N

N

A generic approach towards the collaborative
construction of digital scholarly editions

Vincent Barrellon

» To cite this version:

Vincent Barrellon. A generic approach towards the collaborative construction of digital scholarly
editions. Document and Text Processing. Université de Lyon, 2017. English. NNT: 2017LYSEI113 .
tel-02090792

HAL Id: tel-02090792
https://theses.hal.science/tel-02090792
Submitted on 5 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-02090792
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2017LYSEI113

€l

THESE de DOCTORAT DE L'UNIVERSITE DE LYON
opérée au sein de
INSA LYON

Ecole Doctorale N° EDA 512
Ecole doctorale d'Informatique et de Mathématiques de Lyon

Spécialité du doctorat : informatique

Soutenue publiqguement le 27/11/2017, par :
Vincent Barrelion

A Generic Approach towards
the Collaborative Construction
of Digital Scholarly Editions

Devant le jury composé de :

Murisasco, Elisabeth Pr Université de Toulon Rapporteure

Munson, Ethan Pr University of Wisconsin-Milwaukee Rapporteur

Pierazzo, Elena Pr Université Grenoble Alpes Examinatrice
Vion-Dury, Jean-Yves Dr Naver Labs Europe Examinateur
Calabretto, Sylvie Pr INSA Lyon Directrice de thése
Portier, Pierre-Edouard MdC INSA Lyon Co-directeur de these
Ferret, Olivier Pr Université Lyon 2 Co-encadrant

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Département FEDORA — INSA Lyon - Ecoles Doctorales — Quinquennal 2016-2020

SIGLE ECOLEDOCTORALE NOM ET COORDONNEES DU RESPONSABLE
CHIMIE DE LYON M. Stéphane DANIELE
CHIMIE http://www.edchimie-lyon.fr Institut de Recherches sur la Catalyse et ' Environnement de Lyon
IRCELYON-UMR 5256
Sec : Renée EL MELHEM Equipe CDFA
Bat Blaise Pascal 3¢ etage 2 avenue Albert Einstein
secretariat@edchimie-lyon.fr 69626 Villeurbanne cedex
Insa : R. GOURDON directeur@edchimie-lyon.fr
ELECTRONIQUE M. Gérard SCORLETTI
E.E.A. ELECTROTECHNIQUE, AUTOMATIQUE | gcole Centrale de Lyon
http://edeea.ec-lyon.fr 36 avenue Guy de Collongue
69134 ECULLY
Sec : M.C. HAVGOUDOUKIAN Tél : 04.72.18 60.97 Fax : 04 78 43 37 17
Ecole-Doctorale.eea@ec-lyon.fr Gerard.scorletti@ec-lyon.fr
EVOLUTION, ECOSYSTEME, M. Fabrice CORDEY
E2M2 MICROBIOLOGIE, MODELISATION CNRS UMR 5276 Lab. de géologie de Lyon
http://e2m2.universite-lyon.fr Université Claude Bernard Lyon 1
Bat Géode
Sec: SyIV|e ROBERJIOT 2 rue Raphaél Dubois
Bat Atrium - UCB Lyon 1 69622 VILLEURBANNE Cédex
04.72.44.83.62 Tél: 06.07.53.89.13
Insa : H. CHARLES cordey@univ-lyon1.fr
secretariat.e2m2@univ-lyon1.fr
INTERDISCIPLINAIRE SCIENCES- Mme Emmanuelle CANET-SOULAS
EDISS SANTE INSERM U1060, CarMeN lab, Univ. Lyon 1
http://www.ediss- Batiment IMBL
lyon.fr 11 avenue Jean Capelle INSA de Lyon
Sec : Sylvie ROBERJOT 696621 Villeurbanne
Bat Atrium - UCB Lyon 1 Tél : 04.72.68.49.09 Fax :04 72 68 49 16
04.72.44.83.62 Emmanuelle.canet@univ-lyonl.fr
Insa : M. LAGARDE
secretariat.ediss@univ-lyonl.fr
INFORMATIQUE ET M. Luca ZAMBONI
INFOMATHS | MATHEMATIQUES
http://infomaths.univ-lyon1.fr Batiment Braconnier
Sec :Renée EL MELHEM 43 Boulevard du 11
Bat Blaise Pascal, 3° novembre 1918
étage 69622 VILLEURBANNE Cedex
Tél: 04.72. 43. 80. 46 Tél :04 26 23 45 52
Fax : 04.72.43.16.87 zamboni@maths.univ-lyonl.fr
infomaths@univ-lyon1.fr
MATERIAUX DE LYON M. Jean-Yves BUFFIERE
Matériaux http://ed34.universite-lyon.fr INSA de Lyon
MATEIS
Sec : Marion COMBE Batiment Saint Exupéry
Tél:04-72-43-71-70 -Fax : 87.12 7 avenue Jean Capelle
Bat. Direction 69621 VILLEURBANNE Cedex
ed.materiaux@insa-lyon.fr Tél: 04.72.43 71.70 Fax 04 72 43 85 28
Ed.materiaux@insa-lyon.fr
MECANIQUE.ENERGETIQUE,GENIE M. Philippe BOISSE
MEGA CIVIL,ACOUSTIQUE INSA de Lyon
http://mega.universite-lyon.fr Laboratoire LAMCOS
. Batiment Jacquard
S?C : Marion COMBE 25 bis avenue Jean Capelle
Tél:04-72-43-71-70 -Fax : 87.12 69621 VILLEURBANNE Cedex
Bat. Direction Tél: 04.72 .43.71.70 Fax:04 72 43 72 37
mega@insa-lyon.fr Philippe.boisse@insa-lyon.fr
ScSo* M. Christian MONTES
ScSo http://recherche.univ-lyon2.fr/scso/

Sec : Viviane POLSINELLI
Brigitte DUBOIS

Insa : J.Y. TOUSSAINT

Tél: 0478697276

viviane.polsinelli@univ-lyon2.fr

Université Lyon 2

86 rue Pasteur

69365 LYON Cedex 07
Christian.montes@univ-lyon2.fr

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

A Generic Approach towards
the Collaborative Construction
of Digital Scholarly Editions

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

A Manel et Sacha.

iii

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Remerciements

Avant de plonger dans le dur, je souhaite prendre quelques lignes, dans ma langue
natale, pour adresser mes profonds remerciements a celles et ceux qui ont contribué,
de mille fagons, a ce travail et & ces quatre belles années.

Je remercie en premier lieu Sylvie, pour sa bienveillance, son invicible gentillesse, son
pilotage, pour son soutien et son agilité a trouver des financements de derniére minute,
sans lesquels j’aurais mangé beaucoup de riz blanc ces douze derniers mois.

Je remercie trés vivement Olivier, tout d’abord pour les immenses efforts déployés tout
au long de cette thése afin d’en suivre le moindre détail, jusque dans ses confins parfois
bien éloignés de la littérature, mais aussi pour avoir été un soutien moral important
dans des moments clés, et pour m’avoir permis de me perfectionner dans l'art de la
réunion de travail, & la Croix-Rousse.

Je remercie aussi, tout particuliérement, Pierre-Edouard, avec qui la littérature, le
cinéma, la philosophie, les cookies et le bon café sont souvent le préssentiment ou le
corollaire d’une découverte ; je le remercie pour les innombrables discussions fouillées,
exigeantes, enthousiasmantes, extraordinaires qui ont jalonné ces quatre années de
thése.

Je remercie aussi les membres de mon jury, pour le temps consacré a la lecture de ce
travail, au voyage, et & la discussion finale, le jour j!.

Je remercie les membres de mon laboratoire, le LIRIS, et plus particuliérement des
équipes DRIM et BD, avec qui j’ai eu davantage ’occasion de faire connaissance et de
nouer, parfois, de belles relations d’amitiés.

1Je présente mes excuses pour introduire des noms de variables jusque dans les remerciements de
ce mémoire. Une cure de désintoxication semble nécessaire.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Abstract

Digital Scholarly Editions are critically annotated patrimonial literary resources, in
a digital form. Such editions roughly take the shape of a transcription of the origi-
nal resources, augmented with critical information, that is, of structured data. In a
collaborative setting, the structure of the data is explicitly defined in a schema, an
interpretable document that governs the way editors annotate the original resources
and guarantees they follow a common editorial policy.

Digital editorial projects classically face two technical problems. The first has to do
with the expressiveness of the annotation languages, that prevents from expressing
some kinds of information. The second relies in the fact that, historically, schemas of
long-running digital edition projects have to evolve during the lifespan of the project.
However, amending a schema implies to update the structured data that has been
produced, which is done either by hand, by means of ad-hoc scripts, or abandoned by
lack of technical skills or human resources.

In this work, we define the theoretical ground for an annotation system dedicated
to scholarly edition. We define eAG, a stand-off annotation model based on a cyclic
graph model, enabling the widest range of annotation. We define a novel schema lan-
guage, SeAG, that permits to validate eAG documents on-the-fly, while they are being
manufactured. We also define an inline markup syntax for eAG, reminiscent of the
classic annotation languages like XML, but retaining the expressivity of eAG. Even-
tually, we propose a bidirectional algebra for eAG documents so that, when a SeAG
S is amended, giving S’, an eAG [validated by S is semi-automatically translated
into an eAG I’ validated by S’, and so that any modification applied to I (resp. I’) is
semi-automatically propagated to I’ (resp. I) — hence working as an assistance tool
for the evolution of SeAG schemas and eAG annotations.

vii

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Résumé

Dans la continuité des éditions critiques traditionnelles, les années 2000 ont vu I’émergence
de nouveaux objets éditoriaux : les éditions critiques numériques. De telles éditions se
distinguent des numérisations de fonds patrimoniaux en offrant une transcription en-
richie de données secondaires (notes et commentaires, indication des sources, données
bio/bibliographiques, etc.). De tels objets prennent la forme de documents structurés,
e.g. de documents XML. En pratique, les éditions critiques s’appuient sur une struc-
ture de données définie explicitement sous la forme d’un schéma. Reflet de la politique
éditoriale, le schéma indique le vocabulaire et la grammaire d’annotation mis en ceuvre
dans ’édition.

Si XML est le standard de facto pour 'annotation textuelle, il est établi qu’une struc-
ture hiérarchique représente mal un texte littéraire, et a fortiori un texte annoté.
D’autres modéles d’annotation, reposant sur des formalismes de graphes plus généraux,
ont été proposés : les modéles de documents multistructurés. Cependant, les mécan-
ismes de validation pour documents multistructurés échouent & embrasser la catégorie
de graphes la plus prometteuse pour la réalisation d’annotations, & savoir des graphes
cycliques, du moins avec une complexité algorithmique raisonnable.

Sur un autre plan, il apparait que les projets d’édition mettent en ceuvre un mode
de travail linéaire, comme suit : un schéma est initialement proposé ; il est dans
un second temps instancié, puis les documents résultant de cette instanciation sont
publiés. Le probléme pratique est que les éditeurs, dans la phase de conception du
schéma, anticipent rarement sur ’ensemble des situations qui seront rencontrées dans
les textes annotés. En d’autres termes, les schémas sont appelés & évoluer pendant
la construction de I’édition. Or une mise & jour du schéma doit s’accompagner d’une
mise & jour des données structurées...

Nos travaux s’articulent autour de trois axes : la représentation d’annotations cri-
tiques concurrentes ou multistructurées ; la validation de telles données ; ’assistance
a la mise a jour de ces données en cas d’amendement du schéma correspondant.

1. Nous avons défini un modeéle de balisage déporté (stand-off markup), nommé
eAG, dans lequel 'annotation est représentée sous la forme d’un graphe cyclique.
Nous avons défini et formalisé la notion de chronologie composite, permettant de
faire référence aux contenus de documents comportant, typiquement, du texte et
de 'image, et a rendre ce type de documents compatible avec le balisage déporté.
Nous avons proposé une syntaxe de balisage pour ’annotation textuelle, nommée
LeAG.

X

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

2. La validation de données dont la structure, comme dans les eAG, est un graphe
cyclique, est cotiteuse si elle repose sur une grammaire (RelaxNG, Creole, Schex,
etc.). A ce titre, nous proposons la notion de simulation en tant que mécanisme
de validation. Un schéma SeAG est un graphe qui valide un eAG si il simule ce
dernier. Nous avons défini un mode de représentation couplé pour les schémas
et les graphes d’annotation tel que, étant donné la représentation d’un schéma,
seuls des graphes d’annotation simulés par le schéma puissent étre représentés,
rendant possible une validation « par construction » des eAG.

3. Le troisiéme axe de recherche s’apparente a la problématique des transforma-
tions bidirectionnelles ou du Data Exchange dans laquelle, en fonction de corre-
spondances entre deux schémas, les données instanciant le premier schéma sont
traduites dans une forme compatible avec le second. Notre approche se base
sur un petit nombre de primitives, opérations élémentaires qui s’appliquent aux
schémas : suppression, insertion, substitution d’une sous-partie. Un schéma est
amendé par application successive de ces primitives. Chacune de ces primitives,
en outre, peut étre interprétée au niveau des instances et donner une nouvelle
forme d’instance, compatible avec le schéma modifié. Enfin, les transformations
entre instances sont bidirectionnelles, assurant une synchronisation entre les in-
stances de deux schémas.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Aknowledgement

This PhD was supported by the ARC5 program of the Rhone-Alpes region, France.

0®%0 : COMMUNAUTES
o0 ' i DE RECHERCHE @ CULTURES, SCIENCES,
Ll H
[l H
H (> |

ACADEMIQUE SOCIETES ET MEDIATIONS
Rhone\lpes

RhoneAlpes

xi

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Contents

I Introduction

1 Digital Scholarly Edition

1.1 Edition and Text Theory in the Digital World
1.2 Constructing Digital Scholarly Editions: A Generic Approach
1.2.1 A Generic Approach of DSE
1.2.1.1 A Starting Model for DSE Manufacture

1.2.1.2 A Composite Approach of Genericness.

1.2.1.3 Conclusion of this Paragraph

1.2.2 Data Structuring Models L.
1.2.2.1 A Panorama of Data Structuring Paradigms

1.2.2.2 Making the Structure Evolve

1.2.2.3 Intermediate Summary

1.2.3 Collaborative Data Structuring in DSE Projects
1.2.3.1 The Paradoxical Needs of Collaborative DSE Teams .

1.2.3.2 Conclusion: Paradoxical Needs

2 Proposition of a Collaborative Construction Process

2.1 Current Approaches of the Problem
2.1.0.3 Altruistic vs. Egoistic Data Structures

2.1.0.4 The Theory of Common Ground

2.2 Operating the Common Ground Theory
2.2.1 The Common Ground Theory: Applications

2.2.2 CG-inspired collaborative data structuring in a DSE setting . .

2.2.2.1 A Double Interpretation of the Common Ground . . .

2.2.2.2 CG-inspired Data Structuring: Illustration

2.3 Conclusion, Stakes and Challenges

IT The eAG/SeAG data model

3 Introduction
3.1 Preliminary: Notation
3.2 Outline of this Part and Main Contributions.

xiii

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

10
12
12
13
15
16
16
19
26
26
26
30

31
32
32
34
38
39
42
42
43
47

53

xiv CONTENTS

4 Related Work 59
4.1 Multistructured Data and Validation 59
4.1.1 Multistructured Data Models 60
4.1.2 M-S Validation: Algorithmic Complexity 61

4.2 The Annotation Graphs Model 63
4.2.1 Annotation Graphs L. 64
4.2.2 CriticiSms v o e e e 68

5 Extended Annotation Graphs and Schema models 71
5.1 The Extended Annotation Graphs Model 71
5.1.1 An Example of eAG Annotation: Anaphoric Chains 71
5.1.2 The eAG Model, Formally 75
5.1.2.1 eAG Graph Model 75

5.1.2.2 Authorized Labels in eAG 76

5.1.2.3 ChronologiesineAG 76

5.1.2.4 Elements, Hierarchies and Links in eAG 79

5.1.2.5 Elements in an eAG: Precisions 88

5.1.3 Conclusion e 90

5.2 Schema Model 91
5.2.1 Finite-State Machine Analogy 92
5.2.1.1 The Notion of “Language of Annotation” 92

5.2.1.2 Regular Expression-based Language Representation . 93

5.2.1.3 Language of an eAG: Interpretation 94

5.2.2 The SeAG Model, Formally 97
5.2.2.1 SeAG Graph Model and Instantiation Function. . . . 97

5.2.2.2 Schema-Instance Relation: Node-typed Simulation . . 99

5.2.2.3 SeAG Expressive Power 102

5.2.2.4 SeAG Expressive Power: Anaphoric Chains Validation 106

5.2.2.5 Simulation-based Validation: Caveats 108

5.2.2.6 Grammar vs. Simulation-based Validation 108

5.2.3 Precisions on SeAGo 110
5.2.3.1 Multiple forms for the same schema? 110

5.2.3.2 Redundancy and ambiguity 113

5.3 SeAG Validation: A Posteriori and On-the-fly Validations 119
5.3.0.3 A Posteriori Validation 119

5.3.0.4 On-the-fly Validation 120

54 Conclusion 124
III LeAG: an Inline Markup Syntax for eAG 125
6 Inline Multilayer Annotation 127
6.1 Introduction 127
6.2 The LeAG Syntaxo 129
6.2.1 Mono-hierarchy of Attributeless Elements 129
6.2.2 Grafts: Multilayer Annotation 130

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

CONTENTS XV

6.2.2.1 Colouring the annotation layers: general strategy . . 131

6.2.2.2 Positioning Colour Tags 134

6.2.3 Standard Inserts: Attributes, Structured Comment 137
6.2.4 Links and Quoting Elements 139

6.3 Summary and Notation 142
7 An Efficient Parser for Linear Extended Annotation Graphs 145
7.1 General Parsing Strategy L. 146
7.2 Parsing Strategy: Elements of Design. 147
7.2.1 Restrictions on ESE Defining Tags 148

7.2.2 Restrictionsone Edges 154
7.2.3 Restrictions on Insert Tags 157
7.2.3.1 Comment Insert Tags: Parsing Strategy. 167

7.2.3.2 Quote Insert Tags: Parsing Strategy.. 169

7.2.3.3 Attribute Insert Tags: Parsing Strategy. 170

7.2.3.4 Void Inserts: Parsing Strategy 170

7.2.3.5 Link Inserts: Parsing Strategy 170

7.2.3.6 SUmMmMary 171

7.2.4 Connecting ToT Graphs: Ongoing Hierarchies of Elements . . 172
7241 Pending Nodes 173

7.2.4.2 Non-Pending Nodes 173

7.2.5 Connecting ToT Graphs: Colour Tags Handling 175
7251 Casel. 177

7252 Case2. 180

7.3 Parsing Algorithm L 191
7.3.1 Data Structures. 191
7.3.2 Parsing Algorithm 196
7.3.2.1 Main Algorithm 196

7.3.2.2 Associate Nodes to Tags 201

7.3.2.3 Connect the Connectible Nodes of a Hierarchical Level 201

7.3.24 Insert with LeAG/IDg Field Parsing 203

7.3.2.5 Target Node Association 205

7.3.3 Parsing Algorithm: Time Complexity 205

7.4 Conclusion 209
IV Bidirectionalizing eAG/SeAG 211
8 Introduction 213
8.1 The Problem to Solve 213
8.2 Schema Evolution, Bidirectional Transformations 214
8.2.1 Schema Evolution in Database Studies 214
8.2.2 Bidirectional Transformations 216
8.2.3 Bidirectionalizing eAG/SeAG L 218

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

xvi CONTENTS

9 SeAG Transformations 219
9.1 Matrix-based Representation of eAG/SeAG: Calculability 219
9.2 Composing Modifications: General Strategy 223
9.3 Mod Operator 224

9.3.1 Schematic Cells 224
9.3.2 Mod Operator: Intuitive Presentation 226
9.3.3 Mod: Formal Definition in the General Case 228
9.3.3.1 Non Independent Schematic Cells 228

9.3.3.2 Connectivity Factor 230

9.3.3.3 Mod for Partially Independent Schematic Cells 235

9.3.3.4 Mod for Ambiguous Schematic Cells 238

9.3.3.5 Notationo, 243

9.4 Split Operator 243
9.5 Unite Operator 246
9.5.1 Situations where the Unite Operator Applies 246
9.5.2 Unite Operator Definition 248

9.6 Operators Composability 250

10 eAG Bidirectional Transformations 253
10.1 Composing eAG Modifications 253
10.2 Definition and Temporal Model of Instance Update 254
10.3 Derivation from a Mod Modification 257

10.3.1 eAG Mod Behaviour 257
10.3.2 Bidirectional eAG Mod 259
10.4 Derivation from a Split Modification 274
10.5 Derivation from a Unite Modification. 274
10.5.1 Forward Derivation, 276
10.5.2 Backwards Derivation 281
10.6 Reference Values Propagation 292
10.7 Composing Modifications: Two Quick Examples. 294
10.7.1 First Example. oo 294
10.7.2 Second Example: Making Some Pattern Cyclic 295
10.8 Conclusion L 295

V General conclusion 299
10.9 Contributions 301
10.10A Word on the Adopted Methodology 303
10.11Future Work and Perspectives 304

Bibliography 307

Appendix 323

11 eAG Example: Multiple Chronology-based Annotation. 323

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

CONTENTS

12 Tree-Automata vs. Simulation-based Validation

13 eAG Mod Operation: General Case
13.1 Pavage L
13.2 Permutations entre matrices d’'une méme instance
13.3 Alignement

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

List of Figures

1.1
1.2

1.3

14

1.5

2.1

4.1

4.2

5.1

5.2

5.3

5.4

Elementary model for DSE construction.
The working surface of CritSpace. The information that two docu-
ments share close relationship is indicated by the spatial closeness of
the graphical representation of those documents.

Representation of the data structure Alpha, instantiated on the digital
CorpusS A. . . e

Representation of the data structure Béta, instantiated on the digital
corpus B.
Synthetic view of the conclusions of Paragraph 1.2.3.1 highlighting the
contradictions between those conclusions.

The theory of Common Ground relies upon two notions: grounding,
process by means of which a certain impression of mutual understand-
ing is acquired by the coactors; grounding criterion, referring to the
evidence or clues of mutual understanding that punctuate the interac-
tlon.

The classic multistructured data models, classified by the family of
graphs of elements they enable to express.

Possible configurations of an annotation layer in the Annotation graph
model (extracted from [21], p. 40.)

An adapted passage from The Village of Ben Suc by J. Schell, with
some highlighted anaphoric chains and constituting singular expressions.

Document showing overlap, a figure enclosed in text and internal refer-
ENCES. « v e e e e e e e e e e e e

An eAG representing Figure 1 and a way to browse through it (arrows).
Grey edges are for reading assistance (they span over the paths defining
a structured element). Speech balloons show reference values (shades
differenciate between chronometers), from a chronology extending (T, <
) (cf.Illustration, part 1) in order to detail the content of Page one and
a Ref (“|a]” in the text) between characters 150 and 153.

SeAG schema validating the eAG given in Figure 5.3.

Xix

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

14

18

21

23

30

36

62

69

72

76

85
97

XX

5.5

5.6
5.7

5.8

6.1

6.2

6.3

7.1

7.2

7.3

7.4

7.5

8.1

10.1

LIST OF FIGURES

Two fundamental properties of simulation-based validation. a. Two
SeAG S, and Sp patterns in parallel may validate either any instance
of one of the patterns, or any superposition of instances of one of the
patterns. b. A SeAG pattern S made cyclic will validate any concatena-
tion of any of its instances, provided the concatenation is well-formed,

or any superposition of such concatenations. 104
RelaxNG tree automaton-based XML validation mechanism. 109
For all n € N as defined in Figure 5.6, each nBox representation (mid-

dle) and R, C R (right). L 110
A non-redundant but ambiguous graph. 113

A basic anaphoric chain annotation for the extract of The Village of
Ben Suc, and a corresponding schema. 129
A LeAG and a matching eAG, where an element (B) has two fathers,
one in the uncoloured hierarchy, and the other in a graft. The colours
of B, namely #G and # (uncoloured), are repeated in the context of its
sonelement 133
Three-layered LeAG. 133

Two corresponding SeAG/LeAG/eAG triples, illustrating (a) Simulation-
based multilayering and (b) Schema-based multilayering. The coloured

areas highlight the correspondence between the ToTs and the elements

they define. 176
Parsing strategy for the LeAG {A in X] [#R over X>[C in #R}[B in

X}, with schemas so that the starting node of the graft and the root of

its first element are one samenode. L. 178
Parsing strategy for the LeAG [A in X][#R over X>[C in #R}[B in

X}, with schemas so that the starting node of the graft and the root of

its first element are not the same node. 179
(a) Catalogue of the possible situations in which more than one node

may belong to the same hierarcahical level “in X”. (b) The typology
above shows that just knowing the complete value of the hierarchical

level of two nodes, in the shape "in X, A, B", is enough to assess which

of the two nodes will precede the other in the eAG graph. Precedence

is represented by the dotted arrows. The precedence relation is transitive.183
The ordered list of possible items in a given hierarchical level (vertical,
green) and for each, the ordered list of possible targets (horizontal, pink).204

The Data Exchange problem. Figure extracted from [108]. 216

Summary of the editorial data system we intended to design (left), and
the one we have defined (right). 302

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

List of Tables

1.1 Typology of the different kinds of data structure amendments, and the
resulting data conflicts. oL oL 25

[

5.1 Allowed suffixes per label class and the resulting class. stands for

“undefined”. Lo 77
5.2 The different kinds of eAG elements, according to the label class their

name belongs to. Lo 80
6.1 Summary of the syntax for LeAG tags. 143
7.1 Conditions for two nodes to be compatible for being part of the same

pair in the data structure E.o 201
7.2 List of the primary and secondary cells of the structure HL, relative to

agiventag. L e 202

9.1 The term-to-term addition operated for summing two incidence ma-
trices. This operator ensures to keep the result of any sum of values
from the set {—1,0,1}, which is the set of values of the elements of an
incidence matrix, in the same set., 223

12.1 Bilan des sous-graphes de S définis par récurrence horizontale, par ordre
décroissant sur I'inclusion (S; 2 S etc.), et des hiérarchies correspon-

Xx1

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Part 1

Introduction

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Chapter 1

Digital Scholarly Edition

Scholarly Editing, or the art of making “available for scholarly use works' not ordi-
narily available or available only in corrupt or inadequate forms” [155], has been one
of the paramount activities of scholars for centuries. Resulting from long-term, close-
study of the edited corpus, scholarly editions provide the reader with an appropriate
representation of the primary corpus, or, in case this corpus is lost, with a reasoned
reconstruction of it; it may also, depending on the scholar’s editorial strategy, give
detailed insights of the genesis of the edited works and/or their transmission and vari-
ation. Textual introductions and notes may also be added to the edition, in order to
supply, either at the global or at the local scale of the corpus, contextual or explicative
information. Thus, scholarly editions are among the most complex editorial objects
that the codex tradition have given birth to.

Established and evaluated according to the academic standards [106], scholarly edi-
tions are fed by original or up-to-date studies on the edited corpus — as such, editing
“produces knowledge” [142] and editions represent important, milestone research prod-
ucts. Conversely, because they are expected to represent the state-of-the-art knowledge
about the edited work, at the moment of their publication, scholarly editions are key
resources for further research, that is, valuable research tool themselves. In other
words, scholarly editions plays a pivotal role in the Humanities, aggregating prior
knowledge and opening to new discoveries at the same time.

It is thus no wonder that Digital Scholarly Editions (DSE) shall be one of the most
active fields in the frame of the booming Digital Humanities. Quantitative evidence
of the intense editorial activity among the digital scholars can be found in the Patrick
Sahle Catalog, that counts as many as 412 DSE projects undergone over the period
starting in 1994 until this very day?:3. Digital Humanities can be defined, in the view

10r texts, or documents.

2 Available online at http://www.digitale-edition.de/. Accessed on August 1st, 2017.

30ne may notice, while browsing through the catalogue, the drastic under-representation of DSE
projects conducted outside the ‘Western world’. Actually, the only counter-example from the Sahle
Catalog is the Bichitra: Online Tagore Variorum project, conducted at the Jadavpur University,
Kolkata, India. This under-representation, yet, seems to represent quite accurately the global DSE
landscape. Indeed, as evidenced by [74], DSE is mainly a European and Anglo-Saxon phenomenon,
and very few such projects are actually undergone for non-European language-based corpora. Arabic

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

4 CHAPTER 1. DIGITAL SCHOLARLY EDITION

of some, by their vocation to become a digital research infrastructure for humanists,
in an analogous way to the infrastructure that libraries, universities, and so on, consti-
tute in the physical world [61]. Analogically indeed, DSE aim at being both a research
product and tool; analogically, DSE are established and evaluated according to the
academic standards — as an illustration, the peer-review RIDE Journal precisely aims
to “direct attention to digital editions and to provide a forum in which expert peers
criticise and discuss the efforts of digital editors in order to improve current practices
and advance future developments” . And certainly, shall DSE have been no more than
the transposition of the traditional scholarly edition in that digital infrastructure, it
would indeed have had to play a central role in that digital setting.

Still, beyond these analogical points between paper-based scholarly edition and DSE,
the prospects of DSE go far beyond working as a sort of digital incunable for schol-
arly editions. Actually, it seems that going digital profoundly is renewing the schol-
ars’s activity. Some of the traditional, theoretical problems the editors have faced
for centuries are renewed by the shift from the codex shape to the digital world; new
resources (multimedia resources in particular) can be edited, or can be integrated
into the critical apparatus of a DSE, opening new perspectives in terms of editing
capacities; alternative business models develop along the traditional ones, based on
the publishing industry; eventually, new working organisation models (collaborative
work) are at hand, enabling to envision the edition of vast corpora, or multidisci-
plinary, or international edition projects, in a way that was much harder to follow
without digital support. Digital edition also raised new, tricky problems; in particu-
lar, long-term preservation is a key challenge, as it is for Digital Humanities as a whole.

In this introduction, before dwelling into the technical landscape underlying DSE, we
would like to focus on how DSE are theorized, modelled, envisioned by the editors
themselves, and on the practical, general implications of those visions. This may help
understand what DSE are or could be.

In a second part, we will investigate the notion of DSE construction, in the light of
the above. We will then ponder what a generic approach towards the construction of
DSE might mean.

1.1 Edition and Text Theory in the Digital World

Scholarly Edition® is traditionally divided in two main fields: critical versus docu-
mentary edition. Indeed, the two kinds do complement one another, from a defini-
tional point of view: while critical edition refers to “a text that derives from more than
one source text” [155], a documentary edition can be defined as “an edition of a text

and Asian languages are virtually short of examples to this date. Interestingly, the only three scholarly
digital projects dedicated to Japanese corpora that we are aware of are based outside Japan, namely:
the Japan Text Initiative, from the University of Virginia, which is a collection of copy-texts; the
Japanese Historical Text Initiative, which is a database of copy-texts and translations, from the
University of Berkeley ; the Oxzford Corpus of Old Japanese, exhibiting more ambitious scholarly
goals [75], edited at the Oxford University.

4Accessible at http://ride.i-d-e.de/. Accessed on August 4th 2017.

5Many definitions cited here come from the very useful Lexicon of Scholarly Editing, founded by
Dirk Van Hulle, available at uahost.uantwerpen.be/lse/. Accessed on August 5th, 2017.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

1.1. EDITION AND TEXT THEORY IN THE DIGITAL WORLD)

based on a single document” [135]. They also correspond to different rationale, and
result in very diverse objects.

Documentary edition “attempts to reproduce a certain degree of the peculiarities
of the document itself, even if this may cause disruption to the normal flow of the text
presented by the document. It can assume different formats, by presenting the textual
content of the document as semi-diplomatic, diplomatic, ultra-diplomatic, or even
facsimile editions, which differentiate themselves by the level of editorial intervention,
ranging from the largest to the smallest concession to the reading habits of the public
of choice” [135].

Critical edition, on the opposite, as suggested by the above, minimal definition,
implies that the editor methodologically constructs the text of the edition, based on
all the available documents that constitute her corpus (the selected set of historical
‘witnesses’, or versions, of the text) [77]. The nature of the construction may vary a
lot, depending on the corpus and on the editorial project defined by the editor. As
Shillingsburg puts it, critical edition can go from “reconstructing now lost texts” or
“identifying and correcting errors or stylistic lapses in the text being edited” to “ex-
tracting from the plethora of authoritative evidence an intended text not yet realized”.

The aim of this construction is not consensual either. According to Kline, the
purpose of the reconstruction is “to establish an authoritative text that does not re-
flect every element of any single surviving documentary source but, instead, embodies
the editor’s critical judgement of what an author‘s true intentions were” [106]. One
interpretation of this proposition is that the underlying editorial project for critical
editions is based upon the hypothesis that the surviving witnesses do not represent the
author’s intention, because the intended text was either never made public (e.g. was
emended on the proofs, due to censorship®) or because it is only accessible through
corrupted or faulty copies and editions. The purpose of a critical edition is thus to
attempt to recreate what the intended text could possibly have been, based on ma-
terial evidence, either contained inside the source materials, or based on documents
that are not versions of the text but provide information on it (gloss, quotations, para-
phrase, letters, etc.) and on the editor’s critical judgement. Recently, some editors,
tenants of what is called the New Philology, have raised criticism towards this point
of view, stating that it relies on a particular vision of the author, whose intention
prevails and shall be reconstructed, inherited from Romanticism, and that leads to
consider each variant in the witnesses as “fundamentally faulty” [111]. Indeed, one of
the most rigorous critical editing technique, namely, Stemmatics, consists in building
a family tree of the witnesses, in a phylogenetic fashion, based on error models; in
particular, the principle that a “community of errors implies a community of origin” is

6A famous example of that may be found in the ‘proof volume of the Encyclopédie’ preserved
at the Library of the University of Virginia (ref. Gordon 1751 .D54 Proof vol.). According to the
Library’s website (http://small.library.virginia.edu/collections/featured/224-2/, accessed on August
5th, 2017), ’[t]his volume was apparently made up by one of the editors of the Encyclopédie, almost
certainly André Le Breton who is known to have effected the unauthorized censorship of many of
the articles by Diderot and other contributors. These proofs are in the original settings before Le
Breton’s editing and are, therefore, of greatest significance to scholars of the Encyclopédie as the only
known source of Diderot’s full uncensored texts.”

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

6 CHAPTER 1. DIGITAL SCHOLARLY EDITION

operated to group witnesses as descending from the same, lost intermediary version,
called hyparchetype, and so forth, in order to reconstruct, up to certain hypothesis,
the original, archetype text. Yet, the above theory, that relies on the vision of a text
being associated to either one author, meaning that any exogeneous intervention has
to be considered as a corrupting process, or to one single, original version, is argued
not to be transposable to the pre-Romantic era, during which the figure of the author
does not translate well, in particular in Medieval times, where scribes, in charge of
writing the manuscript copies of a given work, did not necessarily have the role of
copists: hence the need, for New Philologists, to give the witnesses of a work their
original quality and to consider them as first-order texts, instead of simple witnesses
of a lost, hypothetical text [43].

Alongside those passionate debates, that still have very practical, concrete implica-
tions, Elena Pierazzo suggests another, pragmatic, historical raison d’étre for critical
editions [135]. She points out that editors have always faced the dilemma between
editing “texts or documents (or texts of works vs. texts of documents)”. History
shows that most of the time, texts of works were preferred, instead of documentary
editions. “This choice has been almost inevitable for works for which many witnesses
survive: who indeed, apart from the editor and possibly a couple of other scholars,
would be interested in buying and/or consulting seven hundred versions of Dante’s
Commedia, one for each of the surviving witnesses? Historically, in cases like these,
the only sensible solution has been to reconstruct the version that corresponded most
with the theoretical orientation of the editor, and to serialize the rejected variant read-
ings in the apparatus. The result is the provision of a clean, reading edition, where
the variants are conveniently marginalized at the bottom of the page or at the end
of the volume, in the name of ease of reading.” In other terms, critical editions have
been favoured — to the point of virtually eclipsing documentary editions out of the
scholarly field [135] — due to financial and readability reasons.

Digital Scholarly Editions: Documentary, critical or both (or more)? This
last argument seems of particular importance, in order to understand the ongoing
evolution of Scholarly Edition in the Digital world. As a corollary of its very reason
of existence, as a means to pally the impossibility to exhibit the primary sources used
for the edition, “access to the sources has always been one of the biggest limitations
offered by traditional critical editions, where only the categories of variants considered
relevant by the editor were collected and organized in the apparatus criticus” [135].
Yet, since the mid 1990’s, vast digitization campaigns have been launched either by
private companies, by public institutions or both jointly”, resulting in huge collections
of high resolution images of consistent and rare heritage funds, ranging from printed
editions, manuscript avant-textes, private correspondence, author’s library, etc., now
available to the scholar (if not to a larger audience directly®). Thus, the access to a
graphical representation of the sources is no more a financial issue, as it has been for

7As an illustration, in 2008, the Municipal Library of Lyon launched a call for tenders for the
digitization of its funds. The campaign was funded by the Library itself, the Ministry of Culture and
the National Library. The call was won by Google.

8GoogleBooks, in the private world, or Gallica, a state-funded platform, offer a wide range of
free, digital heritage resources.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

1.1. EDITION AND TEXT THEORY IN THE DIGITAL WORLD 7

paper-based editions. In this context, it has become possible (and, actually, this is
even now a sort of de facto rule) to incorporate them: the DSE shall give the reader
an access, somehow, to the digital images of the documents upon which the edition
is based, that is, to a visually faithful representation of the whole set of witnesses
considered for the edition.

As the experience shows — and as was known from traditional facsimile editions, that
were of little use among the scholars [147] — images do not make a scholarly edition.
Image-based editions lack readability and exploit very little of the perspectives offered
by the digital media, in terms of querying and computability. Instead, the current,
predominant approach [135], is based on the correspondence between the images, of
course, and a highly accurate, at least diplomatic, transcription, retaining as many
information about the edited document(s) as relevant. Indeed, this methodology does
not solve, or bury, the traditional divergences between the tenants of critical versus
documentary editions. From one point of view to the other, the nature of the tran-
scription will differ drastically. For instance, while some may advocate to wipe all
exogenous information from the transcription, that is, to transcribe only “what the
editor sees as directly attested by the document is to be included in its edition”, that
approach would mean, for others, to neglect all the interesting aspects about the work
the document witnesses (“what it means, who wrote it, how it was distributed and
received, how it is differently expressed”) [147]. Yet, the two positions do not need
to exclude one another any more. The necessity of providing a digital version of the
material source in a digital project can be seen as a step in a more general type of
scholarly editions, which can adapt to the reader, and cover, all-in-one, the range from
copy-text to fac-simile editions, through critical edition, on demand, hence overcoming
the classical dilemma between documentary, versus critical edition: indeed, “features
that were once normalized without mercy to produce reading, critical [...] editions
can now be retained and simply switched on and off at leisure to please different audi-
ences, thereby opening the way to new scholarship and readership |...] together with a
critical edition, the diplomatic edition of the sources would be offered for readers’ in-
spection in digital form, where the space constraints that have determined the format
and the selectiveness of the printed apparatus no longer apply” [135]. The encoding
system defined for the transcription of Dante’s Commedia, which aims at retaining
both the “text of document” (sticking accurately to what is on the document) and the
“text of work” (containing the variants) is an illustration of such an expanded critical
approach [26]. Providing an edited, critical text may be of great usefulness “to the gen-
eral readership”, while “the edition of the manuscript as document can also be justified
on scholarly grounds”. This possibility to make a critical edition rest upon a detailed
description of the material resources it is based upon, in a documentary fashion, is
also advocated by Jerome McGann, tenant of the influencial theory of “Social texts
editing” [40].

Interestingly, the above methodology, namely, to base the editorial work on a highly
skilled transcription of the documents constituting the primary corpus, adapts well to
a great range of editorial projects. In particular, it applies well — to the point of being
inevitable — to documents for which materiality is of high interest, and that possibly
do not even witness any text per se. This is often the case for draft materials, or
avant-textes, as they are called by the French school of genetic criticism.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

8 CHAPTER 1. DIGITAL SCHOLARLY EDITION

Genetic criticism. Indeed, after a complete lack of consideration, considerable at-
tention have been given to working (often manuscript) drafts, as records, not of the
text of work itself, but of the process of its creation. Very different from the antique
and medieval manuscripts traditionally considered by the critical scholars, drafts are
most of the time composite documents, whose textual content is not linearly displayed
across the media (but rather dispatched into different zones), is of diverse nature (cre-
ative text, summaries, commentaries, metatext) and that may even not be the witness
of a literary work under construction, but rather the imprint of the activity of a work-
ing mind [111]. In this context, the traditional critical approach, as well as a humble
documentary edition, are both irrelevant. The first, because the purpose of editing
draft materials is not to provide one synthetic text of work, since that work may not
exist, and since varying places in a manuscript do not have the same status as vari-
ants, among which the editor may choose in order to reconstruct the intention of the
author?. The second, because draft manuscripts are generally dense, hard to decipher
and non-linear, making the understanding of what is going on on the documents hard
to follow without sustained attention: more than a sheer (ultra) diplomatic transcrip-
tion, the editor has to provide the reader with clues about the structure, i.e. about
the semiotic nature of each part of the document and, if appropriate, how to navigate
through the corpus to get a significant insight of the evolution in the writing.
Printed genetic edition projects, aiming at rendering the uncovered dynamic processes
that the documents show, have been attempted, but because the editors had to make
use of a complex set of symbols to represent the information of genetic nature, they
resulted in “unreadable, unusable, time-consuming, and, in general, deceptive” paper
books [135]. On the contrary, the digital media seems to be particularly promising for
such editorial projects. Indeed, the combination of dense encodings of the documents
and dynamic publishing interfaces enable to bypass the need for any cryptic render-
ing of the genetic processes at work in the documents: instead, the reader can travel
through the documents, aided by the editor, in a most natural way. As Julie André
and Elena Pierazzo indicate, a digital edition may even encode “several trips through
the intricacy of the manuscript: writing and reading sequences”, the first working as
a reconstruction, up to hypothesis, of the different steps of a passage’s writing pro-
cess, the second indicating the reader the lead to follow in order to be able to read
the last writing state. An implementation of that principle was produced, based on
a few drafts by Marcel Proust [6]. The edition relies on a documentary, topological
transcription of the documents. The reader accesses the transcription by means of
an interface that shows the image of the documents, each zone of the image giving
access to its transcription. Moreover, the order in which the different zones can be
meaningfully read is indicated by means of a timeline functionality, which enables to
“replay” the writing process of the page.

