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Abstract

IsoGeometric Analysis has shown to be a very promising tool for an integrated
design and analysis process. A challenging task is still to move IGA from a proof of
concept to a convenient design tool for industry and this work contributes to this
endeavor.

This work deals with the implementation of the IGA into Altair Radioss explicite
finite element solver in order to address crash and stamping simulation applications.
To this end, the necessary ingredients to a smooth integration of IGA in a tradi-
tional finite element code have been identified and adapted to the existing code
architecture. A solid B-Spline element has been developed in Altair Radioss. The
estimations of heuristic element and nodal stable time increment are explored to
improve the accuracy of simulations and guarantee their stability. An existing con-
tact interface has been extended in order to work seamlessly with both NURBS and
Lagrange finite elements. As local refinement is needed for solution approximation,
an analysis is made in terms of analysis suitability and implementation aspects for
several Spline basis functions as Hierarchical B-Splines (HB-Splines), Truncated Hi-
erarchical B-Splines (THB-Splines), T-Splines and Locally Refined B-Splines (LR
B-Splines). The LR B-Spline basis is implemented. An improved refinement scheme
is introduced and defines a set of analysis-suitable refinements to be used in Radioss.
The refinement process of a regular coarse mesh is developed inside the solver. It
allows the user to define a local refinement giving a set of instructions in the input
file. The global solution is validated on industrial benchmarks, for validation cases
conventionally used for industrial codes like stamping and drop test.

KEYWORDS: Industrial solver, IsoGeometric Analysis, Volumetric approach,
Local refinement, Explicit dynamic solution, Analysis-suitability

1l
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Résumé

L’analyse isométrique s’est révélée étre un outil trés prometteur pour la concep-
tion et analyse. Une tache difficile consiste toujours & faire passer 'IlGA de concept
a un outil de conception pratique pour I'industrie et ce travail contribue a cet effort.

Ce travail porte sur 'implémentation de I'TGA dans le solveur explicite Altair
Radioss afin de répondre aux applications de simulation de crash et d’emboutissage.
Pour cela, les ingrédients nécessaires a une intégration native de 'IGA dans un code
éléments finis traditionnel ont été identifiés et adaptés a ’architecture de code exis-
tante. Un élément solide B-Spline et NURBS a été développé dans Altair Radioss.
Les estimations heuristiques des pas de temps élémentaires ou nodaux sont explorées
pour améliorer I'efficacité des simulations et garantir leur stabilité. Une interface de
contact existante a été étendue afin de fonctionner de maniére transparente avec les
éléments finis NURBS et de Lagrange. Un raffinement local est souvent nécessaire
pour la bonne représentation de champs non linéaires tels que les champs de défor-
mations plastiques. Une analyse est faite en termes de compatibilité pour 'analyse
et de mise en ceuvre pour plusieurs bases de fonctions Spline telles que les Hierar-
chical B-Splines, les Truncated Hierarchical B-Splines, les T-Splines et les Locally
Refined B-Splines (LR B-Splines). Les LR B-Splines sont implémentés. Un schéma
de raffinement est proposé et définit un sous-ensemble de raffinements adapté a leur
utilisation au sein de Radioss. Le processus de raffinement d’un maillage initiale-
ment grossier et régulier est développé au sein du solveur. Il permet a 1'utilisateur
d’établir du raffinement local par un ensemble d’instructions a fournir dans le jeu de
donnée de la simulation. La solution globale est validée sur des cas tests industriels,
pour des cas de validation classiquement utilisés pour les codes industriels comme
I’emboutissage et les tests de chute.

MOTS CLES: Solveur industriel, Analyse IsoGéométrique, Approche volumique,
Raffinement local, Dynamique explicite, Compatibilité pour 'analyse
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Résumé étendu

Introduction

L’ Analyse IsoGéométrique (IGA) est une technique d’analyse numérique qui se réveéle
trés prometteuse pour le design et 'analyse en remplacant les éléments finis tradi-
tionnels par des éléments B-Splines et Non-Uniform Rational B-Spline (NURBS)
[55, 28]. Les B-plines et NURBS ont initialement été choisies comme base de fonc-
tions pour leur simplicité et leur utilisation dans I'industrie 3D, notamment pour la
Conception Assistée par Ordinateur (CAO).

Le défi majeur aujourd’hui est d’amener 'IGA du stade de concept a un véritable
outil pour l'industrie, et ce travail y améne une contribution. Les enjeux d’un code
éléments finis industriel sont directement liés au monde de I'industrie. Les solutions
apportées doivent étre efficaces, générales, et doivent apporter des résultats de qual-
ité tout en étant le plus robuste possible.

Altair Engineering est intéressé par I'intégration de 'IGA dans le solveur explicite
Radioss. Les perspectives d’amélioration du pas de temps critique des simulations
de phénomeénes dynamiques tels que 'emboutissage ou le crash automobile a con-
duit a l'intégration native de I'IGA. La continuité des fonctions B-Spline et NURBS
promet également d’obtenir une meilleur qualité de solution.

Les B-Splines et NURBS de degré bas, c’est a dire quadratique ou cubique, sont
particulierement intéressantes pour 'analyse. En effet, leur cotit de calcul n’est pas
beaucoup plus élevé comparé a des éléments finis conventionnels et elles permettent
une amélioration importante de la qualité de solution.

Pour ces raisons, la thése est axée sur I'implémentation d’un élément solide B-
Spline et NURBS de degré bas, tel qu’il a été introduit par Cottrell et al. [28].
L’objectif est de traiter la robustesse et 'efficacité de ces bases de fonctions pour la
simulation de problémes dynamiques. C’est dans cette optique que les ingrédients
nécessaires a I'intégration compléte de 'IGA dans un code éléments finis traditionnel
ont été identifiés et adaptés a la structure de code existante.

Un deuxiéme objectif est d’introduire une base de fonction Spline qui permet le
raffinement local de modéles. Cette partie est liée a la compatibilité des technologies
Spline existantes avec I’analyse et leur relative complexité d’implémentation.

vil
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Des B-Splines a analyse isogéométrique 3D de mod-
éles localement raffinés

B-Splines, NURBS et analyse isogéométrique

Les B-Splines sont des fonctions polynomiales par morceaux, définies a partir d’'un
vecteur knot. Un vecteur knot = est un ensemble de réels croissants définis dans
Iespace paramétrique. Il est composé de n 4+ p + 1 valeurs, avec n le nombre de
fonctions B-Spline d’ordre p:

E: {517"'7€n+p+1}7 (1)

ol & € R est le 2™ knot, ¢ étant 'index du knot, avec ¢t = 1,2,... ,n+p+ 1.

Les B-Splines sont alors construites de maniére récursive dans ’espace paramétrique

a partir de combinaisons linéaires de fonctions B-Splines d’ordre inférieur, en com-
mencant les fonctions constantes par morceaux (p = 0):
Lif & < € < &ipn,
GRS @

0 sinon.

pour p > 1, la base de fonction est définie par la relation récursive de Cox-de Boor
[86] :

Nip-1(§) + @Niﬂmfl(f)- (3)
§z+p+1 51—0—1

Ny (€) = %

Les fonctions NURBS sont construites a partir de fonctions B-Splines. Elles sont
obtenues en attribuant un poids a chaque points de controle et selon la relation :

Nip(§w
Rf(f) B} = ) (4)
Zizl Ni,p (g)wz
ou N;,(&) est la ™ fonction B-Spline de degré p et w; est le poids correspondant.
Si tous les poids sont égaux, les NURBS deviennent des B-Splines.

Les fonctions B-Spline et NURBS permettent de construire des courbes, surfaces
ou volumes. Soit un ensemble de n points de controle en 1D formant le polygone
de controle, un ensemble de fonctions B-Spline ou NURBS N;,,¢ = 1,2,...,n de
degré p et un vecteur knot = = {&1,...,&,4p+1}. La courbe B-Spline est alors définie
suivant la relation:

C§) = ZNi,p(f)Bi- (5)

viil
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L

Fig. 1: Base de fonction B-Spline quadratique et polygone de controle correspon-

dant au vecteur knot = = {0,0,0,1,2,3,4,5,6,7,8,8,8}. a) Courbe B-Spline et

points de controle modélisés par les rond rouges, b) positions des knot modélisés par
les carrés rouges.

Le produit tensoriel global permet simplement de construire des surfaces et des
volumes B-Spline ou NURBS.

Problématique du raffinement local

Plusieurs méthodes de raffinement associées aux B-Splines et aux NURBS ont été
proposées par [28|. Le raffinement h- insére un nouveau knot dans le vecteur knot
global, sans changer la géométrie de la courbe, de la surface ou du volume. Le
raffinement p- augmente le degré polynomial de la base de fonctions, sans non plus
changer 'objet final décrit. Enfin, le raffinement k-, augmente également 'ordre de
la base de fonction sans augmenter la multiplicité des knots dans le vecteur knot.
Cependant, le raffinement local des patchs B-Spline et NURBS est proscrit & cause
du produit tensoriel intrinséque a la formulation classique des B-Splines qui propage
le raffinement jusqu’aux frontiéres du patch.

Fig. 2: Illustration de la problématique du raffinement local: (a) maillage initial,
(b) Raffinement obtenu avec le produit tensoriel, (c¢) Raffinement local.

X
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Plusieurs autres technologies Spline sont disponibles a ce jour dans la littérature
et rendent le raffinement local possible.

Les B-Splines Hiérarchiques [101, 44, 91, 92|, les B-Splines Hiérarchiques Tron-
quées [45, 66, 46|, les T-Splines [95, 8] et les Locally Refined B-Splines [36, 57, 58]
sont étudiées dans ce manuscrit. Ces formulations Spline permettent de conserver
I’aspect local du raffinement a travers des notions de hiérarchies ou bien d’un produit
tensoriel local.

L’analyse isogéométrique

[’analyse isogéométrique a été introduite par Hughes et al. [55]. Les intervalles
knot dans le vecteur knot associé au patch définissent les éléments isogéométriques.
Contrairement aux ¢léments finis, les fonctions B-Spline ont pour support plusieurs
éléments isogéométriques et peuvent étre continues sur un ensemble d’éléments. Un
élément isogéométrique 3D contient dans son intervalle (p+1)(g+1)(r+1) fonctions
non nulles. Le patch est vu comme un macro-élément qui représente un domaine ou
une partie de domaine physique.

Rapide revue de l'intégration de 'lGA

L’IGA a depuis été adaptée et utilisée dans de nombreux domaines tels que la mé-
canique des fluides, les vibrations, I’électromagnétisme, la biomécanique, les prob-
lemes de coques, la représentation des contacts, les intéractions fluide/structure, et
bien d’autres. Ce nouvelle base de fonction est bien entendu adaptée au formalisme
des éléments finis, en procédant a certaines adaptations.

Durant les derniéres années, des logiciels de recherche ont intégré 'lGA, dans
Matlab avec GeoPDEs [29], dans OOFEM [90], en C++ avec Igatools [85], en C
avec PetIGA [26], ou encore en Java [109].

Plusieurs implémentations de 'IGA dans des logiciels industriels ont été réalisées,
par exemple dans LS-Dyna [14, 15| ou dans Abaqus [38, 68]. Dans LS-Dyna, la
premiére implémentation a été réalisée pour une formulation coque. Plus tard, une
implémentation pour une formulation solide a également été réalisée [17].

Implémentation des éléments isogéométriques dans
le solveur explicite Radioss
Une formulation solide NURBS a été développée dans le code explicite Radioss en

langage Fortran. Le fichier d’entrée contient I’ensemble des données nécessaires a
la construction du maillage B-Spline ou NURBS. La connectivité des éléments est

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI102/these.pdf
© [M. Occelli], [2018], INSA Lyon, tous droits réservés



écrite de fagon similaire a des éléments classiques mais contient également les in-
dices locaux reliant chaque élément isogéométrique aux vecteurs knot globaux. Les
degrés polynomiaux ainsi que les vecteurs knot sont fournis dans un format spéci-
fique. Les points de controle sont les homologues des noeuds et ont des poids associés.

Toutes les procédures de calcul des matrices masse, d’actualisation des masses
volumiques, I’assemblage des forces interne ont été adaptées selon les spécificités des
éléments isogéomeétriques.

Génération de modéle et post-traitement

La génération de maillages isogéométriques est toujours une tache délicate et ne
peut se faire qu’avec des outils adaptés. Des efforts ont été fournis dans cette direc-
tion pour développer des solutions robustes et exploitables [4, 6, 5, 69, 103, 107]. Un
plugin développé dans le logiciel Rhinocéros permet de créer des géométries NURBS
volumiques et des jeux de données compatibles pour une analyse avec le solveur Ra-
dioss.

Les résultats de simulations sont visualisés dans HyperView en utilisant un mail-
lage éléments finis linéaires de projection. Chaque élément NURBS est représenté
par un ensemble de 27 éléments finis hexaédriques, les grandeurs résultantes telles
que les contraintes et les déformations étant interpolées aux nceuds du maillage de
projection.

Application de chargements surfaciques

L’application des chargements surfaciques est assez simple & implémenter pour
les élément isogéométriques. En effet, la paramétrisation des patchs B-Spline ou
NURBS induit un maillage structuré pour lequel il est aisé de trouver les éléments
d’une face externe. Pour chaque face externe de ces éléments, un vecteur normal est
calculé d’aprés le produit vectoriel des composantes du Jacobien. La distribution
des chargements surfaces sur les points de controle, connaissant ’expression de la
surface externe et de sa normale, est similaire a ce qui est fait pour les éléments
finis classiques. Un exemple d’application est donné représentant un cylindre épais
soumis a une pression interne.

Methodes d’estimation du pas de temps critique

Tout comme les éléments finis classiques, 'implémentation de I'TGA dans un solveur
explicite nécessite le calcul d’'un pas de temps critique associé a ces éléments. Il
est particuliérement important en termes de performance de réduire les temps de
simulations, tout en assurant la stabilité du schéma d’intégration numérique. Le
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comportement en hautes fréquences de 'TGA a été observé par le passé. Elle per-
met d’obtenir des pas de temps critiques plus grands. Les estimations du pas de
temps critique des simulations provenant des éléments finis sont adaptées pour les
éléments isogéomeétriques.

La longueur caractéristique

La méthode heuristique de la longueur caractéristique peut étre utilisée pour 'IGA.
Elle est égale au rapport du volume de I’élément par la plus grande de ses surfaces:

Ve
Le= max(Se) (6)
Les éléments isogéométriques peuvent cependant étre trés distordus et cette for-
mulation peut conduire a de trés mauvais pas de temps. Une autre méthode de
calcul est donnée en utilisant pour le volume le volume minimum représenté par une
bande de points d’intégration. L’aire associée est ’aire maximale des deux faces qui
sont perpendiculaires & la bande de volumes.

Fig. 3: Illustration du volume d’une bande de points d’intération et des surfaces
associées pour un élément B-Spline ou NURBS quadratique.

La longueur caractéristique de 1’élément est alors utilisée pour estimer le pas de
temps critique, d’aprés la relation :

L
At < —. (7)

Co
avec ¢g la vitesse du son dans le matériau. Cette méthode est trés conservative pour
les élément intérieur avec une continuité maximale. Elle est cependant limitée par

les éléments de bord qui ont une continuité plus basse.

La raideur nodale

Le pas de temps peut également étre estimé en utilisant la méthode non heuristique
de la raideur nodale. L’objectif est de calculer la valeur propre maximale w,,,, du
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systéme £—1£ avec M la matrice masse et K la matrice de raideur. Le pas de
temps estimé est alors égal a :

2
At =

(8)

wmaz

La puissance itérée

La méthode de la puissance itérée constitue une troisiéme méthode d’estimation du
pas de temps critique. Cette méthode approxime la plus grande valeur propre de
maniére itérative.

La puissance itérée n’est pas utilisée a chaque pas de temps, car elle est relative-
ment couteuse. Elle est souvent couplée avec une deuxiéme méthode d’estimation,
le pas de temps associé a la raideur nodale par exemple. Un ratio entre les deux pas
de temps est calculé. Ce ratio varie faiblement comparé a la valeur du pas de temps
pour la plupart des cas non linéaires. Lorsque la variation est trop importante, le
pas de temps est corrigé par la puissance itérée. De cette fagon, le coiit de calcul
associé a l'estimation du pas de temps est réduite.

Une simulation d’impact d’une barre de Taylor carrée est donnée pour comparer
lefficacité des estimations du pas de temps. Les temps et les cotits de calculs sont
comparés pour un maillage isogéométrique et pour un maillage FEA. Les simulations
montrent que le pas de temps pour les éléments isogéométriques est plus grand et
permet de réduire fortement le temps de calcul. La méthode de la puissance itérée
par rapport aux autres méthodes est de toute évidence la plus efficace pour atteindre
la valeur maximale du pas de temps critique.

Contact isogéométrique

Depuis son introduction, 'IGA a montré la capacité de représenter de fagon ex-
acte des géométries complexes, mais aussi d’améliorer 'efficacité et la robustesse
des simulations, comparé aux éléments finis classiques. L’une des applications qui
peut bénéficier de 'IGA est la mécanique du contact. La continuité élevée des fonc-
tions et I'exacte représentation de la géométrie constituent de potentiels avantages.
Plusieurs formulations de contact ont été introduites dans le contexte de I'IGA.
Leur complexité et leur simplicité d’implémentation dans les codes industriels sont
a prendre en compte.

Dans le contexte de cette étude, une interface existante a été choisie pour y in-
tégrer les modéles B-Spline et NURBS. Ce choix permet de bénéficier de I'efficacité
d’algorithmes existant tels que le tri et la sélection des candidats au contact, en
minimisant l'effort de programmation requis. L’interface "Type 7" de Radioss
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a été choisie. FElle est basée sur une formulation nceud-segment selon ’approche
maitre/esclave avec pénalité non linéaire.

Représentation des surfaces B-Splines et NURBS

Dans le cas des B-Splines et NURBS, les points de controle ne sont généralement
pas interpolants et ne peuvent pas étre utilisés directement pour représenter les sur-
faces. La représentation des surfaces externes est faite au niveau des éléments par un
ensemble de nceuds fictifs introduits et définissant des segments bilinéaires. Chaque
face externe d’élément isogéomeétrique est recouverte par 16 points fictifs, c’est-a-
dire 4 points par direction, selon un pas constant. Ces points qui sont physiquement
collés au maillage isogéométriques sont mis & jour a chaque pas de temps, tout au
long de la simulation.

Les 16 points fictifs de la face d’un élément sont directement utilisé comme nceuds

esclaves. 9 segments sont construits pour chaque face d’éléments a partir des points
fictifs pour le c6té maitre.

o Slave ghosts points

Slave control points

Master "segment"

Fig. 4: Définition des surfaces maitre et esclave pour deux géométries B-Spline

quadratiques. La surface Spline et les points de controle sont tracés en noire. Le

cOté bleu représente le coté maitre avec les segments construits & partir des points
fictifs. Le coté rouge est le coté esclave avec les points fictifs associés.

L’utilisation des éléments isogéométriques dans linterface de contact Type 7
utilise une structure de données propre. Les points fictifs sont stockés dans des
tableaux spécifiques qui les rattachent a leur élément "parents". De cette facon,
linterface Type peut traiter indifféeremment un ensemble de noeuds esclaves et de

Xiv

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI102/these.pdf
© [M. Occelli], [2018], INSA Lyon, tous droits réservés



segments maitre. Les forces et raideurs de contact, lorsqu’elles sont renvoyées par
I'interface, peuvent simplement étre rapportées aux points de controle correspon-
dant, grace a ces structures de données.

Une simulation représentant le comportement dynamique d’un systéme came et
soupape est proposée pour valider 1'utilisation des éléments isogéométriques dans
Iinterface Type 7. Les résultats de cette simulation montrent la robustesse et
lefficacité de ces éléments. La facétisation des surfaces isogéométriques n’élimine
pas les oscillations liées au contact discret, mais permet d’utiliser un maillage plus
grossier tout en ayant une bonne représentation du comportement du modéle.

Raffinement local 3D : implémentation des LR B-
Splines

Un raffinement local est nécessaire pour la bonne représentation de champs non
linéaires comme les champs de déformations plastiques ainsi que pour la connexion
de patchs. C’est l'ingrédient le plus récent ajouté a cette intégration.

Les différentes technologies Splines introduites plus haut peuvent étre comparées
en fonctions des propriétés nécessaires a leur intégration dans un code de calcul ex-
plicite, c¢’est a dire I'indépendance linéaire, la partition de 1'unité, la non surcharge
des éléments, I'existence d’une formulation 3D et les contraintes d’implémentation.

Parmi les différentes formulations disponibles, le choix s’est porté sur I’approche
des Locally Refined B-Splines (LRBS). Cette base de fonctions utilise la méthode de
raffinement h- de fagon locale, permettant de limiter la propagation du raffinement
des fonctions de forme & son minimum. Le choix a grandement été influencé par le
fait qu’en 1D un élément n’a pas plus de p + 1 fonctions non nulles avec p le degré
polynomial des fonctions. Les structures d’un code élément fini sont habituellement
dimensionnées et utilisées avec un nombre fixé de nceuds. Ce nombre de nceuds, ou
dans le cas des LR B-Splines, dépend du type d’élément et du degré polynomial des
fonctions.

La méthode des LR B-Splines, initialement introduite en 1D et 2D, est étendue
en 3D. L’insertion de knot en 1D devient une insertion de mesh surface en 3D. Ces
mesh surfaces sont définies par une valeur de knot particuliére £ qui correspond au
knot & insérer, et par une surface bornée donnée par [n;, 2] X [(1, (2], dans le plan
formé par les deux autres directions paramétriques.

En analysant des raffinements LR B-Splines 2D, on peut se rendre compte qu’il
existe un grand nombre de cas ou les éléments peuvent étre surchargés, c’est a dire
qu’ils peuvent contenir plus de (p 4+ 1)(¢ + 1)(r + 1) fonctions non nulles. Dans un
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Fig. 5: Une mesh surface est définie par une valeur de knot spécifique é inséreé

et par une surface dans le plan des deux autres directions et bornée par [, 0] et

[C1, o). La surface de coupe est projetée sur les plans (£,7), (7,¢) and (¢, &) pour
une meilleure visualisation.

raffinement hiérarchique du coin d’un patch 2D, ’élément du coin est coupé en deux
dans chaque direction, puis I’élément du coin qui en résulte est également coupé,
etc... Dans un tel modéle, un élément quadratique qui devrait contenir 9 fonctions
non nulles peut en contenir 13. Des raffinements de cette sorte ne sont donc pas
utilisables dans un code de calcul traditionnel.

Un schéma de raffiné qui a été nommeé improved full span scheme, est proposé
en 2D. Son extension en 3D définit un sous-ensemble de raffinements adaptés a leur
utilisation au sein de Radioss. Les algorithmes de raffinement LR B-Splines exis-
tants sont également adaptés pour des modéles 3D et sont intégrés a un processus
de raffinement d’un maillage initialement grossier et régulier au sein du solveur.
Ce processus permet a l'utilisateur d’établir du raffinement local par un ensemble
d’instructions a fournir dans le jeu de données de la simulation.

L’implémentation des LR B-Splines induit I'utilisation du produit tensoriel lo-
cal plutdt que global pour I'estimation des fonctions de formes et de leurs dérivées.
Cette estimation est donc plus couteuse pour les modéles raffinés et constitue a ce
jour une limitation a son utilisation dans les codes industriels. Cette limitation n’est
cependant pas uniquement liée aux LR B-Splines. Toutes les méthodes de raffine-
ment local qui ont été étudiées sont aussi plus couteuses. Des efforts de recherche
devront étre faits pour accélérer ces calculs, en optimisant les algorithmes utilisés
ou en stockant en mémoire un certain nombre de valeurs invariantes durant la sim-
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ulation.

Exemples numériques - Applications

La solution globale est validée sur des cas tests industriels, pour des cas de validation
classiquement utilisés pour les codes industriels comme I'emboutissage et les tests
de chute. Ils illustrent les capacités de I'implémentation des B-Splines et des LR
B-Splines. Deux de ces simulations sont briévement présentées.

Tube cylindrique sous pression externe

La premiére illustre le flambement d’un cylindre en aluminium bouché & ses deux
extrémités, placé dans une enceinte fermée et soumis a une pression externe. Cette
simulation est basée sur les expérimentations de Farhat et al. [42]. Des simulations
numériques ont également été réalisées en IGA avec des modéles coques par Benson
et al. [14].

Fig. 6: Résultats de simulation pour le tube sous pression externe.

Le cylindre flambe selon le troisiéme mode. La déformée obtenue est similaire
aux expérimentations et aux précédentes simulations. La valeur de pression critique
est également proche des valeurs de référence.

Chute d’un carton

Cette simulation représente la chute d’'un modéle de carton simplifié qui contient
une charge a protéger. Différentes piéces ainsi que différents matériaux sont utilisés,
tels que de la mousse, de 'aluminium, de ’acier. L’ensemble chute sur le coin.

Les résultats montrent que le carton et les mousses dans les coins se déforment
fortement mais laissent le contenant intact. Le bilan des énergies mises en jeu permet
également de s’assurer que l’énergie interne de ce contenant est bien inférieure a
I’énergie interne de I’ensemble.
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Fig. 7: Résultats de la simulation de la chute du carton et bilan d’énergies.

