulement de

l’exécution. Notre système déclaratif nous permet de réduire la base de code nécessaire

à la spécification de l’auto-adaptation de systèmes internet des objets complexes, mais

abaisse également le niveau d’entrée en permettant à des non-experts de spécifier

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

A.3. Infrastructure d’Auto-Adaptation Dédiée aux Objets Intelligents 165

eux-mêmes les systèmes en fonctions de leurs exigences. De plus, nous divisons la

spécification des objectifs en trois catégories : niveau objet, niveau système et niveau

humain. Cela permet de différencier les niveaux de granularité nécessaires à la caracté-

risation de systèmes cohérents à la fois à l’échelle globale mais également à l’échelle

locale (c.-à-d. au niveau des objets). De plus, les variations inter-patients dans le cas

de systèmes de santé requièrent la possibilité d’adapter le système à leur différentes

exigences. Ces spécifications sont réalisées en termes de qualité de service à préser-

ver, et les utilisateurs finaux caractérisent quelles sont les configurations du système

permettant la préservation de ces qualités.

Figure A.7 – Exemple de règles spéci�ées en utilisant notre langage

Bien que la solution synchrone accompagnée de son langage d’auto-adaptation

à base de règles représente une contribution intéressante, elle est fortement limitée

par son aspect exclusivement synchrone, qui peut poser des problèmes d’évolutivité.

Bien que l’hypothèse des systèmes synchrones soit vérifiée pour des infrastructures de

l’internet des objets de taille modeste, ce n’est plus le cas si les systèmes dépassent une

certaine taille. En effet, bien que les passerelles utilisées dans l’internet des objets soient

en général bien plus puissantes que les objets qu’elles contrôlent, si ceux-ci deviennent

trop nombreux, la masse d’évènements à gérer par ces passerelles peut devenir trop im-

portante, ce qui peut causer une invalidation de la vérification de cette hypothèse. Pour

palier à cette limitation d’évolutivité, nous introduisons la solution hybride présentée

FIGURE 5.1.(b.). Celle-ci introduit une gestion asynchrone des objectifs d’adaptation,

qui sont ensuite retransmis aux sous-systèmes synchrones de supervision des proprié-

tés non-fonctionnelles et d’adaptation. La conversion asynchrone vers synchrone est

implémentée au travers de tampons stockant les évènements asynchrones de façon

séquentielle, qui sont ensuite lus et gérés par les systèmes synchrones à chaque itération

de leur boucle principale. Notre système d’auto adaptation dynamique final consiste

donc en la coordination asynchrone de sous-systèmes d’adaptation et de supervision

synchrones. En plus de la définition théorique résumée ci-dessus, nous avons implé-

menté une preuve de concept afin d’illustrer l’aspect pratique de notre infrastructure et

de réaliser des expériences, notamment afin d’évaluer son évolutivité.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

166 Annexe A. Résumé Long en Français

A.3.2 Implémentation de l’Infrastructure d’Auto-Adaptation

Dans cette section, nous résumons l’implémentation et l’évaluation de notre in-

frastructure d’auto-adaptation dynamique pour l’internet des objets. L’architecture de

notre preuve de concept est présentée FIGURE A.8. Afin de maximiser l’interopérabilité,

la fiabilité et la robustesse de notre solution, nous avons choisi le standard Data Distri-

bution Service (DDS) pour implémenter toutes les communications de celle-ci. En effet,

DDS est spécifiquement conçu pour une utilisation en milieu contraint et critique, et

son architecture sans broker central élimine ce potentiel point de panne unique (dans

le sens single point of failure). De plus, ce standard présente de bonne performances

en termes d’évolutivité et d’utilisation en milieu contraint [CK16; BPM16], ce qui le

rend particulièrement pertinent pour une application dans le domaine de l’internet

des objets. En résumé, le standard DDS est de type publication-abonnement, et les

données circulent sur des topics désignés par leur nom. Contrairement à MQTT, qui

est également très utilisé pour les solutions dans le domaine de l’internet des objets,

les données circulant sur les topics DDS sont préalablement caractérisées en utilisant

un langage de spécification d’interface, et elles sont par conséquent typées. En plus, ce

standard permet de partitionner le domaine d’information global en plusieurs sous-

domaines imbriqués, ce qui permet potentiellement d’adopter un modèle de système

hiérarchique (p. ex. ville, bâtiment, pièce) pouvant être utilisé pour filtrer les données

circulant dans le système. DDS propose également une gestion très précise de la qualité

de service en offrant 22 paramètres configurables. Les communications implémentées

en utilisant ce protocole sont à la fois les interactions entre les boucles, mais également

celles provenant des objets intelligents. Si un objet intelligent n’utilise pas un protocole

TCP/IP, des convertisseurs vers DDS peuvent aisément être créés.

Nous avons utilisé la librairie Vert.x pour l’implémentation de la boucle de contrôle

des objectifs asynchrone. En effet, celle-ci implémente le reactor pattern, qui permet

de créer des systèmes asynchrones réactifs évolutifs. De plus, cette librairie est extrê-

mement légère (la partie centrale ne dépassant pas la centaine de kilooctets), et son

exécution repose sur la Java Virtual Machine (JVM), ce qui la rend extrêmement portable.

Vert.x est basée sur une boucle d’évènements centrale, qui ne doit jamais être bloquée

afin de garantir des performances optimales. Les concepteurs utilisant Vert.x doivent

donc se concentrer sur la construction d’infrastructures exclusivement asynchrones et

utiliser au maximum des appels de fonction non-bloquants.

En plus de ces deux outils, nous avons utilisé la base de données NoSQL MongoDB

pour l’implémentation des répertoires d’objets et d’objectifs. Celle-ci permet de stocker

des documents en utilisant le langage JavaScript Object Notation (JSON), et les bonnes

performances en lecture et écriture [PND14] rendent son utilisation pour l’internet des

objets pertinente. En ce qui concerne le moteur de règles, nous avons choisi d’utiliser

Drools, principalement pour sa flexibilité (il est accompagné d’un langage de spécifi-

cation des règles très avancé, mais également de la possibilité de définir ses propres

langages), ainsi que pour ses facultés de traitement des événements complexes, qui

permettent d’analyser sans difficulté une masse d’évènements pour en détecter ceux

qui sont significatifs et y attacher une logique applicative.

Étant donné que la plupart des outils à la base de notre prototype sont basés sur

le langage Java, nous l’avons utilisé dans sa version 1.8 pour implémenter la totalité

de la preuve de concept. Nous avons également implémenté une interface graphique

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

A.3. Infrastructure d’Auto-Adaptation Dédiée aux Objets Intelligents 167

Figure A.8 – Architecture de l’implémentation de l’infrastructure d’auto-adaptation

Web, afin que les utilisateurs finaux puissent aisément spécifier les règles d’adaptation

nécessaires à leur application spécifique. Les boucles de supervision et d’adaptation ont

été implémentées de façon synchrone en utilisant une simple boucle logicielle infinie.

En ce qui concerne la synthèse de contrôleurs discrets et synchrones, nous avons choisi

d’utiliser le langage de programmation synchrone Heptagon/BZR [DR10] accompagné

du synthétiseur de contrôleurs Sigali [Mar+00 ; DMR10 ; DRM13]. Ce langage est capable

de générer du code Java, qui peut être compilé et déployé sur une variété de passerelles

(p. ex. Raspberry Pi, Intel Edison, etc.).

Figure A.9 – Étude de l’évolutivité du système par rapport au nombre de règles (a.) et
du nombre de passerelles (b.)

Une fois la preuve de concept implémentée, nous avons testé son évolutivité par

rapport à deux critères : le nombre de règles déployées dans chaque sous-système et le

nombre de sous-systèmes (c.-à-d. le nombre de passerelles). Les résultats sont présentés

FIGURE A.9. En effet, bien que le nombre de règles déployées dans un sous-système

ne dépasse jamais quelques dizaines étant donné que la taille de ceux-ci est limitée

par l’hypothèse des systèmes synchrones, il est important de vérifier qu’une augmenta-

tion du nombre de règles n’entraîne pas une explosion du temps de déploiement. La

FIGURE A.9.(a.) vient confirmer ce fait, et on peut observer que la pente du temps de

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

168 Annexe A. Résumé Long en Français

déploiement des objectifs tend à diminuer lorsque le nombre d’objectifs augmente, ce

qui confirme l’évolutivité de notre système vis-à-vis du nombre de règles. C’est aussi le

cas pour l’évolutivité de l’infrastructure par rapport au nombre de passerelles à gérer.

En effet, comme illustré FIGURE A.9.(b.), le temps d’analyse des objectifs de contrôle

évolue linéairement avec le nombre de passerelles. Nous n’observons par conséquent

pas d’explosion du temps d’analyse, ce qui encore une fois est un signe encourageant

pour l’évolutivité de notre système et sa capacité à gérer une masse d’objets intelligents

importante.

A.4 Conclusion

En conclusion, nous avons développé au cours de cette thèse deux axes de recherche

principaux. Le premier consiste en l’amélioration de la conception des objets intelligents

en intégrant une dimension orientée service et formelle à leur cycle de développement.

Celle-ci permet d’améliorer l’interopérabilité de ces objets, mais également de mini-

miser les problèmes apportés par la forte hétérogénéité du matériel utilisé pour les

implémenter et d’améliorer leur fiabilité en se basant sur leur vérification formelle.

Notre contribution principale pour cet axe est la proposition d’une méthode de concep-

tion orientée service pour l’internet des objets intégrant une dimension formelle, ainsi

que son application à la création d’un capteur cardiorespiratoire de grade médical.

Le deuxième axe de recherche aborde la problématique de l’auto-adaptation pour

les objets intelligents et l’internet des objets. En effet, celle-ci représente une première

étape vers une intelligence globale de ce type de systèmes, mais l’auto-adaptation

permet également d’améliorer la fiabilité et la sureté de ceux-ci en les rendant capables

de réagir à une variété de situations internes ou externes durant leur exécution. Dans

cette partie, nous proposons une infrastructure d’auto-adaptation dynamique pour

l’internet des objets, capable à la fois de gérer des changements dans les objectifs

d’adaptation mais également dans le système de supervision. Nous présentons aussi

une implémentation d’une preuve de concept de cette infrastructure, que nous avons

évalué vis-à-vis de son évolutivité.

Bien que nos travaux introduisent une certaine verticalité dans la résolution des

défis de l’internet des objets, ils restent restreints aux couches relativement basses de

celui-ci, et présente par conséquent des limitations, qui mettent en avant quelques

directions de recherche intéressantes :

— La création d’un modèle unifié pour l’internet des objets : Une piste intéressante

pour l’unification des représentations des objets intelligents est l’utilisation d’arté-

facts métiers, qui permettent la modélisation simultanée des données des objets

ainsi que de leur cycle de vie [NC03]. Des contributions comme [ABA17] pro-

posent de les utiliser dans le contexte de l’internet des objets, et les adapter à

notre vision de celui-ci représente une direction de recherche potentielle.

— La définition d’un cadre formel exhaustif : Dans nos contributions, nous utilisons

deux formalismes différents pour la spécification formelle des objets lors de leur

création et de leur utilisation. Un modèle unifié serait bénéfique dans le sens

ou il réduirait le temps de développement, et la logique linéaire représente une

piste intéressante pour la modélisation complète des objets intelligents. En effet,

ses capacités à représenter les ressources et leur consommation représentent

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

A.4. Conclusion 169

un avantage indéniable dans ce contexte, et elle a déjà été utilisée pour la com-

position des services Web dans [PFW12; RS04]. Le manque d’outils de preuve

automatiques pour la logique linéaire représente néanmoins un inconvénient à

son utilisation.

— L’ajout d’une couche sémantique : Celle-ci permettrait d’améliorer la compati-

bilité entre les objets connectés en fournissant un moyen de raisonner sur les

données produites par ceux-ci et en permettant d’inférer de façon intelligente des

équivalences entre des sources de données hétérogènes. Des contributions telles

que [Ter+17] proposent d’utiliser des raisonneurs automatiques dans un contexte

de l’internet des objets, mais les technologies utilisées restent de relativement

haut niveau, et leurs applications aux couches les plus basses de celui-ci restent

un défi.

