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Abstract

Digital Scholarly Editions are critically annotated patrimonial literary resources, in
a digital form. Such editions roughly take the shape of a transcription of the origi-
nal resources, augmented with critical information, that is, of structured data. In a
collaborative setting, the structure of the data is explicitly defined in a schema, an
interpretable document that governs the way editors annotate the original resources
and guarantees they follow a common editorial policy.
Digital editorial projects classically face two technical problems. The first has to do
with the expressiveness of the annotation languages, that prevents from expressing
some kinds of information. The second relies in the fact that, historically, schemas of
long-running digital edition projects have to evolve during the lifespan of the project.
However, amending a schema implies to update the structured data that has been
produced, which is done either by hand, by means of ad-hoc scripts, or abandoned by
lack of technical skills or human resources.
In this work, we define the theoretical ground for an annotation system dedicated
to scholarly edition. We define eAG, a stand-off annotation model based on a cyclic
graph model, enabling the widest range of annotation. We define a novel schema lan-
guage, SeAG, that permits to validate eAG documents on-the-fly, while they are being
manufactured. We also define an inline markup syntax for eAG, reminiscent of the
classic annotation languages like XML, but retaining the expressivity of eAG. Even-
tually, we propose a bidirectional algebra for eAG documents so that, when a SeAG
S is amended, giving S’, an eAG I validated by S is semi-automatically translated
into an eAG I’ validated by S’, and so that any modification applied to I (resp. I’ ) is
semi-automatically propagated to I’ (resp. I ) – hence working as an assistance tool
for the evolution of SeAG schemas and eAG annotations.
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Résumé

Dans la continuité des éditions critiques traditionnelles, les années 2000 ont vu l’émergence
de nouveaux objets éditoriaux : les éditions critiques numériques. De telles éditions se
distinguent des numérisations de fonds patrimoniaux en offrant une transcription en-
richie de données secondaires (notes et commentaires, indication des sources, données
bio/bibliographiques, etc.). De tels objets prennent la forme de documents structurés,
e.g. de documents XML. En pratique, les éditions critiques s’appuient sur une struc-
ture de données définie explicitement sous la forme d’un schéma. Reflet de la politique
éditoriale, le schéma indique le vocabulaire et la grammaire d’annotation mis en œuvre
dans l’édition.
Si XML est le standard de facto pour l’annotation textuelle, il est établi qu’une struc-
ture hiérarchique représente mal un texte littéraire, et a fortiori un texte annoté.
D’autres modèles d’annotation, reposant sur des formalismes de graphes plus généraux,
ont été proposés : les modèles de documents multistructurés. Cependant, les mécan-
ismes de validation pour documents multistructurés échouent à embrasser la catégorie
de graphes la plus prometteuse pour la réalisation d’annotations, à savoir des graphes
cycliques, du moins avec une complexité algorithmique raisonnable.
Sur un autre plan, il apparaît que les projets d’édition mettent en œuvre un mode
de travail linéaire, comme suit : un schéma est initialement proposé ; il est dans
un second temps instancié, puis les documents résultant de cette instanciation sont
publiés. Le problème pratique est que les éditeurs, dans la phase de conception du
schéma, anticipent rarement sur l’ensemble des situations qui seront rencontrées dans
les textes annotés. En d’autres termes, les schémas sont appelés à évoluer pendant
la construction de l’édition. Or une mise à jour du schéma doit s’accompagner d’une
mise à jour des données structurées...
Nos travaux s’articulent autour de trois axes : la représentation d’annotations cri-
tiques concurrentes ou multistructurées ; la validation de telles données ; l’assistance
à la mise à jour de ces données en cas d’amendement du schéma correspondant.

1. Nous avons défini un modèle de balisage déporté (stand-off markup), nommé
eAG, dans lequel l’annotation est représentée sous la forme d’un graphe cyclique.
Nous avons défini et formalisé la notion de chronologie composite, permettant de
faire référence aux contenus de documents comportant, typiquement, du texte et
de l’image, et à rendre ce type de documents compatible avec le balisage déporté.
Nous avons proposé une syntaxe de balisage pour l’annotation textuelle, nommée
LeAG.
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x

2. La validation de données dont la structure, comme dans les eAG, est un graphe
cyclique, est coûteuse si elle repose sur une grammaire (RelaxNG, Creole, Schex,
etc.). A ce titre, nous proposons la notion de simulation en tant que mécanisme
de validation. Un schéma SeAG est un graphe qui valide un eAG si il simule ce
dernier. Nous avons défini un mode de représentation couplé pour les schémas
et les graphes d’annotation tel que, étant donné la représentation d’un schéma,
seuls des graphes d’annotation simulés par le schéma puissent être représentés,
rendant possible une validation « par construction » des eAG.

3. Le troisième axe de recherche s’apparente à la problématique des transforma-
tions bidirectionnelles ou du Data Exchange dans laquelle, en fonction de corre-
spondances entre deux schémas, les données instanciant le premier schéma sont
traduites dans une forme compatible avec le second. Notre approche se base
sur un petit nombre de primitives, opérations élémentaires qui s’appliquent aux
schémas : suppression, insertion, substitution d’une sous-partie. Un schéma est
amendé par application successive de ces primitives. Chacune de ces primitives,
en outre, peut être interprétée au niveau des instances et donner une nouvelle
forme d’instance, compatible avec le schéma modifié. Enfin, les transformations
entre instances sont bidirectionnelles, assurant une synchronisation entre les in-
stances de deux schémas.
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Chapter 1

Digital Scholarly Edition

Scholarly Editing, or the art of making “available for scholarly use works1 not ordi-
narily available or available only in corrupt or inadequate forms” [155], has been one
of the paramount activities of scholars for centuries. Resulting from long-term, close-
study of the edited corpus, scholarly editions provide the reader with an appropriate
representation of the primary corpus, or, in case this corpus is lost, with a reasoned
reconstruction of it; it may also, depending on the scholar’s editorial strategy, give
detailed insights of the genesis of the edited works and/or their transmission and vari-
ation. Textual introductions and notes may also be added to the edition, in order to
supply, either at the global or at the local scale of the corpus, contextual or explicative
information. Thus, scholarly editions are among the most complex editorial objects
that the codex tradition have given birth to.
Established and evaluated according to the academic standards [106], scholarly edi-
tions are fed by original or up-to-date studies on the edited corpus – as such, editing
“produces knowledge” [142] and editions represent important, milestone research prod-
ucts. Conversely, because they are expected to represent the state-of-the-art knowledge
about the edited work, at the moment of their publication, scholarly editions are key
resources for further research, that is, valuable research tool themselves. In other
words, scholarly editions plays a pivotal role in the Humanities, aggregating prior
knowledge and opening to new discoveries at the same time.
It is thus no wonder that Digital Scholarly Editions (DSE) shall be one of the most
active fields in the frame of the booming Digital Humanities. Quantitative evidence
of the intense editorial activity among the digital scholars can be found in the Patrick
Sahle Catalog, that counts as many as 412 DSE projects undergone over the period
starting in 1994 until this very day2,3. Digital Humanities can be defined, in the view

1Or texts, or documents.
2Available online at http://www.digitale-edition.de/. Accessed on August 1st, 2017.
3One may notice, while browsing through the catalogue, the drastic under-representation of DSE

projects conducted outside the ‘Western world’. Actually, the only counter-example from the Sahle
Catalog is the Bichitra: Online Tagore Variorum project, conducted at the Jadavpur University,
Kolkata, India. This under-representation, yet, seems to represent quite accurately the global DSE
landscape. Indeed, as evidenced by [74], DSE is mainly a European and Anglo-Saxon phenomenon,
and very few such projects are actually undergone for non-European language-based corpora. Arabic

3
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4 CHAPTER 1. DIGITAL SCHOLARLY EDITION

of some, by their vocation to become a digital research infrastructure for humanists,
in an analogous way to the infrastructure that libraries, universities, and so on, consti-
tute in the physical world [61]. Analogically indeed, DSE aim at being both a research
product and tool; analogically, DSE are established and evaluated according to the
academic standards – as an illustration, the peer-review RIDE Journal precisely aims
to “direct attention to digital editions and to provide a forum in which expert peers
criticise and discuss the efforts of digital editors in order to improve current practices
and advance future developments” 4. And certainly, shall DSE have been no more than
the transposition of the traditional scholarly edition in that digital infrastructure, it
would indeed have had to play a central role in that digital setting.
Still, beyond these analogical points between paper-based scholarly edition and DSE,
the prospects of DSE go far beyond working as a sort of digital incunable for schol-
arly editions. Actually, it seems that going digital profoundly is renewing the schol-
ars’s activity. Some of the traditional, theoretical problems the editors have faced
for centuries are renewed by the shift from the codex shape to the digital world; new
resources (multimedia resources in particular) can be edited, or can be integrated
into the critical apparatus of a DSE, opening new perspectives in terms of editing
capacities; alternative business models develop along the traditional ones, based on
the publishing industry; eventually, new working organisation models (collaborative
work) are at hand, enabling to envision the edition of vast corpora, or multidisci-
plinary, or international edition projects, in a way that was much harder to follow
without digital support. Digital edition also raised new, tricky problems; in particu-
lar, long-term preservation is a key challenge, as it is for Digital Humanities as a whole.

In this introduction, before dwelling into the technical landscape underlying DSE, we
would like to focus on how DSE are theorized, modelled, envisioned by the editors
themselves, and on the practical, general implications of those visions. This may help
understand what DSE are or could be.
In a second part, we will investigate the notion of DSE construction, in the light of
the above. We will then ponder what a generic approach towards the construction of
DSE might mean.

1.1 Edition and Text Theory in the Digital World

Scholarly Edition5 is traditionally divided in two main fields: critical versus docu-
mentary edition. Indeed, the two kinds do complement one another, from a defini-
tional point of view: while critical edition refers to “a text that derives from more than
one source text” [155], a documentary edition can be defined as “an edition of a text

and Asian languages are virtually short of examples to this date. Interestingly, the only three scholarly
digital projects dedicated to Japanese corpora that we are aware of are based outside Japan, namely:
the Japan Text Initiative, from the University of Virginia, which is a collection of copy-texts; the
Japanese Historical Text Initiative, which is a database of copy-texts and translations, from the
University of Berkeley ; the Oxford Corpus of Old Japanese, exhibiting more ambitious scholarly
goals [75], edited at the Oxford University.

4Accessible at http://ride.i-d-e.de/. Accessed on August 4th 2017.
5Many definitions cited here come from the very useful Lexicon of Scholarly Editing, founded by

Dirk Van Hulle, available at uahost.uantwerpen.be/lse/. Accessed on August 5th, 2017.
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1.1. EDITION AND TEXT THEORY IN THE DIGITAL WORLD 5

based on a single document” [135]. They also correspond to different rationale, and
result in very diverse objects.

Documentary edition “attempts to reproduce a certain degree of the peculiarities
of the document itself, even if this may cause disruption to the normal flow of the text
presented by the document. It can assume different formats, by presenting the textual
content of the document as semi-diplomatic, diplomatic, ultra-diplomatic, or even
facsimile editions, which differentiate themselves by the level of editorial intervention,
ranging from the largest to the smallest concession to the reading habits of the public
of choice” [135].

Critical edition, on the opposite, as suggested by the above, minimal definition,
implies that the editor methodologically constructs the text of the edition, based on
all the available documents that constitute her corpus (the selected set of historical
‘witnesses’, or versions, of the text) [77]. The nature of the construction may vary a
lot, depending on the corpus and on the editorial project defined by the editor. As
Shillingsburg puts it, critical edition can go from “reconstructing now lost texts” or
“identifying and correcting errors or stylistic lapses in the text being edited” to “ex-
tracting from the plethora of authoritative evidence an intended text not yet realized”.

The aim of this construction is not consensual either. According to Kline, the
purpose of the reconstruction is “to establish an authoritative text that does not re-
flect every element of any single surviving documentary source but, instead, embodies
the editor’s critical judgement of what an author‘s true intentions were” [106]. One
interpretation of this proposition is that the underlying editorial project for critical
editions is based upon the hypothesis that the surviving witnesses do not represent the
author’s intention, because the intended text was either never made public (e.g. was
emended on the proofs, due to censorship6) or because it is only accessible through
corrupted or faulty copies and editions. The purpose of a critical edition is thus to
attempt to recreate what the intended text could possibly have been, based on ma-
terial evidence, either contained inside the source materials, or based on documents
that are not versions of the text but provide information on it (gloss, quotations, para-
phrase, letters, etc.) and on the editor’s critical judgement. Recently, some editors,
tenants of what is called the New Philology, have raised criticism towards this point
of view, stating that it relies on a particular vision of the author, whose intention
prevails and shall be reconstructed, inherited from Romanticism, and that leads to
consider each variant in the witnesses as “fundamentally faulty” [111]. Indeed, one of
the most rigorous critical editing technique, namely, Stemmatics, consists in building
a family tree of the witnesses, in a phylogenetic fashion, based on error models; in
particular, the principle that a “community of errors implies a community of origin” is

6A famous example of that may be found in the ‘proof volume of the Encyclopédie’ preserved
at the Library of the University of Virginia (ref. Gordon 1751 .D54 Proof vol.). According to the
Library’s website (http://small.library.virginia.edu/collections/featured/224-2/, accessed on August
5th, 2017), ’[t]his volume was apparently made up by one of the editors of the Encyclopédie, almost
certainly André Le Breton who is known to have effected the unauthorized censorship of many of
the articles by Diderot and other contributors. These proofs are in the original settings before Le
Breton’s editing and are, therefore, of greatest significance to scholars of the Encyclopédie as the only
known source of Diderot’s full uncensored texts.”
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6 CHAPTER 1. DIGITAL SCHOLARLY EDITION

operated to group witnesses as descending from the same, lost intermediary version,
called hyparchetype, and so forth, in order to reconstruct, up to certain hypothesis,
the original, archetype text. Yet, the above theory, that relies on the vision of a text
being associated to either one author, meaning that any exogeneous intervention has
to be considered as a corrupting process, or to one single, original version, is argued
not to be transposable to the pre-Romantic era, during which the figure of the author
does not translate well, in particular in Medieval times, where scribes, in charge of
writing the manuscript copies of a given work, did not necessarily have the role of
copists: hence the need, for New Philologists, to give the witnesses of a work their
original quality and to consider them as first-order texts, instead of simple witnesses
of a lost, hypothetical text [43].
Alongside those passionate debates, that still have very practical, concrete implica-
tions, Elena Pierazzo suggests another, pragmatic, historical raison d’être for critical
editions [135]. She points out that editors have always faced the dilemma between
editing “texts or documents (or texts of works vs. texts of documents)”. History
shows that most of the time, texts of works were preferred, instead of documentary
editions. “This choice has been almost inevitable for works for which many witnesses
survive: who indeed, apart from the editor and possibly a couple of other scholars,
would be interested in buying and/or consulting seven hundred versions of Dante’s
Commedia, one for each of the surviving witnesses? Historically, in cases like these,
the only sensible solution has been to reconstruct the version that corresponded most
with the theoretical orientation of the editor, and to serialize the rejected variant read-
ings in the apparatus. The result is the provision of a clean, reading edition, where
the variants are conveniently marginalized at the bottom of the page or at the end
of the volume, in the name of ease of reading.” In other terms, critical editions have
been favoured – to the point of virtually eclipsing documentary editions out of the
scholarly field [135] – due to financial and readability reasons.

Digital Scholarly Editions: Documentary, critical or both (or more)? This
last argument seems of particular importance, in order to understand the ongoing
evolution of Scholarly Edition in the Digital world. As a corollary of its very reason
of existence, as a means to pally the impossibility to exhibit the primary sources used
for the edition, “access to the sources has always been one of the biggest limitations
offered by traditional critical editions, where only the categories of variants considered
relevant by the editor were collected and organized in the apparatus criticus” [135].
Yet, since the mid 1990’s, vast digitization campaigns have been launched either by
private companies, by public institutions or both jointly7, resulting in huge collections
of high resolution images of consistent and rare heritage funds, ranging from printed
editions, manuscript avant-textes, private correspondence, author’s library, etc., now
available to the scholar (if not to a larger audience directly8). Thus, the access to a
graphical representation of the sources is no more a financial issue, as it has been for

7As an illustration, in 2008, the Municipal Library of Lyon launched a call for tenders for the
digitization of its funds. The campaign was funded by the Library itself, the Ministry of Culture and
the National Library. The call was won by Google.

8GoogleBooks, in the private world, or Gallica, a state-funded platform, offer a wide range of
free, digital heritage resources.
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1.1. EDITION AND TEXT THEORY IN THE DIGITAL WORLD 7

paper-based editions. In this context, it has become possible (and, actually, this is
even now a sort of de facto rule) to incorporate them: the DSE shall give the reader
an access, somehow, to the digital images of the documents upon which the edition
is based, that is, to a visually faithful representation of the whole set of witnesses
considered for the edition.
As the experience shows – and as was known from traditional facsimile editions, that
were of little use among the scholars [147] – images do not make a scholarly edition.
Image-based editions lack readability and exploit very little of the perspectives offered
by the digital media, in terms of querying and computability. Instead, the current,
predominant approach [135], is based on the correspondence between the images, of
course, and a highly accurate, at least diplomatic, transcription, retaining as many
information about the edited document(s) as relevant. Indeed, this methodology does
not solve, or bury, the traditional divergences between the tenants of critical versus
documentary editions. From one point of view to the other, the nature of the tran-
scription will differ drastically. For instance, while some may advocate to wipe all
exogenous information from the transcription, that is, to transcribe only “what the
editor sees as directly attested by the document is to be included in its edition”, that
approach would mean, for others, to neglect all the interesting aspects about the work
the document witnesses (“what it means, who wrote it, how it was distributed and
received, how it is differently expressed”) [147]. Yet, the two positions do not need
to exclude one another any more. The necessity of providing a digital version of the
material source in a digital project can be seen as a step in a more general type of
scholarly editions, which can adapt to the reader, and cover, all-in-one, the range from
copy-text to fac-simile editions, through critical edition, on demand, hence overcoming
the classical dilemma between documentary, versus critical edition: indeed, “features
that were once normalized without mercy to produce reading, critical [...] editions
can now be retained and simply switched on and off at leisure to please different audi-
ences, thereby opening the way to new scholarship and readership [...] together with a
critical edition, the diplomatic edition of the sources would be offered for readers’ in-
spection in digital form, where the space constraints that have determined the format
and the selectiveness of the printed apparatus no longer apply” [135]. The encoding
system defined for the transcription of Dante’s Commedia, which aims at retaining
both the “text of document” (sticking accurately to what is on the document) and the
“text of work” (containing the variants) is an illustration of such an expanded critical
approach [26]. Providing an edited, critical text may be of great usefulness “to the gen-
eral readership”, while “the edition of the manuscript as document can also be justified
on scholarly grounds”. This possibility to make a critical edition rest upon a detailed
description of the material resources it is based upon, in a documentary fashion, is
also advocated by Jerome McGann, tenant of the influencial theory of “Social texts
editing” [40].
Interestingly, the above methodology, namely, to base the editorial work on a highly
skilled transcription of the documents constituting the primary corpus, adapts well to
a great range of editorial projects. In particular, it applies well – to the point of being
inevitable – to documents for which materiality is of high interest, and that possibly
do not even witness any text per se. This is often the case for draft materials, or
avant-textes, as they are called by the French school of genetic criticism.
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8 CHAPTER 1. DIGITAL SCHOLARLY EDITION

Genetic criticism. Indeed, after a complete lack of consideration, considerable at-
tention have been given to working (often manuscript) drafts, as records, not of the
text of work itself, but of the process of its creation. Very different from the antique
and medieval manuscripts traditionally considered by the critical scholars, drafts are
most of the time composite documents, whose textual content is not linearly displayed
across the media (but rather dispatched into different zones), is of diverse nature (cre-
ative text, summaries, commentaries, metatext) and that may even not be the witness
of a literary work under construction, but rather the imprint of the activity of a work-
ing mind [111]. In this context, the traditional critical approach, as well as a humble
documentary edition, are both irrelevant. The first, because the purpose of editing
draft materials is not to provide one synthetic text of work, since that work may not
exist, and since varying places in a manuscript do not have the same status as vari-
ants, among which the editor may choose in order to reconstruct the intention of the
author9. The second, because draft manuscripts are generally dense, hard to decipher
and non-linear, making the understanding of what is going on on the documents hard
to follow without sustained attention: more than a sheer (ultra) diplomatic transcrip-
tion, the editor has to provide the reader with clues about the structure, i.e. about
the semiotic nature of each part of the document and, if appropriate, how to navigate
through the corpus to get a significant insight of the evolution in the writing.
Printed genetic edition projects, aiming at rendering the uncovered dynamic processes
that the documents show, have been attempted, but because the editors had to make
use of a complex set of symbols to represent the information of genetic nature, they
resulted in “unreadable, unusable, time-consuming, and, in general, deceptive” paper
books [135]. On the contrary, the digital media seems to be particularly promising for
such editorial projects. Indeed, the combination of dense encodings of the documents
and dynamic publishing interfaces enable to bypass the need for any cryptic render-
ing of the genetic processes at work in the documents: instead, the reader can travel
through the documents, aided by the editor, in a most natural way. As Julie André
and Elena Pierazzo indicate, a digital edition may even encode “several trips through
the intricacy of the manuscript: writing and reading sequences”, the first working as
a reconstruction, up to hypothesis, of the different steps of a passage’s writing pro-
cess, the second indicating the reader the lead to follow in order to be able to read
the last writing state. An implementation of that principle was produced, based on
a few drafts by Marcel Proust [6]. The edition relies on a documentary, topological
transcription of the documents. The reader accesses the transcription by means of
an interface that shows the image of the documents, each zone of the image giving
access to its transcription. Moreover, the order in which the different zones can be
meaningfully read is indicated by means of a timeline functionality, which enables to
“replay” the writing process of the page.
Similar considerations directed the ORIGAMI project, dedicated to the avant-textes
of the Eloge de Bossuet by D’Alembert [14]. Three consistent manuscripts of the El-
oge have been preserved. The purpose of the ORIGAMI edition was to illustrate how
D’Alembert, well aware of the dangers of censorship, installed critical and polemic
opinions in an institutional text. The polemic writing strategy of D’Alembert, as

9Even if the status of variants, as well as the critical approach based solely on the author’s
intention, are, as we have seen, debated [43].
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1.1. EDITION AND TEXT THEORY IN THE DIGITAL WORLD 9

shown by Olivier Ferret, can be seen in the way the author gradually, from the early
versions of the text to the printed ones, balances the controversial elements between the
text of the Eloge, which was to be published during his living time, and the posthumous
Notes [72]. As a demonstration of this claim, the ORIGAMI edition proposed, along-
side an access to the hi-resolution pictures of the manuscripts, a transcription of the
documents encoding the different layers of correction (insertions, emendations, substi-
tutions, travels) by D’Alembert inside each manuscript version, as well as indications
about the places of disruption and of continuity between the successive manuscript
versions. The reading interface rendered this transcription in a dynamic mode: it was
possible to display the text of the documents layer after layer, from the first version
available until the printed version, driving the reader to visually unlayer the successive
authorial interventions of D’Alembert first at the local scale, and then from one version
to the next. This functionality was meant both as a reading assistance tool, helping
the curious reader to decipher the (digitized) source materials, and as the expression
of a reading proposition, an hypothesis about the writing process of D’Alembert that
the reader was invited to check and, in terms, to confront to his own views – in that,
the ORIGAMI approach was reminiscent of – which fills the circle – the traditional,
critical editions, result and basis of past and further research.

In the end... Undeniably, the recent years have indicated a bend from in the tra-
jectory of documentary editions, that from a marginal position in the paper-based
scholarly world, have come to occupy a central one in DSE, to the point that pro-
viding the edited corpus underlying a digital edition has become a de facto standard.
Yet, as indicated by [135], documentary editing is more a method than a text theory;
and while documentary editing has gained favour among digital scholars, as illustrated
above, the field of text theory has been more active than ever, animated with strong
debates and growing around some new theories. Thus, DSE teams will obviously con-
tinue to propose a wide variety of editorial objects, driven by different views on what
DSE should be, or by different aims, ambitions and methods.
However, the rise of the documentary methodology as part of almost any DSE project
has important consequences, in terms of how digital editors will be working. Indeed,
the necessity to provide a digitised, and transcribed, version of the sources within
the frame of a DSE imposes the use of an encoding, or structuring language. In-
deed, without this need, critical editions could still be done the traditional way, and
variants be included in notes, just as in a paper edition – albeit, the resulting text
would be displayed on a digital media, equipped with a search engine and some other
functionalities – and the same could apply to genetic editions also. But this is not,
and as detailed in the short review above, for good, editorial reasons, the way DSE is
following. Thus, the resulting “text” of the edition cannot be plain text accompanied
by a series of notes. Instead, DSE clearly lean towards the model of a set of images
and structured resources (the transcriptions), encoding a lot of material, critical, ge-
netic information about the documents. The limits of the digital enrichment, i.e. the
amount of encoded information, based on that model, are virtually indefinite [135].
We have mentioned DSE whose transcriptions blend documentary and critical, topo-
logical and genetic views. Those kinds of annotations, and their combination even
more so, enable a detailed description of the edited resources, from an internal point
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10 CHAPTER 1. DIGITAL SCHOLARLY EDITION

of view. But one interesting prospect of DSE is the possibility to encode, on top of
the aforementioned internal characteristics of a document, exogeneous relationships
as well, that is, intertextuality. This idea is not new, and has been theorized, and
sometimes experimented, under the name of Hypertext [121, 65] of Web of discourse.
We leave the final words, in this paragraph, to Hans Walter Gabler [77], with this
exhilarating and almost dreamy vision:

“In the Renaissance, when books first became the medium for editions, print-
ers devised breathtaking lay-outs for surrounding texts with commentaries,
often in themselves again cross-referenced. In effect, they attempted to con-
struct in print the relationality of what today are called hypertexts. But
with books to establish the third, relational, dimension against their material
two-dimensionality, has always been a rudimentary gesture, and has always
depended on involving and stimulating the reader’s imagination and memory.
For editions existing electronically, in contrast, the relational dimension is a
given of the medium, and complex relationalities may be encoded for them
into the digital infrastructure itself.”

1.2 Constructing Digital Scholarly Editions:
A Generic Approach

Our PhD work originates in an opportunity, supported by the Rhône-Alpes region,
in France, to study how digital scholarly editions are manufactured, and then how,
from an experimental point of view, the manufacturing process of DSE could be eased,
or assisted, or improved. Importantly, the challenge was to adopt, for this study, a
generic approach, that is, to make sure that the proposed solution be not specific
of one, or even a few DSE projects, but embrace DSE in general. Yet this study is
grounded on four digital scholarly projects, that accepted to participate to the intel-
lectual adventure this PhD work represented and to serve as a bank of examples: the
edition of the documentation Gustave Flaubert gathered for his unfinished novel Bou-
vard et Pécuchet10, the exploratory analysis of philosopher Jean-Toussaint Desanti’s
archive11, the double publication (printed and online) of Stendhal’s Journaux et pa-
piers12 and the critical edition of the Diderot and D’Alembert’s Encyclopédie13.
The four projects differ in many aspects. In 2013, at the beginning of the PhD work,
three of them had already started, and were even publishing their editorial achieve-
ments, while the work on the Encyclopédie was in its most early stages. The nature
of the editorial aim, for each project, was different. The edition of the preparatory
files of Bouvard et Pécuchet, which is mainly the work of Stéphanie Dord-Crouslé,
aims at providing the reader, who is understood as a ‘user/researcher’ as well, with
a range of transcriptions (from ultra-diplomatic to normalized), so that she can then
build herself a hypothesis about how the materials gathered by Flaubert could have

10http://www.dossiers-faubert.fr/
11http://institutdesanti.ens-lyon.fr/
12http://manuscrits-de-stendhal.org/
13http://enccre.academie-sciences.fr/
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1.2. CONSTRUCTING DSE: A GENERIC APPROACH 11

been assembled into a volume. The approach is thus essentially documentary. The
edition of Jean-Toussain Desanti also operates a documentary approach, doubled with
an archival aim. The first task was to catalogue the whole archive, and to build an
index of names and concepts, describing the documents at a macroscopic level. In
parallel, the documents had to be transcribed, in order to allow the identification of
unedited works by the author, hidden inside the archive, and also to support a ge-
netic reading of Desanti’s work, centered on “his working methods, his focuses, his
influences and their evolution through time14”. The project has been based on a suc-
cession of small, specialized teams, sometimes reduced to one researcher. The edition
of Stendhal’s Journaux et papiers is a twofold edition: providing the reader access to
the manuscripts preserved at the Municipal Library of Grenoble, by means of a doc-
umentary archive freely available online, complemented by a critical, printed edition
(see [168], published in 2013). The editorial team, directed by Cécile Meynard and
Thomas Lebarbé, gathered up to about 20 multidisciplinary members. Eventually,
the name of the ENCCRE project, which is an acronym for “Edition numérique col-
laborative et critique de l’Encyclopédie”15, is self explanatory. It is the only, of all the
DSE projects here, to specifically claim for a collaborative organisation. It relies on a
large and multidisciplinary network of scholars (about 100 people) that spreads across
Europe, Japan and the United States.
Those projects, because of their diversity, provide a valuable set of real-life experience
of DSE. In the following, we propose a general study of how DSE are manufactured.
As a disclaimer, this study does not aim at covering the whole range of questions dig-
ital scholars face during the construction of their DSE. In particular, some practical,
and extremely important decisions, regarding data preservation and interoperability,
that are at the very heart of Digital Humanities today [136], will voluntarily not be
considered. Those are well-identified, debated problems, that are managed technically
and politically at the institutional level. Instead, grounded on the historical experi-
ence of the four edition projects above, we propose an abstract description of DSE
construction. This description, that aims at being as general (or generic) as possible,
will uncover some crucial difficulties and challenges that all four of the DSE projects
have faced. Our conclusions can be summed-up as follows:

- From a certain point of view, the activity of DSE manufacturing can be widely
described as a modelling and data structuring activity. The centrality of mod-
eling, and the connection with data structuring, has been identified elsewhere
[119, 136, 40, 163, 102]. Practically speaking, editors will, based on their edito-
rial policy and on a model of the edition, and of the edited corpus, define a data
structure and instantiate it.

- The definition of the data structure is thus a process, or should we say an
editorial process that, as such, has raised little interest so far. While heavy
with consequences for the DSE, it happens that the activity of defining a data
structure is often centralised, even in collaborative settings, and thus editors may
be deprived from participating in that process, while they will have to instantiate
its outcome (i.e. the data structure itself).

14http://archive.desanti.huma-num.fr/desanti/a-propos. Accessed on August 8th, 2017.
15Id est, quite transparently, “Digital, Collaborative Critical Edition of the Encyclopédie”.
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12 CHAPTER 1. DIGITAL SCHOLARLY EDITION

- Since the definition of the data structure is grounded on a model, and that
“modeling succeeds intellectually when it results in failure” [119], it follows that
data structures are susceptible of changing in the course of a DSE project. Data
structure evolution in the context of DSE have also raised little attention, to the
best of our knowledge.

As one can see, the above points do not describe technical difficulties, but difficulties
of an editorial nature – they are not technical first, even if, as we will see, they do
imply several profound research questions to the computer scientist...

1.2.1 A Generic Approach of DSE
As we have seen, Digital Scholarly Editions cover a wide spectrum of editorial projects
and form a complete galaxy of diverse objects, even if they tend to revolve around a
common methodology, based on documents transcription and enrichment. Unspectac-
ular as it may seem at first glance, this methodological similarity across very different
projects has important consequences, and can be exploited to provide a certainly
rough, but revealing, generic model of the manufacture of DSE.

1.2.1.1 A Starting Model for DSE Manufacture

As a starting point, let us consider a first, rough and incomplete model of how DSE
are built. This elementary model, that will be refined in the following, is given in Fig-
ure 1.1. According to this model, the DSE results from interactions between subjects
(the editor or the editing team) and objects of diverse nature:

- An editorial project. It is defined by the editors. It sets the editorial principles
according to which the DSE has to be made. It covers a wide range of decisions:
“the choice of who the edition should be aimed at; whether it should present an
edited text; if so, on what principles should that text be edited; what conventions
of spelling, punctuation and presentation should be followed” [148], as well as, in
a context involving documentary editing, what characteristics of the documents
are relevant.
The editorial project can be tacit or explicit. Most of the time, it is summed up
in a text written in natural language that will be, at least partly, available to
the final reader of the edition.

- The data structures. Regardless of the technological aspects of the encoding
(i.e. what language is used for the transcriptions, etc.), in the context of DSE,
the data structure is a model for the edition, respecting a certain formalism,
so that this model is interpretable by the machine [164]. Those familiar with
the way data structures are defined in XML or in TEI, that is, by means of a
schema, are well aware of that. Indeed, as suggested by Willard McCarty, model
is a double-sided concept, referring both to “a representation of something for
purposes of study, or a design for realizing something new”. He distinguishes
between “models of” and “models for”, to enlighten the above distinction. Data
structures, indeed, are “models of”. Let us stick to the example of XML-based
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1.2. CONSTRUCTING DSE: A GENERIC APPROACH 13

editions. A schema for XML contains the definition of the elements that will be
instantiated (i.e. the types of the objects that will be identified in the sources)
and of the hierarchy those elements will constitute in the annotation. Thus,
defining the schema for an edition demands to have identified the objects of
interest in the sources, that will, in the transcription, be represented by an
element, as well as the way those objects of interest relate one to the other,
from a hierarchical point of view. In other terms, the editor will only be able to
define the schema for the transcriptions once she has got enough familiarity with
the sources and the project so as to have developed a good mental image, or a
good model, of the characteristics of the corpus to be edited and of the editorial
enrichments intended for it16.
At the same time, a data structure is generally not purely descriptive. Data
structures defined as a preliminary for the editing work, as it is commonly done,
play a strong, prescriptive role as well, since all the data generated afterwards
by the editors will have to be conform to that data structure. Data structures
work like a guide for the editor, but also like a censor: only the information
planned in the model can be expressed, as planned in the model – an XML file
containing an element not defined in the schema, for instance, being necessarily
considered invalid.
The data structure works thus as a definition of the language of the annotation:
it defines the conceptual vocabulary and the grammar that will be available for
the editor to express the annotation.

- The digital corpus. This is what the editors construct while editing. In the first
steps of the DSE construction, the digital corpus corresponds to the unedited
files: native-digital sources, images of the documents, raw transcription or text
issued from the OCR... Later, the digital corpus will be made out of the enriched
data. In case a data structure was defined, the corpus will have to respect that
structure, in the end.

- The material corpus is the set of material objects that need to be digitized.

- An editing interface. It is by means of that interface that the editor will
be able to define/construct the machine interpretable files corresponding to the
edition: the data structure, if one is defined, and the digital corpus.

This basic model of the manufacturing environment for DSE provides a set of six
abstract subjects/objects for which we can now try to find a generic incarnation, that,
among the possible shapes, subsumes (or generalises) all the others.

1.2.1.2 A Composite Approach of Genericness

In our claim to propose a generic approach of the DSE manufacture, we understand
“generic” by “lacking specificity”17: a minima, “generic” thus means versatile; a max-
ima, universal. We follow the principle that a system (composite, by nature), as the

16Moreover, from a computer science point of view, data structures are models of the data in that
they can be exploited to formulate, or optimize, complex queries on the data.

17See www.thefreedictionary.com/Generic. Accessed on August 9th, 2017. The same definition
applies in French, see atilf.atilf.fr/.
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14 CHAPTER 1. DIGITAL SCHOLARLY EDITION

Figure 1.1: Elementary model for DSE construction.

one we have modelled in the previous paragraph, cannot pretend to be versatile if one
of its parts suffers from a too specific definition. We now try to consider each element
of the above model for DSE construction, and to provide them with the definition of
what might be their most generic realisation.

- Editorial team. We consider, as the most general case of editorial team, a
collaborative, distributed, multidisciplinary team of scholars that are not familiar
with computer science. This subsumes editors working alone, teams working
at the same physical place and/or benefiting from the possibility of meeting
regularly, etc. It is also open to the eventuality of there being some kind of
turnover, or evolution, in the composition of the team.

- Editorial policy. The editorial policy is connected both to the editorial project
the editorial team forms and the sources to be edited. It would be presumptu-
ous to summarize all the possible views one can have on any primary sources.
Still, to be as general as possible, we can say that one DSE project may, as
has been illustrated in the paragraph 1.1, support several editorial paradigms at
the same time (genetic and documentary, critical and, say, linguistic, etc.). In
other words, in an editorial system supporting the most generic kind of editorial
policy, the editors must not be restricted to express annotations conform to one
paradigm only: double, or multiple-paradigm annotation must be possible.
Even more so, it shall be possible to decide, after the project has started, to
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1.2. CONSTRUCTING DSE: A GENERIC APPROACH 15

change the editorial policy, for instance, but not solely, by going from a single-
paradigm to a multiple-paradigm edition. Thus we articulate genericness, re-
garding the editorial policy, with two notions: multiplicity and dynamism, as
follows:

1. at any moment, several editorial views may be expressible;

2. the editorial policy may evolve through time, under the spur of the editors.

- Data structure. Since the data structure is a partial translation of the editorial
policy:

1. the data structure shall support multiple annotation of the digital resources;

2. the data structure shall not be definitive. It must be a first-order object
that, as such, the editors shall be able to amend, in the course of the DSE
manufacture.

- Digital corpus. The digital corpus may be a set of resources of diverse nature:
image, necessarily, but also annotated text, audio and video resources, native-
digital objects... The digital corpus is by nature dynamic, since the editors, by
encoding information in it, add secondary content to it. The primary content as
well may change during the editing work.

- Editing interface. Generic editorial interfaces have been proposed elsewhere.
Such interfaces aim at covering the whole range of editorial activities necessary
to the construction of the edition, from the data structure definition until the
parameterization of the published materials. The Glozz platform, primarily ded-
icated to linguistic annotation, exemplifies such interfaces [183]. In particular,
it enables to tune a “data metamodel” (i.e. to define the data structure) accord-
ing to several linguistic paradigms; it provides user-friendly tools to instantiate
on the corpus those different paradigms simultaneously; it enables to query the
resulting digital corpus and to generate files in different formats (XML, TEI,
txt...). Modular interfaces, designed by the user herself from a library of pre-
existing functional bricks, can be seen as another way to achieve the same goal
[11]. It shall also support collaborative work, as hinted by the above point on
the nature of editorial teams.

- Material corpus. Similarly to digital corpus, the material corpus may be
multimedia, and may change during the lifetime of the edition.

1.2.1.3 Conclusion of this Paragraph

Genericness is defined as the lack of specificity. What the above suggests is that a
non-specific digital edition system shall be adaptative, i.e. shall allow the editors to
define their own language of annotation freely, and to instantiate it on the data.
We also get the hint that non-specificity shall be understood in dynamic terms: a
generic edition system shall support both stable editorial projects, that keep the same
editorial team and policy throughout their lifetime, and evolving projects, for which
the corpora, the team and the policy, may change any time.
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We will thus now consider how the combination of those two characteristics onto which
genericness is grounded (adaptation and evolution18) impact the main activity in the
digital edition routine, namely, data structuring (and its corollary, data structure
definition). The questions we will try to answer, on a theoretical (not technical yet)
level, are the following:

- What does the activity of data structuring consist in? How may an editor want
to make a data structure evolve and what difficulties does it raise?

- How does the above translate in the context of collaborative work?

1.2.2 Data Structuring Models
By structuring, we refer to the whole process consisting, on the one hand, in the defini-
tion of the types representing some characteristics of the data and of the relationships
between those types and, on the other hand, in the instantiation of those types in the
data, that is, the annotation itself.
It is worth noting that the first activity is, sometimes, indissociable from the second,
namely in the editorial systems that rely upon the notion of implicit data structuring:
in this case, the data is not structured according to any pre-existing, formally defined
structure, and the data structure is the structure that can be inferred from the data.
Explicit structuring, in which data structures pre-exist to the data, is the alternative.
We question those two kinds of data structuring for DSE in the following paragraph.

1.2.2.1 A Panorama of Data Structuring Paradigms

Implicit structuring. As stated above, defining the data structure for an edition
demands to have a clear model in mind, and to be able to formalize it. Yet, some
projects might not either be in capacity of, or want to, define such a model a priori of
the editing work. As pointed out by [156], the formalistic burden this represents can
be an obstacle for the activity of collaborative groups, or of scholars, that can (and
at the time the article was written, certainly were in a vast majority) unfamiliar with
the activity of formal modelling. Following those considerations, several propositions
aiming at relieving the scholars with abstract structuring have been proposed.
CritSpace is an interesting such proposition. It takes the shape of an interface for the
exploration and the organisation of multimedia, heritage corpora. Thus, structuring
is at the very center of the aims of the interface. The interface, from a user point of
view, relies upon the ergonomic paradigm of “spatial hypertexts”. The way structuring
is done in CritSpace is the following:

- The user is provided with graphical representations of the documents that consti-
tute the corpus to investigate. The user can then display those representations
on a working surface (a window, actually) and position precisely those repre-
sentations on this surface. It is then the spatial proximity of two documents’

18Interestingly, this abstract analysis, that dates back from 2014, at the start of this PhD work, is
shared, almost word for word, by [103], that gives an account of how, practically speaking, genericity
was achieved in the DigitalHarlem project.
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representation that encode the existence, and the tightness, of a semantic rela-
tionship between the two corresponding documents.

- It is then possible to write textual notes (in a post-it manner) to comment on
the displayed resources.

- It is also possible to “synchronize” resources, in a very specific sense: when one
resource from a set of synchronized resources is manipulated in the interface, the
others of the set are highlighted, so that the user be informed of the existence
of a particular relationship between the documents those resources represent.

Figure 1.2 is an illustration of the CritSpace working surface.
This structuring paradigm is clearly dedicated to the exploration of a documentary
corpus – in this regard, the authors do not mention any means to export the result of
the structuring by CritSpace. It is also semantically quite limited, since it is not possi-
ble to type either the resources nor their content, nor the nature of their relationship.
Other tools, by contrast, are grounded on the notion that the abstract quality of
structuring needs not be erased, but facilitated [156]. A quite recent example can be
found in Analyst’s Workspace [7]. In this approach, structuring is incremental: first,
it is quite similar to the way it works in CritSpace, in the sense that the (textual)
resources are classified according to their spatial display on a working surface, without
any typing of any sort. Then, the user can formally define new objects called “entities”,
which are then associated with a zone of the working surface and, by corollary, the
resources that occur on this zone, hence working as a sort of typing of the network
they form. However, no export is described by the authors neither.

Let us denote that none of the two systems presented here make it possible neither
to infer any structural information from the structured data resulting from their use,
nor to exploit that structure for querying purpose. By contrast, one can think of the
proposition of Dataguides and Graph schemas, two complementary tools proposed to
infer, or extract, a descriptive structure from data that possess, at least partly, some
structure, but that was generated without the use of any kind of schema (or predefined
data structure), or that were aggregated from diverse sources of information [3].

Explicit structuring As it happens, the above examples are not meant to be used
for editorial purpose – unless in a preliminary, research-oriented phase of work that
is not specific of edition. As it happens also, examples of editing systems that would
rest upon an implicit-structuring paradigm lack, to our knowledge. Instead, it seems
that scholars, in the enthusiast atmosphere of Digital Humanities, have gained the
competence of thinking in terms of abstract models and data structure, to the point
that some tools, like the aforementioned Glozz platform [183], not only give the scholars
the possibility to define a data structure themselves, but also to annotate that structure
as a first-order object. Additional evidence comes from the fact Digital Humanities
literature does not hesitate in discussing advanced problems of modelling and data
structuring [58, 68, 177, 60, 103].
Thus, it appears that the concerns expressed in [156] are not justified anymore, or at
least, does not apply to DSE editors, that are well-aware of data structuring problems
and in capacity of dealing with them. Explicit structuring can be divided into two
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Figure 1.2: The working surface of CritSpace. The information that two documents
share close relationship is indicated by the spatial closeness of the graphical represen-
tation of those documents.

cases: in the first one, defining data structures is equivalent to defining types, that
can then be instantiated inside the data, without there being a necessity that the data
structure be instantiated, and the other, in which the data structure is designed as
a prescription over the structure of the data, that must conform to it in order to be
considered valid. The two philosophies can be illustrated as follows:

- In the Glozz platform, the user is given the means to define several data struc-
tures each supporting a certain annotation paradigm. Those data structures are
quite simple. They derive from a metamodel in which “segments” (types used to
characterize segments of text) can be connected together by “relations” (typed
associations between segments); sets of relations, of segments connected by re-
lations, can then be typed, forming what we might call “typed substructures”.
The data structure, as a whole, can thus be quite complex, containing intricately
connected segments, grouped into several, overlapping typed substructures. It
is then possible to instantiate each kind of segment into the data, and then to
connect the instances of segments by relations as defined in the data structure.
Still, the data structure, in this explicit structuring paradigm, only works as a
library of types (for segments, relations and substructures). In particular, even
when a segment is part of a typed substructure, it can be instantiated alone,
without it being necessary to instantiate the substructure as a whole.

- On the contrary, data structures are designed to have a far more prescriptive
role for the well-known and widely used annotation (meta)language XML [28]
is. In XML, the explicitly defined data structures are called ‘schemas’. There
are several schema languages for XML, from DTDs to XSD and RELAX NG
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[126]. The XML model relies upon the notion of element, which correspond to
a typed ranges of an XML document that can be affected attribute values (or
metadata). XML schemas also rely upon the notion of element type, or type of
element: they contain the definition, not only types of elements, but of a family
of hierarchies of element types, that shall reflect the model of the edition the
editors have made – with the constraint that this model shall be hierarchical.
Schemas are then used to check if a given XML document has an appropriate
structure – it is said to be ‘valid’ if so –, which happens if and only if the set of
all the elements contained in the XML document form a hierarchy that matches
one of the hierarchies of element types defined by the schema.
The philosophy here is thus quite different from the one in Glozz, which results
in important practical differences. Compared to the ‘library of types’ proposed
by Glozz, in which one can pick the types she wants to instantiate in the data,
XML schemas describe the structure of documents as a whole: if one wants to
instantiate a given element type defined in the schema, then, she has to instanti-
ate a whole hierarchy of element types containing the element type. While Glozz
philosophy can be described as ‘pick whatever you want’, XML schemas are in
a ‘take all or leave all’ fashion.

This last remark means that schemas play a prescriptive role Glozz data structures
do not. If a schema is given, then the structure of the documents one may produce,
and that need to be validated by the schema, is limited. This aspect of the schemas
is fundamental. It is actually one of their essential reason of being: considering a
situation in which several co-acting people are supposed to write XML documents for a
common use, or for exchange purpose, then schemas, if they do limit the expressiveness
of the the co-actors, ensure that they write documents that share the same structure.
Moreover, in a DSE construction setting, schemas can be exploited as a means to help
the scholar to build the annotation: XML editors softwares like Oxygen, provide the
user with ‘content assist’ features, that offer suggestions for completion, according to
the context and to a predefined schema. This is indeed a very useful feature, because
it lightens the burden of text encoding and, as a consequence, helps commitment into
annotation by the experts.

1.2.2.2 Making the Structure Evolve

As key factors of genericity for the construction of DSE, we have identified the two
following points:

1. the data structure must be adaptative, that is, it must support a vast array of
editorial policies;

2. the data structure must be evolutive, that is, editors shall be able to amend it
during the course of the manufacturing of the edition, so as to meet the needs
of DSE projects that change, purposely or by accident, in their lifetime.

The first of the two requirements is nothing original. Indeed, all the aforementioned
propositions for data structuring meet it, to a variable extent. In particular, the letter
‘X’ in XML precisely means that XML is ‘extensible’, in the sense that it does not
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20 CHAPTER 1. DIGITAL SCHOLARLY EDITION

rely upon a closed, predefined set of elements: any user can define her own. Yet, we
will see in Part II that the range of annotations allowed by XML is limited – and is,
most importantly, limiting, in practice.
The second requirement is more ambitious, and has raised far less attention. In the
following, we propose an analysis of how and why data structures may evolve, in a
DSE project. For that purpose, we ground our analysis on the history of the four DSE
projects associated to this work.

Evolving Data structures: an example . This first example is taken from the
early history of the ENCCRE project. The project aims at providing the first digi-
tal critical edition of the Encyclopédie of Diderot and D’Alembert. To achieve that
goal, two fundamental principles were adopted when the project was launched in 2012:
first, because of its critical nature, the edition had to reflect the state of knowledge
on the work; second, the edition had to rely upon a descriptive and prescriptive data
structure, accurate enough to enable to encode that knowledge.
Regarding the material sources considered for the edition, a copy-text approach was
chosen, based on a particular exemplary of the work, held by the Mazarine Library19,
in Paris, which is from the first printed batch of the first Parisian edition.
The first task the editorial board assigned itself was then to design a data structure
that would reflect both the intrinsic characteristics of the document and enable to ex-
press the result of the studies that have been conducted on the text of the Encyclopédie.
Regarding the intrinsic characteristics of the document, since the Encyclopédie, roughly
speaking, takes the shape of a dictionary, when looking at a page, one may perceive a
certain (and, actually, quite fuzzy) structure. The volumes are divided into articles,
that start by a vedette, term or series of terms that announce the subject of the article,
etc. The data structure thus had to enable the identification of the Articles, Vedettes
and Volumes, for instance, in the transcription of the document.
Regarding the studies on the Encyclopédie, of particular interest are those that aim at
identifying the authors of the articles the Encyclopédie contains. Indeed, while some
articles are signed, by means of symbols whose signification is given in particular in
the Discours préliminaire [110], others are not signed. Sometimes, several contributors
provided the different parts an article is made of. Attributing studies thus aim at iden-
tifying the authors of the different passages of an article, both signed and unsigned.
The data structure thus had to enable the identification of Attributed passages, the
Signatures and the identified Collaborators.
The first model, or data structure for the articles20 that was intended by the edito-
rial board, that we may call Alpha, was the following: An Article contains a Vedette,
Signatures and possibly Attributed passages. An Attributed passage may relate to a
Signature. A Signature is related to one and only one Contributor. The data structure
is represented21 on Figure 1.3. Let us consider that this data structure is instantiated
on a digital corpus A restricted to the transcription of one article of the Encyclopédie,
“Jet d’eau”. According to that data structure, attribution was to be encoded as follows:

19Item 2o 3442, Bibliothèque Mazarine, Paris.
20... presented here with many omissions, for the sake of simplicity.
21At that state of their work, the editors of the ENCCRE project had not chosen a particular

language for the text encoding. The data structure was represented in a UML-like graphical form.
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Figure 1.3: Representation of the data structure Alpha, instantiated on the digital
corpus A.

1. In case of signed passages, the symbolic Signature is identified in the document,
the attribute value of the Signature set to the collaborator name that corresponds
to the symbol, according to the Discours préliminaire; the Attributed passage
is delimited in the document; a link is created to relate the Signature to the
Attributed passage.

2. In case of unsigned passages, only the Attributed passage is identified, its at-
tribute value set to the collaborator name uncovered by the editor.

This strategy works well on the digital corpus A, made out of one Article, made of
one Attributed passage related to a Signature. It would also work well for unsigned
passages.
However, a closer scrutiny at the secondary literature on the Encyclopédie provided
a counter-example that is not handled by the data structure Alpha. Indeed, the ar-
ticle “Allées de jardin” is made out of two signed halves. The first, signed (K), for
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D’Argenville, is indeed from the hand of D’Argenville – this situation is similar, in
all aspects, to the one found in the digital corpus A. Yet the second half, signed with
Diderot’s star (*), has been attributed to... D’Alembert by Fabrice Ferlin [71]. This
finding introduced the idea that some symbolic signatures printed in the Encyclopédie
may be fallacious. Hence the need for another data structure, Bêta, represented on
Figure 1.4. That new data structure contains a new object, named Collaborator, and
a new kind of relation, that can bear a note written by the editor. According to that
structure, attribution works by relating the Attributed passage to the Signature, for
signed passages, and the Signature to a Collaborator, by means of an annotated rela-
tion: the note attached to the relation will be the place where to justify the difference
between the symbolical signature on the document and the real author of the passage.

In this case, in order to take into account the secondary literature on the primary
corpus, the editorial board must have redefine the data structure initially chosen.
It is possible to be more accurate upon the nature of that “redefinition”. The shift from
Alpha to Bêta did not imply a complete change of the data structure: most data types
(Article, Vedette, Attributed passage, Signature) remain. Qualitatively, the shift from
Alpha to Beta can be discomposed as the dropping of the attributes in Signature and
Attributed passage, by the insertion of a new type Collaborator, and by the definition
of a new kind of annotated relation. Thus, Bêta does not simply replace Alpha: most
importantly, Bêta amends, rectifies, Alpha .
Moreover, in this case, the corrected structure does not subsume the amended one.
The situation implied by this amendment is then the following:

Digital corpus: A ∪B
Data structures: Alpha ⊥ Bêta

In this case, we then face a situation in which the digital corpus is divided into two
parts (A∪B), each instantiating two incompatible data structures. The data structure
amendment thus generates conflict inside the structured data. Such conflicts shall
appear whenever the amended data structure does not subsume the previous one,
that is, when the nature of the amendment was not solely addition. We provide an
exploratory typology of data structures transformations that shall be useful, and that
imply conflicts, right below. But first, we give a few examples, taken from the real-life
of the other three editorial projects, that advocate for the need, in a tool dedicated
to the construction of DSE, to anticipate data structure evolution, i.e. to assist it, as
well as the subsequent data update.
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Figure 1.4: Representation of the data structure Bêta, instantiated on the digital
corpus B.
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Examples of Data structure evolution

1. Manuscrits de Stendhal A very precious resource, attesting of the way data
structures do change along the construction process of a DSE, is the Wiki22
created to support the team work for the edition of Stendhal’s manuscripts. It
provides us with a view of the history of the DTD modifications from April
2007 to February 2011. The modifications are of several orders: addition of an
element type, deletion of an element type, addition of an attribute, change of
the list of fixed values for an attribute, specialization of an element.
The data update, consecutive to those modifications, have been done by hand
mainly, or at times, by means of ad-hoc scripts.

2. Desanti Archive While the encoding of the documents of the Desanti Archive
had already started, new material sources were communicated to the ENS Lyon,
where the archive is preserved. Those new elements were audiotapes of lectures
given by the author. As such, they were included in the primary corpus of the
project. Those resources have strong connexions with the text material of the
archive known so far. Yet transcribing those demanded the data structure to
evolve, so that the encoding of audio files, and of the correspondence between
the discourse and the textual content of some textual documents, be at hand.
By lack of editorial members, the data structure has not been adapted to achieve
the whole perspectives opened by those new materials yet, and remains a project.

3. Dossiers Flaubert The data structure validating the transcriptions of the
Dossier enables the identification, in the pages, of fragments, material and logical
units of the Dossiers [64]. The data structure enables the editor to identify the
title, the identity of the person who copied the fragment and the bibliographical
references contained in the fragment. Recently, after the instantiation of that
data structure on most of the digital corpus, the editor found a counter example
of a fragment that possesses not only one, but several titles.
By lack of technical staff members, the data structure has not been adapted to
achieve the whole perspectives opened by those new materials yet, and remains
a project.

A typology of useful data structure amendments . Based on the general model
of a data structure as the formal document defining both the types, or characteristics
that can be attributed to parts of the digital corpus, resulting in objects generally
named as ‘elements’ [28], ‘range’ [175] or ‘segments’ [183], of the attributes describing
more finely the instances of those objects, and of the relationships those objects may
have, we finish this part on data structuring and data structure evolution by sketching
a small catalogue of the data structure amendments that, in the light of the above and
by anticipation, may be useful. For more clarity, we propose to illustrate the different
cases by toy examples based on the data structure of the Articles of the Encyclopédie
already discussed. The typology can be found in Table 1.1

22Available at http://stendhal.msh-alpes.fr/index.php?n=XML.ToDo. Accessed on August 10th,
2017.
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Kind of
amendment

Example Resulting data conflicts

1. Specialisation
or generalisa-
tion

In the Encyclopédie, the ‘vedettes’,
that give the subject of the article they
are positioned at the start of, can be
of two kinds: ‘adresses’ when in capi-
tal letters, and ‘entrées’ when in small
capital letters. Hence the general type
Vedette, in the data structure, can be
specialised into two types (for which
Vedette is a generalisation): Adresse
and Entrée.

It can be decided that after
the specialisation of Vedettes,
only Adresses and Entrées can
be identified in the corpus –
no Vedettes anymore. In this
case, the data preceding the
amendment is outdated, since
they contain instances of the
Vedette type.

2. Deletion or ad-
dition

The identification of some characteris-
tics, or the presence of some attributes
for some elements, or some relation-
ships, once judged relevant, is not any
more. Or conversely, some characteris-
tics of the corpus lack in the data struc-
ture.

Deletion is not quite problem-
atic: the deleted types are
simply erased from the data.
Added types, on the contrary,
if they are compulsory, will be
missing in the data preceding
the amendment.

3. Substitution Instead of modelling Adresses and En-
trées as special cases of Vedettes (see
line 1 in this Table), the editors may
prefer to assess that there are only
Adresses in the Encyclopédie, with a
special case for Entrées. The type
Vedette in the initial data structure is
thus replaced by a type Adresse, with
a specialisation type Entrée.

In this example, all the in-
stances of the type Vedette
must be replaced either by
Adresse, or Entrée, accord-
ingly.

4. Addition or
deletion or
substitution
of values in
a fixed set
of values (for
attributes)

Same as above Only substitution is problem-
atic. See line 3 above.

Table 1.1: Typology of the different kinds of data structure amendments, and the
resulting data conflicts.
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1.2.2.3 Intermediate Summary

In the light of real-life examples, it appears that editors are closely interacting with the
data structure: they define it, but also, at times, they need to redefine, or amend it.
Indeed, the data structure is a means by which editors have to translate the model of
the edition that they have designed while defining the editorial policy into a machine-
interpretable shape that will, in turn, guarantee that that model is respected by the
transcription: in other words, the data structure defines the language of the annota-
tion, that is, the expressive power that is in the hands of the editors. For that very
reason, it looks like a reasonable objective to attempt to give the editors control over
the data structure, since this would mean giving them the means to shape their own
expressivity, in the frame of the DSE.
Those conclusions on data structuring, that were drawn without considering the work-
ing context in which structuring happens, must now be confronted with the actual
working organisation we consider as the most generic, that is, collaboration.

1.2.3 Collaborative Data Structuring in DSE Projects

So far, we have considered data structuring as a disembodied activity. Data needed to
be encoded according to a data structure, that may change – and we studied to what
extent that structure shall change.
This approach of structuring would have been similar if we had considered the way
structuring is done in a single-editor setting. Indeed, an editor alone can define quite
easily the information she wants to encode; it thus makes sense to provide her imme-
diately with tools that enable her to tune her digital expressiveness, that is, to define
and amend the underlying data structure. Yet, as we have seen, the case of one editor
working alone is one among a vast diversity of working organisations, the most gen-
eral of which being represented by collaborative, distributed, multidisciplinary edition
groups. Then, does the above definition of data structuring apply to this most general
context? What does it mean then for a group of editors to decide on the expressiveness
they need? Is it relevant to leave the editors tamper with the data structure that gives
shape to their collective product, in an immediate, unsupervised way?
To answer those questions, we first provide a definition of a collaborative, distributed,
multidisciplinary editing team, before showing that the change of scale implies a new
model for the activity of the editors, and a finer definition for “evolutive data struc-
tures”.

1.2.3.1 “Collaborative, Multidisciplinary, Distributed Editorial Team”:
A Working Configuration with Paradoxical Needs

Lexicographical precisions. We propose a definition of “Collaborative, multidis-
ciplinary, distributed editorial team” hereafter.

1. Collaborative team. There is no consensus upon what the expression “col-
laborative work” refers to. “Collaborative” does not appear as a very specific
term in the dictionaries. Freedictionary23 states that it means “to work to-

23thefreedictionary.com. Accessed on August 10th, 2017.
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gether” and is synonym with “cooperative”. The same, general definition is given
in the Cambridge Dictionary, the Merriam-Webster and the Harper Collins24.
While Computer Science literature also tends not to distinguish between the two
terms25, some French resources seek to make a clear distinction between “collab-
oration” and “coopération”. According to [90], the most central point is that in
a cooperative setting, the coactors split the general task to achieve into several
smaller tasks, whose execution is then distributed among the team (following
the principle of the Division of work); in a collaborative setting, on the contrary,
while the general task might very well be divided into several smaller tasks, each
participant is left free to undergo the task she wants, in an unsupervised way. In
other words, in a collaborative setting, the coactors benefit from a community
of means to achieve the general task, which implies that all the members of the
team has access to the same tools and is involved in the same processes as the
others, up to her own will. Moreover, closely articulated to the new technologies
and the notion of openness, collaborative teams are supposed to be open, that
is, to change over time. The closer concept we have found in English seems to
be “Peer production” [2].
This definition, according to which collaboration means unsupervised work, rep-
resents the most radical vision of this working paradigm. It is not unrelated to
the notion ‘social edition’ proposed by [158] which advocates a complete dissolu-
tion of hierarchical structure among DSE teams, so that “every editorial activity,
without restriction, might be open to every contributor”, as summed up by Pe-
ter Robinson [148]. Robinson then expresses disbelief that such an organisation
might enable the team to reach a consensus upon the many decisions that have
to be taken regarding “the choice of who the edition should be aimed at; whether
it should present an edited text; if so, on what principles should that text be
edited; what conventions of spelling, punctuation and presentation should be
followed, and many more, right down to decisions on single characters.” And
indeed, in practice, the Devonshire Manuscript edition [56] that is made by the
tenants of the concept of social editions, is based upon a predefined editorial
policy and annotation guidelines that have been defined by a limited number of
researchers [1]; also, “following an attempt to vandalize the online edition [pub-
lished on the Wikibooks platform], the Wikibooks administrators have enforced
a review policy on all contributions” [148]. Hence Peter Robinson’s judgement
that there is no (and cannot be no) real social edition. And indeed, not all col-
laborative DSE projects will be as radical as to work on an unsupervised basis,
in order to guarantee that the academic standards of accuracy and reliability be
satisfied (as it was eventually done for the Devonshire project, i.e. by making
sure that the contributions are reviewed by a member of a core, editorial team).
Yet, there is another way to consider the ‘failure’, or should we say, the prac-
tical limitations the implementation of the concept of social edition had to do

24dictionary.cambridge.org, merriam-webster.com, collinsdictionary.com. Accessed on August
10th, 2017.

25An important research community, whose main topic is the study of activities commonly tagged
as collaborative (e.g. Wikipedia contribution, Crowdsourcing), published under the banner of CSCW,
for Computer Supported Cooperative Work.
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with: instead of considering them as evidence that social editions have failed, so
far, we might wonder how they could succeed. In particular, the disbelief Peter
Robinson expresses about the possibility that a collaborative team might reach
a consensus upon the editorial policy is very interesting. Our first question is:

If the hypothesis that the collaborative definition of an editorial policy is
impossible, then, in a cooperative DSE teams, provided that the editorial
policy will be defined by a small group of editors: how does this group
come to a consensus on the editorial policy?

Hence our second question:

Couldn’t the editorial policy of a collaborative (in the strong sense of the
term) DSE team be not imposed by a small, central editorial board, but
instead be the result of a collaborative activity?

Indeed, other experiences prove that unsupervision does not imply selfishness or
isolation. That collaborative work shall mean that the contributors shall work
alone, isolated one from the others, would be paradoxical (and sad, may I say)
indeed! Yet it has been established that unsupervised work is indeed prone to
self-organised group dynamism, and that collaborative platforms are indeed so-
cial places, where behavioural patterns comparable to those in the physical world
can be observed. As a first example, the way Wikipedia works is described as a
particular case of collaboration, namely, “unsupervised cooperation” [2]. As an-
other example, [189] provides a study of the levers thanks to which organisation
arises in contexts where formal organisation is non-existent, and more precisely
how the free contributors to an open, collaborative project, can be incentivized
to undergo tedious or unrewarding tasks, that are indispensable for the project.
Thus if group dynamism can happen in a collaborative setting, why would it
not happen when defining the editorial policy of a DSE, or at least, its data
structure?
Thus we rephrase the definition of a generic model for the data structure in a
DSE setting: the data structure must be adaptable, it must be evolving, and it
must be the result of a collaborative process.
Eventually, considering collaborative work in the context of the manufacture of
DSE also raises the question of how to handle the situation in which two editors,
or more, edit the same part of the corpus in a comparable way, in parallel. This
problem, which is part of the general problem of “collaborative authoring” [125],
has been solved in the field of software engineering, but is still under investigation
for documents, like a DSE, making use of natural language instead of procedural
language, where comparison between versions, and subsequent merging, have to
be redefined.

2. Multidisciplinary26. The term is, at first sight, quite self-explanatory. Still,
interesting comments on multidisciplinary can be found in [29]. According to

26We will consider, in this collaborative context, that a multidisciplinary team aims at produc-
ing an interdisciplinary edition, that is, an edition in which the contributions from the different
communities are not separated.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



1.2. CONSTRUCTING DSE: A GENERIC APPROACH 29

the authors, a multidisciplinary team is a team in which the different members
come with different research problems, concepts and methods. Also, and very
importantly for us, the ‘epistemologic style’ of the different members will vary,
according to the discipline they come from, leading those members to express
information very differently. In a multidiciplinary setting like the ENCCRE
project, for instance, it is important to think that a researcher in literature may
not aim at the same annotation as a historian, or a historian of science, etc.
Moreover, those research problems, concepts, methods, style that set one disci-
pline apart from the others (and the members of that discipline apart from the
others), have been integrated by the representants of the discipline in a personal
way, which means that among a given discipline, of course, a non negligible di-
versity of view is to be expected.
The authors add an important remark, that will be at the heart of our upcom-
ing propositions. It is clear that a collaborative team is a social setting with a
common centre of interest, upon which diverging views coexist ; but more im-
portantly, it is a setting in which different views shall be confronted. Like in
dialectics, it is precisely the confrontation of diverging views that shall drive the
activity of a multidisciplinary team, or work: “[C]ommunication between individ-
uals endowed with different conceptual structures is not simply a precondition
for attaining interdisciplinary insights, but is an essential component” [29]. From
a practical point of view, this means that:

(a) interpersonal communication shall be a central activity in DSE construction
processes;

(b) generic DSE construction systems shall rely upon adequate communication
tools, in order to support multidisciplinary and interpersonal discussions;

(c) the fact that a collaborative team shall have diverging views, even on some-
thing as central and as important as the editorial policy shall not, and can
not, be tamed; it is essential to multidisciplinary work, in that it plays a
crucial, dialectic role.

3. Distributed. The term is opposed to “centralised”: in our context, it means
that the editors are not necessarily located at the same place and thus cannot be
expected to work synchronously. First, this is another argument in favour of the
above conclusions, regarding the necessity to provide the editors with efficient
and adequate means of communication. Asynchronism is a problem that is worth
considering, from a technical point of view, based on the requirement for the data
structure to be evolving. Indeed, as detailed in the paragraph 1.2.2.2, an editor
aiming at amending the data structure may want to do so by deleting/adding
a new substructure, specializing/generalizing a given element, replacing a sub-
structure by another one. It is quite clear that those operations could be granted
to the editor only in the context of single-editor DSE, so that she might make
modifications directly on the data structure – and even in this context, this
naïve approach of data structure evolution would certainly not be optimal. This
approach can simply not be considered in a distributed context in which, due to
the asynchronism, editors cannot give real-time feedback to another editor that
is amending the data structure...
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Figure 1.5: Synthetic view of the conclusions of Paragraph 1.2.3.1 highlighting the
contradictions between those conclusions.

1.2.3.2 Conclusion: Paradoxical Needs

In the light of the above definitions – and up to their correctness – it appears that a
collaborative, distributed and multidisciplinary editorial team has paradoxical needs.
Figure 1.5 shows that there is a tension between the individual issues (that are related
to the editors taken individually, taking part to the edition of the primary corpus) and
the collective issues. The whole diagram may be rephrased as follows: in order to take
full benefit from the multidisciplinary setting as defined by Bromme [29], the editors,
individually, should be able to tune the data structure as described in Paragraph 1.2.2,
in order to be able to annotate freely the corpus according to their personal and
disciplinary sensibility. However, the collective work the DSE represents has to exhibit
a certain consistency and correspond to a clear editorial policy (contradictions b, d,
e, f and g). Additionally, the manner for the editors to take part to the amendment
of the data structure, in order to tune the expressivity of the language of annotation
according to their needs, is unclear: it appears that the editors, individually, cannot
be given the means to amend the data structure dictatorially, as if they were working
alone, and yet the kinds of elementary modifications for the data structure that are
interesting for an editor working alone remain equally interesting for one editor working
inside of a team... (contradictions a, b and c).
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Chapter 2

Common Ground-inspired
Digital Scholarly Edition
Construction Process

The aim of this PhD work is to propose a generic approach towards the construction of
Digital Scholarly Editions (DSE). In the previous chapter, we proposed an exploration
of DSE theoretical models, as well as a definition of the most general DSE construction
context, which implied, in particular, collaborative team work, multimedia primary
corpus, etc. The idea beneath this approach is to uncover some challenges that many
DSE projects, even if they only correspond partly to the above model, may face.
The sheer definition of the most general DSE setting lead us to consider some charac-
teristics that are rarely put forward by operating DSE projects, maybe because they
are not desired characteristics, or characteristics that, in the current state of available
technologies, are seen as causing technical problems – but that still are characteristics
of real-life DSE projects.
In particular, while considering, from an abstract point of view, what characteristics
the data structure of a DSE project might have in the most general case, we hypo-
thetized that it might not be stable through time, but instead, evolving. It then turned
that, even though no DSE project, to the best of our knowledge, exhibits the fact it
is based upon a changing data structure, in practice, data structures do change, are
refined – not only in the preliminary stages of the construction of the DSE, before any
file has been encoded, but in the course of encoding itself. The reasons for that are
obvious: it is by trying to instantiate a data structure on the widest corpus that the
limitations of that structure are discovered. Moreover, data structures may change
not only because they were flawed: since DSE projects often tackle huge primary re-
sources1, they take years to fulfil. In years, the editorial team may change, bringing
new views and new expertise on the corpus, leading to an expansion of the initial
editorial policy – and thus, possibly, of the original data structure.

1The Encyclopédie contains no less than 74.000 articles; the team working on Stendhal’s papers
have edited more than 2000 folios so far, etc.
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This generic approach highlighted several needs that may concern a wide amount of
projects (the need for making the data structure evolve, and for updating the data
consequently, in particular), also highlighted a network of paradoxes in the needs of
our hypothetical, generic DSE project team.
Those can be rephrased by the following prescriptions:

1. First, in order to guarantee a certain level of homogeneity and consistency of the
edition across a collaborative team, the use of guidelines, setting the fundamental
editorial principles for the DSE, but also of a prescriptive data structure à la
XML schema shall be advocated.
This data structure must be defined adequately with the editor’s needs and will,
to their field of knowledge, and, in order for them not to have to edit in a way
they do not fully approve, to their personal preferences.

2. Second, in the trail of the above, a certain degree of inconsistency shall be
allowed between the views, and the annotations, of the different editors, but in a
‘controlled way’ (giving a tight definition of this vague expression will certainly
be one of the outputs of this chapter).

3. Third, the DSE must still be a collective work, that is, more than the collection
of the work of its members.

Those prescriptions highlight the tension there is between the requirement of har-
mony and consistency, at the scale of the DSE, and the individual aspirations and
expressivity needs of the editors.

2.1 Current Approaches of the Problem

2.1.0.3 Altruistic vs. Egoistic Data Structures

Actually, we have not encountered any explicit mention of this problematic in the
literature on DSE. We can only identify two adverse conceptions of DSE construc-
tion, among the existing tools available to the editor, that somehow offer two different
practical means to deal with the problem. Those two approaches can be referred to
as ‘altruistic’ versus ‘egoistic’, following [102].
The altruistic approach is exemplified by the Text Encoding Initiative (TEI) [39].
TEI is an XML language based on a huge, cooperatively defined schema, that aims
at providing a commonly accepted description of most types of documents or edito-
rial objects. A vast and extremely well documented vocabulary of annotation is thus
proposed to the public2 by means of a modular schema.
The editors of a TEI-based DSE project then choose among the modules the ones that
will be useful for their own project. In the end, TEI works like a more or less universal
library of experience-defined annotation structures, out of which each editorial team
may generate their own schema.
Noteworthily, apart from the universalising quality of the TEI, being an XML lan-
guage, it is extensible, in the sense that the TEI user can modify the TEI-based

2TEI is an open format.
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schema, either by tuning the existing elements taken from the TEI guidelines, or by
adding brand new elements. Yet, this practice, for which the TEI consortium does
provide documentation also3, is not encouraged, one of the assets of the TEI being
to provide an universal annotation language so that any TEI-based transcriptions be
interpretable, exchangeable, computable, without any additional documentation – this
aspect of TEI being called interoperability. Interoperability is a notion that advocates
for consistent annotations not only in the scope of a single DSE project, but across
projects. One of the strength of the TEI being to propose an “universal” annotation
language, amending that language means loosing the promise of the annotation be-
ing universally understandable. Still, in practice, as hinted by [154], tuning the TEI
orthodox schema is quite common across the TEI-based DSE projects, and Syd Bau-
man, coeditor of the P5 Guidelines, insists that instead of aiming at interoperability,
a reasonable goal, greatly facilitated by the use of the TEI as a basis for the edition,
is interchange, or the capacity to exchange files based on a clear, minimal documenta-
tion (inexistent in case of unmodified schemas, well structured else) and interpersonal
communication [16]. To a certain extent, this approach is meant as a reasonable bal-
ance between homogeneity and singularity, which is reminiscent of the problematic
we described earlier. Still, inside one DSE project, a consensus must be reached, in
the preliminary stages of the construction of the DSE (before the annotation started),
to pick among the modules offered by the TEI optionally tune the selected elements’
definition, and thus define the unique schema of the edition. Schemas are not designed
as dynamic also.
The egoistic approach, as defined in [102], consists in defining data structures that
aim “at expressing as exactly as possible the theoretical assumptions and research in-
terests of one or more scholars”, without any ambition of that structure being used by
any other project. A TEI project practising intense tuning of the TEI-derived schema
might fall in that category; XML-based projects that rely upon ad-hoc schemas, as
exemplified by the Stendhal project associated to this work, even more so. The previ-
ously cited Glozz platform may appear as the paragon of this approach. The model of
data structure the platform relies upon is proprietary. It is up to the editor to define
her own data structure. Actually, several data structures can be instantiated over the
same data: the system is thus open to co-existing, diverging and highly specialized
structures, possibly defined by different editors.
Still, this model has numerous weak points. First, there is no indication that data
structures are designed to be dynamic, that is, that they can be amended. Moreover,
the possibility to make several adverse data structures coexist does not imply that
Glozz supports the dialogue between diverging points of view: in particular, there
is no way to define relationships between the competing structures. In other words,
Glozz is a tool that supports plural projects, each pertaining to a particular view
on the data, but the paradigm it is based upon does not seem to fit one polyphonic
project, where the diversity of views are articulated together.

3See www.tei-c.org/Guidelines/Customization/. Accessed on August 11th, 2017.
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2.1.0.4 Another Track to Follow: the Theory of Common Ground

As we can see, tools exist that enable to express a plural annotation of some resources,
as the echo of the plural views of the editors. Thus if a multidisciplinary team decided
on several data structures that represent the diversity of views of its members (e.g.
disciplinary structures), those structures could indeed coexist in the edition, from a
technical point of view – independent one from the others, structurally speaking: their
instantiation over the same data and the subsequent possibility to publish them jointly
would indeed give the illusion of a polyphonic edition.
Yet such a solution would rely on a very poor definition of multidisciplinary collabora-
tion, corresponding to the instantiation by group of a structure that has been defined
previously. It does not support data structure evolution either. Moreover, since by
definition collaborative teams are prone to change over time, then the new members
of the team would be reduced to instantiate a data structure they did not participate
to define, while it seems that, because it is so central and conditions the activity of
the editors once it is set, the data structure of a DSE project shall be the result of a
fully collaborative work.
It is that process of collaborative data structure definition, that requires data struc-
ture to be updatable by amendments, that we want to provide the basis for here, so
that the editor shall never be reduced to an operating role but shall be, instead, fully
author of an expressive and lively edition.
From this point of view, it appears that achieving this goal does not simply demand
technical propositions. First of all, it must rely upon a working process that takes into
account the way an editorial team may manage its internal contradictions, in order to
build a consistent product that does not refrain the expressivity of the editors.
As a starting point, we propose the reader a short study of the theory of Common
Ground (CG) [46]. Originally, CG is a model of communication, meant to explain how
collective tasks can be achieved despite the imperfect mutual understanding among
the coactors of the task and the impossibility to reach agreement upon a common
representation of the aim of the interactions.

Nota. The question of whether it is possible or not to reach an agreement upon the
mental representation of an object is of particular interest in the context of digital
scholarly editions. Indeed, representations can be defined as “a formal system [set of
symbols] for making explicit certain entities or types of information, together with a
specification of how the system does this [i.e. how to formally use those symbols for
making explicit that information]”, a way “to capture some aspect of reality by making
a description of it using a symbol [so well so that] can be useful” – which is very close
indeed of the notion of a model. The editorial policy and the data structure, in a
DSE setting, precisely work as a model of the edition. Can this model be understood
the same way by all the contributors to the edition? Will they, after the preliminary
discussions that found the DSE work, have the same representation of the project?
As established by [66], whatever the way we measure the representations of people in-
volved in the collective realisation of some object, they always differ, which indicates
that representations are never shared (in the sense that they are never identical) from
one person to the other. Thus: how to conciliate this impossibility to reach an agree-
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ment upon a model and the requirement to instantiate collaboratively one common
model of the edition?
Clark’s CG proposition is in the form of a model of interactions, mainly applied to
conversation4. CG is based upon the assumption by each participant that collective
work demands coordination of two kinds: coordination of content and coordination of
process. Coordination of content refers to the fact collective activity demands, from
the co-actors, “a vast amount of shared information or common ground—that is, mu-
tual knowledge, mutual beliefs, and mutual assumptions”. Coordination of process
qualifies the synchronization the coactors necessarily have to make to fulfil any action,
but also the constant checking that the other still share a mutual understanding of
the situation with oneself– that is, updating the common ground. Only this way can
sequential actions build one upon the previous others.
This theoretical framework – the distinction between content and process – is not
always very clear, or very convincing, particularly when the task to accomplish is
communication. It mainly serves to introduce the two core ideas that make the com-
mon ground theory promising, from a practical point of view:

1. the common ground, set of mutual understanding, knowledge, beliefs and hy-
pothesis, is updated in the course of the collective activity;

2. collective action is not made possible by the sharing of a common ground, that
is, of representations of the work to fulfil, but on the assumption of it.

Those two ideas are developed further by Clark, in the shape of two notions: grounding
and grounding criterion.

Grounding. It is the process by means of which the common ground is updated.
Depending on the situation and the goal to fulfil, grounding can take different shapes;
yet it is supposed be part of any collective action. According to Clark, two factors
influence on the shape of the grounding process: the aim of the action and the me-
dia that supports its realisation. In any case, the grounding process is based upon
communication.

Grounding criterion. The theory of common ground does not rely on the hy-
pothesis of a perfect mutual understanding, or the sharing of mental representations,
from the coactors: instead, the mechanism that enables the collective action is the
fact “the contributor and his or her partner mutually believe that the partners have
understood what the contributor meant to a criterion sufficient for current purpose”.
From there on, Clark suggests that a conversation, for instance, is punctuated by
positive or negative evidence of grounding – evidence, that are awaited by those who,
at a certain moment, lead the interaction of emit information. Interactions take the
shape of an alternation of presentation phases, during which one actor emits an idea,
suggests a move, etc., and signs of either misunderstanding and refuse (negative ev-
idence of grounding) or agreement and acknowledgement (positive evidence). A sign

4So well so that [109] mentions it as a model of conversation, which is reductive since the model
is meant to be applicable to multimodal interactions [180]. Truthfully though, the illustrations Clark
provides are all based upon physical conversation.
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Figure 2.1: The theory of Common Ground relies upon two notions: grounding, pro-
cess by means of which a certain impression of mutual understanding is acquired by
the coactors; grounding criterion, referring to the evidence or clues of mutual under-
standing that punctuate the interaction.

of acknowledgement concludes a succeeding phase of grounding, that can be macro-
scopically summarized as follows:

(presentation) → (discussion) → (acceptance)

For more details, see Figure 2.1. Noteworthily, the pieces of ‘evidence’ of understand-
ing Clark mentions are in fact more clues than evidence (one type of such clues being
‘continued attention’, which can be quite ambiguous) – the ambiguity, or uncertainty
of those clues still does not prevent the action from being carried on.
This is a central aspect of the theory of the CG, to be compared to the conclusions
of [66]. In that paper, the author studies “shared representations”, spurred by the
fact “many are the research studies and the theories in strategic management that
rely upon the concept of shared values, beliefs, knowledge or more generally shared
representations5. In particular, many such studies tend to assert that “the condition
for an organization to be operating, its members must converge towards shared repre-
sentations6,7”. Still, it appears that this “convergence towards shared representations”
is, in the literature [66], at the very least, quite limp8, so well so that she comes to
question the polysemous term “to share9”, to the point of doubting of its relevance.
To that respect, the author mentions two studies that come to similar conclusions as
Herbert H. Clark:

1. The first one [182] “calls into question the necessity of sharing representations to
work collectively[: it] suffices that the mutual interest of the actors be satisfied

5“Nombreuses sont les recherches et les théories en management stratégique qui reposent sur
le concept de partage de valeurs, de croyances, de connaissances, ou plus généralement partage de
représentations”, [66].