Similar considerations directed the ORIGAMI project, dedicated to the avant-textes
of the Eloge de Bossuet by D’Alembert [14]. Three consistent manuscripts of the El-
oge have been preserved. The purpose of the ORIGAMI edition was to illustrate how
D’Alembert, well aware of the dangers of censorship, installed critical and polemic
opinions in an institutional text. The polemic writing strategy of D’Alembert, as

9Even if the status of variants, as well as the critical approach based solely on the author’s
intention, are, as we have seen, debated [43].

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

1.1. EDITION AND TEXT THEORY IN THE DIGITAL WORLD 9

shown by Olivier Ferret, can be seen in the way the author gradually, from the early
versions of the text to the printed ones, balances the controversial elements between the
text of the Eloge, which was to be published during his living time, and the posthumous
Notes [72]. As a demonstration of this claim, the ORIGAMI edition proposed, along-
side an access to the hi-resolution pictures of the manuscripts, a transcription of the
documents encoding the different layers of correction (insertions, emendations, substi-
tutions, travels) by D’Alembert inside each manuscript version, as well as indications
about the places of disruption and of continuity between the successive manuscript
versions. The reading interface rendered this transcription in a dynamic mode: it was
possible to display the text of the documents layer after layer, from the first version
available until the printed version, driving the reader to visually unlayer the successive
authorial interventions of D’Alembert first at the local scale, and then from one version
to the next. This functionality was meant both as a reading assistance tool, helping
the curious reader to decipher the (digitized) source materials, and as the expression
of a reading proposition, an hypothesis about the writing process of D’Alembert that
the reader was invited to check and, in terms, to confront to his own views — in that,
the ORIGAMI approach was reminiscent of — which fills the circle — the traditional,
critical editions, result and basis of past and further research.

In the end... Undeniably, the recent years have indicated a bend from in the tra-
jectory of documentary editions, that from a marginal position in the paper-based
scholarly world, have come to occupy a central one in DSE, to the point that pro-
viding the edited corpus underlying a digital edition has become a de facto standard.
Yet, as indicated by [135], documentary editing is more a method than a text theory;
and while documentary editing has gained favour among digital scholars, as illustrated
above, the field of text theory has been more active than ever, animated with strong
debates and growing around some new theories. Thus, DSE teams will obviously con-
tinue to propose a wide variety of editorial objects, driven by different views on what
DSE should be, or by different aims, ambitions and methods.

However, the rise of the documentary methodology as part of almost any DSE project
has important consequences, in terms of how digital editors will be working. Indeed,
the necessity to provide a digitised, and transcribed, version of the sources within
the frame of a DSE imposes the use of an encoding, or structuring language. In-
deed, without this need, critical editions could still be done the traditional way, and
variants be included in notes, just as in a paper edition — albeit, the resulting text
would be displayed on a digital media, equipped with a search engine and some other
functionalities — and the same could apply to genetic editions also. But this is not,
and as detailed in the short review above, for good, editorial reasons, the way DSE is
following. Thus, the resulting “text” of the edition cannot be plain text accompanied
by a series of notes. Instead, DSE clearly lean towards the model of a set of images
and structured resources (the transcriptions), encoding a lot of material, critical, ge-
netic information about the documents. The limits of the digital enrichment, i.e. the
amount of encoded information, based on that model, are virtually indefinite [135].
We have mentioned DSE whose transcriptions blend documentary and critical, topo-
logical and genetic views. Those kinds of annotations, and their combination even
more so, enable a detailed description of the edited resources, from an internal point

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

10 CHAPTER 1. DIGITAL SCHOLARLY EDITION

of view. But one interesting prospect of DSE is the possibility to encode, on top of
the aforementioned internal characteristics of a document, exogeneous relationships
as well, that is, intertextuality. This idea is not new, and has been theorized, and
sometimes experimented, under the name of Hypertext [121, 65] of Web of discourse.
We leave the final words, in this paragraph, to Hans Walter Gabler [77], with this
exhilarating and almost dreamy vision:

“In the Renaissance, when books first became the medium for editions, print-
ers devised breathtaking lay-outs for surrounding texts with commentaries,
often in themselves again cross-referenced. In effect, they attempted to con-
struct in print the relationality of what today are called hypertexts. But
with books to establish the third, relational, dimension against their material
two-dimensionality, has always been a rudimentary gesture, and has always
depended on involving and stimulating the reader’s imagination and memory.
For editions existing electronically, in contrast, the relational dimension is a
given of the medium, and complex relationalities may be encoded for them
into the digital infrastructure itself.”

1.2 Constructing Digital Scholarly Editions:
A Generic Approach

Our PhD work originates in an opportunity, supported by the Rhone-Alpes region,
in France, to study how digital scholarly editions are manufactured, and then how,
from an experimental point of view, the manufacturing process of DSE could be eased,
or assisted, or improved. Importantly, the challenge was to adopt, for this study, a
generic approach, that is, to make sure that the proposed solution be not specific
of one, or even a few DSE projects, but embrace DSE in general. Yet this study is
grounded on four digital scholarly projects, that accepted to participate to the intel-
lectual adventure this PhD work represented and to serve as a bank of examples: the
edition of the documentation Gustave Flaubert gathered for his unfinished novel Bou-
vard et Pécuchet'®, the exploratory analysis of philosopher Jean-Toussaint Desanti’s
archive!!, the double publication (printed and online) of Stendhal’s Journaux et pa-
piers'? and the critical edition of the Diderot and D’Alembert’s Encyclopédie!3.

The four projects differ in many aspects. In 2013, at the beginning of the PhD work,
three of them had already started, and were even publishing their editorial achieve-
ments, while the work on the Encyclopédie was in its most early stages. The nature
of the editorial aim, for each project, was different. The edition of the preparatory
files of Bouvard et Pécuchet, which is mainly the work of Stéphanie Dord-Crouslé,
aims at providing the reader, who is understood as a ‘user/researcher’ as well, with
a range of transcriptions (from ultra-diplomatic to normalized), so that she can then
build herself a hypothesis about how the materials gathered by Flaubert could have

1Ohttp: / /www.dossiers-faubert.fr/
Hhttp://institutdesanti.ens-lyon.fr/
1Zhttp:/ /manuscrits-de-stendhal.org/
BBhttp://enccre.academie-sciences.fr/

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

1.2. CONSTRUCTING DSE: A GENERIC APPROACH 11

been assembled into a volume. The approach is thus essentially documentary. The
edition of Jean-Toussain Desanti also operates a documentary approach, doubled with
an archival aim. The first task was to catalogue the whole archive, and to build an
index of names and concepts, describing the documents at a macroscopic level. In
parallel, the documents had to be transcribed, in order to allow the identification of
unedited works by the author, hidden inside the archive, and also to support a ge-
netic reading of Desanti’s work, centered on “his working methods, his focuses, his
influences and their evolution through time'#”. The project has been based on a suc-
cession of small, specialized teams, sometimes reduced to one researcher. The edition
of Stendhal’s Journaux et papiers is a twofold edition: providing the reader access to
the manuscripts preserved at the Municipal Library of Grenoble, by means of a doc-
umentary archive freely available online, complemented by a critical, printed edition
(see [168], published in 2013). The editorial team, directed by Cécile Meynard and
Thomas Lebarbé, gathered up to about 20 multidisciplinary members. Eventually,
the name of the ENCCRE project, which is an acronym for “Edition numérique col-
laborative et critique de 1’ Encyclopédie”®, is self explanatory. It is the only, of all the
DSE projects here, to specifically claim for a collaborative organisation. It relies on a
large and multidisciplinary network of scholars (about 100 people) that spreads across
Europe, Japan and the United States.

Those projects, because of their diversity, provide a valuable set of real-life experience
of DSE. In the following, we propose a general study of how DSE are manufactured.
As a disclaimer, this study does not aim at covering the whole range of questions dig-
ital scholars face during the construction of their DSE. In particular, some practical,
and extremely important decisions, regarding data preservation and interoperability,
that are at the very heart of Digital Humanities today [136], will voluntarily not be
considered. Those are well-identified, debated problems, that are managed technically
and politically at the institutional level. Instead, grounded on the historical experi-
ence of the four edition projects above, we propose an abstract description of DSE
construction. This description, that aims at being as general (or generic) as possible,
will uncover some crucial difficulties and challenges that all four of the DSE projects
have faced. Our conclusions can be summed-up as follows:

- From a certain point of view, the activity of DSE manufacturing can be widely
described as a modelling and data structuring activity. The centrality of mod-
eling, and the connection with data structuring, has been identified elsewhere
[119, 136, 40, 163, 102|. Practically speaking, editors will, based on their edito-
rial policy and on a model of the edition, and of the edited corpus, define a data
structure and instantiate it.

- The definition of the data structure is thus a process, or should we say an
editorial process that, as such, has raised little interest so far. While heavy
with consequences for the DSE, it happens that the activity of defining a data
structure is often centralised, even in collaborative settings, and thus editors may
be deprived from participating in that process, while they will have to instantiate
its outcome (i.e. the data structure itself).

Mhttp://archive.desanti.huma-num.fr/desanti/a-propos. Accessed on August 8th, 2017.
1514 est, quite transparently, “Digital, Collaborative Critical Edition of the Encyclopédie”.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

12 CHAPTER 1. DIGITAL SCHOLARLY EDITION

- Since the definition of the data structure is grounded on a model, and that
“modeling succeeds intellectually when it results in failure” [119], it follows that
data structures are susceptible of changing in the course of a DSE project. Data
structure evolution in the context of DSE have also raised little attention, to the
best of our knowledge.

As one can see, the above points do not describe technical difficulties, but difficulties
of an editorial nature — they are not technical first, even if, as we will see, they do
imply several profound research questions to the computer scientist...

1.2.1 A Generic Approach of DSE

As we have seen, Digital Scholarly Editions cover a wide spectrum of editorial projects
and form a complete galaxy of diverse objects, even if they tend to revolve around a
common methodology, based on documents transcription and enrichment. Unspectac-
ular as it may seem at first glance, this methodological similarity across very different
projects has important consequences, and can be exploited to provide a certainly
rough, but revealing, generic model of the manufacture of DSE.

1.2.1.1 A Starting Model for DSE Manufacture

As a starting point, let us consider a first, rough and incomplete model of how DSE
are built. This elementary model, that will be refined in the following, is given in Fig-
ure 1.1. According to this model, the DSE results from interactions between subjects
(the editor or the editing team) and objects of diverse nature:

- An editorial project. It is defined by the editors. It sets the editorial principles
according to which the DSE has to be made. It covers a wide range of decisions:
“the choice of who the edition should be aimed at; whether it should present an
edited text; if so, on what principles should that text be edited; what conventions
of spelling, punctuation and presentation should be followed” [148], as well as, in
a context involving documentary editing, what characteristics of the documents
are relevant.

The editorial project can be tacit or explicit. Most of the time, it is summed up
in a text written in natural language that will be, at least partly, available to
the final reader of the edition.

- The data structures. Regardless of the technological aspects of the encoding
(i.e. what language is used for the transcriptions, etc.), in the context of DSE,
the data structure is a model for the edition, respecting a certain formalism,
so that this model is interpretable by the machine [164]. Those familiar with
the way data structures are defined in XML or in TEI, that is, by means of a
schema, are well aware of that. Indeed, as suggested by Willard McCarty, model
is a double-sided concept, referring both to “a representation of something for
purposes of study, or a design for realizing something new”. He distinguishes
between “models of” and “models for”, to enlighten the above distinction. Data
structures, indeed, are “models of”. Let us stick to the example of XML-based

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

1.2. CONSTRUCTING DSE: A GENERIC APPROACH 13

editions. A schema for XML contains the definition of the elements that will be
instantiated (i.e. the types of the objects that will be identified in the sources)
and of the hierarchy those elements will constitute in the annotation. Thus,
defining the schema for an edition demands to have identified the objects of
interest in the sources, that will, in the transcription, be represented by an
element, as well as the way those objects of interest relate one to the other,
from a hierarchical point of view. In other terms, the editor will only be able to
define the schema for the transcriptions once she has got enough familiarity with
the sources and the project so as to have developed a good mental image, or a
good model, of the characteristics of the corpus to be edited and of the editorial
enrichments intended for it!6.

At the same time, a data structure is generally not purely descriptive. Data
structures defined as a preliminary for the editing work, as it is commonly done,
play a strong, prescriptive role as well, since all the data generated afterwards
by the editors will have to be conform to that data structure. Data structures
work like a guide for the editor, but also like a censor: only the information
planned in the model can be expressed, as planned in the model — an XML file
containing an element not defined in the schema, for instance, being necessarily
considered invalid.

The data structure works thus as a definition of the language of the annotation:
it defines the conceptual vocabulary and the grammar that will be available for
the editor to express the annotation.

- The digital corpus. This is what the editors construct while editing. In the first
steps of the DSE construction, the digital corpus corresponds to the unedited
files: native-digital sources, images of the documents, raw transcription or text
issued from the OCR... Later, the digital corpus will be made out of the enriched
data. In case a data structure was defined, the corpus will have to respect that
structure, in the end.

- The material corpus is the set of material objects that need to be digitized.

- An editing interface. It is by means of that interface that the editor will
be able to define/construct the machine interpretable files corresponding to the
edition: the data structure, if one is defined, and the digital corpus.

This basic model of the manufacturing environment for DSE provides a set of six
abstract subjects/objects for which we can now try to find a generic incarnation, that,
among the possible shapes, subsumes (or generalises) all the others.

1.2.1.2 A Composite Approach of Genericness

In our claim to propose a generic approach of the DSE manufacture, we understand
“generic” by “lacking specificity”!”: a minima, “generic” thus means versatile; a max-

ima, universal. We follow the principle that a system (composite, by nature), as the

16Moreover, from a computer science point of view, data structures are models of the data in that
they can be exploited to formulate, or optimize, complex queries on the data.

17See www.thefreedictionary.com/Generic. Accessed on August 9th, 2017. The same definition
applies in French, see atilf.atilf.fr/.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

14

CHAPTER 1. DIGITAL SCHOLARLY EDITION

validates
rules

(partly)
translates
Editorial policy = Data structure

define =

define 10 000
’ 101 010
014 010

— 00d 101
Editing Interface ood - 101
01q 100
01 S 001
DATA STRUCTURING * .
Digital

Editorial Corpus
team

study,
model

Figure 1.1: Elementary model for DSE construction.

one we have modelled in the previous paragraph, cannot pretend to be versatile if one
of its parts suffers from a too specific definition. We now try to consider each element
of the above model for DSE construction, and to provide them with the definition of
what might be their most generic realisation.

- Editorial team. We consider, as the most general case of editorial team, a
collaborative, distributed, multidisciplinary team of scholars that are not familiar
with computer science. This subsumes editors working alone, teams working
at the same physical place and/or benefiting from the possibility of meeting
regularly, etc. It is also open to the eventuality of there being some kind of
turnover, or evolution, in the composition of the team.

- Editorial policy. The editorial policy is connected both to the editorial project
the editorial team forms and the sources to be edited. It would be presumptu-
ous to summarize all the possible views one can have on any primary sources.
Still, to be as general as possible, we can say that one DSE project may, as
has been illustrated in the paragraph 1.1, support several editorial paradigms at
the same time (genetic and documentary, critical and, say, linguistic, etc.). In
other words, in an editorial system supporting the most generic kind of editorial
policy, the editors must not be restricted to express annotations conform to one
paradigm only: double, or multiple-paradigm annotation must be possible.
Even more so, it shall be possible to decide, after the project has started, to

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

1.2. CONSTRUCTING DSE: A GENERIC APPROACH 15

change the editorial policy, for instance, but not solely, by going from a single-
paradigm to a multiple-paradigm edition. Thus we articulate genericness, re-
garding the editorial policy, with two notions: multiplicity and dynamism, as
follows:

1. at any moment, several editorial views may be expressible;

2. the editorial policy may evolve through time, under the spur of the editors.

- Data structure. Since the data structure is a partial translation of the editorial
policy:

1. the data structure shall support multiple annotation of the digital resources;

2. the data structure shall not be definitive. It must be a first-order object
that, as such, the editors shall be able to amend, in the course of the DSE
manufacture.

- Digital corpus. The digital corpus may be a set of resources of diverse nature:
image, necessarily, but also annotated text, audio and video resources, native-
digital objects... The digital corpus is by nature dynamic, since the editors, by
encoding information in it, add secondary content to it. The primary content as
well may change during the editing work.

- Editing interface. Generic editorial interfaces have been proposed elsewhere.
Such interfaces aim at covering the whole range of editorial activities necessary
to the construction of the edition, from the data structure definition until the
parameterization of the published materials. The Glozz platform, primarily ded-
icated to linguistic annotation, exemplifies such interfaces [183]. In particular,
it enables to tune a “data metamodel” (i.e. to define the data structure) accord-
ing to several linguistic paradigms; it provides user-friendly tools to instantiate
on the corpus those different paradigms simultaneously; it enables to query the
resulting digital corpus and to generate files in different formats (XML, TEI,
txt...). Modular interfaces, designed by the user herself from a library of pre-
existing functional bricks, can be seen as another way to achieve the same goal
[11]. It shall also support collaborative work, as hinted by the above point on
the nature of editorial teams.

- Material corpus. Similarly to digital corpus, the material corpus may be
multimedia, and may change during the lifetime of the edition.

1.2.1.3 Conclusion of this Paragraph

Genericness is defined as the lack of specificity. What the above suggests is that a
non-specific digital edition system shall be adaptative, i.e. shall allow the editors to
define their own language of annotation freely, and to instantiate it on the data.

We also get the hint that non-specificity shall be understood in dynamic terms: a
generic edition system shall support both stable editorial projects, that keep the same
editorial team and policy throughout their lifetime, and evolving projects, for which
the corpora, the team and the policy, may change any time.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

16 CHAPTER 1. DIGITAL SCHOLARLY EDITION

We will thus now consider how the combination of those two characteristics onto which
genericness is grounded (adaptation and evolution!'®) impact the main activity in the
digital edition routine, namely, data structuring (and its corollary, data structure
definition). The questions we will try to answer, on a theoretical (not technical yet)
level, are the following:

- What does the activity of data structuring consist in? How may an editor want
to make a data structure evolve and what difficulties does it raise?

- How does the above translate in the context of collaborative work?

1.2.2 Data Structuring Models

By structuring, we refer to the whole process consisting, on the one hand, in the defini-
tion of the types representing some characteristics of the data and of the relationships
between those types and, on the other hand, in the instantiation of those types in the
data, that is, the annotation itself.

It is worth noting that the first activity is, sometimes, indissociable from the second,
namely in the editorial systems that rely upon the notion of implicit data structuring:
in this case, the data is not structured according to any pre-existing, formally defined
structure, and the data structure is the structure that can be inferred from the data.
Explicit structuring, in which data structures pre-exist to the data, is the alternative.
We question those two kinds of data structuring for DSE in the following paragraph.

1.2.2.1 A Panorama of Data Structuring Paradigms

Implicit structuring. As stated above, defining the data structure for an edition
demands to have a clear model in mind, and to be able to formalize it. Yet, some
projects might not either be in capacity of, or want to, define such a model a priori of
the editing work. As pointed out by [156], the formalistic burden this represents can
be an obstacle for the activity of collaborative groups, or of scholars, that can (and
at the time the article was written, certainly were in a vast majority) unfamiliar with
the activity of formal modelling. Following those considerations, several propositions
aiming at relieving the scholars with abstract structuring have been proposed.
CritSpace is an interesting such proposition. It takes the shape of an interface for the
exploration and the organisation of multimedia, heritage corpora. Thus, structuring
is at the very center of the aims of the interface. The interface, from a user point of
view, relies upon the ergonomic paradigm of “spatial hypertexts”. The way structuring
is done in CritSpace is the following:

- The user is provided with graphical representations of the documents that consti-
tute the corpus to investigate. The user can then display those representations
on a working surface (a window, actually) and position precisely those repre-
sentations on this surface. It is then the spatial proximity of two documents’

I8nterestingly, this abstract analysis, that dates back from 2014, at the start of this PhD work, is
shared, almost word for word, by [103], that gives an account of how, practically speaking, genericity
was achieved in the DigitalHarlem project.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

1.2. CONSTRUCTING DSE: A GENERIC APPROACH 17

representation that encode the existence, and the tightness, of a semantic rela-
tionship between the two corresponding documents.

- It is then possible to write textual notes (in a post-it manner) to comment on
the displayed resources.

- It is also possible to “synchronize” resources, in a very specific sense: when one
resource from a set of synchronized resources is manipulated in the interface, the
others of the set are highlighted, so that the user be informed of the existence
of a particular relationship between the documents those resources represent.

Figure 1.2 is an illustration of the CritSpace working surface.

This structuring paradigm is clearly dedicated to the exploration of a documentary
corpus — in this regard, the authors do not mention any means to export the result of
the structuring by CritSpace. It is also semantically quite limited, since it is not possi-
ble to type either the resources nor their content, nor the nature of their relationship.
Other tools, by contrast, are grounded on the notion that the abstract quality of
structuring needs not be erased, but facilitated [156]. A quite recent example can be
found in Analyst’s Workspace [7]. In this approach, structuring is incremental: first,
it is quite similar to the way it works in CritSpace, in the sense that the (textual)
resources are classified according to their spatial display on a working surface, without
any typing of any sort. Then, the user can formally define new objects called “entities”,
which are then associated with a zone of the working surface and, by corollary, the
resources that occur on this zone, hence working as a sort of typing of the network
they form. However, no export is described by the authors neither.

Let us denote that none of the two systems presented here make it possible neither
to infer any structural information from the structured data resulting from their use,
nor to exploit that structure for querying purpose. By contrast, one can think of the
proposition of Dataguides and Graph schemas, two complementary tools proposed to
infer, or extract, a descriptive structure from data that possess, at least partly, some
structure, but that was generated without the use of any kind of schema (or predefined
data structure), or that were aggregated from diverse sources of information [3].

Explicit structuring As it happens, the above examples are not meant to be used
for editorial purpose — unless in a preliminary, research-oriented phase of work that
is not specific of edition. As it happens also, examples of editing systems that would
rest upon an implicit-structuring paradigm lack, to our knowledge. Instead, it seems
that scholars, in the enthusiast atmosphere of Digital Humanities, have gained the
competence of thinking in terms of abstract models and data structure, to the point
that some tools, like the aforementioned Glozz platform [183], not only give the scholars
the possibility to define a data structure themselves, but also to annotate that structure
as a first-order object. Additional evidence comes from the fact Digital Humanities
literature does not hesitate in discussing advanced problems of modelling and data
structuring [58, 68, 177, 60, 103].

Thus, it appears that the concerns expressed in [156] are not justified anymore, or at
least, does not apply to DSE editors, that are well-aware of data structuring problems
and in capacity of dealing with them. Explicit structuring can be divided into two

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

18 CHAPTER 1. DIGITAL SCHOLARLY EDITION

CEF Devirgters Mrtadatn ™

Figure 1.2: The working surface of CritSpace. The information that two documents
share close relationship is indicated by the spatial closeness of the graphical represen-
tation of those documents.

cases: in the first one, defining data structures is equivalent to defining types, that
can then be instantiated inside the data, without there being a necessity that the data
structure be instantiated, and the other, in which the data structure is designed as
a prescription over the structure of the data, that must conform to it in order to be
considered valid. The two philosophies can be illustrated as follows:

- In the Glozz platform, the user is given the means to define several data struc-
tures each supporting a certain annotation paradigm. Those data structures are
quite simple. They derive from a metamodel in which “segments” (types used to
characterize segments of text) can be connected together by “relations” (typed
associations between segments); sets of relations, of segments connected by re-
lations, can then be typed, forming what we might call “typed substructures”.
The data structure, as a whole, can thus be quite complex, containing intricately
connected segments, grouped into several, overlapping typed substructures. It
is then possible to instantiate each kind of segment into the data, and then to
connect the instances of segments by relations as defined in the data structure.
Still, the data structure, in this explicit structuring paradigm, only works as a
library of types (for segments, relations and substructures). In particular, even
when a segment is part of a typed substructure, it can be instantiated alone,
without it being necessary to instantiate the substructure as a whole.

- On the contrary, data structures are designed to have a far more prescriptive
role for the well-known and widely used annotation (meta)language XML [28§]
is. In XML, the explicitly defined data structures are called ‘schemas’. There
are several schema languages for XML, from DTDs to XSD and RELAX NG

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

1.2. CONSTRUCTING DSE: A GENERIC APPROACH 19

[126]. The XML model relies upon the notion of element, which correspond to
a typed ranges of an XML document that can be affected attribute values (or
metadata). XML schemas also rely upon the notion of element type, or type of
element: they contain the definition, not only types of elements, but of a family
of hierarchies of element types, that shall reflect the model of the edition the
editors have made — with the constraint that this model shall be hierarchical.
Schemas are then used to check if a given XML document has an appropriate
structure — it is said to be ‘valid’ if so —, which happens if and only if the set of
all the elements contained in the XML document form a hierarchy that matches
one of the hierarchies of element types defined by the schema.

The philosophy here is thus quite different from the one in Glozz, which results
in important practical differences. Compared to the ‘library of types’ proposed
by Glozz, in which one can pick the types she wants to instantiate in the data,
XML schemas describe the structure of documents as a whole: if one wants to
instantiate a given element type defined in the schema, then, she has to instanti-
ate a whole hierarchy of element types containing the element type. While Glozz
philosophy can be described as ‘pick whatever you want’, XML schemas are in
a ‘take all or leave all’ fashion.

This last remark means that schemas play a prescriptive role Glozz data structures
do not. If a schema is given, then the structure of the documents one may produce,
and that need to be validated by the schema, is limited. This aspect of the schemas
is fundamental. It is actually one of their essential reason of being: considering a
situation in which several co-acting people are supposed to write XML documents for a
common use, or for exchange purpose, then schemas, if they do limit the expressiveness
of the the co-actors, ensure that they write documents that share the same structure.
Moreover, in a DSE construction setting, schemas can be exploited as a means to help
the scholar to build the annotation: XML editors softwares like Oxygen, provide the
user with ‘content assist’ features, that offer suggestions for completion, according to
the context and to a predefined schema. This is indeed a very useful feature, because
it lightens the burden of text encoding and, as a consequence, helps commitment into
annotation by the experts.

1.2.2.2 Making the Structure Evolve

As key factors of genericity for the construction of DSE, we have identified the two
following points:

1. the data structure must be adaptative, that is, it must support a vast array of
editorial policies;

2. the data structure must be evolutive, that is, editors shall be able to amend it
during the course of the manufacturing of the edition, so as to meet the needs
of DSE projects that change, purposely or by accident, in their lifetime.

The first of the two requirements is nothing original. Indeed, all the aforementioned
propositions for data structuring meet it, to a variable extent. In particular, the letter
‘X’ in XML precisely means that XML is ‘extensible’, in the sense that it does not

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

20 CHAPTER 1. DIGITAL SCHOLARLY EDITION

rely upon a closed, predefined set of elements: any user can define her own. Yet, we
will see in Part II that the range of annotations allowed by XML is limited — and is,
most importantly, limiting, in practice.

The second requirement is more ambitious, and has raised far less attention. In the
following, we propose an analysis of how and why data structures may evolve, in a
DSE project. For that purpose, we ground our analysis on the history of the four DSE
projects associated to this work.

Evolving Data structures: an example . This first example is taken from the
early history of the ENCCRE project. The project aims at providing the first digi-
tal critical edition of the Encyclopédie of Diderot and D’Alembert. To achieve that
goal, two fundamental principles were adopted when the project was launched in 2012:
first, because of its critical nature, the edition had to reflect the state of knowledge
on the work; second, the edition had to rely upon a descriptive and prescriptive data
structure, accurate enough to enable to encode that knowledge.

Regarding the material sources considered for the edition, a copy-text approach was
chosen, based on a particular exemplary of the work, held by the Mazarine Library'®,
in Paris, which is from the first printed batch of the first Parisian edition.

The first task the editorial board assigned itself was then to design a data structure
that would reflect both the intrinsic characteristics of the document and enable to ex-
press the result of the studies that have been conducted on the text of the Encyclopédie.
Regarding the intrinsic characteristics of the document, since the Encyclopédie, roughly
speaking, takes the shape of a dictionary, when looking at a page, one may perceive a
certain (and, actually, quite fuzzy) structure. The volumes are divided into articles,
that start by a vedette, term or series of terms that announce the subject of the article,
etc. The data structure thus had to enable the identification of the Articles, Vedettes
and Volumes, for instance, in the transcription of the document.

Regarding the studies on the Encyclopédie, of particular interest are those that aim at
identifying the authors of the articles the Encyclopédie contains. Indeed, while some
articles are signed, by means of symbols whose signification is given in particular in
the Discours préliminaire [110], others are not signed. Sometimes, several contributors
provided the different parts an article is made of. Attributing studies thus aim at iden-
tifying the authors of the different passages of an article, both signed and unsigned.
The data structure thus had to enable the identification of Attributed passages, the
Signatures and the identified Collaborators.

The first model, or data structure for the articles?® that was intended by the edito-
rial board, that we may call Alpha, was the following: An Article contains a Vedette,
Signatures and possibly Attributed passages. An Attributed passage may relate to a
Signature. A Signature is related to one and only one Contributor. The data structure
is represented?! on Figure 1.3. Let us consider that this data structure is instantiated
on a digital corpus A restricted to the transcription of one article of the Encyclopédie,
“Jet d’ean”. According to that data structure, attribution was to be encoded as follows:

19Ttem 2° 3442, Bibliothéque Mazarine, Paris.

20, presented here with many omissions, for the sake of simplicity.

21 At that state of their work, the editors of the ENCCRE project had not chosen a particular
language for the text encoding. The data structure was represented in a UML-like graphical form.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

1.2. CONSTRUCTING DSE: A GENERIC APPROACH 21

is included in

Signature
Vedette :
Attribute:

Collaborator name

1 u several

relate

Data structure Alpha

Jet d'eau (Hydraulique.) est une lance ou lame d'eau qui s'éleve en
l'air par un seul ajutage qui en détermine la grosseur. Les jets croisés
en forme de berceaux, sont appellés jets dardans, & les droits N
perpendiculaires. I1 y a encore des gerbes, des bouillons. Consultez
ces articles a leur lettre. (1) ——
Attribute: "D'Argenville"

—

Digital corpus A

Figure 1.3: Representation of the data structure Alpha, instantiated on the digital
corpus A.

1. In case of signed passages, the symbolic Signature is identified in the document,
the attribute value of the Signature set to the collaborator name that corresponds
to the symbol, according to the Discours préliminaire; the Attributed passage
is delimited in the document; a link is created to relate the Signature to the
Attributed passage.

2. In case of unsigned passages, only the Attributed passage is identified, its at-
tribute value set to the collaborator name uncovered by the editor.

This strategy works well on the digital corpus A, made out of one Article, made of
one Attributed passage related to a Signature. It would also work well for unsigned
passages.

However, a closer scrutiny at the secondary literature on the Encyclopédie provided
a counter-example that is not handled by the data structure Alpha. Indeed, the ar-
ticle “Allées de jardin” is made out of two signed halves. The first, signed (K), for

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

22 CHAPTER 1. DIGITAL SCHOLARLY EDITION

D’Argenville, is indeed from the hand of D’Argenville — this situation is similar, in
all aspects, to the one found in the digital corpus A. Yet the second half, signed with
Diderot’s star (*), has been attributed to... D’Alembert by Fabrice Ferlin [71]. This
finding introduced the idea that some symbolic signatures printed in the Encyclopédie
may be fallacious. Hence the need for another data structure, Béta, represented on
Figure 1.4. That new data structure contains a new object, named Collaborator, and
a new kind of relation, that can bear a note written by the editor. According to that
structure, attribution works by relating the Atéributed passage to the Signature, for
signed passages, and the Signature to a Collaborator, by means of an annotated rela-
tion: the note attached to the relation will be the place where to justify the difference
between the symbolical signature on the document and the real author of the passage.

In this case, in order to take into account the secondary literature on the primary
corpus, the editorial board must have redefine the data structure initially chosen.
It is possible to be more accurate upon the nature of that “redefinition”. The shift from
Alpha to Béta did not imply a complete change of the data structure: most data types
(Article, Vedette, Attributed passage, Signature) remain. Qualitatively, the shift from
Alpha to Beta can be discomposed as the dropping of the attributes in Signature and
Attributed passage, by the insertion of a new type Collaborator, and by the definition
of a new kind of annotated relation. Thus, Béta does not simply replace Alpha: most
importantly, Béta amends, rectifies, Alpha.
Moreover, in this case, the corrected structure does not subsume the amended one.
The situation implied by this amendment is then the following:

Digital corpus: AUB
Data structures: Alpha 1 Béta

In this case, we then face a situation in which the digital corpus is divided into two
parts (AUB), each instantiating two incompatible data structures. The data structure
amendment thus generates conflict inside the structured data. Such conflicts shall
appear whenever the amended data structure does not subsume the previous one,
that is, when the nature of the amendment was not solely addition. We provide an
exploratory typology of data structures transformations that shall be useful, and that
imply conflicts, right below. But first, we give a few examples, taken from the real-life
of the other three editorial projects, that advocate for the need, in a tool dedicated
to the construction of DSE, to anticipate data structure evolution, i.e. to assist it, as
well as the subsequent data update.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

1.2. CONSTRUCTING DSE: A GENERIC APPROACH

is included in

Vedette

relate

Data structure Béta

ALLEEﬁ DE JARDIN Les allées d'un jardin sont comme les rues
une ville [...] Voyez la maniere de les dresser & de les sabler a
leurs articles. ([
* Il n'y a personne, qui étant placé, so
d'arbres plantée sur deux lignes droites parall

d'un long corridor [...]

Digital corpus B

23

Figure 1.4: Representation of the data structure Béta, instantiated on the digital

corpus B.

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

24 CHAPTER 1. DIGITAL SCHOLARLY EDITION

Examples of Data structure evolution

1. Manuscrits de Stendhal A very precious resource, attesting of the way data
structures do change along the construction process of a DSE, is the Wiki??
created to support the team work for the edition of Stendhal’s manuscripts. It
provides us with a view of the history of the DTD modifications from April
2007 to February 2011. The modifications are of several orders: addition of an
element type, deletion of an element type, addition of an attribute, change of
the list of fixed values for an attribute, specialization of an element.

The data update, consecutive to those modifications, have been done by hand
mainly, or at times, by means of ad-hoc scripts.

2. Desanti Archive While the encoding of the documents of the Desanti Archive
had already started, new material sources were communicated to the ENS Lyon,
where the archive is preserved. Those new elements were audiotapes of lectures
given by the author. As such, they were included in the primary corpus of the
project. Those resources have strong connexions with the text material of the
archive known so far. Yet transcribing those demanded the data structure to
evolve, so that the encoding of audio files, and of the correspondence between
the discourse and the textual content of some textual documents, be at hand.
By lack of editorial members, the data structure has not been adapted to achieve
the whole perspectives opened by those new materials yet, and remains a project.

3. Dosstiers Flaubert The data structure validating the transcriptions of the
Dossier enables the identification, in the pages, of fragments, material and logical
units of the Dossiers [64]. The data structure enables the editor to identify the
title, the identity of the person who copied the fragment and the bibliographical
references contained in the fragment. Recently, after the instantiation of that
data structure on most of the digital corpus, the editor found a counter example
of a fragment that possesses not only one, but several titles.

By lack of technical staff members, the data structure has not been adapted to
achieve the whole perspectives opened by those new materials yet, and remains
a project.

A typology of useful data structure amendments . Based on the general model
of a data structure as the formal document defining both the types, or characteristics
that can be attributed to parts of the digital corpus, resulting in objects generally
named as ‘elements’ [28], ‘range’ [175] or ‘segments’ [183], of the attributes describing
more finely the instances of those objects, and of the relationships those objects may
have, we finish this part on data structuring and data structure evolution by sketching
a small catalogue of the data structure amendments that, in the light of the above and
by anticipation, may be useful. For more clarity, we propose to illustrate the different
cases by toy examples based on the data structure of the Articles of the Encyclopédie
already discussed. The typology can be found in Table 1.1

22 Available at http://stendhal.msh-alpes.fr/index.php?n=XML.ToDo. Accessed on August 10th,
2017.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

1.2. CONSTRUCTING DSE: A GENERIC APPROACH

Kind of | Example Resulting data conflicts
amendment
Specialisation In the Encyclopédie, the ‘vedettes’, | It can be decided that after

or generalisa-
tion

that give the subject of the article they
are positioned at the start of, can be
of two kinds: ‘adresses’ when in capi-
tal letters, and ‘entrées’ when in small
capital letters. Hence the general type
Vedette, in the data structure, can be
specialised into two types (for which
Vedette is a generalisation): Adresse
and Entrée.

the specialisation of Vedettes,
only Adresses and Entrées can
be identified in the corpus —
no Vedettes anymore. In this
case, the data preceding the
amendment is outdated, since
they contain instances of the
Vedette type.

Deletion or ad-
dition

The identification of some characteris-
tics, or the presence of some attributes
for some elements, or some relation-
ships, once judged relevant, is not any
more. Or conversely, some characteris-
tics of the corpus lack in the data struc-
ture.

Deletion is not quite problem-
atic: the deleted types are
simply erased from the data.
Added types, on the contrary,
if they are compulsory, will be
missing in the data preceding
the amendment.

Substitution

Instead of modelling Adresses and En-
trées as special cases of Vedettes (see
line 1 in this Table), the editors may
prefer to assess that there are only
Adresses in the Encyclopédie, with a
special case for FEntrées. The type
Vedette in the initial data structure is
thus replaced by a type Adresse, with
a specialisation type Entrée.

In this example, all the in-
stances of the type Vedette
must be replaced either by
Adresse, or FEntrée, accord-

ingly.

Addition or
deletion or
substitution

of wvalues in
a fixed set
of values (for
attributes)

Same as above

Only substitution is problem-
atic. See line 3 above.

Table 1.1: Typology of the different kinds of data structure amendments, and the
resulting data conflicts.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

26 CHAPTER 1. DIGITAL SCHOLARLY EDITION

1.2.2.3 Intermediate Summary

In the light of real-life examples, it appears that editors are closely interacting with the
data structure: they define it, but also, at times, they need to redefine, or amend it.
Indeed, the data structure is a means by which editors have to translate the model of
the edition that they have designed while defining the editorial policy into a machine-
interpretable shape that will, in turn, guarantee that that model is respected by the
transcription: in other words, the data structure defines the language of the annota-
tion, that is, the expressive power that is in the hands of the editors. For that very
reason, it looks like a reasonable objective to attempt to give the editors control over
the data structure, since this would mean giving them the means to shape their own
expressivity, in the frame of the DSE.

Those conclusions on data structuring, that were drawn without considering the work-
ing context in which structuring happens, must now be confronted with the actual
working organisation we consider as the most generic, that is, collaboration.

1.2.3 Collaborative Data Structuring in DSE Projects

So far, we have considered data structuring as a disembodied activity. Data needed to
be encoded according to a data structure, that may change — and we studied to what
extent that structure shall change.

This approach of structuring would have been similar if we had considered the way
structuring is done in a single-editor setting. Indeed, an editor alone can define quite
easily the information she wants to encode; it thus makes sense to provide her imme-
diately with tools that enable her to tune her digital expressiveness, that is, to define
and amend the underlying data structure. Yet, as we have seen, the case of one editor
working alone is one among a vast diversity of working organisations, the most gen-
eral of which being represented by collaborative, distributed, multidisciplinary edition
groups. Then, does the above definition of data structuring apply to this most general
context? What does it mean then for a group of editors to decide on the expressiveness
they need? Is it relevant to leave the editors tamper with the data structure that gives
shape to their collective product, in an immediate, unsupervised way?

To answer those questions, we first provide a definition of a collaborative, distributed,
multidisciplinary editing team, before showing that the change of scale implies a new
model for the activity of the editors, and a finer definition for “evolutive data struc-
tures”.

1.2.3.1 “Collaborative, Multidisciplinary, Distributed Editorial Team’
A Working Configuration with Paradoxical Needs

Lexicographical precisions. We propose a definition of “Collaborative, multidis-
ciplinary, distributed editorial team” hereafter.

1. Collaborative team. There is no consensus upon what the expression “col-
laborative work” refers to. “Collaborative” does not appear as a very specific
term in the dictionaries. Freedictionary?® states that it means “to work to-

23thefreedictionary.com. Accessed on August 10th, 2017.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

1.2. CONSTRUCTING DSE: A GENERIC APPROACH 27

gether” and is synonym with “cooperative”. The same, general definition is given
in the Cambridge Dictionary, the Merriam-Webster and the Harper Collins?4.
While Computer Science literature also tends not to distinguish between the two
terms?®, some French resources seek to make a clear distinction between “collab-
oration” and “coopération”. According to [90], the most central point is that in
a cooperative setting, the coactors split the general task to achieve into several
smaller tasks, whose execution is then distributed among the team (following
the principle of the Division of work); in a collaborative setting, on the contrary,
while the general task might very well be divided into several smaller tasks, each
participant is left free to undergo the task she wants, in an unsupervised way. In
other words, in a collaborative setting, the coactors benefit from a community
of means to achieve the general task, which implies that all the members of the
team has access to the same tools and is involved in the same processes as the
others, up to her own will. Moreover, closely articulated to the new technologies
and the notion of openness, collaborative teams are supposed to be open, that
is, to change over time. The closer concept we have found in English seems to
be “Peer production” [2].