Conclusion

Cette thése a été dédiée a 'implémentation de ['analyse isogéométrique dans un code
explicite éléments finis industriel. Tous les ingrédients pour simuler des phénoménes
dynamiques tels que 'emboutissage ou le crash ont été identifiés, modifiés et inté-
grés selon les spécificités de 'IGA. Plusieurs technologies Spline ont été mises en
avant. Dans le cas particulier qu’est I'utilisation au sein du solveur Radioss, les LR
B-Splines ont été choisies et implémentées. Un schéma de raffinement a été proposé
et permet la définition de modéles localement raffinés, compatibles pour ’analyse.

L’utilisation de 'TGA dans Radioss a amélioré la qualité des résultats obtenus
comparé aux éléments finis conventionnels. Nous avons été en mesure de formuler
des estimations pour le nouveau type d’élément qu’est 1’élément isogéométrique.
Le pas de temps des simulations obtenu avec les éléments isogéométriques est plus
grand. Il constitue un argument trés fort a mettre en avant pour promouvoir les
formulations Spline dans les solveurs, notamment explicites.

La technologie des LR B-Splines est actuellement plus couteuse et devra étre
poursuivie par un travail lié & la performance des algorithmes employés. Plusieurs
pistes d’améliorations sont déja a ’étude, comme la possibilité de conserver en mé-
moire des données invariantes qui sont a ce jour recalculées de nombreuses fois durant
les simulations.

Les optiques de recherche et d’amélioration de la solution sont nombreuses. La
surface réelle Spline pourrait étre utilisée dans les formulations de contact. La qualité
de représentation du contact serait grandement améliorée. Une formulation coque
pourrait également étre développée dans Radioss, pour adresser des problémes de
structures minces. A plus long terme, des pistes de ruptures peuvent étre étudiées

les méthodes de collocation EF-IGA, ['utilisation de vecteurs knot ouverts ou
Iintégration sélective.
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Introduction

Since its introduction, IsoGeometric Analysis has demonstrated a high potential
gain with respect to efficiency, quality and accuracy in analysis by replacing tradi-
tional finite elements by B-Spline and Non-Uniform Rational B-Spline (NURBS)
elements. NURBS functions were initially chosen as a basis due to their relative
simplicity and their use in the graphics industry: Computer Aided Design (CAD)
and Animation. They provide more accurate modeling of complex geometries and
exactly represent shapes such as circle, cylinders, with coarse level of discretization.
They thus allow to eliminate geometrical errors frequently found for classical finite
element models.

Isogeometric analysis has since been used and adapted in many fields such as fluid
mechanics, vibrations, electromagnetism, biomechanics, shell problems, contact rep-
resentations, fluid /structure interaction problems and many more. These new basis
functions are of course usable in a finite element formalism with some modifications.

Several IGA implementations in industrial software were thus also done, e.g.
in LS-Dyna and Abaqus. IGA implementations were done at the beginning for
shells, providing good results and accuracy, benefiting in the same time from less
complexity compared to a solid model. Then, attempts to implement solid models
have more recently been done.

These studies and implementation attempts showed B-Splines and NURBS
capabilities and accuracy, in particular for explicit transient analysis. In general
in FEA, increasing the order of the basis functions increases accuracy but it also
results in the appearance of strange frequencies at the very end of the spectrum.
Their number and magnitude increase with the degree. These frequencies can be
ignored when using an implicit time integration algorithm but in explicit transient
analysis it would be detrimental for the accuracy and the quality of results. Indeed,
the frequencies of the highest modes are grossly overestimated and stability would
necessitate an unacceptably small time increment.

NURBS are more accurate throughout the entire spectrum. They do not diverge
in transcient analysis and allow to keep a high time increment.
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Introduction

However, from the analysis point of view, the tensor product structure of
NURBS can be seen as a drawback as it prevents local refinement that is commonly
used with classical FEA. Many different technologies have addressed the problem
of local refinement, in particular Hierarchical B-Splines, Truncated Hierarchical
B-Splines, T-Splines and Locally Refined B-splines. They were introduced and
subsequently improved in the past decade focusing on stability, linear independence
and partition of unity properties. Research work is still ongoing for most of these
Spline basis to bring a technology with the desired analysis properties and the
ability to locally refine meshes.

The aim of this thesis

From this point of view, Altair Engineering is interested in integrating IGA into
the Radioss explicit solver. The prospects for improving the time increment of
simulations of dynamic phenomena such as stamping or automotive crash led to the
native integration of IGA. The continuity of the B-Spline and NURBS functions
also promise to achieve a higher quality of results than with conventional finite
elements.

Low degree B-Splines and NURBS, i.e., quadratic or cubic, are particularly
attractive for analysis. Indeed, their computationnal cost is not so much higher
than compared to conventional finite elements and they allow a great improvement
of the quality of solution.

For these reasons, the thesis is focused on implementing a low degree B-Spline
and NURBS solid element in Radioss, as it was introduced by Cottrell et al. [28].
The aim is to deal with the robustness, the efficiency and the quality of solution
provided by Spline basis function in order to address crash and stamping simulation
applications.

A second objective is to introduce a Spline basis that allows locally refined
models. This part is more related to the analysis-suitability of existing Spline basis
and their easy to implement aspect.

Outline of this thesis

The thesis is divided into 4 individual chapters. The first one is a state of the
art and will re-introduce B-Spline and NURBS concepts with their application
to analysis including refinement strategies. Several Spline basis allowing local
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refinement will also be detailed and compared according to some targeted prop-
erties and implementation constraints. Others ingredients to an integration in
an explicit solver like contact formulations will be reviewed, describing different
existing approaches. Finally, a brief review of I[GA implementation attempts will
be given, showing the scientific and industrial fields of interest for this recent method.

The second chapter gives all that is needed to succeed in a native imple-
mentation of NURBS based IGA in the context of an explicit solver. The mesh
generation and the post processing and visualization are adressed in the case of
our usage in Radioss. Some empirical methods to estimate the time increment
are detailled. Some of them are directly generalized from FEA whereas others
have to be revised in order to be adapted to IGA. The modification of a contact
interface which can work with both FEA and IGA is also described. The effi-
ciency and the quality of the obtained results are compared on a classical benchmark.

The third chapter focuses on the Locally Refined B-Splines implementation
and usage in the trivariate case. A new general refinement scheme for 2D and 3D
LR B-Splines with arbitrary shape of the refined area is introduced. The required
properties to obtain a suitable basis are ensured, especially the non-overloading
property. The obtained solution really improves the first implementation approach
and gives the opportunity to address many others IGA aspects. Its use in Radioss
is described and adressed efficiency and computationnal cost.

The fourth chapter is dedicated to more complex numerical simulations and will
further illustrate the method. The performance of the LR B-Splines based IGA will
be adressed in some industrial simulation topics like stamping, droptest or crash
simulations.

Finally general conclusions will be drawn as well as short and long term
prospects.
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B-Splines, NURBS and IGA basics

1.1 B-Splines, NURBS and IGA basics

1.1.1 Knot vector and B-Spline basis functions

A knot vector = is a set of non-decreasing real numbers, defined in the parametric
space. It is composed of n + p + 1 values, with n the number of univariate B-Spline
basis functions of order p.

E= {’517'--7£n+p+1}7 (1.1)
where & € R is i"" knot, i is the knot index and i = 1,2,...,n+p+ 1. Knots divide
the parametric space in knot spans [§;,&1] and the global interval [£;,&,+pt1]
defines a patch. A knot vector is called uniform if its knots are uniformly spaced,
and non-uniform otherwise. It is also called non-periodic or open if its first and
last knots are repeated p + 1 times, periodic or closed otherwise. Different types
of knot vectors are given in Table 1.1 for quadratic Splines. In the following,
for isogeometric analysis, only open knot vectors will be used. It allows notably
to assemble patches like are assembled classical finite elements and ease the
establishment of boundary conditions.

‘ ‘ Open /non-periodic ‘ Closed /periodic ‘

Uniform {0,0,0,1,2,3,4,4,4} | {—1,-1,0,1,2,3,4,5,6}
Non-uniform | {0,0,0,1,3,4,4,4} {-2,0,1,2,4,6}

Table 1.1: Different types of knot vectors for quadratic Splines.

1.1.1.1 B-Spline basis functions

B-Splines are piecewise polynomial functions, defined from a knot vector =. They
are constructed recursively in the parametric space from linear combinations of lower
order B-Spline functions, beginning with piecewise constants (p = 0) :

Lif § < & < &,
N; = 1.2
ol6) {0 otherwise. (1.2)
For p > 1, the basis is defined by the Cox-de Boor recursion formula [86]:
§—& Civpt1 — &
Nip(§) = Nip1(6) + == Niy1,p1(6). (1.3)

Civp — & Sitpr1 — &it1
The constructed basis functions for a uniform knot vector {0,1,2,3,4,...} is
given in Figure 1.1. We can notice that for p = 0 and p = 1, the basis functions are
identical to the classical Lagrange polynomial basis functions.
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Nl,O N 1,1
0o 1 2 3 4 5 ¢ 00 1 2 3 4 5 &
1 N 1
2,0 N21
0
0 1 2 3 4 5 & % 1 2 3 4 5 &
in 1
N3,0 N3,1
O0 1 2 3 4 5 ¢ 00 1 2 3 4 5 &
1
N 12
% 1 2 3 4 5 &
: N
22
% 1 2 3 4 5 &
1
N3,2
% 1 2 3 4 5 &
Fig. 1.1: Basis functions with p = 1,2 or 3 for a uniform knot vector

{0,1,2,3,4,...}, from [28].

Local point of view B-Spline basis functions defined by the global knot vector
can be seen with a local point of view. A knot vector of size n 4+ p + 1 will generate
n linearly independent basis functions of degree p on p + 2 knots for support. Each
basis function support is a part of the knot vector, where the corresponding function
is non-zero. Reciprocally, a knot span [;, ;1] is covered by p + 1 B-Spline basis
functions. According to these considerations, a given open uniform knot vector
==1{0,0,0,1,2,3,4,5,6,7,8,8,8} will define 10 quadratic B-Spline functions with
10 so called local knots and 8 knot intervals, see Figure 1.2:

Fundamental properties Below are listed some of the fundamental properties
of B-Spline basis function:

e Continuity: across knots, basis functions will be CP~™ where p is the poly-
nomial degree and m is the multiplicity of the knot. B-Spline basis functions
constructed from an open uniform knot vector are interpolatory, i.e., they are
C? at the extremities of the knot interval [¢1, &, p11], but are not in general
at the interieur knots. In the case of the basis constructed from the knot vec-
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B-Splines, NURBS and IGA basics

= =4{0,0,0,1,2,3,4,5,6,7,8,8,8}

= =40,0,0,1 }

= ={ 0,0,1,2 1

=5 =1 0,1,2,3 1

E4 :{ 1727374 }7

) ) = =1 2,3,4,5 1
/ e =1 3,4,5,6 b
5 o o : b Iy = 4,5,6,7 1,
= =1 5,6,7,8 s

= =1 6,7,8,8 1},

EIO - { 7, 8, 8, 8}

Fig. 1.2: All quadratic basis functions generated by the knot vector = =
{0,0,0,1,2,3,4,5,6,7,8,8,8}. Each individual basis function can be described using
a local knot vector of p + 2 knots each.

tor = =4{0,0,0,1,2,3,4,5,6,7,8,8,8}, none of the middle knots is repeated.
Their multiplicity is then minimum (m = 1).

e A B-Spline basis constructed from an open knot vector has the partition of
unity property:

Z Nl,P<£) =1, Vf € [anfnfp] (14)
i=1
e A B-Spline basis is linearly independent:

Y aNip(€) =0 =0i=1,..,n  V€01] (1.5)
=1

e A B-Spline basis has a compact support, i.e., the support of N;, is included
n [§i7§i+p+1]-

1.1.2 B-Spline curves, surfaces and volumes

B-Spline curves can be built in R? by linear combination of B-Spline basis functions.
Coefficients B; € R,i = 1,2,...,n are called control points. They are analogous to
nodes for finite element analysis and define the control polygon. Given n functions
Nip,i=1,2,...,n of degree p and a knot vector = = {&1,...,&u4pi1}, @ B-Spline
curve is defined by:

C(¢) = ZNi,p@)Bi. (1.6)

An example of B-Spline curve and the defined mesh for the previous set of
functions is given in Figure 1.3.
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1. From B-Spline to 3D locally refined IGA

\
« v

Fig. 1.3: Quadratic B-Spline curve and control polygon corresponding to the knot
vector = = {0,0,0,1,2,3,4,5,6,7,8,8,8}. a) B-Spline curve and control points
modeled by the red circles, b) knot positions modeled by the red squares.

1.1.2.1 B-Spline surfaces and volumes

Given a control polygon B, ; € Ri=1,2,...,n,j =1,2,...,m and knot vectors
for each parametric direction = = {&,...,&pr1} and ¥ = {1, ..., Pmiqe1}
respectively of degree p and ¢, a B-Spline surface can be constructed using the
global tensor product generalization of univariate B-Spline functions as follows:

=D > Nipl&)M;4(n) By (1.7)

i=1 j=1

Given a control polygon B x € R%i = 1,2,...,n, j = 1,2,....,m, k =
1,2,...,0 and knots vectors = = {&,....&mpr1ts ¥ = {M,. . Dmiqr1} and

= {C1,.--,Cutpt1}, respectively of degree p, ¢ and r, a B-Spline volume can
be constructed in a similar way:

n m l

V(n, Q)= ZZZNW g(1) L (€)Bi k- (1.8)

i=1 j=1 k=1

2D and 3D basis functions have the same fundamental properties that 1D basis
functions.

1.1.3 Non-Uniform Rational B-Splines

NURBS are constructed from B-Splines. They can be obtained by weighting
the B-Spline functions, assigning a weight to each of the control points. More

10
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B-Splines, NURBS and IGA basics

specifically, NURBS functions in R? are built from projective transformations of
B-Splines in R, defined as:

N (g)wz
2 i Nip(§)wi

where N, ,(€) is the 7" B-Spline basis functions of degree p and w; is the corre-
sponding weight. If all the weights are equal, NURBS become B-Splines.

R7(§) = (1.9)

Analogously, NURBS curves are built from a linear combination of NURBS
functions and the global tensor product is used to obtain NURBS surfaces and
volumes:

- ZRZ-,,D@BZ», (1.10)

n o

VERO =Y > a(1) Rie.r (C) Biji- (1.11)
i=1 j=1 k=1
The main advantage of NURBS compared to B-Splines is their ability to repre-
sent more geometric entities. NURBS can precisely represent conic sections, such
as circles and ellipses. They inherit fundamentals properties from B-Splines, i.e.,:

e The NURBS basis functions have the same continuity and the same support
as their B-Spline counterparts.

e They form a partition of unity and are linearly independent.

1.1.4 B-Spline basis function refinement

B-Spline basis function can be enriched in several ways leaving the geometry and
its parameterization intact. B-Spline refinement methods differ from finite element
one, allowing to increase the order of the basis or inserting new knot values but also
increasing or decreasing the continuity of the basis. In the following are presented
these refinement strategies.

1.1.4.1 h- and p- refinement

h- refinement: knot insertion h-refinement is based on the knot insertion
procedure. Knots can be inserted in the existing knot vector without changing a
curve geometrically or parametrically. Given a knot vector = = {&,...,{pi1 )
and £ € €k, Ekv1] a new knot to be inserted, the new basis of n + 1 functions is
created recursively using Equation (1.12) and Equation (1.13), with the new knot
vector = = {&,. ., & & Erats - -5 Enipr1 ). The n + 1 modified control points
{Bi,...,Bns1} are defined from original control points {Bi,...,B,} with the

11
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1. From B-Spline to 3D locally refined IGA

following, see Figure 1.4:

E = OKZBZ + (1 - ai)Bi—la (112)
with

1lst1<i<k-—np,

— = L. ;

=% sik—p+1<i<k, (1.13)
O0st1<i<n+p+2.

An example of h- refinement is presented in Figure 1.4. The original curve is
the same as in Figure 1.3 composed by quadratic B-Spline functions with the knot
vector of Figure 1.2. The original curve, the basis functions and the control mesh
are shown on the left. Each intermediate knot is inserted. The new knot vector is
= ={0,0,0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7,7.5,8,8,8}. Refined curve
and basis functions are shown on the right. The curve is unchanged, there are more
control points and more knot intervals.

Insertion of knot values is partly similar to the classical FEA refinement. The
knots already present in the knot vector can be repeated. However, this reduces
the continuity of the basis functions at the knot. The repeating of existing knot
values does not have any equivalent in FEA.

p- refinement: order elevation p- refinement is done by order elevation. The
polynomial degree of the basis functions can be increased without changing the
curve, neither parametrically nor geometrically. Each value = in the knot vector
must be repeated, in order to preserve the discontinuity of the derivatives of the
curve whose order is raised. The number of new control points depends on the
multiplicity of existing knots. As for the knot insertion, the solution space defined
by the new basis contains the space defined by the original basis.

For the p-refinement case, the order of the curve is increased. The multiplicity of
knots is increased by one. The position and the number of control points changes,
but the curve remains the same. Although there is the same number of functions,
the positions of the new control points obtained from refinements h and p are
different.

1.1.4.2 k- refinement: order and continuity elevation

A higher order alternative strategy is possible. It takes advantage of the fact that
knot insertion and order elevation do not commute. If a single knot £ is inserted be-
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B-Splines, NURBS and IGA basics

(b)

Fig. 1.4: h-refinement of a quadratic B-Spline basis. The coarse basis is plotted on
the left, the refined one on the right. a) B-Spline curve and control points modeled
by the red circles, b) knot positions modeled by the red squares.

tween two distinct knots in a curve of polynomial degree p, the number of continuous
derivatives of the basis functions in & is p — 1. Subsequently, if the order is raised to
q, the multiplicity of each knot is increased to maintain a CP~! continuity of knot
functions &. If, instead, the order is raised to ¢ and then inserting a single knot
&, the basis function has ¢ — 1 continuous derivatives at £. This strategy is called
k-refinement. k-refinement produces fewer functions with a higher continuity. This
results in a smaller number of control variables and therefore degrees of freedom, for
the mesh and an identical order of approximation. It has no counterpart in finite
elements.
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1. From B-Spline to 3D locally refined IGA

1.1.5 NURBS based and B-Spline based IGA

IsoGeometric Analysis was introduced by Hughes et al. [55]. Few elements of this
paper are presented here.

1.1.5.1 Patches and elements

In the previous sections we introduced NURBS and B-Spline basis functions and
their properties within a patch, in order to use them in IGA. Introducing IGA
in a finite element context required to define what will be called an isogeometric
element. Several points of view exist in the literature: it was suggested to liken
the element to a patch in [62], or rather to a knot interval within the patch in [2§].
This representation of isogeometric element is more in accordance with a classical
finite element one in terms of inherent data. It will be easier to introduce that
definition of isogeometric element in the existing data structures usually used for
finite elements, particularly for commercial FE software.

A patch will be seen as a macro-element, regrouping several elements and
representing an entire physical domain or a part of it. Many simple domains can
be represented by only one patch. Instead of using subdomains of the physical
domain, patches play the role of subdomains in IGA. The parametric space is local
to patches and within each patch material models are assumed to be uniform. Knot
vectors in the parametric space are then used to define the elements, see Figure 1.5:

Isogeometric element definition. In this work, knot spans defined by
€6, §ia] in 1D, &, &iva] X [0, msa] and [§, §ia] X [15,mj41] X [Cr, Crra] Tespectively
for 2D and 3D will define respectively 1D, 2D or 3D elements. These knot spans are
overlaped by p + 1 non-zero B-Spline basis functions, respectively by (p+ 1)(¢+ 1)
and (p + 1)(g¢ + 1)(r + 1) non-zero basis functions in 2D and 3D. The so-called
variable nctrl is introduced and is equal to this number of non-zero basis functions.

We can then consider local mappings and rewrite Equation (1.14) in 1D and
Equation (1.15) in 3D:

nctrl
C() =) Ni(9B;, (1.14)
=1
nctrl
=1

where N;(€) or N;(€,n, () are the B-Spline or NURBS basis functions.
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Fig. 1.5: Parametric space. We can see how the physical domain is represented by
one patch consisting of the control net and the mapping from the parametric space
on to the physical space. Illustration taken from [28].

1.1.5.2 Summary of IGA characteristics

For B-Spline or NURBS based IGA, there are two notions of meshes, the control
mesh and the physical mesh, contrary to FEA where there is only one. The control
points define the control mesh, and the control mesh interpolates the control
points. The control mesh consists of multilinear elements, in two dimensions they
are bilinear quadrilateral elements, and in three dimensions they are trilinear
hexahedra. The control mesh does not conform to the actual geometry but controls
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1. From B-Spline to 3D locally refined IGA

it like a scaffold. The control mesh has the look of a typical finite element mesh
of multilinear elements. The control variables are the degrees of freedom and
they are located at the control points. They may be thought of as generalized
coordinates. Control elements may be degenerated to more primitive shapes, such
as triangle and tetrahedra. The control mesh may also be severely distorted and
even inverted to an extent, while at the same time, for sufficiently smooth NURBS,
the physical geometry may still remain valid, which is not the case with finite
elements. B-Splines and NURBS have properties as they serve as a basis for IGA.
These properties are as follows:

e The mesh of a B-Spline or NURBS patch is defined as the tensor product of
knot vectors. For example, in three dimensions, a mesh is given by = x ¥ x Z.

e Knot intervals span the domain in what is called isogeometric elements.
e The support for each basis function consists of a small number of elements.
e The control points associated with the basis functions define the geometry.

e The isoparametric concept is invoked. The associated coefficients with the
basis functions are the degrees of freedom or control variables.

e Three refinement strategies are available: the equivalents to h- and p- refine-
ments, as well as a new refinement of higher order, k- refinement.

e The matrices and vectors associated with the elements built from isoparametric
B-Splines or NURBS are assembled in matrices and global vectors in the same
way as in finite elements [54].

e Dirichlet boundary conditions are applied to control points. The homogeneous
conditions are satisfied pointwise. In the case of inhomogeneous conditions,
the boundary conditions shall be approximated by functions included in the
B-Spline or NURBS function space. The condition is then satisfied in a strong
but approximate way. One can also consider imposing these conditions in a
weak way |7]. Neumann conditions are naturally satisfied and very similar to
standard finite elements [54].

1.1.6 B-Splines and NURBS: the local refinement issue

Given the fact that the patch-wise global tensor product is an intrinsic property of
B-Splines and NURBS in 2D and 3D, the insertion of new knots in a knot vector
(h- of k- refinement) is propagated all along the others parametric directions.
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Hierarchical B-Splines

An example of a 3D refinement is given in Figure 1.6, where the corner is
recursively refined. The refinement looses its locality with the classical knot
insertion. This limitation for 2D and 3D refinements is well-known for B-Splines
and NURBS.

(a) (b) (c)

Fig. 1.6: Illustration of the local refinement issue for B-Splines: (a) initial mesh,
(b) tensor product refinement, (¢) targeted local refinement.

Other Spline functions are then needed to remove the limitation of classical
B-Splines and to achieve true local refinement. In the following sections we will
introduce several Spline technologies that allow for local refinement. For simplicity
and illustration purpose, we will use the same 1D example introduced here after.

Definition of the area to be refined: Going back to B-Spline basis functions,
one can define an initial coarse B-Spline basis with the same global knot vector
==10,0,0,1,2,3,4,5,6,7,8,8,8]. We assume that one function of the initial level
is selected for refinement. The area to be refined is set between knots & = 4 and
¢ =17, 1.e. for 3 elements, see Figure 1.7.

1.2 Hierarchical B-Splines

Hierarchical B-Splines were introduced and used for IGA by Vuong et al. [101], Gi-
annelli and Jiittler [44] and by Schillinger et al. [91, 92]. A finer basis is generated
subdividing the coarse knot vector by two, adding each intermediate knot value,
see Iigure 1.8.

17

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI102/these.pdf
© [M. Occelli], [2018], INSA Lyon, tous droits réservés



1. From B-Spline to 3D locally refined IGA

0

0 2 4 6 8

Fig. 1.7: Quadratic B-Spline basis function, defined from = =
[0,0,0,1,2,3,4,5,6,7,8,8,8] as the coarse level of function. The area to be
refined is colored in light blue, between knots ¢ =4 and £ = 7.

1

Fy \() \(2 O

Fig. 1.8: Quadratic B-Spline basis function defined with a knot vector composed

by the same knot than = adding each intermediate knot value. Finer functions non
zero on the area to be refined are colored in dark red.

0% o—o o—9 o0 o —o C
0 2 4

The hierarchical B-Spline refinement is quite simple. The coarse basis function
fully contained in the refinement area is replaced by the p + 2 non-zero finer
functions on this area, see Figure 1.9. This gives a hierarchy of nested domains.
Somes functions from the coarser domains are removed, and functions of the finer
are added. The refinement procedure starts from the coarser level and generates
one or several nested finer levels, depending on the depth of refinement needed.
The definition, see Equation (1.16), ensures that the correct functions are always
selected to include in the basis.