6“[P]our [qu’une] organisation puisse fonctionner, ses membres doivent converger vers des représen-
tations communes”, ibid.

7Analogically, we have insisted on the importance (or not) of share representations in the frame
of a DSE project (see Nota p. 34): shall the editors in charge of editing a document converge towards
a shared representation of the document, of the text, and of the resulting digital annotated resources
and, to do so, make use of the same language of annotation, for the collaborative work to achieve?

8E.g., in [83], it is defined as “thinking, at least up to a certain degree, in a similar manner”.
9Thefreedictionary defines to share both as “to divide/to apportion” and “to hold or have jointly.

Accessed August 11th, 2017.
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so that these actors shall be able to mutually predict their behaviour for the
collective action to be possible”. A key element in this vision of collective work
is the necessity for the participants to be able to predict the behaviour of their
partners, which Clark’s coordination of process implies.

2. The second [63] proposes the notion of “equifinal representations”10” to refer
to individual, discordant representations that “imply the same actions11. Once
again, this resonates with the fact that, in the CG theory, grounding is followed
by action, that is, coordinated action based on diverging views.

We insist here on the similarities between the CG theory and the studies cited by
[66], that explicitly state that collective work is not incompatible with diverging rep-
resentations of the task to be operated. This precision seems necessary, given CG is
frequently interpreted as a theory of converging representations (see Paragraph 2.2.1,
[118] and [53]).
Bromme [29], already cited for his insights into multidisciplinary work, offers a, en-
lightening analysis of how diverging views, not only coexist, but can be managed,
practically speaking, in a collective work.
[29] is sometimes sourced as providing a redefinition, complementary or alternative,
according to the adopted point of view, of the CG theory – not from a linguistic (as in
[46]) but cognitive point of view. Compared with Clark who defines the core concepts
of the CG theory abstractly, as means to describe any interaction, before illustrating
the theory in the context of casual physical dialogues (here casual means: implying no
previous knowledge of the discussed topic), Bromme starts by considering a concrete,
restricted situation, namely, multidisciplinary scholarly work. As indicated previously,
multidisciplinarity implies the coexistence, between the members of the coworking
team, of different12 personal and disciplinary perspectives13. In this context, very
different from Clark’s casual conversations, actors do possess crucial knowledge about
the discussed object/task. Bromme does not ground his reflection upon the general
question “how can partners with imperfect mutual understanding perform consistent
interaction?”: instead, he decides “to make the difference between disciplinary (and
subdisciplinary) conceptual structures the principal point of departure” in his thinking.
Indeed, the interactions he focusses on are no longer the place for a sheer, pragmatic
agreements, for the sake of the task the partners are involved in, but “processes of
confrontation between different structures of knowledge, or perspectives”. If Bromme
does investigate how coactors, coming from various disciplines may try to do some
kind of grounding in the sense of Clark, e.g. by defining a share terminology (that is,
a terminology used by all the members of the team, even if the constituting items from
that terminology shine differently to the eyes of the individual members), he insists
on the fact that multidisciplinary work never, in grounding, reaches a standstill, for

10“Représentations équifinales”.
11“[d]ont les implications sont les mêmes en termes d’action”.
12Complementary, as is often highlighted to promote multidisciplinarity, but also competing, ad-

verse – which, in Bromme’s perspective, is not less valuable. See below.
13The notion is defined by Bromme as special kind of disciplinary ‘knowledge’: “ ‘Knowledge’ in this

context does not only comprise special methods or concepts, but also the epistemic style typical for
a discipline or a domain of research activities. [... This] kind of knowledge will be called perspective”.
Ibid. p. 119.
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“a successful agreement on a common terminology in interdisciplinary communication
does not dissolve the difference in the disciplinary perspectives”. Even more so, find-
ing such a standstill is not something that shall even be wished: it is the dialectic
interaction between individuals possessing diverging (and not only complementary)
representations that makes multidisciplinary work valuable, and may let new perspec-
tives arise. In other words, agreement (in the sense of compromise, consensus, since
we know from [66] that it is impossible to align representations) is not a reasonable
goal: the driving force of interactions is indeed the divergence of views of the actors,
associated with active communication and grounding – so one may conclude that di-
vergence of views, and the expression of diverging views, must be encouraged.
The vision of constant inconstancy may look chaotic, but still, it taints the theory of
common ground with what seems to us intriguing and promising colors. The ground
of Common Ground is not a one in the geological sense, some solid basis that builds
by the accretion of all the previous agreements, working, from there on, as a shared
gold truth. It is a fugitive ground, that has limited lifespan, and that is in permanent
renegociation. The common ground is not a pyramidal, but a transitory construction.

2.2 Operating the Common Ground Theory

In the previous paragraph, it appears that the editing activity could not be considered
from a technical point of view, for instance by focussing solely on encoding formats and
editing interfaces: this would obliterate an important, but rarely considered challenge,
that is, how to make sure that all the editors, at each step of the DSE construction,
be its builders (architects and craftsmen), and not be limited to instantiate a data
structure that, in some cases, they did not even define. Given the generic context
we consider for DSE construction, by a collaborative, distributed, multidisciplinary
team, interaction between the editors had to be considered. In particular, it appeared
that to be up to the challenge cited above, even if the goal of the editing team is to
produce a consistent edition, the diversity of views on the way this edition should be
shall be expressed, encouraged and concretely valued. This paradox can be solved by
considering how the two scales, individual and collective, articulate one with the other.
The Common Ground theory provides the following insights into this articulation:

1. [46]: a team exhibiting diverging views upon the edition can work towards build-
ing the editorial policy, despite those divergences: uniformity of mental represen-
tations is not necessary, so long as the editors agree on a transitive, consensual
policy resulting from the grounding, that may not cover the ‘sum’ of the diverg-
ing views on the policy in detail...

2. [29]: ... as long as those diverging views are still expressible and can be con-
fronted during the grounding, seen as a perpetual process.

Before translating those two points in more practical terms for a DSE project, we in-
vestigate how the theory of Common Ground has been operated in Computer Science.
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2.2.1 The Common Ground Theory: Applications

Since the early 1990’s, the Common Ground theory was adopted (and adapted) in
Computer Science research, mainly in three research communities: Computer Sup-
ported Cooperative Work (CSCW), Computer Supported Collaborative Learning (CSCL)
et Computer–Human Interaction (CHI). Those three communities share some char-
acteristics, like being human-centered and investigating the use of digital tools by
individuals and teams14. They seek behaviour models and tools to assess the quality
of the interaction between an user, or a community of users, and the machine, in a
variety of tasks that often deal with ‘knowledge creation’ [62, 124, 87]. In the cor-
responding literature, Common Ground is, to the best of our knowledge, considered
from three points of view:

1. First, the Common Ground is considered as a first-order research object. Its
underlying premises are questioned and deepened. For instance, [118] tests the
assertion that grounding is hampered when the coactors are distributed15; [22]
questions the general notion of “communication media richness” that Clark indi-
rectly defines16. In the same tone, [179] studies the impact of video transmission
on grounding.
[109] is an example of a general call into question of the CG theory, both as a
model of communication and as a tool for computer scientists – we will detail
that below.
Other sources operate methods that aim at getting a better understanding of
the grounding phenomenon: for example, [54] experiments on the influence of
repetition over the “growth of common ground”, measured by the combination of
the quantity of information memorized during the interaction and the qualitative
feeling to have shared information.

2. Second: the CG theory is adopted as a means to decrypt interactions. Two non
exclusive variants can be isolated:

- the CG theory is used as a means to analyse the nature and the sequentiality
of the interactions that are enabled by a given media. [114] proposes a
typology based on the notion of grounding for feedback interactions in a
learning interface. [131] employs CG in order to explain the content and
the aim of interactions that are commonly classified as “off-topic” – and are
therefore little studied – in online learning interfaces;

- the CG theory is operated as a means to evaluate interactions in a communi-
cation interface. Convertino et al. [52] define a metric for common ground,

14Group cognition, which the Common Ground theory is part of – especially as defined by Bromme
[29] –, because it enlightens both the needs and practice of communities of users, have raised particular
interest [165].

15Indeed, one aspect of the study of [46] concerns the correlation of grounding with the media used
for the interaction. As a result, Clarks provides a list of eight “constraints”, so that the lack of one
of those constraints demands the developments of particular grounding techniques, whose cost can
be estimated (hence the notion of cost of grounding proposed by Clark. Physical presence is one of
them. See ibid. p. 142.)

16It can be defined by the list of constraints verified by those media – see note 15.
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and then [53] make use of that metric to evaluate a group decision-assisting
interface.

3. Third, the CG theory is called for to predict the interactions that may lead to
the fulfilment of a communication-based task, or to limit those interactions in
order to enhance their efficiency, in terms of grounding. One example of that can
be found in [104], who makes the assumption it is possible to force interactions
to follow the schema represented on Figure 2.1 page 36: the users are asked to
declare, explicitly, whether they have (or think they have) understood a given
proposition that was presented in the course of the interaction, then to give their
position towards that proposition, before any interaction can go any further.

Those diverse interpretations and operations of the CG theory do raise some crit-
icism. In particular, the last use of the CG as a predictive and coercive tool is or-
thogonal with Clark’s views, who explicitly states that the perspective he defends
is incompatible with predictive models of dialogue, according to the review by M.
A. Walker [180] of his work, Using Language [45]. Yet, according to Walker, Clark’s
knowledge of dialogue planning reflects the state-of-the-art of 1971; significant progress
having been made since, Clark’s opposition to such interpretations of his theories shall
be nuanced.
Stronger criticism of Clark’s theory itself, and of the use of that theory in the field of
CSCW can be found in [109]. His conclusions are the following:

1. About the CG theory: as a conversation model, it does not provide a description
of situations where comprehension is hard (multiparty interactions, with brief
and overlapping participations).

2. About the application of the CG theory in CSCW literature: Koschmann [109]
warns that “Serious problems arise when one begins to treat common ground as if
it were a singularity, a possession of the participants, a place, an arrived at state,
in short, a noun instead of a verb. [...] It is not a thing that can be measured,
either directly or indirectly”. Hence the question whether it is relevant to try to
measure the common ground. Instead, the common ground can be understood
and used as a theoretical tool that can guide the conception of interfaces (for
instance) – and the evaluation of those interfaces shall then not consist in an
evaluation of how the concepts that come from the CG theory translate into the
interface, but by means of traditional usability evaluation methods.

Let us note that Koschmann’s critical paper is not beyond criticism either. First, the
author focusses on Clark’s publications ([47] and [46]) to question the theory of Com-
mon Ground – which indeed are the most cited in the CSCW literature – while at the
time the articles of Bromme were also cited (e.g. [92]). And Bromme provides enrich-
ing clarifications to Clark’s theory. To illustrate this point, let us take an example.
In particular, Koschmann mentions, as a weak point of the CG theory, that it does
not apply to interactions in the course of which the environment changes, for “[t]his
changing environment is at odds with Clark’s contribution theory in that the theory
would seem to require that contributions to common ground aggregate over time and
remain relevant”. Indeed, one can find, in the introduction of [46], the notions of
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“update” and “accumulation”, which can be interpreted in the direction proposed by
Koschmann; still, one can also consider that, Clark’s theory precisely aiming at enlight-
ening interaction in which the enunciation is ambiguous (and therefore necessitating,
to be understood, to refer to the context of the enunciation and to the “accumulated”
common ground), a proposition cannot be detached from its context. Thus, by de-
possessing propositions from their context (so as to make them permanently relevant),
and by turning the common ground into a container of such context-free propositions,
Koschmann simplifies the CG theory to the extreme and goes against Clark’s views.
The problem is evacuated when one considers Brommes’s reformulation of the CG,
since it is thus clearly exposed as an abstract, transitory structure, endlessly ques-
tioned and redefined, at the crossroads between diverging points of view.
Similarly, Koschmann intends to fault the CG theory by demonstrating that, at the
end of a complex interaction requiring learning by practice (in the context of surgery),
the actors have not memorized properly what should have been learned. Yet Clark’s
theory is not a learning, but an interaction theory; moreover, the fact that the complex
interaction (surgery training) should have happened even though the comprehension
of the task by the different coactors is obviously imperfect precisely speaks in favour
of a theory that institutes the impression of understanding, to a degree sufficient for
the interaction, as the driving force of the interaction.
We can even go as far as saying that, by founding his argumentation on an incomplete
definition of the common ground, Koschmann is less critical about the theory itself
than about a personal perception of that theory. Actually, the CG theory often suffers
from excessive simplification, or even contradictions. The source of this phenomenon
can be found in the articles of Clark themselves: in most publications about the CG,
Clark starts by providing a simplistic definition of the concept as “[Mutual] knowl-
edge, mutual beliefs, mutual assumptions”, following [166] as quoted in [100], and
then makes his proposition more dense all along the article, by introducing corollary
concepts (grounding, grounding criterion, etc.). Yet that simplistic, intitial definition
is the one that can generally be found in the computer science literature that make
use of the CG, more or less adapted17 – which tends the CG to be generally regarded
as theorizing the convergence of adverse representations.
Still, let us mention some articles that propose a more nuanced or critical definitions
of the CG: [52] proposes an alternative of the common ground, meant to translate
a conversation model fit for Computer Mediated Communication into a tool usable
in CSCW; [104] elaborates a similar definition out of both Clark’s and Brommes’s
contributions, as “representations [...] similar enough to be considered variants of the
same representation. [...] People communicate on the basis of imperfect assumptions
about the others’ perspectives”. Yet the application of such definitions is not simple
and their asperities are often rounded off by this exercise. For instance, the last paper
cited above subsequently proposes a functional definition of the common ground: an
interface compatible with grounding shall support “construction of shared problem
representation” [104].

17Thus the following definitions can be found, most often without any attempt at detailing it any
further: “mutual knowledge, beliefs, and assumptions of the participants in a conversation” [118] ;
“mutual understandings and beliefs that arise from similar background and experiences” [179]; “state
of mutual undestanding” [22] ; “mutual knowledge, beliefs, and protocols that partners share”, [54]...
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2.2.2 CG-inspired collaborative data structuring in a DSE set-
ting

In the light of the above state of the art on the CG theory and its applications,
we hereafter propose a DSE construction process inspired by the philosophy and the
conclusions of the CG. We give a short summary of the process, before dwelling into
more details.

2.2.2.1 A Double Interpretation of the Common Ground

Our approach is mainly user-centered.
Data structuring for DSE consists in the definition of a data structure and in its
instantiation on the digital corpus. Based on the history of the four DSE projects
associated to this PhD work, data structures may change, or more precisely may
evolve during the course of the DSE construction; we have also proposed several basic
operations by which one may want to amend a data structure, regardless of the working
organisation chosen for the project. By “expressivity needs”, we refer to the motives
for making the data structure evolve. Indeed, in our view, the reason why an editor
shall want, at time t + 1, to make the data structure evolve, is either in order to be
able to express information that she cannot express at time t, or to refine the way
information can be added onto the corpus as defined by the data structure at time t.
Then, by considering the editor team as a group, oriented towards the realisation of a
collective task, and the editor as an individual involved in that team, we came to the
following question: given the editors, in particular in a multidisciplinary setting, will
perceive the edition project differently, and thus have diverging expressivity needs:

Can the editors, involved in a collective task of data structuring, be given,
individually, the possibility to amend the data structure accordingly with their
personal expressivity needs, while guaranteeing a certain level of consistency
for the project as a whole?

To answer that question, we take inspiration from the CG theory as defined earlier,
based on the contributions of Clark [46] and Bromme [29].

As an interaction theory, CG partly answers the above question. Clark’s the-
ory explains that sharing representations is not necessary for the fulfilment of the
collective task: imperfect agreement, relying on clues given along the interaction, suf-
fices. In our particular context, we face a very concrete instance of representation:
the data structure itself, which is a model of the edition in McCarthy’s double sense
(model for/model of) [119]. The CG may thus indicate that the perfect agreement,
understanding, and mastery of the whole language of annotation, defined by the data
structure, by all the editors, may not be considered necessary – so long as they give
clues that they understand and master it enough, i.e. to a degree sufficient for their
contribution to the edition. The above may be interpreted two ways: (a) the data
structure could be an aggregation of specialized substructures, mastered only by a
few editors – those who are at ease with them use them, those who are not, do not –
in that case, the data structure will match no individual representation and needs by
excess (but the specialized parts of the structure are meant to match some individuals’
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representation and needs); (b) the data structure could be limited to a minimal vo-
cabulary and grammar covering only general concepts, upon which the editorial team
reached a consensus, e.g. for the needs of a first and superficial annotation of the cor-
pus, and for which all the editors have shown a feeling of understanding and mastery
(they are all above to instantiate that structure) – in that case, the data structure will
match individual representation and needs by default, but will support a consistent,
collective work.
The point (a) above is to be related to the idea advocated by Bromme [29], that the
diversity of representations is irreducible in multidisciplinary settings – of which it is,
even, con-substantial. Moreover, Bromme suggests that the “emergence of new per-
spectives” cannot be obtained but by the permanent confrontation of diverging views:
for instance, the coexistence of specialized substructures as sketched in (a) shall not be
understood as independent, parallel structures, whose divergence is highlighted, dis-
cussed, possibly leading to either their rejection (if their existence did note convince)
or general adoption (as described in (b)).
From there on, we can imagine a data structuring process (c) in which the editors,
individually, shall be given the means to define “personal”, experimental data struc-
tures fit to their needs by amending the existing data structure; in which they would
be able to instantiate, in a sandbox fashion, those amended data structures; to bring
them to the discussion with the other editors, with the perspective of the amendments
to be widely adopted by a wider editorial group, or even by the team as a whole. This
process can be compared to Figure 2.1 page 36.

Metaphorically, we propose to make the process described in (c) rest upon a bi-
partite data structure: we will refer to the Common Ground Structure (CGS) for the
part that corresponds to the point (b), that is, a data structure that, at a certain
moment, has been considered acceptable by all the editors, and Structural Amend-
ments (SA), for the structural refinements proposed by the single editors, and whose
acceptance by the editorial team shall impact the CGS, which shall then evolve.
In the following, we provide an illustration of how a DSE team shall operate with such
a structure. We then investigate the technical problems this approach comes with.

2.2.2.2 CG-inspired Data Structuring: Illustration

For the sake of the illustration, we propose the following, simplistic structuring case:
an editorial team made out of three editors (A, B, C) has defined an initial data struc-
ture, which assesses that in an Article, there are Vedettes, Signatures and Attributed
Passages, which can be related to a Signature. This structure is, at the starting mo-
ment of this scenario, instantiated by all the editors: it is the initial CGS. The scenario
is illustrated hereafter.
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Intant Action Illustration

t = t0

Initially, the three edi-
tors A, B anc C define
a common data struc-
ture they instantiate
on the corpus. That
structure is the ini-
tial Common Ground
Structure CGS0.

t = t1

The editor A considers
relevant to distinguish
between the vedettes
in capital letters (the
“adresses”) and those
in small capital letters
(the “entrées”). Those
two notions are spe-
cial cases of the notion
of Vedette. The edi-
tor A thus defines two
new data types Entrée
and Adresse that both
specialise Vedette, as a
structural amendment
SAA,1. This amend-
ment being made by
one single editor, it
does not belong to
the CGS. The editor
A can still instantiate
the amended structure
on a personal, sandbox
copy of the corpus.
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t = t2

The editor A decides
to submit SAA,1 to
the other editors.
They discuss the types
introduced by A, but
also methodological
aspects (how to iden-
tify and distinguish
between “adresses”
and “entrées”?), retro-
compatibility of the
amended structure
with the data already
instantiating CGS0,
based on the examples
she can provide. Time
is given for further
testing.

t = t3

The editor A further
decides to redefine
the data structure
enabling the attribu-
tion of the articles.
S he claims that a
type representing a
collaborator is needed.
This idea results in
reshaping the struc-
tural amendment into
SAA,2, that subsumes,
in this particular case,
SAA,1.

t = t4
The editor A submits
SAA,2 to the others.
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t = t5

At the end of the inter-
action between the ed-
itors, the amendment
is partially adopted.
The type Collaborateur
together with the re-
lation with Signature
are integrated into the
CGS, which becomes
CGS1. SAA,2 changes
also; in this particular
case, it is brought back
to its previous state
SAA,1.

t = t5

The editor B is not
convinced by the
distinction between
Adresses as proposed
by A and Entrées.
This amendment does
not, at least so far, in-
tegrate the CGS. The
editor C, on his side,
decides to experiment
with the type Adresse
only. To do so, she
creates SAC,1 based
on SAA,1

Nota. The temporality along which the CGS and the SA evolve is not the same: SA
may evolve without CGS changing. The evolution patterns are not linear, and can go
backwards, either because a SA is partly accepted (see t = t5) or because the editors
decide so, in particular after having discussed with the other editors.

As a summary, the editing process we propose makes dynamic structuring possible,
based on a central, core structure that can be instantiated by all the editors (the CGS),
but also enabling the definition, testing, and proposition of alternative structures
(relying upon SA), that are debated and shall possibly make the CGS evolve. In this
sense, not only the structured data, but also the data structure itself, shall result from
a collaborative work – which, to the best of our knowledge, is a novel proposition.
This process, however, raises quite a few challenges and stakes, that we describe here.
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2.3 Conclusion, Stakes and Challenges

In this chapter, we studied DSE construction from an abstract, and yet experience-
grounded, generic point of view. We aimed at considering the most general configura-
tions for DSE construction, in terms of edited corpus, editorial policy, editorial team,
etc. This approach was meant to identify general problems DSE teams face, that may
not be mentioned very often in the literature. We came to consider two such problems:

1. DSE projects rely, most of the time, upon predefined data structures, or schemas.
Schemas condition the information the edition will eventually contain. As such,
it seems quite important that all the editors of a given project should have
participated in the definition of the data structure, since it sets the boundaries
of the information they will then be able to capture in the structured data.
Yet, even in the context of social editing experiments, data structures are not
collaboratively defined: they are set as a preliminary step, often by a limited
number of editors, who subsequently write guidelines for the other editors that
annotate the digital representation of the primary accordingly, in a second step.

2. The above-mentioned two-steps process raises another question. Based on the
history of four DSE projects associated with this work, we identified that data
structures, far from being intangible, once-and-for-all objects, need to evolve
during the history of the DSE. Indeed, data structures are models of the edition,
of the primary corpus, and models often change when they are confronted with
the reality they represent in the long term. And yet, data structure formalisms
do not come with any assistance for data structure upgrade which is then prob-
lematic in the context of DSE in particular, since upgrading the data structure
implies, quite often, that the structured data representing the edition are out-
dated and needs appropriate update also. When data structures are effectively
updated, in DSE projects, and adapted to the better knowledge editors have got
of the corpus, the structured data update is done either manually or thanks to
ad-hoc scripts, if relevant, which demands either humongous amount of time or
the availability of technical staff members for writing those scripts. In case none
is at hand, the project has to go with an misfit data structure – which seems to
be a quite common situation.

The challenge resulting from those two elements was then to define a means to enable
data structure definition, and evolution, in a collaborative setting. It appeared that
a data structure formalism up to this challenge should be able to reflect a consistent
editorial policy, and at the same time meet the expressivity needs of the editors as
individuals.

To solve this paradox, we developed a new interpretation of the concept of Common
Ground. In our context, a data structure can be regarded as a representation of the
edition to be made. Literature on the Common Ground indicates that no unique
representation of the edition will arise; on the contrary, new perspectives may develop
from the confrontation of diverse representations. However, editors may agree on
an ephemeral feeling of mutual understanding, based on the use of a basic, common
annotation language, or upon the confidence that one of them can lead an expert
editorial project, in the frame of the common project.
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We can rephrase this more concretely. An editorial data structure can be com-
posite. It can be made of an evolutionary core structure and temporary peripheral
structures. The core structure is made of types and links upon which the whole team
of editors agreed at an instant t. This agreement could be based upon the fact that
they share the impression that they are able to implement it. Peripheral structures
are proposed by any editor, and are defined as modifications of the core structure.

Such peripheral structures are not meant to coexist independently. A typical sce-
nario follows.

1. An editor instantiates S, which is the core structure.

2. While annotating, she notices that one of the types in S is not adequate for the
content to be annotated. She transforms S into a peripheral structure S′, in
which she defines a new pattern of types in place of the former one.

3. She argues in favour of S′ before the other editors, through the edition tool, by
showing use-cases and instance samples – the other editors reply.

4. S′ is either accepted or rejected by the community of the editors. In case of
acceptance, S′ becomes the new core structure.

This scenario raises technical and practical challenges. Obviously, such an intense
communication-based process demands efficient means of communication, even more
so given the object that will be discussed will be complex: data structures, editorial
policy, annotation patterns. Also, since schemas are highly formal objects, it may be
relevant to assist their definition by means of user-friendly tools, that alleviate the
difficulty and make the definition intuitive. Those are important aspects, that shall
require serious research in interfacing, will not be treated in this work.

Instead, we will focus on more upstream challenges, that condition the feasibility
of the whole process. Those challenges are twofold.
First, since one of the purposes of the above process based on CG is to enable the
evolution of the data structure, thus, it seems relevant to go for highly expressive data
and schema models, or even multistructured data models. Indeed, it is tautological
to say that if evolving data structures are relevant, it is due to the fact one cannot
pre-empt the data structure that will be needed in the future. Thus, to make it simple,
proposing a mechanism to make data structures evolve for XML, for instance, which
is more or less limited to the expression of hierarchical, single layer annotation, may
not be relevant: who knows if the hierarchy will always be an appropriate shape in
the future of a DSE project? It has been hinted that in a generic approach, we could
not obliterate projects in which several annotation paradigms were to be instantiated
at once, on the same data – which is another argument in favour of highly expressive
data models, like the ones that belong to the multistructured data family [141].
Second, and more importantly, as mentioned before, changing the data structure of a
DSE project will, most often, lead to data conflicts. Consider the situation in which
there is a schema S and IS the set of documents instantiating that structure. If the
data structure is amended so that the new data structure S′ does not subsume18 S,

18Schema subsumption being defined, in general, by the inclusion of the instances of the subsumed
schema in the set of instances of the subsuming schema.
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then, possibly, IS will not be validated by the new schema. In other words, provid-
ing tools for amending schemas cannot go without providing tools for updating the
instances.
In our case, as indicated above, we do not want the schema to evolve, step by step, in a
linear way. What makes the DSE constructing process introduced in Paragraph 2.2.2
adapted to collaborative work is the fact schema evolution is not centralised, but ini-
tiated upon the initiative of the individual editors, by the definition of alternative
structures (amended versions of the CGS), and then evaluated by the other editors.
Thus, in our proposition, the amended structure does not replace the other, but, in
the beginning, coexists with it, and only after having been discussed will it be decided
whether the amendment is accepted or not. If the amended structure is accepted,
then we must be able to translate the data that was conform to the old CGS into
data compatible with the new CGS, as much as possible. Hence the need to be able
to derive, from the transformation of a schema into the next one, a transformation of
the old structured data into a shape compatible with the new structure.
Importantly, not only do the structures coexist during the interaction, but also in-
stances of the competing structures as well: the editor who proposed the amendment
may instantiate her own structure, be it to undergo a personal investigation on the
corpus or to illustrate the validity of her proposition. If her data structure is to be
abandoned, it would be great if her data could be translated back into a shape com-
patible with the CGS, so that all of her work shall not be lost.
In other terms, from a situation in which there is a CGS schema S and its instances IS ,
it means that a bidirectional transformation Ff/Bf shall be derived from the schema
transformation SA defined by an editor, so that the image of IS by Bf is structured
data IS′ , validated by S′, and so that Bf/Ff shall work as a synchronization between
IS and IS′ (any information added on one side is translated, if possible, on the other
side):

S
g→ S′

↪→ ↪→ and (g.S = S′) ↪→ g.IS .

IS
Ff/Bf?↔ IS′

Meeting those challenges would open promising perspectives. Editors would be
given ways to fine-tune the existing core structure, or to propose new peripheral struc-
tures to enrich the initial editorial project and to experiment on those structures. More
fundamentally, if we had ways to translate structured data from one structure to an-
other by the means of a bidirectional transformation, then even if the editors were
working on peripheral projects, data from those side projects would be converted into
a shape compatible with the core structure; thus the collective edition, validated by
the core structure, would keep progressing. Eventually, if a peripheral structure was
accepted and the core structure updated, editors would be given the possibility to
update the data instantiating the obsolete core structure; otherwise, the work done by
the proposing editor would still be preserved, by being translated into another shape,
respectful of the collective editorial policy.

As a conclusive remark, it must also be mentioned here that this PhD work, that is
focussed on the collaborative definition of the data structure underlying a DSE, does
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not frontally consider the yet crucial problem of “collaborative authoring” [125], that
is, the technical problem concerned with how several editors may instantiate, in paral-
lel, the same data structure, and how to make it possible to end up with one consistent
annotation. Indeed, collaboration authoring, that has been well studied in the field of
software engineering, raises many additional difficulties in the domain of literary stud-
ies and natural language documents [125]. While software engineers have developed
very strong methodology and tools for permitting team-based software development,
enabling developers to “share documents, divide them into complicated subdocuments,
edit them in parallel, merge editing changes semi-automatically, and recombine the
subdocuments into a cohesive and correct whole”, tools enabling to track change in a
structured document making use of natural language and in the end somehow ‘merge’
those change are being investigated (e.g. [133, 176]). The collaborative authoring
problem, indeed, is made difficult by many dimensions, one being the fact that the
“correctness” of any merging of natural language information sources is a tough notion
to define, and even more so, to check.
This problem is, of course, one of the problems that shall have to be taken into account
for the implementation of any collaborative edition platform, in practice. It shall even
be taken into particular account in a situation where two editors may not only instan-
tiate the same data structure, in parallel, on the same passage of the edited work, but
may even annotate the same passage according to different structures that shall trans-
late one into the other: then, on each side, shall the manual annotation done by an
editor be compared, or merged, with the annotation that has been semi-automatically
translated from the manual annotation done on the other side, and conversely...
In the frame of this PhD work, we have chosen to leave this problem apart, by consid-
ering a very simple temporal model for user interaction, that prevents from generating
such conflicts (see Paragraph 10.2 page 254). In the following, we will consider that
only one editor can be active at a time. As one can guess, this simplifies greatly the
collaborative authoring problem. Yet, it leaves many other problems open:

1. First, we will consider the problem of data expressivity. In a setting in which we
consider that the editorial team needs to be able to shift from a data structure
to another, it is natural to aim at providing editors with the means to express
any kind of annotation – which means, to provide them with very expressive
annotation models – and to be able to validate it. Part II gives a detailed
presentation of the annotation model we propose: extended Annotation Graphs
(eAG) and Schemas (SeAG). Extended Annotation Graphs is a stand-off markup
model, which means that an annotation takes the shape of a graph (made out
of nodes and edges). While, compared to classic inline (tag-based) annotation
models, graphs are not easy to express (a dedicated interface shall be required
to draw an annotation graph directly, for instance), this graph formalism offers
good calculation properties and is compatible with a novel validation mechanism,
that is based upon the notion of simulation [38], and that permits validation to
be checked very efficiently, even for very dense and complex annotations.

2. Second, we will focus on how to express extended Annotation Graphs easily,
without needing a dedicated interface for that purpose. Part III introduces Lin-
ear extended Annotation Graphs (LeAG), that is a classic, inline markup syntax,
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that enables to define eAG annotations on textual resources. We also define an
efficient parser for translating a LeAG into an eAG, and hence, benefiting from
SeAG validation.

3. Eventually, in Part IV, we will define how schemas shall be amended, and how
the amendment of a schema can be interpreted as a bidirectional transformation
between the instances of the original and the modified schema.
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Chapter 3

Introduction

3.1 Preliminary: Notation

This work makes use of the notion of directed, labelled graph. The most useful nota-
tions for handling such graphs are given below.

Constitutive items. A directed, labelled graph is a tuple G = (V,E), where V is
the set of nodes and E the set of edges of G. Be L a set of labels. Then there is a
function label : E 7−→ l ∈ L thanks to which a label from L is associated to the edges
of G.

Definition 3.1.1: Summit, end and node degrees. Be G = (V,E) an oriented
labelled graph. Be e ∈ E. The edge is oriented, which means that it connects a unique
node called its summit to a unique node called its end, respectively denoted sut(e)
and end(e).
Be v ∈ V . The in-degree of a v, denoted in(v), is the number of edges it is the end
of. The out-degree of a v, denoted out(v), is the number of edges it is the summit
of. The degree of a v, denoted deg(v), is the sum of the in- and out- degrees.

Definition 3.1.2: Roots and leaves of a graph. Be G = (V,E) an oriented
labelled graph. A node v ∈ V is a root of G iff in(v) = 0. A node v ∈ V is a leaf of
G iff out(v) = 0.
The set of the roots and leaves of a graph G will be denoted root(G) and leaf(G)
respectively hereinafter.

Definition 3.1.3: Rooted and single-leafed graphs. Be G an oriented labelled
graph. G is rooted iff root(G) is a singleton. G is single-leafed iff leaf(G) is a
singleton.
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Notation: Linear graph. The notation v1be1...cvN will be used to denote a linear
graph made out of the nodes {vi}i∈[1;N ] and the edges {vi}i∈[1;N−1], N ≥ 1, so that
for all i, vi = sut(ei) and vi+1 = end(ei).

Notation: Subgraph of a graph. Be a graph G = (V,E). The graph Gin =
(Vin, Ein) is a subgraph of G iff Vin ⊆ V ∧ Ein ⊆ E. The fact Gin is a subgraph of
G will be denoted Gin ⊆ G.
The expressionGin ⊂v1v2 Gmeans that the graphGin is rooted, single-leafed, is included
in G, and possesses v1 ∈ V as a root and v2 ∈ V as a leaf.

Let us now come to the heart of our purpose, and introduce step by step the eAG
data model. We start by a short description of Annotation graphs, which eAG is
based upon, then propose some amendments to this original model, and then give two
examples of the expressive power of eAGs.

3.2 Outline of this Part and Main Contributions

As we have seen in the Introductory part of this document, there is a need for an anno-
tation format, language, or model, that shall be schema-aware, and that shall support
data structure evolution at the same time, in order to make it possible for long-term
DSE projects to update the structure of the critical annotations in the course of their
manufacture, either because it, after further consideration and operation, appears not
to provide an adequate description of the primary corpus, or because the editorial
policy of the DSE project has changed.
When designing an annotation, or data, model meeting those expectancies, one may
consider that this data model must as versatile as possible. Indeed, it would not make
much sense to acknowledge that the structure of data resulting from scholarly anno-
tation is subject to unpredictable change and to limit the structure of the data to
a restricted kind of annotation – for example, to hierarchical annotation. Hence the
following panorama of the most versatile data models for annotation at hand, that all
go beyond the hierarchies, gathered under the umbrella term ‘multistructured data’ –
as possible sources of inspiration for the desired, evolution-friendly data model.
Multistructured (M-S) data models have been a hot topic for over a decade. Correlated
to the rise of Digital Humanities, they ground on the fact that a single hierarchy is
not always sufficient to represent annotated resources [39], contrasting with the setting
of XML-based languages as a standard for scholarly annotations. Hence, “multistruc-
tured” is then to be understood by comparison with XML: annotating somehow means
structuring data (a well-formed XML document fits into a tree structure); “multi” sug-
gests M-S data models handle multiple, interlaced hierarchical annotations over the
same data. Many models have been proposed [141]. However, the enhanced expres-
siveness resulting from less constrained structural foundations, compared to XML,
comes at a cost: M-S models often lack a corresponding data model.
Indeed, validating highly expressive data is challenging, due to a general trade-off
between data models expressiveness and algorithmic complexity. The NEXPTIME
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complexity of OWL/DL inference [146] will serve as a striking example of how costly
the validation of highly expressive graph-structured documents can be. This trade-off
is so pregnant and restrictive that it applies to XML [170].

After the description of the state-of-the-art regarding data models for annotation,
we introduce our first main contribution, that was presented at the DocEng conference
in 2016 [15], namely, extended Annotation graphs (eAG). eAG is a multistructured
data model, tailor-fit for scholarly annotation. In particular, it goes beyond the clas-
sic, technical problems of overlap and expression of multiple, independent layers of
annotation; it also provides the editor with tools to reify distant relations and to make
accurate quotes within the data, both useful for the study of intertextuality and the
identification of web-organised information. It also provides the editor with means to
insert critical notes and comments within the data, to interlace this critical, textual
data with the primary data, while making sure that the two kinds of data, primary vs.
critical, shall not be confused. In the end, eAG comes as one of the most expressive
data models available.
We also introduce our second contribution, that is, a schema language for eAGs, called
SeAG, based on a novel validation mechanism that bypasses the traditional trade-off
between expressivity and complexity. Indeed, we have identified the simulation rela-
tion, first used for the structural description of semistructured data [37], as a promising
mechanism for eAG validation. Then, based on a coupled representation for SeAGs
and eAGs, we show that given the representation of a schema, only valid eAGs can
be represented: this is “validation by construction”. This enables to guarantee the
validity of rich M-S data without algorithmic check, bypassing the trade-off between
expressiveness and complexity, when schema definition can precede annotation. Addi-
tionally, the eAG/SeAG model is compatible with classical, a posteriori validation, in
which case the schema may be given after the eAG was built, and validation checked
afterwards. In this case, checking whether an eAG is valid against any schema can be
decided in polynomial time (O(|edges| · |nodes|)). We finally proved that for hierar-
chical data, SeAG syntactic validation is not less straitening than Relax-NG.

At the end of this part, the definition of a very expressive, schema-aware data
model for which the time-complexity of the validation is not problematic will have
been defined – which constitutes a first step towards a data model supporting data
structure evolution, that will be completed in the next parts.
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Chapter 4

Related Work

4.1 Multistructured Data and Validation

Currently, most scholarly editorial projects adopt the XML-TEI markup language for
annotation. Such a choice has solid foundations: the TEI project provides researchers
with rich, collaboratively designed and documented schema modules dedicated to al-
most all sorts of heritage annotation, along with a tool to cherry-pick such modules,
tweak (to a certain extent) and assemble them into a custom schema1. As for an-
notation itself, from a practical point of view, (free) user-friendly XML edition tools
abound on every hand. Due to its ascendancy that is rooted in printing formats [151],
XML is a natural candidate for textual description. Models for text encoding need to
fulfil a few prerequisites: support for linear characterization (along the textual dimen-
sion – if unique); representation of inclusion relations (e.g. to describe the material
structure of a corpus – if unique), which XML does well (in case of uniqueness of both
preceding attributes of the corpus): due to the inline nature of XML, not only are the
elements ordered along with the text, but also are they maintained in their context;
inclusion has been decided to be represented by nesting.

Still, in practice, tree-based formalisms are known not to fit some advanced but
common textual description patterns [151, 145, 39]. In particular, XML suffers from:
the inability to manage overlapping elements; a weak, non syntactical representation
of links, that need to be validated separately2; the expression of inclusion by nesting,
that raises the question of how to express accidental, non inclusive nesting, very com-
mon when annotating according to more than one paradigm simultaneously. Several
propositions have been made to conform TEI-XML with more expressive data models
[39, 33, 42]; although interesting, those propositions either fail to tackle part of XML
inherent weak points3 or are not straightforwardly compliant with the many useful
validation, querying, transformation tools from the XML galaxy [141].

1http://www.tei-c.org/Roma/
2E.g. restrictions on the name of two elements liked by the ID/IDref mechanism can be enforced,

but this would require a dedicated integrity-constraints checker like Schematron, on top of a grammar-
based validator schema x[17].

3E.g. the commonality between inclusion and nesting representations.
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4.1.1 Multistructured Data Models
Formally speaking, structured resources can be regarded as labelled graphs [122, 37].
From this point of view, the expressive limitations above can be regarded as a con-
sequence of the fact that XML is based upon a restricted family of graphs that is
inadequate for textual annotation, that is: trees. From this statement on, many
formal or implemented models have been proposed over the last two decades; those
propositions are generally rallied under the banners of Competing markup or Multi-
structured data models [141]. The term “multistructured” was proposed by reference
to what structure means in XML (i.e. trees): a data model can be considered to be
M-S provided well-formedness extends to graph models equal to or exceeding forests,
that is graphs whose connected subgraphs are trees.

Precisely, it happens that the (pre-XML) CONCUR feature for SGML [85], which
can be seen as the first historical M-S proposition, and one of the very few schema
aware models, rest upon a forest formalism. In CONCUR, each element is indicated to
be part of a given hierarchy, and several hierarchies are allowed on the same document;
each of them can be validated against a dedicated DTD. The approach, however, has
several shortcomings: mainly, no inter-DTD constraint can be expressed at all, and
self overlap is problematic4. MuLaX [95] managed to transpose this philosophy in
the XML world, despite an XML document can refer to one schema only. A MuLaX
document mixes elements from several disjoint hierarchical paradigms, regardless of
overlap; each hierarchy defines a projection, which yields a well-formed XML document
that can be validated against an adequate XML schema; still, no constraint can be
expressed between elements that do not belong to the same hierarchy. A (weak)
solution to this problem was to be given in the MSXD model. Like MuLaX and
CONCUR, MSXD is based upon the vision of a structure as a hierarchy. Unlike the
two previous models, all the hierarchies are not instantiated in the same document: one
XML document has to be written for each structure; and each document is validated
separately by an appropriate RelaxNG schema. However, MSXD enables to express
relationships between elements contained in separate hierarchies, by means of Allen’s
relations [35, 34].

More advanced graph structures have also been proposed. Some focussed on well-
bounded graph families. Significant examples of that movement are multitree-based
TexMecs [97] or MCT model [101], in which the ascendant’s and the descendant’s
graphs of any node are trees, and the restrained, acyclic polyarchy model GODDAG
[162]. A clever grammar-based validation language, dubbed Rabbit/duck grammar,
was proposed for TexMecs and similarly shaped documents [160]; it works on docu-
ments where annotation from competing hierarchies are entangled, and extracts the
single hierarchies, which can be validated against a dedicated XML schema, but it does
so while checking some inter-hierarchical constraints [174]. However, it falls short when
it comes to validating polyarchies.

From this point on, many even more expressive models have been proposed, but
rely on no particular graph model; most of them will also drop inline markup in favour
of standoff markup. LMNL [175, 139] presents itself as the archetype of such models.

4Since DTDs validate only non overlapping elements, an arbitrary number of DTDs would be
required to validate documents where multiple, self overlapping elements occur, as coined by [174].
This limitation applies to the two following approaches as well.
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LMNL has a layered directed acyclic graph structure, which models elements as anno-
tated ranges of text from a character stream [174]. Worth mentionning is the fact that
LMNL enables to annotate annotations themselves, since they are no more than text
streams themselves. Also, importantly, Creole, a prototype schema language, based
on RelaxNG but extended to overlapping annotation, was tailored for LMNL [174].
SILL: LMNL [175] represents a more stripped-down vision of multilayer annotation.
In many respects, LeAG borrows from LMNL. In LMNL, the user can identify ranges
in a character stream and name them by means of pairs of opening and closing tags.
Ranges themselves can be annotated by (meta)ranges, which inspired the attribute
syntax in LeAG. Yet LMNL claims to be an annotation language solely, and not a
structuring language: in particular, LMNL does not provide the user with means to
represent inclusion or sibling relations. By sweeping out the notion of inclusion, LMNL
seemingly clears the paradox out; yet LMNL is not absolutely blind to the charms of
hierarchies: it lies upon the notion of ‘layers’, that is, ranges that fully contain the
ranges that start and end in their scope, which is reminiscent of XML hierarchies –
but if such patterns cannot be interpreted in structural terms, can they be but for-
tuitous patterns? Still, because hierarchies are a classic and fundamental annotation
structure [184], the LMNL model comes along with XML generators that can extract
hierarchies from the data. Our point, on that matter, is that since hierarchies are so
central, the best is to enable the editors to have direct control over their expression
– which indeed demands additional syntax. Apart from those critical considerations,
LMNL is an important annotation model, that goes beyond most others, in terms of
expressivity; moreover, it benefits from a grammar-based validation language [174],
able to embrace the multilayer documents as a whole, which can be compared only to
RDF validators (or to the SeAG we propose [15]).

Annotation Graphs [21, 19], that will be discussed thoroughly below is, from a
formal point of view, a quite similar model; nonetheless, it adds an interesting notion
of chronology, which can turn very handy for multimedia corpus annotation.

Eventually, several annotation models have originated from the RDF community.
One may think of the pioneering RDFTef [178], the Open Annotation data model
[150] or EARMARK [132]. The RDF data model, which imposes no restriction on the
shape of the resulting graph, is very expressive; moreover, RDF annotation can be
used as a complement to an existing TEI annotation [12], which is a way to ally the
best of two worlds.

Figure 4.1 intends to capture the above diversity of models, classified in terms of
the class of graph each model enables to express.

4.1.2 M-S Validation: Algorithmic Complexity

For the digital humanists, prominent user community of M-S documents, modelling
resources by a schema, as a preliminary for annotation campaigns, is now part of the
business [138]. Moreover, the existence of a schema offers many advantages in process-
ing and querying structured data [79]. However, most validation mechanisms intended
for M-S documents simply combine several XML schemas with rules to express con-
straints between the hierarchies each schema represents [85, 95, 152, 160, 35], providing
the final user with a quite weak and clumsy modelling tool only. Said differently, few
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Figure 4.1: The classic multistructured data models, classified by the family of graphs
of elements they enable to express.

schema models manage to get beyond multiple tree-structure checking.
A reason to that situation might be found in the algorithmic complexity of the

current approaches adopted in M-S validation. It is generally assessed that the more
expressive the data model, the higher the algorithmic complexity5 for the related
processing tasks [79, 170, 126, 116, 112, 146]. This applies, at least, to grammar-based
and rule-based [97] validation.

The tag “grammar-based” applies to the three main validation languages for XML,
namely DTD, W3C XML Schema (XSD) and RelaxNG, which are commonly modelled
as tree grammars, or tree automaton [126]. Although the schema languages do not
recognize the same class of trees, it has been established that the tree languages that
the three technologies enable to express are included, or equal6, fit like nesting dolls
into regular tree languages, for which validation can be done in linear time in the
documents’ size [112]7. However, as hinted by [170], there are tree grammars that
may not even be decidable for the interpretation problem that is part of validation in
RelaxNG and XSD. Integral rule-based validation with Schematron, as experienced
by [17], does not overcome this trade-off: complexity is worse than with the grammar-
based approach.

Few information is available about the time complexity of M-S validation mech-

5Following Murata’s assertion that time complexity matters more than space complexity, we will
focus on the first only [126].

6DTD cover local tree languages, included in single-typed tree languages expressible by XSD,
themselves included in regular tree languages that are covered by RelaxNG.

7The difference of expressiveness between the three schema languages comes at a cost though,
but only for other processing tasks [79].
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anisms. The complexity of MSXD’s validation mechanism, which theoretically com-
bined RelaxNG validation for each independant tree structure with Allen’s relations to
express inter-trees constraints, was in question in the first proposition paper [34]; actu-
ally, in the end, to the best of our understanding, it was not implemented as such [36]:
Allen’s relations were rather translated into XQuery extensions and cross-hierarchies
constraints could then be checked by assessing adequate queries on the data. Creole,
the promising grammar-based schema language for MLNL that inherently understood
overlap, and hence enabled to express competing hierarchies in the same document,
as well as all structural constraints in a single schema, was prototyped using XSLT;
despite the optimization techniques taken from RelaxNG, the result was considered
“too slow” [174] – no other implementation followed, unfortunately.

It has to be mentioned here that RDF-based M-S data models suffer from the
same trade-off. RDF, which is a very expressive model, is provided with an ontology
language, OWL, as well as reasoners, which are sometimes used as validators [59].
However, using OWL to validate a document raises several difficulties and questions.
First, the full version of OWL is undecidable, hence two main restrictions, OWL-
DL and OWL-Lite, which still perform with repelling NEXPTIME and EXPTIME
complexities [146]. Second, OWL axioms are not natively interpreted as integrity
constraints by OWL reasoners, resulting in a rather weak validation mechanism [146],
because of two main features of OWL that are the Open World Assumption and the No
Unique Name feature, whose combination allows to assess when an assertion is verified,
but not that is is not [159]. Indeed, techniques have been proposed to by-pass those
limitations and enable the proper expression of identity constraints, but result in huge
execution times [172]. Nonetheless, RDF validation is a promising field of research, as
illustrated by the ShEx [143] and SHACL [107] projects. Time complexity still seems
to be quite high, but cutting it down is being investigated [167].

4.2 The Annotation Graphs Model

The above enlightens a trade-off between expressiveness and complexity – trade-off
that expresses, to be accurate, inside the frame of a given validation technique. For
instance, while Brzozowski derivative-based validation [174] runs in linear time for
regular tree languages, the same approach does not extend easily to more general
graphs. This leads to question the use and tweak of XML and RDF tools for M-S
validation, precisely because, as well engineered systems, they are already optimized
for their native use.

Simulation [144, 37], is an interesting alternative to rule- and grammar-based de-
scriptive formalisms. A simulation is a relation over (often rooted) directed labelled
graphs. Informally, the existence of a rooted simulation of a graph B by a graph
A implies that all the paths of B starting from its root have a matching path in A,
whose label sequence is identical. Thus, A describes the structure of B, because all
the patterns in B somehow have a match in A. Conversely, A behaves as a graph
schema: it validates the graphs that contain only patterns defined in A, i.e. that A
simulates.
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Validation by simulation was first operated for semistructured (S-S) data [171,
3]. The Object Exchange Model (OEM) underlying S-S data is a cyclic, unordered,
directed labelled graph. Natively, a S-S database is schemaless; Dataguides [86] or
Graph Schemas [37] are inferred from the data. They are graphs that simulate the
S-S database, providing a structural description that can be exploited for querying
purposes. Simulation check performs in O(|edges|·|vertices|) [144], which is acceptably
low for general graph-structured data validation.

Still, despite providing an expressive data model8 and an appropriate schema mech-
anism, as far as we know, S-S model was never tuned for annotation. Indeed, it lacks a
clear representation of inclusion, a notion of order or a way to index nodes along read-
ing dimensions to support linear annotation; moreover, since Dataguides and Graph
Schemas are inferred from the data, they cannot be used as authoring tools.

Still, because the OEM is so general, the principle of a simulation-based validation
is not restricted to S-S data but “can be applied easily to any graph-based data model”
[86]. The eAG data model we propose in the Paragraph 5.1 is such a graph-based
data model. It relies upon an important pre-existing data model, namely, Annotation
graphs (AG), that appears to be one of the most generic and versatile annotation
models from the late 1990’s. We propose to the reader a detailed, critical description
of the historical AG model. We will point out its strength and weaknesses as an
annotation model for DSE, so as to build, in its continuity, a similarly versatile model
tailor-fit for scholarly annotation.

4.2.1 Annotation Graphs

Annotation Graphs (AG) [21] were introduced in the late 1990’s by Bird and Liber-
man as a generic model and language for annotation, at a moment when a plethora
of competing models had been and were proposed. As evidence of the generic quality
of the AG model, the authors showed that the state-of-the-art annotation languages,
namely E-mu [41], LAF-GraF [98] or the SGML/TEI [161] could all be translated into
AG without any loss of information, which gave AGs a certain fame among computer
humanists and made it one of the most cited models of annotation. It was later im-
plemented [82, 20] and a quary language was experimented [19].

Even though AG was initially thought as a model for linguistic annotation, the
flexibility of the model is such that it can be used for any resource that can be indexed,
at the local scale9, along one dimension, hence making the AG model adequate, to a
certain extent, for the annotation of multimedia resources (containing audio and text,
typically).

Definition 4.2.1: Chronology, reference value. A chronology is a totally or-
dered set 〈Ti,≤i〉. An item from a chronology is called a reference value.

8Surprisingly, the OEM is referred to as “essentially equivalent to XML” on the Lore project
website (infolab.stanford.edu/lore), which was a pioneering OEM DBMS before migrating to XML.

9See the notion of “chronology” – Definition 4.2.1, right below.
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Example. A chronology for indexing a text stream can be built out of the inter-
character positions in the text. A chronology for indexing an audio file can be built
out of time stamps, in the appropriate granularity (ms, s, ...).

Definition 4.2.2: Annotation Graphs. An Annotation Graph AG over an
alphabet L and a collection of chronologies 〈Ti,≤i〉i is a tuple (G = (V,E), ref, label),
where

- G = (V,E) is a directed, labelled graph,

- ref is a function V −→
⋃
i

Ti, that associates a reference value to the nodes of

the graph G,

- label is a function E −→ L, that associates a label to the edges of the AG,

and so that :

1. for all node v ∈ V , deg(v) 6= 0;

2. for all oriented linear graph v1b...cv2 ⊆ G connecting a node v1 to a node v2,
then if ref(v1) and ref(v2) are defined, there is a chronology 〈Ti,≤i〉 so that
ref(v1) ≤i ref(v2).

Nota. According to the property 2. in the definition above, two nodes belonging to
the same connected part of an AG cannot bear reference values belonging to distinct
chronologies. Since the authors explicitly discard the possibility to compare reference
values belonging to separate chronologies, one may neglect the index in the expression
ref(v1) ≤i ref(v2) and simply write ref(v1) ≤ ref(v2).

Comment: Annotation paradigm. Annotating some content indexed along a
given chronology 〈Ti,≤i〉 is done as follows: if the content is located between the
reference values r1 and r2 in Ti, then the content is qualified by the label l iff the
AG contains an edge labelled l between a node v1 so that ref(v1) = r1 and a node
v2 so that ref(v2) = r2. Several such edges can be defined between a given pair of
nodes. The annotated content is thus any portion of the resources delimited by a pair
of reference values, while the way this content is annotated, or qualified, is determined
by the label of the corresponding edge(s). In that, AG is a typical stand-off annotation
model.
Noteworthily, AG shines by its ability to express multimedia annotation in a very
natural way. Indeed, since several chronologies can be defined for the same AG, it is
possible to define a chronology for indexing textual resources and another chronology
for audio files, and then to annotate a multimedia resource mixing text and audio by
means of a unique graph of annotation.

Nota. Even though an AG is represented by a unique graph, the AG model does not
require this graph to be connected: it may on the contrary be constituted of several
connected parts.
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In particular, this permits to leave certain portions of the resources free of any an-
notation. Also, two distinct connected subgraphs of the AG can overlap freely. As a
consequence, AG support the expression of a wide range of annotations: annotation
with gaps; overlapping annotation; multilayer annotation; annotation of moments (i.e.
resources wholly positioned at a certain reference value along a certain chronology)...
see Figure 4.2 page 69.

Definition 4.2.3 : Structural and referential orders. Be (G = (V,E), ref, label)
an AG. Two partial order relation can be defined on the AG:

1. Structural order ≤s. Be v1, v2 ∈ V . Let us define the s-precedence ≤s by:

v1 ≤s v2 ⇔ ∃J ∈ N∗, ∃{ej}j∈[0;J] | v1be1...cv2.

2. Referential order ≤r. be v1, v2 ∈ V . Let us define the r-precedence ≤s by:
v1 ≤r v2 ⇔ ref(v1), ref(v2) are defined, belong to the same chronology and
verify ref(v1) ≤ ref(v2).

Definition 4.2.4 : Precedence. Be (G = (V,E), ref, label) an AG. Precedence
is defined as the transitive closure of the union of the s- and the r- precedences:

∀(v, v′) ∈ V, v < v′ ⇔∃n ∈ N∗,∃{v0...vn} ∈ V n+1 | v0 = v, vn = v′

and ∀i, vi <s vi+1 ∨ vi <r vi+1

Comment As a consequence of the Definition 4.2.2 above, in a connected part of
an AG, the structural and the referential order match, for the nodes for which they
are both defined.
This property enables to define a notion of inclusion between edges as follows:

Definition 4.2.5 : Inclusion. Be (G = (V,E), ref, label) an AG. Be the following
graphs, included in the AG : v1becv4 et v2be′cv3.
The three following partial relations can be defined:

• Structural inclusion ⊂s. e ⊂s e′ ⇔ v1 ≤s v2 ∧ v4 ≥s v3.

• Referential inclusion ⊂r. e ⊂r e′ ⇔ v1 ≤r v2 ∧ v4 ≥r v3.

• Inclusion ⊂. Inclusion is the transitive closure of the union of the structural
and referential inclusions.
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Example. Be the following AG:

In this graph, e1 ⊂ e3.

Comment. The fact s-precedence and r-precedence shall match on the nodes from
a connected part of an AG enables to discard annotation patterns in which, otherwise,
inclusion would be paradoxical. For instance, the following graph (which is not a
correct AG), the above definition of inclusion would give: e3 ⊂s e1 ∧ e1 ⊂r e3:

However, a crucial drawback from imposing the match between s- and r- precedence is
that AG cannot contain cycles, while cycles can be a good means to represent arbitrary
relations and links.

Definition 4.2.6: Domination. Be (G = (V,E), ref, label) an AG.
An edge e ∈ E is said to dominate a sequence of edges [ei]i∈[1;N ] ∈ EN , N ≥ 0 iff
∃(v, v′) ∈ V 2, [vi]i∈[1;N+1] ∈ V N+1 so that:

• vbecv′ ⊂ G, v1be1c...beNcvN+1 ⊂ G

• et v1 = v, vN+1 = v′.

Definition 4.2.7 : Structural hierarchy. Domination is how hierarchies are
described in the AG model. Indeed, all the edges of a sequence of edges that is
dominated by an edge e are included in e.
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Definition 4.2.8 : N-ary relations between edges. On top of the above struc-
tural considerations, AG enable the definition of n-ary relations between edges, by
means of optional fields in the labels.

• Annotation layers, types. An annotation layer is any set of edges possess-
ing the same type.The type of an edge is characterized by the value of a prefix
added to the edge’s label, ending by the delimiter ‘/’.

• Equivalence classes. Edges belonging to distinct layers can be grouped into
equivalence classes. The equivalence class is defined by adding an identifier
as a suffix to the label of those edges. The suffix starts by the delimiter ‘/’.

• Structural dependencies. Structural dependencies enable to assert that one
or several edges are related to a given edge. To define a structural dependency,
a suffix ‘:N/M ’, is added to the edges, N,M ∈ N ∪ {‘-’}, where N identifies the
current edge and M identifies the edge it is related to. The value ‘-’ serves as a
blank value.

Comment. An annotation layer is a very open notion, from a structural point of
view – no less, actually, than any set of annotation layers ([21] p. 40), since it is solely
a collection of edges possessing the same type. Figure 4.2 illustrates the possible an-
notation configurations inside an annotation layer.
The other kinds of relations – the structural dependencies in particular – aim at en-
abling the expression of arbitrary relations that could otherwise have been represented
by cycles.

Attributes in AG... The authors do not define any syntax for refining the labels
with what could be called attributes, that is, additional type-value data. They only
state that the label can be freely structured into several fields in order to do so, but
leave the realisation of that prospect to the user...

The resulting AG model is, in the end, highly expressive, as evidenced in the
original article [21], enabling the expression of overlapping, multilayer annotations,
as well as arbitrary N-ary relations between the edges of the AG, whose role in the
annotation is reminiscent of XML elements.
However, the adequateness of the syntactical solutions chosen by the authors to reach
this expressivity can be questioned. In the following, we propose several amendments
to this initial model, based on the criticism of the AG syntax, and define extended
Annotation Graphs.

4.2.2 Criticism and Necessary Amendments to the Annotation
Graphs

Our criticism focus on two main points:

1. The first point regards the fact an AG may be a disconnected graph, and why.
AG offer the possibility to define several chronologies is thought as a means to
enable the annotation of resources from different media types (e.g. text vs. au-
dio vs. images...). Still, as stated above, connected parts in an AC may only
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Figure 4.2: Possible configurations of an annotation layer in the Annotation graph
model (extracted from [21], p. 40.)

contain nodes that bear reference values from the same chronology. Thus, an an-
notation requiring several chronologies will result in a graph containing at least
two disconnected subgraphs. Yet, instead of gathering together nodes and edges
making use of the same chronology, i.e. involved in the annotation of the same
type of content, it seems more natural that connected parts of an annotation
graph shall gather the nodes and edges involved in the annotation of the same
resource, be it multimedia.
Consider a born-digital document containing an introductory paragraph, an au-
dio file and then a textual comment of the audio file. In the AG model, the two
textual paragraphs will have to be annotated by means of a separate connected
graph compared to the audio file; even worse, it would be impossible to express
the fact that the audio file is positioned between the two paragraphs, that is,
that three items of different nature (text, audio and text) form a sequence and
are included in a unique document.
One of the main amendments eAG willl operate compared to AG will be to
permit the coexistence of several chronologies in the same connected part of the
annotation graph – to the point that having separate connected parts will be
useless, so well so that the eAG graph model will be a connected graph. To
achieve this goal, we will introduce the notion of composite chronology and the
notion of epsilon edge for expressing ‘blank annotations’, to keep the interesting
ability AGs offer not to annotate all the primary content.

2. The second questions the fact that information that is not, in substance, dissim-
ilar, is not represented homogeneously in AG. In particular, the fact that a text,
if it is part of the primary corpus (e.g. the literary documents to be edited), will
possibly be described in great detail by a set of edges and nodes (i.e. an AG
annotation), while if it is part of the critical apparatus (i.e. if it is the label of
an edge), will possibly be described further only by means of interpretable fields
added to it as suffixes and prefixes (links and attributes as defined in the AG
model), i.e. by means of chains of characters. Also, the syntax for representing
structural precedence, which is a binary relation between edges, is structural in
the sense it involves nodes and edges while semantic relations (e.g. structural
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dependencies) are simply represented by means of identifiers. Our answer to
solve this heterogeneity is twofold:

• Based on the consideration that the attributes of an element of annotation
are structured data relative this element, we propose to model attributes
as an annotation on top of an annotation. In that, we follow the example
of LMNL [175].

• While the notion of structural dependencies are a convenient means to
represent relations while avoiding cycles in the AG, and thus to maintain
the structural and referential orders consistent across the graph, we propose
to introduce a distinctive syntax for the label of the edges that involve
cycles, i.e. that represent semantic relations between annotation elements.
This mechanism enables to maintain the consistency of the structural and
referential orders in the graph stripped from those special edges, while
offering a homogeneous, structural representation for all relations.

We hereby define the corresponding eAG model in detail.
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Chapter 5

Extended Annotation Graphs
and Schema models

5.1 The Extended Annotation Graphs Model

We introduce here Extended Annotation Graphs (eAG), a data model derived from
Annotation Graphs. The eAG syntax is first introduced informally on a textual anno-
tation example1, that will serve as a running example over this part and the next one.
Then, a formal definition of eAG is proposed, illustrated by means of a toy document
mixing text and image.

5.1.1 An Example of eAG Annotation: Anaphoric Chains

A common linguistic annotation is the identification of anaphoric chains3 (AC). ACs
are sequences of singular expressions so that if one of them refers to something, then
they all do [44]. Consider the text given on Figure 5.1, adapted from The Village of
Ben Suc by J. Schell. In this text, one may identify, among others, the following ACs:
[a young prisoner / he / him / him / the prisoner], [An American observer who saw
the beating], [the beating that happened then / the beating].

Annotating the text in terms of ACs made out of expressions is not trivial in
XML. Since ACs do not form neither a sequence nor a hierarchy, they cannot be
represented as normal, spanning XML elements. The classic solution is to identify
only the singular expressions in the text and then relate them together accordingly
by their IDs in <linkgrp> elements [55]. That solution, apart from being hard to

1Additional examples of eAG annotations can be found elsewhere in the document. The Ap-
pendix11 (in French) offers an annotation of the Voynich manuscript2, that makes intense use of the
notion of composite chronology defined below as a means to encode the continuous quality of a text
that is disseminated across the folio in variously shaped graphical containers. The notion of quotes,
that is introduced in this part, is also illustrated in the next part, in Paragraph 6.2.4.

3The assisted, or automatic, identification of Anaphoric chains is an actively investigated field of
research in NLP [140]; yet our purpose does not consider the process of of identifying ACs, but how
to represent, by means of an annotation language, the result of this identification, in the track of [55].
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Figure 5.1: An adapted passage from The Village of Ben Suc by J. Schell, with some
highlighted anaphoric chains and constituting singular expressions.

validate, does not represent the fact an AC is composed of expressions consistently
with the XML syntax. Moreover, it does not extend to this example, which exhibits
self-overlap [162]4.
In eAG, annotating anaphoric chains is straightforward. First, a chronology, indexing
the text stream, must be defined, e.g. as a set of inter-character positions:

[step 1]

The encoding of the two singular expressions Exp regarding the beating is done as it
would be in AG:

[step 2]

To model the fact that the two above expressions form a sequence, as suggested by
the definition of anaphoric chains above, and that this sequence is discontinuous (in
that the second Exp does not start where the first ends), we introduce a special edge
for blank annotation, called the ε-edge5. It is operated as follows:

4Cf. An American observer who saw the beating and the beating that happened then.
5The inspiration for this edge comes from the homonym ε-edges from the Finite State Machine

theory, which denote transitions that do not consume any input character. The rationale for this loan
is explicited in Paragraph ??
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[step 3]

Now assessing that this sequence constitutes an anaphoric chain can be done by defin-
ing an AC element, for Anaphoric Chain, so that the sequence of Exp is included
in AC. Inclusion, in eAG, is done by means of a pair of opening and closing edges,
labelled with the name of the container element (AC here) and the suffixes :In and
:Out respectively, as follows:

[step 4]

Assessing that the AC takes place inside an Extract is done similarly:

[step 5]

Adding attributes to an element whose name is X is done by inserting an element
named X:Att inside X, the element X:Att in turn containing a small eAG indexing
some added secondary resource, that corresponds to the content of the attributes. The
following step provides a name “who” to the anaphoric chain, indicating that the AC
is related to “the beating”:

[step 6]

Identifying a second, overlapping AC element (the one regarding the observer for
instance) can be done just as previously, independently from any previous annotation
(in particular, without worrying about overlapping elements):
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[step 7]

Eventually, suppose we aim at identifying the ACs and their constitutive expressions,
but also to qualify their relative weight, e.g. by reifying the relation ‘this AC contains
more expressions than that one’. The reification of that relation can be done by means
of an edge bearing a special suffix :LinkTo, originating in the attributes of AC relative
to the beating and targeting the other AC as follows:

[step 8]

This last graph ([step 8]) is a proper, or well-formed, eAG6, making use of the notions
of element, of attributes, of hierarchy of elements and of semantic relations, or links.
It represents a bi-layer annotation exhibiting self overlap.
This informal presentation of eAG shows several notions that the original AG failed to
capture conveniently: for instance, the fact that two expressions form a sequence with
a gap would have been represented by two disconnected edges assembled into a layer
of annotation – while the fact two elements form a gapless sequence is represented
differently, by the communality of the leaf of the first element with the root of the
second; here, any kind of sequentiality relation is represented homogeneously, that is,
structurally. Similarly, the semantic relation Longer is structurally represented here,
while it would have demanded the use of the notion of structural dependency in AG.
Representing relations by means of nodes and edges is not only satisfying because it
provides a harmonious syntax. It also opens to the possibility to structure relations
further, for example to include, in the linking element, some critical comment. For
instance, the graph below provides an elaborate proof of the fact that the AC regarding
the beating is “longer” that the AC regarding the observer, based on the number of
Exp each contain:

6Noteworthily, the graphs given on step 3 to 7 are also well formed. The graph on step 2 is not,
since it is not connected – see Paragraph 5.1.2.1.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



5.1. THE EXTENDED ANNOTATION GRAPHS MODEL 75

[step 9]

As will be shown in Paragraph 5.2, it also enables to to validate the relations properly,
by restricting the nature of the elements that can be connected together by means of
a certain relation.

5.1.2 The eAG Model, Formally
After this example-based, informal introduction, that aimed at providing the reader
with a concrete representation of the eAG syntax – which may make the following
more comfortable to read –, we now define the eAG model formally. We gradually
introduce the notion of composite chronologies, that permit to handle documents that
mix several types of information (text, image, etc.); we then present the formal model
for hierarchies, elements, attributes, comments and links, together with the properties
those features have to verify. Eventually, we discuss the notion of elements in eAG in
a way that hopefully illustrates the expressive power of the model.
Throughout this formal presentation, the toy document represented in Figure 5.2 will
serve to illustrate eAG’s expressive power. It is constituted of one paragraph spanning
over two pages, whose text locally refers to parts of a pictorial figure. Additionally, the
pages are structured into modules, a module being the longest vertical unit containing
data of homogeneous nature (viz. text vs. images here). The pictorial figure itself,
accidentally, nests inside the paragraph (without being part of it).

5.1.2.1 eAG Graph Model

Extended Annotation Graphs are based on a cyclic graph formalism, as follows.

Definition 5.1.1: eAG graph model. An extended Annotation Graph G is
a tuple (G = (V,E), ref, label), where G is rooted, single-leafed and connected:

1. (rooted) ∃vr ∈ V so that root(G) = {vr}

2. (single-leafed) ∃vl ∈ V so that leaf(G) = {vl}

3. (connected) ∀v ∈ V , ∃℘v a path verifying ℘v ⊆root(G)
v G

The functions label and ref are governed by the definitions and properties that follow.
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Figure 5.2: Document showing overlap, a figure enclosed in text and internal refer-
ences.

5.1.2.2 Authorized Labels in eAG

The labels in eAG are not indifferent. We provide them with a minimal semantics, in
order to represent the modelling notions of inclusion, attribute, links, etc.

Definition 5.1.2 (Labels) Be a special character ε 7. Be L∅,
ε 6∈ L∅, a set of strings that do not contain the character “:”. L0 = L∅ ∪ {ε} is the set
of unsuffixed labels. Additionally, be S = {:In, :Out, :Att, :Com, :LinkTo} the set of
suffixes. Labels can be iteratively suffixed according to the rules given in Table 5.1.
Those rules also define classes of labels, e.g. LIn the set of labels whose last suffix is
:In. The set of all labels L is the union of all the preceding classes.

Nota. Noteworthily, Table 5.1 implies that an attribute can have attributes itself,
and that a link cannot have an attribute – see the next paragraph.

Notation. In the following, given two strings l and s, s ⊂ l denotes the fact that l
contains the substring s.

5.1.2.3 Chronologies in eAG

Extending a notion introduced in the AG data model, we propose a new definition of
chronologies, that is how locations in composite resources can be made reference to.

7ε stands for a blank, or void, annotation.
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Table 5.1: Allowed suffixes per label class and the resulting class. “-” stands for
“undefined”.

# suffixed by ∅ :In :Out :Att :Out :LinkTo
l ∈ L∅ L∅ LIn LOut LAtt LCom LLinkTo
l ∈ LIn LIn - - - - -
l ∈ LOut LOut - - - - -
l ∈ LAtt LAtt LIn LOut LAtt - -
l ∈ LCom LCom LIn LOut LAtt - -
l ∈ LLinkTo LLinkTo LIn LOut - - -

Definition 5.1.3 A (general) chronology is any ordered set 〈T,≤〉. Be then C a set
of strings called “chronometer names”. Be m ∈ C. The reference space associated to m
is a unique ordered set 〈Tm,≤m〉. A chronology over m ∈ C is an ordered set 〈T,≤m〉
so that T ⊆ Tm.

Illustration part 1. The document illustrated on Figure 5.2 contains text and a
figure, both encapsulated into modules. The figure contains several images displayed
side by side.
Several chronometer names can be defined: 1. text for indexing text in the reading
order, line by line, 2. vpos for delimiting text blocks and figures along the vertical
dimension across the different pages, 3.hposfig for delimiting images along the hori-
zontal dimension in the figure denoted fig here.
Appropriate reference spaces for those chronometer names and this document are the
following:

1. (text) Ttext = {0, 40, 41, 83, 84, 129, 130, 154}, i.e. the set of inter-character po-
sitions preceding (resp. following) each first (and last, resp.) character of each
line (linebreaks counting for one character) 8.

2. (vpos) Tvpos = {y0, y1, y2, y3, y4, y5}, i.e. the set of vertical positions of the
beginning and the end of each module of each page of the document, considering
that each page follows the previous one along that vertical dimension.

3. (hpos) Thposfig = {x0, x1, x2}, i.e. the set of horizontal positions serving as the
border for an image in the only figure of the document.

Several chronologies can then be defined over those chronometer names and reference
spaces:

1. 〈Ty,1,≤y〉 over the chronometer name vpos, with Ty = {y0, y1}, for the delimita-
tion of the modules in the first page,

2. 〈Ty,2,≤y〉 over the chronometer name vpos, with Ty = {y2, y3, y4, y5}, for the
delimitation of the modules in the first page,

8The first line starts at character 0 and ends at character 40, the second line starts at character
41, etc.
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3. 〈Tx,≤x〉 over hpos, with Tx = Txposfig , where those values enable to delimit the
two images in the pictorial figure,

4. 〈Tc,≤c〉 over text, with Tx = Ttext.

Comment. The use of chronometer names enables to define several chronologies
on the same reference space, and thus, in the end, to compare values from different
chronometers, when appropriate. See the following definition and Example 5.1.1 below.

Definition 5.1.4 (Concatenation) Be 〈Ta,≤a〉 and 〈Tb,≤b〉 chronologies. 〈Ta ·
Tb,≤a,b〉 defines a chronology over Ta ∪ Tb iff the following relation ≤a,b defines an
order over Ta ∪ Tb:
For any t, t′ ∈ Ta ∪ Tb, then:
- t =a,b t

′ ⇔ ∃x ∈ C | (t, t′) ∈ T2
x ∧ t =x t

′

- t <a,b t
′ ⇔ ∃x ∈ C | (t, t′) ∈ T2

x ∧ t ≤x t′
or 6 ∃x ∈ C | (t, t′) ∈ T2

x ∧ (t, t′) ∈ Ta × Tb.

Property 5.1.1 Be three chronologies 〈Ta,≤a〉, 〈Tb,≤b〉 and 〈Tc,≤c〉 so that 〈Ta ·
Tb,≤a,b〉 and 〈Tb · Tc,≤b,c〉 are defined. Then:

〈(Ta · Tb) · Tc,≤(a,b),c〉 is defined ⇔ 〈Ta · (Tb · Tc),≤a,(b,c)〉 is defined.

If defined, then, 〈(Ta · Tb) · Tc,≤(a,b),c〉 and 〈Ta · (Tb · Tc),≤a,(b,c)〉 will be denoted
〈Ta · Tb · Tc,≤a,b,c〉 indifferently.

Example 5.1.1 Be two chronometer names nat and ab associated to the reference
spaces N and 2Λ, where Λ is the roman alphabet of letters, and the natural order ≤nat
and the alphabetical order ≤ab respectively.
Be 〈T1 = {0, 1, 2},≤1≡≤nat, 〈T3 = {2},≤3≡≤nat and 〈T4 = {4},≤4≡≤nat three
chronologies on nat. Be 〈T1 = {X,Y },≤2≡≤ab a chronology on ab.
〈T1 · T2,≤1,2〉 defines a chronology, where 2 <1,2 X for instance.
〈T1 · T2 · T3,≤1,2,3〉 does not define a chronology (the antisymmetry would not hold),
while 〈T1 · T2 · T4,≤1,2,4〉 does.

Definition 5.1.5 (Inclusion) Be 〈Ta,≤a〉 and 〈Tb,≤b〉 chronologies.
We say 〈Tb,≤b〉 ⊆ 〈Ta,≤a〉 iff ∃(T1, T2) ⊂ T 2

a so that 〈T1 · Tb · T2,≤a,b,a〉 defines a
chronology.

Example 5.1.2 In Example 1, 〈T2,≤2〉 ⊆ 〈T1 · T4,≤1,4〉.
This notion of chronology permits to index a composite, yet continuous content.

Illustration, part 2. Consider the second page in Figure 5.2. As stated before, it
contains three modules, containing two text lines, a figure, and one line respectively.
Following Illustration part 1, three chronologies can be defined for the annotation of
the second page: 〈Ty,≤y〉 over the chronometer name vpos, with Ty = {y2, y3, y4, y5}
(in ascending order), for the three modules delimitation; 〈Tx,≤x〉 over hpos, with
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Tx = {x0, x1, x2}, for the figure decomposition into images; 〈Tc,≤c〉 over text, with
Tc = {41, 83, 84, 129, 130, 154} 9, based on characters (including linebreaks) count, for
lines indexation.
By double inclusion, we can define a chronology 〈T,≤〉 over Tc ∪ Tx ∪ Ty, so that
y2 < 41 < 83 < 84 < 129 < y3 < x0 < x1 < x2 < y4 < 130 < 154 < y5. See Figure 5.3
in Paragraph 5.3 for an annotation of the second page of the document making use of
this chronology.

Definition 5.1.6 (References) In an eAG G = ((V,E), ref, label), a reference ref(v)
is associated to each node v ∈ V . For each v, there is a unique reference space 〈Tc,≤〉c
so that ref(v) ∈ Tc.

Definition 5.1.7 (Range) Two references r1 and r2 belonging to the same chronology
and sharing the same reference space identify a range within the resources, that can
be annotated.

Comment. Ranges are then annotated by defining either one or more hierarchies
of elements of the kind that was informally introduced in Paragraph 5.1.1, whose first
node(s) bears the reference value r1 and whose last node bears r2.

Property 5.1.2 Be G = (V,E) an eAG, v, v′ ∈ V, e, e′ ∈ E so that vbec, vbe′c ⊆ G.
Then label(e) = label(e′)⇒ e = e′.

Comment. This property discards eAGs in which two nodes shall be connected by
two edges with the same label, obvious case of redundant annotation (in which the
same range is annotated twice with the same label).

We now define elements, hierarchies of elements, and the other useful structures
formally.

5.1.2.4 Elements, Hierarchies and Links in eAG

eAG rest upon a notion of elements that is not unrelated to the now classic notion
of XML elements. One major difference though is that in eAG, elements are of four
different kinds, according to the class of labels their name belongs to, as indicated in
Table 5.2.

Structurally speaking, elements are defined as below.

Definition 5.1.8 (h-equality and dominance). Be G = (V,E) a graph, and be
({v0...vN}, {e0...eN−1}) a path included in G. Be n,m ∈ N ; 0 ≤ n ≤ m ≤ N .
We define h-equality (denoted =h), h-domination (denoted>h) and border-h-domination
(denoted >hb ) as follows.
vn is said to be h-equal to vm, denoted vn =h vm, iff :
1. n = m OR

9The first line of page 2 starts at character 41, etc.
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label class of the element name kind of element
L∅ Elementary spanning elements
LAtt Attributes
LCom Comment
LLinkTo Links

Table 5.2: The different kinds of eAG elements, according to the label class their name
belongs to.

2. ∀j ∈ [n,m− 1], label(ej) ∈ L0 ∪ LAtt ∪ LCom OR
3. (vn 6>h vm ∧ vm 6>h vn) AND {∀k, l ; n < k ≤ l < m, vn ≥h vk ∧vn ≥h vl∧vm ≥h
vk ∧ vm ≥h vl AND [vk =h vl ∨ (vk >

h vl ∨ vl >
h vk)]}.

When n 6= m, vn and vm are said to border-h-dominate the nodes vi, i ∈ [n+1,m−1],
denoted (vn, vm) >hb vi, iff :
a. ∃l ∈ L ; label(en) = l:In and label(em−1) = l:Out and
b. ∀j < k ∈ [n+ 1,m− 1], vj =h vk
or ∃(x, y) ∈ [j, k − 1]× [k + 1,m− 1]; (vx, vy) >hb vk ∧ vj =h vx
or ∃(x, y) ∈ [n+ 1, j − 1]× [j + 1, k]; (vx, vy) >hb vj ∧ vk =h vy.
Be A,B ∈ [0, N ]. vA h-dominates vB , denoted vA >h vB , iff ∃n,m ∈ N ; 0 ≤ n ≤ m ≤
N | (vn, vm) >hb vB ∧ vA =h vn.

