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Résumé
Dans cette thèse nous nous intéressons aux flots de Monge-Ampère complexes, à leurs
généralisations et à leurs applications géométriques sur les variétés hermitiennes compactes.

Dans les deux premiers chapitres, nous prouvons qu’un flot de Monge-Ampère complexe
sur une variété hermitienne compacte peut être exécuté à partir d’une condition initiale
arbitraire avec un nombre Lelong nul en tous points. En utilisant cette propriété, nous con-
firmons une conjecture de Tosatti-Weinkove: le flot de Chern-Ricci effectue une contraction
chirurgicale canonique. Enfin, nous étudions une généralisation du flot de Chern-Ricci sur
des variétés hermitiennes compactes, le flot de Chern-Ricci tordu. Cette partie a donné
lieu à deux publications indépendantes.

Dans le troisième chapitre, une notion de C-sous-solution parabolique est introduite
pour les équations paraboliques, étendant la théorie des C-sous-solutions développée récem-
ment par B. Guan et plus spécifiquement G. Székelyhidi pour les équations elliptiques. La
théorie parabolique qui en résulte fournit une approche unifiée et pratique pour l’étude
de nombreux flots géométriques. Il s’agit ici d’une collaboration avec Duong H. Phong
(Université Columbia )

Dans le quatrième chapitre, une approche de viscosité est introduite pour le problème
de Dirichlet associé aux équations complexes de type hessienne sur les domaines de Cn. Les
arguments sont modélisés sur la théorie des solutions de viscosité pour les équations réelles
de type hessienne développées par Trudinger. En conséquence, nous résolvons le problème
de Dirichlet pour les équations de quotient de hessiennes et lagrangiennes spéciales. Nous
établissons également des résultats de régularité de base pour les solutions. Il s’agit ici d’une
collaboration avec S�lawomir Dinew (Université Jagellonne) et Hoang-Son Do (Institut de
Mathématiques de Hanoi)

Mots clés
Équations de Monge-Ampère complexes, flot de Kähler-Ricci, flot de Chern-Ricci, variétés
hermitiennes.
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Abstract
In this thesis we study the complex Monge-Ampère flows, and their generalizations and
geometric applications on compact Hermitian manifods.

In the first two chapters, we prove that a general complex Monge-Ampère flow on
a compact Hermitian manifold can be run from an arbitrary initial condition with zero
Lelong number at all points. Using this property, we confirm a conjecture of Tosatti-
Weinkove: the Chern-Ricci flow performs a canonical surgical contraction. Finally, we
study a generalization of the Chern-Ricci flow on compact Hermitian manifolds, namely
the twisted Chern-Ricci flow. This part gave rise to two independent publications.

In the third chapter, a notion of parabolic C-subsolution is introduced for parabolic
non-linear equations, extending the theory of C-subsolutions recently developed by B. Guan
and more specifically G. Székelyhidi for elliptic equations. The resulting parabolic theory
provides a convenient unified approach for the study of many geometric flows. This part
is a joint work with Duong H. Phong (Columbia University)

In the fourth chapter, a viscosity approach is introduced for the Dirichlet problem
associated to complex Hessian type equations on domains in Cn. The arguments are
modelled on the theory of viscosity solutions for real Hessian type equations developed by
Trudinger. As consequence we solve the Dirichlet problem for the Hessian quotient and
special Lagrangian equations. We also establish basic regularity results for the solutions.
This part is a joint work with S�lawomir Dinew (Jagiellonian University) and Hoang-Son
Do (Hanoi Institute of Mathematics).

Keywords
Complex Monge-Ampère equations, Kähler-Ricci flow, Chern-Ricci flow, Hermitian mani-
folds.
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Chapter 1

Introduction

1.1 Motivation
1.1.1 Kähler-Einstein metrics and complex Monge-Ampère equations
The study of special Kähler metrics on compact Kähler manifolds, pioneered by Calabi
in the 1950’s, has been a guiding question in the field ever since. This led to an impres-
sive number of remarkable developments, among which the solution by Yau of the Calabi
conjecture in the late 1970’s [Yau78] was one of the consummate achievements.

Let us start with a compact complex manifold X equipped with a Hermitian metric
g

j

¯

k

. The associated (1, 1)-form is defined in local coordinates by

Ê = ig
j

¯

k

dzj · dz̄k.

We say that the metric g is Kähler if dÊ = 0. We define an equivalent relation on closed
real 2-forms on X: ÷Õ is cohomologous to ÷ if ÷ ≠ ÷Õ is exact, then we denote by {÷} the
equivalence class of ÷. It follows from the ˆ ¯̂-lemma that any other Kähler form Ễ œ {Ê}
can be written as

Ễ = Ê + iˆ ¯̂Ï.

The Ricci curvature of Ê is locally defined by

Ric(Ê) = ≠iˆ ¯̂ log det(g
j

¯

k

).

If Ễ is another Kähler form on X, then

Ric(Ê) ≠ Ric(Ễ) = ≠iˆ ¯̂ log Ên

Ễn

, (1.1.1)

thus Ric(Ê) and Ric(Ễ) are cohomologous. The cohomology class of Ric(Ê) defines c
1

(X),
the first Chern class of X, which does not depend on Ê but only on the complex structure
of X.
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One of the questions initiated by Calabi was that any representative of c
1

(X) is the
Ricci form of a (unique) Kähler metric in any given Kähler class. Precisely, let (X, Ê) be
a Kähler manifold, and R̃ be a (1, 1)-form on X which is cohomologous to Ric(Ê), can
we find another Kähler form Ễ œ {Ê} such that Ric(Ễ) = R̃? This Calabi conjecture was
proved by Yau in 1976 [Yau78] by solving the complex Monge-Ampère equation

(Ê + iˆ ¯̂Ï)n = eF Ên,

where F is the unique smooth function satisfying R̃ = Ric(Ê)+iˆ ¯̂F and
s

X

eF Ên =
s

X

Ên.
In particular when c

1

(X) = 0, this shows the existence of Calabi-Yau metrics with vanishing
Ricci curvature.

Candidates for special metrics on Kähler manifolds are Kähler–Einstein metrics that
were actually introduced in [Käh33]: a Kähler metric Ê is called Kähler-Einstein metric if

Ric(Ê) = ⁄Ê, (1.1.2)

with ⁄ œ R. A more sophisticated guess for canonical Kähler metrics (in a given Kahler
class) is Calabi’s theory of extremal metrics which contains the Kähler–Einstein case.

Consider the Kähler-Einstein equation (1.1.2). The case ⁄ = 0 is the Calabi-Yau case
above, and if ⁄ ”= 0, after scaling, we may assume ⁄ = ±1. In the case ⁄ = ±1, we infer that
the equation (1.1.2) can be rewritten as the following complex Monge-Ampère equation

(Ê
0

+ iˆ ¯̂Ï)n = e≠⁄Ï+F Ên

0

, (1.1.3)

where F satisfies Ric(Ê
0

) = ⁄Ê
0

+ iˆ ¯̂F , for some fixed Kähler metric Ê
0

œ ⁄c
1

(X). It was
solved by by Aubin and Yau when ⁄ = ≠1 using the continuity method. The harder case
is when ⁄ = 1, i.e when X is Fano. The obstruction in this case is the absence of the C0

estimate along the continuity method due to the unfavorable sign in (1.1.3).

A major question is to find a necessary and sufficient condition for the existence of the
solution in this case. The precise formulation is in terms of an algebro-geometric notion of
K-stability which is well-known as the Yau-Tian-Donaldson conjecture:

Yau-Tian-Donaldson conjecture ([CDS15a, CDS15b, CDS15c, Tia15, DS16, CSW15,
BBJ15]) A Fano manifold admits a Kähler-Einstein metric if and only if it is K-stable.

1.1.2 The Kähler-Ricci flow and complex Monge-Ampère flows

In Riemannian geometry, the Ricci flow, first introduced by Hamilton [Ham82], is the
evolution equation

ˆ

ˆt
g

ij

= ≠2R
ij

. (1.1.4)



1.1. MOTIVATION 7

The Ricci flow has become a key tool in differential geometry. On Kähler manifolds, it can
be written as

ˆ

ˆt
Ê(t) = ≠Ric(Ê(t)), Ê|

t=0

= Ê
0

. (1.1.5)

Its normalized form is the following

ˆ

ˆt
Ê(t) = ≠Ric(Ê(t)) + ⁄Ê(t), Ê|

t=0

= Ê
0

, (1.1.6)

for ⁄ = 0, ±1, which is the parabolic version of the Kähler-Einstein equation (1.1.2).

Bando observed that the Kähler condition is preserved under the Ricci flow, so it is
customary to call the Ricci flow on Kähler manifolds the Kähler-Ricci flow. He used an
important property of the Kähler-Ricci flow, namely that we can reduce it to a scalar
parabolic complex Monge-Ampère equation. Indeed, let Ê = Ê(t) be a solution of the
Kähler-Ricci flow (1.1.5). Along the flow, the cohomology class {Ê} evolves by

d

dt
{Ê} = ≠c

1

(X), {Ê(0)} = {Ê
0

}. (1.1.7)

This ODE has a unique solution {Ê(t)} = {Ê
0

} ≠ tc
1

(X). Let ◊ be a smooth (1, 1) form
representing ≠c

1

(X) and � be a volume form such that locally we have

� = a(z1, . . . , zn)idz1 · dz1 · . . . · idzn · dzn

and
iˆ ¯̂ log � := iˆ ¯̂ log a = ◊.

Writing Ê(t) = Ê
0

+ t◊ + iˆ ¯̂Ï, the Kähler-Ricci flow becomes

iˆ ¯̂ log � + iˆ ¯̂ˆÏ

ˆt
= iˆ ¯̂ log Ê(t)n,

hence

iˆ ¯̂
A

ˆÏ

ˆt
≠ log (Ê

0

+ t◊ + iˆ ¯̂Ï)n

�

B

= 0.

Since X is compact, the maximum principle implies that

ˆÏ

ˆt
≠ log (Ê

0

+ t◊ + iˆ ¯̂Ï)n

�

is a constant. Therefore we are reduced to study the complex Monge-Ampère flow

ˆÏ

ˆt
= log (Ê

0

+ t◊ + iˆ ¯̂Ï)n

� .
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Similarly, we can also obtain a complex Monge-Ampère flow corresponding to the nor-
malized Kähler-Ricci flow. In particular, if the normalized Kähler-Ricci flow starts from
Ê

0

œ ⁄c
1

(X), its scalar equation can be written as

ˆÏ

ˆt
= log (Ê

0

+ iˆ ¯̂Ï)n

� + ⁄Ï,

where � is a smooth volume form satisfying Ê
0

= ≠⁄iˆ ¯̂ log � and
s

X

� =
s

X

Ên

0

.

On a compact Kähler manifold with nonpositive first Chern class, Cao [Cao85] proved
that the (normalized) Kähler-Ricci flow converges to a metric which satisfies the Kähler-
Einstein equation (1.1.2). The convergence of the Kähler-Ricci flow on Fano manifolds has
been studied by many author (see for example [PS06, PSSW08, PSSW09, PSSW11, Tos10,
CS12, Sze10, CSW15] and references therein). Through the work of many authors, the
Kähler-Ricci flow became a major tool in Kähler geometry (we refer to [SW13b, Tos18]
and references therein).

1.1.3 Analytic Minimal Model Program

In algebraic geometry, the minimal model program (MMP) is part of the birational clas-
sification of algebraic varieties. Its goal is to construct a �good� birational model of any
complex projective variety. A �good� model is a variety X satisfying either:

(1) K
X

is nef, i.e K
X

.C Ø for all curve C. In this case the variety is called a minimal
model

(2) There exists a holomorphic map fi : X æ Y to a variety Y of lower dimension such
that the generic fiber X

y

= fi≠1(y) is a Fano manifold (i.e c
1

(X
y

) > 0). In this case
the variety X is called a Mori (or Fano) fiber space.

The core of the MMP consists in finding a sequence of birational maps f
1

, . . . , f
k

and
varieties X

1

, . . . , X
k

with

X = X
0

f199K X
1

f299K X
2

· · · fk99K X
k

(1.1.8)

such that X
k

is either a minimal model or Mori fiber space.

Recently, Song and Tian [ST17] have developed a program and studied whether the
Kähler–Ricci flow can give a geometric classification of algebraic varieties. They viewed
the Kähler-Ricci flow as a metric version of the Minimal Model Progam (MMP), each step
of the MMP corresponding to a surgery that is used to repair a finite time singularity of
the flow and start it over again (we refer to [ST17, SW13a, SW13b, EGZ16, EGZ18] and
references therein). We follow [SW13b, ST17] to give a sketchy picture of this program:
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Step 1. Starting with a metric Ê
0

in the class of a divisor D on a variety X, we consider
the solution Ê(t) of the Kähler-Ricci flow on X starting from Ê

0

. The flow exists on [0, T )
with T = sup{t > 0|D + tK

X

is ample }.

Step 2. If T = Œ, then K
X

is nef, hence X is a minimal model, and the Kähler-Ricci
flow has long time existence. The normalization of the flow should converge to a canonical
generalized Kähler-Einstein metric (cf. [ST17, EGZ18]) on X as t æ Œ .

Step 3. If T < Œ the Kähler-Ricci flow deforms (X, Ê(t)) to (Y, Ê
Y

) with possibly singular
metric Ê

Y

as t æ T .

(a) If dim X = dim Y and Y may be singular. We consider a weak Kähler-Ricci flow on
Y starting from Ê

Y

. This flow should resolve the singularities of Y and replace Y
with another variety X+. Then we return to Step 1 with X+.

(b) If 0 < dim Y < dim X, then we return to Step 1 with (Y, Ê
Y

).

(c) If dim Y = 0, X should have c
1

(X) > 0. Moreover, after normalization, the solution
(X, Ê(t)) of the Kähler-Ricci flow should deform to (X Õ, ÊÕ) where X Õ is possibly
different manifold and ÊÕ is either a Kähler-Einstein metric or a Kähler-Ricci soliton
(i.e. Ric(ÊÕ) = ÊÕ + L

V

(ÊÕ) for a holomorphic vector field V ).

Therefore, the Kähler-Ricci flow should construct a sequence of manifolds X
1

, . . . , X
k

of
the MMP, where X

k

is either minimal (as in Step 2) or a Mori fiber space (as in Step 3 (c)
or (d)). At the very last step, we expect that the Kähler-Ricci flow converges to a canonical
metric. Moreover, one would like to show that the process above is continuous in Gromov–
Hausdorff topology: the KRF performs geometric surgeries in Gromov–Hausdorff topology
at each singular time and replaces the previous projective variety by a �better� model.

As in the Step 3, this program requires to restart the flow from either a singular variety
or a initial data which may not be smooth. Therefore we have to consider an appropriate
notion of weak Kähler-Ricci flow on a singular variety. The study of degenerate complex
Monge-Ampère flows is therefore indispensable. In [ST17], [SzTo11] the authors succeeded
in running a certain complex Monge-Ampère flow from continuous initial data, while [GZ17]
is running a simplified flow starting from an initial current with zero Lelong numbers. In
[DNL17], the authors also extended the work of [GZ17] for the same flow starting from an
initial current with positive Lelong numbers. In this thesis we extend these latter works to
deal with general complex Mong-Ampère flows and initial data with zero Lelong numbers.

1.1.4 Chern-Ricci flow and geometric applications
The Chern-Ricci flow on a compact Hermitian manifold (X, Ê

0

) can be written as

ˆ

ˆt
Ê = ≠Ric(Ê), Ê|

t=0

= Ê
0

, (1.1.9)
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where Ric(Ê) is the Chern-Ricci form of Ê (locally we can define Ric(Ê) = ≠iˆ ¯̂ log Ên).
This is a generalization of the Kähler-Ricci flow on Hermitian manifolds. This flow was
introduced by Gill [Gil11] and has been further developed by Tosatti and Weinkove in
[TW13, TW15]. In particular, the flow can be reduced to a certain complex Monge-Ampère
flow just like the Kähler-Ricci flow.

In [TW13, TW15] the authors gave a conjectural picture to see that whether the Chern-
Ricci flow will give us a geometric classification of compact Hermitian manifolds. On
compact complex surfaces, they proved that the Chern-Ricci flow with non-collapsing finite
time singularity can blow down finitely many (≠1) curves and continue in a unique way on
a new complex surface. They conjectured that the Chern-Ricci flow performs a canonical
surgical contraction in any dimension: the Chern-Ricci flow with non-collapsing finite time
singularity can blow down finitely many exceptional divisor and continue on a new manifold
in Gromov-Hausdorff sense. In this thesis, we confirm this conjecture.

1.1.5 Other geometric flows
Besides complex Monge-Ampère flows, a number of geometric flows have been introduced
to study the structure of compact complex manifolds. The first example is the J-flow
on Kähler manifolds which was introduced by Donaldson in the setting of moments maps
and by Chen as the gradient flow of the J-functional appearing in the Mabuchi energy.
This flow can be seen as an inverse Monge-Ampère flow. Others flows which preserves the
Hermitian property have been proposed by Streets-Tian [StT10, StT11, StT13], Liu-Yang
[LY12] and also the Anomaly flow due to Phong-Picard-Zhang [PPZ16b, PPZ16c, PPZ17a]
which moreover preserves the conformally balanced condition of Hermitian metrics. In
particular, the Anomaly flow appears to be a higher order version of the Kähler-Ricci flow.

It is important to develop some new techniques to study these geometric flows and
clarify their structure from the PDE point of view. In a joint work with Duong H.
Phong [PT17], we studied fully non-linear parabolic flows which generalize complex Monge-
Ampère flows, the J-flow etc. We introduced a notion of parabolic C-subsolutions for
parabolic equations, extending the theory of C-subsolutions recently developed by B. Guan
and more specifically G. Székelyhidi for elliptic equations. The resulting parabolic theory
provides a convenient unified approach for the study of many geometric flows.

Since we eventually want to be able to deal with geometric flows on singular spaces, it
is important to study the their degenerate versions and to find some appropriate notion
of weak flows. In the case of the complex Monge-Ampère equation, one such approach,
known as the viscosity method was invented long ago in the real setting [CIL92], but
was only recently introduced for elliptic complex Monge-Ampère equations by Eyssidieux-
Guedj-Zeriahi [EGZ11], Wang [Wan12] and Harvey-Lawson [HL09] and for complex Monge-
Ampère flows by Eyssidieux-Guedj-Zeriahi [EGZ15b, EGZ16, EGZ18]. In a joint work with
Slawomir Dinew and Hoang-Son Do, we introduce a viscosity approach for fully non-linear
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elliptic equations on domains in Cn. The arguments are modelled on the theory of viscosity
solutions for real Hessian type equations developed by Trudinger [Tru90]. As consequence
we solve the Dirichlet problem for the Hessian quotient and special Lagrangian equations.

1.2 Selected results
1.2.1 Regularizing properties of Complex-Monge Ampère flows.
As mentioned in Section 1.1.3, Song and Tian [ST17] have developed a program viewing
the Kähler-Ricci flow as a metric version of the Minimal Model Program (MMP), each
step of the MMP corresponding to a surgery that is used to repair a finite time singularity
of the flow and start it over again. This requires that the Kähler-Ricci flow can be run
from a rough initial data. This reduces to study the smoothing property of certain Monge-
Ampère flows. In Section 2 (see also [Tô17]) we extended the results in [ST17, SzTo11,
GZ17, DNL17] to deal with the following general Monge-Ampère flow on a Kähler manifold
(X, Ê) with arbitrary initial data:

ˆÏ

ˆt
= log (◊

t

+ iˆ ¯̂Ï)n

� ≠ F (t, z, Ï). (1.2.1)

where (t, z, s) ‘æ F (t, z, s) is a smooth function on [0, T ]◊X ◊R and (◊
t

)
tœ[0,T ]

is a smooth
family of Kähler metrics.

Theorem A. Let Ï
0

be a ◊
0

-psh function with zero Lelong number at all points. Let
(t, z, s) ‘æ F (t, z, s) be a smooth function on [0, T ] ◊ X ◊ R such that ˆF/ˆs and ˆF/ˆt
are bounded from below.

Then, there exists a family of smooth strictly ◊
t

≠ psh functions (Ï
t

) satisfying (1.2.1)
in (0, T ] ◊ X, with Ï

t

æ Ï
0

in L1(X), as t √ 0+ and Ï
t

converges to Ï
0

in C0(X) if Ï
0

is continuous. This family is moreover unique if ˆF/ˆt is bounded and ˆF/ˆs Ø 0.

Moreover, we also prove the following stability result:

Theorem B. Let (t, z, s) ‘æ F (t, z, s) be a smooth function on [0, T ] ◊ X ◊ R such that
ˆF/ˆs Ø 0 and ˆF/ˆt are bounded. Let Ï

0

, Ï
0,j

be Ê-psh functions with zero Lelong number
at all points, such that Ï

0,j

æ Ï
0

in L1(X). Denote by Ï
t,j

and Ï
t

the corresponding
solutions of (1.2.1) with initial condition Ï

0,j

and Ï
0

respectively. Then for each Á œ (0, T )

Ï
t,j

æ Ï
t

in CŒ([Á, T ] ◊ X) as j æ +Œ.

Moreover, if Ï
0

and Â
0

are two continuous initial condition and Ï and Â are two corre-
sponding solutions of the flow (5.2.2), then for any k Ø 0, for any 0 < Á < T , there exists
a positive constant C(k, Á) depending only on k and Á such that

||Ï ≠ Â||
C

k
([Á,T ]◊X)

Æ C(k, Á)||Ï
0

≠ Â
0

||
L

Œ
(X,Ê)

.
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The same results are also proved for complex Monge-Ampère flows on Hermitian man-
ifolds in [Tô18] (see Section 3). Our techniques are based on pluripotential theory and a
priori estimates for Monge-Ampère equations.

1.2.2 Geometric contraction of Chern-Ricci flow on Hermitian manifolds
As explained above, a generalization of the Kähler-Ricci flow on compact Hermitian man-
ifolds is the Chern-Ricci flow

ˆ

ˆt
Ê = ≠Ric(Ê), Ê|

t=0

= Ê
0

. (1.2.2)

It has been shown in [TW15] that the maximum existence time of smooth solutions is

T := sup{t Ø 0|÷Â œ CŒ(X) with Ê̂
X

+ iˆ ¯̂Â > 0},

where Ê̂
X

= Ê
0

+ t‰, with ‰ a smooth (1, 1)-form representing ≠cBC

1

(X), the first Bott-
Chern class of X.

In [TW15, TW13], assuming the existence of a holomophic map fi : X æ Y contracting
a divisor E to y

0

œ Y , Tosatti and Weinkove proved that the solution Ê
t

of (3.5.1) converges,
as t æ T , in CŒ

loc

(X \ E) to a smooth Hermitian metric Ê
T

on X \ E. Moreover, there
exists a distance function d

T

on Y such that (Y, d
T

) is a compact metric space and (X, g(t))
converges in the Gromov-Hausdorff sense (Y, d

T

) as t æ T ≠. They conjectured that the
Chern-Ricci flow can be started on the new manifold Y with the rough initial data fiúÊ

T

,
and we have backward smooth and Gromov-Hausdorff convergence (cf. [TW13, Page
2120]). In [Tô18] (see Section 3) we confirmed this conjecture using the smoothing property
of Monge-Ampère flows on Hermitian manifolds proved in the first part of [Tô18]. Precisely,
we have

Theorem C. (1) There exists a smooth maximal solution Ê
t

of the Chern-Ricci flow on
Y for t œ (T, T

Y

) with T < T
Y

Æ +Œ such that Ê
t

converges to fiúÊ
T

, as t æ T +, in
CŒ

loc

(Y \ {y
0

}). Furthermore, Ê
t

is uniquely determined by Ê
0

.

(2) The metric space (Y, Ê
t

) converges to (Y, d
T

) as t æ T + in the Gromov-Hausdorff
sense.

In a different direction, we introduced a generalization of the Chern-Ricci flow, namely
the twisted Chern-Ricci flow

ˆÊ
t

ˆt
= ≠Ric(Ê

t

) + ÷, Ê|
t=0

= Ê
0

where Ê
0

is a Hermitian metric on X and ÷ is a smooth (1, 1)-form. In particular, if the
manifold has negative twisted first Chern class, the twisted Chern-Ricci flow exists for all
times and converges to a twisted Einstein metric.
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Theorem D. Suppose cBC

1

(X) ≠ {÷} < 0. The normalized twisted Chern-Ricci flow
smoothly converges to a Hermitian metric ÊŒ = ÷ ≠ Ric(�) + iˆ ¯̂ÏŒ which satisfies

Ric(ÊŒ) = ÷ ≠ ÊŒ.