— L’extension de l’auto-adaptation aux couches basses : Ici, notre infrastructure

dynamique d’auto-adaptation est limitée à la coordination d’objets intelligents au

travers de leur reconfiguration. Une extension aux couches les plus basses, ou les

objets ne sont plus seulement reconfigurés mais ou leur micrologiciel est changé

à distance, permettrait de répondre à des cas d’auto-adaptation plus larges. Ceci

est réalisable techniquement étant donné que les langages de programmation

synchrones permettent de générer du code C bas niveau, et cette vision a été

adoptée pour le développement de pilotes pour objets contraints [BMM13].

— L’intégration de la sécurité : Celle-ci représente une lacune importante de nos

travaux, considérée la sensibilité des données collectées par l’internet des objets,

mais également son utilisation pour de nombreuses applications critiques. La

sécurité est cependant un sujet d’étude très large, et la taille importante des sys-

tèmes dans ce contexte ainsi que l’hétérogénéité des objets connectés apportent

de nouveaux défis à résoudre pour les chercheurs en sécurité. Une direction de

recherche intéressante se situe dans le domaine de la sécurité décentralisée et

distribuée dans la blockchain, et des contributions telles que [Zhu+17] ou [OAA16]

décrivent des solutions pour la gestion de l’identité ou du contrôle d’accès dans

l’internet des objets. Intégrer de telles solutions à notre vision de celui-ci serait

extrêmement bénéfique et améliorerait considérablement la sécurité de nos sys-

tèmes.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

APPENDIXB
Cardiorespiratory Sensor Schematic

This appendix illustrates the complete cardiorespiratory sensor schematic which was

used for Printed Circuit Board (PCB) routing and hardware implementation.

Figure B.1 – Power management and hardware connectivity

171

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

172 Appendix B. Cardiorespiratory Sensor Schematic

Figure B.2 – Analog front end interfacing

Figure B.3 – PSOC5LP and additional hardware connectivity

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

173

Figure B.4 – BLE113 interfacing

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Bibliography

[ABA17] M. Abi Assaf, Y. Badr, and Y. Amghar. “A Continuous Query Language for Stream-
Based Artifacts.” Proceedings of the 28th International Conference on Database
and Expert Systems Applications (DEXA). Springer, 2017, pp. 80–89.

[AL12] O. Adeluyi and J.-A. Lee. “Realtime Detection of ECG Signal R-Peaks Using a
Lightweight R-READER Algorithm.” International Journal of Intelligent Informa-
tion Prosessing, vol. 3, no. 3, 2012, pp. 1–12.

[Ala+14] M. B. Alaya, Y. Banouar, T. Monteil, C. Chassot, and K. Drira. “OM2M: Extensi-
ble ETSI-Compliant M2M Service Platform with Self-Configuration Capability.”
Procedia Computer Science, vol. 32, 2014, pp. 1079–1086.

[Ala+15] M. B. Alaya, S. Medjiah, T. Monteil, and K. Drira. “Toward Semantic Interoperability
in oneM2M Architecture.” IEEE Communications Magazine, vol. 53, no. 12, 2015,
pp. 35–41.

[AlF+15] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. “Internet
of Things: A Survey on Enabling Technologies, Protocols, and Applications.” IEEE
Communications Surveys & Tutorials, vol. 17, no. 4, 2015, pp. 2347–2376.

[Alo+04] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. “Web Services.” Web Services:
Concepts, Architectures and Applications. Springer, 2004, pp. 123–149.

[Alt14] Altera. Bare-Metal, RTOS, or Linux? Optimize Real-Time Performance with Altera
SoCs. 2014, pp. 1–12.

[AMP95] E. Asarin, O. Maler, and A. Pnueli. “Symbolic Controller Synthesis for Discrete and
Timed Systems.” Proceedings of the 3rd International Workshop on Hybrid Systems.
Springer, 1995, pp. 1–20.

[Ang+16] K. Angelopoulos, A. V. Papadopoulos, V. E. Silva Souza, and J. Mylopoulos. “Model
Predictive Control for Software Systems with CobRA.” Proceedings of the 11th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). ACM, 2016, pp. 35–46.

[Arm+05] S. W. Arms, C. P. Townsend, D. L. Churchill, J. H. Galbreath, and S. W. Mundell.
“Power Management for Energy Harvesting Wireless Sensors.” Smart Structures
and Materials: Smart Electronics, MEMS, BioMEMS, and Nanotechnology. SPIE,
2005, pp. 1–9.

[Ars+08] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and K. Holley. “SOMA:
A Method for Developing Service-Oriented Solutions.” IBM Systems Journal,
vol. 47, no. 3, 2008, pp. 377–396.

[ARS15] P. Arcaini, E. Riccobene, and P. Scandurra. “Modeling and Analyzing Mape-K Feed-
back Loops for Self-Adaptation.” Proceedings of the 10th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE,
2015, pp. 13–23.

[AS87] B. Alpern and F. B. Schneider. “Recognizing Safety and Liveness.” Distributed
Computing, vol. 2, no. 3, 1987, pp. 117–126.

175

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

176 Bibliography

[ASD17] R. Abid, G. Salaün, and N. De Palma. “Asynchronous Synthesis Techniques for Co-
ordinating Autonomic Managers in the Cloud.” Science of Computer Programming,
vol. 146, 2017, pp. 87–103.

[ASL93] P. J. Antsaklis, J. A. Stiver, and M. Lemmon. “Hybrid System Modeling and Au-
tonomous Control Systems.” Hybrid Systems. Springer, 1993, pp. 366–392.

[Ath99] D. Atherton. “PID Controller Tuning.” Computing & Control Engineering Journal,
vol. 10, no. 2, 1999, pp. 44–50.

[AWB14] F. J. Acosta Padilla, F. Weis, and J. Bourcier. “Towards a Model@Runtime Middle-
ware for Cyber Physical Systems.” Proceedings of the 9th Workshop on Middleware
for Next Generation Internet Computing (MW4NG). ACM, 2014, pp. 1–6.

[Bab+11] S. Babar, A. Stango, N. Prasad, J. Sen, and R. Prasad. “Proposed Embedded Security
Framework for Internet of Things.” Proceedings of the 2nd International Confer-
ence on Wireless Communication, Vehicular Technology, Information Theory and
Aerospace & Electronic Systems Technology (Wireless VITAE). IEEE, 2011, pp. 1–5.

[Bag+17] M. Bagheri, I. Akkaya, E. Khamespanah, N. Khakpour, M. Sirjani, A. Movaghar, and
E. A. Lee. “Coordinated Actors for Reliable Self-Adaptive Systems.” Proceedings
of the 13th International Conference on Formal Aspects of Component Software
(FACS). Springer, 2017, pp. 241–259.

[Bar06] F. Barbier. “MDE-Based Design and Implementation of Autonomic Software Com-
ponents.” Proceedings of the 5th International Conference on Cognitive Informatics
(ICCI). IEEE, 2006, pp. 163–169.

[Bau+13] M. Bauer, M. Boussard, N. Bui, J. De Loof, C. Magerkurth, S. Meissner, A.
Nettsträter, J. Stefa, M. Thoma, and J. W. Walewski. “IoT Reference Architec-
ture.” Enabling Things to Talk. Springer, 2013, pp. 163–211.

[BB91] A. Benveniste and G. Berry. “The Synchronous Approach to Reactive and Real-
Time Systems.” Proceedings of the IEEE, vol. 79, no. 9, 1991, pp. 1270–1282.

[BBF09] G. Blair, N. Bencomo, and R. B. France. “Models@run.Time.” Computer, vol. 42,
no. 10, 2009, pp. 22–27.

[BdS91] F. Boussinot and R. de Simone. “The ESTEREL Language.” Proceedings of the IEEE,
vol. 79, no. 9, 1991, pp. 1293–1304.

[Bel08] M. Bell. Service-Oriented Modeling: Service Analysis, Design, and Architecture. 1st
Edition. John Wiley & Sons, 2008.

[Bem+02] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. “The Explicit Linear
Quadratic Regulator for Constrained Systems.” Automatica, vol. 38, no. 1, 2002,
pp. 3–20.

[Ben+00] D. Benitez, P. Gaydecki, A. Zaidi, and A. Fitzpatrick. “A New QRS Detection Al-
gorithm Based on the Hilbert Transform.” Proceedings of the 2000 International
Conference on Computer in Cardiology. IEEE, 2000, pp. 379–382.

[Ben+05] B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani. “On Automating Web
Services Discovery.” The VLDB Journal, vol. 14, no. 1, 2005, pp. 84–96.

[Ben12] L. Bengtsson. “Direct Analog-to-Microcontroller Interfacing.” Sensors and Actua-
tors A: Physical, vol. 179, 2012, pp. 105–113.

[BIT17] B. Billet, V. Issarny, and G. Texier. “Composing Continuous Services in a CoAP-
Based IoT.” Proceedings of the 6th International Conference on AI & Mobile Services
(AIMS). IEEE, 2017, pp. 46–53.

[BKR09] S. Becker, H. Koziolek, and R. Reussner. “The Palladio Component Model for
Model-Driven Performance Prediction.” Journal of Systems and Software, vol. 82,
no. 1, 2009, pp. 3–22.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Bibliography 177

[BL03] B. Batson and L. Lamport. “High-Level Specifications: Lessons from Industry.” Pro-
ceedings of the 1st International Symposium on Formal Methods for Components
and Objects (FMCO). Springer, 2003, pp. 242–261.

[BLJ91] A. Benveniste, P. Le Guernic, and C. Jacquemot. “Synchronous Programming
with Events and Relations: The SIGNAL Language and Its Semantics.” Science of
Computer Programming, vol. 16, no. 2, 1991, pp. 103–149.

[BM14] N. Berthier and H. Marchand. “Discrete Controller Synthesis for Infinite State
Systems with ReaX.” IFAC Proceedings Volumes, vol. 47, no. 2, 2014, pp. 46–53.

[BMM13] N. Berthier, F. Maraninchi, and L. Mounier. “Synchronous Programming of De-
vice Drivers for Global Resource Control in Embedded Operating Systems.” ACM
Transactions on Embedded Computing Systems, vol. 12, 1s 2013, pp. 1–26.

[BMP07] B. Bailey, G. Martin, and A. Piziali. ESL Design and Verification: A Prescription for
Electronic System-Level Methodology. Morgan Kaufmann, 2007. 462 pp.

[Bou+16] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni, and B. Combemale.
“Execution Framework of the GEMOC Studio (Tool Demo).” Proceedings of the 9th
International Conference on Software Language Engineering (SLE). Amsterdam,
Netherlands: ACM, 2016, pp. 84–89.

[BPM16] Z. B. Babovic, J. Protic, and V. Milutinovic. “Web Performance Evaluation for
Internet of Things Applications.” IEEE Access, vol. 4, 2016, pp. 6974–6992.

[Bro+18] C. Brooks, C. Jerad, H. Kim, E. A. Lee, M. Lohstroh, V. Nouvellet, B. Osyk, and M.
Weber. “A Component Architecture for the Internet of Things.” Proceedings of the
IEEE, 2018, pp. 1–16.

[Bru+06] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. “The FRACTAL
Component Model and Its Support in Java.” Software: Practice and Experience,
vol. 36, no. 11-12, 2006, pp. 1257–1284.

[Bru+09] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese, M. Litoiu, H. Müller, M. Pezzè,
and M. Shaw. “Engineering Self-Adaptive Systems Through Feedback Loops.”
Software Engineering for Self-Adaptive Systems. Berlin: Springer, 2009, pp. 48–70.

[BXA17] S. B. Baker, W. Xiang, and I. Atkinson. “Internet of Things for Smart Healthcare:
Technologies, Challenges, and Opportunities.” IEEE Access, vol. 5, 2017, pp. 26521–
26544.

[Cai+00] X. Cai, M. Lyu, Kam-Fai Wong, and Roy Ko. “Component-Based Software Engineer-
ing: Technologies, Development Frameworks, and Quality Assurance Schemes.”
Proceedings of the 7th Asia-Pacific Software Engeering Conference (APSEC). IEEE,
2000, pp. 372–379.

[Cal15] A. Calabria. Understanding Lead-Off Detection in ECG. Texas Instruments, 2015,
pp. 1–16.