Illustration part 3-b. Let us consider the annotation of the second page of the
document represented on Figure 5.2 page 76 as follows: it is one Page, containing
three Modules. The first Module contains two Lines; the second Module contains a
Figure; the last Module contains one Line. Additionally, the Figure contains two
Images.
The chronology we may use for this annotation has been defined in Illustration part
2 : it is 〈T,≤〉 over Tc ∪ Tx ∪ Ty, so that y2 < 41 < 83 < 84 < 129 < y3 < x0 < x1 <
x2 < y4 < 130 < 154 < y5.
The above hierarchical10 description translates into the following eAG:

10It would also be possible to edit the document by focussing on the text, by annotating it, in
an additional hierarchical layer, in terms of Paragraphs containing Lines, or Paragraphs containing
internal References, for instance, as illustrated in Figure 5.3.
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The blue nodes a h-equal. The green, the pink and the orange nodes are also h-equal.
The green and the orange nodes border-h-dominate the blue nodes.
The pink node h-dominates the blue nodes.
Noteworthily, the blue nodes are not h-equal to the yellow node.

Property 5.1.3 a) As a consequence of the point 2. in Definition 5.1.8, ∀vbecv′ ⊆ G:
“:LinkTo” ⊂ label(e) ⇒ v 6=h v′ ∧ v 6>h v′ ∧ v′ 6>h v.
b) We impose that the reciprocal shall be true.

Comment. Point b) means that two nodes from an eAG that are connected by an
edge will have a hierarchical relationship, apart from the case the edge that connects
them participates in defining a link, which suggests that eAGs will be substantially
made out of (interlaced, possibly overlapping) hierarchical patterns.
Point a) is absolutely crucial in the eAG model. It means that two nodes separated by
an edge participating in defining a linking element cannot be compared in hierarchical
terms. See Property 5.1.8 and the subsequent comment for the practical consequences
of that fact.

Definition 5.1.9 (h-levels) Be an eAG G. Since G is connected, ∀v ∈ V,∃P =
(VP , EP ) ⊆ G a root-to-leaf path so that v ∈ VP . The h-level of v in P is the biggest
subset N ⊆ VP so that ∀v′ ∈ N, v′ =h v.
(h-levels direct inclusion) Be a path P , Nx, Ny h-levels in P . Ny is directly included
in Nx, denoted Nx Ah Ny, iff :
1. ∀(vx, vy) ∈ Nx ×Ny, vx >h vy and
2. ∃v ∈ V | vx >h v >h vy.
(h-levels inclusion) The h-inclusion is the transitive closure of @h. It is denoted ⊂h.
(Pr and Sc) Now we want to structurally distinguish between the primary and the
secondary hierarchical levels, the first being indexed on the primary resources, and
the second on additional, editorial resources.
An h-level N is primary, denoted N ∈ Pr iff:

• N is among the top hierarchical level of the eAG, i.e. 6 ∃N ′ so that N @h N ′
and root(G), leaf(G) ∈ N .

• OR ∃N ′ ∈ Pr, N ⊆h N ′ so that ∀(v, v′) ∈ N × N ′, if ∃e so that v′becv ⊆
G ∨ vbecv′ ⊆ G, then:
“:LinkTo” 6⊂ label(e)⇒ (“:Att” 6⊂ label(e) and “:Com′′ 6⊂ label(e)).

An h-level N is secondary, denoted N ∈ Sc iff:

• N is among top hierarchical levels of a link, i.e. 6 ∃N ′ so that N @h N ′ while
∀n ∈ N , in(v) > 0 ∧ out(v) > 0

• ORN 6∈ Pr and ∀N ′ ⊆h N, ∀(v, v′) ∈ N×N ′, if ∃e so that v′becv ⊆ G ∨ vbecv′ ⊆
G, then:
“:LinkTo” 6⊂ label(e)⇒ (“:Att” ⊂ label(e) or “:Com” ⊂ label(e))

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



82 CHAPTER 5. EAG AND SEAG

Illustration part 3-b. In the hierarchical annotation defined in Illustration part
3-a, the colours show the sets of nodes that define a h-level.

The blue h-level is directly included in the orange one, and (indirectly) included in
the green one.

Example 5.1.3 Consider the following eAG:

The grey level is primary, because it is not inserted in any other one.
The yellow and blue levels are primary, because they are included in the grey one by
means of edges whose label does not contain Att or Com.
The pink, purple and green levels are secondary.

Property 5.1.4 Be G = (V,E). We enforce that for all N h-level of G, N ∈ Pr∪Sc.

Definition 5.1.10 (Element) Be G = (V,E) an eAG. Be J ⊂ N, so that {HL
j , j ∈

J, L ∈ L} is the set of rooted, connected and single-leafed subgraphsHL
j = (V Lj , E

L
j ) ⊆

G verifying, ∀j:

a. ∃e, e′ ∈ E | ∃HL,int
j rooted, single-leafed and connected, so that:

1. HL
j = root(Hj)becroot(HL,int

j ) ∪HL,int
j ∪ leaf(HL,int

j )be′cleaf(HL
j )

2. AND label(e) = L:In and label(e′) = L:Out

3. AND ∀e′′ edge of HL,int
j , :LinkTo 6⊂ label(e′′)

b. ∀XL ⊆ G verifying condition a. and so that:
(root(XL,int), leaf(XL,int)) = (root(HL,int

j ), leaf(HL,int
j )),

then XL ⊆ Hj .
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The elements of G are the items of the set made out of the union of the sets of
subgraphs U and {HL

k , k ∈ K,L ∈ L} defined by:

- U = {vbecv′ ⊆ G ;

- K ⊆ J so that ∀j ∈ J , ∃k, l ∈ K | root(HL,int
j ) = root(HL,int

k ) ∧ leaf(HL,int
j ) =

leaf(HL,int
l ), and so that ∀k, l ∈ K, k 6= l, HL,int

k 6⊂ HL,int
l ∧ HL,int

l 6⊂ HL,int
k ⇒

HL,int
k ∩HL,int

l = ∅.

A well-formed eAG must finally conform to the following condition: ∀v ∈ V so that
there is j ∈ J , L ∈ L | v ∈ V Lj , then there is an element HL

k so that v ∈ V Lk .

Example 5.1.4 Consider the two following graphs G1 and G2, both compliant with
Definition 5.1.6-9 and Properties5.1.2-4:

The first graph, G1, conforms to all the conditions in Definition 5.1.10, and itself, as
a whole, is an element (relative to the label A), since it is the sole member of the
most numerous set {HA

j } of graphs conforming to conditions a. to d. with L = A ; it
also contains a basic element (relative to the label B), made out of one edge and two
nodes. It also conforms the well-formedness constraint expressed above. Actually, it
is a canonical example of a hierarchical eAG.
The second graph, G2, is different in that two subgraphs HA

1 and HA
2 , respectively

represented in purple and light blue, conform to the conditions a. to d. of the above
definition, with the same L = A ; still, the two graphs share their root. For that
reason, according to the definition of the elements, only one among the two can be
part of the elements’ set (in which two graphs cannot share either root or leaf) ; yet if
either the purple or the light blue graph was elected as an element, the well-formedness
condition at the end of Definition 5.1.10 should not be satisfied: indeed, if the purple
graph were chosen, then the leaf of the blue one, while taking part in an edge labelled
A:Out, would not be part of an element related to the label A (and conversely if the
blue graph was to be chosen). This means that the graph G2 is not a well-formed eAG
to begin with.
Forbidding two elements, related to the same label but not included one in the other,
to share any edge may seem an arbitrary limitation to expressiveness. Still, Illustration
part 4 below shows that Definition 5.1.10 sets patterns that look like elements, but
are not, apart; Paragraph 5.1.2.5 proves that the above restriction is minimal for the
expression of multitrees in eAGs.

Illustration part 4. The following subgraph HModule
1 of the eAG represented on

Figure 5.3 verifies the properties a. and b. listed above:
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Still, it is not an element of the aforementioned eAG. Indeed, it is possible to find two
other subgraphs HModule

2 and HModule
3 verifying conditions a. and b. as well, and so

that:

- root(HModule
2 ) = root(HModule

1 ), while there is no other HModule
k verifying a. to

d. so that leaf(HModule
k ) = leaf(HModule

2 ), and

- leaf(HModule
3 ) = leaf(HModule

1 ), while there is no other HModule
k verifying a.

to d. so that root(HModule
k ) = root(HModule

3 ).

Those subgraphs HModule
2 and HModule

3 are the following:

On the contrary, those two subgraphs are two elements of the eAG we consider here,
since they are part of the subset of all {HModule

k } of all the subgraphs verifying con-
ditions a. to d. for L = Module that abide by the last condition of Definition 5.1.10.

Property 5.1.5 Be G = ((V,E), ref, label) an eAG. The above imply that ∀e ∈ E,
label(e) ∈ LIn (resp. LOut) is the first (resp. last) edge of at most one element.
We enforce that it shall be the first (resp. last) edge of at east one element also.

Comment. This is a way to ensure that any edge suffixed :In shall go with its
corresponding :In edge, and that they define an element together.

Property 5.1.6 We impose the following properties regarding the content of each
kind of elements, as defined in table 5.2:

1. An attribute element contains only attribute elements.

2. A Comment element may contain comments, attributes and elementary spanning
elements.

3. An elementary spanning element may contain comments, attributes and elemen-
tary spanning elements.

4. Be L a link element. Then its root and leaf are nodes that belong to the attributes
of some other element(s).

Comment. This property is consistent with the notion of covering chronologies (see
Property 5.1.8 below).
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Figure 5.3: An eAG representing Figure 1 and a way to browse through it (arrows).
Grey edges are for reading assistance (they span over the paths defining a struc-
tured element). Speech balloons show reference values (shades differenciate between
chronometers), from a chronology extending 〈T,≤〉 (cf.Illustration, part 1 ) in order
to detail the content of Page one and a Ref (“[a]” in the text) between characters 150
and 153.

Property 5.1.7 Be A 6= B two elements. We enforce that:

(leaf(A), root(A)) >hb root(B)⇔ (leaf(A), root(A)) >hb leaf(B).

Comment. It means that two elements whose roots and leaves are either on the
same h-level or on h-levels included one into the other either are consecutive (directly
or not) or include one another. Paths connecting the root of an eAG to its node
and made only out of consecutive and inclusive elements will be referred to as “linear
annotation paths”. An eAG contains several such paths which, individually, represent
a given annotation paradigm à la XML, since they can be modelled as ordered trees
of elements. However, in an eAG, some elements can very well appear simultaneously
on several such paths (c.f. Illustration, part 4 ). This means element hierarchies share
items: an eAG can be modelled by no less than a multitree. Eventually, because edges
whose label contains “:LinkTo” are unrestricted, they can connect any nodes together,
which may result in a cyclic graph.

Illustration part 5. (Linear annotation paths) Figure 5.3 shows an eAG repre-
senting the document illustrated in Figure 5.2. It contains three competing linear
annotation paths. The arrowed path provides a layout-oriented Page description,
fragmented into Modules, Lines, Figures and Images. Another identifies a Ref inside
the text of the Paragraph. The last path splits Paragraphs into Lines. Lines are shared
elements with the first path; they are also the only shared elements. For instance, the
Paragraph does not include the Figure element, since there is no h-inclusion between
the h-levels where the roots and leaves of the two elements appear.
(Structured element, Link) The Ref element containing another element, which is its
attribute element. Ref annotates the string “[a]” from the text. Graph-wise, it is
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a structured element, since it contains more than one edge. It also points towards
the second Image on another annotation path by means of an edge suffixed:LinkTo,
originating in its attribute element.

Property 5.1.8 (Covering chronologies) We enforce that:
1. Be an h-level N . ∃〈T,≤〉 a chronology, ∃!c ∈ C so that ∀v ∈ N, ref(v) ∈ T ∩ Tc.
This defines a sub-chronology 〈TN ,≤N 〉 so that TN = T ∩ Tc and ≤N=≤c.
2. Be (N,N ′) ∈ Pr2. N ′ @ N ⇒ 〈TN ′ ,≤N ′〉 ⊆ 〈TN ,≤N 〉.
2bis. Be (N,N ′) ∈ Sc2. N ′ @ N ⇒ 〈TN ′ ,≤N ′〉 ⊆ 〈TN ,≤N 〉.
3. Be vbecv′ so that ∃(N,N ′) ∈ Pr2 (resp. Sc2) so that (v, v′) ∈ N × N ′ and
:LinkTo 6⊂ label(e). Point 1. or 2. (depending on N = N ′ or N ′ 6= N) ensure that
there is a chronology 〈T,≤〉 so that ref(v), ref(v′) ∈ T . Then ref(v) ≤ ref(v′).

Comment. The above property implies that the reference values of the nodes of
two consecutive h-levels of the same kind (either both Pr or both Sc) have to be
comparable (in the sense that they can be assembled into a common chronology), so
that he structural and the referential order between those nodes match. This is the
condition for hierarchical annotation to be correct:
Let us consider the following eAG:

It contains two h-levels, the pink one being included in the green one. The annotation
only makes sense if the span of the content annotated by the element B (ranging
from r1 to r2) is encompassed by the span of the element A (ranging from r0 to r3).
If so, then r0 ≤ r1 ≤ r2 ≤ r3, which means that the sequence of reference values
[r0; r1; r2; r3] does constitute a chronology. Conversely, would the reference values not
fit into a chronology in their order of appearance along the graph (e.g. if r1 < r0),
the annotation would not make sense (B would be declared as included in an element
that does not span over B).
Interestingly, the chronological requirement expressed in the above definition does not
apply in two interesting cases: when the consecutive h-levels are not of the same kind
(one being Pr and the other one Sc) or when no h-relation is defined between two
nodes connected by an edge (which happens for links only – see Property 5.1.3.b.
page 81).
However, because the above restriction only applies to linear hierarchical paths that,
by definition, contain no :LinkTo edge, it is possible to define a linear path whose leaf
has a smaller reference value than their root – those are links.
Regarding the situation in which N ′ @h N with N ∈ Pr and N ′ ∈ Sc: $t is just
normal that the reference values of the attributes of an element shall not be compared
to the reference values of the nodes of the element itself, since the two do not index
the same content at all.
Regarding the situation in which N ′ @h N with N ∈ Sc and N ′ ∈ Pr: due to
Property 5.1.6, it may only happen in case of some Elementary spanning elements
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being included in a comment element. This is what we call a quote, which is a
special structural pattern that enables the editor to make explicit reference to some
annotated content from the inside of a comment. An example of quote can be found
in the eAG represented in Example 5.1.3 page 82. Here again, in order not to restrict
the position of the quoted element in the annotation based on the position of the
quoting comment, it is clear that we shall not require the reference values of the nodes
of the quoting and quoted element to be neither comparable nor to be chronologically
ordered. Importantly, because of the lack of this requirement, quotes may very well
result in cycles in the graph – which is a first example why eAG graph structure is
cyclic.
Eventually, because by definition, there is no h-relation between the nodes involved in
edges whose label contains :LinkTo, the reference value of the root and the edge of
a link element are unrestricted. This enables to link any pair of elements. Links also
can result in cycles in the eAG (e.g. the link goes from the second of two consecutive
elements to the first).

To conclude with, we provide the definition of two important features of eAG,
that enable to express multilayer, overlapping annotation: Accidental nesting (or co-
occurrence) and overlap:

Definition 5.1.11 (Accidental nesting) Be an eAG G and A, B two elements. B is
accidentally nested in A iff there are:
- two linear annotation paths P1 = (V1, E1), P2 = (V2, E2), their covering chronologies
〈T1,≤1〉, 〈T2,≤2〉 and NA ⊆ V1, NB ⊆ V2 the h-levels (in P1 and P2 resp.) so that
root(A), leaf(A) ∈ NA and root(B), leaf(B) ∈ NB , and
- c ∈ C,∃N,N ′;N ⊆h NA, N ′ ⊇h NB verifying N ⊆ V1, N ′ ⊆ V2, and ∃(vχ, vφ) ∈ N2,
(vx, vy) ∈ N ′2, so that:
1. ref(vχ), ref(vφ), ref(vx), ref(vy) ∈ Tc
2. ref(root(A)) ≤1 ref(vχ), ref(vφ) ≤1 ref(leaf(A))
3. ref(vx) ≤2 ref(root(B)), ref(leaf(B)) ≤2 ref(vy)
4. ref(vχ) <c ref(vx) <c ref(vy) <c ref(vφ).
(Overlap) A and B overlap (with A first) iff the above paths, h-levels, chronometer
and nodes exist and verify:
1. ref(vχ), ref(vφ), ref(vx), ref(vy) ∈ Tc
2. ref(root(A)) ≤1 ref(vχ) ≤c ref(vx) ≤2 ref(root(B))
3. ref(leaf(A)) ≤1 ref(vφ) ≤c ref(vy) ≤2 ref(leaf(B)).

Example 5.1.5 In Figure 5.3, since the elements Figure and Paragraph are not on
the same linear annotation paths, they cannot include one another. However, Figure
is accidentally nested inside the Paragraph, since the Paragraph ranges from character
0 to character 154, values that compare with y3 and y4 on the covering chronology for
the arrowed path.

Illustration part 6. (Linear annotation paths) One can check that it is possible
to extend the composite chronology 〈T,≤〉 defined in Illustration, part 2 to cover the
whole arrowed path in Figure 5.3, so that for any node v preceding a node v′ along
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this path, ref(v) ≤ ref(v′).
(Inter-chronometers comparisons) Cross-chronometer assessments can be made on an
eAG. First example, because in 〈T,≤〉, x2 < 130, we know that from a (top-down)
layout point of view, the second image precedes the last Line. (Cross-linear paths
comparison) Cross-linear annotation path assessments can also be made, thanks to
the notions of accidental nesting and overlap. E.g. Ref is accidentally nested in the
last Module, because this Module h-includes the Line delimited by characters 130 and
154, while Ref ranges from character 150 to 153. Then, it is possible to assess that the
Ref shall be located further than the last Image, from a descending layout point of
view. The edge labelled Refer:LinkTo (which is a link) does not respect the inferred
reference order, which is not contradictory with the eAG model.

5.1.2.5 Elements in an eAG: Precisions

Definition 5.1.10 assesses that two elements related to the same label and not included
one into the other will not share any edge or any internal node, that is, any node
but their respective root or leaf. Let us call this property Limitation E. We briefly
circumscribe the structural patterns such a limitation allows and forbids on eAGs.
Then, we move on to define what a multitree may look like in eAGs. Eventually, we
justify why Limitation E is minimal to allow a proper representation of multitrees in
eAG.

Let us start by illustrating some canonical elements as defined by the Definition
5.1.10. First, an element may contain parallel annotation paths:

Second, elements related to different labels may intersect:

Those two patterns evidence that an eAG can represent overlapping elements (first
example, elements a and β possibly, depending on the value of their respective right
and left references) inside another element (related to label X, here), as well as mul-
titrees (second example), that is, hierarchies of elements sharing subtrees (e.g. Z).

Still, not all multitrees can be represented. For instance, if one wanted to represent
an element Z included, on the one hand, in an element X, along with an element a
and an element b and, on the other hand, in another element X but this time along
with two elements α and β, she could be tempted to draw the following graph:
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Let us call the pattern represented here an X-pattern. The problem raised by this
graph is that it is impossible to determine, by a structural analysis, which of the edges
labelled on LIn goes along with which edge labelled on LOut11. Considering each
path bounded by a pair of edges labelled on LIn and LOut respectively to define an
element would contradict the multitree structure at stake, which does not specify the
possibility to have a, Z and β, for example, included in the same element X. Hence
the need to forbid such a situation.

Another situation that we do not want to forbid, but to disambiguate, is the one
represented in Illustration part 4, page 83, which illustrates a situation typical of mul-
titrees. In that case, the element Line is a leaf, shared by two hierarchies: one whose
inclusive order of elements is Page>Module>Line, the other one Paragraph>Line.
What happens is that the Line elements, that are included in separate Module ele-
ments, are connected by ε edges in the context of the Paragraph element; however,
the fact that the first Line element follows a Module : In label, and the last Line
element precedes a Module : Out label, yields a subgraph that mimics an element
without being one. This situation can be synthetised as follows, and referred to as
W-pattern:

Also, the question that arises in the light of the last two examples is: not any
two edges labelled X : In and X : Out, linked by a connected graph made out of
parallel paths (called in-out pairs hereafter), define an element. Some conformations
are illegal, and in others, we have to pick out the element-defining pairs.

From the analysis of the X-patterns, one can conclude that it must be illegal to
have four in-out pairs (e1

i , e
1
o), (e2

i , e
2
o), (e3

i , e
3
o), (e4

i , e
4
o) so that e1

i = e2
i 6= e3

i = e4
i and

e1
o = e3

o 6= e2
o = e4

o. Let us call this constraint Limitation X.
From the analysis of the W-patterns, we understand that among the set of in-out

pairs, if there are three pairs (e1
i , e

1
o), (e2

i , e
2
o), (e3

i , e
3
o) so that e1

i = e2
i and e1

o = e3
o, and

so that there is no other pair in which e3
i appears in first position and e2

o in second,
then it means that the element-defining pairs are (e2

i , e
2
o), (e

3
i , e

3
o). Let us call this

criterion Criterion W. Indeed, the belonging of any edge to an in-out pair implies
that, provided the graph is a well-formed eAG12, the edge is part of an element (so
that the last property in Definition 5.1.10 be verifiable); the exclusive belonging of an
edge to an in-out pair implies that the pair does define an element.

11Going back to the schema would not help. A schema defining such a multitree as described
above would contain the same ambiguity as pointed here.

12By contraposition, a graph for which the selection of element-defining pairs shall leave edges
that appeared in an initial pair out of any element is not well-formed.
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At this point of our reasoning, one might notice that the above exclusiveness cri-
terion of edges in the element-defining pairs is not equivalent to Limitation E. In
particular, it does not forbid the pattern discussed in Example 5.1.4, that we might
call the Y-pattern, in which two eligible subgraphs share either their In or their Out
edge, but keep the other one exclusive. The reason why this pattern is forbidden fol-
lows:
Suppose that Y-patterns are allowed. Then, if we simply stick to Limitation X and
Criterion W, in the following graph, one shall see two elements, one spanning from e5

to e4, and the other one from e5 to e8, the two being distinguished by the exclusive
aspect of their Out edge (hypothesizing Criterion W to be sufficient):

Unlike the X pattern, the Y pattern does not trigger a combinatory correspondence
of In and Out edges connected by a connected union of paths, and as such seems
meaningful. It also abides by the Criterion W. The problem is that the YY-pattern
below, which does not trigger a combinatory correspondence of In and Out edges
connected by a connected union of paths either13, is rejected by the Criterion W:

Actually, since the YY-pattern makes no less sense compared to the Y-pattern, for
each Y-pattern inside the YY-pattern can be interpreted independently, it seems that
the Y-pattern is just a particular case of a pattern that cannot be legal, given we
cannot do without Criterion W which disambiguates W-patterns that are typical of
multitrees, and that we want eAGs to express multitrees.
Also, in order not to over-particularize Y-patterns, we decided to found the definition
of elements on a stricter criterion than the Criterion W backed with Limitation X. We
say that an element related to label X is defined by two exclusive in and out edges,
that appear in no other X element, and that all edge labelled either in LIn or in LOut
must belong to an element. This is Limitation E. Note that it implies Limitation X,
forbids both Y-patterns and YY-patterns, in a consistent approach, and enables the
expression of multitrees, apart from those described previously.

5.1.3 Conclusion

To sum up, an extended Annotation Graph is a connected, directed and labelled
graph whose nodes bear references values. An eAG is made out of smaller, structured
subgraphs we call elements. Those can be of different kinds: elementary spanning
elements, that play a similar role as elements in XML, but also attributes, that permit

13Indeed, turning a Y-pattern into a YY-pattern can be done by inserting one h-path, and this
insertion adds only one more pair to the set of in-out pairs discussed on.
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to qualify other elements further, links and quotes, that permit the insertion of critical
information (notes and comments).
Structurally speaking, an eAG possesses one root and one leaf, connected together by
paths that, individually, and provided they do not contain links, denote a hierarchical
annotation – we call them linear annotation paths, in the sense that a linear anno-
tation path is composed out of elements that either follow or include one another.
Informally, an eAG is composed of several linear annotation paths sharing items and
connected together by :LinkTo edges. The resulting graph is cyclic and permits the
expression of multilayer annotation.
Now we want to define a schema model for eAG. Schemas are a means to define
the allowed elements/attributes and their mutual relationships (consecutiveness, in-
clusion, existence of :LinkTo connexions) for the matching eAGs. Since elements,
attributes and relationships have a homogeneous edge-based representation, eAG vali-
dation needs be no more than a graph description formalism, which simulation is [37].
Roughly speaking, a SeAG shall be a graph that simulates the eAG – see below.
Hence, in the next paragraph, we define SeAG, a simulation-based schema model for
eAG. It relies on a notion of simulation we derive from the classic simulation relation:
node-typed simulation. This notion rests upon the idea that the nodes of an eAG may
be typed, that is, may be added a certain value, that implements the correspondence
between the nodes of the eAG and the nodes of the schema. We also need to be able
to make reference to nodes and edges individually, by means of an identifier.

Definition 5.1.12 (node types) Be T and I two infinite sets of values. We call
t ∈ T a node type, i ∈ I an identifier.

Definition 5.1.13 (eAG node types, edge and node identifiers.)
Be G = ((V,E), ref, label) an eAG. Then we define the function type : V −→ T ,
that associates a type value to each node of G. We also define the injective function
id : V ∪ E −→ I, that associates an identifier to each node and edge of G.

Nota. Because type is a function, then it means (in particular) that a node has one
and only one type. The same applies for id.

5.2 Schema Model

As we have seen, eAG belong to a very open family of graphs, namely, cyclic graphs.
Yet an eAG is semantically structured into “linear annotation paths”, that are con-
nected together by links. Those paths start at the root of the eAG, that is unique, and
go until the leaf of the eAG, also unique. Thus, eAGs are “mostly linear”, and there is
a natural pair of entry and exit nodes between which annotations read, as a sequence
of labels. This reminds very much, actually, finite-state machines or automaton.
eAG validation can be enlightened by exploring further the analogy between eAG and
automaton. We will start this presentation in that direction, by defining the notion
of language of annotation. We will then show that validating a cyclic graph eAG an-
notation can be interpreted as restricting its language of annotation. A schema may
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then be a graph, defining a (schema) language of annotation LS and a valid instance
shall then be a graph whose language of annotation LI is included in LS .
Second, we will see that this general principle can be operated by using simulation as
a validation mechanism. Third, we compare simulation, as a validation mechanism, to
tree-automaton-based simulation as implemented in relax-NG and show that, from a
structural point of view, the two mechanisms are comparable for the validation of hier-
archical annotations – while simulation extends to non-hierarchical annotations easily.
Eventually, we discuss certain characteristics of SeAG schemas, including ambiguity
and redundancy. This discussion will lead to the definition of a notion of equality for
SeAG.

5.2.1 Finite-State Machine Analogy

5.2.1.1 The Notion of “Language of Annotation”

Extended Annotation Graphs are cyclic, labelled, directed and connected graphs, pos-
sessing one root and one leaf, so that each node of the graph is attainable from the
root by a directed path. An eAG is also finite (its sets of nodes and edges are not
infinite). If we set apart the fact that nodes bear a reference value, the eAG model
matches the Finite-State Machine [134, 128] quite well.

Definition 5.2.1 : Finite-State machine. A Finite-State Machine (FSM) A is a
tuple (Et,Al, Tr, In, Fn) so that :

• Et is a finite set of states;

• Al is a finite set of labels ; it is also called the alphabet onto which the ;

• Tr is a relation on Et×Al × Et called the transition relation ;

• In ⊂ Et is the set of initial states of A;

• Fn ⊂ Et is the set of final states of A.

Definition 5.2.2 : set of FSM built on the alphabet Al. The set of FSM whose
labels belong to Al will be denoted AAl.

Definition 5.2.3 : how it works. Be A ∈ AAl. In intuitive words, a word u ∈ Al∗
is “accepted by A” iff there is a sequence of transitions allowed by A from an initial
state to a final state so that the concatenation of the labels from that sequence of
transitions spells u.
Formally, the operation of A = (Et,Al, Tr, In, Fn) is defined as follows:

• A FSM configuration (S, u) is characterized by a set of states S ⊂ Et and a
string u ∈ Ab∗, that is the end of the input word to be analysed.

• The configuration (S′, u′) can be derived in one step from the configuration (S, u)
(denoted (S, u)⇒ (S′, u′)) iff u = a.u′ and ∀v ∈ S,∃v′ ∈ S′ | (v, a, v′) ∈ Tr.
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• The configuration (S′′, u′′) can be derived in one step from the configuration
(S, u) (denoted (S, u)

∗⇒ (S′′, u′′)) iff (S′′, u′′) can be derived from (S, u) by a
finite sequence of 1-step derivations.

• A word w is accepted by A iff (S0, w)
∗⇒ (Sf , ε), where S0 ⊂ In and Sf ⊂ Fn.

• The language lang(A) of the FSM is the set of the words A accepts.

Notation. Be a FSM A = (Et,Al, T r, In, Fn). For a given configuration (S, u) of
A, the FSM will be said to be in the state v iff v ∈ S. This situation will be denoted
〈v〉.

Definition 5.2.4 : ε transition in a FSM. There is a particular transition, clas-
sically denoted ε, defined as follows [128]: Be (v, ε, v′) ∈ Tr. Then ∀(S, u), 〈v〉 ⇒ 〈v′〉.

Analogy between eAG and FSM. An eAG G = (V,E) can be seen as a spe-
cial case of FSM: 1) V ≡ Et; 2) L ≡ Al; 3) E ≡ Tr; 4) {root(G)} ≡ In; 5)
{leaf(G)} ≡ Fn. Preuve. Only point 3) requires a justification. It comes from
Property 5.1.2 page 79, that asserts that in an eAG, an edge e can identified by the
triple (sut(e), label(e), end(e)).

In short, an eAG can be seen as a FSM with additional values on its nodes: type,
reference values, identifier... Thus, we can define the “language” of an annotation
graph as follows:

Definition 5.2.5 Be an eAG G = (V,E). A sequence of labels seq ∈ L∗ belongs to
the annotation language of G iff seq is accepted by the FSM over L corresponding to
G.
The annotation language of G will be denoted L (G).

5.2.1.2 Regular Expression-based Language Representation

The language of FSM can be represented in a synthetic manner by means of regular
expressions [181]. The notion relies upon the concept of language L over an alphabet
Σ, L being a subset of Σ∗.

Definition 5.2.6 Be L and L′ two languages over the same alphabet.

• Concatenation: L · L′ = {xy;x ∈ L ∧ y ∈ L′}

• Union: L|L′ = {x ∈ L, y ∈ L′}

• Kleene closure:

– L0 = {ε}
– Lk = L · Lk−1

– L∗ =
⋃
i∈N

Li
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• + operator: with the above notation, L+ =
⋃
i>0

Li

• Optionality: L? = L ∪ {ε}

Among those operators, *, + et ? have the highest priority, followed by · and then |.

Definition 5.2.7 : Regular expressions and related languages Be Σ an al-
phabet. let us denote RE the set of regular expressions on Σ. RE and the function
LRE : RE −→ 2Σ∗ that associate a language to a regular expression are defined as
follows:

RE LRE

• ε ∈ RE

• ∅ ∈ RE

• ∀a ∈ Σ, a ∈ RE

• ∀E,F ∈ RE :

– E ∪ F ∈ RE
– E · F ∈ RE
– E∗ ∈ RE
– E+ ∈ RE
– E? ∈ RE

• LRE(ε) = {ε}

• LRE(∅) = ∅

• LRE(a) = {a}

• ∀E,F ∈ RE :

– LRE(E ∪ F ) = LRE(E) ∪LRE(E)

– LRE(E · F ) = LRE(E) ·LRE(E)

– LRE(E∗) = LRE(E)∗

– LRE(E+) = LRE(E)+

– LRE(E?) = LRE(E)?

Property 5.2.1 RE is closed under the operations of union, concatenation and
Kleen closure.

Definition 5.2.8 : Language inclusion. Be an alphabet Σ, r, r′ ∈ RE. The
language of r is included in the language of r′, denoted L (r) ⊆ L (r′) iff ∀u ∈
Σ∗, uL (r)⇒ u ∈ L (r′).

5.2.1.3 Language of an eAG: Interpretation

To illustrate the notion of annotation language and how it may be connected to the
notion of validation, let us take the example of an editor wanting to annotate the
document provided on Figure 5.2 page 76, in terms of Pages, Modules, Lines, Figures
and Images. A corresponding eAG is:
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Since it is linear, the annotation language of the eAG is limited to one word u:

u= Doc:In · Page:In · Module:In · Line · Line · Module:Out · Module:In · Figure:In ·
Image · Image · Figure:Out · Module:Out · Module:In · Line · Module:Out · Page:Out ·

Doc:Out

This word from the language of annotation, which does describe the annotated docu-
ment, can be seen as a particular instance of a general model for documents, assessing
that a Page may contain one or mode Modules of two kinds, depending on their con-
tent: the first kind contains either one or more Lines while the second contains one
Figure, that being made out of one or two Images. This model can be represented by
the following regular expression r1 over L:

r1 =Doc:In ·( Page:In { Module:In · Line+ · Module:Out | Module:In ·
Figure:In · Image ( Image )? Figure:Out · Module:Out }+ Page:Out )+ Doc:In

One possible automaton14 corresponding to this regular expression is the following:

As it happens, the language of the eAG is included in the language of annotation of
this graph – as would be the language of an eAG annotating a Page with, for instance,
four Modules each containing one Line and two Figure, etc.
And as it happens, this automaton also simulates the eAG above (see Paragraph 5.2.2.2).
Let us now shift from the hierarchical annotation of the document represented on Fig-
ure 5.2, and complement it with an additional description in terms of Paragraphs and
internal References, that may point from the text towards an Image. As we have seen

14Indeed, several automaton may represent the same regular expression, as discussed in Para-
graph 5.2.3.1.
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previously, a corresponding eAG is given on Figure 5.3 page 85.
Now, the annotation language of the completed eAG contains more than one word:
aside of u, there are also:

1. regarding the annotation in terms of Paragraphs and Lines:

v= Doc:In · Paragraph:In · Line · Line · Line · Paragraph:Out · Doc:Out

2. regarding the annotation in terms of Paragraphs and Refs:

w= Doc:In · Paragraph:In · Ref:In · Ref:Att:In · Ref:Att:Out ·
Ref:Out · Paragraph:Out · Doc:Out

3. regarding the existence of a link Refer between the Ref and the second Image
in the Figure:

w= Doc:In · Paragraph:In · Ref:In · Ref:Att:In · Refer:LinkTo Image:Att:Out ·
Image:Out · Figure:Out · Module:Out · Module:In ·

Line · Module:Out · Page:Out · Doc:Out

Once again, the two first paths can be seen as an instance of a more general pattern:

1. The Document contains one or more Paragraphs each containing one or more
Lines, which may be represented by the following regular expression:

r2= Doc:In ·( Paragraph:In · Line+ · Paragraph:Out ·)+ Doc:Out

2. Each Paragraph may also contain one or more Refs, that is an element containing
a void attribute that will serve as the origin for a possible link:

r3= Doc:In ·[ Paragraph:In ·( Ref:In · Ref:Att:In · Ref:Att:Out ·
Ref:Out )*· Paragraph:Out ]+ · Doc:Out

Yet it has to be stated that the Line in the regular expressions r1 and r2 are the same,
which is a way to say that a Line may belong both to a Paragraph and to a Module.
A possible schema representing those two regular expressions taking into account the
commonality of the Line element between r1 and r2 (and declaring the possibility of
there being links between Refs and Images) is represented in Figure 5.4.

And as it happens, this SeAG, that schema that represents, in one move and harmo-
niously, the three regular expressions r1 and r2 and r3, the fact that that r1 and r2

share symbols, and the links, also simulates the eAG...
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Figure 5.4: SeAG schema validating the eAG given in Figure 5.3.

5.2.2 The SeAG Model, Formally

The above qualitative introduction to eAG validation, provides – beside some key
notions that will be helpful for the upcoming discussions (regular expressions, au-
tomaton, etc.) – with a philosophical statement, that can be summed up as follows:
An eAG is made out of several interlaced linear annotation paths, connected together
by means of links. The editorial information is thus conveyed by: 1) the sequence of
labels along each hierarchical path; 2) the way those paths interlace; 3) the set of links
that connect elements together; 4) the reference value of each node.
We claim that a Schema for eAG shall provide the user with the means to control
the three first features, the reference value each node of the eAG shall bear being
restricted by the eAG data model (and Property 5.1.8 in particular). For that pur-
pose, as illustrated above, schemas can be graphs that roughly share the same syntax
as eAG, whose annotation language covers the whole range of annotation that seem
relevant to the editor. Simulation shall then be used as a validation mechanism.

5.2.2.1 SeAG Graph Model and Instantiation Function

Let us now define Schemas for eAG (SeAG) and their relation to eAG formally. Basi-
cally, SeAG edges share the same syntax as eAG edges; inclusion is defined a similar
way, and so are elements. Still, SeAG nodes do not bear any reference value.

Nota. We remind the reader that an eAGG is a tupleG = ((V,E), ref, label, type, id),
where G is a rooted, single-leafed, directed, connected, labelled graph where type :
V −→ T , is a function that associates a type value (an element of T ) to each node
of G, and id : V ∪ E −→ I is an injective function that associates an identifier (an
element of I) to each node and edge of G.

Definition 5.2.9 An eAG schemaS, denoted SeAG, is a tuple ((VS , ES), label, type, id, δ),
where (VS , ES) is a directed, connected, labelled graph with one root and one leaf only.
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Its labels fall into Definition 5.1.2. It verifies Properties 5.1.1-7.
δ is the instantiation function, that is to be defined in Definition 5.2.2 below. Impor-
tantly, both functions type : VS −→ T and id : VS ∪ ES −→ I are injective.
Note that two nodes are not allowed to be connected by two edges with the same label
(cf. Property 5.1.2).

Comment. The closeness of the eAG and the SeAG graph model and syntax, that
is connected to the fact simulation will be defined as the validation mechanism for
eAG, is also motivated by our problematics, that is to provide an annotation model
in which schema amendments, that are to be operated by hand, shall translate into
a transformation that shall translate, semi-automatically, the instance of the original
schema into a possible instance of the amended schema. The closeness of the models of
schemas and instances is designed to facilitate the derivation of that transformation on
the instances from the amendment (i.e. transformation) on the schemas. See Part IV.

Nota. The most important difference between the eAG and the SeAG models, apart
from the presence of the instantiation function δ, is the fact that two nodes of a
schema cannot share the same type, while two nodes of an eAG can. The instantiation
paradigm for eAG/SeAG couples rests upon that asymmetry:
Each node of a schema defines a type, characterized by a type value but also by its
context, that is, by a series of labelled edges connected to other nodes of the schema.
In a eAG that validates against a schema, each node of the eAG actually instantiates
such a node type, that is, corresponds to one and only one node of the schema. Several
nodes of the eAG may relate to the same node of the schema. The authorized edges
between two nodes of the eAG are the labelled edges that exist between the nodes
of the schema that correspond to them. This way, the eAG may only contain label
sequences that can be read in the schema, and the way two linear annotation paths
from the eAG interlace is also restricted by the schema.
This validation paradigm is embodied by the following δ function:

Definition 5.2.10 Be a SeAG S = ((VS , ES), label, type, id, δ). Be an eAG G =
((V,E), ref, label, type, id). They form a schema-instance couple iff the instantiation
function δ is defined on E ∪ V −→ ES ∪ VS so that:

• ∀v ∈ V,∃!vS ∈ VS | vS = δ(v)
∀e ∈ E,∃!eS ∈ ES | eS = δ(e)

• in particular, root(S) = δ(root(G)) and leaf(S) = δ(leaf(G))

• ∀v, vS ∈ V × VS , vS = δ(v)⇔ type(v) = type(vS)
∀e, eS ∈ E × ES , eS = δ(e) ⇔ label(e) = label(eS) ∧ sut(eS) = δ(sut(e)) ∧
end(eS) = δ(end(e))

• ∀(v bec v′) ⊆ G, (δ(v) bδ(e)c δ(v′)) ⊆ S
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Equivalent formulation. A SeAG S = ((VS , ES), label, type, id, δ) and an eAG
G = ((V,E), ref, label, type, id) form a couple iff ∀vbecv′ ⊆ G,∃!vSbeScv′S ⊆ S so
that:

1. type(vS) = type(v)

2. type(v′S) = type(v′)

3. in particular, type(root(S)) = type(root(G)) and type(leaf(S)) = type(leaf(G))

4. label(eS) = label(e)

Definition 5.2.11: node and edge instantiation. Be S,G a schema-instance
couple. A node v ∈ V will be said to instantiate vS ∈ VS iff δV (v) = vS , and an edge
e ∈ E will be said to instantiate eS ∈ ES and δE(e) = eS .

5.2.2.2 Schema-Instance Relation: Node-typed Simulation

We have defined the validation paradigm that operates between schemas and instances.
This relation can be formalized as a special kind of a well-studied relation, that is,
simulation. Simulation in general was introduced by Milner [123] in the context of
FSM. Intuitively, an automaton B simulates another automaton A if the output of B
is the same as the output of A, for any input word. The notion was then diversified
into specialized kinds of simulation for different purpose [149].
Simulation was first operated as a structure-descriptive mechanism for semistructured
(S-S) data [171, 3]. S-S relied upon a cyclic, unordered, directed, edge-labelled graph
model called the Object Exchange Model (OEM). In a S-S database, a Dataguide
[86] or a Graph Schemas [37] is a graph inferred from the data, that simulates the
data graph itself, so that it provides a structural description of the data that can be
exploited for querying.

The classic definition of simulation is the following. In this definition, ε∗ denotes
a sequence of ε edges.

Definition 5.2.12 : Weak simulation. Be two directed, labelled graphs A =
(VA, EA) and B = (VB , EB). A weak simulation of A by B is a relation D ⊆ VA × VB
so that:
IF (vA1

, vB1
) ∈ D ∧ (vA1

bε∗.eA1
c vA2

) ⊆ A, with label(eA1
) 6= ε,

THEN ∃vB2
∈ VB |(vB1

bε∗.eB1
c vB2

) ⊆ B ∧ label(eB1
) = label(eA1

) ∧ (vA2
, vB2

) ∈ D.
For rooted graphs, it is required that the pair of roots belong to D.
Let us denote the fact there is a weak simulation of A by B: B

typ.
↪→ A.

The above definition is clearly FSM-oriented, since it considers ε edges as special
transitions that are consumed whaterver the input letter. A more graph-oriented
version of simulation was proposed in [149], where all the edges are considered equally,
regardless of their label. This is called strong simulation, in the sense that the existence
of a strong simulation between two graphs implies the existence of a weak simulation
between those graphs, but not conversely.
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Definition 5.2.13 : Strong simulation. Be two directed, labelled graphs A =
(VA, EA) and B = (VB , EB). A strong simulation of A by B is a relation D ⊆ VA×VB
so that:
IF (vA1

, vB1
) ∈ D ∧ (vA1

beA1
c vA2

) ⊆ A,
THEN ∃vB2

∈ VB |(vB1
beB1
c vB2

) ⊆ B∧ label(eB1
) = label(eA1

)∧ (vA2
, vB2

) ∈ D. Let

us denote the fact there is a strong simulation of A by B: B
strong
↪→ A.

Regardless of the kind of simulation, we have the following property.

Definition 5.2.14 : maximal simulation. Be two graphs G1 = (V1, E1) and
G2 = (V2, E2). Be D ⊆ V1 × V2 a simulation of G1 by G2.
This relation is "the maximal simulation of G1 by G2" iff for all D′ ⊆ V1 × V2,
simulation of G1 by G2, D′ ⊆ D.

Theorem 5.2.1 If there is a simulation of G1 by G2, then there is a maximal
simulation of G1 by G2 [38].

On top of this definition, we build the following notion of node-typed simulation, that
takes into account the notion of node-types.

Definition 5.2.15 : node-typed simulation. Be two directed, labelled graphs
A = ((VA, EA), type) and B = ((VB , EB), type) whose nodes are typed over the same
type set T . A node-typed simulation of A by B is a strong simulation D of A by B
so that ∀(vA, vB) ∈ D, type(vA) = type(vB).

Let us denote the fact there is a node-typed simulation of A by B: B
typ.
↪→ A.

Property 5.2.2 Be two directed, labelled graphs A = ((VA, EA), type) and B =

((VB , EB), type) whose nodes are typed over two type set TA and TA, so that B
strong
↪→

A. Then there is a retyping of the nodes of A so that B
typ.
↪→ A.

Proof. Let us denote D the strong simulation of A by B. It suffices to define the
retyping function retype : TA −→ TB so that ∀(vA, vB) ∈ D, retype(type(vA)) =
type(vB).

We now turn to the following result:

Theorem 5.2.2 Be S ·IS a schema-instance couple, and δ the corresponding instan-
tiation function. This function defines a node-typed simulation IS par S.
Proof. Be IS , IS a schema-instance couple.
We check that δ = (δV , δE) defines a node-typed simulation of de IS by S:
Be D = {(v, vS) |v ∈ V ∧ δV (v) = vS}.
Be v, v′ ∈ V, e ∈ E so that (v, vS = δ(v)) ∈ D ∧ (v bec v′) ∈ IS .
Ten, by definition of δ, ∃v′S ∈ VS , eS ∈ ES so that δ(v′) = v′S , δ(e) = eS and so that
(vS beSc v′S) ∈ S ∧ (v′, v′S) ∈ D.
To conclude, we notice that :
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• type(v) = type(δ(v), hence type(v) = type(vS) (idem, type(v′) = type(v′S)) ;

• label(e) = label(δ(e)), hence label(e) = label(eS)�.

Definition 5.2.7: validation. Be S a SeAG and G an eAG. The S validates G iff
there is a retyping of G so that S

typ.
↪→ G, so that the pair of the roots of S and G and

the pair of their leaves belong to the maximal node-typed simulation.

Validation: use cases. The above definition covers two cases: when the retyping
is necessary and when it is not. The two cases do not correspond to the same use case.
First, an eAG is freely constructed by the editors and then, is confronted to a certain
schema in order to check validation a posteriori. In this case, there is no particular
reason why an eAG and a schema, that were defined independently, shall be defined
so that their types belong to the same type set, or so that their types match, even
if, structurally speaking, the eAG expresses an annotation that, modulo a retyping, S
validates.
The second case may happen if, provided a schema, an eAG is constructed in order
to match the schema. In this case, validation may not be done a posteriori, but the
schema may be used, in the course of the eAG manufacturing, as a guide for anno-
tating the data, just the way XML schemas can be used in an XML editor featuring
content assist (e.g. depending on the context the editor is annotating, the editor may
suggest the possible XML elements, according to the schema). We may talk about
on-the-fly validation, to insist on the fact validation is done during the data manufac-
ture, or validation by construction, if the manufacture process makes use of on-the-fly
validation in a way that does not permit the expression of non-valid annotations.
SeAG is designed so that both kinds of validation shall be possible. A complete dis-
cussion of this aspect is given in Paragraph 5.3.

The following result makes a connection between simulation-based validation and the
notion of language of annotation introduced above.

Theorem 5.2.3 Be two rooted graphs A and B. Then B ↪→ A⇒ L (A) ⊆ L (B).
Proof. Be (A = (VA, EA), B = (VB , EB)) a couple of graphs.

Be D the maximal simulation of A by B.
Be L (A) a word containing more than one letter (the case of the empty word is
trivial). Let mi refer to the ith letter of m. By recurrence, let us demonstrate that
m ∈ lang(S′)⇒ m ∈ lang(S).

• m ∈ lang(S′)⇒ ∃e′0 ∈ ES′ , v′0 ∈ VS′ | r(S′)bε∗.e′0cv′0 ∈ S′ ∧ label(e′0) = m0.
Yet S ↪→ S′ ⇒ (r(S′), r(S)) ∈ D
⇒ ∃e0 ∈ ES , v0 ∈ VS | r(S)bε∗.e0cv0 ∈ S
∧ label(e0) = label(e′0) = m0.

• Be i ≤ N − 1|∃{e′j | label(e′j) = mj ; 0 ≤ j < i} ∈ EiS′ .
Yet m ∈ lang(S′)⇒ ∃e′i ∈ ES′ , v′i ∈ VS′ | v′i−1bε∗.e′icv′i ∈ S′ ∧ label(e′i) = mi.
Yet S ↪→ S′ ⇒ ∃ei ∈ ES , vi ∈ VS | vi−1bε∗.eicvi ∈ S
∧ label(ei) = label(e′i) = mi �.
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Nota. Since S
typ.
↪→ IS ⇒ S ↪→ IS , then S

typ.
↪→ IS ⇒ lang(IS) ⊆ lang(S).

Comment. The converse is wrong. The following graphs have the same language
but do not simulate one another:

This means that simulation not only controls the annotation language of an instance,
but also concerns the shape, the structure of the graph. Let us now investigate how.

eAG/SeAG graph model and simulation. The fact that B ↪→ A does not suffice,
in general, to ensure that all the sequences of labels present in A be included in the set
of sequences present in B. This results from the fact we consider rooted simulations
for connected graphs.
Indeed, if we do not consider rooted graphs for which the roots must be related by
simulation, it is easy to find counter examples. For instance, two small linear graphs
whose label sequence reads a·X and b·X simulate one another, while their languages do
not intersect.
We can also define a pair of rooted graphs A and B, so B ↪→ A, so that their roots
are related by simulation, but that lack the connectivity property (stating that all the
nodes shall be reachable from the root of the graphs), so well so that L (A) 6⊆ L (B)
– see below.

This highlights the compatibility of the eAG and SeAG graph model with simulation-
based validation.

5.2.2.3 SeAG Expressive Power

Let us now illustrate, based on this set of definitions, how simulation can be used to
express whole families of graphs with a restricted annotation language and structure,
that is, can be used to model data.
First, we establish some that simulation is closed under some operations (union, con-
catenation, intersection, as defined below), that permit to design a schema in a mod-
ular approach, similar to the FSM construction from regular expressions.
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Property 5.2.2.3.1: Closure under union. Be (S, I) and (S′, I ′) two SeAG/eAG

pairs. Then S ∪ S′
typ.
↪→ I ∪ I ′ and the maximal simulation of I ∪ I by S ∪ S′ is total.

Proof. Simulation is closed under union – see [144]. Since types are not affected by
the union of two graphs, if D is the maximal simulation of I by S and D′ the maximal
simulation of I ′ by S′, then D ∪ D′ is a node-typed simulation of I ∪ I by S ∪ S′.
Thus, since D and D′ are total, this means that there is a total simulation of I ∪ I by
S ∪ S′.

Nota. It follows that a the graph obtained by connecting the two roots of S ∪ S′ to
a unique root by means of two ε edges, and the two leaves to a unique leaf by means
of ε edges, also node-typed simulates the graph obtained by connecting together I and
I ′ the same way. See Figure 5.5.a.

Property 5.2.2.3.2 Be S a graph simulating another graph I. Then ∀G so that
S ⊆ G, then there is a (potentially non-rooted) simulation of I by G.
Proof. It suffices to consider that given two graphs A and B so that B simulates
A, adding an edge to B does not change the fact that B is simulated by A. It may
however prevent there being a rooted simulation, that is, a simulation in which the
roots of A and if they are rooted graphs, belong.

Property 5.2.2.3.3: Closure under concatenation. Be Be (S, I) and (S′, I ′)
two SeAG/eAG pairs. Be S · S′ the graph obtained by connecting the leaf of S to the
root of S′ by means of one ε edge, and I · I ′ the graph obtained by connecting the leaf
of I to the root of I ′ by means of one ε edge. Then S ∪ S′

typ.
↪→ I ∪ I ′ and the maximal

simulation of I ∪ I by S ∪ S′ is total.
Proof. Let us denote vS and vS′ the nodes in S · S′ that corresponds to leaf(S) and
root(S′) respectively; let us denote vI and vI′ the nodes in I · I ′ that corresponds to
leaf(I) and root(I ′) respectively.
First, because of Property 5.2.2.3.2, S · S′ simulates I, so well so that (vS , vI) ∈ D.
First, for the same reason, S · S′ simulates I, so well so that (vS , vI) ∈ D. We also
know that there is an edge going out of vS in S · S′ is an ε edge leading to vS′ . Then,
it is easy to check that S · S′ simulates I ∪ vIbεcvI′ , so that (vI′ , v − S′) is a pair of
the relation.
To conclude, since I ∪ vIbεcvI′ ∪ I ′ = I · I ′. Since simulation is closed under union,
then it follows that S · S′ simulates I · I ′. The above demonstration tends to show
that is D is the maximal simulation of I by S and D′ the maximal simulation of I ′ by
S′, then D ∪D′ is a node-typed simulation of I · I by S · S′.

Nota. It follows that a the graph obtained by connecting the leaf of S to its root
by means of ε will simulate any concatenation of instances of S, but also any set of
parallel concatenations of instances, according to Property 5.2.2.3.1. See Figure 5.5.b.

Discussion, part 1. Figure 5.5 represents the two core patterns that can be used in
a SeAG, either to model a. the fact there can be locally two competing, or alternative,
models of the corpus (e.g. a Module contains either Lines or a Figure) – which is
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Figure 5.5: Two fundamental properties of simulation-based validation. a. Two SeAG
SA and SB patterns in parallel may validate either any instance of one of the pat-
terns, or any superposition of instances of one of the patterns. b. A SeAG pattern
S made cyclic will validate any concatenation of any of its instances, provided the
concatenation is well-formed, or any superposition of such concatenations.
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represented by two parallel paths in the global schema – or b. to represent the fact
that some elements, or sequence of elements, may occur several times in a row (e.g. a
Paragraph contains one or more Lines). In other words, those properties provide with
a natural SeAG representation for the regular-expression operators OR and *.

Example 5.2.1 Consider the schema A below, where the values in the nodes are
their types. It is the Ott automaton [128] representing the regular expression r =X:In(a|b)∗X:Out.
Consider the eAGB, whose label sequences along the linear annotation paths are words
from the language of r.

A and B form a schema-instance couple.

Discussion, part 2. Yet, the above automaton interpretation of SeAG only holds
because of the well-formedness constraints for eAGs. For instance, the interpretation
of the cyclic SeAG A in Example 5.2.2.3 as an Ott automaton, i.e. as a means to
define an infinite set of acyclic paths, would not be correct without Property 5.1.8.
Indeed, there is at least one cyclic graph that A simulates: A itself, but there is no
way a graph structurally identical to A shall be an eAG. Consider A equipped with
reference values on its nodes. Property 5.1.8, states that edges not suffixed :LinkTo
go from nodes with a lower reference value to nodes with a higher one. Since the
cyclic subgraph made out of the edges between the nodes typed 2 and 3 contains no
:LinkTo, then whatever the reference values of its nodes, it cannot be part of an eAG.
Conversely, the cycle in A will only be instantiated by acyclic paths (cf. graph B,
Example 5.2.2.3) in the eAGs validated by A.
More generally, eAG data model and simulation-based validation make sense together.
The following examples illustrate how the definition rules for eAG give sense to the
SeAG formalism. First, an SeAG can express that two h-levels share elements: see
graph A below. This SeAG does simulate the faulty graph B, where the inclusion
semantics is lost (e.g. X:Out is missing), but since for that reason, regardless of its
nodes references, B is not well-formed (see Property 5.1.5), it is not to be considered for
validation. However, A validates the well-formed eAG C, which implements properly
multitree annotation with shared items between h-levels.

Thanks to the same Property 5.1.5 in the eAG data model, an SeAG can contain
recursive elements as well :
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5.2.2.4 SeAG Expressive Power: Anaphoric Chains Validation

An interesting aspect of SeAG is that is is fit for validating two kinds of annotations
that can be expressed in eAG, and that are hard to validate, namely, cyclic annotation
and multilayer annotation.

Multilayer annotation SeAG schemas actually define two kinds of multilayering,
as suggested by Figure 5.5.a. In this Figure, the pattern that is discussed presents two
parallel halves, each containing an instantiable graph, that is, a graph that respects
the SeAG model. Each half thus defines a possible annotation paradigm. By property
of simulation, as shown in the same Figure, this ‘alternative’ pattern simulates:

1. either a graph instantiating just one of the two paradigms;

2. or a two layered graph, whose layers are parallel graphs each instantiating each
one of the paradigms;

3. or a two layered graph, whose layers are parallel graphs both instantiating the
same paradigm;

4. or a multilayer graph, whose layers instantiate any of the two paradigms...

The item 1 above goes along with the interpretation of the schema pattern as express-
ing optionality.
The item 2 means that when the schema contains two parallel, or alternative paths,
those define two different ways to annotate the same content: hence, the schema will
validate an annotation containing two layers, each instantiating one of the two paths
of the schema. Let us call this kind of multilayering Schema-based multilayering.
The item 3 really comes from a peculiar property of simulation, that can be condensed
as follows: be a graph made out of one edge labelled A; then this graph will simulate
any graph made out one or more edges labelled A in parallel (that is, so that two edges
do not form a path). In the SeAG context, this property means that any path from
the schema may be instantiated several times onto the same content, hence resulting
in a particular kind of multilayering, in which the different layers do not instantiate
distinct annotation paradigms, but all the same. Let us call this Simulation-based
multilayering.
Schema-based multilayering certainly seems a natural notion: when the editors need
to annotate the same content with different views (e.g. materially vs. linguistically),
more than one paradigm needs be defined for that content, and will be instantiated
one on top of the other. Simulation-based multilayering, even if it may seem less
familiar at first sight, is also a useful notion to validate self overlapping annotation,
that is exemplified by the Anaphoric Chains annotation.
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Let us indeed build a schema for Anaphoric Chains annotation. What we want to say
is that Anaphoric Chains (AC ) contain one or more Singular Expressions (Exp); that
they are defined within the scope of an Extract ; that we may be interested in reifying
the relation ‘this AC contains more Exp than that AC ’ by means of a structured
link Longer:LinkTo, containing a proof:Att element. A corresponding schema is the
following:

We remind the reader that the eAG we came up with for the representation of the
anaphoric chains regarding the beating and the observer from the Village of Ben Suc
extract presented in Paragraph 5.1.1 page 71 is the following – equipped with node
types this time (reference values are omitted):

Indeed, this eAG instantiates the same hierarchical path from the schema twice, in
order to locate the two anaphoric chains that overlap in this extract.

Links Validation of links comes from the fact that simulation is a relation defined
for cyclic graphs. A link, in the eAG/SeAG syntax, is a special element whose name
contains the suffix :LinkTo; apart from that, the element itself can be structured just
like any other, that is, it may contain other elements, in order for the link to convey
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more than the relation information, but possibly critical enlightening about that re-
lation. The context of a link, in an eAG, is yet particular: contrary to all the other
elements, a link does not take place in hierarchies of elements: instead, the root of a
link is a node from the attributes of a source element, and its end is a node from the
attributes of a target element.
SeAG schemas enable to control both of the above aspects of a link, namely: its
structure and its context. See the example of SeAG for anaphoric chains above. The
structure of the link Longer:LinkTo is controlled by the schema just as the structure
of any other element: here, an instance of the link can be nothing but a sequence of
three edges Longer:LinkTo:In, proof:Att and Longer:LinkTo:Out. The context of
the link is also restricted by the schema: the root of any instance of a link will be a
node whose type is 5, and will end on a node with the same type. Since the only nodes
of type 5 are involved in defining the attribute element of AC, then it means that the
link will connect two ACs only.

5.2.2.5 Simulation-based Validation: Caveats

Caveats [37, 3] point out several limitations to simulation-based graph description.
First, for a given instance graph, several schemas are eligible, since simulation is
transitive. This matters greatly when schemas are inferred from the data, but does
not when they are predefined.
Second, and more importantly, simulation-based validation as defined by [37] does not
enforce the presence of a label. This is true for simulation between two general graphs.
Still, this caveat can be bypassed by specifying an appropriate data model. Consider
the SeAG A and the graphs B1 and B2 below. Even though A simulates both B1

and B2, it validates none: B1 is not well-formed, and type(leaf(B2)) is not equal to
type(leaf(A)), which contradicts the validation definition.

Hence well-formedness and validation rules somehow enforce the presence of labels
that simulation does not.
Last, simulation cannot prevent a node from having several outgoing edges. Said
differently, as illustrated in Example 5.2.2.3, even when an SeAG contains one single
(cyclic) path, there is no way to prevent the annotator to annotate the same content
with several layers all instantiating the same path. Of course, this feature has positive
aspects – see the previous paragraph and the notion of Simulation-based multilayering.
But it means that a hierarchical SeAG will validate multitrees, not trees only.

5.2.2.6 Simulation-based Validation vs. Grammar-based Validation (for
Trees)

Yet there is a connexion between simulation and grammar-based validations. An XML
document is, syntactically speaking, a tree; a (RelaxNG) schema is a Tree automaton
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Figure 5.6: RelaxNG tree automaton-based XML validation mechanism.

[126], which validates the tree for which there is an “interpretation”, as defined in
Figure 5.6. We know there is a way to translate trees into eAGs. For instance, the
eAG representing the tree X from Figure 5.6 is the arrowed path in Figure 5.3. There
is also a way to derive a SeAG from a Tree automaton. Consider an automaton
TA = (S,N, T,R), for instance the one from Figure 5.6. In TA, T is the set of
terminals. N is the set of non-terminals, among which are start symbols (S). The
elements of R are called production rules. A rule associates a non terminal to a
terminal, representing a possible labelled node of a tree, and a regular expressions
over N against which the sons of the node shall match.
For our derivation of an SeAG from a TA, we enforce that if there is a rule r =
x → X(reg) ∈ R so that reg can be expressed as reg1|reg2, with no common prefix
and suffix between the words in the languages of reg1 and reg2, then r must be split
into two rules r1 = x → X(reg1) and r2 = x → X(reg2). For instance, module →
Module(line+|figure) shall be split into two rules module → Module(line+) and
module → Module(figure). Then, the derivation of a SeAG STA from TA15 defines
as follows:
There is a partition of R into sets of rules sharing the same left-hand side. For any
n ∈ N , let us call Rn one such subset of R. Then, every n ∈ N may define what we
call a unique Box, denoted nBox. The nBox is a rooted graph that reflects the content
of the set of rules in Rn. In the nBox, each ri = n → Ti(rei) ∈ Rn is represented
by a root-to-node path. If rei = ∅, then the path is a single edge labelled Ti. Else,
since rei is a regular expression over N , it can be represented by the Ott automaton
made out of the Boxes corresponding to rei, escorted by two edges labelled Ti:In and
Ti:Out. Figure 5.7 shows the nBoxes for the automaton in Figure 5.6. By replacing
iteratively, in a bottom-up approach, the Boxes contained one in the others, we get a
labelled graph which is STA. One can check that, in the case of Figure 5.7, this yields
the SeAG shown on Figure ??.
Here comes the interesting point: this example illustrates that, given a tree automaton
TA and a tree X so that there is an interpretation of X against TA, the SeAG derived
from TA simulates the eAG representation of X16.

The above provides a sketch of proof for the following connexion between interpre-

15The following sketch leaves recursive element definition out.
16We obliterate the question of node types here. We only compare the bare simulation and inter-

pretation relations.
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Figure 5.7: For all n ∈ N as defined in Figure 5.6, each nBox representation (middle)
and Rn ⊂ R (right).

tation and simulation for validation:

Property 5.2.1 Be a tree X and a tree automaton TA. Be GX the eAG represen-
tation of X; be STA the SeAG derived from TA. Then, if there is an interpretation
of X by TA, then STA simulates GX .

Nota. A complete proof can be consulted in the Appendix 12 (in French).

5.2.3 Precisions on SeAG

At this point, we have defined eAG, an annotation model compatible with the ex-
pression of multilayer, cyclic annotation, together with SeAG, an appropriate schema
mechanism. The relation between an eAG and a SeAG is a certain kind of simulation,
in which the roots and the leaves of the schema and the instance are involved. We
want to investigate some properties of SeAG further here.
First, we observe that, for a given annotation language, several schemas could be de-
fined. We will try to show that, if from a static point of view, those different schemas
are hard to discriminate, some present better properties, qualitatively speaking, in the
perspective of being amended.
Second, we will consider the notion of redundancy, characterizing the fact some nodes
or edges of a schema may be deleted or merged without this altering the language of
the schema [128].

5.2.3.1 Multiple forms for the same schema?

Let us suppose, for didactic purpose, that an editor possesses an initial vision of the
annotation to be done in terms of language of annotataion, and thus, we consider here
that the editor abstracts that language of annotation by means of a set of regular
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expressions of the kind that were illustrated in Paragraph 5.2.1.3, that she then wants
to translate into a schema17.
It is a well known result that one regular expression may translate into a whole di-
versity of automaton. A whole field of the literature precisely investigates how to
construct an automaton from a regular expression (e.g. [128], [84], [25], [30], [99], [5]).
It appears that all those constructions are compatible with the eAG/SeAG model, and
that, from a static point of view, none in particular would have to be favoured.
Let us take an example. Be the alphabet Σ = {a, b, c, d}. Be a regular expression over
that alphabet R = a : In · [(b|c)d]∗(b|c) · a : Out.
This regular expression can be translated into several automata, according to the
transformation method operated, as indicated below (left column). The first automa-
ton representing R (a.) is a deterministic automaton with a minimal number of edges.
The second is the Glushkov [84, 30] automaton associated to R. The last is the des-
epsilonised version of the Ott automaton for R. On the right column, we represent
three eAG instances, one for each schema, that all express exactly the same annotation.

From this point of view, the three schemas seem to be equally good. Yet, one may
notice that, in the perspective of being modified, not all three are equal, in the sense
that, for a given amendment to the regular expression, not all schemas will have to be
modified by the same sequence of operations.
For example, let us consider that the editor first modelled her corpus by means of
the regular expression R = a : In · [(b|c)d]∗(b|c) · a : Out, that she then translated
into one of the above schemas (a), (b) or (c). Let us now imagine that she wants to
change the annotation language of the schema, so that it represents the new regular
expression R′ = a : In · [(b|c)d]∗(X|c) · a : Out. This means that, when adding
indexes to the symbols of the original and the updated regular expressions, R = a :
In1·[(b2|c3)d4]∗(b5|c6)·a : Out7 shall becomeR′[ = a : In1·[(b2|c3)d4]∗(X5|c6)·a : Out7.
In other words, naïvely speaking, in terms of schema transformations, it means that
the label of all the edges of the SeAG that rpresent the symbol indexed 5 in R shall

17We consider this hypothesisc editor modelling a literary corpus by means of regular expressions
for didactic purpose only. In particular, the aim of the following discussion is not to establish how a
schema could automatically be derived from a set of regular expressions.
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be replaced by X. Yet this strategy cannot be undergone indifferently on the three
schemas:

• Schema (c.) : The easiest case is this one, since there is a one-to-one corre-
spondence between the indexed symbols of R[ and the edges of the schema.
The transition from Sc(R) to Sc(R′) can be done by relabelling the edge e of
label b between the nodes typed 2 and 3. Propagating this amendment to the
instances of Sc may then be done by relabelling each e2b3 in an eAG defined by
δE(e2b3) = e.

• Schéma (b.) : Schema (b.) is different, in that there is no such correspondence
between the indexed symbols in R[ and the edges of the schema: in particular,
the symbol with 5 as an indec is represented by two edges in the schema, namely
4bbc5 et 1bbc5. Operating the change on the schema and propagating it to the
instances shall thus mean to relabel those two edges and the edges of the instance
that instantiate them..

• Schéma (a.) : Schema (a.) is the most interesting. In this case, there is no
edge representing the symbol indexed 5 from the regular expression specifically.
Indeed, the edge 2bbc3 represents the indexed symbols b2 and b5 from R[.The
strategy to go from Sa(R) en Sa(R′), is thus far more complicated18.

Actually, in the above example, what the amendment to the annotation language
semantically means is that “a label b ending a sequence (b|c)+ sets apart from the
other b symbols”, and thus shall, it and not the other bs, be turned into an X: it
is the existence of this distinction among the otherwise identical bs, that only ex-
ists in the editor’s mind, that drive her to want to replace that special b and not
the others. One could say that there are semantically dependent indexed symbols
in a regular expression, in the sense that they are distinct symbols that represent
non-distinguishable entities, and semantically independent labels, whose letter of the
alphabet is the same but that, in the mind of the editor, are somehow different (and
thus might be amended independently). Yet the status of each symbol is not initially
given: as illustrated above, it may get revealed... when attempting at modifying the
regular expression.
In that perspective, even if the schema (c.), because it turns here to associates an
edge to each semantically independent symbol of the regular expression, seems to be
the most promising. yet since the existence of semantical dependencies among the
symbols seems not to be given a priori, it can hardly be exploited to choose among
several schemas in order to optimize schema transformability. It should also be noted
that a transformation may precisely consist in making two labels independent (or de-
pendent), which is what happens in this example when considering schema (a.).
As a consequence, we will have to do with the fact several schemas may equally be
chosen for modelling the same corpus. Choosing among those schemas will then be a
question of taste or luck for the editor – until further research on this intriguing point.

18It may consist in creating an additional node typed 5 and to substitute, in the schema and in
the instances of the schema, the paths (instantiating) 2bbc3ba : Outc4 by paths 2bXc5ba : Outc4,
without impacting the other paths: then, the new nodes typed 5 shall be given the reference value of
the nodes typed 4 they replace...
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Figure 5.8: A non-redundant but ambiguous graph.

Noteworthily still, we will see in the Part IV of this dissertation that, when considering
certain tasks (the schema-aware parsing of an inline markup syntax for eAG), there is
a certain schema construction that has better algorithmic properties than the others.

5.2.3.2 Redundancy and ambiguity

As a conclusion, it appears that the shape of schemas is quite open. Yet another
aspect in which two schemas that express the same annotation language may not be
equal is how redundant and how ambiguous they are.
Intuitively speaking, redundancy qualifies the fact several nodes and edges of a schema
may be deleted or merged without this affecting the language of the schema, and a
schema is unambiguous “if for each word w, there is at most one path through the
state diagram of M that spells out w” [30]. Those are two different characteristics, in
the sense a schema may be non redundant while presenting some ambiguity. As an
example, consider the schema from Figure 5.8. Deleting any of the edges would impact
the language of the graph, and merging the nodes 2 and 3 also (then the word baa
would be part of the language, which it is not initially), so the graph is not redundant;
on the contrary, the word a may result from the execution of two different paths.

Redundancy is not a desirable quality for a schema, particularly in the perspective
of it being amendable: if two paths from the schema define exactly the same annota-
tion language, which is not useful in general, then if the amendment aims at modifying
the part of the language of the schema that corresponds to those paths – that is, at
preventing from the expression of words from the language of those paths and replac-
ing those by other words – , then the two paths shall be modified synchronously.
Non ambiguity, for its part, is a required characteristics for some other schema lan-
guages like DTD. Additionally, based on the traditional definitions of redundancy and
ambiguity (to be given below), non-ambiguity implies non-redundancy. Still, imposing
SeAG to be non ambiguous in the traditional sense is not a reasonable restriction. In
particular, the annotation language of the graph on Figure 5.8 cannot be expressed
but by ambiguous graphs, as in fact any language in the form R = R′ ·A|A′ ·R′′ where
lang(A) ∩ lang(A′) 6= ∅.
We thus propose an alternative definition of ambiguity, called typed ambiguity, con-
sistent with our graph model, resulting in a preserved expressivity of SeAG. A SeAG
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schema will then ideally have to be non redundant and non-ambiguous in the sense of
this new definition.
Ambiguity can be defined as follows.

Definition 5.2.3.2.1 : FSM ambiguity. An FSM os unambiguous iff for all word
m in its language, there is at most one way to browse through the FSM along a path
whose label sequence spells m.

Definition 5.2.3.2.2 : Regular expression ambiguity. An FSM os unambiguous
iff for all word m in its language, there is at most one execution of the word m.

As indicated above, this notion is very restrictive. The notion originates from
the theoretical work of Book on regular expressions [25]: from the consideration that
some words from the language of some regular expressions may result from different
executions of the expression, the authors propose a method to test whether a regular
expression is ambiguous or not. Later, ambiguity has been adapted and discussed
widely in the literature on SGML (e.g. [30], [32], [185]) and XML ([89], [80]). In the
context of SGML, non-ambiguity is required for DTD grammars for several reasons
that, in the end, one may hardly find consistent. hence the question whether this
notion ir relevant or not for SeAG.
Among the justifications for imposing unambiguity for DTD, it has widely been sug-
gested that, in the context of SGML, “[u]nambiguity [was] intended to make SGML
document grammars easier to read by humans. It is questionable, though, whether
this goal is really achieved.” [31]. Another justification for the recourse to unambigu-
ous grammars is algorithmic: “The intent of the authors of the [DTD] Standard is
twofold: They wish to make it easier for humans to write and understand expressions
that can be interpreted unambiguously and, at the same time, to provide a means of
generating parsers that do not have exponential blow up in size.” [185]. Those re-
flections, that date back to the origins of SGML validation by schemas, rest upon the
following pragmatic considerations: [88] ahd defined a parser generator for which non
ambiguous grammars were well-adapted – and that generated parsers that, in turn,
could be used to validate SGML data, that is, to assess whether a document was con-
form to a given grammar or not. Still, it seems that the limitation to non-ambiguous
grammars can be bypassed to that purpose [115] – and actually, RELAX NG does
not restrain the ’content models’ that define the XML grammar to be unambiguous
regular expressions [48].
In the end, unambiguity for SGML/XML grammars seems have mostly historical and
pragmatic grounds. None of the above justifications applies to SeAG, for which we
will thus not impose any restriction regarding ambiguity.
Still, it seems interesting enough to mention that the eAG/SeAG model, without any
additional restriction, is naturally non-ambiguous in some sense, in that given an eAG
validated by a SeAG, it is always possible to know without any... ambiguity which of
the subgraph of the SeAG is instantiated by any path from the eAG. This character-
istics is, as we will see, of crucial importance for the derivation of a transformation
on eAG from an amendment operated on a SeAG, as one may imagine intuitively.
We propose to formalize this characteristics of the eAG/SeAG model by means of the
notion of typed ambiguity.
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Definition 5.2.3.2.3 : typed label. Be S = ((V,E), label, ref, type, id) a SeAG.
Be labelT : E −→ T ×L×T the function that associates to each edge of X the triple
constituted of the type of its summit, its label and the type of its end.

Property 5.2.3.2.1 For any S = ((V,E), label, ref, type, id), labelT is injective.
Thus the automaton defined by X = (V,E, type, labelT , ref, ind) is unambiguous.
Preuve. The function is indeed injective since no two nodes can have the same type
in a SeAG, and no two edges between the same pair of nodes can have the same
label. Thus, in the FSM obtained by replacing the labels, in S, by the labelT , no two
transitions are identical, which is an obvious case of unambiguous FSM.

Definition 5.2.3.2.4: typed ambiguity. S = ((V,E), label, ref, type, id) is typed-
unambiguous iff the FSM defined by G′ = (V,E, labelT , type) is non ambiguous.

Let us now take an example to illustrate that notion. Consider the SeAG given in
Figure 5.8 page 113, and the following corresponding eAG IS :

We have already indicated that the schema in ambiguous in the traditional sense; still,
as any SeAG, it is typed-unambiguous.And indeed, if one considers the instance IS ,
even if two paths from that instance spell the same, it is very clear that the path
spelling a the node whose id = 3 instantiates the path ch1 = 1bεc2bac4, from the
schema, while the second path of IS spelling a instantiates ch2 = 1bεc3bac4. This
information is interesting in the sense that it permits to distinguish ch1 and ch2,
based on a finer criterion than the sequence of labels.

Let us now come to the notion of redundacy, that qualifies the fact that certain parts
of the language of the annotation (words, suffixes and prefixes of words) are defined
several times identically in a schema. This notion has been treated by Ott foe FSM
[128] in a very interesting way. Ott breaks the general notion of redundancy into three
notions: equivalent nodes; nodes that can be merged and superseding nodes.

Definition 5.2.3.2.4 : Equivalent nodes. Two nodes of a FSM are equivalent if
and only if, for each input symbol, both lead to the same or equivalent nodes.
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Commentaire. The equivalence relation above is actually identical to the maximal
self bisimulation of a graph. In Ott’s view, two equivalent nodes can be merged without
this altering the language of the FSM. In SeAG, we will not use this notion for that
purpose.

Definition 5.2.3.2.5 : Etats fusionnables. Two nodes v1 et v2 of a FSM can
be merged iff for any configuration, (S, u), being in one implies being in the other:
〈v1〉 ⇔ 〈v2〉.

Commentaire. Identically, for Ott, who deals with FSM properly speaking, for
which the language is the only aspect that counts, the FSM can be transformed by
merging those nodes. In our case, this does not apply, because of the particular edge
semantics we have defined for SeAG. Consider the following schema below:

For instance, if we do merge the nodes 5 et 7, the schema that we get will validate the
eAG I below, which the original schema did not:

Definition 5.2.3.2.6 : Superceding nodes. Be a FSM G = (V,E). A node
v1 ∈ V supersedes v2 ∈ V iff the following conditions hold:

1. For any configuration, (S, u), 〈v1〉 ⇐ 〈v2〉 ;

2. For any input symbol, v1 leads either to the nodes v2 leads to, or to nodes that
supersede them.

We will denote the fact v1 � v2 the fact v1 supersedes v1.
By extension, we define the operator �, for the “equals or supersedes” relation, given
any node supersedes itself.
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Interpretation of the � relation. Be G = (V,E) a Schema. Formally, the bove
relation can be rephrased as follows.

[1] v1 � v2 ⇔ a. 〈v2〉 ⇒ 〈v1〉
b. ∀e2 ∈ E, v′2 ∈ V | v2be2cv′2 ⊆ G,
∃e1 ∈ E, v′1 ∈ V | label(e1) = label(e2) ∧ v1be1cv′1 ⊆ G ∧ v′1 � v′2

Be follow(v) the function that to v associates the set of nodes that can be at-
tained from v by following the paths included in G (v included). Be ι : vi 7→⋃
v∈follow(vi)

(
⋃

X⊆root(G)
v

L (X)).

One may check that v1 � v2 ⇒ ι(v2) ⊆ ι(v1). This is due to the fact that :

• (〈v2〉 ⇒ 〈v1〉)⇒ ∀G2 ⊆root(G)
v2 G,∃G1 ⊆root(G)

v1 G tel que L (G2) ⊆ L (G1)

• v1 � v2 ⇒ ∀v′2, e2 | v2be2cv′2 ⊆ G,∃v′1 | (〈v′2〉 ⇒ 〈v′1〉) ∧ v′1 � v′2.

Recursively, we can establish the above result.
The above means that the � relation may be used to identify the connected subgraphs
of a schema, starting at the root of the schema and ending at its leaf, whose languages
are included one into the other, and that simulate one another.
Indeed, the fact two subgraphs share the same language is not enough for there being
a � relation. Consider the fact that among the two graphs, that have exactly the
same language, but if the root of the first one supersedes the root of the second, the
converse is not true.

1. 2.

Actually, the nature of the structural similarities required between two graphs for the
root of one to supersede the root of the other can be qualified easily: retrieving the
condition a. from the above reformulation [1] of the � relation yields the definition of
a... simulation.
We thus propose to use redundancy as an equality relation between schemas.

Definition 5.2.3.2.7 : SeAG equality. Two schemas will be considered equal iff
their roots mutually supersede one another.

Comment. This equality relation is far more satisfying than what could have been
expected to be a natural equality relation, in a context where simulation is used to
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compare graphs, namely, bisimulation. Given D a simulation of A by B, there is a
bisimulation between A and B iff D−1 defines a simulation. Actually, an equivalence
relation can be built onto bisimulation and used as an equality relation that is far
easier to compute than, for instance, isomorphism [93]: two graphs G1 = (V1, E1) and
G2 = (V2, E2) shall be considered “equal” “égaux” iff all the nodes of each graphs are
involved in the maximal bisimulation between the two graphs, and so that the pair of
their roots belong to the bisimulation. The non-redundancy of a schema shall then
be defined as the fact that the maximal self bisimulation of that schema shall be the
identity relation.
Yet, the notion of (bi)simulation and supersedure differ on an essential point, that
matters for the identification of redundancy. While (bi) simulation investigates each
pair of nodes in the graphs, supersedure only considers pairs of nodes (v1, v2) so that
〈v2〉 ⇒ 〈v1〉, that means, that are preceded, in the schema, by some linear paths that
spell the same. This is severe pruning. In other words, when calculating the self
bisimulation of a graph, any node of the graph is considered an input node. This
prevents from comparing the upwards context of those nodes, i.e. from comparing the
sequence lof the labels that lead to those nodes: comparison is done downwards only,
in the direction of the leaf of the graph. Supersedure cnsiders that the input nodes
of a FSM (or here, of a schema) are well-defined: they are nodes explicitly defined as
the input nodes (or the root of the SeAG here).
To illustrate the difference, and why supersedure is better for the definition of equality,
consider the following example.
Be S the following schema.

The maximal simulation relation D and supersedure relation R are the following:

• D = {(0; 0), (1; 1), (2; 2), (3; 3), (0; 1), (1; 2), (2; 2)} ;

• R = {(0; 0), (1; 1), (2; 2), (3; 3), (0; 1)}.

hence the maximal bisimulation relation BD and bi-supersedure relation BS :

• D = {(0; 0), (1; 1), (2; 2), (3; 3), (1; 2)} 6= Id ;

• R = {(0; 0), (1; 1), (2; 2), (3; 3)} = Id.