This also give a proof of the existence of a twisted Einstein metric in the twisted Bott-
Chern class cBC

1

(X) ≠ {÷}.

1.2.3 Fully non-linear parabolic equations on compact Hermitian mani-
folds.

Let (X, –) be a compact Hermitian manifold of dimension n, and ‰(z) be a real (1, 1)-
form. If u œ C2(X), let A[u] be the matrix with entries A[u]k

j

= –km̄(‰
m̄j

+ ˆ
j

ˆ
m̄

u). We
consider the fully nonlinear parabolic equation,

ˆ
t

u = F (A[u]) ≠ Â(z), (1.2.3)

where F (A) is a smooth symmetric function F (A) = f(⁄[u]) of the eigenvalues ⁄
j

[u],
1 Æ j Æ n of A[u], defined on a open symmetric, convex cone � µ Rn with vertex at
the origin and containing the positive orthant �

n

. We shall assume that f satisfies the
following conditions:

(1) f
i

> 0 for all i, and f is concave.
(2) f(⁄) æ ≠Œ as ⁄ æ ˆ�
(3) For any ‡ < sup

�

f and ⁄ œ �, we have lim
tæŒ f(t⁄) > ‡.

Fix T œ (0, Œ]. The following notion of subsolution is an adaptation to the parabolic
case of Székelyhidi’s [Sze15] notion in the elliptic case:

Definition 1. An admissible function u œ C2,1(X ◊ [0, T )) is said to be a (parabolic) C-
subsolution of (4.1.1), if there exist constants ”, K > 0, so that for any (z, t) œ X ◊ [0, T ),
the condition

f(⁄[u(z, t)] + µ) ≠ ˆ
t

u + · = Â(z), µ + ”I œ �
n

, · > ≠” (1.2.4)

implies that |µ|+|· | < K. Here I denotes the vector (1, · · · , 1) of eigenvalues of the identity
matrix.

To discuss our results, we need a finer classification of non-linear partial differential
operators due to Trudinger [Tru95]. Let �Œ be the projection of �

n

onto Rn≠1,

�Œ = {⁄Õ = (⁄
1

, · · · , ⁄
n≠1

); ⁄ = (⁄
1

, · · · , ⁄
n

) œ � for some ⁄
n

} (1.2.5)

and define the function fŒ on �Œ by

fŒ(⁄Õ) = lim
⁄næŒf(⁄Õ, ⁄

n

). (1.2.6)
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It is shown in [Tru95] that, as a consequence of the concavity of f , the limit is either
finite for all ⁄Õ œ �Œ or infinite for all ⁄Õ œ �Œ. We shall refer to the first case as the
bounded case, and to the second case as the unbounded case. For example, Monge-Ampère
flows belong to the unbounded case, while the J-flow and Hessian quotient flows belong to
the bounded case. In the unbounded case, any admissible function, and in particular 0 if
⁄[‰] œ �, is a C-subsolution in both the elliptic and parabolic cases. We have then:

Theorem E. Consider the flow (1.2.3), and assume that f is in the unbounded case. Then
for any admissible initial data u

0

, the flow admits a smooth solution u(z, t) on [0, Œ), and
its normalization ũ defined by

ũ := u ≠ 1
V

⁄

X

u –n, V =
⁄

X

–n, (1.2.7)

converges in CŒ to a function ũŒ satisfying the following equation for some constant c,

F (A[ũŒ]) = Â(z) + c. (1.2.8)

The situation is more complicated when f belongs to the bounded case:

Theorem F. Consider the flow (1.2.3), and assume that it admits a subsolution u on
X ◊[0, Œ), but that f is in the bounded case. Then for any admissible data u

0

, the equation
admits a smooth solution u(z, t) on (0, Œ). Let ũ be the normalization of the solution u,
defined as before by (4.1.5). Assume that either one of the following two conditions holds.

(a) The initial data and the subsolution satisfy

ˆ
t

u Ø sup
X

(F (A[u
0

]) ≠ Â); (1.2.9)

(b) or there exists a function h(t) with hÕ(t) Æ 0 so that

sup
X

(u(t) ≠ h(t) ≠ u(t)) Ø 0 (1.2.10)

and the Harnack inequality

sup
X

(u(t) ≠ h(t)) Æ ≠C
1

inf
X

(u(t) ≠ h(t)) + C
2

(1.2.11)

holds for some constants C
1

, C
2

> 0 independent of time.
Then ũ converges in CŒ to a function ũŒ satisfying

F (A[ũŒ]) = Â(z) + c. (1.2.12)

for some constant c.
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The resulting parabolic theory provides a unified approach for the study of many ge-
ometric flows, for examples the Kähler-Ricci flow, the J-flow, complex Hessian quotient
flows, etc. As an application, we answer a question raised for general 1 Æ ¸ < k Æ n by
Fang-Lai-Ma [FLM11], and extend the solution obtained for k = n by Collins-Székelyhidi
[CS17]:

Theorem G. Assume that (X, –) is a compact Kähler n-manifold, and fix 1 Æ ¸ < k Æ n.
Fix a closed (1, 1)-form ‰ which is k-positive and non-negative constants c

j

, and assume
that there exists a form ‰Õ = ‰ + iˆ ¯̂u which is a closed k-positive form and satisfies

kc(‰Õ)k≠1 · –n≠k ≠
¸ÿ

j=1

jc
j

(‰Õ)j≠1 · –n≠j > 0, (1.2.13)

in the sense of positivity of (n ≠ 1, n ≠ 1)-forms. Here the constant c is given by

c[‰k][–n≠k] =
¸ÿ

j=1

c
j

[‰j ][–n≠j ].

Then the flow

ˆ
t

u = ≠
q

¸

j=1

c
j

‰j

u

· –n≠j

‰k

u

· –n≠k

+ c, u(·, 0) = 0,

admits a solution for all time which converges smoothly to a function uŒ as t æ Œ. The
form Ê = ‰ + iˆ ¯̂uŒ is k-positive and satisfies the equation

c Êk · –n≠k =
¸ÿ

j=1

c
j

Êj · –n≠j .

1.2.4 A viscosity approach to the Hessian type equations
With S�lawomir Dinew and Hoang Son Do [DDT17], we have developed a viscosity theory
for general complex Hessian type equations on complex domains, inspired by the theory of
viscosity solutions in the real case developed by Trudinger [Tru90].

Let � be a bounded domain in Cn. For any function u œ C2(�) and z œ �, denote by
Hu(z) the Hessian matrix of u at z. We consider the Hessian type equation of the form

F [u] = Â(z, u), (1.2.14)

where Â œ C0(� ◊ R,R+) and F [u] = f(⁄(Hu)) such that s ‘æ Â(., s) is increasing,

Theorem H (Comparison principle). Let � be the ellipticity cone associated to the equation
(1.2.14). Assume that the operator F [u] = f(⁄(Hu)) in (1.2.14) satisfies

f œ C0(�̄), f > 0 on �, f = 0 on ˆ�,
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and
f(⁄ + µ) Ø f(⁄), ’⁄ œ �, µ œ �

n

.

Assume moreover that either
nÿ

i=1

ˆf

ˆ⁄
i

⁄
i

=
nÿ

i=1

f
i

⁄
i

Ø ‹(f) in �, and inf
zœ�

Â(z, ·) > 0

for some positive increasing function ‹, or

f is concave and homogeneous.

Then any bounded subsolution u and supersolution v in � to the equation (5.1.3) satisfy

sup
�

(u ≠ v) Æ max
ˆ�

{(u ≠ v)ú, 0} .

One of our main results is the solvability and sharp regularity for viscosity solutions to
the Dirichlet problem for a very general class of operators including Hessian quotient type
equations.

Theorem I. The Dirichlet problem
I

F [w] = f(⁄(Hw)) = Â(z, w(z))
u = Ï on ˆ�

admits a continuous solution for any bounded �-pseudoconvex domain �. Under natu-
ral growth assumptions on Â the solution is Hölder continuous for any Hölder continous
boundary data Ï.

A large part of the work is devoted to complex Hessian quotient equations in domains
in Cn. One of our goals in this case was to initiate the construction of the undeveloped
pluripotential theory associated to such equations. We rely on connections with the cor-
responding viscosity theory. Our findings yield in particular that the natural domain of
definition of these operators is strictly smaller than what standard pluripotential theory
would predict. We prove the following theorem:

Theorem J. Assume that 0 < Â œ C0(�) and u œ PSH(�) fl LŒ
loc

(�) is a viscosity

subsolution of (ddcu)n

(ddcu)n≠k · Êk

= Â(z) in �. Then

(ddcu)n Ø Â(ddcu)n≠k · Êk

and

(ddcu)k Ø
A

n

k

B≠1

ÂÊk

in the pluripotential sense.
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We wish to point out that nonlinear PDEs appear also in geometric problems which
are defined over domains in Cn see for example [CPW17], where a Dirichlet problem for
the special Lagrangian type equation is studied. We show in Section 5.6 that our method
can be applied to solve the Dirichlet problem

Y
__]

__[

F [u] :=
nÿ

i=1

arctan ⁄
i

= h(z), on �

u = Ï on ˆ�.

(1.2.15)

where ⁄
1

, . . . , ⁄
n

is the eigenvalues of the complex Hessian Hu. We can also write F [u] =
f(⁄(Hu)). We assume that Ï œ C0(ˆ�) and h : �̄ æ [(n ≠ 2)fi

2

+ ”, nfi

2

) is continuous, for
some ” > 0.

Theorem K. Let � is a bounded C2 domain. Let u is an bounded upper semi-continuous
function on � satisfying F [u] Ø h(z) in � in the viscosity sense and u = Ï on ˆ�. Then
the Dirichlet problem (1.2.15) admits a unique viscosity solution u œ C0(�).

1.3 Warning to the reader
The author has profited from preparing this manuscript to correct some mistakes in [Tô17,
Tô18]:
(1) In [Tô17, Theorem A] we need to add a condition on F that ˆF

ˆt

is bounded below.
This condition is only used in [Tô17, Proposition 2.4].

In the proof of Theorem A in [Tô17], we reduced ˆF

ˆs

Ø ≠C
0

to ˆF

ˆs

Ø 0 by change
of variables. However, this reduction does not preserve the condition that ˆF

ˆt

is bounded
below. Therefore we need to replace [Tô17, Proposition 2.4] by a similar proposition with
the hypothesis ˆF

ˆs

Ø ≠C
0

. In this thesis, these modifications above are given in Theorem
A, section 2.1, Chapter 2 and Proposition 2.3.4.
(2) At the beginning of the proof of [Tô17, Proposition 2.4], we need to add a sentence
that �Since we consider the interval time [Á, T ], we can assume the flow starting from Ï

Á

,
i.e Ï(0, x) = Ï

Á

�. Then we need to change:

(a) in line 1 of the proof, [Á, T ] ◊ X to [0, T ≠ Á] ◊ X

(b) in line 10 of the proof, t = Á to t = 0

(c) in line 11 of the proof, t
0

> Á to t
0

> 0.

In this thesis, this modification is given in the proof of Theorem 2.3.4.
(3) At the beginning of the proof of [Tô17, Proposition 2.7], we add a sentence that �Since
we deal with the interval time [Á, T ] and the bound on Osc

X

(Ï
Á

) only depends on sup
X

Ï
0

and Á, we can consider the flow starting from Ï
Á

, i.e Ï(0, x) = Ï
Á

� Then we need to change:
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(a) in line 4 of the proof, t = Á to t = 0

(b) in line 5 of the proof, t œ [Á, T ] to t œ [0, T ≠ Á].

(c) in line 7 of the proof, [Á, T ] ◊ X with t
0

> Á to [0, T ≠ Á] with t
0

> 0.

In this thesis, the modification above is given in the proof of Theorem 2.3.7.

(4) In the proof of [Tô18, Proposition], Claim 1, the term with the constant C
4

should be
C4
—

“Õ ¶ Ï
q

p

|Ïp|2
upp̄

instead of C
4

q
p

|Ïp|2
upp̄

. In this thesis, this modification is given in Claim
1, the proof of Proposition 3.3.10.

We would like to thank Nguyen Van Hoang for pointing out the errors (2) and (3) and
Tao Zheng for pointing out the error (4) in the original proofs and interesting exchanges.



Chapter 2

Regularizing properties of
Complex Monge-Ampère flows

We study the regularizing properties of complex Monge–Ampère flows on a Kähler manifold
when the initial data are Ê-psh functions with zero Lelong number at all points. We prove
that the general Monge–Ampère flow has a solution which is immediately smooth. We also
prove the uniqueness and stability of solution.

The results of this chapter can be found in [Tô17].

2.1 Introduction
Let (X, Ê) be a compact Kähler manifold of complex dimension n and – œ H1,1(X,R) a
Kähler class with Ê œ –. Let � be a smooth volume form on X. Denote by (◊

t

)
tœ[0,T ]

a
family of Kähler forms on X, and assume that ◊

0

= Ê. The goal of this note is to prove the
regularizing and stability properties of solutions to the following complex Monge-Ampère
flow

(CMAF ) ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï
t

)

where F is a smooth function and Ï(0, z) = Ï
0

(z) is a Ê-plurisubharmonic (Ê-psh) function
with zero Lelong numbers at all points.

One motivation for studying this Monge-Ampère flow is that the Käler-Ricci flow can
be reduced to a particular case of (CMAF ). When F = F (z) and ◊

t

= Ê + t‰, where
‰ = ÷ ≠ Ric(Ê), then (CMAF ) is the local potential equation of the twisted Kähler-Ricci
flow

ˆÊ
t

ˆt
= ≠Ric(Ê

t

) + ÷,

which was studied recently by several authors.

19
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Running the Kähler-Ricci flow from a rough initial data has been the purpose of several
recent works [CD07], [ST17], [SzTo11], [GZ17], [BG13], [DNL17]. In [ST17], [SzTo11] the
authors succeeded to run (CMAF ) from continuous initial data, while [DNL17] and [GZ17]
are running a simplified flow starting from an initial current with zero Lelong numbers. In
this note we extend these latter works to deal with general (CMAF ) and arbitrary initial
data.

A strong motivation for studying (CMAF ) with degenerate initial data comes from the
Analytic Minimal Model Program introduced by J. Song and G. Tian [ST17], [ST12]. It
requires to study the behavior of the Kähler-Ricci flow on mildly singular varieties, and one
is naturally lead to study weak solutions of degenerate complex Monge-Ampère flows (when
the function F in (CMAF ) is not smooth but continuous). Eyssidieux-Guedj-Zeriahi have
developed in [EGZ16] a viscosity theory for degenerate complex Monge-Ampère flows which
allows in particular to define and study the Kähler-Ricci flow on varieties with canonical
singularities.

Our main result is the following:

Theorem A. Let Ï
0

be a Ê-psh function with zero Lelong numbers at all points. Let
(t, z, s) ‘æ F (t, z, s) be a smooth function on [0, T ]◊X◊R such that ˆF

ˆs

and ˆF

ˆt

are bounded
from below.
Then there exists a family of smooth strictly ◊

t

≠ psh functions (Ï
t

) satisfying (CMAF ) in
(0, T ] ◊ X, with Ï

t

æ Ï
0

in L1(X), as t √ 0+. This family is moreover unique if ˆF

ˆs

Ø 0
and |ˆF

ˆt

| < C Õ for some C Õ > 0.

We further show that

• Ï
t

converges to Ï
0

in C0(X) if Ï
0

is continuous.

• Ï
t

converges to Ï
0

in capacity if Ï
0

is merely bounded.

• Ï
t

converges to Ï
0

in energy if Ï œ E1(X, Ê) has finite energy.

Moreover, we also prove the following stability result:

Theorem B. Let Ï
0

, Ï
0,j

be Ê-psh functions with zero Lelong number at all points, such
that Ï

0,j

æ Ï
0

in L1(X). Denote by Ï
t,j

and Ï
j

the corresponding solutions of (CMAF )
with initial condition Ï

0,j

and Ï
0

respectively. Then for each Á œ (0, T )

Ï
t,j

æ Ï
t

in CŒ([Á, T ] ◊ X) as j æ +Œ.

Moreover, if Ï
0

and Â
0

are continuous, then for any k Ø 0, for any 0 < Á < T , there
exists a positive constant C(k, Á) depending only on k and Á such that

||Ï ≠ Â||
C

k
([Á,T ]◊X)

Æ C(k, Á)||Ï
0

≠ Â
0

||
L

Œ
(X,Ê)

.
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We also prove in Section 2.6 that one can run the Monge-Ampère flow from a positive
current representing a nef class, generalizing results from [GZ17], [DNL17].

The chapter is organized as follows. In Section 2.2 we recall some analytic tools, and
give the strategy of proof of Theorem A. In Section 2.3 we prove various a priori estimates
for the regular case. In Section 2.4 we prove Theorem A using the a priori estimates from
Section 2.3. In Section 2.5 we prove the uniqueness in Theorem A and Theorem B. In
Section 2.6 we show that the Monge-Ampère flow can run from a nef class.

2.2 Preliminaries and Strategy
In this section we recall some analytic tools which will be used in the sequel.

2.2.1 Plurisubharmonic functions and Lelong number
Let (X, Ê) be a compact Kähler manifold. We define the following operators:

d := ˆ + ¯̂, dc := 1
2ifi

(ˆ ≠ ¯̂).

Definition 2.2.1. We let PSH(X, Ê) denote the set of all Ê-plurisubharmonic functions
(Ê-psh for short), i.e the set of functions Ï œ L1(X,Rfi{≠Œ}) which can be locally written
as the sum of a smooth and a plurisubharmonic function, and such that

Ê + ddcÏ Ø 0

in the weak sense of positive currents.

Definition 2.2.2. Let Ï be a Ê-psh function and x œ X. The Lelong number of Ï at x is

‹(Ï, x) := lim inf
zæx

Ï(z)
log |z ≠ x| .

We say Ï has a logarithmic pole of coefficient “ at x if ‹(Ï, x) = “.

2.2.2 A Laplacian inequality
Let – and Ê be (1, 1)-forms on a complex manifold X with Ê > 0. Then the trace of –
with respect Ê is defined as

tr
Ê

(–) = n
– · Ên≠1

Ên

.

We can diagonalize – with respect to Ê at each point of X, with real eigenvalues ⁄
1

. . . , ⁄
n

then tr
Ê

(–) =
q

j

⁄
j

. The Laplace of a function Ï with respect to Ê is given by

�
Ê

Ï = tr
Ê

(ddcÏ).

We have the following eigenvalue estimate:
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Lemma 2.2.3. If Ê and ÊÕ are two positive (1, 1)-forms on a complex manifold X of
dimension n, then

3
ÊÕn

Ên

4 1
n

Æ 1
n

tr
Ê

(ÊÕ) Æ
3

ÊÕn

Ên

4
(tr

Ê

Õ(Ê))n≠1.

The next result is a basic tool for establishing second order a priori estimates for
complex Monge-Ampère equations.

Proposition 2.2.4 ([Siu87]). Let Ê, ÊÕ be two Käler forms on a compact complex manifold.
If the holomorphic bisectional curvature of Ê is bounded below by a constant B œ R on X,
then we have

�
Ê

Õ log tr
Ê

(ÊÕ) Ø ≠tr
Ê

Ric(ÊÕ)
tr

Ê

(ÊÕ) + B tr
Ê

Õ(Ê).

2.2.3 Maximum principle and comparison theorem
We establish here a slight generalization of the comparison theorem that we will need.

Proposition 2.2.5. Let Ï, Â œ CŒ([0, T ] ◊ X) be ◊
t

-psh functions such that

ˆÏ

ˆt
Æ log (◊

t

+ ddcÏ)n

� ≠ F (t, z, Ï),

ˆÂ

ˆt
Ø log (◊

t

+ ddcÂ)n

� ≠ F (t, z, Â),

where F (t, z, s) is a smooth function with ˆF

ˆs

Ø ≠⁄. Then

sup
[0,T ]◊X

(Ï
t

≠ Â
t

) Æ e⁄T max
;

sup
X

(Ï
0

≠ Â
0

); 0
<

. (2.2.1)

In particular, if Ï
0

Æ Â
0

, then Ï
t

Æ Â
t

.

Proof. We define u(x, t) = e≠⁄t(Ï
t

≠ Â
t

)(x) ≠ Át œ CŒ([0, T ] ◊ X) where Á > 0 is fixed.
Suppose u is maximal at (t

0

, x
0

) œ [0, T ] ◊ X. If t
0

= 0 then we have directly the estimate
(2.2.1). Assume now t

0

> 0, using the maximum principle, we get u̇ Ø 0 and ddc

x

u Æ 0 at
(t

0

, x
0

), hence

≠⁄e≠⁄t(Ï
t

≠ Â
t

) + e≠⁄t(Ï̇
t

≠ Â̇
t

) Ø Á > 0 and ddc

x

Ï
t

Æ ddc

x

Â
t

.

Observing that at (t
0

, x
0

)

Ï̇ ≠ Â̇ Æ F (t, x, Â) ≠ F (t, x, Ï),

we infer that
0 < F (t, x, Â) + ⁄Â ≠ [F (t, x, Ï) + ⁄Ï],
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at (t
0

, z
0

). Since ˆF

ˆs

Ø ≠⁄, F (t, x, s) + ⁄s is an increasing function in s, hence Ï
t0(x

0

) Æ
Â

t0(x
0

). Thus u(x, t) Æ u(x
0

, t
0

) Æ 0. Letting Á æ 0, this yields

sup
[0,T ]◊X

(Ï
t

≠ Â
t

) Æ e⁄T max
;

sup
X

(Ï
0

≠ Â
0

); 0
<

.

The following proposition has been given for the twisted Kähler-Ricci flow by Di Nezza
and Lu [DNL17]:

Proposition 2.2.6. Assume Â
t

a smooth solution of (CMAF ) with a smooth initial data
Â

0

and Ï
t

is a subsolution of (CMAF ) with initial data Ï
0

which is a Ê-psh function with
zero Lelong number at all point: i.e Ï

t

œ CŒ((0, T ] ◊ X) satisfies

ˆÏ
t

ˆt
Æ log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï
t

),

and Ï
t

æ Ï
0

in L1(X). Suppose that Ï
0

Æ Â
0

, then Ï
t

Æ Â
t

.

Proof. Fix ‘ > 0 and note that Ï ≠ Â is a smooth function on [‘, T ] ◊ X. It follows from
Proposition 2.2.5 that

Ï ≠ Â Æ e⁄T max
;

sup
X

(Ï
‘

≠ Â
‘

); 0
<

.

By hypothesis Â
t

œ CŒ([0, T ]◊)X, hence for any ” > 0 there exists ‘
0

> 0 such that
Â

‘

(x) Ø Â
0

(x) ≠ ” for all x œ X and ‘ Æ ‘
0

. This yields

lim
‘æ0

sup
X

(Ï
‘

≠ Â
‘

) Æ lim
‘æ0

sup
X

(Ï
Á

≠ Â
0

) + ”.

Since Ï
t

converges to Ï
0

in L1(X) as t æ 0, it follows from Hartogs’ Lemma (see for
instance [Hör94, Theorem 3.2.13])

lim
‘æ0

sup
X

(Ï
‘

≠ Â
0

) Æ sup
X

(Ï
0

≠ Â
0

) Æ 0.

Therefore for any ” > 0, we have

lim
‘æ0

sup
X

(Ï
‘

≠ Â
‘

) Æ ”,

hence
lim
‘æ0

sup
X

(Ï
‘

≠ Â
‘

) Æ 0.

This implies that Ï
t

Æ Â
t

for all 0 Æ t Æ T .

Remark 2.2.7. Note that if Ï
0

has some positive Lelong numbers, we cannot expect the
existence of a smooth solution Ï

t

in (0, T ] ◊ X (see [DNL17, Theorem A]).
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2.2.4 Evans-Krylov and Schauder estimates for Monge-Ampère flow
The Evans-Krylov and Schauder theorems for nonlinear elliptic equations

F (D2u) = f

with F concave, are used to show that bounds on u, D2u imply C2,– on u for some – > 0 and
higher order bounds on u. There are also Evans-Krylov estimates for parabolic equations
(see [Lie96]), but the precise version we need is as follows
Theorem 2.2.8. Let U b Cn be an open subset and T œ (0, +Œ). Suppose that u œ
CŒ([0, T ] ◊ Ū) and (t, x, s) ‘æ f(t, x, s) is a function in CŒ([0, T ] ◊ Ū ◊ R), satisfy

ˆu

ˆt
= log det

A
ˆ2u

ˆz
j

ˆz̄
k

B

+ f(t, x, u). (2.2.2)

In addition, assume that there is a constant C > 0 such that

sup
(0,T )◊U

3
|u| +

----
ˆu

ˆt

---- + |Òu| + |�u|
4

Æ C.