. Initialization : H° = {N € % : supp N # 0}

e  Recursive case : H'™' = H PP U HS forl = 0,..., M — 1, where
HPP={N:Nev:suppN ¢ Q+} (1.16)
HY'={N: N €n*:supp N C Q+'}

° H=HM

As a result of the definition, the Hierarchical B-Spline basis and the associated
spaces have the following properties, see Vuong et al. [101], Giannelli and Jiittler
[44] for details:

e The functions in H are linearly independent.

e The spaces spanned by the basis are nested. One can notice than for this
refinement method, partition of unity is lost. Normalizing the Hierarchical
B-Spline basis, see [97], recovers this property.
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Truncated Hierarchical B-Splines

05~ o Gl ool ol SNae g N
0 2 4 6 8

Fig. 1.9: Quadratic hierarchical B-Spline basis function. Coarse B-Spline functions
are colored in blue and finer ones in red.

The basis function substitution is done without modifying the nearest neighbour
coarse functions. It leaves some elements with more than p + 1 non-zero functions
on their support, what is called a overloaded element. The concept of overloaded
element or overloaded knot interval was introduced by Dokken et al. [37]. It defines
the overlap, respectively by more than (p+1), (p+1)(¢+1) or (p+1)(¢+1)(r+1)
basic functions by element or knot interval for a 1D, 2D or 3D basis. This happens
because the large support of the coarse basis functions overlap with the support of
several fine-scale ones. On Figure 1.10, the overloaded element are colored in light
red and the too wide functions are colored in blue for the coarse level and red for
the finer one.

0
0 2 4 6 8

Fig. 1.10: Quadratic hierarchical B-Spline basis function. Coarse B-Spline func-
tions are colored in black and blue and finer ones in red. The overlap of more than
p + 1 functions from knots 4.5 to 6.5 is highlighted in red.

1.3 Truncated Hierarchical B-Splines

The Hierarchical B-Splines allow for local refinement and are easy to define, but
the number of overlapping basis functions can increase very rapidly with the
introduction of new levels. This behaviour has a negative impact on the solution
of linear system of algebraic equations associated to the solution of the discrete
variational problem. From a computational point of view, a higher number of
overlaps means that we add more elements in the system matrices and perform
more functions evaluations. This increases the assembly time required to build such
matrices as well as their sparsity.
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1. From B-Spline to 3D locally refined IGA

Truncated Hierarchical B-Splines were introduced by Giannelli et al. [45], Kiss
et al. [66], Giannelli et al. [46] to address these issues. Truncating the coarse basis
functions reduces their support over refined area applying a scaling factor called
truncature on the coarse functions that are in the neighbourood of the refined area,
see Figure 1.11. The reader should refer to [45, 66, 46| for more details.

o Initialization : TV = H°

o Recursive case : T = TP U T forl = 0,..., M — 1, where
T = {trund™' T : T € T" : suppT € Q'+ (1.17)
TlB-H _ H]l;l

° T=TM

The truncation part of the basis is performed from:

trund ™' T =T — Z a;Nj. (1.18)

j:NjENH‘l
suppN; CQl+1

0 33
0 2 4 6 8

Fig. 1.11: Quadratic Truncated Hierarchical B-Spline basis functions. Coarse B-
Spline functions are colored in blue and finer ones in red.

The Truncated Hierarchical basis naturally inherits the properties of the Classical
Hierarchical basis, and also adds new ones:

e The functions in T are linearly independent.

The spaces are nested.

The basis maintains partition of unity.

The cardinality of the basis is the same: |H| = |T|, considering the Hierarchical
basis H defined on the same mesh as 7',.

The spaces spanned are the same: spanH = spanT.
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Locally-Refined B-Splines

Truncating the coarse basis functions reduces their support over the refined area
compared to their counterparts and signicantly decreases the number of non-needed
overlaps. However, it does not remove all the overloading, caused by the too large
extent of the intermediate coarse basis functions on each side of the refinement
area, dotted in Figure 1.12.

Fig. 1.12: Quadratic Truncated Hierarchical B-Spline basis functions. Coarse B-

Spline functions are colored in black and blue and finer ones in red. The overlap area

was reduced to knots from 4.5 to 5 and from 6 to 6.5: The dotted coarse function is
still to extended.

Hierarchical strategies Another approach which shares some similarities with
THB-Splines named Polynomial Splines over hierarchical T-meshes (PHT-Splines)
was also introduced by Deng et al. [34], Nguyen-Thanh et al. [80], Wang et al. [102].
For conciseness, they will not be detailled here, the interested reader can refer
to the previously cited references. These approaches build several B-Spline basis
functions on several levels, substituting coarse functions by a set of refined ones
but not checking the number of new basis functions introduced in the existing space.

1.4 Locally-Refined B-Splines

LR B-Splines were introduced by Dokken [36] and were applied to IGA by Johan-
nessen et al. [57, 58]. This refinement method does not use a subdivision procedure
like Hierarchical B-Splines but a local knot insertion, inserting one knot at a time
and splitting old B-Spline basis functions into two new ones, generating few new
functions, see Figure 1.13. Each refinement using the knot insertion creates two
new functions in one direction.

The algorithm is similar to the classical knot insertion one in a B-Spline standard
tensor-product, see [28]| for details. Taking a new knot f to be inserted between
the knots &_1 et & in a knot vector = for a 1D case, = will be declined in two
knot vectors =Z; and =5, with an equivalent length, depending on the B-Spline degree:
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1. From B-Spline to 3D locally refined IGA

= [61,&0, -, &, Aﬁz‘, ---,§p+17§p+2],
1= [61, &, ---,fifl,@fi, s Ept1 ], (1.19)
= [ §25 81,6, &, '-'75p+175p+2]-
The enriched B-Spline function Bz is then a linear combination of the two B-
Spline functions Bz, and Bsg,, see Equation (3.1):

=5 =29

B=(§) = a1 Bz, (§) + a2 Bz, (§) (1.20)

1] [1] [1]

[
|

where

£=¢ . °
] = fp+1_1§1 lf 61 S 6 SA €p+17
1 if gp—i-l Sﬁ < €p+2,
1 if & <E<&,

Epra—€ ;
55;—2_52 if §2§§§€p+2~

(1.21)

Qg =

The weights a; and as are necessary to ensure the partition of unity. Insert-
ing new knots one at a time in the knot vector, the Spline space is enriched, see
Figure 1.13, and the geometry remains unchanged. LR B-Splines have several ad-
vantages:

e The partition of unity is guaranteed.

e The link between coarse and fine levels is not needed after the construction of
refinement. The LR B-Spline basis functions are defined with their local knot
vector independently of the other functions.

e By construction, there is no overloaded element in 1D, and the basis is linearly
independent.

Oc
0

2 4 6 8

Fig. 1.13: Locally Refined B-Spline basis functions. Notice that there are no more
than (p + 1) functions on each knot interval.

In the following, we will show that for 2D and 3D cases, the partition of unity
is not guaranted but methods exist to ensure it. We will consider in this work
that a sufficient condition to have a linearly independent LR B-Spline basis is to
have no overloading, see |23, 24]. As will be explained later, the non-overloading
is an important aspect in terms of the locally refined IGA implementation and its
subsequent use in the data structures of a commercial FE solver.
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Locally-Refined B-Splines

1.4.1 Linear independence of LR B-Splines in 2D

Due to the shift of the ends of local knot vector, LR B-Spline refinement does
not generate overloaded element in 1D. However, it is possible to have overloaded
elements in 2D and 3D. This obtained basis functions are not guaranteed to be
linearly independent for these cases. It happens for a bidirectionnal refinement of
a rectangular area of elements in 2D or a tridirectionnal refinement for a cubic
area of elements in 3D. These overloaded elements may cause the loss of linear
independence and the basis functions may not be adapted for IGA.

Johannessen et al. [58, 57| introduced several diagrams for 2D refinement cases
of rectangular area. Their purpose is to check several refinement schemes and to
see if there is overloading or not.

1.4.1.1 Min Span

The min span refinement scheme, see Figure 1.14, consists in splitting at least one
B-Spline but with the smallest possible footprint in the element. It means the split
B-Spline is the one which has the smallest support on the element to be refined. If
all the functions have the same support, the resulting refinement will not be unique.

(a) (b)

Fig. 1.14: Min span scheme in a 2D quadratic case. Overloaded elements are
colored in blue. Too many B-Spline functions are non-zero on the elements. Some
of them are dotted in red and their extent is colored in orange.

This scheme generates overloading, which is due to the functions that are in
the diagonals of the refined area and which are illustrated in Figure 1.15(b) and
Figure 1.15(c). The overloaded elements are colored in blue and the support for two
of the extended functions is colored in orange in Figure 1.15. The extent of these
functions were not modified and are too large. This scheme of refinement thus leads
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1. From B-Spline to 3D locally refined IGA

to overloaded element in 2D. In 3D, it gives a number of overloaded elements all the
more important.

1.4.1.2 Structured Mesh

Refinement according to the structured mesh method, see Figure 1.15(a), is de-
scribed as a bi-directional refinement of all B-Spline functions fully contained in
the rectangular refinement area. This scheme generates overloading, due to the
functions that are in the diagonals of the refined area and which are illustrated in
Figure 1.15(b) and Figure 1.15(c). The overloaded elements are colored in blue and
the support for two of the extended functions is colored in orange in Figure 1.15.
The extent of these functions were not modified and are too large. This refinement
scheme thus leads to overloaded element in 2D and 3D.

****************

(a) (b) (c)

Fig. 1.15: Refinement according to structured mesh scheme for a 2D quadratic

basis. Some elements, colored in blue, are overlodaded. There is still too many B-

Spline functions on the elements. Some of them are dotted in red and their extent
are colored in orange.

1.4.1.3 Full Span

The full span refinement scheme, see Figure 1.16(a), consists in extending the lines
of refinement sufficiently so that they cut all the functions which are non-zero on
the element to be refined. These additional cuts reduce a maximum the support
of the functions which are rather outside the area of the refined elements. These
external functions therefore no longer cause overloaded elements, see Figure 1.16(b).
Non overloading is ensured for 2D and 3D refinements that are rectangular or cubic
and have only outgoing corners.
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Locally-Refined B-Splines

(a) (b)

Fig. 1.16: Full span refinement scheme for a 2D quadratic basis: extension of
refinement lines on p elements. There is no more overloaded element by orange
basis functions.

The full span scheme is sufficient for most linear and cubic shape functions
refinement cases [57]. This is also valid for 3D mesh refinements that have outgoing
corners.

1.4.2 Linear independence checking and recovery methods

There are several practical methods, introduced by Johannessen et al. [57|, for
linear independence checking and recovery. These methods can ensure a priori
the linear independence of a LR B-Spline basis with an empirical approach called
the hand-in-hand principle. One can also recover it a posteriori with the peeling
algorithm, or test the rank of the matrix which gives the relations between old and
refined B-Splines like the tensor expansion to finally know if the resulting basis is
linearly independent or not.

We will here briefly describe the first one, as it can be seen as a way to check
for linear independence in a finte element code. For more details about the hand-in-
hand principle and the tensor expansion, the reader can refer to the work of Dokken
et al. [37].

Peeling algorithm The peeling algorithm is a linear independence recovery
method, based on an a posteriori overloading elimination. It will deactivate several
basis functions on overloaded element to recover the linear independence.

The algorithm is a two parts algorithm, see Algorithm (1). The first part tests
the linear independence of a resulting mesh. A linear combination is simply found
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1. From B-Spline to 3D locally refined IGA

if there is one or more overloaded element. The second part tries to remove some
B-Splines in the mesh in the case of a linear combination. If a B-Spline function is
non-zero only on one element, the function is removed. This procedure decreases
the number of B-Splines on the element and is done while linear combinations are
found on elements. When there is the correct number of functions depending on
the dimension and the degree, the basis is proven linearly independent. If it is not
possible, i.e., if it stays at least one function that can not be peeled, there may still
exist a linear dependence. In that case, the peeling algorithm is not sufficient and
other methods are required.

Algorithm 1 Peeling algorithm, from [57]

S {Spline space}

{Parametric domain}
Srp  {Possible linearly dependent B-Splines}
Qrp {Areas of possible linear dependence}

1: parameters:

SLD ~— S
Qrp+ S
for every element R € () do
if R is locally linearly independent then
Qrp <~ QUp\ R
for every B-Spline B; with support on R do
Sctp < Stp \ B;
end for
end if
. end for
: while €2 p or Spp changed do
for all elements R € Q;p do
if R has support of exactly one B-Spline B; € Sip then
Qrp < Qp\ R
Stp < Sip \ Bi
end if
end for
: end while

I s T o S = S Gy S Sy S G Y
© P NPT Wy 2o

The peeling algorithm is a quick way to analyse the resulting mesh. ITts definition
is quite simple and can be applied for all dimensions. It is not sufficient to correct all
linearly dependent meshes but it can prove the linear independence of a LR B-Spline
basis. In that way, the peeling algorithm is a good a posteriori method.
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1.5 T-Splines

T-Splines were proposed by Sederberg et al. [95] then used in IGA by Bazilevs
et al. [8]. One of the principal differences lies on the fact that T-Spline basis
functions are defined on local knot vectors. T-Splines allow to build meshes where
the global tensor product is not a feature and where local refinement goes through
T-junctions, analogous to hanging nodes for classical FEA.

Several T-Splines versions are available including T-Splines [95, 96|, analysis-
suitable T-Splines [94|, modified T-Splines [64]|, weighted T-Splines [71, 70|,
hierarchical analysis-suitable T-Splines [41|, or truncated T-Splines [104]. Each
approach corrects the shortcomings of the previous one, like the lack of linear
independence or partition of unity.

1.6 Isogeometric contact

Since its introduction, IGA showed a high potential compared to FEA to represent
exact complex geometries, through the higher order and higher continuity that
bring B-Spline and NURBS basis functions. The description of interacting surfaces
with large displacements and large sliding, the non-linearity, the non-smoothness
or the potential ill-conditioning which are still research challenges in FEA can
be improved with IGA. However, the basis functions estimation could add more
complexity and heavy computational costs to contact detection. This challenge is a
key-point on the fate of IGA in computational software.

Several IGA contact formulations have been developed in the last years. These
formulations derive for the most from existing contact treatments and algorithms
developped for FEA. It takes advantages like the robustness, the efficiency and the
ease of implementation of FEA contact methods besides benefits from the specific
properties of IGA. But it also shares the disadvantages of FEA contact formulations
like the contact surface discretization.

In the following, contact formulations and contact surface discretization ap-
proaches in IGA will be reviewed. These methods have been applied to implement
the contact conditions at some discrete nodes as specific collocation points or to
treat the contact constraints continuously.

1.6.1 Penalty methods

The penalty method is commonly used to solve algorithms that do not fulfill the
inf-sup or Ladyzhenskaya—Babuska—Brezzi stability condition. It introduces a force
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1. From B-Spline to 3D locally refined IGA

at the contact detection points that has penetrated across the target surface with
the express purpose of eliminating the penetration:

F. = k. x D, (1.22)

for contact detection points that penetrate across the target, and

F,=0. (1.23)

Otherwise, for open contact detection points. k. is the contact stiffness, also
called penalty stiffness. It is a predetermined property of the contact element. D,
is the penetration at the contact element.

Hence, the larger the penetration, the greater the calculated force. The
challenge here is that the magnitude of the force necessary to prevent penetration
is completely unknown beforehand. Obviously, the force needs to be large enough
to push the contact surface back to the target surface and, thereby, eliminate
unwanted penetration. But not so large that it pushes the contact completely off
the target surface, causing error and instability. It is important that the contact
stiffness be large enough so that the resulting penetration is negligibly small, but
the contact stiffness can not be so large as to cause instability and nonconvergence.
This same strategy is used both in the opposite direction to prevent separation
(with bonded or no-separation behaviors) and in the tangential direction to enforce
frictional resistance and no-sliding behavior.

A two-pass version of penalty called the Gauss-point-to-segment "two half-pass
formulation" (GPTS-2hp) was introduced by Lu [73]. The contact integral is
computed twice, switching the role of slave and master surfaces.

A positive aspect of the penalty method is that it is simple. The drawbacks
of penalty-based formulations are unphysical penetrations and bad conditioning of
the system of equations. Of course, this penetration is necessary for a contact force
to be generated. Despite that, this formulation is often used in IGA as part of its
integration into a finite element software.

Generally, the control polygon does not interpolate the physical geometry
and so can not be used in a similar way that nodes are used for contact surface
discretization in the classical node-to-surface algorithm on FEA. Collocation points
which lie on the physical surface have to be defined and used. The location of these
points and where to collocate the contact integrals is not trivial as in FEA. Several
posibilities have been introduced:
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Isogeometric contact

1.6.1.1 Knot to surface

Temizer et al. [98] and Lu [73] introduced the first node to segment approach
using collocation points as knot entries of the parameterization, at the vertices
of the Bézier elements. However, this surface discretization provides generally
fewer points than the number of control points. The contact formulation would be
underconstrained as the number of contact constraints is less than the number of
degrees of freedom associated to the surface.

1.6.1.2 Gauss point to segment

The Gauss point to segment formulation was introduced by Temizer et al. [9§]
and Lu [73] for 2D and 3D frictionless contact. The collocation points and the
contact constraints enforcement do not take place at the physical location of the
knot vector entries, but at the predetermined physical location of Gauss-Legendre
quadrature points. Since contact force values are known directly at the integration
points, their contribution to the element can directly be integrated.

The GPTS approach was extended to the 2D frictional setting in [30]. Temizer
et al. [98] formulated and tested the extension to thermomechanical contact. More
recently, the GPTS algorithm was adopted in a 2D and 3D frictionless setting by
Dimitri et al. [35] in combination with T-Spline basis functions to demonstrate the
advantages of local refinement. As its FEA counterpart, the GPTS formulation
in the isogeometric setting is characterized by the simplicity of formulation and
implementation and the possibility to obtain qualitatively good results for very
coarse meshes.

1.6.1.3 Greville, Demko and Botella collocation points

Another way to collocate points on the surface is to set physical points in one-to-one
correspondence with the control points associated to the surface. Such sets are,
e.g., the Greville, Demko or Botella abscissae, and were introduced by Matzen et al.
[75], Matzen and Bischoff [74]. Greville or Botella points enforce the contact and
their locations are obtained straigthforwardly and Demko points are obtained by
computing a complex iterative algorithm.

1.6.1.4 Bilinear quadrilateral collocation points

The three last interpolation methods use the knot vector characteristics, via its
discrete values or via particular points position. Benson et al. [13, 14] introduced
another way to set collocation points by considering the discretization at each el-
ement level and no longer the patch level. The collocation points are thus set on
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1. From B-Spline to 3D locally refined IGA

the surface to construct a bilinear quadrilateral interpolation of each element of the
contact surface. Spline element are fitted by a set at interpolation points depending
on the desired accuracy in the solution of the contact problem.

1.6.1.5 Using the real NURBS or B-Spline surface

While the slave surface is always approximated with interpolation elements, the
master surface may either be approximated or may use the real B-Spline or NURBS
contact surface. It was introduced by Benson et al. [13, 14] for the case of a
bilinear quadrilateral collocation approach of the slave surface where a nonlinear
closest-point projection procedure is used to compute contact candidate area.
This procedure brings precision but its computationnal cost is very important.
It is possible to use it only on particular cases where the quality of the contact
representation has to be improved.

1.6.2 Mortar methods

The mortar method is a segment-to-segment strategy, first introduced for contact
analysis by Belgacem et al. [9]. In this method, one side of the domain is denoted
as mortar one and the other as nonmortar. Usually, the surface with more control
points than the other is chosen as the nonmortar one.

Integration points of nonmortar surface are used as slave nodes and are projected
onto the mortar surface in the physical domain. A point inversion technique is then
used in the mortar domain to determine the position in the parametric space of
the projection point. This matching technique for contact surfaces is performed for
all the integration points on the real contact surface. The contact constraints are
thus computed along the interface boundary in a weak sense. The mortar method
is well known to satisfy the LBB condition.

Mortar methods deliver several advantages, like the quality of the local results
and the contact pressures (e.g. in the classical Hertz problem). Mortar formulations
applied to IGA were introduced by Temizer et al. [98] and by Kim and Youn [65]
in the 2D frictionless setting, for 2D friction in [30]. It has been extended to 3D in
[99] and [31] in the frictionless and frictional settings, respectively. More recently
was introduced contact for hierarchical NURBS using Mortar formulation in [97].
Several Mortar formulations are given in [108].

The non-interpolatory nature of the Spline basis functions implies that the mor-
tar contact constraints do not have the immediate physical meaning that they pos-
sess in the FEA setting. This however does not affect the consistency nor the per-
formance of the algorithm. However, compared to the penalty method, the mortar-
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A brief history of IGA integration into FE codes

based approaches and their algorithms are computationally expensive, due to the
mortar integrals to be computed.

1.6.3 Lagrange multiplier methods

Lagrange multiplier methods is also one of the most common used approaches to
enforce surface contact. Unlike penalty methods, the Lagrange multiplier method
does not need a user defined parameter. Lagrange multipliers are introduced into
the equation of motion and are related to the surface contact forces. The method
proceeds by treating the Lagrange multipliers as an unknown of the equation. This
methods also fulfills the LBB stability condition if the Lagrange multiplier space is
properly chosen.

It allows as well to use several discretization approaches with their advantages
and several contact representations as the node to segment or the segment to
segment ones. Segment-to-segment formulations have some advantages in solving
large deformation problems, since they avoid locking and overconstraining and
provide optimal convergence rates. The contact constraints are not imposed
pointwise at a finite number of slave nodes but are defined along the entire contact
boundary and therefore a more complete coupling between the degrees of freedom
of the contact surfaces is obtained.

The Lagrange multiplier method has been used in the IGA context by Lu [73].
It can also be combined with Mortar methods, see [31, 32, 75].

1.7 A brief history of IGA integration into FE codes

Cottrell et al. [28] well described the IGA and how to integrate it into conventional
finite element codes, in a similar way that are implemented finite elements, see
Figure 1.17. The green blocks indicate the differences from the conventional
finite element calculation. The blue blocks are identical whether it is isogeometric
analysis or finite element analysis.

A relative important part of the existing code can be used or slightly modified
in order to integrate these new elements. The basis functions are of course different.
The part of the code generating these functions will therefore have to be modified,
considering the new variables specific to B-Splines and NURBS like knot vectors or
control points weights.

Another difference concerning control points is their generally non interpolating
property, unlike finite element nodes. The boundary condition application needs a
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1. From B-Spline to 3D locally refined IGA

R’

<Loop through elements > 4———

K=0 and F°=0

Read input
data
L h h > <
Build connectivities and allocate <oop ! ro;gint(;uadrature
global arrays

v

Evaluate basis functions

A 4
K=0 and F=0 and deivatwes

Add contributions to
K¢ and F¢

H

Assemble K°*—»K
and Fe—>F

=

Fig. 1.17: B-Spline or NURBS calculation procedure in an implicite code, from
[28].

Write
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specific attention according to this point.

A loop on the patches is needed in addition to the element loop, in case of
multipatch models. The patch aspect has no equivalent in finite elements.The
simpliest way to glue patches is to use conforming C° discretization on patch
boundaries. The C? stitching is identical to the C? stitching used in finite elements.

Finally, like in any finite element code, in order to transfer control points
contribution from the global numbering to the local numbering, a connectivity
table is needed.

1.7.1 Bézier extraction

The Bézier extraction, introduced by Borden et al. [18], maps a piecewise Bernstein
polynomial basis into a B-Spline or T-Spline basis and allows to define C° Bézier
elements as finite element.

The following explanations are given for a B-Spline basis. The starting point is
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A brief history of IGA integration into FE codes

the knot vector associated to the basis, e.g.:

==1{0,0,0,0,1,2,3,4,4,4,4}. (1.24)

The associated B-Spline basis, control points and B-Spline curve are given in
Figure 1.18(a). Several knot insertions of internal knot values are then performed
in order to increase the multiplicity of each of them to p. The set of knot to be
inserted in Equation (1.24) are given as follows:

==1{1,1,2,2,3,3}. (1.25)

Doing that insertion, the B-Spline elements defined by the knot spans are
converted into a set of CY Bézier elements. The corresponding control point, basis
functions and curve are given in Figure 1.18(b). Notice that the obtained curve is
not changed.

2 3 5 6 8 9 11 12

I I I | T I 1
0,0,0,0 1 2 3 4444 0000 111 222 333 4444
(a) (b)

Fig. 1.18: Insertion of knots in the knot vector to obtain C° Bézier elements. a)
Initial B-Spline basis and curve. b) Bernstein basis and curve. From [18].

The Bézier extraction operator is constructed combining the knot insertion co-
efficient into a matrix C' and gives a relation between the B-Spline basis B(&) and
the Bernstein one N(&), as:

N(§) = CB(E). (1.26)

For more details about matrix C construction, we refer to the work of Borden
et al. [18]. The integration of IGA with this technique can be done without modifying
an important part of an existing finite element code. Bézier elements are given to
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1. From B-Spline to 3D locally refined IGA

the solver in the same way that finite elements are. The knot vectors are the only
data needed to compute the Bézier extraction operator. It can be computed in the
preprocessor and directly given in the data file. In this way, the development effort
is minimized.