This definition, according to which collaboration means unsupervised work, rep-
resents the most radical vision of this working paradigm. It is not unrelated to
the notion ‘social edition’ proposed by [158] which advocates a complete dissolu-
tion of hierarchical structure among DSE teams, so that “every editorial activity,
without restriction, might be open to every contributor”, as summed up by Pe-
ter Robinson [148]. Robinson then expresses disbelief that such an organisation
might enable the team to reach a consensus upon the many decisions that have
to be taken regarding “the choice of who the edition should be aimed at; whether
it should present an edited text; if so, on what principles should that text be
edited; what conventions of spelling, punctuation and presentation should be
followed, and many more, right down to decisions on single characters.” And
indeed, in practice, the Devonshire Manuscript edition [56] that is made by the
tenants of the concept of social editions, is based upon a predefined editorial
policy and annotation guidelines that have been defined by a limited number of
researchers [1]; also, “following an attempt to vandalize the online edition [pub-
lished on the Wikibooks platform|, the Wikibooks administrators have enforced
a review policy on all contributions” [148]. Hence Peter Robinson’s judgement
that there is no (and cannot be no) real social edition. And indeed, not all col-
laborative DSE projects will be as radical as to work on an unsupervised basis,
in order to guarantee that the academic standards of accuracy and reliability be
satisfied (as it was eventually done for the Devonshire project, i.e. by making
sure that the contributions are reviewed by a member of a core, editorial team).
Yet, there is another way to consider the ‘failure’; or should we say, the prac-
tical limitations the implementation of the concept of social edition had to do

24dictionary.cambridge.org, merriam-webster.com, collinsdictionary.com. Accessed on August
10th, 2017.

25 An important research community, whose main topic is the study of activities commonly tagged
as collaborative (e.g. Wikipedia contribution, Crowdsourcing), published under the banner of CSCW,
for Computer Supported Cooperative Work.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

28 CHAPTER 1. DIGITAL SCHOLARLY EDITION

with: instead of considering them as evidence that social editions have failed, so
far, we might wonder how they could succeed. In particular, the disbelief Peter
Robinson expresses about the possibility that a collaborative team might reach
a consensus upon the editorial policy is very interesting. Our first question is:

If the hypothesis that the collaborative definition of an editorial policy is
impossible, then, in a cooperative DSE teams, provided that the editorial
policy will be defined by a small group of editors: how does this group
come to a consensus on the editorial policy?

Hence our second question:

Couldn’t the editorial policy of a collaborative (in the strong sense of the
term) DSE team be not imposed by a small, central editorial board, but
instead be the result of a collaborative activity?

Indeed, other experiences prove that unsupervision does not imply selfishness or
isolation. That collaborative work shall mean that the contributors shall work
alone, isolated one from the others, would be paradoxical (and sad, may I say)
indeed! Yet it has been established that unsupervised work is indeed prone to
self-organised group dynamism, and that collaborative platforms are indeed so-
cial places, where behavioural patterns comparable to those in the physical world
can be observed. As a first example, the way Wikipedia works is described as a
particular case of collaboration, namely, “unsupervised cooperation” [2]. As an-
other example, [189] provides a study of the levers thanks to which organisation
arises in contexts where formal organisation is non-existent, and more precisely
how the free contributors to an open, collaborative project, can be incentivized
to undergo tedious or unrewarding tasks, that are indispensable for the project.
Thus if group dynamism can happen in a collaborative setting, why would it
not happen when defining the editorial policy of a DSE, or at least, its data
structure?

Thus we rephrase the definition of a generic model for the data structure in a
DSE setting: the data structure must be adaptable, it must be evolving, and it
must be the result of a collaborative process.

Eventually, considering collaborative work in the context of the manufacture of
DSE also raises the question of how to handle the situation in which two editors,
or more, edit the same part of the corpus in a comparable way, in parallel. This
problem, which is part of the general problem of “collaborative authoring” [125],
has been solved in the field of software engineering, but is still under investigation
for documents, like a DSE, making use of natural language instead of procedural
language, where comparison between versions, and subsequent merging, have to
be redefined.

2. Multidisciplinary?®. The term is, at first sight, quite self-explanatory. Still,
interesting comments on multidisciplinary can be found in [29]. According to

26We will consider, in this collaborative context, that a multidisciplinary team aims at produc-
ing an interdisciplinary edition, that is, an edition in which the contributions from the different
communities are not separated.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

1.2. CONSTRUCTING DSE: A GENERIC APPROACH 29

the authors, a multidisciplinary team is a team in which the different members
come with different research problems, concepts and methods. Also, and very
importantly for us, the ‘epistemologic style’ of the different members will vary,
according to the discipline they come from, leading those members to express
information very differently. In a multidiciplinary setting like the ENCCRE
project, for instance, it is important to think that a researcher in literature may
not aim at the same annotation as a historian, or a historian of science, etc.
Moreover, those research problems, concepts, methods, style that set one disci-
pline apart from the others (and the members of that discipline apart from the
others), have been integrated by the representants of the discipline in a personal
way, which means that among a given discipline, of course, a non negligible di-
versity of view is to be expected.

The authors add an important remark, that will be at the heart of our upcom-
ing propositions. It is clear that a collaborative team is a social setting with a
common centre of interest, upon which diverging views coexist; but more im-
portantly, it is a setting in which different views shall be confronted. Like in
dialectics, it is precisely the confrontation of diverging views that shall drive the
activity of a multidisciplinary team, or work: “[Clommunication between individ-
uals endowed with different conceptual structures is not simply a precondition
for attaining interdisciplinary insights, but is an essential component” [29]. From
a practical point of view, this means that:

(a) interpersonal communication shall be a central activity in DSE construction
processes;

(b) generic DSE construction systems shall rely upon adequate communication
tools, in order to support multidisciplinary and interpersonal discussions;

(c) the fact that a collaborative team shall have diverging views, even on some-
thing as central and as important as the editorial policy shall not, and can
not, be tamed; it is essential to multidisciplinary work, in that it plays a
crucial, dialectic role.

3. Distributed. The term is opposed to “centralised” in our context, it means
that the editors are not necessarily located at the same place and thus cannot be
expected to work synchronously. First, this is another argument in favour of the
above conclusions, regarding the necessity to provide the editors with efficient
and adequate means of communication. Asynchronism is a problem that is worth
considering, from a technical point of view, based on the requirement for the data
structure to be evolving. Indeed, as detailed in the paragraph 1.2.2.2, an editor
aiming at amending the data structure may want to do so by deleting/adding
a new substructure, specializing/generalizing a given element, replacing a sub-
structure by another one. It is quite clear that those operations could be granted
to the editor only in the context of single-editor DSE, so that she might make
modifications directly on the data structure — and even in this context, this
naive approach of data structure evolution would certainly not be optimal. This
approach can simply not be considered in a distributed context in which, due to
the asynchronism, editors cannot give real-time feedback to another editor that
is amending the data structure...

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

30 CHAPTER 1. DIGITAL SCHOLARLY EDITION

Exploitation,
promotion and sustain of

diverging views

Impossibility for editors Data structure
to amend the data structure definition seen as a
immediately collaborative process

¢ e

Community Divergence implying
of tools and working diverging expressivity
processes for all needs

§-4

Consistency of the DSE

Figure 1.5: Synthetic view of the conclusions of Paragraph 1.2.3.1 highlighting the
contradictions between those conclusions.

1.2.3.2 Conclusion: Paradoxical Needs

In the light of the above definitions — and up to their correctness — it appears that a
collaborative, distributed and multidisciplinary editorial team has paradoxical needs.
Figure 1.5 shows that there is a tension between the individual issues (that are related
to the editors taken individually, taking part to the edition of the primary corpus) and
the collective issues. The whole diagram may be rephrased as follows: in order to take
full benefit from the multidisciplinary setting as defined by Bromme [29], the editors,
individually, should be able to tune the data structure as described in Paragraph 1.2.2,
in order to be able to annotate freely the corpus according to their personal and
disciplinary sensibility. However, the collective work the DSE represents has to exhibit
a certain consistency and correspond to a clear editorial policy (contradictions b, d,
e, f and g). Additionally, the manner for the editors to take part to the amendment
of the data structure, in order to tune the expressivity of the language of annotation
according to their needs, is unclear: it appears that the editors, individually, cannot
be given the means to amend the data structure dictatorially, as if they were working
alone, and yet the kinds of elementary modifications for the data structure that are
interesting for an editor working alone remain equally interesting for one editor working
inside of a team... (contradictions a, b and c).

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Chapter 2

Common Ground-inspired
Digital Scholarly Edition
Construction Process

The aim of this PhD work is to propose a generic approach towards the construction of
Digital Scholarly Editions (DSE). In the previous chapter, we proposed an exploration
of DSE theoretical models, as well as a definition of the most general DSE construction
context, which implied, in particular, collaborative team work, multimedia primary
corpus, etc. The idea beneath this approach is to uncover some challenges that many
DSE projects, even if they only correspond partly to the above model, may face.

The sheer definition of the most general DSE setting lead us to consider some charac-
teristics that are rarely put forward by operating DSE projects, maybe because they
are not desired characteristics, or characteristics that, in the current state of available
technologies, are seen as causing technical problems — but that still are characteristics
of real-life DSE projects.

In particular, while considering, from an abstract point of view, what characteristics
the data structure of a DSE project might have in the most general case, we hypo-
thetized that it might not be stable through time, but instead, evolving. It then turned
that, even though no DSE project, to the best of our knowledge, exhibits the fact it
is based upon a changing data structure, in practice, data structures do change, are
refined — not only in the preliminary stages of the construction of the DSE, before any
file has been encoded, but in the course of encoding itself. The reasons for that are
obvious: it is by trying to instantiate a data structure on the widest corpus that the
limitations of that structure are discovered. Moreover, data structures may change
not only because they were flawed: since DSE projects often tackle huge primary re-
sources!, they take years to fulfil. In years, the editorial team may change, bringing
new views and new expertise on the corpus, leading to an expansion of the initial
editorial policy — and thus, possibly, of the original data structure.

IThe Encyclopédie contains no less than 74.000 articles; the team working on Stendhal’s papers
have edited more than 2000 folios so far, etc.

31

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

32 CHAPTER 2. CG-INSPIRED DSE CONTRUCTION PROCESS

This generic approach highlighted several needs that may concern a wide amount of
projects (the need for making the data structure evolve, and for updating the data
consequently, in particular), also highlighted a network of paradoxes in the needs of
our hypothetical, generic DSE project team.

Those can be rephrased by the following prescriptions:

1. First, in order to guarantee a certain level of homogeneity and consistency of the
edition across a collaborative team, the use of guidelines, setting the fundamental
editorial principles for the DSE, but also of a prescriptive data structure a la
XML schema shall be advocated.

This data structure must be defined adequately with the editor’s needs and will,
to their field of knowledge, and, in order for them not to have to edit in a way
they do not fully approve, to their personal preferences.

2. Second, in the trail of the above, a certain degree of inconsistency shall be
allowed between the views, and the annotations, of the different editors, but in a
‘controlled way’ (giving a tight definition of this vague expression will certainly
be one of the outputs of this chapter).

3. Third, the DSE must still be a collective work, that is, more than the collection
of the work of its members.

Those prescriptions highlight the tension there is between the requirement of har-
mony and consistency, at the scale of the DSE, and the individual aspirations and
expressivity needs of the editors.

2.1 Current Approaches of the Problem

2.1.0.3 Altruistic vs. Egoistic Data Structures

Actually, we have not encountered any explicit mention of this problematic in the
literature on DSE. We can only identify two adverse conceptions of DSE construc-
tion, among the existing tools available to the editor, that somehow offer two different
practical means to deal with the problem. Those two approaches can be referred to
as ‘altruistic’ versus ‘egoistic’, following [102].

The altruistic approach is exemplified by the Text Encoding Initiative (TEI) [39].
TEI is an XML language based on a huge, cooperatively defined schema, that aims
at providing a commonly accepted description of most types of documents or edito-
rial objects. A vast and extremely well documented vocabulary of annotation is thus
proposed to the public? by means of a modular schema.

The editors of a TEI-based DSE project then choose among the modules the ones that
will be useful for their own project. In the end, TEI works like a more or less universal
library of experience-defined annotation structures, out of which each editorial team
may generate their own schema.

Noteworthily, apart from the universalising quality of the TEI, being an XML lan-
guage, it is extensible, in the sense that the TEI user can modify the TEI-based

2TEI is an open format.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

2.1. CURRENT APPROACHES OF THE PROBLEM 33

schema, either by tuning the existing elements taken from the TEI guidelines, or by
adding brand new elements. Yet, this practice, for which the TEI consortium does
provide documentation also®, is not encouraged, one of the assets of the TEI being
to provide an universal annotation language so that any TEI-based transcriptions be
interpretable, exchangeable, computable, without any additional documentation — this
aspect of TEI being called interoperability. Interoperability is a notion that advocates
for consistent annotations not only in the scope of a single DSE project, but across
projects. One of the strength of the TEI being to propose an “universal” annotation
language, amending that language means loosing the promise of the annotation be-
ing universally understandable. Still, in practice, as hinted by [154], tuning the TEI
orthodox schema is quite common across the TEI-based DSE projects, and Syd Bau-
man, coeditor of the P5 Guidelines, insists that instead of aiming at interoperability,
a reasonable goal, greatly facilitated by the use of the TEI as a basis for the edition,
is interchange, or the capacity to exchange files based on a clear, minimal documenta-
tion (inexistent in case of unmodified schemas, well structured else) and interpersonal
communication [16]. To a certain extent, this approach is meant as a reasonable bal-
ance between homogeneity and singularity, which is reminiscent of the problematic
we described earlier. Still, inside one DSE project, a consensus must be reached, in
the preliminary stages of the construction of the DSE (before the annotation started),
to pick among the modules offered by the TEI optionally tune the selected elements’
definition, and thus define the unique schema of the edition. Schemas are not designed
as dynamic also.

The egoistic approach, as defined in [102], consists in defining data structures that
aim “at expressing as exactly as possible the theoretical assumptions and research in-
terests of one or more scholars”, without any ambition of that structure being used by
any other project. A TEI project practising intense tuning of the TEI-derived schema
might fall in that category; XML-based projects that rely upon ad-hoc schemas, as
exemplified by the Stendhal project associated to this work, even more so. The previ-
ously cited Glozz platform may appear as the paragon of this approach. The model of
data structure the platform relies upon is proprietary. It is up to the editor to define
her own data structure. Actually, several data structures can be instantiated over the
same data: the system is thus open to co-existing, diverging and highly specialized
structures, possibly defined by different editors.

Still, this model has numerous weak points. First, there is no indication that data
structures are designed to be dynamic, that is, that they can be amended. Moreover,
the possibility to make several adverse data structures coexist does not imply that
Glozz supports the dialogue between diverging points of view: in particular, there
is no way to define relationships between the competing structures. In other words,
Glozz is a tool that supports plural projects, each pertaining to a particular view
on the data, but the paradigm it is based upon does not seem to fit one polyphonic
project, where the diversity of views are articulated together.

3See www.tei-c.org/Guidelines/Customization/. Accessed on August 11th, 2017.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

34 CHAPTER 2. CG-INSPIRED DSE CONTRUCTION PROCESS

2.1.0.4 Another Track to Follow: the Theory of Common Ground

As we can see, tools exist that enable to express a plural annotation of some resources,
as the echo of the plural views of the editors. Thus if a multidisciplinary team decided
on several data structures that represent the diversity of views of its members (e.g.
disciplinary structures), those structures could indeed coexist in the edition, from a
technical point of view — independent one from the others, structurally speaking: their
instantiation over the same data and the subsequent possibility to publish them jointly
would indeed give the illusion of a polyphonic edition.

Yet such a solution would rely on a very poor definition of multidisciplinary collabora-
tion, corresponding to the instantiation by group of a structure that has been defined
previously. It does not support data structure evolution either. Moreover, since by
definition collaborative teams are prone to change over time, then the new members
of the team would be reduced to instantiate a data structure they did not participate
to define, while it seems that, because it is so central and conditions the activity of
the editors once it is set, the data structure of a DSE project shall be the result of a
fully collaborative work.

It is that process of collaborative data structure definition, that requires data struc-
ture to be updatable by amendments, that we want to provide the basis for here, so
that the editor shall never be reduced to an operating role but shall be, instead, fully
author of an expressive and lively edition.

From this point of view, it appears that achieving this goal does not simply demand
technical propositions. First of all, it must rely upon a working process that takes into
account the way an editorial team may manage its internal contradictions, in order to
build a consistent product that does not refrain the expressivity of the editors.

As a starting point, we propose the reader a short study of the theory of Common
Ground (CG) [46]. Originally, CG is a model of communication, meant to explain how
collective tasks can be achieved despite the imperfect mutual understanding among
the coactors of the task and the impossibility to reach agreement upon a common
representation of the aim of the interactions.

Nota. The question of whether it is possible or not to reach an agreement upon the
mental representation of an object is of particular interest in the context of digital
scholarly editions. Indeed, representations can be defined as “a formal system [set of
symbols] for making explicit certain entities or types of information, together with a
specification of how the system does this [i.e. how to formally use those symbols for
making explicit that information|”, a way “to capture some aspect of reality by making
a description of it using a symbol [so well so that] can be useful” — which is very close
indeed of the notion of a model. The editorial policy and the data structure, in a
DSE setting, precisely work as a model of the edition. Can this model be understood
the same way by all the contributors to the edition? Will they, after the preliminary
discussions that found the DSE work, have the same representation of the project?
As established by [66], whatever the way we measure the representations of people in-
volved in the collective realisation of some object, they always differ, which indicates
that representations are never shared (in the sense that they are never identical) from
one person to the other. Thus: how to conciliate this impossibility to reach an agree-

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

2.1. CURRENT APPROACHES OF THE PROBLEM 35

ment upon a model and the requirement to instantiate collaboratively one common
model of the edition?

Clark’s CG proposition is in the form of a model of interactions, mainly applied to
conversation®. CG is based upon the assumption by each participant that collective
work demands coordination of two kinds: coordination of content and coordination of
process. Coordination of content refers to the fact collective activity demands, from
the co-actors, “a vast amount of shared information or common ground—that is, mu-
tual knowledge, mutual beliefs, and mutual assumptions”. Coordination of process
qualifies the synchronization the coactors necessarily have to make to fulfil any action,
but also the constant checking that the other still share a mutual understanding of
the situation with oneself- that is, updating the common ground. Only this way can
sequential actions build one upon the previous others.

This theoretical framework — the distinction between content and process — is not
always very clear, or very convincing, particularly when the task to accomplish is
communication. It mainly serves to introduce the two core ideas that make the com-
mon ground theory promising, from a practical point of view:

1. the common ground, set of mutual understanding, knowledge, beliefs and hy-
pothesis, is updated in the course of the collective activity;

2. collective action is not made possible by the sharing of a common ground, that
is, of representations of the work to fulfil, but on the assumption of it.

Those two ideas are developed further by Clark, in the shape of two notions: grounding
and grounding criterion.

Grounding. It is the process by means of which the common ground is updated.
Depending on the situation and the goal to fulfil, grounding can take different shapes;
yet it is supposed be part of any collective action. According to Clark, two factors
influence on the shape of the grounding process: the aim of the action and the me-
dia that supports its realisation. In any case, the grounding process is based upon
communication.

Grounding criterion. The theory of common ground does not rely on the hy-
pothesis of a perfect mutual understanding, or the sharing of mental representations,
from the coactors: instead, the mechanism that enables the collective action is the
fact “the contributor and his or her partner mutually believe that the partners have
understood what the contributor meant to a criterion sufficient for current purpose”.
From there on, Clark suggests that a conversation, for instance, is punctuated by
positive or negative evidence of grounding — evidence, that are awaited by those who,
at a certain moment, lead the interaction of emit information. Interactions take the
shape of an alternation of presentation phases, during which one actor emits an idea,
suggests a move, etc., and signs of either misunderstanding and refuse (negative ev-
idence of grounding) or agreement and acknowledgement (positive evidence). A sign

4So well so that [109] mentions it as a model of conversation, which is reductive since the model
is meant to be applicable to multimodal interactions [180]. Truthfully though, the illustrations Clark
provides are all based upon physical conversation.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

36 CHAPTER 2. CG-INSPIRED DSE CONTRUCTION PROCESS

clarification
OR

positive evidence:
presentation | | negative evidence GROUNDING

Figure 2.1: The theory of Common Ground relies upon two notions: grounding, pro-
cess by means of which a certain impression of mutual understanding is acquired by
the coactors; grounding criterion, referring to the evidence or clues of mutual under-
standing that punctuate the interaction.

of acknowledgement concludes a succeeding phase of grounding, that can be macro-
scopically summarized as follows:

(presentation) — (discussion) — (acceptance)

For more details, see Figure 2.1. Noteworthily, the pieces of ‘evidence’ of understand-
ing Clark mentions are in fact more clues than evidence (one type of such clues being
‘continued attention’, which can be quite ambiguous) — the ambiguity, or uncertainty
of those clues still does not prevent the action from being carried on.

This is a central aspect of the theory of the CG, to be compared to the conclusions
of [66]. In that paper, the author studies “shared representations”, spurred by the
fact “many are the research studies and the theories in strategic management that
rely upon the concept of shared values, beliefs, knowledge or more generally shared
representations®. In particular, many such studies tend to assert that “the condition
for an organization to be operating, its members must converge towards shared repre-
sentations® 7”. Still, it appears that this “convergence towards shared representations”
is, in the literature [66], at the very least, quite limp®, so well so that she comes to
question the polysemous term “to share””, to the point of doubting of its relevance.
To that respect, the author mentions two studies that come to similar conclusions as
Herbert H. Clark:

1. The first one [182] “calls into question the necessity of sharing representations to
work collectively|: it] suffices that the mutual interest of the actors be satisfied

5“Nombreuses sont les recherches et les théories en management stratégique qui reposent sur
le concept de partage de valeurs, de croyances, de connaissances, ou plus généralement partage de
représentations”, [66].

6“/Plour [qu’une| organisation puisse fonctionner, ses membres doivent converger vers des représen-
tations communes”, ibid.

7 Analogically, we have insisted on the importance (or not) of share representations in the frame
of a DSE project (see Nota p. 34): shall the editors in charge of editing a document converge towards
a shared representation of the document, of the text, and of the resulting digital annotated resources
and, to do so, make use of the same language of annotation, for the collaborative work to achieve?

8E.g., in [83], it is defined as “thinking, at least up to a certain degree, in a similar manner”.

9Thefreedictionary defines to share both as “to divide/to apportion” and “to hold or have jointly.
Accessed August 11th, 2017.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

2.1. CURRENT APPROACHES OF THE PROBLEM 37

so that these actors shall be able to mutually predict their behaviour for the
collective action to be possible”. A key element in this vision of collective work
is the necessity for the participants to be able to predict the behaviour of their
partners, which Clark’s coordination of process implies.

2. The second [63] proposes the notion of “equifinal representations™?” to refer
to individual, discordant representations that “imply the same actions'!. Once
again, this resonates with the fact that, in the CG theory, grounding is followed
by action, that is, coordinated action based on diverging views.

We insist here on the similarities between the CG theory and the studies cited by
[66], that explicitly state that collective work is not incompatible with diverging rep-
resentations of the task to be operated. This precision seems necessary, given CG is
frequently interpreted as a theory of converging representations (see Paragraph 2.2.1,
[118] and [53]).

Bromme [29], already cited for his insights into multidisciplinary work, offers a, en-
lightening analysis of how diverging views, not only coexist, but can be managed,
practically speaking, in a collective work.

[29] is sometimes sourced as providing a redefinition, complementary or alternative,
according to the adopted point of view, of the CG theory — not from a linguistic (as in
[46]) but cognitive point of view. Compared with Clark who defines the core concepts
of the CG theory abstractly, as means to describe any interaction, before illustrating
the theory in the context of casual physical dialogues (here casual means: implying no
previous knowledge of the discussed topic), Bromme starts by considering a concrete,
restricted situation, namely, multidisciplinary scholarly work. As indicated previously,
multidisciplinarity implies the coexistence, between the members of the coworking
team, of different!? personal and disciplinary perspectives!®. In this context, very
different from Clark’s casual conversations, actors do possess crucial knowledge about
the discussed object/task. Bromme does not ground his reflection upon the general
question “how can partners with imperfect mutual understanding perform consistent
interaction?”: instead, he decides “to make the difference between disciplinary (and
subdisciplinary) conceptual structures the principal point of departure” in his thinking.
Indeed, the interactions he focusses on are no longer the place for a sheer, pragmatic
agreements, for the sake of the task the partners are involved in, but “processes of
confrontation between different structures of knowledge, or perspectives”. If Bromme
does investigate how coactors, coming from various disciplines may try to do some
kind of grounding in the sense of Clark, e.g. by defining a share terminology (that is,
a terminology used by all the members of the team, even if the constituting items from
that terminology shine differently to the eyes of the individual members), he insists
on the fact that multidisciplinary work never, in grounding, reaches a standstill, for

10«Représentations équifinales”.

11¢/d]ont les implications sont les mémes en termes d’action”.

12Complementary, as is often highlighted to promote multidisciplinarity, but also competing, ad-
verse — which, in Bromme’s perspective, is not less valuable. See below.

13The notion is defined by Bromme as special kind of disciplinary ‘knowledge’: “‘Knowledge’ in this
context does not only comprise special methods or concepts, but also the epistemic style typical for
a discipline or a domain of research activities. [... This| kind of knowledge will be called perspective”.
Ibid. p. 119.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

38 CHAPTER 2. CG-INSPIRED DSE CONTRUCTION PROCESS

“a successful agreement on a common terminology in interdisciplinary communication
does not dissolve the difference in the disciplinary perspectives”. Even more so, find-
ing such a standstill is not something that shall even be wished: it is the dialectic
interaction between individuals possessing diverging (and not only complementary)
representations that makes multidisciplinary work valuable, and may let new perspec-
tives arise. In other words, agreement (in the sense of compromise, consensus, since
we know from [66] that it is impossible to align representations) is not a reasonable
goal: the driving force of interactions is indeed the divergence of views of the actors,
associated with active communication and grounding — so one may conclude that di-
vergence of views, and the expression of diverging views, must be encouraged.

The vision of constant inconstancy may look chaotic, but still, it taints the theory of
common ground with what seems to us intriguing and promising colors. The ground
of Common Ground is not a one in the geological sense, some solid basis that builds
by the accretion of all the previous agreements, working, from there on, as a shared
gold truth. It is a fugitive ground, that has limited lifespan, and that is in permanent
renegociation. The common ground is not a pyramidal, but a transitory construction.

2.2 Operating the Common Ground Theory

In the previous paragraph, it appears that the editing activity could not be considered
from a technical point of view, for instance by focussing solely on encoding formats and
editing interfaces: this would obliterate an important, but rarely considered challenge,
that is, how to make sure that all the editors, at each step of the DSE construction,
be its builders (architects and craftsmen), and not be limited to instantiate a data
structure that, in some cases, they did not even define. Given the generic context
we consider for DSE construction, by a collaborative, distributed, multidisciplinary
team, interaction between the editors had to be considered. In particular, it appeared
that to be up to the challenge cited above, even if the goal of the editing team is to
produce a consistent edition, the diversity of views on the way this edition should be
shall be expressed, encouraged and concretely valued. This paradox can be solved by
considering how the two scales, individual and collective, articulate one with the other.
The Common Ground theory provides the following insights into this articulation:

1. [46]: a team exhibiting diverging views upon the edition can work towards build-
ing the editorial policy, despite those divergences: uniformity of mental represen-
tations is not necessary, so long as the editors agree on a transitive, consensual
policy resulting from the grounding, that may not cover the ‘sum’ of the diverg-
ing views on the policy in detail...

2. [29]: ... as long as those diverging views are still expressible and can be con-
fronted during the grounding, seen as a perpetual process.

Before translating those two points in more practical terms for a DSE project, we in-
vestigate how the theory of Common Ground has been operated in Computer Science.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

2.2. OPERATING THE COMMON GROUND THEORY 39

2.2.1 The Common Ground Theory: Applications

Since the early 1990’s, the Common Ground theory was adopted (and adapted) in
Computer Science research, mainly in three research communities: Computer Sup-
ported Cooperative Work (CSCW), Computer Supported Collaborative Learning (CSCL)
et Computer—Human Interaction (CHI). Those three communities share some char-
acteristics, like being human-centered and investigating the use of digital tools by
individuals and teams'. They seek behaviour models and tools to assess the quality
of the interaction between an user, or a community of users, and the machine, in a
variety of tasks that often deal with ‘knowledge creation’ [62, 124, 87]. In the cor-
responding literature, Common Ground is, to the best of our knowledge, considered
from three points of view:

1. First, the Common Ground is considered as a first-order research object. Its
underlying premises are questioned and deepened. For instance, [118] tests the
assertion that grounding is hampered when the coactors are distributed'?; [22]
questions the general notion of “communication media richness” that Clark indi-
rectly defines'®. In the same tone, [179] studies the impact of video transmission
on grounding.

[109] is an example of a general call into question of the CG theory, both as a
model of communication and as a tool for computer scientists — we will detail
that below.

Other sources operate methods that aim at getting a better understanding of
the grounding phenomenon: for example, [54] experiments on the influence of
repetition over the “growth of common ground”, measured by the combination of
the quantity of information memorized during the interaction and the qualitative
feeling to have shared information.

2. Second: the CG theory is adopted as a means to decrypt interactions. Two non
exclusive variants can be isolated:

- the CG theory is used as a means to analyse the nature and the sequentiality
of the interactions that are enabled by a given media. [114] proposes a
typology based on the notion of grounding for feedback interactions in a
learning interface. [131] employs CG in order to explain the content and
the aim of interactions that are commonly classified as “off-topic” — and are
therefore little studied — in online learning interfaces;

- the CG theory is operated as a means to evaluate interactions in a communi-
cation interface. Convertino et al. [52] define a metric for common ground,

14Group cognition, which the Common Ground theory is part of — especially as defined by Bromme
[29] —, because it enlightens both the needs and practice of communities of users, have raised particular
interest [165].

15Indeed, one aspect of the study of [46] concerns the correlation of grounding with the media used
for the interaction. As a result, Clarks provides a list of eight “constraints”, so that the lack of one
of those constraints demands the developments of particular grounding techniques, whose cost can
be estimated (hence the notion of cost of grounding proposed by Clark. Physical presence is one of
them. See ibid. p. 142.)

161t can be defined by the list of constraints verified by those media — see note 15.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

40 CHAPTER 2. CG-INSPIRED DSE CONTRUCTION PROCESS

and then [53] make use of that metric to evaluate a group decision-assisting
interface.

3. Third, the CG theory is called for to predict the interactions that may lead to
the fulfilment of a communication-based task, or to limit those interactions in
order to enhance their efficiency, in terms of grounding. One example of that can
be found in [104], who makes the assumption it is possible to force interactions
to follow the schema represented on Figure 2.1 page 36: the users are asked to
declare, explicitly, whether they have (or think they have) understood a given
proposition that was presented in the course of the interaction, then to give their
position towards that proposition, before any interaction can go any further.

Those diverse interpretations and operations of the CG theory do raise some crit-
icism. In particular, the last use of the CG as a predictive and coercive tool is or-
thogonal with Clark’s views, who explicitly states that the perspective he defends
is incompatible with predictive models of dialogue, according to the review by M.
A. Walker [180] of his work, Using Language [45]. Yet, according to Walker, Clark’s
knowledge of dialogue planning reflects the state-of-the-art of 1971; significant progress
having been made since, Clark’s opposition to such interpretations of his theories shall
be nuanced.

Stronger criticism of Clark’s theory itself, and of the use of that theory in the field of
CSCW can be found in [109]. His conclusions are the following:

1. About the CG theory: as a conversation model, it does not provide a description
of situations where comprehension is hard (multiparty interactions, with brief
and overlapping participations).

2. About the application of the CG theory in CSCW literature: Koschmann [109]
warns that “Serious problems arise when one begins to treat common ground as if
it were a singularity, a possession of the participants, a place, an arrived at state,
in short, a noun instead of a verb. [...] It is not a thing that can be measured,
either directly or indirectly”. Hence the question whether it is relevant to try to
measure the common ground. Instead, the common ground can be understood
and used as a theoretical tool that can guide the conception of interfaces (for
instance) — and the evaluation of those interfaces shall then not consist in an
evaluation of how the concepts that come from the CG theory translate into the
interface, but by means of traditional usability evaluation methods.

Let us note that Koschmann’s critical paper is not beyond criticism either. First, the
author focusses on Clark’s publications ([47] and [46]) to question the theory of Com-
mon Ground — which indeed are the most cited in the CSCW literature — while at the
time the articles of Bromme were also cited (e.g. [92]). And Bromme provides enrich-
ing clarifications to Clark’s theory. To illustrate this point, let us take an example.
In particular, Koschmann mentions, as a weak point of the CG theory, that it does
not apply to interactions in the course of which the environment changes, for “[t|his
changing environment is at odds with Clark’s contribution theory in that the theory
would seem to require that contributions to common ground aggregate over time and
remain relevant”. Indeed, one can find, in the introduction of [46], the notions of

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

2.2. OPERATING THE COMMON GROUND THEORY 41

“update” and “accumulation”, which can be interpreted in the direction proposed by
Koschmann; still, one can also consider that, Clark’s theory precisely aiming at enlight-
ening interaction in which the enunciation is ambiguous (and therefore necessitating,
to be understood, to refer to the context of the enunciation and to the “accumulated”
common ground), a proposition cannot be detached from its context. Thus, by de-
possessing propositions from their context (so as to make them permanently relevant),
and by turning the common ground into a container of such context-free propositions,
Koschmann simplifies the CG theory to the extreme and goes against Clark’s views.
The problem is evacuated when one considers Brommes’s reformulation of the CG,
since it is thus clearly exposed as an abstract, transitory structure, endlessly ques-
tioned and redefined, at the crossroads between diverging points of view.

Similarly, Koschmann intends to fault the CG theory by demonstrating that, at the
end of a complex interaction requiring learning by practice (in the context of surgery),
the actors have not memorized properly what should have been learned. Yet Clark’s
theory is not a learning, but an interaction theory; moreover, the fact that the complex
interaction (surgery training) should have happened even though the comprehension
of the task by the different coactors is obviously imperfect precisely speaks in favour
of a theory that institutes the impression of understanding, to a degree sufficient for
the interaction, as the driving force of the interaction.

We can even go as far as saying that, by founding his argumentation on an incomplete
definition of the common ground, Koschmann is less critical about the theory itself
than about a personal perception of that theory. Actually, the CG theory often suffers
from excessive simplification, or even contradictions. The source of this phenomenon
can be found in the articles of Clark themselves: in most publications about the CG,
Clark starts by providing a simplistic definition of the concept as “[Mutual] knowl-
edge, mutual beliefs, mutual assumptions”, following [166] as quoted in [100], and
then makes his proposition more dense all along the article, by introducing corollary
concepts (grounding, grounding criterion, etc.). Yet that simplistic, intitial definition
is the one that can generally be found in the computer science literature that make
use of the CG, more or less adapted!” — which tends the CG to be generally regarded
as theorizing the convergence of adverse representations.

Still, let us mention some articles that propose a more nuanced or critical definitions
of the CG: [52] proposes an alternative of the common ground, meant to translate
a conversation model fit for Computer Mediated Communication into a tool usable
in CSCW; [104] elaborates a similar definition out of both Clark’s and Brommes’s
contributions, as “representations [...] similar enough to be considered variants of the
same representation. [...] People communicate on the basis of imperfect assumptions
about the others’ perspectives”. Yet the application of such definitions is not simple
and their asperities are often rounded off by this exercise. For instance, the last paper
cited above subsequently proposes a functional definition of the common ground: an
interface compatible with grounding shall support “construction of shared problem
representation” [104].

17Thus the following definitions can be found, most often without any attempt at detailing it any
further: “mutual knowledge, beliefs, and assumptions of the participants in a conversation” [118] ;
“mutual understandings and beliefs that arise from similar background and experiences” [179]; “state
of mutual undestanding” [22] ; “mutual knowledge, beliefs, and protocols that partners share”, [54]...

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

42 CHAPTER 2. CG-INSPIRED DSE CONTRUCTION PROCESS

2.2.2 CG-inspired collaborative data structuring in a DSE set-
ting

In the light of the above state of the art on the CG theory and its applications,
we hereafter propose a DSE construction process inspired by the philosophy and the
conclusions of the CG. We give a short summary of the process, before dwelling into
more details.

2.2.2.1 A Double Interpretation of the Common Ground

Our approach is mainly user-centered.

Data structuring for DSE consists in the definition of a data structure and in its
instantiation on the digital corpus. Based on the history of the four DSE projects
associated to this PhD work, data structures may change, or more precisely may
evolve during the course of the DSE construction; we have also proposed several basic
operations by which one may want to amend a data structure, regardless of the working
organisation chosen for the project. By “expressivity needs”, we refer to the motives
for making the data structure evolve. Indeed, in our view, the reason why an editor
shall want, at time ¢ + 1, to make the data structure evolve, is either in order to be
able to express information that she cannot express at time ¢, or to refine the way
information can be added onto the corpus as defined by the data structure at time ¢.
Then, by considering the editor team as a group, oriented towards the realisation of a
collective task, and the editor as an individual involved in that team, we came to the
following question: given the editors, in particular in a multidisciplinary setting, will
perceive the edition project differently, and thus have diverging expressivity needs:

Can the editors, involved in a collective task of data structuring, be given,
indwidually, the possibility to amend the data structure accordingly with their
personal expressivity needs, while guaranteeing a certain level of consistency
for the project as a whole?

To answer that question, we take inspiration from the CG theory as defined earlier,
based on the contributions of Clark [46] and Bromme [29].

As an interaction theory, CG partly answers the above question. Clark’s the-
ory explains that sharing representations is not necessary for the fulfilment of the
collective task: imperfect agreement, relying on clues given along the interaction, suf-
fices. In our particular context, we face a very concrete instance of representation:
the data structure itself, which is a model of the edition in McCarthy’s double sense
(model for/model of) [119]. The CG may thus indicate that the perfect agreement,
understanding, and mastery of the whole language of annotation, defined by the data
structure, by all the editors, may not be considered necessary — so long as they give
clues that they understand and master it enough, i.e. to a degree sufficient for their
contribution to the edition. The above may be interpreted two ways: (a) the data
structure could be an aggregation of specialized substructures, mastered only by a
few editors — those who are at ease with them use them, those who are not, do not —
in that case, the data structure will match no individual representation and needs by
excess (but the specialized parts of the structure are meant to match some individuals’

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

2.2. OPERATING THE COMMON GROUND THEORY 43

representation and needs); (b) the data structure could be limited to a minimal vo-
cabulary and grammar covering only general concepts, upon which the editorial team
reached a consensus, e.g. for the needs of a first and superficial annotation of the cor-
pus, and for which all the editors have shown a feeling of understanding and mastery
(they are all above to instantiate that structure) — in that case, the data structure will
match individual representation and needs by default, but will support a consistent,
collective work.

The point (a) above is to be related to the idea advocated by Bromme [29], that the
diversity of representations is irreducible in multidisciplinary settings — of which it is,
even, con-substantial. Moreover, Bromme suggests that the “emergence of new per-
spectives” cannot be obtained but by the permanent confrontation of diverging views:
for instance, the coexistence of specialized substructures as sketched in (a) shall not be
understood as independent, parallel structures, whose divergence is highlighted, dis-
cussed, possibly leading to either their rejection (if their existence did note convince)
or general adoption (as described in (b)).

From there on, we can imagine a data structuring process (c¢) in which the editors,
individually, shall be given the means to define “personal”, experimental data struc-
tures fit to their needs by amending the existing data structure; in which they would
be able to instantiate, in a sandbox fashion, those amended data structures; to bring
them to the discussion with the other editors, with the perspective of the amendments
to be widely adopted by a wider editorial group, or even by the team as a whole. This
process can be compared to Figure 2.1 page 36.

Metaphorically, we propose to make the process described in (c) rest upon a bi-
partite data structure: we will refer to the Common Ground Structure (CGS) for the
part that corresponds to the point (b), that is, a data structure that, at a certain
moment, has been considered acceptable by all the editors, and Structural Amend-
ments (SA), for the structural refinements proposed by the single editors, and whose
acceptance by the editorial team shall impact the CGS, which shall then evolve.

In the following, we provide an illustration of how a DSE team shall operate with such
a structure. We then investigate the technical problems this approach comes with.

2.2.2.2 CG-inspired Data Structuring: Illustration

For the sake of the illustration, we propose the following, simplistic structuring case:
an editorial team made out of three editors (A, B, C) has defined an initial data struc-
ture, which assesses that in an Article, there are Vedettes, Signatures and Attributed
Passages, which can be related to a Signature. This structure is, at the starting mo-
ment of this scenario, instantiated by all the editors: it is the initial CGS. The scenario
is illustrated hereafter.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

44 CHAPTER 2. CG-INSPIRED DSE CONTRUCTION PROCESS

Intant | Action Tlustration

Initially, the three edi-
tors A, B anc C define | ©

a common data struc- @QD
ture they instantiate e

on the corpus. That 5
structure is the ini-

tial Common Ground

Structure CGSy.