Then for any compact K b U , for each Á > 0 and p œ N,

||u||
C

p
([Á,T ]◊K)

Æ C
0

.

where C
0

only depends on C and ||f ||
C

q
([0,T ]◊ ¯

U◊[≠C,C])

for some q Ø p ≠ 2.
The proof of this theorem follows the arguments of Boucksom-Guedj [BG13, Theorem

4.1.4] where the function f is independent of u.
First of all, we recall the parabolic –-Hölder norm of a function f on the cylinder

Q = U ◊ (0, T ):
||f ||

C

–
(Q)

:= ||f ||
C

0
(Q)

+ [f ]
–,Q

,

where
[f ]

–,Q

:= sup
X,Y œQ,X ”=Y

|f(X) ≠ f(Y )|
fl–(X, Y )

is the –-Hölder seminorm with respect to the parabolic distance

fl
!
(x, t), (xÕ, tÕ)

"
= |x ≠ xÕ| + |t ≠ tÕ|1/2.

For each k œ N, the Ck,–-norm is defined as

||f ||
C

k,–
(Q)

:=
ÿ

|m|+2jÆk

||Dm

x

Dj

t

f ||
C

–
(Q)

.

If (Ê
t

)
tœ(0,T )

is a path of differential forms on U , we can similarly define [Ê
t

]
–,Q

and
||Ê

t

||
C

k,–
(Q)

, with respect to the flat metric Ê
U

on U .
The first ingredient in the proof of Theorem 2.2.8 is the Schauder estimates for linear

parabolic equations.
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Lemma 2.2.9. ([Kry96, Theorem 8.11.1],[Lie96, Theorem 4.9]) Let (Ê
t

)
tœ(0,T )

be a smooth
path of Kähler metrics on U and Ê

U

be the flat metric on U . Define Q = U ◊ (0, T ), and
assume that u, g œ CŒ(Q) satisfy

3
ˆ

ˆt
≠ �

t

≠ c(t, x)
4

u(t, x) = g(t, x),

where �
t

is the Laplacian with respect to Ê
t

. Suppose also that there exist C > 0 and
0 < – < 1 such that on Q we have

C≠1Ê
U

Æ Ê
t

Æ CÊ
U

, ||c||
C

–
(Q)

Æ C and [Ê
t

]
–,Q

Æ C.

Then for each QÕ = U Õ ◊ (Á, T ) with U Õ b U , we can find a constant A only depending on
U Õ, Á and C such that

||u||
C

2,–
(Q)

Æ A(||u||
C

0
(Q)

) + ||g||
C

–
(Q)

).

The second ingredient in the proof Theorem 2.2.8 is the following Evans-Krylov type
estimate for complex Monge-Ampère flows.

Lemma 2.2.10. ([Gil11, Theorem 4.1]) Suppose u, g œ CŒ(Q) satisfy

ˆu

ˆt
= log det ˆ2u

ˆz
j

ˆz̄
k

+ g(t, x),

and assume also that there exists a constant C > 0 such that

C≠1 Æ
A

ˆ2u

ˆz
j

ˆz̄
k

B

Æ C and
----
ˆg

ˆt

---- + |ddcg| Æ C.

Then for each QÕ = U Õ ◊ (Á, T ) with U Õ b U an open subset and Á œ (0, T ), we can find
A > 0 and 0 < – < 1 only depending on U Õ, Á and C such that

[ddcu]
–,Q

Õ Æ A.

Proof of Theorem 2.2.8. In the sequel of the proof, we say that a constant is under control
if it is bounded by the terms of C, Á and ||f ||

C

q
([0,T ]◊ ¯

U◊[≠C,C])

.

Consider the path Ê
t

:= ddcu
t

of Kähler forms on U . Denote by Ê
U

the flat metric on
U . It follows from (2.2.2) that

Ên

t

= exp
3

ˆu

ˆt
≠ f

4
Ên

U

.

Since ˆu

ˆt

≠ f is bounded by a constant under control by the assumption, there exists a
constant C

1

under control such that C≠1

1

Ên

U

Æ Ên

t

Æ C
1

Ên

U

. It follows from the assumption
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that tr
ÊU Ê

t

is bounded. Two latter inequalities imply that C≠1

2

Ê
U

Æ Ê
t

Æ C
2

Ê
U

for some
C

2

> 0 under control by considering inequalities of eigenvalues. Set g(t, x) := f(t, x, u).
Since C≠1

2

Ê
U

Æ Ê
t

Æ C
2

Ê
U

and

sup
(0,T )◊U

3
|u| +

----
ˆu

ˆt

---- + |Òu| + |�u|
4

Æ C,

we get
---ˆg

ˆt

---+ |ddcg| Æ C
3

with C
3

under control. Apply Lemma 2.2.10 to (2.2.2), we obtain
[ddcu]

–,Q

is under control for some 0 < – < 1.
Let D be any first order differential operator with constant coefficients. Differentiating

(2.2.2), we get 3
ˆ

ˆt
≠ �

t

≠ ˆf

ˆs

4
Du = Df, (2.2.3)

with |u| + |Òu| +
---ˆu

ˆt

--- + |�u| and [ddcu]
–,Q

are under control, so C0 norm of Du is under
control. Applying the parabolic Schauder estimates (Lemma 2.2.9) to (2.2.3) with c(t, x) =
ˆf

ˆs

(t, x, u), the C2,– norm of Du is thus under control. Apply D to (2.2.3) we get
3

ˆ

ˆt
≠ �

t

≠ ˆf

ˆs

4
D2u = D2f + ˆ(Df)

ds
Du +

ÿ

j,k

(DÊjk

t

) ˆ2Du

ˆz
j

ˆz̄
k

+ˆ2f

ˆs2

|Du|2 + D
3

ˆf

ˆs

4
Du,

where the parabolic C– norm of the right-hand side is under control. Thanks to the
parabolic Schauder estimates Lemma 2.2.9, the C2,– norm of D2u is under control. Iter-
ating this procedure we complete the proof of Theorem 2.2.8.

2.2.5 Monge-Ampère capacity
Definition 2.2.11. Let K be a Borel subset of X. We set

Cap
Ê

(K) = sup
;⁄

K

MA(Ï); Ï œ PSH(X, Ê), 0 Æ Ï Æ 1
<

.

Then we call Cap
Ê

is the Monge-Ampère capacity with respect to Ê.
Definition 2.2.12. Let (Ï

j

) œ PSH(X, Ê). We say that (Ï
j

) converges to Ï as j æ +Œ
in capacity if for each Á > 0

lim
jæ+Œ

Cap
Ê

(|Ï
j

≠ Ï| < Á) = 0.

The following Proposition [GZ05, Proposition 3.7] states that decreasing sequences of
Ê-psh functions converge in capacity.
Theorem 2.2.13. Let Ï, Ï

j

œ PSH(X, Ê) fl LŒ(X) such that (Ï
j

) decreases to Ï, then
for each Á > 0

Cap
Ê

({Ï
j

> Ï + Á}) æ 0 as j æ +Œ.
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2.2.6 Monge-Ampère energy
The energy of a Ê-psh function has been introduced in [GZ07] and further studied in
[BBGZ13]. For „ œ PSH(X, Ê) fl LŒ(X), the Aubin-Yau energy functional is

E(„) := 1
(n + 1)V

nÿ

j=0

⁄

X

„(Ê + ddc„)j · Ên≠j ,

where
V :=

⁄

X

Ên.

For any „ œ PSH(X, Ê), we set

E(„) := inf
)
E(Â); Â œ PSH(X, Ê) fl LŒ(X), „ Æ Â

*
.

Definition 2.2.14. We say that „ œ PSH(X, Ê) has a finite energy if E(„) > ≠Œ and
denote by E1(X, Ê) the set of all finite energy Ê-psh functions.

Let (◊
t

)
tœ[0,T ]

be a family of Kähler metrics on X and � be a smooth volume form. We
consider the following complex Monge-Ampère flow

(CMAF )

Y
___]

___[

ˆÏ

ˆt
= log (◊

t

+ ddcÏ)n

� ≠ F (t, z, Ï),

Ï(0, .) = Ï
0

.

We set Ê
t

= ◊
t

+ ddcÏ
t

.

Definition 2.2.15. Suppose Ï
t

is a solution of (CMAF ). The energy for Ï
t

is

E(Ï
t

) := E
◊t(Ït

) := 1
(n + 1)V

nÿ

j=0

⁄

X

Ï
t

(◊
t

+ ddcÏ
t

)j · ◊n≠j

t

.

In particular, when ◊
t

= Ê for all t œ [0, T ] we get the Aubin-Yau energy functional.

2.2.7 Reduction to ˆF

ˆs

Ø 0
We now consider the complex Monge-Ampère flow

(CMAF ) ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï),

where F (t, z, s) œ CŒ([0, T ] ◊ X ◊ R,R) with

ˆF

ˆs
Ø ≠C,
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for some C Ø 0.
First of all, we observe that it is sufficient to prove Theorem A with F satisfying

F (t, z, s) œ CŒ([0, T ] ◊ X ◊ R,R) and s ‘æ F (t, z, s) is non-decreasing. Indeed, assume
that Ï

t

is a solution of (CMAF ) with ˆF/ˆs Ø ≠C. By changing variables

„(t, z) = eBtÏ
!
B≠1(1 ≠ e≠Bt), z

"
,

we get
ˆ„

t

ˆt
= log (◊̃

t

+ ddc„)n

� ≠ F̃ (t, z, „
t

),

where ◊̃
t

= eBt◊ 1≠e≠Bt

B

and

F̃ (t, z, s) = ≠Bs + Bnt + F
!
B≠1(1 ≠ e≠Bt), z, e≠Bts

"
.

We thus have
ˆF̃

ˆs
= ≠B + ˆF

ˆs
e≠Bt Ø ≠B ≠ Ce≠Bt.

Choosing B < 0 such that ≠B ≠ Ce≠Bt Ø 0 or ≠BeBt Ø C for all t œ [0, T ], we get
the desired equation. Note that we can not always choose B for any T > 0 because the
maximal value of ≠BeBT is 1/eT at B = ≠1/T , but in our case we can assume T is small
enough such that C < 1/eT . Finally we obtain the equation

ˆ„
t

ˆt
= log (◊̃

t

+ ddc„)n

� ≠ F̃ (t, z, „
t

),

where „(0, z) = Ï
0

and ˆF̃ /ˆs Ø 0.

2.2.8 Strategy of the proof
We fix Ê a reference Kähler form. Since we are interested in the behavior near 0 of the
flow, we can assume that for 0 Æ t Æ T

Ê

2 Æ ◊
t

Æ 2Ê, (2.2.4)

and there exists ” > 0 such that

”≠1� Æ ◊n

t

Æ ”�, ’t œ [0, T ].

We consider the complex Monge-Ampère flow

(CMAF ) ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï),

where F (t, z, s) œ CŒ([0, T ] ◊ X ◊ R,R) is such that either ˆF

ˆs

Ø 0 or ≠C Æ ˆF

ˆs

Æ 0,
for some C Ø 0 and ˆF

ˆt

is bounded from below. Our first goal is to show the following
generalization of [GZ17, DNL17]:
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Theorem 2.2.16. Let Ï
0

be a Ê-psh function with zero Lelong numbers. There exists a
family of smooth strictly ◊

t

≠ psh function (Ï
t

) such that

ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï
t

)

in (0, T ] ◊ X, with Ï
t

æ Ï
0

in L1(X), as t √ 0+. This family is unique if C = 0 and
|ˆF

ˆt

| < C Õ for some C Õ > 0. Moreover, Ï
t

æ Ï in energy if Ï œ E1(X, Ê) and Ï
t

is
uniformly bounded and converges to Ï

0

in capacity if Ï
0

œ LŒ(X).

The strategy of the proof is a follows:

• We first reduce to the case when ˆF

ˆs

Ø 0 following Section 2.2.7.

• Approximate Ï
0

by a decreasing sequence (Ï
0,j

) of smooth and strictly Ê-psh func-
tions by using the regularization result of Demailly [Dem92, BK07]. There exists
unique solutions Ï

t,j

œ PSH(X, Ê) fl CŒ(X) to the flow above with initial data Ï
0,j

.

• We then establish various priori estimates which will allow us to pass to the limit as
j æ Œ. We prove for each 0 < Á < T :

(1) (t, z, j) ‘æ Ï
t,j

(z) is uniformly bounded on on [Á, T ] ◊ X ◊ N,

(2) (t, z, j) ‘æ Ï̇
t,j

(z) is uniformly bounded on [Á, T ] ◊ X ◊ N,

(3) (t, z, j) ‘æ �
Ê

Ï
t,j

(z) is uniformly bounded on [Á, T ] ◊ X ◊ N.

• Finally, we apply the Evans-Krylov theory and Schauder estimates to show that
Ï

t,j

æ Ï
t

in CŒ((0, T ] ◊ X), as j æ +Œ such that Ï
t

satisfies (CMAF ). We then
check that Ï

t

æ Ï
0

as t æ 0+, and also study finer convergence properties:

(1) For Ï
0

œ L1(X), we show that Ï
t

æ Ï
0

in L1(X) as t æ 0.

(2) When Ï
0

is bounded, we show that Ï
t

æ Ï
0

in capacity.

(3) When Ï
0

œ E1(X, Ê), we show that Ï
t

converges to Ï
0

in energy as t æ 0.

2.3 A priori estimates
In this section we prove various a priori estimates for Ï

t

which satisfies

ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï)



30 CHAPTER 2. REGULARIZING PROPERTIES OF CMAF I

with a smooth strictly Ê-psh initial data Ï
0

, where (t, z, s) ‘æ F (t, z, s) œ CŒ([0, T ] ◊ X ◊
R,R) with ˆF

ˆs

Ø 0. Since we are interested in the behavior near 0 of (CMAF ), we can
further assume that

◊
t

≠ t◊̇
t

Ø 0 for 0 Æ t Æ T. (2.3.1)

This assumption will be used to bound the Ï̇
t

from above.

2.3.1 Bounding Ï
t

Lemma 2.3.1. We have
Ï

t

Æ Ct + max{sup Ï
0

, 0},

where C = ≠ inf
zœX,tœ[0,T ]

F (t, x, 0) + n log ”.

Proof. Consider Â
t

= Ct, where C = ≠ inf
zœX,tœ[0,T ]

F (t, x, 0) + n log ”. Thus we have

log (◊
t

+ ddcÂ
t

)n

� = log ◊n

t

� Æ n log ”.

Now F (t, z, Â
t

) Ø F (t, z, 0) Ø inf
zœX,tœ[0,T ]

F (t, x, 0), since we assume s ‘æ F (., ., s) is
increasing. Therefore

ˆÂ
t

ˆt
Ø (◊

t

+ ddcÂ
t

)n

� ≠ F (t, z, Â
t

).

Applying Proposition 2.2.5 for Ï
t

and Â
t

, we get Ï
t

Æ Ct + max{sup Ï
0

, 0}.

We now find a lower bound of Ï
t

which does not depend on inf
X

Ï
0

. First, we assume
that ◊

t

Ø Ê + t‰, ’t œ [0, T ], for some smooth (1, 1)-form ‰. Fix 0 < — < +Œ and 0 < –
such that

‰ + (2— ≠ –)Ê Ø 0.

It follows from Skoda’s integrability theorem [Sko72] that e≠2—Ï0Ên is absolutely continuous
with density in Lp for some p > 1. Therefore Ko�lodziej’s uniform estimate [Ko�l98] implies
that there exists a continuous Ê-psh solution u of the equation

–n(Ê + ddcu)n = e–u≠2—Ï0Ên,

which satisfies
||u||

L

Œ
(X)

Æ C,

where C depends only on ||e≠2—Ï0 ||
L

p
(X)

, for some p > 1.
Remark 2.3.2. Since Ï

0

in this section plays the role of smooth approximation Ï
0,j

(in
Section 1.8) for initial data with zero Lelong numbers, the uniform version of Skoda’s
integrability theorem [Sko72] yields the uniform bound to ||e≠2—Ï0,j ||

L

p
(X)

and ||u||
L

Œ
(X)

.
This is where we use the crucial assumption in Theorem 2.2.16 that the initial condition
has zero Lelong numbers at all points.
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Assume that „
t

is solution of the following equation
Y
___]

___[

ˆ„
t

ˆt
= log (Ê + t‰ + ddc„)n

Ên

,

„(0, .) = Ï
0

.

By Lemma 2.9 in [GZ17] we have
„

t

(z) Ø (1 ≠ 2—t)Ï
0

(z) + –tu(z) + n(t log t ≠ t). (2.3.2)
Using this we have the following lemma:
Lemma 2.3.3. For all z œ X and t œ (0, T ], we have

Ï
t

(z) Ø „
t

(z) + At Ø (1 ≠ 2—t)Ï
0

(z) + –tu(z) + n(t log t ≠ t) + At, (2.3.3)
where A depends on sup

X

Ï
0

and u œ C0(X) as defined above satisfies
||u||

L

p
(X)

Æ C(Ê, ||e≠2—Ï0 ||
L

p
(X)

).
In particular, there exists c(t) Ø 0 such that

Ï
t

(z) Ø Ï
0

(z) ≠ c(t),
with c(t) √ 0 as t √ 0.
Proof. There is ‡ > 0 such that ‡≠1Ên Æ � Æ ‡Ên, so we may assume that

ˆ„
t

ˆt
Æ log (Ê + t‰ + ddc„

t

)n

� .

Thanks to Lemma 2.3.1, Ï
t

Æ C
0

with C
0

> 0 depends on sup
X

Ï
0

and T . As we assume
s ‘æ F (., ., s) is increasing, F (t, z, Ï

t

) Æ F (t, z, C
0

). Replacing Ï
t

by Ï
t

≠ At and F by
F ≠ A, where

A := sup
[0,T ]◊X

F (t, z, C
0

),

we can assume that
sup

[0,T ]◊X

F (t, z, sup
[0,T ]◊X

Ï
t

) Æ 0.

Hence we have
ˆÏ

t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï
t

)

Ø log (Ê + t‰ + ddcÏ
t

)n

� ,

here we use the assumption ◊
t

Ø Ê + t‰, ’t œ [0, T ]. Applying the comparison theorem
(Proposition 2.2.5) for Ï

t

and „
t

we have Ï
t

Ø „
t

. In general, we get
Ï

t

(z) Ø „
t

+ At Ø (1 ≠ 2—t)Ï
0

(z) + –tu(z) + n(t log t ≠ t) + At

as required.
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2.3.2 Upper bound for Ï̇
t

We now prove a crucial estimate which allows us to use the uniform version of Kolodziej’s
estimates in order to get a bound of the oscillation of Ï

t

on X.
Proposition 2.3.4. Suppose ˆF/ˆs Ø ≠C

0

, for some C
0

Ø 0. Fix Á œ (0, T ). There exists
0 < C = C(sup

X

Ï
0

, Á, T, C
0

) such that for all Á Æ t Æ T and z œ X,

Ï̇
t

(z) Æ ≠KÏ
Á

(z) + C

t
Æ ≠K„

Á

(z) + C

t
≠ A,

where „
t

and A are as in Lemma 2.3.3 and K = 1 + C
0

T .
Proof. Since we deal with the interval time [Á, T ], we can assume the flow starting from
Ï

Á

, i.e Ï(0, x) = Ï
Á

. Consider G(t, z) = tÏ̇
t

≠ KÏ
t

≠ nKt + Bt2/2, with B < min F Õ and
K = 1 + C

0

T . We obtain
ˆG

ˆt
= tÏ̈

t

≠ (K ≠ 1)Ï̇
t

≠ Kn + Bt = t�
ÊtÏ̇ + t tr

Êt ◊̇
t

≠ t
ˆF

ˆs
Ï̇ ≠ tF Õ ≠ (K ≠ 1)Ï̇

t

≠ nK + Bt,

and
�

ÊtG = t�
ÊtÏ̇ ≠ K�

ÊtÏt

= t�
ÊtÏ̇ ≠ K(n ≠ tr

Êt ◊
t

),
hence

3
ˆ

ˆt
≠ �

Êt

4
G = ≠Ï̇

5
t
ˆF

ˆs
+ (K ≠ 1)

6
+ t

3
B ≠ ˆF

ˆt

4
≠ tr

Êt(K◊
t

≠ t◊̇
t

).

Since we assume that ◊
t

≠ t◊̇
t

Ø 0, we get
3

ˆ

ˆt
≠ �

Êt

4
G Æ ≠Ï̇

5
t
ˆF

ˆs
+ (K ≠ 1)

6
+ t

3
B ≠ ˆF

ˆt

4
.

If G attains its maximum at t = 0, we have the result. Otherwise, assume that G attains
its maximum at (t

0

, z
0

) with t
0

> 0, then using B < min F Õ we have at (t
0

, z
0

)

0 Æ
3

ˆ

ˆt
≠ �

Êt

4
G < ≠Ï̇

5
t
ˆF

ˆs
+ (K ≠ 1)

6
.

Since ˆF

ˆs

Ø ≠C
0

and K = 1 + C
0

T , the term in the square bracket is positive, we obtain
Ï̇(t

0

, z
0

) < 0 and

tÏ̇
t

≠ KÏ
t

≠ nt + Bt2/2 Æ ≠KÏ
t0(z

0

) ≠ nt
0

+ Bt2

0

/2.

Using Lemma 2.3.3 we get Ï
t0 Ø Ï

Á

≠ C(Á), hence

tÏ̇
t

Æ KÏ
t

≠ KÏ
Á

+ C
1

.

It follows from Lemma 2.3.1 that Ï
t

Æ C
2

(sup Ï
0

, T ), so

Ï̇
t

(x) Æ ≠KÏ
Á

+ C

t
,

where C depends on sup Ï
0

, Á, T . Since Ï
Á

Ø „
Á

+ At (Lemma 2.3.3), we obtain the desired
inequality.
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2.3.3 Bounding the oscillation of Ï
t

Once we get an upper bound for Ï̇
t

as in Proposition 2.3.4, we can bound the oscillation of
Ï

t

by using the uniform version of Kolodziej’s estimates. Indeed, observe that Ï
t

satisfies

(◊
t

+ ddcÏ
t

)n = H
t

�,

then by Proposition 2.3.4, for any Á œ (0, T ),

H
t

= exp(Ï̇
t

+ F ) Æ exp(≠K„
Á

+ C

t
+ C Õ)

are uniformly in L2(�) for all t œ [Á, T ] since „
Á

is smooth. Thanks to the uniform version
of Kolodziej’s estimates [Ko�l98, EGZ08], we infer that the oscillation of Ï

t

is uniformly
bounded:

Theorem 2.3.5. Fix 0 < t < T . There exist C(t) > 0 independent of inf
X

Ï
0

such that

Osc
X

(Ï
t

) Æ C(t).

2.3.4 Lower bound for Ï̇
t

The next result is similar to [ST17, Lemma 3.2] and [GZ17, Proposition 3.3].

Proposition 2.3.6. There exist constants A > 0 and C = C(A, Osc
X

Ï
0

) > 0 such that
for all (x, t) œ X ◊ (0, T ],

Ï̇ Ø n log t ≠ AOsc
X

Ï
0

≠ C,

Proof. We consider H(t, x) = Ï̇
t

+ AÏ
t

≠ –(t), where – œ CŒ(R+,R) will be chosen
hereafter. We have

ˆH

ˆt
= Ï̈

t

+ AÏ̇
t

≠ –̇

= �
ÊtÏ̇t

+ tr
Êt ◊̇

t

≠ F Õ ≠ ˆF

ˆs
Ï̇

t

+ AÏ̇
t

≠ –̇,

and
�

ÊtH = �
ÊtÏ̇t

+ A�
ÊtÏt

.

Therefore, we have
3

ˆ

ˆt
≠ �

Êt

4
H = AÏ̇

t

+ tr
Êt ◊̇

t

≠ A tr
Êt(Êt

≠ ◊
t

) ≠ F Õ ≠ –̇ ≠ ˆF

ˆs
Ï̇

t

= AÏ̇
t

+ tr
Êt(A◊

t

+ ◊̇
t

) ≠ An ≠ F Õ ≠ –̇ ≠ ˆF

ˆs
Ï̇

t

= (A ≠ ˆF

ˆs
)Ï̇

t

+ tr
Êt(A◊

t

+ ◊̇
t

) ≠ F Õ ≠ –̇ ≠ An.
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Now A◊
t

+ ◊̇ Ø Ê with A sufficiently large, hence

tr
Êt(A◊

t

+ ◊̇
t

) Ø tr
Êt Ê.