Thus, if equality is defined in terms of bisimulation, the schema is considered redun-
dant, while it is not if one considers bi-supersedure as an equality relation.
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5.3 SeAG Validation:
A Posteriori and On-the-fly Validations

Validation is the process by which it is assessed whether an annotation is conform to
a certain schema. This assessment can be operated in two different contexts: first,
the annotation is done regardless of a schema, and is then validated against a schema
that has been independently defined; second, a schema is provided to the editor when
she starts annotating. In this case, validation may not be done a posteriori. On the
contrary, the schema may be used, in the course of the eAG manufacturing, as a guide
for annotating the data, just the way XML schemas can be used in an XML editor
featuring content assist.
The first case will be referred to as a posteriori validation. The second, as on-the-fly
validation. We show how both can be done with SeAG, and analyze the properties of
both in the following.

5.3.0.3 A Posteriori Validation

Validating is defined as follows :

Definition 5.2.16: validation. Be S a SeAG and G an eAG. The
S validates G iff there is a retyping of G so that S

typ.
↪→ G, so that the

pair of the roots of S and G and the pair of their leaves belong to
the maximal node-typed simulation.

It is quite clear that given a schema S and an eAG that S validates, changing the
type of one node of G may prevent G from being valid while the structure and the
semantics of G have not changed. This means, conversely, that an eAG whose types
do not match the ones of a schema is not necessarily ‘wrong’: it may just need retyping
for being valid19.
In the context of a posteriori validation, there is little chance the types of the instance
and of the schema shall match, since both were built independently. Retyping is thus
needed. Yet, there is no need for calculating this retyping, given the following result:

Property 5.2.6 Be two directed, labelled graphs A =
((VA, EA), type) and B = ((VB , EB), type) whose nodes are typed

over two type set TA and TA, so that B
strong
↪→ A. Then there is a

retyping of the nodes of A so that B
typ.
↪→ A.

Proof. Let us denote D the strong simulation of A by B. It suf-
fices to define the retyping function retype : TA −→ TB so that
∀(vA, vB) ∈ D, retype(type(vA)) = type(vB).

Hence a posteriori validation can be performed as follows:

19The reason why validation is defined in terms of the more exclusive notion of node-typed simu-
lation is that it permits on-the-fly validation, as will be illustrated in the next paragraph.
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Definition 5.2.17: a posteriori validation. Be S a SeAG and G an eAG. Then
S validates G iff S

strong
↪→ G, so that the pair of the roots of S and G and the pair of

their leaves belong to the maximal strong simulation.

Calculating the maximal (strong) simulation of one graph by another one has been
investigated already [129, 4, 81, 144]. The main result is the following:

Property 5.2.3 Be a SeAG S and an eAG G. Calculating the maximal simulation
of G by S performs in O(|V ∪ VS | · |E ∪ ES |) [144].

Comment. This is a reasonable cost for a cyclic graph-based data model.

5.3.0.4 On-the-fly Validation

Now, let us consider the case where a schema is provided before starting annotating,
and where the produced data has to be valid. Checking algorithmically whether a
graph is valid or not could be tricky. Instead, we propose a special case of on-the-fly
validation, that is, validation by construction. We show here that there is a matrix
representation for SeAG and eAG so that, given the representation of a schema, only
valid instances can be represented. hence the qualifier “by construction”.

Definition 5.2.18 (Identifier sets) Be a graph G = (V,E). There are two countable
ordered sets IG and JG and two bijective functions id : V −→ IG and id : E −→ JG
identifying the nodes and edges of G. The ith element of the set IG, for instance, is
denoted [IG]i.

Definition 5.2.19 Be a graph G = (V,E), IG and JG two sets of identifiers. Pro-
vided G contains no connected subgraph limited to a node and no loop, G can be
represented by its incidence matrix [G]IG,JG so that, ∀(i, j) ∈ IG × JG:

[G]IG,JGi,j = 1 iff ∃vbecv′ ⊆ G; id(v) = i ∧ id(e) = j
= −1 iff ∃vbecv′ ⊆ G; id(v′) = i ∧ id(e) = j
= 0 else.

Property 5.2.4 Be a SeAG S = (VS , ES). Ordering the sets {type(v); v ∈ VS},
{(type(v), label(e), type(v′)); vbecv′ ⊆ S}, provides two special node and edge identifier
sets T ,X .
Proof. In a SeAG, no two nodes have the same type or are connected by two edges
with the same label (Def. 5.2.9). Any ordering of the sets is fine.

Discussion (1). Consider the following SeAG :
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The values vi are possible identifiers for the nearby nodes, and ej for edges, so that
IS = [v1, v2, v3, v4], for instance. Then, Property 5.2.4 means that it is possible to
represent the incidence matrix of an SeAG S by indexing lines and columns either on
any IS × JS or on T × X in particular. For instance, when indexed over T × X :

[S]T ,X =

1X:In2 2a3 2b3 3ε2 3X:Out4

1
2
3
4


1 0 0 0 0
−1 1 1 −1 0

0 −1 −1 1 1
0 0 0 0 −1


It is also possible to express a subgraph of S in an incidence matrix indexed over the
full identifier sets. For instance, below is the incidence matrix over IS and JS of
H = {vbecv′ ⊆ S; (type(v), label(e), type(v′)) = (2, b, 3)}, subgraph of S :

[H]IS ,JS =

e1 e2 e3 e4 e5

v1

v2

v3

v4


0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0


Definition 5.2.20 Given a n × m matrix [M ] of integers, the positive restriction
of [M ] is the n × m matrix [M+] so that ∀i, j, [M+]i,j = [M ]i,j iff [M ]i,j > 0, else
[M+]i,j = 0. The definition of [M−] the negative restriction of [M ] is natural.

Discussion (2). Consider two graphs G and H, H ⊆ G and the incidence matrix
[H]IG,JG . Then the positive restriction of [H]IG,JG , read column by column, lists the
identifiers of the nodes that are the summits of the edges of H whose identifier matches
the one of the column. Conversely, the negative restriction of [H]IS ,JS defined in the
Discussion (1) page 120 is:

[H−]IS ,JS =

e1 e2 e3 e4 e5

v1

v2

v3

v4


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0


Note that the sum of the positive and negative restriction of any incidence matrix
gives the incidence matrix.

Definition 5.2.21 (Template) Be S a SeAG, G a graph that can be represented
by its incidence matrix, and IG,JG identifier sets for G. Consider the block-matrix
obtained by replacing each value si,j of [S]T ,X by a matrix [Mi,j ], so that:
- si,j = 0⇒ [Mi,j ] = [∅]IG,JG , where ∅ is the empty graph, whose incidence matrix
is always zero ;
- si,j = 1⇒ [Mi,j ] = [A], where [A] is the positive restriction of the incidence matrix
over IG,JG of Hj ⊆ G , with Hj = {vbecv′ ⊆ G; (type(v), label(e), type(v′)) = [X ]j};
- si,j = −1 ⇒ [Mi,j ] = [B], where [B] is the negative restriction of the incidence
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matrix over IG,JG of Hj .
This block-matrix is called the expression ofG on the template of S, denoted [G/Temp.S].

Example. Consider the SeAG S defined in the Discussion (1) page 120. The ex-
pression of S on its own template is:

[S/Temp.S] =

1X:In2 2a3 2b3 3ε2 3X:Out4

1
2
3
4


[A1] 0 0 0 0
[B1] [A2] [A3] [B4] 0
0 [B2] [B3] [A4] [A5]
0 0 0 0 [B5]


with, for instance, [A3] = [H+]IS ,JS and [B3] = [H−]IS ,JS as defined in Discussion
(2) page 121.

Definition 5.2.22 Be S an SeAG and G, IG,JG a graph containing no subgraph
limited to a node and no loop, along with two sets of identifiers. G is said to be
fully expressible on the template of S, denoted G / [Temp.S], iff the sum of the inner
matrices of [G/Temp.S] is equal to [G]IG,JG the incidence matrix of G, indexed over
the same sets as the inner matrices of [G/Temp.S].

Property 5.2.5 Be S an SeAG. Then S is fully expressible on its own template.
Proof. ∀l ∈ [0; |X |[, the lth column of [S/Temp.S] contains two matrices [Al] and
[Bl]. Since they are respectively the positive and negative restrictions of the incidence
matrix of Hl ⊆ S, which is the union of all the subgraphs vbecv′ characterized by
the same triple [X ]l of types and label, [Al] + [Bl] = [Hl]

IS ,JS . Since X is the set of
possible triples for S,

∑
0≤l<|X |

[Hl]
IS ,JS = [S]IS ,JS .

Importantly, only schemas define a template. In particular, given an instance G
and any identifier sets I,J , since there may not be bijections between those sets and
T ,X , the notion of template of G is undefined. Still, it is possible to try to express
G, not over its own template, but over the template of a given schema S.
Let us denote this representation [G/Temp.S]. The schema defines the template, that
is, the outer matrix of [G/Temp.S], indexed over T ×X : it restricts the types, the labels
between two given types and the paths along which those labels may occur. Be then
[X ]l ∈ X . Just like above, we can defineHl = {vbecv′ ⊆ G; (type(v), label(e), type(v′)) =
[X ]l}, so that Hl ⊆ G. Then the inner matrices of [G/Temp.S] are defined just the
same way as those in [S/Temp.S], that is: in the lth outer column, on the right outer
lines, as the positive and negative restrictions of [Hl]

I,J (see Definition 5.2.21).
Interestingly, this approach can be taken for any graph G and any schema S. If

the graph contains no edge conforming the schema, then [G/Temp.S] is null. On the
contrary, an important result is that provided G is an instance of S, then G is fully
expressible on [Temp.S]. We can even go further:

Property 5.2.6 Be a SeAG S and an eAG G. Then S validates G iff G / [Temp.S]
and type(leaf(G)) = type(leaf(S)) and type(root(G)) = type(root(S)).
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Proof. ⇒ : S validates G, then the types of the two graphs’ leafs are equal, by defini-
tion of validation. Idem for the roots. The fact that validation implies G / [Temp.S]
can be proven just like Property 5.2.5, with one more argument. The fact that the sum
of the two inner matrices characterised by the same L ∈ X yields the incidence matrix
of the union of all the subgraphs vbecv′ ⊆ G characterised by L holds. Yet, it has to be
proven that there is no subgraph vbecv′ ⊆ G so that (type(v), label(e), type(v′)) 6∈ X .
Since G is rooted and connected, one can check that the presence of such a subgraph
shall contradict the existence of a rooted simulation.
⇐ : Be G = (V,E), S = (VS , ES). G / [Temp.S] implies that ∀vbecv′ ⊆ G,
∃L ∈ X so that (type(v), label(e), type(v′)) = L, which means ∃!vSbeScv′S ⊆ S so
that type(vS) = type(v), type(v′S) = type(v′) and label(eS) = label(e).
This defines two functions δ : V → VS and δE : E → ES so that ∀vbecv′ ⊆ G,
∃!(δ(v), δE(e), δ(v′)) ∈ VS×ES×VS so that ∀x, type(δ(x)) = type(x), ∀y, label(δE(y)) =
label(y) and δ(v)bδE(e)cδ(v′) ⊆ S.
Additionally, the fact that type(root(G)) = type(root(S)) implies δ(root(G)) = root(S).
Then D = {(v, δ(v)); v ∈ V } is a rooted, node-typed simulation of G by S.

Illustration part 2. Consider the eAG B from Example 5.2.2.3. Let us equip its
nodes and edges with identifiers, as shown below.

The representation of B in [Temp.S] is:

[B/Temp.S] =

1X:In2 2a3 2b3 3ε2 3X:Out4

1
2
3
4


[A1] 0 0 0 0
[B1] [A2] [A3] [B4] 0
0 [B2] [B3] [A4] [A5]
0 0 0 0 [B5]


with [B3] the negative restriction of [H]IB ,JB , for instance, for H = {vbecv′ ⊆
B; (type(v), label(e), type(v′)) = (2, b, 3)}:

[B3] =

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

v1

v2

v3

v4

v5

v6

v7

v8

v9



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0


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124 CHAPTER 5. EAG AND SEAG

Now compare [B/Temp.S] with [S/Temp.S] as detailed in the Example page 122. The
two matrices share the same outer matrix, which is descriptive of S, they only differ
by the values of the inner matrices (e.g. see the value of [B3] for S in Example 5.3.0.4).
Based on Property 5.2.6, we can finally conclude:

Given a schema S, the eAGs it validates are the well-formed eAGs model that can
be fully expressed in [Temp.S], and whose root and leaf types respect those of S. This
means that an instance of S is an eAG that can be described by the set of matrix values
that fill [Temp.S]. From a manufacturing point of view, if the annotator of a resource is
given means (through an ergonomic HCI) to define the matrix values corresponding to
[Temp.S], in a way that ensures well-formedness, then, by construction, the resulting
graph will be valid against the schema. This meets the goal of providing on-the-fly
validation for M-S data.

5.4 Conclusion

In this chapter, we introduced eAG, an extension of Annotation graphs, along with a
novel schema model based upon the notion of simulation. A dedicated representation
for eAGs and schemas enables to proceed to validation “by construction”: provided
a schema, only valid eAGs can be expressed, which bypasses the algorithmic cost of
traditional approaches for validation of graph-structured data.

Still, the eAG data model is not restricted to this use case, and simulation-based
validation can be adapted to the situations where any eAG G = (V,E) is confronted
to any SeAG S = (VS , ES). First case, G was made according to a schema S′ =
(VS′ , ES′), and the question is whether it conforms to S or not. By transitivity of
simulation, S validates G iff S simulates S′ so that (leaf(S′), leaf(S)) are in the
simulation (indicating, modulo retyping the nodes of S, a node-typed simulation of S′
by S). This checks in O(|VS′ ∪ VS | · |ES′ ∪ ES |) [144]. Second case, G was not made
according to any schema. In this case, node types are irrelevant. An adaptation of
SeAG validation is: S validates G iff there is a (general) simulation D ⊆ V × VS so
that ∀v ∈ V , ∃!vS ∈ VS so that (v, vS) ∈ D (the uniqueness of vS for each v defines a
typing of the nodes of G according to S). This checks in O(|V ∪ VS | · |E ∪ ES |). In
both cases, this is a reasonable cost for a cyclic graph-based data model.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



Part III

Linear Extended Annotation
Graphs: an Inline Markup

Syntax for eAG

125

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



Chapter 6

Inline Multilayer Annotation

Linear extended Annotation Graphs (LeAG) is an inline markup syntax for eAG. The
purpose of LeAG is to enable the expression of eAG annotations by means of any
notepad application, in a human-readable form. LeAG must therefore: 1) support
unambiguous translation into the eAG syntax, and 2) enable to represent, by means
of tags, multilayer, cyclic annotation.
The first section of this chapter is a theoretical discussion about the hybrid nature of
the LeAG markup, between the inline and stand-off paradigms, which will lead to the
formulation of an equivalence relation for LeAG documents.
We then introduce, step by step, the LeAG syntax: we gradually show how to represent
the different bricks eAGs are made of in a markup manner: hierarchies, multitrees
(and goddags), attributes, links and quotes. We then interrogate the correspondence
between eAG and LeAG, in order to establish the parsability of LeAG into eAG.

6.1 Introduction

Multistructured models are meant to support the simultaneous expression of several
annotation paradigms. For instance, one may want to annotate a text by identifying,
independently, its grammatical (substantive, adjective, etc.) and its semantic (propo-
sition, topic, etc.) structures. To achieve that goal, eAG makes a clear distinction
between the representation of inclusion1, which is a modelling relation that makes
sense within one annotation paradigm, and nesting or co-occurrence2, which is
a fortuitous situation in which two independent elements occur at the same place.
And indeed, the eAG syntax for inclusion is explicit, while nesting happens when
two elements X and Y are so that ref(start(X)) ≤ ref(start(Y)) and ref(end(Y)) ≤
ref(end(X)) – hence nesting is uniquely defined in terms of reference values.
Yet the notion of chronology is quite impacted by the shift from stand-off to inline
markup. In eAG, in order to fit multimedia annotation, several chronologies can
be defined, and each node is associated a value from one of those chronologies. In

1E.g. a proposition contains a topic.
2A word may happen to be both a substantive and the topic of a proposition: topic and substantive

co-occur; substantive is nested in proposition;topic is included in proposition.
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128 CHAPTER 6. INLINE MULTILAYER ANNOTATION

a text-only markup setting, a natural chronology is implied by the text itself: the
set of inter-character positions. As a consequence, LeAG rests upon that single,
natural chronology, that does not even need to be made explicit: tags are simply
inserted, within the text stream to be annotated, at the position a corresponding
node of an eAG would have made reference to. E.g., annotating the substantive
in “Let us garlands bring.” is done by inserting a pair of tags as follows: “Let us
[Substantive}garlands{Substantive] bring.”
Still, in spite of being considerably simplified compared to eAG, the notion of chronol-
ogy is still central to LeAG, because it is absolutely necessary in order to represent
co-occurrence or nesting. Consider the very elementary text stream ABC. A chronol-
ogy for this text is: {start() = before(A), after(A) = before(B), after(B) = before(C),
after(C) = end()}. Identifying an element Ω between the positions before(A) and be-
fore(C) is done as follows: [Ω}AB{Ω]C. The text stream, since it has been added new
characters (the ones that constitute the tags), has been altered by this operation.
Yet, interestingly, even in the annotated text stream, the original chronology is still
operative to index a very particular text substream, that is, the text stripped from the
tags – i.e. the original stream. This may sound tautological; nonetheless, this remark
is fundamental, since this bare text stream is the one an editor will consider when
she wants to annotate the corpus independently from any previous annotation – that
is, when proceeding to multilayer annotation. Indeed, if the editor wants to identify
another element ω, ranging from before(A) to before(C), she may insert an opening
tag at the position before(A), and a closing tag at before(C), without considering the
other tags, resulting in3 A1 =[Ω}[ω}AB{Ω]{ω]C.
One may also consider that, in the original text stream, start() = before(A) – so the
annotation A2 =[ω}[Ω}AB{Ω]{ω]C (where [ω} is inserted at the position start() this
time) shall be considered equivalent to A1. Similarly, since the two elements Ω and
ω are independent, the order in which they are identified shall be indifferent: the two
opening (closing, respectively) tags in A1 and A2 can be inverted, resulting in two
more equivalent markups: A′1 = [ω}[Ω}AB{ω]{Ω]C and A′2 = [Ω}[ω}AB{ω]{Ω]C.
Hence the following relation:
Equivalent LeAG. Let us call trains of tags the largest sets of tags, in a LeAG,
that are not separated by a character from the original text. Two LeAG are equiva-
lent iff they differ only by the order of the tags that belong to their respective trains
of tags.
This notion of equivalence actually reflects the fact LeAG, though it is an inline markup
syntax, rests upon a notion of chronology that is typical of stand-off markup mod-
els. Indeed, one way to interpret the above equivalence relation is by saying that in
a LeAG, tags only make reference to the position they occupy in the original text
stream. Surely, two tags making reference to the same position may be written in any
order. Since, in practice, two such tags will not be separated by any character from
the bare data and constitute a ‘train of tags’, it follows that in a train of tags, the
order in which the tags are written is indifferent.
As a consequence, contrary to XML, the nesting of an element B inside the scope of an
element A cannot be a means to represent the inclusion of B inside A. Thus a syntax
is needed to represent inclusion (cf. 6.2.1). Second, since inserting tags does not alter

3See paragraph 6.2.2 for the actual syntax for multilayer annotation.
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6.2. THE LEAG SYNTAX 129

Figure 6.1: A basic anaphoric chain annotation for the extract of The Village of Ben
Suc, and a corresponding schema.

the chronology that indexes the original text, tags can be considered not to take “any
room” along that chronology. This suggests that inserting exogenous resources within
the primary resources, e.g. structured comments, can be done inside special tags that
open and close at the same position in the original stream (cf. 6.2.3).

6.2 The LeAG Syntax

In the following paragraph, based on the above considerations, we gradually introduce
the LeAG syntax. The content of the LeAG tags will be defined by means of for-
mulae in which orange characters are constants and italics denotes variables. (Black)
parenthesis are mathematical delimiters, not variables or constants. A field is either
a variable or a formula enclosed in parenthesis. An optional field is followed by the
character ?. A field that can be repeated is followed by +, one that is both optional
and can be repeated is followed by *. Concatenation is implicit. Space characters are
represented by underscores.

6.2.1 Mono-hierarchy of Attributeless Elements
As stated above, some explicit syntax is needed to represent inclusion in a markup
model that supports multilayer annotation. This paragraph presents how to express
single-layered annotation. The next paragraph extends LeAG towards multilayered
annotation.
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130 CHAPTER 6. INLINE MULTILAYER ANNOTATION

Elementary spanning elements. An elementary spanning elements (ESE) is the
syntactical structure dedicated to the labelling of a section of the primary resources,
with the possibility to assess that the current element is included in other elements
of the annotation. ESE are represented by a pair of opening and closing tags whose
substance field has the same value, according to the following:

OTag := [ substance }
CTag := { substance ]
substance := name fathers? ( ,_ ID)?
fathers := _in_ context

Above, name is the name of the current element and works as a label on the pri-
mary resources enclosed by the pair of tags; context provides a designation of the
elements that contain the current element4. The ID field will be discussed in the
paragraph 6.2.4.
The content of an element is constituted of the tags themselves and the whole text
(primary resources + tags) they span over.
Rule 6.2.1 The opening and the closing tags defining one ESE cannot belong to the
same train of tags.
Back to the example. In order to identify one anaphoric chain in the extract of The
Village of Ben Suc, it suffices to define three element names Extract, AC and Exp for
the identification of the extract, the AC and its constituting expressions respectively,
and to build the following pairs of opening/closing tags:

- [Extract} and {Extract] ;

- [AC in Extract} and {AC in Extract], assessing that an AC is included in
an extract;

- [Exp in AC} and {Exp in AC], assessing that an expression is included in an
AC.

The following LeAG L1 annotates the anaphoric chain regarding the young prisoner
accordingly.

L1 :[Extract}An ARVN officer asked [AC in Extract}[Exp in AC}a young prisoner{Exp
in AC] several questions, and when [Exp in AC}he{Exp in AC] failed to answer, beat
[Exp in AC}him{Exp in AC]. An American observer who saw the beating that hap-
pened then reported that the officer “really worked [Exp in AC}him{Exp in AC] over”.
After the beating, [Exp in AC}the prisoner{Exp in AC]{AC in Extract]was forced to
remain standing for hours.{Extract]

6.2.2 Grafts: Multilayer Annotation

We now extend the above syntax to multilayer annotation. Multilayer annotation may
occur in two distinct situations: first, the schema defines several annotation paradigms;
second, one path of the schema is instantiated several times onto the same resources
(see Paragraph 5.2.2.4 page 106).

4We will see that an element may have more than one father, thanks to the notion of grafts. See
paragraph 6.2.2.
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6.2. THE LEAG SYNTAX 131

The challenge is to make sure that in any case, the tags of a multilayer LeAG shall
be unambiguously associated with the layer(s) they are part of. When the set of the
elements’ names of two co-existing layers do not intersect, assessing to which layer a
tag belongs is trivial. At the opposite, simulation-based multilayering, which is prone
to self-overlap, will be problematic: in that case, two overlapping elements cannot be
discriminated neither on the basis of their name nor by looking at the name of their
fathers. Anaphoric chains annotation is a canonical example of such a setting.
For instance, in the excerpt of The Village of Ben Suc, consider the ACs relative to
the American observer and the beating respectively. A naïve approach making use of
the syntax for single-layered annotation would yield the following annotation – which
is faulty:

[Extract}An ARVN officer [...] beat him. [AC in Extract}1[Exp in AC}2An Ameri-
can observer who saw [AC in Extract}3[Exp in AC}4the beating{Exp in AC]5{AC in
Extract]6 that happened then{Exp in AC]7 reported that the officer “really worked
him over”. After [Exp in AC}8the beating{Exp in AC]9{AC in Extract]10, the pris-
oner was forced to remain standing for hours.{Extract]

Indeed, it is undecidable whether the Exp element starting at the tag 4 ends at tag
5 or 7. Moreover, there would be no way to ascertain to which AC an Exp ranging
from tag 4 to tag 5 would belong to.

6.2.2.1 Colouring the annotation layers: general strategy

An intuitive disambiguating solution – at least to the human eye – consists in colouring
the tags belonging to distinct layers:

[Extract}An ARVN officer [...] beat him. [AC in Extract}1[Exp in AC}2An Ameri-
can observer who saw [AC in Extract}3[Exp in AC}4the beating{Exp in AC]5{AC in
Extract]6 that happened then{Exp in AC]7 reported that the officer “really worked
him over”. After [Exp in AC}8the beating{Exp in AC]9{AC in Extract]10, the pris-
oner was forced to remain standing for hours.{Extract]

Now it is clear that the element starting at tag 2 ends at tag 5, overlapping with the
element starting at tag 4 and ending at tag 7.
Importantly, not only have we coloured differently the elements (2-5) and (4-7) in
order to make their respective opening and closing tags match, but also have we given
a common colour to the elements (3-10), (4-7) and (8-9), which indicates that the two
expressions (4-7) and (8-9) belong to the same AC (3-10), for instance.
Grafts. The notion of grafts follows the above intuition. Grafts are coloured LeAGs
that are anchored onto an existing LeAG. They express, either locally or at the scale
of the whole document, some additional enrichment on top of the annotation that has,
at a certain point in time, been done already.
Consider the LeAG L1 at the end of paragraph 6.2.1. L1 identifies one AC and its
constituting expressions (Exp), within an extract. A graft must be defined in order
to identify, in the same extract, another AC, e.g. the AC regarding the beating, since
this addition will result in a non-hierarchical LeAG. This is done as follows:
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132 CHAPTER 6. INLINE MULTILAYER ANNOTATION

1. The element of the existing annotation that will serve as the context of the graft is
identified: Extract, here.

2. A name of ‘colour’, nameC, is defined, in the form:

nameC := # colour

where colour is a string that identifies the graft, e.g. “#Red”.

3. The range of the graft is specified by inserting, within the frame of the context
element5, a pair of colour tags:

Otag := [ nameC _over_ context >

Ctag := < nameC _over_ context ]

with the nameC and context fields as defined above. For instance:

[Extract}[#Red over Extract> An American observer who saw the beating that
happened then reported that the officer “really worked [Exp in AC}him{Exp in AC]
over”. After the beating [...] <#Red over Extract]{Extract]

4. Then nameC serves as a context for the top elements of the graft. Here, one AC
element spans over the whole graft:

[Extract}[#Red over Extract> [...] An American observer who saw [AC in
#Red}the beating that happened then reported that the officer “really worked [Exp in
AC}him{Exp in AC] over”. After the beating{AC in #Red], [Exp in AC}the prisoner
[...]... <#Red over Extract]{Extract]

5. Elements included in the top elements of the graft are defined, their context field
keeping record of the colour of the upper element. For instance, here, two Exp
belong to the red AC:

[Extract}[#Red over Extract> [...] An American observer who saw [AC in
#Red}[Exp in AC#Red}the beating that happened then{Exp in AC#Red] reported
that the officer “really worked [Exp in AC}him{Exp in AC] over”. After [Exp in
AC#Red}the beating{Exp in AC#Red]{AC in #Red], [Exp in AC}the prisoner [...] ...
<#Red over Extract]{Extract]

Similarly, had one Exp element had any child, the context field of the tags defining
that element would have been Exp#Red.

Based on that principle, the LeAG L2 on Figure 6.3 identifies the three anaphoric
chains regarding the prisoner, the beating and the American observer respectively –
which is a case of simulation-based multilayer annotation with self-overlap.

5For a detailed discussion about how to position the colour tags, see Paragraph 6.2.2.2 just below.
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Figure 6.2: A LeAG and a matching eAG, where an element (B) has two fathers, one
in the uncoloured hierarchy, and the other in a graft. The colours of B, namely #G
and # (uncoloured), are repeated in the context of its son element α.

L1 :[Extract}[#Blue over Extract>[#Red over Extract>An ARVN officer asked [Exp in AC}a
young prisoner{Exp in AC] questions, and when [Exp in AC}he{Exp in AC] failed to an-
swer, beat [Exp in AC}him{Exp in AC]. [AC in #Blue}[Exp in AC#Blue}An American ob-
server who saw [AC in #Red}[Exp in AC#Red}the beating{Exp in AC#Blue]{AC in #Blue] that
happened then{Exp in AC#Red] reported that the officer “really worked [Exp in AC}him{Exp
in AC] over”. After [Exp in AC#Red}the beating{Exp in AC#Red]{AC in #Red], [Exp in
AC}the prisoner{Exp in AC]{AC in Extract]was forced to remain standing for hours.<#Red
over Extract]<#Blue over Extract]{Extract]

Figure 6.3: Three-layered LeAG.
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Complements.

1. Grafts are added on top of an existing annotation spanning over the whole
document. Before the first graft is defined, the annotation has to be hierarchical6.
Thus we can refer to this underlying hierarchical annotation as the uncoloured
hierarchy of a LeAG. Tags of this hierarchy either have no explicit colour or,
when they also belong to a coloured graft, the colour of that graft plus a ‘blank’
colour, # – see element α in Figure 6.2.

2. A graft may be defined either on the underlying hierarchy (Figure 6.2) or on an
element from another graft.

3. An element may have several fathers, belonging to grafts or to the uncoloured
hierarchy indifferently (cf. element B, Figure 6.2).

4. The span of the graft shall not necessarily equal the one of its context element:
see the following paragraph.

6.2.2.2 Positioning Colour T ags: Schema-base and Simulation-based Mul-
tilayering

In the above, the indication on how to position the colour tags was voluntarily vague.
Indeed, given an underlying hierarchy and a graft on one of the elements of that
hierarchy, there are arguably three possible ways of positioning the colour tags ‘within
the frame of the context element’. As an example, let us consider the following schema:

Consider the following eAG, validated by the above schema. The coloured areas
highlight the nodes that share their reference value and thus, if the eAG was to be
represented by a LeAG, shall correspond to the same ToT.

6This is not a tough constraint, since a single element spanning over the whole corpus is an
elementary hierarchical annotation.
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We can deduce from the eAG above that any LeAG expressing the same annotation
shall contain six ToT with, for instance, the following ESE tags in them (considering
the element C from the eAG belongs to a graft of colour #Pink):

1. ToT1 contains: [A}, [B in A}

2. ToT2 contains: [C in #Pink}

3. ToT3 contains: [D in B}

4. ToT4 contains: {C in #Pink]

5. ToT5 contains: {D in B]

6. ToT6 contains: {B in A], {A]

Then, in theory, the colour tags delimiting the #Pink could be positioned :

1. Colour tags occur anywhere inside the context element of the graft:
[A}[B in A} ... [#Pink over A> ... [C in #Pink} ... [D in B} ... {C in #Pink]

... {D in B] ... <#Pink over A] ... {B in A]{A]

2. Colour tags occur in the ToT where the first and last tags of the graft occur:
[A}[B in A} ... [#Pink over A>[C in #Pink} ... [D in B}

... {C in #Pink]<#Pink over A] ... {D in B] ... {B in A]{A]

3. Opening colour tags occur in the last ToT containing a tag defining an element
of the underlying hierarchy so that this element is common to the annotation
layer containing the graft and to the annotation layer containing the context
element of the graft – and respectively for closing tags. For instance, in the
eAG above, the element A belongs to both the hierarchy “A contains B which
contains D” (which will be described, in the LeAG, by the underlying hierarchy)
and “A contains C” (which corresponds to the graft). It is thus reasonable to
consider to position the opening colour tag in the same ToT as the opening tag
of A, since this is the point from where the two hierarchical annotation layers
(underlying and pink) semantically diverge. And indeed, structurally speaking,
the end of the edge A:In is the node where the path representing the uncoloured
hierarchy and the path representing the coloured hierarchy diverge – or, in other
words, is the starting node of the two-layered pattern. [A}[B in A}[#Pink over

A> ... [C in #Pink} ... [D in B} ... {C in #Pink] ... {D in B] ... {B in

A]<#Pink over A]{A]

In the end, it appears that we have three different candidates for positioning the
colour tags that define a multilayer annotation. Actually, solution 1 subsumes the
other two; but 2 does not subsume 3 and conversely. This means that the two different
ways of positioning the colour tags may be made to coexist within a LeAG, in order to
enable to differentiate between two different kinds of multilayering: simulation-based
and schema-based multilayering respectively.

Let us recall briefly the difference between the two kinds of multilayering. Schema-
based multilayering happens when two stacked layers of annotation correspond to two
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parallel paths of the schema. By contrast, simulation enables to superpose two layers
that do not correspond to parallel paths in the schema.
As an illustration, consider the following schema. In that schema, inside of an element
X, an element A can be directly followed either by B, C or D. The only part of the
schema defining parallel paths is between the nodes 4 and 5. Consider then the two
eAG annotations, both identifying two sequences of elements A−B and A−C within
one element X, but each according to one of the two kinds of multilayering.

In the schema-based multilayering setting, there is only one element A in the element
X, followed by two different elements B and C starting and ending at the same node.
In other words, the annotation works as if there was a base layer, for instance made
out of the elements A followed by B in X, onto which another layer plugged, without
repeating any label of the base layer, and so that the extent of two elements are
synchronized. By contrast, in the simulation-based setting, the element X contains
the element A twice, on two parallel paths. There is no synchronisation between the
elements of each layer, which overlap freely.

Controlling overlap. To justify the necessity of distinguishing, by the syntax of
the LeAG document itself, between the two kinds of multilayering, let us take the
following, very elementary example of a schema in which two elements overlap but in
a specific way.

Simulation-based multilayering enables to express annotations in which any overlap-
ping situation between instances of the elements A and B shall be possible:
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To understand the above representation of overlap, for instance, in situation d., the
element A will start after a co-occurring element B has started along the annotated
content, and end before or after that element also. What this figure shows is that
simulation enables to express all kinds of overlap between A and B.
Interestingly, by contrast, the only overlapping situations that are allowed in a schema-
based multilayer setting are the situations a. and b., i.e. the situations in which A
does not start after B started, and B does not end before A has ended. In other
words, SeAG schemas can control the way elements overlap in schema-based mul-
tilayering settings.

Obviously, if there is no differential syntax for the two kinds of multilayering, it is
not possible to benefit from this aspect of SeAG schemas. On the contrary, by making
so that the default, or more natural syntax for grafts be the one for schema-based
multilayering, we can make sure that all the grafts defined according to that syntax
be controlled by the schema; those explicitly written in the syntax for simulation-based
multilayering will not, but in a conscious way.

Positioning colour tags: the two kinds of multilayering. Grafts in LeAG
documents will be parsed against a schema accordingly with the following convention7

1. Schema-based layering is expressed by positioning the opening (resp. closing)
colour tag inside the same ToT as the first (resp. last) tag that makes use of
that colour in its context field.

2. Simulation-based layering is expressed positioning the opening (resp. closing)
colour tag inside the ToT that occurs at the position where the bifurcation
(resp. convergence) with the underlying hierarchy occurs in the corresponding
eAG.

Example. Consider the eAG/SeAG couples represented on page 136. The eAG
on the left, which illustrates schema-based multilayering, can be written in LeAG as
follows:
[X} ... [A in X} ... {A in X][#Pink over X>[B in X}[C in #Pink}
... {B in X]{C in #Pink]<#Pink over X]... {X]
By contrast, the eAG on the right, which is an example of simulation-based multilay-
ering, may translate into LeAG as follows:
[X}[#Pink over X> ... [A in X} ... [A in #Pink} ... {A in X][B in X}
... {A in #Pink][C in #Pink} ... {B in X] ... {C in #Pink]... <#Pink over X]{X]

6.2.3 Standard Inserts: Attributes, Structured Comment

So far, we have seen how to label the primary resources by means of entangled hi-
erarchies of elementary spanning elements. Still, editing is not only about labelling:
sometimes, additional, structured information must be added on top of the labels. In
XML, this kind of information constitutes elements’ attributes; still, adding attributes

7Actually, this convention is not arbitrary, but is based on algorithmic considerations. See
page 180.
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to an element is like annotating the element itself, that is, for the editor, inserting sec-
ondary, structured data that does not bear on the primary resources but on the tags.
Similarly, providing the editor with means to express critical information, not by
labelling the primary resources, but by inserting assertions is a useful feature. Intro-
ductions, comments and punctual notes, in their digital form, fall into that category
of annotations.
Attributes and punctual comments share the property of not being expressible with
elementary spanning elements. In LeAG, both will be represented by means of in-
serts. An insert is similar to void elements in XML in that: (1) it is both opening
and closing, which means, in the LeAG vocabulary, that inserts start and end at the
same position; (2) it is self-contained, in the sense that the tag representing the insert
is the insert’s content.
Attribute insert: general syntax. The syntax of an attribute insert respects the
following formula:

InsertA := [Att_of_ context _;_ LeAG ]

where context is the coloured name of the element whose attributes are described in
the insert, and LeAG is some a LeAG annotation stripped from its containing element,
and constitutes the content of the attributes.
Attribute insert: example. So far, the passage of The Village of Ben Suc as a
whole was simply labelled as an Extract. The following LeAG provides, as attributes
of the Extract, the author’s name, the title and the publication year of the novel:

[Extract}[Att of Extract ; [author}Jonathan Schell {author][title}The
Village of Ben Suc{title][year}1967 {year]]An ARVN officer, [...] for
hours.{Extract]

The insert corresponds, in eAG, to a hierarchy of elements bearing the suffix :Att,
included in the element Extract:

In the LeAG, there is no need neither to specify the :Att suffix for the elements defined
inside the attribute insert, nor to indicate in the context field of the top elements among
them, that they are included in the insert8. The same applies to comment inserts:
Comment inserts: general9 syntax. The general syntax of a comment insert is
the following:

InsertC := [ name _in_ context ( ,_ ID) ? _;_ LeAG ]
where name is the name of the insert, context is the coloured name of the elements
the insert is the son of and LeAG structured data conform to the LeAG model, consti-
tuting the content of the comment. The ID field will be discussed in Paragraph 6.2.4.

8Id est, there is no need to write [author in Att of Extract}, for instance.
9A refinement of the following syntax will be proposed in the paragraph 6.2.4.
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Comment insert: an example. The following LeAG incorporates a comment re-
garding the context of The Village of Ben Suc:

[Extract}An ARVN[Comment in Extract ; [Att of Comment ;
[authorOfComment}Barrellon et al.{authorOfComment]]The mention of the
[acronym}ARVN{acronym] refers to the Vietnam War.] officer asked [...] for
hours.{Extract]

A comment being an element, it may possess attributes, as illustrated above (e.g. to
specify the name of its authors).
Inserts in a train of tags. The case of inserts within a train of tags has to be dis-
cussed. Consider the LeAG [A}...{A][B in A ; LeAG][A}...{A]. In the absence
of a schema, it is not possible to assess to which A element B belongs. If there is a
schema that does not restrict the position of the element B either at the beginning or
at the end of the element A, neither.
Second, consider [A}...[B in A ; L1][C in A ; L2]...{A]. The LeAG itself is
not ambiguous: it states that the inserts B and C occur at the same position. Yet,
in the perspective of parsing the LeAG into an eAG, since in the corresponding eAG,
two inserts will form a sequence, there is no indication in the LeAG about which insert
will come first. The following conventional rule clarifies those situations:
Rule 6.2.3 When there is no schema or when the schema does not clarify the follow-
ing situations, it shall be considered that (1) when an insert occurs in a train of tags
where an opening and a closing tags identically match the context field of the insert,
then the insert conventionally belongs to the opening element; (2) when two inserts
with the same context field occur in the same train of tags, the order in which the tags
appear along the text document provides a conventional order between the inserts.

6.2.4 Links and Quoting Elements

The last aspect of eAGs that needs to be translated into LeAG is links or quotes. We
have seen that in eAG, links and quotes are expressed harmoniously with the other
elements (i.e. by means of nodes and edges) and, for that reason, can be properly
validated. In particular, compared to XML where a link is but an ID/IDREF pair,
in SeAG/eAG, the nature of the two elements connected by a link can inherently be
restricted. Still, since links and quotes denote distant connections across the corpus
that may result in cyclic annotations (i.e. along the text stream, the beginning of an
element comes after its end), it is not possible to represent them by means of pairs of
tags along the text stream. Thus, Linear extended Annotation Graphs make use of
an additional feature: the ID field.
ID fields work as an identifier of either the source or the end of a connection (link/quote),
hence enabling to position the extreme nodes of such elements inside the LeAG, that
is, to position the elements themselves. Yet, ID fields are not tag identifiers. Indeed,
regardless of the parsing strategy adopted, there is no one-to-one correspondence be-
tween the tags of a LeAG and the nodes of an eAG expressing the same annotation,
as evidenced below10:

10Coloured shapes relate the eAG nodes/edges to the tags that set their position/label.
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Indeed, because the element A contains other elements, the tag [A} translates into two
nodes whose reference values point towards the position of [A} inside the document,
connected by an edge A:In, while the tag [B} relates to one node only. Conversely,
two tags may relate to the same node: since the element C starts where B ends, both
{B] and [C} relate to the node that separates B and C.
Yet, a finer correspondence between the LeAG tags and a subset of the nodes of the
corresponding eAG can be exploited for expressing links and quotes: (1) an opening
tag positions (and hence, matches) the root of the corresponding element in the eAG;
(2) a closing tag positions the leaf of the corresponding element in the eAG; (3) an
insert positions both the root and the leaf of the corresponding element in the eAG.
ID fields exploit that connection, as follows.
ID fields. Since opening and closing tags of ESE relate to either the root or the
leaf of an element in the corresponding eAG, ESE ID fields contain a singleton value
K. A contrario, an insert ID shall possibly designate the root and the leaf of the
corresponding eAG element and thus contains a pair of values M and N :

ID := ID_=_ K (singleton syntax)

ID := ID_=_ M _->_ N (pair syntax)
Basic example. Let us consider the following comment and a matching eAG (pink
flags represent the node identifiers):

Noteworthily, the relation between ID values and root/leaves nodes is only surjective.
Thus, the ID of the closing tag of an element and that of an element that immediately
follows have to be equal (e.g. {title, ID = 3] and [author, ID = 3}, above).
The syntax for links and quotes are based on that mechanism – plus some improve-
ments on the insert syntax.
Quote elements. Quote elements enable to include an element identified in the pri-
mary resources within a comment. In eAG, quoting the ARVN acronym from the
extract of The Village of Ben Suc within a comment can be done as follows:
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The two (orange) edges permit to structurally include the quoted element inside the
comment element.
In LeAG, since the content of a comment has to be written inside the insert itself,
quoting, inside the LeAG field of a comment, an element that has been identified
elsewhere in the annotation cannot be done but by reference. Therefore, quoting
elements appear as special comment inserts, whose LeAG field has been replaced by
an ID field (with the pair syntax):

Quote := [ name( _in_ context)?( ,_ ID1)? _;_ ID2 ]
IDi, i ∈ {1, 2} := ID_=_ Mi _->_ Ni

The pair of values of the ID2 field must then refer to some tag(s) somewhere else in
the LeAG that delimit either an element or a sequence of elements.
Quote: example The LeAG representing the above eAG is:

[Extract}[Comment in Extract ; The mention of the Army of the Republic of
Vietnam ([Quote ; ID = 1-> 2]) refers to the Vietnam War.]An [Acronym in
Extract, ID = 1}ARVN{Acronym in Extract, ID = 2] officer [...] hours.{Extract]

This LeAG does correspond to the eAG above, since it states that the Extract contains
a Comment:Att, made out of some not annotated text (which translates into an epsilon
edge), followed by a Quote containing an annotation graph whose root and leaf have
the identifiers ‘1’ and ‘2’ respectively; Extract further contains an Acronym, whose
root and leaf identifiers are ‘1’ and ‘2’ respectively.
Links. An eAG link is an element whose root is a node from an element and whose
leaf is a node from another element.
First, to represent such a graph in LeAG, we need to be able to identify a node inside
any element. Consider the link in Figure 6.1. It connects the internal nodes of two
AC:Att elements that contain nothing but those nodes. Yet, the ID field of an insert
with no LeAG field, suit to represent those AC:Att elements, only identifies the root
and leaf of the matching element, not an internal node. To fill this gap, we define
void inserts:

VoidInsert := [ in_ context ,_ ID ]
ID := ID_=_ N

Such an insert neither has a name nor a LeAG field, but it does have a context (the
element it is included in) and an ID field. Placed immediately after an opening tag,
e.g. [A}, a void insert [in A, ID = 1] enables to give the identifier ‘1’ to a node
that, in the corresponding eAG, is the node ending the A:In edge.
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Second, we need a means to express that an element may start inside an element and
end inside another one. For such a special element, we defined link insert:

Link := [ name :LinkTo_in_ context ,_ ID( _;_ LeAG)? ]
ID := ID_=_ M _->_ N OR ID_=_->_ N

The LeAG field defines the content of the link; if empty, the link is an edge. The leaf
of the link, identified by the value of the variable N above, must be an internal node
of some element, represented elsewhere by a void insert.
Link: example. Figure 6.1 illustrates how to annotate different, overlapping AC in
an extract, and how links could reify an order relation between them. The following
LeAG expresses the same annotation, extended to three ACs (the prisoner, the beating,
the American observer) as in the eAG on Figure 6.1:

[Extract}An ARVN officer asked [AC in Extract}[Att of AC ;
[Longer:LinkTo, ID = -> 2][Longer:LinkTo, ID = -> 1]][Exp in AC}a
young prisoner{Exp in AC] questions, and when [Exp in AC}he{Exp in AC]
failed to answer, beat [Exp in AC}him{Exp in AC]. [#Blue over Extract>[AC
in #Blue}[Att of AC#Blue ; [in Att#Blue, ID = 1]][Exp in AC#Blue}An
American observer who saw [#Red over Extract>[AC in #Red}[Att of AC#Red
; [in Att#Red, ID = 2][Longer:LinkTo, ID = -> 1]][Exp in AC#Red}the
beating<#Blue over Extract]{Exp in AC#Blue]{AC in #Blue] that hap-
pened then{Exp in AC#Red] reported that the officer “really worked [Exp
in AC}him{Exp in AC] over”. After [Exp in AC#Red}the beating{Exp in
AC#Red]{AC in #Red]<#Red over Extract], [Exp in AC}the prisoner{Exp in
AC]{AC in Extract]was forced to remain standing for hours.{Extract]

6.3 Summary and Notation

The following table aims at summarizing the LeAG syntax that has been introduced
in the previous paragraph.

Tags. LeAG has an inline markup syntax. An annotation graph is made out of tags.
A tag is a sequence of characters delimited by a starting character St and an ending
character Ed. The characters in between belong to the tag, whose structure is the
following :

Tag := St substance Ed

The typology of LeAG tags is given in Table 6.1.

Notation. Based on the above table, we will from now on be able to speak of the
name, context, colour, etc. fields of a tag, or that of an element or a colour – if
appropriate11.

11The definitions of elements and colours are given below. Spanning elements and colours being
made out of two tags, one can speak of a field for the whole element only for those fields that are
identical for the two tags, e.g. the name field. On the contrary, the two delimiting tags of a spanning
element do not have the same ID field, so talking about the ID field of an element does not make
any sense.
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Tag type St
char.

Ed
char.

substance field formula substance field description

opening tag [ } name father? ( ,_ ID)?

• name ∈ L

• father := _in_ context

– context := radical ( , radical)*

– radical := nameF? colour*

– nameF ∈ L

– colour := # cn

– cn is an alphabetical string

• ID := ID = N

– N ∈ N

closing tag { ] same as opening tags same as opening tags

void insert [ ] in_ context ,_ ID

• context : same as opening tags

• ID : same as opening tags

comment
insert

[ ] name _in_ context ( ,_ ID)? _;_ LeAG

• name : same as opening tags

• context : same as opening tags

• ID := ID= M -> N

– N,M ∈ N

• LeAG corresponds to an independent well-
formed LeAG, stripped from its containing el-
ement. By independent, we mean that the name
of the current insert needs not be specified as
the context of the top-level elements of the in-
dependent LeAG.

attribute
insert

[ ] :Att_of_ radical ( ,_ ID)? _;_ LeAG

• name : same as opening tags

• radical : same as opening tags

• ID := same as comment inserts

• LeAG : same as comment inserts

link insert [ ] name :LinkTo_in_ radical ,_ ID ( _;_ LeAG)?

• name : same as opening tags

• radical : same as opening tags

• ID := ID= M? -> N

– N,M ∈ N

• LeAG : same as comment inserts

quote insert [ ] name_in_ context ( ,_ ID1)? _;_ ID2

• name : same as opening tags

• context : same as opening tags

• ID1, ID2 : same as comment inserts

opening
colour tag

[ > name _over_ radical

• name : same as colour in opening tags

• radical : same as opening tags

closing colour
tag

< ] same as opening colours same as opening colours

Table 6.1: Summary of the syntax for LeAG tags.
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Given an element (or colour) A, the set of x fields of A will be denoted A.x. For
instance, considering a tag A := [Line in Poem,Stance#R,Chorus#B}:

1. A.name = {Line}. Noteworthily, since the name field cannot be multiple in
any tag, A.name will always be a singleton and will conveniently be used as a
value.

2. A.radical = {Poem ; Stance#R ; Chorus#B}.

The concatenation of the objects composing a set12 aSet will be denoted
∏
aSet. For

instance here,
∏
A.colour = #R#B.

In case of a composite field f (e.g. father), the above notation may be used to denote
a particular subfield of f (e.g. f.nameF ).
The concatenation of two values will be either implicit (no operator) or, when clarity
demands so, denoted by the character ·: for example, the concatenation of the name of
the element A and of the concatenation of its colours will be written A.name A.colour
= A.name ·

∏
A.colour – and will equal Poem#R#B.

12Note that, strictly speaking, there is not one way of concatenating the objects of a set (any
ordering of the objects yields a different value); yet, in the following, the order of the objects in the
concatenation will always be of no importance when that concatenation operator will be used.
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Chapter 7

An Efficient Parser for Linear
Extended Annotation Graphs

Let us consider that two eAG are isomorphic iff there is a bijective morphism φ
between them so that a node and its image by φ share the same reference value.
LeAG is designed as a markup syntax for eAG. Ideally, there should have been a
bijection between LeAGs and the classes of isomorphic eAGs. Yet, this is not the
case: first, because two equivalent LeAG documents shall translate into the same
eAG, and second, because several non-isomorphic eAGs could match a given LeAG –
which is clearly problematic when considering parsing LeAG documents into eAG. For
instance, the elementary LeAG [A}...{A][A}...{A] may reasonably translate into
either of the following:

or any eAG made out of a sequence of two edges labelled A with the right reference
values, separated by any number of epsilon edges. The problem is we cannot, in the
absolute, prefer one eAG over the others, since all of them do represent the fact the
LeAG document contains two A elements in a row – and also, and most importantly,
because the different eAG will not be validated against the same schemas. Indeed,
considering the three SeAGs below, the above eAG [1] is validated by the schema [S1]
only, [2] by both [S2] and [S3], and [3] by [S3] only.

Choosing one solution against the others thus cannot be done but by considering a
predefined schema. Hence parsing a LeAG means: given a SeAG, yielding a valid eAG
that ‘represents well’ the LeAG – if such an eAG exists.
In the following, we discuss how to design a deterministic schema-aware LeAG parser.
The whole discussion that follows is ‘up to isomorphism’. First, we introduce some
elements of notation, that will be useful for the following paragraphs. Then we consider
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the problem of parsing LeAG documents against a schema and show that focussing on
a certain family of LeAG-SeAG couples is beneficial in terms of algorithmic complexity.
Eventually, we define a single pass, SeAG-aware LeAG parser.

7.1 General Parsing Strategy

The parsing setting we consider here is the following: given a SeAG S, a LeAG L, we
want to design a parser that deterministically yields an eAG IS that is validated by
S and that matches L, i.e., so that there be a bijective function Φ between the set
EK of the elements of L and the set EIS of the elements of IS , so that the following
conditions are verified:

1. ∀e ∈ EK , if e is an ESE not enclosed within an insert, or a link, the name of
Φ(e) is e.name; else, the name of Φ(e) is e.name:Att;

2. ∀e ∈ EK , ref(root(e)) = ref(root(Φ(e)) ∧ ref(leaf(e)) = ref(leaf(Φ(e));

3. ∀e ∈ EK , if the root, leaf or first node of e is given the identifier value N by
means of the appropriate ID field, the corresponding node of Φ(e) has N as an
identifier value;

4. ∀e, f ∈ EK so that e is the preceding element of f along some annotation layer
of L, then Φ(e) precedes Φ(f) in IS ;

5. ∀e, f ∈ EK so that f is included in e in L, then Φ(f) is included in Φ(e) in IS .

At this point, the reason why we need a parser is because this, indirectly, provides
the LeAG markup syntax with a validation mechanism. This means that, if there
is an eAG that verifies the above conditions and that is validated by the schema S,
then, the output of the parsing algorithm with L and S as parameters, cannot be
void. Conversely, it means that if the output of the parsing algorithm, with L and S
as parameters is not void, then, L can be regarded as a valid LeAG on behalf of the
schema S.

Noteworthily, giving validation up to a parsing algorithm is coherent with the
fact the eAG/SeAG model benefits from a matrix representation model that enables
validation to be guaranteed by construction, that is, assessed in the very course of the
manufacture of an eAG, given a predefined schema. By defining data structures that
mimic the aforementioned matrix representation – or benefit from its properties – to
represent the schema and the eAG, as an output of the parsing of a LeAG L, then
validation can indeed be checked by parsing the LeAG, since parsing means building
an eAG in the template of a schema: if this construction is possible, the LeAG is valid,
and is not if not.

Performance-wise, what matters, regarding the parsing/validating algorithm, is
time complexity mainly [126]. The goal is to design an algorithm with a linear theo-
retical time complexity, in terms of the size of the document. This must be compared
to the complexity of OWL, RDFS, ScheX, SHACL, that are the only validation mech-
anisms that handle cyclic data.
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The following paragraph introduces the general parsing strategy we adopted. Some
restrictions on the nature of schemas and LeAG documents were taken in order to man-
age acceptable parsing costs: we introduce and justify those. In the last paragraph,
we provide a synthetic view of the parsing algorithm and quantify its theoretical time
complexity.

7.2 Parsing Strategy: Elements of Design

The parsing algorithm we designed works in a single pass, and its theoretical time
complexity is linear in terms of the documents’ number of tags (see Paragraph 7.3.3).
The main steps of the algorithm are the following:

1. Initiate the data structures – see 7.3.1.

2. For each ToT:

(a) Consider the colour tags. Register the colours that are newly declared in
the ToT, if they are used in a tag of the ToT or not. Register the colours
that end in the ToT.
Design discussion: page 172.

(b) Generate the (possibly disconnected) subgraphs that correspond to the ESE
defining tags only. This graph may contain pending nodes (incomplete
edges). Register to which hierarchical level the roots and leaves of each
subgraph belong.
Design discussion: page 148.

(c) Build the disconnected linear subgraphs that correspond to the different
sets of inserts sharing the same context. Connect their root and leaf to
the nodes of the ESE subgraphs marked as belonging to the same level
appropriately.
Design discussion: page 157.

(d) Connect the remaining disconnected subgraphs relative to the ToT by se-
quences of ε edges as allowed by the schema. Those sequences of ε edges
must connect nodes belonging to the same hierarchical level appropriately.
Design discussion: page 157.

(e) Connect the first node of each hierarchy of elements to the last node of
the same hierarchy belonging to a previous ToT, by means of sequences of
ε edges as allowed by the schema. This operation must result in a bigger
(incomplete – unless the ToT is the last of the LeAG) eAG containing all
the nodes and edges related to the ToT. The pending nodes whose reference
values correspond to the current ToT remain for being connected to a later
ToT.
Design discussion: page 157.

Yet, this strategy imposes some restrictions on the nature of LeAG document / SeAG
schema pairs, as defined below.
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7.2.1 Restrictions on ESE Defining Tags
SeAG/LeAG couples must verify the following conditions:

(C1) No two subgraphs of the schema define two elements with the same name.

(C2) Any subgraph of the schema that contains ESE defining edges and that
forms an Hamiltonian path can be instantiated into a hierarchy of elements.

First, (C2) implies in particular that the schema contains no recursive element’s
definition. Indeed, recursive elements’ definition imply that there is a cycle in the
schema that leads back to the root of an element from inside this element, this, before
the ending edge of that element is encountered – so the opening edges of those elements
are included in the cycle while the ending edge is not, which implies there is no way to
unfold the sequence of edges that the cycle contains into a hierarchical pattern. It is
important to ban recursive definitions in the perspective of parsing LeAGs, since this
ban prevents from the situation in which an element named X be included in another
element named X, both starting at the same reference point, which is ambiguous in
the LeAG notation. For instance, the following schema defines the elements X and ω
recursively:

Consider the following ToT: [Λ}[X in Λ}[ω in X, ID = 1}[X in ω}[ω in X, ID
= 2}[X in ω}[D}. It describes the start of a hierarchy of elements that is allowed by
the schema, as follows : Λ > X > ω > X > ω > X > D. Yet there is no way to assess
whether the tag named X, bearing the ID value 1, is the ancestor of the tag named
X, bearing the ID value 2, or the other way round. Avoiding recursive definitions in
the schema prevents from such ambiguities.
Second, (C2) prevents from writing schemas so that any graph instantiating twice,
in a row, the sequence of edges corresponding to a cycle from the schema, be not
well-formed. Consider the following SeAG:

The schema defines an element D that is either directly included in the top element Λ,
or included in B, that is included in A, itself included in Λ. Note that the elements’
definitions are not recursive here. Defining hierarchies of elements in which some
hierarchical steps are optional is a key feature of SeAG; yet, the way it is done here,
by recurring to a cycle made out of :Out edges, somehow hijacks the purpose of
cycles in SeAG, that is, to define repeatable sequences of edges. Indeed, no graph
instantiating the cycle of the schema twice in a row, as follows, can be well-formed:
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Still, (C2) does not refrain from expressing hierarchies of elements with optional hi-
erarchical steps. The above SeAG can be reformulated in order to respect (C2) as
follows:

In this context, (C1) guarantees that each tag name be associated with at most one
triple LTT’∈ L × T × T from the schema that is considered for the parsing process.
This implies that, whenever the parser reads a given tag, regardless of the context
of the element it defines in the LeAG, then a unique edge from the schema can be
associated to that tag. It is quite clear that schemas in which two elements can have
the same name do not provide that interesting property. See for example the following
SeAG :

A tag [a in ω} occurring in a LeAG could then be associated with either the edge
(a, 3, 4) or (a : In, 8, 9) from that schema. Choosing amongst those two shall then
demand to take the context of the element a of the LeAG into account – which would
mean, in this elementary example, assessing whether the element a has X or Y as an
ancestor.
From this point of view, (C1) helps designing a parser able to manage trains of tags
in which the opening and closing tags appear in a random order within a train of
tags, since it is not necessary to take the context of a tag to determine the edge of the
schema that matches the tag.

We have seen that since (C2) bans recursive elements, that are not well expressed
in LeAG, as well as cycles in the schema that hijack cyclic patterns from their intended
use: for those two reasons, the condition seems relevant. Yet (C2) also provides an
interesting property to the eAGs that will derive from a LeAG, and that can be
exploited also in order to design a LeAG parser that, at least for LeAGs made out of
ESE only, is order agnostic in terms of the tags within ToTs.
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Notation. Be G a SeAG (or an eAG), X an element from G containing other ele-
ments. Then let us denote first(X) the end of the :In edge of X and last(X) the
summit of its :Out edge.

Property 7.2.1. Be a SeAG S, verifying conditions (C1-2). Be an eAG E validated
by S. Then: be Cr,H a set of elements from E belonging to the same hierarchy H and
ending at the reference point r; be Or,H a set of elements from E belonging to H and
starting at r.

1. ∀o1, o2 ∈ Or,H , type(root(o1)) 6= type(root(o2)) ;

2. ∀c1, c2 ∈ Cr,H , type(leaf(c1)) 6= type(leaf(c2)) ;

3. ∀(o1, o2), (o′1, o
′
2) ∈ O2

r,H , type(first(o1)) = type(root(o2)) = type(first(o′1)) =
type(root(o′2))⇒ first(o1) = root(o2) ∧ o1 = o′1 ∧ o2 = o′2

4. ∀(c1, c2), (c′1, c
′
2) ∈ C2

r,H , type(leaf(c1)) = type(last(c2)) = type(leaf(c′1)) =
type(last(c′2))⇒ leaf(c1) = last(c2) ∧ c1 = c′1 ∧ c2 = c′2

5. ∀(c, o) ∈ Cr,H ×Or,H , type(last(c)) 6= type(first(o))

6. ∀(c, o), (c, o′) ∈ Cr,H × Or,H , type(leaf(c)) = type(root(o)) ∧ type(leaf(c′)) =
type(root(o′))⇒ o = o′ ∧ c = c′

Proof. 1. to 5. Hierarchical structures in an eAG are linear. In an eAG made out of
ESE only, if several elements from the same hierarchy start (resp. end) at the same
reference point, then their :In (resp. :Out) edges are consecutive (i.e. separated by
:In (resp. :Out) edges or ε edges). Thus, the instance contains a linear sequence of
:In (resp. :Out) edges mixed with ε edges. Suppose two edges from that sequence
share the same type. A common result is that a linear sequence from an eAG repeating
a type value instantiates a cycle from the schema. Yet (C2) implies that there is no
Hamiltonian subgraph of the schema that is constituted of edges suffixed :In (resp.
:Out) only, or of such edges mixed with ε edges only.
6. Suppose there were two pairs (c, o), (c′, o′) ∈ Cr,H ×Or,H , so that type(leaf(c)) =
type(root(o)) ∧ type(leaf(c′)) = type(root(o′)) and o 6= o′ ∨ c 6= c′ [H]. First,
if o 6= o′, for instance, then we know that type(root(o)) 6= type(root(o′)), which
also implies that type(leaf(c)) 6= type(leaf(c′)). Since c 6= c′ implies the same in-
equalities over node types, we can infer that in any case, [H] ⇒ type(leaf(c)) =
type(root(o)) ∧ type(root(o)) 6= type(leaf(o′)) ∧ type(root(o′)) = type(root(c′)).
Second, let e:Out denote the ending edge of an element e and e:In its opening edge.
Since o, o′, c and c′ all belong to the same hierarchy, then there is a linear subgraph of
E to which c:Out, c′:Out, o:In, o′:In belong. This means that there is a subgraph of
the schema whose label sequence respects either the following configuration a of b1:

1o and o′ on the one hand, and c and c′ on the other hand, could be inverted. This changes
nothing to the proof.
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The seqi subgraph represents the edges that are instantiated in E in order to connect
the four edges (c:Out, c′:Out, o:In, o′:In) we know belong to a linear sequence whose
nodes all share the same reference value. Config. a. If there is an edge labelled o′:Out
in seq1 or if name(o′) = name(c), then the element o′ in E begins and ends at the
same position, which is not possible since it is an ESE. Then no edge of seq1 is labelled
o′:Out. It follows that along the linear subgraph of the schema in config. a. depicted
above, an edge labelled c:Out is encountered before an edge o′:Out is. Since the
instantiation of seq1 in E is hierarchical, it means that there is an edge labelled c:In
in seq1. Yet this would imply that the element c also opens and closes at the same
reference point, which is not possible since c is an ESE. So config. a. is not possible.
Config. b. For the same reasons as for config. a., we can exclude that seq2 contains
anything but :Out or ε edges, and that seq3 contains anything but :In or ε edges. Then
the only solution for the Hamiltonian subgraph represented in config. b. to respect
condition (C2) is that all the :Out edges in seq2 have a corresponding :In edge in seq3,
in the right order as to form a hierarchical sequence, and that name(c) = name(o).
Yet this, in particular, implies that there is an ESE named name(c) = name(o) in E
that opens and ends at the same reference point, which is not possible. �

Corollary. Be a LeAG L, two ESE-defining tags t1 and t2 belonging to the same
ToT of L and so that t1 and t2 define two elements belonging to the same hierarchy2.
Be L1T1T

′
1 and L2T2T

′
2 the triples associated with each tag. Then T ′1 = T2 implies

that the node whose type equals T ′1 associated with the tag t1 (i.e. the leaf of the
corresp. element if t1 is a closing tag, or the first node of the corresp. element) is the
same node as the node of type T2 associated to the tag t2 (i.e. the root of the corresp.
element if t2 is a closing tag, or else the last node of the corresp. element).

Definition 7.2.1 : tags belonging to the same hierarchy. Be L a LeAG, X a
ToT of L, t1 and t2 two tags belonging to X. Then t1 and t2 define elements belonging
to the same hierarchy iff one of the following conditions is fulfilled:

1. t1.colours ∩ t2.colours 6= ∅;

2See Def. 7.2.1 below for a characterization.
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2. t1 and t2 are opening tags, and ∃#C ∈ t2.context.radicals so that the opening
tag [#C over t1.name> ∈ X;

3. t1 and t2 are closing tags, and ∃#C ∈ t1.context.radicals so that the closing tag
<#C over t2.name] ∈ X;

4. t1 is an opening tag and t2 is a closing tag, and ∃(#C, r) ∈ t1.context.radicals×
t2.context.radicals so that the opening tag [#C over r> ∈ X;

5. t1 is a closing tag and t2 is an opening tag, and ∃(#C, r) ∈ t1.context.radicals×
t2.context.radicals so that the closing tag <#C over r] ∈ X.

Let us now remind that an opening tag of a LeAG relates to the root of the
corresponding element in the eAG and, if the name of the tag is associated with a
label from LIn of the schema, to the first node of that element. Symmetrically, a
closing tag to the leaf of the corresponding element in the eAG and, if the name of the
tag is associated with a label from LOut of the schema, to the summit of the Out edge
of that element. Hence, this corollary suggests a parsing method for ESE defining
tags, that is agnostic in terms of the order in which such tags are read by the parser:

ESE defining tags: parsing strategy. Be a schema S, Le a LeAG and X a ToT
of Le, whose reference value is r. Be E the corresponding eAG. Let us consider we
can create nodes and associate two nodes and a label as an edge of E. Either the root
or the leaf of an edge may be undefined.
Considering the tags of X from the ones with the most numerous colours to the ones
with the less:
Associate (either by creating it or because it already exists) a node vo with r as a ref-
erence value and typed To to each ESE opening tag Ot ∈ X characterized by the triple
LoToT

′
o from S, so that there are no two nodes typed To with r as a reference value in

the hierarchy the element defined by Ot belongs to3. If a rootless edge, characterized
by the triple LoToT ′o and whose leaf has r as a reference value and results from a tag
belonging to the same hierarchy as Ot, exists, then use vo as a root for it. Else, create
an edge characterized by LoToT ′o and set vo as its root; if there is an existing node
with r as a reference value, whose type is T ′o and that results from a tag from the same
hierarchy as Ot, use that node as a leaf. Then, complement any existing, leafless edge
characterized by a triple LTTo, (L, T ) ∈ L× T , L 6= ε, and whose root results from a
tag belonging to the same hierarchy as Ot.
Symmetrically, associate (either by creating it or because it already exists) a node vc
with r as a reference value and typed T ′c to each ESE closing tag Ct ∈ X character-
ized by the triple LcTcT ′c from S, so that there are no two nodes typed T ′c with r as
a reference value in the hierarchy the element defined by Ct belongs to. If a leafless
edge, characterized by the triple LcTcT ′c and whose root results from a tag belonging
to the same hierarchy as Ct, exists, then use vc as a leaf for it. Else, create an edge
characterized by LcTcT ′c and set vc as its leaf; if there is an existing node whose type
is Tc, with r as a reference value and that results from a tag from the same hierarchy

3See Definition 7.2.1 above for a characterization of that fact.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



7.2. PARSING STRATEGY: ELEMENTS OF DESIGN 153

as Ct, use that node as a root. Then, complement any existing, rootless edge charac-
terized by a triple LT ′cT ′, (L, T ′) ∈ L × T , L 6= ε, and whose leaf has r as a reference
value and results from a tag belonging to the same hierarchy as Ct.
When all the tags have been read, complement the incomplete edges whose label is
suffixed either :In or :Out with a new node.
An description of that algorithm along with the appropriate data structures is de-
scribed in Section 7.3.

Example. Consider the following schema S and LeAG L:

L : [Ω}[A in Ω}...{A in Ω][#R over Ω>[B in Ω}[C in #R}
...{B in Ω]{C in #R]<#R over Ω]{Ω]

Let us consider the second ToT only here. There are three ESE defining tags in that
ToT, plus an opening colour tag :

t1 = {A in Ω]

t2 = [B in Ω}

t3 = [C in #R}

c = [#R over Ω>

Based on Definition 7.2.1 page 151, on the one hand, t1 and t2 belong to a common
hierarchy, for they share colours; on the other hand, t1 and t3 are on another common
hierarchy (see criterion 4 of that definition).
All three ESE tags relate to one colour only, so they are parsed in the order they
appear in the LeAG.
First, t1 is a closing tag. The name of the tag is A, which relates to the edge charac-
terized by the triple (A:Out, 3, 4). Since no node of type 4 has been defined with the
reference value corresponding to the second ToT, a node must necessarily be created.
Be v1 that node. The type of v1 is 4. There is no leafless edge for the triple (A:Out, 3,
4), so a new edge e1, with v1 as its leaf, is created. No available node can complement
the edge.
Next, t2 is an opening tag. The name of the tag is B, which relates to the edge charac-
terized by the triple (B, 4, 5). An existing node can be associated to t2, namely v1. An
edge e2 characterized by (B, 4, 5) has to be created with v1 as its root. No available
node can complement the edge.
Eventually, t3 is an opening tag. The name of the tag is C, which relates to the edge
characterized by the triple (C, 4, 5). An existing node can be associated to t3, namely
v1. An edge e3 characterized by (C, 4, 5) has to be created with v1 as its root. No
available node can complement the edge.
The incomplete edge e1, suffixed :Out, is completed by a new node v2 typed 3.
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Thus the parsing of the second ToT results in the following subgraph:

The parsing of the ToT illustrated in the above example yields a connected graph.
This is only a particular case, resulting from the fact no insert was defined and no ε
edge was involved within the edges corresponding to the ToT. In general, ε edges may
be involved within the ToT, as will be detailed in Paragraph 7.2.2. The presentation
on how to handle insert tags is given in Paragraph 7.2.3.
A remark must be made here. The above ESE parsing strategy holds only because, in
a given ToT, and along a given hierarchy of elements, type values identify nodes, due
to the restrictions made onto ESE defining tags.
The same property cannot be extended to insert tags. For instance, consider a com-
ment insert that is declared as a repeatable element in the schema. Then, along a
given hierarchy of annotation, that insert may be instantiated twice at the same posi-
tion, i.e. in the same ToT: then, the type of the root of that insert element is shared
by at least two nodes related to the same ToT and involved in the same hierarchy of
elements.
In order to maintain the validity of the above strategy for ESE tags, the idea is then
to make sensible restrictions on insert tags in order to be able to parse them inde-
pendently from ESE defining tags. More precisely the goal is to make sure that, in
the eAG corresponding to the LeAG, the subgraphs corresponding to the inserts can
be (mentally) hidden so that, after their extraction, the connected subgraphs left be
the same as those obtained by parsing the ESE tags alone. In such a setting, the
ESE tags can be parsed first, and then parsing the inserts yields some other connected
subgraphs that, in the final eAG, can be positioned ‘between’ the ESE subgraphs. The
conditions for that parsing method are given in Paragraph 7.2.3.

Eventually, in Paragraph 7.2.4, we will discuss how to connect the subgraph ob-
tained by parsing the ToT to the rest of the eAG discovered so far.

7.2.2 Restrictions on ε Edges

The first way to connect two disconnected subgraphs yielded by the parsing of some
tags from the same ToT is ε edges or, more generally, sequences of ε edges. The general
idea for connecting together the disconnected subgraphs is the following: there is only
one leaf in the whole eAG, and hierarchical annotations result in a linear subgraph in
the eAG.
Connecting the subgraphs yielded by parsing a ToT relies on the notion of hierarchical
level. The following definition clarifies this notion in our context.

Definition 7.2.2: hierarchical level. Be a schema S and a LeAG L. Be x a tag.
Be Lx the label associated with x.
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1. if x ={n in
∑
i ri], then ∀i the leaf of the corresponding eAG element is in the

hierarchical level “in ri, Left, L”4.

2. if x ={n in #C] while there is a tag <#C over r] in the ToT, then the leaf of
the corresponding eAG element is in the hierarchical level “in r, Left, L”.

3. if x =[n in c}, so that n ∈ LIn, then the first node in the corresponding eAG
element is in the hierarchical level “in n#c.colours, Right, 1”.

4. if x =[n in
∑
i ri}, then ∀i the root of the corresponding eAG element is in the

hierarchical level “in ri, Right, R”.

5. if x =[n in #C} while there is a tag [#C over r> in the ToT, then the root of
the corresponding eAG element is in the hierarchical level “in r, Right, R”.

6. if x ={n in c], so that n ∈ LOut, then the last node in the corresponding eAG
element is in the hierarchical level “in n#c.colours, Left, Z”.

Nota. The root of the element B corresponding to the ToT [#C over X>[B in #C}
belongs to two hierarchical levels: “in X, Right, R” and “in #C, Right, R”.

ε connections inside a ToT. Eventually, the nodes belonging to compatible her-
archical levels shall be connected as follows:

may connect to → “in X, Left, L” “in X, Left, Z” “in X, Right, R” “in X, Right, 1”
“in X, Left, L” - In priority 2nd choice -
“in X, Left, Z” - - - -
“in X, Right, R” - - - -
“in X, Right, 1” - - Yes -

Example. Consider the following ToT and a possible, corresponding schema:

ToT: [Λ}[a in Λ}[#R over a>[γ in #R}[b in a}[c in b}...

Based on the previous paragraph, parsing this ToT will yield the following subgraphs,
in which the hierarchical level to which the nodes belong are highlighted:

4Here, “Left” means that the hierarchical level in question has opened previously to the current
ToT; this serves as a means to disambiguate cases in which an element named X ends in a ToT where
another element named X, sharing the same context, starts: each define a hierarchical level “in X”,
but one will be “in X, Left” and the other “in X, Right” – see below. ‘L’ stands for ‘leaf’, since it is
the leaf of the element related to the tag in question that belongs to the hierarchical level “in r, Left”.
Similarly, in the following, ‘R’ will stand for ‘root’, ‘1’ for ‘first’ and ‘Z’ for ‘last’.
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Since all hierarchical structures, in an eAG, is represented by a linear graph, it seems
quite obvious that we have to gather the subgraphs by connecting, by means of the
(sequences of) ε edges allowed by the schema, the leaves belonging to a certain hier-
archical level to the roots belonging to the same hierarchical level, as follows:

Yet, the above principle needs the following restriction in order to work fine.

(CE1) The schemas we consider for parsing are ε-unambiguous, i.e. if there are
two paths ℘1 and ℘2 from the root to the leaf of the SeAG that, epsilon edges
apart, spell the same, then there is a path ℘3 that also spells the same, whose
set of non-epsilon edges equals both the sets of edges of ℘1 and of ℘2 and whose
set of epsilon edges is included in the intersection of the sets of edges of ℘1 and
of ℘2.

(CE1) is indeed a crucial restriction, since it guarantees that, given a node v1 of
the schema, connected to a node v2 by a sequence of ε edges, then there is one and
only one shortest sequence of ε from v1 to v2. This also means that it will be possible
to deterministically choose one sequence of ε edges when connecting two nodes from
the eAG during the parsing, namely, that sequence of minimal length.

Note that the very simple connecting strategy described above, which consists in
1) keeping track of the hierarchical levels each node belongs to and 2) connecting the
leaves of the subgraphs to the roots that belong to at least one same hierarchical level,
is order agnostic:

Property 7.2.2 Be a ToT X from a LeAG Le. Be G = {Gi}i the set of the con-
nected subgraphs of the eAG corresponding to Le. Then the order in which to consider
the elements of G for the ε connection is indifferent.

Noteworthily, this algorithm based on hierarchical levels is compliant with hierar-
chical levels declared as optional in the schema. Let us consider the following SeAG
and two possible LeAGs (only their first ToTs are represented here, for the sake of
brevity).
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ToT1: [Λ}[a in Λ}[b in a}[c in b}...
ToT2: [Λ}[b in Λ}[c in b}...

The subgraphs corresponding to the ToTs are the following:

The schema exhibits an optional hierarchical level, which means that the end of the
edge Λ:In, in an instance of that schema, might be connected to the start of either
a:In or b:In. This example shows that basing the ε connections on hierarchical levels
is the right solution: in the absence of an opening tag for a, in ToT2, the nodes typed
1 and 4 belong to the same hierarchical level, and thus will be connected by the edge
(ε, 1, 4) from the schema. On the contrary, when the element a is present (ToT1), then
the nodes typed 1 and 4 are not on the same hierarchical level. Hence, the ε edge from
1 to 4 will not be instantiated in the corresponding eAG.

The elements presented so far enable to define an order agnostic, single pass parser
for LeAG/SeAG couples that do not contain any insert. In the following paragraph,
we study how to consider inserts.

7.2.3 Restrictions on Insert Tags

In the eAG model inserts behave as any element: their label is just marked with the
suffix :Att, :Com or :LinkTo. Yet in LeAG, because of the shift from a graphical to
an inline markup model, inserts have some characteristics that set them apart, the
most obvious being that they open and close at the same position in the data they are
inserted in. This contrasts strongly with ESE elements, defined by two tags separated
by at least one character from the primary resources. Because of their span, two ESE
elements belonging to the same hierarchy of elements are easy to order: the first one
is the one whose ending element is found first along the data. This kind of reasoning
does not apply for inserts.
The fact inserts do not have exactly the same status in eAG and LeAG is crucial in
designing a parser from LeAG to eAG, obviously. In particular, as will be extensively
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discussed below, the fact two inserts sharing the same context, in a LeAG, will have
to be ordered and positioned along a hierarchical annotation path in the eAG corre-
sponding to the LeAG, demands new strategies for ordering elements, compared to
what was done with ESEs.
Moreover, not all inserts have the same semantics, in order to meet different targets.
In particular, there is little similarity between a void insert, whose function is to state
the ID of the first node of an element, and a comment insert, that enables to express
a structured annotation that is inserted along the annotation. As a consequence, not
all inserts will be parsed the same way.

In order to meet our algorithmic goal, several restrictions on the nature of inserts
will be defined and commented here.

SeAG/LeAG couples must also verify the following conditions:

(CIcore) In a SeAG, the root of an insert must have an out degree equal to one,
and the leaf of an insert must have an in degree equal to one as well.

(CI1) In a SeAG schema, if there is a path connecting two comment inserts5,
then this path must contain at least one ESE defining edge.

(CI1bis) If there is a path made out of ε edges only, connecting the leaf of an
insert to its root, then the path must be made out of ε edges whose root and
leaf are either the root or the leaf of the insert.

(C1ter) The only inserts that can belong to an Hamiltonian path containing no
ESE defining edge are comment inserts.

(CI2) In a LeAG, the context field of any insert is a single radical (i.e. is either
a coloured element name or a colour).

(CI3) In a SeAG schema, an element may be the father of at most one, non-
repeatable attribute insert, whose root is the end of the opening :In edge of the
element.

(CI4) In a LeAG, an ESE element contains at most one void insert, which occurs
in the same ToT as the opening tag of that ESE.

(CI2) implies that two inserts belong to the same hierarchical level iff their context
field is identical. Arguably, (CI2) is a strong limitation. Indeed, (CI2) prevents an
insert to be included in more than one element or colour. For instance, the following
pattern, that is fine in the eAGmodel, cannot translate into LeAG abiding by condition
(CI2), since the insert α is directly included in both Λ and Ω:

5Quoting inserts included.
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On the contrary, yet, it is worth noting that inserts can very well have several colours,
on condition they are included in one and only one element that has the same colours.
See for instance, the following eAG pattern may translate into the (incomplete) LeAG
L underneath, that respects (CI2):

L: [Λ}[Ω#C}[B in Λ,Ω#C}...[α in B##C]...{B in Λ,Ω#C]{Λ]{Ω#C]

Therefore, the only way for an insert to belong to several hierarchies of elements is to
be included in an element that also belongs to the same hierarchies.
It is unclear whether this restriction, in editorial terms, will be too limiting or not in
practise, but it seems that it shall not, considered what inserts represent. Indeed:

1. attribute inserts naturally characterize one element, so restriction (CI2) is quite
natural for such inserts;

2. void inserts serve as a means to explicitly state the identifier of the first node of
a given element, so the same remark can be made here;

3. link inserts are meant to connect two distinct elements: the one in which the
insert is included and another one, whose first node is pointed to by the link. So
links will naturally be included in an element.

4. the interest of positioning comment inserts in two disjoint elements is more
questionable, from an editorial point of view. Actually, this situation may remind
of the fact that a colour cannot be defined over this kind of context either
(but can, without restrictions, be defined over a multicoloured element). Only
practical experience will help us assess whether those limitations are strong or
not.