Passage

i <>
Vedette Signature e

The editor A considers
relevant to distinguish
between the vedettes
in capital letters (the
“adresses”) and those
in small capital letters
(the “entrées”). Those
two notions are spe-
cial cases of the notion
of Vedette. The edi-
tor A thus defines two | ©
new data types FEntrée
and Adresse that both
specialise Vedette, as a
structural amendment veserte [sinanre <> 72580
SAx1. This amend-

ment being made by
one single editor, it
does mnot belong to
the CGS. The editor
A can still instantiate
the amended structure
on a personal, sandbox
copy of the corpus.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

2.2. OPERATING THE COMMON GROUND THEORY

The editor A decides
to submit SAa; to
the other editors.
They discuss the types
introduced by A, but

also methodological ®
aspects (how to iden- | - - . "
tify and distinguish ” e !

between “adresses”
and “entrées”?), retro-
compatibility of the \

amended structure vedete | signature <> FE
with the data already
instantiating ~ C'G.Sy,
based on the examples
she can provide. Time
is given for further
testing.

Article
cGs,

The editor A further
decides to redefine
the data structure
enabling the attribu-
tion of the articles. ® @(’9
S he claims that a “ N =
type representing a f :
collaborator is needed.
This idea results in y
reshaping the struc- viere | [l P
tural amendment into

SA4 2, that subsumes,

in this particular case,
SAan.

©

The editor A submits
SA4 2 to the others.

‘ Adresse Entrée. ‘ Collaborateur !
SA
h2

/"
o

Article

®

/
%%
/

\,

. Passage
<>
Vedette Signature P

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

46 CHAPTER 2. CG-INSPIRED DSE CONTRUCTION PROCESS

At the end of the inter-
action between the ed-
itors, the amendment
is partially adopted. ®-.,
The type Collaborateur © ” o Y G SAus
together with the re- o

lation with Signature i

are integrated into the
CGS, which becomes e mm.
CGSy. SA4 o changes TS
also; in this particular ollberster
case, it is brought back
to its previous state

SAu..

Passage
attribué

The editor B is not
convinced by the
distinction between

Adresses as proposed ©®
A,

Adresse

by A and FEntrées.
This amendment does
not, at least so far, in-
tegrate the CGS. The
editor C, on his side, e[Sl T
decides to experiment S

with the type Adresse e
only. To do so, she
creates SAc,1 based

on SA41

Nota. The temporality along which the CGS and the SA evolve is not the same: SA
may evolve without CGS changing. The evolution patterns are not linear, and can go
backwards, either because a SA is partly accepted (see t = t5) or because the editors
decide so, in particular after having discussed with the other editors.

As a summary, the editing process we propose makes dynamic structuring possible,
based on a central, core structure that can be instantiated by all the editors (the CGS),
but also enabling the definition, testing, and proposition of alternative structures
(relying upon SA), that are debated and shall possibly make the CGS evolve. In this
sense, not only the structured data, but also the data structure itself, shall result from
a collaborative work — which, to the best of our knowledge, is a novel proposition.
This process, however, raises quite a few challenges and stakes, that we describe here.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

2.3. CONCLUSION, STAKES AND CHALLENGES 47

2.3 Conclusion, Stakes and Challenges

In this chapter, we studied DSE construction from an abstract, and yet experience-
grounded, generic point of view. We aimed at considering the most general configura-
tions for DSE construction, in terms of edited corpus, editorial policy, editorial team,
etc. This approach was meant to identify general problems DSE teams face, that may
not be mentioned very often in the literature. We came to consider two such problems:

1. DSE projects rely, most of the time, upon predefined data structures, or schemas.
Schemas condition the information the edition will eventually contain. As such,
it seems quite important that all the editors of a given project should have
participated in the definition of the data structure, since it sets the boundaries
of the information they will then be able to capture in the structured data.
Yet, even in the context of social editing experiments, data structures are not
collaboratively defined: they are set as a preliminary step, often by a limited
number of editors, who subsequently write guidelines for the other editors that
annotate the digital representation of the primary accordingly, in a second step.

2. The above-mentioned two-steps process raises another question. Based on the
history of four DSE projects associated with this work, we identified that data
structures, far from being intangible, once-and-for-all objects, need to evolve
during the history of the DSE. Indeed, data structures are models of the edition,
of the primary corpus, and models often change when they are confronted with
the reality they represent in the long term. And yet, data structure formalisms
do not come with any assistance for data structure upgrade which is then prob-
lematic in the context of DSE in particular, since upgrading the data structure
implies, quite often, that the structured data representing the edition are out-
dated and needs appropriate update also. When data structures are effectively
updated, in DSE projects, and adapted to the better knowledge editors have got
of the corpus, the structured data update is done either manually or thanks to
ad-hoc scripts, if relevant, which demands either humongous amount of time or
the availability of technical staff members for writing those scripts. In case none
is at hand, the project has to go with an misfit data structure — which seems to
be a quite common situation.

The challenge resulting from those two elements was then to define a means to enable
data structure definition, and evolution, in a collaborative setting. It appeared that
a data structure formalism up to this challenge should be able to reflect a consistent
editorial policy, and at the same time meet the expressivity needs of the editors as
individuals.

To solve this paradox, we developed a new interpretation of the concept of Common
Ground. In our context, a data structure can be regarded as a representation of the
edition to be made. Literature on the Common Ground indicates that no unique
representation of the edition will arise; on the contrary, new perspectives may develop
from the confrontation of diverse representations. However, editors may agree on
an ephemeral feeling of mutual understanding, based on the use of a basic, common
annotation language, or upon the confidence that one of them can lead an expert
editorial project, in the frame of the common project.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

48 CHAPTER 2. CG-INSPIRED DSE CONTRUCTION PROCESS

We can rephrase this more concretely. An editorial data structure can be com-
posite. It can be made of an evolutionary core structure and temporary peripheral
structures. The core structure is made of types and links upon which the whole team
of editors agreed at an instant t. This agreement could be based upon the fact that
they share the impression that they are able to implement it. Peripheral structures
are proposed by any editor, and are defined as modifications of the core structure.

Such peripheral structures are not meant to coexist independently. A typical sce-
nario follows.

1. An editor instantiates S, which is the core structure.

2. While annotating, she notices that one of the types in S is not adequate for the
content to be annotated. She transforms S into a peripheral structure S’, in
which she defines a new pattern of types in place of the former one.

3. She argues in favour of S” before the other editors, through the edition tool, by
showing use-cases and instance samples — the other editors reply.

4. S’ is either accepted or rejected by the community of the editors. In case of
acceptance, S’ becomes the new core structure.

This scenario raises technical and practical challenges. Obviously, such an intense
communication-based process demands efficient means of communication, even more
so given the object that will be discussed will be complex: data structures, editorial
policy, annotation patterns. Also, since schemas are highly formal objects, it may be
relevant to assist their definition by means of user-friendly tools, that alleviate the
difficulty and make the definition intuitive. Those are important aspects, that shall
require serious research in interfacing, will not be treated in this work.

Instead, we will focus on more upstream challenges, that condition the feasibility
of the whole process. Those challenges are twofold.

First, since one of the purposes of the above process based on CG is to enable the
evolution of the data structure, thus, it seems relevant to go for highly expressive data
and schema models, or even multistructured data models. Indeed, it is tautological
to say that if evolving data structures are relevant, it is due to the fact one cannot
pre-empt the data structure that will be needed in the future. Thus, to make it simple,
proposing a mechanism to make data structures evolve for XML, for instance, which
is more or less limited to the expression of hierarchical, single layer annotation, may
not be relevant: who knows if the hierarchy will always be an appropriate shape in
the future of a DSE project? It has been hinted that in a generic approach, we could
not obliterate projects in which several annotation paradigms were to be instantiated
at once, on the same data — which is another argument in favour of highly expressive
data models, like the ones that belong to the multistructured data family [141].

Second, and more importantly, as mentioned before, changing the data structure of a
DSE project will, most often, lead to data conflicts. Consider the situation in which
there is a schema S and Ig the set of documents instantiating that structure. If the
data structure is amended so that the new data structure S’ does not subsume'® S,

18Schema subsumption being defined, in general, by the inclusion of the instances of the subsumed
schema in the set of instances of the subsuming schema.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

2.3. CONCLUSION, STAKES AND CHALLENGES 49

then, possibly, Is will not be validated by the new schema. In other words, provid-
ing tools for amending schemas cannot go without providing tools for updating the
instances.

In our case, as indicated above, we do not want the schema to evolve, step by step, in a
linear way. What makes the DSE constructing process introduced in Paragraph 2.2.2
adapted to collaborative work is the fact schema evolution is not centralised, but ini-
tiated upon the initiative of the individual editors, by the definition of alternative
structures (amended versions of the CGS), and then evaluated by the other editors.
Thus, in our proposition, the amended structure does not replace the other, but, in
the beginning, coexists with it, and only after having been discussed will it be decided
whether the amendment is accepted or not. If the amended structure is accepted,
then we must be able to translate the data that was conform to the old CGS into
data compatible with the new CGS, as much as possible. Hence the need to be able
to derive, from the transformation of a schema into the next one, a transformation of
the old structured data into a shape compatible with the new structure.
Importantly, not only do the structures coexist during the interaction, but also in-
stances of the competing structures as well: the editor who proposed the amendment
may instantiate her own structure, be it to undergo a personal investigation on the
corpus or to illustrate the validity of her proposition. If her data structure is to be
abandoned, it would be great if her data could be translated back into a shape com-
patible with the CGS, so that all of her work shall not be lost.

In other terms, from a situation in which there is a CGS schema S and its instances Ig,
it means that a bidirectional transformation F'f/Bf shall be derived from the schema
transformation SA defined by an editor, so that the image of Is by Bf is structured
data I/, validated by S’, and so that Bf/F f shall work as a synchronization between
Is and Is/ (any information added on one side is translated, if possible, on the other

side):
s 5 g
— — and (9.5 =95") < g.Is.
Is RIS 5

Meeting those challenges would open promising perspectives. Editors would be
given ways to fine-tune the existing core structure, or to propose new peripheral struc-
tures to enrich the initial editorial project and to experiment on those structures. More
fundamentally, if we had ways to translate structured data from one structure to an-
other by the means of a bidirectional transformation, then even if the editors were
working on peripheral projects, data from those side projects would be converted into
a shape compatible with the core structure; thus the collective edition, validated by
the core structure, would keep progressing. Eventually, if a peripheral structure was
accepted and the core structure updated, editors would be given the possibility to
update the data instantiating the obsolete core structure; otherwise, the work done by
the proposing editor would still be preserved, by being translated into another shape,
respectful of the collective editorial policy.

As a conclusive remark, it must also be mentioned here that this PhD work, that is
focussed on the collaborative definition of the data structure underlying a DSE, does

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

50 CHAPTER 2. CG-INSPIRED DSE CONTRUCTION PROCESS

not frontally consider the yet crucial problem of “collaborative authoring” [125], that
is, the technical problem concerned with how several editors may instantiate, in paral-
lel, the same data structure, and how to make it possible to end up with one consistent
annotation. Indeed, collaboration authoring, that has been well studied in the field of
software engineering, raises many additional difficulties in the domain of literary stud-
ies and natural language documents [125]. While software engineers have developed
very strong methodology and tools for permitting team-based software development,
enabling developers to “share documents, divide them into complicated subdocuments,
edit them in parallel, merge editing changes semi-automatically, and recombine the
subdocuments into a cohesive and correct whole”, tools enabling to track change in a
structured document making use of natural language and in the end somehow ‘merge’
those change are being investigated (e.g. [133, 176]). The collaborative authoring
problem, indeed, is made difficult by many dimensions, one being the fact that the
“correctness” of any merging of natural language information sources is a tough notion
to define, and even more so, to check.

This problem is, of course, one of the problems that shall have to be taken into account
for the implementation of any collaborative edition platform, in practice. It shall even
be taken into particular account in a situation where two editors may not only instan-
tiate the same data structure, in parallel, on the same passage of the edited work, but
may even annotate the same passage according to different structures that shall trans-
late one into the other: then, on each side, shall the manual annotation done by an
editor be compared, or merged, with the annotation that has been semi-automatically
translated from the manual annotation done on the other side, and conversely...

In the frame of this PhD work, we have chosen to leave this problem apart, by consid-
ering a very simple temporal model for user interaction, that prevents from generating
such conflicts (see Paragraph 10.2 page 254). In the following, we will consider that
only one editor can be active at a time. As one can guess, this simplifies greatly the
collaborative authoring problem. Yet, it leaves many other problems open:

1. First, we will consider the problem of data expressivity. In a setting in which we
consider that the editorial team needs to be able to shift from a data structure
to another, it is natural to aim at providing editors with the means to express
any kind of annotation — which means, to provide them with very expressive
annotation models — and to be able to validate it. Part II gives a detailed
presentation of the annotation model we propose: extended Annotation Graphs
(eAG) and Schemas (SeAG). Extended Annotation Graphs is a stand-off markup
model, which means that an annotation takes the shape of a graph (made out
of nodes and edges). While, compared to classic inline (tag-based) annotation
models, graphs are not easy to express (a dedicated interface shall be required
to draw an annotation graph directly, for instance), this graph formalism offers
good calculation properties and is compatible with a novel validation mechanism,
that is based upon the notion of simulation [38], and that permits validation to
be checked very efficiently, even for very dense and complex annotations.

2. Second, we will focus on how to express extended Annotation Graphs easily,
without needing a dedicated interface for that purpose. Part III introduces Lin-
ear extended Annotation Graphs (LeAG), that is a classic, inline markup syntax,

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

2.3. CONCLUSION, STAKES AND CHALLENGES 51

that enables to define eAG annotations on textual resources. We also define an

efficient parser for translating a LeAG into an eAG, and hence, benefiting from
SeAG validation.

3. Eventually, in Part IV, we will define how schemas shall be amended, and how
the amendment of a schema can be interpreted as a bidirectional transformation
between the instances of the original and the modified schema.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Part 11

A Schema-aware,
Multistructured Data Model

Tuned for Scholarly Annotation:
the eAG/SeAG Model

93

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Chapter 3

Introduction

3.1 Preliminary: Notation

This work makes use of the notion of directed, labelled graph. The most useful nota-
tions for handling such graphs are given below.

Constitutive items. A directed, labelled graph is a tuple G = (V, E), where V is
the set of nodes and E the set of edges of G. Be L a set of labels. Then there is a
function label : E —— | € £ thanks to which a label from £ is associated to the edges
of G.

Definition 3.1.1: Summit, end and node degrees. Be G = (V, E) an oriented
labelled graph. Be e € E. The edge is oriented, which means that it connects a unique
node called its summit to a unique node called its end, respectively denoted sut(e)
and end(e).

Be v € V. The in-degree of a v, denoted in(v), is the number of edges it is the end
of. The out-degree of a v, denoted out(v), is the number of edges it is the summit
of. The degree of a v, denoted deg(v), is the sum of the in- and out- degrees.

Definition 3.1.2: Roots and leaves of a graph. Be G = (V, E) an oriented
labelled graph. A node v € V is a root of G iff in(v) = 0. A node v € V is a leaf of
G iff out(v) = 0.

The set of the roots and leaves of a graph G will be denoted root(G) and leaf(G)
respectively hereinafter.

Definition 3.1.3: Rooted and single-leafed graphs. Be G an oriented labelled
graph. G is rooted iff root(G) is a singleton. G is single-leafed iff leaf(G) is a
singleton.

95

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

56 CHAPTER 3. INTRODUCTION

Notation: Linear graph. The notation v;|e;...|Juxy will be used to denote a linear
graph made out of the nodes {v;};ci;n] and the edges {v;}icji;ny—1, N > 1, so that

for all 4, v; = sut(e;) and v; 1 = end(e;).

Notation: Subgraph of a graph. Be a graph G = (V,E). The graph G;, =
(Vin, Ein) is a subgraph of G it V;,, CV A E;, C E. The fact G;, is a subgraph of
G will be denoted G, C G.

The expression G, Cj! G means that the graph G, is rooted, single-leafed, is included
in G, and possesses v; € V as a root and v € V as a leaf.

Let us now come to the heart of our purpose, and introduce step by step the eAG
data model. We start by a short description of Annotation graphs, which eAG is
based upon, then propose some amendments to this original model, and then give two
examples of the expressive power of eAGs.

3.2 Outline of this Part and Main Contributions

As we have seen in the Introductory part of this document, there is a need for an anno-
tation format, language, or model, that shall be schema-aware, and that shall support
data structure evolution at the same time, in order to make it possible for long-term
DSE projects to update the structure of the critical annotations in the course of their
manufacture, either because it, after further consideration and operation, appears not
to provide an adequate description of the primary corpus, or because the editorial
policy of the DSE project has changed.

When designing an annotation, or data, model meeting those expectancies, one may
consider that this data model must as versatile as possible. Indeed, it would not make
much sense to acknowledge that the structure of data resulting from scholarly anno-
tation is subject to unpredictable change and to limit the structure of the data to
a restricted kind of annotation — for example, to hierarchical annotation. Hence the
following panorama of the most versatile data models for annotation at hand, that all
go beyond the hierarchies, gathered under the umbrella term ‘multistructured data’ —
as possible sources of inspiration for the desired, evolution-friendly data model.
Multistructured (M-S) data models have been a hot topic for over a decade. Correlated
to the rise of Digital Humanities, they ground on the fact that a single hierarchy is
not always sufficient to represent annotated resources [39], contrasting with the setting
of XML-based languages as a standard for scholarly annotations. Hence, “multistruc-
tured” is then to be understood by comparison with XML: annotating somehow means
structuring data (a well-formed XML document fits into a tree structure); “multi” sug-
gests M-S data models handle multiple, interlaced hierarchical annotations over the
same data. Many models have been proposed [141]. However, the enhanced expres-
siveness resulting from less constrained structural foundations, compared to XML,
comes at a cost: M-S models often lack a corresponding data model.

Indeed, validating highly expressive data is challenging, due to a general trade-off
between data models expressiveness and algorithmic complexity. The NEXPTIME

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

3.2. OUTLINE OF THIS PART AND MAIN CONTRIBUTIONS o7

complexity of OWL/DL inference [146] will serve as a striking example of how costly
the validation of highly expressive graph-structured documents can be. This trade-off
is so pregnant and restrictive that it applies to XML [170].

After the description of the state-of-the-art regarding data models for annotation,

we introduce our first main contribution, that was presented at the DocEng conference
in 2016 [15], namely, extended Annotation graphs (eAG). eAG is a multistructured
data model, tailor-fit for scholarly annotation. In particular, it goes beyond the clas-
sic, technical problems of overlap and expression of multiple, independent layers of
annotation; it also provides the editor with tools to reify distant relations and to make
accurate quotes within the data, both useful for the study of intertextuality and the
identification of web-organised information. It also provides the editor with means to
insert critical notes and comments within the data, to interlace this critical, textual
data with the primary data, while making sure that the two kinds of data, primary vs.
critical, shall not be confused. In the end, eAG comes as one of the most expressive
data models available.
We also introduce our second contribution, that is, a schema language for eAGs, called
SeAG, based on a novel validation mechanism that bypasses the traditional trade-off
between expressivity and complexity. Indeed, we have identified the simulation rela-
tion, first used for the structural description of semistructured data [37], as a promising
mechanism for eAG validation. Then, based on a coupled representation for SeAGs
and eAGs, we show that given the representation of a schema, only valid eAGs can
be represented: this is “validation by construction”. This enables to guarantee the
validity of rich M-S data without algorithmic check, bypassing the trade-off between
expressiveness and complexity, when schema definition can precede annotation. Addi-
tionally, the eAG/SeAG model is compatible with classical, a posteriori validation, in
which case the schema may be given after the eAG was built, and validation checked
afterwards. In this case, checking whether an eAG is valid against any schema can be
decided in polynomial time (O(|edges| - [nodes|)). We finally proved that for hierar-
chical data, SeAG syntactic validation is not less straitening than Relax-NG.

At the end of this part, the definition of a very expressive, schema-aware data
model for which the time-complexity of the validation is not problematic will have
been defined — which constitutes a first step towards a data model supporting data
structure evolution, that will be completed in the next parts.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Chapter 4

Related Work

4.1 Multistructured Data and Validation

Currently, most scholarly editorial projects adopt the XML-TEI markup language for
annotation. Such a choice has solid foundations: the TEI project provides researchers
with rich, collaboratively designed and documented schema modules dedicated to al-
most all sorts of heritage annotation, along with a tool to cherry-pick such modules,
tweak (to a certain extent) and assemble them into a custom schema!. As for an-
notation itself, from a practical point of view, (free) user-friendly XML edition tools
abound on every hand. Due to its ascendancy that is rooted in printing formats [151],
XML is a natural candidate for textual description. Models for text encoding need to
fulfil a few prerequisites: support for linear characterization (along the textual dimen-
sion — if unique); representation of inclusion relations (e.g. to describe the material
structure of a corpus — if unique), which XML does well (in case of uniqueness of both
preceding attributes of the corpus): due to the inline nature of XML, not only are the
elements ordered along with the text, but also are they maintained in their context;
inclusion has been decided to be represented by nesting.

Still, in practice, tree-based formalisms are known not to fit some advanced but
common textual description patterns [151, 145, 39]. In particular, XML suffers from:
the inability to manage overlapping elements; a weak, non syntactical representation
of links, that need to be validated separately?; the expression of inclusion by nesting,
that raises the question of how to express accidental, non inclusive nesting, very com-
mon when annotating according to more than one paradigm simultaneously. Several
propositions have been made to conform TEI-XML with more expressive data models
[39, 33, 42]; although interesting, those propositions either fail to tackle part of XML
inherent weak points® or are not straightforwardly compliant with the many useful
validation, querying, transformation tools from the XML galaxy [141].

Thttp://www.tei-c.org/Roma/

2E.g. restrictions on the name of two elements liked by the ID/IDref mechanism can be enforced,
but this would require a dedicated integrity-constraints checker like Schematron, on top of a grammar-
based validator schema x[17].

3E.g. the commonality between inclusion and nesting representations.

99

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

60 CHAPTER 4. RELATED WORK

4.1.1 Multistructured Data Models

Formally speaking, structured resources can be regarded as labelled graphs [122, 37].
From this point of view, the expressive limitations above can be regarded as a con-
sequence of the fact that XML is based upon a restricted family of graphs that is
inadequate for textual annotation, that is: trees. From this statement on, many
formal or implemented models have been proposed over the last two decades; those
propositions are generally rallied under the banners of Competing markup or Multi-
structured data models [141]. The term “multistructured” was proposed by reference
to what structure means in XML (i.e. trees): a data model can be considered to be
M-S provided well-formedness extends to graph models equal to or exceeding forests,
that is graphs whose connected subgraphs are trees.

Precisely, it happens that the (pre-XML) CONCUR feature for SGML [85], which
can be seen as the first historical M-S proposition, and one of the very few schema
aware models, rest upon a forest formalism. In CONCUR, each element is indicated to
be part of a given hierarchy, and several hierarchies are allowed on the same document;
each of them can be validated against a dedicated DTD. The approach, however, has
several shortcomings: mainly, no inter-DTD constraint can be expressed at all, and
self overlap is problematic!. MuLaX [95] managed to transpose this philosophy in
the XML world, despite an XML document can refer to one schema only. A MuLaX
document mixes elements from several disjoint hierarchical paradigms, regardless of
overlap; each hierarchy defines a projection, which yields a well-formed XML document
that can be validated against an adequate XML schema; still, no constraint can be
expressed between elements that do not belong to the same hierarchy. A (weak)
solution to this problem was to be given in the MSXD model. Like MuLaX and
CONCUR, MSXD is based upon the vision of a structure as a hierarchy. Unlike the
two previous models, all the hierarchies are not instantiated in the same document: one
XML document has to be written for each structure; and each document is validated
separately by an appropriate RelaxNG schema. However, MSXD enables to express
relationships between elements contained in separate hierarchies, by means of Allen’s
relations [35, 34].

More advanced graph structures have also been proposed. Some focussed on well-
bounded graph families. Significant examples of that movement are multitree-based
TexMecs [97] or MCT model [101], in which the ascendant’s and the descendant’s
graphs of any node are trees, and the restrained, acyclic polyarchy model GODDAG
[162]. A clever grammar-based validation language, dubbed Rabbit/duck grammar,
was proposed for TexMecs and similarly shaped documents [160]; it works on docu-
ments where annotation from competing hierarchies are entangled, and extracts the
single hierarchies, which can be validated against a dedicated XML schema, but it does
so while checking some inter-hierarchical constraints [174]. However, it falls short when
it comes to validating polyarchies.

From this point on, many even more expressive models have been proposed, but
rely on no particular graph model; most of them will also drop inline markup in favour
of standoff markup. LMNL [175, 139] presents itself as the archetype of such models.

4Since DTDs validate only non overlapping elements, an arbitrary number of DTDs would be
required to validate documents where multiple, self overlapping elements occur, as coined by [174].
This limitation applies to the two following approaches as well.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

4.1. MULTISTRUCTURED DATA AND VALIDATION 61

LMNL has a layered directed acyclic graph structure, which models elements as anno-
tated ranges of text from a character stream [174]. Worth mentionning is the fact that
LMNL enables to annotate annotations themselves, since they are no more than text
streams themselves. Also, importantly, Creole, a prototype schema language, based
on RelaxNG but extended to overlapping annotation, was tailored for LMNL [174].
SILL: LMNL [175] represents a more stripped-down vision of multilayer annotation.
In many respects, LeAG borrows from LMNL. In LMNL, the user can identify ranges
in a character stream and name them by means of pairs of opening and closing tags.
Ranges themselves can be annotated by (meta)ranges, which inspired the attribute
syntax in LeAG. Yet LMNL claims to be an annotation language solely, and not a
structuring language: in particular, LMNL does not provide the user with means to
represent inclusion or sibling relations. By sweeping out the notion of inclusion, LMNL
seemingly clears the paradox out; yet LMNL is not absolutely blind to the charms of
hierarchies: it lies upon the notion of ‘layers’, that is, ranges that fully contain the
ranges that start and end in their scope, which is reminiscent of XML hierarchies —
but if such patterns cannot be interpreted in structural terms, can they be but for-
tuitous patterns? Still, because hierarchies are a classic and fundamental annotation
structure [184], the LMNL model comes along with XML generators that can extract
hierarchies from the data. Our point, on that matter, is that since hierarchies are so
central, the best is to enable the editors to have direct control over their expression
— which indeed demands additional syntax. Apart from those critical considerations,
LMNL is an important annotation model, that goes beyond most others, in terms of
expressivity; moreover, it benefits from a grammar-based validation language [174],
able to embrace the multilayer documents as a whole, which can be compared only to
RDF validators (or to the SeAG we propose [15]).

Annotation Graphs [21, 19], that will be discussed thoroughly below is, from a
formal point of view, a quite similar model; nonetheless, it adds an interesting notion
of chronology, which can turn very handy for multimedia corpus annotation.

Eventually, several annotation models have originated from the RDF community.
One may think of the pioneering RDFTef [178], the Open Annotation data model
[150] or EARMARK [132]. The RDF data model, which imposes no restriction on the
shape of the resulting graph, is very expressive; moreover, RDF annotation can be
used as a complement to an existing TEI annotation [12], which is a way to ally the
best of two worlds.

Figure 4.1 intends to capture the above diversity of models, classified in terms of
the class of graph each model enables to express.

4.1.2 M-S Validation: Algorithmic Complexity

For the digital humanists, prominent user community of M-S documents, modelling
resources by a schema, as a preliminary for annotation campaigns, is now part of the
business [138]|. Moreover, the existence of a schema offers many advantages in process-
ing and querying structured data [79]. However, most validation mechanisms intended
for M-S documents simply combine several XML schemas with rules to express con-
straints between the hierarchies each schema represents [85, 95, 152, 160, 35], providing
the final user with a quite weak and clumsy modelling tool only. Said differently, few

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

62 CHAPTER 4. RELATED WORK

MULTITREES \
GODDAGS
FORESTS ® g
& 1 MCT [Jagadish, SIGMOD, 2004] L
MSXD TexMecs [Huitreldt 2001
? l\‘ [Bruno, DocEng, 2008) [Huite ! GODDAGs
. B [Sperger-McQueen, Digital documents, 2000]
Rabbit/Duck
Grammars [Sperger LMNL
-McQueen, Balisage, 2005] [Tennison, EML, 2002]

XCONCUR Annotation Graphs

[Hilbert, EML, 2005] [Bird, Speech Com., 2001]

CONCUR CYCLIC GRAPHS

[Goldfarb, 1990]

Underlying
graph
TREES formalism
EARMARK
XML [Peroni, DocEng, 2009]
SGML

o ®g°

Figure 4.1: The classic multistructured data models, classified by the family of graphs
of elements they enable to express.

schema models manage to get beyond multiple tree-structure checking.

A reason to that situation might be found in the algorithmic complexity of the
current approaches adopted in M-S validation. It is generally assessed that the more
expressive the data model, the higher the algorithmic complexity® for the related
processing tasks [79, 170, 126, 116, 112, 146]. This applies, at least, to grammar-based
and rule-based [97] validation.

The tag “grammar-based” applies to the three main validation languages for XML,
namely DTD, W3C XML Schema (XSD) and RelaxNG, which are commonly modelled
as tree grammars, or tree automaton [126]. Although the schema languages do not
recognize the same class of trees, it has been established that the tree languages that
the three technologies enable to express are included, or equal®, fit like nesting dolls
into regular tree languages, for which validation can be done in linear time in the
documents’ size [112]7. However, as hinted by [170], there are tree grammars that
may not even be decidable for the interpretation problem that is part of validation in
RelaxNG and XSD. Integral rule-based validation with Schematron, as experienced
by [17], does not overcome this trade-off: complexity is worse than with the grammar-
based approach.

Few information is available about the time complexity of M-S validation mech-

5Following Murata’s assertion that time complexity matters more than space complexity, we will
focus on the first only [126].

SDTD cover local tree languages, included in single-typed tree languages expressible by XSD,
themselves included in regular tree languages that are covered by RelaxNG.

"The difference of expressiveness between the three schema languages comes at a cost though,
but only for other processing tasks [79].

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

4.2. THE ANNOTATION GRAPHS MODEL 63

anisms. The complexity of MSXD’s validation mechanism, which theoretically com-
bined RelaxNG validation for each independant tree structure with Allen’s relations to
express inter-trees constraints, was in question in the first proposition paper [34]; actu-
ally, in the end, to the best of our understanding, it was not implemented as such [36]:
Allen’s relations were rather translated into XQuery extensions and cross-hierarchies
constraints could then be checked by assessing adequate queries on the data. Creole,
the promising grammar-based schema language for MLNL that inherently understood
overlap, and hence enabled to express competing hierarchies in the same document,
as well as all structural constraints in a single schema, was prototyped using XSLT;
despite the optimization techniques taken from RelaxNG, the result was considered
“t00 slow” [174] — no other implementation followed, unfortunately.

It has to be mentioned here that RDF-based M-S data models suffer from the
same trade-off. RDF, which is a very expressive model, is provided with an ontology
language, OWL, as well as reasoners, which are sometimes used as validators [59].
However, using OWL to validate a document raises several difficulties and questions.
First, the full version of OWL is undecidable, hence two main restrictions, OWL-
DL and OWL-Lite, which still perform with repelling NEXPTIME and EXPTIME
complexities [146]. Second, OWL axioms are not natively interpreted as integrity
constraints by OWL reasoners, resulting in a rather weak validation mechanism [146],
because of two main features of OWL that are the Open World Assumption and the No
Unique Name feature, whose combination allows to assess when an assertion is verified,
but not that is is not [159]. Indeed, techniques have been proposed to by-pass those
limitations and enable the proper expression of identity constraints, but result in huge
execution times [172]. Nonetheless, RDF validation is a promising field of research, as
illustrated by the ShEx [143] and SHACL [107] projects. Time complexity still seems
to be quite high, but cutting it down is being investigated [167].

4.2 The Annotation Graphs Model

The above enlightens a trade-off between expressiveness and complexity — trade-off
that expresses, to be accurate, inside the frame of a given validation technique. For
instance, while Brzozowski derivative-based validation [174] runs in linear time for
regular tree languages, the same approach does not extend easily to more general
graphs. This leads to question the use and tweak of XML and RDF tools for M-S
validation, precisely because, as well engineered systems, they are already optimized
for their native use.

Simulation [144, 37], is an interesting alternative to rule- and grammar-based de-
scriptive formalisms. A simulation is a relation over (often rooted) directed labelled
graphs. Informally, the existence of a rooted simulation of a graph B by a graph
A implies that all the paths of B starting from its root have a matching path in A,
whose label sequence is identical. Thus, A describes the structure of B, because all
the patterns in B somehow have a match in A. Conversely, A behaves as a graph
schema;: it validates the graphs that contain only patterns defined in A, i.e. that A
simulates.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

64 CHAPTER 4. RELATED WORK

Validation by simulation was first operated for semistructured (S-S) data [171,
3]. The Object Exchange Model (OEM) underlying S-S data is a cyclic, unordered,
directed labelled graph. Natively, a S-S database is schemaless; Dataguides [86] or
Graph Schemas [37] are inferred from the data. They are graphs that simulate the
S-S database, providing a structural description that can be exploited for querying
purposes. Simulation check performs in O(|edges|-|vertices|) [144], which is acceptably
low for general graph-structured data validation.

Still, despite providing an expressive data model® and an appropriate schema mech-
anism, as far as we know, S-S model was never tuned for annotation. Indeed, it lacks a
clear representation of inclusion, a notion of order or a way to index nodes along read-
ing dimensions to support linear annotation; moreover, since Dataguides and Graph
Schemas are inferred from the data, they cannot be used as authoring tools.

Still, because the OEM is so general, the principle of a simulation-based validation
is not restricted to S-S data but “can be applied easily to any graph-based data model”
[86]. The eAG data model we propose in the Paragraph 5.1 is such a graph-based
data model. It relies upon an important pre-existing data model, namely, Annotation
graphs (AG), that appears to be one of the most generic and versatile annotation
models from the late 1990’s. We propose to the reader a detailed, critical description
of the historical AG model. We will point out its strength and weaknesses as an
annotation model for DSE, so as to build, in its continuity, a similarly versatile model
tailor-fit for scholarly annotation.

4.2.1 Annotation Graphs

Annotation Graphs (AG) [21] were introduced in the late 1990’s by Bird and Liber-
man as a generic model and language for annotation, at a moment when a plethora
of competing models had been and were proposed. As evidence of the generic quality
of the AG model, the authors showed that the state-of-the-art annotation languages,
namely E-mu [41], LAF-GraF [98] or the SGML/TEI [161] could all be translated into
AG without any loss of information, which gave AGs a certain fame among computer
humanists and made it one of the most cited models of annotation. It was later im-
plemented [82, 20] and a quary language was experimented [19].

Even though AG was initially thought as a model for linguistic annotation, the
flexibility of the model is such that it can be used for any resource that can be indexed,
at the local scale®, along one dimension, hence making the AG model adequate, to a
certain extent, for the annotation of multimedia resources (containing audio and text,

typically).

Definition 4.2.1: Chronology, reference value. A chronology is a totally or-
dered set (T}, <;). An item from a chronology is called a reference value.

8Surprisingly, the OEM is referred to as “essentially equivalent to XML” on the Lore project
website (infolab.stanford.edu/lore), which was a pioneering OEM DBMS before migrating to XML.
9See the notion of “chronology” — Definition 4.2.1, right below.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

4.2. THE ANNOTATION GRAPHS MODEL 65

Example. A chronology for indexing a text stream can be built out of the inter-
character positions in the text. A chronology for indexing an audio file can be built
out of time stamps, in the appropriate granularity (ms, s, ...).

Definition 4.2.2: Annotation Graphs. An Annotation Graph AG over an
alphabet £ and a collection of chronologies (T}, <;); is a tuple (G = (V, E), ref, label),
where

- G = (V,E) is a directed, labelled graph,
- ref is a function V. — UTi7 that associates a reference value to the nodes of
the graph G, '
- label is a function £ — L, that associates a label to the edges of the AG,
and so that :

1. for all node v € V, deg(v) # 0;

2. for all oriented linear graph vq|...Jva € G connecting a node v; to a node va,
then if ref(v1) and ref(vy) are defined, there is a chronology (T}, <;) so that

ref(vy) <; ref(va).

Nota. According to the property 2. in the definition above, two nodes belonging to
the same connected part of an AG cannot bear reference values belonging to distinct
chronologies. Since the authors explicitly discard the possibility to compare reference
values belonging to separate chronologies, one may neglect the index in the expression
ref(v1) <; ref(ve) and simply write ref(v1) < ref(vs).

Comment: Annotation paradigm. Annotating some content indexed along a
given chronology (T;,<;) is done as follows: if the content is located between the
reference values 71 and ro in 7;, then the content is qualified by the label [iff the
AG contains an edge labelled | between a node v; so that ref(v1) = r; and a node
vy so that ref(ve) = ro. Several such edges can be defined between a given pair of
nodes. The annotated content is thus any portion of the resources delimited by a pair
of reference values, while the way this content is annotated, or qualified, is determined
by the label of the corresponding edge(s). In that, AG is a typical stand-off annotation
model.

Noteworthily, AG shines by its ability to express multimedia annotation in a very
natural way. Indeed, since several chronologies can be defined for the same AG, it is
possible to define a chronology for indexing textual resources and another chronology
for audio files, and then to annotate a multimedia resource mixing text and audio by
means of a unique graph of annotation.

Nota. Even though an AG is represented by a unique graph, the AG model does not
require this graph to be connected: it may on the contrary be constituted of several
connected parts.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

66 CHAPTER 4. RELATED WORK

In particular, this permits to leave certain portions of the resources free of any an-
notation. Also, two distinct connected subgraphs of the AG can overlap freely. As a
consequence, AG support the expression of a wide range of annotations: annotation
with gaps; overlapping annotation; multilayer annotation; annotation of moments (i.e.
resources wholly positioned at a certain reference value along a certain chronology)...
see Figure 4.2 page 69.

Definition 4.2.3 : Structural and referential orders. Be (G = (V, E),ref,label)
an AG. Two partial order relation can be defined on the AG:

1. Structural order <,. Be v;,v; € V. Let us define the s-precedence <; by:
v1 <5 vp & 3J € N¥, E{Gj}jE[O;J] | U1 Lel...ng.

2. Referential order <,. be vi,v2 € V. Let us define the r-precedence <, by:
v <, v2 & ref(vy),ref(ve) are defined, belong to the same chronology and
verify ref(vy) < ref(ve).

Definition 4.2.4 : Precedence. Be (G = (V, E),ref,label) an AG. Precedence
is defined as the transitive closure of the union of the s- and the r- precedences:

Y(v,v") € Vv <v' ©3In € N*, Hvg..v,} € V' | vg = 0,0, =0
and Vi,v; <g vi41 Vv; <p Vig1

Comment As a consequence of the Definition 4.2.2 above, in a connected part of
an AG, the structural and the referential order match, for the nodes for which they
are both defined.

This property enables to define a notion of inclusion between edges as follows:

Definition 4.2.5 : Inclusion. Be (G = (V, E),ref,label) an AG. Be the following
graphs, included in the AG : vi|e|vy et va|e |vs.
The three following partial relations can be defined:

e Structural inclusion C,. e C; €’ & vy < v9 A vy >4 V3.
e Referential inclusion C,. e C, ¢/ & v; <, V9 Avg >, v3.

e Inclusion C. Inclusion is the transitive closure of the union of the structural
and referential inclusions.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

4.2. THE ANNOTATION GRAPHS MODEL 67

Example. Be the following AG:

©

€3

In this graph, e; C es.

Comment. The fact s-precedence and r-precedence shall match on the nodes from
a connected part of an AG enables to discard annotation patterns in which, otherwise,
inclusion would be paradoxical. For instance, the following graph (which is not a
correct AG), the above definition of inclusion would give: e3 Cs e1 Aep C, e3:

€
e, ey
€3

However, a crucial drawback from imposing the match between s- and r- precedence is
that AG cannot contain cycles, while cycles can be a good means to represent arbitrary
relations and links.

Definition 4.2.6: Domination. Be (G = (V, E),ref,label) an AG.
An edge e € E is said to dominate a sequence of edges [e;]icp1;n] € EN, N >0 iff
J(v,v") € V2, [Viliep;n41] € VN+1 50 that:

e vle|v' C G, viler]...|lex]ons1 CG
e et vy =v, vyy1 =0,
Definition 4.2.7 : Structural hierarchy. Domination is how hierarchies are

described in the AG model. Indeed, all the edges of a sequence of edges that is
dominated by an edge e are included in e.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

68 CHAPTER 4. RELATED WORK

Definition 4.2.8 : N-ary relations between edges. On top of the above struc-
tural considerations, AG enable the definition of n-ary relations between edges, by
means of optional fields in the labels.

e Annotation layers, types. An annotation layer is any set of edges possess-
ing the same type.The type of an edge is characterized by the value of a prefix
added to the edge’s label, ending by the delimiter ¢/’

e Equivalence classes. Edges belonging to distinct layers can be grouped into
equivalence classes. The equivalence class is defined by adding an identifier
as a suffix to the label of those edges. The suffix starts by the delimiter ‘/’.

e Structural dependencies. Structural dependencies enable to assert that one
or several edges are related to a given edge. To define a structural dependency,
a suffix N /M, is added to the edges, N, M € NU{*-’}, where N identifies the
current edge and M identifies the edge it is related to. The value ‘-’ serves as a
blank value.

Comment. An annotation layer is a very open notion, from a structural point of
view — no less, actually, than any set of annotation layers ([21] p. 40), since it is solely
a collection of edges possessing the same type. Figure 4.2 illustrates the possible an-
notation configurations inside an annotation layer.

The other kinds of relations — the structural dependencies in particular — aim at en-
abling the expression of arbitrary relations that could otherwise have been represented
by cycles.

Attributes in AG... The authors do not define any syntax for refining the labels
with what could be called attributes, that is, additional type-value data. They only
state that the label can be freely structured into several fields in order to do so, but
leave the realisation of that prospect to the user...