Using the inequality

tr
Êt(Ê) Ø n

3
Ên

t

Ên

4≠1/n

= n exp
3≠1

n
(Ï̇ + F )

4 3 �
Ên

4≠1/n

Ø ‡≠1/nh≠1/n

t

exp(≠ sup
[0,T ]◊X

F (t, z, C
0

)/n),

where h
t

= eÏ̇ and C
0

depends on sup
X

Ï
0

, we have

tr
Êt(A◊

t

+ ◊̇
t

) Ø h≠1/n

t

C
.

In addition, we apply the inequality ‡x > log x ≠ C
‡

for all x > 0 with x = h≠1/n

t

and
‡ << 1 to obtain ‡h≠1/n

t

= ‡e≠Ï̇/n > ≠Ï̇/n≠C
‡

. Finally, we can choose A sufficient large
and ‡ > 0 such that

(A ≠ ˆF

ˆs
)Ï̇ + tr

Êt(A◊
t

+ ◊̇
t

) Ø h≠1/n

t

C
1

≠ C Õ
1

.

Since |F Õ| is bounded by some constant C(Osc
X

Ï
0

) > 0, we obtain
3

ˆ

ˆt
≠ �

Êt

4
H >

h≠1/n

t

C
1

≠ –Õ(t) ≠ C
2

,

where C
2

depends on Osc
X

Ï
0

.
We chose – such that –(0) = ≠Œ. This insures that H attains its minimum at (t

0

, z
0

)
with t

0

> 0. At (t
0

, z
0

) we have

C
1

[C
2

+ –Õ(t
0

)] Ø h≠1/n

t0 (z
0

),

hence
H(t

0

, z
0

) Ø AÏ
t0(z

0

) ≠ {n log[C
2

+ –Õ(t
0

)] + –(t
0

)}.

From Lemma 2.3.1 we have Ï
t0 Æ sup

X

Ï
0

+ C Õ, hence

Ï̇ Ø –(t) ≠ AOsc
X

Ï
0

≠ C
3

≠ {n log[C
2

+ –Õ(t
0

)] + –(t
0

)}.

Choosing –(t) = n log t we get

n log[C
2

+ –Õ] + – Æ C
4

,

so obtain the inequality.
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2.3.5 Bounding the gradient of Ï

In this section we bound the gradient of Ï using the same technique as in [SzTo11, Lemma
4] (which is a parabolic version of B�locki’s estimate [Blo09]). In these articles ◊

t

= Ê is
independent of t. We note that if one is interested in the special case of (twisted) Kähler-
Ricci flow, then the gradient estimate is not needed: one can directly obtain in this case
a control of the Laplacian by a parabolic version of Yau’s celebrated C2-estimate (see for
instance [GZ17]).

Proposition 2.3.7. Fix Á œ [0, T ]. There exists C > 0 depending on sup
X

Ï
0

and Á such
that for all Á Æ t Æ T

|ÒÏ(z)|2
Ê

< eC/t.

Proof. Since we deal with the interval time [Á, T ] and the bound on Osc
X

(Ï
Á

) only depends
on sup

X

Ï
0

and Á, we can consider the flow starting from Ï
Á

, i.e Ï(0, x) = Ï
Á

. Define

K = t log |ÒÏ|2
Ê

≠ “ ¶ Ï = t log — ≠ “ ¶ Ï,

where — = |ÒÏ|2
Ê

and “ œ CŒ(R,R) will be chosen hereafter.

If K attains its maximum for t = 0, — is bounded in terms of sup
X

Ï
0

and Á, since |Ï
t

|
is bounded by a constant depending on sup

X

Ï
0

and Á for all t œ [0, T ≠ Á] (Lemma 2.3.1
and Lemma 2.3.3).

We now assume that K attains its maximum at (t
0

, z
0

) in [0, T ≠ Á] ◊ X with t
0

> 0.
Near z

0

we have Ê = ddcg for some smooth strongly plurisubharmonic g and ◊
t

= ddch
t

for some smooth function h
t

, hence u := h
t

+ Ï is plurisubharmonic near (t
0

, z
0

). We take
normal coordinates for Ê at z

0

such that

g
i

¯

k

(z
0

) = ”
jk

(2.3.4)
g

i

¯

kl

(z
0

) = 0 (2.3.5)
u

pq̄

(t
0

, z
0

) is diagonal, (2.3.6)

here we denote –
j

¯

k

:= ˆ

2
–

ˆzjˆz̄k
, –

p

:= ˆ–

ˆzp
and –

p̄

:= ˆ–

ˆz̄p
.

We now compute K
p

, K
pp̄

at (t
0

, z
0

) in order to use the maximum principle. At (t
0

, z
0

)
we have K

p

= 0 hence
t—

p

= —“Õ ¶ ÏÏ
p

(2.3.7)

or
(—

p

—
)2 = 1

t2

(“Õ ¶ Ï)2|Ï
p

|2.
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Therefore,

K
pp̄

= t
—

pp̄

— ≠ |—
p

|2
—2

≠ “ÕÕ ¶ Ï|Ï
p

|2 ≠ “Õ ¶ ÏÏ
pp̄

= t
—

pp̄

—
≠ [t≠1(“Õ)2 + “ÕÕ]|Ï

p

|2 ≠ “ÕÏ
pp̄

,

where we write “Õ, “ÕÕ instead of “Õ ¶ Ï and “ÕÕ ¶ Ï.

Now we compute —
p

, —
pp̄

at (t
0

, z
0

) with — = gj

¯

kÏ
j

Ï
¯

k

where (gj

¯

k) = [(g
j

¯

k

)t]≠1. We have

—
p

= gj

¯

k

p

Ï
j

Ï
¯

k

+ gj

¯

kÏ
jp

Ï
¯

k

+ gj

¯

kÏ
jp

Ï
¯

kp

.

At (t
0

, z
0

), use (2.3.4), (2.3.5)

gj

¯

k

p

= ≠gj

¯

lg
s

¯

lp

gs

¯

k = 0,

hence
—

p

=
ÿ

j

Ï
jp

Ï
¯

j

+
ÿ

j

Ï
p

¯

j

Ï
j

, (2.3.8)

and
—

pp̄

= gj

¯

k

pp̄

Ï
j

Ï
¯

k

+ 2Re
ÿ

j

Ï
pp̄j

Ï
¯

j

+
ÿ

j

|Ï2

jp

| +
ÿ

j

|Ï
jp̄

|2.

Note that
R

i

¯

jk

¯

l

= ≠g
i

¯

jk

¯

l

+ gs

¯

tg
s

¯

jk

g
i

¯

t

¯

l

,

hence, at (t
0

, z
0

) gj

¯

k

pp̄

= ≠g
j

¯

kpp̄

= R
j

¯

kpp̄

, and

—
pp̄

= R
j

¯

kpp̄

Ï
j

Ï
¯

k

+ 2Re
ÿ

j

Ï
pp̄j

Ï
¯

j

+
ÿ

j

|Ï2

jp

| +
ÿ

j

|Ï
jp̄

|2.

Now at (t
0

, z
0

)

�
Êt0 K =

nÿ

p=1

K
pp̄

u
pp̄

,

hence

�
Êt0 K =t

ÿ

j,k

R
i�

¯

kpp̄

Ï
j

Ï
¯

k

—u
pp̄

+ 2tRe
ÿ

j

Ï
pp̄j

Ï
¯

j

—u
pp̄

+ t

q
j

|Ï
jp

|2 + |Ï
jp̄

|2
—u

pp̄

≠ [t≠1(“Õ)2 + “ÕÕ]|Ï
p

|2
u

pp̄

≠ “ÕÏ
pp̄

u
pp̄

.
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Since u
pp̄

= Ï
pp̄

+ h
pp̄

near (t
0

, z
0

), then at (t
0

, z
0

)

ÿ

p

“ÕÏ
pp̄

u
pp̄

= n“Õ ≠
ÿ

p

“Õh
pp̄

u
pp̄

.

Moreover, assume that the holomorphic bisectional curvature of Ê is bounded by a constant
B œ R on X, then at (t

0

, z
0

)

t
ÿ

j,k,p

R
j

¯

kpp̄

Ï
j

Ï
¯

k

—u
pp̄

Ø ≠Bt
ÿ

p

1
u

pp̄

,

therefore

�
Êt0 K Ø(“Õ ≠ tB)

ÿ

p

1
u

pp̄

+ 2tRe
ÿ

j,p

Ï
pp̄j

Ï
¯

j

—u
pp̄

+ t

—

ÿ

j,p

|Ï
jp

|2 + |Ï
jp̄

|2
—u

pp̄

≠ [t≠1(“Õ)2 + “ÕÕ]
ÿ

p

|Ï
p

|2
u

pp̄

≠ n“Õ + “Õ ÿ

p

th
pp̄

u
pp̄

.

By the maximum principle, at (t
0

, z
0

)

0 Æ
3

ˆ

ˆt
≠ �

Êt

4
K

hence,

0 Æ log — ≠ “ÕÏ̇ ≠ (“Õ ≠ tB)
ÿ

p

1
u

pp̄

+ t
—Õ

—
≠ 2tRe

ÿ

j,p

Ï
pp̄j

Ï
¯

j

—u
pp̄

≠ t

—

ÿ

j,p

|Ï
jp

|2 + |Ï
jp̄

|2
—u

pp̄

+ [t≠1(“Õ)2 + “ÕÕ]
ÿ

p

|Ï
p

|2
u

pp̄

+ n“Õ. (2.3.9)

We will simplify (2.3.9) to get a bound for — at (t
0

, z
0

). We now estimate

t
—Õ

—
≠ 2tRe

ÿ

j,p

Ï
pp̄j

Ï
¯

j

—u
pp̄

and ≠ t

—

ÿ

j,p

|Ï
jp

|2
—u

pp̄

+ t≠1(“Õ)2

ÿ

p

|Ï
p

|2
u

pp̄

.

For the first one, we note that near (t
0

, z
0

)

log det(u
pq̄

) = Ï̇ + F (t, z, Ï) + log �,

hence using
d

ds
det A = A

¯

ji

3
d

ds
A

i

¯

j

4
det A
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we have at (t
0

, z
0

)
upp̄u

pp̄j

= u
pp̄j

u
pp̄

= (Ï̇ + F (t, z, Ï) + log �)
j

.

Therefore

2tRe
ÿ

j,p

Ï
pp̄j

Ï
¯

j

—u
pp̄

= 2tRe
ÿ

j,p

(u
pp̄j

≠ h
pp̄j

)Ï
¯

j

—u
pp̄

= 2t

—
Re

ÿ

j

(Ï̇ + F (t, z, Ï) + log �)
j

Ï
¯

j

≠ 2tRe
ÿ

j,p

h
pp̄j

Ï
¯

j

—u
pp̄

= 2t

—
Re

ÿ

j

(Ï̇
j

Ï
¯

j

) + 2t

—
Re

3
(F (t, z, Ï) + log �)

j

+ ˆF

ˆs
Ï

j

4
Ï

¯

j

≠2tRe
ÿ

j,p

h
pp̄j

Ï
¯

j

—u
pp̄

.

In addition, at (t
0

, z
0

)

t
—Õ

—
= t

—

ÿ

j,k

gj

¯

k(Ï̇
j

Ï
¯

k

+ Ï
j

Ï̇
¯

k

)

= 2t

—
Re(Ï̇

j

Ï
¯

j

),

we infer that

t
—Õ

—
≠ 2tRe

ÿ

j,p

u
pp̄j

Ï
¯

j

—u
pp̄

= ≠2t

—
Re

ÿ

j

(F (t, z, Ï) + log �)
j

Ï
¯

j

≠ 2t

—

ÿ

j

ˆF

ˆs
|Ï

j

|2

+2tRe
ÿ

j,p

h
pp̄j

Ï
¯

j

—u
pp̄

.

We may assume that log — > 1 so that

|Ï
¯

j

|
—

< C

By the hypothesis that ˆF

ˆs

Ø 0 there exists C
1

depends on sup |Ï
0

| and C
2

depends on h
and Á such that

t
—Õ

—
≠ 2tRe

ÿ

j,p

u
pp̄j

Ï
¯

j

—u
pp̄

< C
1

t + C
2

t
ÿ

p

1
u

pp̄

. (2.3.10)

We now estimate

≠ t

—

ÿ

j,p

|Ï
jp

|2
—u

pp̄

+ t≠1(“Õ)2

ÿ

p

|Ï
p

|2
u

pp̄

.
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It follows from (2.3.7) and (3.3.10) that
—

p

=
ÿ

j

Ï
jp

Ï
¯

j

+
ÿ

j

Ï
p

¯

j

Ï
j

,

t—
p

= —“ÕÏ
p

then, ÿ

j

Ï
jp

Ï
¯

j

= (t≠1“Õ— ≠ Ï
pp̄

)Ï
p

.

Hence at (t
0

, z
0

)
t

—

ÿ

j,p

|Ï
jp

|2
u

pp̄

Ø t

—2

ÿ

j,p

| q
Ï

jp

Ï
¯

j

|2
u

pp̄

= t

—2

ÿ

p

|t≠1“Õ— + 1 ≠ u
pp̄

|2|Ï
p

|2
u

pp̄

Ø t≠1(“Õ)2

ÿ

p

|Ï
p

|2
u

pp̄

≠ C
3

“Õ, (2.3.11)

here C
3

depends on h
t

for t œ [Á, T ] and we assume “Õ > 0.
We now choose

“(s) = As ≠ 1
A

s2

with A so large that “Õ = A ≠ 2

A

s > 0 and “ÕÕ = ≠2/A < 0 for all s Æ sup
[0,T ]◊X

Ï
t

. From
Lemma 2.3.6 we have Ï̇ Ø C

0

+ n log t, where C
0

depends on Ocs
X

Ï
0

. Combining this
with (2.3.9), (2.3.10), (2.3.11) we obtain

0 Æ ≠ 2
A

ÿ

p

|Ï
p

|2
u

pp̄

≠ (“Õ ≠ Bt ≠ C
2

t)
ÿ

p

1
u

pp̄

+ log — + C
4

“Õ + C
1

t,

where C
1

, C
2

, C
4

depend on sup
X

|Ï
0

|, h
t

and Á. If A is chosen sufficiently large, we have
a constant C

5

> 0 such that
ÿ

p

1
u

pp̄

+
ÿ

p

|Ï
p

|2
u

pp̄

Æ C
5

log —, (2.3.12)

so we get (u
pp̄

)≠1 Æ C
5

log — for 1 Æ p Æ n. From Lemma 2.3.1 and Lemma 2.3.4 we have
at (t

0

, z
0

) Ÿ

p

u
pp̄

= e≠Ï̇t+F (t,x,Ït) Æ C
6

,

where C
6

depends on sup
X

|Ï
0

|, Á. Then we get
u

pp̄

Æ C
6

(C
5

log —)n≠1,

so from (2.3.12) we have
— =

ÿ

p

|Ï
p

|2 Æ C
6

(C
5

log —)n,

hence log — < C
7

at (t
0

, z
0

). This shows that — = |ÒÏ(z)|2
Ê

< eC/t for some C depending
on sup |Ï

0

| and Á.
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2.3.6 Bounding �Ï
t

We now use previous a priori estimates above to get a estimate of �Ï. The estimate on
|ÒÏ|2

Ê

is needed here, in contrast with [GZ17, DNL17].

Lemma 2.3.8. For all z œ X and s, t > 0 such that s + t Æ T ,

0 Æ t log tr
Ê

(Ê
t+s

) Æ AOsc
X

(Ï
s

) + C + [C ≠ n log s + AOsc
X

(Ï
s

)]t

for some uniform constants C, A > 0.

Proof. We define
P = t log tr

Ê

(Ê
t+s

) ≠ AÏ
t+s

,

and
u = tr

Ê

(Ê
t+s

)
with A > 0 to be chosen latter. We set �

t

:= �
Êt+s . Now,

ˆ

ˆt
P = log u + t

u̇

u
≠ AÏ̇

t+s

,

�
t

P = t�
t

log u ≠ A�
t

Ï
t+s

hence 3
ˆ

ˆt
≠ �

t

4
P = log u + t

u̇

u
≠ AÏ̇

t+s

≠ t�
t

log u + A�
t

Ï
t+s

. (2.3.13)

First, we have
A�

t

Ï
t+s

= An ≠ A tr
Êt+s(◊

t+s

) Æ An ≠ A

2 tr
Êt+s(Ê),

and by Proposition 2.2.4

≠t�
t

log u Æ B tr
Êt+s(Ê) + t

tr
Ê

(Ric(Ê
t+s

))
tr

Ê

(Ê
t+s

) .

Moreover,

tu̇

u
= t

u

5
�

Ê

!
log Ên

t+s

/Ên ≠ log �/Ên ≠ F (t, z, Ï
t+s

)
"

+ tr
Ê

◊̇
t

6
,

= t

u

5
≠ tr

Ê

(Ric Ê
t+s

) + tr
Ê

(◊̇
t

+ Ric Ê) ≠ �
Ê

(F (t, z, Ï) + log �/Ên)
6
,

with u = tr
Ê

(Ê
t+s

), and
tr

Êt+s(Ê) tr
Ê

(Ê
t+s

) Ø n,

we get

≠ t�
t

log u + tu̇

u
Æ (B + C

1

)t tr
Êt+s(Ê) ≠ t

�
Ê

#
F (t, z, Ï) + log �/Ên

$

tr
Ê

(Ê
t+s

) . (2.3.14)
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Now

�
Ê

F (t, z, Ï
t+s

) = �
Ê

F (z, .) + 2Re
5
gj

¯

k

3
ˆF

ˆs

4

j

Ï
¯

k

6
+ ˆF

ˆs
�

Ê

Ï + ˆ2F

ˆs2

|ÒÏ|2
Ê

.

So there are constants C
2

, C
3

, C
4

such that
--�

Ê

!
F (t, z, Ï

t+s

) + log �/Ên

"-- Æ C
2

+ C
3

|ÒÏ|2
Ê

+ C
4
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Ê

Ê
t+s

.

Then we infer

≠�
Ê

[F (t, z, Ï) + log �/Ên]
tr

Ê

(Ê
t+s

) Æ 1
n

tr
Êt+s(Ê)(C

2

+ C
3

|ÒÏ|2
Ê

) + C
4

,

so from Lemma 2.3.7 and (2.3.14) we have

≠ t�
t

log u + tu̇

u
Æ (B + C

5

)t tr
Êt+s(Ê) + C

6

. (2.3.15)

From Lemma 2.2.3 and the inequality (n ≠ 1) log x Æ x + C
n

,

log u = log tr
Ê

(Ê
t+s

) Æ log
3

n
3

Ên

t+s

Ên

4
tr

Êt+s(Ê)n≠1

4

= log n + Ï̇
t+s

+ F (t, z, Ï) + (n ≠ 1) log tr
Êt+s(Ê)

Æ Ï̇
t+s

+ tr
Êt+s(Ê) + C

7

.

It follows from (2.3.13), (2.3.14) and (2.3.15) that
3

ˆ

ˆt
≠ �

t

4
P Æ C

8

≠ (A ≠ 1)Ï̇
t+s

+ [(B + C
5

)t + 1 ≠ A/2] tr
Ês+t Ê.

We choose A sufficiently large such that (B +C
5

)t+1≠A/2 < 0. Applying Proposition
2.3.6, 3

ˆ

ˆt
≠ �

t

4
P Æ C

8

≠ (A ≠ 1)(n log s ≠ AOsc
X

Ï
s

≠ C).

Now suppose P attains its maximum at (t
0

, z
0

). If t
0

= 0, we get the desired inequality.
Otherwise, at (t

0

, z
0

)

0 Æ
3

ˆ

ˆt
≠ �

t

4
P Æ C

8

≠ (A ≠ 1)(n log s ≠ AOsc
X

Ï
s

≠ C).

Hence we get

t log tr
Ê

(Ê
t+s

) Æ AOsc
X

(Ï
s

) + C + [C ≠ n log s + AOsc
X

(Ï
s

)]t.

Corollary 2.3.9. For all (t, x) œ (0, T ] ◊ X

0 Æ t log tr
Ê

(Ê
t+s

) Æ 2AOsc
X

(Ï
t/2

) + C Õ.
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2.3.7 Higher order estimates
For the higher order estimates, we can follow Székelyhidi-Tosatti [SzTo11] by bounding

S = gip̄

Ï

gq

¯

j

Ï

gkr̄

Ï

Ï
i

¯

jk

Ï
p̄qr̄

and |Ric(Ê
t

)|
Êt ,

then using the parabolic Schauder estimates in order to obtain bounds on all higher order
derivatives for Ï. Besides we can also combine previous estimates with Evans-Krylov and
Schauder estimates (Theorem 2.2.8) to get the Ck estimates for all k Ø 0.

Theorem 2.3.10. For each Á > 0 and k œ N, there exists C
k

(Á) such that

||Ï||Ck
([Á,T ]◊X)

Æ C
k

(Á).

2.4 Proof of Theorem A
2.4.1 Convergence in L1

We approximate Ï
0

by a decreasing sequence Ï
0,j

of smooth Ê-psh fuctions (using [Dem92]
or [BK07]). Denote by Ï

t,j

the smooth family of ◊
t

-psh functions satisfying on [0, T ] ◊ X

ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï)

with initial data Ï
0,j

.

It follows from the comparison principle (Proposition 2.2.5) that j ‘æ Ï
j,t

is non-
increasing. Therefore we can set

Ï
t

(z) := lim
jæ+Œ

Ï
t,j

(z).

Thanks to Lemma 2.3.3 the function t ‘æ sup
X

Ï
t,j

is uniformly bounded, hence Ï
t

is
a well-defined ◊

t

-psh function. Moreover, it follows from Theorem 2.3.10 that Ï
t

is also
smooth in (0, T ] ◊ X and satisfies

ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï).

Observe that (Ï
t

) is relatively compact in L1(X) as t æ 0+, we now show that Ï
t

æ Ï
0

in L1(X) as t √ 0+.

First, let Ï
tk is a subsequence of (Ï

t

) such that Ï
tk converges to some function Â in

L1(X) as t
k

æ 0+. By the properties of plurisubharmonic functions, for all z œ X

lim sup
tkæ0

Ï
tk(z) Æ Â(z),



2.4. PROOF OF THEOREM A 43

with equality almost everywhere. We infer that for almost every z œ X

Â(z) = lim sup
tkæ0

Ï
tk(z) Æ lim sup

tkæ0

Ï
tk,j

(z) = Ï
0,j

(z),

by continuity of Ï
t,j

at t = 0. Thus Â Æ Ï
0

almost everywhere.

Moreover, it follows from Lemma 3.3.3 that

Ï
t

(z) Ø (1 ≠ 2—t)Ï
0

(z) + –tu(z) + n(t log t ≠ t) + At,

with u continuous, so
Ï

0

Æ lim inf
tæ0

Ï
t

.

Since Â Æ Ï
0

almost everywhere, we get Â = Ï
0

almost everywhere, so Ï
t

æ Ï
0

in L1.

We next consider some cases in which the initial condition is slightly more regular.

2.4.2 Uniform convergence

If the initial condition Ï
0

is continuous then by Proposition 2.2.5 we get Ï
t

œ C0([0, T ]◊X),
hence Ï

t

uniformly converges to Ï
0

as t æ 0+.

2.4.3 Convergence in capacity

When Ï
0

is only bounded, we prove this convergence moreover holds in capacity (Definition
2.2.12). It is the strongest convergence we can expect in the bounded case (cf. [GZ05]).
First, observe that it is sufficient to prove that u

t

:= Ï
t

+ c(t) converges to Ï
0

as t æ 0 in
capacity, where c(t) satisfies Ï

t

+ c(t) Ø Ï
0

as in Proposition 2.3.3. Since Ï
t

converges to
Ï

0

, so does u
t

, and we get
lim sup

tæ0

u
t

Æ Ï
0,j

,

for all j > 0, where (Ï
0,j

) is a family of smooth Ê-psh functions decreasing to Ï
0

as in
Section 2.4.1. It follows from Hartogs’ Lemma that for each j > 0 and Á > 0, there exists
t
j

> 0 such that
u

t

Æ Ï
0,j

+ Á, ’ 0 Æ t Æ t
j

.

Therefore
Cap

Ê

({u
t

> Ï
0

+ 2Á}) Æ Cap
Ê

({Ï
0,j

> Ï
0

+ Á}),

for all t Æ t
j

. Since Ï
0,j

converges to Ï
0

in capacity (Proposition 2.2.13), the conclusion
follows.
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2.4.4 Convergence in energy
Using the same notations as in Section 2.2.6 we get the following monotonicity property of
the energy.