From an algorithmic point of view, preventing inserts to belong to several hierarchies
at the same time has the following consequences. First, it provides a clear and simple
characterization of the fact two inserts belong to the same hierarchy of elements (see
Property 7.2.3 below), which enables to introduce a syntactical convention for inserts,
that disambiguates cases where it is not clear to which element an insert may belong.
Second, and more importantly, it provides interesting structural properties (see Prop-
erty 7.2.4 page 162) that, together with the properties implies by (CI1), enable to
parse inserts independently from ESE tags (see Property 7.2.3.3).

Property 7.2.3 Be L a LeAG respecting (CI2), X a ToT from L. Then, two inserts
belong to the same hierarchy of elements iff their context part is equal.

This property enables to introduce a writing convention that enables the editor
to handle situations in which it is not clear to which element an insert belongs. The
following SeAG-LeAG couple examplifies those situations:
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L: [Ω}[A in Ω}...{A in Ω][α in A][A in Ω}...{A in Ω]{Ω]

Indeed, in the LeAG above, it is not possible to assess which element A the insert α
is included in. We propose a syntactical rule to enable the editor to assess explicitly if
an insert belongs to a closing ESE, an opening ESE, or takes place between a closing
and an opening ESE.

Corollary: a convention for writing inserts Be L a LeAG, X a ToT of L. The
inserts written on the left of the last non-insert tag in X do not belong to an ESE
that starts in the ToT; they are expected to be included in an ESE that ends in X.
The inserts written on the right of the last non-insert tag in X do not belong to ESE
that ends in the ToT; they are expected not to belong to an ESE that starts in X.

Example. Take the following SeAG-LeAG couple:

L: [Ω}[A in Ω}...[α in A, ID=1->2]{A in Ω][A in Ω}[β in Ω][α in A]
...{A in Ω]{Ω]

In this example, the insert α with the ID field is not included in the element A that
starts at the same ToT, while the insert α without an ID field does not belong to
the element A that ends in that ToT. Those considerations enable to associate each α
insert to the element A they belong to.
The insert β, because of its position in the ToT, is not expected to belong to an
element that ends in the ToT. Indeed, it belongs to Ω directly.
In the end, we can deduce that the above LeAG L shall be associated with the following
eAG:

Nota. It is quite clear that the writing convention above only works because an
insert cannot be included both in an opening and a closing element. Fortunately,
(CI2) prevents from such a situation.
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(CI1) means that the only possible sequence made out of comment inserts belonging
to the same hierarchical level is a repetition of the same insert several times. This
restrictions, strong as it may seem, is actually both very helpful in keeping the parsing
algorithm simple and efficient, and quite logical with the very nature of comment
inserts.
Consider the following schema, that does not verify (CI1):

This schema allows an element Λ to contain a sequence of any number of inserts a and
b, so that a inserts are at least as numerous as b inserts, and so that two b inserts are
separated by an a insert.
To understand how tricky parsing a LeAG against that schema may be, consider the
following LeAG:

[Λ}... [a in Λ]... [a in Λ][a in Λ][b in Λ][b in Λ]... [b in Λ]{Λ]
first ToT second ToT third ToT fourth ToT

Parsing the first ToT is not a problem. Parsing the second shall not be either. Yet
parsing the third ToT is way more tricky: we know that the inserts have to be ordered
along a path in the eAG, but in what order? By comparing the schema with the
list of inserts from the third ToT, it seems that there are two ordering possibilities,
namely a, b, a, b or b, a, b, a – yet which is the right one? The question is not easy since
the schema allows the insert a defined by the second ToT to be followed either by an
insert a or by an insert b, so even considering the previous ToT does not help sort out
the right insert sequence for the third ToT... To solve the problem, it is necessary to
crawl S in order to determine the set LinsΛ of all the possible sequences La,bS of inserts
a and b allowed by the schema, and then to order the set of all the inserts included
in the instance of the element Λ across the different ToTs, so as to find a sequence
matching with La,bS . To achieve that, once it has been identified that only a and b
inserts matter (which demands to list all the inserts occurring in the instance of Λ),
the maximal sub-schema whose edges are either ε edges or a and b inserts must be
identified in S – it is, in this particular case, the subgraph defining the interior of Λ).
That subschema must then be interpreted as an automaton defining a language whose
letters are inserts – in this particular case, the language is La,bS = (a · b?)∗. Then, the
inserts of each ToT containing several inserts belonging to the same hierarchy, in the
LeAG, must be ordered into a sub-word so that the concatenation of the subwords,
in the order of the corresponding ToTs, be matched against a word of the language
of the automaton that was discovered... In the above example, it is necessary to take
into account the list of inserts from the fourth ToT to sort the right insert sequence
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for the third ToT: since the second ToT yields a, the third a, b, a, b or b, a, b, a and the
last b, then only the following concatenation results in a word from La,bS = (a · b?)∗,
that is a, b, a, b, a, b6. On the contrary, condition (CI1) will enable to stick to a very
simple parsing algorithm for inserts, based on a single pass (see below).
Moreover, it is not contradictory with the nature of inserts not to allow the definition,
in the schema, of intricate patterns made out of insert elements. A pattern from a
schema enforces some elements to appear in a given order; yet since inserts take no
room along the primary resources, what does the relative order of two insert elements
occurring at the same reference point mean?
Additionally, from a practical point of view, it would not be easy for the end-user
(i.e. the annotator) to maintain her annotation consistent with the schema, would
it not respect (CI1): as the sketched algorithm above shows, the set of insert tags
allowed in a given ToT depends on the previous ToT, and limits the choice of inserts
for future positions, in a way that may not be easy to grasp7. This seems to indicate
that restriction (CI1) is a sensible one, apart from algorithmic considerations.

Nota Bene. Thus, since the only sequences of comment inserts that we may face will
be the same insert from the schema instantiated multiple times at the same position,
we need a criterion to order the insert instances. The order of appearance of the insert
tags along the LeAG will be just fine.

To finish with, (CI1bis) simply means that an insert can be both optional and
repeatable, but the way to express each characteristics is unique: optionality, by
connecting the root of the insert to its leaf by means of one ε edge; multiplicity, by
connecting the leaf of the insert to its root by means of one ε edge too.

(C1ter) reinforces (CI3) and (CI4), that prevent attribute inserts and void inserts
to occur multiple times in the same element in a LeAG: (C1ter) bans cycles, in the
SeAG, that shall contain only inserts but not only comment inserts.

The above restrictions (CI1), (CI1bis), (CI1ter) and (CI2) imply the following
property.

Property 7.2.4 Be a LeAG L, a ToT X of L. At this step, we consider there is no
link or quote insert in L. Be IC the set of inserts that occur, in X, on the left of the

6Moreover, it is quite easy to imagine LeAGs for which not only one, but several orderings of
the inserts match the schema, without there being any reasonable way to pick one over the others.
Take, for instance, the following annotation: Λ}... [a in Λ]... [a in Λ][a in Λ][a in Λ][b
in Λ]... [b in Λ]{Λ]. It is possible to make the following words out of the inserts’ names as
sketched above: a, b, a, a, a, b; a, a, b, a, a, b and a, a, a, b, a, b. Indeed, one may argue that since all
those sequences are acceptable, one could pick any indifferently. Yet in order for the parser to behave
deterministically, we need to establish arbitrary rules that ensure the chosen sequence will be the
same any time the parser runs on the same data.

7E.g. with the above schema, after a ToT containing more bs than as, an a must necessarily
occur...

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



7.2. PARSING STRATEGY: ELEMENTS OF DESIGN 163

first non-insert tag, if such a tag exists, and if so, be IO the set of inserts that occur,
in X, on the right of the last non-insert tag. We have the following results:

1. Each comment insert of L can be associated with a rooted, single-leafed graph.

2. The set of comment inserts of IC that share the same context r constitutes an
ordered set [ari ]i, so that either root(ari+1) = leaf(ari ) or there is a path made
out of ε edges only connecting leaf(ari ) to root(ari+1). Let us denote ℘rC the
subgraph made out of the comment inserts from IC of context r and the ε edges.
Idem for the comment inserts from IO. Let us denote ℘rO the subgraph made
out of the comment inserts from IO of context r and the ε edges.

3. Be ℘r1C and ℘r2C , r1 6= r2. Then L can be parsed so that ℘r1C and ℘r2C have either
no node in common or, at most, their leaf.
Be ℘r1O and ℘r2O , r1 6= r2. Then L can be parsed so that ℘r1O and ℘r2O have either
no node in common or, at most, their root.

4. More generally, L can be parsed so that all the roots and leaves of the comment
inserts have a degree equal to 2, apart from the nodes that also serve as the root
or leaf for the ℘ graph the insert they constitute belongs to: the degree of those
nodes may be more than 2.

Proof. 1. This is true of any element in an eAG.
2. Two inserts sharing the same context belong to the same hierarchy of elements
and, more importantly here, to the same hierarchical level of that hierarchy. Because
no element of that hierarchy but an insert may start and end at the same reference
point, then two inserts of context r can be separated but by one or more inserts (plus
optional ε edges) whose context contains r. Since inserts’ contexts are limited to a
single radical, then the inserts whose context contains r are reduced to those whose
context is r.
3. The question here is: can a LeAG be parsed in a way that prevents inserts to belong
to more than one chain of inserts ℘rC . The first case in which an insert should have
belonged to two chains of inserts is exemplified by the following LeAG:

...[a in X][a in Y#R][a in X, Y#R]...

Yet, this situation is forbidden by (CI2) which states that the context field of any insert
is a single radical. Thus, the only case in which two chains ℘r1C ℘r2C may converge is
when there is a colour name #R = r1 so that there is a closing colour tag <#R over
r2] in the ToT. For instance, the following figure shows the graphs that should result
from the parsing of a LeAG containing three inserts, two belonging to A directly, and
one belonging to a colour #R over A (x, y, z denote label variables, rx, lx, ry, ly, rz, lz
type variables):

ToT: [x in #R]<#R over A][y in A][z in A]{A]
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In this case, because it is the last element of a colour built over A that comes to an
end, it is quite clear that the leaf of the insert x will have to be connected to a node
of the hierarchical level of the elements directly included in A. The question is: are
there situations in which this node cannot be neither the leaf of the insert z nor the
summit of A:Out?
First, (CI1) implies that y = z ∧ ry = rz ∧ ly = lz. If the LeAG is valid, we know
that there is a way to connect the node of type lz to the summit of A:Out, either
because lz = 7 or by means of one or more consecutive ε edges.
Now, if x = y = z, then lx = lz, so there surely is a way to connect the leaf of x to
A:Out directly. In that case, the convergence of #R and the hierarchical level under
A occurs at the summit of A:Out.
Eventually, let us consider now the case x 6= y. Then because of (CI1), lx 6= rz and
there is no sequence of ε edges that connect lx to rz in the schema either, so the leaf
of x cannot connect to the chain of inserts y − z on the nodes typed rz = ry. Thus,
the connection will occur either on the nodes of type lz or on the summit of A:Out.
In the first case, we can choose to make that connection on the node of type lz that
works as a leaf for the insert z, i.e. the leaf of ℘AC .
Idem for the comment inserts in IO.
4. As a consequence of 3, it is possible to define a parsing strategy so that if two
inserts belong to a given path within the subgraph resulting from the parsing of the
set of comment inserts, then they have the same context. Be r a context, ℘rC the
corresponding chain of inserts. In ℘, the only nodes that belong to the hierarchical
level immediately under r have a type value equal either to the root or to the leaf of
the inserts ℘rC , thanks to (CI1bis).
Parsing the inserts of IC only yields a connected subgraph of the final eAG. As stated
before, all the connected subgraphs yielded when parsing the different sets of tags of
a ToT will have to be brought together into one connected graph that will, in turn,
be connected to the eAG under construction. The criterion used to pick the node of
each subgraph that will serve as a connection point with another subgraph will be
its type, its colour and/or the hierarchical level it belongs to (see Paragraph 7.2.2).
Since, under those criterion, any node of ℘rC is undistinguishable either from the root
or of the leaf of ℘rC , then it means it will always be possible to make the connections
with the other subgraphs, i.e. with the other elements of the eAG, at the root or leaf
of the chains of inserts. �.

To finish with, let us comment on the restriction (CIcore). It is the core restriction,
in that it guarantees the following property, described earlier page 154, that enables
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to parse ESE defining tags and insert tags separately.

Property 7.2.5 Be S a schema, L a LeAG. S respects (CIcore) implies that the
connected subgraphs obtained by parsing the ESE tags of each ToT of L alone are
included in the eAG corresponding to L.
Proof. It is quite clear that in a LeAG containing only ESE, all the subgraphs cor-
responding to the parsing of the ESE tags of the ToTs are included in the eAG. The
discrepancy may then occur because of the presence of inserts.
Be X a ToT containing inserts, {GESEi }i the set of subgraphs resulting from the pars-
ing of the ESE tags only, and Greal the connected subgraph resulting from the parsing
of X.
The presence of each ESE tag, in a ToT, implies the presence of one and only one edge,
whose label matches the name of the ESE tag (see restriction (C1) for a definition of
this matching), both in Greal and in a given GESEk – the contrary would contradict the
general parsing principles given in Paragraph 7.1. Thus we can establish that there
is a bijection φ from the set of edges of {GESEi }i to the set of ESE defining edges of
Greal. It follows that ∃k | GESEk 6⊂ Greal implies that there are two edges e′1, e′2 of
GESEk so that leaf(e′1) = root(e′2) and leaf(φ(e′1)) 6= root(φ(e′2)).
Since the cause of GESEk 6⊂ Greal is the presence of inserts, it follows that there is a
subgraph I12 connecting leaf(φ(e′1)) to root(φ(e′2)) in Greal, containing a hierarchical
annotation path made out of insert elements only.
Yet leaf(e′1) = root(e′2) implies that the two nodes have the same type value T ; con-
dition (C1) implies that leaf(e′1) and root(e′2) also have the same type value. This
implies that, in the SeAG, the insert elements are included in a Hamiltonian cycle,
which clears out the possibility of there being any thing but comment inserts among
the insert sequence because of (CIter): the inserts are then several instances of the
same comment insert (see (CI1)), denoted Ins hereafter.
Additionally, the Hamiltonian cycle is so that there is a node of that cycle, the node of
type T that is also the ending node for an ESE defining edge and the start of another
ESE defining edge.
Because of restrictions (C1) and (CI1bis), the shape of the cyclic subgraphs containing
the definition of a comment insert element is well-known: there is one epsilon edge
connecting the leaf of the insert to its root. Thus the node of type T is a node be-
longing to Ins (not to ε edges only, for instance). The schema configuration implied
by GESEk 6⊂ Greal can thus be illustrated as follows:

As evidenced by the above illustration, the node of type T cannot be but the root or
the leaf of the insert in the schema – any other node resulting in the impossibility of
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having a hierarchical path made out of the edge ESE1, then the Hamiltonian path
starting from the node of type T , and then ESE2.
As a conclusion, GESEk 6⊂ Greal implies that the in-degree of the leaf of the insert, or
the out-degree of the root of the insert, is not equal to one. �

Counter-example. Consider the following SeAG S, that contradicts (CIcore)8.

Then consider the following LeAG, made out of ESE only divided into three ToTs:

L1 : [Λ}[X in Λ}...{X in Λ][Y in Λ}... {Y in Λ]{Λ]

Parsing the second ToT will yield the following connected subgraph G2
1:

Now consider the following LeAG, which this time contains the same ESE elements
plus an insert, as follows:

L2 : [Λ}[X in Λ}...{X in Λ][a in Λ][Y in Λ}... {Y in Λ]{Λ]

The only eAG corresponding to the L2, given the SeAG S above, is the following graph
G2:

Since G2 does not contain G2
1, we can conclude that, with this particular schema S,

that does not respect (CIcore), it is not possible to parse ESE defining tags and inserts
independently.
On the contrary, SeAG abiding by (CIcore) enable to parse first the ESE tags, and
then the insert tags.

Hence the following parsing strategy.

8This schema describes an element Λ that ends by an element Y , so that Y may be preceded
by a series of inserts, the last insert being positioned where Y starts, and so that the part of λ that
is not qualified as Y may be qualified as X... This kind of description, because it is disqualified by
(CICore), is not allowed in the perspective of the parsing. Only a user study would show whether
this disqualification is problematic or not, from an editorial point of view. Hopefully, it is baroque
enough not to...
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7.2.3.1 Comment Insert Tags: Parsing Strategy.

Be S a SeAG L a LeAG respecting the above conditions, so that L contains only ESE
and comment inserts tags. Since it is possible to parse the inserts of L so that they
form connected subgraphs whose only nodes that may be connected with nodes from
other elements than the inserts that belong to the subgraph in question are its root
and leaf, the ToT of L can be parsed as follows:
First the ESE tags must be parsed as indicated before. This operation yields a set
of connected subgraphs G = {Gi}i. The hierarchical levels to which the leaves and
nodes of those connected subgraphs belong must be registered (see 7.2.2 page 154).
Then, the inserts must be partitioned: first, into two groups IC and IO, the first group
containing those that occur on the left of the last non-insert tag in the ToT, and the
second containing the others; second, in each group, by context field value. Each final
set will translate into a sequence of comment inserts, two consecutive inserts being
connected by the minimal ε sequence between their leaf and root as allowed by the
schema. To achieve that, first, parse the LeAG field of the first insert as if it were an
independent LeAG, then augment it with a pair of edges labelled with the name of
the insert and the suffix :Com:In and :Com:Out; then treat the next insert identically
before connecting it to the previous one, etc. This operation yields a set of connected
subgraphs IC = {IrC}r and IO = {IrO}r characterized each by the context r they
belong to.
Eventually, the root and leaf of each subgraph IrX , X ∈ {C,O} have to be connected
to nodes belonging to the same hierarchical level as follows:

1. For the elements of IC :

(a) necessarily connect the leaf, and try to connect the root, of IrC , to two
nodes that belong to the hierarchical level “in r, Left, Z” and“in r, Left, L”
respectively. This case relates to insert chains that belong to an element
that closes in the ToT.

(b) OR try to connect the root of IrC to a node of the hierarchical level “in r,
Left, L”, and the leaf of IrC to a node of “in r, Right, R”. This case relates
to insert chains that belong to an element that neither closes nor starts in
the ToT.

2. For the elements of IO:

(a) necessarily connect the root, and try to connect the leaf, of IrO, to two nodes
that belong to the hierarchical level “in r, Right, 1” and “in r, Right, R”
respectively. This case relates to insert chains that belong to an element
that starts in the ToT.

(b) OR same as 1(b) above.

In the end, for a LeAG containing only ESE and comment inserts, this procedure
yields the subgraph corresponding to the ToT.

Example. Consider the following SeAG/LeAG pair.
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ToT : ... [a in Λ; [x}� � �{x]][b in Ω; [t}� � �{t]][a in Λ; [y}� � �{y]]{Λ in Ω]

Parsing the ESE tags yields the following subgraph, reduced to a single edge:

Then, the comment inserts are partitioned as follows:

IC = { [a in Λ; [x}� � �{x]][b in Ω; [t}� � �{t]][a in Λ; [y}� � �{y]] }

containing IΛ
C = { [a in Λ; [x}� � �{x]][a in Λ; [y}� � �{y]] }

and IΩ
C= { [b in Ω; [t}� � �{t]] }

IO = ∅

Then, let us consider IΛ
C . Its first constituent is [a in Λ; [x}� � �{x]] . First, the

LeAG field must be parsed, and the eAG resulting from this parsing be augmented
with the edges delimiting the insert element, which yields the following graph:

e1 :

The same must be done with the second insert of IΛ
C . This yields:

e2 :

Then the root of e2, which is of type 6, must be connected to the leaf of e1, which is
of type 3. The shortest sequence of ε edges connecting a node typed 6 to a node typed
3 is a single ε edge (which is OK with (CI1bis)) characterized by the triple (ε, 6, 3).
This edge can be instantiated with the leaf of e1 as a root and the root of e2 as a leaf.
This yields the following graph, denoted IΛ

C :
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The same procedure then applies to IΩ
C , which yieds the following homonym graph:

Eventually, those graphs want connecting with e0. First, we investigate whether the
leaf of IΛ

C can connect the root of e0, which belongs to the hierarchical level “in Λ,
Left, Z”. The answer is it can, by means of (ε, 6, 7). This ε edge is thus instantiated.
The root of IΛ

C does not find a corresponding node, on the contrary. So we are done
with IΛ

C . This builds the following graph:

The only match for IΩ
C is for its root, which can connect to the leaf of e0. This produces

the following, connected graph that corresponds to the whole ToT:

To finish with, the following describes how quote, attributes, void and link inserts can
be parsed.

7.2.3.2 Quote Insert Tags: Parsing Strategy.

In the LeAG model, quote inserts are a particular case of comment inserts, whose
LeAG field is restricted to a pair of node identifiers id1 and id2 (it is, more formally,
a second ID field). The similarity between comment and quote inserts is reinforced
here since both kinds of inserts must abide by the same restrictions – see (CI1ter) and
(CI2). Hence, parsing a quote insert is quite easy:

1. Quote inserts can be parsed alongside other comment inserts. In particular, they
can be partitioned into the same groups IC and IL, and then separated by their
context field’s value (see page 167).

2. Then, for each quote insert of each set of quote inserts, associate (or create)
two nodes v1 and v2 with the identifiers id1 and id2 respectively specified in the
second ID field of the insert.

3. Create a pair of edges labelled with the name of the insert and the suffix :Com:In
and :Com:Out. The start of the :Com:In edge is the root of the insert, its end
is v1; the end of the :Com:Out edge is the leaf of the insert, its start is v2.
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4. Proceed with the resulting disconnected graph made out of the two previously
defined edges as a comment insert, without worrying about connecting it with
the rest of the eAG. This shall happen ‘mechanically’ when the identifiers id1 and
id2 will be encountered in the ID field of some other tags defining an element, if
they have not been found yet.

7.2.3.3 Attribute Insert Tags: Parsing Strategy.

Attribute inserts distinguish themselves from comment inserts, structurally speaking,
by not being repeatable, and by having to share their root with the first node of the
element they are included in.
This suggests that attribute inserts shall be parsed before comment inserts: Be X
an element, a the attribute insert of X. Once the ESE tags of the ToT in which
X starts have been parsed, a is parsed just like a comment insert, with the notable
exception of having its delimiting edges suffixed :AttO:In and :AttO:Out; then its
root is connected to the first node of X. Then its leaf will serve as a connection node
onto which the elements contained in X, inserts or others, will connect.

7.2.3.4 Void Inserts: Parsing Strategy

Void inserts are a syntactic tool for stating explicitly the ID of the first node of an
element. It is better to leave void inserts as the last inserts to parse: parsing them
simply means checking if there is already a node with the ID they bear and, if so,
getting the type of that node; finding the first node of the element the void insert
belongs to, and if the type is compatible with the type found previously, give this
node the ID specified in the insert. Else, notify a parsing problem.

7.2.3.5 Link Inserts: Parsing Strategy

Link inserts are quite particular since their root belongs to the element they are
included in, while their leaf can be a node of any element in the annotation.
Link inserts shall be parsed just before void inserts9, that is, after comment inserts.
The parsing strategy for link inserts is the following:

1. If it is not empty, parse the LeAG field of the insert. This gives a rooted,
single-leafed connected graph Ein.

2. Find, in the schema, the triple LTT ′ associated with the name of the insert. Get
the type tr of its root.

3. Look for the node of type tr and belonging to the same hierarchical level as the
insert, among the nodes related to the current ToT. If it does not exist, notify a
parsing problem; else, choose that node as the root of the linking element.

4. Associate a node to the identifier specified as a target in the insert. Choose that
node as a leaf for the linking element.

9Void inserts, since they do not define any node or edge but only enforce the identifier value of
some node defined by another tag, are the last tags to be parsed.
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5. If Ein is defined, augment Ein with a pair of edges labelled with the name of the
insert, suffixed :In and :Out, so that the root and leaf of the resulting element
be the nodes identified previously as such. If Ein is undefined, simply create an
edge labelled with the name of the insert.

7.2.3.6 Summary

As a summary of Paragraphs 7.2.1, 7.2.2 and 7.2.3, we have seen how to obtain a
graph representing a ToT of a LeAG, containing ESE defining tags and insert tags.
We have established that, under the appropriate conditions, ESE defining tags and
insert tags could be considered separately.

- First, parsing the ESE tags of a given ToT yields a disconnected graph that
contains either complete edges or incomplete edges, i.e. edges whose root or leaf
has not been defined yet. An incomplete edge whose leaf (resp. root) is missing
is said to contain a pending root (resp. leaf). Complete edges will result from
tags associated with edges suffixed :In or :Out; incomplete edges result from
tags that either open or close elements corresponding to unsuffixed edges.
Let us denote GESE this potentially disconnected graph.

- Second, attribute inserts can be parsed, each independently from the others.
Since the root of an attribute element must be the first node of the element the
attribute qualifies, the tag resulting from the parsing of each insert must connect
to the corresponding node of GESE .
Let us denote GESE+Att this potentially disconnected graph.

- Third, comment inserts can be parsed. They are grouped by the element they
belong to. Each insert tag can be parsed, independently from the others, which
yields a graph corresponding to the comment element. Then the graphs corre-
sponding to a group of inserts are connected together so that they form a chain
(the leaf of an element being connected to the root of at most one one another
element, and conversely), leaving one root and one leaf of insert elements non
connected.
When the comment insert is a quote insert, and if, in that case, the quoted ele-
ment has not been described by tags from the previous ToTs, then the parsing
of the quote insert results in a pair of edges, one pointing towards a node that
will be the root of the quoted element, one starting from a node that will be the
leaf of the quoted element. Those two nodes, structurally speaking, appear as a
leaf and a root in the graph resulting from the parsing of the ToT. We call them
a target root and a target leaf, to differentiate them from the other roots and
leaves of the graphs defined by the ToT.
Let us denote GESE+Att+Com this augmented, potentially disconnected graph.

- Fourth, link inserts can be parsed. The root of the linking element is an existing
node of the element the link is defined in; the leaf of the link a node characterized
by its identifier. We call that node a target leaf.
Let us denote GESE+Att+Com+Link this still potentially disconnected graph.
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- Fifth, void inserts are parsed. Parsing a void insert means specifying the iden-
tifier of the first node of the element the insert belongs to. The graph resulting
from the parsing of the ToT, after void inserts have been taken into account, is
still GESE+Att+Com+Link, with modified node identifiers.

- Last, ε edges must be defined in order to connect together the pairs of roots and
leaves from GESE+Att+Com+Link that match, based on the hierarchical levels
they belong to. This operation results in a final graph subsumingGESE+Att+Com+Link.

Let us denote Gi the final graph resulting from the complete parsing of the ith ToT
of a LeAG. Be zL the total number of ToTs in a LeAG L.

From now on, the goal is to obtain a single rooted, single leafed connected graph
at the end of the whole parsing process. First, this requires to check that each node
playing the role of a target node in a given Gi appears in another Gl, l 6= i, as a
non target-node. This also means to connect each graph Gi, i > 1, to the previous
{Gk; k < j}, in order for the hierarchical paths interrupted in a graph Gk and contin-
ued in Gi to be completed, and to appear as a path, as it should, in the final eAG.
This task of connecting Gi, i > 1 to {Gk; k < j} is divided into several cases. First, as
will be detailed in Paragraph 7.2.5, new and ending colours may introduce connections
between ToT graphs: indeed, when a coloured graft begins by an epsilon edge, there
may be a difference between the reference value of the beginning of the graft and of
the beginning of the first element of the graft. This discrepancy results in the need to
connect the ToT corresponding to the beginning of the graft to the one where the first
element of that graft appear. The same applies, symmetrically, to ending colours.
Second, is the more general case of ongoing hierarchies of elements, that were repre-
sented by a path in a given Gk and in Gi, i > k, but not in any Gj , k < j < i. Two
cases there: either the last edge of that hierarchical level, in Gk, was a complete edge,
or it was an incomplete. We study those two cases in Paragraph 7.2.4 first, before
considering the more intricate situation of opening and closing colours.

7.2.4 Connecting ToT Graphs: Ongoing Hierarchies of Ele-
ments

The problem here is to make sure that the last node involved in an element of a given
layer of annotation, belonging to Gi, the ToT graph associated with the ith ToT of
a LeAG L, be connected to the next node involved in an element belonging to that
hierarchy.
In LeAG, an annotation layer is characterized by a colour. Be #c that colour. We
have the following result:
Be a ToT Ti in which colour #c appears in the context field of at least one element
defining tag. Then if there is one ESE opening tag in Ti that is associated to a triple
LTT ′ so that L 6∈ LIn ∪ LOut, then the last node of the hierarchy #c is a pending
root. That node will then connect to the next node of the hierarchy #c, which will
have to be a pending leaf, by means of an edge labelled L.
In all other cases, the last node of #c will not be a pending node and will be connected
to the next node of #c by means of ε edges. The detail of each procedure follows.
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7.2.4.1 Pending Nodes

The case of pending nodes is quite simple. Two nodes match iff they are respectively
the root and the leaf of an incomplete edge having the same label, and if there is at
least one common colour #R between the names of the hierarchies they belong to.

Example. The following SeAG validates the subsequent, elementary LeAG.

LeAG: [Λ}[#R over Λ> [Y in Λ}[X in #R} ...{Y in Λ]{X in #R]<{Λ]

The two ToTs translate into the following graphs:

Obviously, gluing the incomplete edges results results in an eAG that is, in this par-
ticular case, homomorphic to the schema.

7.2.4.2 Non-Pending Nodes

Then, the procedure to connect two nodes of the same colour is more complicated.
Let us take an example to illustrate that. Consider the following schema.

Now, consider the following LeAG:

[Ω}[Att of Ω; [a}...{a]] ... [B in Ω} ... {B in Ω]{Ω]

Parsing T1, the first ToT of that LeAG, yields the following graph G1:
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The graph G1 represents the beginning of a single annotation layer, that is uncoloured.
The last node of that layer is v5

10. It is not a pending root. Since T1 is not the last ToT
of the LeAG, this means that v5 will be the root of a sequence of ε edges connecting
v5 to the next node of the uncoloured layer.
By looking at the schema, there are three different possibilities for that sequence of ε,
depending on the (unknown, at this step of the parsing) nature of the next uncoloured
element in the eAG:

- if the next element is A: the ε sequence will be (in terms of LTT’ values) [(ε, 4, 5)].

- if the next element is B: the ε sequence will be [(ε, 4, 5)(ε, 5, 6)].

- if the next element is C: the ε sequence will be [(ε, 4, 9)].

Those information about the possible sequences of ε assuring the inter ToT connection
for the uncoloured hierarchy will have to be stored in a tree-structure EPS with the
following levels: Colour/Type of the attainable node/Source node/Detail of the ε
sequence. For the above example, that would give:

EPS:

Then, parsing the second ToT yields the following graph:

The first node of the layer is v6. Since its type is 6. EPS/#_/6 gives the value: v5.
Thus the ε sequence has to be instantiated between the node v5 and the current node
v6. EPS/#_/6/v5 gives [(4-5)(5-6)]: thus the ε edges to be instantiated are ε45, rooted
on v6 and ending on a new node v10, followed by ε56, rooted on v10 and ending on
v6. The reference value of v10 could be any value in the [ref(v5); ref(v6)] range;
conventionally, we take the reference value of the last node, i.e. ref(v6).
Since there is no other hierarchical level in this eAG, and since there is no further
ToT, this complements the eAG corresponding to the LeAG as follows:

10The fact the node belongs to that layer can be deduced from the register of the hierarchical
levels it belongs to.
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Nota. Obviously, all the values of the EPS structure corresponding to a given hierar-
chical level must be reset after each ToT defining at least one tag from that hierarchical
level.

7.2.5 Connecting ToT Graphs: Colour Tags Handling

An annotation layer is, both in eAG, SeAG and LeAG, a hierarchy of elements. An
element X of an annotation may contain two layers of annotation (in which case the
overall annotation is not hierarchical any more) when more than one hierarchical an-
notation is defined as the content of the element X.
In eAG, hierarchical annotation takes the shape of a path, respecting certain syntac-
tical constraints (see the presentation of the eAG data model). Thus, multilayering is
characterized by the presence, between two given nodes of the element X, of two (or
more) parallel hierarchical annotation paths.
We remind here that we differentiate between two kinds of multilayering. Schema-
based multilayering is when there are several parallel, disjoint paths inside the schema
that can be instantiated each in one of the parallel paths from the instance. All the
other situations belong to simulation-based multilayering. In particular, simulation-
based multilayering enables to instantiate the same path of the schema several times
in parallel, as illustrated by the annotation of anaphoric chains shown previously.
By contrast, a LeAG is composed of an underlying, uncoloured hierarchical layer, onto
which grafts plug (grafts that themselves can serve as a basis for further grafts, and
so on). A graft is characterized by its colour, a context element into which its is en-
closed, and a hierarchy of elements it is composed of. The analogy with eAG is quite
clear: two parallel paths in an eAG corresponding to a two-layer LeAG are 1) the path
describing the uncoloured content of the element that serves as a context for the graft
and 2) the coloured content of the graft itself. The two paths diverge one from the
other on a given node that is involved in the context element – i.e. the starting node
of the graft – and converge on another node, also involved in the context element
– i.e. the ending node of the graft. For instance, in Figure 7.1.(a) page 176, the
starting point of the graft is the node v4 and its ending node v9.
Noteworthily, the starting node of a graft and the root of the first element of the
graft can differ, and symmetrically for the ending node of the graft and the leaf of
the last element of the graft. For instance, in Figure 7.1.(a), the root of the first
element of the graft is the node v6 and the leaf of the last element of the graft is v8.

As explained in Paragraph 6.2.2.2, the LeAG syntax for Schema-based and Simulation-
based multilayering is different. In Schema-based multilayering, the opening colour tag
must occur within the ToT that defines the first element of the graft; symmetrically,
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Figure 7.1: Two corresponding SeAG/LeAG/eAG triples, illustrating (a) Simulation-
based multilayering and (b) Schema-based multilayering. The coloured areas highlight
the correspondence between the ToTs and the elements they define.
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the closing colour tag must occur within the ToT that defines the last element of the
graft – see Figure 7.1.(b) page 176. By contrast, in Simulation-based multilayering,
the opening colour tag must occur in the ToT that defines the starting node of the
graft, while the closing colour tag must occur in the ToT that defines the ending node
of the graft – see Figure 7.1.(a).
As explained in Paragraph 6.2.2.2, sometimes the starting node of a graft and the root
of the first element relate to the same ToT (i.e. have the same reference value), and
symmetrically for the leaf of the last element and the end of the graft. The parsing
strategy for those settings have already been described in Paragraphs 7.2.1 and 7.2.2
– we briefly re-introduce this strategy in more details in Paragraph 7.2.5.1. In those
situations, Schema-based and Simulation-based multilayering are indistinguishable,
syntactically speaking.
More interesting – and more general – is the opposite situation, in which the starting
node (resp. ending node) of a graft and the root of the first (resp. the leaf of the last)
element of the graft do not relate to the same ToT. In such a setting, Schema-based and
Simulation-based multilayering are expressed very differently, in a way that demands
differential parsing strategies. Those are presented in Paragraph 7.2.5.2 below.

7.2.5.1 The Bordering Nodes of a Graft and its Extreme Elements Occur
at the Same Position

We consider here the situation in which the starting node of a graft occurs at the
same position as the root of the first element of that tag. This case divides into
two situations: either the two nodes are actually one same node, or not. Since the
algorithmic elements that permit to parse the ToTs that match this situation have
already been introduced in the previous paragraphs, this part works like a summary.
The symmetric situation, that is: the ending node of the graft and the leaf of its last
element occur at the same position, works the same exactly.

The first root and the starting node are the same node. Consider a schema
S, a LeAG L containing a graft. Let us distinguish between the context element and
the graft hierarchy, the first being the element (and its constituting sub-elements)
the graft is defined over and the second constituting the graft. Let us denote ℘e
the path from the schema that corresponds to the context element and ℘g the path
describing the graft hierarchy. Necessarily, there are two nodes rg, lg from ℘e that
serve as the root and leaf for ℘g.
Be X the first element of the graft and XS the subgraph of S corresponding to that
element. The situation we consider here is characterized by root(XS) = rg.

From there on, many situations may correspond to the above condition. In Fig-
ure 7.2 page 178, we illustrate the four possible situations corresponding to the ToT {A
in X][#R over X>[B in #R}[C in X}. The key idea is to consider that, when the
colour tag [# R over X> belongs to the ToT, the root of an element whose context
is #R belongs to the same hierarchy as the leaf of an element whose context is X.
Based on those considerations, we simply apply the parsing algorithms described in
Paragraphs 7.2.1, 7.2.2 and 7.2.3 – the latter only if one11 of the elements surrounding

11Note that no two elements in this setting can be inserts. Cf. Property 7.2.3.2.
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Figure 7.2: Parsing strategy for the LeAG {A in X][#R over X>[C in #R}[B in
X}, with schemas so that the starting node of the graft and the root of its first element
are one same node.

the derivation of ℘g away from ℘e is an insert.

One can also check that the same procedure works just as fine for the symmetric
situation, in which the ending node of the graft and the leaf of the last element of the
insert share the same reference value.

The last leaf and the ending node are the same node. The exact same pro-
cedure works here also, as illustrated on Figure 7.3, which rests upon the following
ToT: [A in X][#R over X>[C in #R}[B in X}.
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Figure 7.3: Parsing strategy for the LeAG [A in X][#R over X>[C in #R}[B in
X}, with schemas so that the starting node of the graft and the root of its first element
are not the same node.
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7.2.5.2 The Bordering Nodes of a Graft and its Extreme Elements Occur
at Different Positions

We now consider here the situation in which the starting node of a graft occurs at a
different position than the root of the first element of that tag and thus, result from
different ToTs. As we have seen, this case divides into two cases: Schema-based and
Simulation-based multilayering.
In order to illustrate both homogeneously, let us consider the following schema. It
defines one element Ω, containing either an ESE element C or an optional attribute
element (depicted in green below – the content of the attribute is limited to one element
a for the sake of simplicity), followed by two alternative ESE elements A or B.

Because of the Simulation-based multilayering abilities of LeAG, one can write an
annotation in which two elements C, or an element A and an element B, for instance,
overlap freely – or any elements, either of the same name or of different names.
Since the schema also contains three parallel paths, annotation is open to Schema-
based multilayering. Here, the schema is quite particular. Indeed, it makes use of the
special pattern introduced in Paragraph 6.2.2.2 for A and B (highlighted in pink in
the representation of S above), that enables to control the way those two elements, in
a Schema-based multilayer setting, overlap. Here, the elements A and B can overlap,
but A cannot start after the beginning of B and cannot end before the end of B.

Simulation-based multilayering In Simulation-based multilayering, the opening
colour tag occurs in the ToT i so that the starting node v of the graft belongs to Gi.
The advantage is that it is clear, while parsing that ToT i, that a coloured element
will occur in some following ToT i + n, n ≥ 1 – and that ε edges will be required
to connect v to the (undiscovered, so far) root v′ of the first element of the graft, in
Gi+n.

Example. Consider the start of the following LeAG and the schema shown on
Figure 7.2.5.2:

[Ω}[Att of Ω; [a}...{a] ][#R over Ω>...

According to the previous paragraphs, parsing this ToT yields the following
graph:
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The graph initiates an uncoloured hierarchy. That hierarchy will be completed in
a later ToT: by anticipation, according to the strategy given in Paragraph 7.2.4.2,
the possible ε edges that may connect the leaf of that graph to the next element
of the uncoloured hierarchy are the following:

Also, the presence of the tag [#R over Ω> in the ToT indicates that there is
a path deriving from the uncoloured hierarchy leading to the root of the first
element of the #R graft, that will be defined in an upcoming ToT. It also implies
that the divergence will occur on a node belonging to the hierarchical level “in
X, Right”.
Yet no more can be assessed so far: if the upcoming element is C, then according
to the schema, the only possible starting point for the graft shall be v2, which is
the end of the edge labelled Ω:In; else, it theoretically could be either v2 or v5.

Thus, the identity of the starting node of the graft as well as the nature of the ε
sequence from the first ToT graph to the root of the first element of the graft will be
determined by the content of the next ToT making use of the colour #R.
Since our aim is to design a single pass parser, we want to anticipate on that upcoming
ToT, and to keep track of the set of all the possible ε paths that may originate from
G1 – among which one ε path will be realised. To do so, we simply add the potential ε
sequences to the EPS tree-shaped structure defined in Paragraph 7.2.4.2 and illustrated
above, that works as a memory of all the ε paths that may originate in nodes that
have been created, sorted by colour and then by the type of the ending node of each
ε sequence.

Example. For instance, here, the above EPS structure becomes:
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Important remark. Note that in EPS, if two nodes from the same hierarchical level
may be the root of two sequences of ε edges ending by the same type (e.g. above, v2

and v5 can both be connected to a node typed 6, according to the schema), then only
the sequences originating in the latter of the two nodes along their common hierarchy
will be memorized (i.e. v5, here).
Also note it is possible to know, and thus to keep track of, the order of the nodes
belonging to the same hierarchical level, along a the corresponding hierarchy, without
crawling the graph. Indeed, as indicated on Figure 7.4, the situations in which more
than one node related to the same ToT belong to the top hierarchical level of an
element X are few. From the typology given in that figure, we can deduce that given
a set of nodes related to a given ToT, and given two nodes belonging to the same
hierarchical level “in X”, it is possible to assess which of the two nodes will precede the
other in the eAG graph, based on the complete value of the hierarchical level of each
node. Thus, requiring to know the order of the nodes within one hierarchical level
does not require to crawl the graph and is not contradictory with the goal of designing
a single pass parser.

Then, consider that the end of the LeAG is the following:

[C in #R} ... [A in Ω} ... {A in Ω] ... C in #R] ... <#R over Ω]{Ω]

The next ToT contains a tag with #R in its context. Parsing this ToT yields
the following graph, made out of an incomplete edge only.

To connect this graph with the previous ToT graphs, one just follows the proce-
dure given in Paragraph 7.2.4.2: EPS/#R/9 gives v2, EPS/#R/9/v2 gives (4-9),
so the ε sequence to instantiate is a single edge (ε, 4, 9) rooted on v2 and ending
on v6.
Parsing the next three ToTs also follows the procedure described
in Paragraph 7.2.4.2. So before parsing the last ToT, the graph obtained so far
is:
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Figure 7.4: (a) Catalogue of the possible situations in which more than one node may
belong to the same hierarcahical level “in X”. (b) The typology above shows that just
knowing the complete value of the hierarchical level of two nodes, in the shape "in X,
A, B", is enough to assess which of the two nodes will precede the other in the eAG
graph. Precedence is represented by the dotted arrows. The precedence relation is
transitive.
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The remaining ToT is the following: <#R over Ω]{Ω]. The ESE tag is parsed,
which yields a single edge labelled Ω:Out. The root of this edge is connected to
the uncoloured hierarchy as indicated in Paragraph 7.2.4.2, once again, which
results in:

The presence of a Simulation-based defining ending colour tag is then managed
as follows: since #R is defined over the uncoloured hierarchy, the first node
of the current ToT, along that uncoloured hierarchy, that can be connected to
according to EPS/#R, is connected so. Here, EPS/#R is reduced to a single
value, 11; the first (and only, here) node of a matching type with EPS/#R is v11.
Thus the epsilon sequence described by EPS/#R/11 = v10 and EPS/#R/11/v10

= (9-11), that is, a single ε edge between v10 and v11, is instantiated. Since no
other colour is ending here, and since that ToT is the last of the LeAG, this puts
an end to the parsing. The resulting graph is:

This is indeed an eAG that corresponds to the LeAG.

Schema-based multilayering. By contrast, in Schema-based multilayering, the
opening colour tag occurs in the ToT k defining the ToT graph Gk so that the root v′
of the first element of the graft belongs to Gk. In other words, the opening colour tag
does not occur in the ToT i, i < k, defining the ToT graph Gi so that the starting
node of the graft belongs to Gk. Thus there is no indication, in the ToT i, that there
will be a derivation from a node of Gi to a node of a new colour. Yet a connection will
have to be made between v′ the root of the first element of the graft and its starting
node v. Two possible strategies can be operated to do so: deduction or anticipation.
Deduction would mean to parse all the ToTs until the ToT i, and then, when facing
the fact there is a Schema-based graft, deduce from the schema what sequence(s) of ε
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edges may end on v′ – and thus find the closest, previously defined node that would
both belong to the hierarchy the graft is defined over and have the same type as one
of the roots of the ε sequences found previously. This strategy shall require back-
crawling the graph assembled so far (by connecting together {Gl, l < i}), which is a
time-consuming operation.
Anticipation extends the strategy at work for Simulation-based multilayering. It
roughly means initiating all the possible sequences of ε edges originating from any
node of each ongoing hierarchical level (that is, of nodes involved in elements that
have not ended yet, and that may, as such, still work as a context element for an
unexpected Schema-based graft). This operation is not costly in time, but in space.
Since, following Murata’s assertion that time complexity matters more than space
complexity regarding document processing [126], we will favour this option compared
with the other. The detail follows.

Example. Consider the start of the following LeAG and the schema shown on
Figure 7.2.5.2:

[Ω}[Att of Ω; [a}...{a] ]...

According to the previous paragraphs, parsing this ToT yields the following
graph, in which the hierarcahical level to which the nodes belong to is indicated:

That hierarchy will be completed in a later ToT: by anticipation, according to
the strategy given in Paragraph 7.2.4.2, the possible ε edges that may connect
the leaf of that graph to the next element of the uncoloured hierarchy are the
following:

While there is no indication that any of the above nodes will serve as the starting
node for a graft, we shall anticipate on that possibility:

Property. For any hierarchical level “in x” that is opened and not closed in
the current ToT, and that is represented in the ToT graph by a node v that can
be the origin of a sequence of ε edges, there can be a graft whose context is “in
x” whose first element’s root shall be connected to v by that series of ε edges.
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In particular, in the above ToT graph: we have three hierarchical levels, among
which one is ending within the ToT (since it corresponds to the inside of an
insert element). The top hierarchical level is represented by a single node typed
0, while no ε edge originates in the node of type 0 in the schema (see page 180).
The hierarchical level “in Ω”, on the contrary, is represented by two nodes, v2 of
type 2 and v5 of type 5 respectively, that each can be the source node of an ε
sequence and thus, are candidates for being starting nodes for grafts built onto
Ω.
We memorize that information in the EPS structure, but in a way that indicates
that the ε sequences in question are relative to an opening (‘o’) Schema-based
layer over Ω:

Note that, just as for Simulation-based multilayering, if two nodes from the same
hierarchical level may lead to the same nodes by means of ε edges, then only the
latter node along that hierarchy is to be considered.

Then, consider that the end of the LeAG is the following:
(ToT 2 & 3:) [#R over Ω>[C in #R} ... [A in Ω} ...
(ToT 4 & 5:) [#G over Ω >[B in #G} ... {A in Ω] ...
(ToT 6:) {B in #Blue]<#Blue over Ω] ...
(ToT 7:) {C in #Red]<#Red over Ω] {Ω]

The ToT 2 contains an opening colour tag over Ω, plus one ESE defining tag
whose context is that same colour. Parsing the ESE tag yields the following ToT
tag:

Then, that tag has to be connected to the previously defined ToT tags. Since
its root is typed 9, belongs to the hierarchical level “in #Red” and since the tag
[#Red over Ω> belongs to the ToT, the root of the epsilon edges connecting the
ToT to the previous one is given by EPS/over Ω o/9 = v2, and the ε sequence
is limited to a single edge ε49. This provides the following graph:
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Importantly, the ε sequence used to connect the first element of this graft has
to be supressed from EPS, since it cannot be used anymore: else, it would be
possible to instantiate a second element C with the Schema-based multilayering
syntax, while an element cannot repeat between in two different schema-based
layers. So EPS is updated as follows:

Counter Example 1. Had the ToT 2 been [#R over Ω>[C in #R}[#G
over Ω>[C in #G}, the ToT graph would have been made out of two in-
complete, parallel C edges, originating in two different nodes both typed 9.
Then, EPS/over Ω o/9 would have been queried in order to determine the
ε connection for the first node – which would have given the value v2 (4-9)
as above. This value would then have been erased from EPS. EPS/over Ω
o/9 would have been queried once again, giving no result this time – hence
resulting in a parsing error.
This mechanism prevents from opening two schema-based grafts where only
one was allowed.

The next ToT contains a single ESE defining tag that belongs to the hierarchical
level “in Ω”. Parsing this ToT yields the following graph:

That graph may be connected to the previous ToT graphs, by means of the
ε edges detailed in EPS/#_/5 = v5/(4-5). This gives the following, resulting
graph:
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Yet, very importantly, since the ε45 edge has been instantiated along the un-
coloured hierarchy, then it cannot be instantiated along any schema-defined graft
on the uncoloured hierarchy (else, as above, it would be possible to define a
schema-based graft containing an element A, which is contradictory with the
notion of schema-based multilayering). Thus, the ε sequence defined in from
“EPS/over Ω o” and containing the ε edges used to connect the current ToT
graph to the previous ones must be deleted. Here, this means that the two re-
maining values in “EPS/over Ω o” will have to be erased from it.
On the contrary, the ε sequences possibly originating in the new nodes from
the uncoloured hierarchy and belonging to the hierarchical level “in Ω” must be
added to EPS/over Ω o”.
In the end, the new value of EPS is the following:

Counter Example. Had the ToTs 3 and 4 been [B in Ω} ... [#G over
Ω>[A in #G}, then the ε sequence used to connect the root of B to the
previous ToT graphs would have been (4-5)(5-6). As a consequence, EPS
would have been emptied totally. Then, when parsing the next ToT defining
the #G graft, it would have been impossible to connect the root of the first
element of that graft to any previous node, since EPS would have been
empty.
This mechanism ensures the effectiveness of patterns like the pink one in the
schema (cf. Paragraph 7.2.5.2), that aim at controlling the way elements
overlap (e.g. here, A cannot start after B started).

The following ToT is made out of an opening colour tag defining a graft over Ω,
and an ESE defining tag from that graft. Building the ToT graph and connecting
it to the previous graphs is done as for the ToT 2. It yields the following graph,
while EPS is now empty:
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The next ToT is {A in Ω], which can be parsed as usual. The resulting graph
and EPS are:

The next ToT is {B in #Blue]<#Blue over Ω]. Parsing the ESE tag provides
a leaf v10 of type 7 to the incomplete edge B rooted in v8.
Importantly, the ToT also contains the closing colour tag for this graft. Then,
the leaf of the last element of the graft, namely v10, will be the root for a sequence
of ε edges whose end will be a node of the hierarchical level “in Ω”. The schema
indicates that the only possible ε sequence is made out of the edge (ε, 7, 11).
We memorize that information in the EPS structure, but in a way that indicates
that the ε sequences in question are relative to a closing (‘c’) Schema-based layer
over Ω:

Importantly, EPS has to verify the property below.
Property. If, for some context value r, “EPS/over r#c c” is defined and in-
dicates a certain ε sequence e, then it is not possible to add any other epsilon
sequence neither in “EPS/over r c” nor in “EPS/#c” that subsumes e.
The reason behind that property is to ensure the effectiveness of patterns like
the pink one in the schema (cf. Paragraph 7.2.5.2), that aim at controlling the
way elements overlap (e.g. here, A cannot start after B started).

Counter Example 3. Suppose that the ToT 5 and 6 were inverted, that
is, suppose that {B in #Blue]<#Blue over Ω] should occur before {A in
Ω] in the ToT. Before the patterns are parsed, EPS is empty. Parsing {B
in #Blue]<#Blue over Ω] would give the following EPS:
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Then parsing {A in Ω] yields a graph with a leaf vl of type 8 belonging to
the hierarchical level “in Ω”. Nodes of that type, according to the schema,
can be the root of an ε edge made out of two ε edge (8-7) and (7-11). Yet
it is not possible to include vl/(8-7)(7-11) in “EPS/#”, because that ε se-
quence subsumes one indicated by “EPS/over Ω c”.
Thus, the annotation pattern, expressed using the schema-based multilay-
ering syntax, aiming at defining an element A ending after an element B
belonging to a related graft, and hence contradicting the schema, is made
impossible.

The next ToT contains a coloured ESE defining tag {C in #R], an ending colour
tag <#R over Ω] and an uncoloured ESE tag {Ω]. Those three tags are parsed
as described in Paragraph 7.2.5.1, which yields the following graph, in which the
hierarchical level the nodes belong to are highlighted.

Connecting this graph to the previous ToT graphs works in three steps:

1. the incomplete edge C is completed as defined in Paragraph 7.2.4.1;

2. the first uncoloured node of the ToT, namely v12, has to be connected as
indicated in Paragraph 7.2.4.2.

3. last, since the ToT graph contains uncoloured nodes, it must be attempted
to connect those to the nodes defined in ‘EPS/over Ω c’. To do that, the
uncoloured nodes of the ToT graph must be considered from the earlier to
the latter along the uncoloured hierarchy:
‘EPS/over Ω c’ = 11/v10/(7-11). Thus, the first node typed 11 found along
the uncoloured hierarchy must be connected to v10 by means of the edge
(ε, 7, 11).
The match for this condition is v12.

Hence the following graph, which is a fine corresponding eAG for the LeAG,
according to the schema S:
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7.3 Parsing Algorithm

7.3.1 Data Structures
In the following, data structures’ names are boxed.
When a structure dic is a dictionary, then dic .k denotes the value associated
to the key k.
When a structure tree is a hierarchy whose leaves contain values and whose nodes
bear a unique name l1, l2, l1.1, l1.2, etc., then tree /l1/l1.1 denotes the subtree
rooted in l1.1.
When a structure list is an ordered set, then list k denotes the kth element of
that structure.

The data structures needed to parse a LeAG are:

1. Perennial structures

(a) S
Role: Stores the schema, i.e. the LTT’ triples allowed by the schema.
Nature: Dictionary with the labels as keys and (T, T’) couples as values.
Describing rule: S .l = (t, t′) iff there is an edge labelled l originating
in the node of type t and ending on the node of type t′ in the schema.

(b) ε∗
Role: Provides a quick access to the ε sequences allowed by the schema.
Nature: Dictionary with type values as keys, and a list of pairs (T ′, seq)
as values, where T ′ is a type value and seq a sequence of types describing
an ε sequence.
Describing rule: (t′, [t; t1...tn; t′]) ∈ ε∗ .t iff the shortest12 ε sequence
between the node typed t and the node t′ from the schema goes through
the nodes typed [t1...tn].

(c) E
Role: Stores the edges of the eAG corresponding to the input LeAG.
Nature: Dictionary with the LTT’ triples as keys, and a list of node iden-
tifier couples as values.

12The unicity of a shortest sequence is guaranteed by restriction (CE1) – see page 156.
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Describing rule: (vr, vl) ∈ E0 .ltt′ iff there is an edge labelled l origi-
nating in the node (of identifier) vr of type t and ending on the node vl of
type t′ in the schema.

(d) V
Role: Stores the characteristics of the nodes of the eAG.
Nature: Dictionary with (machine) node identifiers as keys, and a list of
four fields: type, reference, a set of colours and optionally ID (user defined
identifier).
Describing rule: V .id = [t, r, {#c1, ...#cn}]] iff the node of identifier
id is typed t, is associated with the reference value r, is related to tags
coloured #c1 ... #cn, and is not associated to any user defined ID value.

(e) Tgt
Role: Stores the nodes for which there is an user defined identifier, together
with a binary value that is true if the node was used as a non-target node
in the LeAG.
Nature: Dictionary with user-defined node identifiers as keys and a pair
of a node identifier and a binary number as value.
Describing rule: For a given Id, Tgt .Id is defined iff there is a tag t
so that i is a value that appears in an ID field of t.
Moreover, Tgt .Id = (i, 0) iff for any tag t so that Id is a value that
appears in an ID field of t:

i. EITHER t is a link insert and ∃k | t.ID= k-> Id and the leaf of the
link element is the node of machine identifier id.

ii. OR t is a quote insert and ∃k | t.ID2 = k-> Id ∨ t.ID2 = i-> k
and the root or the leaf, respectively, of the link element is the node of
machine identifier id.

2. Buffer and ephemeral data structures
A LeAG document may contain inserts that, in turn, contain LeAG fields. In
the parsing algorithm, LeAG fields will be parsed independantly from their sur-
rounding LeAG. Thus, we face a hierarchy of LeAGs.
The LeAG document can be considered as the LeAG of level 0. A LeAG field
belonging to an insert that is directly included in an element from the level 0 is
considered of level 1, and a LeAG field belonging to an insert directly included
in an element from level n ∈ N is considered of level n+ 1.
The following structures are needed for the parsing of a given level. Thus, in
practice, the following structures will be declined by level. Be a structure Str .
By convention, Str will be relative to the level 0 and Str n will be relative
to any deeper level n ≥ 1.
The definition of the structures is the following:
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(a) OCl
Role: Stores the names of the colours for which an opening colour tag
has been found but no closing colour tag. Each colour is associated with a
value ‘sim’, ‘sch’ or ‘indif’, based on the type of multilayering the beginning
(opening colour node + first coloured tag – see Paragraph 7.2.5.2) of the
graft implies.
Nature: List of pairs of colour names and string value ‘sim’, ‘sch’ or ‘indif’.
Describing rule (#c, ‘sim’)∈ OCl iff the opening colour tag of #c oc-
curs in a ToT that precedes the ToT in which the first element coloured #c
occurs, and the closing tag of #cc has not been parsed yet.
(#c, ‘sch’)∈ OCl iff the opening colour tag of #c occurs in the same
ToT as the first tag coloured #c but the first node of the first element
coloured #c is not the starting node of the insert, and the closing tag of
#cc has not been parsed yet.
(#c, ‘sch’)∈ OCl iff the opening colour has been parsed and the closing
tag of #cc has not been parsed yet, and none of the above situation was
verified.

(b) OECt
Role: Stores the classes of equivalent contexts due to the presence of open-
ing colour tags, within the ToT being parsed.
Nature: Dictionary with context names as keys and context names as val-
ues.
Describing rule: OECt .r = x iff :

i. ∃#c so that r = #c AND [#c over x> belongs to the current ToT
AND there is an element-defining tag t in the current ToT so that
#c ∈ t.colours,

ii. OR alternatively: (∀#c, r 6= #c) AND r = x AND ∃#c0 so that
OECt .#c0 = r.

(c) CECt
Role: Stores the classes of equivalent contexts due to the presence of closing
colour tags, within the ToT being parsed.
Nature: Dictionary with context names as keys and context names as
values.
Describing rule: CECt .r = x iff :

i. ∃#c so that r = #c AND <#c over x] belongs to the current ToT
AND there is an element-defining tag t in the current ToT so that
#c ∈ t.colours,

ii. OR alternatively: (∀#c, r 6= #c) AND r = x AND ∃#c0 so that
CECt .#c0 = r.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



194 CHAPTER 7. LEAG PARSER

(d) Structures that partition the set of tags of the ToT:

i. ESE
Role: Stores the ESE defining tags, ranked by ascending13 number of
colours.
Nature: List of tuples (o/c, name, colours, context, ID), where colours
and context are lists of radicals.

ii. Att
Role: Stores the attribute insert tags of the ToT.
Nature: Dictionary with context values as keys and a list of pairs
(ID,LeAG).

iii. InsR
Role: Stores the comment insert tags occurring after the last non-
insert tag of the ToT.
Nature: Dictionary with context values as keys and a list of quadru-
ple (name, colours, ID,LeAG), where colours and context are lists of
radicals.

iv. InsL
Role: Stores the remaining comment insert tags.
Nature: Dictionary with context values as keys and a list of tuples
(name, colours, ID,LeAG), where colours and context are lists of rad-
icals.

v. Link Role: Stores the link insert tags of the ToT.
Nature: List of tuples (name, colours, context, ID,LeAG).

vi. Void
Role: Stores the void insert tags of the ToT.
Nature: List of pairs (context, ID).

(e) HL
Role: Memory of the hierarchical level each node belongs to.
Nature: Hierarchical structure, as follows:

13The list is meant to be read from the last to the first element, i.e. in descending number of
colours.
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Italics denote the places where values can be inserted. Square nodes are
constant nodes. The names of the constants mimic the typology of hierar-
chical levels shown on Figure 7.4 page 183.
Example: HL /r/Left/L = v iff ∃n so that there is a tag {n in r] in
the current ToT, and v is the leaf of the element associated with that ESE
tag.

(f) wt` & wta
Role: wt` keeps track of the colours of the incoming edges that do not
occur among the colours of the outcoming edges of the nodes of the ToT
graph.
wta keeps track of the colours of the outcoming edges that do not occur

among the colours of the incoming edges of the nodes of the ToT graph.
Nature: Dictionaries with colours as keys and node identifiers as values.
Example: Consider the following ToT and schema.

... {A in X, #Red][B in #Red}[C in X} ...

Parsing the first tag will give one node v, serving as the leaf for an edge
which can be affected two colours: # and #Red. Since v has no outcoming
edge at the moment, the missing, outcoming colours # and #Red. Thus
the following content for wt` :

Then the second tag is parsed. The node v is used as the root of B, which
is a #Red tag. Thus the following update for wt` :

After the last tag is parsed, in this example, wt` is empty.

(g) EPS
Role: Stores the potential sequences of ε edges that originate in nodes re-
sulting from parsed ToTs, and that may connect nodes from further ToTs.
Nature: Hierarchical structure, as follows:
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Describing rule: See Paragraphs 7.2.4.2 and 7.2.5.2.

7.3.2 Parsing Algorithm

7.3.2.1 Main Algorithm

Inputs The algorithm takes the following as inputs:

1. A schema S and its corresponding ε∗ ;

2. A LeAG L made out of several ToTs {ToTi}i∈I ;

3. An integer value deg, denoting the level of the LeAG.

Outputs The algorithm, if it runs normally, yields the following outputs:

• if deg = 0:

1. An eAG made out of the edges E and the nodes V ;

2. The root and leaf of the eAG.

• if deg > 0:

1. A graph made out of the edges Edeg and the nodes Vdeg ;

2. The root and leaf of the top hierarchical level of the graph, i.e. the non-
target nodes with an in-degree and out-degree equal to zero respectively.

Main algorithm Initially, E and V are empty, S and ε∗ match the
user-defined schema and deg = 0.
The algorithm runs as follows:

1. Create the ephemeral, empty structures corresponding to the deg attribute.

2. Take each ToT of L in the order of the document. Let ToT∗ denote the ToT under
consideration.

(a) Empty all ephemeral structures but OCl and EPS .

(b) Preprocess ToT∗:

i. Fill ESE , Att , InsR , InsL , Link and void .

ii. Add (#c, ’sim’) to OCl the colours #c of the opening colour tags for
which no element-defining tag of ToT∗ has the colour #c.
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iii. If associated with the value ’sim’ in OCl , delete from OCl the colours
#c of the closing colour tags for which no element-defining tag of ToT∗ has
the colour #c. Else: parsing error.

iv. Fill OECt and CECt .

(c) For each element Tag∗ of ESE , in descending number of colours:

i. Find the LTT ′ value associated with Tag ∗ /name in S .
ii. Associate the right identifier either with the root, the leaf, or to both the

root and the leaf of the edge associated with Tag∗ [see Algorithm 7.3.2.2].
iii. If both a root idr and a leaf idl were associated with Tag∗:

A. insert (idr, idl) into E .LTT ′;

B. ∀#C ∈ Tag ∗ /colours, delete #C/idr in wt` ;

C. ∀#C ∈ Tag ∗ /colours \ {#c; wt` .#c = idr}, insert #C/idr in
wta ;

D. apply 2(c)iiiB and 2(c)iiiC symmetrically to idl.
iv. Else if only a node (root or leaf) id was associated with Tag∗:

A. check if there is an incomplete edge from E .LTT ′, made out of a
node compatible with id, as defined in Table 7.1:
α. if there is such an edge, complement it with id.
β. else create an new, incomplete edge with id as its only node.

Let e∗ denote resulting edge.
B. if root(e∗) is defined, ∀#C ∈ Tag ∗ /colours, delete #C/root(e) in

wt` ;

C. if root(e∗) is defined, ∀#C ∈ Tag ∗ /colours \ {#c; wt` .#c =

root(e∗)}, insert #C/root(e∗) in wta ;
D. apply 2(c)ivB and 2(c)ivC symmetrically to leaf(e∗).

(d) For each (Tag∗, r∗) so that of Att .r∗ = Tag∗:

i. Find the LrTrT ′r triple associated with r ∗ .name+Att:In in S .
If the type of HL /r∗/Right/1 is not equal to Tr: parsing error.

ii. Parse the insert Tag∗ according to the Algorithm 7.3.2.4, with HL /r∗/Right/1
as a root candidate and HL /r∗/Right/R as a leaf candidate.
Be vl the leaf returned by the algorithm.

iii. Insert vl in HL .r∗/Right/lA.

(e) For each r∗ so that InsL .r∗ 6= ∅:
i. Set a counter k to zero.
ii. For all tag Tag∗ ∈ InsL .r∗:

A. Parse Tag∗ according to the Algorithm 7.3.2.4, with:
- if Tag∗ is the first element of InsL .r∗:

HL /r∗/Left/L, if defined, as a root candidate, or else no root
candidate;

- if Tag∗ is the last element of InsL .r∗:
HL /r∗/Left/Z, if defined, as a leaf candidate, or else
HL /r∗/Right/R, if defined, as a leaf candidate,

or else no root candidate;
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- if Tag∗ is neither the first nor the last element of InsL .r∗:
no root or leaf candidate.

Be rootk and leafk the root and leaf returned by Algorithm 7.3.2.4.
B. If k = 0, return rootk as the root of the insert chain included in r. Insert

root0 in HL /r∗/Left/rI if it is different from the root candidate.

C. If k = | InsL .r ∗ | − 1, return leafk as the leaf of the insert chain
included in r. Insert leafk in HL /r∗/Left/lI if it is different from
the leaf candidate.

D. If k > 0: connect leafk−1 to rootk by means of the sequence of ε edges
seq so that (type(rootk), seq) ∈ ε∗ .type(leafk−1). Create new nodes
to connect two ε edges of that sequence.

E. Increment k.

(f) For each r∗ so that InsR .r∗ 6= ∅:

i. Set a counter k to zero.
ii. For all tag Tag∗ ∈ InsR .r∗:

A. Parse Tag∗ according to the Algorithm 7.3.2.4, with:
- if Tag∗ is the first element of InsL .r∗:

HL /r∗/Right/1, if defined, as a root candidate, or else
HL /r∗/Right/lA, if defined, as a root candidate,

or else no root candidate;
- if Tag∗ is the last element of InsL .r∗:

HL /r∗/Right/R, if defined, as a leaf candidate, or else no root
candidate;

- if Tag∗ is neither the first nor the last element of InsL .r∗:
no root or leaf candidate.

Be rootk and leafk the root and leaf returned by Algorithm 7.3.2.4.
B. If k = 0, return rootk as the root of the insert chain included in r. Insert

root0 in HL /r∗/Right/rI if it is different from the root candidate.

C. If k = | InsL .r ∗ | − 1, return leafk as the leaf of the insert chain
included in r. Insert leafk in HL /r∗/Right/lI if it is different from
the leaf candidate.

D. If k > 0: connect leafk−1 to rootk by means of the sequence of ε edges
seq so that (type(rootk), seq) ∈ ε∗ .type(leafk−1). Create new nodes
to connect two ε edges of that sequence. Add r ∗ .colours to the nodes’
colours.

E. Increment k.

(g) For all tag Tag∗ in Link :

i. Find the LrTrT ′r triple associated with Tag ∗ .name+:LinkTo:In in S .

ii. Find the node vr of HL .Tag ∗ .context whose type is Tr. If there is none:
parsing error.

iii. Find the LlTlT ′l triple associated with Tag ∗ .name+:LinkTo:Out in S .
iv. Associate (or create) a target node as the leaf of the element, as defined in

Algorithm 7.3.2.5, with Tag ∗ .ID2 and T ′l as parameters.
Be vl the returned node.
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v. Parse the insert Tag∗ according to the Algorithm 7.3.2.4, with vr as a root
candidate and vl as a leaf candidate.

(h) For all tag Tag∗ in Void :

i. Find the node v of HL .Tag ∗ .context/Right/1. If there is none: parsing
error.

ii. If V .v/ID is compatible with Tag ∗ .ID:

A. Set V .v/ID to Tag ∗ .ID;

B. Set Tgt .Tag ∗ .ID to (v, 1).

(i) To make the necessary ε connections inside ToT∗:
For all r∗ so that HL .r∗ 6= ∅:
i. Connect the connectible pairs of nodes (va, vb) of the same HL as defined in

Algorithm 7.3.2.3, if they have not been connected one to the other so far, by
means of the sequence of ε edges seq so that (type(vb), seq) ∈ ε∗ .type(vb).
Create new nodes to connect two ε edges of that sequence. Add r ∗ .colours
to the nodes’ colours.

ii. For all #c ∈ r ∗ .colour:
A. delete wta .#c.va.

B. delete wt` .#c.vb.

(j) To make the ε connections with the previous ToTs, apart from nodes belonging
to ended colours:
For all remaining coloured nodes (#c/v′) of wta :

i. find t = V .v′/type.

ii. If ∃r so that OECt .#c = r,
A. if #c is a starting colour whose starting node is in the ToT, i.e. if

r.colours ⊂ V .v′/colours:

α. delete wta .#c/v′;

β. insert (#c, ’indif’) in OCl .
B. else:

α. find the corresponding node v so that EPS .‘over r o’/t=v;

β. insert (#c, ’sch’) in OCl .

iii. Else find the corresponding node v so that EPS .#c/t=v.
iv. If they have not been connected one to the other yet: connect v to v′ by

means of the sequence of ε edges seq so that (type(v′), seq) ∈ ε∗ .type(v).
Create new nodes to connect two ε edges of that sequence. Add r ∗ .colours
to the nodes’ colours.

v. Delete EPS .#c/t/v.

(k) To make the ε connections with the colours that have ended in a previous ToT,
and to initiate EPS in the same move:
For all the contexts r s.t. EPS /‘over r c’6= ∅:

i. For all the nodes v′ of HL .r in structural order:
A. If ToT∗ contains the ending tag of a simulation-based graft over r, i.e.

if there is a colour #c so that CECt .#c=r and HL .#c= ∅:
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α. If there is a node v so that EPS .#c/type(v’)=v:
connect v to v′ by means of the sequence of ε edges seq so that
(type(v′), seq) ∈ ε∗ .type(v). Create new nodes to connect two ε
edges of that sequence. Add r ∗ .colours to the nodes’ colours.
Make sure step 2(k)iA is skipped for the next nodes of HL .r.

B. For all schema-based colour that ended in a previous ToT, i.e. for all v
so that ∃t | EPS /‘over r c’/t/v:
α. If they have not been connected one to the other yet: connect v to v′

by means of the sequence of ε edges seq so that (type(v′), seq) ∈ ε∗ .type(v).
Create new nodes to connect two ε edges of that sequence. Add
r ∗ .colours to the nodes’ colours.
β. For each t, v check that none of the edges of seq have been instanti-
ated previously between nodes of colour belonging to r.colours whose
reference value is in the range [ref(v), ref(v′)]. Else: parsing error.

γ. Delete all EPS /‘over r c’/T/V so that the sequence of ε edges
between type(V ) and T contains any edge from seq.

C. In anticipation for any starting, schema-based graft:
α. Find all the T so that ∃seq | ε∗ .type(v′)=(T, seq)

β. Insert T/v′ in EPS /‘over r o’.

(l) For all starting, simulation-based graft, i.e. for all#c so that OECt .#c 6= ∅
and OCl .#c=’sim’:

i. α. Find all the T so that ∃seq | ε∗ .type(v′)=(T, seq)

ii. β. Insert all T/v′ in EPS /‘over r o’.

(m) For all closing, schema-based graft, i.e. for all (#c, r) of CECt so that ∃v |
wt` .#c= v:

i. if r.colours ⊂ V .v/colours : delete wt` .#c= v

ii. else:
A. check that OCl .#c6=‘sim’. If not: parsing error.
B. Find all the T so that ∃seq | ε∗ .type(v)=(T, seq) and insert T/v in

EPS /‘over r c’.

(n) For all contexts r so that wt` .r 6= ∅:

i. check that ∃!v so that wt` .r= v.
ii. Find all the T so that ∃seq | ε∗ .type(v)=(T, seq)

iii. Insert T/v′ in EPS /r.

(o) Check that for all colour #c in OCl \ ( OECt ∪ CECt ), EPS .#c
is not undefined. Idem for the default colour #_.

(p) If ToT∗ is the first ToT, check that | wta | = 1. Return the corresp. node as
the root.

3. Check that | wt` | = 1. Return the corresponding node as the leaf.

4. Check that ∀ID, ( Tgt .ID)2 6= 0.
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Node pair (va, vb)
1. V .va/colours ∩ V .vb/colours 6= ∅
2. ∃#c, rb | #c ∈ V .va/colours ∧ OECt .#c =

rb ∧ rb ∈ V .vb/colours
3. ∃#c, ra | #c ∈ V .vb/colours ∧ CECt .#c =

ra ∧ ra ∈ V .va/colours

Table 7.1: Conditions for two nodes to be compatible for being part of the same pair
in the data structure E.

7.3.2.2 Associate Nodes to Tags

Inputs A tag Tag∗ and a binary root/leaf attribute.

Outputs The algorithm yields an id value.

Algorithm The algorithm runs as follows:
1. Read the PRIMARY, and then the SECONDARY cells of HL associated with

either the root or the leaf of the edge associated with Tag∗ [see Table 7.2 page 202]
until an id value i or i? is found, so that V .i/type matches the type T if the node
associated with Tag∗ that is under consideration is the root, or else T’.

2. If such a value id is found:

(a) check the compatibility of V .id/ID with the (optional) ID field value of
Tag∗. If incompatible: parsing error; if not, set V .id/ID accordingly and
set Tgt .id to (id, 1).

(b) add Tag ∗ /colours to V .id/colours;

(c) erase the content of all the PRIMARY cells and write ‘id’ instead;

(d) add ‘id?’ in all the SECONDARY cells containing no value without ‘?’.

3. Else:

(a) create an new machine identifier id;

(b) set V .id/ID accordingly with Tag∗/ID and set Tgt .id to (id, 1);

(c) insert the new node in V with the right type, reference value, colours and ID;

(d) erase the content of all the PRIMARY cells and write ‘id’ instead;

(e) add ‘id?’ in all the SECONDARY cells containing no value without ‘?’.

7.3.2.3 Connect the Connectible Nodes of a Hierarchical Level

Inputs The algorithm takes a context name r as inputs.

Outputs The algorithm builds ε connections between the connectible pairs of nodes
belonging to the hierarchical level “in r”.
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ESE tag Tag∗ Corresponding
graph

PRIMARY CELLS of HL for
Tag∗ (where the green node belongs)

SECONDARY CELLS of HL for Tag∗
(compatible with the green node)

Tag∗ =[A in Πiri} ∀i, HL /ri/Right/R

∀i so that ri is not a colour:

• HL /ri/Right/1

• HL /ri/Left/L

∀i so that ri is a colour #R so that
OECt .#R = r:

• HL /r/Right/1

• HL /r/Left/L

∀i so that CECt .ri=ri:

• ∀#c | CECt .ri = #c,

HL /#c/Left/L

Tag∗ ={B in Πiri] ∀i, HL /ri/Left/L

∀i so that ri is not a colour:

• HL /ri/Left/Z

• HL /ri/Right/R

∀i so that ri is a colour #ci so that
OECt .#ci = r:

• HL /r/Left/Z

• HL /r/Right/R

∀i so that CECt .ri=ri:

• ∀#c | CECt .ri = #c,

HL /#c/Right/R

Tag∗ =[A in Πiri},
A ∈ LIn

HL /A+Tag ∗ /colours/Right/1

• HL /A+Tag ∗ /colours/Right/R

And if OECt .A=A:

• ∀#c | OECt .A = #c,

HL /#c/Right/R

Tag∗ ={B in Πiri],
B ∈ LOut

HL /B+Tag ∗ /colours/Left/Z

• HL /B+Tag ∗ /colours/Left/L

And if CECt .B=B:

• ∀#c | CECt .B = #c,

HL /#c/Left/L

Table 7.2: List of the primary and secondary cells of the structure HL, relative to a
given tag.
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Algorithm The algorithm runs as follows. Based on the ordered set of items and
for each item, of targets, as defined in Figure 7.5:

1. Take i = 1.

2. While i < 9:

(a) If no node is designated by HL /r/targetj increment i and go to the
start of the loop.

(b) If the target field associated with itemi is ‘none’, increment i and go to the
start of the loop.

(c) Else:

i. Find, in the ascending order for j, the first targetj so that HL /r/targetj
defined.
If none is defined, the algorithm ends.
Else be v the node designated by HL /r/itemi and v′ the node
HL /r/targetj .

ii. If they have not been connected on to the other yet: connect v to v′ by
means of the sequence of ε edges seq so that (type(v′), seq) ∈ ε∗ .type(v).
Create new nodes to connect two ε edges of that sequence. Add
r ∗ .colours to the nodes’ colours.

iii. Set i to j and go to the start of the loop.

7.3.2.4 Insert with LeAG/ID2 Field Parsing

Inputs The algorithm takes as inputs: a pair of candidate root vrc and leaf vlc for
the eAG element corresponding to the insert and the tag Tag∗.

Output The algorithm builds the element graph. It also yields the ‘root’ and ‘leaf’
of the graph, i.e. the non-target nodes with an in-degree and out-degree equal to zero
respectively.

Algorithm The algorithm runs as follows:
1. Find the LrTrT ′r triple associated with r ∗ .name+Att:In in S .

2. Find the LlTlT ′l triple associated with r ∗ .name+Att:Out in S .

3. If V .vrc/type = Tr :

(a) Then if V .vr/ID is compatible with Tag∗/ID1:

i. Take vrc as the ‘real root’ vr;
ii. Set V .vr/ID to Tag∗/ID1.

(b) Else: parsing error.

4. Else: create a new node vr and insert vr/Tr/(Tag∗/colours)/Tag∗/ID1 into V .

5. Insert (vr, 1) into Tgt .Tag∗/ID1.
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Figure 7.5: The ordered list of possible items in a given hierarchical level (vertical,
green) and for each, the ordered list of possible targets (horizontal, pink).

6. Apply symmetrically the procedure 3 to 5 to r ∗ .name+Att:Out and vlc. Be vl the
resulting ‘real leaf’.

7. If ∃N,M so that LeAG =N->M:

(a) Associate (or create) a target node as the first node of the element, as defined in
Algorithm 7.3.2.5, with N and T ′r as parameters.
Be vrLeAG the returned node.

(b) Associate (or create) a target node as the last node of the element, as defined in
Algorithm 7.3.2.5, with M and T ′l as parameters.
Be vlLeAG the returned node.

8. If LeAG = ∅:

(a) Check that T ′r = Tl. If not: parsing error.

(b) Create a node of type Tl both as root and leaf output of the algorithm.

9. Else: parse Tag∗/LeAG based on S and its corresponding ε∗ , with the degree
attribute set to deg+1. Be vrLeAG and vlLeAG the root and leaf of the resulting LeAG.

10. Insert (vr, vrLeAG) in E .LrTrT ′r.

11. Delete wt` .(r ∗ .colours).vr.

12. Delete wta .#.vrLeAG.

13. ∀#C ∈ (Tag∗/colours \ {#c ∈ Tag∗/context; OECt .#c 6= ∅}) \ {#c; wt` .#c =

vr}, insert #C/vr in wta .

14. Apply symmetrically the procedure 10 to 13 to the node couple (vlLeAG, vl).
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7.3.2.5 Target Node Association

Inputs The algorithm takes as inputs: a user-defined identifier Id, a node type T .

Output The algorithm returns a node vreturn.

Algorithm The algorithm runs as follows:
1. Check if there is a value (v, x) in Tgt .Id.

(a) if there is, and if the type of v is not T : parsing error;
(b) if there is, and if the type of v is T , choose v as a node vreturn
(c) else:

i. create vreturn. Fill V .vreturn accordingly.

ii. set Tgt .Id to (vreturn, 0).

7.3.3 Parsing Algorithm: Time Complexity
In this paragraph, we qualify the time-complexity of the above algorithm. This eval-
uation is based upon five natural numbers:

1. ns, that is the total number of nodes in the schema;

2. e the length of the longest sequence of ε edges in the schema;

3. tot, that is the number of ToTs in the LeAG;

4. n, that refers to the number of tags in the whole document14;

5. p, that is the maximal number of colours that are active at the same time (i.e.
the maximal number of stacked layers of annotation in the document).

The estimation of the maximal size of the crucial, following data structures and lists,
expressed in terms of the above naturals, is the following:

- For any tag Tag∗, |{c ∈ Tag ∗ /colours}| < p.

- The number of radicals in HL is inferior to the number of tags in the train
of tags n− tot.

- The number of colour names c so that wt ` .c 6= ∅ is inferior to p. Given a
colour name c, |{v so that wt ` .c.v 6= ∅}| < n− t.