The resulting AG model is, in the end, highly expressive, as evidenced in the

original article [21], enabling the expression of overlapping, multilayer annotations,
as well as arbitrary N-ary relations between the edges of the AG, whose role in the
annotation is reminiscent of XML elements.
However, the adequateness of the syntactical solutions chosen by the authors to reach
this expressivity can be questioned. In the following, we propose several amendments
to this initial model, based on the criticism of the AG syntax, and define extended
Annotation Graphs.

4.2.2 Criticism and Necessary Amendments to the Annotation
Graphs

Our criticism focus on two main points:

1. The first point regards the fact an AG may be a disconnected graph, and why.
AG offer the possibility to define several chronologies is thought as a means to
enable the annotation of resources from different media types (e.g. text vs. au-
dio vs. images...). Still, as stated above, connected parts in an AC may only

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

4.2. THE ANNOTATION GRAPHS MODEL 69

} l f] 1 f I 1 Partition into intervals
I I [| I \ Sequence of instants
—i I

Intervals with gaps

|

. I i \ 1 Sequence of
overlapping intervals

Hierarchical
structure

|
1
|
| | \ Gaps, overlaps
|
|

I | I | and instants

Figure 4.2: Possible configurations of an annotation layer in the Annotation graph
model (extracted from [21], p. 40.)

contain nodes that bear reference values from the same chronology. Thus, an an-
notation requiring several chronologies will result in a graph containing at least
two disconnected subgraphs. Yet, instead of gathering together nodes and edges
making use of the same chronology, i.e. involved in the annotation of the same
type of content, it seems more natural that connected parts of an annotation
graph shall gather the nodes and edges involved in the annotation of the same
resource, be it multimedia.

Consider a born-digital document containing an introductory paragraph, an au-
dio file and then a textual comment of the audio file. In the AG model, the two
textual paragraphs will have to be annotated by means of a separate connected
graph compared to the audio file; even worse, it would be impossible to express
the fact that the audio file is positioned between the two paragraphs, that is,
that three items of different nature (text, audio and text) form a sequence and
are included in a unique document.

One of the main amendments eAG willl operate compared to AG will be to
permit the coexistence of several chronologies in the same connected part of the
annotation graph — to the point that having separate connected parts will be
useless, so well so that the eAG graph model will be a connected graph. To
achieve this goal, we will introduce the notion of composite chronology and the
notion of epsilon edge for expressing ‘blank annotations’, to keep the interesting
ability AGs offer not to annotate all the primary content.

2. The second questions the fact that information that is not, in substance, dissim-
ilar, is not represented homogeneously in AG. In particular, the fact that a text,
if it is part of the primary corpus (e.g. the literary documents to be edited), will
possibly be described in great detail by a set of edges and nodes (i.e. an AG
annotation), while if it is part of the critical apparatus (i.e. if it is the label of
an edge), will possibly be described further only by means of interpretable fields
added to it as suffixes and prefixes (links and attributes as defined in the AG
model), i.e. by means of chains of characters. Also, the syntax for representing
structural precedence, which is a binary relation between edges, is structural in
the sense it involves nodes and edges while semantic relations (e.g. structural

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

70 CHAPTER 4. RELATED WORK

dependencies) are simply represented by means of identifiers. Our answer to
solve this heterogeneity is twofold:

e Based on the consideration that the attributes of an element of annotation
are structured data relative this element, we propose to model attributes
as an annotation on top of an annotation. In that, we follow the example
of LMNL [175].

e While the notion of structural dependencies are a convenient means to
represent relations while avoiding cycles in the AG, and thus to maintain
the structural and referential orders consistent across the graph, we propose
to introduce a distinctive syntax for the label of the edges that involve
cycles, i.e. that represent semantic relations between annotation elements.
This mechanism enables to maintain the consistency of the structural and
referential orders in the graph stripped from those special edges, while
offering a homogeneous, structural representation for all relations.

We hereby define the corresponding eAG model in detail.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Chapter 5

Extended Annotation Graphs
and Schema models

5.1 The Extended Annotation Graphs Model

We introduce here Extended Annotation Graphs (eAG), a data model derived from
Annotation Graphs. The eAG syntax is first introduced informally on a textual anno-
tation example!, that will serve as a running example over this part and the next one.
Then, a formal definition of eAG is proposed, illustrated by means of a toy document
mixing text and image.

5.1.1 An Example of eAG Annotation: Anaphoric Chains

A common linguistic annotation is the identification of anaphoric chains® (AC). ACs
are sequences of singular expressions so that if one of them refers to something, then
they all do [44]. Consider the text given on Figure 5.1, adapted from The Village of
Ben Suc by J. Schell. In this text, one may identify, among others, the following ACs:
[a young prisoner / he / him / him / the prisoner], [An American observer who saw
the beating], [the beating that happened then / the beating].

Annotating the text in terms of ACs made out of expressions is not trivial in
XML. Since ACs do not form neither a sequence nor a hierarchy, they cannot be
represented as normal, spanning XML elements. The classic solution is to identify
only the singular expressions in the text and then relate them together accordingly
by their IDs in <linkgrp> elements [55]. That solution, apart from being hard to

T Additional examples of eAG annotations can be found elsewhere in the document. The Ap-
pendix11 (in French) offers an annotation of the Voynich manuscript?, that makes intense use of the
notion of composite chronology defined below as a means to encode the continuous quality of a text
that is disseminated across the folio in variously shaped graphical containers. The notion of quotes,
that is introduced in this part, is also illustrated in the next part, in Paragraph 6.2.4.

3The assisted, or automatic, identification of Anaphoric chains is an actively investigated field of
research in NLP [140]; yet our purpose does not consider the process of of identifying ACs, but how
to represent, by means of an annotation language, the result of this identification, in the track of [55].

71

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

72 CHAPTER 5. EAG AND SEAG

An ARVN officer asked a young prisoner questions, and when he failed
to answer, beat him. An American observer who saw the beating that
happened then reported that the officer “really worked him over”. After
the beating, the prisoner was forced to remain standing for hours.

[Adapted from The Village of Ben Suc by J. Schell]

The officer The observer

The prisoner The beating

Figure 5.1: An adapted passage from The Village of Ben Suc by J. Schell, with some
highlighted anaphoric chains and constituting singular expressions.

validate, does not represent the fact an AC is composed of expressions consistently
with the XML syntax. Moreover, it does not extend to this example, which exhibits
self-overlap [162]%.

In eAG, annotating anaphoric chains is straightforward. First, a chronology, indexing
the text stream, must be defined, e.g. as a set of inter-character positions:

fo— T 2 f3 r,
... An American observer who saw the beating that happened then

[step 1] I s B
reported that the officer ““really worked him over". After the beating, ...

The encoding of the two singular expressions Fxp regarding the beating is done as it
would be in AG:

fo—T4 > I3 ra
... An American observer who saw
s fg—— 17—
reported that the officer “‘really worked him over". After A
[step 2]
Exp Exp
ro Iy I g

To model the fact that the two above expressions form a sequence, as suggested by
the definition of anaphoric chains above, and that this sequence is discontinuous (in
that the second FEzp does not start where the first ends), we introduce a special edge
for blank annotation, called the e-edge®. It is operated as follows:

ACf. An American observer who saw the beating and the beating that happened then.

5The inspiration for this edge comes from the homonym e-edges from the Finite State Machine
theory, which denote transitions that do not consume any input character. The rationale for this loan
is explicited in Paragraph 77

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.1. THE EXTENDED ANNOTATION GRAPHS MODEL 73

Exp Exp

[step 3] N TN

r l4 > I5 e

Now assessing that this sequence constitutes an anaphoric chain can be done by defin-
ing an AC element, for Anaphoric Chain, so that the sequence of Fzp is included
in AC. Inclusion, in eAG, is done by means of a pair of opening and closing edges,
labelled with the name of the container element (AC here) and the suffixes :In and
:0ut respectively, as follows:

Exp Exp Ie
[step 4] 7 TN N
AC:Out
AC:In\» o g =+ Ts I j !

Assessing that the AC takes place inside an Extract is done similarly:

ro r7
ry /
Extract:In” 0 + Extract:Out
[step 5] e =
;2 Exp /EKP\ e
/’\'
ACIN) [R— s /AC Out

Adding attributes to an element whose name is X is done by inserting an element
named X :Att inside X, the element X :Att in turn containing a small eAG indexing
some added secondary resource, that corresponds to the content of the attributes. The
following step provides a name “who” to the anaphoric chain, indicating that the AC
is related to “the beating”:

fp—nh N ra I3 7]
... An American observer who saw

fs fg— 7~
reported that the officer “really worked him over". After

lo X— v I7
The beating ry /‘
[step 6] Extract:In~ 0 + Extract:Out

v
r2

Exp /Ei‘p\ r‘ﬁ
.\(':In\- ry) P s /\(:Out

.\('..\ll:ln\‘x who Y}.\(':.\n:Out
—_

Identifying a second, overlapping AC element (the one regarding the observer for
instance) can be done just as previously, independently from any previous annotation
(in particular, without worrying about overlapping elements):

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

74 CHAPTER 5. EAG AND SEAG

AC:AttIn, y who Z AC:Att:Out

AC:In AC:Out
T r 3 ————.,
r ra
o .
: X Y Z M
[Step 7] \ i The beating ~ The observer ry
Extract:In~ "0 . Exlract:Ou[

v

Iy /&R
AC:IH\ r, /\’ B /AC :Out

AC:Alt:In\‘X who YjAC Att: Out

Eventually, suppose we aim at identifying the ACs and their constitutive expressions,
but also to qualify their relative weight, e.g. by reifying the relation ‘this AC' contains
more expressions than that one’. The reification of that relation can be done by means
of an edge bearing a special suffix :LinkTo, originating in the attributes of AC relative
to the beating and targeting the other AC as follows:

AC:Att:In Y who 7 AC:Att:Out

-\' AT BT AC:Out
T T

AC:In

rv | rs
I I Longer-LinkTo I3
o A Longer:LinkT ' ry
[step 8] ‘ | B SR zp 6"
step ExtractIn r‘U The beating The observer B Extract:Out

i
2

| Exp Exp r‘E
ACI T, | N /*rﬁ _/acou

Iy > T

| 2
AC:AII:In\‘X who Y/‘AC:An:Our

This last graph ([step 8|) is a proper, or well-formed, eAG®, making use of the notions
of element, of attributes, of hierarchy of elements and of semantic relations, or links.
It represents a bi-layer annotation exhibiting self overlap.

This informal presentation of eAG shows several notions that the original AG failed to
capture conveniently: for instance, the fact that two expressions form a sequence with
a gap would have been represented by two disconnected edges assembled into a layer
of annotation — while the fact two elements form a gapless sequence is represented
differently, by the communality of the leaf of the first element with the root of the
second; here, any kind of sequentiality relation is represented homogeneously, that is,
structurally. Similarly, the semantic relation Longer is structurally represented here,
while it would have demanded the use of the notion of structural dependency in AG.
Representing relations by means of nodes and edges is not only satisfying because it
provides a harmonious syntax. It also opens to the possibility to structure relations
further, for example to include, in the linking element, some critical comment. For
instance, the graph below provides an elaborate proof of the fact that the AC regarding
the beating is “longer” that the AC regarding the observer, based on the number of
Exp each contain:

SNoteworthily, the graphs given on step 3 to 7 are also well formed. The graph on step 2 is not,
since it is not connected — see Paragraph 5.1.2.1.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.1. THE EXTENDED ANNOTATION GRAPHS MODEL 75

X Y z T »
The beating ~ The observer 2>1

AC:AtIn, v _who | Z AC:Att:Out
/’ s Exp

AC:In | AC:Out

Pandls Iy M3 ———__

ry \Longer:LinkTo:Out 3
Iy N T ! 7
[step 9] 3 ¢

: //. ' r,

ExtractIn” "0 proof:Att « Extract:Out
: " Z :
v
ry Longer:LinkTo:In Exp Is
Ex /’“\\
ACIS 1, | P _acou
‘ r Iy > s i

AC:A((:ln\ X who Y/‘AC:At(:Out

As will be shown in Paragraph 5.2, it also enables to to validate the relations properly,
by restricting the nature of the elements that can be connected together by means of
a certain relation.

5.1.2 The eAG Model, Formally

After this example-based, informal introduction, that aimed at providing the reader
with a concrete representation of the eAG syntax — which may make the following
more comfortable to read —, we now define the eAG model formally. We gradually
introduce the notion of composite chronologies, that permit to handle documents that
mix several types of information (text, image, etc.); we then present the formal model
for hierarchies, elements, attributes, comments and links, together with the properties
those features have to verify. Eventually, we discuss the notion of elements in eAG in
a way that hopefully illustrates the expressive power of the model.

Throughout this formal presentation, the toy document represented in Figure 5.2 will
serve to illustrate eAG’s expressive power. It is constituted of one paragraph spanning
over two pages, whose text locally refers to parts of a pictorial figure. Additionally, the
pages are structured into modules, a module being the longest vertical unit containing
data of homogeneous nature (viz. text vs. images here). The pictorial figure itself,
accidentally, nests inside the paragraph (without being part of it).

5.1.2.1 eAG Graph Model

Extended Annotation Graphs are based on a cyclic graph formalism, as follows.

Definition 5.1.1: eAG graph model. An extended Annotation Graph G is
a tuple (G = (V, E),ref,label), where G is rooted, single-leafed and connected:

1. (rooted) Jv, € V so that root(G) = {v,}

2. (single-leafed) Jv; € V so that leaf(G) = {v}

3. (connected) Vv € V, Jp,, a path verifying p, croot(@

The functions label and ref are governed by the definitions and properties that follow.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

76 CHAPTER 5. EAG AND SEAG

Yol

Z Edvard Munch made several versions ofhis

27| (pagebreak) famous masterpiece dubbed The Scream, with

Vsl various techniques, ranging from painting [b]
2] ——=—Fs 1] — S

Ya | -

ys | to stone-lithograph [a].

[% 7 %)

Figure 5.2: Document showing overlap, a figure enclosed in text and internal refer-
ences.

5.1.2.2 Authorized Labels in eAG

The labels in eAG are not indifferent. We provide them with a minimal semantics, in
order to represent the modelling notions of inclusion, attribute, links, etc.

Definition 5.1.2 (Labels) Be a special character € 7. Be Lg,

€ & Ly, a set of strings that do not contain the character “”. Lo = Lz U {e} is the set
of unsuffixed labels. Additionally, be & = {:1In, :0ut, :Att, :Com, :LinkTo} the set of
suffixes. Labels can be iteratively suffixed according to the rules given in Table 5.1.
Those rules also define classes of labels, e.g. L, the set of labels whose last suffix is
:In. The set of all labels £ is the union of all the preceding classes.

Nota. Noteworthily, Table 5.1 implies that an attribute can have attributes itself,
and that a link cannot have an attribute — see the next paragraph.

Notation. In the following, given two strings [and s, s C [denotes the fact that [
contains the substring s.
5.1.2.3 Chronologies in eAG

Extending a notion introduced in the AG data model, we propose a new definition of
chronologies, that is how locations in composite resources can be made reference to.

7¢ stands for a blank, or void, annotation.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.1. THE EXTENDED ANNOTATION GRAPHS MODEL 7

Table 5.1: Allowed suffixes per label class and the resulting class. “” stands for
“undefined”.

% suffixed by 1] :In :Out :Att :0ut :LinkTo

le EZ E@ Eln EOut ['Att LCom ELinkTo

l S Lln Eln - - - - -

le ﬁOut L:Out - - - - -

I € Las L att Lin Lout Lasw - -

le ECom £Com EIn ﬁOut EAtt - -

| € LiinkTo Lrinkto Lin Lout - - -

Definition 5.1.3 A (general) chronology is any ordered set (T, <). Be then C a set
of strings called “chronometer names”. Be m € C. The reference space associated to m
is a unique ordered set (T, <,,). A chronology over m € C is an ordered set (T, <,,)
so that T C T,,.

Illustration part 1. The document illustrated on Figure 5.2 contains text and a
figure, both encapsulated into modules. The figure contains several images displayed
side by side.

Several chronometer names can be defined: 1. text for indexing text in the reading
order, line by line, 2. wpos for delimiting text blocks and figures along the vertical
dimension across the different pages, 3.hposy;, for delimiting images along the hori-
zontal dimension in the figure denoted fig here.

Appropriate reference spaces for those chronometer names and this document are the
following:

1. (text) Tienr = {0,40,41,83,84,129,130,154}, i.e. the set of inter-character po-
sitions preceding (resp. following) each first (and last, resp.) character of each
line (linebreaks counting for one character) 8.

2. (vpos) Topos = {Y0,Y1,Y2,Y3,Ya,Ys}, i.e. the set of vertical positions of the
beginning and the end of each module of each page of the document, considering
that each page follows the previous one along that vertical dimension.

3. (hpos) Thpos;,, = {T0,T1, 22}, i.e. the set of horizontal positions serving as the
border for an image in the only figure of the document.

Several chronologies can then be defined over those chronometer names and reference
spaces:

1. (Ty,1,<y) over the chronometer name vpos, with T}y = {yo,y1}, for the delimita-
tion of the modules in the first page,

2. (Ty2,<,) over the chronometer name vpos, with T, = {y2,y3,va,ys5}, for the
delimitation of the modules in the first page,

8The first line starts at character 0 and ends at character 40, the second line starts at character
41, etc.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

78 CHAPTER 5. EAG AND SEAG

3. (T, <) over hpos, with T, = Typos 14> Where those values enable to delimit the
two images in the pictorial figure,

4. (T, <.) over text, with T, = Tyeyq.

Comment. The use of chronometer names enables to define several chronologies
on the same reference space, and thus, in the end, to compare values from different
chronometers, when appropriate. See the following definition and Example 5.1.1 below.

Definition 5.1.4 (Concatenation) Be (T,,<,) and (T}, <;) chronologies. (Tj -
Ty, <ap) defines a chronology over T, U Ty, iff the following relation <, ; defines an
order over T, U T:
For any t,¢ € T, U Ty, then:
- t=upt'e FxelC | tHY)eETIAt=,1
S t<pt'e FxelC | (HLY)ETIAtZ,

or AreC | (t,t)eT2A(t,t) €T, xTp.

Property 5.1.1 Be three chronologies (Ty,, <.), (Tp, <p) and (T¢, <.) so that (T, -
Ty, <ap) and (Ty - Ty, <) are defined. Then:

(To - Ty) - Tey, <(ap),c) is defined & (T, - (Ty - T¢), <q,(b,c)) is defined.

If defined, then, (T - Ty) - Te, <(ap),e) and (Ty - (T - Tt), <a,(b,c)) Will be denoted
(To - Ty - T, <g.p,c) indifferently.

Example 5.1.1 Be two chronometer names nat and ab associated to the reference
spaces N and 24 where A is the roman alphabet of letters, and the natural order <, q;
and the alphabetical order <, respectively.

Be <T1 = {07172}7§15Snat7 <T3 = {2}7S3E§nat and <T4 = {4}7§45Snat three
chronologies on nat. Be (T} = {X, Y}, <o=<, a chronology on ab.

(T - T», <j2) defines a chronology, where 2 <; 5 X for instance.

(Ty - T5 - T5,<1,2.3) does not define a chronology (the antisymmetry would not hold),
while <T1 . T2 . T4, §1’2,4> does.

Definition 5.1.5 (Inclusion) Be (T, <,) and (T}, <;) chronologies.
We say (Tp, <p) C (Tu, <o) iff I(T1,T2) C T2 so that (T} - Ty - Tz, <4p.q) defines a
chronology.

Example 5.1.2 In Example 1, (Th, <o) C (T} - Ty, <1 4).
This notion of chronology permits to index a composite, yet continuous content.

Illustration, part 2. Consider the second page in Figure 5.2. As stated before, it
contains three modules, containing two text lines, a figure, and one line respectively.
Following Illustration part 1, three chronologies can be defined for the annotation of
the second page: (T}, <,) over the chronometer name vpos, with T, = {y2,¥s, Y4, Y5}
(in ascending order), for the three modules delimitation; (T, <,) over hpos, with

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.1. THE EXTENDED ANNOTATION GRAPHS MODEL 79

T, = {xo,x1,z2}, for the figure decomposition into images; (T,, <.) over text, with
T, = {41,83,84,129,130, 154} , based on characters (including linebreaks) count, for
lines indexation.

By double inclusion, we can define a chronology (T, <) over T. U T, U T, so that
Yo <41 <83 <84 <129 < yz < xp <21 < x9 < ys <130 < 154 < y5. See Figure 5.3
in Paragraph 5.3 for an annotation of the second page of the document making use of
this chronology.

Definition 5.1.6 (References) In an eAG G = ((V, E), ref,label), a reference ref(v)
is associated to each node v € V. For each v, there is a unique reference space (T, <).
so that ref(v) € T..

Definition 5.1.7 (Range) Two references r; and r5 belonging to the same chronology
and sharing the same reference space identify a range within the resources, that can
be annotated.

Comment. Ranges are then annotated by defining either one or more hierarchies
of elements of the kind that was informally introduced in Paragraph 5.1.1, whose first
node(s) bears the reference value r; and whose last node bears ra.

Property 5.1.2 Be G = (V, E) an eAG, v,v' € V,e, e’ € E so that v]e|,v|e'| C G.
Then label(e) = label(e') = e = €.

Comment. This property discards eAGs in which two nodes shall be connected by
two edges with the same label, obvious case of redundant annotation (in which the
same range is annotated twice with the same label).

We now define elements, hierarchies of elements, and the other useful structures
formally.

5.1.2.4 Elements, Hierarchies and Links in eAG

eAG rest upon a notion of elements that is not unrelated to the now classic notion
of XML elements. One major difference though is that in eAG, elements are of four
different kinds, according to the class of labels their name belongs to, as indicated in

Table 5.2.
Structurally speaking, elements are defined as below.

Definition 5.1.8 (h-equality and dominance). Be G = (V,E) a graph, and be
({vo...vn },{eo...en—1}) a path included in G. Ben,m e N; 0<n <m < N.

We define h-equality (denoted ="), h-domination (denoted >") and border-h-domination
(denoted >") as follows.

vy, is said to be h-equal to v,,, denoted v, =h Uy, iff :

1. n=m OR

9The first line of page 2 starts at character 41, etc.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

80 CHAPTER 5. EAG AND SEAG

label class of the element name kind of element
Ly Elementary spanning elements
LAt Attributes
Lcom Comment
ﬁLkao Links

Table 5.2: The different kinds of eAG elements, according to the label class their name
belongs to.

2. Vj € [n,m—1], label(e;) € Lo U Law U Lcom OR

3. (Vn AP v A v AP v) AND {VE, L n < k<1< m,v, >" v Av, >0 oA, >0
Uk AU 2" v AND o =" oy V (v, > o Voo S)]}

When n # m, v, and v,, are said to border-h-dominate the nodes v;,¢ € [n+1,m —1],
denoted (vy,, vp,) >;} v, iff :

a. 3l € L; label(en) =1:In and label(em—1) = [:0ut and

b. Vj<ke€[n+1,m—1],v; ="

or Iz,y) € [j,k— 1] x [k +1,m —1]; (va, vy) >F vp Avj =" v,

or z,y) € [n+1,7 — 1] x [j + 1,k]; (v, vy) >F v; Ao =" v,

Be A, B € [0, N]. v4 h-dominates vp, denoted v4 >" vp, iff In,m e N; 0 <n <m <
N | (UnyUm) >Z v Avg =" v,.

Illustration part 3-b. Let us consider the annotation of the second page of the
document represented on Figure 5.2 page 76 as follows: it is one Page, containing
three Modules. The first Module contains two Lines; the second Module contains a
Figure; the last Module contains one Line. Additionally, the Figure contains two
Images.

The chronology we may use for this annotation has been defined in [llustration part
2: it is (T, <) over T, U T, UT,, so that yo <41 <83 <84 <129 <ys <xg <1 <
To < yg < 130 < 154 < ys.

The above hierarchical'® description translates into the following eAG:

Module:In

() _
ﬁi Figure:In Figure:Qut
Image

(>

10Tt would also be possible to edit the document by focussing on the text, by annotating it, in
an additional hierarchical layer, in terms of Paragraphs containing Lines, or Paragraphs containing
internal References, for instance, as illustrated in Figure 5.3.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.1. THE EXTENDED ANNOTATION GRAPHS MODEL 81

The blue nodes a h-equal. The green, the pink and the orange nodes are also h-equal.
The green and the orange nodes border-h-dominate the blue nodes.

The pink node h-dominates the blue nodes.

Noteworthily, the blue nodes are not h-equal to the yellow node.

Property 5.1.3 a) As a consequence of the point 2. in Definition 5.1.8, Vv|e]v’ C G:
“:LinkTo” C label(e) = v #"M v A v P o' A v %Mo
b) We impose that the reciprocal shall be true.

Comment. Point b) means that two nodes from an eAG that are connected by an
edge will have a hierarchical relationship, apart from the case the edge that connects
them participates in defining a link, which suggests that eAGs will be substantially
made out of (interlaced, possibly overlapping) hierarchical patterns.

Point a) is absolutely crucial in the eAG model. It means that two nodes separated by
an edge participating in defining a linking element cannot be compared in hierarchical
terms. See Property 5.1.8 and the subsequent comment for the practical consequences
of that fact.

Definition 5.1.9 (h-levels) Be an eAG G. Since G is connected, Yv € V,3P =
(Vp, Ep) C G a root-to-leaf path so that v € Vp. The h-level of v in P is the biggest
subset N C Vp so that Vo' € N, v’ =" .

(h-levels direct inclusion) Be a path P, N, N, h-levels in P. N, is directly included
in N,, denoted N, " Ny, iff :

1. V(vg,vy) € Ny x Ny, v, >" v, and

2. eV | v, >ho>lo,

(h-levels inclusion) The h-inclusion is the transitive closure of =". It is denoted C”.
(Pr and Sc) Now we want to structurally distinguish between the primary and the
secondary hierarchical levels, the first being indexed on the primary resources, and
the second on additional, editorial resources.

An h-level N is primary, denoted N € Pr iff:

e N is among the top hierarchical level of the eAG, i.e. AN’ so that N =" N’
and root(G),leaf(G) € N.

e OR AN’ € Pr, N C" N’ so that V(v,v') € N x N’, if Je so that v'|e|v C
G V vle|v' C G, then:
“:LinkTo” ¢ label(e) = (“:Att” ¢ label(e) and “:Com” ¢ label(e)).

An h-level N is secondary, denoted N € Sc iff:

e N is among top hierarchical levels of a link, i.e. AN’ so that N =" N’ while
VYn € N, in(v) >0 A out(v) >0

e ORN ¢ Prand VN’ C" N,V(v,v") € NxN', if Je so that v/|e|v C G Vvle|v' C
G, then:
“:LinkTo” ¢ label(e) = (“:Att” C label(e) or “:Com” C label(e))

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

82 CHAPTER 5. EAG AND SEAG

Illustration part 3-b. In the hierarchical annotation defined in Illustration part
3-a, the colours show the sets of nodes that define a h-level.

The blue h-level is directly included in the orange one, and (indirectly) included in
the green one.

Example 5.1.3 Consider the following eAG:

The grey level is primary, because it is not inserted in any other one.

The yellow and blue levels are primary, because they are included in the grey one by
means of edges whose label does not contain Att or Com.

The pink, purple and green levels are secondary.

Property 5.1.4 Be G = (V, E). We enforce that for all N h-level of G, N € PrUSec.

Definition 5.1.10 (Element) Be G = (V, E) an eAG. Be J C N, so that {H[,j €
J, L € L} is the set of rooted, connected and single-leafed subgraphs H} = (V;*, Ef) C
G verifying, Vj:

a. Je,e¢’ € E| HHJ-L’i"t rooted, single-leafed and connected, so that:
1. H}" = root(H;) LeJroot(HjL’Mt) U HJLM U leaf(HjL’mt) L€/ [leaf (H)
2. AND label(e) = L:In and label(e’) = L:0ut
3. AND Ve edge of H;""™, :LinkTo ¢ label(e")

b. VX C G verifying condition a. and so that: ‘
(root(XTim) leaf(XTint)) = (root(H; ™), leaf (H ™)),
then XL g Hj.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.1. THE EXTENDED ANNOTATION GRAPHS MODEL 83

The elements of G are the items of the set made out of the union of the sets of
subgraphs U and {H}',k € K, L € L} defined by:

-U={vle]v CG;

- K C JsothatVj € J,3k,1 € K | root(H;"™") = root(H;,"™") A leaf (H"™") =
leaf(H["™), and so that Vk,l € K,k # I, HY'"" ¢ HP"™ A HP™ ¢ HE™ =
H]f,znt N HlL,znt — @

A well-formed eAG must finally conform to the following condition: Vv € V so that
thereisjeJ, LeL|veE V}L, then there is an element H,f so that v € VkL.

Example 5.1.4 Consider the two following graphs GG; and G, both compliant with
Definition 5.1.6-9 and Properties5.1.2-4:

The first graph, G1, conforms to all the conditions in Definition 5.1.10, and itself, as
a whole, is an element (relative to the label A), since it is the sole member of the
most numerous set {H]A} of graphs conforming to conditions a. to d. with L = A ; it
also contains a basic element (relative to the label B), made out of one edge and two
nodes. It also conforms the well-formedness constraint expressed above. Actually, it
is a canonical example of a hierarchical eAG.

The second graph, Go, is different in that two subgraphs Hi{' and Hj', respectively
represented in purple and light blue, conform to the conditions a. to d. of the above
definition, with the same L = A ; still, the two graphs share their root. For that
reason, according to the definition of the elements, only one among the two can be
part of the elements’ set (in which two graphs cannot share either root or leaf) ; yet if
either the purple or the light blue graph was elected as an element, the well-formedness
condition at the end of Definition 5.1.10 should not be satisfied: indeed, if the purple
graph were chosen, then the leaf of the blue one, while taking part in an edge labelled
A:0ut, would not be part of an element related to the label A (and conversely if the
blue graph was to be chosen). This means that the graph G5 is not a well-formed eAG
to begin with.

Forbidding two elements, related to the same label but not included one in the other,
to share any edge may seem an arbitrary limitation to expressiveness. Still, lllustration
part 4 below shows that Definition 5.1.10 sets patterns that look like elements, but
are not, apart; Paragraph 5.1.2.5 proves that the above restriction is minimal for the
expression of multitrees in eAGs.

Illustration part 4. The following subgraph HM°?ul¢ of the eAG represented on
Figure 5.3 verifies the properties a. and b. listed above:

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

84 CHAPTER 5. EAG AND SEAG

HlModule

Line ine

Module:In

8o

Line

Still, it is not an element of the aforementioned eAG. Indeed, it is possible to find two
other subgraphs H2{edule and HModule verifying conditions a. and b. as well, and so
that:

- root(= root(HMedu!¢) while there is no other HM°%!¢ verifying a. to
d. so that leaf(HMedue) = [eaf(HM), and

Héwodule)

- leaf(HoMle) = Jeq f(HModule) while there is no other HModue verifying a.
to d. so that root(HMoMule) = root(Hifodule),

Those subgraphs H27edule and HModule are the following:

Module:in Module:Out Module:In Module:Out

Line

Line

On the contrary, those two subgraphs are two elements of the eAG we consider here,
since they are part of the subset of all {H}M odulel of all the subgraphs verifying con-
ditions a. to d. for L = Module that abide by the last condition of Definition 5.1.10.

Property 5.1.5 Be G = ((V, E),ref,label) an eAG. The above imply that Ve € E,
label(e) € Ly, (resp. Loyt) is the first (resp. last) edge of at most one element.
We enforce that it shall be the first (resp. last) edge of at east one element also.

Comment. This is a way to ensure that any edge suffixed :In shall go with its
corresponding :In edge, and that they define an element together.

Property 5.1.6 We impose the following properties regarding the content of each
kind of elements, as defined in table 5.2:
1. An attribute element contains only attribute elements.

2. A Comment element may contain comments, attributes and elementary spanning
elements.

3. An elementary spanning element may contain comments, attributes and elemen-
tary spanning elements.

4. Be L alink element. Then its root and leaf are nodes that belong to the attributes

of some other element(s).

Comment. This property is consistent with the notion of covering chronologies (see
Property 5.1.8 below).

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.1. THE EXTENDED ANNOTATION GRAPHS MODEL 85

Module:Out

Figure 5.3: An eAG representing Figure 1 and a way to browse through it (arrows).
Grey edges are for reading assistance (they span over the paths defining a struc-
tured element). Speech balloons show reference values (shades differenciate between
chronometers), from a chronology extending (T, <) (cf.Illustration, part 1) in order
to detail the content of Page one and a Ref (“[a]” in the text) between characters 150
and 153.

Property 5.1.7 Be A # B two elements. We enforce that:

(leaf(A),root(A)) >P root(B) < (leaf(A),root(A)) >h leaf(B).

Comment. It means that two elements whose roots and leaves are either on the
same h-level or on h-levels included one into the other either are consecutive (directly
or not) or include one another. Paths connecting the root of an eAG to its node
and made only out of consecutive and inclusive elements will be referred to as “linear
annotation paths”. An eAG contains several such paths which, individually, represent
a given annotation paradigm a la XML, since they can be modelled as ordered trees
of elements. However, in an eAG, some elements can very well appear simultaneously
on several such paths (c.f. Illustration, part 4). This means element hierarchies share
items: an eAG can be modelled by no less than a multitree. Eventually, because edges
whose label contains “:LinkTo” are unrestricted, they can connect any nodes together,
which may result in a cyclic graph.

INlustration part 5. (Linear annotation paths) Figure 5.3 shows an eAG repre-
senting the document illustrated in Figure 5.2. It contains three competing linear
annotation paths. The arrowed path provides a layout-oriented Page description,
fragmented into Modules, Lines, Figures and Images. Another identifies a Ref inside
the text of the Paragraph. The last path splits Paragraphs into Lines. Lines are shared
elements with the first path; they are also the only shared elements. For instance, the
Paragraph does not include the Figure element, since there is no h-inclusion between
the h-levels where the roots and leaves of the two elements appear.

(Structured element, Link) The Ref element containing another element, which is its
attribute element. Ref annotates the string “[a]” from the text. Graph-wise, it is

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

86 CHAPTER 5. EAG AND SEAG

a structured element, since it contains more than one edge. It also points towards
the second Image on another annotation path by means of an edge suffixed:LinkTo,
originating in its attribute element.

Property 5.1.8 (Covering chronologies) We enforce that:

1. Bean h-level N. (T, <) a chronology, 3lc € C so that Vv € N,ref(v) e TNT..
This defines a sub-chronology (T, <y) so that Ty = TN T, and <y=<,.

2. Be (N,N/)G,P’f‘z. N' CN= (ITn,<n)C(Tn,<n).

2bis. Be (N,N/)ESCQ. N/[N:><TN/,§N/> - <TN7§N>~

3. Be v|e|v’ so that I(N,N’) € Pr? (resp. Sc?) so that (v,v') € N x N’ and
:LinkTo ¢ label(e). Point 1. or 2. (depending on N = N’ or N’ # N) ensure that
there is a chronology (T, <) so that ref(v),ref(v') € T. Then ref(v) < ref(v’).

Comment. The above property implies that the reference values of the nodes of
two consecutive h-levels of the same kind (either both Pr or both Sc¢) have to be
comparable (in the sense that they can be assembled into a common chronology), so
that he structural and the referential order between those nodes match. This is the
condition for hierarchical annotation to be correct:

Let us consider the following eAG:

A:ln A:QOut

@@+ @@

It contains two h-levels, the pink one being included in the green one. The annotation
only makes sense if the span of the content annotated by the element B (ranging
from 71 to r3) is encompassed by the span of the element A (ranging from rg to r3).
If so, then rg < r; < ro < r3, which means that the sequence of reference values
[ro;71;72; r3] does constitute a chronology. Conversely, would the reference values not
fit into a chronology in their order of appearance along the graph (e.g. if r; < 7o),
the annotation would not make sense (B would be declared as included in an element
that does not span over B).

Interestingly, the chronological requirement expressed in the above definition does not
apply in two interesting cases: when the consecutive h-levels are not of the same kind
(one being Pr and the other one Sc) or when no h-relation is defined between two
nodes connected by an edge (which happens for links only — see Property 5.1.3.b.
page 81).

However, because the above restriction only applies to linear hierarchical paths that,
by definition, contain no :LinkTo edge, it is possible to define a linear path whose leaf
has a smaller reference value than their root — those are links.

Regarding the situation in which N’ =" N with N € Pr and N’ € Sc: $t is just
normal that the reference values of the attributes of an element shall not be compared
to the reference values of the nodes of the element itself, since the two do not index
the same content at all.

Regarding the situation in which N’ " N with N € Sc and N’ € Pr: due to
Property 5.1.6, it may only happen in case of some Elementary spanning elements

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.1. THE EXTENDED ANNOTATION GRAPHS MODEL 87

being included in a comment element. This is what we call a quote, which is a
special structural pattern that enables the editor to make explicit reference to some
annotated content from the inside of a comment. An example of quote can be found
in the eAG represented in Example 5.1.3 page 82. Here again, in order not to restrict
the position of the quoted element in the annotation based on the position of the
quoting comment, it is clear that we shall not require the reference values of the nodes
of the quoting and quoted element to be neither comparable nor to be chronologically
ordered. Importantly, because of the lack of this requirement, quotes may very well
result in cycles in the graph — which is a first example why eAG graph structure is
cyclic.

Eventually, because by definition, there is no h-relation between the nodes involved in
edges whose label contains :LinkTo, the reference value of the root and the edge of
a link element are unrestricted. This enables to link any pair of elements. Links also
can result in cycles in the eAG (e.g. the link goes from the second of two consecutive
elements to the first).

To conclude with, we provide the definition of two important features of eAG,
that enable to express multilayer, overlapping annotation: Accidental nesting (or co-
occurrence) and overlap:

Definition 5.1.11 (Accidental nesting) Be an eAG G and A, B two elements. B is
accidentally nested in A iff there are:

- two linear annotation paths P; = (Vi, E1), Py = (Va, E»), their covering chronologies
(T1,<1), (Te,<3) and N4y C Vi, Ng C V5 the h-levels (in P; and P» resp.) so that
root(A),leaf(A) € Na and root(B),leaf(B) € Ng, and

-c€C,IN,N'; N Ch Ng, N’ D" N verifying N C Vi, N’ C Vs, and 3(vy,v,) € N2,
(vg,vy) € N2, so that:

1. ref(vy),ref(vy),ref(vy), ref(vy) € Te

2. ref(root(A)) <iref(vy), ref(vg) <1 ref(leaf(A))

3. ref(vy) <g ref(root(B)), ref(leaf(B)) <o ref(vy)

4. ref(vy) <cref(vg) <cref(vy) <cref(vg).

(Overlap) A and B overlap (with A first) iff the above paths, h-levels, chronometer
and nodes exist and verify:

1. ref(vy),ref(vey),ref(vy), ref(vy) € Tt

2. ref(root(A)) <1 ref(vy) <. ref(vy) <o ref(root(B))

3. ref(leaf(A)) <y ref(vy) <cref(vy) <o ref(leaf(B)).

Example 5.1.5 In Figure 5.3, since the elements Figure and Paragraph are not on
the same linear annotation paths, they cannot include one another. However, Figure
is accidentally nested inside the Paragraph, since the Paragraph ranges from character
0 to character 154, values that compare with y3 and y4 on the covering chronology for
the arrowed path.

Ilustration part 6. (Linear annotation paths) One can check that it is possible
to extend the composite chronology (T, <) defined in Illustration, part 2 to cover the
whole arrowed path in Figure 5.3, so that for any node v preceding a node v’ along

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

88 CHAPTER 5. EAG AND SEAG

this path, ref(v) < ref(v’).

(Inter-chronometers comparisons) Cross-chronometer assessments can be made on an
eAG. First example, because in (T, <), xo < 130, we know that from a (top-down)
layout point of view, the second image precedes the last Line. (Cross-linear paths
comparison) Cross-linear annotation path assessments can also be made, thanks to
the notions of accidental nesting and overlap. E.g. Ref is accidentally nested in the
last Module, because this Module h-includes the Line delimited by characters 130 and
154, while Ref ranges from character 150 to 153. Then, it is possible to assess that the
Ref shall be located further than the last Image, from a descending layout point of
view. The edge labelled Refer:LinkTo (which is a link) does not respect the inferred
reference order, which is not contradictory with the eAG model.

5.1.2.5 Elements in an eAG: Precisions

Definition 5.1.10 assesses that two elements related to the same label and not included
one into the other will not share any edge or any internal node, that is, any node
but their respective root or leaf. Let us call this property Limitation E. We briefly
circumscribe the structural patterns such a limitation allows and forbids on eAGs.
Then, we move on to define what a multitree may look like in eAGs. Eventually, we
justify why Limitation E is minimal to allow a proper representation of multitrees in
eAG.

Let us start by illustrating some canonical elements as defined by the Definition
5.1.10. First, an element may contain parallel annotation paths:

Those two patterns evidence that an eAG can represent overlapping elements (first
example, elements a and § possibly, depending on the value of their respective right
and left references) inside another element (related to label X, here), as well as mul-
titrees (second example), that is, hierarchies of elements sharing subtrees (e.g. Z).

Still, not all multitrees can be represented. For instance, if one wanted to represent
an element Z included, on the one hand, in an element X, along with an element a
and an element b and, on the other hand, in another element X but this time along
with two elements a and [, she could be tempted to draw the following graph:

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.1. THE EXTENDED ANNOTATION GRAPHS MODEL 89

Let us call the pattern represented here an X-pattern. The problem raised by this
graph is that it is impossible to determine, by a structural analysis, which of the edges
labelled on L;, goes along with which edge labelled on Lo.:!'. Considering each
path bounded by a pair of edges labelled on Ly, and Lo, respectively to define an
element would contradict the multitree structure at stake, which does not specify the
possibility to have a, Z and 3, for example, included in the same element X. Hence
the need to forbid such a situation.