Proposition 2.4.1. Suppose Ï
t

is a solution of (CMAF ) with initial data Ï
0

œ E1(X, Ê).
Then there exists a constant C Ø 0 such that t ‘æ E(Ï

t

) + Ct is increasing on [0, T ].

Proof. By computation we get

dE(Ï
t

)
dt

= 1
V

⁄

X

Ï̇
t

Ê
t

+ 1
(n + 1)V

nÿ

j=0

⁄

X

Ï
t

◊̇
t

· [j◊
t

+ (n ≠ j)Ê
t

] · Êj

t

· ◊n≠j≠1

t

.

For the first term, we use the concavity of the logarithm to get
⁄

X

Ï̇
t

Ên

t

=
⁄

X

log
3

Ên

t

eF �

4
Ên

t

V
t

Ø ≠ log
As

X

eF (t,z,Ït)�
V

t

B

Ø ≠ log(C
0

”)

where F (t, z, Ï
t

) Æ log C
0

and

V
t

:=
⁄

X

Ên

t

=
⁄

X

◊n

t

Ø ”≠1V.

For the second one, there is a constant A > 0 such that ◊̇
t

Æ A◊
t

for all 0 Æ t Æ T . We
note that ⁄

X

Ï
t

(◊
t

+ ddcÏ
t

)j · ◊n≠j

t

Æ
⁄

X

Ï
t

(◊
t

+ ddcÏ
t

)j≠1 · ◊n≠j+1

t

,

hence
dE(Ï

t

)
dt

Ø ≠C
1

+ C
2

E(Ï
t

),

for some C
1

, C
2

> 0. By Lemma 2.3.3 we have

E(Ï
t

) Ø C
3

E(Ï
0

) + C
3

Ø C
4

Thus t ‘æ E(Ï
t

) + Ct is increasing on [0, T ] for some C > 0.

Proposition 2.4.2. If Ï
0

œ E1(X, Ê), then Ï
t

converges to Ï
0

in energy as t æ 0.

Proof. It follows from Proposition 2.4.1 that Ï
t

stays in a compact subset of the class
E1(X, Ê). Let Â = lim

tkæ0

Ï
tk be a cluster point of (Ï

t

) as t æ 0. Reasoning as earlier,
we have Â Æ Ï

0

. Since the energy E(.) is upper semi-continuous for the weak L1-topology
(cf. [GZ07]), Proposition 2.4.1 and the monotonicity of Aubin-Yau energy functional yield

E(Ï
0

) Æ lim
tkæ0

E(Ï
tk) Æ E(Â) Æ E(Ï

0

),

Therefore E(Â) = E(Ï
0

), so Â = Ï
0

and we have Ï
t

æ Ï
0

in energy.
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2.5 Uniqueness and stability of solution
We now prove the uniqueness and stability for the complex Monge-Ampère flow

(CMAF ) ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï),

where F (t, z, s) œ CŒ([0, T ] ◊ X ◊ R,R) with

ˆF

ˆs
Ø 0 and

----
ˆF

ˆt

---- Æ C Õ,

for some constant C Õ > 0.

2.5.1 Uniqueness
For the uniqueness and stability of solution we follow the approach of Di Nezza-Lu [DNL17].
The author thanks Eleonora Di Nezza and Hoang Chinh Lu for valuable discussion on the
argument in [DNL17, Theorem 5.4].

Suppose Ï
t

is a solution of
Y
___]

___[

ˆÏ

ˆt
= log (◊

t

+ ddcÏ)n

� ≠ F (t, z, Ï),

Ï(0, .) = Ï
0

.

(2.5.1)

Consider
„(t, z) = eAtÏ

1
(1 ≠ e≠At)/A, z

2
,

so „
0

= Ï
0

. Then
ˆ„

t

ˆt
= log (◊̃

t

+ ddc„)n

� + A„
t

≠ H(t, z, „
t

), (2.5.2)

where
◊̃

t

= eAt◊ 1≠e≠At

A

,

and
H(t, z, „) = Ant + F

!
A≠1(1 ≠ e≠At), z, e≠At„

"
.

Since
ˆ◊̃

t

ˆt
= AeAt◊ 1≠e≠At

A

+ ◊̇ 1≠e≠At

A

,

we can choose A so large that ◊̃
t

is increasing in t. Observe that the equation (2.5.1) has
a unique solution if and only if the equation (2.5.2) has a unique solution. It follows from
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Lemma 2.3.3 that
Ï Ø Ï

0

≠ c(t),
where c(t) √ 0 as t √ 0, so for „(t):

„ Ø „
0

≠ –(t),

with –(t) √ 0 as t √ 0.
Theorem 2.5.1. Suppose Â and Ï are two solutions of (2.5.1) with Ï

0

Æ Â
0

, then Ï
t

Æ Â
t

.
In particular, the equation (2.5.1) has a unique solution.
Proof. Thanks to the previous remark, it is sufficient to prove u Æ v, where u(t, z) =
eAtÏ

1
(1 ≠ e≠At)/A, z

2
, and v(t, z) = eAtÂ

1
(1 ≠ e≠At)/A, z

2
.

Fix Á œ (0, T ), define

ṽ(t, z) = v
t+Á

+ –(Á)eAt + nÁ(eAt ≠ 1).

then ṽ
0

Ø v
0

= Â
0

and ṽ Ø v
t+Á

. Since we choose A so large that ◊̃
t

is increasing,

ˆṽ

ˆt
= log (◊̃

t+Á

+ ddcv
t+Á

)n

� + Aṽ
t

≠ H(t, z, v
t+s

)

Ø log (◊̃
t

+ ddcṽ
t

)n

� + Aṽ
t

≠ H(t, z, v
t+s

)

Where

H(t, z, v
t+Á

) = 2Ant ≠ An(t + Á) + F
3

A≠1(1 ≠ e≠A(t+Á))), z, e≠A(t+Á)v
t+Á

4
.

It follows from the monotonicity of F in the third variable that

F
3

A≠1(1 ≠ e≠A(t+Á)), z, e≠A(t+Á)v
t+Á

4
Æ F

3
A≠1(1 ≠ e≠A(t+Á)), z, e≠Atṽ

t

4
.

By the assumption |ˆF

ˆt

| < C Õ, we choose A > C Õ and get

s ‘æ ≠A(t + s) + F
3

A≠1(1 ≠ e≠A(t+s)), z, e≠Atṽ
t

4

is decreasing. Thus

H(t, z, v
t+Á

) Æ Ant + F
3

A≠1(1 ≠ e≠At), z, e≠Atṽ
t

)
4

,

and
ˆṽ

ˆt
Ø log (◊̃

t

+ ddcṽ
t

)n

� + Aṽ
t

≠ H(t, z, ṽ
t

).

Therefore ṽ is the supersolution of (2.5.2). It follows from Proposition 2.2.6 that u
t

Æ ṽ
t

,
’t œ [0, T ]. Letting Á æ 0, we get u

t

Æ v
t

, so Ï
t

Æ Â
t

.



2.5. UNIQUENESS AND STABILITY OF SOLUTION 47

Remark 2.5.2. For ◊
t

(x) = Ê(x), � = Ên, F (t, z, s) = ≠2|s|1/2 and Ï
0

= 0, we obtain two
distinct solutions to (CMAF ), Ï

t

(z) © 0 and Ï
t

(z) = t2. Here ˆF

ˆs

is negative and F is not
smooth along (s = 0).

We now prove the following qualitative stability result:

Theorem 2.5.3. Fix Á > 0. Let Ï
0,j

be a sequence of Ê-psh functions with zero Lelong
number at all points, such that Ï

0,j

æ Ï
0

in L1(X). Denote by Ï
t,j

and Ï
j

the solutions
of (2.5.1) with the initial condition Ï

0,j

and Ï
0

respectively. Then

Ï
t,j

æ Ï
t

in CŒ([Á, T ] ◊ X) as j æ +Œ.

Proof. Observe that we can use previous techniques in Section 2.3 to obtain estimates of
Ï

t,j

in Ck([Á, T ] ◊ X) for all k Ø 0. In particular, for the C0 estimate, we need to have the
uniform bound for H

t,j

= exp(Ï̇
t,j

+ F ) in order to use the uniform version of Kolodziej’s
estimates [Ko�l98, EGZ08]. By Lemma 2.3.4 we have

H
t,j

= exp(Ï̇
t,j

+ F ) Æ exp
3≠„

Á

+ C

t
+ C Õ

4
,

where C, C Õ depend on Á, sup
X

Ï
0,j

. Since Ï
0,j

decreases to Ï
0

, we have the sup
X

Ï
0,j

is
uniformly bounded in term of sup

X

Ï
0

for all j, so we can choose C, C Õ to be independent
of j. Hence there is a constant A(t, Á) depending on t and Á such that ||H

t,j

||
L

2
(X)

is
uniformly bounded by A(t, Á) for all t œ [Á, T ].

By the Arzela-Ascoli theorem we can extract a subsequence Ï
jk that converges to „

t

in CŒ([Á, T ] ◊ X). Note that

ˆ„
t

ˆt
= log (◊

t

+ ddc„
t

)n

� ≠ F (t, z, „
t

).

We now prove „
t

= Ï
t

. From Lemma 2.3.3 we get

Ï
t,jk Ø (1 ≠ —t)Ï

0,jk ≠ C(t),

where C(t) √ 0 as t æ 0. Let j
k

æ +Œ we get „
t

Ø (1 ≠ —t)Ï
0

≠ C(t), hence

lim inf
tæ0

„
t

Ø Ï
0

.

It follows from Theorem 2.5.1 that „
t

Ø Ï
t

. For proving „
t

Æ Ï
t

, we consider Â
0,k

=1
sup

jØk

Ï
0,j

2ú
, hence Â

0,k

√ Ï
0

by Hartogs theorem. Denote by Â
t,k

the solution of
(2.5.1) with initial condition Â

0,j

. It follows from Theorem 2.5.1 that

Â
t,j

Ø Ï
t,j

.

Moreover, thanks to the same arguments for proving the existence of a solution in Sections
2 and 3 by using a decreasing approximation of Ï

0

, we have that Â
t,j

decreases to Ï
t

. Thus
we infer that „

t

Æ Ï
t

and the proof is complete.
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2.5.2 Quantitative stability estimate
In this section, we prove the following stability result when the initial condition is contin-
uous.

Theorem 2.5.4. If Ï, Â œ CŒ((0, T ] ◊ X) are solutions of (CMAF ) with continuous
initial data Ï

0

and Â
0

, then

||Ï ≠ Â||
C

k
([Á,T ]◊X)

Æ C(k, Á)||Ï
0

≠ Â
0

||
L

Œ
(X)

. (2.5.3)

Proof. Step 1. It follows from Demailly’s approximation result (cf. [Dem92]) that there
exist two sequences {Ï

0,j

}, {Â
0,j

} µ PSH(X, Ê) fl CŒ(X) such that

lim
jæŒ

||Ï
0,j

≠ Ï
0

||
L

Œ
(X)

= 0 and lim
jæŒ

||Â
0,j

≠ Â
0

||
L

Œ
(X)

= 0.

Denote by Ï
t,j

, Â
t,j

solution of (CMAF ) corresponding to initial data Ï
0,j

, Â
0,j

. Moreover,
thanks to Theorem 2.5.3 we obtain

lim
jæŒ

||Ï
j,k

≠ Ï
t

||
C

k
([Á,T ]◊X)

= 0 and lim
jæŒ

||Â
j,k

≠ Â||
C

k
([Á,T ]◊X)

= 0.

Thus it is sufficient to prove (2.5.3) with smooth functions Ï
0

, Â
0

.
Step 2. We now assume that Ï

0

and Â
0

are smooth. For each ⁄ œ [0, 1], there is a unique
solution Ï⁄

t

œ CŒ((0, T ] ◊ X) for the complex Monge-Ampère flow
Y
____]

____[

ˆÏ⁄

ˆt
= log (◊

t

+ ddcÏ⁄)n

� ≠ F (t, z, Ï⁄),

Ï⁄(0, .) = (1 ≠ ⁄)Ï
0

+ ⁄Â
0

.

(2.5.4)

By the local existence theorem, Ï⁄ depends smoothly on the parameter ⁄. We denote by
�⁄

t

the Laplacian with respect to the Kähler form

Ê⁄ := ◊
t

+ ddcÏ⁄.

Observe that 3
ˆ

ˆt
≠ �⁄

t

4
ˆÏ⁄

ˆ⁄
= ≠ˆF

ˆs

ˆÏ⁄

ˆ⁄
,

so 3
ˆ

ˆt
≠ �⁄

t

4
u⁄

t

+ g
⁄

(t, z)u⁄

t

= 0, (2.5.5)

where u⁄

t

= ˆÏ

⁄

ˆ⁄

and g
⁄

(t, z) = ˆF

ˆs

(t, z, Ï⁄) Ø 0 . Moreover

Â
t

≠ Ï
t

=
⁄

1

0

u⁄d⁄,
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thus it is sufficient to show that

||u⁄

t

||
C

k
([Á,T ]◊X)

Æ C(k, Á)||u⁄

0

||
L

Œ
(X)

= C(k, Á)||Â
0

≠ Ï
0

||
L

Œ .

Step 3. It follows from Theorem 2.3.10 that for each k Ø 0,

Îg
⁄

Î
C

k
([Á,T ]◊X)

Æ C
1

(k, Á) and ||Ê⁄

t

||
C

k
([Á,T ]◊X)

Æ C
2

(k, Á),

for all ⁄ œ [0, 1]. Using the parabolic Schauder estimates [Kry96, Theorem 8.12.1] for the
equation (2.5.5) we get

||u⁄

t

||
C

k
([Á,T ]◊X)

Æ C(k, Á)||u⁄

t

||
L

Œ
(X)

.

Step 4. Proving
||u⁄

t

||
L

Œ
(X)

Æ ||u⁄

0

||
L

Œ
(X)

.

Indeed, suppose that u⁄ attains its maximum at (t
0

, z
0

). If t
0

= 0, we obtain the desired
inequality. Otherwise, by the maximum principle, at (t

0

, z
0

)

0 Æ
3

ˆ

ˆt
≠ �⁄

t

4
u⁄

t

= ≠g
⁄

(t
0

, z
0

)u⁄

t0 .

Since g
⁄

Ø 0, we get
u⁄

t

Æ max
;

0, max
X

u⁄

0

<
.

Similarly, we obtain
u⁄

t

Ø min
;

0, min
X

u⁄

0

<
,

hence
||u⁄

t

||
L

Œ
(X)

Æ ||u⁄

0

||
L

Œ
(X)

.

Finally,

||Ï ≠ Â||
C

k
([Á,T ]◊X)

Æ
⁄

1

0

||u⁄

t

||
C

k
([Á,T ]◊X)

d⁄ Æ C(k, Á)||Ï
0

≠ Â
0

||
L

Œ
(X)

.

The proof of Theorem B is therefore complete.

2.6 Starting from a nef class
Let (X, Ê) be a compact Kähler manifold. In [GZ17], the authors proved that the twisted
Kähler-Ricci flow can smooth out a positive current T

0

with zero Lelong numbers belonging
to a nef class –

0

. At the level of potentials it satisfies the Monge-Ampère flow

ˆÏ
t

ˆt
= log (◊

0

+ tÊ + ddcÏ
t

)n

Ên

, (2.6.1)



50 CHAPTER 2. REGULARIZING PROPERTIES OF CMAF I

where ◊
0

is a smooth differential closed (1, 1)-form representing a nef class –
0

and Ï
0

œ
PSH(X, ◊

0

) is a ◊
0

-psh potential for T
0

, i.e. T
0

= ◊
0

+ ddcÏ
0

. We prove here this is still
true for more general flows we have considered:

Theorem 2.6.1. Let ◊
0

be a smooth closed (1, 1)-form representiong a nef class –
0

and Ï
0

be a ◊
0

-psh fucntion with zero Lelong number at all points. Set ◊
t

:= ◊
0

+ tÊ. Then there
exists a unique family (Ï

t

)
tœ(0,T ]

of smooth (◊
t

)-psh functions satisfying

ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï
t

), (2.6.2)

such that Ï
t

converges to Ï
0

in L1.

Proof. First, observe that for Á > 0, ◊
0

+ÁÊ is a Kähler form. Thanks to Theorem A, there
exists a family Ï

t,Á

of (◊
t

+ ÁÊ)-psh functions satisfying

ˆÏ
t,Á

ˆt
= log (◊

t

+ ÁÊ + ddcÏ
t,Á

)n

� ≠ F (t, z, Ï
t,Á

)

with initial data Ï
0

which is a (◊
0

+ ÁÊ)-psh function with zero Lelong numbers.
First, we prove that Ï

t,Á

is decreasing in Á. Indeed, for any ÁÕ > Á

ˆÏ
t,Á

Õ

ˆt
= log (◊

t

+ ÁÕÊ + ddcÏ
t,Á

Õ)n

� ≠ F (t, z, Ï
t,Á

Õ)

Ø log (◊
t

+ ÁÊ + ddcÏ
t,Á

Õ)n

� ≠ F (t, z, Ï
t,Á

Õ)

hence Ï
t,Á

Õ Ø Ï
t,Á

by the comparison principle (Proposition 2.2.5). Then we consider

Ï
t

:= lim
Áæ0+

√ Ï
t,Á

.

We now show that Ï
t

is bounded below (so it is not ≠Œ). Thanks to [GZ17, Theorem
7.1], there exist a family („

t

) of (◊
0

+ tÊ)-psh functions such that

ˆ„
t

ˆt
= log (◊

0

+ tÊ + ddc„
t

)n

Ên

There is ‡ > 0 such that ‡≠1Ên Æ � Æ ‡Ên, so we may assume that

ˆ„
t

ˆt
Æ log (◊

0

+ tÊ + ddc„
t

)n

� .

Moreover, Ï
t,Á

Æ C, where C only depends on sup
X

Ï
0

, hence assume that F (t, z, Ï
t,Á

) Æ A
for all Á small. Changing variables, we can assume that F (t, z, Ï

t,Á

) Æ 0, hence

ˆÏ
t,Á

ˆt
Ø log (◊

0

+ tÊ + ddcÏ
t,Á

)n

� .
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Using the comparison principle (Theorem 2.2.5) again, we get Ï
t,Á

Ø „
t

for all Á > 0 small,
so Ï

t

Ø „
t

.

For the essential uniform bound of Ï
t

, we use the method of Guedj-Zeriahi. For ” > 0,
we fix Ê

”

a Kähler form such that ◊
0

+ ”Ê = Ê
”

+ ddch
”

for some smooth function h
”

. Our
equation can be rewritten, for t Ø ”

(Ê
”

+ (t ≠ ”)Ê + ddc(Ï
t

+ h
”

))n = H
t

� (2.6.3)

where
H

t

= eÏ̇t+F (t,x,Ït)

are uniformly in L2, since
Ï̇

t

Æ ≠„
”

+ C

t
+ C,

for t Ø ” as in Lemma 2.3.3. Kolodziej’s estimates now yields that Ï
t

+ h
”

is uniformly
bounded for t Ø ”, so is Ï

t

.

Now apply the arguments in Section 2.3 to the equation (2.6.3) we obtain the bounds for
the time derivative, gradient, Laplacian and higher order derivatives of Ï

t

+h
”

in [”, T ]◊X.
We thus obtain a priori estimates for Ï

t

which allow us get the existence of solution of
(2.6.2) and the convergence to the initial convergence in L1(X).
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Chapter 3

Regularizing properties of
Complex Monge-Ampère flows on
Hermitian manifolds

We prove that a general complex Monge-Ampère flow on a Hermitian manifold can be
run from an arbitrary initial condition with zero Lelong number at all points. Using this
property, we confirm a conjecture of Tosatti-Weinkove: the Chern-Ricci flow performs a
canonical surgical contraction. Finally, we study a generalization of the Chern-Ricci flow
on compact Hermitian manifolds, namely the twisted Chern-Ricci flow.

The results of this chapter can be found in [Tô18].

3.1 Introduction

Let (X, g, J) be a compact Hermitian manifold of complex dimension n, that is a compact
complex manifold such that J is compatible with the Riemannian metric g. Recently
a number of geometric flows have been introduced to study the structure of Hermitian
manifolds. Some flows which do preserve the Hermitian property have been proposed
by Streets-Tian [StT10, StT11, StT13], Liu-Yang [LY12] and also anomaly flows due to
Phong-Picard-Zhang [PPZ16b, PPZ16c, PPZ17a] which moreover preserve the conformally
balanced condition of Hermitian metrics. Another such flow, namely the Chern-Ricci flow,
was introduced by Gill [Gil11] and has been further developed by Tosatti-Weinkove in
[TW15]. The Chern-Ricci flow is written as

ˆ

ˆt
Ê = ≠Ric(Ê), Ê|

t=0

= Ê
0

, (3.1.1)

53
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where Ric(Ê) is the Chern-Ricci form which is defined locally by

Ric(Ê) := ≠ddc log Ên := ≠
Ô≠1

fi
ˆ ¯̂ log Ên.

This flow specializes the Kähler-Ricci flow when the initial metric is Kähler. In [TW15,
TW13] Tosatti and Weinkove have investigated the flow on arbitrary Hermitian manifolds,
notably in complex dimention 2 (see also [TWY15, FTWT16, GS15, Gil13, LV15, Zhe17,
Yan16] for more recent works on the Chern-Ricci flow).

For the Kähler case, running the Kähler-Ricci flow (or complex Monge-Ampère flows)
from a rough initial data has been studied by several recent works [CD07], [ST17], [SzTo11],
[GZ17], [BG13], [DNL17]. In [ST17], [SzTo11] the authors succeeded to run certain complex
Monge-Ampère flows from continuous initial data, while [DNL17] and [GZ17] are running
a simplified flow starting from an initial current with zero Lelong numbers. Recently,
we extended these latter works to deal with general complex Monge-Ampère flows and
arbitrary initial condition (cf. [Tô17]). One of the motivations for this problem comes from
the Analytic Minimal Model Program proposed by Song-Tian [ST17]. For the Chern-Ricci
flow, the same question was asked recently by Tosatti-Weinkove [TW13, TW15] related to
the classification of non-Kähler complex surfaces.

Assume that there exists a holomorphic map between compact Hermitian manifolds
fi : X æ Y blowing down an exceptional divisor E on X to one point y

0

œ Y . In addition,
assume that there exists a smooth function fl on X such that

Ê
0

≠ TRic(Ê
0

) + ddcfl = fiúÊ
Y

, (3.1.2)

with T < +Œ. Tosatti and Weinkove proved:
Theorem.([TW15, TW13])The solution Ê

t

to the Chern-Ricci flow (3.1.1) converges in
CŒ

loc

(X \ E) to a smooth Hermitian metric Ê
T

on X \ E.
Moreover, there exists a distance function d

T

on Y such that (Y, d
T

) is a compact metric
space and (X, g(t)) converges in the Gromov-Hausdorff sense to (Y, d

T

) as t æ T ≠.

Observe that Ê
T

induces a singular metric ÊÕ on Y which is smooth in Y \{y
0

}. Tosatti
and Weinkove conjectured that one can continue the Chern-Ricci flow on Y with initial
data ÊÕ. This is an open question in [TW13, Page 2120] in which they conjectured that
the Chern-Ricci flow performs a canonical surgical contraction:
Conjecture. (Tosatti-Weinkove [TW13, Page 2120])

(1) There exists a smooth maximal solution Ê
t

of the Chern-Ricci on Y for t œ (T, T
Y

)
with T < T

Y

Æ +Œ such that Ê
t

converges to ÊÕ, as t æ T +, in CŒ
loc

(Y \ {y
0

}).
Furthermore, Ê

t

is uniquely determined by Ê
0

.
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(2) The metric space (Y, g(t)) converges to (Y, d
T

) as t æ T + in the Gromov-Hausdorff
sense.

In this note, we confirm this conjectureú . An essential ingredient of its proof is to
prove that the Monge-Ampère flow corresponding to the Chern-Ricci flow can be run from
a rough data. By generalizing a result of Székelyhidi-Tosatti [SzTo11], Nie [Nie14] has
proved this property for compact Hermitian manifolds of vanishing first Bott-Chern class
and continous initial data. In this chapter, we generalize the previous results of Nie [Nie14]
and the author [Tô17] (see Chapter 2) by considering the following complex Monge-Ampère
flow:

(CMAF ) ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, x, Ï
t

),

where (◊
t

)
tœ[0,T ]

is a family of Hermitian forms with ◊
0

= Ê and F is a smooth function on
R ◊ X ◊ R.