1.7.2 IGA experiments in research codes

In the last years, IGA libraries were introduced in the academia, trying to consti-
tute teaching and prototyping tools. GeoPDEs was the first open source library
dedicated for the research on IGA, written in Octave and Matlab, see [29]. Others
were then introduced in C++ like G-+Smo library [60] and Igatools [85].

Several research software were also developed, like FEAP, a finite element anal-
ysis program which includes an isogeometric analysis library FEAP IsoGeometric.
OOFEM is another finite element code for multi-physics with object oriented
architecture, also in open source [90]. MIGFEM can also be cited as an IGA code
implemented in Matlab which can support 2D and 3D fracture, see [79]. Others
developments can also be found in Java and give the basic framework of a main
object implementation [109].

In the LaMCoS, IGA have been treated for a few years. Indeed different aspects
were discussed, like the shear and membrane locking in thick plates and shells [19],
the solid shell element |21, 20, 22|, the shape optimization of shell structures [52],
the generation of NURBS volumetric mesh [3, 4, 6], until the integration in an
industrial code of explicit dynamic computation |38|.

Others finite element research codes and libraries are more oriented on the
computational aspect of IGA like PetIGA [26], an open source framework for high
performance isogeometric analysis heavily based on PETSc, using the C language.
From the solver side, we find IGA-ADS as a solver which enables parallel multi-core
simulations |72].

1.7.3 IGA implementation in industrial software
1.7.3.1 Abaqus

IGA was implemented for B-Spline and NURBS in a native way in the implicit
solver Abaqus standard software via user subroutines, see [3, 38]. A new type of
user element was defined. The .inp input data file was used to define the mesh
as a classical finite element mesh, i.e. with the connectivity, the control points
coordinates which are assimiled as nodes, the integration rules, etc... Additionnal
data like the weight associated to each control point or the knot vectors are given in
an additionnal .nb data file. The computation is done inside the software. A least

34

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI102/these.pdf
© [M. Occelli], [2018], INSA Lyon, tous droits réservés
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square projection is used to post-process the results on a finite element projection
mesh with an Abaqus internal command.

Another implementation for T-Splines in Abaqus was done by Liu et al. [69]
and Lai et al. |67] using the Bézier extraction. A Rhino plugin generates an Abaqus
.Anp file containing in the same way the données usuelles aux FE for the T-Splines
elements. A second second .bezier file which contains the weigths, and the Bézier
extractor.

1.7.3.2 LS-Dyna

LS-Dyna introduced IGA in a native way to implement tridimensional NURBS.
The Bézier extraction was also implemented, especially for the use of T-Splines.
IGA simulations were firstly done for shells [14, 15] and for blended shells [16].
The simulations demonstrated the quality of obtained results and their accuracy.
Attempts to implement solid formulation have also been done [17]. Trimming surface
were given in the Spline context in [76]. The mass scaling and the time increment
estimates were also treated in [17].

1.7.4 The explicit solver Radioss

Radioss [106] is an explicit finite element solver for crash and impact simulation
developped by Altair. It can model and solve complex non-linear behavior with
a multitude of material and failure models. Radioss has built-in multi-physics
capabilities for fluid-structure interaction and blast simulation. Limited implicit
solver capabilities support gravity equilibrium as well as spring back analyses.

It has been used for crashworthiness studies in the automotive industry for over
25 years. A complete library of crash test dummy models is available for full vehicle
crash simulations. Radioss has been widely used in defense applications and in the
electronics industry for the verification of designs.

Applications of Radioss include automotive crash, passenger safety in cars,
buses and trains, electronics device drop test, sheet metal stamping, blast impact,

bird strike, airplane ditching or landing on water, bullet penetration of armor, etc.

Altair is interested in the integration of IGA in the explicit code Radioss.
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Introduction

2.1 Introduction

Since Radioss does not manage the B-Spline and NURBS functions in the input
files, nor in the solver part and the display of curved elements, it is a complete job
to implement the IGA.

In this chapter will be shown how IGA was implemented in Radioss for tridi-
mentionnal cases. The implementation has been done in Fortran 95. The notions of
parametric space, polynomial degree by direction, weights or the recursive nature of
the basis functions are quite new and are more complicated compared to the exist-
ing classical finite element implementation. However, the implementation of IGA is
more general because of these features and will be more easily adaptable to different
geometries and degrees of the basis functions.

2.1.1 Data structures needed for FEA and IGA

Traditionnal FEA codes have an input data file containing the nodes coordinates,
the element type with its associated numerical integration rule, and the connectivity
which connects an element with its nodes. Finite element codes using isogeometric
analysis require some additional input data compared to traditionnal ones: control
points weights, knots vectors, polynomial degrees and a different element connec-
tivity, see Table 2.1.

| FEA | IGA using B-Splines and NURBS |
Nodal coordinates Control points coordinates
Element type Polynomial degree
Table of connectivity Element connectivity
Numerical integration rule Numerical integration rule
Control points weights
Knot vectors

Table 2.1: Data needed for FEA and IGA.

Control points are counterparts of nodes and have associated weights. Their
coordinates are stored as nodal ones and weights are given by adding real variables.
Knots vectors which describe each of the patches are also passed through the input
file in a specific format created for the isogeometric elements, giving in the same
time the polynomial degree for each parametric direction. The element connectivity
is also different. The element number is stored with associated shape function
indexes. The position of these functions with respect to the global shape function
index is also gathered. The detailed definitions and constructions of the element
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2. Implementation and use within the Radioss Solver

connectivity are given by Cottrell et al. [28].

2.1.2 Global structure of Radioss and analysis procedure

In a similar way to the flowchart given for classical implicit finite element code by
Cottrell et al. [28], it can be defined for explicit code to highlight the specific existing
routines that have to be replaced in accordance with IGA specificities, see Figure 2.1.

B-Spline or NURBS basis functions are evaluated in the routine also given in
[28] and adapted to Fortran. The specificity of explicit simulation compared to
implicit one is the need to compute at each time step a time increment which
will ensure the stability of the simulation. The geometric specificities of the
B-Spline and NURBS geometries, the span and the smooth characteristic of their
basis functions induce some modificitations of existing time increment estimation
methods. Finally, output data file has to be written more than once, depending on
the sorting frequency. The format of that output will be specific to the isogeometric
basis and is adapted to existing postprocessing software.

2.1.3 Equilibrium equation and matrix/vector calculation

To go into more detail about the implementation and calculation of the different
elements needed for explicit resolution, we can begin from the dynamic equilibrium
equation of a system, written at any time step t:

My +Cv+ Ku = Fe, (2.1)

with M the mass matrix, C' the damping matrix, K the stiffness matrix. u, v
and W_are respectively the displacement, the velocity and the acceleration vectors.
F.,; is the external forces vector. This vector mainly includes applied forces, gravity,
contact forces. In general, in explicit solvers, the damping effects can be ignored and
the stiffness matrix K is never directly assembled. Equation (2.1) is then modified
using the internal forces vector Fip:

M7 = Feazt - Ent- (22)

Note that in the present works, we will use only 3D solid models. It will not
therefore be necessary to compute rotations and moments, as could be the case for
shells.

The implementation of isogeometric elements in Radioss is done in two parts. A
first part for calculating the diagonal mass matrix, the inertia and the critical time
increment at the initial time step tqo, and a second part for the calculation of the
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Fig. 2.1: Flowchart of a classical explicit finite element code, converted for IGA by
replacing the routines shown in green by specific IGA code.

strain increments, the stresses, the force assembly and updating the critical time
increment. The routines contained in these two parts are plugged into the Radioss
source code.
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2. Implementation and use within the Radioss Solver

2.1.3.1 Discretization: Central difference

The central difference resolution method is used in Radioss. Equation (2.1)
and Equation (2.2) are second order equations that can be solved using several
discretization methods. Implicit analysis approaches solve the problems given
in Equation (2.1) at a given time step ¢ using unconditionally stable integration
method. This method is a part of the Newmark family scheme [54], where the
two parameters a« = 1/2 and § = 1/4. Explicit methods are other methods for
which the displacements at a given time step ¢ explicitly depend on the variables at
the previous instant. This is the case of the central difference method [89], where
the two parameters o and 3 are respectively equal to 1/2 and 0. This resolution
method is commonly used in explicit codes and in particular in Radioss. It thus
makes it possible by knowing the state of a system at the instant ¢” and ¢"~ Y, to
compute its state at the instant ¢+,

Given the coordinates at time steps t” and ¢, we can calculate the velocity
1

u(t"2)):

(") —z(t")

n—1i
y(t 2) - tn — tn—l

(2.3)

The equilibrium equation at time step t" allows to calculate 7, and then compute

v(t"2) and z(t"™) as follows:

(t"TE) = w(E" )+ (T = E7) x y(t7), (2.4)

(™) = z(t") + (T — ") x u(t"2). (2.5)

With the new coordinates at time step t"™!, a volume and a new density are
computed thanks to the mass balance equation. The diagonal mass matrix, the
internal forces vector Fj,, and the external forces vector F,,; are thus used to write
the equilibrium equation, which gives the acceleration at time step "+

In explicit codes, the time increment between two time steps is usually not
constant. The writing of Equation (2.4) and Equation (2.5) is thus modified, with
the old time increment dt; and the new dt,:

¢ ¢ dt, + dt
o) = () (L) x4 ("), 26)
(t"T2) = g (") + dty x y(t”“%). (2.7)

This scheme is conditionally stable and non-dissipative, which means that the
time increment is limited to ensure that the solution does not grow boundlessly. The
stability condition [84] can be applied to a one degree-of-freedom of a system without
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3D solid isogeometric element formulation

damping and the dynamic equilibrium equation at time ¢" given in Equation (2.2)
would defined the critical time increment as:

At< -2 (2.8)

wmaz

with wy,qe the maximum natural frequency of the system which ensure the fol-
lowing relation:

det(K —w*M) = 0. (2.9)

Another consideration in the time integration stability concerns the type of prob-
lem which is analyzed. For example in the analysis of wave propagation, a large
number of frequencies are excited in the system. That is not always the case of
structural dynamic problems. In a wave shock propagation problem, the time incre-
ment must be small enough in order to excite all frequencies in the finite element
mesh. This requires short time increment so that the shock wave does not miss any
node when traveling through the mesh. It follows that the time increment should
be limited by the following relation:

L
At < =, (2.10)

Co
L. is the characteristic element length, representing the shortest road for a wave
arriving on a node to cross the element, and ¢ is the speed of sound in the material.

2.2 3D solid isogeometric element formulation

One of the main goals of this work is to highlight the capabilities of IGA in a dynamic
context comparing several isogeometric elements and their FEA counterparts. Thus
we realized the implementation by following the FEA implementation pathway. The
following sections will present the construction of several matrix, like mass matrix,
the computation of stress, the estimation of critical time increment all allong the
run, and the contact formulation modified in order to use that new kind of element.

2.2.1 Tridimensional isogeometric element

We consider a tridimentionnal B-Spline or NURBS element of polynomial degree p,
q and r, composed of (p + 1)(¢ + 1)(r + 1) control points. Coordinates inside this
element can be interpolated as:

nctrl

i=1
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2. Implementation and use within the Radioss Solver

with nctrl the number of control points of the element. Radioss uses an updated
Lagrangian displacement-based formulation. The displacement field and incremental
displacement field can be interpolated as follows:

nctrl

u(&,n.¢) = Zang_z, (2.12)
nctrl

su(é,n,¢) = ZNSUC (2.13)

Full quadrature The implementation of B-Spline or NURBS element was done
for full quadrature, with (p 4+ 1)(¢ + 1)(r + 1) integration points by element. The
interested reader can refer to the large litterature on reduced quadrature for IGA
[56, 93, 2, 50].

2.2.1.1 Mass matrix calculation

The mass matrix M is the consistent mass matrix and is defined in Equation (2.14).
The diagonal mass matrix, used in Radioss, is defined using a row summation, see
Equation (2.15). This lumping method reduces computational time considerably as
no matrix inversion is necessary.

M(zz,b) = / NaprdQ. (214)

Moy = /Q N,pNydQ = /Q Nap (Z Nb>dQ. (2.15)
b e b

Applying the partition of unity ), N, = 1, we obtain the diagonal terms:

Mq,0) :/ PN, = ///pN dxdydz. (2.16)

Jacobian mapping The mass matrix expression is given in the physical space
(x,y, z), whereas shape functions NNV, are known in parametric space (£,7,(), and
the Gauss points are in the parent space [—1; 1] for each direction. The computation
of the integral is transported in the parametric space, giving a new mass matrix
expression:

e

My = /C / /E PN (€., C)det(T)dEdndC. (2.17)

with det(J) = %, then in the parent space:
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3D solid isogeometric element formulation

1 p1opl
M0y = /—1/—1/—1 pNu(&,n, Q)det(J)det(Jyn)dudvdw, (2.18)

with det(Jy,) = gfgggi'

By using numerical integration to discretize this integral, we finally obtain, with
w; jr the Gauss points weights:

n m l

Maay =3 ) > pNal& juks Wik Gie)det (T )det (T )wi . (2.19)

i=1 j=1 k=1

2.2.1.2 Mass Conservation and update of p

The resolution of Equation (2.1) is done with an explicit scheme, that is to say
that the state of a system at a given time ¢ is explicitly defined by its state at the
previous instant. This resolution method will be discussed in the following sections.
The density is updated at each instant ¢ from the density at time ¢y and from the
two volumes 1V and V from the relation:

poVo = pV, (2.20)
with the volume V definition:

n m l

V= /Qc dv = Z Zdet(J)det(Jlm)wi,jvk. (2.21)

i=1 j=1 k=1

The update of p is then obtained:

P ¥ iy Doy Sy det(Jo)det(Juing ) wigk
Z?:l Z;n:1 2221 det(J)det(Jiing ) Wi j

This updated density will be used to update the mass matrix at each time ¢,
then to calculate the strain increments and the internal forces.

(2.22)

2.2.1.3 Internal forces computation

The computation of forces vector and the internal energy uses a material law which
can be formulated in strain or strain increment, depending the law.

Radioss material law Radioss material laws are usually written with the strain
increments, i.e.:

o =0+ DAc. (2.23)
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2. Implementation and use within the Radioss Solver

We have to calculate strain increments from displacements at the control points
and the following relation:

Ac = (grad(du) + grad(Au)”) + Act (2.24)

with Ae? the quadratic part of the gradient. In general, to have a simplified for-
mulation, only the first part of this equation is used, i.e. small strains. The second
part is often ignored, which gives for example for the xx strain:

O(v,dt) 0]\7
A - — 2 dt, 2.2
or for the zy one:
1 (O(v,dt)  O(v,dt) 1 ON; ON;
Aey, = = Y == — v, + —v,. |dt. 2.2
T Ty ( ox + y 2 ZZ: ar ¥ + oy Vo (2.26)

These approximations are valid in many cases for small displacements. Since
large displacements are possible in Radioss, the quadratic part of Equation (2.24) is
added:

2
Aege = —o—+ ( ) Z a Vg, dt + (Z %vzidt> . (2.27)

1 (0(vydt)  O(vedt)  O(vydt) O(v,dt)
AE903/_2( Ox + oy + Ox oy

1 N; N; N, N,

Once the strain increments are computed, a material law is called and returns the
stress g at the integration points and updates the internal energy using the updated
volume between V;, and V. These two last computation are given following:

Fy = | Blo dv, (2.29)

Cint = Sint +/ g.Ag dv. (230)
Qe

These internal energy and force are also computed by summing the contribution
of each integration point to the control points, just as for the calculation of the mass
matrix, with the Gauss points weight w; ; 1.
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3D solid isogeometric element formulation

2.2.2 3D geometries and models generation

Preprocessing is still a delicate step in IGA, especially for 3D models. Generating
complex B-Spline or NURBS geometries can only be done using dedicated tools.
Efforts have been made to develop robust and exploitable solutions. We can
refer to the work of Al Akhras et al. [4, 6, 5| or Liu et al. [69], Wang and Qian
[103], Xu et al. [107]. These methods bring the transition from CAD to analysis
suitable isogeometric models, through 3D computer graphics and CAD software
such as Rhinoceros. At the moment, there is no tool in HyperWorks that allows
the preprocessing of B-Spline or NURBS geometries. Therefore, in the context of
this study, a Rhinoceros plugin was used to define the isogeometric models and
was modified to product analysis-suitable input files in the Radioss format, see the
appendix B.

2.2.3 Post-processing

The purpose of the post-processing is to extract and display the results of the
Radioss calculation. The problem for post-processing is the same as for pre-
processing since the HyperWorks post-processing tool, HyperView, is only able to
generate standard finite elements. If we import a B-Spline or a NURBS calculation
result file as it is without any particular treatment, only the control points will be
displayed since they will be considered as conventional nodes. A solution allowing
the visualization of the results is to use a least square projection on a finite element
mesh for each B-Spline or NURBS patch, see for example [407 | 78]. This projection
mesh is defined so that each B-Spline or NURBS volume element is represented by
27 linear bricks. The fields defined on control points are directly interpolated with
the basis functions. The ones defined at Gauss points are first projected using least
squares. The scalar or vector fields are computed by patch constituting the Gram
matrix. This matrix M has an equal dimension to the number of control points of
the complete patch. It is defined as follows:

nel ngauss

ab /N Nb dQ Z Z Na [Ek Nb l’k) (231)

For each result field i to be projected, a vector R’ is computed by:

nel ngauss

/N )i () d2=Y > Na(wp) [ (xr)wn (2.32)

n=1 k=1

The least squares problem is then solved on the set of each of the patches, for
each result field 4, by calculating the vector F*
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2. Implementation and use within the Radioss Solver

F'=M"R, (2.33)

and projecting on the projection nodes j through the relation:
fiw) =Y No(z;)F'. (2.34)

This global least squares projection uses the L? norm and gives satisfactory
results. However, this results in the resolution of a problem that is the same size as
the original problem. Recently, Govindjee et al. [47] have introduced a local least
squares method to obtain accurate results at a reasonable computing cost. In the
case of this work, the Gram matrix that must be formed in order to perform the
global least squares projection is identical to the mass matrix with a unit density
on the same mesh.

This projection method does not benefit from the strengths of IGA. The
represented surfaces are not continuous and the results are mostly extrapolated.
This is the problem when a rich solution is projected on a degraded space. At the
moment, it has been decided to project a 3D isogeometric element, regardless of its
polynomial degree p, ¢ and r, on a set of 27 linear bricks. This quality of discretiza-
tion is fixed and will bring its limits for the representation of result fields with high
gradients. However this solution of the 27 bricks, makes it possible to limit the size
of the tables created solely for the display, even if the time spent in extracting the
output results represents only a small part of the total cost of the simulation. A
discretization dependent on the quality of the results, the polynomial degrees or
the geometries of the initial model could be used and would allow a more faithful
visualization. It would be advisable to define automatically the number of bricks on
which the projection will be made by (p+ 1)(¢+ 1)(r + 1), but in this case the size
of the coordinate tables and constraints that would be built would be much higher.
Using this post-processing method allow to display calculation results in HyperView.

2.2.4 Patch test: uniaxial traction

In order to validate to IGA implementation in the Radioss solver, a uniaxial tension
test along the z axis on a 0.1 m side linear elastic cube is performed. This test
consists in finding a uniform state of stress and strain for an unstructured assembly
in tension. The test is considered as a quasi-static simulation and is presented
without time increment estimate approach. Two symmetry planes following = and
y direction are defined to model only one-eighth of the geometry. The modeled
geometry is thus a cube of 0.05 m side, which is locked on its lower face in the z
direction, on y on its right face and on z on the face of behind. This geometry will
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3D solid isogeometric element formulation

) ) Order and knot vectors for the Order and knot vectors for the
Direction ) .
linear patch quadratic patch
¢ p=1 ==10,0,1,1] p=2 EZ=10,0,0,1,1,1]
n q=1 H=10,0,1,1] q=2 H=10,0,0,1,1,1]
¢ r=1 Z=1[0,0,1,1] r=2 Z=1[0,0,0,1,1,1]

Table 2.2: Knot vectors for both isogeometric element of the uniaxial traction test.

be constrained to a 0.005 m displacement along z on its upper face. The geometry
and applied boundary conditions are given in Figure 2.2.

Y ? _X

dL3 =0.005 m

B

/0956\
W

Fig. 2.2: Uniaxial traction: dimension, boundary conditions and mesh.

Two isogeometric meshes will be compared to their finite element counterparts.
The 8-control point linear B-Spline element is compared to the 8-node linear brick

(HA8 in the Radioss library).

The quadratic B-Spline element with 27 control

points is compared to the 20-node quadratic brick (S20 in the Radioss library).
All these models are fully integrated, and the corresponding knot vectors for the
two isogeometric elements are given in Table 2.2. The tensile behavior of a single

element will be analyzed.

Analytic stress can be computed using the global volume. The theoretical cal-
culation is made on the overall volume, i.e. a 0.1 m side cube in uniaxial tension
with a displacement of 0.01 m. The elongation in the z direction is given as:

L3+ dls 0.140.01
=1 = = 0.09531. 2.35
c3 = ( L 0.1 (2.35)
The two other strains £33 and €11 = €95 are given, with v = 0.3, by:
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2. Implementation and use within the Radioss Solver

e11 = —eg3v = —0.09531 x 0.3 = —0.028593. (2.36)

With a Young modulus £ = 210000 MPa, the value of the longitudinal stress
in the z direction is 10246 MPa, whereas the others components are zero. This
longitudinal stress will serve as a reference.

2.2.4.1 Results

Table 2.3 shows the longitudinal stress for each mesh. The distribution of the
displacements in the volume for x, y, and z is plotted on Figure 2.3.

| Error of longitudinal stress (%) |

Radioss HAS8 0.131
Linear B-Splines 0.131
Radioss 520 0.132
Quadratic B-Splines 0.132

Table 2.3: Uniaxial tensile test: relative error in longitudinal stress.

Contour Plot Contour Plot
Displacement(Z) Displacemen <)
Analysis systemn Analysis system
5.00000E-03 0.00000E+00
4 44444E-03 -1.60538E-04
3 88889E-03 -3.21076E-04
—3.33333E-03 —-481614E-04
T 277778E-03 —-6.42152E-04
—2.22222E-03 —-8.02690E-04
-8.63228E-04
-1.12377E-03
-1.28430E-03
-144484E-03

Max = 0.00000E+00
Node 1000000000
Min =-1.44484E-03
Node 1000000063

1.66667E-03
T11111E-03
5 55555E-04
0.00000E+00

Max = 5 00000E-03
Node 1000000048
Min = 0.00000E+00
Node 1000000000

z
T LVX
~

Fig. 2.3: x and z displacement, homogeneous in the brick section.

T L{X
.

The displacements in the x and y directions are uniform for all models and
the longitudinal stress is constant in the volume throughout the simulation. This
behavior is the one that was expected and qualitatively validates this patch test.
Relative errors on longitudinal stress, for both elements already existing in Radioss
library or isogeometric elements, are minimal compared to the theoretical values
(of the order of 0.1%). These values allow to quantitatively validate these models.
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3D solid isogeometric element formulation

2.2.5 Distributed loads

The surface loadings distribution on the control points is generally given for any
type of element as follows:

F= /pﬂ ds, (2.37)
S

where p is the pressure value and n the normal vector computed depending on the
element external face. The pressure is positively defined when it is facing inwards.
The application of distributed loads specifically for isogeometric elements is quite
simple to implement. It largely uses the shape functions and derivatives routine
of [28]. Therefore, instead of computing the B-Spline basis functions in the 3D
volume, they are computed on one external face and allow to have access to the
normal vector and to the area of the outer face of the corresponding isogeometric
element.

A definition of elements external faces has to be set. The B-Spline or NURBS
patches parameterization gives a structured mesh for which it is easy to find an

external face. For each outer face of an element, the normal vector is computed

from the cross product of Jacobian-specific components J;; = Zf?, depending on the
J

needed element face. A convention on the numbering of the external face is given

in Table 2.4 and illustrated in Figure 2.4.

Ntqee | Corresponding parametrization | Normal vector Pigi?éertgicrer;)ir;?lal
Face 1 {(€n,¢): £=0} Jio N Ji3 gt
Face 2 {&n¢): =1} Jiz N\ Jio &
Face 3 {(&,n,¢) :n=0} Jig N Jin nt
Face 4 {€n,¢) :n=1} Jin N Ji3 n-
Face 5 {(¢,n,¢) : ¢ =0} Ji1t N\ Jig ¢*
Face 6 {(ga m, C) : C = 1} Ji2 A Jz‘l C_

Table 2.4: Parametric normal vector direction depending on the patch face.

The surface is then computed, e.g. for the face 1 with the normal direction &_
as follows:

° deq(Uj)der(Ck:) dnd(¢
= d ’ e 2.
Se_ 321 ; dn dg dydz s (2.38)
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2. Implementation and use within the Radioss Solver

/ C \
g M

Fig. 2.4: Parametric normal vector direction.