[Can+14] J. Cano, E. Rutten, G. Delaval, Y. Benazzouz, and L. Gurgen. “ECA Rules for IoT
Environment: A Case Study in Safe Design.” Proceedings of the 8th International
Conference on Self-Adaptive and Self-Organizing Systems Workshops (SASOW).
IEEE, 2014, pp. 116–121.

[Car+09] A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, and S. Sastry. “Challenges
for Securing Cyber Physical Systems.” Proceedings of the 1st Workshop on Future
Directions in Cyber-Physical Systems Security (CPSSW). 2009, pp. 1–7.

[Car+17] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, and R. Mirandola.
“MOSES: A Platform for Experimenting with QoS-Driven Self-Adaptation Policies
for Service Oriented Systems.” Software Engineering for Self-Adaptive Systems III.
Assurances. Springer, 2017, pp. 409–433.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

178 Bibliography

[Cas+11] A. P. Castellani, M. Gheda, N. Bui, M. Rossi, and M. Zorzi. “Web Services for the
Internet of Things through CoAP and EXI.” Proceedings of the 2011 International
Conference on Communications Workshops (ICC). IEEE, 2011, pp. 1–6.

[CCC95] Cuiwei Li, Chongxun Zheng, and Changfeng Tai. “Detection of ECG Characteristic
Points Using Wavelet Transforms.” IEEE Transactions on Biomedical Engineering,
vol. 42, no. 1, 1995, pp. 21–28.

[CD99] I. I. Christov and I. K. Daskalov. “Filtering of Electromyogram Artifacts from the
Electrocardiogram.” Medical Engineering & Physics, vol. 21, no. 10, 1999, pp. 731–
736.

[CDP17] T. Cerny, M. J. Donahoo, and J. Pechanec. “Disambiguation and Comparison of
SOA, Microservices and Self-Contained Systems.” Proceedings of the International
Conference on Research in Adaptive and Convergent Systems (RACS). ACM, 2017,
pp. 228–235.

[CDR14] J. Cano, G. Delaval, and E. Rutten. “Coordination of ECA Rules by Verification and
Control.” Proceedings of the 16th International Conference on Coordination Models
and Languages (COORDINATION). Ed. by E. Kühn and R. Pugliese. Springer, 2014,
pp. 33–48.

[Cer+15] P. Cerwall, P. Jonsson, S. Carson, R. Möller, and S. Bävertoft. Ericsson Mobility
Report. Ericsson, 2015.

[CG79] D. Clarke and P. Gawthrop. “Self-Tuning Control.” Proceedings of the Institution of
Electrical Engineers, vol. 126, no. 6, 1979, p. 633.

[Cic+17] F. Ciccozzi, I. Crnkovic, D. Di Ruscio, I. Malavolta, P. Pelliccione, and R. Spalazzese.
“Model-Driven Engineering for Mission-Critical IoT Systems.” IEEE Software,
vol. 34, no. 1, 2017, pp. 46–53.

[CK07] S. H. Chang and S. D. Kim. “A Service-Oriented Analysis and Design Approach to
Developing Adaptable Services.” Proceedings of the 2007 International Conference
on Services Computing (SCC). IEEE, 2007, pp. 204–211.

[CK16] Y. Chen and T. Kunz. “Performance Evaluation of IoT Protocols under a Con-
strained Wireless Access Network.” Proceedings of the 2016 International Confer-
ence on Selected Topics in Mobile & Wireless Networking (MoWNeT). IEEE, 2016,
pp. 1–7.

[CM12] G. Cugola and A. Margara. “Processing Flows of Information: From Data Stream to
Complex Event Processing.” ACM Computing Surveys, vol. 44, no. 3, 2012, pp. 1–62.

[Com+13] B. Combemale, J. Deantoni, R. France, F. Boulanger, S. Mosser, M. Pantel, B.
Rumpe, R. Salay, and M. Schindler. “Report on the First Workshop on the Global-
ization of Modeling Languages.” Proceedings of the 1st International Workshop on
the Globalization of Modeling Languages (GEMOC). Miami, Florida, USA: CEUR,
2013, pp. 3–13.

[Cos+16] B. Costa, P. F. Pires, F. C. Delicato, W. Li, and A. Y. Zomaya. “Design and Analysis of
IoT Applications: A Model-Driven Approach.” 14th International Conference on
Dependable, Autonomic and Secure Computing, 14th International Conference on
Pervasive Intelligence and Computing, 2nd International Conference on Big Data
Intelligence and Computing and Cyber Science and Technology (DASC/PiCom/Dat-
aCom/CyberSciTech). IEEE, 2016, pp. 392–399.

[CPP05] J.-L. Colaço, B. Pagano, and M. Pouzet. “A Conservative Extension of Synchronous
Data-Flow with State Machines.” Proceedings of the 5th International Conference
on Embedded Software (EMSOFT). ACM, 2005, pp. 173–182.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Bibliography 179

[CRI12] M. Caporuscio, P.-G. Raverdy, and V. Issarny. “ubiSOAP: A Service-Oriented Mid-
dleware for Ubiquitous Networking.” IEEE Transactions on Services Computing,
vol. 5, no. 1, 2012, pp. 86–98.

[CS17] F. Ciccozzi and R. Spalazzese. “MDE4IoT: Supporting the Internet of Things
with Model-Driven Engineering.” Intelligent Distributed Computing X. Vol. 678.
Springer, 2017, pp. 67–76.

[CT05] G. D. Clifford and L. Tarassenko. “Quantifying Errors in Spectral Estimates of HRV
Due to Beat Replacement and Resampling.” IEEE Transactions on Biomedical
Engineering, vol. 52, no. 4, 2005, pp. 630–638.

[CZ16] M. Chiang and T. Zhang. “Fog and IoT: An Overview of Research Opportunities.”
IEEE Internet of Things Journal, vol. 3, no. 6, 2016, pp. 854–864.

[dDeu+06] S. de Deugd, R. Carroll, K. E. Kelly, B. Millett, and J. Ricker. “SODA: Service Oriented
Device Architecture.” IEEE Pervasive Computing, vol. 5, no. 3, 2006, pp. 94–96.

[Dem+13] A. Dementyev, S. Hodges, S. Taylor, and J. Smith. “Power Consumption Analysis of
Bluetooth Low Energy, ZigBee and ANT Sensor Nodes in a Cyclic Sleep Scenario.”
Proceedings of the 1st International Wireless Symposium (IWS). IEEE, 2013, pp. 1–4.

[Den+06] G. Denaro, M. Pezzé, D. Tosi, and D. Schilling. “Towards Self-Adaptive Service-
Oriented Architectures.” Proceedings of the 2006 Workshop on Testing, Analysis,
and Verification of Web Services and Applications (TAV-WEB). ACM, 2006, pp. 10–
16.

[DG97] G. De Micheli and R. K. Gupta. “Hardware/Software Co-Design.” Proceedings of
the IEEE, vol. 85, no. 3, 1997, pp. 349–365.

[DMR10] G. Delaval, H. Marchand, and E. Rutten. “Contracts for Modular Discrete Con-
troller Synthesis.” Proceedings of the 2010 Conference on Languages, Compilers,
and Tools for Embedded Systems (CASES). ACM, 2010, pp. 57–66.

[dNOW07] F. A. M. do Nascimento, M. F. Oliveira, and F. R. Wagner. “ModES: Embedded
Systems Design Methodology and Tools Based on MDE.” Proceedings of the 4th In-
ternational Workshop on Model-Based Methodologies for Pervasive and Embedded
Software (MOMPES). IEEE, 2007, pp. 67–76.

[Döm+08] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and D. Gajski.
“System-on-Chip Environment: A SpecC-Based Framework for Heterogeneous
MPSoC Design.” EURASIP Journal on Embedded Systems, vol. 2008, no. 1, 2008,
pp. 1–13.

[Dom+16a] J. Domaszewicz, S. Lalis, A. Pruszkowski, M. Koutsoubelias, T. Tajmajer, N. Grig-
oropoulos, M. Nati, and A. Gluhak. “Soft Actuation: Smart Home and Office with
Human-in-the-Loop.” IEEE Pervasive Computing, vol. 15, no. 1, 2016, pp. 48–56.

[Dom+16b] M. Domingo-Prieto, T. Chang, X. Vilajosana, and T. Watteyne. “Distributed PID-
Based Scheduling for 6TiSCH Networks.” IEEE Communications Letters, vol. 20,
no. 5, 2016, pp. 1006–1009.

[DR10] G. Delaval and E. Rutten. “Reactive Model-Based Control of Reconfiguration
in the Fractal Component-Based Model.” Proceedings of the 13th International
Conference on Component-Based Software Engineering (CBSE). Springer, 2010,
pp. 93–112.

[Dra+17] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and
L. Safina. “Microservices: Yesterday, Today, and Tomorrow.” Present and Ulterior
Software Engineering. Springer, 2017, pp. 195–216.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

180 Bibliography

[DRM13] G. Delaval, E. Rutten, and H. Marchand. “Integrating Discrete Controller Synthe-
sis into a Reactive Programming Language Compiler.” Discrete Event Dynamic
Systems, vol. 23, no. 4, 2013, pp. 385–418.

[DST16] K. Dhondge, R. Shorey, and J. Tew. “HOLA: Heuristic and Opportunistic Link
Selection Algorithm for Energy Efficiency in Industrial Internet of Things (IIoT)
Systems.” Proceedings of the 8th International Conference on Communication
Systems and Networks (COMSNETS). IEEE, 2016, pp. 1–6.

[DTD17] D. Dragan, D. Tudose, and D. Dragomir. “Enablement of CoAP Stack on Sparrow
Wireless Sensor Network.” Proceedings of the 21st International Conference on
Control Systems and Computer Science (CSCS). IEEE, 2017, pp. 625–629.

[Dut+10] X. Dutreilh, A. Moreau, J. Malenfant, N. Rivierre, and I. Truck. “From Data Center
Resource Allocation to Control Theory and Back.” Proceedings of the 3rd Interna-
tional Conference on Cloud Computing (CLOUD). IEEE, 2010, pp. 410–417.

[Ecl18] Eclipse Foundation. Eclipse Modeling Framework. 2018. URL: https://www.
eclipse.org/modeling/emf/ (visited on 06/16/2018).

[EHB93] R. Ernst, J. Henkel, and T. Benner. “Hardware-Software Cosynthesis for Microcon-
trollers.” IEEE Design & Test of Computers, vol. 10, no. 4, 1993, pp. 64–75.

[EK16] A. Engel and A. Koch. “Heterogeneous Wireless Sensor Nodes That Target the
Internet of Things.” IEEE Micro, vol. 36, no. 6, 2016, pp. 8–15.

[Eli+15] J. Eliasson, J. Delsing, H. Derhamy, Z. Salcic, and K. Wang. “Towards Industrial
Internet of Things: An Efficient and Interoperable Communication Framework.”
Proceedings of the 2015 International Conference on Industrial Technology (ICIT).
IEEE, 2015, pp. 2198–2204.

[Eme96] E. A. Emerson. “Automated Temporal Reasoning About Reactive Systems.” Logics
for Concurrency. Springer, 1996, pp. 41–101.

[ERA10] M. Eisenhauer, P. Rosengren, and P. Antolin. “HYDRA: A Development Platform for
Integrating Wireless Devices and Sensors into Ambient Intelligence Systems.” Pro-
ceedings of the 20th Tyrrhenian Workshop on Digital Communications. Springer,
2010, pp. 367–373.

[Esc17] C. Escoffier. Building Reactive Microservices in Java: Asynchronous and Event-
Based Application Design. O’Reilly Media, 2017.

[Est07] J. A. Estefan. Survey of Model-Based Systems Engineering (MBSE) Methodologies.
INCOSE, 2007, pp. 1–12.

[Fan+14] Y. J. Fan, Y. H. Yin, L. D. Xu, Y. Zeng, and F. Wu. “IoT-Based Smart Rehabilitation
System.” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, 2014, pp. 1568–
1577.

[Fer+10] G. Fertitta, A. D. Stefano, G. Fiscelli, and G. C. Giaconia. “A Low Power and High
Resolution Data Logger for Submarine Seismic Monitoring.” Microprocessors and
Microsystems, vol. 34, no. 2-4, 2010, pp. 63–72.