Theorem A. Let Ï
0

be a Ê-psh function with zero Lelong number at all points. Let
(t, z, s) ‘æ F (t, z, s) be a smooth function on [0, T ] ◊ X ◊ R such that ˆF/ˆs Ø 0 and
ˆF/ˆt is bounded from below.

Then there exists a family of smooth strictly ◊
t

≠psh functions (Ï
t

) satisfying (CMAF )
in (0, T ] ◊ X, with Ï

t

æ Ï
0

in L1(X), as t √ 0+ and Ï
t

converges to Ï
0

in C0(X) if Ï
0

is continuous. This family is moreover unique if ˆF/ˆt is bounded and ˆF/ˆs Ø 0.
The following stability result is a straighforward extension of [Tô17, Theorem 4.3, 4.4]

(see Theorem 2.5.3 and Theorem 2.5.4).

Theorem B. Let Ï
0

, Ï
0,j

be Ê-psh functions with zero Lelong number at all points, such
that Ï

0,j

æ Ï
0

in L1(X). Denote by Ï
t,j

and Ï
t

the corresponding solutions of (CMAF )
with initial condition Ï

0,j

and Ï
0

respectively. Then for each Á œ (0, T )

Ï
t,j

æ Ï
t

in CŒ([Á, T ] ◊ X) as j æ +Œ.

Moreover, if Ï
0

and Â
0

are continuous, then for any k Ø 0, for any 0 < Á < T , there
exists a positive constant C(k, Á) depending only on k and Á such that

||Ï ≠ Â||
C

k
([Á,T ]◊X)

Æ C(k, Á)||Ï
0

≠ Â
0

||
L

Œ
(X,Ê)

.

As a consequence of Theorem A and Theorem B, the Chern-Ricci flow on any Hermitian
manifold can be run from rough data. Using this result and a method due to Song-Tosatti-
Weinkove [SW13a, TW13] we prove the conjecture. The proof is given in Section 3.5.

ú
After this paper was completed, the author learned that Xiaolan Nie proved the first statement of the

conjecture for complex surfaces (cf. [Nie17]). She also proved that the Chern-Ricci flow can be run from a

bounded data. The author would like to thank Xiaolan Nie for sending her preprint.



56 CHAPTER 3. REGULARIZING PROPERTIES OF CMAF II

The second purpose of this paper is to study a generalization of the Chern-Ricci flow,
namely the twisted Chern-Ricci flow:

ˆÊ
t

ˆt
= ≠Ric(Ê

t

) + ÷, Ê|
t=0

= Ê
0

where Ric(Ê
t

) is the Chern-Ricci form of Ê
t

, Ê
0

is a Hermitian metric on X and ÷ is a
smooth (1, 1)-form. In general, we do not assume ÷ is closed. This flow also generalizes
the twisted Kähler-Ricci flow which has been studied recently by several authors (see for
instance [CS12, GZ17]).

We show that the twisted Chern-Ricci flow starting from a Hermitian metric Ê
0

is
equivalent to the following complex Monge-Ampère flow

ˆÏ

ˆt
= log (Ê̂

t

+ ddcÏ)n

Ên

0

, (3.1.3)

where Ê̂
t

= Ê
0

+t(÷≠Ric(Ê
0

)). We first prove the following, generalizing [TW15, Theorem
1.2]:

Theorem C. There exists a unique solution to the twisted Chern-Ricci flow on [0, T ),
where

T := sup{t Ø 0|÷Â œ CŒ(X) with Ê̂
t

+ ddcÂ > 0}.

When the twisted Chern-Ricci flow has a long time solution, it is natural to study its
behavior at infinity. When the Bott-Chern class vanishes and ÷ = 0, Gill has proved that
the flow converges to a Chern-Ricci flat Hermitian metric (cf. [Gil11]).

Denote by

{÷} := {– is a real (1,1)-form |÷f œ CŒ(X) with – = ÷ + ddcf},

the equivalence class of ÷. Suppose that cBC

1

(X)≠{÷} is negative. Consider the normalized
twisted Chern-Ricci flow

ˆÊ
t

ˆt
= ≠Ric(Ê

t

) ≠ Ê
t

+ ÷. (3.1.4)

Then we have the following result for the long time behavior of the flow generalizing [TW15,
Theorem 1.7]:

Theorem D. Suppose cBC

1

(X) ≠ {÷} < 0. The normalized twisted Chern-Ricci flow
smoothly converges to a Hermitian metric ÊŒ = ÷ ≠ Ric(�) + ddcÏŒ which satisfies

Ric(ÊŒ) = ÷ ≠ ÊŒ.
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Observe that ÊŒ satisfies the twisted Einstein equation:

Ric(Ê) = ÷ ≠ Ê. (3.1.5)

We can prove the existence of a unique solution of (3.1.5) using a result of Monge-Ampère
equation due to Cherrier [Che87] (see Theorem 3.6.2). Theorem D moreover gives an
alternative proof of the existence of the twisted Einstein metric ÊŒ in ≠cBC

1

(X) + ÷. This
is therefore a generalization of Cao’s approach [Cao85] by using Kähler-Ricci flow to prove
the existence of Kähler-Einstein metric on Kähler manifold of negative first Chern class.
In particular, when ÷ = 0, we have cBC

1

(X) < 0 hence we have c
1

(X) < 0 and X is a
Kähler manifold, this is [TW15, Theorem 1.7].

Note that in general, one cannot assume ÷ to be closed, in contrast with the twisted
Kähler-Ricci flow. Let us stress also that the limit of the normalized twisted Chern-Ricci
flow exists without assuming that the manifold is Kähler (a necessary assumption when
studying the long term behavior of the Chern-Ricci flow). Therefore the twisted Chern-
Ricci flow is somehow more natural in this context.

As an application of Theorem D, we give an alternative proof of the existence of a
unique smooth solution for the following Monge-Ampère equation

(Ê + ddcÏ)n = eÏ�.

We show that the solution is the limit of the potentials of a suitable twisted normalized
Chern-Ricci flow. Cherrier [Che87] proved this result by generalizing the elliptic approach
of Aubin [Aub78] and [Yau78].

The paper is organized as follows. In Section 3.2, we recall some notations in Hermitian
manifolds. In Section 3.3 we prove various a priori estimates following our previous work
[Tô17]. The main difference is that we will use the recent result of Ko�loziedj’s uniform type
estimates for Monge-Ampère on Hermitian manifolds (cf. [DK12, Blo11, Ngu16]) instead
of the one on Kähler manifolds to bound the oscillation of the solution. The second arises
when estimating the gradient and the Laplacian: we use a special local coordinate system
due to Guan-Li [GL10, Lemma 2.1] instead of the usual normal coordinates in Kähler
geometry. In Section 3.4 we prove Theorem B and Theorem C. In Section 3.5, we prove the
conjecture. In Section 3.6 we define the twisted Chern-Ricci flow and prove the existence
of a unique maximal solution using the estimates in Section 3.3. The approach is different
from the one for the Chern-Ricci flow due to Tosatti-Weinkove [TW15]. We also show that
the twisted Chern-Ricci flow on negative twisted Bott-Chern class smoothly converges to
the unique twisted Einstein metric.
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3.2 Preliminaries
3.2.1 Chern-Ricci curvature on Hermitian manifold
Let (X, g) be a compact Hermitian manifold of complex dimension n. In local coordinates, g
is determined by the n◊n Hermitian matrix (g

i

¯

j

) = g(ˆ
i

, ˆ
¯

j

). We write Ê =
Ô≠1g

i

¯

j

dz
i

·dz̄
j

for its associated (1, 1)-form.
We define the Chern connection Ò associated to g as follows. If X = Xjˆ

j

is a vector
field and – = a

i

dz
i

is a (1, 0)-form then theirs covariant derivatives have components

Ò
i

Xk = ˆ
i

Xj + �k

ij

Xj , Ò
i

a
j

= ˆ
i

a
j

≠ �k

ij

a
k

,

where the Christoffel symbols �k

ij

are given by

�k

ij

= g
¯

lkˆ
i

g
j

¯

l

.

We define the torsion tensors T and T̄ of Ê as follows

T =
Ô≠1ˆÊ = 1

2T
ij

¯

k

dz
i

· dz
j

· dz̄
k

T̄ =
Ô≠1 ¯̂Ê = 1

2 T̄
¯

i

¯

jk

dz̄
i

· dz̄
j

· dz
k

.

where
T

ij

¯

k

= ˆ
i

g
j

¯

k

≠ ˆ
j

g
i

¯

k

, and T̄
¯

i

¯

jk

= ˆ
¯

j

g
k

¯

i

≠
¯̂

i

g
k

¯

j

.

Then the torsion tensor of Ê has component

T k

ij

= �k

ij

≠ �k

ji

= g
¯

lkT
ij

¯

l

.

Definition 3.2.1. The Chern-Ricci curvature of g is the tensor

R
k

¯

l

(g) := R
k

¯

l

(Ê) := g
¯

jiR
k

¯

li

¯

j

= ≠ˆ
k

ˆ
¯

l

log det g,

and the Chern-Ricci form is

Ric(g) := Ric(Ê) :=
Ô≠1

fi
RC

k

¯

l

dz
k

· dz̄
l

= ≠ddc log det g,

where
d := ˆ + ¯̂, dc := 1

2ifi
(ˆ ≠ ¯̂).

It is a closed real (1, 1)-form and its cohomology class in the Bott-Chern cohomology
group

H1,1

BC

(X,R) := {closed real (1,1)-forms}
{Ô≠1ˆ ¯̂Â, Â œ CŒ(X,R)}

is the first Bott-Chern class of X, denoted by cBC

1

(X), which is independent of the choice
of Hermitian metric g. We also write R = gk

¯

lR
k

¯

l

for the Chern scalar curvature.
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3.2.2 Plurisubharmonic functions and Lelong number

Let (X, Ê) be a compact Hermitian manifold.

Definition 3.2.2. We let PSH(X, Ê) denote the set of all Ê-plurisubharmonic functions
(Ê-psh for short), i.e the set of functions Ï œ L1(X,Rfi{≠Œ}) which can be locally written
as the sum of a smooth and a plurisubharmonic function, and such that

Ê + ddcÏ Ø 0

in the weak sense of positive currents.

Definition 3.2.3. Let Ï be a Ê-psh function and x œ X. The Lelong number of Ï at x is

‹(Ï, x) := lim inf
zæx

Ï(z)
log |z ≠ x| .

We say Ï has a logarithmic pole of coefficient “ at x if ‹(Ï, x) = “.

3.3 A priori estimates for complex Monge-Ampère flows

In this section we prove various a priori estimates for Ï
t

which satisfies

ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï) (CMAF )

with a smooth strictly Ê-psh initial data Ï
0

, where � is a smooth volume form, (◊
t

)
tœ[0,T ]

is a family of Hermitian forms on X and (t, z, s) ‘æ F (t, z, s) is a smooth function on
[0, T ] ◊ X ◊ R with

ˆF

ˆs
Ø 0 and ˆF

ˆt
> B, (3.3.1)

for some B œ R.

Since we are interested in the behavior near 0 of (CMAF ), we can further assume that

Ê

2 Æ ◊
t

Æ 2Ê and ”≠1� Æ ◊n

t

Æ ”�, ’t œ [0, T ] for some ” > 0, (3.3.2)

◊
t

≠ t◊̇
t

Ø 0 for 0 Æ t Æ T. (3.3.3)

The assumption (3.3.3) will be used to bound Ï̇
t

from above.
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3.3.1 Bounds on Ï
t

and Ï̇
t

As in the Kähler case, the upper bound of Ï is a simple consequence of the maximum
principle (see [Tô17, Lemma 2.1] or Lemma 2.3.1).

For a lower bound of Ï
t

, we have

Lemma 3.3.1. There is a constant C > 0 depending only on inf
X

Ï
0

such that,

Ï
t

Ø inf
X

Ï
0

≠ Ct, ’(t, x) œ [0, T ] ◊ X.

Proof. Set
Â := inf

X

Ï
0

≠ Ct,

where C will be chosen hereafter. Since we assume that 2◊
t

Ø Ê,

◊
t

+ ddcÂ Ø 1
2Ê.

Combine with Ên Ø 2≠n◊n

t

Ø �/(2n”), we have

(◊
t

+ ddcÂ)n

� Ø 1
2n

Ên

� Ø 1
4n”

.

We now choose C > 0 satisfying

≠C + sup
[0,T ]◊X

F (t, x, inf
X

Ï
0

) Æ 1
4n”

.

hence
ˆÂ

t

ˆt
Æ (◊

t

+ ddcÂ)n

� ≠ F (t, x, Â),

It follows from the maximum principle [Tô17, Proposition 1.5] (see Proposition 2.2.5) that

Ï
t

Ø Â
t

,

as required.

For another lower bound, we follow the argument in [GZ17], replacing the uniform
a priori bound of Ko�lodziej [Ko�l98] by its Hermitian version (see for instance [Ngu16,
Theorem 2.1]). First, we assume that ◊

t

Ø Ê + t‰, ’t œ [0, T ], for some smooth (1, 1)-form
‰. Let 0 < — < +Œ be such that

‰ + (2— ≠ 1)Ê Ø 0.
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It follows from Ko�lodziej’s uniform type estimate for Monge-Ampère equation on Hermitian
manifolds (cf. [Ngu16, Theorem 2.1]) that the exists a continuous Ê-psh solution u of the
equation

(Ê + ddcu)n = eu≠2—Ï0Ên,

which satisfies
||u||

L

Œ
(X)

< C,

where C only depends on ||e≠2—Ï0 ||
L

p
(X)

, for some p > 1.
Remark 3.3.2. Latter on we will replace Ï

0

by smooth approximants Ï
0,j

of initial data.
Since the latter one has zero Lelong numbers, Skoda’s integrability theorem [Sko72] will
provide a uniform bound for ||e≠2—Ï0 ||

L

p
(X)

and ||u||
L

Œ
(X)

.

Lemma 3.3.3. For all z œ X and 0 < t < min(T, (2—)≠1), we have

Ï
t

(z) Ø (1 ≠ 2—t)Ï
0

(z) + tu(z) + n(t log t ≠ t) ≠ At, (3.3.4)

where A depends on sup
X

Ï
0

. In particular, there exists c(t) Ø 0 such that

Ï
t

(z) Ø Ï
0

(z) ≠ c(t),

with c(t) √ 0 as t √ 0.

Proof. Set
„

t

:= (1 ≠ 2—t)Ï
0

+ tu + n(t log t ≠ t) ≠ At,

where A := sup
[0,T ]◊X

F (t, z, C
0

) with (1 ≠ 2—t)Ï
0

+ tu + n(t log t ≠ t) Æ C
0

for all t œ
[0, min(T, (2—)≠1)].

By our choice of — and the assumption ◊
t

Ø Ê + t‰, ’t œ [0, T ], we have

◊
t

+ ddc„
t

Ø Ê + t‰ + ddc„
t

= (1 ≠ 2—t)(Ê + ddcÏ
0

) + t(Ê + ddcu) + t[‰ + (2— ≠ 1)Ê]
Ø t(Ê + ddcu) Ø 0.

Moreover
(◊

t

+ ddc„
t

)n Ø tn(Ê + ddcu)n = eˆt„t+A Ø eˆt„t+F (t,z,„t),

hence „
t

is a subsolution to (CMAF ). Since „
0

= Ï
0

the conclusion follows from the
maximum principle [Tô17, Proposition 1.5] (see Proposition 2.2.5).

The lower bound for Ï̇ comes from the same argument in [Tô17, Proposition 2.6] (see
Proposition 2.3.6):
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Proposition 3.3.4. Assume Ï
0

is bounded. There exist constants A > 0 and C =
C(A, Osc

X

Ï
0

) > 0 such that for all (x, t) œ X ◊ (0, T ],

Ï̇ Ø n log t ≠ AOsc
X

Ï
0

≠ C.

We now prove a crucial estimate for Ï̇
t

which allows us to use the uniform version of
Kolodziej’s uniform type estimates in order to get the bound of Osc

X

Ï
t

. The proof is the
same in [GZ17, Tô17], but we include a proof for the reader’s convenience.

Proposition 3.3.5. There exists 0 < C = C(sup
X

Ï
0

, T ) such that for all 0 < t Æ T and
z œ X,

Ï̇
t

(z) Æ ≠Ï
0

(z) + C

t
.

Proof. We consider G(t, z) = tÏ̇
t

≠ Ï
t

≠ nt + Bt2/2, with B is the constant in (3.3.1). We
obtain 3

ˆ

ˆt
≠ �

Êt

4
G = ≠tÏ̇

ˆF

ˆs
+ t

3
B ≠ ˆF

ˆt

4
≠ tr

Êt(◊t

≠ t◊̇
t

).

Since we assume that ◊
t

≠ t◊̇
t

Ø 0 (see (3.3.3)), we get
3

ˆ

ˆt
≠ �

Êt

4
G Æ ≠tÏ̇

ˆF

ˆs
+ t

3
B ≠ ˆF

ˆt

4
.

If G attains its maximum at t = 0, we have the result. Otherwise, assume that G attains
its maximum at (t

0

, z
0

) with t
0

> 0, then at (t
0

, z
0

) we have

0 Æ
3

ˆ

ˆt
≠ �

Êt

4
G < ≠t

0

ˆF

ˆs
Ï̇.

Since ˆF

ˆs

Ø 0 by the hypothesis, we obtain Ï̇(t
0

, z
0

) < 0 and

tÏ̇
t

≠ Ï
t

≠ nt + Bt2/2 Æ ≠Ï
t0(z

0

) ≠ nt
0

+ Bt2

0

/2.

Using Lemma 3.3.3 we get Ï
t0 Ø Ï

0

≠C
1

, where C
1

only depends on sup
X

Ï
0

and T , hence
there is a constant C

2

depending on sup
X

Ï
0

and T such that

tÏ̇
t

Æ Ï
t

≠ Ï
0

+ C
2

.

Since Ï
t

Æ C
3

(sup Ï
0

, T ), so

Ï̇
t

(x) Æ ≠Ï
0

+ C

t
,

where C only depends on sup
X

Ï
0

and T .
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3.3.2 Bounding the oscillation of Ï
t

Once we get an upper bound for Ï̇
t

as in Proposition 3.3.5, we can bound the oscillation of
Ï

t

by using the following uniform version of Kolodziej’s estimates due to Dinew- Ko�lodziej
[DK12, Theorem 5.2].

Theorem 3.3.6. Let (X, Ê) be a compact Hermitian manifold. Assume Ï œ C2(X) is
such that Ê + ddcÏ Ø 0 and

(Ê + ddcÏ)n = fÊn.

Then for p > 1,
Osc

X

Ï Æ C,

where C only depends on Ê, p, ||f ||
L

p
(X)

.

Indeed, observe that Ï
t

satisfies

(◊
t

+ ddcÏ
t

)n = H
t

�,

then by Proposition 3.3.5, for any Á œ (0, T ),

H
t

= exp(Ï̇
t

+ F ) Æ exp(≠Ï
0

+ C

t
+ C Õ)

for all t œ [Á, T ]. Fix p > 1 and F a compact family of Ê-psh functions with zero Lelong
numbers, and assume that Ï

0

œ F . It follows from the uniform version of Skoda’s inte-
grability theorem (cf. [Sko72, Proposition 7.1] and [Zer01, Theorem 3.1]) that there exists
C

Á

> 0 such that
||e≠Â/t||

L

p
(�)

Æ C
Á

,

for all Â œ F , t œ [Á, T ]. We thus write for short ||H
t

||
L

p
(�)

Æ C(t) for some C(t) > 0.

Remark 3.3.7. Later on we will replace Ï
0

by smooth approximants Ï
0,j

of initial data.
We can thus apply the previous estimate with F = {Ï

0

} fi {Ï
0,j

, j œ N}, where Ï
0

is now
the initial data. This yields

||H
t,j

||
L

p
(�)

Æ C(t).

Now, thanks to Theorem 3.3.6, we infer that the oscillation of Ï
t

is uniformly bounded:

Theorem 3.3.8. Fix 0 < t Æ T . There exist C(t) > 0 independent of inf
X

Ï
0

such that

Osc
X

(Ï
t

) Æ C(t).
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3.3.3 Bounding the gradient of Ï

In this section we bound the gradient of Ï using the same technique as in [Tô17] (see also
[SzTo11]) which is a parabolic version of B�locki’s estimate [Blo09] for Kähler manifolds.
In these articles we used the usual normal coordinates in Kähler geometry. For Hermitian
manifolds, we need to use the following local coordinate system due to Guan-Li [GL10,
Lemma 2.1] (see also [StT11] for a similar argument), which is also essential for our second
order estimate. We also refer the reader to [Ha96, Lemma 6] for a gradient estimate for
the elliptic Complex Mong-Ampère equation in the Hermitian case without using the local
coordinate system. We thank Valentino Tosatti for indicating the reference [Ha96]. We
remark that similar arguments of the proof below can be found in [Nie14, Lemma 3.3].

Lemma 3.3.9. At any point x œ X there exists a local holomorphic coordinate system
centered at x such that for all i, j

g
i

¯

j

(0) = ”
i,j

,
ˆg

i

¯

i

ˆz
j

(0) = 0. (3.3.5)

We now prove
Proposition 3.3.10. Fix Á œ [0, T ]. There exists C > 0 depending on sup

X

Ï
0

and Á such
that for all Á < t Æ T

|ÒÏ(z)|2
Ê

< eC/(t≠Á).

Proof. Since the bound on Osc
X

Ï
Á

only depends on sup
X

Ï
0

and Á (see Theorem 3.3.8),
we can consider the flow starting from Ï

Á

, i.e Ï(0, x) = Ï
Á

. Then we need to show that
there exists a constant C depending on Osc

X

Ï
0

and Á such that

|ÒÏ(z)|2
Ê

< eC/t,

for all t œ [0, T ≠ Á].
Define

K(t, x) = t log |ÒÏ|2
Ê

≠ “ ¶ Ï = t log — ≠ “ ¶ Ï,

for (t, x) œ [0, T ≠ Á] ◊ X where, — = |ÒÏ|2
Ê

and “ œ CŒ(R,R) will be chosen hereafter.
If K(t, z) attains its maximum for t = 0, — is bounded in terms of sup

X

Ï
0

and Á, since
|Ï

t

| is bounded by a constant depending on sup
X

Ï
0

and Á for all t œ [0, T ≠ Á] (see Section
3.3.1).

We now assume that K(t, z) attains its maximum at (t
0

, z
0

) in [0, T ≠ Á] ◊ X with
t
0

> 0. Near z
0

we have Ê =
Ô≠1g

i

¯

j

dz
i

· dz̄
j

for some and ◊
t

=
Ô≠1h

i

¯

j

dz
i

· dz̄
j

. We take
the local coordinates (3.3.5) for Ê at z

0

such that

g
i

¯

k

(z
0

) = ”
jk

(3.3.6)
g

i

¯

il

(z
0

) = 0 (3.3.7)
u

pq̄

(t
0

, z
0

) = h
pq̄

+ Ï
pq̄

is diagonal, (3.3.8)
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here for convenience we denote in local coordinate, u
p

:= ˆu

ˆzp
, u

j

¯

k

:= ˆ

2
u

ˆzjˆz̄k
, and g

i

¯

jk

:=
ˆgij̄

ˆzk
.

We now compute K
p

, K
pp̄

at (t
0

, z
0

) in order to use the maximum principle. At (t
0

, z
0

)
we have K

p

= 0 hence
t—

p

= —“Õ ¶ ÏÏ
p

(3.3.9)

or 3
—

p

—

4
2

= 1
t2

(“Õ ¶ Ï)2|Ï
p

|2.

Therefore,

K
pp̄

= t
—

pp̄

— ≠ |—
p

|2
—2

≠ “ÕÕ ¶ Ï|Ï
p

|2 ≠ “Õ ¶ ÏÏ
pp̄

= t
—

pp̄

—
≠ [t≠1(“Õ ¶ Ï)2 + “ÕÕ ¶ Ï]|Ï

p

|2 ≠ “Õ ¶ ÏÏ
pp̄

.

Now we compute —
p

, —
pp̄

at (t
0

, z
0

) with — = gj

¯

kÏ
j

Ï
¯

k

where (gj

¯

k) = [(g
j

¯

k

)t]≠1. We have

—
p

= gj

¯

k

p

Ï
j

Ï
¯

k

+ gj

¯

kÏ
jp

Ï
¯

k

+ gj

¯

kÏ
j

Ï
¯

kp

.