Another situation that we do not want to forbid, but to disambiguate, is the one
represented in [llustration part 4, page 83, which illustrates a situation typical of mul-
titrees. In that case, the element Line is a leaf, shared by two hierarchies: one whose
inclusive order of elements is Page>M odule>Line, the other one Paragraph>Line.
What happens is that the Line elements, that are included in separate Module ele-
ments, are connected by e edges in the context of the Paragraph element; however,
the fact that the first Line element follows a Module : In label, and the last Line
element precedes a Module : Out label, yields a subgraph that mimics an element
without being one. This situation can be synthetised as follows, and referred to as
W-pattern:

Also, the question that arises in the light of the last two examples is: not any
two edges labelled X : In and X : Out, linked by a connected graph made out of
parallel paths (called in-out pairs hereafter), define an element. Some conformations
are illegal, and in others, we have to pick out the element-defining pairs.

From the analysis of the X-patterns, one can conclude that it must be illegal to
have four in-out pairs (e}, el), (€2,€2), (e3,ed), (e}, el) so that e} = e? # e = e} and
el = e3 # €2 =el. Let us call this constraint Limitation X.

From the analysis of the W-patterns, we understand that among the set of in-out
pairs, if there are three pairs (e}, el), (e2,€2), (€3, e2) so that e} = e? and e} = €3, and
so that there is no other pair in which e} appears in first position and €2 in second,
then it means that the element-defining pairs are (e?,e2), (e3,e2). Let us call this
criterion Criterion W. Indeed, the belonging of any edge to an in-out pair implies
that, provided the graph is a well-formed eAG!2, the edge is part of an element (so
that the last property in Definition 5.1.10 be verifiable); the exclusive belonging of an

edge to an in-out pair implies that the pair does define an element.

11 Going back to the schema would not help. A schema defining such a multitree as described
above would contain the same ambiguity as pointed here.

12By contraposition, a graph for which the selection of element-defining pairs shall leave edges
that appeared in an initial pair out of any element is not well-formed.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

90 CHAPTER 5. EAG AND SEAG

At this point of our reasoning, one might notice that the above exclusiveness cri-

terion of edges in the element-defining pairs is not equivalent to Limitation E. In
particular, it does not forbid the pattern discussed in Example 5.1.4, that we might
call the Y-pattern, in which two eligible subgraphs share either their In or their Out
edge, but keep the other one exclusive. The reason why this pattern is forbidden fol-
lows:
Suppose that Y-patterns are allowed. Then, if we simply stick to Limitation X and
Criterion W, in the following graph, one shall see two elements, one spanning from e
to e4, and the other one from e5 to eg, the two being distinguished by the exclusive
aspect of their Out edge (hypothesizing Criterion W to be sufficient):

Unlike the X pattern, the Y pattern does not trigger a combinatory correspondence
of In and Out edges connected by a connected union of paths, and as such seems
meaningful. It also abides by the Criterion W. The problem is that the YY-pattern
below, which does not trigger a combinatory correspondence of In and Out edges
connected by a connected union of paths either'3, is rejected by the Criterion W:

Actually, since the YY-pattern makes no less sense compared to the Y-pattern, for
each Y-pattern inside the YY-pattern can be interpreted independently, it seems that
the Y-pattern is just a particular case of a pattern that cannot be legal, given we
cannot do without Criterion W which disambiguates W-patterns that are typical of
multitrees, and that we want eAGs to express multitrees.

Also, in order not to over-particularize Y-patterns, we decided to found the definition
of elements on a stricter criterion than the Criterion W backed with Limitation X. We
say that an element related to label X is defined by two exclusive in and out edges,
that appear in no other X element, and that all edge labelled either in Ly, or in Lo
must belong to an element. This is Limitation E. Note that it implies Limitation X,
forbids both Y-patterns and YY-patterns, in a consistent approach, and enables the
expression of multitrees, apart from those described previously.

5.1.3 Conclusion

To sum up, an extended Annotation Graph is a connected, directed and labelled
graph whose nodes bear references values. An eAG is made out of smaller, structured
subgraphs we call elements. Those can be of different kinds: elementary spanning
elements, that play a similar role as elements in XML, but also attributes, that permit

13Indeed, turning a Y-pattern into a YY-pattern can be done by inserting one h-path, and this
insertion adds only one more pair to the set of in-out pairs discussed on.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.2. SCHEMA MODEL 91

to qualify other elements further, links and quotes, that permit the insertion of critical
information (notes and comments).

Structurally speaking, an eAG possesses one root and one leaf, connected together by
paths that, individually, and provided they do not contain links, denote a hierarchical
annotation — we call them linear annotation paths, in the sense that a linear anno-
tation path is composed out of elements that either follow or include one another.
Informally, an eAG is composed of several linear annotation paths sharing items and
connected together by :LinkTo edges. The resulting graph is cyclic and permits the
expression of multilayer annotation.

Now we want to define a schema model for eAG. Schemas are a means to define
the allowed elements/attributes and their mutual relationships (consecutiveness, in-
clusion, existence of :LinkTo connexions) for the matching eAGs. Since elements,
attributes and relationships have a homogeneous edge-based representation, eAG vali-
dation needs be no more than a graph description formalism, which simulation is [37].
Roughly speaking, a SeAG shall be a graph that simulates the eAG — see below.
Hence, in the next paragraph, we define SeAG, a simulation-based schema model for
eAG. It relies on a notion of simulation we derive from the classic simulation relation:
node-typed simulation. This notion rests upon the idea that the nodes of an eAG may
be typed, that is, may be added a certain value, that implements the correspondence
between the nodes of the eAG and the nodes of the schema. We also need to be able
to make reference to nodes and edges individually, by means of an identifier.

Definition 5.1.12 (node types) Be 7 and Z two infinite sets of values. We call
t € T anode type, ¢ € Z an identifier.

Definition 5.1.13 (eAG node types, edge and node identifiers.)

Be G = ((V, E),ref,label) an eAG. Then we define the function type : V.— T,
that associates a type value to each node of G. We also define the injective function
id: VUFE — 7, that associates an identifier to each node and edge of G.

Nota. Because type is a function, then it means (in particular) that a node has one
and only one type. The same applies for id.

5.2 Schema Model

As we have seen, eAG belong to a very open family of graphs, namely, cyclic graphs.
Yet an eAG is semantically structured into “linear annotation paths”’, that are con-
nected together by links. Those paths start at the root of the eAG, that is unique, and
go until the leaf of the eAG, also unique. Thus, eAGs are “mostly linear”, and there is
a natural pair of entry and exit nodes between which annotations read, as a sequence
of labels. This reminds very much, actually, finite-state machines or automaton.

eAG validation can be enlightened by exploring further the analogy between eAG and
automaton. We will start this presentation in that direction, by defining the notion
of language of annotation. We will then show that validating a cyclic graph eAG an-
notation can be interpreted as restricting its language of annotation. A schema may

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

92 CHAPTER 5. EAG AND SEAG

then be a graph, defining a (schema) language of annotation Lg and a valid instance
shall then be a graph whose language of annotation L; is included in Lg.

Second, we will see that this general principle can be operated by using simulation as
a validation mechanism. Third, we compare simulation, as a validation mechanism, to
tree-automaton-based simulation as implemented in relax-NG and show that, from a
structural point of view, the two mechanisms are comparable for the validation of hier-
archical annotations — while simulation extends to non-hierarchical annotations easily.
Eventually, we discuss certain characteristics of SeAG schemas, including ambiguity
and redundancy. This discussion will lead to the definition of a notion of equality for

SeAG.

5.2.1 Finite-State Machine Analogy

5.2.1.1 The Notion of “Language of Annotation”

Extended Annotation Graphs are cyclic, labelled, directed and connected graphs, pos-
sessing one root and one leaf, so that each node of the graph is attainable from the
root by a directed path. An eAG is also finite (its sets of nodes and edges are not
infinite). If we set apart the fact that nodes bear a reference value, the eAG model
matches the Finite-State Machine [134, 128] quite well.

Definition 5.2.1 : Finite-State machine. A Finite-State Machine (FSM) A is a
tuple (Ft, Al, Tr,In, Fn) so that :

e Kt is a finite set of states;

e Al is a finite set of labels ; it is also called the alphabet onto which the ;

e T'r is a relation on Et x Al x Et called the transition relation ;

e [n C Et is the set of initial states of A;

e I'n C Et is the set of final states of A.

Definition 5.2.2 : set of FSM built on the alphabet Al. The set of FSM whose
labels belong to Al will be denoted @y;.

Definition 5.2.3 : how it works. Be A € .&74;. In intuitive words, a word u € Al*
is “accepted by A” iff there is a sequence of transitions allowed by A from an initial
state to a final state so that the concatenation of the labels from that sequence of
transitions spells u.

Formally, the operation of A = (Et, Al, Tr,In, Fn) is defined as follows:

e A FSM configuration (S,u) is characterized by a set of states S C Et and a
string u € Ab*, that is the end of the input word to be analysed.

e The configuration (S, ’) can be derived in one step from the configuration (.5, u)
(denoted (S,u) = (S',u)) iff u =a.w’ and Vv € S,F" € §' | (v,a,v") € Tr.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.2. SCHEMA MODEL 93

e The configuration (S”,u”) can be derived in one step from the configuration
(S,u) (denoted (S,u) = (S”,u")) iff (S”,u") can be derived from (S,u) by a
finite sequence of 1-step derivations.

e A word w is accepted by A iff (Sp,w) = (S, €), where Sy C In and Sy C Fn.

e The language lang(A) of the FSM is the set of the words A accepts.

Notation. Be a FSM A = (Et, Al, Tr,In, Fn). For a given configuration (S,u) of
A, the FSM will be said to be in the state v iff v € S. This situation will be denoted

(v).

Definition 5.2.4 : ¢ transition in a FSM. There is a particular transition, clas-
sically denoted ¢, defined as follows [128]: Be (v,€,v") € Tr. Then V(S,u), (v) = (v').

Analogy between eAG and FSM. An eAG G = (V, E) can be seen as a spe-
cial case of FSM: 1) V. = FEt; 2) L = Al; 3) E = Tr; 4) {root(G)} = In; 5)
{leaf(G)} = Fn. Preuve. Ouly point 3) requires a justification. It comes from
Property 5.1.2 page 79, that asserts that in an eAG, an edge e can identified by the
triple (sut(e),label(e), end(e)).

In short, an eAG can be seen as a FSM with additional values on its nodes: type,
reference values, identifier... Thus, we can define the “language” of an annotation
graph as follows:

Definition 5.2.5 Be an eAG G = (V, E). A sequence of labels seq € L* belongs to
the annotation language of G iff seq is accepted by the FSM over £ corresponding to
G.

The annotation language of G will be denoted .Z(G).

5.2.1.2 Regular Expression-based Language Representation

The language of FSM can be represented in a synthetic manner by means of regular
expressions [181]. The notion relies upon the concept of language L over an alphabet
3, L being a subset of ¥x.

Definition 5.2.6 Be L and L’ two languages over the same alphabet.
e Concatenation: L L' ={axy;z € LAy € L'}
e Union: LIL' ={x e L,ye L'}

e Kleene closure:

- 0= g
— k= .[F1
€N

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

94 CHAPTER 5. EAG AND SEAG

e | operator: with the above notation, L™ = U L
i>0

e Optionality: L? = LU {e}
Among those operators, *, + et 7 have the highest priority, followed by - and then |.
Definition 5.2.7 : Regular expressions and related languages Be X an al-

phabet. let us denote RE the set of regular expressions on Y. RE and the function
Zrp : RE — 27 that associate a language to a regular expression are defined as

follows:
RE LRE

e cc RE o Lri(e) ={e}

e J € RFE ° gRE(Q):w

e VacX a€cRE o Zrp(a) ={a}

o VE . F € RE : e VE.F € RE :
— FUF € RE —XRE(EUF):XRE(E)UXRE(E)
— FE-FeRFE *fRE(E-F):ZRE(E)-zRE(E)
— F* € RE — Zre(E*) = Zre(E)*
— Et € RE - Zrp(EY) = Zrp(E)*

Property 5.2.1 RE is closed under the operations of union, concatenation and
Kleen closure.

€ RE. The

Definition 5.2.8 : Language inclusion. Be an alphabet X, 7,7’
r) C L) iff Yu €

language of r is included in the language of 7/, denoted .Z(
Y, uf(r) =ue L")

5.2.1.3 Language of an eAG: Interpretation

To illustrate the notion of annotation language and how it may be connected to the
notion of validation, let us take the example of an editor wanting to annotate the
document provided on Figure 5.2 page 76, in terms of Pages, Modules, Lines, Figures
and Images. A corresponding eAG is:

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.2. SCHEMA MODEL 95

Since it is linear, the annotation language of the eAG is limited to one word u:

U= Doc:In - Page:In - Module:In - Line - Line - Module:0Out - Module:In - Figure:In -
Image - Image - Figure:Out - Module:0Out - Module:In - Line - Module:Out - Page:0ut
Doc:0ut

This word from the language of annotation, which does describe the annotated docu-
ment, can be seen as a particular instance of a general model for documents, assessing
that a Page may contain one or mode Modules of two kinds, depending on their con-
tent: the first kind contains either one or more Lines while the second contains one
Figure, that being made out of one or two Images. This model can be represented by
the following regular expression r; over L:

7] =Doc:In :(Page:In { Module:In - Line+ . Module:Out | Module:In
Figure:In - Image (Image)? Figure:Out - Module:Out }+ Page:Out)+ Doc:In

One possible automaton'# corresponding to this regular expression is the following:

As it happens, the language of the eAG is included in the language of annotation of
this graph — as would be the language of an eAG annotating a Page with, for instance,
four Modules each containing one Line and two Figure, etc.

And as it happens, this automaton also simulates the eAG above (see Paragraph 5.2.2.2).
Let us now shift from the hierarchical annotation of the document represented on Fig-
ure 5.2, and complement it with an additional description in terms of Paragraphs and
internal References, that may point from the text towards an Image. As we have seen

14Tndeed, several automaton may represent the same regular expression, as discussed in Para-
graph 5.2.3.1.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

96 CHAPTER 5. EAG AND SEAG

previously, a corresponding eAG is given on Figure 5.3 page 85.
Now, the annotation language of the completed eAG contains more than one word:
aside of u, there are also:

1. regarding the annotation in terms of Paragraphs and Lines:
V= Doc:In - Paragraph:In - Line - Line - Line - Paragraph:0ut - Doc:0ut
2. regarding the annotation in terms of Paragraphs and Refs:

W= Doc:In - Paragraph:In - Ref:In - Ref:Att:In - Ref:Att:0Out -
Ref:0ut - Paragraph:0ut - Doc:0Out

3. regarding the existence of a link Refer between the Ref and the second Image
in the Figure:

W= Doc:In - Paragraph:In - Ref:In - Ref:Att:In - Refer:LinkTo Image:Att:0Out -
Image:0ut - Figure:Out - Module:0Out - Module:In
Line - Module:Out - Page:0ut - Doc:0ut

Once again, the two first paths can be seen as an instance of a more general pattern:

1. The Document contains one or more Paragraphs each containing one or more
Lines, which may be represented by the following regular expression:

T9= Doc:In -(Paragraph:In - Line+ - Paragraph:0ut -)-+ Doc:0Out

2. Each Paragraph may also contain one or more Refs, that is an element containing
a void attribute that will serve as the origin for a possible link:

r3= Doc:In [Paragraph:In -(Ref:In - Ref:Att:In - Ref:Att:Out -
Ref:0ut)*- Paragraph:Out |+ - Doc:0Out

Yet it has to be stated that the Line in the regular expressions r; and 75 are the same,
which is a way to say that a Line may belong both to a Paragraph and to a Module.
A possible schema representing those two regular expressions taking into account the
commonality of the Line element between r; and o (and declaring the possibility of
there being links between Refs and Images) is represented in Figure 5.4.

And as it happens, this SeAG, that schema that represents, in one move and harmo-
niously, the three regular expressions r; and 7o and r3, the fact that that 1 and 7o
share symbols, and the links, also simulates the eAG...

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.2. SCHEMA MODEL 97

Image:Out 4 Image:in Image:Out

/ Module:in 4 4 Module:Out N
Doc:ln % @_\b Doc:Out
@) Paragraphin .~ | % Paragraph:Out_)~

Refin Ref:Out

RefAtt:In Ref:Att:0ut

Figure 5.4: SeAG schema validating the eAG given in Figure 5.3.

5.2.2 The SeAG Model, Formally

The above qualitative introduction to eAG validation, provides — beside some key
notions that will be helpful for the upcoming discussions (regular expressions, au-
tomaton, etc.) — with a philosophical statement, that can be summed up as follows:
An eAG is made out of several interlaced linear annotation paths, connected together
by means of links. The editorial information is thus conveyed by: 1) the sequence of
labels along each hierarchical path; 2) the way those paths interlace; 3) the set of links
that connect elements together; 4) the reference value of each node.

We claim that a Schema for eAG shall provide the user with the means to control
the three first features, the reference value each node of the eAG shall bear being
restricted by the eAG data model (and Property 5.1.8 in particular). For that pur-
pose, as illustrated above, schemas can be graphs that roughly share the same syntax
as eAG, whose annotation language covers the whole range of annotation that seem
relevant to the editor. Simulation shall then be used as a validation mechanism.

5.2.2.1 SeAG Graph Model and Instantiation Function

Let us now define Schemas for eAG (SeAG) and their relation to eAG formally. Basi-
cally, SeAG edges share the same syntax as eAG edges; inclusion is defined a similar
way, and so are elements. Still, SeAG nodes do not bear any reference value.

Nota. We remind the reader that an eAG G is atuple G = ((V, E), ref, label, type, id),
where G is a rooted, single-leafed, directed, connected, labelled graph where type :
V — T, is a function that associates a type value (an element of 7) to each node
of G, and id : VU E — T is an injective function that associates an identifier (an
element of 7) to each node and edge of G.

Definition 5.2.9 An eAG schemas, denoted SeAG, is a tuple ((Vs, Eg), label, type, id, §),
where (Vg, Eg) is a directed, connected, labelled graph with one root and one leaf only.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

98 CHAPTER 5. EAG AND SEAG

Its labels fall into Definition 5.1.2. It verifies Properties 5.1.1-7.

¢ is the instantiation function, that is to be defined in Definition 5.2.2 below. Impor-
tantly, both functions type : V¢ — T and id : Vg U Eg — 7T are injective.

Note that two nodes are not allowed to be connected by two edges with the same label
(cf. Property 5.1.2).

Comment. The closeness of the eAG and the SeAG graph model and syntax, that
is connected to the fact simulation will be defined as the validation mechanism for
eAG, is also motivated by our problematics, that is to provide an annotation model
in which schema amendments, that are to be operated by hand, shall translate into
a transformation that shall translate, semi-automatically, the instance of the original
schema into a possible instance of the amended schema. The closeness of the models of
schemas and instances is designed to facilitate the derivation of that transformation on
the instances from the amendment (i.e. transformation) on the schemas. See Part IV.

Nota. The most important difference between the eAG and the SeAG models, apart
from the presence of the instantiation function §, is the fact that two nodes of a
schema cannot share the same type, while two nodes of an eAG can. The instantiation
paradigm for eAG/SeAG couples rests upon that asymmetry:

Each node of a schema defines a type, characterized by a type value but also by its
context, that is, by a series of labelled edges connected to other nodes of the schema.
In a eAG that validates against a schema, each node of the eAG actually instantiates
such a node type, that is, corresponds to one and only one node of the schema. Several
nodes of the eAG may relate to the same node of the schema. The authorized edges
between two nodes of the eAG are the labelled edges that exist between the nodes
of the schema that correspond to them. This way, the eAG may only contain label
sequences that can be read in the schema, and the way two linear annotation paths
from the eAG interlace is also restricted by the schema.

This validation paradigm is embodied by the following § function:

Definition 5.2.10 Be a SeAG S = ((Vs, Eg), label, type,id,d). Be an eAG G =
((V, E),ref,label, type,id). They form a schema-instance couple iff the instantiation
function ¢ is defined on £ UV — Eg U Vg so that:

e Vv eV, lvg € Vg | v = 5(1))
Ve € E,Jleg € Es | eg = d(e)

e in particular, root(S) = é(root(G)) and leaf(S) = d(leaf(G))

e Vu,ug €V X Vg, vg = 0(v) & type(v) = type(vs)
Ve,es € E x Eg, es = d(e) < label(e) = label(eg) A sut(eg) = d(sut(e)) A
end(eg) = d(end(e))

o V(vle]v) C G, (5(v) [(e)] 6(v")) € 5

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.2. SCHEMA MODEL 99

Equivalent formulation. A SeAG S = ((Vs, Es),label, type,id,d) and an eAG
G = ((V, E),ref,label, type,id) form a couple iff Yv|e|v' C G,3lvgles|vy C S so
that:

L. type(vs) = type(v)
2. type(vg) = type(v')
3. in particular, type(root(S)) = type(root(G)) and type(leaf(S)) = type(leaf(G))
4. label(eg) = label(e)

Definition 5.2.11: node and edge instantiation. Be S,G a schema-instance
couple. A node v € V will be said to instantiate vg € Vg iff éy(v) = vg, and an edge
e € E will be said to instantiate es € Eg and dg(e) = eg.

5.2.2.2 Schema-Instance Relation: Node-typed Simulation

We have defined the validation paradigm that operates between schemas and instances.
This relation can be formalized as a special kind of a well-studied relation, that is,
simulation. Simulation in general was introduced by Milner [123] in the context of
FSM. Intuitively, an automaton B simulates another automaton A if the output of B
is the same as the output of A, for any input word. The notion was then diversified
into specialized kinds of simulation for different purpose [149].
Simulation was first operated as a structure-descriptive mechanism for semistructured
(S-S) data [171, 3]. S-S relied upon a cyclic, unordered, directed, edge-labelled graph
model called the Object Exchange Model (OEM). In a S-S database, a Dataguide
[86] or a Graph Schemas [37] is a graph inferred from the data, that simulates the
data graph itself, so that it provides a structural description of the data that can be
exploited for querying.

The classic definition of simulation is the following. In this definition, ex denotes
a sequence of € edges.

Definition 5.2.12 : Weak simulation. Be two directed, labelled graphs A =
(Va,E4) and B = (Vp, Eg). A weak simulation of A by B is a relation D C V4 x Vp
so that:

IF (va,,vB,) € DA (va, |€*.€a,]va,) C A, with label(ea,) # e,

THEN Jvp, € Vp|(vp, |€*.eB, | vB,) C B Alabel(ep,) = label(ea,) N (va,,vB,) € D.

For rooted graphs, it is required that the pair of roots belong to D.

typ.
Let us denote the fact there is a weak simulation of A by B: B A,

The above definition is clearly FSM-oriented, since it considers ¢ edges as special
transitions that are consumed whaterver the input letter. A more graph-oriented
version of simulation was proposed in [149], where all the edges are considered equally,
regardless of their label. This is called strong simulation, in the sense that the existence
of a strong simulation between two graphs implies the existence of a weak simulation
between those graphs, but not conversely.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

100 CHAPTER 5. EAG AND SEAG

Definition 5.2.13 : Strong simulation. Be two directed, labelled graphs A =
(Va,E4) and B = (Vp, Ep). A strong simulation of A by B is a relation D C V4 x Vg
so that:

IF (va,,vB,) € DA (va, lea, Jva,) € 4,

THEN 3Jup, € Vp|(vp, lep, | vp,) C BAlabel(ep,) = label(ea,) A (va,,vB,) € D. Let

strong

us denote the fact there is a strong simulation of A by B: B < A.

Regardless of the kind of simulation, we have the following property.

Definition 5.2.14 : maximal simulation. Be two graphs G; = (V1, Eq) and
Gy = (Va, Es). Be D C V; x V5 a simulation of G by Ga.

This relation is "the maximal simulation of G; by Go" iff for all D' C Vi x Vs,
simulation of G1 by Go, D' C D.

Theorem 5.2.1 If there is a simulation of Gy by G2, then there is a maximal
simulation of G; by G» [38].

On top of this definition, we build the following notion of node-typed simulation, that
takes into account the notion of node-types.

Definition 5.2.15 : node-typed simulation. Be two directed, labelled graphs
A= ((Va,Ea),type) and B = ((Vg, Ep),type) whose nodes are typed over the same
type set 7. A node-typed simulation of A by B is a strong simulation D of A by B
so that V(va,vg) € D, type(va) = type(vp).

typ.
Let us denote the fact there is a node-typed simulation of A by B: B A

Property 5.2.2 Be two directed, labelled graphs A = ((Va, Ea),type) and B =

strong

((VB, EB), type) whose nodes are typed over two type set T4 and T4, so that B

A. Then there is a retyping of the nodes of A so that B ELY

Proof. Let us denote D the strong simulation of A by B. It suffices to define the
retyping function retype : T4 — Tp so that V(va,vg) € D, retype(type(va)) =
type(vp).

We now turn to the following result:

Theorem 5.2.2 Be S Ig a schema-instance couple, and § the corresponding instan-
tiation function. This function defines a node-typed simulation Ig par S.

Proof. Be Ig,Is a schema-instance couple.

We check that 6 = (dy,dg) defines a node-typed simulation of de Is by S:

Be D = {(v,vg) |[v € V Ady(v) =vs}.

Be v,v' € V,e € E so that (v,vs = d(v)) € DA (v]e|v) € Ig.

Ten, by definition of §, Jvy € Vg,es € Eg so that §(v') = v, d(e) = eg and so that
(vs les]vg) € SA (v, v) € D.

To conclude, we notice that :

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.2. SCHEMA MODEL 101

e type(v) = type(d(v), hence type(v) = type(vs) (idem, type(v') = type(vy)) ;
o label(e) = label(d(e)), hence label(e) = label(eg)M.

Definition 5.2.7: validation. Be S a SeAG and G an eAG. The S validates G iff

typ.
there is a retyping of G so that S & G, so that the pair of the roots of S and G and
the pair of their leaves belong to the maximal node-typed simulation.

Validation: use cases. The above definition covers two cases: when the retyping
is necessary and when it is not. The two cases do not correspond to the same use case.
First, an eAG is freely constructed by the editors and then, is confronted to a certain
schema in order to check validation a posteriori. In this case, there is no particular
reason why an eAG and a schema, that were defined independently, shall be defined
so that their types belong to the same type set, or so that their types match, even
if, structurally speaking, the eAG expresses an annotation that, modulo a retyping, S
validates.

The second case may happen if, provided a schema, an eAG is constructed in order
to match the schema. In this case, validation may not be done a posteriori, but the
schema may be used, in the course of the eAG manufacturing, as a guide for anno-
tating the data, just the way XML schemas can be used in an XML editor featuring
content assist (e.g. depending on the context the editor is annotating, the editor may
suggest the possible XML elements, according to the schema). We may talk about
on-the-fly validation, to insist on the fact validation is done during the data manufac-
ture, or validation by construction, if the manufacture process makes use of on-the-fly
validation in a way that does not permit the expression of non-valid annotations.
SeAG is designed so that both kinds of validation shall be possible. A complete dis-
cussion of this aspect is given in Paragraph 5.3.

The following result makes a connection between simulation-based validation and the
notion of language of annotation introduced above.

Theorem 5.2.3 Be two rooted graphs A and B. Then B — A = Z(A) C Z(B).
Proof. Be (A= (Va,E4),B = (Vg,ER)) a couple of graphs.

Be D the maximal simulation of A by B.
Be Z(A) a word containing more than one letter (the case of the empty word is
trivial). Let m; refer to the i" letter of m. By recurrence, let us demonstrate that
m € lang(S’) = m € lang(S).

e m € lang(S") = Jej € Egr, v € Vg | r(S")|e*.e)|vy € S Alabel(efy) = mo.
Yet S — S = (r(5"),r(S)) € D
= Jeg € Eg,v9 € Vg | r(9)|€".e0]vg € S
A label(eg) = label(ey) = myo.

e Bei <N —1|3{¢] | label(e}) = m;;0 < j < i} € E,.
Yet m € lang(S') = Fe}, € Egr, v, € Vg | vi_, |€*.€;]v} € S" Alabel(e}) = m,.
Yet S — S5 = de; € Eg,v; € Vg | 'Uifllﬁ*-eijvi es
A label(e;) = label(e;) =m; R

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

102 CHAPTER 5. EAG AND SEAG

Nota. Since § <% Is = S < Ig, then S o Is = lang(Is) C lang(S).

Comment. The converse is wrong. The following graphs have the same language
but do not simulate one another:

O, O
A a a a a B
b\® d b ¢ d

This means that simulation not only controls the annotation language of an instance,
but also concerns the shape, the structure of the graph. Let us now investigate how.

eAG/SeAG graph model and simulation. The fact that B <— A does not suffice,
in general, to ensure that all the sequences of labels present in A be included in the set
of sequences present in B. This results from the fact we consider rooted simulations
for connected graphs.

Indeed, if we do not consider rooted graphs for which the roots must be related by
simulation, it is easy to find counter examples. For instance, two small linear graphs
whose label sequence reads a-X and b-X simulate one another, while their languages do
not intersect.

We can also define a pair of rooted graphs A and B, so B < A, so that their roots
are related by simulation, but that lack the connectivity property (stating that all the
nodes shall be reachable from the root of the graphs), so well so that .Z(A) € Z(B)

— see below.
A B
b
; © ai
d

This highlights the compatibility of the eAG and SeAG graph model with simulation-
based validation.

5.2.2.3 SeAG Expressive Power

Let us now illustrate, based on this set of definitions, how simulation can be used to
express whole families of graphs with a restricted annotation language and structure,
that is, can be used to model data.

First, we establish some that simulation is closed under some operations (union, con-
catenation, intersection, as defined below), that permit to design a schema in a mod-
ular approach, similar to the FSM construction from regular expressions.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.2. SCHEMA MODEL 103

Property 5.2.2.3.1: Closure under union. Be (S,]) and (5’,I') two SeAG/eAG

pairs. Then SU S’ P8 [U I and the maximal simulation of I U T by SU S’ is total.

Proof. Simulation is closed under union — see [144]. Since types are not affected by
the union of two graphs, if D is the maximal simulation of I by S and D’ the maximal
simulation of I’ by S’, then D U D’ is a node-typed simulation of T U I by SU S’
Thus, since D and D’ are total, this means that there is a total simulation of I U I by

SuUs’.

Nota. It follows that a the graph obtained by connecting the two roots of SU S’ to
a unique root by means of two € edges, and the two leaves to a unique leaf by means
of € edges, also node-typed simulates the graph obtained by connecting together I and
I’ the same way. See Figure 5.5.a.

Property 5.2.2.3.2 Be S a graph simulating another graph I. Then VG so that
S C G, then there is a (potentially non-rooted) simulation of I by G.

Proof. 1t suffices to consider that given two graphs A and B so that B simulates
A, adding an edge to B does not change the fact that B is simulated by A. It may
however prevent there being a rooted simulation, that is, a simulation in which the
roots of A and if they are rooted graphs, belong.

Property 5.2.2.3.3: Closure under concatenation. Be Be (S,I) and (5',1")
two SeAG/eAG pairs. Be S-S’ the graph obtained by connecting the leaf of S to the
root of S’ by means of one ¢ edge, and I - I’ the graph obtained by connecting the leaf

of I to the root of I’ by means of one € edge. Then S U S’ P2 1U I and the maximal
simulation of T U I by SU S’ is total.

Proof. Let us denote vg and vgs the nodes in S - S that corresponds to leaf(S) and
root(S’) respectively; let us denote v; and vy the nodes in I - I’ that corresponds to
leaf(I) and root(I’) respectively.

First, because of Property 5.2.2.3.2, S - S’ simulates I, so well so that (vg,vr) € D.
First, for the same reason, S - S’ simulates I, so well so that (vg,v;) € D. We also
know that there is an edge going out of vg in S-S’ is an € edge leading to vg/. Then,
it is easy to check that S-S’ simulates I Uwvy|€e]vr, so that (vp,v — S') is a pair of
the relation.

To conclude, since I Uwy|e|vp UT' =T -1I'. Since simulation is closed under union,
then it follows that S - S” simulates I - I’. The above demonstration tends to show
that is D is the maximal simulation of I by S and D’ the maximal simulation of I’ by
S’, then D U D' is a node-typed simulation of I - I by S -.5’.

Nota. It follows that a the graph obtained by connecting the leaf of S to its root
by means of € will simulate any concatenation of instances of S, but also any set of
parallel concatenations of instances, according to Property 5.2.2.3.1. See Figure 5.5.b.

Discussion, part 1. Figure 5.5 represents the two core patterns that can be used in
a SeAG, either to model a. the fact there can be locally two competing, or alternative,
models of the corpus (e.g. a Module contains either Lines or a Figure) — which is

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

104 CHAPTER 5. EAG AND SEAG

a b.
I SA e T
® =% &{51-®
e | SB ______
validates validates
o I, OR g, |- N - single layer
@ > S @ @ Is1 --- lsn @ annotation
-+ lga OR g, @ @ -+ lsq s @
I's OR I's, |- I double layer
annotation
15 OR lg, |-+(1;) @ lot - Iso |<(t2)
“{I's. OR I's, |-+(tz) st Psa ()

Figure 5.5: Two fundamental properties of simulation-based validation. a. Two SeAG
S4 and Sp patterns in parallel may validate either any instance of one of the pat-
terns, or any superposition of instances of one of the patterns. b. A SeAG pattern
S made cyclic will validate any concatenation of any of its instances, provided the
concatenation is well-formed, or any superposition of such concatenations.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.2. SCHEMA MODEL 105

represented by two parallel paths in the global schema — or b. to represent the fact
that some elements, or sequence of elements, may occur several times in a row (e.g. a
Paragraph contains one or more Lines). In other words, those properties provide with
a natural SeAG representation for the regular-expression operators OR and *.

Example 5.2.1 Consider the schema A below, where the values in the nodes are

their types. It is the Ott automaton [128] representing the regular expression 7 =X:In(a|b)*X:0ut.
Consider the eAG B, whose label sequences along the linear annotation paths are words

from the language of 7.

Parah

X:In a X:Out

A and B form a schema-instance couple.

Discussion, part 2. Yet, the above automaton interpretation of SeAG only holds
because of the well-formedness constraints for eAGs. For instance, the interpretation
of the cyclic SeAG A in Example 5.2.2.3 as an Ott automaton, i.e. as a means to
define an infinite set of acyclic paths, would not be correct without Property 5.1.8.
Indeed, there is at least one cyclic graph that A simulates: A itself, but there is no
way a graph structurally identical to A shall be an eAG. Consider A equipped with
reference values on its nodes. Property 5.1.8, states that edges not suffixed :LinkTo
go from nodes with a lower reference value to nodes with a higher one. Since the
cyclic subgraph made out of the edges between the nodes typed 2 and 3 contains no
:LinkTo, then whatever the reference values of its nodes, it cannot be part of an eAG.
Conversely, the cycle in A will only be instantiated by acyclic paths (cf. graph B,
Example 5.2.2.3) in the eAGs validated by A.

More generally, eAG data model and simulation-based validation make sense together.
The following examples illustrate how the definition rules for eAG give sense to the
SeAG formalism. First, an SeAG can express that two h-levels share elements: see
graph A below. This SeAG does simulate the faulty graph B, where the inclusion
semantics is lost (e.g. X:0ut is missing), but since for that reason, regardless of its
nodes references, B is not well-formed (see Property 5.1.5), it is not to be considered for
validation. However, A validates the well-formed eAG C, which implements properly
multitree annotation with shared items between h-levels.

(B :In a € .Y:Out.
: a
e -

Thanks to the same Property 5.1.5 in the eAG data model, an SeAG can contain
recursive elements as well :

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

106 CHAPTER 5. EAG AND SEAG

5.2.2.4 SeAG Expressive Power: Anaphoric Chains Validation

An interesting aspect of SeAG is that is is fit for validating two kinds of annotations
that can be expressed in eAG, and that are hard to validate, namely, cyclic annotation
and multilayer annotation.

Multilayer annotation SeAG schemas actually define two kinds of multilayering,
as suggested by Figure 5.5.a. In this Figure, the pattern that is discussed presents two
parallel halves, each containing an instantiable graph, that is, a graph that respects
the SeAG model. Each half thus defines a possible annotation paradigm. By property
of simulation, as shown in the same Figure, this ‘alternative’ pattern simulates:

1. either a graph instantiating just one of the two paradigms;

2. or a two layered graph, whose layers are parallel graphs each instantiating each
one of the paradigms;

3. or a two layered graph, whose layers are parallel graphs both instantiating the
same paradigm;

4. or a multilayer graph, whose layers instantiate any of the two paradigms...

The item 1 above goes along with the interpretation of the schema pattern as express-
ing optionality.

The item 2 means that when the schema contains two parallel, or alternative paths,
those define two different ways to annotate the same content: hence, the schema will
validate an annotation containing two layers, each instantiating one of the two paths
of the schema. Let us call this kind of multilayering Schema-based multilayering.
The item 3 really comes from a peculiar property of simulation, that can be condensed
as follows: be a graph made out of one edge labelled A; then this graph will simulate
any graph made out one or more edges labelled A in parallel (that is, so that two edges
do not form a path). In the SeAG context, this property means that any path from
the schema may be instantiated several times onto the same content, hence resulting
in a particular kind of multilayering, in which the different layers do not instantiate
distinct annotation paradigms, but all the same. Let us call this Simulation-based
multilayering.

Schema-based multilayering certainly seems a natural notion: when the editors need
to annotate the same content with different views (e.g. materially vs. linguistically),
more than one paradigm needs be defined for that content, and will be instantiated
one on top of the other. Simulation-based multilayering, even if it may seem less
familiar at first sight, is also a useful notion to validate self overlapping annotation,
that is exemplified by the Anaphoric Chains annotation.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.2. SCHEMA MODEL 107

Let us indeed build a schema for Anaphoric Chains annotation. What we want to say
is that Anaphoric Chains (AC) contain one or more Singular Expressions (Ezp); that
they are defined within the scope of an Fztract; that we may be interested in reifying
the relation ‘this AC contains more Ezp than that AC’ by means of a structured
link Longer:LinkTo, containing a proof:Att element. A corresponding schema is the
following:

13

Extract:In Extract:Out

Longer:LinkTo:In_/

“Longer:LinkTo:In

\ muf:All
S

We remind the reader that the eAG we came up with for the representation of the
anaphoric chains regarding the beating and the observer from the Village of Ben Suc
extract presented in Paragraph 5.1.1 page 71 is the following — equipped with node
types this time (reference values are omitted):

AC:Att:Out

\ Longer:LinkTo:Out
proof:Att « Extract:Out
Exp 0
§ o @ AC:Out

/Longer:LinkTo:In

Indeed, this eAG instantiates the same hierarchical path from the schema twice, in
order to locate the two anaphoric chains that overlap in this extract.

Links Validation of links comes from the fact that simulation is a relation defined
for cyclic graphs. A link, in the eAG/SeAG syntax, is a special element whose name
contains the suffix :LinkTo; apart from that, the element itself can be structured just
like any other, that is, it may contain other elements, in order for the link to convey

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

108 CHAPTER 5. EAG AND SEAG

more than the relation information, but possibly critical enlightening about that re-
lation. The context of a link, in an eAG, is yet particular: contrary to all the other
elements, a link does not take place in hierarchies of elements: instead, the root of a
link is a node from the attributes of a source element, and its end is a node from the
attributes of a target element.

SeAG schemas enable to control both of the above aspects of a link, namely: its
structure and its context. See the example of SeAG for anaphoric chains above. The
structure of the link Longer:LinkTo is controlled by the schema just as the structure
of any other element: here, an instance of the link can be nothing but a sequence of
three edges Longer:LinkTo:In, proof:Att and Longer:LinkTo:0ut. The context of
the link is also restricted by the schema: the root of any instance of a link will be a
node whose type is 5, and will end on a node with the same type. Since the only nodes
of type 5 are involved in defining the attribute element of AC, then it means that the
link will connect two ACs only.

5.2.2.5 Simulation-based Validation: Caveats

Caveats [37, 3] point out several limitations to simulation-based graph description.
First, for a given instance graph, several schemas are eligible, since simulation is
transitive. This matters greatly when schemas are inferred from the data, but does
not when they are predefined.

Second, and more importantly, simulation-based validation as defined by [37] does not
enforce the presence of a label. This is true for simulation between two general graphs.
Still, this caveat can be bypassed by specifying an appropriate data model. Consider
the SeAG A and the graphs B; and By below. Even though A simulates both B
and Bs, it validates none: Bj is not well-formed, and type(leaf(Bsz)) is not equal to
type(leaf(A)), which contradicts the validation definition.

X:In
o | e .Outa WWT’Z

Hence well-formedness and validation rules somehow enforce the presence of labels
that simulation does not.

Last, simulation cannot prevent a node from having several outgoing edges. Said
differently, as illustrated in Example 5.2.2.3, even when an SeAG contains one single
(cyclic) path, there is no way to prevent the annotator to annotate the same content
with several layers all instantiating the same path. Of course, this feature has positive
aspects — see the previous paragraph and the notion of Simulation-based multilayering.
But it means that a hierarchical SeAG will validate multitrees, not trees only.