2.2.6 Internal pressure: Quarter disk

A thick-walled cylinder subjected to internal pressure is introduced to illustrate
the distributed load computation. This example is a common illustration of IGA
implementation, see [39, 61]. Analytical solutions of this problem are given in
[33, 51]. A thick cylinder, with an inner radius r; = 100 mm, an outer radius
ro = 200 mm is considered in 2D in plane strain. An internal pressure p is
progressivly applied until it reaches the maximum value of p; = 0.14 GPa. An
elastic perfectly plastic material is used with a Young’s Modulus of 120 GPa, a
yield stress in pure tension of 0.24 GPa and a Poisson’s ratio of 0.3.

Only a quarter of the cylinder is modeled, considering the inherent symmetry.
The boundary condition and the loading is applied in consequence of this symmetry
and the plane strain hypothesis. The defined mesh used in this example is composed
of 64 C! quadratic NURBS elements, with only one element through the thickness
of the cylinder. The geometry, the boundary conditions and the mesh used are
given in Figure 2.5, and knot vectors with corresponding degrees are given in
Table 2.5.

‘ Direction ‘ Order ‘ Knot vector ‘
. = _ 1 2 14 15
5 p*2 — [0707()’1_{571_267 7%7 ?65’1’1’1}
n q:2 H = [07070’1_6’1_6’ 7%7%7171»1}
¢ =2 Z =10,0,0,1,1,1]

Table 2.5: Knot vectors for the quarter of the thick cylinder.

52

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI102/these.pdf
© [M. Occelli], [2018], INSA Lyon, tous droits réservés



3D solid isogeometric element formulation

(b)

Fig. 2.5: Thick cylinder under pressure. a) Dimensions, loading conditions and
mesh used, b) mesh detail and corresponding boundary conditions.

Analytic expressions give the hoop and the radial stress in the cylinder in the
elastic case:

2 2 2 2
pcrc Tc . _ pcrc 7’0
Oryr = Tg — 7“(2: |:]_ — ﬁ:| ; 09 = 3 _ ’["3 |:1 + ﬁ:| . (239)

For internal pressurization, the radial stress and circumferential stress are max-
imum at the inner radius. The Von Mises stress is given by the following formula:

3rd +rd
Ovm =D * m — \/ggr — 04009 — O (2.40)
o %

In accordance with this equation, the admissible pressure before the plastification
of the cylinder is pgqst = 0.103 GPa. Beyond this internal pressure, the cylinder
will plastify from the center to the outside and will collapse when the plastic front
reaches the outer face.

2.2.6.1 Results

Figure 2.6 shows the Von Mises stress and the plastic strain repartition on the
cylinder, for the particular internal pressure of p; = 0.14 GPa. We can see that the
plastic yielding started progressively at the inner surface with the increase of the
internal pressure and stabilized. Figure 2.7 gives the Von Mises criteria evolution
as a function of the radius. It also gives the limit between elastic and platic area at
the radius of r, = 117 mm.
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Von Mises stress (GPa) Plastic strain
2.382E-01 5.556E-04

[ 2.222E-01 [ 4.939E-04
2.062E-01 4.321E-04

— 1.902E-01 — 3.704E-04

— 1.743E-01 —3.087E-04

= 1.583E-01 — 2.469E-04

I— 1.423E-01 r 1.852E-04
1.263E-01 1.235E-04

[ 1.104E-01 [6.173E—05
9.438E-02 0.000E+00

Max = 2.382E-01 Max = 5.556E-04

Min = 0.000E+00
Y Y
Z =X Z =X

(a) (b)

Fig. 2.6: a) Von mises stress, b) Plastic strain after an application of an internal
pressure of p;, = 0.14 GPa.

03 T T T T
Yield stress 0.24 at 7, = 117 mm

<
)
>
I
|

e
b

0.15

&
—_

Von Mises criteria (GPa)

100 120 140 160 180 200
Radial coordinate (mm)

Fig. 2.7: Von Mises criteria evolution depending on the radius of the cylinder.

2.3 Critical time increment for 3D isogeometric
analysis

As classical finite element, the implementation of IGA in an explicit solver requires
to compute the critical time increment associated to these elements.
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Critical time increment for 3D isogeometric analysis

2.3.1 Critical time increment estimation methods

Reducing the calculation time of the simulations carried out in the industrial codes
is a particularly important point in terms of performance. This computational
time is directly related to the time increment estimation at each time step and its
maximization is fundamental, while ensuring the stability of the central difference
scheme. The good behavior of IGA in the high frequency regime that has been
observed by Cottrell et al. [28], Cottrell et al. [27], allows to obtain higher critical
time increments than FEA as observed by [14].

For FEA, several estimates are available in the litterature and have been used for
IGA such as the nodal time increment [43, 11, 54, 10, 49|, the characteristic length
method [48, 49|, or the power iteration method [105, 11, 14, 15, 16]. These esti-
mates are also available for IGA in Radioss and will be reviewed in the next sections.

2.3.1.1 The characteristic length

In a heuristic way for classical finite elements, the characteristic length L., see
[48, 49], is defined as follows:

Ve
L =—- 2.41
" max(S.)’ (2.41)

with V. the element volume and maz(S.) the maximum element face area.

The specificity of the isogeometric elements is that they can be very distorted.
Using this formula as is would give bad time increment values. Furthermore, the
difficulty lies in the fact that the computation of the volume or the area with its
control points has to be done in the parametric space, then to be switched to the
physical space.

One first estimate is to use the minimum volume value associated to the integra-
tion points, and multiply it by the number of these points in the element in order
to have an equivalent elementary volume, see Figure 2.8. Depending on the strain
state of this element, this volume may be smaller or equal to the element volume.
The area associated to this equivalent volume will be the maximum median area of
the element. It is computed setting as follows:

- AM (1) d Ry (G) dnd(
S&medzan = Z Z ] 2 2 dC dde gmedzanyﬂp(k’ (242)

for the case of median area in the £ direction, with m and o the number of Gauss
points in the n and ¢ direction. The principle is similar for the two other median

%)

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI102/these.pdf
© [M. Occelli], [2018], INSA Lyon, tous droits réservés



2. Implementation and use within the Radioss Solver

areas in the other directions. The subvolumes computation is done as follows, with
n the number of Gauss points in the ¢ direction:

sz’,p(ng) de,q(nGp) de'ﬂ'(ng) d€dnd(

Vep = (2.43)

dé dn ¢ dedydz " CP

Fig. 2.8: The minimum subvolumes of integration points and median areas in a
quadratic B-Spline or NURBS element.

This method brings good results for elements that have a limited number of
integration points per direction, i.e. for linear or quadratic basis functions. Beyond
this, the minimum volume that is taken into account may become very small
because of the geometric distribution and weight of these integration points, and
the time increment that is computed would be over-conservative.

A second way to compute the time increment is given by choosing the minimum
of the subvolumes constituted on a band of integration points, and by multiplying
it by the number of integration points in the perpendicular plane. In this way, the
equivalent elementary volume is greater than the first one, while remaining lower
than the actual volume. The area which divides this volume must be in this case the
maximum area perpendicular to the subvolume band, see Figure 2.9. The following
equations give the surface for the superior £ face and the corresponding subvolume:

dM] q 77] ) dRy, T(Ck) dndC
93 e )
ot d¢ dydz
NNy (Eay) dM(7) dRy,,.(C) dEdndC
i=1

We have observed that for interior element with maximum continuity, the

4
3
can for example be used with C' quadratic basis functions. However, we have
also observed that the critical time increment can be lower than the estimate for
elements with reduced continuity. This is particularly the case for the elements

characteristic length method is very conservative. Indeed a scaling factor of
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Critical time increment for 3D isogeometric analysis

Fig. 2.9: A band of subvolumes of integration points and the two corresponding
areas in a quadratic B-Spline or NURBS element.

near the patch boundaries or near areas of reduced continuity.

The proposed method has been implemented in Radioss with a safety factor of
% that guarantees in most cases a safe estimation even for boundary elements.

2.3.1.2 Nodal stiffness time increment

A non-heuristic approach to estimate the critical time increment is to solve
Equation (2.9), i.e. to compute the maximum eigenvalue w,., of the system
MK using the stiffness matrix and the mass matrix, see [43, 11, 54, 10, 49].
Em&ad mass matrix M and stiffness matrix K have to be assembled. The
lumped mass matrix gTs already computed, but the stiffness matrix K is sparse

and not computed in an explicit code. Another lumped matrix g must be assembled.

One way to express the diagonal terms of the stiffness matrix is to start from its
definition which is B*DB. The compression wave modulus M, see Equation (2.46),
can be given as an upper bound of the matrix D.

4
M=K+ gG = p.c3, (2.46)

with K the Bulk modulus and G the shear modulus. This sum, equivalent to p.c3,
and the product été, gives an upper bound of the diagonal term of the stiffness
matrix:

nep

Kf = p.c) Z Volg, ( a Z |aNj
Gp

5% 0y 0y aN])

(2.47)
By definition, the lumped stiffness matrix gives a maximum eigenvalue which is
larger than the one obtained with the true stiffness matrix:

WM K < MK (2.48)

max — max
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2. Implementation and use within the Radioss Solver

The eigenvalue of M 'K is then computed as:

Winaz = (2.49)
Then, the associated time increment is:
2 2
At=— = ————. (2.50)
We K5
max ( M{i)

Considering the partition of unity, each diagonal term of the stiffness matrix is
equal to the sum of the absolute values of the non diagonal terms. It follows another
definition of the diagonal values of the lumped stiffness matrix, depending on the
non-lumped stiffness matrix:

Ko =0 Y Volay (G2 + (507 + (GEP ) = SIksl (o)

Gp JFi

K¢ = 2K¢. (2.52)

The eigenvalue definition of M 'K coming from Equation (2.49) becomes:

K.
mar — 2 & 5 2.53
w max(Mi‘) (2.53)
and
2 M.
At = =1 /2mi “). 2.54
= min() (2.54)
My

The same safety factor of % is applied to the nodal time increment to be sure
that stabitily is preserved.

2.3.1.3 The power iteration method

A third way to estimate an isogeometric time increment is to use the power iteration
method. This method was introduced by Wilkinson [105] and used for the first time
by Benson [11] for FEA, and later for IGA [14, 15, 16]. This method approximates
the largest eigenvalue of a given system taking into account all the boundary condi-
tions, including contact phenomena. To be able to apply this method, M 'K has to
be symetric and positive-definite. In summary, this matrix must be di;gorralizable.
In the case of Radioss, the mass matrix is diagonal and meets these conditions.
Considering the matrix M _1£ of dimension n X n, its eigenvalues are supposed to
be all different. Thus, %’IQ has n eigenvalues \q,..., A, such as:
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Critical time increment for 3D isogeometric analysis

Defining uy, ..., u, the associated eigenvectors. xg is a vector R" with magnitude
1 which is decomposed as follows:

To = le% (2.56)
i=1

The series of x4 = (M_lg).xk is computed by:

zp = (M K)" .2, (2.57)
o= MM (2.58)
=1
Factoring A¥ we obtain:
k - >\k 1
e =N () (LK), (2.59)
i=1 n

k
Since i—k tends to 0, the predominant term in the previous equation is

Aﬁ.(M‘lg)n.%. After a few iterations we estimate the highest eigenvalue:

[E7sY

el

|An| 2 (2.60)

and the associated eigenvector:

Uy 2 T (2.61)
If we end up in the case where |\,| is too high, we can normalize the serie,

following:

97
T = ——. 2.62
2 = (2:62)

The time increment associated to the highest eigenvalue |\,| is:

2
|An]

As such, the power iteration method is computationally too expensive to be
used at each time step. A more efficient way in terms of computational cost
compared to time increment gain is to use a second estimate of the critical time
increment, such as nodal stiffness or elemental stiffness, and to establish a ratio
r = AtPIT J Ngelement = Benson [11] proved that this ratio changes relatively slowly

compared to the time increment value for most nonlinear cases. Only one or two

At . (2.63)
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2. Implementation and use within the Radioss Solver

iterations are sufficient to update the time increment with the power iteration and
we will check that this ratio » does not change too much. The calculation of this
ratio is much less expensive than the complete calculation of the power iteration.
As long as this ratio remains approximately constant, we can consider that the
estimated time increment At,,q, = r x Atéement jg valid. In case of variation beyond
a limit error, new iterations must be performed to readjust the time increment and
this ratio. According to our observations on nonlinear simulations, it takes about
twenty iterations at the beginning of a computation to have a good value, then at

each update, only one or two iterations are enough to readjust the value.

In practice, the implementation of the power iteration in Radioss safely limits
the amplification factor of the time increment to 1.2 times per time step. The
estimate of the maximum natural frequency is automatically deactivated if the
ratio r obtained does not reach a given minimal value. This saves computing costs
for problems with too strong nonlinearities and for which the power iteration is no
longer interesting. In this way, this estimate of the critical time increment can be
constantly used during the simulation. This method combining two estimates of
time increments makes it possible to minimize the costs of the power iteration while
benefiting from a gain that remains important. To ensure the robustness of the
estimation in cases which have strong non-linearities and do not cause the system
to diverge, a scaling coefficient of 0.9 is still applied to the resulting time increment.

2.3.1.4 The boundary influence on the time increment

Adam et al. [1] studied the fact that boundary elements penalize the critical time
increment due to the reduced length of the basis function support. As only open
knot vector are used, the boundary functions have a C° continuity, which is reduced
compared to interior functions. The element time increment is directly impacted
by the boundary elements size, and the nodal time increment is impacted by the
accumulation of control point near the boundary. As such the external elements
drive the time increment, no matter the estimation method. Omne solution could
be to expand the size of these elements. Another solution is to use mass scaling
techniques [81, 82, 25, 83, 49]. These methods modify the material properties such
as the density of the smallest elements, generally the external ones, to involve a mass
improvement and directly improve the time increment. However, this modification
can change the physics of the problem and can reduce the quality of the results.

2.3.2 Critical time increment comparison: Square Taylor bar
impact

A comparison of the time increment estimates was done in 1D for uniform and non
uniform mesh by Adam et al. [1]. To compare the accuracy of these estimates on a
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Critical time increment for 3D isogeometric analysis

three-dimensional problem, a Square Taylor bar impact simulation is introduced.

2.3.2.1 Model definition and boundary conditions

This simulation consists in a square rod impacted on a rigid wall with an initial
velocity of 227 m.s™!. The rod is 32.4 mm long and has a side of 3.2 mm. This
simulation can be refered to experimentations and numerical studies done for
cylindrical rod cases by Rakvag et al. [88, 87]. Several materials and impact
velocities are given in theses experimentations and allow to see an extended range
of behavior, see Figure 2.10(b). Experimentations done for cylindrical rod show
that the high velocity impact causes severe deformation at the rod’s extremity. It
will cause mesh distortion in the corresponding simulations for elements near the
lower end of the rod, dramatically reducing the stable time increment during the
solution. We have used the square version of the Taylor bar for comparison with
the reference example available in the Radioss database.

227 m.s’!

32 mm

v, =

(a) (b)

Fig. 2.10: a) Boundary conditions and B-Splines quadratic C! mesh. b) High-

speed video image from Taylor bar impact tests with nominal impact velocity of

300 m.s~!. The image shows typical impact for an unhardened cylindrical projectile
with mushroom deformation, from [88].

In this case, an isotropic elasto-plastic material with a Johnson-Cook plasticity
model is used to represent the copper behavior. It is a Von Mises elastic, perfectly
plastic material. The Young’s modulus is set to 110000 MPa, the yield stress is
defined as 314 MPa, the density is 8970 kg.m > and the Poisson ratio is 0.3. The
boundary conditions and dimensions are shown in Figure 2.10(a). The model used
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2. Implementation and use within the Radioss Solver

here is a C' quadratic B-Spline patch which represents one quadrant of the rod,
due to the inherent symmetry. The B-Spline patch is composed of 256 elements.
Corresponding knot vectors are given in Table 2.6. The appropriate boundary
conditions prescribed on each of the two symmetry planes for the problem are
defined. On the bottom face of the rob, the vertical component of the kinematic
fields is fixed. The other components are free. An initial vertical velocity of
227 m.s~! is imposed on all the control points.

‘ Direction ‘ Order ‘ Knot vector ‘
5 p:2 E - [070707}17%7%717171]
n q:2 H = [070707i7%7%717171}
¢ r=2 Z=10,0,0,75,%,..., 15,10, 1, 1,1]

Table 2.6: Knot vectors for the square Taylor bar impact mesh.

Kamoulakos [63] gives the total equivalent plastic strain expression at the center
of the rod for the cylindrical rod case:

ca-c: y
gp=——(V— —
P C%C, pCp

with Cp and C), respectively the elastic and plastic waves speeds and V' the initial

velocity of the rod. This value will be considered as a reference value in the square
rod case.

) = 2.02, (2.64)

2.3.2.2 Results

Simulation result is shown in Figure 4.2 and reproduce the mushrooming behavior
observed in [88]. From this figure it is clear that extremely high plastic strains
develop at the crushed extremity of the rod, close to the center of the bar, and
result in severe local mesh distortion.

Power iteration estimates of critical time increment and related variables are
given in Figure 2.12. Figure 2.12(a) gives the power interation time increment esti-
mated during the simulation and Figure 2.12(b) the ratio between power iteration
time increment estimate and nodal stiffness one. Figure 2.12(c) and Figure 2.12(d)
give the number of iterations needed for the power iteration algorithm to converge
to the maximum eigenvalue of the model.
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Plastic Strain
[ 2.630E+00
‘ 2.337E+00
= 2.045E+00
— 1.753E+00
— 1.461E+00
= 1.169E+00
= 8.766E-01
5.844E-01
[ 2.922E-01
0.000E+00

Max = 2.630E+00

Fig. 2.11: Plastic strain for the C! quadratic NURBS mesh.

We see on these figures that the maximum eigenvalue of the Taylor bar
considerably increases when the bar is crushed, see Figure 2.12(d). The number
of iterations needed to converge also increases, see Figure 2.12(c), but the power
iteration still gives a higher time increment estimate compared to the nodal stiffness
one, see Figure 2.12(b).

Another model composed of 20 nodes quadratic FE (520 in Radioss element
library) is introduced. Element density is identical as the B-Splines model, to
compare the computational time and the quality of the given solution. It can be
noticed that for the same density of elements, the B-Spline model is composed of
648 control points whereas the FE mesh is composed of 1505 nodes, due to the C*
continuity of the B-Spline functions. All the boundary conditions and kinematic
fields are identical to the previous ones. Figure 2.13 shows plastic strain results
for both models, and Figure 2.14 gives the evolution of time increment during the
run for B-Spline model with the three estimates and for FE for comparison. Safety
factors are used for each estimate, in accordance to the classical usage in Radioss,
i.e, 0.67 for the nodal and element time increment, and 0.9 for the power iteration.
When looking at Figure 2.14, it is clear that nodal time increment and element
time increment are overconservative compared to the power iteration one which
is continually increasing until the crushing of the Taylor Bar. We see steps for
the time increment calculated with the power iteration that come from the limit
imposed on the amplification factor set at 1.2 per time step. The time increment
given by all the estimation methods is then reduced dramatically over the course of
this analysis as a result of the large changes in element aspect ratio. The power
iteration method allows to have an optimal time increment all allong the simulation
and reduces the total computational time. No matter the estimate used, the

63

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI102/these.pdf
© [M. Occelli], [2018], INSA Lyon, tous droits réservés



2. Implementation and use within the Radioss Solver
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Fig. 2.12: Power iteration estimates of critical time increment and related variables.

B-Spline model has a time increment quite higher than the FE one. The number of
element is the same between the B-Spline model and the FE one, however the C*
continuity inside the patch allows us to have fewer control points but also allows to
obtain a better time increment.

Table 4.1 groups information about all meshes in terms of number of elements
and number of nodes/control points. It also gives minimal time increment during
the simulation, computational time and total number of time steps in the case
where the scaling factor applied to the estimated time increment is set to its higher
value, i.e., setting at the limit of divergence. In this case the time increment will
not be constant. The higher value that can be reached will allows to compare the
efficiency of the model and the basis functions without taking into account the
overconstraining safety factor. For comparison purposes, the results obtained with
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Plastic Strain Plastic Strain
2.751E+00 2.630E+00
[2.446E+00 [ 2.337E+00
2.140E+00 2.045E+00
— 1.834E+00 — 1.753E+00
= 1.529E+00 — 1.461E+00
= 1.223E+00 =~ 1.169E+00
9.171E-01 [ 8.766E-01
6.114E-01 5.844E-01
E3.057E-01 [ 2.922E-01
0.000E+00 0.000E+00

Max = 2.751E+00 Max = 2.630E+00

Y f e
&

(a) (b)

Fig. 2.13: Plastic strain: a) C' quadratic B-Spline mesh, b) 20-nodes Lagrange
quadratic mesh.

014 T T T T T T 1 T
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Fig. 2.14: Evolution of time increment for each estimate method for the B-Spline
model and nodal stiffness estimate for the FE model.

the finite element model are considered as a reference, values for other models are
normalized with respect to these ones. This table shows that B-Spline based model
can be at least 40% faster, mainly due to a much higher time increment, about 6
times higher, which greatly reduces the total number of time steps. The quality of
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2. Implementation and use within the Radioss Solver

the obtained solution is also better for the B-Spline model, with a maximum plastic
strain closer to the reference value.

| | S20 Lagrange | B-Spline Quad C" |

Number of elements 256 256
Number of nodes 1505 648
Relative time increment 1 6.25
Relative number of time steps 1 0.28
Relative total CPU time 1 0.56

| Maximum Plastic Strain | 271 | 2.630 |

Table 2.7: Comparison table for both meshes in the case of the security scaling
factor applied to the time increment is set to its maximum value.

2.4 Isogeometric contact

Since its introduction, IGA showed the capacity to better represent complex ge-
ometries and to increase the accuracy and robustness compared to standard finite
element method. Omne of the areas of interest is contact mechanics, in which the
higher continuity of basis functions and smooth geometry description have potential
advantages in the description of interacting surfaces undergoing large displacements
and large sliding. Several contact formulations within the IGA framework were in-
troduced in this framework and were presented in the first chapter. Their complexity
and their easy-to-implement aspect in industrial codes is to be taken into account
when considering them, especially in Radioss which is a rather complex existing
code. In the context of this study, an existing node to segment contact interface
was chosen to integrate the B-Spline models. This choice allows to benefit from the
efficiency of the existing algorithms, like sorting and contact candidates selection,
by minimizing the programming effort required. The so called "Type 7 contact in-
terface", see [106], has been chosen. The contact formulation in the Radioss Type
7 interface is based on the node to segment formulation and uses a master/slave
treatment with nonlinear penalty. Master segments are defined depending on the
type of element they lie on. If it is a 3-node or a 4-node shell, the segment is the
surface of the element. If it is a solid element, the segment is defined as the outer
face. This formulation is similar to the single-pass algorithm introduced by Matzen
et al. [75].
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Isogeometric contact

2.4.1 Isogeometric external surface fitting

In the case of B-Spline or NURBS patches, the fitting of the outer surface follows
the bilinear quadrilateral collocation scheme introduced in [13, 14|. The fitting is
done at the element level introducing a set of so called ghost points which define
bilinear segments. Each isogeometric element is fitted by 16 ghost points for one
element outer face, i.e. 4 ghosts points by direction, according to a constant step
into the knot interval of the element which depends on the normal direction of the
outer element face, see Figure 2.15.

Control points

Fig. 2.15: Fitting of the surface of a quadratic B-Spline geometry. The Spline
surface and the control points are drawn in black. The blue points are the ghost
points.

The knot corresponding to the parametric normal direction of the element is set
to +1 or —1, depending on the outer side. The two other knots take the following
values, for the 1" element, with j € [1,...,4]:

E?host _ gz + (j—1)stepe

n?ot = i + (j—lzstepn: (2.65)
nghost — i+ (j—1)35t€p<7
with
stepe = %,
step, = 1L (2.66)
stepe = S

Physical coordinates and velocities are then computed for each ghost point:
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2. Implementation and use within the Radioss Solver

nctrl

lghost _ Z Nj (gghost’ 77ghost7 Cghost)gj’ (267)
7j=1

nctrl

Qghost _ Z Nj (gghost’ nghost’ CghOSt)Qj- (268)
J=1

Updating points coordinates. These ghost points lie on the physical surface
and are to be moved in accordance to the surface displacements during the the
simulation. The update of these coordinates requires a similar computation than
for their creation, using the associated stored parametric index.

Slave and master side segment creation. The 16 ghost contact points of one
element face are directly used for the slave side. 9 segments are then constructed
for each isogeometric element external face from the ghost contact points on the
master side. Figure 2.16 shows the red ghost points created for one slave element
according to its parametrisation and its control points. On the master side, the
blue ghosts points also created according to the element define all the 9 master
segments, also plotted in blue.

2.4.1.1 Contact nodes merging

The surface fitting procedure will create some duplicated ghosts points, since some
adjacent elements allow the creation of several ghost points located geometrically
in the same position, as can be seen in Figure 2.17. In that case, a research and
sorting routine is needed for geometric duplicates after the ghost point generation.

This routine performs a sorting according to the three real coordinates of the
ghost points which then makes it possible to quickly eliminate the duplicates. Sort-
ing is based on a well-known algorithm called quicksort, see [53]. Unidimensional
quicksort is an efficient sorting algorithm that is commonly used in industrial codes.
This algorithm is modified so that the sorting is done hierarchically according to the
three coordinates of the points in space. The result of this sorting is an elimination
of these duplicates and the number of ghost points decreases quite significantly, but
the link between a ghost point and some parent elements is lost.