[Fil+12] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio. “Reliability-Driven Dynamic Binding
Via Feedback Control.” Proceedings of the 7th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE, 2012,
pp. 43–52.

[FIM07] S. Friedenthal, L. Izumi, and A. Meilich. “Object-Oriented Systems Engineering
Method (OOSEM) Applied to Joint Force Projection (JFP), a Lockheed Martin
Integrating Concept (LMIC).” Proceedings of the INCOSE International Symposium.
2007, pp. 1471–1491.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/

Bibliography 181

[Fou+12] F. Fouquet, B. Morin, F. Fleurey, O. Barais, N. Plouzeau, and J.-M. Jezequel. “A
Dynamic Component Model for Cyber Physical Systems.” Proceedings of the
15th Symposium on Component Based Software Engineering (CBSE). ACM, 2012,
pp. 135–144.

[Fur00] S. Furber. ARM System-on-Chip Architecture. 2nd Edition. Addison-Wesley Long-
man, 2000.

[Gam10] A. Gamatié. “Synchronous Programming: Overview.” A. Gamatie. Designing Em-
bedded Systems with the SIGNAL Programming Language. Springer, 2010, pp. 21–
39.

[Gar+13] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. “CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes.” International Journal on
Software Tools for Technology Transfer, vol. 15, no. 2, 2013, pp. 89–107.

[Gar+16] M. Garriga, C. Mateos, A. Flores, A. Cechich, and A. Zunino. “RESTful Service Com-
position at a Glance: A Survey.” Journal of Network and Computer Applications,
vol. 60, 2016, pp. 32–53.

[Gar17] Gartner. Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017, up
31 Percent from 2016. 2017. URL: https://www.gartner.com/newsroom/id/
3598917 (visited on 05/30/2018).

[GD93] R. Gupta and G. De Micheli. “Hardware-Software Cosynthesis for Digital Systems.”
IEEE Design & Test of Computers, vol. 10, no. 3, 1993, pp. 29–41.

[GEM18] GEMOC Initiative. Arduino Modeling. 2018. URL: https://github.com/gemoc/
arduinomodeling (visited on 06/18/2018).

[GFA11] N. Gamez, L. Fuentes, and M. A. Aragüez. “Autonomic Computing Driven by
Feature Models and Architecture in FamiWare.” Proceedings of the 5th European
Conference on Software Architecture (ECSA). Springer, 2011, pp. 164–179.

[GG10] A. Gamatié and T. Gautier. “The Signal Synchronous Multiclock Approach to the
Design of Distributed Embedded Systems.” IEEE Transactions on Parallel and
Distributed Systems, vol. 21, no. 5, 2010, pp. 641–657.

[Gir87] J.-Y. Girard. “Linear Logic.” Theoretical Computer Science, vol. 50, no. 1, 1987,
pp. 1–101.

[GL11] Q. Gu and P. Lago. “Guiding the Selection of Service-Oriented Software Engineer-
ing Methodologies.” Service Oriented Computing and Applications, vol. 5, no. 4,
2011, pp. 203–223.

[GLS17] H. Garavel, F. Lang, and W. Serwe. “From LOTOS to LNT.” ModelEd, TestEd, TrustEd.
Springer, 2017, pp. 3–26.

[GTD12] K. Gama, L. Touseau, and D. Donsez. “Combining Heterogeneous Service Tech-
nologies for Building an Internet of Things Middleware.” Computer Communica-
tions, vol. 35, no. 4, 2012, pp. 405–417.

[Gub+13] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. “Internet of Things (IoT): A Vi-
sion, Architectural Elements, and Future Directions.” Future Generation Computer
Systems, vol. 29, no. 7, 2013, pp. 1645–1660.

[Gui+10] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio. “Interacting with the
SOA-Based Internet of Things: Discovery, Query, Selection, and On-Demand
Provisioning of Web Services.” IEEE Transactions on Services Computing, vol. 3,
no. 3, 2010, pp. 223–235.

[Guo+15] B. Guo, Z. Wang, Z. Yu, Y. Wang, N. Y. Yen, R. Huang, and X. Zhou. “Mobile Crowd
Sensing and Computing: The Review of an Emerging Human-Powered Sensing
Paradigm.” ACM Computing Surveys, vol. 48, no. 1, 2015, pp. 1–31.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

https://www.gartner.com/newsroom/id/3598917
https://www.gartner.com/newsroom/id/3598917
https://github.com/gemoc/arduinomodeling
https://github.com/gemoc/arduinomodeling

182 Bibliography

[Ha+07] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y.-P. Joo. “PeaCE: A Hardware-Software
Codesign Environment for Multimedia Embedded Systems.” ACM Transactions
on Design Automation of Electronic Systems, vol. 12, no. 3, 2007, pp. 1–25.

[Hal+91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. “The Synchronous Data Flow
Programming Language LUSTRE.” Proceedings of the IEEE, vol. 79, no. 9, 1991,
pp. 1305–1320.

[Har+16] A. F. Harris III, V. Khanna, G. Tuncay, R. Want, and R. Kravets. “Bluetooth Low
Energy in Dense IoT Environments.” IEEE Communications Magazine, vol. 54,
no. 12, 2016, pp. 30–36.

[Har+90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. “STATEMATE: A Working Environment for the
Development of Complex Reactive Systems.” IEEE Transactions on Software Engi-
neering, vol. 16, no. 4, 1990, pp. 403–414.

[Hea02] S. Heath. “What Is an Embedded System?” Embedded Systems Design. Elsevier,
2002, pp. 1–14.

[Hel+04] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. “Model Construction.”
Feedback Control of Computing Systems. John Wiley & Sons, 2004, pp. 29–64.

[Hen+09] E. Henje Blom, E. M. G. Olsson, E. Serlachius, M. Ericson, and M. Ingvar. “Heart
Rate Variability Is Related to Self-Reported Physical Activity in a Healthy Adoles-
cent Population.” European Journal of Applied Physiology, vol. 106, no. 6, 2009,
pp. 877–883.

[HLR17] M. Hussein, S. Li, and A. Radermacher. “Model-Driven Development of Adaptive
IoT Systems.” Proceedings of the 4th International Workshop on Interplay of Model-
Driven and Component-Based Software Engineering (ModComp). CEUR-WS, 2017,
pp. 17–23.

[Hof14] H.-P. Hoffmann. Systems Engineering Best Practices with the Rational Solution for
Systems and Software Engineering Deskbook Release 4.1. IBM, 2014.

[HP85] D. Harel and A. Pnueli. “On the Development of Reactive Systems.” Logics and
Models of Concurrent Systems. Springer, 1985, pp. 477–498.

[HPI14] S. Hachem, A. Pathak, and V. Issarny. “Service-Oriented Middleware for Large-
Scale Mobile Participatory Sensing.” Pervasive and Mobile Computing, vol. 10,
2014, pp. 66–82.

[Hsi+14] C.-M. Hsieh, F. Samie, M. S. Srouji, M. Wang, Z. Wang, and J. Henkel. “Hard-
ware/Software Co-Design for a Wireless Sensor Network Platform.” Proceedings
of the 2014 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS). ACM, 2014, pp. 1–10.

[Hul+11] R. Hull, A. Nigam, P. N. Sukaviriya, R. Vaculin, E. Damaggio, R. De Masellis, F.
Fournier, M. Gupta, F. T. Heath, S. Hobson, M. Linehan, and S. Maradugu. “Busi-
ness Artifacts with Guard-Stage-Milestone Lifecycles: Managing Artifact Interac-
tions with Conditions and Events.” Proceedings of the 5th International Conference
on Distributed Event-Based System (DEBS). ACM, 2011, pp. 51–62.

[Ift+17] M. U. Iftikhar, G. S. Ramachandran, P. Bollansée, D. Weyns, and D. Hughes.
“DeltaIoT: A Self-Adaptive Internet of Things Exemplar.” Proceedings of the 12th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). IEEE, 2017, pp. 76–82.

[Iss+16] V. Issarny, G. Bouloukakis, N. Georgantas, and B. Billet. “Revisiting Service Ori-
ented Architecture for the IoT: A Middleware Perspective.” Proceedings of the 14th
International Conference on Service-Oriented Computing (ICSOC). Springer, 2016,
pp. 3–17.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Bibliography 183

[IW14] M. U. Iftikhar and D. Weyns. “ActivFORMS: Active Formal Models for Self-
Adaptation.” Proceedings of the 9th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS). ACM, 2014, pp. 125–
134.

[Izu+15] S. Izumi, K. Yamashita, M. Nakano, H. Kawaguchi, H. Kimura, K. Marumoto, T.
Fuchikami, Y. Fujimori, H. Nakajima, T. Shiga, and M. Yoshimoto. “A Wearable
Healthcare System with a 13.7 μA Noise Tolerant ECG Processor.” IEEE
Transactions on Biomedical Circuits and Systems, vol. 9, no. 5, 2015, pp. 733–742.

[JCL11] J. C. Jensen, D. H. Chang, and E. A. Lee. “A Model-Based Design Methodology
for Cyber-Physical Systems.” Proceedings of the 7th International Wireless Com-
munications and Mobile Computing Conference (IWCMC). IEEE, 2011, pp. 1666–
1671.

[Jee+10] E. Jee, S. Wang, J. K. Kim, J. Lee, O. Sokolsky, and I. Lee. “A Safety-Assured Devel-
opment Approach for Real-Time Software.” Proceedings of the 16th International
Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA). IEEE, 2010, pp. 133–142.

[JM12] T. T. Johnson and S. Mitra. “Parametrized Verification of Distributed Cyber-
Physical Systems: An Aircraft Landing Protocol Case Study.” Proceedings of the
3rd International Conference on Cyber-Physical Systems (ICCPS). IEEE, 2012,
pp. 161–170.

[JP12] I. Jayaram and C. Purdy. “Using Constraint Graphs to Improve Embedded Systems
Design.” Proceedings of the 55th International Midwest Symposium on Circuits
and Systems (MWSCAS). IEEE, 2012, pp. 594–597.

[JVT13] S. L. Joshi, R. A. Vatti, and R. V. Tornekar. “A Survey on ECG Signal Denoising
Techniques.” Proceedings of the 2013 International Conference on Communication
Systems and Network Technologies (CSNT). IEEE, 2013, pp. 60–64.

[Kar+09] L. Karam, I. Alkamal, A. Gatherer, G. Frantz, D. Anderson, and B. Evans. “Trends in
Multicore DSP Platforms.” IEEE Signal Processing Magazine, vol. 26, no. 6, 2009,
pp. 38–49.

[KC03] J. O. Kephart and D. M. Chess. “The Vision of Autonomic Computing.” Computer,
vol. 36, no. 1, 2003, pp. 41–50.

[Kei+09] J. Keinert, M. Streubūhr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich,
and M. Meredith. “SystemCoDesigner—an Automatic ESL Synthesis Approach by
Design Space Exploration and Behavioral Synthesis for Streaming Applications.”
ACM Transactions on Design Automation of Electronic Systems, vol. 14, no. 1, 2009,
pp. 1–23.

[KGH14] F. Kaup, P. Gottschling, and D. Hausheer. “PowerPi: Measuring and Modeling the
Power Consumption of the Raspberry Pi.” Proceedings of the 39th Annual IEEE
Conference on Local Computer Networks (LCN). IEEE, 2014, pp. 236–243.

[KHS10] M. Kranz, P. Holleis, and A. Schmidt. “Embedded Interaction: Interacting with the
Internet of Things.” IEEE Internet Computing, vol. 14, no. 2, 2010, pp. 46–53.

[KL93] A. Kalavade and E. A. Lee. “A Hardware-Software Codesign Methodology for DSP
Applications.” IEEE Design & Test of Computers, vol. 10, no. 3, 1993, pp. 16–28.

[KMS08] T.-H. Kim, I. Maruta, and T. Sugie. “Robust PID Controller Tuning Based on
the Constrained Particle Swarm Optimization.” Automatica, vol. 44, no. 4, 2008,
pp. 1104–1110.