- Idem for wt a .

- The number of colour names c so that EPS .c 6= ∅ is inferior to p. The
number of contexts r so that EPS .‘over r o’ 6= ∅ is inferior to n. So is the
number of contexts r so that EPS .‘over r c’ 6= ∅.
The number of type values t in the lists in either EPS .c, EPS .‘over r o’
or EPS .‘over r c’ is inferior to nS .

14Thus n− tot+ 1 is the maximal number of tags in a ToT.
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- The cardinal of all the colour sets OCl , OECt and CECt is inferior
to p.

- For any type value t, the size of ε* .t is inferior to nS .

Additionally, the access to any value of a dictionary is O(1). Based on those esti-
mations, that are very pessimistic, we can give the following complexity estimation
of the algorithm, bit by bit (when a comment is needed), following the structure of
Algorithm 7.3.2.1:

1. The complexity of this bit is independent from the document.

2. The number of iterations of this loop is tot:

(a) The complexity of this bit is independent from the document.

(b) Filling the structures in i. can be done by reading the ToT from right to
left, in a single pass: InsR can then be filled before InsL , and is fed
only until an ESE tag is read. Thus the complexity is O(n− tot).

(c) The number of iterations of the loop is inferior to n− tot.
i. This is done in O(1).
ii. This bit requires to run Algorithm 7.3.2.2. The complexity of this

algorithm is determined by the complexity of its first step, that is
described in Table 7.2. This table states that the primary, and then
the secondary cells of HL have to be read for each context of the
tag, until a compatible identifier is found: the number of those accesses
to HL is thus inferior to twice the number of contexts of the tag.
Since two contexts of a tag necessarily have a different colour, then the
complexity of Algorithm 7.3.2.2 is O(p).

iii. This bit requires to read the lists of colours of the tag: this is done in
O(p).

iv. In A., the list of incomplete edges has to be read. It is worth noting
that there cannot be more incomplete edges than there are colours that
have been opened and not closed yet. Thus the length of this list, that
shall be indexed for fast access, is inferior to p. Then in B. and C. the
lists of colours of the tag have to be read. Hence this bit runs in O(p).

⇒ The section (c) runs in O([n− tot]p).
(d) In this section, a tag containing a LeAG field is parsed. Since the parsing

of this LeAG field is done independently from parsing the rest of the LeAG,
everything happens as if the corresponding LeAG was deported to the end
of the document and its ToTs parsed like any other – with the exception
that their root and leaf is known. Thus the complexity of this step is equal
to the complexity of the instructions that do not correspond to the parsing
of the inner LeAG. Here, the complexity for defining the edges surrounding
the eAG resulting from the LeAG field is the complexity of the steps i. and
iii., which is O(1).
⇒ The section (c) runs in O(n− tot).
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(e) Idem as above. Here, the complexity for defining the edges surrounding the
eAG resulting from the LeAG field is the complexity of the steps i. and
ii.B-E., which is O(1).
⇒ The section (c) runs in O(n− tot).

(f) Idem as above. Here, the complexity for defining the edges surrounding the
eAG resulting from the LeAG field is the complexity of the steps i. and
ii.B-E., which is O(1).
⇒ The section (c) runs in O(n− tot).

(g) Idem as above. Here, the complexity for defining the edges surrounding the
eAG resulting from the LeAG field is the complexity of the steps i., ii, iii.
and iv O(p): the complexity of i. and iii. is O(1); the complexity of ii. is
O(p) (since the length of the list of contexts is inferior to p); the complexity
of iv. has been characterized in step (c) as equal to O(p).
⇒ The section (c) runs in O([n− tot]p).

(h) This section is ran for all the void inserts, whose number is inferior to
n− tot. The operations done for each void insert tag run in constant time.
⇒ The section (c) runs in O(n− tot).

(i) This section requires to read all the radicals in HL , whose number is
inferior to n− tot. For each radical, Algorithm 7.3.2.3 has to be ran.
In Algorithm 7.3.2.3, the loop is executed at most 8 times, according to
Table 7.5. In the loop, the fact that two nodes have already been connected
together or not has to be checked, which can be done in constant time if,
whenever an edge is defined, a dictionary whose keys is a concatenation
of the identifier of the summit and end of the edge separated by a special
character, and whose value is a binary, is maintained. Then, a series of ε
edges has to be created, which implies at most e edge definitions, which are
each done in constant time. Hence the complexity of Algorithm 7.3.2.3 is
O(e).
⇒ Thus the complexity of (i) is O([n− tot] · e).

(j) This section is iterated for all the remaining nodes in wta . At this step
of the algorithm, there cannot be more such nodes than there are colours,
so the maximal number of iterations is p. Then, at each iteration, the main
operation consists in checking, once, if a list of colours r.colours is included
in another list v′/colours. Both lists contain less than p items. If we make
sure that those lists are ordered, this can be checked in O(p). Eventually,
at each iteration, a sequence of ε edges has to be created, which again can
be done in O(e).
Thus the complexity of this step is O(p · [p+ e]).

(k) The number of contexts defining an iteration of (k) is inferior is the number
of contexts in the ToT, that is itself inferior to (n− tot)p. For each of them,
9 nodes have to be considered.

A. Checking the condition A. can be done in O(p). Then α runs in
O(e).
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The maximal number of iterations of the loop B. is equal to the maximal
number of type values in the schema, that is ns. α runs in O(e). Since
we want to identify parallel sequences of ε edges, they cannot be more
numerous than p, and since E contains lists describing the edges
that can be made so that the last value describes the last edge to have
been parsed, β can be done by reading the p last values of the lists
in E defining the sequence of ε edges – those lists are at most e.
Eventually, γ demands to compare seq and up to ns lists of up to e
elements, which runs in O(ns · e2).

⇒ The time complexity for (k) is O((n− t)p · ns · e2).

(l) The maximal number of iterations of this loop equals the number of accesses
to OECt , that is inferior to p. Then, for each iteration, the number of
accesses to ε* , that is inferior to ns the total number of type values in
the schema.
⇒ The time complexity for (l) is O(p · ns).

(m) The maximal number of iterations of this loop equals the number of accesses
to CECt , that is inferior to p. Then, in i. checking the inclusion of a
colour list into another one can be done, if the lists have been kept in
order, in linear time on their length, that is in O(p). In step ii. he number
of accesses to ε* , that is inferior to ns.
⇒ The time complexity for (m) is O(p · [p+ ns]).

(n) This loop iterates for all the contexts in the ToT, that are less numerous
than p at this step (after the ε edges have been created, there is at most
one pending node per colour). Then, the size of the structures that are
searched in step i. and ii. is smaller than (n− tot) and ns respectively.
⇒ The time complexity for (n) is O(p · [p+ ns]).

(o) If the colour lists are ordered, then (o) runs in O(p).

(p) Step (p) runs in O(1).

⇒ The time complexity for step 2. is O(tot·p·([n−tot]·ns ·e2 +[p+ns]+[p+e])).

3. The time complexity for step 3. is O(1).

4. The time complexity for step 4. is O(n).

It follows that the time complexity of the whole algorithm is O(n + tot · p · ([n −
tot] · ns · e2 + [p + ns] + [p + e])). In this expression, we have kept naturals that are
not dependent on the document that is parsed but are characteristic of the schema
instead: ns and e. It has yet to be noted that ns · e2 is a worst case factor, in the
sense that ns, in particular, was used above as an upper bound for the number of type
values in lists that will most probably never, in real life, be even close to the total
number of type values in the schema. In other words, ns ·e2, which can be quite big (a
reasonable value for e would be about 10, and the total number of nodes in a schema
could be in the 103 order of magnitude), is an extremely pessimistic upper bound for
the coefficient factor for the calculation time.
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We can also consider that in a real-life document, the maximal number of layers of
annotation that may occur simultaneously will hardly go beyond a dozen (handling
over 5 simultaneous interlaced layers may even seem unrealistic, from an editorial
point of view) and may thus be consider a constant before the much bigger values n
and t could be. Indeed, if one considers a very basic annotation of the Encyclopédie,
in which only the articles would be identified, such an annotation would contain a
number of nodes about twice as big as the number of articles in the corpus, that is
close to 74.000. Thus, the above expression can be simplified into:

O(n+ tot · [n− tot])

It has to be noted that the values n and tot are not unrelated. It has been stated above
that n− tot+ 1 is the maximal number of tags in a ToT; in other words, 1 ≤ tot ≤ n.
Let us then consider the second term in the above expression. Then, if tot is close to
one, that is, if there are few ToTs in the document, then tot · [n− tot] is in the order
of magnitude of n. Now if tot is close to n, that is, if the document contains many
small ToT, then tot · [n− tot] is in the order of magnitude of t, i.e. of n.
As a consequence, the time complexity of the above algorithm is linear in terms of the
number of tags the document contains.

7.4 Conclusion

In this chapter, we have introduced LeAG, an inline markup syntax for expressing
eAG without this requiring any dedicated interface. Several syntactic notions have
been introduced in order to make LeAG expressive enough to enable the expression of
multilayer annotation containing links, quotes, comments and attributes, like in eAG:
the notion of graft, that is a means to define locally an additional annotation layer
based on an underlying layer, and the notion of insert, that is made to add critical
content inside the document.
We have also defined the algorithm for a schema-aware parser that enables to translate
a given LeAG, under some conditions, into an eAG validated by a given schema, if
such an eAG exists. The conditional aspect of the parsing, that will fail for LeAG
that do not match the given schema, can be used to define the notion of validation
for LeAG: a LeAG is valid against a SeAG S iff the result of its parsing, given S, is
defined.
Eventually, we have evaluated the time-complexity of this parsing algorithm, which is
linear. It is, to the best of our knowledge, the first validation mechanism running in
linear time for the validation of cyclic data expressed in an inline markup syntax.
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Chapter 8

Introduction

8.1 The Problem to Solve

In the Introduction part of this work, we highlighted the needs, in a collaborative
editorial setting, 1) for DSE to be grounded on schemas; 2) for schemas to be collab-
oratively defined; 3) for this collaborative work being incremental and initiated at the
individual scale.
We also translated those métier needs into technical terms, as follows:
Let us consider that, at a certain moment t, there is a collectively used data structure
S. This structure shapes the annotated corpus IS , that represents the (ongoing) DSE.
Then, at a moment t + δ, an editor envisions a different structure for the data, and
proposes an alternative data structure S′ by modifying S: practically speaking, she
defines a transformation on schemas g so that S′ = g.S.
From there on, the challenge is to assist the production of IS′ , structured data instan-
tiating S′ and sharing ‘as much information’ as possible with IS , so that the editor
shall experiment her proposition of alternative data structure on the widest scale, il-
lustrate her proposition to the other editors and, if this proposition is to be accepted
as the new data structure for the whole DSE, so that the editorial team has an in-
stance of this new data structure retaining as much of the previous editorial work as
possible, without updating the data by hand (or by means of ad-hoc scripts). More-
over, in order to avoid the situation in which too many editors should work on their
own structure without contributing to the collective edition, it should be interesting
to have a corresponding translation of the annotations natively expressed in IS′ into
a shape validated against S.
Hence the need, technically speaking, to derive a bidirectional transformation Bx =
(b1; b2) so that b1.IS = IS′ and so that any update in IS or IS′ be propagated to the
other domain by either b1 or b2.

S
g−→ S′

typ.
↪→

typ.
↪→

IS
Bx←→ IS′
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In Part II of this work, we have introduced eAG/SeAG, a schema-aware multistruc-
tured data model whose expressive power make it fit for supporting many different
editorial projects, including growing ones: based on a schema, intuitively, because the
model supports multilayering – with self overlap – then if an additional layer of anno-
tation is needed to encode a new annotation paradigm, adding a corresponding layer
to the schema and instantiating this layer can be done, regardless of the complexity of
the previous annotation. In other words, the graph formalism underlying eAG/SeAG
is so unrestrictive that it shall not limit the ‘growth’ of the data structure, compared
to other annotation languages, XML first, whose underlying graph formalism is so
narrow that any additional structure shall be shoehorned into the existing hierarchy
schema – if it can be.
We have also proposed simulation as a validation mechanism. Apart from interesting
expressive features (e.g. validation of cyclic graphs, good handling of self overlap,
etc.) and good algorithmic properties (simulation-based validation can be checked ei-
ther on-the-fly or a posteriori, with a square-time complexity), simulation appeared as
a promising solution to us precisely in the perspective of managing schema evolution.
Indeed, as sketched above, schema evolution demands that a bidirectional transfor-
mation on the instances shall be automatically derived from the transformation the
editor defines on the schemas. The fact that the eAG/SeAG model rests upon the
notion of simulation will, as we will see, help in that derivation. Indeed, contrary
to grammar-based validation approaches, in which the validating and the validated
objects are of two different natures (e.g. Tree Automaton vs. Tree in XML [126]),
eAG and SeAG are both cyclic graphs, sharing the same semantics on labels.

What follows is the presentation of an ongoing work in which we consider how to
solve the above problem of schema evolution for eAG/SeAG. This work has not been
submitted to peer-review so far. We start by positioning our proposition in the state-
of-the art briefly, before presenting our approach.

8.2 Schema Evolution, Bidirectional Transformations

More than a critical, in-depth review of the existing approaches towards the problems
of schema evolution and bidirectional transformation, we propose the reader a short
panorama of what exists, and why an alternative proposition had to be operated for
eAG/SeAG.
The technical problem sketched in the above paragraph can be related to two research
problems dealt with rather independently by two different communitites: Schema
Evolution, in the field of Database studies, and Bidirectional transformations, in the
Language community. We provide a rapid overview of both in the following.

8.2.1 Schema Evolution in Database Studies
The problem we want to tackle can be seen as a particular case of the Schema Evolu-
tion problem, applied to the context of graph-structured markup data.
Schema Evolution is a variation of the classical Data Exchange (DE) problem [76,
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113, 18, 13, 24]. Data Exchange, in general, is the process of taking data structured
according to one schema and transforming it into some sensible materialized data
validated by another schema, possibly in another model (ex. from an XML file to a
relational database), according to a mapping that declares the nature of the correspon-
dence between the source and target schemas. Schema Evolution, in particular, is a
Data Exchange situation where both target and source data are expressed in the same
model, and where the target schema is obtained by transforming the source schema
(e.g. [117] in a slightly different setting) into an updated, naturally related target
schema. The general Data Exchange problem has been widely studied in the con-
text of Relational Databases. Recently, due to the multiplication and diversification
of exchange settings, alternative contexts came into consideration, including Graph
Databases [13, 24] and Semistructured Data [8, 188].
Still, to the best of our knowledge, Data Exchange (and thus Schema Evolution) has
not been studied in the context of graph-structured, schema-aware annotation data.
Annotation, as mentioned previously, is indeed almost never done “into the wild”: more
and more annotation campaigns are collaborative [96, 120, 157]. In order to guarantee
a certain consistency across the participants, annotation is often made to rest upon
either a schema or an ontology [27, 39, 183, 130].
Schemas and ontologies are two different approaches to modelling. On the one hand,
ontologies are meant to make explicit a certain conceptualization of a domain, by
means of a well documented formalism; ontologies then complement the data itself
by adding semantics to it. Schemas, on the other hand, also provide a descriptive
model of the data, but do not restrain to the semantic level: schemas also provide the
structure of the data containers in the shape of a grammar [105]. Still, despite their
differences, both schemas and ontologies can act as harmonizing mechanisms across
research teams dedicated to annotation. This approach is exemplified by the Text
Encoding Initiative (TEI) [39] or the Gene Ontology (GO) [51] consortia, that were
precisely founded in order to define and maintain domain vocabularies for literary and
genetic annotations. Noteworthily, both the TEI and the GO consortia emphasize in
the their respective documentation that schemas must be steadily updated. [127] goes
as far as stating that “like databases schemas, ontologies inevitably change over time”.
Yet, schemas and ontologies are two different approaches to modelling. On the one
hand, ontologies are meant to make explicit a certain conceptualization of a domain,
by means of a well documented formalism; ontologies then complement the data itself
by adding semantics to it. Schemas, on the other hand, also provide a descriptive
model of the data, but do not restrain to the semantic level: schemas also provide
the structure of the data containers in the shape of a grammar [105]. While ontology
evolution has attracted some attention [169, 127], SE for complex1 markup data is an
untouched field, so far as we know, despite a comparable need in both settings.

Additionally, as illustrated on Figure 8.1, Data Exchange is generally oriented
towards the translation of the instances of an original schema into some instance of
the new schema, based on a given schema mapping Σ, but not the other way round.
Using Σ to derive a backwards transformation from the instances of the new schema
to the instances of the older schema has drawn some attention [69, 9, 10], but to the

1DE has indeed been studied for XML data – see [188, 8].
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Figure 8.1: The Data Exchange problem. Figure extracted from [108].

best of our knowledge, those studies are focussed on relational databases.

8.2.2 Bidirectional Transformations

As indicated by [57], most bidirectional propositions regarding Data Exchange are
query-oriented, in that they consist in establishing “whether an existing transforma-
tion specified in a query language, e.g., SQL, Datalog, or XQuery, can be “reversed” in
some meaningful way, i.e., create a new transformation from the target of the original
transformation to its source, rather than starting with bidirectionality by design”. On
the opposite, a wide array of natively bidirectional languages of data transformation
have been proposed, with a comparably wide diversity of approaches. The article cited
above provides the reader with an interesting panorama of the existing approaches.
Native bidirectional transformations are classically defined a mechanism for maintain-
ing the consistency of two (or more) related sources of information [57]. Bidirectional
transformations are split into three main families: Triple graph grammars, Algebraic
graph transformations and Lenses. Triple graph grammars (TGG) [153] permit to
relate two abstract models, that have to be represented as graphs, by means of a
third graph that defines the mapping between subgraphs in one abstract model to
subgraphs in the second model. The purpose of the correspondence graph is to relate
the substructures of the two models that have a one-to-one relation; since model-
instance relation is modelled as graph morphism, a substructure from an instance can
be related to a substructure from its model if it can be derived from it by means of
a series of morphisms; thus, a substructure from an instance can be translated into a
substructure from the other domain provided the model-to-model correspondence for
the subgraph of the model it relates to. Apart from the ‘positive’ relations between
the two models, exclusion rules, that prevent to translate well-formed data from one
model into non well-formed data from the other (i.e. that capture the well-formedness
rules of each domain and articulate them together) need be defined as well [67]. It
results from the above that defining a working TGG is not trivial even in case of two
simple and easy to abstract models (class-diagram and relational database models).
Additionally, the classic (and actually, mostly unique) example of TGG transforma-
tion that is given in the literature offers a means to relate class-diagrams to relational
schemas – yet, this very example shows that TGGs are not deterministic (see [153]
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p. 416), which is very limiting in terms of synchronization properties. Nonetheless,
a synchronization model based on TGGs have been proposed [91], that relies upon
deterministic TGGs only.
Lenses [73, 137] originate from the functional language community, as an alternative
solution to the Database view-update problem. A Lens can be modelled as a pair of
unidirectional transformations. Given a source of information X, the forward trans-
formation or get, maps that source structure to a view Y (which can be materialized or
abstract), while the backward transformation or put, maps a possibly updated view Y
back to a source X. Lenses are not bijective in general. In bijective languages, the put
function shall be injective and the get function shall be the corresponding inverse. One
strenghth of bidirectional languages is the fact that the forward transformation can
be an arbitrary function. “Since the forward transformation may discard information
in general, the backward transformation typically takes two arguments: an updated
output as well as the original input” [57]. Hence, classically, put and get are defined
asymmetrically as follows:

get : X −→ Y
put : Y ×X −→ X

In the above, the antisymmetry of put and get in terms of arguments has to be inter-
preted as follows: Y is a view of X, and as such, it shall always be possible to obtain
Y as the output of a function of X. This is confirmed by the laws a lens has to verify,
that describe the way a bidirectional transformation shall behave (and hence called
well-behaved rules):

PUTGET: get(put(y, x)) = y
GETPUT: put(get(x), x) = x

In order to take into account the fact that the view Y can nonetheless be updated, an
additional function create : Y −→ X is added, so that:

CREATEGET: get(create(a)) = a

Lenses are designed to work for simple data structures like lists, trees [73, 137] and
relational databases [23].
Later on, symmetric lenses were introduced, based on the notion of complement. If
the function get does not retain all the information in X, then X can somehow be
mapped onto two different spaces: Y , by get, and a complement space CX , in which
the information that is discarded by get is sent. Since we now consider Y of equal
importance as X, in this symmetric setting, the same can be said of put, that projects
Y onto X and C. Thus symmetric lenses are functions

get : X × C −→ Y × C
put : Y ×X × C −→ X × C

so that:

PUTGET: put(y, c) = (x, c′)⇒ get(x, c′) = (y, c′)
GETPUT: get(x, c) = (y, c′)⇒ put(y, c′) = (x, c′)
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In other words, a well-behaved symmetric lens shall be so that the absence of update
on one domain shall not lead to the propagation of undue modification either on the
other domain or on the complement.
It has to be noted that only symmetric bidirectional transformations may fit our use
case, in which the instances of the collective schema and of the individually proposed,
alternative schemas, are not the views of one another, and may both contain informa-
tion that cannot be deduced from what is contained in the other domain.
Eventually, Algebraic graph transformations have been proposed as a means to tackle
graph-structured data; the original proposition emanates from the GroundTram project,
under the name of UnQL+ [94]. UnQL+ is based upon the assessment that UnCAL
[38], a graph query algebra made out of a series of nine graph constructors together
with a conditional and a structural recursion operator, can be bidirectionalized [94].
The authors also added constructors for model transformation (select, replace, ex-
tend and delete), also bidirectionalized. The resulting bidirectional language is well-
behaved. Yet, the biggest disadvantage of the GroundTram proposition is that UnQL+
is not symmetric. Another limitation of the GroundTram original proposition was its
being restricted to unordered graphs. This has lately been compensated, by extending
the proposition to ordered graphs as well [187].

8.2.3 Bidirectionalizing eAG/SeAG
We can draw a few conclusive remarks from the above state-of-the-art. First, bidi-
rectionalizing eAG/SeAG, in our application context, demands that the bidirectional
transformation we want to derive from the schema transformation shall be symmetric.
It shall also work on graphs, obviously – while the combination of the this character-
istics and of symmetry has not been studied so far, to the best of our knowledge.
We now turn to the presentation of our proposition, that, contrary to most the above
mentioned bidirectional languages, is tailored for one data model. Our proposition,
though it is not technically grounded on any other bidirectional transformation lan-
guage, is philosophically related to symmetric lenses and UnQL+.
From symmetric lenses, it takes the idea that put and get transformations have to
share the same arguments, and that the part of the data each transformation does not
translate has to be part of the arguments for the inverse transformation.
From UnQL+, we retain the algebric and compositional approach: we will define first
a set of constructors/operators for SeAG, that can be composed to express complex
SeAG amendments (or definitions, but we will not focus on that aspect); then, each op-
erator will be interpreted as an operator on the instances, and bidirectionalized. Since
this is an ongoing work, the well-behaved quality of those bidirectional operators will
only be suggested by means of some examples, but not proven, unfortunately.

This last chapter will be organised as follows. First, we present the operators for the
definition of schema transformations; then, we turn to how to derive a sound eAG
transformation out of them, and how to bidirectionalize those eAG transformations.
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Chapter 9

SeAG Transformations

We present here the SeAG transformations that, from a schema S, will enable the
definition of a second schema S′. Those transformations will be defined by the com-
position of elementary operations, called modifications. To each kind of modification
corresponds one operator. Those operators work either on rooted, single-leafed sub-
graphs of the input schema (Mod and Unite operator), or on isolate nodes (Split).
The composition of those modifications, followed by a checking operation aiming at
ensuring that the produced graph is a well-formed SeAG, will result in a transforma-
tion.

9.1 Matrix-based Representation of eAG/SeAG: Cal-
culability

The upcoming transformation definitions will be expressed using the matrix represen-
tation for eAG and SeAG introduced in Paragraph 5.3.0.4. We give a brief summary
of that representation here, together with some useful complements.
Finite incidence matrix. Given a graph G = (V,E), so that the set of the node
identifiers of G is IG and the set of edge identifiers of G is JG. The incidence matrix of
G on IG and JG is a matrix [G]IG,JG whose lines are indexed on the node identifiers of
a G and whose columns are indexed on the edge identifiers of the same graph, so that
[G]IG,JGi,j = 1 indicates that the node i is the summit of the edge j, and [G]IG,JGk,j = −1
indicates that the node k is the end of that edge.
For example, be G the following graph and its corresponding finite incidence matrix:

[G]IG,JG =

e0 e1

v0

v1

v2

 1 1
−1 0
0 −1


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Infinite matrix. [G]IG,JG is a |V | × |E| matrix. Yet, importantly, given a value
x 6∈ IG, if we define I+ = IG ∪ {x}, [G]I+,JG is defined as above for the couples
(i, j) ∈ IG × JG and so that [G]I+,JG

i,j = 0 if i = x. The same applies to JG.
Recursively, if I is the set of all possible node and edge identifiers, then the infinite
matrix [G]I,I is defined.
Finite-inifinite matrix equivalence. Conversely, given [G]I,I , it is possible1 to
obtain [G]IG,IG by deleting the empty lines and columns of [G]I,I . One consequence
of this property is the possibility to express graph union by means of a classic matrix
sum, not on the finite matrices that are not necessarily indexed on the same identifier
sets, but on the infinite matrices that, by definition, are. See the item eAG/SeAG
union calculation below.
Positive and negative restrictions. Be then [G] the (finite or infinite) incidence
matrix of a graph G. The positive restriction of [G], denoted [G+], is defined by
[G+]i,j 6= 0 iff [G]i,j = 1. Then [G+]i,j = 1. The negative restriction [G−] is defined
symmetrically for negative values.
For instance, the negative restriction of the matrix [G]IG,JG is:

[G−]IG,JG =

e0 e1

v0

v1

v2

 0 0
−1 0
0 −1


Provided a conventional order on the set of edge identifier, the writing for this matrix
can be condensed into: [G+]IG,JG = [−v1 − v2].
Template. Incidence matrices need not be defined on the identifier sets of the
nodes and edges of a graph: its lines (resp. columns) just need to be indexed on
any set that enable to identify the nodes (resp. edges). In the case of a schema
S = (VS , ES), for instance, there is a bijection between the set of node identi-
fiers and the set TS = {type(v), v ∈ VS} ⊆ T of node types of the schema; there
is also a bijection between the set of edge identifiers and the set of triples XS =
{(type(sut(e)), label(e), type(end(e))), e ∈ ES} ⊆ T × L × T . Thus, a schema, or any
graph for which those bijections exist, can be represented by means of an incidence
matrix indexed on those sets.
For instance, the following schema can be described by the corresponding finite inci-
dence matrix:

[S]TS ,XS =

1A2 1B3 3ε2
1
2
3

 1 1 0
−1 0 −1
0 −1 1


Interestingly, one can notice that the value 1 in the column relative to the edge charac-
terized by 1A2 above refers to the node whose identifier is 0 and the value -1 refers to

1Since I is countable, as well as any set of identifiers IG from any graph, we can define an arbitrary
partial order ≤I (resp. ≤IG ) on I (resp. I), so that ∀(i, j) ∈ I ∩ IG, i ≤I j ⇔ i ≤IG j. Provided
that, the translation from the finite to the infinite matrix, and the converse, are deterministic.
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the node whose identifier is 2. This can be captured all in one matrix representation,
by substituting to 1 and -1 a matrix value, that is the restriction of [S+]IS ,JS to the
edges whose characteristic triple in T × L × T matches 1A2 where 1 appears on that
column of [S]TS ,XS , and similarly, the restriction of [S−]IS ,JS to the same edges where
-1 appears. This gives:

1A2 1B3 3ε2
1
2
3

 [v0] [v0] 0
[−v2] 0 [−v2]

0 [−v3] [v3]


The above representation is called the representation of the schema S on the template
of S. The template of S is the finite incidence matrix of S built on TS ,XS : it is,
in a sense, the outer matrix in that representation. The graph S is represented by
replacing the ±1 values from each column j from that incidence matrix by the positive
or negative restriction of the subgraph of S limited to the edges characterized by triple
j.
Importantly, given the template of a schema S, any instance of S can be represented
on that template. Consider the graph G above2. It contains only edges labelled A,
joining a node typed 1 to a node typed 2. The representation of G over the template
of S, denoted [G/Temp.S], is the following:

1A2 1B3 3ε2
1
2
3

 [v0 v0] 0 0
[−v2 − v1] 0 0

0 0 0


Infinite template. Be a graph G and a schema S. Just as for incidence matrices, it
is possible to index the template of a schema not on the sets TS and XS representing
the type and label values that can be found in S, but on the set of all possible types
and labels T and L; the inner matrices, that correspond to the positive or negative
restrictions of the incidence matrices of some subgraph of G, can be translated into
their infinite form, as defined above. Hence the notion of infinite template represen-
tation of a graph. Let us denote the representation of G′ over the infinite template of
S′: [G′/Temp.S′]∞.
eAG/SeAG union calculation. Consider the following schema-instance pair G′, S′,
and its corresponding finite template-based representation:

[G′/Temp.S′] =
1C2 1D2

1
2

[
[v0] 0
[−v2] 0

]

2... That is not a well-formed eAG, but let us do as if it were, for the sake of simplicity...
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Since the template lines and columns are not indexed on the same sets as the lines and
columns of the representation of G over the template of S provided above, the sum of
the two block matrices is not defined and would be meaningless. On the contrary, it is
possible to express G′ over the infinite template of S′ and G over the infinite template
of S: both representations are then infinite block matrices, whose blocks are infinite
matrices, as follows:

[G′/Temp.S′]∞ =

. . . 1A2 1B3 3ε2 1C2 1D2 . . .
0
1
2
3
...


0 0 0 0 0 0 0
0 0 0 0 0 [v0] 0
0 0 0 0 0 [ − v2] 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


Similarly, we also have:

[G/Temp.S]∞ =

. . . 1A2 1B3 3ε2 1C2 1D2 . . .
0
1
2
3
...


0 0 0 0 0 0 0

[v0 v0] 0 0 0 0 0 0
[−v2 − v1] 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


The, it is possible to define a sum of the two, where the ‘+’ operator is a term-to-term
application of the operator defined in table 9.1:

[G′/Temp.S′]∞ + [G/Temp.S]∞ =

. . . 1A2 1B3 3ε2 1C2 1D2 . . .
0
1
2
3
...


0 0 0 0 0 0 0

[v0 v0] 0 0 0 0 [v0] 0
[−v2 − v1] 0 0 0 0 [−v2] 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


which represents the following graph:

Noteworthily, this graph is the union of the graphs G and G′ (that is validated by
the union of S and S′, which could be calculated the same way, by summing the
template-based representations of S and S′).
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+ -1 0 1
-1 -1 -1 0
0 -1 0 1
1 0 1 1

Table 9.1: The term-to-term addition operated for summing two incidence matrices.
This operator ensures to keep the result of any sum of values from the set {−1, 0, 1},
which is the set of values of the elements of an incidence matrix, in the same set.

Based on those considerations, that may somehow give some clues about how schema
and instance will be manipulated, we can turn to the definition of SeAG transforma-
tions first.

9.2 Composing Modifications: General Strategy

The definition of a transformation can thus be modelled as follows:

S
modification1−→ G1

modification2−→ G2 ...
modificationN−→ GN

check−→ S′.

It is natural that a modification shall not be required to produce (at each step of this
sequence of modifications) a well-formed schema. Yet it is also natural that all the
Gi graphs above have to be modifiable, in the following sense: it has to belong to the
definition space of any other operator. This implies: 1) that operators shall be defined
on a wider set of (modifiable) graphs than schemas and 2) they shall produce graphs
belonging to the same set of modifiable graphs.
We go with the following definition of what will have to be modifiable graphs for
schema operators, that we call casts.

Definition 9.1: casts. A cast is any graph that that is expressible on its own
template.

Property 9.1. Be G = (V,E) a graph so that A 6 ∅. We have the following
properties:

1. If there is a schema S so that G ⊆ S, then G is a cast.

2. G is a cast iff ∃φ : T × L × T −→ E so that φ is injective.

Comment. The class of cast graphs is a good candidate for modifiable graphs for
the SeAG operators, since it corresponds to the widest class of graphs that can be
handled in a homogeneous ways with schemas, that is, by means of their template.
The general idea is that since transformations on schemas will have to be interpreted
as modifications on the instances of the schema, they can be defined as modifications
of the template of the schema: the instances of a schema being expressible on the
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template of that schema, they will in turn be impacted correspondingly – in first
approximation.

9.3 Mod Operator

The first kind of operation one may want to apply on a schema, in order to modify
it, is to substitute a subgraph of that schema by a novel one. We propose here a
definition of such a substitution operator, called Mod, that takes two arguments: the
subgraph to be ‘retrieved’ and the subgraph to be inserted instead. We first define the
subgraphs that can be used as arguments for theMod operator, that we call schematic
cells.

9.3.1 Schematic Cells
Be the following preliminary definition:

Definition 9.2 : Notion of walk. A walk on a connected, rooted, single-leafed
graph G = (V,E) is any sequence ℘ built on the set E, so that:

• sut(℘1) = root(G)

• end(℘|℘|) = leaf(G)

• ∀n ∈ [1; |℘|], end(℘n−1) = sut(℘n)

Notation. Be a cast G. Be v, v′ two nodes of G so that there is a subgraph G′ of
G rooted in v and possessing v′ as its only leaf, and so that there exists a walk ℘ on
G′. Synthetically, we will then say that there is a walk on G between the nodes v and

v′, denoted ∃℘
prom.

⊂vv′ G.
A node v will be said to belong to a walk ℘ iff ∃e ∈ ℘ so that v = sut(e) ∧ v = end(e).
The fact v belongs to ℘ will be denoted v ∈ ℘.

The Mod operator is designed as a substitution operator, working on a particular set
of subgraphs of a schema. Those subgraphs, called schematic cells, are defined as
follos:

Definition 9.3 : Schematic cell. Be a cast G. A schematic cell (or cell) of G is
a subgraph χ ⊆ G so that:

• χ is empty

• OR χ is so that:

1. χ is rooted and single-leafed;
2. χ is connected;
3. χ is not restricted to one node;
4. ∀e0 edge χ, if ∃℘, ℘′ two walks so that e0 ∈ ℘ ∧ e0 ∈ ℘′, then ∃℘′′ | {e ∈
℘} ⊆ {e ∈ ℘′′} et {e ∈ ℘′} ⊆ {e ∈ ℘′′}.
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Property 9.2 Be a cast G and χ a cell included in G. Then χ is also a cast.
Proof. This is true of any subgraph of a cast.

Examples. We provide a few examples of schematic cells (in red). Noteworthily,
those may contain cycles.

Counter examples. The following graphs are not cells because: a. they are not
rooted; b. there is not leaf; c. idem.

The following case is also excluded, since some of its edges belong to two different
walks that do not differ by the fact one contains a cycle the other does not:

The definition of a cell, even if it imposes cells to abide by a strict graph model,
does not refrain cells to have strong connexions with the rest of the schema. In order
to draw a typology of cells regarding the way they are connected to the rest of the
schema, and to study how to deal with each kind of cell accordingly, we split the notion
of cells into two sub-categories: independent and non-independent cells.

Definition 9.4 : Independant cells. Be G = (V,E) a cast and et χ = (V ′ ⊆
V,E′ ⊆ E) a cell of G. The cell χ is independent iff:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



226 CHAPTER 9. SEAG TRANSFORMATIONS

1. ∀e ∈ E\E′ | ∃v ∈ V, v′ ∈ V ′, vbecv′ ∈ S, then v′ ∈ {root(χ), leaf(χ)} ;

2. ∀e ∈ E\E′ | ∃v ∈ V, v′ ∈ V ′, v′becv ∈ S, then v′ ∈ {root(χ), leaf(χ)}.

Comment. To enlighten the definition of independent cells, let us focus on a simple
case of such cells, that is, an independent, linear cell (containing no cycle): Be S a
schema. Be χ a linear independent cell and be e1 et e2 two edges of χ. Be G =

(VG, EG) | G ⊆root(S)
leaf(S) S a connected rooted and single-leafed subgraph of S. Then:

e1 ∈ EG ⇔ e2 ∈ EG

In other words, if we reason in terms of the annotation language of the schema, the
sequence of labels obtained by reading the edges of the cell can be regarded as one
letter of the alphabet, in that the sequence either belongs as a whole or not at all to
the words of the annotation language of S. In this particular case, modifying the cell
as a whose thus makes sense. This applies not only to linear independent cells, but
to all independent cells: in the general case, an independent cell represents not only
sequences that can be modified as a bulk, but small regular expressions that can be
iseolated and modified as a bulk.

On the contrary, non-independent cells will be characterized by the existence of edges
of S that do not belong to the cell but that point towards nodes that are different
from the root and leaf of the cell. Here is an example:

Here, we can sense that the above discussion on how the edges of an independent
cell only participate together to the language of the schema does not apply to non-
independent cells: the first edge of the cell, labelled b, belongs to only one word of
the annotation language of S, while the second edge, labelled c, belongs to two words.
This question will be studied in detail in Paragraph 9.3.3.

9.3.2 Mod Operator: Intuitive Presentation
As stated above,Mod is a substitution operator. It basically works by extracting a cell
from a schema and by inserting another cell, sharing the same root and leaf, instead.
Since cells can be empty graphs, Mod covers three different semantic modifications
on schemas, depending on the arguments given as input to the operator: deletion,
insertion and substitution properly speaking.
We present the general principle of the way the Mod operator works, based on the
simplest case, that is, when applied to an independent schematic cell.
As a basis for illustration, consider the following schema S. Let us consider that
the editor wants to replace the pattern “b followed by c followed by d” by a pattern
expressing “α|β”.
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This transformation, that actually corresponds to a Mod operation, can be defined as
follows: it consists in substituting to a cell χ− constituted of the edges expressing the
sequence “bcd” in S a cell χ+ describing the regular expression α|β. The two cells,
with the corresponding node types, are represented below.

The templates of the three graphs to be considered here, namely S = (VS , ES),
χ− = (V−, E−) and χ+ = (V+, E+), are the following:

[S/[Temp.S]] =

a b c d e X Y
1
2
3
4
5
6
7



[v1] [0] [0] [0] [0] [v1] [0]
−[v2] [v2] [0] [0] [0] [0] [0]

[0] −[v3] [v3] [0] [0] [0] [0]
[0] [0] −[v4] [v4] [0] [0] [0]
[0] [0] [0] −[v5] [v5] [0] [0]
[0] [0] [0] [0] [0] −[v6] [v6]
[0] [0] [0] [0] −[v7] [0] −[v7]



[χ−/[Temp.χ−]] =

b c d
2
3
4
5


[v2] [0] [0]
−[v3] [v3] [0]

[0] −[v4] [v4]
[0] [0] −[v5]


[χ+/[Temp.χ+]] =

α β
2
5

[
[v2] [v2]
−[v5] [v5]

]
All those representations can then be translated into representations on infinite tem-
plates, as defined in Paragraph 9.1. Then, the following operation implements the fact
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that during the transformation, χ− is deleted in S while χ+ is inserted:

[M ] = [S/[Temp.S]]∞ − [χ−/[Temp.χ−]]∞ + [χ+/[Temp.χ+]]∞

=

a b c d e X Y

1
2
3
4
5
6
7



[v1] [0] [0] [0] [0] [v1] [0]
−[v2] [0] [0] [0] [0] [0] [0]

[0] [0] [0] [0] [0] [0] [0]
[0] [0] [0] [0] [0] [0] [0]
[0] [0] [0] [0] [v5] [0] [0]
[0] [0] [0] [0] [0] −[v6] [v6]
[0] [0] [0] [0] −[v7] [0] −[v7]



∞

+
α β

2
5

[
[v2] [v2]
−[v5] −[v5]

]∞

≡

a α β e X Y
1
2
5
6
7


[v1] [0] [0] [0] [v1] [0]
−[v2] [v2] [v2] [0] [0] [0]

[0] −[v5] −[v5] [v5] [0] [0]
[0] [0] [0] [0] −[v6] [v6]
[0] [0] [0] −[v7] [0] −[v7]


This represents the following graph expressed on its own template, which does corre-
spond to the initial schema where the sequence bcd is replaced by α|β.

Thanks to this example, we have introduced the way Mod modifications on schemas
can be performed. We will now study formally the Mod operator in the general case,
that is, when it is not required that the cells shall be independent.

9.3.3 Mod: Formal Definition in the General Case
Let us first highlight the problem raised by non-independent cells, for the definition
of Mod.

9.3.3.1 Non Independent Schematic Cells: the Problem they Raise

In the previous paragraph, we have sketched how an elementaryMod operation should
work: given a schema S, such an operation consists in isolating a subgraph χ− called
a cell of S, deleting it and inserting, between the nodes that used to be its root and
leaf, another graph χ+, that only shares its root and leaf with the pre-existing schema.
Now χ− can be either independent or dependent. In a few words, it is independent if
substituting the whole subgraph χ− of S by another cell only affects the words from
the annotation language that imply the execution of at least one root-to-leaf path of
the cell. To enlighten this remark, one may consider the non-independent cell provided
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page 226: replacing χ−, in red, by a single edge Ω would imply to lose the annotation
word “XY cd” defined by the initial schema – word that does not imply the execution
of any of the root-to-leaf paths of χ−.

Semantics of a transformation. As previously shown, a SeAG can be seen as an
automaton defining an annotation language (that is, authorized sequences of labels
that will then be found in the instances). As a consequence, a transformation, or
a modification, can be interpreted as the sign of the will to modify the annotation
language of a schema. More precisely, a modification shall ideally enable to target
precisely the part of the language that shall be impacted, that is, the words requiring
the execution of a root-to-leaf path of the schematic cell to be remove or replaced, and
only those words. Impacting other words shall be considered, from this point of view,
a side effect of the modification.
Moreover, a schema transformation is intended to be propagated to the instances:
for any sequence of labels, in a schema S, that is altered by a modification, all the
corresponding label sequences in an annotation will be altered a similar way. In other
words, if there are words of the schema language that do not result from the execution
of a root-to-leaf path of the original schematic cell, and that are altered as a side
effect of a modification operated on the schema, then all the isntances of these words
will also, as the propagation of this side effect, be altered in the annotation graphs.
hence the need to be able to limit, and to quantify, the collateral loss in the schema
vocabulary resulting from the definition of a given modification, since this abstract
loss will be translated in the loss of editorial information in the instances.

Example. Let us consider the following schema and cell (in red).

Let us then consider a substitution cell χ+, made out of a root (typed 1), a leaf (typed
4) and an edge labelled α. Two consequences can be drawn from the above comment:

1. If S′ is the schema obtained by substituting χ− by χ+, then the vocabulary of
S′ shall not contain the wordabcde: hence, the edge sequence abcd will have to
not be present in S′.

2. Instead, the word αe will have to be part of the language of S′.

Operating the strategy of substitution sketched in Paragraph 9.3.2 is not convincing
in this case (where χ− is not independent): the expression
[S/[Temp.S]T ,L] − [χ−/[Temp.χ−]T ,L] + [χ+/[Temp.χ+]T ,L] will define a graph in
which the sequences abc(yz)∗XY are deleted, which, in the perspective of propagat-
ing this modification to the instances of the schema, implies that the annotations
containing those sequences will be lost.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



230 CHAPTER 9. SEAG TRANSFORMATIONS

The target is then to define the image of a given schema by a modification Mod is
those to define the cast in which the label sequences that have to be eliminated are
indeed missing, with minimal side effect on the annotation words that do not imply
the execution of a root-to-leaf path of χ−.

9.3.3.2 Connectivity Factor

The fact that substituting a non-independent cell may have side effects is due to the
fact that there are exogeneous edges – that is, edges of S that do not belong to the
cell – that point towards its nodes or, in other words, that some of the edges of a
non-independent cell belong to paths that do not go through either the root or the
leaf of the cell.
This suggests that such edges of the cell should not, if it is possible, should be preserved
after the substitution is performed. We study how to do so hereafter. In the whole
paragraph, we consider a cast G = (V,E) and a schematic cell χ− = (V−, E−) ⊆ G =
(VG, EG).

Definition 9.4 : Exogeneous edges. We define the two following subsets of E\E−:
1. Out-exogenous edges relatively to χ− : {e ∈ EG\E− | end(e) ∈ V−} ;

2. In-exogenous edges relatively to χ− : {e ∈ EG\E− | sut(e) ∈ V−}

Example. Some edges of G may belong to both sets: consider the edge labelled X
below:

Property 9.3. Be [G/[Temp.G]]∞ et [χ−/[Temp.χ−]]∞ the representations of G
and χ− in their own template. Be T (χ−) = {t ∈ T | ∃v ∈ V−; type(v) = t}. Then,
the exogenous edge sets are characterized as follows:

1. In-exogenous edges : those are the edges e ∈ VG, associated with the jth triple
(t, l, t′) in T × L × T , so that:

• t′ ∈ T (χ−)

• ∃i, [[G/[Temp.G]]∞i,j ] < [0]

• ∀i, [[χ−/[Temp.χ−]]∞i,j ] = [0]

2. Out-exogenous edges : those are the edges e ∈ VG, associated with the jth triple
(t, l, t′) in T × L × T , so that:

• t ∈ T (χ−)

• ∃i, [[G/[Temp.G]]∞i,j ] > [0]

• ∀i, [[χ−/[Temp.χ−]]∞i,j ] = [0]
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Example. Let us consider the representation of the schema S1 defined in the pre-
vious example, over its own template. In red, we highlight the sub-matrices that
represent the subgraph χ−1 . Based on the above characterization, the edge identified
by the triple (1, X, 2) is both an in- and out-exogenous edge relatively to χ−1 :

a X
1
2

[
[v1] [v1]
−[v2] −[v2]

]
← l’arc labellisé X est exogène issu de χ−

← l’arc labellisé X est exogène pointant vers χ−

Property 9.4. A schematic cell χ− is independent iff the set of exogenous edges
relatively to χ− is included in {root(χ−), leaf(χ−)}.

Example. χ−1 is independent, in the previous example.

Definition 9.5 : In- and Out- exogenous node degrees. Be G a cast and χ
a cell of G. Be v a node from χ. The in-exogenous degree of v is the number of
in-exogenous edges of G whose end is v. Symmetrically, the out-exogenous degree
of v is the number of out-exogenous edges of G whose summit is v.
Let us denote those degrees intexog.χ−⊆G(v) et extexog.χ−⊆S(v) respectively.

Calcul. Avec les notations précédentes, et en notant i l’indice de type(v) dans T :

1. extexog.χ−⊆G(v) = |{[([G/[Temps.G]]− [χ−[Temp.χ−]])i,k] > [0]; k ∈ N}|

2. intexog.χ−⊆G(v) = |{[([G/[Temps.G]]− [χ−[Temp.χ−]])i,k] < [0]; k ∈ N}|

Based on those definitions, we can now define the notion of connectivity degree of the
nodes of a schematic cell. As indicated above, the edges of a cell implied in some
root-to-leaf path of the cast they belong to, that do not go through both the root
and leaf of the cell, shall be identified, in order to be, as much as possible, preserved
after the substitution operation. The notion of connectivity degree precisely aims at
identifying those edges, but also to give a quantitative indication of the amount of
words of the annotation language of the schema that do not imply the execution of a
root-to-leaf path of the cell, that require the execution of those edges. The idea being:
the more words they belong to, the higher the necessity to be preserved, in order to
minimize the side-effects of a substitution.
To make this point clearer, let us consider the following example:
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In this schema S, the schematic cell χ− is a single path, possessing the same root and
the same leaf as S: thus, the only word resulting from the execution of (a root-to-leaf
path of) χ− is abc.
Besides, χ− is not an independent cell:

• the edge labelled a is involved in two words of the annotation language of the
schema: abc and abZ;

• the edge labelled b is involved in six words: abc, abZ, Xbc, XbZ, Ybc and YbZ;

• the edge labelled c is involved in three words: abc, Xbc and Ybc.

Thus, shall we rank the edges of χ− by the number of words belonging to the language
of S but not of χ−, that shall be affected by the deletion of the edge in question, we
would say that b is worst and c is the best.
However, counting the exact number of words (with special consideration for words
resulting from a cycle), in the language of the whole cast, to which each edge of a cell
is involved in, does not scale for bigger schemas.
The notion of connectivity degree precisely aims at bypassing this obstacle, by provid-
ing a local approximation of the amount of words the deletion of each edge of a cell
may impact – as we will see below.

Definition 9.6 : follow and precede sets. Be a connected, rooted and single-
leafed graph C = (V,E). For each v ∈ V , let us define two sets followC(v) and
precedeC(v) by:

• followC(v) = {v′ | ∃℘
prom.

⊂vleaf(C) C so that v′ ∈ ℘}.

• precedeC(v) = {v′ | ∃℘
prom.

⊂root(C)
v C so that v′ ∈ ℘}.

Definition 9.7 : Connectivity factor of an edge of a schematic cell.
Be G a cast and χ− a schematic cell of G. For each edge e de χ−, the connectivity
factor of e, denoted cχ−(e), is the value in C defined as follows3

cχ−(e) =
∑

v∈followχ− (end(e))

extexog.χ− (v) +
√
−1 ·

∑
v∈precedeχ− (sut(e))

intexog.χ− (v)

Example. Let us consider the following schema an non-independent cell:

3Though improper, we will use the symbol
√
−1 to denote the imaginary unit – the usual notation

for it, i, might indeed be confusing in our context, where i is also a usual index for matrix lines...
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Only v4 and v5 possess an exogenous degree different from zero: then, if the leaf of
an edge belongs to a path leading to one of those nodes, then the connectivity factor
of those edges is incremented by 1 (2 if the leaf of the edge leads to both). Yet if the
leaves of e1 ... e5 precede both nodes, the leaf of e6 only precedes v5. Thus, the value
of the connectivity factor of e1 ... e5 will equal 2 while e6 will have 1 only.

Definition 9.8: partially independent schematic cells. Be G = (VG, EG) a
cast and χ = (V,E) a schematic cell of G. χ− is said to be partially independent
iff ∃E′ ⊆ E so that:

∀e ∈ E, e′ ∈ E′, so that e′ ∈ followχ(e) ∨ e ∈ followχ(e′),
∃(n,m) ∈ N2 | cχ(e)− cχ(e′) = n+

√
−1 ·m ∨ cχ(e′)− cχ(e) = n+ i ·m

Nota. In case of an independent cell, ∀e ∈ E, e′ ∈ E′, so that e′ ∈ followχ(e) ∨ e ∈
followχ(e′), ∃(n,m) ∈ N2 | cχ(e)− cχ(e′) = 0.

Interpretation. The factor cχ(e) enables to identify some contextual characteristics
of e:

1. If we consider e alone:

• Re(cχ(e)) is the number of out-exogeneous edges relatively to χ, originating
in nodes of χ that the leaf of e precedes. Any such bifurcation, if it is located
‘after’ the leaf of the edge e but before the leaf of χ, implies that e belongs
to at least one word of the annotation language that does not result from
the execution of a root-to-leaf path of χ.

• Symmetrically, Im(cχ(e)) is the number of in-exogeneous edges relatively
to χ, originating in nodes of χ that precede the summit of e. Any such
bifurcation, if it is located ‘before’ the summit of the edge e but after the
root of χ, implies that e belongs to at least one word of the annotation
language that does not result from the execution of a root-to-leaf path of
χ.

2. If we consider the whole set of edges of χ: be e, e′ two edges of χ, so that, for
instance, sut(e′) ∈ followχ(leaf(e)). Then:

Re(cχ(e)) = Re(cχ(e′))⇔
∑

v∈followχ(end(e))

extexog.χ (v) =
∑

v∈followχ(end(e′))

extexog.χ (v)

Yet sut(e′) ∈ followχ(end(e))⇔ followχ(end(e′)) ⊆ followχ(end(e))

Hence Re(cχ(e)) = Re(cχ(e′))⇔
∑

v∈followχ(end(e))\followχ(end(e′))

extexog.χ (v) = 0

This is verified in two cases:

(a) e and e′ belong to a cycle included in χ (in this case, followχ(end(e)) =
followχ(end(e)), by definition of follow).
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(b) e and e′ do not belong to a cycle of χ and all the nodes that belong
to followχ(end(e))\followχ(end(e′)) have an out-exogenous degree equal
to zero – in other words, all the exogenous edges going out of χ bifurcate
before both e and e′, or on a path of χ to which none of e and e′ belong.

Symmetrically, Im(cχ(e)) = Im(cχ(e′)) is verified in only two cases:

(a’) e and e′ belong to a cycle included in χ.

(b’) e et e′ do not belong to a cycle of χ and all the nodes that belong to
precedeχ(sut(e′))\precedeχ(sut(e)) have an in-exogenous degree equal to
zero – in other words, all the exogenous edges pointing towards χ do so
after both e and e′, or on a path of χ to which none of e and e′ belong.

Then, let us consider the case where e′ ∈ followχ(end(e)), cχ(e) = cχ(e′) , so
that e and e′ do not belong to a cycle of χ. The fact that the connectivity
factor of e and e′ is equal means that:

∀G ⊆root(S)
leaf(S), e ∈ EG ⇔ e′ ∈ EG

Thus, and that is the main conclusion of this interpretation paragraph: if two
edges e, e′ ∈ χ are so that e′ ∈ followχ(e) ∨ e ∈ followχ(e′), and:

Im(cχ(e)) ≤ Im(cχ(e′)) AND Re(cχ(e)) = Re(cχ(e′))

that is so that ∃(n,m) ∈ N2 | cχ(e)− cχ(e′) = n+ i.m,
then it means that any path of the cast e belongs to also contains e′, or that all
path containing an edge belonging to a cycle e belongs to also contains an edge
of a cycle e′ belongs to (etc.).
On the contrary, given two edges e and e′ so that Re(cχ(e)) > Re(cχ(e′)), then it
means that there is a node between the end of e and the summit of e′ (included)
that is the summit of an out-exogenous edge; this means, in particular, that the
edge e is involved in a word of the annotation language of the whole graph that
does not involve, in particular, the execution of the edge e′. And symmetrically
if Re(cχ(e)) > Re(cχ(e′)).
Thus, the existence of a set E′ defined in Definition 9.8 is highly interesting for
performing a modification that shall prevent from the execution of the root-to-
leaf paths of the original cell, without discarding words that do not result from
the execution of such a path. Indeed, the existence of E′ means that there is a
set of edges that come before the out-exogenous edges all the other edges of the
cell come before, and only those (that is, the out-exogenous edges that originate
in the leaf of the cell), and that come after the in-exogenous edges all the the
edges of the cell come after (that is, the ones that end on the root of the cell);
in other words, E′ contains the edges of the cell that are involved in all and only
in the root-to-leaf paths of the cell. Deleting those edges will thus prevent from
keeping words resulting from the execution of the cell, while maintaining all the
other edges of the cell (that participate in defining exogenous words) – which is
exactly the behaviour we expect from the Mod operator.
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Based on those considerations, let us now study how Mod shall be defined for
such schematic cells, before dealing with the case of cells that are neither inde-
pendent, not partially independent.

Definition 9.9 : Ambiguous cells. A cell that is not partially independent (and
thus, not independent either) is called an ambiguous cell.

9.3.3.3 Mod for Partially Independent Schematic Cells

Mod is designed as a substitution operator: it is applied on a cast G, and takes two
arguments, an original cell χ− and a replacement cell χ+. In the case where χ− is
independent, as illustrated in Paragraph 9.3.2, Mod works by deleting χ− from the
G and by inserting, between the nodes that were the root and the leaf of χ−, the
replacement cell χ+.
We adapt this procedure to aprtially independent cells hereafter.

Property 9.5. be G a cast and χ a cell of G. ∀χ, ∃I ∈P(N),∃{Gi = (Vi, Ei)}i∈I
so that:

1. ∀i ∈ I, root(Gi) = root(χ) ∧ leaf(Gi) = leaf(χ) ;

2.
⋃
i∈I

Gi = χ ;

3. ∀i 6= j, Ei ∩ Ej = ∅ ;

4. ∀i ∈ I, ∃℘
prom.

⊆root(χ)
leaf(χ) Gi so that {e ∈ ℘} = Ei.

Proof. It is always possible to decompose a rooted, single-leafed and connected graph
into a set of paths. The peculiar aspect of the above decomposition is there is no pair
of paths that share an edge. This property can be verified because of the property
number 3. in the definition of schematic cells (see p. 224).

Property 9.6. For a given schematic cell, the above decomposition is unique.
Preuve. The decomposition can be obtained as follows: find the biggest connected
subgraphs of the cell whose leaf is the leaf of the cell, and rooted in each of the ends of
the edges of the cell whose summit is the root of the cell. This set of biggest connected
subgraph is unique.

Property 9.7. B G a cast, χ a cell and {Gi}i∈I the decomposition of the cell into
linear, non-intersecting subgraphs. Then χ is ambiguous iff ∃j ∈ I so that Gj is
ambiguous.
Preuve. If for any Gi = (Vi, Ei), Gi is partially independent, that is if for all i :
∃E′i ⊆ Ei so that:

∀e ∈ Ei, e′ ∈ E′i, tels que e′ ∈ followχ(e) ∨ e ∈ followχ(e′), ∃(n,m) ∈
N2 | cχ(e)− cχ(e′) = n+

√
−1 ·m ∨ cχ(e′)− cχ(e) = n+

√
−1 ·m,
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then, since two graphs Gi and Gk of the decomposition have a void intersection, then
the above property holds for the union of Gi and Gk, and thus, for χ that is also
partially independent.

Important precision. If the decomposition of a cell contains more than one
graph, then, Mod will be applied separately on each of those graphs – which enables
to define Mod for cells whose decomposition contains one single graph. One may
check, in the following calculations, that this will not lead to the multiple insertion of
the substitution cell χ+, since Mod will make use of the addition operator defined in
Paragraph 9.1 for the insertion of χ+, that works as the union operator for graphs:
inserting the same graph by means of this addition, when performing the substitution
of each subgraph of a cell, will have the same result as performing the union of a graph
with itself, that is, none.

Property 9.8 Be G = (VG, EG) a cast and χ = (V,E) a partially independent
schematic cell of G whose decomposition into non-intersecting linear graphs contains
one graph (the cell itself). Then there is a maximal set ∃E′ ⊆ E verifying:

∀e ∈ E, e′ ∈ E′,∃(n,m) ∈ N2 | cχ(e)− cχ(e′) = n+
√
−1 ·m ∨ cχ(e′)− cχ(e) =

n+
√
−1 ·m [P]

and it is unique.
Proof. Let us consider two sets E′1 and E′2 so that E′1 ∩ E′2 = ∅. If those exist,
then one can check that the above property [P] only holds if ∀(e′1, e′2) ∈ E′1 × E′2,
Re(cχ(e′1)) = Re(cχ(e′2)) and Im(cχ(e′1)) = Im(cχ(e′2)). Thus cχ(e′1) = cχ(e′2). let us
denote this value c.
By definition of cχ, two edges e′1 and e′2 sharing the same connectivity factor cannot
be separated by an edge whose summit or end has an in- or out-exogenous degree
different to zero. Thus, the connectivity factor of any edge e′3 located between e′1 and
e′2 in χ is equal to c.
Thus, the set E′ made out of the union of E′1, E′2 and all the edges between any pair
of nodes of E′1 and E′2 still verifies [P].
By applying this to any set verifying [P], it follows that there is a maximal set verifying
[P], and that it is unique.

Definition 9.10: Non ambiguous cell weighting. Be G = (VG, EG) a cast. Be
χ− = (V,E) a partially independent cell of G. Be [χ−/[Temp.χ−]] the expression of
χ− over its own, finite template.
By definition, χ− being partially independent, then ∃! maximal set E′ ⊆ E | ∀e ∈
E, e′ ∈ E′, tels que e′ ∈ followχ(e) ∨ e ∈ followχ(e′),∃(n,m) ∈ N2 | cχ(e)−cχ(e′) =
n+
√
−1 ·m.

We define the weighting operator pond that associates, to [χ−/[Temp.χ−]], the re-
striction of this matrix to E′ :

[pond.[χ−/[Temp.χ−]]i,j ] =[[χ−/[Temp.χ−]]i,j ] if ∃e ∈ E′ characterized by the jth

triple of T × L × T
=[0] else.
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Definition 9.11: Mod for non ambiguous schematic cells. Be G a cast, be
χ− a partially independent cell of G and χ+ a cell so that root(χ+) = root(χ−),
leaf(χ+) = leaf(χ−) and so that no other node of χ+ belongs to G. This triple
defines a non-ambiguous modification Mod.
The template of the graph H resulting from this modification is:

[H/[Temp.H]]∞ = [G/[Temp.G]]∞ − pond.[χ−/[Temp.χ−]]∞ + [χ+/[Temp.χ+]]∞

Example. Let us consider the following schema S, that has been introduced previ-
ously:

Let us consider that we want to replace the highlighted cell χ− by a single edge χ+

labelled Ω.
The representation of the three graphs over their respective, own finite templates is:

[S/[Temp.S]] =

a b c d e y z X Y
1
2
3
4
5
6
7
8



[v1] [0] [0] [0] [0] [0] [0] [0] [0]
−[v2] [v2] [0] [0] [0] [0] [0] [0] [0]

[0] −[v3] [v3] [0] [0] [0] −[v3] [0] [0]
[0] [0] −[v4] [v4] [0] [v4] [0] [v4] [0]
[0] [0] [0] −[v5] [v5] [0] [0] [0] [0]
[0] [0] [0] [0] [0] −[v6] [v6] [0] [0]
[0] [0] [0] [0] −[v7] [0] [0] [0] −[v7]
[0] [0] [0] [0] [0] [0] [0] −[v8] [v8]



[χ−/[Temp.χ−]] =

a b c d y z
1
2
3
4
5
6


[v1] [0] [0] [0] [0] [0]
−[v2] [v2] [0] [0] [0] [0]

[0] −[v3] [v3] [0] [0] −[v3]
[0] [0] −[v4] [v4] [v4] [0]
[0] [0] [0] −[v5] [0] [0]
[0] [0] [0] [0] −[v6] [v6]


[χ+/[Temp.χ+]] =

Ω
1
5

[
[v1]
−[v5]

]
In a previous example, we calculate the connectivity factors of the edges of χ−,
page 233: the conclusion is that χ− is partially independent, with E′ = {e6}.
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Given e6 is characterized by the triple (4, d, 6) in T × L × T ), it follows that:

pond.[χ−/[Temp.χ−]] =

a b c d y z
1
2
3
4
5
6


[0] [0] [0] [0] [0] [0]
[0] [0] [0] [0] [0] [0]
[0] [0] [0] [0] [0] [0]
[0] [0] [0] [v4] [0] [0]
[0] [0] [0] −[v5] [0] [0]
[0] [0] [0] [0] [0] [0]


Hence, by denoting [H/[Temp.H]]∞ the matrix:
[S/[Temp.S]]∞ − pond.[χ−/[Temp.χ−]]∞ + [χ+/[Temp.χ+]]∞,
we have:

[H/[Temp.H]] =

a b c e y z X Y Ω
1
2
3
4
5
6
7
8



[v1] [0] [0] [0] [0] [0] [0] [0] [v1]
−[v2] [v2] [0] [0] [0] [0] [0] [0] [0]

[0] −[v3] [v3] [0] [0] −[v3] [0] [0] [0]
[0] [0] −[v4] [0] [v4] [0] [v4] [0] [0]
[0] [0] [0] [v5] [0] [0] [0] [0] −[v5]
[0] [0] [0] [0] −[v6] [v6] [0] [0] [0]
[0] [0] [0] −[v7] [0] [0] [0] −[v7] [0]
[0] [0] [0] [0] [0] [0] −[v8] [v8] [0]


This matrix represents the following graph, that does match what shall be expected
from the modification: the annotation sequences implying the execution of any root-
to-leaf path of χ− are made impossible, due to the disappearance of the edge d; no
other word from the language of S, other than those implying the execution of χ−, is
impacted by this modification.

9.3.3.4 Mod for Ambiguous Schematic Cells

Ambiguous cells are such that there is no set of edges E′ containing edges of the cell
that shall be involved in all, and only in, the root-to-leaf paths of the cell, contrary
to partially independent cells. In partially independent cells, deleting those edges
prevents from keeping words resulting from the execution of the cell, while maintaining
all the other edges of the cell (that participate in defining exogenous words) – which
is exactly the behaviour we expect from the Mod operator.
It follows that while side effects can be avoided in case of partially independent cells,
there will always be a collateral loss of vocabulary when defining a Mod modification
with an ambiguous cell as input.
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It will also happen that there might be not only one, but several possible ways to
perform a Mod operation with an ambiguous cell, yielding graphs differing one from
the others by the words not implying the execution of a root-to-leaf path of the cell
that are lost.
The connectivity factor presented above can be used to evaluate, for each solution, the
extent of the collateral effect, based on a local measure of the connectivity of each edge
of the cell to the rest of the graph – which provides a rough indication of the extent of
the collateral effects resulting from deleting the edges in question. One strategy, for
the definition ofMod in case of an ambiguous cell could have been to systematically go
for the, if it is unique, solution that eliminates the edges of the cell whose connectivity
factor is minimal. Yet, there may be more than one such ‘minimal’ solution: defining
a deterministic operator shall thus either require further heuristics, or some arbitrary
rule, that may be irrelevant from an editorial point of view; moreover, the minimal
solution is based on a local evaluation of the connectivity of the edges, that may not
reflect the number of words each edge of the cell actually, when considering the whole
graph, be involved in; eventually, from the point of view of the editor who defines the
Mod operation, the best solution may be different from any minimal one.
Thus the strategy we propose provides the user with a variety of solutions, ranked
from the minimal ones, as defined above, to solutions with more local side effects –
and it is up to her to chose among those solutions, based on personal and intellectual
motives.
Let us enlighten this proposition by means of three examples. In the following graphs,
ambiguous cells are highlighted in red; green values represent the connectivity factor
of each edge of those cells.

Let us make the assumption that, in any case, the editor wants to replace the red cell
by a single edge labelled Ω.
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a. After the modification, the word abcd(e) must not be part of the graph anymore;
yet, becauuse the cycle cyz is not part of the cell, then it shall mean that the
words ab(cyz)∗cd(e) shall be kept – otherwise, their loss shall be reagrded as a
side-effect of the modification. The modification is thus paradoxical, since the
word to ban is also one of the words to maintain.

b. In this case, after the modification, the word abc shall not be part of the language
of the graph. This implies, as we have seen in the previous paragraph, that at
least one of the three edges a, b or c shall be deleted. It is quite clear though
that deleting any of those edges will have side effects; it also appears the extent
of the side effects, for each edge, is not the same: deleting a implies losing abZ,
that is not a word implying the execution of the cell; deleting b results in the
loss of five such words (Y bc, Y bZ, abZ, Xbc andXbZ); deleting c in the loss of
two (Y bc and Xbc). Here, it is thus possible to rank the three solutions by the
quantitative extent of their side effects.

c. In this case, contrary to b., deleting a or c implies the loss of an equal number
of words.

Let us now consider this problem from a more formal point of view. Again, we
consider here ’ambiguous) cells limited to one linear graph.

Definition 9.12 : Decomposition of an ambigous cell into equi-connected
zones. Be G = (EG, VG) a cast, χ = (E, V ) a cell. The decomposition into equi-
connected zones of χ is defined as follows:

∃I ∈P(N) | E =
⋃
i∈I
{Ei},

where ∀i ∈ I, Ei ⊆ E so that:

• ∀e, e′ ∈ Ei, cχ(e) = cχ(e′) ;

• ∀e, e′ ∈ E, cχ(e) = cχ(e′)⇒ ∃i ∈ I | (e, e′) ∈ Ei.

For any i, let ci denote the connectivity factor of any edge from Ei.

Definition 9.13 : Greatest common part of connectivity factors.
Be G a cast, χ a cell and {Ei}i∈I the decomposition into equi-connected zones of χ.
The greatest common part of the connectivity factors of χ is the complex number cco.χ
defined by:

∀i ∈ I, ∃(n,m) ∈ N2 | ci − cco.χ = n+
√
−1.m [P]

and so that for all other complex number c′ verifying vérifiant [P], ∃(k, l) ∈ N2 | cco.χ −
c = k +

√
−1 ·m.
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Definition 9.14 : Mod operator, general case. Be G = (VG, EG) a cast, χ− =
(V,E) a linear cell of G and χ+ a cell so that root(χ−) = root(χ+) and leaf(χ−) =
leaf(χ+), and sharing no other node with G. Be {Ei}i∈I the decomposition into equi-
connected zones of χ− and cco.χ− the greatest common part of the connectivity factors
of χ.

1. Be I1 = {i1,j} ⊂ I the set of natural numbers so that: ∀j ∈ I1,∀e ∈ Ei1,j ,

Re(cχ−(e)−cco.χ−) + Im(cχ−(e)− cco.χ−) =

min
e′∈E

(Re(cχ−(e)− cco.χ−) + Im(cχ−(e)− cco.χ−))

Then the primary graph propositions for the Mod modification with G, χ− and
χ+ are the |I1| graphs matching the definition of H below:

[H/[Temp.H]]∞ = [G/[Temp.G]]∞ − pond.[χ−/[Temp.χ−]]∞ + [χ+/[Temp.χ+]]∞

where:

[pond.[χ−/[Temp.χ−]]k,l] = [[χ−/[Temp.χ−]]k,l] if ∃e ∈ Ei1,j
characterized by the lth triple from T × L × T

= [0] else.

with j varying in I1.

2. Be I2 = {i2,j} ⊂ I\I1 the set of natural numbers so that: ∀j ∈ I2,∀e ∈ Ei1,j ,

Re(cχ−(e)−cco.χ−) + Im(cχ−(e)− cco.χ−) =

min
e′∈E\

⋃
j∈I1

Ei1,j

(Re(cχ−(e)− cco.χ−) + Im(cχ−(e)− cco.χ−))

Then the primary graph propositions for the Mod modification with G, χ− and
χ+ are the |I2| graphs matching the definition of H below:

[H/[Temp.H]]∞ = [G/[Temp.G]]∞ − pond.[χ−/[Temp.χ−]]∞ + [χ+/[Temp.χ+]]∞

where

[pond.[χ−/[Temp.χ−]]k,l]

= [[χ−/[Temp.χ−]]k,l] if ∃e ∈ Ei2,j
characterized by the lth triple from T × L × T

= [0] sinon.

with j varying in I2.

3. Etc.

Nota Bene. Among the set of graphs yielded by Mod, the choice can be left to the
user – except when ∃i ∈ I, | ci− cco.χ = 0, in which case the primary graph is unique,
which would mean that the cell is actually partially independent.
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Exemple. Let us go back to the first of the three examples introduced on page 239.
In this case, the the greatest common part of the connectivity factors of χ− is zero.
Three equi-connected zones can be identified: E1 = {a, b} ; E1 = {c} ; E1 = {d}. The
one for which the sum of the real and the imaginary parts of the connectivity factor
is minimal is E3 : I3 = {3}. Thus, only one primary graph will be defined: it will be
obtained by deleting the edge d and by inserting χ+ adequately, which gives:

Noteworthily, the resulting graph is the one that we got at the end of Paragraph 9.3.3.3
page 238, where the cell to be replaced differed slightly from χ−, in that it incorporated
the cycle cyz and, for that reason, was partially independent: this suggests that the
graph that minimizes the side effects is precisely the one we get when calculating the
graph with the smallest partially independent cell χ− is included in.
If we calculate the secondary graphs: : I2 = {1}. Then pond.[χ−/[Temp.χ−]] with I2
is a subgraph of χ− containing only the edges a and b. The unique secondary graph
for this modification is thus:

We can notice that the cast we get does not respect the SeAG model: such a graph
shall then only be considered as the basis for further modifications. Still, it is a possible
interpretation of the modification described above.
The tertiary graph, even more baroque, is the following:
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9.3.3.5 Notation

We have thus defined how to calculate one or more graphs resulting from the sub-
stitution of a cell of a cast by another cell, regardless of the nature of the cell to be
repalced (independent, partially independent and ambiguous). Because this definition
is homogeneous across the different kinds of cells, we can introduce a unique syntax
for declaring such modifications.

Definition9.14 : Substitution transformations. Be a cast G, be χ− ⊆ S a
schematic cell and χ+ another cell possessing the same root and leaf as χ−, and shar-
ing no other node with G.
Let us denote Mod(χ−;χ+).G the ordered list of graphs resulting from the modifica-
tion described above.

9.4 Split Operator

The above Mod operator offers a means to amend a cast subgraph by subgraph, by
replacing, more or less, a gievn cell and inserting, at the same place (that is, between
the same pair of root and leaf) a substitution graph.
We now turn to the Split operation that apply to a single node and enables to double
it and to draw an ε edge between the two newly created nodes. In the next paragraph,
we introduce Unite, that acts the other way round and merges two nodes connected
by an edge.

Notation. Be [M ] the expression of a graph on an infinite template. It is a block
matrix, whose block-lines and block-columns are indexed over T et T ×L×T respec-
tively, and whose inner blocks are indexed over I2.
Be i, j, x, y indexes over T , T ×L×T , Iand I respectively. Then [[M ]i,j ] denotes the
inner block matrix of [M ] characterized by the type value t of index i in T , and by
the triple (t, l, t′) of index j in T ×L×T . Naturally, [[M ]i,j ]x,y denotes the coefficient
of index (x, y) in that inner matrix.

Definition 9.4.15 : Cod operator. Be [M ] the expression of a graph on an infinite
template. We define the Cod operator as a means to replace all the nodes of a graph
whose type has a given value, by new nodes of the same type:
Be i so that ∃j | [[M ]ij ] 6= [0]. Then be IdVi = {x so that ∃j, y | [[M ]ij ]xy 6= 0}.
The operation of the Cod operator to the ith1 block-line of [M ], denoted Cod(i1).[M ],
is defined as follows:

[[Cod(i1).[M ]]i,j ]x,y = [[M ]i,j ]x,y si i 6= i1

= [[M ]i,j ]σ−1
1 (x),y si i = i1 ∧ ∃x′ | [[M ]i,j ]x′,y 6= 0 ∧ x = σ1(x′)

= 0 else,

where σ1 is a permutation of N verifying:

1. ∀n ∈
⋃

i∈N, i 6=i1
IdVi \IdVi1 , σ1(n) = n ;
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2. ∀n1 ∈ IdVi1 , σ1(n1) 6∈
⋃
i∈N

IdVi .

Example. Be the following block-matrix:

[M ] =

a b c ε
1
2
3
4
5


[v1] [v1] [0] [0]
[0] [0] [0] [0]
[0] [0] −[v3] [0]
−[v2] −[v2] [0] [v2]

[0] [0] [v2] [v2]


This matrix cannot represent a well-formed eAG or SeAG, since more than one type
value are associated with the node v2: the node appears both on the 4th and 5th
line-blocks of [M ]. Let us apply Cod to [M ] with 4 as an argument.
We can see that

⋃
i∈N, i 6=i1

IdVi \IdVi1 = {1; 3} and
⋃
i∈N

IdVi = {1; 2; 3}. A permutation of

N verifying the two conditions above is the following:(
1 2 3
1 4 3

)
This permutation can then be used to determine the coefficients of the inner-matrices
of the line 4 of Cod(4).[M ]. As an illustration:

[[Cod(4).[M ]]4,1]4,1 = [[M ]4,1]2,1 = −1

which means, synthetically, that [[Cod(4).[M ]]4,1] = −[v4].

Definition 9.4.16 : Split operator. Be G = (V,E) a cast.
Be TG = {t ∈ T ;∃v ∈ V | type(v) = t}.
Be [G/[Temp.G]]∞ the representation of G on its own template. We define the Split
operator, taking two arguments t0 ∈ T , t1, t2 ∈ T \TG, by:

1. If t0 6∈ TG, then [Split(t0, t1, t2).[G/[Temp.G]]∞] = [G/[Temp.G]]∞.

2. Else: be i0 the index of t0 in T ; be i1 and i2 the respective indexes of t1, t2 ∈ T .
Be jε the index of the triple (i1, ε, i2) in T × L × T . Then :

[Split(t0, t1, t2).[G/[Temp.G]]∞k,l]

= [[G/[Temp.G]]∞k,l] if k 6∈ {i0, i1, i2} ∧ l 6= jε

= 0 if k = i0

= [[Cod(i1).[G/[Temp.G]]]∞i0,l] if k = i1 ∧ l 6= jε ∧ [[G/[Temp.G]]∞i0,l] < [0]

= [[Cod(i2).[G/[Temp.G]]]∞i0,l] if k = i2 ∧ l 6= jε ∧ [[G/[Temp.G]]∞i0,l] > [0]

= [A] if (k, l) = (i1, jε)

= [B] if (k, l) = (i2, jε)
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where:

• [A] = −
∑
j∈J−

[[Cod(i1).[G/[Temp.G]]]∞i0,j ],

where {[[Cod(i1).[G/[Temp.G]]]∞i0,j ]}j∈J− is the set of all the negative inner
matrices from the ith0 block-line of [G/[Temp.G]]∞, whose coefficients have
been changed4 by the operator Cod ;

• [B] = −
∑
j∈J+

[[Cod(i2).[G/[Temp.G]]]∞i0,j ],

where {[[Cod(i2).[G/[Temp.G]]]∞i0,j ]}j∈J+ is the set of all the positive inner
matrices from the ith0 block-line of [G/[Temp.G]]∞, whose coefficients have
been changed by the operator Cod.

Example. Be the following cast S:

Its representation over its own template is:

[S/[Temp.S]] =

a b c
1
2
3

 [v1] [v1] [0]
−[v2] −[v2] [v2]

[0] [0] −[v3]


Let us consider that we need to split the node of type 2. According to the nomenclature
of the definition above, we have the following items:

• the set of types of S is TS = {1; 2; 3};

• thus three possible indexes in T so that two of them do not belong to TS are
i0 = 2, i1 = 4 and i2 = 5: the node of type 2 will then be replaced by a pair of
nodes of types 4 and 5;

• J− = {1; 2} (those are the indexes of the negative inner matrices of the block-line
i0 in [S/[Temp.S]]) and J+ = {3};

• see the example page 244 for the definition of two possible permutations for
Cod(4) are Cod(5);

• the matrix [A] = −([[Cod(4).[S/[temp.S]]]2,1] + [[Cod(4).[S/[temp.S]]]2,2]) =
−([−v4] + [−v4]) = [v4] ;

• the matrix [B] = −[[Cod(5).[S/[temp.S]]]2,3] = −[v5] ;

4... so that one node shall not be attributed two different type values.
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• the block matrix of Split(2, 4, 5).S is thus:

[Split(2, 4, 5).[S/[Temp.S]]] =

a b c ε
1
2
3
4
5


[v1] [v1] [0] [0]
[0] [0] [0] [0]
[0] [0] −[v3] [0]
−[v4] −[v4] [0] [A]

[0] [0] [v5] [B]


This matrix represents the following graph:

Notation. We will denote Split(i, j, k).G the graph obtained by the operation of
Split on G with i, j, k as parameters.

9.5 Unite Operator

The last kind of modification we define, denoted Unite. Its behaviour is somehow
symmetrical to Split, since it is meant to merge two nodes connected by an ε edge,
under certain conditions.

9.5.1 Situations where the Unite Operator Applies
Intuitively speaking, given two nodes v1 and v2 from a graph G, so that there is a
unique edge ε so that v1bεcv2 ⊆ G, then the effect of Unite operated on the nodes v1

and v2 will be a graph in the pattern v1becv2 will be replaced by a single node v, so
that v shall be the new summit of all the edges v1 or v2 were the summit of inG, e
excluded, and so that v shall be the end of all the edges v1 or v2 were the end of in
G, e excluded. Indeed, the application of Unite should, ideally, leave the annotation
language of the graph untouched, so all the other label sequences involving either v1

or v2 shall be restored in the image of G by Unite, by using v as a surrogate for either
v1 or v2.
Yet, leaving the language ofG untouched by the application of Unite cannot be verified
in certain cases for which the operator will not be defined.

Definition 9.16 : Situations where the Unite operator applies. Be a cast G.
Be two nodes v1, v2 of G so that ∃e | v1becv2 ⊆ G. The couple (v1; v2) is eligible for
the application of Unite iff:
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1. label(e) = ε ;

2. 6 ∃e′ | v2be′cv1 ⊆ G ;

3. out(v1) = 1 or in(v2) = 1 ;

4. 6 ∃v, e, e′ | vbecv1 ⊆ G ∧ vbe′cv2 ⊆ G ∧ label(e) = label(e′)
AND 6 ∃v, e, e′ | v1becv ⊆ G ∧ v2be′cv ⊆ G ∧ label(e) = label(e′)

Justification. Let us explain the rationale behind each item:

1. We restrict the label of the edge between v1 and v2 to ε in order to stick to our
target, that is, to make Unite conservative regarding the annotation language of
the graph. If two nodes connected together by an edge labelled otherwise, first,
the user shall change the label of that edge by means of the Mod operator.