Since
gj

¯

k

p

= ≠gj

¯

lg
s

¯

lp

gs

¯

k,

—
p

= ≠gj

¯

lg
s

¯

lp

gs

¯

kÏ
j

Ï
¯

k

+ gj

¯

kÏ
jp

Ï
¯

k

+ gj

¯

kÏ
j

Ï
¯

kp

and

—
pp̄

= ≠gj

¯

l

p̄

g
s

¯

lp

gs

¯

kÏ
j

Ï
¯

k

≠ gj

¯

lg
s

¯

lpp̄

gs

¯

kÏ
j

Ï
¯

k

≠ gj

¯

lg
s

¯

lp

gs

¯

k

p̄

Ï
j

Ï
¯

k

≠gj

¯

lg
s

¯

lp

gs

¯

kÏ
jp̄

Ï
¯

k

≠ gj

¯

lg
s

¯

lp

gs

¯

kÏ
j

Ï
¯

kp̄

+ gj

¯

k

p̄

Ï
jp

Ï
¯

k

+ gj

¯

kÏ
jpp̄

Ï
¯

k

+gj

¯

kÏ
jp

Ï
¯

kp̄

+ gj

¯

k

p̄

Ï
j

Ï
¯

kp

+ gj

¯

kÏ
jp̄

Ï
¯

kp

+ gj

¯

kÏ
j

Ï
¯

kpp̄

.

Therefore, at (t
0

, x
0

),
gj

¯

k

p

= ≠g
k

¯

jp

,

—
p

= ≠gj

¯

lg
s

¯

lp

gs

¯

kÏ
j

Ï
¯

k

+
ÿ

j

Ï
jp

Ï
¯

j

+
ÿ

j

Ï
¯

jp

Ï
j

, (3.3.10)

and

—
pp̄

= ≠g
k

¯

jpp̄

Ï
j

Ï
¯

k

+ 2Re(Ï
jpp̄

Ï
¯

j

) + |Ï
jp

≠
ÿ

k

g
j

¯

kp

Ï
k

|2 + |Ï
jp̄

≠
ÿ

k

g
¯

kjp̄

Ï
k

|2
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Now at (t
0

, z
0

)

�
Êt0 K =

nÿ

p=1

K
pp̄

u
pp̄

= t

—

—
pp̄

u
pp̄

≠ [t≠1(“Õ ¶ Ï)2 + “ÕÕ ¶ Ï]|Ï
p

|2
u

pp̄

≠ “Õ ¶ ÏÏ
pp̄

u
pp̄

.

Since u
pp̄

= Ï
pp̄

+ h
pp̄

near (t
0

, z
0

), then at (t
0

, z
0

)

ÿ

p

“Õ ¶ ÏÏ
pp̄

u
pp̄

= n“Õ ¶ Ï ≠
ÿ

p

“Õ ¶ Ïh
pp̄

u
pp̄

Æ n“Õ ¶ Ï ≠ ⁄
ÿ

p

“Õ ¶ Ï

u
pp̄

,

with ⁄ Æ h
pp̄

, on [0, T ] ◊ X for all p = 1, . . . , n.
Moreover, assume that the holomorphic bisectional curvature of Ê is bounded from

below by a constant ≠B œ R on X, then at (t
0

, z
0

)

t
ÿ

j,k,p

≠g
j

¯

kpp̄

Ï
j

Ï
¯

k

—u
pp̄

= t
ÿ

j,k,p

R
j

¯

kpp̄

Ï
j

Ï
¯

k

—u
pp̄

Ø ≠Bt
ÿ

p

1
u

pp̄

,

therefore

�
Êt0 K Ø (⁄“Õ ¶ Ï ≠ tB)

ÿ

p

1
u

pp̄

+ 2tRe
ÿ

j,p

Ï
pp̄j

Ï
¯

j

—u
pp̄

+ t

—

ÿ

j,p

|Ï
jp

≠ q
k

g
k

¯

jp̄

Ï
k

|2 + |Ï
jp̄

≠ q
k

g
k

¯

jp

Ï
k

|2
—u

pp̄

≠[t≠1(“Õ ¶ Ï)2 + “ÕÕ ¶ Ï]
ÿ

p

|Ï
p

|2
u

pp̄

≠ n“Õ ¶ Ï.

By the maximum principle, at (t
0

, z
0

)

0 Æ
3

ˆ

ˆt
≠ �

Êt

4
K

hence,

0 Æ log — ≠ “Õ ¶ ÏÏ̇ ≠ (⁄“Õ ¶ Ï ≠ tB)
ÿ

p

1
u

pp̄

+ t
—Õ

—
≠ 2tRe

ÿ

j,p

Ï
pp̄j

Ï
¯

j

—u
pp̄

≠ t

—

ÿ

j,p

|Ï
jp

≠ q
k

g
k

¯

jp̄

Ï
k

|2 + |Ï
jp̄

≠ q
k

g
k

¯

jp

Ï
k

|2
—u

pp̄

(3.3.11)

+[t≠1(“Õ ¶ Ï)2 + “ÕÕ ¶ Ï]
ÿ

p

|Ï
p

|2
u

pp̄

+ n“Õ ¶ Ï.
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We will simplify (3.3.11) to get a bound for — at (t
0

, z
0

).

Claim 1. There exist C
1

> 0 depending on sup |Ï
0

| and C
2

, C
4

only depending on h and
C

3

depending on sup |“Õ ¶ Ï| such that

t
—Õ

—
≠ 2tRe

ÿ

j,p

u
pp̄j

Ï
¯

j

—u
pp̄

< C
1

t + C
2

t
ÿ

p

1
u

pp̄

,

and

≠ t

—

ÿ

j,p

|Ï
jp

≠ q
k

g
k

¯

jp̄

Ï
k

|2
—u

pp̄

+ t≠1(“Õ ¶ Ï)2

ÿ

p

|Ï
p

|2
u

pp̄

Æ C
3

“Õ ¶ Ï + C
4

—
“Õ ¶ Ï

ÿ

p

|Ï
p

|2
u

pp̄

.

Proof of Claim 1. For the first one, we note that near (t
0

, z
0

)

log det(u
pq̄

) = Ï̇ + F (t, z, Ï) + log �,

hence using
d

ds
det A = A

¯

ji

3
d

ds
A

i

¯

j

4
det A

we have at (t
0

, z
0

)
upp̄u

pp̄j

= u
pp̄j

u
pp̄

= (Ï̇ + F (t, z, Ï) + log �)
j

.

Therefore

2tRe
ÿ

j,p

Ï
pp̄j

Ï
¯

j

—u
pp̄

= 2tRe
ÿ

j,p

(u
pp̄j

≠ h
pp̄j

)Ï
¯

j

—u
pp̄

= 2t

—
Re

ÿ

j

(Ï̇ + F (t, z, Ï) + log �)
j

Ï
¯

j

≠ 2tRe
ÿ

j,p

h
pp̄j

Ï
¯

j

—u
pp̄

= 2t

—
Re

ÿ

j

(Ï̇
j

Ï
¯

j

) + 2t

—
Re

3
(F (t, z, Ï) + log �)

j

+ ˆF

ˆs
Ï

j

4
Ï

¯

j

≠2tRe
ÿ

j,p

h
pp̄j

Ï
¯

j

—u
pp̄

.

In addition, at (t
0

, z
0

)

t
—Õ

—
= t

—

ÿ

j,k

gj

¯

k(Ï̇
j

Ï
¯

k

+ Ï
j

Ï̇
¯

k

)

= 2t

—
Re(Ï̇

j

Ï
¯

j

),
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we infer that

t
—Õ

—
≠ 2tRe

ÿ

j,p

u
pp̄j

Ï
¯

j

—u
pp̄

= ≠2t

—
Re

ÿ

j

3
F

j

(t, z, Ï) + (log �)
j

4
Ï

¯

j

≠ 2t

—

ÿ

j

ˆF

ˆs
|Ï

j

|2

+2tRe
ÿ

j,p

h
pp̄j

Ï
¯

j

—u
pp̄

.

We may assume that log — > 1 so that

|Ï
¯

j

|
—

< C

Since ˆF

ˆs

Ø 0, there exist C
1

> 0 depending on sup |Ï
0

| and C
2

depending on h such that

t
—Õ

—
≠ 2tRe

ÿ

j,p

u
pp̄j

Ï
¯

j

—u
pp̄

< C
1

t + C
2

t
ÿ

p

1
u

pp̄

. (3.3.12)

We now estimate

≠ t

—

ÿ

j,p

|Ï
jp

≠ q
k

g
k

¯

jp̄

Ï
k

|2
—u

pp̄

+ t≠1(“Õ ¶ Ï)2

ÿ

p

|Ï
p

|2
u

pp̄

.

It follows from (3.3.9) and (3.3.10) that

—
p

= ≠g
k

¯

jp̄

Ï
j

Ï
¯

k

+ gj

¯

kÏ
jp

Ï
¯

k

+ gj

¯

kÏ
j

Ï
¯

kp

.

t—
p

= —“Õ ¶ ÏÏ
p

then,
ÿ

j

(Ï
jp

≠
ÿ

k

g
k

¯

jp̄

Ï
k

)Ï
¯

j

= t≠1“Õ ¶ Ï—Ï
p

≠
ÿ

j

Ï
jp̄

Ï
¯

j

= t≠1“Õ ¶ Ï—Ï
p

≠ u
pp̄

Ï
p̄

+
ÿ

j

h
jp̄

Ï
¯

j

Hence at (t
0

, z
0

), using log — > 1, we have

t

—

ÿ

j,p

|Ï
jp

≠ q
k

g
k

¯

jp̄

Ï
k

|2
—u

pp̄

Ø t

—2

ÿ

p

| q
j

(Ï
jp

≠ q
k

g
k

¯

jp̄

Ï
k

)Ï
¯

j

|2
u

pp̄

= t

—2

ÿ

p

|t≠1“Õ ¶ Ï—Ï
p

≠ u
pp̄

Ï
p̄

+
q

j

h
jp̄

Ï
¯

j

|2
u

pp̄

Ø t≠1(“Õ ¶ Ï)2

ÿ

p

|Ï
p

|2
u

pp̄

+ 1
—

“Õ ¶ Ï2Re
ÿ

i,p

h
jp̄

Ï
¯

j

Ï
p

u
pp̄

≠ 2“Õ ¶ Ï ≠ At

—
,

Ø t≠1(“Õ ¶ Ï)2

ÿ

p

|Ï
p

|2
u

pp̄

≠ C
3

“Õ ¶ Ï ≠ C
4

—
“Õ ¶ Ï

ÿ

p

|Ï
p

|2
u

pp̄

,
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where C
4

depending on h and C
3

depending on the sup |“Õ ¶ Ï| such that

≠At

—
Ø (≠C

3

+ 2)“Õ ¶ Ï, ’t œ [0, T ≠ Á].

This completes Claim 1.

We now choose
“(s) = As ≠

3 1
A

+ C
4

4
s2

with A so large that “Õ = A ≠ 2
1

1

A

+ C
4

2
s > 0 and “ÕÕ = ≠2/A ≠ 2C

4

< 0 for all
s Æ sup

[0,T ]◊X

Ï
t

. Since

“ÕÕ ¶ Ï + C
4

—
“Õ ¶ Ï = ≠ 2

A
≠ 2C

4

+ C
4

—

3
A ≠ 2

3 1
A

+ C
4

4
Ï

4

Æ ≠ 2
A

≠ 2C
4

+ C
4

—
C

5

,

where C
5

> 0 depending only on A, sup
X

|Ï
0

|, we can suppose — > C
5

(otherwise, we have
a bound for —), so

“ÕÕ ¶ Ï + C
4

—
“Õ ¶ Ï Æ ≠ 2

A
. (3.3.13)

From Lemma 3.3.4 we have Ï̇ Ø C
0

+n log t, where C
0

depends on Ocs
X

Ï
0

. Combining
this with (3.3.11), (3.3.13) and Claim 1, we obtain

0 Æ ≠ 2
A

ÿ

p

|Ï
p

|2
u

pp̄

≠ (⁄“Õ ¶ Ï ≠ Bt ≠ C
2

t)
ÿ

p

1
u

pp̄

+ log — + C Õ“Õ ¶ Ï + C
1

t, (3.3.14)

where C
1

, C
2

, C Õ depend on sup
X

|Ï
0

| and h. If A is chosen sufficiently large, we have a
constant C

5

> 0 such that

ÿ

p

1
u

pp̄

+
ÿ

p

|Ï
p

|2
u

pp̄

Æ C
5

log —, (3.3.15)

since otherwise (3.3.14) implies that — is bounded. So we get (u
pp̄

)≠1 Æ C
5

log — for
1 Æ p Æ n. It follows from Lemma 3.3.5 we have at (t

0

, z
0

)
Ÿ

p

u
pp̄

= e≠Ï̇t+F (t,x,Ït) Æ C
6

,

where C
6

depends on sup
X

|Ï
0

|, Á. Then we get

u
pp̄

Æ C
6

(C
5

log —)n≠1,
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so from (3.3.15) we have
— =

ÿ

p

|Ï
p

|2 Æ C
6

(C
5

log —)n,

hence log — < C
7

at (t
0

, z
0

). This shows that — = |ÒÏ(z)|2
Ê

< eC/t for some C depending
on sup |Ï

0

| and Á.

3.3.4 Bounding �Ï
t

We now estimate �Ï. The estimate on |ÒÏ|2
Ê

is needed here. The argument follows from
[GZ17, Tô17] but there are difficulties in using this approach because of torsion terms that
need to be controlled (see also [TW10a] for similar computation for the elliptic Monge-
Ampère equation).

Lemma 3.3.11. Fix Á > 0. There exist constants A and C only depending on Á and
sup

X

Ï
0

such that for all 0 Æ t Æ T ≠ Á,

0 Æ t log tr
Ê

(Ê
t+Á

) Æ AOsc
X

(Ï
Á

) + C + [C ≠ n log Á + AOsc
X

(Ï
Á

)]t.

Proof. We first denote by C a uniform constant only depending on Á and sup
X

Ï
0

.

Define
P = t log tr

Ê

(Ê
t+Á

) ≠ AÏ
t+Á

,

and
u = tr

Ê

(Ê
t+Á

),

with A > 0 to be chosen latter. Set �
t

:= �
Êt+Á , then

ˆ

ˆt
P = log u + t

u̇

u
≠ AÏ̇

t+Á

,

�
t

P = t�
t

log u ≠ A�
t

Ï
t+Á

hence 3
ˆ

ˆt
≠ �

t

4
P = log u + t

u̇

u
≠ AÏ̇

t+Á

≠ t�
t

log u + A�
t

Ï
t+Á

. (3.3.16)

First, we have
A�

t

Ï
t+Á

= An ≠ A tr
Êt+Á(◊

t+Á

) Æ An ≠ A

2 tr
Êt+Á(Ê). (3.3.17)

Suppose P attains its maximum at (t
0

, z
0

). If t
0

= 0, we get the desired inequality. We
now assume that P (t, x) attains its maximum at (t

0

, x
0

) with t
0

> 0.

It follows from Proposition 3.3.4, Proposition 3.3.5 and Theorem 3.3.8 that Ï̇
t+Á

de-
pends on Á and sup

X

Ï
0

, hence ---- log Ên

t

Ên

---- Æ C.
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Combine with the inequality
3

Ễn

Ên

4 1
n

Æ 1
n

tr
Ê

Ễ (see Lemma 2.2.3),

we infer that
tr

Ê

Ê
t+Á

Ø C≠1, tr
Êt+Á Ê Ø C≠1,

tr
Ê

Ê
t+Á

Æ C tr
Ê

Ê
t+Á

tr
Êt+Á Ê, tr

Êt+Á Ê Æ C tr
Ê

Ê
t+Á

tr
Êt+Á Ê. (3.3.18)

Denoting g̃(t, x) = g
t+Á

(x) and using the local coordinate system (3.3.5) at (t
0

, x
0

), we
have

�
t
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Ê

Ê
t+Á
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¯
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i

ˆ
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j
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ÿ
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¯
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ÿ
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) ≠ C tr
Ê

Ê
t+Á
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,

where the last inequality comes from (3.3.18). Since

�
Ê

Ï̇ = tr
Ê

(Ric(�) ≠ Ric(Ê
t+Á

)) + �
Ê

F (t, z, Ï
t+Á

) (3.3.19)

and
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Ê
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) =
ÿ
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ÿ
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Therefore

�
t

tr
Ê

Ê
t+Á

Ø
ÿ

i,j,k

g̃i

¯

ig̃j

¯

j g̃
i

¯

jk

g̃
j

¯

i

¯

k

≠ tr
Ê

Ric(Ê
t+Á

)

≠2Re(
ÿ

i,j,k

g̃i

¯

ig
j

¯

k

¯

i

g̃
k

¯

ji

) ≠ C
4

tr
Ê

Ê
t+Á

tr
Êt+Á Ê

Now we have

|2Re(
ÿ

i,j,k

g̃i

¯

ig
j

¯

k

¯

i

g̃
k

¯

ji

)| Æ
ÿ

i

ÿ

j ”=k

(g̃i

¯

ig̃j

¯

j g̃
i

¯

jk

g̃
j

¯

i

¯

k

+ g̃i

¯

ig̃
j

¯

j

g
j

¯

k

g
k

¯

j

¯

k

)

Æ
ÿ

i

ÿ

j ”=k

g̃i

¯

ig̃j

¯

j g̃
i

¯

jk

g̃
j

¯

i

¯

k

+ C tr
Ê

Ê
t+Á

tr
Êt+Á Ê.



72 CHAPTER 3. REGULARIZING PROPERTIES OF CMAF II

It follows that

�
t

tr
Ê

Ê
t+Á

Ø
ÿ

i,j

g̃i

¯

ig̃j

¯

j g̃
i

¯

jj
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¯

i

¯

j

≠ tr
Ê

Ric(Ê
t+Á

) ≠ C tr
Ê

Ê
t+Á

tr
Êt+Á Ê. (3.3.21)

We now claim that

|ˆ tr
Ê

(Ê
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)|2
Êt+Á

(tr
Ê

Ê
t+Á

)2

Æ
ÿ

i,j

g̃i

¯
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¯

j g̃
i

¯

jj
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j

¯

i

¯

j

+ 1
t
A2|ÒÏ|2

+
3

1 + 1
t

4
C tr

Êt+Á Ê

(tr
Ê

Ê
t+Á

)2

+ C tr
Êt+Á Ê. (3.3.22)

By computation,

|ˆ tr
Ê
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t+Á
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Êt+Á
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Ê

Ê
t+Á
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Ê

Ê
t+Á
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¯
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¯
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¯

k

¯
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Ê
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¯
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j

¯
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i

¯
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+ g̃
i

¯
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k

¯

k

¯

i
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¯

i

¯

k
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k

¯

i

¯

k

)
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(tr

Ê

Ê
t+Á

)2

ÿ

i,j,k
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¯

i(T
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¯

j

+ g̃
i

¯
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)(T̄
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¯

k
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k

¯

i

¯

k

)
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Ê
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¯
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i

¯
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k

¯

i

¯

k

+
ÿ
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¯
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¯

j
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¯

k
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ÿ
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¯
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¯

j
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k

¯

i

¯

k

4

where T
ij

¯

j

= h
j

¯

ji

≠ h
i

¯

jj

.

It follows from the Cauchy-Schwarz inequality that

1
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Ê

Ê
t+Á

ÿ

i,j,k

g̃i

¯
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i

¯
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g̃
k

¯

i

¯

k

Æ
ÿ
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¯
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¯

j g̃
i

¯
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j

¯

i

¯

j

. (3.3.23)

For the second term, we have
ÿ

i,j,k

g̃i

¯

iT
ij

¯

j

T̄
ik

¯

k

Æ C tr
Êt+Á Ê.

Now at the maximum point (t
0

, z
0

), t
0

> 0, we have ÒP = 0, hence

AÏ̇
¯

i

= t
u

¯

i

u
= t

u

ÿ

k

g
k

¯

k

¯

i

.

Since g̃
k

¯

i

¯

k

= g̃
k

¯

k

¯

i

≠ T̄
ik

¯

k

, we have
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¯
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¯
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ÿ
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¯
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¯
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Ê

Ê
t+Á

----
A

t
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ÿ

i,j
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¯
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¯

j

Ï
¯

i

---- + C tr
Êt+Á Ê

Æ 1
t

3
A2|ÒÏ|2

Ê

+ C tr
Êt+Á Ê

(tr
Ê

Ê
t+Á

)2

4
+ C tr

Êt+Á Ê.

Combining all of these inequalities we obtain (3.3.22).

It now follows from (3.3.21) and (3.3.22) that

�
t

log tr
Ê

Ê
t+Á

Ø ≠tr
Ê

Ric(Ê
t+Á

)
tr

Ê

Ê
t+Á

≠ 1
t
A2|Ò

Ê

Ï|2 ≠
3

1 + 1
t

4
C tr

Êt+Á Ê

(tr
Ê

Ê
t+Á

)2

≠ C tr
Êt+Á Ê.

Moreover,

tu̇

u
= t

u

5
�

Ê

!
log Ên

t+Á

/Ên ≠ log �/Ên ≠ F (t, z, Ï
t+Á

)
"

+ tr
Ê

◊̇
t

6
,

= t

u

5
≠ tr

Ê

(Ric Ê
t+Á

) + tr
Ê

(◊̇
t

+ Ric Ê) ≠ �
Ê

(F (t, z, Ï) + log �/Ên)
6
,

It follows from Proposition 2.3.7, tr
Êt+Á Ê tr

Ê

Ê
t+Á

Ø n and tr
Ê

Ê
t+Á

Ø C≠1 that

≠ t�
t

log u + tu̇

u
Æ Ct tr

Êt+Á(Ê) ≠ t
�

Ê

#
F (t, z, Ï) + log �/Ên

$

tr
Ê

(Ê
t+Á

) + C. (3.3.24)

Now

�
Ê

F (t, z, Ï
t+Á

) = �
Ê

F (z, .) + 2Re
5
gj

¯

k

3
ˆF

ˆs

4

j

Ï
¯

k

6
+ ˆF

ˆs
�

Ê

Ï + ˆ2F

ˆs2

|ÒÏ|2
Ê

.

Therefore --�
Ê

!
F (t, z, Ï

t+Á

) + log �/Ên

"-- Æ C + C|ÒÏ|2
Ê

+ C tr
Ê

Ê
t+Á

.

Then we infer

≠�
Ê

[F (t, z, Ï) + log �/Ên]
tr

Ê

(Ê
t+Á

) Æ 1
n

tr
Êt+Á(Ê)(C + C|ÒÏ|2

Ê

) + C,

so from Proposition 2.3.7 and (3.3.24) we have

≠ t�
t

log u + tu̇

u
Æ Ct tr

Êt+Á(Ê) + C. (3.3.25)
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Moreover, the inequalities (n ≠ 1) log x Æ x + C
n

and

tr
Ê

Ễ Æ
3

Ễn

Ên

4
(tr

Ễ

Ê)n≠1,

for any two positive (1, 1)-froms Ê and Ễ, imply that

log u = log tr
Ê

(Ê
t+Á

) Æ log
3

n
3

Ên

t+Á

Ên

4
tr

Êt+Á(Ê)n≠1

4

= log n + Ï̇
t+Á

+ F (t, z, Ï) + (n ≠ 1) log tr
Êt+Á(Ê)

Æ Ï̇
t+Á

+ tr
Êt+Á(Ê) + C. (3.3.26)

It follows from (3.3.16), (3.3.17), (3.3.25) and (3.3.26) that
3

ˆ

ˆt
≠ �

t

4
P Æ C ≠ (A ≠ 1)Ï̇

t+Á

+ [Ct + 1 ≠ A/2] tr
Êt+Á Ê.

We choose A sufficiently large such that Ct + 1 ≠ A/2 < 0. Applying Proposition 3.3.4,
3

ˆ

ˆt
≠ �

t

4
P Æ C ≠ (A ≠ 1)(n log Á ≠ AOsc

X

Ï
Á

≠ C).

Now suppose P attains its maximum at (t
0

, z
0

). If t
0

= 0, we get the desired inequality.
Otherwise, at (t

0

, z
0

)

0 Æ
3

ˆ

ˆt
≠ �

t

4
P Æ C ≠ (A ≠ 1)(n log Á ≠ AOsc

X

Ï
Á

≠ C).

Hence we get

t log tr
Ê

(Ê
t+Á

) Æ AOsc
X

(Ï
Á

) + C + [C ≠ n log Á + AOsc
X

(Ï
Á

)]t,

as required.