[Kou+16] E. Kougianos, S. P. Mohanty, G. Coelho, U. Albalawi, and P. Sundaravadivel. “Design
of a High-Performance System for Secure Image Communication in the Internet
of Things.” IEEE Access, vol. 4, 2016, pp. 1222–1242.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

184 Bibliography

[Kyu+13] R. Kyusakov, J. Eliasson, J. Delsing, J. van Deventer, and J. Gustafsson. “Integra-
tion of Wireless Sensor and Actuator Nodes With IT Infrastructure Using Service-
Oriented Architecture.” IEEE Transactions on Industrial Informatics, vol. 9, no. 1,
2013, pp. 43–51.

[Lam02] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

[Lam93] L. Lamport. “Hybrid Systems in TLA+.” Hybrid Systems. Springer, 1993, pp. 77–102.

[Lee+07] H. B. Lee, J. S. Kim, Y. S. Kim, H. J. Baek, M. S. Ryu, and K. S. Park. “The Relation-
ship Between HRV Parameters and Stressful Driving Situation in the Real Road.”
Proceedings of the 6th International Special Topic Conference on Information Tech-
nology Applications in Biomedicine. IEEE, 2007, pp. 198–200.

[Lee+12] I. Lee, O. Sokolsky, S. Chen, J. Hatcliff, E. Jee, B. Kim, A. King, M. Mullen-Fortino,
S. Park, A. Roederer, and K. K. Venkatasubramanian. “Challenges and Research
Directions in Medical Cyber–Physical Systems.” Proceedings of the IEEE, vol. 100,
no. 1, 2012, pp. 75–90.

[Lee08] E. A. Lee. “Cyber Physical Systems: Design Challenges.” Proceedings of the 11th
IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing. IEEE, 2008, pp. 363–369.

[Lee10] E. A. Lee. “CPS Foundations.” Proceedings of the 47th Design Automation Confer-
ence (DAC). ACM, 2010, pp. 737–742.

[LH18] D. Li and Q. He. ArduBlock: A Block Programming Language for Arduino. 2018.
URL: https://github.com/taweili/ardublock (visited on 06/19/2018).

[LL15] M. Lohstroh and E. A. Lee. “An Interface Theory for the Internet of Things.”
Proceedings of the 12th International Conference on Software Engineering and
Formal Methods (SEFM). Springer, 2015, pp. 20–34.

[LLP12] H. Li, L. Lai, and H. V. Poor. “Multicast Routing for Decentralized Control of Cyber
Physical Systems with an Application in Smart Grid.” IEEE Journal on Selected
Areas in Communications, vol. 30, no. 6, 2012, pp. 1097–1107.

[Lom76] N. R. Lomb. “Least-Squares Frequency Analysis of Unequally Spaced Data.” Astro-
physics and Space Science, vol. 39, no. 2, 1976, pp. 447–462.

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi. “UPPAAL in a Nutshell.” International Journal
on Software Tools for Technology Transfer, vol. 1, no. 1-2, 1997, pp. 134–152.

[LS17] E. A. Lee and S. A. Seshia. Introduction to Embedded Systems: A Cyber-Physical
Systems Approach. 2nd Edition. MIT Press, 2017.

[LSS07] J.-S. Lee, Y.-W. Su, and C.-C. Shen. “A Comparative Study of Wireless Protocols:
Bluetooth, UWB, ZigBee, and Wi-Fi.” Proceedings of the 33rd Annual Conference
of the IEEE Industrial Electronics Society (IECON). IEEE, 2007, pp. 46–51.

[LXZ15] S. Li, L. D. Xu, and S. Zhao. “The Internet of Things: A Survey.” Information Systems
Frontiers, vol. 17, no. 2, 2015, pp. 243–259.

[Mag+14] M. Magno, C. Spagnol, L. Benini, and E. Popovici. “A Low Power Wireless Node
for Contact and Contactless Heart Monitoring.” Microelectronics Journal, vol. 45,
no. 12, 2014, pp. 1656–1664.

[Mal+10] A. Malik, Z. Salcic, P. S. Roop, and A. Girault. “SystemJ: A GALS Language for
System Level Design.” Computer Languages, Systems & Structures, vol. 36, no. 4,
2010, pp. 317–344.

[Mar+00] H. Marchand, P. Bournai, M. L. Borgne, and P. L. Guernic. “Synthesis of Discrete-
Event Controllers Based on the Signal Environment.” Discrete Event Dynamic
Systems, vol. 10, no. 4, 2000, pp. 325–346.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

https://github.com/taweili/ardublock

Bibliography 185

[Mas+15] B. Massot, T. Risset, G. Michelet, and E. McAdams. “A Wireless, Low-Power, Smart
Sensor of Cardiac Activity for Clinical Remote Monitoring.” Proceedings of the
17th International Conference on E-Health Networking, Application & Services
(HealthCom). IEEE, 2015, pp. 488–494.

[Mas+16] B. Massot, T. Risset, G. Michelet, and E. McAdams. “Mixed Hardware and Software
Embedded Signal Processing Methods for In-Situ Analysis of Cardiac Activity.”
Proceedings of the 9th International Joint Conference on Biomedical Engineering
Systems and Technologies. SciTePress, 2016, pp. 303–310.

[May14] D. Q. Mayne. “Model Predictive Control: Recent Developments and Future
Promise.” Automatica, vol. 50, no. 12, 2014, pp. 2967–2986.

[Men+11] D. Menasce, H. Gomaa, S. Malek, and J. Sousa. “SASSY: A Framework for Self-
Architecting Service-Oriented Systems.” IEEE Software, vol. 28, no. 6, 2011, pp. 78–
85.

[Mhe+14] F. Mhenni, J.-Y. Choley, O. Penas, R. Plateaux, and M. Hammadi. “A SysML-Based
Methodology for Mechatronic Systems Architectural Design.” Advanced Engineer-
ing Informatics, vol. 28, no. 3, 2014, pp. 218–231.

[Mic18] Microsoft. The Component Object Model. 2018. URL: https://msdn.microsoft.
com/en-us/library/windows/desktop/ms694363(v=vs.85).aspx (vis-
ited on 06/16/2018).

[Mit+17a] S. Mitsch, M. Gario, C. J. Budnik, M. Golm, and A. Platzer. “Formal Verification of
Train Control with Air Pressure Brakes.” Proceedings of the 2nd International Con-
ference on Reliability, Safety and Security of Railway Systems, RRSRail. Springer,
2017, pp. 173–191.

[Mit+17b] S. Mitsch, K. Ghorbal, D. Vogelbacher, and A. Platzer. “Formal Verification of
Obstacle Avoidance and Navigation of Ground Robots.” The International Journal
of Robotics Research, vol. 36, no. 12, 2017, pp. 1312–1340.

[Mod18] Modkit LLC. Modkit. 2018. URL: https : / / www . modkit . com/ (visited on
06/19/2018).

[Mor+09] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg. “Models@run.Time
to Support Dynamic Adaptation.” Computer, vol. 42, no. 10, 2009, pp. 44–51.

[MR01] F. Maraninchi and Y. Rémond. “Argos: An Automaton-Based Synchronous Lan-
guage.” Computer Languages, vol. 27, no. 1, 2001, pp. 61–92.

[MR98] F. Maraninchi and Y. Rémond. “Mode-Automata: About Modes and States for
Reactive Systems.” Proceedings of the 7th European Symposium on Programming
(ESOP). Springer, 1998, pp. 185–199.

[MS04] E. M. Maximilien and M. P. Singh. “A Framework and Ontology for Dynamic Web
Services Selection.” IEEE Internet Computing, vol. 8, no. 5, 2004, pp. 84–93.

[MVF00] J. Muttersbach, T. Villiger, and W. Fichtner. “Practical Design of Globally Asyn-
chronous Locally Synchronous Systems.” Proceedings of the 6th International
Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC).
IEEE, 2000, pp. 52–59.

[MY11] A. Malinowski and H. Yu. “Comparison of Embedded System Design for Industrial
Applications.” IEEE Transactions on Industrial Informatics, vol. 7, no. 2, 2011,
pp. 244–254.

[Nai+10] G. Nain, F. Fouquet, B. Morin, O. Barais, and J.-M. Jezequel. “Integrating IoT and
IoS with a Component-Based Approach.” Proceedings of the 36th Conference on
Software Engineering and Advanced Applications (SEAA). IEEE, 2010, pp. 191–198.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

https://msdn.microsoft.com/en-us/library/windows/desktop/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms694363(v=vs.85).aspx
https://www.modkit.com/

186 Bibliography

[Nat17] National Instruments. Best Practices in PCB Design: Routing. 2017. URL: http:
//www.ni.com/tutorial/6880/en/ (visited on 06/27/2018).

[NC03] A. Nigam and N. S. Caswell. “Business Artifacts: An Approach to Operational
Specification.” IBM Systems Journal, vol. 42, no. 3, 2003, pp. 428–445.

[New14] C. Newcombe. “Why Amazon Chose TLA+.” Proceedings of the 4th International
Conference on Abstract State Machines, B, TLA, VDM, and Z (ABZ). Springer, 2014,
pp. 25–39.

[NM14] R. Negenborn and J. Maestre. “Distributed Model Predictive Control: An Overview
and Roadmap of Future Research Opportunities.” IEEE Control Systems, vol. 34,
no. 4, 2014, pp. 87–97.

[Nod18] Node-RED. Node-RED: Flow-Based Programming for the Internet of Things. 2018.
URL: https://nodered.org/ (visited on 06/19/2018).

[NSB10] D. Nunan, G. R. H. Sandercock, and D. A. Brodie. “A Quantitative Systematic
Review of Normal Values for Short-Term Heart Rate Variability in Healthy Adults.”
Pacing and Clinical Electrophysiology, vol. 33, no. 11, 2010, pp. 1407–1417.

[OAA16] A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman. “FairAccess: A New Blockchain
Based Access Control Framework for the Internet of Things: Fairaccess: A New
Access Control Framework for Iot.” Security and Communication Networks, vol. 9,
no. 18, 2016, pp. 5943–5964.

[Obj18a] Object Management Group. Business Process Model and Notation. 2018. URL:
http://www.bpmn.org/ (visited on 06/16/2018).

[Obj18b] Object Management Group. CORBA Component Model. 2018. URL: https://www.
omg.org/spec/CCM/About-CCM/ (visited on 06/16/2018).

[Obj18c] Object Management Group. Model Driven Architecture. 2018. URL: https://www.
omg.org/mda/ (visited on 06/16/2018).

[Obj18d] Object Management Group. Systems Modeling Language. 2018. URL: http://www.
omgsysml.org/ (visited on 06/16/2018).

[Obj18e] Object Management Group. Unified Modeling Language. 2018. URL: http://www.
uml.org/ (visited on 06/16/2018).

[Oct18] Octoblu. Octoblu: Integration of Things. 2018. URL: https://octoblu.github.
io/ (visited on 06/19/2018).

[Oga10] K. Ogata. Modern Control Engineering. 5th Edition. Prentice Hall, 2010.

[OSG07] OSGi Alliance. About the OSGi Service Platform: Technical Whitepaper. OSGi, 2007,
pp. 1–20.

[PA16] E. Pencheva and I. Atanasov. “Engineering of Web Services for Internet of Things
Applications.” Information Systems Frontiers, vol. 18, no. 2, 2016, pp. 277–292.

[Pat+12] T. Patikirikorala, L. Wang, A. Colman, and J. Han. “Hammerstein–Wiener Nonlin-
ear Model Based Predictive Control for Relative QoS Performance and Resource
Management of Software Systems.” Control Engineering Practice, vol. 20, no. 1,
2012, pp. 49–61.

[Pel03] C. Peltz. “Web Services Orchestration and Choreography.” Computer, vol. 36,
no. 10, 2003, pp. 46–52.