2. Merging two nodes that do not respect that condition shall result in creating a
loop, which cannot be represented by means of an incidence matrix.

3. The third condition prevents from merging the two nodes v1 and v2 in the
following cases:

The two particular cases Ex.1 and Ex.2, deriving from the general case, can be
described as follows:

• As for the item 2. above, merging v1 and v2 in the case of Ex.1 would result
in creating a loop. More generally, the restrictive item 3. from Definition
9.16 imposes the following condition on v1 and v2 :

∃e, e′ | v1be′cv2 ∧ v1becv2 ⇒ e′ = e;

In the case where v1 and v2 would be connected together by several edges,
would it be necessary to unite both nodes nonetheless, the user could replace
the set of edges between the two nodes by one epsilon edge by means of the
Mod operator first.
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• The restrictive item 3. from Definition 9.16 also discards certain patterns,
illustrated by the Ex.2. above, that is, the situation where there is a path
leading from v1 to v2 in parallel of the ε edge to be deleted. Indeed, merging
the two nodes would then change this parallel path into a cycle – which
would impact the annotation language of the graph greatly. We will see,
in Paragraph 10.7.2, how to make an existing label sequence in a schema
cyclic.

• In general, if there is another edge than ε going out of v1 AND another edge
than ε ending on v2, merging the two nodes might not create any cycle in
the graph – to be sure, the graph would have to be crawled through, in
order to check if the two edges belong to a common path or not – but will
result, in any case, in a substantial modification of the annotation language
of the graph: while the original graph does not enable Y to be followed by
X, in a graph where v1 and v2 are merged into one node, the sequence Y X
will be allowed.

Still, the following situation is not discarded by the restriction number 3:

4. The restrictive item 4. from Definition 9.16 cannot be explained right now: it is
necessary, still, for propagating the Unite operation to the instances of the cast
it is defined onto. See Paragraph 10.5 page 280.

9.5.2 Unite Operator Definition

Definition 9.17: Unite operator. Be G = (VG, EG) a cast. Be IGthe set of the
identifiers of the nodes of G, and TG the set of type values of those nodes.
Be two nodes (va, vb) ∈ V 2

G so that type(va) = ta, type(vb) = tb, id(va) = a, id(vb) = b,
so that the pair of nodes verifies the conditions given in Definition 9.16.
Be also J the index of the triple (ta, ε, tb) in T × L × T .
Be then a node vN so that id(vN ) 6∈ IG and so that tN = type(vN ) 6∈ TG.
Then the modification Unite operated on G, with ta, tb and tN as arguments, is defined
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as follows:

[[Unite(ta, tb, tN ).[G/[Temp.G]]]i,j ]x,y

= 0 if j = J

(the ε edge is deleted from G)
= 0 if i ∈ {ta, tb}

(the lines corresponding to ta and tb are reset to zero)
= [[G/[Temp.G]]i,j ]x,y if i 6∈ {ta, tb, tN} ∧ j 6= J

(the lines corresponding to the other type values of TG are left intact)
= [[G/[Temp.G]]ta,ja ]a,y + [[G/[Temp.G]]tb,jb ]b,y if i = tN ∧ x = N

∧ j 6= J,

(for each j corresponding to a triple (t, l, t′), )
(ja corresponds to (t, l, ta) or (ta, l, t

′))
(and jb corresponds to (t, l, tb) or (tb, l, t

′) :)

(this line means that va and vb, as summits and ends of an edge )
(different from the ε edge to be merged, are replaced by vN )

= 0 if i = tN ∧ x ∈ {a, b}
(the nodes va and vb are deleted here)

Example. Be the following cast G and its template-based representation:

[G/[Temp.G]] =

a ε X Y b
1
2
3
4
5


[v1] [0] [0] [0] [0]
−[v2] [v2] [0] −[v2] [0]

[0] −[v3] [v3] [0] [v3]
[0] [0] −[v4] [v4] [0]
[0] [0] [0] [0] [v5]


The pair of nodes (v2, v3) verifies the conditions given in Definition 9.16. The oper-
ation Unite(2, 3, 6) can thus be performed on S. With the nomenclature from the
Definition 9.17, J ≡ 2, tN ≡ 6 and vN ≡ v6, ta ≡ 2 and va ≡ v2, tb ≡ 3 and vb ≡ v3.
Thus, as an illustration:

[[Unite(ta, tb, tN ).[G/[Temp.G]]]6,1]6,1 = [[G/[Temp.G]]2,1]2,1 + [[G/[Temp.G]]3,1]3,1

= − 1 + 0

⇒ [[Unite(ta, tb, tN ).[G/[Temp.G]]]6,1] = −[v6]
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In fine, the modification yields the following cast:

9.6 Operators Composability

We have defined three operators Mod, Split and Unite. Those operations are meant
to be composed, in order for the user to define a transformation, producing a schema
out of another schema. We establish here that the operators are indeed composable,
in the sense that each of them produces a cast out of a cast – provided the following
definitional properties to the definition of the Mod and Split operators, in order to
take into account some limit cases that the above definitions of the operators do not
consider:

Definition 9.18 : Mod and Split extension to limit cases. Be G = (VG, EG) a
cast.

1. Be χ a cell so that χ 6⊂ G. Be χ+ any cell.
Then Mod(χ, χ+).G = G.

2. Be χ a cell. Be χ+ another cell so that (root(χ+), leaf(χ+)) 6= (root(χ), leaf(χ)).
Then Mod(χ, χ+).G = G.

3. Be χ a cell. Be χ+ a cell possessing a node v so that v 6∈ {root(χ+), leaf(χ+)},
and so that ∃v′ ∈ VG so that type(v) = type(v′).
Then Mod(χ, χ+).G = G.

4. Be χ a cell and χ+ another cell so that ∃e | root(χ+)becleaf(χ+) ⊆ χ+, and
so that ∃e′ ∈ EG | root(χ+)be′cleaf(χ+) ⊆ G and label(e) = label(e′).
Then Mod(χ, χ+).G = Mod(χ, χ+\root(χ+)becleaf(χ+)).G.

5. Be TG = {t ∈ T | ∃v ∈ VG ; type(v) = t}. Be tk ∈ T so that tk 6∈ TG.
Then Split(k).G = G.

Thus, the operations Mod and Split are defined for any argument5.

Now let us check that the image of any cast by any modification is a cast.

Theorem 9.1. Be G a cast.

1. Whatever χ, χ+ schematic cells, Mod(χ, χ+).G is a cast.

2. Whatever k ∈ N, Split(k).G is a cast.
5Unite, a contrario, is not edfined for some arguments, and its definition otherwise is given in the

previous paragraph.
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3. Whenever Unite(ta, tb, tN ).G is defined, it is a cast.

Proof. We must establish that whatever the operation:

a. The image of G does not possess a connected part restricted to a node.

b. The image of G does not contain loops.

c. The nodes of the image of G are identified by their type value, and the edges
of the image of G, by the types of their summit and end together with their
label.

The points a. and b. above are granted, for the image of G is expressed by means of an
incidence matrix (a template-based representation, actually), which does not enable
the representation of either loops or isolate nodes. Let us check the point c. holds:
Regarding the Mod operator :
It is clear that, regardless of the cells considered, Mod(χ, χ+).G ⊆ G ∪ χ+.
Let us suppose now that there are two nodes v, v′ among the nodes of Mod(χ, χ+).G
so that type(v) = type(v′). By definition of the cast G, ∀(v1, v2) ∈ G, type(v1) 6=
type(v2), and the same for the nodes of χ+, which is also a cast. Thus, the only
remaining possibility is v ∈ G ∧ v′ ∈ χ+ (or the other way round). This situation
splits into three cases:

• If v 6∈ G ∩ χ+ = {root(χ+); leaf(χ+)}, then χ+ is a cell possessing a node
v 6∈ {root(χ+), leaf(χ+)} so that ∃v′ ∈ VG so that type(v) = type(v′), which
gives Mod(χ, χ+).G = G by definition.

• Else, we can possibly have v = root(χ+), which implies that v′ = v since the
nodes of χ+ are identified by their type value.

• Eventually, we can have v = leaf(χ+), which implies v′ = v for the same reason.

Thus is any case, the nodes of Mod(χ, χ+).G are identified by their type value.
To conclude, we may note that there cannot be two edges sharing the same label
between a given pair of nodes in a cast, that is, neither in G nor in χ+. Thus,
the only situation that might imply the existence of two edges characterized by the
same triple from T × L × T in G ∪ χ+ is the situation described in the item 4. in
Definition 9.18. Since this situation is solved by not considering the edge e of χ+

that is characterised by the same triple as some edge from G, e 6∈Mod(χ, χ+).G. By
applying this resolution principle to all the edges of χ+ that shall be problematic, we
make sure that Mod does produce a cast out of a cast.
Regarding the Split operator:
We set the case Split(i).G = G apart. Otherwise, let us consider the type value of
the nodes from Split(i).G\G. Consider the case where ∃j | [[G/[Temp.G]]ij ] 6= [0].
G being a cast, that is, a graph in which there is a bijection between the type and
the identifier values for nodes, ∃!x | ∀j, y, [[G/[Temp.G]]ij ]xy 6= 0. Then the matrix
representing Split(i).G is defined by replacing the inner matrices from the ith block-
line of [G/[Temp.G]] onto two different lines corresponding to a type value that is not
present in G and, thanks to the Cod operator, by changing the identifier of the nodes
thus dispatched onto two block-lines. Cod is defined so that, after this operation, the
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nodes from those two lines do not share their identifier value, maintaining the bijection
between types and node identifiers.
To conclude, the only new edge from Split(i).G is the unique ε edge connecting the
new nodes resulting from the split. Hence the edges of the resulting graph are well
identified by a triple in T × L × T .
Regarding the Unite operator:
Eventually, the only new node of Unite(ta, tb, tN ).G possesses a type value that is not
possessed by any node of G.
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Chapter 10

eAG Bidirectional
Transformations

We have defined SeAG transformations as the composition of Mod, Split and Unite
modifications, in order to produce, out of an original schema, a cast that, if it is well
defined, is an amended schema. We now consider how bidirectional transformations,
operating in the domain of the instances, can be derived from those SeAG transfor-
mations, and play the following double role in the system we propose:

1. Initialization. Provided an original schema S and a corresponding eAG IS ,
and provided a modification g defining a schema S′ = g.S, the forward transfor-
mation derived from g will enable to define an eAG IS′ that shall be expressible
on the template of S′ and contain ‘as much of the information contained in IS
as possible’.

2. Synchronization From there on, any update performed on IS′ will have to be
propagated to IS by means of the backwards modification derived from g, and
conversely, any update performed on IS will have to be propagated to IS′ by
means of the forward modification derived from g.

As for transformations, it also appears that an eAG transformation shall result from
the composition of elementary, bidirectional modifications, for example each deriving
from a SeAG modification (see Paragraph 10.1) Before considering how to derive such
an eAG modification out of a SeAG modification, we first focus on the compositional
properties eAG modifications shall verify; we then define the notion of instance up-
date and propose a temporal model for the synchronization of two instances that are
updated in parallel.

10.1 Composing eAG Modifications

The general strategy for the definition of an eAG transformation is the following:
each modification in the domain of the schemas (and casts) shall be translated into
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a bidirectional modification in the domain of the instances. Thus, a transformation
between two instances corresponds to the composition of the modifications derived
from the corresponding composition of modification in the domain of schemas:

S
modifsch.1−→ G1

modifsch.2−→ G2 . . .
modifsch.N−→ S′

⇓ ⇓ . . . ⇓

IS
modifinst.1←→ H1

modifinst.2←→ H2 . . .
modifinst.N←→ IS′

For IS′ to be an instance of S′, it has to be expressible on the template of S′. Consis-
tently with this fact, each Hk graph above shall be expressible on the template of the
corresponding cast Gk. In other words, Hk will have to be defined by setting the value
of the inner matrices of [temp.Gk] so that the resulting graph represents a graph. This
requires the following property to be verified by [Hk/[temp.Gk]]

1. ∀i, i′, j | ∃[Aij ] > [0] ∧ [Bi′j ] < [0] inner matrices of [Hi/[temp.Gi]], then
sizeW .[Aij ] = sizeW .[Bi′j ], where sizeW denotes the function that gives the
number of columns of a matrix.

2. Moreover, it must be verified that each node shall be associated one and only
one type value, i.e. that:

[[Hk/[Temp.Gk]]i,j ]x,y 6= 0⇒ ∀i′ 6= i, [[Hk/[Temp.Gk]]i′,j ]x,y = 0.

Noteworthily, each of the above modif instk shall also play the double role attributed
to the transformations in the introductory purpose of this chapter: initialize the next
graph Hk (or IS′) and synchronize each Hk −Hk+1 pair.

Those few constraints are the only ones we impose on the Hk – which thus belong
to a class of graphs much wider than the eAGs. Throughout this chapter, we will
illustrate what seems to be a property of the eAG transformations we propose, that is,
the fact that the composition of a sequence of eAG modifications that derive from a
sequence of SeAG modifications that transform a well-formed SeAG into a well-formed
SeAG, also transform a well-formed eAG into a well-formed eAG. Yet this property is
just an assumption at this stage of our research.

10.2 Definition and Temporal Model
of Instance Update

Definition 10.1 : Instance update Be a schema-instance pair S − IS ; be g a
SeAG transformation and S′ the image of S by g.
Let us consider that we have an instance IS′ of S′ so that IS′ is the image of IS by
the eAG transformation gI corresponding to g.
An update of either IS or IS′ is any change in the matrix values of [IS/[Temp.S]] or
[IS′/[Temp.S

′]], so that the resulting matrix represents a well-formed eAG.

In a HCI-mediated annotation system, an update will correspond to the back-end
consequences of an editorial intervention onto the primary corpus operated by the end
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user, that is, one editor: identification of a passage and characterization of this passage
with the definition of an element; definition of a comment, etc. Thus, the actions
undertaken by the editor that will imply an update in the structured data will thus
take time. The duration of an update can, in a collaborative and distributed setting,
be the source of conflicts and/or ambiguities. To illustrate this aspect, consider the
toy example below, in which two editors, for the sake of clarity, work on two schemas
S and S′ that are identical (in other words, the transformation of S into S′ is the
identity function). In such a case, it is clear that the corresponding eAG bidirectional
transformation shall guarantee the identity between the instances.
The template of S and S′ is represented below: the matrices [Ax] denote matrices that
will take positive values in any expression over the corresponding template, and [Bx],
negative values.

Let us consider, as a starting point t = t0, that there is a very elementary instance IS
of S in store, and the transformation that from S gives S′ has just been defined. The
determination of the eAG transformation corresponding to the SeAG transformation,
and the calculation of IS into data validated by S′ takes some tim too. At t = t1, two
instances IS and IS′ coexist.
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Let us now consider that, from the moment t1, two editors are working, one on IS
and the other one on IS′ , and modify each instance as follows, for example before
committing:

Based on this situation, when considering how to propagate the updates from one
instance to the other, in a state-based approach, that does not take into account
the process that has lead to the current state (and to the matrix values on each
side), one faces an ambiguity: both the column 2Y 3, in [IS/[Temp.S]], and 2X3 in
[IS′/[Temp.S

′]], are equal to zero. Yet, in the opposite instance, those columns are
not empty: thus, when trying to restore the equality of IS and IS′ , should non-null,
or null values prevail? Should, after the synchronization of the instances, the two
columns 2Y 3 and 2X3 be both null, both non null, or one of each... ? It appears that
this situation is much clearer from an operation-based point of view, which provides
a very different interpretation to the nullity of the columns 2Y 3 and 2X3: no edge
labelled Y has been defined in IS , while an edge labelled X has been deleted in IS′ .
The deletion of the edge X should thus be propagated to IS – and the additions of
the edges a and X that have been performed on IS , to IS′ .
It thus appears that, in an operation-based approach, propagating an update oper-
ated on one side to the other side cannot done by copying the value of the modified
inner matrices of one updated instance into the other instance. Indeed, by doing so,
propagating the updates operated on IS (for instance) first onto IS′ by inserting the
new values of the modified matrices of [IS/[Temp.S]] into [IS′/[Temp.S

′]] would erase
some updates done, in the meantime, on IS′ : the deletion of the edge labelled X be-
tween v2 and v3 in IS′ , in particular.
Yet, what makes this last naïve strategy of update propagation impossible – and en-
forces to have recourse to an operation-based strategy – is the fact that each instance
of a pair of instances connected together by a bidirectional transformation have been
considered to be updatable simultaneously. In a turn-based model for updates, those
situations do not happen: an editor A can only update an instance IA after the active
editor B has committed his changes. Indeed, this model of interactive work is not
realistic. We adopt it nonetheless to avoid the burden of having, in this first attempt
at defining bidirectional transformations for eAG, to take conflicts into account. Thus
the following temporal model for eAG updates:
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Definition 10.2 : temporal model for eAG updates. Be S − IS and S′ − IS′
two schema-instance pairs related together by means of a pair of SeAG and eAG trans-
formations.
It will be considered that the propagation of an update operated on one of the in-
stances to the other instance is instantaneous: the propagation takes no time and is
done as soon as the update is done, regardless of the activity on the other instance.
It will also be considered that the definition of an update onto an instance is instan-
taneous.
The combination of the two above assumptions is equivalent to saying that the in-
stances are considered to be updatable sequentially.

10.3 Derivation from a Mod Modification

10.3.1 eAG Mod Behaviour

We have defined our general strategy for the propagation of a SeAG transformation
to the domain of the instances: with the nomenclature introduced in Paragraph 10.1,
from each modification producing a cast G′ out of another cast G, a modification shall
produce a graph H ′, expressible on the template of G′, out of H.
Thus, let us sum up briefly what a SeAG Mod modification consists in, and how it
shall be interpreted in the eAG domain.

1. A given rooted, single-leafed and connected subgraph of G, made out of one or
more root-to-leaf paths that do not intersect, is identified: it is the schematic
cell χ−.
The graph H, represented on [Temp.G], may contain some linear annotation
paths that instantiate, or contain instantiations of, some of the root-to-leaf paths
of χ−.

2. Defining the SeAG modificationMod with χ− as a first argument means that, in
the image of G, the root-to-leaf paths of χ− shall not be instantiable anymore.
Preventing those to be instantiable is not, in general, done by deleting all the
edges of χ− from G: some of these edges may be involved in paths that are not
root-to-leaf paths of χ−. By analyzing the context of each edge of χ−, Mod
attempts to preserve such edges, and to delete the edges that participate to
root-to-leaf paths of χ− only – if possible. In any case, some of the edges of
χ− shall be deleted from G to G′, in order for the root-to-leaf paths of χ− not
to be present in G′. In other words, the inner matrices of [G/[Temp.G]]∞ that
represent those edges are enforced to equal zero in [Temp.G′]∞.
Because H ′ has to be expressible on [Temp.G′], it means that the matrices
representing the instances of the deleted edges of G will also be set to zero in
[H ′/[Temp.G′]]∞. But in the instance domain, this is not a sufficient deletion,
in general. Indeed, the purpose of the Mod modification on schemas was to
suppress the root-to-leaf paths of χ− from G: in the domain of the instances,
this means that the instances of the root-to-leaf paths of χ− shall be erased –
and not only the instances of the edges of χ− that are deleted in G.
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To make this crucial point clearer, let us take an example. Be the following cast
G, modified into G′ by the substitution of the sequence aX by Ω:

Be the graph H corresponding to G:

Since the edge X does not belong to [Temp.G′], the matrix values corresponding
to the instances of that edge in [H/[Temp.G]] shall be turned to zero. But simply
doing so will give the following graph:

Instead, all the elements of the matrices [Aa] and [Ba] in [H/[Temp.G]], describ-
ing an edge that participates in, and only in, an instance of a root-to-leaf path
of χ−, shall be deleted also. Here; the edge labelled a between v1 and v2 was
followed, in H, only by an edge labelled X: as such, it should not remain in H ′.
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Hence the following deletion:

3. The cast G′ is then obtained by inserting, between the node that was the root of
χ− and the node that was the leaf of χ−, a substitution cell χ+. The propagation
of this insertion to the instance domain goes as follows: between all the pairs of
nodes that were the corresponding root and leaf of an instance of a root-to-leaf
path of χ+, an instance of the different root-to-leaf paths of χ+ must be created.
PropagatingMod to the instances thus demands to establish the pairs of root/leaf
of the instances of χ−, and for each, to keep track of the correspondence of this
pair with the corresponding pair of root/leaf of an instance of χ+. This pair-
to-pair correspondence, if it can be read in both directions, can be used to
synchronize the two instances: any modification of a path between one pair shall
be propagated to a path between the corresponding pair on the other side.

We now present formally how to determine this pair-to-pair correspondence, and how
to use it as the basis for a symmetric, graph bidirectional Mod transformation.

10.3.2 Bidirectional eAG Mod Modification Derived from a
SeAG Mod Operation

Importantly, the following strategy is defined in a restricted case, that is, in case of
independent schematic cells, containing one paths only. Further work will be needed
to embrace the general case1.

Let us consider the following schema-instance pairS − IS below.

1Some of the following algorithms have already been extended to the general case: they can be
consulted in the Appendix 13 (in French), where they are inserted for the record.
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The finite template of S, where [Ax] matrices represent positive matrix variables
and[Ax] negative ones, is the following:

[S/[Temp.S]] =

α a b c X β
1
2
3
4
5
6


[A1,1α2] − − − − −
[B2,1α2] [A2,2a3] − − [A2,2X5] −
− [B3,2a3] [A3,3b4] − − −
− − [B4,3b4] [A4,4c5] − −
− − − [B5,4c5] [B5,2X5] [A5,5β6]
− − − − − [B6,5β6]


The expression of S and IS is done by attributing a certain matrix value to each
matrix variable [Ax] and [Bx]:

S :

 [A1,1α2] = [v1] [A2,2a3] = [v2] [A3,3b4] = [v3]
[B2,1α2] = −[v2] [B3,2a3] = −[v3] [B4,3b4] = −[v4]

[A4,4c5] = [v4] [A2,2X5] = [v2] [A5,5β6] = [v5]
[B5,4c5] = −[v5] [B5,2X5] = −[v5] [B6,5β6] = −[v6]


IS :

[A1,1α2] = [v1] [A2,2a3] = [v2 v2] [A3,3b4] = [v3 v7 v7]
[B2,1α2] = −[v2] [B3,2a3] = −[v3 v7] [B4,3b4] = −[v4 v8 v10]

[A4,4c5] = [v4 v8 v10] [A2,2X5] = [v2] [A5,5β6] = [v5 v9 v11]
[B5,4c5] = −[v5 v9 v11] [B5,2X5] = −[v5] [B6,5β6] = −[v6 v6 v6]



Be then χ− the following schematic cell and its template-based representation:

[Temp.χ−] =

a b c
2
3
4
5


[A2,2a3] − −
[B3,2a3] [A3,3b4] −
− [B4,3b4] [A4,4c5]
− − [B5,4c5]



with χ− :

(
[A2,2a3] = [v2] [A3,3b4] = [v3] [A4,4c5] = [v4]
[B3,2a3] = −[v3] [B4,3b4] = −[v4] [B5,4c5] = −[v5]

)
Be the following substitution cell χ+ :

[Temp.χ+] =

A B
2
5
7

 [A2,2A7] −
− [B7,7B5]

[B7,2A7] [A7,7B5]



with χ− :

(
[A2,2A7] = [v2] [A7,7B5] = [v7]
[B7,2A7] = −[v7] [B5,7B5] = −[v5]

)
Let us see how the Mod operation defined by the above arguments can be derived

into an eAG modification.
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First, χ− is independent, which means that:

[Mod(χ−, χ+).S/[Temp.Mod(χ−, χ+).S]]∞

= [S/[Temp.S]]∞ − [χ−/[Temp.χ−]]∞ + [χ+/[Temp.χ+]]∞

Thus, by denoting S′ the cast defined by Mod(χ−, χ+).S :

[Temp.S′] =

α A B X β
1
2
5
6
7


[A1,Aα2] − − − −
[B2,Aα2] [A2,2A7] − [A2,2X5] −
− − [B5,3B5] [B5,2X5] [A5,5β6]
− − − − [B6,5β6]
− [B7,2A7] [A7,3B5] − −


with S′ :

(
[A11] = [v1] [A22] = [v2] [A73] = [v7] [A24] = [v2] [A55] = [v5]
[B21] = −[v2] [B72] = −[v7] [B53] = −[v5] [B54] = −[v5] [B65] = −[v6]

)
This represents the following schema:

Let us now derive from Mod(χ−, χ+) a modification translating IS into an eAG vali-
dated by S′. As stated above, the target is to replace the edge sequences, in IS , that
instantiate a root-to-leaf path of χ− by an instance of χ+.
It is worth noting here that [IS/[Temp.χ

−]] contains the description of all the edges,
in IS that instantiate an edge from χ−. Yet it is among those edges that the edges
belonging to a sequence instantiating a complete root-to-leaf path of χ− have to be
looked for. As we have seen in Paragraph 10.3.1, the information that is needed,
for establishing the bidirectional modification in the instance domain, is the set of
root/leaf pairs of such complete sequences: to establish this set, the graph represented
by [IS/[Temp.χ

−]] has to be visited, starting from the nodes that can possibly be
roots for such complete root-to-leaf sequences, down to the possible leaves. We define
such a visiting method on the matrix representation of the graph below:

1. χ− has one and only one root, characterized by the fact that it corresponds to
the only block-line in [Temp.χ] where there is no negative matrix variable. Here,
the type of the root of χ− is thus 2.
As a consequence, only the nodes whose type is 2 may be the root for an instance
of a root-to-leaf path from χ− in IS . The visit of the matrix shall then start by
the inner matrices that belong to the block-line of type 2: [A2,2a3] = [v1 v2] here.

2. It is then possible to know the following node of each node in [A2,2a3] = [v1 v2].
It suffices to look for the only inner matrix that is not equal to zero on the same
block-column as [A2,2a3], that is [B3,2a3] = −[v3 v7] here. Then we know that
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the only sequences of edges, in IS , that may instantiate a root-to-leaf path of
χ−, are the sequences starting by an edge labelled a between v2 and v3 on the
one hand, and between v2 and v7 on the other hand.

3. Before continuing the visit, one must check whether the type of the nodes v3 and
v7 is equal to the type of the leaf of χ− – which would indicate that the visit
is finished. It is not the case since the block-line corresponding to type(v3) =
type(v7) = 3 in [IS/[Temp.χ

−]] does not contain negative matrices only.

4. The type of the deepest nodes reached so far is not the type of the leaf of χ−:
this means that the nodes v3 and v7, may appear in at least one positive matrix
on the same block-line as the previously reached, negative matrix [B3,2a3]. There
is only one such positive matrix: [A3,3b4] = [v3 v7 v7]. Both v3 and v7 are thus
in turn the summit of an edge instantiating an edge of χ−. Additionally, we can
note that v7 is actually the summit of two such edges.

5. The same process is applied recursively, by looking for the ends of the edges
whose roots have been discovered, and then checking if those ends are summits
of further edges instantiating an edge of χ− – until reaching nodes whose type
equals the type of the leaf of χ−. Handling the cycles here is quite easy: the
only cycles in the eAG domain involve links. Thus, a record of the edges whose
label contains :LinkTo has to be kept, not to visit their end twice.
By doing as indicated above, one finds that the next matrix after [A3,3b4] is
[B4,3b4] = −[v4 v8 v10]. Those nodes then occur, on the same block-line, in
[A4,4c5] = [v4 v8 v10]. They then lead to the nodes [B5,4c5] = [v5 v9 v11] by
means of another edge instantiating an edge of χ−. There is no positive matrix
on the block-line 5, so the algorithm finishes here.

Starting from the candidate nodes for being the roots of the instance of a root-to-leaf
path of χ−, the above visiting procedure provides the sequence of nodes that follow
those candidate roots. We can represent this information as follows:
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This representation of the paths that have been identified in [IS/[Temp.χ
−]] illustrates

the fact that the matrices ([Aij ], [Bkjl]) form pairs within which the node designated
by the nth column from [Aij ] belongs to the same path as the node designated by the
nth column of [Bkj ] (this is natural since this pair of nodes are the summit and end
of an edge of [IS/[Temp.χ

−]]).
More interestingly, this representation also shows that a node represented by the kth
column of a given [Bkj ], and belonging to an instance of a root-to-leaf path of χ−,
will occur in another matrix [Akl] from the same block-line of [IS/[Temp.χ

−]]; more
precisely, several columns from the matrix [Akl] may represent the same node as the
nth column of a given [Bkj ], in the case where that node is the summit of several edges
instantiating an edge from χ−.
Consequently, one way to represent the different paths instantiating a root-to-leaf
path of χ− is by stating to which column(s) of a pair ([Aij ], [Bkj ]) align with which
column(s) of the following pair ([Akl], [Bml]), as follows:

Based on the information given on the right side of the above representation, we know
that the node represented by the first column of the matrix [A2,2a3] is the root of a
path whose leaf is represented by the first column of the matrix [B5,4c5], while the
second node of [A2,2a3] is the root of two paths: one ending on the second node of
[B5,4c5], and the other ending on the third.
The conclusion we draw from the above considerations is that, when χ− contains one
single path, it is possible to represent the output from the matrix visit by a sequence
of pairs ([Aij ], [Bkjl]) and a series of (special kinds of) permutations describing how
the columns of this pair relate with the columns of the next. By composing all the
permutations, the pairs of nodes that work as the root and the leaf of the same instance
of a path of χ− will be given.
In the present case, two permutations can be defined: σ1 between the columns of the
matrices defining the edges characterized by the triple (2, a, 3) and the columns of
those defining the edges (3, b, 4); σ2, between the columns of (3, b, 4) and (4, c, 5).
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In the current context where χ− contains a single path, we define those permutations
as follows:

1. Be two matrices [Bij ] and [Ail] whose columns are to be aligned. Be LB the list
of the node identifiers in their order of appearance, from left to right, in [Bij ],
and LA the corresponding list for [Ail]. For all index k over the elements of LB ,
if ∃K = {k1, k2...kN} so that ∀ki, (LA)ki = (LB)k, then we define a permutation
σ(k) of N 2 by means of a matrix whose elements are, on the first line, several
occurrences of k together with an additional flag value in {n ∈ N, n > 1}, and
on the second line, the ki values:

σ(k) =

(
k k(2) . . . k(2)

k1 k2 . . . kN

)
The complete permutation σ between the columns of [Bij ] and [Ail] is the con-
catenation of all the σ(k), for k varying over the set of indexes over the list
LB .

2. Symmetrically, if the second line of the σ contains several occurrences of the
same value, those will be distinguished by means of flags as indicated above.

This way, σ will indeed be a permutation of N2, each flagged index being a pair of
naturals, and a non-flagged one corresponding to the case where the flag shall equal
1.
In our example :

1. Between [B3,2a3] = −[v3 v7] and [A3,3b4] = [v3 v7 v7]: the node designated by
the firs column of [B3,2a3] only matches the first column of A3,3b4]; the node
designated by the second column of [B3,2a3] matches both the second and the
third columns of A3,3b4] ;

σ1 =

(
1 2 2(2)

1 2 3

)
2. Between [B4,3b4] = −[v4 v8 v10] and A4,4c5] = −[B4,3b4]: the permutation is the

identity:

σ2 =

(
1 2 3
1 2 3

)
In order to determine the pairs of nodes working as the root and its corresponding
leaf of an instance of χ−, we calculate the composition of those two permutations:

σ = σ2 ◦ σ1 =

(
1 2 2(2)

1 2 3

)
which indicates that there are three instances of χ− in IS :

• the first between the node designated by the first column of [A2,2a3] and the
node designated by the first column of [B5,4c5], that is between v2 and v5;
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• the second between the node designated by the second column of [A2,2a3] and
the node designated by the second column of [B5,4c5], that is between v2 and v9;

• the last between the node designated by the second column of [A2,2a3] also, and
the node designated by the third column of [B5,4c5], that is between v2 and v11.

To fulfil the propagation, we proceed as follows:
All the paths of χ+ will have to be instantiated between each root-leaf pair identified
just above. This is done by creating the needed nodes and edges:

1. Be ir the index of the type value of the root of χ+. Then for j so that there
is a positive matrix [Airj ] in the template of χ+, [Airj ] is given as a value the
ordered list of the roots of the instances of χ− found above – a multiple root
being repeated adequately in [Airj ].
Here, this gives: [A2,2A7] = [v2 v2 v2].

2. The same ptocess shall be done for the leaves: Be il the index of the type value of
the leaf of χ+. Then for j so that there is a negative matrix [Bilj ] in the template
of χ+, [Bilj ] is given as a value the ordered list of the leaves of the instances of
χ− found above – a multiple root being repeated adequately in [Bilj ].
This gives [B7,7B5] = [v5 v9 v11].

3. Then, all the other matrices of [Temp.χ+] have to be given a value so that it
varifies the following rules:

α. ∀i, i′, j, sizeW .[Aij ] = sizeW .[Bi′j ]

β. ∀i, l, x, y | [G/[Temp.G]il]xy = −1, so that l is not the index of the
type value of the leaf of χ+:
∃l′, y′ | [G/[Temp.G]il′ ]xy′ = 1.

To achieve that, we propose the following procedure:

(a) For the value j so that [Airj ] 6= [0], find the value i′ so that [Bi′j ] is defined.
If i′ 6= il, then fill [Bi′j ] with a negative list of newly created node identifiers,
so that sizeW .[Airj ] = sizeW .[Bi′j ].
Here, for instance: [B7,5A7] = −[v12 v13 v14].

(b) Then find j′ so that [A′ij
′] is defined, and give [A′ij

′] the value −[Bi′j ]. This
ensures that the above rule β is respected.
Here: [A7,7B5] = [v12 v13 v14].

Repeat steps a. and b. replacing [Airj ] by [A′ij
′] above.

Here, the procedure stops without repeating it, since 7 is the index of the type
value of the leaf of χ+.

In summary, the whole forward propagation ofMod(χ−, χ+) to IS yields the following
representation on the template of S′:


[A1,1α2] = [v1] [A2,2A7] = [v2 v2 v2] [A7,7B5] = [v12 v13 v14]
[B2,1α2] = −[v2] [B7,5A7] = −[v12 v13 v14] [B5,7B5] = [v5 v9 v11]

[A2,2X5] = [v2] [A5,5β6] = [v5 v9 v11]
[B5,2X5] = −[v5] [B6,5β6] = −[v6 v6 v6]


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which represents the following graph IS′ :

We leave the question of how to affect a reference value to the created nodes open
until Paragraph 10.6.
In the end, since it is represented over the template of S′, this graph, which also
happens to be a well-formed eAG, is validated by S′. We can also consider that is
captures as much information from IS as possible, and translates each path abc into
a path AB as expected.

Nota. We can also note that the compositional properties given in Paragraph 10.1
are guaranteed by construction: Property number 1. page 254 corresponds exactly
to the rule α above, and Property number 2., which requires an identifier not to ap-
pear on two block-lines of the tempalte-based expression of the image graph, is also
guaranteed by the fact that new identifiers are created whenever a new block-line is
considered in the above procedure.
Now let us illustrate how this forward initialization of IS′ based on IS can be in-
terpreted bidirectionally, and serve as a synchronization mechanism between the two
instances. To do that, we first need to define how to operate a permutation on a
matrix:

Definition 10.3 : Permutation on a matrix. Be [M ] a matrix that can be
represented as a list±[m1 m2 . . .mN ], where each mi is a column vector containing
one and only one non-null coefficient, that is equal to 1..
Be σ a permutation of N2 so that for all i ∈ [1;N ], and for all k ≥ 1, ∃!(j, l) ∈ N2 so
that σ(i(k)) = j(l), and so that:

∀i, i′ ∈ [1;N ],∀k, k′ ∈ N, σ(i(k)) = j(l) = σ(i′(k
′))

⇔ i = i′ ∧ k = k′.

Then σ.[M ] is the matrix defined by:

1. For i, j, k so that σ(i(k)) = j(1), then: [σ.[M ]]j = [M ]i

2. For i, j, k, l 6= 1 so that σ(i(k)) = j(l), then, with ‘+’ denoting the “sum” operator
defined over {−1, 0, 1} in Table 9.1 page 223 and [σ.[M ]]∗j the value of the
coefficient before operating the sum operator:

[σ.[M ]]j = [σ.[M ]] ∗j +[M ]i
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Example. Let us consider [B3,2a3] = −[v3 v7] and the permutation σ1 defined
above by the following matrix:

σ1 =

(
1 2 2(2)

1 2 3

)
There are three triples (i, j, k) so that σ(i(k)) = j : (1, 1, 1) (2, 2, 1) and (2, 3, 2). Thus,
σ.[B3,2a3] = −[v3 v7 v7].

Nota. We can notice the in the above example, with σ1 defined as the permutation
between the columns of [B3,2a3] and [A3,3b4], we have:

σ.[B3,2a3] = −[A3,3b4]

This property is actually a general result in the case of schematic cells containing one
path only:

Property 10.1 Be σ the permutation between the lines of two matrices [Bij ] and
[Aik]. Then:

σ.[Bij ] = −[Aik]

and naturally:

σ−1.[Aik] = [Bij ]

Nota. In a schematic cell containing one path only, theer is at most one pair of
positive and negative matrices per block-line – hence the above result. The extention
to the genral case is treated in the next paragraph.

Let us now consider how those properties enable to bidirectionalize the transformation
that gave IS′ out of IS .

1. First, if the properties of a node that is common between IS and IS′ is modified
in one of the instances (i.e. its reference value is changed), the same change must
be operated on the other instance. If an edge belonging to the instances of an
edge from S ∩ S′ is deleted or added in one of the instances, it must be deleted
or inserted in the other as well. This elementary update propagations can be
done, in the temporal model we chose, by copying the matrix values from the
expression of one instance to the other.
For instance, let us make the assumption that an edge X has been inserted in
the instance IS′ defined bove, as follows:
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In terms of the value of the matrix variables describing IS′ , this update is defined
as follows:

• [A2,2X5] = [v2] −→ [A2,2X5] = [v2 v2] ;
• [B5,2X5] = [v5] −→ [B5,2X5] = [v5 v9].

If those two new matrix variable values are copied in the list of matrix values
{IS/[Temp.S]} describing IS , we have:

2. Let us now consider the following update: an edge sequence αAB is inserted in
IS′ between the nodes v1 and v11:
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The matrix description of this update is:

• [A1,1α2] = [v1] −→ [A1,1α2] = [v1 v1]
[B2,1α2] = −[v2] −→ [B2,1α2] = −[v2 v15] ;

• [A2,2A7] = [v2 v2 v2] −→ [A2,2A7] = [v2 v2 v2 v15]
[B7,2A7] = −[v12 v13 v14] −→ [B7,2A7] = −[v12 v13 v14 v16] ;

• [A7,7B5] = [v12 v13 v14] −→ [A7,7B5] = [v12 v13 v14 v16]
[B5,7B5] = [v5 v9 v11] −→ [B5,7B5] = [v5 v9 v11 v11].

Propagating this update can be done in three steps:

(a) First, the value of the common matrices between {IS′/[Temp.IS′ ]} and
{IS/[Temp.IS ]} are copied from the updated instance to the other: for
example, in {IS/[Temp.IS ]:

[A1,1α2] = [v1] −→ [A1,1α2] = [v1 v1]

[B2,1α2] = −[v2] −→ [B2,1α2] = −[v2 v15]

(b) Additionally, it has to be considered that the update on IS′ also impacts
the value of the matrices from [IS′ [Temp/χ

+]]. The first thing to check is
whether this update affects the pairs of roots and leaves of the instances of
χ+ in IS′ . The procedure to obtain the list of such pairs is the one described
above.It provides the following pairs: {(v2, v5); (v2, v9); (v2, v11); (v15, v11)}.
Had the update not affected the list of root-leaf pairs, it would not have
to be propagated2 Yet, because this list differs from the previous one, the
update operated on the matrix values from {IS′/[Temp.IS′ ] will have to be
propagated to the other instance: a new root-leaf pair has been defined in
IS′ , namely (v15, v11). Thus, because the nodes v15 and v11 have to be part
of the two instances, an instance of χ− has to be defined between v15 and
v11 in IS .The procedure for creating this instance is the same as the one
defined above for initializing the instances of χ+ in IS′ . Hence the following
new value for IS :

2For instance, suppose that the graph IS′ below, left, has been replaced by the new graph IS′
(on the right). The pairs of nodes playing the role of a root and leaf for an instance of a path of χ+

is left untouched by this update: it needs not be transposed onto the other instance then.
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Nota Bene. The permutations between the matrix pairs in [IS/[Temp.S]], that
had been calculated for the old version of IS , can be easily updated. They
become:

3. To finish with, let us make the assumption now that a path, instantiating χ+, is
deleted in IS′ :
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The new matrix values in {IS′/[Temp/S′]} are then:

• [A2,2A7] = [v2 v2 v2 v15] −→ [A2,2A7] = [v2 0 v2 v15]
[B7,2A7] = −[v12 v13 v14 v16] −→ [B7,2A7] = −[v12 0 v14 v16] ;

• [A7,7B5] = [v12 v13 v14 v16] −→ [A7,7B5] = [v12 0 v14 v16]
[B5,7B5] = [v5 v9 v11 v11] −→ [B5,7B5] = [v5 0 v11 v11].

Propagating a deletion is very different from propagating an insertion: the second
requires to create from scratch an instance of the schematic cell in the graph the
insertion is propagated to, and this is done by adding a new column, with new
identifiers, in each of the non-null matrices from [IS/[Temp.χ]]. Propagating
a deletion demands to intervene in a more subtle way onto the matrices of
[IS/[Temp.χ]]. For instance, as we will see, in the case of the deletion illustrated
above, the matrix of [IS/[Temp.χ]] describing the roots of the instances of χ−
will remain untouched.
Two additional notions are thus needed for the propagation of a deletion: the
deletion matrix and the permutation between the roots of the two instances.

Definition 10.4 : Deletion matrix. Be [M ] a n × m matrix. Be [M ′] another
n×m matrix, obtained by turning some of the columns of [M ] to zero.
The deletion matrix [∆suppr.

M,M ′ ] is the n×m matrix that describes the shift from [M ] to
[M ′]. It is defined by the following equality:

[M ′] = [∆suppr.
M,M ′ ]� [M ]

where � denotes the Hadamard product.

Notation. In the following, we will have to designate the value of a given matrix
variable [M ] before and after an update. Then [M ]∗ will be used to designate the
value before the update, and [M ] the updated value.
We will also have to write deletion matrices whose columns contain either only zeros
or ones. We will write those matrices in the shape of a vector of ones and zeros (see
the example below).

Example. In the example we started above, in [IS′/[Temp.χ
+]]:

[A2,2A7] = [v2 v2 v2 v15] −→ [A2,2A7]1 = [v2 0 v2 v15],

Hence the corresponding deletion matrix:

[∆suppr.
[A2,2A7]0,[A2,2A7]1

] =
[

1 0 1 1
]

Definition 10.4: Root-root permutation. Be two schema-instance pairs (S, IS)
and (S′, IS′), so that there are two schematic cells χ− ⊆ S and χ+ ⊆ S′ verifying
S′ = Mod(χ, χ+).S. Be i the index of the type of the root of χ− and χ+ in T . We
make the assumption here that there is a single positive matrix [A] ([A′], respectively)
on the ith block-line of [χ−/[Temp.χ−]] (resp. [χ+/[Temp.χ+]].
We define σrootS,S′ the permutation so that:

σrootS,S′ .[A] = [A′]
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Nota. This permutation always exists in the context of independent cells, since in
this case, the only nodes that appear in [A] will be the root for an instance of χ− –
and hence, a root for an instance of χ+ in IS′ – and conversely.

Example. In the running example, we have seen that:

• [A] = [A2,2a3] = [v2 v2 v15]

• [A′] = [A2,2A7] = [v2 v2 v2 v15]

Thus:

σrootS,S′ =

(
1 2 2(2) 3
1 2 3 4

)
We can now define the way a deletion is propagated from one instance to the other.

The situation is the following: we have already defined the permutations that describe
the instances of χ− and χ+ in terms of the correspondence of the columns of the
matrices from [IS/[Temp.χ

−]] and [IS′/[Temp.χ
+]]; we have identified the root-root

permutation between the roots of the instanes of χ− and χ+. An update is performed
on IS′ : it is a deletion of two edges, and can be described by the two deletion matrices
below (in blue).

Propagating this deletion to the matrices of {IS/[Temp.S]} will be done by exploiting
the numerous permutation matrices, that enable to align the columns of the matrices
of each instance with the columns describing the roots of the instances of the cells they
contain (σ1, σ2 and σ′1) or the roots of the two instances (σrootS,S′): by transitivity, thanks
to all those permutations, each column of any matrix of [IS′/[Temp.χ

+]] can thus be
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aligned with any column of any matrix of [IS/[Temp.χ
−]], and conversely. The prop-

agation of a deletion thus consists in setting to zero the columns, in [IS/[Temp.χ
−]],

that align with deleted columns from [IS′/[Temp.χ
+]]:

• The new value of [A2,2a3] is calculated by :

[A2,2a3] = σroot −1
S,S′ ◦ σ,−1

1 .[∆suppr.
[A7,7B5]∗,[A7,7B5]]� [A2,2a3]∗

= σroot −1
S,S′ .[∆suppr.

[A2,2A7]∗,[A2,2A7]]� [A2,2a3]∗

=

(
1 2 3 4
1 2 2(2) 3

)
.
[

1 0 1 1
]
�
[
v2 v2 v15

]
=

[
1 1 1

]
�
[
v2 v2 v2 v15

]
=

[
v2 v2 v15

]
• Then, the calculation of the new value of [B3,2a3] is:

[B3,2a3] = σroot −1
S,S′ .[∆suppr.

[A2,2A7]∗,[A2,2A7]]� [B3,2a3]∗

=
[

1 1 1
]
�
[
v3 v7 v17

]
=

[
v3 v7 v17

]
• The calculation of the new value of [A3,3b4] is:

[A3,3b4] = σ1 ◦ σroot −1
S,S′ ◦ σ,−1

1 .[∆suppr.
[A7,7B5]∗,[A7,7B5]]� [A3,3b4]∗

=
(

1 2 2(2) 3
1 2 3 4

)
◦
(

1 2 3 4

1 2 2(2) 3

)
.[∆suppr.

[A7,7B5]∗,[A7,7B5]]� [A3,3b4]∗

= id.
[

1 0 1 1
]
�
[
v3 v7 v7 v17

]
=

[
v3 0 v7 v17

]
• Etc.

The resulting list of matrix values describing the updated IS is then:


[A1,1α2] = [v1 v1] [A2,2a3] = [v2 v2 v15] [A3,3b4] = [v3 0 v7 v17]

[B2,1α2] = −[v2 v15] [B3,2a3] = −[v3 v7 v17] [B4,3b4] = −[v4 0 v10 v18]

[A4,4c5] = [v4 0 v10 v18] [A2,2X5] = [v2 v2] [A5,5β6] = [v5 v9 v11]
[B5,4c5] = −[v5 0 v11 v11] [B5,2X5] = −[v5 v9] [B6,5β6] = −[v6 v6 v6]



This represents the following graph, that does reflect all the updates on IS′ that have
been performed throughout this paragraph:
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It has to be noted, in particular, that this method manages the bifurcation between
the two instances of χ−, located on v7: the edge v2bacv7 has not been deleted, even
though it belonged to a path instantiating χ− that, as a consequence of the deletion
in IS′ , has been impacted by the propagated deletion.

10.4 Derivation from a Split Modification

A SeAG modification Split(i, j, k) somehow has an opposite job, in the SeAG field,
to a SeAG modification Unite(j, k, i). Of course, Unite and Split cannot be regarded
as the inverse one of the other in the field of schemas, in particular because the
domain Unite is defined on comprises more than the restricted family of graphs Split
produces, in which the degree of the summit and end of the newly created ε edges
has to be equal to one. Yet, for that reason, Unite restricted to this family of graphs
does behave like the inverse of Split. Thus, in the eAG field, we will regard the eAG
modification derived from Split(i, j, k) as the inverse3 of the eAG modification derived
from Unite(j, k, i).
We will thus define the derivation of Unite in the following paragraph only.

10.5 Derivation from a Unite Modification

As the last contribution in this chapter, let us now consider how to derive an eAG
modification from a SeAG Unite(j, k, i) modification.

Let us consider the following schema and the graph IS , expressible on the template
of this schema4. The different ε edges are distinguished by means of subscripts here
for the sake of clarity.

3In our symmetric bidirectional transformation context, the inverse of a forward-backward trans-
formation is the corresponding backwards-forward transformation.

4Which is not a well-formed eAG in this case.
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[Temp.S] =
X ε1 b ε2 ε3 Y

0
1
2
3
4
5


[A0,0X1] − − − − −
[B1,0X1] [A1,1ε12] − − − −
− [B2,1,1ε12] [A2,2b3] [B2,3ε22] − −
− − [B3,2b3] [A3,3ε22] [A3,3ε34] −
− − − − [B4,3ε34] [A4,4Y 5]
− − − − − [B5,4Y 5]


The expression of S over its own template is:

{S/[Temp.S]} =


[A0,0X1] = [v1] [B1,0X1] = −[v2]
[A1,1ε12] = [v2] [B2,1,1ε12] = −[v3]
[A2,2b3] = [v3] [B3,2b3] = −[v4]
[A3,3ε22] = [v4] [B2,3ε22] = −[v3

[A3,3ε34] = [v4] [B4,3ε34] = −[v5]
[A4,4Y 5] = [v5] [B5,4Y 5] = −[v6]


The expression of IS over its own the template of S is:

{IS/[Temp.S]} =


[A0,0X1] = [v1 v2 v2] [B1,0X1] = −[v3 v3 v4]
[A1,1ε12] = [v3 v4] [B2,1,1ε12] = −[v5 v13]
[A2,2b3] = [v5 v5 v10 v13 v15 v15] [B3,2b3] = −[v6 v9 v11 v14 v17 v16]
[A3,3ε22] = [v9 v14] [B2,3ε22] = −[v10 v15]
[A3,3ε34] = [v6 v11 v17 v16] [B4,3ε34] = −[v7 v12 v18 v18]
[A4,4Y 5] = [v7 v12 v18] [B5,4Y 5] = −[v8 v8 v8]


The cast S′ defined by Unite(1, 2, 6) is the following:
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Its template is:

[Temp.S′] =

X b ε2 ε3 Y
0
6
3
4
5


[A0,0X6] − − − −
[B6,0X6] [A6,6b3] [B6,3ε26] −
− [B3,6b3] [A3,3ε26] [A3,3ε34] −
− − − [B4,3ε34] [A4,4Y 5]
− − − − [B5,4Y 5]


The expression of S′ over its own template is:

{S′/[Temp.S′]} =


[A0,0X6] = [v1] [B6,0X6] = −[v7]
[A6,6b3] = [v7] [B3,6b3] = −[v4]
[A3,3ε26] = [v4] [B6,3ε22] = −[v7]
[A3,3ε34] = [v4] [B4,3ε34] = −[v5]
[A4,4Y 5] = [v5] [B5,4Y 5] = −[v6]


10.5.1 Forward Derivation
From this situation on, the eAG modification derived from Unite(1, 2, 6), that trans-
forms IS into a graph denoted IS′ hereinafter and expressed over the template of S′,
can be defined as follows.
In the schema field, the Unite(1, 2, 6) modification implies that the two nodes of type
1 and 2, connected together by means of an ε1 edge, will be merged into one new
node whose type is 6, and that plays the role of summit or end for all the edges whose
summit or end was of type 1 or 2.
In the instance field, Unite(1, 2, 6) can be interpreted as follows: the pairs of nodes
whose types are 1 et 2, connected together by an edge instantiating ε1, have to be
replaced by a new node. But importantly, while there is only one pair of nodes whose
types are 1 and 2 in a schema, there can be, in the instance field, several such pairs,
and those pairs may even share one item. Two pairs sharing a node shall, in this case,
be merged into the same node
The first thing to do, in order to derive a forward modification from Unite(1, 2, 6) is
to establish the list of pairs of nodes so that the first node of the pair is the summit of
an instance of ε1, and the second, the end of the same instance. Second, those pairs
will have to be grouped by the classes of pairs that will have to be merged into the
same node. The pairs of nodes belonging to the same instance of 1bε1c2 are made out
of the nodes whose identifiers appear on the same column of [A1,1ε12] and [B2,1,1ε12]
respectively. The two pairs we get in this example are (3; 5) and (4; 13).
Since no node is shared between the two, then, they will be merged into two separate
new nodes. Let us thus define two new nodes v20 and v21 of type 6, respectively asso-
ciated with each of the above pairs.
The fact that both v3 and v5 shall be replaced by v20, in the inner matrices of
[IS′/[Temp.S

′]], the template-based matrix representing IS′ , and v14 and v13 by v21,
can be represented by a substitution matrix whose first line contains the identifier
values of the nodes of IS to be replaced and the second, the identifier value of the
substitution node.
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In our example, this shall give:

(
3 4 5 13
20 21 20 21

)

Comment. Given a modification Unite(a, b, c), the set of all the pairs of root and
leaf of the instances of abεcb is, in general, as easy as indicated above: if N =
sizeW .[Aa,aεb], then the pairs re the elements of P defined by:

P = {(i, j) | [Aa,aεb]i,k = 1 ∧ [Bb,aεb] = −1; 0 < k ≤ N}

Now, the fact that, in the above example, the pairs of root and leaf of the instances of
1bε1c2 do not intersect is a particular situation in which determining the substitution
matrix is trivial.
Yet, in general, as mentioned above, two pairs of nodes can share a node – and a
pair can share a node with two other pairs – etc. This will happen anytime there is
a node of type a (resp. b) serving as the summit (resp. end) of more than one edge
instantiating abεcb.
In general, the determination of the substitution matrix demands to split P defined
above into several subsets Px, so that:

1. ∀(i, j) ∈ P,∃!x so that (i, j) ∈ Px

2. for all Px, (i, j) ∈ P so that (i, j) ∈ Px ,
then ∃(i′, j′) ∈ P | (i = i′ ∨ j = j′) ∧ (i, j) 6= (i′, j′)⇒ (i′, j′) ∈ Px

Thus, the determination of the substitution matrix demands to find the partition of
P into the maximal subsets of pairs so that the subset is either limited to one pair, or
so that if a pair p1 belongs to a subset Px, then, there is another pair p2 6= p1 in Px
sharing a node with p1.
It is worth noting that, regardless of the context, this partition of pairs of values can
be obtained in linear time in terms of the number of pairs. Indeed, a pair can be
represented as a non-oriented edge between two nodes of two sets (one for the first
values of the pairs, one for the second ones), each associated with an identifier.
The representation of P is thus a graph, and the maximal subsets we are looking for
are the maximal connected subgraphs of the (we insist: non-oriented) graph P . Let
us take the following example:
Below, we represent two vectors of node identifiers [Aε] and [Bε] of the same size,
whose nth coefficients are associated into a pair cn as highlighted below. We also
provide the corresponding graph representation of P = {cn}n:
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The graph representation of P illustrates the fact that the maximal subsets of pairs so
that there is, for each pair in a set, another pair sharing one of its values, is given by the
identification of the maximal connected parts of P : for instance, one such connected
part is made out of the edges c5, c3, c2 (indeed, in each of ((v3; v4), (v3; v7), (v5; v4)) is a
node that can be found in, and only in, another pair of the triple), even though c2 and
c5 do not share any node together. Finding the set of maximal connected subgraphs
in a graph can be performed in linear time in terms of the graphs’s nodes (and hence,
of the number of pairs in our context), e.g. by means of a graph search algorithm.
Moreover, in our context (that is, when considering annotation graphs), the above
graph representation of P is very easy to obtain. Since no pair can be made out of
two identical values, P can be expressed by means of an incidence matrix indexed over
the set of values the pairs contain for the lines, and on the ci couples on the columns.
For instance:

c1 c2 c3 c4 c5 c6
1
2
3
4
5
6
7
8
9
10



1 − − − − −
− − − − − −
− − 1 − 1 −
− 1 1 − − −
− 1 − − − −
1 − − 1 − −
− − − − 1 −
− − − 1 − −
− − − − − 1
− − − − − 1


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This matrix happens to be at hand, since it corresponds to the sum of [Aa,aεb] and
−[Bb,aεb].
This is only natural since the general partition problem described above can, in our
context, be rephrased as follows: the nodes that have to be merged together are the
nodes involved in a connected subgraph of the graph expressed by [IS/Temp.(aεb)].
Then, a newly created identifier value idx is associated with each of the subsets Px
of P identified above. The ‘substitution matrix’ σ is then defined by the following
algorithm by a pair of lists (σ1, corresponding to the first line of σ, and σ2).

Algorithm 1: Definition of the substitution matrix.
Data: We have {(idx, Px)}x the set of newly created node identifier and pair

sets defined above.
1 begin
2 forall the x do
3 forall the e ∈ Px do
4 push.σ1(e) ;
5 push.σ2(idx) ;

Once the substitution matrix is defined, IS′ can be defined as the image of IS by the
forward derivation of Unite(i1, i2, i3).

Definition 10.5 : Node substitution operation. Be a substitution matrix whose
coefficients belong to I. Be [M ] whose lines are indexed on I and whose columns
contain only one value that is not null, and equals one, so that [M ] can be written
[va . . . vz], where {a . . . z} ⊆ I.
Then σ.[M ] = [vσ(a) . . . vσ(z)], with the following convention:

1. ∀y ∈ I, if ∃m | [σ]1,m = y, then σ(y) = [σ]2,m

2. else σ(y) = y

Example. With the matrix values representing the graph IS on the template of S
given page 275 and the substitution matrix defined above:

• σ.[B1,0X1] = −σ.[v3 v3 v4] = −[v20 v20 v21] ;

• σ.[A2,2b3] = −σ.[v5 v5 v10 v13 v15 v15] = [v20 v20 v10 v21 v15 v15] ;

• σ.[B2,3ε22] = [v10 v15] = [v10 v15].

Hence, the above substitution mechanism enables to replace the identifier of a node
involved in an instance of the ε edge to be merged by the identifier of the newly created
node that corresponds to it. This substitution operation has to be operated on the
matrices of the lines corresponding to the types whose indexes are i and j, considering
Unite(i, j, k), and has to be followed by the subsequent analysis in order to affect the
matrix variables of [Temp.S′] values that describe IS′ :
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We remind the reader of the template of the two schemas S and S′ considered through-
out this paragraph:

[Temp.S] =

X ε1 b ε2 ε3 Y
0
1
2
3
4
5


[A0,0X1] − − − − −
[B1,0X1] [A1,1ε12] − − − −
− [B2,1,1ε12] [A2,2b3] [B2,3ε22] − −
− − [B3,2b3] [A3,3ε22] [A3,3ε34] −
− − − − [B4,3ε34] [A4,4Y 5]
− − − − − [B5,4Y 5]



[Temp.S′] =

X b ε2 ε3 Y
0
6
3
4
5


[A0,0X6] − − − −
[B6,0X6] [A6,6b3] [B6,3ε26] −
− [B3,6b3] [A3,3ε26] [A3,3ε34] −
− − − [B4,3ε34] [A4,4Y 5]
− − − − [B5,4Y 5]


Applying the substitution defined above to a matrix of [IS/[temp.S]] produces another
matrix value, making reference to nodes that will belong to IS′ – but that matrix value
still has to be affected to the right matrix variable of [Temp.S′] in order to build IS′ .
The association of one matrix variable of [Temp.S′] to one matrix variable of [Temp.S]
can be done as follows:

- Given a modification Unite(i, j, k), the fourth restriction in Definition 9.16 page 246
imposes that there cannot be two edges in S sharing the same label ending one
on the root and the other one the leaf of the edge iεj, or starting one on the root
and the other one the leaf of the edge iεj. This means that there is a natural cor-
respondence between the matrix variables of [Temp.S] and [Temp.S′]: for any
matrix [M ] from [Temp.S] characterized by its sign and a triple in T × L × T ,
there is one and only one matrix [M ′] in [Temp.S′] that shares the same sign,
the same label and either one of the two type values characteristic of [M ] – the
other type being i or j for [M ] and k for [M ′]. Thus, a matrix variable [Bi,t l i]
from IS will be associated with [Bk, t l k] from IS′ .
For instance, in our running example, ([B1,0X1]; [B6,0X6]) constitute such a cou-
ple of matrix variables.

- Be ([M ]; [M ′]) such a couple. Then IS′ is defined by affecting the value σ.[M ]
to [M ′]
For instance, in our example:

• [B6,0X6] = −[v20 v20 v21] ;

• [A6,6b3] = [v20 v20 v10 v21 v15 v15] ;

• [B6,3ε26] = [v10 v15].

- To finish with, it has to be considered that if IS contained patterns like the
following, in which a node v1 points towards two nodes of type i, both of them
pointing towards the same node of type j, the above procedure results in redun-
dant edges5.

5Symmetrically, a node of type i may point towards two nodes of type j, both pointing towards
the same node.
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One of the redundant edges shall be deleted.

The template-based representation of the resulting graph is:

{IS′/[Temp.S′]} =


[A0,0X6] = [v1 v2 v2] [B1,0X6] = −[v20 v20 v21]
[A6,6b3] = [v20 v20 v10 v21 v15 v15] [B3,6b3] = −[v6 v9 v11 v14 v17 v16]
[A3,3ε66] = [v9 v14] [B6,3ε26] = −[v10 v15]
[A3,3ε34] = [v6 v11 v17 v16] [B4,3ε34] = −[v7 v12 v18 v18]
[A4,4Y 5] = [v7 v12 v18] [B5,4Y 5] = −[v8 v8 v8]


which can be illustrated as the following graph:

10.5.2 Backwards Derivation

We now present how an update on IS′ shall be propagated to IS . For that purpose,
let us consider the update illustrated below (the red parts are added6):

6In the case of Unite, the kind of update that is hard to propagate is insertion, and not deletion,
that simply consists in propagating the deletion on the common matrices between [IS′/[Temp.S

′]]
and [IS/[Temp.S]] and/or on the matrices from both instance that are associated as described above,
and from then on, identifying the nodes in the matrices describing the instances of the edge iεj in
[IS/[Temp.S]] that are left either as a root or a leaf in the graph. See Algorithm 3
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The template-based expression of this graph is the following:

{IS′/[Temp.S′]} =



[A0,0X6] = [v1 v2 v2 v1 v24]
[B6,0X6] = −[v20 v20 v21 v19 v25]

[A6,6b3] = [v20 v20 v10 v21 v15 v15 v19 v21 v25 v27 v29]
[B3,6b3] = −[v6 v9 v11 v14 v17 v16 v6 v22 v26 v28 v30]

[A3,3ε66] = [v9 v14 v26 v28]
[B6,3ε26] = −[v10 v15 v27 v29]

[A3,3ε34] = [v6 v11 v17 v16 v22 v30]
[B4,3ε34] = −[v7 v12 v18 v18 v23 v31]

[A4,4Y 5] = [v7 v12 v18 v23 v31]
[B5,4Y 5] = −[v8 v8 v8 v8 v8]


We remind the reader that IS′ was obtained out of IS by means of the forward deriva-
tion of Mod(1, 2, 6). The target now is to make sure to update the value of all the
relevant matrices in [IS/[Temp.S]] so that all the edges in IS′ get a corresponding
edge in IS , and so that all edge b in IS is preceded by an ε edge.
Special attention must be given to the nodes of IS′ that would result from more than
one pair of nodes from IS , as illustrated below where, in IS , ∃e1, e2, v1, v2, v3 so that
v1be1cv2 ⊂ IS and v1be2cv3 ⊂ IS , with type(v1) = 1, type(v2) = type(v3) = 2 and
label(e1) = label(e2) = ε.
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Consider the following scenario:

In this scenario, a new node e′ is created between v′ the node resulting from the
merging of v1, v2 and v3 and another node vn, so that this edge shall, according to
the schema S, be translated into an edge starting from a node whose type is 2 is IS .
Then, what strategy to adopt fot the propagation of the update to IS? Do we have
to translate the insertion of e′ into the insertion of two edges starting at v2 and v3, or
one edge starting at one of the two, or no edge at all?
The solution we propose is the following:

• if there is no edge v2becvn or v3becvn with label(e) = label(e′) in IS , then the
two edges are created – and it will be up to the editor to delete one, if this makes
sense from an editorial point of view.

• else, the insertion is not propagated.

Algorithm. Based on the above description, we define how to propagate an update
from IS′ to IS algorithmically. The procedure starts with the execution of Algorithm
2, that propagates the new values of all the matrices from [IS′/[Temp.S

′]] onto the
corresponding matrices from [IS/[Temp.S]], apart from the ones that define the ε edge
corresponding to the one that is merged by the forward transformation. Then, the
right matrices [Ai1,i1εi2 ] and [Bi2,i2εi2 ] have to be written so that the propagation shall
be completed. This can be done by means of the following resources:

• the non-updated couple ([Ai1,i1εi2 ]− [Bi2,i2εi2 ]), describing th set of ε edges that
were merged when translating IS into IS′ . Some of those may have been deleted
during the update of IS′ , which will have to be taken into account.

• the matrix σ′ defined in Algorithm 2, giving the list of the new nodes of IS
having either ti1 or ti2 as a type value, whose insertion in IS is due to either
the insertion of new nodes having ti′ as a type value, or to the insertion of new
edges involving the pre-existing nodes typed ti′ , in IS′ .
The strategy we propose for those is to connect them to the maximum number
of nodes belonging to all the nodes belonging to the same subsets of the updated
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Algorithm 2: Definition of the value of the matrix variables defining IS , after
an update on IS′ : first step
Data: We have :
- [IS/[Temp.S]] and [I′S/[Temp.S

′]], denoted [I] and [I′] resp. hereafter ;
- Unite(ti1 , ti2 , ti′ ), where i1 is the index of ti1 in T , etc. ;
- σ, the substitution permutation defined previously.

1 begin

2 σ′ =

[
[]
[]

]
;

3 forall the l′ such that [[I′]i′,l′ ] 6= [0] do
4 Find the only matrix [[I]i,l], i ∈ {i1; i2}, so that there is a label L and a type T such

that l′ matches the triple (ti′ , L, T ) and l matches the triple (ti, L, T ), or such that l′
matches the triple (T, L, ti′ ) and l matches the triple (T, L, ti) ;
/* Here we associate the submatrix corresponding to [[I′]i′,l′ ] in [I]. It

could be on the block-row corresponding to ti1 or ti2. The matching is
based on the comparison of triples in T × L × T , which is possible
thanks to the restriction number 4 in the definition of the valid
contexts for Unite. */

5 Find i′′ 6= i′, i0 6= i such that [[I′]i′′,l′ ] 6= [0] ∧ [[I]i0,l] 6= [0] ;
6 Be [M ] = [0], [N ] = [0] ;
7 forall the (m,n) such that Abs([[I′]i′,l′ ]m,n) = 1 do
8 Determine wn ∈ N | [[I′]i′′,l′ ]wn,n 6= 0 ;
9 Consider [y1, . . . , yN ] ⊆ σ−1(m) where ∀k, type(vyk ) = ti′ , and so that

∀x ∈ σ−1(m)\[y1, . . . , yN ], type(vx) 6= ti′ ;
10 if ∃j ∈ N, ∃K ∈ [1;N ] | ∃[[I]i0,l]wn,j 6= 0 ∧ [[I]i,l]yK ,j 6= 0 then
11 forall the j ∈ N, k ∈ [1;N ], | [[I]i0,l]wn,j 6= 0 ∧ [[I]i,l]yk,j 6= 0 do
12 [M ]yk,j = [[I]i,l]yk,j ;
13 [N ]wn,j = [[I′]i′′,l′ ]wn,n ;

/* The previous condition in the IF instruction means that for a given
edge in IS′ labelled L between a node vm (of type ti′) and a node
vwn, we first check whether there exists an edge labelled L between
any node of the set Em (corresponding to vm) and vwn in IS. If
so, no new edge must be created : we simply copy the existing edges
connected to vwn. If not, we apply the following instructions.
*/

14 else
/* If we get here, it means that vm is involved, summit or end, in

an edge of IS′ that has no matching in IS. A new node vyn will
be created to play the role of summit or end, accordingly, of a
new edge in IS that will fill the gap. */

/* Nota : at the end of the ELSE instruction, no ε edge will have
been created to connect vyn to the rest of the graph. This will
be done in the next algorithm. */

15 Create vyn so that yn 6∈ IdVIS ∪ Id
V
IS′

and whose type matches the one of
[[I]i,l] ;

16 Determine jn the index, in E, of the edge between vyn and vwn , and whose
label value matches the one corresponding to l ∈ T × L × T ;

17 [M ]yn,jn = [[I′]i′,l′ ]m,n ;
18 [N ]wn,jn = [[I′]i′′,l′ ]wn,n ;
19 push.σ′1(yn) ;
20 push.σ′2(m) ;

21 [[I]i,l] = [M ] ;
22 [[I]i0,l] = [N ] ;
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partition of the pairs of roots and edges of ti1εti2 , but having a different type
value (that is: connecting a new summit to all the possible ends fro the same
subset, or conversely).
This strategy may, for the biggest subsets of the above partition, result in a great
number of edges. Our position on that point is that the editor will, if needed,
clean the graph from the edges she might consider not significant.

The corresponding algorithm is Algorithm 3. To finish with, we may highlight a point
that will be illustrated below. It happens that, through the forward transformation,
the nodes whose type is either ti1 or ti2 and that are not involved in an instance of the
edge ti1εti2 shall be maintained in IS′ ; only their type value shall be changed to ti′ .
This preservation of those particular nodes means that their reference value shall be
maintained through the forward modification, and afterwards synchronized as long as
those nodes exist in both instance. This idea that two nodes belonging to two different
instances shall be synchronized is different from the notion of ‘reference initialization’
described in Paragraph 10.6, by means of which a reference value is given to the new
nodes of an instance based on the reference value of some node(s) from the other
instance – without being synchronized with them.
In Algorithm 1, this synchronization is not done. Indeed, in the first part of the
algorithm, the nodes v′ from IS′ whose type value is ti′ are split into two cases: they
either result from the merging of an ε edge through the forward transformation, in
which case the condition on Line 10 is verified; otherwise, they are involved in edges
that were created in IS′ during an update, and some new node(s) may be created in
IS .
Yet, because the degree of the nodes of type ti1 or ti2 can be more than 1 for the
operation of Unite, some nodes whose type is ti′ might not result from the merging
of any ε edge, but instead be involved in edges that are shared, or that correspond,
in the two instances – in which case v′ and its corresponding node in IS , whose type
value will be either ti1 or ti2 , shall always have the same reference value.
To distinguish between the nodes v′ that do not result from the merging of an instance
of ti1bεcti2 , we can use the following characteristics: if m is the identifier of v′, then
all the vj nodes from IS so that σ(j) = m have the same type value (either ti1 or ti2).
In this case, we shall simply replace, during the backwards propagation, vj by v′ in
the corresponding matrices, as indicated in Algorithm 4.

Illustration. Let us run the above algorithms on our example.
With the above nomenclature, in this example, ti1 = 1, ti2 , ti′ = 6 ; [I] = [IS/[Temp.S]],
[I ′] = [IS′/[Temp.S

′]].

First part of the algorithm. σ′ is initialized as a pair of empty lists.

Let us consider the values l′ so that [[I ′]i′,l′ ] 6= [0].
First, l′ = 1, which makes reference to [[I ′]2,1] = [B6,0X6] = −[v20 v20 v21 v19 v25].

1. The block-column of index l′ from [I ′] is characterized by the triple (0;X; 6)
in T × L × T . The only inner matrix from [I] characterized by (0;X; i)
with i ∈ {i1; i2} is [[I]2;1] = [B1,0X1] = −[v3 v3 v4].
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Algorithm 3: Definition of the value of the matrix variables defining IS , after
an update on IS′ : second step.
Data: We have :
- [IS/[Temp.S]] and [I′S/[Temp.S

′]], denoted [I] and [I′] resp. hereafter ;
- [Ai1,i1εi2 ] and [Bi2,i1εi2 ], denoted [Aε] and [Bε] hereafter ;
- Unite(ti1 , ti2 , ti′ ), where i1 is the index of ti1 in T , etc. ;
- σ, the substitution permutation defined previously;
- σ′, defined in the previous algorithm.

1 begin
2 Create [A] = [0] ;
3 Create [B] = [0] ;

/* ––––– First part : ––––– */
4 forall the a, b, n ∈ N | [Aε]a,n 6= [0] ∧ [Bε]b,n 6= [0] do
5 if ∃ja, jb, na, nb | [[I]i1,ja ]a,na 6= 0 ∧ [[I]i2,jb ]a,nb 6= 0, with [[I]i1,ja ] 6= [Aε] and

[[I]i2,jb ] 6= [Bε] then
6 [A]a,n = [Aε]a,n ;
7 [B]b,n = [Bε]b,n ;

/* This means all the ε edges from the former version of IS are
maintained, if both their summit and end appear in at least one
matrix of their respective line-block. */

8 else
9 forall the k | [σ1]k ∈ {va; vb} do

10 Delete [σ1]k and [σ2]k ;
/* Since the substitution node has been deleted in IS′, the

original nodes do not appear anymore neither in IS, nor in σ –
hence the operation above. */

/* ––––– Second part : ––––– */
11 forall the m such that ∃y | σ′(y) = m do
12 Build E′m = {vy | σ′(y) = m} ;
13 Build E0

m = {vy | σ(y) = m} ;
/* In the line above, σ is considered in its current state, that is, as

updated at the end of the first half of the current algorithm. */
14 Be Em = E0

m ∪ E′m ;
15 forall the vy ∈ E′m do
16 Determine type(vy) ;
17 forall the vi ∈ Em | type(vi) 6= type(vy) do
18 if type(vy) = ti1 then
19 Determine j the index in E of the edge e labelled ε and so that

sut(e) = vy and end(e) = vi ;
20 [A]y,j = 1 ;
21 [B]i,j = −1 ;

22 else
23 Determine j the index in E of the edge e labelled ε and so that

sut(e) = vi and end(e) = vy ;
24 [A]i,j = 1 ;
25 [B]y,j = −1 ;

26 [Aε] = [A] ;
27 [Bε] = [B] ;
28 Redefine σ as the concatenation of the previous version of σ and σ′ ;
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Algorithm 4: Definition of the value of the matrix variables defining IS , after
an update on IS′ : last step
Data: We have :
- [IS/[Temp.S]] and [I′S/[Temp.S

′]], denoted [I] and [I′] resp. hereafter ;
- σ, the updated substitution permutation ;
- σ′, the partial substitution permutation built in the first part of the algorithm.

1 begin
2 forall the m ∈ [σ′]2\[σ]2 do
3 if ∀vK , vL ∈ E′m, type(vK) = type(vL) then
4 Be i the index in T of any vM ∈ E′m ;
5 forall the ∀k ∈ σ′−1(m), n, j | [[I]i,n]k,j 6= 0 do
6 [[I]i,n]m,j = [[I]i,n]k,j ;
7 [[I]i,n]k,j = 0 ;

2. The matrices that complement the description of the edges labelled X com-
ing from nodes typed 0, in [I ′] and [I] are the inner matrices with (i′′ =
1; l′ = 1) and (i0 = 1; l = 1), that is [[I ′]1,1] = [A0,0X6] = [v1 v2 v2 v1 v24]
and [[I]1,1] = [A0,0X1] = [v1 v2 v2] respectively.

3. We define [M ] = [0], [N ] = [0].
4. We will now consider the non-null coefficients from [[I ′]i′,l′ ] = [[I ′]2,1] =
−[v20 v20 v21 v19 v25].
(a) Let us consider [[I ′]i′,l′ ]20,1. The index wn so that [[I ′]i′′,l′ ]wn,1 6= 0 is

wn = 1.
(b) Now we note that σ−1(20) = {3; 5}. Given we are interested in prop-

agating the nodes from [[I ′]1,1] into an inner matrix of IS that corre-
sponds to the type value 1, and since the only node, between v3 and v5,
whose type value is v3 (type(v5) = 2), then the set denoted [y1 . . . yN ] in
the algorithm contains one single value, 3, at this step of the algorithm.

(c) We then search whether there is a value j so that [[I]1,1]1,j 6= 0 ∧
[[I]2,1]3,j 6= 0. It happens that [[I]1,1]1,1 = 1 and [[I]2,1]3,1 = −1. Thus
j = 1.

(d) Hence the following affectations:
• [M ]3,1 = [[I]2,1]3,1 = −1, that is [M ] = −[v3];
• [N ]1,1 = [[I]1,1]1,1 = 1, that is [N ] = [v1].

(e) The above procedure runs exactly the same way for [[I ′]i′,l′ ]20,2 and
[[I ′]i′,l′ ]21,3, which results in [M ] = −[v3 v3 v5] and [N ] = [v1 v2 v2].

(f) On the contrary, when analysing [[I ′]i′,l′ ]19,4, it happens that σ−1(19) =
[]. Then the IF on Line 10 of Algorithm 2 is not verified. Hence the
following procedure:
• We identify wn = 1 so that [[I ′]i′′,l′ ]wn,4 = 1.
• A new identifier yn, belonging to none of the sets of existing iden-

tifiers ofIS and IS′ , is created, for instance yn = 40.
• The index jn in I of the edge connecting v40 of type 1 to v1 of type

0, and labelled X, should be determined; yet the value of this index
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does not really matter. It is fine to simply insert the new values
below at the end of the matrices, in an additional, last column, and
the value jn = sizeW ([M ]) + 1 = sizeW ([N ]) + 1 = 4 is acceptable;
• Then the matrices are given the following additional values: [M ]40,4 =
−1 and [N ]1,4 = 1 ;

• σ′ is given the following value:

σ′ =

[
[40]
[19]

]
(g) The above procedure runs exactly the same for [[I ′]i′,l′ ]25,5:

• We identify wn = 24 so that [[I ′]i′′,l′ ]wn,4 = 1.
• A new identifier yn is cerated: for instance, yn = 42.
• Idem, jn = sizeW ([M ]) + 1 = sizeW ([N ]) + 1 = 5 ;
• The matrices [M ] and [N ] are given the following values: [M ]42,5 =
−1 and [N ]24,5 = 1 ;
• σ′ is updated:

σ′ =

[
[40 42]
[19 25]

]
The resulting matrix values are the following:

• [[I]2,1] = [M ] = −[v3 v3 v5 v40 v42] ;
• [[I]1,1] = [N ] = [v1 v2 v2 v1 v24].

The above procedure is repeated for l′ = 2, that is for:
[[I ′]i′,l′ ] = [[I ′]2,2] = [A6,6b3] = [v20 v20 v10 v21 v15 v15 v19 v21 v25 v27 v29].

1. The block-column of index l′, in [I ′], is characterized by the triple (6; b; 3)
in T × L × T . The only inner matrix from [I] characterized by a triple
(i; b; 3) with i ∈ {i1; i2} is [[I]3;3] = [A2,2b3] = [v5 v5 v10 v13 v15 v15].

2. The matrices that complement the description of the instances of the edge
6b3, in [I ′] and [I], are the inner matrices with the indexes (i′′ = 3; l′ = 2)
and (i0 = 4; l = 3), that is [[I ′]3,2] = [B3,6b3] = −[v6 v9 v11 v14 v17 v16 v6 v22 v26 v28 v30]
et [[I]4,3] = [B3,2b3] = −[v6 v9 v11 v14 v17 v16] respectively.

3. We initialize [M ] = [0], [N ] = [0].
4. Let us now consider the non-null coefficients from [[I ′]i′,l′ ] = [[I ′]2,2] =
−[v20 v20 v10 v21 v15 v15 v19 v21 v25 v27 v29].
(a) For the six first values from [[I ′]i′,l′ ], one can chack that the algorithm

runs similarly as above for [[I ′]2,1]20,1

Hence the following intermediary matrix values:
• [M ] = [v5 v5 v10 v13 v15 v15] ;
• [N ] = −[v6 v9 v11 v14 v17 v16].

σ′ is not modified at this step.
(b) For the seventh value from [[I ′]i′,l′ ], the situation is the same as for

[[I ′]2,1]19,4: σ−1(19) = []. The same procedure as above provides the
following values:
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• [M ] = [v5 v5 v10 v13 v15 v15 v6] ;
• [N ] = −[v6 v9 v11 v14 v17 v16 v41].

σ′ is updated:

σ′ =

[
[40 42 41]
[19 25 19]

]
(c) Let us then consider [[I ′]i′,l′ ]21,8.