2.4.1.2 Data structures

The ghost points data associated with the isogeometric surfaces are stored in an
allocated structure, see Figure 2.18, which contains several tables:
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e Slave ghosts points

Slave side

Slave control points

Master "segment"

Fig. 2.16: Definition of the slave and the master surface of two quadratic B-Spline

geometries. The Spline surface and the control points are drawn in black. The blue

side is the master side with the segments built with the ghost points. The red side
is the slave side with the associated ghost points.

e The XIVE and VIGE tables contain all three coordinates and three velocities
in the physical space of each ghost point;

e The NIGE array contains the number of the parent element of each ghost
point. It allows to differentiate points from one element to another, or from
one patch to another;

e The RIGE table gives each ghost point position by real values corresponding
to its the position with respect to its parent element ([—1 1];[—1 1];[—1 1]).

2.4.1.3 Contact stiffness distribution

The computation of the contact stiffness is done in a routine which treats each of the
interfaces. This procedure makes it possible to define an interface stiffness that can
be related to the stiffness of the slave ghost points or to the master ghost segments,
depending on the option.
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2. Implementation and use within the Radioss Solver

(c) (d)

Fig. 2.17: Merging procedure of the ghost contact points created to fit the physical

contact surface and eliminate the geometricaly duplicated ones. a) B-Spline contact

surface with the corresponding external control points and four elements to be fit-

ted, b) Ghost contact points creation on the physical surface for each of these four

elements, c¢) set of geometricaly corresponding ghost contact points at the edge of

elements which have to be merged, d) result of the merging according to the physical
coordinates of the ghost contact points.

2.4.1.4 Disadvantages of the non-smooth surface

The disadvantages coming from the non-smooth discretization of B-Spline surfaces
are not excluded. The B-Spline surface discretization costs will have to be added
to the total computational costs of the interface. However, the quality of this
discretization and the number of contact segment and contact ghost nodes should
improve the robustness and the overall performance compared to a contact with
the same element density in conventional FEA.
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Master segment N;j

Nighostl NighostZ N?hostZ NighostZ Eli_typ‘Nel;i)arent ‘Njghostl N?hostZ NJghostZ NJghostZ Elityp‘NEVJ-’a'e”t
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| G ¢
XIGE / VIGE y v \ v
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Y| Y, Y,

zZ| 4 Z,

Fig. 2.18: Data structure for ghost contact points definition according to the master
or the slave side.

Moreover, the results of the node to surface algorithm, also called single-pass
algorithm [75] is strongly dependent on the discretization and on the choice of slave
and master surfaces. Some common recommandations specify that it is necessary
to have a finer slave discretization than the master one to avoid penetrations.

A double-pass version of the node to surface algorithm [13, 14] can also be
defined to avoid these penetrations but it make the system overconstrained. A single-
surface algorithm [12] which corresponds to a two-pass node to surface formulation
combined with an efficient contact search scheme can be a solution to obtain a
non-overconstrained model.

2.4.2 Node to surface contact for isogeometric quadrangular
segments

The defined ghost points on the master side will be used to define an isopamaretric
space according to the segment:

71

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI102/these.pdf
© [M. Occelli], [2018], INSA Lyon, tous droits réservés



2. Implementation and use within the Radioss Solver

Hi=(1-s)(1-1)/4,
Hy = (14 s)(1—1)/4,
Hy = (14 5)(1+1)/4, (2.69)
Hy = (1—s)(1+1)/4.

The distance between a ghost slave point and a segment is computed making a
projection of the ghost point on the segment and measuring the distance between
them. The isoparametric coordinates (s,t) of the projected point are computed
using the quadrangular segment’s coordinates and a system of two equations, see
Equation (2.70).

ON; = HHON; + H,ON5 + HsON3 + HyON,,
ﬂ == (1 — t)NlNQ + (]. + t)N4N37

E = (1 — S)N1N4 + (1 + S)NgNg.

(2.70)

The normal vector N; N, at the point NNV; is then computed with the cross product
of the vectors s; and t;, see Figure 2.19 and Equation (2.71).

_ (sixty)
"= e 27

Fig. 2.19: Calculation of the normal vector on the projected point.

The distance from the slave ghost point to the segment is defined as:
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Isogeometric contact

D =[N 272)

The contact is activated if the distance between the node and the segment be-
comes smaller than the gap, i.e. if the node penetrates within the gap, given by
P = max(0,Gap— D). The penalty method estimates the normal component of the
contact force as a nonlinear penalty force:

F=KxP, (2.73)

with the penetration P and the nonlinear stiffness K. The initial value of K is
calculated using a combination between stiffness of each slave and master side.
After initial penetration, the stiffness is given as a function of the penetration
distance and the rate of penetration. The resulting contact force is then applied to
the node Ng, see [106].

This computed reaction force and the contact stiffness have to be distributed
between the four nodes Ni, No, N3 and N, on the master side according to the
corresponding shape functions, see Figure 2.20, following:

Fi934=N(si,t:)F, (2.74)

where N(s;,t;) is the interpolation function for the quadrangular segment. The
equation is similar for the stiffness repartition. We have

P+ F+ 3+ F=—F.

(2.75)

2.4.2.1 Contact forces repartition at control points

The contact forces and the contact stiffnesses located at the 4 ghost points of the
contact segments on the master side, given in Equation (2.74) are brought back to
the control points of the element thanks to the NIGE and RIGE table which link
the ghost points to the parent element, see Figure 2.21:

nctrl

Elgont — Z Nz (éghost’ ,rlghost7 CghOSt)E7 (276)
=1

nctrl

K?ont _ Z N; (gghast7 ,r]ghost7 CghOSt)K- (277)
=1

On the slave side, the process is the same with the ghost point associated to the
master segment. The contact forces and stiffnesses are added to the internal forces
and stiffnesses to solve the equilibrium equation.
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2. Implementation and use within the Radioss Solver

Fig. 2.20: Contact force repartition on ghost points for master side.

2.4.2.2 Self-contact and hybrid contact FE-IGE

The Type 7 interface can be used for self-contact by defining only one surface that
will be both described as a master and slave surface. The ghost points of the
patch may therefore be candidates for contact with segments that are adjacent to it,
with a certain proximity limit. This interface will then operate as two symmetrical
interfaces between two different geometries. With the Type 7 contact interface, both
IGA and FEA element can be used. It allows to compute hybrid models with contact
between IGA and FEA geometries. Several simulations cases will be introduced in
Chapter 4, and will illustrate self-contact or hybrid contact.

2.4.2.3 Contact time increment

The contact interface stiffness will be added to the stiffness associated with the
element control points, and by definition will impact the critical time increment
depending on the intensity of the contact. The more abrupt is the contact, the more
important is the penetration and the nonlinear interface stiffness. It will decrease
the nodal time increment. The interface uses nonlinear penalty, that is to say that
it will benefit from the non-penetration of the slave surface on the master surface
provided that both meshes are properly prepared. The element density should be
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Isogeometric contact

Fig. 2.21: Contact forces repartition at control points for each side.

larger for the master side than for the slave side to limit the penetration values.
A kinematic time increment is nevertheless associated with the contact interface,
defined as follows:

D
Atcontact N 2.78
2v7 ( )

with V' the velocity of the slave node and D the distance between the slave node and
the master segment. In the case of the contact would be to strong, this kinematic
time increment will allow to keep a correct time increment while preventing the slave
node to penetrate the master surface.

)
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2. Implementation and use within the Radioss Solver

2.4.3 Isogeometric Contact: Cam-Valve system

In order to test the previous algorithm in the Radioss solver and to illustrate its
ability to simulate a dynamic behavior and a kinematic motion, a cam-valve system
is introduced.

2.4.3.1 Model definition and boundary conditions

The camshaft of a car takes the rotary motion of the engine and translates it
into the linear motion required for operating the intake and exhaust valves. The
cam is rotating with an angular velocity of 314 rad.s™', which interacts and
triggers the translation of a valve tied to two springs, attached to the two valves.
The superposed springs have varying stiffness, 30000 N.m™' for the first and
15000 N.m ™" for the second one. The springs control the higher and lower angular
frequencies. The valve has a radius of 44 mm, the cam has a height of 36 mm and
a width of 18 mm. Boundary conditions and dimensions of this model are given in
Figure 2.22.

Fig. 2.22: Boundary conditions and meshes. a) Cam and valve dimensions, b) C!
NURBS quadratic mesh and c) 8-nodes Lagrange linear mesh.

The cam and the valve are both meshed with 5 quadratic NURBS patches. The
corresponding knot vectors are similar for each patch and are given in Table 2.8.
A FE mesh is also defined with 8-nodes bricks (HA8) to compare the contact
representation and the obtained results.
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Isogeometric contact

‘ Direction ‘ Order ‘ Valve’s knot vector ‘ Cam’s knot vector ‘
é p:2 E: [070707%717171} E: [070707;%7%7%717 17 ]‘j|
n q=2 | H=10,0,0,3,1,1,1] H =10,0,0,3,1,1,1]
¢ r—2 =0,0,0,1,1,1] Z =10,0,0,1,1,1]

Table 2.8: Knot vectors for each patch of the cam and valve models.

The material used for the cam and the valve is steel. For this simulation, an
isotropic elastic model is used. Steel has an initial density of 7.8 x 1072 g.mm™!,
a Young modulus of 210000 MPa, a Poisson ratio of 0.3. The Type 7 interface
is used to model contact between the valve’s planar surface and the cam’s curved one.

2.4.3.2 Results and observations

The kinematics of the simulation is shown on Figure 4.7 and the graph on Figure 4.8
provides the velocity of the valve’s master node versus time.

z z z
T fo Y b){ Y b){
~o. ~o ~o

Fig. 2.23: Cam and valve positions during the simulation.

The raw results obtained are noisy due to the fact that isogeometric elements
are linearized for contact algorithms and the penalty method applies discontinuous
forces. The oscillations correspond to each application of a contact force to the
valve. It can be noticed that these oscillations have a similar amplitude between
the two models, even if the NURBS element density is lower than the FE one.
Indeed, despite the fact that the size of the finite elements on the circumference
of the cam is smaller than the coarse NURBS one, the linearization of the

7
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2. Implementation and use within the Radioss Solver

6,000 \
—  FE mesh
QI_YI,OOO ‘ fB Spline mesh | |
527000 "
>

Vertical velocit
dl\)
=)
o
[an]

A A/

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s) 1072

|
=)
=)
S
S

Fig. 2.24: Valve’s master node vertical velocity.

quadratic elements NURBS multiplies the number of contact segments by 3 per di-
rection. It makes the NURBS contact surface discretization almost as fine as FE one.

A smooth velocity curve, see Figure 4.9, is obtained by using a low pass filter.
The filtering quality depends on the number of samples which in this case is the
number of points computed by Radioss for each curve. We can see that despite
some small variations, the behavior is very similar.
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Fig. 2.25: Filtered valve’s master node vertical velocity.
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3D Local refinement: Locally Refined

B-Splines implementation
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3. 3D Local refinement: Locally Refined B-Splines implementation

In the industrial field, mesh engineers who use explicit industrial codes are used
to follow mesh size recommendations that depend on the part and the type of
simulation to be performed. They take into account the geometric non-linearities of
the parts to be meshed, the boundary condition application areas, etc. Generally,
these instructions are given by the office of the methods. It is common to find 5 mm
or 2.5 mm size meshes, and models are often discretized in a uniform way, see for
example Figure 3.1. Despite the fact that it provides quality results, these meshes
are very fine, very costly and require the use of parallelism. Car crash simulations
are a good illustration of this.

Fig. 3.1: Simulation result of an entire car crash with dummies. The model is
composed of 10 millions elements with a mesh size of 2.5 mm.

Other simulations can use adaptive meshes where we can have several mesh
sizes, hierarchical meshes and so transition areas. This is quite often the case for
stamping simulations where the mesh size adapts according to the areas which are
strongly loaded or distorded. Obtained results are good, but these methods are
quite complex to implement in industrial codes with classical architecture and are
also costly.

The classical B-Spline based IGA has been implemented in several implicit and
explicit codes and showed accuracy and robustness on academic cases. The use of
B-Splines for industrial cases is however less easy since the associated global tensor
product prevents local refinement when it is needed, see Figure 3.2. The challenge
of local refinement methods for B-Splines is then to introduce new types of basis
functions, which always allow to apply the minimum mesh size recommendations
in non-linearity areas and to have a bigger mesh size elsewhere. Transition
areas are therefore important in explicit simulations since they avoid elastic
wave return phenomena. These local refinement methods implemented within
Radioss are not adaptive, they therefore require the experience of the mesh engineer.
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Brief comparison of Spline functions for an implementation in an explicit solver

After comparing several Spline basis functions allowing local refinement, the
work aims to implement the LR B-Spline technology in Radioss explicit code. The
existing structures have in their center the element are not really adapted to the
integration of a formulation which has the patch or the control point as central
point. Some modifications or implementation choices had consequently to be done
in order to perform it use in Radioss.

(a) (b) (c)

Fig. 3.2: Illustration of the local refinement issue for B-Splines: (a) initial mesh,
(b) tensor product refinement, (c¢) targeted local refinement.

3.1 Brief comparison of Spline functions for an im-
plementation in an explicit solver

Spline functions can be summarized and compared taking into account all the
characteristic needed for their implementation in an explicit code, i.e. linear inde-
pendence, partition of unity, no overloaded elements, available 3D implementation,
implementation constraints within Radioss, see Table 3.1.

The choice of the locally refined functions has been greatly influenced by
the fact that according to the functions it is possible for one element to have
more than (p + 1) control points per direction with p the degree polynomial
function. Structures related to existing elements in a finite element code are
usually designed and used for a fixed number of "nodes". This number of "nodes"
depends on the element type and the polynomial degree of its shape functions
but is never changed. The Hierarchical and Truncated B-Splines were dismissed
in part because of this consideration. The main reason for the search for this
minimal number of functions being initially guided by the need to maintain
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3. 3D Local refinement: Locally Refined B-Splines implementation

| | HB-Splines | THB-Splines | LRB-Splines

|

| Partition of unity v/ x| v | v |

‘ Linear independence ‘ v ‘ v ‘ v/ X ‘

‘ No overloaded elements ‘ X ‘ X ‘ v/ x ‘
Implementation constraints

(no nested structure) % v

Table 3.1: Comparison of Spline technologies.

linear independence, it is all the more important in terms of integration into
already existing data structures. LR B-Splines can ensure this constraint under
conditions and has been chosen as the best compromise to implement inside Radioss.

3.2 Locally Refined B-Splines

Locally Refined B-Splines, introduced by Dokken et al. [37|, allow to avoid the
NURBS and B-Splines global tensor product constraints and permit for the con-
struction of a basis on a more general mesh which may include T-junctions.

3.2.1 Definition

As presented earlier, LR B-Splines use a local knot insertion for local refinement.
In 1D, inserting one new knot £ in a local knot vector Z; of a B-Spline function
B=, will split the function into two new ones Bz, and Bz, depending the following
expression:

BEz(f) = alBE1 (5) + OQBEz (5)7 (31)

The local knot vector Z; is then split in two local knot vectors =; and =Z,, with the
same length depending the polynomial degree of Bz, :

= [517§27 "'7&—1’ Aé.iu “'7§p+17€p+2]a
1=[6,8 61,86 S (3.2)
2 :[ 527"'75’571757&7"'7£p+17€p+2]'

(11 [11 [1]

The coefficients a; and ay are given as follows:
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Locally Refined B-Splines

é-¢ : ;
o= GG ?f GSEsbm
1 if fp+1 Sﬁ < fp+2
1 it & <E<&

Epra=€ :
e T & <E< G

(3.3)

A set of quadratic B-Spline basis functions with a global knot vector
==10,0,0,1,2,3,4,5,6,7,8,8,8] is used to illustrate this. The basis is composed
of 10 functions with 10 associated local knot vectors. At the beginning, each basis
function has a defined scaling weight v = 1. A new knot £ is to be inserted in this
basis, see Figure 3.3.

I\
o / ’ A

T S e A S e

Fig. 3.3: Knot insertion for 5: 4.5: Dashed curves is the original functions to be
split. Light blue functions will not be modified since the new knot is outside of their
support.

The new knot E will split 3 existing basis functions, plotted in dotted blue line
in Figure 3.3. The split and the calculation of o; and as for each of these functions
has to be done independently, see Figure 3.4. The associated scaling weight of the
new fonctions is then calculated following:

=1y and 7y = oy, (3.4)

respectively for the left and the right new basis functions.

Then, the resulting functions B=, and B=, have to be replaced in the entire basis.
If one of the two resulting functions is not already present in the basis, it is simply
inserted. If it already exists, due to the split of a contiguous function and a previous
insertion of a new one, it will modify the weight v according to the relation:

Vexisting = Vexisting + a;7y;. (35)

The resulting basis is given in Figure 3.5
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3. 3D Local refinement: Locally Refined B-Splines implementation

6 3 4 45 5 6
(b) (c)

Fig. 3.4: Knot insertion for E = 4.5 in the 3 dashed B-Spline basis functions of
Figure 3.3. The colored ones are the resulting functions. Notice that new B-Spline
functions that have the same support are in the same color.

1

| / |

G 7 3 3 S 8 g 8

Fig. 3.5: Result of knot insertion for & = 4.5 in the quadratic basis.

3.2.2 Mesh lines and 2D refinements

In 2D, a local knot vector is defined for each B-Spline basis function with an extent
of [p+ 1] x [¢ + 1] where p and ¢ are the polynomial degrees by direction. An
illustration of some 2D quadratic basis is given in Figure 3.6.

The split of basis functions in the patch in 2D is done by inserting a so-called
mesh line. A mesh line is defined by a specific knot value £ or 7 to be inserted in
one of the two directions and by an interval in the other direction [n;,72] or [£1, &)
This knot interval corresponds to the mesh line length. The specific knot value can
be assimilated as the inserted knot value in 1D cases. A given mesh line is said
to traverse a B-Spline B; if it passes through all of its support, see Figure 3.7(a).
Only in that case the mesh line will split one or several B-Spline functions. As
a comparison, we can see in Figure 3.7(b) another meshline that is not extended
enough to split any B-Spline function.

One B-Spline B; can thus be split at the knot E or n and will also introduce
two new B-Splines By and B, like in 1D, in one of the parametric direction. The
replacement of the two new B-Splines in the existing space will update them if they
already exist, i.e., if there is already a B-Spline function with the same local knots.
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Locally Refined B-Splines

N

8,8,8
;]
6 1 = X H;
* . . . . . . . . 1 [1727374] X [3747576]
4 2 [6,7,8,8 x 10,0,1,2]
PO I N N N ) B [7,8,8,8] x [7,8,8,8]
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Fig. 3.6: B-Spline basis function support for a 2D quadratic patch, colored in light
orange with the corresponding control point C; in the parametric space and local
knot vectors for the three arbitrary given B-Splines.
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(a) (b)

Fig. 3.7: A mesh line is defined by a specific knot value f and by a span in the

other parametric direction [y, 7s]. a) The mesh line traverses entirely the support

of a set of 3 B-Splines at E, b) The mesh line is not extended enough and will not
split any functions.

It will create new ones if not.

In a 2D space of functions we realize that the use of local knot vectors rather
than global vector allows to overcome the global tensor product. Each function
has a completely independent support compared to its neighbors and can be split
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3. 3D Local refinement: Locally Refined B-Splines implementation

by inserting a mesh line. The length of the mesh line is then arbitrary and the
refinement is no longer extended to the edges of the patch.

Crossed refinements Since the models are no longer unidirectional, we can end
up in cases of multiple and potentially crossed refinements, i.e., with intersecting
meshlines. Inserting a meshline at a given knot value will create or modify functions
that can in turn be split by existing meshlines in the other parametric direction.
Indeed, these B-Spline functions see their local knots modified by the first meshline
and can therefore be entirely traversed by other old meshlines. This is called "cross-
checks" of functions, see Figure 3.8.

N+ &

i )

No—5—F 1

(a) (b)

Fig. 3.8: Crossed refinement: a) The blue mesh line traverses entirely the support
of 4 functions at 7 b) One of the resulting functions of the blue mesh line is cut by
the existing red mesh line of Figure 3.7(a)

3.2.3 Extension to 3D refinement

Even if LR B-Splines were initially introduced for uni-variate and bi-variate cases
[37], this technology can be extended to the trivariate one. Some informations were
given in appendix in [57] about this extension. As explained earlier, there is no
particularity to the 3D usage of LR B-Splines and the basis functions can also be
given with local knot vectors and their support can be split in the same way. This
allows the mesh line extension to higher dimension.

In 3D, refinements are generated using mesh surfaces which are the counterparts
of mesh lines in 2D. A mesh surface is defined by a specific knot value &, 7 or
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The linear independence issue

Z‘Which gives a normal direction, and by a bounded surface by knot coordinates
in the other two directions. Once again, one or several B-Splines B; which are
traversed entirely by a mesh surface will be split. A very simple quadratic 3D case,
where the mesh surface is a rectangular surface, is illustrated in Figure 3.9. It
shows the mesh surface components, i.e. the new knot ¢ and the rectangular surface
(11, m2] X [C1, (], before the split of the B-Spline functions. The black functions
with a support that is completely traversed by the mesh surface will be split. For
better understanding, a simplified way to see a mesh surface is to project it in a
parametric plane at the depth of the inserted new knot, i.e. on the (7, () plane at
the depth E, at the bottom left in Figure 3.9. In 3D, more than in 2D, the number
of crossed refinements can be important and there may be at each mesh surface in-
sertion of a large number of these secondary splits in each other parametric direction.

Fig. 3.9: Mesh surface is defined by a normal direction with a specific knot value
¢ and by a span in the other parametric direction [y, ns] and [(1,(s]. The mesh
surface is projected on planes (£,7), (n,¢) and (¢, &) for a better visualization.

3.3 The linear independence issue

A LR B-Spline basis is said to be linearly independent if it ensures the following:
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3. 3D Local refinement: Locally Refined B-Splines implementation

n

Z CiBi(ga n, C) - 07 V(€7 7, <) ER=c¢ = OVZ, (36)

i=1

with ¢ = 1,n the set of B-Splines of the base, depending on the dimension of the
base. In 1D, a knot insertion shifts the bounds of the local knots of the LR B-Spline
functions and the constructed LR B-Spline base is linearly independent. In 2D
and 3D, the knot insertion is a little bit more complex and this property is not
guaranted, as it will be illustrated for quadratic meshes.

Based on the work of Bressan [23], Bressan and Jiittler [24], we will consider
that a sufficient condition to guaranty the linear independence property is to have
no overloading. As a reminder, a trivariate element R = [£1,&] X [n1,m2] X [(1, (o]
of polynomial degree p, ¢ and r will be said overloaded if there are more than
(p+1)(g + 1)(r + 1) non-zero B-Spline functions with support on R.

The linear independence and the non-overloading aspects are important in terms
of implementation and the subsequent use in the data structures of a solver, as will
be shown later.

3.3.1 Analysis of 2D refined mesh

A 2D similar refinement to the refinement pattern given of Figure 3.2(c) is defined
in the (£,n) plane with the corresponding knot vectors. It is studied for a quadratic
basis. All non-zero B-Spline functions for two elements are listed in Figure 3.10
and Figure 3.11 and show overloading in this quadratic patch. Notice that for the
second overloaded element, the number of function is 13, whereas it should be 9.

This 2D refinement scheme, although it is often used to illustrate local refine-
ment, is not suitable for LR B-Splines. Moreover, in the context of an explicit
finite element code, it is customary to have refinements that are established in a
progressive manner. To have a refinement too sudden risks to cause a rebound of
elastic waves because of the discontinuity of the mesh. In the case studied here, the
refinement is too abrupt and is similar to hierarchical refinements, with too small
transition areas.

3.3.2 Improved full span refinement scheme

Johannessen et al. [57] addressed the overloading and the linear independence loss
problem through three refinement schemes, called min span, structured mesh and
full span. Whereas the first two ones give overloaded elements in very simple cases,
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The linear independence issue
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3 [0,051,2 x [0,0,0,0.5]
4 [0,0,0,05] x [0,0.51,2]
14 5 [0,05,1,2] x  [0,0,0,1]
6 (0,001 x [0,051,2]
7 [0,0,1,2] x  [0,0,1,2]
> [ . 8  [0,1,2,2]  x  [0,0,1,2]
0.25 4 ¢ 9 [0,0,1,2] X 0,1,2,2]
000 Lol o | & 10 [0,1,2,2] x  [0.1,2,2]
0,00 025 05 1 2,2,2
Fig. 3.10: Non-zero LR B-Splines on [0.25,0.5] x [0.25,0.5]. This element is over-
loaded.
i E; X H;
n
22, . 1 [0,0,0,025] x [0,0,0,0.25]
2 10,0,0.25,0.5] X [0,0,0.25]
3 [0,0,0,0.25] x [0,0,0.25,0.5]
¥ ‘ 4 [0,0,0.25,0.5] x [0,0,0.25,0.5]
5 [0,0,05,1] x  [0,0,0.5,1]
N 6  [0,051,2 x [0,0,0,0.5]
7 [0,0,0,05] x [0,0.5,1,2]
8  [0,051,2 x  [0,0,0,1]
05 - } . 9 [0,0,0,1] x [0,05,1,2]
sl 10 [0,0,1,2] x  [0,0,1,2]
B £ 11 [0,1,22]  x  [0,0,1,2]
008 035 05 1 22 12 [0,0,1,2] x 0,1,2,2]
13 0,1,2,2]  x  [0,1,2,2]

Fig. 3.11: Non-zero LR B-Splines on [0,0.25] x [0,0.25]. This element is also
overloaded.

the full span scheme can be used but only for rectangular refinements.