[Pen+12] X. Peng, B. Chen, Y. Yu, and W. Zhao. “Self-Tuning of Software Systems Through
Dynamic Quality Tradeoff and Value-Based Feedback Control Loop.” Journal of
Systems and Software, vol. 85, no. 12, 2012, pp. 2707–2719.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

http://www.ni.com/tutorial/6880/en/
http://www.ni.com/tutorial/6880/en/
https://nodered.org/
http://www.bpmn.org/
https://www.omg.org/spec/CCM/About-CCM/
https://www.omg.org/spec/CCM/About-CCM/
https://www.omg.org/mda/
https://www.omg.org/mda/
http://www.omgsysml.org/
http://www.omgsysml.org/
http://www.uml.org/
http://www.uml.org/
https://octoblu.github.io/
https://octoblu.github.io/

Bibliography 187

[Per+14a] C. Perera, P. P. Jayaraman, A. Zaslavsky, D. Georgakopoulos, and P. Christen. “MOS-
DEN: An Internet of Things Middleware for Resource Constrained Mobile De-
vices.” Proceedings of the 47th Hawaii International Conference on System Sciences
(HICSS). IEEE, 2014, pp. 1053–1062.

[Per+14b] C. Perera, C. H. Liu, S. Jayawardena, and Min Chen. “A Survey on Internet of Things
From Industrial Market Perspective.” IEEE Access, vol. 2, 2014, pp. 1660–1679.

[PFW12] P. Papapanagiotou, J. Fleuriot, and S. Wilson. “Diagrammatically-Driven Formal
Verification of Web-Services Composition.” Proceedings of the 7th International
Conference on Theory and Application of Diagrams (Diagrams). Springer, 2012,
pp. 241–255.

[PH06] M. P. Papazoglou and W.-J. V. D. Heuvel. “Service-Oriented Design and Develop-
ment Methodology.” International Journal of Web Engineering and Technology,
vol. 2, no. 4, 2006, p. 412.

[PL03] R. Perrey and M. Lycett. “Service-Oriented Architecture.” Proceedings of the Sym-
posium on Applications and the Internet Workshops (SAINT Workshops). IEEE,
2003, pp. 116–119.

[Pla10] A. Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, 2010.

[Pla18] A. Platzer. KeYmaera X: An aXiomatic Tactical Theorem Prover for Hybrid Systems.
2018. URL: http://www.ls.cs.cmu.edu/KeYmaeraX/ (visited on 06/21/2016).

[PNC15] C. L. Phillips, H. T. Nagle, and A. Chakrabortty. Digital Control System Analysis &
Design. 4th Edition. Pearson, 2015.

[PND14] T. A. M. Phan, J. K. Nurminen, and M. Di Francesco. “Cloud Databases for Internet-
of-Things Data.” Proceedings of the 2014 International Conference on Internet of
Things (iThings), Green Computing and Communications (GreenCom), and Cyber,
Physical and Social Computing (CPSCom). IEEE, 2014, pp. 117–124.

[Pnu86] A. Pnueli. “Applications of Temporal Logic to the Specification and Verification
of Reactive Systems: A Survey of Current Trends.” Current Trends in Concurrency.
Springer, 1986, pp. 510–584.

[Poi+98] A. Poigné, M. Morley, O. Maffeïs, L. Holenderski, and R. Budde. “The Synchronous
Approach to Designing Reactive Systems.” Formal Methods in System Design,
vol. 12, no. 2, 1998, pp. 163–187.

[PR89a] A. Pnueli and R. Rosner. “On the Synthesis of an Asynchronous Reactive Module.”
Proceedings of the 16th International Colloquium on Automata, Languages and
Programming (ICALP). Vol. 372. Springer, 1989, pp. 652–671.

[PR89b] W. H. Press and G. B. Rybicki. “Fast Algorithm for Spectral Analysis of Unevenly
Sampled Data.” The Astrophysical Journal, vol. 338, 1989, pp. 277–280.

[PR90] A. Pneuli and R. Rosner. “Distributed Reactive Systems Are Hard to Synthesize.”
Proceedings of the 31st Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 1990, pp. 746–757.

[PT85] J. Pan and W. J. Tompkins. “A Real-Time QRS Detection Algorithm.” IEEE Transac-
tions on Biomedical Engineering, vol. BME-32, no. 3, 1985, pp. 230–236.

[Pto14] C. Ptolemaeus, ed. System Design, Modeling, and Simulation Using Ptolemy II.
2014.

[PvdH07] M. P. Papazoglou and W.-J. van den Heuvel. “Service Oriented Architectures: Ap-
proaches, Technologies and Research Issues.” The VLDB Journal, vol. 16, no. 3,
2007, pp. 389–415.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

http://www.ls.cs.cmu.edu/KeYmaeraX/

188 Bibliography

[PZL08] C. Pautasso, O. Zimmermann, and F. Leymann. “RESTful Web Services vs. “Big”
Web Services: Making the Right Architectural Decision.” Proceedings of the 17th
International Conference on World Wide Web (WWW). ACM, 2008, p. 805.

[Raj+10] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. “Cyber-Physical Systems: The Next
Computing Revolution.” Proceedings of the 47th Design Automation Conference
(DAC). ACM, 2010, pp. 731–736.

[Rat03] Rational Software Corporation. Rational Unified Process for Systems Engineering.
IBM, 2003.

[Ray17] P. P. Ray. “A Survey on Visual Programming Languages in Internet of Things.”
Scientific Programming, vol. 2017, 2017, pp. 1–6.

[Raz+13] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt. “Lithe: Lightweight
Secure CoAP for the Internet of Things.” IEEE Sensors Journal, vol. 13, no. 10, 2013,
pp. 3711–3720.

[Raz+16] A. Raza, A. A. Ikram, A. Amin, and A. J. Ikram. “A Review of Low Cost and Power
Efficient Development Boards for IoT Applications.” Proceedings of the 2016 Future
Technologies Conference (FTC). IEEE, 2016, pp. 786–790.

[RGS13] O. Rafique, M. Gesell, and K. Schneider. “Generating Hardware Specific Code at
Different Abstraction Levels Using Averest.” Proceedings of the 16th International
Workshop on Software and Compilers for Embedded Systems (SCOPES). ACM, 2013,
pp. 90–92.

[RKS17] U. Raza, P. Kulkarni, and M. Sooriyabandara. “Low Power Wide Area Networks:
An Overview.” IEEE Communications Surveys & Tutorials, vol. 19, no. 2, 2017,
pp. 855–873.

[RL15] M. Rana and L. Li. “Microgrid State Estimation and Control for Smart Grid and
Internet of Things Communication Network.” Electronics Letters, vol. 51, no. 2,
2015, pp. 149–151.

[Rod15] A. Rodrigues da Silva. “Model-Driven Engineering: A Survey Supported by the
Unified Conceptual Model.” Computer Languages, Systems & Structures, vol. 43,
2015, pp. 139–155.

[Rom+13] D. Romero, G. Hermosillo, A. Taherkordi, R. Nzekwa, R. Rouvoy, and F. Eliassen.
“The DigiHome Service-Oriented Platform.” Software: Practice and Experience,
vol. 43, no. 10, 2013, pp. 1205–1218.

[Rou+09] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo, A. Mamelli,
and U. Scholz. “MUSIC: Middleware Support for Self-Adaptation in Ubiquitous
and Service-Oriented Environments.” Software Engineering for Self-Adaptive Sys-
tems. Springer, 2009, pp. 164–182.

[RS04] J. Rao and X. Su. “Toward the Composition of Semantic Web Services.” Proceedings
of the 2n 2nd International Workshop on Grid and Cooperative Computing (GCC).
Springer, 2004, pp. 760–767.

[RW89] P. J. G. Ramadge and W. M. Wonham. “The Control of Discrete Event Systems.”
Proceedings of the IEEE, vol. 77, no. 1, 1989, pp. 81–98.

[SB17] K. Schneider and J. Brandt. “Quartz: A Synchronous Language for Model-Based De-
sign of Reactive Embedded Systems.” Handbook of Hardware/Software Codesign.
Springer, 2017, pp. 29–58.

[Sca09] R. Scattolini. “Architectures for Distributed and Hierarchical Model Predictive
Control – a Review.” Journal of Process Control, vol. 19, no. 5, 2009, pp. 723–731.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Bibliography 189

[Sca82] J. D. Scargle. “Studies in Astronomical Time Series Analysis II - Statistical Aspects
of Spectral Analysis of Unevenly Spaced Data.” The Astrophysical Journal, vol. 263,
1982, pp. 835–853.

[Sch06] D. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering.” Computer,
vol. 39, no. 2, 2006, pp. 25–31.

[Sch10a] P. R. Schaumont. A Practical Introduction to Hardware/Software Codesign. Springer,
2010.

[Sch10b] P. R. Schaumont. “System on Chip.” A Practical Introduction to Hardware/Software
Codesign. Springer, 2010, pp. 3–31.

[Sch10c] P. R. Schaumont. “The Nature of Hardware and Software.” A Practical Introduction
to Hardware/Software Codesign. Springer, 2010, pp. 3–31.

[SCL16] G. Schermann, J. Cito, and P. Leitner. “All the Services Large and Micro: Revisit-
ing Industrial Practice in Services Computing.” Proceedings of the 14th Interna-
tional Conference on Service-Oriented Computing Workshops (ICSOC Workshops).
Springer, 2016, pp. 36–47.

[Seg06] R. Segala. “Probability and Nondeterminism in Operational Models of Concur-
rency.” Proceedings of the 17th International Conference on Concurrency Theory
(CONCUR). Springer, 2006, pp. 64–78.

[Sey+16] N. Seydoux, K. Drira, N. Hernandez, and T. Monteil. “IoT-O, a Core-Domain IoT
Ontology to Represent Connected Devices Networks.” Proceedings of the 20th
International Conference on Knowledge Engineering and Knowledge Management
(EKAW). Springer, 2016, pp. 561–576.

[SHA17] R. Seiger, S. Herrmann, and U. ABmann. “Self-Healing for Distributed Workflows
in the Internet of Things.” Proceedings of the 2017 International Conference on
Software Architecture Workshops (ICSAW). IEEE, 2017, pp. 72–79.

[SHG12] S. Sridhar, A. Hahn, and M. Govindarasu. “Cyber-Physical System Security for the
Electric Power Grid.” Proceedings of the IEEE, vol. 100, no. 1, 2012, pp. 210–224.

[Shi+16] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. “Edge Computing: Vision and Challenges.”
IEEE Internet of Things Journal, vol. 3, no. 5, 2016, pp. 637–646.

[Sic+15] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini. “Security, Privacy and Trust
in Internet of Things: The Road Ahead.” Computer Networks, vol. 76, 2015, pp. 146–
164.

[Sil+15] L. Silva, H. Almeida, A. Perkusich, and M. Perkusich. “A Model-Based Approach to
Support Validation of Medical Cyber-Physical Systems.” Sensors, vol. 15, no. 11,
2015, pp. 27625–27670.

[Sim15] P. A. Simpson. “Embedded Design.” FPGA Design. Springer, 2015, pp. 157–178.

[Sko03] S. Skogestad. “Simple Analytic Rules for Model Reduction and PID Controller
Tuning.” Journal of Process Control, vol. 14, no. 4, 2003, pp. 291–309.

[SLR17] A. N. Sylla, M. Louvel, and E. Rutten. “Design Framework for Reliable and Envi-
ronment Aware Management of Smart Environment Devices.” Journal of Internet
Services and Applications, vol. 8, no. 1, 2017, pp. 1–22.

[SMA16] M. Salatino, M. D. Maio, and E. Aliverti. Mastering JBoss Drools 6. Packt Publishing,
2016.

[Sol+13] M. Soliman, T. Abiodun, T. Hamouda, J. Zhou, and C.-H. Lung. “Smart Home: Inte-
grating Internet of Things with Web Services and Cloud Computing.” Proceedings
of the 5th International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE, 2013, pp. 317–320.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

190 Bibliography

[Spi+09] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. M. S. de Souza, and
V. Trifa. “SOA-Based Integration of the Internet of Things in Enterprise Services.”
Proceedings of the 7th International Conference on Web Services (ICWS). IEEE,
2009, pp. 968–975.

[Sta+13] M. J. Stanovich, I. Leonard, K. Sanjeev, M. Steurer, T. P. Roth, S. Jackson, and M.
Bruce. “Development of a Smart-Grid Cyber-Physical Systems Testbed.” Proceed-
ings of the 4th Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2013,
pp. 1–6.

[Sta14] J. A. Stankovic. “Research Directions for the Internet of Things.” IEEE Internet of
Things Journal, vol. 1, no. 1, 2014, pp. 3–9.