5.2.2.6 Simulation-based Validation vs. Grammar-based Validation (for
Trees)

Yet there is a connexion between simulation and grammar-based validations. An XML
document is, syntactically speaking, a tree; a (RelaxNG) schema is a Tree automaton

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.2. SCHEMA MODEL 109

Interpretation :

Tree automaton TA Tree X Doc N
An interpretation is a function A/
S ={doc} [NB.S is a subpart of N] I:T— N so that : Page Page
N = {doc, page, module, figure, image, line} 1. I(root(Tree)) is in S and / / 'L \
T = {Doc, Page, Module, Figure, Image, Line} = 2-for all maximal subtree
R= doc — Doc(page*) ofunitary deptht” . \ Module Module Module Module
page — Page(module*) T v p J / \ l x
. - 1 Ty ... *N
module — Module(line* | flgure) . . 2 5 Line Line Line Figure Line
line — Line() there is r = ¢ — T(RE) in R so that: / \
. . . 9 -I(T) =t and
figure — Figure(image -image?) I KT ... I(Tw) mage Image

image — Image() is in language of RE.

Figure 5.6: RelaxNG tree automaton-based XML validation mechanism.

[126], which validates the tree for which there is an “interpretation”, as defined in
Figure 5.6. We know there is a way to translate trees into eAGs. For instance, the
eAG representing the tree X from Figure 5.6 is the arrowed path in Figure 5.3. There
is also a way to derive a SeAG from a Tree automaton. Consider an automaton
TA = (S,N,T,R), for instance the one from Figure 5.6. In TA, T is the set of
terminals. N is the set of non-terminals, among which are start symbols (S). The
elements of R are called production rules. A rule associates a non terminal to a
terminal, representing a possible labelled node of a tree, and a regular expressions
over N against which the sons of the node shall match.

For our derivation of an SeAG from a TA, we enforce that if there is a rule r =
x — X(reg) € R so that reg can be expressed as reg;|regs, with no common prefix
and suffix between the words in the languages of reg; and regs, then r must be split
into two rules r; = x — X(reg1) and ro = v — X(regs). For instance, module —
Module(line™ | figure) shall be split into two rules module — Module(line™) and
module — Module(figure). Then, the derivation of a SeAG St from TA'® defines
as follows:

There is a partition of R into sets of rules sharing the same left-hand side. For any
n € N, let us call R,, one such subset of R. Then, every n € N may define what we
call a unique Box, denoted nBox. The nBox is a rooted graph that reflects the content
of the set of rules in R,. In the nBox, each r; = n — T;(re;) € R, is represented
by a root-to-node path. If re; = &, then the path is a single edge labelled T;. Else,
since re; is a regular expression over IV, it can be represented by the Ott automaton
made out of the Boxes corresponding to re;, escorted by two edges labelled T : In and
T;:0ut. Figure 5.7 shows the nBoxes for the automaton in Figure 5.6. By replacing
iteratively, in a bottom-up approach, the Boxes contained one in the others, we get a
labelled graph which is S74. One can check that, in the case of Figure 5.7, this yields
the SeAG shown on Figure 77.

Here comes the interesting point: this example illustrates that, given a tree automaton
T A and a tree X so that there is an interpretation of X against T'A, the SeAG derived
from T A simulates the eAG representation of X6,

The above provides a sketch of proof for the following connexion between interpre-

15The following sketch leaves recursive element definition out.
16We obliterate the question of node types here. We only compare the bare simulation and inter-
pretation relations.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

110 CHAPTER 5. EAG AND SEAG

doc — Doc(page*)

page — Page(module*)

module — Module(line+)
module — Module(figure)

line — Line()

- 0% figure — Figure(image * image?)

imageBox : OLO

image — Image()

Figure 5.7: For all n € N as defined in Figure 5.6, each nBox representation (middle)
and R,, C R (right).

tation and simulation for validation:

Property 5.2.1 Be a tree X and a tree automaton T'A. Be Gx the eAG represen-
tation of X; be Sp4 the SeAG derived from T'A. Then, if there is an interpretation
of X by T A, then St4 simulates Gx.

Nota. A complete proof can be consulted in the Appendix 12 (in French).

5.2.3 Precisions on SeAG

At this point, we have defined eAG, an annotation model compatible with the ex-
pression of multilayer, cyclic annotation, together with SeAG, an appropriate schema
mechanism. The relation between an eAG and a SeAG is a certain kind of simulation,
in which the roots and the leaves of the schema and the instance are involved. We
want to investigate some properties of SeAG further here.

First, we observe that, for a given annotation language, several schemas could be de-
fined. We will try to show that, if from a static point of view, those different schemas
are hard to discriminate, some present better properties, qualitatively speaking, in the
perspective of being amended.

Second, we will consider the notion of redundancy, characterizing the fact some nodes
or edges of a schema may be deleted or merged without this altering the language of
the schema [128§].

5.2.3.1 Multiple forms for the same schema?

Let us suppose, for didactic purpose, that an editor possesses an initial vision of the
annotation to be done in terms of language of annotataion, and thus, we consider here
that the editor abstracts that language of annotation by means of a set of regular

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.2. SCHEMA MODEL 111

expressions of the kind that were illustrated in Paragraph 5.2.1.3, that she then wants
to translate into a schema!”.

It is a well known result that one regular expression may translate into a whole di-
versity of automaton. A whole field of the literature precisely investigates how to
construct an automaton from a regular expression (e.g. [128], [84], [25], [30], [99], [5])-
It appears that all those constructions are compatible with the eAG/SeAG model, and
that, from a static point of view, none in particular would have to be favoured.

Let us take an example. Be the alphabet ¥ = {a, b, ¢,d}. Be a regular expression over
that alphabet R =a : In - [(blc)d]*(blc) - a : Out.

This regular expression can be translated into several automata, according to the
transformation method operated, as indicated below (left column). The first automa-
ton representing R (a.) is a deterministic automaton with a minimal number of edges.
The second is the Glushkov [84, 30] automaton associated to R. The last is the des-
epsilonised version of the Ott automaton for R. On the right column, we represent
three eAG instances, one for each schema, that all express exactly the same annotation.

a o a:ln o b o d 9 b e d e b a:Out
a:n a:Out
$ —Q@

b. a:ln o b 9 d o b e d e b a:Out
a:ln a:Out
$ —®

From this point of view, the three schemas seem to be equally good. Yet, one may
notice that, in the perspective of being modified, not all three are equal, in the sense
that, for a given amendment to the regular expression, not all schemas will have to be
modified by the same sequence of operations.

For example, let us consider that the editor first modelled her corpus by means of
the regular expression R = a : In - [(blc)d]*(blc) - a : Out, that she then translated
into one of the above schemas (a), (b) or (c¢). Let us now imagine that she wants to
change the annotation language of the schema, so that it represents the new regular
expression R' = a : In - [(blc)d]*(X|c) - @ : Out. This means that, when adding
indexes to the symbols of the original and the updated regular expressions, R = a :
Ing-[(ba]es)dy]* (bs|ce)-a : Outy shall become R” = a : Iny-[(ba]es)ds]* (Xs|ce)-a : Outy.
In other words, naively speaking, in terms of schema transformations, it means that
the label of all the edges of the SeAG that rpresent the symbol indexed 5 in R shall

1"We consider this hypothesisc editor modelling a literary corpus by means of regular expressions
for didactic purpose only. In particular, the aim of the following discussion is not to establish how a
schema could automatically be derived from a set of regular expressions.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

112 CHAPTER 5. EAG AND SEAG

be replaced by X. Yet this strategy cannot be undergone indifferently on the three
schemas:

o Schema (c.) : The easiest case is this one, since there is a one-to-one corre-
spondence between the indexed symbols of R’ and the edges of the schema.
The transition from S.(R) to Sc(R’) can be done by relabelling the edge e of
label b between the nodes typed 2 and 3. Propagating this amendment to the
instances of S, may then be done by relabelling each egp3 in an eAG defined by

5E(32b3) = €.

e Schéma (b.) : Schema (b.) is different, in that there is no such correspondence
between the indexed symbols in R’ and the edges of the schema: in particular,
the symbol with 5 as an indec is represented by two edges in the schema, namely
4]b]5 et 1|b]5. Operating the change on the schema and propagating it to the
instances shall thus mean to relabel those two edges and the edges of the instance
that instantiate them..

e Schéma (a.) : Schema (a.) is the most interesting. In this case, there is no
edge representing the symbol indexed 5 from the regular expression specifically.
Indeed, the edge 2|b]3 represents the indexed symbols by and bs from R’.The
strategy to go from S,(R) en S,(R'), is thus far more complicated!®.

Actually, in the above example, what the amendment to the annotation language
semantically means is that “a label b ending a sequence (b|c)+ sets apart from the
other b symbols”, and thus shall, it and not the other bs, be turned into an X: it
is the existence of this distinction among the otherwise identical bs, that only ex-
ists in the editor’s mind, that drive her to want to replace that special b and not
the others. Omne could say that there are semantically dependent indexed symbols
in a regular expression, in the sense that they are distinct symbols that represent
non-distinguishable entities, and semantically independent labels, whose letter of the
alphabet is the same but that, in the mind of the editor, are somehow different (and
thus might be amended independently). Yet the status of each symbol is not initially
given: as illustrated above, it may get revealed... when attempting at modifying the
regular expression.

In that perspective, even if the schema (c.), because it turns here to associates an
edge to each semantically independent symbol of the regular expression, seems to be
the most promising. yet since the existence of semantical dependencies among the
symbols seems not to be given a priori, it can hardly be exploited to choose among
several schemas in order to optimize schema transformability. It should also be noted
that a transformation may precisely consist in making two labels independent (or de-
pendent), which is what happens in this example when considering schema (a.).

As a consequence, we will have to do with the fact several schemas may equally be
chosen for modelling the same corpus. Choosing among those schemas will then be a
question of taste or luck for the editor — until further research on this intriguing point.

181t may consist in creating an additional node typed 5 and to substitute, in the schema and in
the instances of the schema, the paths (instantiating) 2|b]3|a : Out|4 by paths 2| X |5|a : Out]4,
without impacting the other paths: then, the new nodes typed 5 shall be given the reference value of
the nodes typed 4 they replace...

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.2. SCHEMA MODEL 113

Figure 5.8: A non-redundant but ambiguous graph.

Noteworthily still, we will see in the Part IV of this dissertation that, when considering
certain tasks (the schema-aware parsing of an inline markup syntax for eAG), there is
a certain schema construction that has better algorithmic properties than the others.

5.2.3.2 Redundancy and ambiguity

As a conclusion, it appears that the shape of schemas is quite open. Yet another
aspect in which two schemas that express the same annotation language may not be
equal is how redundant and how ambiguous they are.
Intuitively speaking, redundancy qualifies the fact several nodes and edges of a schema
may be deleted or merged without this affecting the language of the schema, and a
schema is unambiguous “if for each word w, there is at most one path through the
state diagram of M that spells out w” [30]. Those are two different characteristics, in
the sense a schema may be non redundant while presenting some ambiguity. As an
example, consider the schema from Figure 5.8. Deleting any of the edges would impact
the language of the graph, and merging the nodes 2 and 3 also (then the word baa
would be part of the language, which it is not initially), so the graph is not redundant;
on the contrary, the word a may result from the execution of two different paths.
Redundancy is not a desirable quality for a schema, particularly in the perspective
of it being amendable: if two paths from the schema define exactly the same annota-
tion language, which is not useful in general, then if the amendment aims at modifying
the part of the language of the schema that corresponds to those paths — that is, at
preventing from the expression of words from the language of those paths and replac-
ing those by other words — , then the two paths shall be modified synchronously.
Non ambiguity, for its part, is a required characteristics for some other schema lan-
guages like DTD. Additionally, based on the traditional definitions of redundancy and
ambiguity (to be given below), non-ambiguity implies non-redundancy. Still, imposing
SeAG to be non ambiguous in the traditional sense is not a reasonable restriction. In
particular, the annotation language of the graph on Figure 5.8 cannot be expressed
but by ambiguous graphs, as in fact any language in the form R = R'- A|A’- R” where
lang(A) Nlang(A") # 0.
We thus propose an alternative definition of ambiguity, called typed ambiguity, con-
sistent with our graph model, resulting in a preserved expressivity of SeAG. A SeAG

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

114 CHAPTER 5. EAG AND SEAG

schema will then ideally have to be non redundant and non-ambiguous in the sense of
this new definition.
Ambiguity can be defined as follows.

Definition 5.2.3.2.1 : FSM ambiguity. An FSM os unambiguous iff for all word
m in its language, there is at most one way to browse through the FSM along a path
whose label sequence spells m.

Definition 5.2.3.2.2 : Regular expression ambiguity. An FSM os unambiguous
iff for all word m in its language, there is at most one execution of the word m.

As indicated above, this notion is very restrictive. The notion originates from
the theoretical work of Book on regular expressions [25]: from the consideration that
some words from the language of some regular expressions may result from different
executions of the expression, the authors propose a method to test whether a regular
expression is ambiguous or not. Later, ambiguity has been adapted and discussed
widely in the literature on SGML (e.g. [30], [32], [185]) and XML ([89], [80]). In the
context of SGML, non-ambiguity is required for DTD grammars for several reasons
that, in the end, one may hardly find consistent. hence the question whether this
notion ir relevant or not for SeAG.

Among the justifications for imposing unambiguity for DTD, it has widely been sug-
gested that, in the context of SGML, “[ulnambiguity [was| intended to make SGML
document grammars easier to read by humans. It is questionable, though, whether
this goal is really achieved.” [31]. Another justification for the recourse to unambigu-
ous grammars is algorithmic: “The intent of the authors of the [DTD] Standard is
twofold: They wish to make it easier for humans to write and understand expressions
that can be interpreted unambiguously and, at the same time, to provide a means of
generating parsers that do not have exponential blow up in size.” [185]. Those re-
flections, that date back to the origins of SGML validation by schemas, rest upon the
following pragmatic considerations: [88] ahd defined a parser generator for which non
ambiguous grammars were well-adapted — and that generated parsers that, in turn,
could be used to validate SGML data, that is, to assess whether a document was con-
form to a given grammar or not. Still, it seems that the limitation to non-ambiguous
grammars can be bypassed to that purpose [115] — and actually, RELAX NG does
not restrain the 'content models’ that define the XML grammar to be unambiguous
regular expressions [48].

In the end, unambiguity for SGML/XML grammars seems have mostly historical and
pragmatic grounds. None of the above justifications applies to SeAG, for which we
will thus not impose any restriction regarding ambiguity.

Still, it seems interesting enough to mention that the eAG/SeAG model, without any
additional restriction, is naturally non-ambiguous in some sense, in that given an eAG
validated by a SeAG, it is always possible to know without any... ambiguity which of
the subgraph of the SeAG is instantiated by any path from the eAG. This character-
istics is, as we will see, of crucial importance for the derivation of a transformation
on eAG from an amendment operated on a SeAG, as one may imagine intuitively.
We propose to formalize this characteristics of the eAG/SeAG model by means of the
notion of typed ambiguity.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.2. SCHEMA MODEL 115

Definition 5.2.3.2.3 : typed label. Be S = ((V, E),label,ref,type,id) a SeAG.
Be labely : E — T x L x T the function that associates to each edge of X the triple
constituted of the type of its summit, its label and the type of its end.

Property 5.2.3.2.1 For any S = ((V, E),label,ref, type,id), labely is injective.
Thus the automaton defined by X = (V, E, type, labelr, ref,ind) is unambiguous.
Preuve. The function is indeed injective since no two nodes can have the same type
in a SeAG, and no two edges between the same pair of nodes can have the same
label. Thus, in the FSM obtained by replacing the labels, in S, by the labels, no two
transitions are identical, which is an obvious case of unambiguous FSM.

Definition 5.2.3.2.4: typed ambiguity. S = ((V, E),label,ref,type,id) is typed-
unambiguous iff the FSM defined by G’ = (V, E, label, type) is non ambiguous.

Let us now take an example to illustrate that notion. Consider the SeAG given in
Figure 5.8 page 113, and the following corresponding eAG Ig:

id:4

We have already indicated that the schema in ambiguous in the traditional sense; still,
as any SeAG, it is typed-unambiguous.And indeed, if one considers the instance Ig,
even if two paths from that instance spell the same, it is very clear that the path
spelling a the node whose id = 3 instantiates the path chy = 1|€|2|a]4, from the
schema, while the second path of Is spelling a instantiates chy = 1|€|3|a]4. This
information is interesting in the sense that it permits to distinguish chi and cha,
based on a finer criterion than the sequence of labels.

Let us now come to the notion of redundacy, that qualifies the fact that certain parts
of the language of the annotation (words, suffixes and prefixes of words) are defined
several times identically in a schema. This notion has been treated by Ott foe FSM
[128] in a very interesting way. Ott breaks the general notion of redundancy into three
notions: equivalent nodes; nodes that can be merged and superseding nodes.

Definition 5.2.3.2.4 : Equivalent nodes. Two nodes of a FSM are equivalent if
and only if, for each input symbol, both lead to the same or equivalent nodes.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

116 CHAPTER 5. EAG AND SEAG

Commentaire. The equivalence relation above is actually identical to the maximal
self bisimulation of a graph. In Ott’s view, two equivalent nodes can be merged without
this altering the language of the FSM. In SeAG, we will not use this notion for that
purpose.

Definition 5.2.3.2.5 : Etats fusionnables. Two nodes v; et vy of a FSM can
be merged iff for any configuration, (S,u), being in one implies being in the other:
(v1) & (v2).

Commentaire. Identically, for Ott, who deals with FSM properly speaking, for
which the language is the only aspect that counts, the FSM can be transformed by
merging those nodes. In our case, this does not apply, because of the particular edge
semantics we have defined for SeAG. Consider the following schema below:

For instance, if we do merge the nodes 5 et 7, the schema that we get will validate the
eAG I below, which the original schema did not:

Definition 5.2.3.2.6 : Superceding nodes. Be a FSM G = (V,E). A node
v1 € V supersedes vo € V iff the following conditions hold:

1. For any configuration, (S,u), (v1) < (ve) ;

2. For any input symbol, v; leads either to the nodes v leads to, or to nodes that
supersede them.

We will denote the fact vy = v the fact vy supersedes v.
By extension, we define the operator =, for the “equals or supersedes” relation, given
any node supersedes itself.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.2. SCHEMA MODEL 117

Interpretation of the = relation. Be G = (V, E) a Schema. Formally, the bove
relation can be rephrased as follows.

[1] v1 = ve &
a. (ve) = (v1)
b. Vey € E,vh €V | valea]vh C G,
Jde; € E v} € V| label(er) = label(ez) A wvilerJvi CG A vf = v

Be follow(v) the function that to v associates the set of nodes that can be at-

tained from v by following the paths included in G (v included). Be ¢ : v; —
u ¢ U ZX)).

v€E follow(v;) ngoot(c)

One may check that vy > vy = ¢(v2) C t(v1). This is due to the fact that :

o ((19) = (v1)) = VGy "D G, 3G, <51 G tel que £(Ga) C ZL(Gy)
o v = vy = Vb, en | valea]vh C G, Fuq | ((vh) = (V) A) = v

Recursively, we can establish the above result.

The above means that the > relation may be used to identify the connected subgraphs
of a schema, starting at the root of the schema and ending at its leaf, whose languages
are included one into the other, and that simulate one another.

Indeed, the fact two subgraphs share the same language is not enough for there being
a »~ relation. Consider the fact that among the two graphs, that have exactly the
same language, but if the root of the first one supersedes the root of the second, the
converse is not true.

Actually, the nature of the structural similarities required between two graphs for the
root of one to supersede the root of the other can be qualified easily: retrieving the
condition a. from the above reformulation [1] of the > relation yields the definition of
a... simulation.

We thus propose to use redundancy as an equality relation between schemas.

Definition 5.2.3.2.7 : SeAG equality. Two schemas will be considered equal iff
their roots mutually supersede one another.

Comment. This equality relation is far more satisfying than what could have been
expected to be a natural equality relation, in a context where simulation is used to

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

118 CHAPTER 5. EAG AND SEAG

compare graphs, namely, bisimulation. Given D a simulation of A by B, there is a
bisimulation between A and B iff D! defines a simulation. Actually, an equivalence
relation can be built onto bisimulation and used as an equality relation that is far
easier to compute than, for instance, isomorphism [93]: two graphs G; = (V1, E7) and
Gy = (Va, E») shall be considered “equal” “égaux” iff all the nodes of each graphs are
involved in the maximal bisimulation between the two graphs, and so that the pair of
their roots belong to the bisimulation. The non-redundancy of a schema shall then
be defined as the fact that the maximal self bisimulation of that schema shall be the
identity relation.

Yet, the notion of (bi)simulation and supersedure differ on an essential point, that
matters for the identification of redundancy. While (bi) simulation investigates each
pair of nodes in the graphs, supersedure only considers pairs of nodes (v1,v3) so that
(v2) = (v1), that means, that are preceded, in the schema, by some linear paths that
spell the same. This is severe pruning. In other words, when calculating the self
bisimulation of a graph, any node of the graph is considered an input node. This
prevents from comparing the upwards context of those nodes, i.e. from comparing the
sequence lof the labels that lead to those nodes: comparison is done downwards only,
in the direction of the leaf of the graph. Supersedure cnsiders that the input nodes
of a FSM (or here, of a schema) are well-defined: they are nodes explicitly defined as
the input nodes (or the root of the SeAG here).

To illustrate the difference, and why supersedure is better for the definition of equality,
consider the following example.

Be S the following schema.

The maximal simulation relation D and supersedure relation R are the following:
o D= {(0;0),(1;1),(22),(3;3),(0; 1), (1;2),(2;2)} ;
o R={(0;0),(1;1),(22),(3:3), (0; 1)}.
hence the maximal bisimulation relation Bp and bi-supersedure relation Bg:
o D={(0;0),(1;1),(2:2),(33),(1;2)} # Id ;
o 1 ={(0;0),(1;1),(22),(3;3)} = Id.

Thus, if equality is defined in terms of bisimulation, the schema is considered redun-
dant, while it is not if one considers bi-supersedure as an equality relation.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.3. SEAG VALIDATION: A POSTERIORI AND ON-THE-FLY VALIDATIONS119

5.3 SeAG Validation:
A Posterior: and On-the-fly Validations

Validation is the process by which it is assessed whether an annotation is conform to
a certain schema. This assessment can be operated in two different contexts: first,
the annotation is done regardless of a schema, and is then validated against a schema
that has been independently defined; second, a schema is provided to the editor when
she starts annotating. In this case, validation may not be done a posteriori. On the
contrary, the schema may be used, in the course of the eAG manufacturing, as a guide
for annotating the data, just the way XML schemas can be used in an XML editor
featuring content assist.

The first case will be referred to as a posteriori validation. The second, as on-the-fly
validation. We show how both can be done with SeAG, and analyze the properties of
both in the following.

5.3.0.3 A Posteriori Validation

Validating is defined as follows :

Definition 5.2.16: validation. Be S a SeAG and G an eAG. The
S validates G iff there is a retyping of G so that S tfg' G, so that the
pair of the roots of S and G and the pair of their leaves belong to
the maximal node-typed simulation.

It is quite clear that given a schema S and an eAG that S validates, changing the
type of one node of G may prevent GG from being valid while the structure and the
semantics of G have not changed. This means, conversely, that an eAG whose types
do not match the ones of a schema is not necessarily ‘wrong’: it may just need retyping
for being valid®®.

In the context of a posteriori validation, there is little chance the types of the instance
and of the schema shall match, since both were built independently. Retyping is thus
needed. Yet, there is no need for calculating this retyping, given the following result:

Property 5.2.6 Be two directed, labelled graphs A =
((Va, Ea),type) and B = ((Vp, Ep),type) whose nodes are typed

strong

over two type set T4 and Ty, so that B <~ A. Then there is a

retyping of the nodes of A so that B t<y—p>' A.

Proof. Let us denote D the strong simulation of A by B. It suf-
fices to define the retyping function retype : 74 — T so that
Y(va,vp) € D, retype(type(va)) = type(vg).

Hence a posteriori validation can be performed as follows:

19The reason why validation is defined in terms of the more exclusive notion of node-typed simu-
lation is that it permits on-the-fly validation, as will be illustrated in the next paragraph.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

120 CHAPTER 5. EAG AND SEAG

Definition 5.2.17: a posteriori validation. Be S a SeAG and G an eAG. Then

strong

S validates G iff S <~ @, so that the pair of the roots of S and G and the pair of
their leaves belong to the maximal strong simulation.

Calculating the maximal (strong) simulation of one graph by another one has been
investigated already [129, 4, 81, 144]. The main result is the following:

Property 5.2.3 Be a SeAG S and an eAG G. Calculating the maximal simulation
of G by S performs in O(|[V UVg| - |E U Eg|) [144].

Comment. This is a reasonable cost for a cyclic graph-based data model.

5.3.0.4 On-the-fly Validation

Now, let us consider the case where a schema is provided before starting annotating,
and where the produced data has to be valid. Checking algorithmically whether a
graph is valid or not could be tricky. Instead, we propose a special case of on-the-fly
validation, that is, validation by construction. We show here that there is a matrix
representation for SeAG and eAG so that, given the representation of a schema, only
valid instances can be represented. hence the qualifier “by construction”.

Definition 5.2.18 (Identifier sets) Be a graph G = (V| E). There are two countable
ordered sets Zg and Jg and two bijective functions id : V — Zg and id : E — Jg
identifying the nodes and edges of G. The i*" element of the set Z, for instance, is
denoted [Zg];.

Definition 5.2.19 Be a graph G = (V, E), Zg and Jg two sets of identifiers. Pro-
vided G contains no connected subgraph limited to a node and no loop, G can be
represented by its incidence matrix [G]Z¢7¢ so that, ¥(i,7) € Zg x Jg:
[G]i?’jc =1iff Jule|v' C G;id(v) =14 Aid(e) =3
= —1iff Jvle|v' C G;id(v') =i Nid(e) =3
=0 else.

Property 5.2.4 Be a SeAG S = (Vs, Eg). Ordering the sets {type(v);v € Vs},
{(type(v),label(e), type(v'));v|e|v’ C S}, provides two special node and edge identifier
sets T, X.

Proof. In a SeAG, no two nodes have the same type or are connected by two edges
with the same label (Def. 5.2.9). Any ordering of the sets is fine.

Discussion (1). Consider the following SeAG :

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.3. SEAG VALIDATION: A POSTERIORI AND ON-THE-FLY VALIDATIONS121

The values v; are possible identifiers for the nearby nodes, and e; for edges, so that
Is = [v1,v2,v3,v4], for instance. Then, Property 5.2.4 means that it is possible to
represent the incidence matrix of an SeAG S by indexing lines and columns either on
any Zg X Js or on 7 x X in particular. For instance, when indexed over T x X:

1X:Ing 9a3 9obg 369 3X:0uty
1 0 0 0 0
-1 1 1 —1 0
0 -1 —1 1 1
0 0 0 0 -1

[S17% =

=W N =

It is also possible to express a subgraph of S in an incidence matrix indexed over the
full identifier sets. For instance, below is the incidence matrix over Zg and Js of
H = {v|e]v' C S;(type(v),label(e), type(v')) = (2,b,3)}, subgraph of S :

€1 €2 €3 €4 €5

V1 0 0 100

[H]Zs:Ts = vy 00 0 0
V3 0 0 0 0 O

V4 0 0 -1 0 O

Definition 5.2.20 Given a n x m matrix [M] of integers, the positive restriction
of [M] is the n x m matrix [M™*] so that Vi, j, [M™*], ; = [M];; iff [M];; > 0, else
[MT]; ; = 0. The definition of [M~] the negative restriction of [M] is natural.

Discussion (2). Consider two graphs G and H, H C G and the incidence matrix
[H]%¢:7¢. Then the positive restriction of [H]Z¢7¢ | read column by column, lists the
identifiers of the nodes that are the summits of the edges of H whose identifier matches
the one of the column. Conversely, the negative restriction of [H]Z5'7s defined in the
Discussion (1) page 120 is:

€1 €2 €3 €4 €5
U1 0 0 0 0 O
[H‘]ISJs = Vg 0 0 0 0 O
VU3 0 0 0 0
on 00 -1 0 O

Note that the sum of the positive and negative restriction of any incidence matrix
gives the incidence matrix.

Definition 5.2.21 (Template) Be S a SeAG, G a graph that can be represented
by its incidence matrix, and Zg, Jg identifier sets for G. Consider the block-matrix
obtained by replacing each value s; ; of [S]7** by a matrix [M, ;], so that:

- si; = 0= [M; ;] = [@]*¢7¢, where @ is the empty graph, whose incidence matrix
is always zero ;

- 8,5 = 1 = [M; ;] = [A], where [A] is the positive restriction of the incidence matrix
over Zg, Jg of H; C G, with H; = {v|e|v’ C G; (type(v),label(e), type(v')) = [X];};
- 8, = —1 = [M, ;] = [B], where [B] is the negative restriction of the incidence

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

122 CHAPTER 5. EAG AND SEAG

matrix over Zg, Jg of Hj.
This block-matrix is called the expression of G on the template of S, denoted [G/Temp.S].

Example. Consider the SeAG S defined in the Discussion (1) page 120. The ex-
pression of S on its own template is:

1X:Iny oa3 9bs 369 3X:0uty

1 4] 0 0 0 o0
3 0 [B2] [Bs] [A4] [As]
4 0 0 0 0 [B
with, for instance, [A3] = [H1]%s*7s and [Bs] = [H~]%5'7s as defined in Discussion

(2) page 121.

Definition 5.2.22 Be S an SeAG and G,Z¢g, Jo a graph containing no subgraph
limited to a node and no loop, along with two sets of identifiers. G is said to be
fully expressible on the template of S, denoted G < [T'emp.S], iff the sum of the inner
matrices of [G/Temp.S] is equal to [G]*¢7¢ the incidence matrix of G, indexed over
the same sets as the inner matrices of [G/Temp.S].

Property 5.2.5 Be S an SeAG. Then S is fully expressible on its own template.
Proof. VI € [0;|X][, the I*" column of [S/Temp.S] contains two matrices [4;] and
[By]. Since they are respectively the positive and negative restrictions of the incidence
matrix of H; C S, which is the union of all the subgraphs v|e|v’ characterized by
the same triple [X]; of types and label, [4;] + [B;] = [H;]%s*7s. Since X is the set of
possible triples for S, > [Hj*s+Ts = [S]%s:Ts,
0<i<|X|

Importantly, only schemas define a template. In particular, given an instance G
and any identifier sets Z, J, since there may not be bijections between those sets and
T, X, the notion of template of G is undefined. Still, it is possible to try to express
G, not over its own template, but over the template of a given schema S.
Let us denote this representation [G/Temp.S]. The schema defines the template, that
is, the outer matrix of [G/Temp.S], indexed over T x X: it restricts the types, the labels
between two given types and the paths along which those labels may occur. Be then
[X]: € X. Just like above, we can define H; = {v]e|v’ C G; (type(v), label(e), type(v')) =
[X]:}, so that H; C G. Then the inner matrices of [G/Temp.S| are defined just the
same way as those in [S/Temp.S], that is: in the I*" outer column, on the right outer
lines, as the positive and negative restrictions of [H;]Z*7 (see Definition 5.2.21).

Interestingly, this approach can be taken for any graph G and any schema S. If
the graph contains no edge conforming the schema, then [G/Temp.S] is null. On the
contrary, an important result is that provided G is an instance of S, then G is fully
expressible on [Temp.S]. We can even go further:

Property 5.2.6 Be a SeAG S and an eAG G. Then S validates G iff G < [Temp.S]
and type(leaf(G)) = type(leaf(S)) and type(root(G)) = type(root(S)).

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

5.3. SEAG VALIDATION: A POSTERIORI AND ON-THE-FLY VALIDATIONS123

Proof. = : S validates G, then the types of the two graphs’ leafs are equal, by defini-

tion of validation. Idem for the roots. The fact that validation implies G < [Temp.S|

can be proven just like Property 5.2.5, with one more argument. The fact that the sum

of the two inner matrices characterised by the same L € X yields the incidence matrix

of the union of all the subgraphs v|e|v’ C G characterised by L holds. Yet, it has to be

proven that there is no subgraph v|e|v’ C G so that (type(v),label(e), type(v')) & X.

Since G is rooted and connected, one can check that the presence of such a subgraph

shall contradict the existence of a rooted simulation.

< : Be G = (V,E), S = (Vs,Esg). G < [Temp.S] implies that Vv|e]v' C G,

dL € X so that (type(v),label(e),type(v’)) = L, which means Jlvgleg|vy C S so

that type(vs) = type(v), type(vy) = type(v’) and label(eg) = label(e).

This defines two functions § : V. — Vg and dg : E — Eg so that Yu|e]v' C G,

A(6(v),0r(e),0(v")) € Vgx Egx Vg so that Ve, type(d(x)) = type(x), Vy, label (6g(y)) =
label(y) and 6(v)[dg(e)|é(v") C S.

Additionally, the fact that type(root(G)) = type(root(S)) implies 6 (root(G)) = root(S).
Then D = {(v,d(v));v € V} is a rooted, node-typed simulation of G by S.

Illustration part 2. Consider the eAG B from Example 5.2.2.3. Let us equip its
nodes and edges with identifiers, as shown below.

The representation of B in [Temp.S] is:

1X:Iny 9a3 9b3 362 3X:0uty

1 4] 0 0 0 0
[B/Temp.S]= 2 [B1] [As] [As] [Bs] 0O
3 0 [Ba] [Bs] [Ad] [As]
4 0 0 0 0 [By
with [Bs] the negative restriction of [H|?2+72_ for instance, for H = {v|e|v’ C
B; (type(v), label(e), type(v')) = (2,b,3) }:
e ey e3 e4 €5 € €7 €3 €9 €10 _
U1 0 0 0O 0 0 0 0 O 0 O
Vo 0 0 0 0 0 0 0 O 0 O
V3 0 0 -1 0 0 0 0 O 0 O
[Bs] = Uy 0 0 0 0 0 0 0 O 0 O
’ vs 0o 0 00 O0O0O0O0 0 0
Ve 0 0 0O 0 0 0 0 O 0 O
V7 0 0 0o 0 0 0 0 0 -1 O
Vg 0 0 0O 0 0 0 0 O 0 O
w [0 -1 0 00 0 0 0 0 0]

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

124 CHAPTER 5. EAG AND SEAG

Now compare [B/Temp.S] with [S/Temp.S] as detailed in the Example page 122. The
two matrices share the same outer matrix, which is descriptive of .S, they only differ
by the values of the inner matrices (e.g. see the value of [Bs] for S in Example 5.3.0.4).
Based on Property 5.2.6, we can finally conclude:

Given a schema S, the eAGs it validates are the well-formed eAGs model that can
be fully expressed in [T'emp.S], and whose root and leaf types respect those of S. This
means that an instance of S is an eAG that can be described by the set of matrix values
that fill [T'emp.S]. From a manufacturing point of view, if the annotator of a resource is
given means (through an ergonomic HCI) to define the matrix values corresponding to
[Temp.S], in a way that ensures well-formedness, then, by construction, the resulting
graph will be valid against the schema. This meets the goal of providing on-the-fly
validation for M-S data.

5.4 Conclusion

In this chapter, we introduced eAG, an extension of Annotation graphs, along with a
novel schema model based upon the notion of simulation. A dedicated representation
for eAGs and schemas enables to proceed to validation “by construction™ provided
a schema, only valid eAGs can be expressed, which bypasses the algorithmic cost of
traditional approaches for validation of graph-structured data.

Still, the eAG data model is not restricted to this use case, and simulation-based
validation can be adapted to the situations where any eAG G = (V, E) is confronted
to any SeAG S = (Vs, Fg). First case, G was made according to a schema S’ =
(Vsr, Ess), and the question is whether it conforms to S or not. By transitivity of
simulation, S validates G iff S simulates S’ so that (leaf(S’),leaf(S)) are in the
simulation (indicating, modulo retyping the nodes of S, a node-typed simulation of S’
by S). This checks in O(|Vs: U Vg| - |Egr U Eg|) [144]. Second case, G was not made
according to any schema. In this case, node types are irrelevant. An adaptation of
SeAG validation is: S validates G iff there is a (general) simulation D C V x Vg so
that Vv € V', Jlug € Vg so that (v,vg) € D (the uniqueness of vg for each v defines a
typing of the nodes of G according to S). This checks in O(|[V U Vg|-|E U Eg|). In
both cases, this is a reasonable cost for a cyclic graph-based data model.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Part 111

Linear Extended Annotation
Graphs: an Inline Markup
Syntax for eAG

125

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Chapter 6

Inline Multilayer Annotation

Linear extended Annotation Graphs (LeAG) is an inline markup syntax for eAG. The
purpose of LeAG is to enable the expression of eAG annotations by means of any
notepad application, in a human-readable form. LeAG must therefore: 1) support
unambiguous translation into the eAG syntax, and 2) enable to represent, by means
of tags, multilayer, cyclic annotation.

The first section of this chapter is a theoretical discussion about the hybrid nature of
the LeAG markup, between the inline and stand-off paradigms, which will lead to the
formulation of an equivalence relation for LeAG documents.

We then introduce, step by step, the LeAG syntax: we gradually show how to represent
the different bricks eAGs are made of in a markup manner: hierarchies, multitrees
(and goddags), attributes, links and quotes. We then interrogate the correspondence
between eAG and LeAG, in order to establish the parsability of LeAG into eAG.

6.1 Introduction

Multistructured models are meant to support the simultaneous expression of several
annotation paradigms. For instance, one may want to annotate a text by identifying,
independently, its grammatical (substantive, adjective, etc.) and its semantic (propo-
sition, topic, etc.) structures. To achieve that goal, eAG makes a clear distinction
between the representation of inclusion', which is a modelling relation that makes
sense within one annotation paradigm, and nesting or co-occurrence?, which is
a fortuitous situation in which two independent elements occur at the same place.
And indeed, the eAG syntax for inclusion is explicit, while nesting happens when
two elements X and Y are so that ref(start(X)) < ref(start(Y)) and ref(end(Y)) <
ref(end(X)) — hence nesting is uniquely defined in terms of reference values.

Yet the notion of chronology is quite impacted by the shift from stand-off to inline
markup. In eAG, in order to fit multimedia annotation, several chronologies can
be defined, and each node is associated a value from one of those chronologies. In

1E.g. a proposition contains a topic.
2 A word may happen to be both a substantive and the topic of a proposition: topic and substantive
co-occur; substantive is nested in proposition;topic is included in proposition.

127

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

128 CHAPTER 6. INLINE MULTILAYER ANNOTATION

a text-only markup setting, a natural chronology is implied by the text itself: the
set of inter-character positions. As a consequence, LeAG rests upon that single,
natural chronology, that does not even need to be made explicit: tags are simply
inserted, within the text stream to be annotated, at the position a corresponding
node of an eAG would have made reference to. E.g., annotating the substantive
in “Let us garlands bring.” is done by inserting a pair of tags as follows: “Let us
[Substantive}garlands{Substantive] bring.”

Still, in spite of being considerably simplified compared to eAG, the notion of chronol-
ogy is still central to LeAG, because it is absolutely necessary in order to represent
co-occurrence or nesting. Consider the very elementary text stream ABC. A chronol-
ogy for this text is: {start() = before(A), after(A) = before(B), after(B) = before(C),
after(C) = end()}. Identifying an element) between the positions before(A) and be-
fore(C) is done as follows: [Q}YAB{Q2]1C. The text stream, since it has been added new
characters (the ones that constitute the tags), has been altered by this operation.
Yet, interestingly, even in the annotated text stream, the original chronology is still
operative to index a very particular text substream, that is, the text stripped from the
tags —i.e. the original stream. This may sound tautological; nonetheless, this remark
is fundamental, since this bare text stream is the one an editor will consider when
she wants to annotate the corpus independently from any previous annotation — that
is, when proceeding to multilayer annotation. Indeed, if the editor wants to identify
another element w, ranging from before(A) to before(C'), she may insert an opening
tag at the position before(A), and a closing tag at before(C'), without considering the
other tags, resulting in® 4; =[Q} [w}AB{OQI{w]C.

One may also consider that, in the original text stream, start() = before(A) — so the
annotation Ay = [w} [QYAB{Q]{w]C (where [w} is inserted at the position start() this
time) shall be considered equivalent to A;. Similarly, since the two elements © and
w are independent, the order in which they are identified shall be indifferent: the two
opening (closing, respectively) tags in A1 and A2 can be inverted, resulting in two
more equivalent markups: A} = [w} [Q}AB{w]{Q]C and A = [Q} [w}AB{w]{N]C.
Hence the following relation:

Equivalent LeAG. Let us call trains of tags the largest sets of tags, in a LeAG,
that are not separated by a character from the original text. Two LeAG are equiva-
lent iff they differ only by the order of the tags that belong to their respective trains
of tags.

This notion of equivalence actually reflects the fact LeAG, though it is an inline markup
syntax, rests upon a notion of chronology that is typical of stand-off markup mod-
els. Indeed, one way to interpret the above equivalence relation is by saying that in
a LeAG, tags only make reference to the position they occupy in the original text
stream. Surely, two tags making reference to the same position may be written in any
order. Since, in practice, two such tags will not be separated by any character from
the bare data and constitute a ‘train of tags’, it follows that in a train of tags, the
order in which the tags are written is indifferent.

As a consequence, contrary to XML, the nesting of an element B inside the scope of an
element A cannot be a means to represent the inclusion of B inside A. Thus a syntax
is needed to represent inclusion (cf. 6.2.1). Second, since inserting tags does not alter

3See paragraph 6.2.2 for the actual syntax for multilayer annotation.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

6.2. THE LEAG SYNTAX 129

:LinkTo:In Extract:Out

S Extract:In
- {_AC:A1t:0ut

AC:In o C Exp O AC:Out

AC:At:In AC:At:Out
o e [n m OR OO
mger:LinkTo:O
&“ T L[——————————[4 —-----
@ e T T i beating t|at|aw~\=ut|~|
Extract 0/ . ro— 1, >

reported that the officer ““really worked him over". After the beating i :Out

(A AC All Oul ._/’
AC:In m AC Out

Figure 6.1: A basic anaphoric chain annotation for the extract of The Village of Ben
Suc, and a corresponding schema.

the chronology that indexes the original text, tags can be considered not to take “any
room” along that chronology. This suggests that inserting exogenous resources within
the primary resources, e.g. structured comments, can be done inside special tags that
open and close at the same position in the original stream (cf. 6.2.3).