A 2D refinement of a L-shaped domain is given as an example of non-rectangular
refinement. The refinement of the left and the lower parts of a 2D mesh forms
an L, see Figure 3.12 for a quadratic basis. In this case, the corner of the L is a
re-entrant one and the full span scheme does not avoid the presence of overloaded
elements. The set of overloaded elements is highlighted in blue in Figure 3.12.
This overloading is partly due to the too large extent of the highlighted quadratic
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3. 3D Local refinement: Locally Refined B-Splines implementation

function and to too many refined elements in the corner.

3

>
»

Fig. 3.12: L-shaped refinement of a 2D basis of quadratic functions losing the
linear independence property. The red function partly cause tue overloading of gray
elements.

The solution to recover a non overloaded basis is to discard the refinement in one
direction for the first p elements near the corner. We have two solutions depending
on the order in which we refine the parametric directions, see Figure 3.13. In this
way, one comes to reduce the number of refined elements in the re-entrant corner
but it is no longer overloaded.

Several working refinement shapes can be obtained with this scheme, like
cross-shaped refinement, stair-shaped refinement or refinement with re-entrant
corner, and the absence of overloaded elements is ensured. In conclusion, we
conjecture that with this choice of the full span and the improved full span schemes
we will always be in a subset of the linearly independent LR B-Spline basis without
overloading which are analysis suitable.

3.3.3 Extension to 3D refinements

The same linear independence and overloaded elements issue is found for 3D cases.
The higher complexity of the trivariate case and the possibly secondary splits
obtained after a mesh surface insertion might induce that some of the element of
the resulting mesh can be overloaded, with random shaped refinements.
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The linear independence issue

(a) (b)

Fig. 3.13: Modification of the refinement of p elements by direction of the entering

corner, see Figure 3.12, to keep the non overloaded mesh. These elements are now

refined in one direction. The number of new functions introduced is reduced and

avoids their overlapping. Illustration of the vertical refinement for Figure 3.13(a)
and horizontal for Figure 3.13(b).
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3. 3D Local refinement: Locally Refined B-Splines implementation

As said earlier, regular 3D models are not more than extension in the third
parametric direction of 2D regular models. The scheme of the regular tridimen-
tionnal mesh can then be resumed as the corresponding 2D scheme. Keeping in
mind that point for regular models, it comes that a 3D refined one can be seen as
a set of 2D models at several given knot depths, and this is true for all the three
parametric directions. It means that a corresponding planar mesh can be found each
time there is a knot value in the global or local knot vectors for the normal direction.

Even if a direct extension of the full span or the improved full span refinement
scheme stays possible, it would be very complex. So, for 3D LR B-Spline refined
model, these schemes have to be applied on each 2D slice of the three directions of
the model, at each knot depth.

An example of 3D refined model with several mesh sizes, giving a progressive
and tridirectionnal refinement is given in Figure 3.14. Some of the corresponding
2D slices can be extracted and show full span schemes. It can be seen that the
refinement scheme is applied at several levels to obtain the smoothness of the
refinement, giving an analysis-suitable model.

Another 3D refined model is given in Figure 3.15, showing this time the improved
full span scheme application. In this refinement, several levels of the improved full
span are used, also in order to ensure the analysis-suitability of the model. We can
notice that if we project the 2D models corresponding to the outer faces, we find
full span schemes.

3.4 3D LR B-Splines implementation in Radioss

LR B-Splines were applied to IGA by Johannessen et al. [57, 58|, but, to the
best of our knowledge, not in an explicit software. Their characteristics are
however adapted to their use and their 3D extension capability proposed in [57]
is particularly interesting for crash simulations using solid models. However, the
use of local refinement methods implies having a preprocessing software capable
of generating the appropriate meshes and parameterizations, like classical IGA.
It is also necessary that the preprocessor has the ability to check the important
properties for the analysis as the no overloading condition for the case of LR
B-Splines. To this date and to our knowledge, there is no such tool available.

The 3D LR B-Splines have been implemented inside the Radioss solver con-
sidering that the refined model has been previously defined in a unique and static
way. Radioss solver has to interpret the refinement instructions, possibly to ver-
ify that the result is analysis suitable, and to refine the regular model of the input file.
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3D LR B-Splines implementation in Radioss

7000050030}

71177

Fig. 3.14: Refinement applied following the pattern of full span on all three sides
and inside a cube. There is no overloaded element. The gray planes are the different
sections illustrating the diferent levels of refinement in one of the three directions.

3.4.1 Refinement instructions

The same element property introduced in the previous chapter is used to defined lo-
cally refined elements and the refinement instructions are given by the pre-processor
for each initialy regular isogeometric element. Each element can be cut in 2% finer
elements, with L an arbitrary number defining the minimal mesh size and ¢ the
parametric direction.

Defining the refinement in that way, we keep a finite element point of view in
the input file and let the basis functions and their split to be treated inside Radioss.
There is no need to define local knots in the input file for example. The global knot
vectors and the element connectivity are still given in the data file as an unrefined
model. It is a way of limiting the amount of information that has to be given
through the input file and facilitates the user usage. The input file documentation
for the locally refined isogeometric element will be available in the Radioss online
help and is included in the appendix A.

All other commonly used data such as global knot vectors by direction or element
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3. 3D Local refinement: Locally Refined B-Splines implementation

%

T R

W' 000000000000000000000080880aa8,

Fig. 3.15: L-shaped refinement taking into account the remark on the re-entrant
corners refinement. There is no overloaded element. Grey planes show hided faces
where can be retrieved a full span pattern on all three sides.

connectivity do not change with respect to an unrefined model.

3.4.2 Unit mesh surface creation and basis functions sorting

The case of a unit mesh surface creation is presented here for simplicity and illus-
tration purpose. In the general case, a refined model will use several mesh surfaces.

3.4.2.1 Mesh surface creation

The rectangular mesh surface, introduced in Figure 3.9, is the 3D extension of
the meshline and is defined by two extended knots [57]. Its generalization in
3D can be widened by defining it by a set of parametric coordinates forming a
non-secant polygon, see Figure 3.16. With this generalization, we limit the total
number of mesh surfaces compared to its previous definition for the same refined
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3D LR B-Splines implementation in Radioss

mesh since there is no need to group the rectangular mesh surfaces that are adjacent.

Mesh surfaces are built by grouping elements to be refined in the same way, see
an example in Figure 3.16(b) at a given ¢ depth. From the element list, description
of the elements of the same parametric plane, a normal parametric value E is
defined as the new knot to be inserted. Then a surfboard is defined from this set of
elements and from &.

C C
8,8,8 8,8,8
7 7
[n2.C1 - 1ns&s1 -
6 6
5 5 |
[N4,Cal | ENns,Cs]
4 4
3+ 3
24 24
14 1
S n [n1.¢11 . | . | . | .  [neGel n
0'0'0 T T T T T T T 0'0'0 T T T T T T T >
000 1 2 3 4 5 6 7 888 000 1 2 3 4 5 6 7 888
(a) (b)

Fig. 3.16: Arbitrary mesh surface creation from element refinement instructions

given by the user in the input data file. a) Neighbors elements from the same

parametric plane which are to be refined in a similar way. b) Resulting mesh surface
contour.

We can notice that we do not have the case of a mesh surface extension as
described in [57]. Indeed, this particular mesh surface definition avoids having to
take into account this aspect.

3.4.2.2 Sorting of functions to be split

The sorting of functions cut by the mesh surface is not done on all the model, as
there would be too many functions to test. The connectivity tables of the selected
elements give a list of functions in which one can be sure that all functions to
be refined are there. These are necessarily functions that will be non-zero on the
selected elements. The functions of Figure 3.16 to be refined are given in Figure 3.17.

This mesh surface creation and basis function selection split the minimal
number of shape functions that results in the refinement of the elements selected
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3. 3D Local refinement: Locally Refined B-Splines implementation

g
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Fig. 3.17: Neighbors B-Spline functions which are cut by the mesh surface of
Figure 3.16(b) are set to be split.

by the user. However, if the user does not provide enough elements or an element
area that results in a mesh surface that does not completely cut any function, the
element will not be refined.

__ Figure 3.18 gives the 3D illustration of the defined mesh surface at a given
¢ depth. We can see on each direction the mesh surface projection and all the
functions to split.

3.4.2.3 Refinement algorithm

Johannessen et al. [57| give the split algorithm and refinement processus, for the 2D
case. It is generalized to be used in 3D in this work. The procedure implemented
in Radioss can be summarized in 3 steps:

e Considering the element point of view, group the information of the elements
to be refined, i.e., parametric direction and number of refinement. Group these
elements and construct the mesh surface that corresponds to the refinement
of this element or group of elements.

e Depending on the local knot vectors that are stored in memory, find and split
any B-Spline whose support is completely cut by the new mesh surface, see
Algorithm (2) and Algorithm (3).

e For all new basis function split, check if their support is completely traversed
by any existing mesh surface. In this case, split it again according to this
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3D LR B-Splines implementation in Radioss

Fig. 3.18: Arbitrary-shaped mesh surface from Figure 3.16(b) inside the 3D mesh.
3D mesh with projection of mesh surface and B-Spline functions in each plane. Bold
functions are to be split.

existing mesh surface.

with ¢; the spatial coordinates of the i'" control point. This algorithm is very
similar to the one introduced in Johannessen et al. [57|. However, the complexity
of a model and a 3D refinement induces that there are many more basis function
modifications by existing mesh surfaces than for 2D cases.

3.4.3 Illustration on a multi mesh surfaces case

Let us take now the case of a quadratic B-Spline patch composed of 3 elements
to be refined several times. Refinement instructions are given in the input file to
refine one of the elements quite finely in all three directions. The refinement of the
neighboring element is defined to obtain a transition area between the fine level
and the coarse level. Usually, the notion of level refers to Hierarchical B-Spline
function levels. In our work, what is called refinement level corresponds to an area
of the mesh which has a given size of elements.
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3. 3D Local refinement: Locally Refined B-Splines implementation

Algorithm 2 3D LR B-Spline refinement, from [57]

S {Spline space}
1. parameters: M {LR mesh}
e {Mesh surface}

2: for every B-Spline B; € S do

3: if € splits B; then

4: perform split according to Algorithm (3)

5: end if

6: end for

7: for every B-Spline B; € S, do

8: for every existing edge ¢; € M do

9: if €; splits B; then

10 perform split according to Algorithm (3)
11: (Note that this may enlarge S,,.,, further).
12: end if

13: end for

14: end for

The initial mesh and the refinement instructions are given in Figure 3.19.

¢

Element Number of cut in
& | | ¢
1 4 4 4
2 2 2 2
3 1 1 1

¢

Fig. 3.19: Initial mesh and refinement instructions.

Following the method set out earlier, a set of mesh surfaces equivalent to the
refinement of elements can be defined for each of the three directions. They are

given by parametric direction in the figure Figure 3.20.

We can also note that the red surface mesh of the figure Figure 3.20 does not

only cut the first element, but also the second one.

With the set of defined mesh surfaces, sorting and splitting B-Spline functions
can be done. As mentioned in [57], this process has to be done one mesh surface
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3D LR B-Splines implementation in Radioss

Algorithm 3 Local £-split for the 3D case, from [57|

3 {New knot}

B; {B-Spline to be split (B; € 5)}

S {Spline space}

Snew {Functions not present in S}

calculate (aq, ag) from Equation (3.3)

=+ SORT(ZUE)

E1 4 (€15 §pral

Ey (€255 §prs]

U+ U,

Uy +— U,

AR

Zg — Zz

if (Z1,9,7;) € S then
a  (amn + cvian)/(m + 1)
Y1 Yo

. else

GG

Y1 QY

add B to Syew

. end if

: if (25, V9, Z5) € S then

€2 ¢ (272 + civica) /(72 + 02%i)

Y2 £ Y2 T QY

. else

G2 G

VYo < Q2%

add Bs to Syew

. end if

: remove B; from S.

1: parameters:

I R R R N R R N R O N o T e T e T e T e T o S S
i I B O TR CR =

after the other, to be able to split all B-Spline functions for the actual mesh surface,
but also to find all secondary splits with old mesh surfaces.

The resulting refined mesh is given in Figure 3.21. The initial colors of element
are used for the corresponding refined elements.

3.4.4 Transition areas and refinement extents

The refinement is based on a regular initial mesh, considering that elements can
be refined according to the powers of 2. This constraint implies that refinements
have a given extent. Let’s take as an example the refined mesh of Figure 3.2(c) and
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3. 3D Local refinement: Locally Refined B-Splines implementation

Normal Number of mesh
Direction surfaces
§ 4
i 3
¢ 3

Fig. 3.20: Equivalent mesh surfaces corresponding to the refinement instructions.

Fig. 3.21: Resulting refined mesh.

define the size of the finest elements as the refinement goal. Another initial model
is given and the refinement instructions are given in order to obtain this element
fineness without having overloading. These two meshes are given in Figure 3.22.

In Figure 3.22(a) the transition area consists in L — 1 elements between a level 0
and a level L with nested refinements in one direction. For the same mesh fineness
and with the full span scheme, there will be 3.7 2/=! elements in Figure 3.22(b).
As a reminder, the full span scheme requires to have mesh surfaces that are
extended on the 2 elements that are adjacent to the refined area.

To summarize, there are more elements in the transition area, due to the
non overloading constraint. This remark is of course valid for each of the three
parametric directions. It is all the more the case since a refined element of level
L comes from an initial element which has been cut in 2¥ finer ones. From a
level 2, each element refinement will create more than 4 finer elements. The mesh
surfaces extension evoked just before will be larger than necessary. That said, the
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3D LR B-Splines implementation in Radioss

(a) (b)

Fig. 3.22: Target refinement versus analysis-suitable refinement for quadratic
meshes.

recommendations on the refinement smoothness in explicit go in the same direction.
The more the refinement will be progressive, the better will be the mesh.

3.4.5 Critical time increment and computational cost aspect

The stable time increment is proportional to the size of the finest element. So if we
refine a given mesh to obtain a finer one, the time increment will be decreased by 2
or more. The total computational cost will increase since the number of time steps
is driven by the time increment.

The goal of local refinement is not to have even finer elements. It is rather to
locally define coarser mesh areas in places where the strains or the contact are less
important and which will not affect the overall quality of the solution. It will make
it possible to start from a coarser model and to go up to the minimal size of elements
that would have been necessary to apply in a global way to a non locally refined
mesh. In conclusion, the time increment will not be smaller.

Computationnal cost of LR B-Spline basis function estimates The work
of Cottrell et al. [28] was very often used to implement the IGA in implicit or
explicit solvers. The shape functions and their derivatives calculation procedure has
been designed to use the power and advantages of the global tensor product within
the B-Spline or NURBS patch. The cost of calculating this type of shape function,
although more complex than Lagrange polynomial functions, is not excessive. It
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3. 3D Local refinement: Locally Refined B-Splines implementation

can be largely compensated by the gain in computing time provided by the critical
time increment in explicit.

However, the local refinement methods implementation forced us to break the
global tensor product. Local knot vectors per control point replaced the global
knot vectors by patch. As a result, the estimation of shape functions and their
derivatives can no longer be done by parametric direction but must be done in a
unitary way. The initial calculation procedure must be replaced by the algorithm
provided by Piegl and Tiller [86]. Since this procedure is much slower, it is still a
limitation to the use of refined meshes in explicit codes.

This constraint is not only related to Locally Refined B-Splines. All refined Spline
basis functions presented here can not be used with the classical shape function
estimation method. Research efforts must be done to speed up this unitary estimate,
by optimizing algorithms or by keeping in memory a certain number of invariant
values.

3.4.6 Infinite plate with a hole

This study illustrates the phenomenon of stress concentration in an infinite plate
with hole subject to an infinite traction. An infinite plate with a hole of diameter
d = 2mm at the center is subjected to a tensile stress T, = 10 MPa assumed to be
uniform and constant at its ends. The aim is to determine the stress concentration
around the hole.

The problem is quasi-static linear in small deformation. The geometry and the
boundary conditions being symmetrical, only a quarter is modeled. The infinite
plate is thus represented by a finite 3D plate model in plane strains, see Figure 3.23.
Choosing a circular outer edge instead of a square shaped edge allows to mesh the
geometry with only one quadratic NURBS patch and to have C! continuity inside.
It avoids the C° continuity between patches in the case of a square representation
with two quadratic NURBS patches.

The analytic solution given by Timoshenko and Goodyear [100] provides the
analytical displacement at the plate edge as follows:

T, 2R? R
U, = 8 (T(/i + 1)cos(0) + 7((% + 1)cos(0) + cos(30)) — 2r_3608(30>) . (3.7)

U, = L (T(/i — 3)sin(0) + 27133((1 — k)sin(f) + sin(360)) — 2%52’71(39)) , (3.8)
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Fig. 3.23: Infinite plate with circular hole subjected to far-field tension and circular
representation of the plate with boundary conditions, from |77]

with kK = 3 — 4v for plane strains and p = 2(1—1/) The analytical solution for stress
fields is also given as follows:
T,—T. R2 (3605(29) + cos(40)) + T. Sl cos(40) (3.9)
Oge = g — L=\ 3 TS o ) .
r? "2 212
R* 1 3R
Oyy = —Tmﬁ(écos(%) — cos(40)) + Tmﬁcos(ll@). (3.10)

The displacements are computed at the boundary of the domain and applied as
a Dirichlet boundary condition.

It can be verified that the maximum stress is at the edge of the hole on an axis
perpendicular to the stress field direction, i.e. precisely at the position:
™

r = R; = 10mm, 925. (3.11)

The stress concentration coefficient is defined by the relation:

Kt — Omazx _ @ _
T, 10
The results for LR B-Spline mesh are given in Figure 3.24 and are compared to
those obtained with a square representation and two NURBS patches, provided by
Cottrell et al. [28].

(3.12)
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oiyiiia Ax
2.537E+01
I: 2.252E+01
— 1.967E+01
— 1.682E+01
1.397E+01
1.112E+01
8.267E+00
5.417E+00
2.567E+00

-2.832E-01
§ No result

Max = 2.537E+01

T

L.

(a)

Fig. 3.24: Normal stress o,, for the infinite plate, a) for the quadratic LR B-Spline
model and b) for quadratic NURBS model, from [28|.

These simulation results are consistent with the analytical study and the nu-

merical results given |28|. The maximum stress value is 25.37 MPa, giving a stress
concentration coefficient of 2.5.
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4. Applications - Numerical examples

In this chapter, few numerical examples will be reviewed, illustrating the B-
Splines and LR B-Splines implementation capabilities.

4.1 Square Taylor bar impact

This simulation is the same as paragraph 2.3.2. Three models are used here and
represent one quadrant of the rod, due to the inherent symmetry: C! quadratic
B-Splines, C' quadratic LR B-Splines, both with only one patch, and one finite
element model with 20 nodes quadratic FE (S20 in Radioss element library).
Element densities are identical for the first and third models, that is 256 elements.
The LR B-Spline model has the same element density in the bottom-part of the
bar, but 50% coarser on the upper-part of the bar, which results in 124 elements in
total. These meshes are given in Figure 4.1. The appropriate boundary conditions
prescribed on each of the two symmetry planes for the problem are defined. On the
bottom face of the bar, the vertical component of the kinematic fields is fixed. The
other components are free. An initial vertical velocity of 227 m.s~! is imposed on
all the node/control points.

T 5 <

Fig. 4.1: Discretization used for the square Taylor bar case. a) FE 20-nodes
quadratic model, b) C! quadratic B-Spline model and ¢) C* quadratic LR B-Spline
model with local refinement.

Results and observations

Results are shown in Figure 4.2 and reproduce the mushrooming behavior observed
in Rakvag et al. [88]. From these figures it is clear that extremely high plastic strains
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Square Taylor bar impact

Plastic Strain Plastic Strain Plastic Strain
2.751E+00 2.630E+00 2.534E+00
[ 2.446E+00 [ 2.337E+00 [ 2.252E+00
2.140E+00 2.045E+00 1.971E+00
— 1.834E+00 — 1.753E+00 — 1.689E+00
— 1.529E+00 — 1.461E+00 — 1.408E+00
= 1.223E+00 = 1.169E+00 = 1.126E+00
9.171E-01 8.766E-01 8.446E-01
6.114E-01 5.844E-01 5.631E-01
3.057E-01 2.922E-01 2.815E-01
0.000E+00 0.000E+00 0.000E+00

Max = 2.751E+00 Max = 2.630E+00 Max = 2.534E+00

Fig. 4.2: Plastic strain on all three models at the end of the calculation. a) FE
20-nodes quadratic model, b) C! quadratic B-Spline model and ¢) C*! quadratic LR
B-Spline model with local refinement.

develop at the crushed extremity of the rod, close to the center of the bar, resulting
in severe local mesh distortion. Kamoulakos [63] gives the total equivalent plastic
strain expression at the center of the rod for the cylindrical rod case:

cz-c2 y
Ep=—m—(V— —
P C%C, pCE

with Cg and C, respectively the elastic and plastic waves speeds and V' the initial

velocity of the rod. This value will be considered as a reference value in the square
rod case.

) =2.02, (4.1)

Quadratic FE | C! quad C!' quad LR
S20 B-Spline B-Spline
Number of elements 256 256 4x11416x5=124
Number of nodes 1505 648 388
Relative time increment 1 6.25 6.25
Relative number of time steps 1 0.28 0.28
Relative total CPU time 1 0.56 0.66
| Maximum plastic strain | 271 | 2630 | 2.534 |

Table 4.1: Results comparison for all three models. FE ones are used as a reference.

Table 4.1 groups informations about all meshes in terms of number of elements
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4. Applications - Numerical examples

and number of nodes. It also gives minimal time increment during the simulation,
computational time and total number of time steps. For comparison purposes, we
have considered as a reference the results obtained with the finite element model,
values for other models are normalized with respect to these ones. This table shows
that Spline based models are at least 40% faster. This is mainly due to a much
higher time increment for those models, about 6 times higher, which greatly reduces
the total number of time steps. The number of element is the same between the
B-Spline model and the FE one, however the C! continuity inside the patch allows
us to have fewer control points. The LR B-Spline model emphasizes this point even
more because of the coarser discretization on the upper-part of the rod. Only the
lower part is strongly deformed. The quality of the obtained solution is also better
for the Spline models, with a maximum plastic strain closer to the reference value.

4.2 Axial crushing of a thin-walled beam

The dynamic axial crushing of a thin-walled rectangular box beam against a rigid
wall is a typical benchmark in transient simulations. It is a conventional energy
absorption device that is applied especially for frame structure of land and railway
vehicles. Several experimental and numerical studies were done on this industrial
case, see, e.g. Jusuf et al. [59]. and Figure 4.3(b). The purpose of this example is
to study the discretization influence on simulation results, comparing a classical
FE model and a B-Spline one, for geometric non-linearities with self-contact and
buckling.

The model we consider is taken from Radioss example library. It represents an
aluminium hollow beam, leaned on its lower face and crushed by a rigid wall on the
upper face with a descending vertical initial velocity of 13.3 m.s™!. The boxbeam
has a thickness of 0.914 mm, a hollow square section of 50.8 mm by 38.1 mm and
a height of 203 mm, see Figure 4.3(a). A 0.1% random noise is introduced on the
entire structure, on control points/nodes coordinates to trigger the buckling. This
perturbation is different from the one used in Benson et al. [14], Belytschko et al.
[10] where it is positioned at a specific height from the base and not on the entire
box beam. As will be seen in the results, imposing such a perturbation triggers
the buckling on the upper-part of the beam and not where the perturbation is
imposed. Only a quarter of the beam is modeled due to the inherent symmetry of
the problem. The appropriate symmetry boundary conditions are prescribed. The
B-Spline parametrization of the quarter boxbeam is done with two patches, using
one cubic element through the thickness and C! quadratic elements in the other
directions. The FE model is composed of piecewise linear 8-nodes elements (HAS8
in the Radioss element library), with a similar element density. A Type 7 interface
is used to capture the self-contact during the crushing.
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Came-valve system

An isotropic elastic plastic material with user-defined isotropic hardening is
used. Young’s modulus is set to 60.4 GPa and the yield stress is 90 MPa. The
initial density is 2.7 x 1072 g.mm ™2 and Poisson’s ratio is 0.33. Boundary conditions
and dimensions are given in Figure 4.3(a).

V=133 ms

- 0.914 mm

Clamp
support Impactor

Load cell |

Gas gun

Specimen ‘ Gun projectile

'/

é - High speed f
camera

L Guiding table

&

=

Computer

(a) (b)

Fig. 4.3: a) Dimensions, boundary conditions and mesh for the B-Spline model. b)
High speed impact testing machine, from Jusuf et al. [59].