[Ste93] R. Stengel. “Toward Intelligent Flight Control.” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 23, no. 6, 1993, pp. 1699–1717.

[SV13] A. Schäfer and J. Vagedes. “How Accurate Is Pulse Rate Variability as an Estimate
of Heart Rate Variability?” International Journal of Cardiology, vol. 166, no. 1, 2013,
pp. 15–29.

[Syl+17] A. N. Sylla, M. Louvel, E. Rutten, and G. Delaval. “Design Framework for Reliable
Multiple Autonomic Loops in Smart Environments.” Proceedings of the 2017 In-
ternational Conference on Cloud and Autonomic Computing (ICCAC). IEEE, 2017,
pp. 131–142.

[SZS15] D. S. Sousa Nunes, P. Zhang, and J. Sa Silva. “A Survey on Human-in-the-Loop Ap-
plications Towards an Internet of All.” IEEE Communications Surveys & Tutorials,
vol. 17, no. 2, 2015, pp. 944–965.

[TA05] C. Townsend and S. Arms. “Wireless Sensor Networks.” Sensor Technology Hand-
book. Elsevier, 2005, pp. 575–589.

[Tam+13] G. Tamura, N. M. Villegas, H. A. Müller, L. Duchien, and L. Seinturier. “Improving
Context-Awareness in Self-Adaptation Using the DYNAMICO Reference Model.”
Proceedings of the 8th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS). IEEE, 2013, pp. 153–162.

[Tas96] Task Force of the European Society of Cardiology the North American Society of
Pacing Electrophysiology. “Heart Rate Variability : Standards of Measurement,
Physiological Interpretation, and Clinical Use.” Circulation, vol. 93, no. 5, 1996,
pp. 1043–1065.

[TC16] K. Thramboulidis and F. Christoulakis. “UML4IoT—A UML-Based Approach to
Exploit IoT in Cyber-Physical Manufacturing Systems.” Computers in Industry,
vol. 82, 2016, pp. 259–272.

[Tei+11] T. Teixeira, S. Hachem, V. Issarny, and N. Georgantas. “Service Oriented Middle-
ware for the Internet of Things: A Perspective.” Proceedings of the 4th European
Conference ServiceWave. Springer, 2011, pp. 220–229.

[Ter+17] M. Terdjimi, L. Médini, M. Mrissa, and M. Maleshkova. “Multi-Purpose Adaptation
in the Web of Things.” Proceedings of the 10th International and Interdisciplinary
Conference on Modeling and Using Context (CONTEXT). Springer, 2017, pp. 213–
226.

[TGD14] X. Tang, P.-E. Gaillardon, and G. De Micheli. “A High-Performance Low-Power
Near-Vt RRAM-Based FPGA.” Proceedings of the 2014 International Conference on
Field-Programmable Technology (ICFPT). IEEE, 2014, pp. 207–214.

[Thi+17] H. Thieblemont, F. Haghighat, R. Ooka, and A. Moreau. “Predictive Control Strate-
gies Based on Weather Forecast in Buildings with Energy Storage System: A Review
of the State-of-the Art.” Energy and Buildings, vol. 153, 2017, pp. 485–500.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Bibliography 191

[Tuo+17] J. Tuominen, E. Lehtonen, M. J. Tadi, J. Koskinen, M. Pankaala, and T. Koivisto. “A
Miniaturized Low Power Biomedical Sensor Node for Clinical Research and Long
Term Monitoring of Cardiovascular Signals.” Proceedings of the 2017 International
Symposium on Circuits and Systems (ISCAS). IEEE, 2017, pp. 1–4.

[TVL17] D. M. Tung, N. Van Toan, and J.-G. Lee. “Exploring the Current Consumption
of an Intel Edison Module for IoT Applications.” Proceedings of the 2017 IEEE
International Instrumentation and Measurement Technology Conference (I2MTC).
IEEE, 2017, pp. 1–6.

[UDD01] UDDI. UDDI Executive White Paper. 2001. URL: http://www.uddi.org/pubs/
UDDI_Executive_White_Paper.pdf (visited on 06/11/2018).

[vAll18] P. van Allen. NETLabTK. 2018. URL: http://www.netlabtoolkit.org/ (visited
on 06/19/2018).

[Van+01] W. M. P. Van Der Aalst, P. Barthelmess, C. A. Ellis, and J. Wainer. “Proclets: A
Framework for Lightweight Interacting Workflow Processes.” International Journal
of Cooperative Information Systems, vol. 10, no. 4, 2001, pp. 443–481.

[Vie+03] M. Vieira, C. Coelho, D. da Silva, and J. da Mata. “Survey on Wireless Sensor
Network Devices.” Proceedings of the 9th Conference on Emerging Technologies
and Factory Automation (ETFA). IEEE, 2003, pp. 537–544.

[Vil+11] N. M. Villegas, H. A. Müller, G. Tamura, L. Duchien, and R. Casallas. “A Framework
for Evaluating Quality-Driven Self-Adaptive Software Systems.” Proceedings of
the 6th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). ACM, 2011, pp. 80–89.

[Vil+13] N. M. Villegas, G. Tamura, H. A. Müller, L. Duchien, and R. Casallas. “DYNAMICO:
A Reference Model for Governing Control Objectives and Context Relevance in
Self-Adaptive Software Systems.” Software Engineering for Self-Adaptive Systems
II. Springer, 2013, pp. 265–293.

[Vin+10] H. Vincent, V. Issarny, N. Georgantas, E. Francesquini, A. Goldman, and F. Kon.
“CHOReOS: Scaling Choreographies for the Internet of the Future.” Posters and
Demos Track of the 11th International Middleware Conference. ACM, 2010, pp. 1–3.

[Vou+14] O. Voutyras, P. Bourelos, D. Kyriazis, and T. Varvarigou. “An Architecture Support-
ing Knowledge Flow in Social Internet of Things Systems.” Proceedings of the
310th International Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob). IEEE, 2014, pp. 100–105.

[Wan+10] E. K. Wang, Y. Ye, X. Xu, S. M. Yiu, L. C. K. Hui, and K. P. Chow. “Security Issues
and Challenges for Cyber Physical System.” Proceedings of the 6th International
Conference on Green Computing and Communications (GreenCom) & 3rd Interna-
tional Conference on Cyber, Physical and Social Computing (CPSCom). IEEE, 2010,
pp. 733–738.

[Wei+96] M. Weiser, B. Welch, A. Demers, and S. Shenker. “Scheduling for Reduced CPU
Energy.” Mobile Computing. Springer, 1996, pp. 449–471.

[WK07] F. Wotawa and W. Krenn. “Knowledge Extraction from C-Code.” Proceedings of
the 5th Workshop on Intelligent Solutions in Embedded Systems (WISES). IEEE,
2007, pp. 49–60.

[WMA10] D. Weyns, S. Malek, and J. Andersson. “FORMS: A Formal Reference Model for
Self-Adaptation.” Proceedings of the 7th International Conference on Autonomic
Computing (ICAC). ACM, 2010, pp. 205–214.

[Wol03] W. H. Wolf. “A Decade of Hardware/Software Codesign.” Computer, vol. 36, no. 4,
2003, pp. 38–43.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

http://www.uddi.org/pubs/UDDI_Executive_White_Paper.pdf
http://www.uddi.org/pubs/UDDI_Executive_White_Paper.pdf
http://www.netlabtoolkit.org/

192 Bibliography

[Wol94] W. H. Wolf. “Hardware-Software Co-Design of Embedded Systems.” Proceedings
of the IEEE, vol. 82, no. 7, 1994, pp. 967–989.

[WR97] J. L. Wynekoop and N. L. Russo. “Studying System Development Methodologies:
An Examination of Research Methods.” Information Systems Journal, vol. 7, no. 1,
1997, pp. 47–65.

[WW83] B. B. Winter and J. G. Webster. “Driven-Right-Leg Circuit Design.” IEEE Transac-
tions on Biomedical Engineering, vol. BME-30, no. 1, 1983, pp. 62–66.

[Wyl18] Wyliodrin. Wyliodrin: Your Next IoT. 2018. URL: https://www.wyliodrin.com/
(visited on 06/19/2018).

[Yil+12] Yilin Mo, T. H.-J. Kim, K. Brancik, D. Dickinson, Heejo Lee, A. Perrig, and B. Sinop-
oli. “Cyber-Physical Security of a Smart Grid Infrastructure.” Proceedings of the
IEEE, vol. 100, no. 1, 2012, pp. 195–209.

[Zan+14] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. “Internet of Things for
Smart Cities.” IEEE Internet of Things Journal, vol. 1, no. 1, 2014, pp. 22–32.

[Zha+13] M. Zhao, G. Privat, É. Rutten, and H. Alla. “Discrete Control for the Internet of
Things and Smart Environments.” Proceedings of the 8th International Workshop
on Feedback Computing. USENIX, 2013, pp. 1–6.

[Zha+14] M. Zhao, G. Privat, E. Rutten, and H. Alla. “Discrete Control for Smart Environ-
ments Through a Generic Finite-State-Models-Based Infrastructure.” Proceedings
of the 5th International Joint Conference of Ambient Intelligence (AmI). Ed. by E.
Aarts. Springer, 2014, pp. 174–190.

[Zhu+17] X. Zhu, Y. Badr, J. Pacheco, and S. Hariri. “Autonomic Identity Framework for the
Internet of Things.” Proceedings of the 2017 International Conference on Cloud
and Autonomic Computing (ICCAC). IEEE, 2017, pp. 69–79.

[Zim80] H. Zimmermann. “OSI Reference Model–The ISO Model of Architecture for Open
Systems Interconnection.” IEEE Transactions on Communications, vol. 28, no. 4,
1980, pp. 425–432.

[ZKG04] O. Zimmermann, P. Krogdahl, and C. Gee. Elements of Service-Oriented Analysis
and Design: An Interdisciplinary Modeling Approach for SOA Projects. IBM, 2004,
pp. 1–18.

[ZRF94] L. Zhao, S. Reisman, and T. Findley. “Respiration Derived from the Electrocardio-
gram During Heart Rate Variability Studies.” Proceedings of 16th International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE,
1994, pp. 123–124.

[ZW06] L. Zhang and Z. Wang. “Integration of RFID into Wireless Sensor Networks: Ar-
chitectures, Opportunities and Challenging Problems.” Proceedings of the 5th
International Conference on Grid and Cooperative Computing Workshops (GCC).
IEEE, 2006, pp. 463–469.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

https://www.wyliodrin.com/

Glossary

ADC Analog-to-Digital Converter . 5, 53, 54, 64, 68, 77, 84

AFE Analog Front-End . 5, 64, 77, 80, 84–86, 93

AMQP Advanced Message Queuing Protocol . 123

API Application Programming Interface . 50, 124, 128

ASIC Application-Specific Integrated Circuit . 15, 117

BAN Bersonal Area Network . 6

BLE Bluetooth Low Energy 4, 6, 10, 50, 64, 74, 77, 84, 86, 88–90, 95, 147, 154, 160, 161