Here, the value of wn so that [[I ′]i′′,l′ ]wn,8 6= 0 is wn = 22. The
situation now is different from the situations described so far: the node
vm corresponding to [[I ′]i′,l′ ]21,8 results from the merging of a pair of
nodes from IS , while vwn , that is, the node that is the end of an edge
originating in vm in IS′ , does not.
The procedure is the following:
• A new identifier is created, for instance yn = 39.
• jn = sizeW ([M ]) + 1 = sizeW ([N ]) + 1 = 8 ;
• [M ]39,8 = 1 and [N ]22,8 = −1 ;
• σ′ is updated:

σ′ =

[
[40 42 41 39]
[19 25 19 21]

]
(d) Without further detail, for (m,n) = (25, 9), we get:

• [M ]43,9 = 1 and [N ]26,9 = −1 ;

• σ′ =

[
[40 42 41 39 43]
[19 25 19 21 25]

]
(e) To finish with, one more comment. We now consider the tenth value of

[[I]i′,l′ ], that designates the node v27. In the following, it will appear
that the node corresponding to this node in IS will not take part to an
instance of 1bεc2, which will be handled by Algorithm 4.
• wn = 28.
• A new identifier is created, for instance, yn = 50.
• jn = sizeW ([M ]) + 1 = sizeW ([N ]) + 1 = 10 ;
• Then [M ]50,10 = −1 and [N ]28,10 = −1 ;
• σ′ is updated:

σ′ =

[
[40 42 41 39 43 50]
[19 25 19 21 25 27]

]
(f) Idem, [[I]i′,l′ ]2911 gives the following values :

• wn = 30.
• An new identifier is created, for instance yn = 51.
• jn = sizeW ([M ]) + 1 = sizeW ([N ]) + 1 = 10 ;
• [M ] = [v5 v5 v10 v13 v15 v15 v41 v39 v43 v50 v51]

• [N ] = −[v6 v9 v11 v14 v17 v16 v6 v22 v26 v28 v30] ;
• σ′ is updated:

σ′ =

[
[40 42 41 39 43 50 51]
[19 25 19 21 25 27 29]

]
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Second part of the algorithm. Let us denote [Aε] = [A1,1ε2] = [v3 v4] and [Bε] =
[B2,1ε2] = −[v5 v13].
Be two null matrices [A] and [B].

1. Be n = 1. The condition [Aε]a,n = 1 ∧ [Bε]b,n = 1 is verified for a = 3
and b = 5.
(a) We then look for an inner matrix of the block-line i1 of [I] where va

shall appears. This search give the following result: the first column of
[B1,0X1] describes v3.

(b) We then look for an inner matrix of the block-line i2 of [I] where vb
shall appears. This search give the following result: the first column of
[A2,2b3] describes v5.

(c) Thus, at this step: [A] = [v3] et [B] = −[v5].
2. Idem for n = 2:

(a) [A] = [v3 v4]

(b) [B] = −[v5 v13].
3. We then consider σ′, whose value is:

σ′ =

[
[40 42 41 39 43 50 51]
[19 25 19 21 25 27 29]

]
4. To start with, we build E′19 = {vj | σ′(j) = 19} = {v40; v41} and E0

19 =
{vj | σ(j) = 19} = {}.

5. Here, Em = E′m.
6. The values from E′m are then considered sequentially. Let us consider v40.

• v40 appears in [B1,0X1]. Its type is thus 1.
• The only element from Em whose type value differs from type(v40) is
v41.
• Thus an ε edge must be instantiated between v40 and v41 :

[A]40,1 = 1 ;
[B]41,1 = −1.

7. Let us then consider m = 25. The situation is identical as for m = 19:

[A]42,1 = 1 ;
[B]43,1 = −1.

8. The situation is slightly different for m = 21. Indeed, E′21 = {39} and
E0

21 = {4; 13}. An edge ε must be created between v39 and all the nodes
from E0

21 whose type is different from type(v39). Only v4 i concerned here.
At the end of this step, wa have:

[A] = [v3 v4 v40 v42 v4] ;
[B] = −[v5 v13 v41 v43 v39].

9. Let us then consider m = 27. E′m = {v50} = Em. There is no node in Em
whose type is different from the type of v50, so the procedure ends here for
this value of m. This is consistent with the fact that v50 is not meant to be
part of an instance of the edge 1bεc2.
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10. The same applies fot m = 29.

Hence:

[Aε] = [v3 v4 v40 v42 v4] ;
[Bε] = −[v5 v13 v41 v43 v39].

Third part of the algorithm. To finish with, we have to deal with the nodes like
v50, that do not belong to an instance of 1bεc2.

1. First, we must identify the values m appearing in the second line of σ′ and
missing in the second line of σ: those are m =∈ {19; 25; 27; 29}.

2. Let us consider m = 19 first.
We have seen that E′19 = {40; 41}. The condition ∀vj , vk ∈ E′m, type(vj) =
type(vk) n’is not verified. The procedure stops here for this value of m.

3. The same applies for m = 25.
4. Let us then consider m = 27.

We have seen that E′27 = {v50}. In this case, the condition ∀vj , vk ∈
E′m, type(vj) = type(vk) is verified.
• type(v50) = 2, and this type value has the index 3 in T .
• Then for all vj ∈ E′m, that is here for v50 only, we have to find the

set of values n, j so that [[I]3,n]50,j 6= 0. Here: n = 3 et j = 10, since
[A2,2b3]50,10 = 1 is the only solution for the inequality above.

• Hence:
[A2,2b3]m,10 = [A2,2b3]27,10 = 1 ;

[A2,2b3]50,10 = 0.
5. The same applies for m = 29, which gives:

[A2,2b3]m,11 = [A2,2b3]29,11 = 1 ;
[A2,2b3]51,11 = 0.

In fine, the above algorithm gives:

{IS′/[Temp.S′]} =

[A0,0X1] = [v1 v2 v2 v1 v24]
[B1,0X1] = −[v3 v3 v4 v40 v42]

[A1,1ε12] = [v3 v4 v4 v40 v42]
[B2,1ε12] = −[v5 v13 v39 v41 v43]

[A2,2b3] = [v5 v5 v10 v13 v15 v15 v41 v39 v43 v27 v29]
[B3,2b3] = −[v6 v9 v11 v14 v17 v16 v6 v22 v26 v28 v30]

[A3,3ε22] = [v9 v14 v26 v28]
[B2,3ε22] = −[v10 v15 v27 v29]

[A3,3ε34] = [v6 v11 v17 v16 v22 v30]
[B4,3ε34] = −[v7 v12 v18 v18 v23 v31]

[A4,4Y 5] = [v7 v12 v18 v23 v31]
[B5,4Y 5] = −[v8 v8 v8 v8 v8]


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which can be represented as follows:

10.6 Reference Values Propagation

In the above paragraphs, we introduced how a transformation between two schemas
can be interpreted into a bidirectional transformation in the instance field, that is, a
transformation translating a graph expressible on the template of the first schema into
a graph expressible on the template of the second schema. The propositions formu-
lated above focus on the structural aspects of this transformation. The question of the
reference value of the nodes of the graphs, that are meant to represent an annotation,
has been left aside. This is the point we discuss here.
Each node of a graph, in the instance field, has to be affected a reference value associ-
ated with a predetermined chronology: this value “positions” the nodes delimiting each
edge of the annotation graph onto the annotated resources, so that (roughly speaking)
the content shall be qualified as indicated by the label of the edge. It is thus crucial
that the nodes of a newly created instance graph shall be given a reference value that
makes sense, from an editorial point of view – or if this is not possible automatically,
that the editor shall be invited to do so.
Be then two casts S, S′ and t a modification so that S′ = t.S
Be (IS , IS′) le couple of graphs instantiating (S, S′), and synchronized together by the
eAG modification derived from t.
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The reference values are managed as follows:

1. Any nodes having the same identifier in IS and IS′ will have the same reference
value;

2. If t is defined as Split(i, j, k) :

• Be σ the substitution matrix associating the identifier of the nodes of type
i and the corresponding nodes of types j, k:

• Be then three identifiers i0, j0, k0 so that σ(j0) = σ(k0) = i0 ;

• If the three nodes are so that there is a propagated update in the forward
direction (from IS to IS′) that implies the creation of vj0 and vk0 out of vi0 ,
then the reference value of the two newly created nodes will be initialized
with ref(vi0);

• If the three nodes are so that ref(vj0) = ref(vk0) and so that there is a
propagated update in the backward direction (from IS′ to IS) that implies
the creation of vi0 out of vj0 and vk0 , then the reference value of the newly
created node will be initialized with ref(vk0).

3. If t is defined as Unite(i, j, k) :

• Be σ the substitution matrix associating the identifier of the nodes of type
i, j and the corresponding nodes of type k:

• Be then three identifiers i0, j0, k0 so that σ(i0) = σ(j0) = k0 ;

• If the three nodes are so that ref(vi0) = ref(vj0) and so that there is a
propagated update in the forward direction (from IS to IS′) that implies
the creation of vk0 out of vi0 and vj0 , then the reference value of the newly
created node will be initialized with ref(vi0)

• If the three nodes are so that there is a propagated update in the backward
direction (from IS′ to IS) that implies the creation of vi0 and vj0 out of vk0 ,
then the reference value of the two newly created nodes will be initialized
with ref(vk0).

4. If t is defined by Mod(χ−, χ+) :

• Be (r, l) a pair of nodes playing the role of root and leaf for an instance of
χ− in IS .

• If there is a subgraph of IS′ , rooted in r and possessing l as its only leaf,
instantiating a certain path of χ+ whose label sequence, ε edges set apart,
is the same as the one of a subgraph of IS , rooted in r and possessing l as
its only leaf and instantiating a given path of χ−, then the reference value
of the summits and ends of the corresponding edges of each sequence will
be initialized with the same value.

• The reference value of the other nodes will be left to the editor.

• Symmetrically for the backwards transformation from IS′ to IS .
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Importantly, apart from the point 1 that has to be verified anytime, the above consid-
erations are initialization rules and only apply to the reference value of newly created
nodes, that is, either when IS′ is initialized or on the new nodes resulting from the
propagation of an update. If the value of a node that does not have the same identifier
in both instances is changed in one of the instances: 1) this change is not considered
to be an update in the sense given in Paragraph 10.2 and 2) if this change is followed
by an update, the propagation of that update will not affect the reference value of the
corresponding node(s) in the other instance.

10.7 Composing Modifications: Two Quick Examples

As a conclusive remark, after the definition of the elementary modifications, let us
give a quick illustration about how some transformations can be defined by composing
several modifications

10.7.1 First Example.

It is highly possible that an editor might modify, in the sense of the Mod operator,
a subgraph of a cast that does not match the definition of a cell. For instance, the
following:

Let us suppose that the editor wants to replace the red subgraph above by a single
edge X. The procedure to do such an amendment is the following

• A first elementary Mod operation is performed, with the linear subgraph of S
located between the nodes 2 and 7, containing the edges α and b, as χ−, and
a substitution cell limited to an edge 2X ′7. The schematic cell χ−1 is partially
independent: the edge labelled X ′ will be inserted between the nodes 2 and 7;
the edge labelled α will be deleted and the edge b maintained.

• A second modification is performed, with the linear subgraph containing the
edges β et b as χ− and a substitution cell limited to an edge 2X ′′7. Since χ− is
independent, then it is replaced as a whole by the edge X ′′.

• A last modification Mod is performed with the graph made out of the edges X
and X ′ as χ− and a single edge X as χ+.
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10.7.2 Second Example: Making Some Pattern Cyclic

Cyclization is the process by which a linear subgraph originally describing a regular
expression XbY (where b,X and Y are regular expressions) into another graph de-
scribing Xb∗Y . The more the cyclization procedure makes use of the Mod operator,
that translates sequences of edges into sequences of edges, potentially with significant
reference value propagation, the more information from the original instance is kept
in the new instance. We propose the following procedure:

10.8 Conclusion

In this chapter, we have introduced several operators for modifying a SeAG schema S
and turning it into another one. This is the meaning we give to the notion of SeAG
amendment introduced in the definition of the general problematic of this disserta-
tion. We have also shown how those operators could be interpreted in the field of
the instances, and how a bidirectional transformation could be derived from a SeAG
transformation, in order to provide, semi-automatically, an instance of S into a graph
expressed in the template of the amended schema, and to synchronize this graph with
the first instance.
Several points of our proposition shall need improvements. First, some properties have
to be formally investigated: in particular, it has to be considered whether a SeAG
transformation that changes a well-formed schema into another well-formed schema
can be derived into an eAG transformation maintaining well-formedness as well, or
not. The well-behavedness of the eAG bidirectional transformations also has to be
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established. Second, the derivation of an eAG Mod modification from a SeAG oper-
ation has to be extended to the general case where schematic cells are unrestricted.
Eventually, the complexity of the algorithms given above has to be evaluated: in a
real-world application, the time-performance of those will be important, since they
play a synchronizing role in the editorial system we propose.
Still, at this point, we have defined what appear to be the basis for the first application
of the Data Exchange problem to multistructured data – and proposed the stems for
the first (to the best of our knowledge) symmetric bidirectional transformations for
(cyclic) graph-structured data.
As a conclusive remark, we would like to discuss briefly the semi-automatic quality of
the instance transformations. The compound term “semi-automatic” refers to the fact
that an editor may have to intervene (either by hand, or by means of any assistance
tool that might have been developed independently from the system we propose) on a
graph produced by the forward transformation derived from a SeAG transformation,
in three different ways. First, when the reference value propagation defined in Para-
graph 10.6 leaves some new nodes without a value, positioning those nodes onto the
annotated resources is left to the editor. Second, when the schema transformation con-
sists in permitting a pattern to be repeated (as described briefly in Paragraph 10.7.2),
the graph corresponding to the new schema reflects the annotation that is contained in
the instance of the original schema: it does not, initially, contain several occurrences in
a row of the repeatable pattern. It will be up to the editor to identify where repeated
occurrences are needed. Eventually, the propagation of an insertion in one instance
may result in the insertion of many edges, among which some may be useless from an
editorial point of view, in the other instance: for instance, several ε edges connecting
the nodes from the same partition set Px may result from the backward derivation of
a Unite operation. Here again, cherry picking among all those candidate edges is left
to the editor.
As indicated in the general introduction of this dissertation, the purpose of bidi-
rectionalizing eAG/SeAG is to support collaborative data structure definition (and
re-definition). The scenario we proposed to explain how to collaboratively drive the
evolution of a data structure was the following: from a situation in which there is a
consensual data structure S, that is instantiated by all the editors (IS represents the
collective edition), one editor A, based on editorial considerations, defines an alterna-
tive data structure S′. The eAG/SeAG bidirectionalization ensures that, as soon as
S′ has been defined, a graph instantiating it, and retailing as much information from
IS as possible, is created, and synchronized with IS , so that any update on one side is
propagated on the other side. Yet, as indicated above, this translation from one side
to the other is semi-automatic. which means that the editor A may have to do some
work (positioning some new elements onto the data, etc.) before having a meaningful
instance of S′ at hand.
It is also worth noting that, as soon as the editor A has defined S′, in the scenario we
propose, she may start communicating with the other editors about the amendment
she proposes, and illustrate the relevance of this amendment based on selected exam-
ples. It is possible that, convinced on the basis of those examples, the rest of the team
shall decide that the amendment is reasonable, and shall consider choosing S′ as the
updated collective data structure.
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Two comments can be made at this point:

1. It is possible to provide the editor A, as soon as she defines S′ (actually, after
IS′ has been calculated) with a minimal quantitative evaluation of the editorial
interventions needed for IS′ to be meaningful: the number of newly created nodes
without a significant reference value. Even though this number does not translate
easily into an evaluation of the minimal working-time needed for making IS′
editorially meaningful, it still provides an indication of the number of elements
whose content will have to be defined.
This indication shall be given not only to A, but to all the editors discussing
the relevance of the amendment proposed by A: indeed, some modifications
may be interesting and, at the same time, may require too much work to be
performed. In other words, opting for a new data structure not only requires to
be able to evaluate the scientific relevance of the proposed amendment, but also
its feasibility. Thus, if the quantitative evaluation of the minimal work is too
high, an amendment may be discarded, or postponed if the agenda is not right
for it to be performed at a given moment.

2. On the positive side, the quantitative evaluation of the work to be done enables
the editor A not to have to do all the editorial work, at the scale of the whole
corpus, to convince the others of the feasibility of the amendment: some exam-
ples, added to the quantitative evaluation, it that last is low enough, provide a
good basis for the decision to change the data structure or not.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



Part V

General conclusion

299

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



Conclusion

10.9 Contributions

This PhD work started by the consideration of the nature of Digital Scholarly Edition
(DSE) and their manufacture. To do so, we have benefited from the experience of
four DSE projects. The main conclusions we came to are the following. First, DSE
manufacturing consists in producing structured data, which shall, in a collaborative
project, be validated against a schema. Second, schemas are meant to evolve over the
lifespan of a DSE project, and may evolve even once some solid part of the data has
been structured according to an initial data. Third, that schema evolution could be
done collaboratively, and that the only collaborative way to define a schema was based
on schema evolution.
Our first proposition (P. I Ch. 2) is a model of a collaborative DSE manufacturing
process in which schemas are defined, and amended, in a collaborative, decentralised
manner. The scenario we propose to explain how to collaboratively drive the evolution
of a data structure is the following: from a situation in which there is a consensual
data structure S, that is instantiated by all the editors (IS represents the collective
edition), one editor A, based on editorial considerations, defines an alternative data
structure S′. The eAG/SeAG bidirectionalization ensures that, as soon as S′ has been
defined, a graph instantiating it, and retailing as much information from IS as possi-
ble, is created, and synchronized with IS , so that any update on one side is propagated
on the other side.
Hence the need for a DSE-oriented data system to meet the following requirements:
it must be schema-aware, that is, there must be a means to restrict the nature of the
annotation written by an editor; it has to rest upon a data model (or an annotation
formalism) expressive enough to enable the natural expression of some of the common
patterns scholarly annotations are known to make use of (hierarchies of elements, at-
tributes, distant relations between elements, multilayering, overlap and self overlap);
it has to benefit from a tool-independent syntax, so that writing an annotation shall
not demand the editor to use (and thus, for the DSE team, to develop and maintain) a
dedicated interface; there must also be a means to define schema amendments, and to
derive from a schema amendment an instance bidirectional transformation, so that an
instance of the new schema shall be derived from the instance of the original schema
as automatically as possible, and so that it shall be possible for an editor to implement
any of the two schemas in an experimental approach, before taking the decision to opt
for one schema or the other. Eventually – but this aspect was not considered in this
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Figure 10.1: Summary of the editorial data system we intended to design (left), and
the one we have defined (right).

work – editors implementing different schemas shall be made to discuss about the rel-
evance of each, so that in the end one shall be chosen (instead of keeping two parallel
schemas indefinitely). A corresponding such system is represented in Figure 10.1.
Our proposition revolves around three models: eAG, a cyclic annotation graph model
that belongs to the class of stand-off markup models, and as such benefits from a high
expressivity; SeAG, that is a schema language for eAG, based on the notion of simu-
lation; LeAG, that is an inline markup syntax for eAG, that is, a tag-based syntax à
la XML, but fit for the expression of multilayer annotation with distant relations and
(self) overlap. As evidenced in Part II, Chapter 2, eAG validation can be guaranteed
by construction: given a certain schema, it is possible to restrict the expression of
valid-only eAGs, based on a matrix representation of both the schema and the graph.
This offers the possibility to validate cyclic and multilayer annotation data on-the-fly,
bypassing the traditional tradeoff between data model expressivity and data valida-
tion. We are not aware of any comparably ‘efficient’ validation mechanism for cyclic
graph structured data.
We have also defined a schema-aware parsing algorithm for translating a LeAG into an
eAG, given a SeAG. This parser, whose theoretical complexity is time-linear, permits
to validate a LeAG: a LeAG is valid against a SeAG S iff the result of its parsing,
given S, is defined. It results in the first validation mechanism running in linear time
for the validation of cyclic data expressed in an inline markup syntax, to the best of
our knowledge.
Eventually, in Part IV, we have defined, in an algebraic approach, several operators
for amending schemas. We have also defined how to derive a bidirectional instance
transformation from a schema transformation, that seems to be the first application
of the Data Exchange problem to multistructured data and the first symmetric bidi-
rectional transformations for (cyclic) graph-structured data.
The summary of the resulting system is provided in Figure 10.1.
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10.10 A Word on the Adopted Methodology

This whole work has been conducted in two phases, with two different approaches.
On the one side is the definition of the core problematic, that originates in editorial
considerations, and of the editorial process meant as an answer to this problematic,
from a non technical point of view. This part of the work has been undergone in direct
collaboration with the editorial teams associated with this work, by means of meetings
and exchange of information (e.g. the history of the abstract model of the DSE, or
the whole evolution of the DTD supporting the edition, etc.).
A technical report, giving a summary of the interactions with the editorial teams,
and proposing the first assessment of the problematic that we have discussed in this
dissertation, together with the editorial process designed as a solution to this prob-
lematic, was sent to the editors, presented orally and discussed live, in order to get
a validation of the general direction this PhD work was to follow, in December 2014.
The conclusions of this technical report has been used as the basis for the introductory
chapter of this dissertation.
On the other side is the definition of a data system making the editorial process de-
fined as an answer to this problematic teams possible, from a technical point of view:
definition of the data model, schema model and annotation syntax; definition of the
validation mechanism; definition of the LeAG parser; definition of the SeAG and eAG
transformations. This work has been conducted on a theoretical basis only, in order
for as many of its underlying properties to be well-understood and established.
Implementing the whole resulting system was once an objective of this PhD work,
mainly in order to conduct experiments with the end users (the editors) in terms of
usability. Many aspects of the system indeed have to be tested: are the editors com-
fortable with the LeAG syntax? is it expressive enough? How should a SeAG schema
be defined? modified? How to evaluate the editorial quality of the annotation graphs
resulting from either the backward or the forward eAG transformations?
The lack of implementation is, as one may have guessed, mainly doe to a corresponding
lack of time to achieve it; it is particularly true since implementing only part of the
whole system (e.g. the LeAG parser only, etc.) would not have enabled to experiment
on the most interesting aspects, that regard the overall usability of the system.
Still, it has to be mentioned that the eAG/SeAG model, together with the SeAG oper-
ators for amending the schemas, have indeed been presented to the complete editorial
team of the Encyclopédie project in a three-day workshop7. The model was, at the
time, in a transitory state; for that reason, we did not set any proper user study on
that occasion, which was more a means to share ideas and get feel how editors re-
spond to such models. We got very enriching interactions, and an extra session was
improvised for a dozen of the editors we met there, during which we studied, on a toy
example, how to define a SeAG schema and how to compare two schemas.

7Journées d’étude ENCCRE, CIRM, Campus de Luminy, France, 5-9 octobre 2015.
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10.11 Future Work and Perspectives

The system we have come up to, at the end of this PhD work, covers most of the
aspects the initial problematic demanded to solve: in particular, we have proposed a
schema-aware, multistructured data model with a very high expressivity while main-
taining the time complexity of validation linear; we have defined a first solution to the
problem of Data Exchange for cyclic annotation graphs. Yet, of course, this system
can be complemented and improved in many aspects.
The first improvement would be to extend the eAGMod transformation to the general
case, where the schematic cells are either partially independent or ambiguous. The
second improvement regards the temporal model of updates we have chosen here for
the sake of simplicity, and that is not realistic.
We can also think of many ways to complement the propositions we formulate here.
The first such complement, that is highlighted on Figure 10.1, would be to define a
means to translate an eAG into a LeAG, and to make sure that this translation, to-
gether with the LeAG parser defined in Part III Chapter 2, behave like a bidirectional
transformation.
The second complement would be to study how to check the well-formedness of a
LeAG, an eAG, a SeAG efficiently. This could be part of a general reflection about
how those models should be manipulated by the end user – which would be the right
occasion for studying if well-formedness can be guaranteed by construction also.
The second complement may be inspired from the examples of complex SeAG trans-
formations presented in Paragraph 10.7 page 294. Those examples show that a simple
transformation like changing a single-occurrence SeAG pattern into a repeated pattern
(called ‘cyclization’ above) demands a complex strategy from the user, if this one is
to define schema amendments by means of the Mod, Unite and Split operators. One
may wonder if a declarative approach, based on the algebra proposed here, should not
be preferred.
The last complement would be to define a query language and a transformation lan-
guage for eAG. Simulation, as we have seen, is the mechanism operated in SeAG for
defining patterns that are then instantiated. It has been established that simulation
can also be used for pattern matching in graph databases [186, 70]. An adaptation of
such techniques to eAG is thus a track to follow.
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Chapter 11

eAG Example: Multiple
Chronology-based Annotation.

Prenons pour base d’illustration la photographie suivante, qui représente le folio 67r
du manuscrit “de Voynich” conservé à la bibliothèque de Yale1. Ce manuscrit présente
pour nous l’intérêt d’être indéchiffré, et donc illisible à ce jour même pour les plus
érudits : nous pourrons donc imaginer, à titre d’exemple, toutes les hypothèses de
lecture sans pouvoir être contredits, ce qui est un luxe dans notre situation de profane
égarés dans le monde des lettres... Voici le folio :

1Voynich Manuscript Cipher Manuscript, Beinecke MS 408 67r, Beinecke Rare Book and
Manuscript Library, Yale University.

323

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



324CHAPTER 11. EAG EXAMPLE: MULTIPLE CHRONOLOGY-BASED ANNOTATION.

Nous nous munissons de cinq chronomètres pour baliser cette image :

1. Le premier, nommé Hdot, tel que TV dot = {(x, y) : x, y ∈ R} et (x, y) <Hdot
(x′, y′)⇔ y < y′∨(y = y′∧x < x′). Il identifie des nœuds avec une prépondérance
des y dans la relation d’ordre (l’axe des y étant pris comme l’axe de horizontal
orienté de gauche à droite).

2. Le second, nommé V dot, TV dot = {(x, y) : x, y ∈ R} et (x, y) <V dot (x′, y′) ⇔
x < x′ ∨ (x = x′ ∧ y < y′). Il identifie des nœuds avec une prépondérance des
x dans la relation d’ordre (l’axe des x étant pris comme l’axe de vertical orienté
de haut en bas).

3. Le troisième, nommé Circ, tel que TCirc = {x ∈ R+} et x <Circ x′ ⇔ x > x′. Il
identifie des cercles concentriques, dont le centre est le centre de la zone décrite,
par leur rayon. L’ordre est calculé selon l’inverse du rayon.

4. Le quatrième, nommé TI, tel que TTI = {x ∈ N} et x <TI x
′ ⇔ x < x′. Il

identifie une position entre deux caractère dans une chaîne de caractères.

5. Un dernier, nommé Ω, tel que TΩ = {0; Ω} et x <TextIndex x′ ⇔ x = 0∧x′ = Ω.
Il ne sert qu’à indexer la racine et la feuille.

Nous proposons à titre illustratif l’annotation suivante du folio 67r :
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On identifie dans cet exemple sept niveaux hiérarchiques. Nous les décrivons ici,
ainsi que les chronologies auxquelles ils font référence :

1. N0 = {0;N} associé à T0 = [0; Ω] sur TΩ.

2. N1 = {1; 19; 20; 21} associé à T1 = [A;B]∪[C;D] sur THdot, avec A = (0, 0), B =
(N,M), C = (0,M + 1), D = (N, 2M).
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3. N2 = {2; 5; 6; 18} associé à T2 = [A1;B1] ∪ [A2;B2] sur TV dot, avec A1 =
(X + x, Y ), B1 = (X + x+ x′, Y + y′), A2 = (X,Y + y′+ 1), B2 = (X + x+ x′+
x′′, Y + y′ + y′′).

4. N3 = {3; 4} associé à T3 = [0; I] sur TTI .

5. N4 = {7; 10; 13; 16; 17} associé à T4 = [0; a] sur TCirc.

6. N5 = {8; 9} associé à T5 = [I; J ] sur TTI .

7. N6 = {11; 12} associé à T6 = [J ;K] sur TTI .

8. N7 = {14; 15} associé à T7 = [K;L] sur TTI .

Outre la lecture hiérarchique particulière que nous proposons de la page, qui est bien
rendue par cette annotation, nous voulons insister sur quelques points qui nous parais-
sent intéressants :

• Notre modèle permet une description locale, une adaptation du référencement à
la nature des contenus : par exemple, on définit un ordre concentrique sur TCirc
pour annoter le cadran représenté en bas de la page de gauche du folio. Sur cet
exemple, cela permet à l’éditeur de suggérer une lecture du texte compris dans
les anneaux concentriques de l’extérieur vers l’intérieur (l’inverse aurait été pos-
sible). Plus généralement, cela offre la possibilité de traduire dans l’annotation
des séquences non triviales spatialement.

• Cela permet également une adaptation du sens de lecture en fonction de l’échelle
où on se situe : à ce titre, on propose ici un découpage du folio 67r en deux pages
côte à côte, mais on définit un ordre de lecture vertical au sein de chaque page.

• En termes de comparaison de références de nœuds (et donc de localisation des
items au sein du corpus) :

– Entre des nœuds faisant référence au même ensemble de référencement,
mais n’appartenant pas au même niveau hiérarchique : on peut par ex-
emple comparer la position dans le corpus des portions encadrées respec-
tivement par les nœuds (3, 4) et (14, 15). On peut conclure à l’antériorité
référentielle du premier par rapport à l’autre, du fait que malgré la non ap-
partenance au même niveau hiérarchique, comme aucun label de LLinkTo∪
suff(LLinkTo,Suff) n’appartient au chemin liant 4 à 13, la cohérence des
ordres référentiels et structurels doit être respectée ;

– Entre des nœuds ne faisant pas référence au même ensemble de référence-
ment. Dans ce cas, ce n’est pas la valeur de la référence qui permet de
conclure mais l’inclusion d’une chronologie dans relative à un nœud dans
une chronologie relative à l’autre nœud, ou qui contient l’autre nœud (etc.).
Cela permet de dire que dans notre transcription, le texte identifié par les
nœuds 8 et 9 est contenu dans un disque délimité par les cercles représentés
par les nœuds 7 et 10, car les premiers font référence à T5 ⊂ T4, et partant
que ref(7) < ref(8) <TI ref(9) < ref(10).
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Chapter 12

Tree-Automata vs.
Simulation-based Validation

Nous voulons ici étudier le rapport entre la validation par simulation que l’on propose,
pour des documents structurés en graphes cycliques, enracinés et enfeuillés, et la notion
de validation mise en œuvre dans le cadre restreint de XML. Pour cela, nous nous
référons au travail de Murata, Lee, Mani et al. ([126], [112]).

La validation de documents XML. Makoto Murata est l’un des deux fondateurs
du langage de validation XML RELAX NG [49] avec James Clark. Dans l’article [126],
Murata et al. s’appuient sur la notion de Tree Automata [50], dans le sens suivant :

• un document XML peut être modélisé par un arbre ;

• un schéma XML1 est un Tree Automaton, c’est-à-dire un automate dont les
résultats d’exécution sont des arbres ;

• un document XML est donc validé par un schéma si et seulement si le document
correspond à une exécution possible du schéma.

Notre démarche est différente. Selon notre approche, un schéma est vu comme un
automate validant des chaînes de symboles (possédant en outre un seul nœud d’entrée
et un unique nœud de sortie), et un document est également vu comme un automate
de la même nature. C’est-à-dire que dans notre cas, le document n’est pas un résultat
d’exécution d’un automate, et dans le sens inverse, le schéma n’est pas un automate
dont les résultats d’exécution sont des objets possédant la même structure que les
documents.

La validation fondée sur la notion de Tree Automata exploite une relation appelée
“interprétation” entre un document (un arbre) et un schéma. Nous la définissons ici
formellement.

1Nous désignons par ce terme un schéma rédigé dans n’importe quel formalisme : cela ne désigne
pas spécifiquement les XML Schema définis par le W3C Consortium [78], mais aussi bien un DTD,
un fichier RELAX NG. Dans l’esprit de [126], nous mettons à part Schematron (cf. [173]), qui précise
moins les contraintes structurelles que les contraintes d’intégrité des documents.
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Definition 12.1 : Grammaire d’arbres / Tree Automata On appelle un Tree
Automaton un quadruplet TA = (N,T, S, P ) où :

• N est l’ensemble des symboles non terminaux ;

• T est l’ensemble des symboles terminaux ;

• St ⊆ N est l’ensemble des symboles initiaux ;

• P est l’ensemble des règles de production des arbres, sous la forme r = X −→ aR,
où r ∈ P , X ∈ N , a ∈ T et R est une expression régulière sur N .

Notation. A la suite de [126], nous notons v(v1, v2, v3) le fait que dans un arbre
donné, le nœud v est le père de v1, v2 et v3.

Definition 12.2 : Interprétation Soit un arbre t = (V,E) et TA = (T,N, St, P ).
On dit qu’il existe une interprétation de t sur TA si et seulement si ∃I : V −→ N telle
que :

1. I(root(t)) ∈ St ;

2. ∀v(v1, ..., vN ) ⊂ t,∃r ∈ P ;

• r = X −→ aR ;

• I(r) = X ;

• label(v) = a ;

• I(v1) · ... · I(vN ) ∈ lang(R).

On note l’existence d’une interprétation I de t sur TA : ∃I(t)/TA.

La condition de validation d’un arbre t par un Tree Automaton TA est l’existence
de I(t)/TA. Notre notion de validation repose pour sa part sur la relation de simula-
tion.
Nous démontrons ici que, malgré les différences entre les deux visions de la valida-
tion, la condition de validation par interprétation est représentable au moyen de notre
condition de validation par simulation. Nous développons les notions nécessaires pour
formuler clairement cette proposition et la démontrer. Le déroulement de cette dé-
monstration est le suivant :

• Nous rappelons comment représenter un arbre t au moyen d’un AGm G.

• Nous définissons ensuite une dérivation d’un schéma S (dont on ne cherche pas
à prouver qu’elle vérifie strictement notre modèle de schéma2) à partir d’un Tree
Automata TA.

• Nous prouvons enfin que s’il existe une interprétation de t par TA, alors S ↪→ G.
2Cette approximation n’est pas gênante : nous voulons comparer ici la relation d’interprétation

et celle de simulation dans le contexte de la validation, pas dériver à proprement parler un schéma
selon notre Definition depuis un Tree Automaton.
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Commentaire. On peut remarquer deux choses à ce point :

1. la validation par un schéma RELAX NG ne se réduit pas à l’existence d’une
interprétation : RELAX NG propose deux extensions aux grammaires régulières
d’arbres, nommément des contraintes attribut-élément et l’entrelacement.

2. nous confrontons seulement les relations de simulation et d’interprétation, et
non la simulation typée et l’interprétation. La raison en est que l’attribution
cohérente de types aux nœuds de l’annotation graph dérivé d’un arbre et aux
nœuds du schéma dérivé du Tree Automata présente un surcroît de difficultés
qui rendrait illisible la preuve de principe que l’on cherche à établir, visant
uniquement à montrer que le recours à la notion de simulation, pour la validation,
n’est pas sans cohérence avec la validation traditionnelle. Nous simplifions donc,
dans ce contexte particulier, la validation et la restreignons à une relation de
simulation faible.

Nous rappelons ici comment représenter un arbre au moyen d’un AGm, suivant
la méthode de “hiérarchie structurelle” indiquée par [21], c’est-à-dire au moyen de la
notion de domination (voir p. 67).

Nota. Nous préférons ici la notion de domination définie sur les arcs à celle, plus
concise mais moins lisible, de domination hiérarchique, où l’arc dominant est effacé,
et qui est définie comme une relation sur les nœuds (voir p. 67). La conservation
des arcs dominants dans les schémas reflète aussi mieux la forme des règles d’un Tree
Automaton, comme nous le verrons.

Definition 12.3 : Dérivation d’un AG depuis un arbre. La dérivation d’un
AG depuis un arbre s’appuie sur la correspondance suivante (la Definition synthétique
du modèle XML ci-dessous provient de [112] p. 663) :

Arbre t AGm hiérarchique G
Nœuds labellisés. Arcs labellisés.
Set ordonné d’enfants (nœuds). Set ordonné d’arcs dominés par un arc,

au sens des AGm (faisant intervenir un
couple d’arcs suffixés : In et : Out re-
spectivement).

Pas d’arité préétablie pour les nœuds. Pas de nombre prédéfini d’arcs dominés
pour un arc.

Le texte est représenté par les feuilles. Le texte est désigné par les références
portées par les nœuds.

Racine. Arc principal liant la racine et la feuille
de G.
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Exemple. Nous représentons ci-dessous un arbre et son AG équivalent. Nous nous
passons de la représentation des références.

Notation. On notera la correspondance entre t et G : t
hier.≡ G (et vice-versa).

Hypothèse de travail supplémentaire. Nous nous plaçons dans le cas restrictif
des schémas où les Definitions de types sont non récursives, pour des raisons de sim-
plicité dans la rédaction des preuves. On pourrait étendre le résultat au cas général.
Dans ce contexte, la Definition des types peut se faire linéairement selon une approche
soit bottom-up (des types inclus vers les types qui les incluent) ou top-down (des types
les plus englobants vers les types inclus à l’intérieur). Nous exploiterons implicitement
cette propriété dans le développement qui suit.

Etape 1 : Definition d’une construction de schéma S à partir de TA.
Construisons de manière inductive S à partir de TA = (N,T, St, P ).
∀s ∈ S, ∃r ∈ P | r = s −→ aR.
On considère une telle règle et on note commodément r le graphe représentant cette
règle. Ce graphe est défini ci-dessous, sur la colonne de droite, en fonction de la nature
de R :
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où si R 6= ε :

avec r1 ... rN les graphes représentant les éléments de P qui sont de la forme ri =

X −→ aiRi, dans le cas où R = X.
Le schéma S complet s’obtient alors de la manière suivante :
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où les blocs R
(i)
S sont définis comme suit :

• n = |S| ; ∀i ∈ [1;n], si désigne le i-ième élément de S selon une indexation donnée
quelconque ;

• ∀i ∈ [1;n], R
(i)
S représente une expression régulière Ri = si, de la forme Ri =

X ∈ N .

• par conséquent, chaque bloc contient, en parallèle, l’ensemble des blocs rij

définis inductivement plus haut, où rji = si −→ aijRij .

Notation. On note un couple schéma S / Tree Automata TA obtenu de cette
manière : S ←→ TA.

Definition 12.4 : langage primaire. Soit A un graphe enraciné, possédant une
unique feuille et connecté.
On appelle le langage primaire de A le langage défini sur le plus grand sous-graphe de
A, possédant la même racine et la même feuille, tel qu’aucun des labels de ses arcs ne
possède les suffixes : In ou : Out :

langprim(A) = lang(max
|E|
{G = (V,E) ⊂root(A)

leaf(A) A;∀e ∈ E,∀l ∈ L, label(e) 6= l : In ∨ l :

Out})

Propriété 12.1 Soit un Tree Automaton TA = (N,T, St, P ), soit r ∈ P . Si l’on
désigne par langprim( r ) le langage primaire du graphe représentant la règle corre-
spondante, comme défini dans la construction inductive de S ci-dessus, alors :

∀r ∈ P | r = X −→ aR, langprim( r ) = {a}.

Preuve. Simple vérification sur le graphe représentant r.

Definition 12.5 : fonction
I
T Soit TA = (T,N, St, P ).

On définit la fonction
I
T : N −→ RET telle que :

∀X ∈ N,
I
T (X) 7−→

⋃
r∈P | r=X−→aR′

a.

Definition 12.6 : extension à une expression régulière Soit R une expression

régulière.
I
T (R) est défini de manière inductive traditionnelle de REN dans RET :

• R = ε⇒
I
T (R) = ∅ ;

• R = X ∈ N ⇒
I
T (R) =

I
T (X)
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• R = (R′)∗ ⇒
I
T (R) =

I
T (R′)∗

• R = R′|R′′ ⇒
I
T (R) =

I
T (R′)|

I
T (R′′)

• R = R′ ·R′′ ⇒
I
T (R) =

I
T (R′) ·

I
T (R′′)

Propriété 12.2 Soit TA = (N,T, St, P ) définissant une grammaire d’arbre sans
type récursif. Quelle que soit R expression régulière apparaissant dans le membre
droit d’une règle r ∈ P , si l’on désigne par langprim( R ) le langage primaire du graphe
représentant l’expression régulière R tel que défini dans la construction inductive de
S ci-dessus, alors :

langprim( R ) = lang(
I
T (R))

Preuve. Par Definition, si R = X ∈ N , la représentation R de R est la suivante :

avec r1 ... rN les graphes représentant les éléments de P qui sont de la forme ri =

X −→ aiRi. On en déduit que :

langprim( R ) = langprim(
⋃

ri=X−→aR′
ri )

=
⋃

ri=X−→aR′
langprim( ri ), les sous-graphes ri étant disjoints.

=
⋃

ri=X−→aR′
{a}

= lang(
I
T (X))

= lang(
I
T (R))

Par induction, on montre que la propriété tient pour R = (R′)∗, etc. le cas R = ε est
trivial.

Etape 2 : reDefinition de la notion d’interprétation, sur la représentation
AG des arbres. Soit un Tree Automaton TA = (N,T, St, P ) validant un arbre
t = (V,E). On adapte la Definition de l’interprétation pour qualifier la relation entre

G = (VG, EG)
hier.≡ t et TA : ∃I : EG −→ N telle que:
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1. pour e0 | root(G)be0cleaf(G), on a I(e0) ∈ S ;

2. quel que soit le graphe de la forme

inclus dans G, ∃r ∈ P ;

• r = X −→ aR ;
• I(e) = X ;
• label(e) = a ;
• I(e1) · ... · I(eN ) ∈ lang(R).

Etape 3 : Etablissement de la relation entre Interprétation et Simulation.

On veut montrer que :

• Etant donné TA = (N,T, St, P ) un Tree Automaton, t = (V,E) un arbre,

• Si l’on se donne G = (VG, EG) un Annotation graph tel que G
hier.≡ t,

• Si l’on se donne S un schéma tel que S ←→ TA,

• Alors S ↪→ G.

Preuve. PARTIE 1 :
On a vu que ∃I(G)/TA implique que quel que soit le graphe de la forme :
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inclus dans G, ∃r = X −→ aR ∈ P telle que
∏

i∈[1;N ]

I(ei) ∈ lang( R ).

Or ∀i ∈ [1;N ], label(ei) ∈ lang(
I
T (I(ei)) =

⋃
r∈P | r=I(ei)−→aR′

a.

En outre,
I
T (I(e1) · ... · I(eN )) =

I
T (I(e1)) · ... ·

I
T (I(eN )) par Definition de

I
T sur

une expression régulière de non terminaux.

On en déduit que
∏

i∈[1;N ]

label(ei) ∈ lang(
I
T (

∏
i∈[1;N ]

I(ei)).

Par ailleurs,
∏

i∈[1;N ]

I(ei) ∈ lang(R)⇒ {
∏

i∈[1;N ]

I(ei)} ⊆ lang(R).

⇒ {
I
T (I(e1)) · ... ·

I
T (I(eN ))} ⊆ lang(

I
T (R))

⇒ lang(
I
T (

∏
i∈[1;N ]

I(ei))) ⊆ lang(
I
T (R)) = langprim( R )

D’où
∏

i∈[1;N ]

label(ei) ∈ lang(
I
T (

∏
i∈[1;N ]

I(ei))) ⊂ lang(
I
T (R)) = langprim( R ) ⊆

lang( R ),
Soit finalement

∏
i∈[1;N ]

label(ei) ∈ lang( R )

PARTIE 2.1 :
On cherche maintenant à montrer que I(t)/G⇒ S ↪→ G. Pour cela, nous allons nous
appuyer sur la structure suivante représentative de G :

On va définir par récursion un sous-graphe de S, noté S∗, contenant uniquement les
chemins de S qui sont instanciés dans G ; on va également définir récursivement la
hiérarchie G∗ qui correspond à la forme linéarisée de S∗, dont le langage contiendra le
langage de G. Nous exploiterons ces deux graphes intermédiaires pour conclure quand
à la simulation de G par S.

On sait que ∃I(G)/TA. Aussi, ∃rS ∈ P telle que rS = I(e1) −→ label(e1)R1.
α) Cas où R1 = ε

R1 = ε⇒ t = root(G)be1cleaf(G) et lang(G) = {label(e1)}.
En outre rS ∈ P ∧ s ∈ St⇒ root(S)bεc rS bεcleaf(S) ⊂root(S)

leaf(S) S
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Or label(e1) ∈ langprim( rS )⇒ label(e1) ∈ langprim(S).

D’où root(S)bεcGbεcleaf(S) ⊂root(S)
leaf(S) S

Et donc S ↪→ G.
β) Cas où R1 6= ε

De la même manière, on a label(e1) ∈ langprim(S).

En outre, rS = s −→ label(e1)R1 | s ∈ St ⇒ S1 ⊂root(S)
leaf(S) S, si l’on note S1 le

graphe ci-dessous :

S1 ne contenant pas de cycle, sa forme linéarisée lui est égale. On la note G1.
Or d’après la PARTIE 1 ci-dessus,

∏
i∈[1;N ]

label(e1.i) ∈ langprim( R1 )

⇒ lang(I1) = {label(e1) : In ·
∏

i∈[1;N ]

label(e1.i) · label(e1) : Out}

⊆ {label(e1)} ∪ {label(e1) : In} · langprim( R1 ) · {label(e1) : Out}

⊆ lang(G1)

Soit finalement : lang(I1) ⊆ lang(G1).
PARTIE 2.2 :

On va alors initier la récurrence en montrant que lang(I1
⋃

i∈[1;N ]

I1.1) ⊆ lang(G∗).

On considère tout d’abord uniquement I1.1
R 6= ε⇒ ∃r1.1 = X1.1 −→ a1.1R1.1 telle que :

1. on peut écrire R1 sous la forme R1 = R′1|(R
(0)
1 ? ·X1.1(?) · R(1)

1 ), R(1)
1 ∈ REN ∧

X1.1 6= ε ;

2. I(e1.1) = X1.1, label(e1.1) = a1.1 et
∏
i

I(e1.1.i) ∈ lang(R1.1) (du fait de l’existence

d’une interprétation de G).

Du point 1 ci-dessus, on déduit que le graphe S+
1 représenté ci-dessous vérifie

S+
1 ⊂

root(S)
leaf(S) S1 :
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avec r1.1 réduit à un arc labellisé label(e1.1) si R1.1 = ε ou sinon :

D’après la PARTIE 2.1 de cette preuve, on déduit que :

lang(I1.1) ⊆ {label(e1.1)} ∪ {label(e1.1) : In} · langprim( R1.1 ) · {label(e1.1) : Out}.

On en déduit que lang(G) ⊆ lang(G
(1.1)
1.1 ), avec G(1.1)

1.1 représenté dans la table 12.1
page 338.

Nota. L’illustration que l’on propose de S1.1 est déjà une linéarisation du sous-
graphe S1.1 ⊆ S1 : un même nœud peut y apparaître deux fois (cela pourrait se
produire, par exemple, dans certains cas où une boucle de R1 se traduirait par un
pattern répété un nombre fini de fois dans G). Idem pour les autres sous-graphes de S.
Dans le cas où une séquence d’arcs consécutifs de G correspondraient à l’instanciation,
N fois successivement, d’un cycle de S, alors S1.L comporterait N fois, linéairement,
la même séquence. G1.L est le graphe obtenu en ôtant les arcs epsilon, et en attribuant
un identifiant différent à chaque occurrence d’un même nœud, dans le cas de nœuds
répétés dans S1.L.

On applique alors ce raisonnement par récurrence horizontale, pour obtenir une
qualification en termes de langage de

⋃
i∈[1;N ]

I1.i, en faisant varier i, comme cela est

illustré dans la table 12.1 page 338 :
α) Si R(1)

1 = ε, on passe directement à la récurrence en profondeur (voir la PARTIE 2.3
ci-dessous).
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S1 G1

S+
1

S
(1.1)
1.1 G

(1.1)
1.1

S
(1.1)+
1.1

S
(1.2)
1.1 G

(1.2)
1.1

...
...

...
...

S1.1 G1.1

Table 12.1: Bilan des sous-graphes de S définis par récurrence horizontale, par ordre
décroissant sur l’inclusion (S1 ⊇ S+

1 etc.), et des hiérarchies correspondantes.
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β ) Si R(1)
1 6= ε, alors R1 peut se réécrire R1 = R′1|(R

(0)
1 ? ·X1.1(?) ·R(2)

1 ? ·X1.2(?) ·R(3)
1 ),

R
(2)
1 ∈ REN ∧X1.2 6= ε.

Cela revient à considérer le graphe S(1.1)+
1.1 ci-dessous, qui vérifie S(1.1)+

1.1 ⊂root(S)
leaf(S) S

(1.1)
1.1 .

Avec une notation cohérente avec ce qui précède, on montre de même que :

lang(I1.2) ⊆ {label(e1.2)} ∪ {label(e1.2) : In} · langprim( R1.2 ) · {label(e1.2) : Out}.

Ce résultat est vrai pour les valeurs de i suivantes indifféremment, jusqu’à épuise-
ment de R1.

On en déduit que :

lang(
⋃

i∈[1;N ]

I1.i) ⊆
∏

i∈[1;N ]

{label(e1.i)} ∪ {label(e1.i) :

In} · langprim( R1.i ) · {label(e1.i) : Out}

D’où {label(e1) : In} ·
∏

i∈[1;N ]

{label(e1.i)} ∪ {label(e1.i) : In} · langprim( R1.i ) ·

{label(e1.i) : Out} · {label(e1) : Out} ⊆ lang(G1.1), avec G1.1 tel que représenté dans
la table 12.1 page 338.

Soit lang(I1
⋃

i∈[1;N ]

I1.i) ⊆ lang(S1.1).

PARTIE 2.2 Récurrence en profondeur.
Pour finir la preuve, il faut en plus, pour chaque i ∈ [1;N ], considérer [I1.i.j ]j :
Cela revient à répéter exactement toute ces PARTIE 2.2-3 non plus à I1.1, mais à

I1.i.j . On achève la récurrence en ayant construit S∗ et G∗ de manière analogue à S1.1

et G1.1, tels que S∗ ⊆root(S)
leaf(S) S et lang(G) ⊆ lang(G∗).

CONCLUSION INTERMEDIAIRE. Soit K la profondeur de t
hier.≡ G.

Pour conclure, il faut remarquer que :
I1

⋃
i(1)∈[1;N(1)]

(I1.i(1)

⋃
i(2)∈[1;N(2)]

(I1.i(1).i(2) ...
⋃

i(K)∈[1;N(K)]

I1.i(1)...i(K)))) = G.

L’itération de la PARTIE 2 de cette preuve conduit donc au résultat suivant :

lang(I1
⋃

i(1)∈[1;N(1)]

I1.i(1)

⋃
i(2)∈[1;N(2)]

I1.i(1).i(2)...
⋃

i(K)∈[1;N(K)]

I1....i(K)) ⊆ lang(G∗),
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c’est-à-dire lang(G) ⊆ lang(G∗). Et on peut vérifier que G∗ est une hiérarchie.
PARTIE 3

Pour conclure, nous remarquons que l’on a établi le résultat suivant : Il existe une
hiérarchie G∗ ⊆ S tel que lang(G) ⊆ lang(G∗), et il existe S∗ ⊆root(S)

leaf(S) S, tels que S∗
correspond, en termes informels, à une G∗ dont on aurait “fusionné certains nœuds ”
(nous préciserons cette idée ultérieurement).

Nous concluons au moyen des trois propriétés suivantes. Les deux premières étab-
lissent que si deux hiérarchies partagent une partie de leur langage, alors la plus
petite est incluse dans la plus grande. On en déduit que dans le cas de hiérarchies,
lang(A) ⊆ lang(B)⇔ B ↪→ A.
On montre ensuite, en définissant les notions formellement, que si un graphe C est
obtenu en “fusionnant certains nœuds” à partir d’un autre graphe B, alors C ↪→ B.
Par transitivité, nous obtiendrons C ↪→ A, soit pour nous S∗ ↪→ G, puis nous con-
clurons en exploitant l’inclusion de S∗ dans S, ce qui donne le résultat final : S ↪→ G.

Propriété 12.3 Soient A,B des AGm hiérarchiques tels que définis précédemment,
tels que lang(B) ⊆ lang(A). Alors A ⊆root(B)

leaf(B) B.
Preuve. Cela tient à la manière unique dont est définie une hiérarchie, pour un arbre
donné. Or seuls deux arbres différents peuvent donner deux vocabulaires différents.

Corollaire. Soient A,B des AGm hiérarchiques. Alors :

lang(B) ⊆ lang(A)⇒ A ↪→ B.

Preuve. Conséquence immédiate de l’inclusion (avec partage des racines).

Definition et propriété 12.7 : Graphe obtenu en fusionnant deux nœuds
d’un autre graphe. Soient A = (VA, EA), B = (VB , EB) tels que :

• VA = {vAx ; vAy ; vAi }i∈I⊂N, EA = {eAj }i∈J⊂N ;

• VB = {vBx ; vBi }i∈I⊂N, EB = {eBj }i∈J⊂N ;

• et ∀j ∈ J, label(eAj ) = label(eBj ).

et vérifiant les conditions suivantes, ∀j ∈ J :

1. ∃is, ie ∈ I | (sut(eAj ) = vAis ; end(eAj ) = vAie) ∈ (VA\{vAy })2

⇔ (sut(eBj , end(eBj )) = (vBis ; v
B
ie

)

2. sut(eAj ) = vAy ⇔ sut(eBj ) = vBx

3. end(eAj ) = vAy ⇔ end(eBj ) = vBx

Alors on dit que B est le graphe obtenu en fusionnant vAx et vAy dans A.
Ces deux graphes vérifient la propriété suivante : B ↪→ A. Preuve. On vérifie que
D = {(vAi , vBi ), (vAx , v

B
x ), (vAy , v

B
x )}i∈I définit une simulation de A par B.

Nota. Cette propriété est généralisable aux graphes obtenus en fusionnant plusieurs
nœuds d’un graphe, par transitivité de la simulation.

FIN DE LA PREUVE.
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Chapter 13

eAG Mod Operation: General
Case

Nous décrivons ici les principaux algorithmes qui seront mis en œuvre à la fois pour
la dérivation d’une modification dans le domaine des instances à partir d’une modifi-
cation définie dans le domaine des schémas, et pour bidirectionnaliser la première. A
ce titre, nous rappelons ci-dessous le processus par lequel la dérivation s’opère, et les
calculs qui peuvent ensuite être réalisés lorsque deux graphes liés par une modification
bidirectionnelle sont mis à jour :

La situation est la suivante : Soit une étampe Gi, deux cellules schématiques χ
et χ+ permettant de définir une modification Mod(χ, χ+) telle que Mod(χ, χ+).Gi =
Gi+1 6= Gi.
Soit un graphe Hi sans boucle ni partie connexe réduite à un point, et dont les nœuds
ne possèdent chacun qu’une valeur de type, tel que [Temp.Gi] soit exhaustif sur Hi.
Hi+1, image de Hi par la modification dérivée de Mod(χ, χ+), va être obtenu de la
manière suivante :

1. La matrice-bloc [Temp.χ] est analysée pour déterminer son pavage, c’est-à-dire
pour identifier les ensembles de matrices négatives et les ensembles de matri-
ces positives qui sont susceptibles de contenir des valeurs désignant les mêmes
nœuds, et devant donc faire l’objet d’un alignement local, au moyen d’une per-
mutation σk, dans la perspective de rechercher les couples racine-feuille liés par
un chemin instanciant χ dans Hi.

2. Ensuite, sur le pavage obtenu, dans lequel les variables matricielles sont rem-
placées par leur valeur dans Hi, les permutations locales sont déterminées.

3. Cet ensemble de permutations est lu de sorte à fournir la liste des paires racine-
feuilles de sous-graphes linéaires de Hi qui instancient un chemin de χ.

4. Une instance d’une cellule schématique (ici : χ+) doit alors être créée entre les
nœuds formant une telle paire.
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A ce moment, on dispose d’un nouveau graphe Hi+1, image de Hi. L’un et l’autre
graphe peuvent alors faire l’objet de mises à jour nécessitant de mettre en œuvre le car-
actère bidirectionnel de la dérivée deMod(χ, χ+) : il s’agit dans ce cas soit d’insertion
de nouvelles instances d’une cellule schématique dans l’instance correspondante, soit
de leur suppression.

1. Dans le cas d’une insertion : seules les insertions venant augmenter la liste des
couples racines-feuilles d’instances de χ. Dans ce cas, le processus est similaire au
point 3 ci-dessus, à cela près que les matrices ne sont pas créées, mais ajoutées,
dans leur forme infinie, à celles qui existent dans l’autre instance. Nous ne
développons pas davantage.

2. Dans le cas d’une suppression, un algorithme de propagation particulier doit être
mis en œuvre. Celui-ci reste à définir.

13.1 Pavage

Nous avons illustré la détermination du pavage sur le cas le plus simple : celui où χ
n’est constitué que d’un unique chemin non cyclique. Le cas général se rapporte aux
cellules comportant plusieurs chemins cycliques.
La multiplicité des chemins est facile à prendre en compte étant donné que, par
définition des cellules, deux chemins ne possédant pas le même premier arc sont
d’intersection nulle : un traitement en parallèle des plus grands sous-graphes de χ
partant de la racine et conduisant à la feuille et identifiés par un unique arc issu de la
racine (sous-graphes qui sont eux-même des cellules) est donc possible.
Reste la question des cycles. Celle-ci complexifie en revanche la procédure de déter-
mination du pavage, par rapport à l’exemple illustré plus haut. Effectivement, dans
cet exemple, les matrices du pavage s’enchaînaient une à une, depuis l’unique matrice
décrivant les racines possibles des sous-graphes de IS instanciant un chemin de χ, si
bien que, par la suite, l’alignement opéré par les permutations σk s’opérait entre les
colonnes d’une matrice négative et celles d’une matrice positive, constituant à elles
deux l’ensemble des matrices non nulles d’une certaine ligne-bloc de [Temp.χ]. Dans
le cas général, du fait que les cycles augmentent la connectivité de certains nœuds (un
cycle impliquant au moins une bifurcation et une convergence de chemins), plusieurs
matrices positives (ou négatives) peuvent se trouver sur une même ligne-bloc. Aussi,
les matrices du pavage, dans le cas général, ne s’enchaîneront pas de manière unitaire.
Nous illustrerons cela après avoir défini l’algorithme de pavage que nous utiliserons.

Algorithme. On a les données suivantes :

• [Temp.χ] le Template de la cellule de sélection χ ;

• ir l’indice de la seule ligne-bloc de [Temp.χ] ne comportant pas de variable
matricielle négative.

• {Jr} une liste recouvrant l’ensemble des indices des colonnes-bloc non nulles
de la ligne-bloc d’indice ir de [Temp.χ]. Les indices de cette liste débutent
conventionnellement à 0.
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On se donne les structures de données suivantes :

• Le pavage P à remplir, qui sera la sortie de l’algorithme. Il s’agit d’une liste de
piles.
Pour alimenter le pavage, on définit insert.P ([M ], h), qui insère [M ] à la fin de
la pile contenue à la position h de la liste P . Les indices de cette liste débutent
conventionnellement à 0.

• Un dictionnaire F qui associe des drapeaux à des valeurs d’indice (l’algorithme
procédant à l’affectation de drapeaux à des colonnes-bloc de [Temp.χ].
L’accès à la valeur du drapeau associé à un indice x se fait au moyen d’une
fonction1 flag : flag(x) retourne soit cette valeur, si elle existe, soit une valeur
nulle.
L’insertion d’un couple indice-drapeau dans le dictionnaire se fera au moyen
d’une opération insF lag, prenant pour unique paramètre la valeur de l’indice :
le drapeau, lui, sera créé de sorte à être unique dans le dictionnaire2.

• Une pile notéeMmo, dont les éléments sont des couples ([M ], h), où [M ] désigne
une matrice et h un indice de la liste P .
On insère en fin de pile un couple à l’aide de l’opération push.Mmo ; on récupère
et supprime le dernier élément de la pile à l’aide de l’opération pop.Mmo.

On se donne les opérations supplémentaires suivantes :

• col([M ]) dont l’argument est une variable matricielle [M ] de [Temp.χ], et qui
retourne la valeur de l’indice de la colonne-bloc de cette variable dans [Temp.χ].

• une opération permettant d’affecter en exposant une valeur de drapeau à une
variable matricielle. cette opération n’est pas représentée par un symbole : on
notera [M ]f le résultat de son application à la variable matricielle [M ] avec le
drapeau f .

On définit les variables suivantes :

• h∗ la hauteur courante dans le pavage P ;

• l∗ la ligne courante dans [Temp.χ], initialisée à la valeur ir ;

• j∗ la colonne courante dans [Temp.χ] ;

• [A∗] une matrice positive ([A∗] > [0]) ;

• [B∗] une matrice négative ([B∗] < [0]).

1Effectivement, une seule valeur de drapeau au plus pourra être affectée à une valeur d’indice
donnée.

2Autrement dit, toute nouvelle entrée de couple dans le dictionnaire s’accompagne de la création
d’une nouvelle valeur de drapeau.
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On initialise l’algorithme : push.Mmo([Temp.χ]ir,{Jr}0 , 0).

Algorithm 5: Construction du pavage P .
begin

while Mmo 6= ∅ do
for j∗ ranging from 0 to |{Jr}| − 1 do

([A∗], h∗) = pop.Mmo ;
insertP ([A∗]flag(col([A

∗])), h∗) ;
if flag(col([A∗])) = ∅ then

h∗ = h∗ + 1 ;
Find [B∗] = [[Temp.χ]i′,col([A∗])] the unique matrix variable on the
block-column col([A∗]) ;
i∗ = i′ ;
insertP ([B∗], h∗) ;
forall the
[B′] = [[Temp.χ]i∗,j′ 6=col([B∗])] | [[Temp.χ]i∗,j′ 6=col([B∗])] < [0] do

insF lag(col([B′])) ;
insertP ([B′]flag(col([B

′])), h∗) ;

h∗ = h∗ + 1 ;
forall the [A′] = [[Temp.χ]i∗,j ] | [[Temp.χ]i∗,j ] > [0] do

push.Mmo([A′], h∗) ;

13.2 Permutations entre matrices d’une même instance

On a à notre disposition :

• {IS/[Temp.χ]} la liste des valeurs (extraites de {IS/[Temp.S]}) affectées aux
variables matricielles de [Temp.χ]. A partir de cette donnée, on peut disposer
d’un pavage noté PI , construit à partir de P dans lequel les valeurs matricielles
remplacent les variables correspondantes.

• La taille de la liste P établie précédemment : length.P . La taille de PI est
identique. On en déduit l’indice maximal : H = length.P − 1.
Pour toute case (PI)h, on connaît aussi l’indice du dernier élément de la pile
contenue dans la case : j(h).

• Le dictionnaire F établi précédemment.

On va maintenant analyser PI et définir les permutations qui articulent chaque
ligne de PI comportant des matrices négatives (à part la ligne décrivant les feuilles)
et la ligne suivante, positive. Effectivement, ces paires de lignes, quand elles existent,
répètent les mêmes nœuds, sans exception, si un arc parvient à un nœud vm appa-
raissant sur la ligne négative, et qu’il existe une ligne positive en regard, alors un arc
doit être issu de ce nœud car ce nœud n’est pas une feuille, ce qui implique que vm
apparaisse dans au moins une matrice de la ligne positive. Ce que l’on cherche, c’est à
déterminer la permutation, dans le sens que l’on a défini dans l’exemple plus haut, qui
aligne les différentes colonnes des différentes matrices des lignes positive et négative
où apparaît ce nœud vm.
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Pour ce faire, nous n’allons pas considérer une colonne comme une colonne dans
une matrice de la ligne : nous allons considérer la liste des colonnes des matrices de
chaque ligne, et aligner les colonnes de ces deux ensembles.
Nous allons pour cela appliquer deux algorithmes : le premier fournira les paires de
listes de nœuds (i.e. de colonnes) à aligner ; le second donnera les permutations
réalisant ces alignements locaux.

Algorithm 6: Détermination des paires de listes de nœuds à aligner
begin

forall the h ∈ [0;H] do
Create an empty stack Lineh ;
forall the matrix [Mj ] = [((PI)h)j ] = [Bxy ] ∨ [Axy ] defined by j ∈ [0; j(h)] do

Search for the couples of naturals (m,n) ∈ N2 so that [Mj ]n,m 6= [0] ;
push.Lineh(nflag([Mj ]), x) ;
/* This means we fill Lineh with the value of the identifier of the

nodes that appear on the hth position of PI, marked by the flag of
the matrix they belong to, if such a flag exists, together with the
value of their type (given by the line-block index x of the matrix
they belong to, in [IS/[Temp.χ]]. */

Algorithm 7: Etablissement des permutations sur le pavage.
begin

forall the h = 2n+ 1, h < H do
LB = Lineh ;
LA = Lineh+1 ;
σh = ([ ], [ ]) ;
/* Here we initialize a pair of stacks that will eventually be a

permutation σh. The first stack in it, denoted σB,h hereafter,
identified by the index 0, will contain the elements of LB, repeated if
needed ; the second one, denoted σA,h hereafter, will contain the
elements of LA, repeated if needed, in an order dictated by σB,h. */

1 forall the indexes j of LB do
2 n = 0 ;
3 forall the indexes k of LA do
4 Let us note ([LA]k)0 the node identifier ([LA]k)0 without considering its

flag, if it has one ;
5 Let us note ([LB ]j)0 the node identifier ([LB ]j)0 without considering its flag,

if it has one ;
6 if ([LA]k)0 = ([LB ]j)0 then
7 push.σB,h(jflag(([LB ]j)0)(∗)n, ([LB ]j)1) ;
8 push.σA,h(kflag(([LA]k)0), ([LA]k)1) ;
9 n = n+ 1 ;

/* NB : Here, only the identifiers that appear both in an A and a
B matrix (at least) on a certain block-line of [χ/[Temp.χ]] are
taken into account : it means that the nodes that are only
pointed at by exogeneous edges will not be considered for
alignment – same for nodes that are summit of exogeneous edges
only. */

10 forall the indexes k of σA,h do
11 Determine m = Card({([σA,h]l)0 = ([σA,h]k)0 | l < k}) ;
12 Replace ([σA,h]k)0 by ([σA,h]k)0(∗)m ;
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13.3 Alignement

Pour finir, nous devons procéder à la lecture des permutations, de sorte à en tirer les
paires racine-feuille.

On se donne :

• Une opération permettant d’associer un tag x à la première valeur d’un couple
N = (n, t). Nous représentons cette opération par l’opérateur L99, de sorte que
N L99 x représente à la fois l’affectation et la valeur qui en résulte.

• Une opération qui occulte la partie étoilée d’une valeur extraite de σB,h ou σA,h
: ∀n,m, t, (n(∗)m, t) = (n, t).

• Une pile de piles. On désigne la pile principale par Rs. Les sous-piles sont
indexées : on les désignera par Rsj , j ∈ N.
On se donne la fonction getIndexes, de sorte que getIndexes.Rs(X) retourne
une liste d’indices, ceux des sous-piles de Rs dont le dernier élément est un
couple, dont le premier élément est X.

On note P le nombre permutations σh : h varie dans [1;P ].
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Algorithm 8: Etablissement des permutations sur le pavage.
begin

forall the h from 1 to P do
/* Here, we reverse crawl the first line of the hth permutation, because

starred values, which indicate that a given node is to be aligned with
more than one node (i.e. has more than one immediate descendants
within the instance of the cell), will be discovered first. Since Rs
is made to contain the ordered lists of all the ancestors of a node
along the paths it pertains to, for starred nodes, the aforementioned
lists must be copied if we want to stick to linear representation of
lineages, before being completed by the node’s descendants’
description. Since the starred values appear first, there is no need
to check, for each value, if the ancestor’s lists must be copied or
not. If the value is starred, it must, else, there is no need. */

1 forall the indexes k of σB,h, in decreasing order do
2 J = {getIndexes.Rs((σB,h)k L99 N)}N<h ;

/* J = ∅ means that the node corresponding to the current index of the
permutation has not been encountered yet. If the node is flagged,
then it means it is part of an instance of a cycle in the cell : it
must be considered. If it is not flagged and h 6= 1, then the node
is the end of an exogeneous edge, and must not be considered.
Finally, the set of the non-flagged nodes so that h = 1 contains the
roots of the paths instanciating a path of the cell : the
so-characterized nodes must be considered ; the real such roots will
be sorted out later, as the ones leading to a node whose type is the
one of the leaf of the cell (see the procedure after this algo).
*/

3 if J = ∅ and, in case h 6= 1, flag((σB,h)k)1) 6= 1 then
4 Be a stack S = [(σB,h)k; (σA,h)k) L99 h];
5 push.Rs(S);

6 else
7 if (σB,h)k)0 6= (σB,h)k)0 (i.e. the index value (vs. the type value) in σB,h)k

is starred) then
8 forall the j ∈ J do
9 push.Rs(Rsj) ;

/* Here we copy the stacks of Rs ending by a couple

containing (σB,h)k)1 L99 N,N < h. */

10 forall the j ∈ J do
11 push.Rsj((σA,h)k L99 h);

/* Here we insert (σA,h)k L99 h in the lines whose index belongs to

J, i.e. the lines ending by (σB,h)k L99 N,N < h, but that do
not come from a copy (see above). This way, if the current
value of σB,h is starred, since its starless value will be
discovered later on (or less starred values), thanks to the
decreasing order on k, lines corresponding to what is called J

will necessarily be found at the next round, ending by (σB,h)k−1

: the lines coming from the copy instruction above. */

Il reste alors à lire Rs pour obtenir les couples d’indices des racines et des feuilles
se correspondant. Pour ce faire, pour tout indice i sans drapeau de Line(1), la ligne
contenant l’ensemble des matrices décrivant des racines éventuelles de χ :
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1. Identifier les cases de Rs débutant par i. Pour chacune :

(a) Accéder à la dernière valeur.

(b) Si elle ne porte pas de drapeau et qu’elle possède le même type que leaf(χ),
alors c’est l’indice d’une feuille associée à la racine i.

(c) Sinon, si elle n’est pas du même type que leaf(χ), ne pas considérer (il
s’agit d’un arc sortant de χ avant la racine).

(d) Sinon, il existe une ligne de Rs débutant par la valeur affectée du drapeau :

i. réitérer sur cette ligne la procédure décrite ici depuis l’étape 1. L’algorithme
s’arrête quand les parcours ne débouchent plus que sur des valeurs sans
drapeau.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés



FOLIO ADMINISTRATIF

THESE DE L’UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON

NOM : Barrellon DATE de SOUTENANCE : 27/11/2017
(avec précision du nom de jeune fille, le cas échéant)

Prénoms : Vincent

TITRE :  A Generic Approach towards the Collaborative Construction of Digital Scholarly Editions

NATURE : Doctorat Numéro d'ordre :  2017LYSEI113 

Ecole doctorale : Ecole doctorale d'Informatique et de Mathématiques de Lyon (EDA 512)

Spécialité : Informatique

RESUME :  Digital Scholarly Editions are critically annotated patrimonial literary resources, in a digital form. Such editions
roughly take the shape of a transcription of the original resources, augmented with critical information, that is, of structured
data.  In a collaborative setting, the structure of the data is explicitly  defined in a schema, an interpretable document that
governs the way editors annotate the original resources and guarantees they follow a common editorial policy. Digital editorial
projects classically face two technical problems. The first has to do with the expressiveness of the annotation languages, that
prevents from expressing some kinds of information. The second relies in the fact that, historically, schemas of long-running
digital edition projects have to evolve during the lifespan of the project. However, amending a schema implies to update the
structured data that has been produced, which is done either by hand, by means of ad-hoc scripts, or abandoned by lack of
technical  skills  or human resources. In this work,  we define the theoretical  ground for an annotation system dedicated to
scholarly edition. We define eAG, a stand-off annotation model based on a cyclic graph model, enabling the widest range of
annotation. We define a novel schema language, SeAG, that permits to validate eAG documents on-the-fly, while they are being
manufactured. We also define an inline markup syntax for eAG, reminiscent of the classic annotation languages like XML, but
retaining the expressivity of eAG. Eventually, we propose a bidirectional algebra for eAG documents so that, when a SeAG S is
amended, giving S', an eAG I validated by S is semi-automatically translated into an eAG I' validated by S', and so that any
modification applied to I (resp. I') is semi-automatically propagated to I' (resp. I) – hence working as an assistance tool for the
evolution of SeAG schemas and eAG annotations.

MOTS-CLÉS : Humanités numériques, Langage d'annotation, Schémas, Documents multistructurés, Transformations 
bidirectionnelles

Laboratoire (s) de recherche : Laboratoire d'informatique en image et systèmes d'information (LIRIS)

Directeur de thèse: Sylvie Calabretto

Président de jury :

Composition du jury : 

Elisabeth  Murisasco, Professeur des Universités, Université de Toulon 
Ethan Munson, Professeur des Universités, University of Wisconsin-Milwaukee
Elena Pierazzo, Professeur des Universités, Université Grenoble Alpes
Jean-Yves Vion-Dury, Docteur, Naver Labs Europe
Sylvie Calabretto,  Professeur des Universités, INSA Lyon
Pierre-Edouard Portier, Maître de Conférences, INSA Lyon
Olivier Ferret,  Professeur des Universités, Université Lyon 2

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI113/these.pdf 
© [V. Barrellon], [2017], INSA Lyon, tous droits réservés


	Notice XML
	Page de titre
	Remerciements
	Abstract
	Résumé
	Aknowledgement
	Contents
	List of Figures
	List of Tables
	Part I Introduction
	Chapter 1 Digital Scholarly Edition
	1.1 Edition and Text Theory in the Digital World
	1.2 Constructing Digital Scholarly Editions: A Generic Approach
	1.2.1 A Generic Approach of DSE
	1.2.1.1 A Starting Model for DSE Manufacture
	1.2.1.2 A Composite Approach of Genericness
	1.2.1.3 Conclusion of this Paragraph

	1.2.2 Data Structuring Models
	1.2.2.1 A Panorama of Data Structuring Paradigms
	1.2.2.2 Making the Structure Evolve
	1.2.2.3 Intermediate Summary

	1.2.3 Collaborative Data Structuring in DSE Projects
	1.2.3.1 “Collaborative, Multidisciplinary, Distributed Editorial Team”: A Working Configuration with Paradoxical Needs
	1.2.3.2 Conclusion: Paradoxical Needs



	Chapter 2 Common Ground-inspired Digital Scholarly Edition Construction Process
	2.1 Current Approaches of the Problem
	2.1.0.3 Altruistic vs. Egoistic Data Structures
	2.1.0.4 Another Track to Follow: the Theory of Common Ground

	2.2 Operating the Common Ground Theory
	2.2.1 The Common Ground Theory: Applications
	2.2.2 CG-inspired collaborative data structuring in a DSE setting
	2.2.2.1 A Double Interpretation of the Common Ground
	2.2.2.2 CG-inspired Data Structuring: Illustration


	2.3 Conclusion, Stakes and Challenges


	Part II A Schema-aware, Multistructured Data Model Tuned for Scholarly Annotation: the eAG/SeAG Model
	Chapter 3 Introduction
	3.1 Preliminary: Notation
	3.2 Outline of this Part and Main Contributions

	Chapter 4 Related Work
	4.1 Multistructured Data and Validation
	4.1.1 Multistructured Data Models
	4.1.2 M-S Validation: Algorithmic Complexity

	4.2 The Annotation Graphs Model
	4.2.1 Annotation Graphs
	4.2.2 Criticism and Necessary Amendments to the Annotation Graphs


	Chapter 5 Extended Annotation Graphs and Schema models
	5.1 The Extended Annotation Graphs Model
	5.1.1 An Example of eAG Annotation: Anaphoric Chains
	5.1.2 The eAG Model, Formally
	5.1.2.1 eAG Graph Model
	5.1.2.2 Authorized Labels in eAG
	5.1.2.3 Chronologies in eAG
	5.1.2.4 Elements, Hierarchies and Links in eAG
	5.1.2.5 Elements in an eAG: Precisions

	5.1.3 Conclusion

	5.2 Schema Model
	5.2.1 Finite-State Machine Analogy
	5.2.1.1 The Notion of “Language of Annotation”
	5.2.1.2 Regular Expression-based Language Representation
	5.2.1.3 Language of an eAG: Interpretation

	5.2.2 The SeAG Model, Formally
	5.2.2.1 SeAG Graph Model and Instantiation Function
	5.2.2.2 Schema-Instance Relation: Node-typed Simulation
	5.2.2.3 SeAG Expressive Power
	5.2.2.4 SeAG Expressive Power: Anaphoric Chains Validation
	5.2.2.5 Simulation-based Validation: Caveats
	5.2.2.6 Simulation-based Validation vs. Grammar-based Validation (for Trees)

	5.2.3 Precisions on SeAG
	5.2.3.1 Multiple forms for the same schema?
	5.2.3.2 Redundancy and ambiguity


	5.3 SeAG Validation: A Posteriori and On-the-fly Validations
	5.3.0.3 A Posteriori Validation
	5.3.0.4 On-the-fly Validation

	5.4 Conclusion


	Part III Linear Extended Annotation Graphs: an Inline Markup Syntax for eAG
	Chapter 6 Inline Multilayer Annotation
	6.1 Introduction
	6.2 The LeAG Syntax
	6.2.1 Mono-hierarchy of Attributeless Elements
	6.2.2 Grafts: Multilayer Annotation
	6.2.2.1 Colouring the annotation layers: general strategy
	6.2.2.2 Positioning Colour T ags: Schema-base and Simulation-based Multilayering

	6.2.3 Standard Inserts: Attributes, Structured Comment
	6.2.4 Links and Quoting Elements

	6.3 Summary and Notation

	Chapter 7 An Efficient Parser for Linear Extended Annotation Graphs
	7.1 General Parsing Strategy
	7.2 Parsing Strategy: Elements of Design
	7.2.1 Restrictions on ESE Defining Tags
	7.2.2 Restrictions on � Edges
	7.2.3 Restrictions on Insert Tags
	7.2.3.1 Comment Insert Tags: Parsing Strategy.
	7.2.3.2 Quote Insert Tags: Parsing Strategy.
	7.2.3.3 Attribute Insert Tags: Parsing Strategy.
	7.2.3.4 Void Inserts: Parsing Strategy
	7.2.3.5 Link Inserts: Parsing Strategy
	7.2.3.6 Summary

	7.2.4 Connecting ToT Graphs: Ongoing Hierarchies of Elements
	7.2.4.1 Pending Nodes
	7.2.4.2 Non-Pending Nodes

	7.2.5 Connecting ToT Graphs: Colour Tags Handling
	7.2.5.1 The Bordering Nodes of a Graft and its Extreme Elements Occur at the Same Position
	7.2.5.2 The Bordering Nodes of a Graft and its Extreme Elements Occur at Different Positions


	7.3 Parsing Algorithm
	7.3.1 Data Structures
	7.3.2 Parsing Algorithm
	7.3.2.1 Main Algorithm
	7.3.2.2 Associate Nodes to Tags
	7.3.2.3 Connect the Connectible Nodes of a Hierarchical Level
	7.3.2.4 Insert with LeAG/ID2 Field Parsing
	7.3.2.5 Target Node Association

	7.3.3 Parsing Algorithm: Time Complexity

	7.4 Conclusion


	Part IV Bidirectionalizing eAG/SeAG
	Chapter 8 Introduction
	8.1 The Problem to Solve
	8.2 Schema Evolution, Bidirectional Transformations
	8.2.1 Schema Evolution in Database Studies
	8.2.2 Bidirectional Transformations
	8.2.3 Bidirectionalizing eAG/SeAG


	Chapter 9 SeAG Transformations
	9.1 Matrix-based Representation of eAG/SeAG: Calculability
	9.2 Composing Modifications: General Strategy
	9.3 Mod Operator
	9.3.1 Schematic Cells
	9.3.2 Mod Operator: Intuitive Presentation
	9.3.3 Mod: Formal Definition in the General Case
	9.3.3.1 Non Independent Schematic Cells: the Problem they Raise
	9.3.3.2 Connectivity Factor
	9.3.3.3 Mod for Partially Independent Schematic Cells
	9.3.3.4 Mod for Ambiguous Schematic Cells
	9.3.3.5 Notation


	9.4 Split Operator
	9.5 Unite Operator
	9.5.1 Situations where the Unite Operator Applies
	9.5.2 Unite Operator Definition

	9.6 Operators Composability


	Chapter 10 eAG Bidirectional Transformations
	10.1 Composing eAG Modifications
	10.2 Definition and Temporal Model of Instance Update
	10.3 Derivation from a Mod Modification
	10.3.1 eAG Mod Behaviour
	10.3.2 Bidirectional eAG Mod Modification Derived from a SeAG Mod Operation

	10.4 Derivation from a Split Modification
	10.5 Derivation from a Unite Modification
	10.5.1 Forward Derivation
	10.5.2 Backwards Derivation

	10.6 Reference Values Propagation
	10.7 Composing Modifications: Two Quick Examples
	10.7.1 First Example.
	10.7.2 Second Example: Making Some Pattern Cyclic

	10.8 Conclusion

	Part V General conclusion
	10.9 Contributions
	10.10 A Word on the Adopted Methodology
	10.11 Future Work and Perspectives

	Bibliography
	Appendix
	Chapter 11 eAG Example: Multiple Chronology-based Annotation.
	Chapter 12 Tree-Automata vs. Simulation-based Validation
	Chapter 13 eAG Mod Operation: General Case
	13.1 Pavage
	13.2 Permutations entre matrices d’une même instance
	13.3 Alignement


	Folio administratif