6.2 The LeAG Syntax

In the following paragraph, based on the above considerations, we gradually introduce
the LeAG syntax. The content of the LeAG tags will be defined by means of for-
mulae in which orange characters are constants and italics denotes variables. (Black)
parenthesis are mathematical delimiters, not variables or constants. A field is either
a variable or a formula enclosed in parenthesis. An optional field is followed by the
character 7. A field that can be repeated is followed by +, one that is both optional
and can be repeated is followed by *. Concatenation is implicit. Space characters are
represented by underscores.

6.2.1 Mono-hierarchy of Attributeless Elements

As stated above, some explicit syntax is needed to represent inclusion in a markup
model that supports multilayer annotation. This paragraph presents how to express
single-layered annotation. The next paragraph extends LeAG towards multilayered
annotation.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

130 CHAPTER 6. INLINE MULTILAYER ANNOTATION

Elementary spanning elements. An elementary spanning elements (ESE) is the
syntactical structure dedicated to the labelling of a section of the primary resources,
with the possibility to assess that the current element is included in other elements
of the annotation. ESE are represented by a pair of opening and closing tags whose
substance field has the same value, according to the following:

OTag := [substance ¥

CTag := { substance]

substance := name fathers? (,_ ID)?

fathers := _in_ context
Above, name is the name of the current element and works as a label on the pri-
mary resources enclosed by the pair of tags; context provides a designation of the
elements that contain the current element?. The ID field will be discussed in the
paragraph 6.2.4.
The content of an element is constituted of the tags themselves and the whole text
(primary resources + tags) they span over.
Rule 6.2.1 The opening and the closing tags defining one ESE cannot belong to the
same train of tags.
Back to the example. In order to identify one anaphoric chain in the extract of The
Village of Ben Suc, it suffices to define three element names Extract, AC and FExp for
the identification of the extract, the AC and its constituting expressions respectively,
and to build the following pairs of opening/closing tags:

- [Extract} and {Extract] ;

- [AC in Extract} and {AC in Extract], assessing that an AC is included in
an extract;

- [Exp in AC} and {Exp in AC], assessing that an expression is included in an
AC.

The following LeAG L; annotates the anaphoric chain regarding the young prisoner
accordingly.

L1 :[Extract}An ARVN officer asked [AC in Extract}[Exp in AC}a young prisoner{Exp
in AC] several questions, and when [Exp in AC}he{Exp in AC] failed to answer, beat
[Exp in AC}him{Exp in AC]. An American observer who saw the beating that hap-
pened then reported that the officer “really worked [Exp in AC}him{Exp in AC] over”.
After the beating, [Exp in AC}the prisoner{Exp in AC]{AC in Extract]was forced to
remain standing for hours.{Extract]

6.2.2 Grafts: Multilayer Annotation

We now extend the above syntax to multilayer annotation. Multilayer annotation may
occur in two distinct situations: first, the schema defines several annotation paradigms;
second, one path of the schema is instantiated several times onto the same resources
(see Paragraph 5.2.2.4 page 106).

4We will see that an element may have more than one father, thanks to the notion of grafts. See
paragraph 6.2.2.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

6.2. THE LEAG SYNTAX 131

The challenge is to make sure that in any case, the tags of a multilayer LeAG shall
be unambiguously associated with the layer(s) they are part of. When the set of the
elements’ names of two co-existing layers do not intersect, assessing to which layer a
tag belongs is trivial. At the opposite, simulation-based multilayering, which is prone
to self-overlap, will be problematic: in that case, two overlapping elements cannot be
discriminated neither on the basis of their name nor by looking at the name of their
fathers. Anaphoric chains annotation is a canonical example of such a setting.

For instance, in the excerpt of The Village of Ben Suc, consider the ACs relative to
the American observer and the beating respectively. A naive approach making use of
the syntax for single-layered annotation would yield the following annotation — which
is faulty:

[Extract}An ARVN officer [...| beat him. [AC in Extract};[Exp in AC}2An Ameri-
can observer who saw [AC in Extractl}s[Exp in AC}sthe beating{Exp in AC]s5{AC in
Extract]e that happened then{Exp in AC]7 reported that the officer “really worked
him over”. After [Exp in AC}sthe beating{Exp in ACl¢{AC in Extractlio, the pris-
oner was forced to remain standing for hours.{Extract]

Indeed, it is undecidable whether the Fzp element starting at the tag 4 ends at tag
5 or 7. Moreover, there would be no way to ascertain to which AC an Fxp ranging
from tag 4 to tag 5 would belong to.

6.2.2.1 Colouring the annotation layers: general strategy

An intuitive disambiguating solution — at least to the human eye — consists in colouring
the tags belonging to distinct layers:

[Extract}An ARVN officer [] beat him. [AC in Extract}; [Exp in AC}>An Ameri-
can observer who saw [AC in Extractl}s;[Exp in AC}sthe beating{Exp in AC]5{AC in
Extract]e¢ that happened then{Exp in AC]7 reported that the officer “really worked
him over”. After [Exp in AC}sthe beating{Exp in AC]¢{AC in Extractl]io, the pris-
oner was forced to remain standing for hours.{Extract]

Now it is clear that the element starting at tag 2 ends at tag 5, overlapping with the
element starting at tag 4 and ending at tag 7.

Importantly, not only have we coloured differently the elements (2-5) and (4-7) in
order to make their respective opening and closing tags match, but also have we given
a common colour to the elements (3-10), (4-7) and (8-9), which indicates that the two
expressions (4-7) and (8-9) belong to the same AC (3-10), for instance.

Grafts. The notion of grafts follows the above intuition. Grafts are coloured LeAGs
that are anchored onto an existing LeAG. They express, either locally or at the scale
of the whole document, some additional enrichment on top of the annotation that has,
at a certain point in time, been done already.

Consider the LeAG L at the end of paragraph 6.2.1. L; identifies one AC and its
constituting expressions (Exp), within an extract. A graft must be defined in order
to identify, in the same extract, another AC, e.g. the AC regarding the beating, since
this addition will result in a non-hierarchical LeAG. This is done as follows:

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

132 CHAPTER 6. INLINE MULTILAYER ANNOTATION

1. The element of the existing annotation that will serve as the context of the graft is
identified: Extract, here.

2. A name of ‘colour’, nameC, is defined, in the form:
nameC := # colour

where colour is a string that identifies the graft, e.g. “#/Red”.

3. The range of the graft is specified by inserting, within the frame of the context
element®, a pair of colour tags:

Otag := [nameC _over_ context >
Ctag := < nameC _over_ context]

with the nameC and context fields as defined above. For instance:

[Extract}[#Red over Extract> An American observer who saw the beating that
happened then reported that the officer “really worked [Exp in AC}him{Exp in AC]
over”. After the beating [...| <#Red over Extract]{Extract]

4. Then nameC serves as a context for the top elements of the graft. Here, one AC
element spans over the whole graft:

[Extract} [#Red over Extract> [..] An American observer who saw [AC in
#Red}the beating that happened then reported that the officer “really worked [Exp in
ACYhim{Exp in AC] over”. After the beating{AC in #Red], [Exp in AC}the prisoner
[...]... <#Red over Extract]{Extract]

5. Elements included in the top elements of the graft are defined, their context field
keeping record of the colour of the upper element. For instance, here, two Exp
belong to the red AC:

[Extract} [#Red over Extract> [..|] An American observer who saw [AC in
#Red} [Exp in AC#Red}the beating that happened then{Exp in AC#Red] reported
that the officer “really worked [Exp in AC}him{Exp in AC] over”. After [Exp in
AC#Red}the beating{Exp in AC#Red]{AC in #Redl], [Exp in AC}the prisoner |[...] ...
<#Red over Extract]{Extract]

Similarly, had one Exp element had any child, the context field of the tags defining
that element would have been Exp#Red.

Based on that principle, the LeAG Lo on Figure 6.3 identifies the three anaphoric
chains regarding the prisoner, the beating and the American observer respectively —
which is a case of simulation-based multilayer annotation with self-overlap.

5For a detailed discussion about how to position the colour tags, see Paragraph 6.2.2.2 just below.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

6.2. THE LEAG SYNTAX 133

[X}a in X} #G over X>[A in #G} .. {A in #G][B in X,#G}a in B##G}..
{ain B##G]{B in X,#G][C in #G} .. {Cin #G]<#G over X]{a in X]{X]

Figure 6.2: A LeAG and a matching eAG, where an element (B) has two fathers, one
in the uncoloured hierarchy, and the other in a graft. The colours of B, namely #G
and # (uncoloured), are repeated in the context of its son element «.

Ly :[Extract}[#Blue over Extract>[#Red over Extract>An ARVN officer asked [Exp in AC}a
young prisoner{Exp in AC] questions, and when [Exp in AC}he{Exp in AC] failed to an-
swer, beat [Exp in ACYhim{Exp in AC]. [AC in #Blue}[Exp in AC#Blue}An American ob-
server who saw [AC in #Red}[Exp in AC#Red}the beating{Exp in AC#Blue]{AC in #Blue] that
happened then{Exp in AC#Red] reported that the officer “really worked [Exp in AC}him{Exp
in AC] over”. After [Exp in AC#Red}the beating{Exp in AC#Red]{AC in #Red], [Exp in
AC}the prisoner{Exp in AC]J{AC in Extract]was forced to remain standing for hours.<#Red

over Extract]<#Blue over Extract]{Extract]

Figure 6.3: Three-layered LeAG.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

134 CHAPTER 6. INLINE MULTILAYER ANNOTATION

Complements.

1. Grafts are added on top of an existing annotation spanning over the whole
document. Before the first graft is defined, the annotation has to be hierarchical®.
Thus we can refer to this underlying hierarchical annotation as the uncoloured
hierarchy of a LeAG. Tags of this hierarchy either have no explicit colour or,
when they also belong to a coloured graft, the colour of that graft plus a ‘blank’
colour, # — see element « in Figure 6.2.

2. A graft may be defined either on the underlying hierarchy (Figure 6.2) or on an
element from another graft.

3. An element may have several fathers, belonging to grafts or to the uncoloured
hierarchy indifferently (cf. element B, Figure 6.2).

4. The span of the graft shall not necessarily equal the one of its context element:
see the following paragraph.

6.2.2.2 Positioning Colour T ags: Schema-base and Simulation-based Mul-
tilayering

In the above, the indication on how to position the colour tags was voluntarily vague.
Indeed, given an underlying hierarchy and a graft on one of the elements of that
hierarchy, there are arguably three possible ways of positioning the colour tags ‘within
the frame of the context element’. As an example, let us consider the following schema:

Consider the following eAG, validated by the above schema. The coloured areas
highlight the nodes that share their reference value and thus, if the eAG was to be
represented by a LeAG, shall correspond to the same ToT.

6This is not a tough constraint, since a single element spanning over the whole corpus is an
elementary hierarchical annotation.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

6.2. THE LEAG SYNTAX 135

We can deduce from the eAG above that any LeAG expressing the same annotation
shall contain six ToT with, for instance, the following ESE tags in them (considering
the element C' from the eAG belongs to a graft of colour #Pink):

1. ToT; contains: [A}, [B in A}
2. ToTy contains: [C in #Pink}

ToTj3 contains: [D in B}

-~ W

ToT, contains: {C in #Pink]

ot

ToTs contains: {D in B]
6. ToTg contains: {B in AJ, {A]
Then, in theory, the colour tags delimiting the #Pink could be positioned :

1. Colour tags occur anywhere inside the context element of the graft:
[A}[B in A} ... [#Pink over A> ... [C in #Pink} ... [D in B} ... A{C in #Pink]
{D in B] ... <#Pink over Al ... {B in A]{A]

2. Colour tags occur in the ToT where the first and last tags of the graft occur:
[A}[B in A} ... [#Pink over A>[C in #Pink} ... [D in B}
{C in #Pink]<#Pink over A] ... {D in B] ... {B in AJ{A]

3. Opening colour tags occur in the last ToT containing a tag defining an element
of the underlying hierarchy so that this element is common to the annotation
layer containing the graft and to the annotation layer containing the context
element of the graft — and respectively for closing tags. For instance, in the
eAG above, the element A belongs to both the hierarchy “A contains B which
contains D" (which will be described, in the LeAG, by the underlying hierarchy)
and “A contains C” (which corresponds to the graft). It is thus reasonable to
consider to position the opening colour tag in the same ToT as the opening tag
of A, since this is the point from where the two hierarchical annotation layers
(underlying and pink) semantically diverge. And indeed, structurally speaking,
the end of the edge A:In is the node where the path representing the uncoloured
hierarchy and the path representing the coloured hierarchy diverge — or, in other
words, is the starting node of the two-layered pattern. [A}[B in A} [#Pink over
A> ... [C in #Pink} ... [D in B} ... {C in #Pink] ... {D in B] ... {B in
AJ<#Pink over A]{Al]

In the end, it appears that we have three different candidates for positioning the
colour tags that define a multilayer annotation. Actually, solution 1 subsumes the
other two; but 2 does not subsume 3 and conversely. This means that the two different
ways of positioning the colour tags may be made to coexist within a LeAG, in order to
enable to differentiate between two different kinds of multilayering: simulation-based
and schema-based multilayering respectively.

Let us recall briefly the difference between the two kinds of multilayering. Schema-
based multilayering happens when two stacked layers of annotation correspond to two

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

136 CHAPTER 6. INLINE MULTILAYER ANNOTATION

parallel paths of the schema. By contrast, simulation enables to superpose two layers
that do not correspond to parallel paths in the schema.

As an illustration, consider the following schema. In that schema, inside of an element
X, an element A can be directly followed either by B, C or D. The only part of the
schema defining parallel paths is between the nodes 4 and 5. Consider then the two
eAG annotations, both identifying two sequences of elements A — B and A — C' within
one element X, but each according to one of the two kinds of multilayering.

X:In

I

Schema-based multilayering Schema-based multilayering

In the schema-based multilayering setting, there is only one element A in the element
X, followed by two different elements B and C' starting and ending at the same node.
In other words, the annotation works as if there was a base layer, for instance made
out of the elements A followed by B in X, onto which another layer plugged, without
repeating any label of the base layer, and so that the extent of two elements are
synchronized. By contrast, in the simulation-based setting, the element X contains
the element A twice, on two parallel paths. There is no synchronisation between the
elements of each layer, which overlap freely.

Controlling overlap. To justify the necessity of distinguishing, by the syntax of
the LeAG document itself, between the two kinds of multilayering, let us take the
following, very elementary example of a schema in which two elements overlap but in
a specific way.

Q:Out

Simulation-based multilayering enables to express annotations in which any overlap-
ping situation between instances of the elements A and B shall be possible:

a. b. Gz d. e.
A A A A A
B B B B B
Q Q Q Q Q

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

6.2. THE LEAG SYNTAX 137

To understand the above representation of overlap, for instance, in situation d., the
element A will start after a co-occurring element B has started along the annotated
content, and end before or after that element also. What this figure shows is that
simulation enables to express all kinds of overlap between A and B.

Interestingly, by contrast, the only overlapping situations that are allowed in a schema-
based multilayer setting are the situations a. and b., i.e. the situations in which A
does not start after B started, and B does not end before A has ended. In other
words, SeAG schemas can control the way elements overlap in schema-based mul-
tilayering settings.

Obviously, if there is no differential syntax for the two kinds of multilayering, it is
not possible to benefit from this aspect of SeAG schemas. On the contrary, by making
so that the default, or more natural syntax for grafts be the one for schema-based
multilayering, we can make sure that all the grafts defined according to that syntax
be controlled by the schema; those explicitly written in the syntax for simulation-based
multilayering will not, but in a conscious way.

Positioning colour tags: the two kinds of multilayering. Grafts in LeAG
documents will be parsed against a schema accordingly with the following convention”

1. Schema-based layering is expressed by positioning the opening (resp. closing)
colour tag inside the same ToT as the first (resp. last) tag that makes use of
that colour in its context field.

2. Simulation-based layering is expressed positioning the opening (resp. closing)
colour tag inside the ToT that occurs at the position where the bifurcation
(resp. convergence) with the underlying hierarchy occurs in the corresponding
eAG.

Example. Consider the eAG/SeAG couples represented on page 136. The eAG
on the left, which illustrates schema-based multilayering, can be written in LeAG as
follows:
[X} ... [Ain X} ... {A in X][#Pink over X>[B in X}[C in #Pink}

{B in X]{C in #Pink]<#Pink over X]... {X]
By contrast, the eAG on the right, which is an example of simulation-based multilay-
ering, may translate into LeAG as follows:
[X} [#Pink over X> ... [A in X} ... [A in #Pink} ... {A in X][B in X}

{A in #Pink][C in #Pink} ... {B in X] ... {C in #Pink]... <#Pink over X]{X]

6.2.3 Standard Inserts: Attributes, Structured Comment

So far, we have seen how to label the primary resources by means of entangled hi-
erarchies of elementary spanning elements. Still, editing is not only about labelling:
sometimes, additional, structured information must be added on top of the labels. In
XML, this kind of information constitutes elements’ attributes; still, adding attributes

7Actually, this convention is not arbitrary, but is based on algorithmic considerations. See
page 180.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

138 CHAPTER 6. INLINE MULTILAYER ANNOTATION

to an element is like annotating the element itself, that is, for the editor, inserting sec-
ondary, structured data that does not bear on the primary resources but on the tags.
Similarly, providing the editor with means to express critical information, not by
labelling the primary resources, but by inserting assertions is a useful feature. Intro-
ductions, comments and punctual notes, in their digital form, fall into that category
of annotations.

Attributes and punctual comments share the property of not being expressible with
elementary spanning elements. In LeAG, both will be represented by means of in-
serts. An insert is similar to void elements in XML in that: (1) it is both opening
and closing, which means, in the LeAG vocabulary, that inserts start and end at the
same position; (2) it is self-contained, in the sense that the tag representing the insert
is the insert’s content.

Attribute insert: general syntax. The syntax of an attribute insert respects the
following formula:

InsertA = [Att_of_ context _;_ LeAG]

where context is the coloured name of the element whose attributes are described in
the insert, and LeAG is some a LeAG annotation stripped from its containing element,
and constitutes the content of the attributes.

Attribute insert: example. So far, the passage of The Village of Ben Suc as a
whole was simply labelled as an Extract. The following LeAG provides, as attributes
of the Extract, the author’s name, the title and the publication year of the novel:

[Extract}[Att of Extract ; [author}Jonathan Schell {author] [title}The
Village of Ben Suc{title] [year}1967 {year]]An ARVN officer, [..] for
hours.{Extract]

The insert corresponds, in eAG, to a hierarchy of elements bearing the suffix :Att,
included in the element Extract:

(ro) " An ARVN off for h :)
Extract:In n officer [...] for hours. Extract:(y'

- N —~

(ro) (1o} AC, Exp... y-»{Ty)

K. _gl‘ulhor:Al_l”_ lille:Atl’m_ yem’:Al[ﬂ J
Extract: Att:In {1 I ("3 Extract:Att:Out

N
N> ('n

— .

ry r rs 4
Jonathan Schell IThe Village of Ben Suc 1967

In the LeAG, there is no need neither to specify the : Att suffix for the elements defined
inside the attribute insert, nor to indicate in the context field of the top elements among
them, that they are included in the insert®. The same applies to comment inserts:
Comment inserts: general’ syntax. The general syntax of a comment insert is
the following:
InsertC := [mame _in_ context (,_ ID)? _;_ LeAG]

where name is the name of the insert, contexrt is the coloured name of the elements
the insert is the son of and LeAG structured data conform to the LeAG model, consti-
tuting the content of the comment. The ID field will be discussed in Paragraph 6.2.4.

81d est, there is no need to write [author in Att of Extract}, for instance.
9A refinement of the following syntax will be proposed in the paragraph 6.2.4.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

6.2. THE LEAG SYNTAX 139

Comment insert: an example. The following LeAG incorporates a comment re-
garding the context of The Village of Ben Suc:

[Extract}An ARVN[Comment in Extract ; [Att of Comment ;
[authorOfComment}Barrellon et al.{authorOfComment]]The mention of the
[acronym}ARVN{acronym] refers to the Vietnam War.] officer asked [...] for
hours.{Extract]

A comment being an element, it may possess attributes, as illustrated above (e.g. to
specify the name of its authors).

Inserts in a train of tags. The case of inserts within a train of tags has to be dis-
cussed. Consider the LeAG [A}...{A][B in A ; LeAG]I[A}...{A]. In the absence
of a schema, it is not possible to assess to which A element B belongs. If there is a
schema that does not restrict the position of the element B either at the beginning or
at the end of the element A, neither.

Second, consider [A}...[B in A ; L1]J[C in A ; Ls]...{A]. The LeAG itself is
not ambiguous: it states that the inserts B and C' occur at the same position. Yet,
in the perspective of parsing the LeAG into an eAG, since in the corresponding eAG,
two inserts will form a sequence, there is no indication in the LeAG about which insert
will come first. The following conventional rule clarifies those situations:

Rule 6.2.3 When there is no schema or when the schema does not clarify the follow-
ing situations, it shall be considered that (1) when an insert occurs in a train of tags
where an opening and a closing tags identically match the context field of the insert,
then the insert conventionally belongs to the opening element; (2) when two inserts
with the same context field occur in the same train of tags, the order in which the tags
appear along the text document provides a conventional order between the inserts.

6.2.4 Links and Quoting Elements

The last aspect of eAGs that needs to be translated into LeAG is links or quotes. We

have seen that in eAG, links and quotes are expressed harmoniously with the other

elements (i.e. by means of nodes and edges) and, for that reason, can be properly

validated. In particular, compared to XML where a link is but an ID/IDREF pair,

in SeAG/eAG, the nature of the two elements connected by a link can inherently be

restricted. Still, since links and quotes denote distant connections across the corpus

that may result in cyclic annotations (i.e. along the text stream, the beginning of an

element comes after its end), it is not possible to represent them by means of pairs of
tags along the text stream. Thus, Linear extended Annotation Graphs make use of
an additional feature: the ID field.

ID fields work as an identifier of either the source or the end of a connection (link/quote),
hence enabling to position the extreme nodes of such elements inside the LeAG, that

is, to position the elements themselves. Yet, ID fields are not tag identifiers. Indeed,

regardless of the parsing strategy adopted, there is no one-to-one correspondence be-

tween the tags of a LeAG and the nodes of an eAG expressing the same annotation,

as evidenced below!?:

10Coloured shapes relate the eAG nodes/edges to the tags that set their position/label.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

140 CHAPTER 6. INLINE MULTILAYER ANNOTATION

“ty
[A} ...[BinA} .. {BinAl[Cin A} ... {CinA] ... {A]

© ou®
A B C A:Out
()@

:In

Indeed, because the element A contains other elements, the tag [A} translates into two
nodes whose reference values point towards the position of [A} inside the document,
connected by an edge A:In, while the tag [B} relates to one node only. Conversely,
two tags may relate to the same node: since the element C starts where B ends, both
{B] and [C} relate to the node that separates B and C.

Yet, a finer correspondence between the LeAG tags and a subset of the nodes of the
corresponding eAG can be exploited for expressing links and quotes: (1) an opening
tag positions (and hence, matches) the root of the corresponding element in the eAG;
(2) a closing tag positions the leaf of the corresponding element in the eAG; (3) an
insert positions both the root and the leaf of the corresponding element in the eAG.
ID fields exploit that connection, as follows.

ID fields. Since opening and closing tags of ESE relate to either the root or the
leaf of an element in the corresponding eAG, ESE ID fields contain a singleton value
K. A contrario, an insert I D shall possibly designate the root and the leaf of the
corresponding eAG element and thus contains a pair of values M and N:

ID := 1ID_=_ K (singleton syntax)
ID := ID_=_ M _->_ N (pair syntax)

Basic example. Let us consider the following comment and a matching eAG (pink
flags represent the node identifiers):

[Comment:Att, ID =1 -> 2 ; [title} Sasame yuki{title, ID = 3]
[author, ID = 3} Tanizaki Junichiro{author, ID =4]]

Comment:Att:In =3 id=4 Comment:Att:Out
id=1 N e
title:Att —/ author:Att

Noteworthily, the relation between ID values and root/leaves nodes is only surjective.
Thus, the ID of the closing tag of an element and that of an element that immediately
follows have to be equal (e.g. {title, ID = 3] and [author, ID = 3}, above).
The syntax for links and quotes are based on that mechanism — plus some improve-
ments on the insert syntax.

Quote elements. Quote elements enable to include an element identified in the pri-
mary resources within a comment. In eAG, quoting the ARVN acronym from the
extract of The Village of Ben Suc within a comment can be done as follows:

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

6.2. THE LEAG SYNTAX 141

>

— ry 3

“ An 'ARVN ‘officer [..] for hours.
=~
3/

-
Quote:Att:In Us
Extract:Out

N
o)
Extract:In

™\ bf N I J .
***** D e O
j/ “LAcronym 2/ N
_';O,» ------- *‘irj‘/\-" n\/l’i1 \ ------ : / Quote:Att:Out

r's r's
The mention of the Army of the Republic of Vietnam () suggests

r;

the story takes place during the Vietnam War.

The two (orange) edges permit to structurally include the quoted element inside the
comment element.
In LeAG, since the content of a comment has to be written inside the insert itself,
quoting, inside the LeAG field of a comment, an element that has been identified
elsewhere in the annotation cannot be done but by reference. Therefore, quoting
elements appear as special comment inserts, whose LeAG field has been replaced by
an ID field (with the pair syntax):

Quote := [name(_in_ context)?(,_ ID1)? _;_IDy]

ID;, i€ {1,2} := ID_=_ M; _->_ N;
The pair of values of the I Dy field must then refer to some tag(s) somewhere else in
the LeAG that delimit either an element or a sequence of elements.
Quote: example The LeAG representing the above eAG is:

[Extract}[Comment in Extract ; The mention of the Army of the Republic of
Vietnam ([Quote ; ID = 1-> 2]) refers to the Vietnam War.]An [Acronym in
Extract, ID = 1}ARVN{Acronym in Extract, ID = 2] officer [...] hours.{Extract]

This LeAG does correspond to the eAG above, since it states that the Extract contains
a Comment:Att, made out of some not annotated text (which translates into an epsilon
edge), followed by a Quote containing an annotation graph whose root and leaf have
the identifiers ‘1’ and ‘2’ respectively; Extract further contains an Acronym, whose
root and leaf identifiers are ‘1’ and ‘2’ respectively.
Links. An eAG link is an element whose root is a node from an element and whose
leaf is a node from another element.
First, to represent such a graph in LeAG, we need to be able to identify a node inside
any element. Consider the link in Figure 6.1. It connects the internal nodes of two
AC:Att elements that contain nothing but those nodes. Yet, the ID field of an insert
with no LeAG field, suit to represent those AC:Att elements, only identifies the root
and leaf of the matching element, not an internal node. To fill this gap, we define
void inserts:

VoidInsert :— [in_ context ,_ ID]

ID := ID_=_ N
Such an insert neither has a name nor a LeAG field, but it does have a context (the
element it is included in) and an ID field. Placed immediately after an opening tag,
e.g. [A}, a void insert [in A, ID = 1] enables to give the identifier ‘1’ to a node
that, in the corresponding eAG, is the node ending the A:In edge.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

142 CHAPTER 6. INLINE MULTILAYER ANNOTATION

Second, we need a means to express that an element may start inside an element and
end inside another one. For such a special element, we defined link insert:

Link := [name :LinkTo_in_ context ,_ ID(LeAG)?]

ID:= 1D=_M _-> NOR ID.=_->_ N
The LeAG field defines the content of the link; if empty, the link is an edge. The leaf
of the link, identified by the value of the variable N above, must be an internal node
of some element, represented elsewhere by a void insert.
Link: example. Figure 6.1 illustrates how to annotate different, overlapping AC in
an extract, and how links could reify an order relation between them. The following
LeAG expresses the same annotation, extended to three ACs (the prisoner, the beating,
the American observer) as in the eAG on Figure 6.1:

-9 =

[Extract}An ARVN officer asked [AC in Extract}[Att of AC ;
[Longer:LinkTo, ID = -> 2] [Longer:LinkTo, ID = -> 1]][Exp in ACl}a
young prisoner{Exp in AC] questions, and when [Exp in AC}Yhe{Exp in AC]
failed to answer, beat [Exp in AC}him{Exp in AC]. [#Blue over Extract>[AC
in #Blue}[Att of AC#Blue ; [in Att#Blue, ID = 1]][Exp in AC#Blue}An
American observer who saw [#Red over Extract>[AC in #Red}[Att of AC#Red
; [in Att#Red, ID = 2] [Longer:LinkTo, ID = -> 1]] [Exp in AC#Red}the
beating<#Blue over Extract]{Exp in AC#Blue]{AC in #Blue] that hap-
pened then{Exp in AC#Red] reported that the officer ‘“really worked [Exp
in AC}him{Exp in AC] over”. After [Exp in AC#Red}the beating{Exp in
AC#Red]{AC in #Red]<#Red over Extract], [Exp in AC}the prisoner{Exp in
AC]{AC in Extract]was forced to remain standing for hours.{Extract]

6.3 Summary and Notation

The following table aims at summarizing the LeAG syntax that has been introduced
in the previous paragraph.

Tags. LeAG has an inline markup syntax. An annotation graph is made out of tags.
A tag is a sequence of characters delimited by a starting character St and an ending
character Ed. The characters in between belong to the tag, whose structure is the
following :

Tag := St substance Ed

The typology of LeAG tags is given in Table 6.1.
Notation. Based on the above table, we will from now on be able to speak of the

name, context, colour, etc. fields of a tag, or that of an element or a colour — if
appropriate!!.

HThe definitions of elements and colours are given below. Spanning elements and colours being
made out of two tags, one can speak of a field for the whole element only for those fields that are
identical for the two tags, e.g. the name field. On the contrary, the two delimiting tags of a spanning
element do not have the same ID field, so talking about the ID field of an element does not make
any sense.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

6.3.

SUMMARY AND NOTATION

143

Tag type St Ed substance field formula substance field description
char. char.

e name € L

e father := _in_ context

— context := radical (, radical)*
— radical := nameF7? colour*
opening tag r } name father? (., ID)? — nameF € L
— colour := #cn
— c¢n is an alphabetical string
e ID:= 1ID= N
- N eN
closing tag { same as opening tags same as opening tags
® context : same as opening tags
void insert [] in_ context , ID)

e ID : same as opening tags

® name : same as opening tags

e context : same as opening tags

e ID:= 1b=-M -> N

— N,M €N
comment [] name _in_ context (,. ID)? LeAG
insert .

e LeAG corresponds to an independent well-
formed LeAG, stripped from its containing el-
ement. By independent, we mean that the name
of the current insert needs not be specified as
the context of the top-level elements of the in-
dependent LeAG.

® name : same as opening tags

e radical : same as opening tags

attribute [] 1 radical (,_ ID)? LeAG
insert e ID := same as comment inserts

e LeAG : same as comment inserts

® name : same as opening tags

e radical : same as opening tags

= 1= M? >
link insert name :LinkTo_in_ radical ID (_:. LeAG)? e ID:= 1b= M7 N
— N,M €N

e LeAG : same as comment inserts

® name : same as opening tags

® context : same as opening tags

quote insert name_in_ contewt (,. ID1)? IDy pening tag
e IDy, IDy : same as comment inserts
e name : same as colour in opening tags
opening name _over_ radical X .
colour tag e radical : same as opening tags
closing colour] same as opening colours same as opening colours
tag

Table 6.1: Summary of the syntax for LeAG tags.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

144 CHAPTER 6. INLINE MULTILAYER ANNOTATION

Given an element (or colour) A, the set of x fields of A will be denoted A.x. For
instance, considering a tag A := [Line in Poem,Stance#R,Chorus#B}:

1. A.name = {Line}. Noteworthily, since the name field cannot be multiple in
any tag, A.name will always be a singleton and will conveniently be used as a
value.

2. A.radical — {Poem ; Stance#R ; Chorus#B}.

The concatenation of the objects composing a set'? aSet will be denoted [],g,;. For
instance here, [] 4 .oiour = #R#B.

In case of a composite field f (e.g. father), the above notation may be used to denote
a particular subfield of f (e.g. f.nameF).

The concatenation of two values will be either implicit (no operator) or, when clarity
demands so, denoted by the character -: for example, the concatenation of the name of
the element A and of the concatenation of its colours will be written A.name A.colour
= Aname - [4 .o1our — a0d will equal Poem#R#B.

12Note that, strictly speaking, there is not one way of concatenating the objects of a set (any
ordering of the objects yields a different value); yet, in the following, the order of the objects in the
concatenation will always be of no importance when that concatenation operator will be used.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

Chapter 7

An Efficient Parser for Linear
Extended Annotation Graphs

Let us consider that two eAG are isomorphic iff there is a bijective morphism ¢
between them so that a node and its image by ¢ share the same reference value.
LeAG is designed as a markup syntax for eAG. Ideally, there should have been a
bijection between LeAGs and the classes of isomorphic eAGs. Yet, this is not the
case: first, because two equivalent LeAG documents shall translate into the same
eAG, and second, because several non-isomorphic eAGs could match a given LeAG —
which is clearly problematic when considering parsing LeAG documents into eAG. For
instance, the elementary LeAG [A}...{A][A}...{A] may reasonably translate into
either of the following:

OAGA® L RAE-@A® BOAG @O -PPE

or any eAG made out of a sequence of two edges labelled A with the right reference
values, separated by any number of epsilon edges. The problem is we cannot, in the
absolute, prefer one eAG over the others, since all of them do represent the fact the
LeAG document contains two A elements in a row — and also, and most importantly,
because the different eAG will not be validated against the same schemas. Indeed,
considering the three SeAGs below, the above eAG [1] is validated by the schema [S1]
only, [2] by both [S2] and [S3], and [3] by [S3] only.

A SR
OROAO IR0 BIDAO
Choosing one solution against the others thus cannot be done but by considering a
predefined schema. Hence parsing a LeAG means: given a SeAG, yielding a valid eAG
that ‘represents well’ the LeAG — if such an eAG exists.
In the following, we discuss how to design a deterministic schema-aware LeAG parser.

The whole discussion that follows is ‘up to isomorphism’. First, we introduce some
elements of notation, that will be useful for the following paragraphs. Then we consider

145

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

146 CHAPTER 7. LEAG PARSER

the problem of parsing LeAG documents against a schema and show that focussing on
a certain family of LeAG-SeAG couples is beneficial in terms of algorithmic complexity.
Eventually, we define a single pass, SeAG-aware LeAG parser.

7.1 General Parsing Strategy

The parsing setting we consider here is the following: given a SeAG S, a LeAG L, we
want to design a parser that deterministically yields an eAG Ig that is validated by
S and that matches L, i.e., so that there be a bijective function ® between the set
Ex of the elements of L and the set &7, of the elements of Ig, so that the following
conditions are verified:

1. Ve € &k, if e is an ESE not enclosed within an insert, or a link, the name of
®(e) is e.name; else, the name of ®(e) is e.name: Att;

2. Ve € &k, ref(root(e)) = ref(root(®(e)) A ref(leaf(e)) = ref(leaf(®(e));

3. Ve € &k, if the root, leaf or first node of e is given the identifier value N by
means of the appropriate ID field, the corresponding node of ®(e) has N as an
identifier value;

4. Ve, f € Ek so that e is the preceding element of f along some annotation layer
of L, then ®(e) precedes @(f) in Ig;

5. Ve, f € £k so that f is included in e in L, then ®(f) is included in ®(e) in Ig.

At this point, the reason why we need a parser is because this, indirectly, provides
the LeAG markup syntax with a validation mechanism. This means that, if there
is an eAG that verifies the above conditions and that is validated by the schema S,
then, the output of the parsing algorithm with L and S as parameters, cannot be
void. Conversely, it means that if the output of the parsing algorithm, with L and S
as parameters is not void, then, L can be regarded as a valid LeAG on behalf of the
schema S.

Noteworthily, giving validation up to a parsing algorithm is coherent with the
fact the eAG/SeAG model benefits from a matrix representation model that enables
validation to be guaranteed by construction, that is, assessed in the very course of the
manufacture of an eAG, given a predefined schema. By defining data structures that
mimic the aforementioned matrix representation — or benefit from its properties — to
represent the schema and the eAG, as an output of the parsing of a LeAG L, then
validation can indeed be checked by parsing the LeAG, since parsing means building
an eAG in the template of a schema: if this construction is possible, the LeAG is valid,
and is not if not.

Performance-wise, what matters, regarding the parsing/validating algorithm, is
time complexity mainly [126]. The goal is to design an algorithm with a linear theo-
retical time complexity, in terms of the size of the document. This must be compared
to the complexity of OWL, RDF'S, ScheX, SHACL, that are the only validation mech-
anisms that handle cyclic data.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

7.2. PARSING STRATEGY: ELEMENTS OF DESIGN 147

The following paragraph introduces the general parsing strategy we adopted. Some
restrictions on the nature of schemas and LeAG documents were taken in order to man-
age acceptable parsing costs: we introduce and justify those. In the last paragraph,
we provide a synthetic view of the parsing algorithm and quantify its theoretical time
complexity.

7.2 Parsing Strategy: Elements of Design

The parsing algorithm we designed works in a single pass, and its theoretical time
complexity is linear in terms of the documents’ number of tags (see Paragraph 7.3.3).
The main steps of the algorithm are the following:

1. Initiate the data structures — see 7.3.1.
2. For each ToT:

(a) Consider the colour tags. Register the colours that are newly declared in
the ToT, if they are used in a tag of the ToT or not. Register the colours
that end in the ToT.

Design discussion: page 172.

(b) Generate the (possibly disconnected) subgraphs that correspond to the ESE
defining tags only. This graph may contain pending nodes (incomplete
edges). Register to which hierarchical level the roots and leaves of each
subgraph belong.

Design discussion: page 148.

(c) Build the disconnected linear subgraphs that correspond to the different
sets of inserts sharing the same context. Connect their root and leaf to
the nodes of the ESE subgraphs marked as belonging to the same level
appropriately.

Design discussion: page 157.

(d) Connect the remaining disconnected subgraphs relative to the ToT by se-
quences of € edges as allowed by the schema. Those sequences of € edges
must connect nodes belonging to the same hierarchical level appropriately.
Design discussion: page 157.

(e) Connect the first node of each hierarchy of elements to the last node of
the same hierarchy belonging to a previous ToT, by means of sequences of
€ edges as allowed by the schema. This operation must result in a bigger
(incomplete — unless the ToT is the last of the LeAG) eAG containing all
the nodes and edges related to the ToT. The pending nodes whose reference
values correspond to the current ToT remain for being connected to a later
ToT.

Design discussion: page 157.

Yet, this strategy imposes some restrictions on the nature of LeAG document / SeAG
schema pairs, as defined below.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

148 CHAPTER 7. LEAG PARSER

7.2.1 Restrictions on ESE Defining Tags
SeAG/LeAG couples must verify the following conditions:
(C1) No two subgraphs of the schema define two elements with the same name.

(C2) Any subgraph of the schema that contains ESE defining edges and that
forms an Hamiltonian path can be instantiated into a hierarchy of elements.

First, (C2) implies in particular that the schema contains no recursive element’s
definition. Indeed, recursive elements’ definition imply that there is a cycle in the
schema that leads back to the root of an element from inside this element, this, before
the ending edge of that element is encountered — so the opening edges of those elements
are included in the cycle while the ending edge is not, which implies there is no way to
unfold the sequence of edges that the cycle contains into a hierarchical pattern. It is
important to ban recursive definitions in the perspective of parsing LeAGs, since this
ban prevents from the situation in which an element named X be included in another
element named X, both starting at the same reference point, which is ambiguous in
the LeAG notation. For instance, the following schema defines the elements X and w
recursively:

Consider the following ToT: [A}[X in A}[w in X, ID = 1}[X in w}[w in X, ID
= 2}[X in w}[D}. It describes the start of a hierarchy of elements that is allowed by
the schema, as follows: A > X >w > X >w > X > D. Yet there is no way to assess
whether the tag named X, bearing the ID value 1, is the ancestor of the tag named
X, bearing the ID value 2, or the other way round. Avoiding recursive definitions in
the schema prevents from such ambiguities.

Second, (C2) prevents from writing schemas so that any graph instantiating twice,
in a row, the sequence of edges corresponding to a cycle from the schema, be not
well-formed. Consider the following SeAG:

The schema defines an element D that is either directly included in the top element A,
or included in B, that is included in A, itself included in A. Note that the elements’
definitions are not recursive here. Defining hierarchies of elements in which some
hierarchical steps are optional is a key feature of SeAG; yet, the way it is done here,
by recurring to a cycle made out of :0ut edges, somehow hijacks the purpose of
cycles in SeAG, that is, to define repeatable sequences of edges. Indeed, no graph
instantiating the cycle of the schema twice in a row, as follows, can be well-formed:

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés

7.2. PARSING STRATEGY: ELEMENTS OF DESIGN 149

Still, (C2) does not refrain from expressing hierarchies of elements with optional hi-
erarchical steps. The above SeAG can be reformulated in order to respect (C2) as
follows:

In this context, (C1) guarantees that each tag name be associated with at most one
triple LTT’€ £ x T x T from the schema that is considered for the parsing process.
This implies that, whenever the parser reads a given tag, regardless of the context
of the element it defines in the LeAG, then a unique edge from the schema can be
associated to that tag. It is quite clear that schemas in which two elements can have
the same name do not provide that interesting property. See for example the following
SeAG :

A tag [a in w} occurring in a LeAG could then be associated with either the edge
(a,3,4) or (a : In,8,9) from that schema. Choosing amongst those two shall then
demand to take the context of the element a of the LeAG into account — which would
mean, in this elementary example,