BPEL Business Process Execution Language . 40

BPEL4WS Business Process Execution Language for Web Services . 17

BPMN Business Process Model and Notation . 17, 20, 21

CASE Computer-Aided Software Engineering . 20

CBSE Component-Based Software Engineering . 22, 23, 46

CEP Complex Event Processing . 117, 118, 122, 128–130, 144

CoAP Constrained Application Protocol . 7, 19, 20, 154

COM Component Object Model . 22

CORBA Common Object Request Broker Architecture . 22

CPS Cyber-Physical Systems . 14, 15, 17, 23–28, 46, 120

DAC Digital-to-Analog Converter . 53, 55

DCS Discrete Controller Synthesis . 35, 44, 45, 109, 111, 119, 123, 147

DDS Data Distribution Service 124, 125, 130–133, 135, 136, 144, 148, 166

DFB Digital Filter Block . 64, 76, 77, 79–82, 84, 86, 147

DIY Do-It-Yourself . 4, 34, 35, 52

DMA Direct Memory Access . 53, 59, 64, 65, 67, 81, 82, 146

DP Domain Participant . 124

DPWS Devices Profile for Web Services . 19

DSL Domain-Specific Language . 19, 144

DSP Digital Signal Processor . 5, 32–34, 79

ECA Event-Condition-Action . 45, 113

ECG electrocardiogram 62–64, 66, 74, 77, 79–81, 84, 85, 87, 88, 90–93, 95, 146

EMF Eclipse Modeling Framework . 21

ESB Enterprise Service Bus . 18, 19

FFT Fast Fourier Transform . 83

FPGA Field-Programmable Gate Array . 31–34

FSM Finite-State Machine . 41

GALS Globally Asynchronous Locally Synchronous . 116, 117, 119

GDS Global Data Space . 124

GUI Graphical User Interface . 123, 126, 130, 131, 136, 137, 139, 141, 144

HDL Hardware Description Language . 15, 31, 33, 44, 68, 82

HR Heart Rate . 63–67, 73–77, 79, 82–85, 88, 93–95, 101, 107, 109, 146

HRV Heart Rate Variability . 63–65, 73–77, 82–85, 94, 95, 101, 107, 146

193

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

194 Glossary

HTML Hypertext Markup Language . 126

HTTP Hypertext Transfer Protocol . 7, 18, 23, 125, 126, 144, 154

HTTPS Hypertext Transfer Protocol Secure . 144

IC Integrated Circuit 5, 13–15, 31–35, 47, 51–53, 56, 59, 61, 62, 64, 68, 70, 76, 77, 93, 95, 146

IDE Integrated Development Environment . 34, 67, 68, 81

IDL Interface Definition Language . 124

IP Internet Protocol . 4, 6, 7

JNI Java Native Interface . 125

JSON JavaScript Object Notation . 18, 59, 130, 141, 144, 149, 166

JSON-LD JSON for Linked Data . 149

JVM Java Virtual Machine . 41, 125, 166

LTS Labeled Transition System 10, 11, 43–45, 62, 85, 86, 106–109, 111, 119, 123, 130, 147, 148, 150

MARTE Modeling and Analysis of Real-Time and Embedded systems 21

MDA Model Driven Architecture . 21

MDE Model Driven Engineering . 14, 20–23, 27, 28, 41, 42, 44, 46, 71

MIAC Model Identification Adaptive Control . 36

MQTT Message Queuing Telemetry Transport 7, 19, 23, 123–125, 154, 166

MRAC Model Reference Adaptive Control . 36

NFC Near Field Communication . 4, 74

NFP Non-Functional Property . 9, 10, 62, 98, 102–104, 112, 116

OMG Object Management Group . 21

OOSEM Object-Oriented Systems Engineering Method . 29

OSGi Open Service Gateway initiative . 41

OTA Over-the-Air . 95, 150

OWL Web Ontology Language . 149

PAN Personal Area Network . 6

PCB Printed Circuit Board . 14, 31, 33, 34, 51, 52, 62, 78, 85, 93, 171

PID Proportional Integral Derivative . 36, 37

PoC Proof-of-Concept . 10, 121, 123, 137, 139, 141, 142, 144

PPG Photoplethysmography . 101, 108, 109, 115, 116, 138

PSD Power Spectral Density . 76, 83

QoS Quality of Service 9, 10, 14, 15, 18, 19, 24, 30, 37, 38, 44, 45, 47, 51, 54, 63, 70, 95, 98–101, 104, 105, 109,

116, 122, 124, 130, 134, 135, 137–141, 144, 147

RAM Random Access Memory . 4, 19, 50, 56

RDF Resource Description Framework . 149

REST Representational State Transfer . 18

RLD right-leg drive . 77, 78

RTOS Real-Time Operating System . 33

RUP SE Rational Unified Process for Systems Engineering . 29

RWF Respiration Waveform . 63, 65, 75, 77, 84, 85, 93, 94, 101, 146

SCA Service Component Architecture . 22

SFTP Secure Shell (SSH) File Transfer Protocol . 134

SLA Service Level Agreement . 98, 102, 105

SLO Service Level Objective . 105

SOA Service-Oriented Architecture 9, 14, 16–20, 27–29, 31, 41, 46, 50, 51, 69, 146

SOAP Simple Object Access Protocol . 17–19

SoC System-on-Chip 7, 15, 31, 33, 34, 47, 50, 52, 53, 61, 62, 64, 65, 70, 75–78, 85, 90, 95, 117

SPI Serial Peripheral Interface . 64, 65, 77, 85

SPL Synchronous Programming Language 11, 16, 43–45, 106, 107, 117–119, 123, 147, 150

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Glossary 195

SQL Structured Query Language . 112, 130, 144

SSH Secure Shell . 134, 143

SysML Systems Modeling Language . 21, 29, 46

TCP Transmission Control Protocol . 7, 19, 20, 64

UART Universal Asynchronous Receiver Transmitter . 65

UDDI Universal Description, Discovery, and Integration . 17

UDP User Datagram Protocol . 7, 19

UML Unified Modeling Language . 20–22, 29, 46

URI Uniform Resource Identifier . 7, 154

WSCI Web Service Choreography Interface . 18

WSDL Web Services Description Language . 17–19, 50

XMI XML Metadata Interchange . 21

XML Extensible Markup Language . 17, 18, 22, 129

XMPP Extensible Messaging and Presence Protocol . 123, 125

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

Licenses and attributions:
The iconography used in Figure 4.1 provided by Font Awesome 4.7.0, available at https://fontawesome.com.

The serif font used in this manuscript is Adobe Utopia:

Copyright ©1989 Adobe Systems Incorporated
Utopia ®
Utopia is a registered trademark of Adobe Systems Incorporated

The sans-serif font used in this manuscript is Fira Sans, distributed under the SIL Open Font License 1.1.

The monospaced font used in this manuscript is Source Code Pro, distributed under the SIL Open Font License 1.1.

196

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

https://fontawesome.com

FOLIO ADMINISTRATIF

THESE DE L’UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON

NOM : GATOUILLAT DATE de SOUTENANCE : 20 décembre 2018
(avec précision du nom de jeune fille, le cas échéant)

Prénoms : Arthur Yves Etienne

TITRE :

Towards smart services with reusable and adaptable connected objects: An application to wearable non-invasive biomedical
sensors.

NATURE : Doctorat Numéro d'ordre : 2018LYSEI123

Ecole doctorale : ED 512 – InfoMaths

Spécialité : Informatique

RESUME :

La prolifération des objets communicants fixes et mobiles soulève la question de leur intégration dans les environnements
quotidiens, par exemple dans le cadre de la e-santé ou de la domotique. Les principaux défis soulevés relèvent de
l’interconnexion et de la gestion de la masse de donnée produite par ces objets intelligents. Notre premier objectif est d’adopter
une démarche des couches basses vers les couches hautes pour faciliter l’intégration de ces objets à des services intelligents.
Afin de développer celle-ci, il est nécessaire de d’étudier le processus de conception des objets intelligents indépendamment
de considérations matérielles et logicielles, au travers de la considération de leur propriétés cyber-physiques. Pour mener à
bien la réalisation de services intelligents à partir d’objets connectés, les deux axes de recherche suivant seront développés : la
définition d’une méthode de conception orientée service pour les objets connectés intégrant une dimension formelle ainsi de
valider le comportement de ceux-ci, l’auto-adaptation intelli- gente dans un contexte évolutif permettant aux objets de raisonner
sur eux même au travers d’un langage déclaratif pour spécifier les stratégies d’adaptation. La validation de ces contributions
s’effectuera par le biais du développement et de l’expérimentation à grandeur nature d’un service de diagnostic médical continu
basé sur la collecte de données médicales en masse par des réseaux non-intrusifs de capteurs biomédicaux portables sur le
corps humain.

MOTS-CLÉS : Internet des objets ; Objets intelligents ; Méthode de conception ; Auto-adaptation

Laboratoire (s) de recherche : LIRIS

Directeur de thèse: Youakim BADR

Président de jury :

Composition du jury :
SONG, Ye-Qiong, Professeur des Universités, Université de Lorraine, Rapporteur
RIVENQ, Atika, Professeure des Universités, UPHF, Rapporteure
MALENFANT, Jacques, Professeur des Universités, Sorbonne Université, Examinateur
GUESSOUM, Zahia, Maître de Conférences HDR, Sorbonne Université, Examinatrice
BADR, Youakim, Maître de Conférences HDR, INSA-Lyon, Directeur de thèse
MASSOT, Bertrand, Maître de Conférences, INSA-Lyon, Co-encadrant de thèse

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI123/these.pdf
© [A. Gatouillat], [2018], INSA Lyon, tous droits réservés

	Notice XML
	Page de titre
	Abstract
	Résumé
	Acknowledgements
	List of Figures
	List of Tables
	Contents
	Introduction
	IoT and Smart Devices Generalities
	IoT Research Challenges
	Unconventional Characteristics of Smart Devices
	Global IoT Heterogeneity
	The IoT from a Multidisciplinary Research Perspective

	Research Strategies
	Research Statement
	Improving Smart Devices Design to facilitate IoT Integration
	Self-Adaptation: a Requirements of Smart Services

	Dissertation Outline

	State of the Art
	Introduction
	The IoT: Horizontal Solutions
	Service-Oriented Architectures in the IoT
	Model-Based and Graphical Development in the IoT
	IoT Smart Devices as Cyber-Physical Systems
	Summary of Horizontal Contributions

	Designing Embedded Systems
	Systems Design Methods
	Hardware Solutions for Smart Devices

	Self-Adaptation Solutions
	Classical Control: Theory and Tools
	Autonomic Computing: Self-Adaptive Software Systems
	Reactive Systems and Discrete Controller Synthesis

	Summary and Conclusion

	Design Method for Service Oriented Smart Devices
	Introduction
	Method Overview
	Generalities
	Smart Devices Ontology

	Comprehensive Method Description
	Smart Device Requirements Analysis
	Smart Device Constraints Analysis
	Modular Architecture Design
	Modules Formal Specification
	Smart Component Formal Specification and Verification
	Modules Implementation and Integration
	Smart Device Testing
	Smart Device Production
	Adding Self-Adaptive Behavior as a System-Wide Requirement

	Medical Smart Device Design
	Smart Device Analysis
	Smart Device Specification
	Smart Device Implementation: an Overview

	Summary and Conclusion

	Smart Device Hardware Design and Implementation
	Introduction
	Sensor Scope Statement
	Sensor Design
	Hardware Architecture
	Embedded Hardware and Software Signal Processing
	Integrating Self-Adaptive Behavior
	Development of an Android Companion Application

	Sensor Evaluation
	Evaluation on Synthetic Signals
	Energy Consumption
	Sensor Precision Evaluation
	Mobility Evaluation

	Conclusion

	Self-Adaptation Framework for Smart Devices
	Introduction
	Self-Adaptation Case-Study
	Dynamic and Synchronous QoS-Driven Self-Adaptation for the IoT
	Managing Dynamic Objectives and Monitoring Infrastructure
	Synchronous Programming Languages

	Adaptation Objectives Specification
	Declarative Self-Adaptation Specification
	Specifying Adaptation Objectives with a Rule-Based Language

	From Synchronous to Hybrid Self-Adaptation
	Conclusion

	Implementing the Self-Adaptation Framework
	Introduction
	Selected Technical Solutions
	The Data Distribution Service Standard
	Asynchronous Reactive Systems Using Vert.x
	The Drools Rule Engine
	The Maven Software Management Tool
	MongoDB Database

	Implementation Architecture
	Global Architecture
	Implementation Model
	Implementing the GUI
	Deployment Life Cycle

	Implementation Evaluation
	Case Study
	Experimental Results

	Conclusion

	Conclusion and Perspectives
	Summary of the Contributions
	Service-Oriented Design Method for Smart Devices
	Dynamic Self-Adaptation Framework

	Future Research Directions

	Résumé Long en Français
	Introduction
	Méthode de Conception Orientée Service pour Objets Intelligents
	Description Générale
	Application de la Méthode à un Capteur Cardiorespiratoire

	Infrastructure d'Auto-Adaptation Dédiée aux Objets Intelligents
	Présentation de l'Infrastructure Hybride
	Implémentation de l'Infrastructure d'Auto-Adaptation

	Conclusion

	Cardiorespiratory Sensor Schematic
	Bibliography
	Glossary
	Folio administratif