Results and observations

The final deformed shapes are given in Figure 4.4. The computed models have been
symmetrized for visualization purpose. We can see that both Radioss models have
the same buckling mode: same number and same height of plies. The crushing
response (resultant force) on the rigid wall is plotted in Figure 4.5. It shows at the
very beginning of the computation a similar normal force intensity for both models.
This peak corresponds to the first contact between the hollow beam and the rigid
wall, which triggers the buckling.

4.3 Came-valve system

This example illustrates the same case as in paragraph 2.4.3. The cam and the
valve are both discretized with 5 patches. For the LR B-Spline model, local
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Boxbeam shape deformations: deformed structure reconstruction using
symmetry projection for B-Spline model and FE model.

T
FE mesh
—— B-Spline mesh | |

(N)

Normal force

Time (ms)

Fig. 4.5: Normal force on the impactor.

refinement has been performed on the outer row to better represent the contact

surface with the valve. The FE model is meshed with piecewise linear bricks (HAS8
in the Radioss element library).

Results and observations

Figure 4.8 provides the velocity of the valve’s master node as a function of time.
The raw results obtained are noisy for all models. This is due to the faceted
description of the geometry in the contact algorithm, as explained in section 2.4.

The oscillations correspond to each application of a contact force to the valve.
Note that for the LR B-Spline mesh, they have a smallest amplitude compared
to the two others. The LR B-Spline element size on the circumference of the
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Stamping simulation

i L

a) b) c) d)

Fig. 4.6: Dimensions, boundary conditions and meshes. From left to right : a)
Cam and valve’s dimensions, b) C! quadratic B-Spline mesh, ¢) C' quadratic LR
B-Spline mesh and d) FE linear 8-nodes mesh.

z
¥ L‘“’X

Fig. 4.7: Cam and valve positions during the simulation, for the LR B-Spline
model.

cam is smaller than the FE one, consequently the LR B-Spline contact surface
discretization is much finer. It results in a slightly smoother response. Due to the
local refinement, the oscillations are drastically reduced.

A smooth velocity curve can be obtained by using a low pass filter. The filtering
quality depends on the number of samples which in this case is the number of points
computed by Radioss for each curve. The smooth velocity curves are shown on
Figure 4.9. Results of all the models are nearly identical.

4.4 Stamping simulation

This example consists in the stamping process of a steel sheet. The stamping tools
include a punch, a die and a blank holder. The initial thickness of the metal sheet
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Fig. 4.8: Valve’s master node vertical velocity.
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Fig. 4.9: Filtered valve’s master node vertical velocity.

is 1 mm, the length is 483 mm and the width is 281.4 mm. A resultant force of
200 kN is vertically applied on the blank holder in order to flatten the sheet against
the die. We apply an evolving vertical velocity on the punch with a maximum
value of 5 m.s™!. Taking symmetry into account, only one half of the structure
is modeled. Parts, boundary conditions and loads are shown in Figure 4.10. The
punch is shown in yellow, the blank holder in transparent green and the die in blue.

The sheet is colored in orange.

An isotropic elastic plastic material with isotropic Jonhson-Cook hardening is
used. The material parameters are 210 GPa for Young’s modulus and 270 MPa for
the yield stress. The initial density is 7.8 x 1073 g.mm ™2 and Poisson’s ratio is 0.33.
We consider four different models to represent the sheet: an adaptative piecewise
linear 4-nodes shell model (QEPH in the Radioss element library), a piecewise
linear 8-nodes model (HAS in the Radioss element library), a C' quadratic B-Spline
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Cylindrical tube under external pressure

-

200 kN Punch

<«— Blanck holder

Fig. 4.10: Half-model exploded and boundary conditions.

model, and a C' quadratic LR B-Spline one. LR B-Spline model allows to reduce
the number of elements from 2048 to 1326. The number of control points is reduced
to 2574. All the three solid models use one element through the thickness. The
other parts, the punch, the blank holder and the die are meshed with FE triangular
rigid shell elements. Final shape deformations are given on Figure 4.11.

Results and observations

The final shape of the sheet is studied. Table 4.12(b) lists the amounts of draw-in
in the X, Y and diagonal directions named by DX, DY1, DY2, DXY1 and DXY2
at punch travels of 69 mm, see Figure 4.12(a). In comparison with the two values
obtained with FE models, B-Spline and LR B-Spline models seem to be a little
stiffer than the FE shell one but a little softer than the FE solid one. Figure 4.13
shows that the most stressed zones are located at the edges of the punch. The Von
Mises stress is up to 584.9 MPa for all four models, well above the initial elastic
limit of the material. We can see in Figure 4.14 the maximum plastic strain for all
four models, corresponding to the stressed areas.

4.5 Cylindrical tube under external pressure

This example illustrates the nonlinear buckling of an aluminum cylindrical tube
under external pressure, with self-contact. Experimental tests have been performed
by Farhat et al. [42], see Figure 4.15. Numerical simulations were performed with
isogeometric shells by Benson et al. [14].

The cylindrical tube has an internal radius of 19 mm and an external radius of
19.7 mm, a total length of 177.8 mm. Two plugs at the ends of the tube apply an
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Fig. 4.11: Half-model shape deformation for all models, for a 69 mm punch travel.
the C*

From left to right: the adaptative FE Shell model, the FE S20 model,

quadratic B-Spline model and the C! quadratic LR B-Spline model.
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(a)

| | DX | DY! |DY2 | DXY1 | DXY?2 |
| Adaptative FE Shell | 238.0 | 192.8 | 187.4 | 348.3 | 357.5 |

FE S20 227.8 | 196.6 | 175.6 | 350.1 | 328.9
C' quad B-Spline 233.5 | 197.1 | 180.4 | 356.3 | 336.3
C' quad LR B-Spline | 233.9 | 199.7 | 180.4 | 357.1 | 337.2

(b)

Fig. 4.12: Distances between corners and edges and the center of the sheet for a
half-model shape deformation. b) Draw-in for the sheet (unit: mm) for a 69 mm

punch travel. Results comparison for all four models.

114

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI102/these.pdf
© [M. Occelli], [2018], INSA Lyon, tous droits réservés




Cylindrical tube under external pressure

Von Mises stress
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Fig. 4.13: Von Mises stress on all half-models, for a 69 mm punch travel. From left
to right: the adaptative FE Shell model, the FE S20 solid model, the C! quadratic
B-Spline model and the C! quadratic LR B-Spline model.

Plastic Strain
7.231E-01 7.214E-01 9.922E-01 1.037E+00
[6429E—01 [6413E—01 [8.821E-01 [9 221E-01
5.627E-01 5.611E-01 7.719E-01 8.072E-01
— 4.825E-01 —4.810E-01 —6.617E-01 —6.921E-01
I4.024E-01 = 4.008E-01 I5.515E-01 + 5.769E-01
3.222E-01 = 3.206E-01 4.414E-01 = 4618E-01
2.420E-01 2.405E-01 3.312E-01 3.467E-01
1.618E-01 1.603E-01 2.210E-01 2.315E-01
8.164E-02 8.016E-02 & 1.108E-01 1.164E-01
1.465E-03 0.000E+00 6.717E-04 1.239E-03

Fig. 4.14: Plastic strain on all half-models, for a 69 mm punch travel. From left to
right: the adaptative FE Shell model, the FE S20 model, the C! quadratic B-Spline
model and the C! quadratic LR B-Spline model.

axial compression, which is correlated with the imposed pressure, see Figure 4.15.
These plugs are inserted over a length of 25.4 mm. An external pressure is applied
to the cylinder, reproducing the pressure difference between the inside and the
outside. This pressure is carried out in a ramp of 1 ms then is held constant until
the equilibrium of the structure.

An isotropic elastic plastic material with a user-defined isotropic hardening is
used. For this simulation, the alloy has a Young’s modulus of 69.5 GPa, a yield
stress of 227 MPa. The initial density is 1073 kg.m ™ and Poisson’s ratio is 0.3.

Figure 4.16(a) illustrates the boundary conditions and the dimensions. Only
one half is modeled due to the symmetry. The compressive loading imposed by
the fluid pressure on the end plug is modeled by a distributed force on the planar
end surface. The kinematic boundary conditions corresponding to the rigid contact
between the tube and the plug are modeled by imposing zero radial displacement on
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Fig. 4.15: Kyriakides’ experimental protocol and boundary conditions. Pictures
taken from Farhat et al. [42]. Note that dimensions on the right picture were con-
verted to the metric system for consistency.

the corresponding surface. The cylinder is parametrized using three C! quadratic
NURBS patches, with C interfaces between each of them. A C° circumferential
line is added to represent the boundary between the constrained and free portions
of the tube. The imposed external pressure is applied with a ramp of 1 ms then is
held constant until the equilibrium of the structure is reached.

We use a mesh composed of 960 quadratic elements, keeping the fact that
only one element is used through the tube’s thickness. Two kinds of geometric
perturbation are introduced, distributed on the cylinder section in order to trigger
the buckling in the third mode. These distributed noises are defined scaling the x
and y coordinates of the control points by 1+ 1isc0s(36) and 1+ tiscos(3x (0 — 3)).
The first noise configuration will push outwards the C° patch interfaces, pushing
inwards the middle of each patch. The second configuration does the opposite. A
Type 7 interface is used to capture the self contact of the inner surface of the cylin-
der. Cross sections of the two perturbed geometries are shown on Figure 4.16(b).

Results and observations

Simulation results and final deformed configurations are presented in Figure 4.18
and show relatively good agreement. The experimental results showed a critical
pressure of 2.827 MPa. This experimental pressure is used as a reference. For the
first perturbation, the critical pressure needed to trigger the buckling on the third
mode is 2.930 MPa, i.e. a corresponding error of 3.6% with the analytic reference.
The final shape shows the apparitions of three kinks at the lobes, certainly due to the
C° continuity accross patch interfaces. The second perturbation leads to a different
final shape. The kinks are still located at the patch interfaces. The deformed shape
is closer to the experimental one in this case, since the experimental deformed con-
figuration has a kink at the triple contact point on the cylinder axis, see Figure 4.18.
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Cylindrical tube under external pressure

Axial compression

Axial compression

Fig. 4.16: Boundary conditions, mesh and noise repartitions (highlighted at 5%
for better visualization). The original shape is also given.

Fig. 4.17: Kyriakides’ experimental result, from [14].

The buckling pressure with the second configuration is relatively higher. We
obtain a value of 3.448 MPa, which corresponds to an error of 22%. This difference
in the buckling pressure could be an indication that the mesh is not fine enough
to obtain a converged solution. This situation might be amplified by the relative
alignment of the geometric perturbation and the C° patch interfaces.

A mesh twice finer in the circumferential direction has been used with both
perturbations and show identical results. Both simulation results show the same
final deformed shape, which is different from the previous ones, but much closer
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Fig. 4.18: Buckling of the meshes with the two noise configuration. a) Kinks

appear on the lobes with a buckling pressure of 2.930 MPa. b) Kinks appear at the

cylinder’s center with a buckling pressure 2.827 MPa. Both figures are extracted
when the equilibrium of the structure is reached.

Fig. 4.19: Same deformed shape for both finer meshes. The appearance of sidelobes
buckling can be noticed. Buckling pressure of 2.41 MPa, when the equilibrium of
the structure is reached.

to the experimental one. We can note that with such discretization the geometric
perturbation is not mandatory anymore to trigger the buckling in the third mode.
The critical pressure required to cause the buckling is lowered to 2.41 MPa, which
coresponds to an an error of 14.7%. This is lower than the experimental buckling
pressure. Nevertheless, we can remark that the cylinder bounces back outward after
its implosion, and creates the secondary lobes near the axis, see on Figure 4.19.
These secondary lobes are missing from the experimental results, and have been
reported by Benson et al. [14].
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Cardboard box drop test

4.6 Cardboard box drop test

This example models the drop test of a simplified cardboard box on its corner and
edge. The interest of this example is that it combines in the same model several
contact interfaces and a hybrid discretization with FE elements and B-Splines. The
cardboard is composed of several parts with different materials. The box inners,
colored in pink on Figure 4.20, are represented by aluminium blocks and are con-
nected at their sides by rubber pads (in blue) to a steel housing (in light red). This
housing rests at its corners on styrofoam cushions (in green). Finally, a cardboard
(in orange) packs all the parts. The purpose of this example is to check that the
packing of the inners is efficient: energy absorption...

Inners
Cardboard

Housing

Styrofoam

cushions Rubber pads

Fig. 4.20: The cardboard box and its internal parts. Some parts of the cardboard
were removed for a better visualization.

The cardboard box and the styrofoam cushions are discretized with C'! quadratic
B-Splines. The housing is discretized with piecewize linear shell elements. For all
the other parts, piecewize linear FE bricks are used. Type 7 contact interfaces
are defined between the cardboard box, the styrofoam cushions and the housing.
All other part connections (e.g. between inners and rubber pads) are imposed
by merging nodes with compatible meshes. An initial vertical velocity of 5 m.s™!
is set as well as a gravity field, which represents the drop. A rigid wall is fixed
in front of the corner or the edge of the cardboard, depending on the case considered.

Material models used in this example are elastic for inners, elastic perfectly
plastic for the cardboard and for the housing, foam-plastic for all the styrofoams,
and hyperelastic for the rubber. The cardboard is considered as isotropic for
simplicity.
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Results and observations

Simulation results for the corner and the egde drop tests are given on Figure 4.21
and Figure 4.22. As said previously, the analysis of those results is focused on the
energy balance of the inner parts. Energy balances for each test can be plotted
to compare the total kinetic energy, the total internal energy, the contact energy
and the inners internal energy, in a logarithmic scale. Results show a conversion
between kinetic and internal energy during the drop test. Most of the energy is
absorbed by the styrofoams and the cardboard and let the housing and the inners
safe. Left figures show the internal force magnitude on the inners. We observe that
the highest value is at least six times lower than that of the other parts of the model.

Inners Internal Forces (kN) Energy Balance

1.626E-03 100
[1.457E-03
1.289E-03
— 1.120E-03
9.515E-04
il 7.830E-04 10
7 6.145E-04 A
4.459E-04 Total Kinetic Energy
2 772E-04 = ——Total Internal Energy
1.085E-04 b — Total Contact Energy
8 1 Total Energy
e Inners Internal Energy
2
w
0.1
0.01
0 5 10 15 20 25 30 35 40 45 50
Time (ms)
Fig. 4.21: Deformation and energy balance for a corner drop test.
Inners Internal Forces (kN) Energy Balance
1.140E-03 100
[1.015E-03
8.894E-04 Total Kinetic Energy

— 7.638E-04
6.385E-04
I 5.132E-04

3.878E-04
E 2.625E-04

Total Internal Energy
Total Contact Energy
Total Energy

Inners Internal Energy

1.371E-04
1.179E-05

Energies (J)

0.1

0.01
A

0 4 8 12 16 20 24 28 32
Time (ms)

Fig. 4.22: Deformation and energy balance for an edge drop test.
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Conclusion

Conclusion

This thesis was devoted to the integration of isogeometric analysis in an existing
industrial explicit finite element software. All the needed ingredients for a complete
simulation of dynamic phenoma such as stamping or crash have been identified,
studied and modified according to the specificities of the IGA.

We were able to define heuristic estimates for the critical time increment asso-
ciated to these new elements. These estimates are initially given for conventional
finite elements and have been adapted to suit our basis functions. Simulations have
shown that the time increment of simulations obtained with isogeometric elements
increases significantly. This gain is a very strong argument to put forward IGA in
solvers, especially explicit ones.

An important part this work was dedicated to the modification of the contact
interface. We have been able to integrate IGA, only addressing the representation
and discretization of Spline surfaces. Spline surface discretization was simply done
by a set of linear facets. Nevertheless, it allows a better representation of surfaces
compared to what is obtained with conventional finite elements with similar initial
element densities. We showed the benefits given by this simple contact formulation
in some industrial cases.

We highlighted and analyzed several Spline basis functions allowing local refine-
ment with their characteristics, taking into account the implementation constraints
of each of them. We implemented the LR B-Spline basis functions to define locally
refined tridimensional models. We showed that the previously given refinement
schemes were not sufficient to guarantee a set of non-overloaded elements, especially
for quadratic cases. The refinement complexity that can be found in industrial
models is such that it is beyond the scope of the study established until then. We
introduced an improved full span scheme, based on the full span scheme. More
complex refinement shapes such as L-shaped refinement, or more general shapes
with an inward corner, have been taken into account. The improved full span
scheme thus appears to be the appropriate method for dealing with refined models.
It appeared in the LR B-Splines implementation that it was indeed possible to have
a native integration within Radioss keeping the engineers usage.
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CONCLUSION

The IGA in Radioss has improved the quality of the results obtained compared
to traditional FEA. B-Splines also provide better accuracy and will quickly give a
solution without compromising the quality of the result. However, the LR B-Splines
computational costs are for the moment not satisfying but improve the quality of
solution.

A fair comparison of IGA and FEA is difficult when having FEA engineers
habits. We can state without compromises that IGA can show better accuracy
or better time step size and on some cases both at the same time. Improving its
computational cost to reach industrial solvers standard beyond the work shown in
this thesis will make it a very good competitive method compared to FEA.

Further work

This implementation is a first step towards the IGA integration, which can be
continued by a work related to the performance of the algorithms and technologies
used. Computational costs have to be analyzed and treated as a target to make
IGA an industrial solution. Several tracks have already been identified, for example
by storing in memory some invariant values rather than recalculating them a large
number of times. The cost of occupying memory is to be quantified but the gain in
computational time could be important. Another way could be by considering the
use of Bézier extraction instead of having a native IGA integration. This method
also eliminates a large number of calculations since some values are invariant and
can be stored in memory.

We could denote that, as for conventional finite elements, boundary elements
are the most restrictive ones for the time increment due to the smaller size of the
basis function support. During the different simulations, we also noticed that the
safety factor commonly used in FEA is too conservative for IGA. Other methods,
specific to IGA, could be studied to improve even more the time increment to make
it even more competitive.

Regarding contact, we could implement accurate algorithms to be able to use the
real Spline surface. This would bring more robust solutions of higher quality. The
efforts to provide are not only at the geometric level but also on the contact formula-
tion which must be effective enough to be a potential competitor to the existing ones.

As a continuation of this work, we can introduce an isogeometric shell formula-
tion with a high degree and regularity. Indeed, to simulate a car crash test, more
than 90% of the geometry is meshed with shell elements. Finally, new reduced
integration methods can be developped, which will avoid hourglass modes, while
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providing a large gain in computational time, particularly for higher degrees.
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CONCLUSION
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Appendix A

\IGE3D and \PROP\TYPE47 (IGA3D) cards
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Block Format Keyword
/IGE3D - Isogeometric volumic elements
Description

Defines an isogeometric element with an arbitrary number of control points which is possibly refined.

Format
(1) (2) (3) (4) (5) (6) (7) (8) (%9 (10)
/IGE3D/part_ID
Ige3D_ID il i2 i3 NNode Rafdirl Rafdir2 | Rafdir3
Node_IDijk

— Flag Definition

Field Contents
part_ID Part identifier of the block
(Integer, maximum 10 digits)
ige3D_ID Element identifier
(Integer)
il Index of 15 knot in the knot vector corresponding to the element
i2 Index of 2"9 knot in the knot vector corresponding to the element
i3 Index of 3™ knot in the knot vector corresponding to the element
NNode Number of control points of the element
Rafdirl Number of refinement in the 15t direction
Rafdir2 Number of refinement in the 2" direction
Rafdir3 Number of refinement in the 3™ direction
Node_IDijk Control points Id
— Comments

- The knot vector for the patch is given in the property set attached to the part
- The control points order is described in the figure below, for linear and quadratic elements :

G
[ 8 27
5 6
J 8
Ja 15
3/ 4 12 9
5 3
1 2 3

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI102/these.pdf
© [M. Occelli], [2018], INSA Lyon, tous droits réservés



Block Format Keyword

/PROP/TYPE47 - 3D Isogeometric property Set

Description

This property set is used to define the general solid property set.

Format
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/PROP/TYPE47/prop_ID/unit_ID or /PROP/IGA3D/prop_ID/unit_ID
prop_title
IntRule RafRule
di d2 d3 NCP1 NCP2 NCP3
knot!1 Knot!2 Knot!3
Knot?1 Knot?2 Knot?3
Knot31 Knot32 Knot33
Flag Definition
Field Contents SI Unit
Example
prop_ID Property identifier
(Integer, maximum 10 digits)
unit_ID Optional unit identifier
(Integer, maximum 10 digits)
prop_title Property title
(Character, maximum 100 characters)
Integration Rule
IntRule grati n
(Integer)
= 0: default, set to 2
= 1: reduced
= 2: full
RafRule Refinement Rule
(Integer)
= 0: default, set to 1
= 1: LR-NURBS
= 2: Truncated Hierarchical NURBS
di Polynomial degree in 15 direction

(Integer)
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d2 Polynomial degree in 2" direction

(Integer)
d3 Polynomial degree in 3™ direction

(Integer)
NCP1 Total number of control points in the 15 direction of the patch
NCP2 Total number of control points in the 2"d direction of the patch
NCP3 Total number of control points in the 3rd direction of the patch
Knot); ith parameter in direction j, j=1..3

Comments

knot vector dimension is equal to N = NCP + d + 1, where NCP is the number of control points in
the given direction and d is polynomial degree in this direction.
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Appendix B

Rhino and the RhinoNURBS tool package

Rhino is a powerful and versatile 3D modeler which is able to generate B-Spline
and NURBS geometries and in which it is possible to implement new procedures.
An additionnal plugin was created to export Abaqus data files in the IGA context,
see [3].

MARGARET BECKER

Fig. B.1: RhinoNURBS logo.

This work has been used to include an additional data file output option, in the
Radioss format (0.rad and 1.rad files). The existing Visual Basic project has been
modified, including the output file write format, and the ExportFile options have
been changed to leave only the Radioss part, as can be seen in Figure B.2.

The RhinoNURBS plugin

Rhino’s features for creating 3D isogeometric geometries are quickly described in
this section for a simple case. Specific features such as the control point insertion
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B. Appendix B

or the increase of polynomial degrees will not be described here. All the necessary
information can be found in [3]. The reader will also be able to find the information
necessary for the 2D isogeometric model generation, which is not used in this work.

3D B-Splines or NURBS geometry generation

The additionnal function uses the "Radioss-FileExport Command.vb" command
and the "RadiossFileExport Class.vb" class. This command requires the selection
of a NURBS surface or polysurface as input and returns all the NURBS parameters
needed to create the 0.rad and 1.rad files for 3D NURBS geometry.

Analysis Files Export Options

Export File To @ RADIOSS

l Use thi | Use thi
. - | Usethis option to create @ | Use this option to create a

o ot |30 Shel from a 20 Medial | 3D Volume from an Extruded
| Surface or Polysuface | 2D Surface
| |

20 : @ 30 Shel : 3D Bdrusion
| |
| Thickness 1 |
Advanced Options

| Show Control Points
Show Control Points Mumbers

Create GeoP DEs Geometry File
Create Debug Text File

OK Cancel
Fig. B.2: 0.rad dataset export window.

3D geometries can be obtained by extruding a surface along a straight or curved
line, or by a "double extrusion" with a thickness parameter h, see Figure B.3.

Once the "RadiossFileExport Command.vb" command has been successfully
executed, the "Radioss Files Export" module uses the "RadiossFileExport  GUILvb"
GUL

Boundary conditions defintion

The graphical interface "RadiossFileExport GUILvb", see Figure B.4, is used to
indicate the displacement boundary conditions.

Other options such as large deformations (NLGEOM) or contact options are
present on the window but are not used for Radioss. The same is true for loading
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Fig. B.3: 3D geometry generated by double extrusion of a 2D NURBS surface.

Export File To Dimension 2D Problem Type Plane Strain Flane Stress
Material Properties
Young's Modulus Poisson's Ratio Density
210000 03 0.0078
Boundary Conditions / Concentrated Load List Distributed Load List

EC Type "l Displacement - Load Type ‘0" Normal Pressure -
Add Boundary Condition ] l Remove Boundary Condition ] [ Add Distributed Load ] l Remove Distributed Load ]
Large Deflection (NLGEOM) YES ® NO [ Advanced Contact Options ]

Time Parameters
Simulation Time Time Step Animation Frequency

Create Analysis Files ] Done

Fig. B.4: Rhino dataset export window.

boundary conditions.

The "Add Boundary Condition" button uses the "GetSelectedFreeEdgeln-
dex Command.vb" command and the "BoundaryCondition GULvb" GUI.
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B. Appendix B

Fig. B.5: Tllustration of boundary condition applied in Rhino.

Time parameters of the simulation

The graphical interface "RadiossFileExport GUILvb" also includes some time
parameters. In this part is given the simulation time and the file export frequency.
It is also possible to give a specific time increment value, but this option is not used
anymore and will be removed.

Once all the geometric, material and temporal parameters have been filled, the
class "RadiossFileExportRAD.vb" is called by the "Create Abaqus Files" button.
The 0.rad and 1.rad files are then generated.
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