3.3.5 Higher order estimates
For the higher order estimates, one can follow [SzTo11] (see [Nie14] for its version on
Hermitian manifolds) by bounding

S = gip̄

Ï

gq

¯

j

Ï

gkr̄

Ï

Ï
i

¯

jk

Ï
p̄qr̄

and |Ric(Ê
t

)|
Êt ,

then using the parabolic Schauder estimates to obtain higher order estimates for Ï. Addi-
tionally, we can also combine previous estimates with Evans-Krylov and Schauder estimates
[Tô17, Theorem 1.7] (see Theorem 2.2.8) to get the Ck estimates for all k Ø 0.

Theorem 3.3.12. For each Á > 0 and k œ N, there exists C
k

(Á) such that

||Ï||Ck
([Á,T ]◊X)

Æ C
k

(Á).
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3.4 Proof of Theorem A and B
We now consider the complex Monge-Ampère flow

(CMAF ) ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï),

starting from a Ê-psh function Ï
0

with zero Lelong numbers at all points, where F (t, z, s) œ
CŒ([0, T ] ◊ X ◊ R,R) with ˆF

ˆs

Ø 0 and ˆF

ˆt

is bounded from below.

3.4.1 Convergence in L1

We fisrt approximate Ï
0

by a decreasing sequence Ï
0,j

of smooth Ê-psh fuctions (see
[BK07]). Denote by Ï

t,j

the smooth family of ◊
t

-psh functions satisfying on [0, T ] ◊ X

ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï)

with initial data Ï
0,j

.

It follows from the maximum principle [Tô17, Proposition 1.5] that j ‘æ Ï
j,t

is non-
increasing. Therefore we can set

Ï
t

(z) := lim
jæ+Œ

Ï
t,j

(z).

Thanks to Lemma 3.3.3 the function t ‘æ sup
X

Ï
t,j

is uniformly bounded, hence Ï
t

is
a well-defined ◊

t

-psh function. Moreover, it follows from Theorem 3.3.12 that Ï
t

is also
smooth in (0, T ] ◊ X and satisfies

ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï).

Observe that (Ï
t

) is relatively compact in L1(X) as t æ 0+, we now show that Ï
t

æ Ï
0

in L1(X) as t √ 0+.

First, let Ï
tk is a subsequence of (Ï

t

) such that Ï
tk converges to some function Â in

L1(X) as t
k

æ 0+. By the properties of plurisubharmonic functions, for all z œ X

lim sup
tkæ0

Ï
tk(z) Æ Â(z),

with equality almost everywhere. We infer that for almost every z œ X

Â(z) = lim sup
tkæ0

Ï
tk(z) Æ lim sup

tkæ0

Ï
tk,j

(z) = Ï
0,j

(z),

by continuity of Ï
t,j

at t = 0. Thus Â Æ Ï
0

almost everywhere.
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Moreover, it follows from Lemma 3.3.3 that

Ï
t

(z) Ø (1 ≠ 2—t)Ï
0

(z) + tu(z) + n(t log t ≠ t) + At,

with u continuous, so
Ï

0

Æ lim inf
tæ0

Ï
t

.

Since Â Æ Ï
0

almost everywhere, we get Â = Ï
0

almost everywhere, so Ï
t

æ Ï
0

in L1.

3.4.2 Uniform convergence
If the initial condition Ï

0

is continuous then by [Tô17, Proposition 1.5] (see Proposition
2.2.5) we infer that Ï

t

œ C0([0, T ] ◊ X), hence Ï
t

uniformly converges to Ï
0

as t æ 0+.

3.4.3 Uniqueness and stability of solution
We now study the uniqueness and stability for the complex Monge-Ampère flow

ˆÏ
t

ˆt
= log (◊

t

+ ddcÏ
t

)n

� ≠ F (t, z, Ï), (3.4.1)

where F (t, z, s) œ CŒ([0, T ] ◊ X ◊ R,R) satisfies

ˆF

ˆs
Ø 0 and

----
ˆF

ˆt

---- Æ C Õ,

for some constant C Õ > 0.
The uniqueness of solution follows directly from the same result in the Kähler setting

[Tô17] (see Chapter 2)

Theorem 3.4.1. Suppose Â and Ï are two solutions of (3.4.1) with Ï
0

Æ Â
0

, then Ï
t

Æ Â
t

.
In particular, the equation (3.4.1) has a unique solution.

The stability result also comes from the same argument as in [Tô17] (see Chapter 2).
The difference is that we use Theorem 3.3.6 instead of the one for Kähler manifolds.

Theorem 3.4.2. Fix Á > 0. Let Ï
0,j

be a sequence of Ê-psh functions with zero Lelong
number at all points, such that Ï

0,j

æ Ï
0

in L1(X). Denote by Ï
t,j

and Ï
j

the solutions
of (3.4.1) with the initial condition Ï

0,j

and Ï
0

respectively. Then

Ï
t,j

æ Ï
t

in CŒ([Á, T ] ◊ X) as j æ +Œ.

Moreover, if Ï, Â œ CŒ((0, T ] ◊ X) are solutions of (CMAF ) with continuous initial
data Ï

0

and Â
0

, then

||Ï ≠ Â||
C

k
([Á,T ]◊X)

Æ C(k, Á)||Ï
0

≠ Â
0

||
L

Œ
(X)

. (3.4.2)
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Proof. We use the techniques in Section 3.3 to obtain estimates of Ï
t,j

in Ck([Á, T ] ◊ X)
for all k Ø 0. In particular, for the C0 estimate, we need to have uniform bound for
H

t,j

= exp(Ï̇
t,j

+ F ) in order to use Theorem 3.3.6. By Lemma 3.3.5 we have

H
t,j

= exp(Ï̇
t,j

+ F ) Æ exp
3≠Ï

0,j

+ C

t
+ C Õ

4
,

where C, C Õ depend on Á, sup
X

Ï
0,j

. Since Ï
0,j

converges to Ï
0

in L1, we have the sup
X

Ï
0,j

is uniformly bounded in term of sup
X

Ï
0

for all j by the Hartogs lemma, so we can choose
C, C Õ independently of j. It follows from [DK01, Theorem 0.2 (2)] that there is a constant
A(t, Á) depending on t and Á such that ||H

t,j

||
L

2
(X)

is uniformly bounded by A(t, Á) for all
t œ [Á, T ]. The rest of the proof is now siminar to [Tô17, Theorem 4.3].

3.5 Chern-Ricci flow and canonical surgical contraction
In this section, we give a proof of the conjecture of Tosatti and Weinkove. Let (X, Ê

0

) be
a Hermitian manifold. Consider the Chern-Ricci flow on X,

ˆ

ˆt
Ê

t

= ≠Ric(Ê), Ê|
t=0

= Ê
0

. (3.5.1)

Denote
T := sup{t Ø 0|÷Â œ CŒ(X) with Ê̂

X

+ ddcÂ > 0},

where Ê̂
X

= Ê
0

+ t‰, with ‰ is a smooth (1, 1)-form representing ≠cBC

1

(X).

Assume that there exists a holomorphic map between compact Hermitian manifolds
fi : X æ Y blowing down an exceptional divisor E on X to one point y

0

œ Y . In addition,
assume that there exists a smooth function fl on X such that

Ê
0

≠ TRic(Ê
0

) + ddcfl = fiúÊ
Y

, (3.5.2)

with T < +Œ, where Ê
Y

is a Hermitian metric on Y . In [TW15, TW13], Tosatti and
Weinkove proved that the solution Ê

t

to the Chern-Ricci flow (3.5.1) converges in CŒ
loc

(X \
E) to a smooth Hermitian metric Ê

T

on X \ E. Moreover, there exists a distance function
d

T

on Y such that (Y, d
T

) is a compact metric space and (X, g(t)) converges in the Gromov-
Hausdorff sense (Y, d

T

) as t æ T ≠. Denote by ÊÕ the push-down of the current Ê
T

to Y .
They conjectured that:

Conjecture 3.5.1. [TW13, Page 2120]

(1) There exists a smooth maximal solution Ê
t

of the Chern-Ricci flow on Y for t œ
(T, T

Y

) with T < T
Y

Æ +Œ such that Ê
t

converges to ÊÕ, as t æ T +, in CŒ
loc

(Y \{y
0

}).
Furthermore, Ê

t

is uniquely determined by Ê
0

.
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(2) The metric space (Y, Ê
t

) converges to (Y, d
T

) as t æ T + in the Gromov-Hausdorff
sense.

We now prove this conjecture using Theorem A, Theorem B and some arguments in
[SW13a, TW13].

3.5.1 Continuing the Chern-Ricci flow
We prove the first claim in the conjecture showing how to continue the Chern-Ricci flow.

Write Ê̂ = fiúÊ
Y

= Ê
0

≠ TRic(Ê
0

) + ddcfl. Then there is a positive (1, 1)-current
Ê

T

= Ê̂ + ddcÏ
T

for some bounded function Ï
T

. By the same argument in [SW13a,
Lemma 5.1] we have

Ï
T

|
E

= constant.

Hence there exists a bounded function „
T

on Y that is smooth on Y \{y
0

} with Ï
T

= fiú„
T

.
We now define a positive current ÊÕ on Y by

ÊÕ = Ê
Y

+ ddc„
T

Ø 0,

which is the push-down of the current Ê
T

to Y and is smooth on Y \ {y
0

}. By the
same argument in [SW13a, Lemma 5.2] we have ÊÕn/Ên

Y

œ Lp(Y ). It follows from [DK12,
Theorem 5.2] that „

T

is continuous.
We fix a smooth (1, 1) form ‰ œ ≠cBC

1

(Y ) and a smooth volume form �
Y

such that
‰ = ddc log �

Y

. Denote

T
Y

:= sup{t > T |Ê
Y

+ (t ≠ T )‰ > 0}.

Fix T Õ œ (T, T
Y

), we have:

Theorem 3.5.2. There is a unique smooth family of Hermitian metrics (Ê
t

)
T <tÆT

Õ on Y
satisfying the Chern-Ricci flow

ˆÊ
t

ˆt
= ≠Ric(Ê

t

), Ê
t

|
t=T

= ÊÕ, (3.5.3)

with Ê
t

= Ê
Y

+ (t ≠ T )‰ + ddc„
t

. Moreover, „
t

uniformly converges to „
T

as t æ T +.

Proof. We can rewrite the flow as the following complex Monge-Ampère flow

ˆ„
t

ˆt
= log (Ê̂

Y

+ ddc„
t

)n

� , „|
t=T

= „
T

, (3.5.4)

where Ê̂
Y

:= Ê
Y

+ (t ≠ T )‰ and „
T

is continuous.
It follows from Theorem A and Theorem B that there is a unique solution „ of (3.5.4)

in CŒ((T, T Õ] ◊ Y ) such that „
t

uniformly converges to „
T

as t æ T +.



3.5. CHERN-RICCI FLOW AND CANONICAL SURGICAL CONTRACTION 79

3.5.2 Backward convergences

Once the Chern-Ricci flow can be run from ÊÕ on Y , we can prove the rest of Conjecture
3.5.1 following the idea in [SW13a, Section 6].

We keep the notation as in [TW15]. Let h be a Hermitian metric on the fibers of the
line bundle [E] associated to the divisor E, such that for Á

0

> 0 sufficiently small, we have

fiúÊ
Y

≠ Á
0

R
h

> 0, where R
h

:= ≠ddc log h. (3.5.5)

Take s a holomorphic section of [E] vanishing along E to order 1. We fix a a coordinate
chart U centered at y

0

, which identities with the unit ball B µ Cn via coordinates z
1

, . . . , z
n

.
Then the function |s|2

h

on X is given on fi≠1 (B(0, 1/2)) by

|s|2
h

(x) = |z
1

|2 + . . . + |z
n

|2 := r2, for fi(x) = (z
1

, . . . , z
n

).

Hence, the curvature R(h) of h is given by

R(h) := ≠ddc log(|z
1

|2 + . . . + |z
n

|2).

The crucial ingredient of the proof of the conjecture is the following proposition:

Proposition 3.5.3. The solution Ê
t

of (3.5.3) is in CŒ([T, T Õ]◊Y \{y
0

}) and there exists
÷ > 0 and a uniform constant C > 0 such that for t œ [T, T Õ]

(1) Ê
t

Æ C ÊY
fiú|s|2h

,

(2) Ê
t

Æ Cfiú
1

Ê0
|s|2(1≠÷)

2
.

In order to prove this propositon, we use the method in [SW13a] to construct a smooth
approximant of the solution „

t

of (3.5.4). Denote by f
Á

a family of positive smooth functions
f

Á

on Y such that it has the form

f
Á

(z) = (Á + r2)n≠1,

on B, hence f
Á

(z) æ f(z) = r2(n≠1) as Á æ 0. Moreover, there is a smooth volume form
�

X

on X with fiú�
Y

= (fiúf)�
X

.

Observe that Ê̂
Y

(t) ≠ Á

T

Ê
Y

is Hermitian on Y for t œ [T, T Õ] if Á is sufficiently small.
Therefore

◊Á := fiú(Ê̂
Y

≠ Á

T
Ê

Y

) + Á

T
Ê

0

is Hermitian for Á > 0 sufficiently small.
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We denote by ÂÁ

t

the unique smooth solution of the following Monge-Ampère flow on
X:

ˆÂÁ

ˆt
= log (◊Á + ddcÂÁ)n

(fiúf
Á

)�
X

ÂÁ|
t=T

= Ï(T ≠ Á), (3.5.6)

Define Kähler metrics ÊÁ on [T, T Õ] ◊ X by

ÊÁ = ◊Á + ddcÂÁ, (3.5.7)

then
ˆÊÁ

ˆt
= ≠Ric(ÊÁ) ≠ ÷, (3.5.8)

where ÷ = ≠ddc log((fiúf
Á

)�
X

) + fiú‰ = ≠ddc log(fiúf
Á

)�
X

) + ddc log((fiúf)�
X

).

We claim that fiúÂÁ

t

converges to the solution „
t

of the equation (3.5.4) in CŒ([T, T Õ]◊
Y \ {y

0

}), then fiúÊÁ smoothly converges to Ê
t

on [T, T Õ] ◊ Y \ {y
0

}.

Lemma 3.5.4. There exists C > 0 such that for all Á œ (0, Á
0

) such that on [T, T Õ] ◊ X
we have

(i) ÷ Æ CÊ
0

,

(ii) Osc
X

ÂÁ Æ C;

(iii) (Ê

Á
)

n

�X
Æ C.

Proof. By straightforward calculation, in fi≠1(B(0, 1/2)), we have

÷ = ≠ddc log((fiúf
Á

)�
X

) + ddc log((fiúf)�
X

)
Æ (n ≠ 1)fiú

1
ddc log r2

2

= (n ≠ 1)
Ô≠1

fi
fiú

Q

a 1
r2

ÿ

i,j

3
”

ij

≠ z̄
i

z
j

r2

dz
i

· dz̄
j

4R

b

Æ CÊ
0

,

for some constant C > 0. This proves (i). Using the same argument in Section 3.3 (see
Theorem 3.3.8) we get (ii). Finally, the estimate (iii) follows from the same proof for the
Kähler-Ricci flow (cf. [SW13a, Lemma 6.2])

Two following lemmas are essential to prove Proposition 3.5.3.
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Lemma 3.5.5. There exists ÷ > 0 and a uniform constant C > 0 such that

ÊÁ

t

Æ C
fiúÊ

Y

|s|2
h

. (3.5.9)

Proof. We first denote by C > 0 a uniform constant which is independent of Á. Set
Ê̂ = fiúÊ

Y

and fix ” > 0 a small constant. Following the same method in [TW13, Lemma
3.4] (see [PS10] for the original idea), we consider

H
”

= log tr
Ê̂

ÊÁ

t

+ log |s|2(1+”)

h

≠ AÂÁ + 1
ẪÁ + C

0

,

where ẪÁ := ÂÁ ≠ 1+”

A

log |s|2
h

and C
0

> 0 satisfies ẪÁ + C
0

Ø 1.

It follows from [TW13, (3.17)] and [SW13a, Lemma 2.4] that

Ê
0

Æ C

|s|2
h

fiúÊ
Y

, (3.5.10)

hence |s|2
h

tr
Ê̂

ÊÁ Æ C tr
Ê0 ÊÁ. Therefore H

”

goes to negative infinity as x tends to E.
Suppose that H

”

attains its maximum at (t
0

, x
0

) œ [T, T Õ] ◊ X \ E. Without loss of
generality, we assume that tr

Ê̂

ÊÁ Ø 1 at (t
0

, x
0

).

The condition (3.5.2) implies that fiúÊ
Y

≠Ê
0

is a d-closed form, so that dÊ
0

= fiú(dÊ
Y

).
Therefore we have

(T
0

)p

jl

(g
0

)
p

¯

k

= (2
Ô≠1ˆÊ

0

)
jl

¯

k

= (2
Ô≠1fiúˆÊ

Y

)
jl

¯

k

= (fiúT
Y

)p

jl

(fiúÊ
Y

)
p

¯

k

. (3.5.11)

The condition (3.5.2) moreover implies that

ÊÁ(t) = Ê
0

+ —(t), (3.5.12)

where —(t) = (1 ≠ Á/T )(≠TRic(Ê
0

) + ddcÂ) + (t ≠ T )fiú‰ is a closed (1, 1)-form.

Combining (3.5.12), (3.5.11) and the calculation of [TW15, Proposition 3.1], at (t
0

, x
0

)
we get

3
ˆ

ˆt
≠ �

Á

4
log tr

Ê̂

ÊÁ Æ 2
(tr

Ê̂

ÊÁ)2

Re
1
gkq̄T̂ i

ki

ˆ
q̄

tr
Ê̂

ÊÁ

2
+ C tr

Ê

Á Ê̂ + tr
Ê̂

÷

tr
Ê̂

ÊÁ

, (3.5.13)

where T̂ := fiúT
Y

.

It follows from Lemma 3.5.4 and (3.5.10) that

tr
Ê̂

÷

tr
Ê̂

ÊÁ

Æ C

|s|2
h

tr
Ê̂

ÊÁ

.
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Moereover, we may assume without loss of generality that

C

|s|2
h

tr
Ê̂

ÊÁ

Æ C Õ,

for some uniform constant C Õ, since otherwise H
”

is already uniformly bounded. Therefore,
we get

tr
Ê

Á ÷

tr
Ê̂

ÊÁ

Æ C Õ. (3.5.14)

Since at (t
0

, z
0

) we have ÒH
”

(t
0

, x
0

) = 0,
1

tr
Ê̂

ÊÁ

ˆ
i

tr
Ê̂

ÊÁ ≠ Aˆ
i

ẪÁ ≠ 1
(ẪÁ + C

0

)2

ˆ
i

ẪÁ = 0, (3.5.15)

hence
----

2
(tr

Ê̂

ÊÁ)2

Re
1
gkq̄T̂ i

ki

ˆ
q̄

tr
Ê̂

ÊÁ

2---- Æ
----

2
tr

Ê̂

ÊÁ

Re
33

A + 1
ẪÁ + C

0

4
gkq̄T̂ i

ki

(ˆ
q̄

ẪÁ)
4----

Æ |ˆẪÁ|2
Ê

Á

(ÂÁ + C
0

)3

+ CA2(ẪÁ + C
0

)3

tr
Ê

Á Ê̂

(tr
Ê̂

ÊÁ)2

.

We also have
3

ˆ

ˆt
≠ �

Á

4 3
≠AẪÁ + 1

ẪÁ + C
0

4
= ≠A ˙̃ÂÁ + A�

Á

ẪÁ ≠
˙̃ÂÁ

(ÂÁ + C
0

)2

+ �
Á

ẪÁ

(ẪÁ + C
0

)2

.

Combining all inequalities above and Lemma 3.5.4 (iii), at (t
0

, x
0

), we obtain

0 Æ
3

ˆ

ˆt
≠ �

Á

4
H

”

Æ ≠ |ˆẪÁ|2
Ê

Á

(ÂÁ + C
0

)3

+ C tr
Ê

Á Ê̂ ≠
A

A + 1
(ẪÁ + C

0

)2

B

Â̇Á

+C Õ +
A

A + 1
(ẪÁ + C

0

)2

B

tr
Ê

Á(ÊÁ ≠ ◊Á + 1 + ”

A
R

h

)

Æ C tr
Ê

Á Ê̂ + (A + 1) log �
X

Ên

Á

+ (A + 1)n

≠A tr
Ê

Á

3
◊Á ≠ 1 + ”

A
R

h

4
+ C.

Since fiúÊ
Y

≠ Á
0

R
h

> 0 , we have

◊Á ≠ 1 + ”

A
R

h

Ø c
0

Ê
0

for A sufficiently large. Combining with tr
Ê

Á Ê̂ Æ C tr
Ê

Á Ê
0

, we can choose A sufficiently
large so that at (t

0

, x
0

)
0 Æ ≠ tr

Ê

Á Ê
0

+ C log �
X

(ÊÁ)n

+ C.
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Therefore, at (t
0

, x
0

)

tr
Ê0 ÊÁ Æ 1

n
(tr

Ê

Á Ê
0

)n≠1

(ÊÁ)n

Ên

0

Æ C
ÊÁ

�
X

3
log �

X

(ÊÁ)n

4
n≠1

.

Since ÊÁ/�
X

Æ C (Lemma 3.5.4 (iii)) and x æ x log |x|n≠1 is bounded from above for
x close to zero, we get

tr
Ê0 ÊÁ Æ C,

This implies that H
”

is uniformly bounded from above at its maximum. Hence we obtain
the estimate (3.5.9).

Lemma 3.5.6. There exists a uniform ⁄ > 0 and C > 0 such that

ÊÁ

t

Æ C

|s|2(1≠⁄)

Ê
0

.

Proof. Following the method in [TW13, Lemma 3.5] (see also [PS10]), we consider for each
” > 0,

H
”

= log tr
Ê0 ÊÁ ≠ AÏ̃Á + 1

Ï̃Á + C̃
+ 1

(ẪÁ + C̃)
,

where Ï̃Á := ≠ log(tr
Ê̂

ÊÁ|s|2(1+”))+AẪÁ and C̃ is chosen so that Ï̃Á+C̃ > 1 and ẪÁ+C̃ > 1.
The constant A > 0 will be chosen hereafter. Lemma 3.5.5 and Lemma 3.5.4 (ii) imply
that H

”

goes to negative infinity as x tends to E. Hence we can assume that H
”

attains
its maximum at (t

0

, x
0

) œ [T, T Õ] ◊ X \ E. Without loss of generality, let’s assume further
that tr

Ê0 ÊÁ Ø 1 at (t
0

, x
0

).
As in Lemma 3.5.5 we have

3
ˆ

ˆt
≠ �

Á

4
log tr

Ê̂

ÊÁ Æ 2
(tr

Ê̂

ÊÁ)2

Re
1
gkq̄T̂ i

ki

ˆ
q̄

tr
Ê̂

ÊÁ

2
+ C tr

Ê

Á Ê̂ + tr
Ê̂

÷

tr
Ê̂

ÊÁ

.

and
3

ˆ

ˆt
≠ �

Á

4
log tr

Ê0 ÊÁ Æ 2
(tr

Ê0 ÊÁ)2

Re
1
gkq̄(T

0

)i

ki

ˆ
q̄

tr
Ê0 ÊÁ

2
+ C tr

Ê

Á Ê
0

+ tr
Ê0 ÷

tr
Ê0 ÊÁ

,

It follows from Lemma 3.5.4 and (3.5.10) that

tr
Ê̂

÷

tr
Ê̂

ÊÁ

Æ C

|s|2
h

tr
Ê̂

ÊÁ

,

and
tr

Ê0 ÷

tr
Ê0 ÊÁ

Æ C

tr
Ê0 ÊÁ

Æ C

|s|2
h

tr
Ê̂

ÊÁ

.

Therefore
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3
ˆ

ˆt
≠ �

Á

4
H

”

Æ C
0

tr
Ê0 ÊÁ + 2

(tr
Ê0 ÊÁ)2

Re
1
gkq̄(T

0

)i

ki

ˆ
q̄

tr
Ê

Á Ê̂
2

+ C
0

(A + 1) tr
Ê

Á Ê̂

+
A

A + 1
(Ï̃Á + C̃)2

B
2

(tr
Ê̂

ÊÁ)2

Re
1
gkq̄T̂ i

ki

ˆ
q̄

tr
Ê

Á Ê̂
2

≠
A

A

A

A + 1
(Ï̃Á + C̃)2

B

+ 1
(ẪÁ + C̃)2

B

Â̇Á

+
A

A

A

A + 1
(Ï̃Á + C̃)2

B

+ 1
(ẪÁ + C̃)2

B

tr
Ê

Á

3
ÊÁ ≠ ◊Á + (1 + ”)R

h

A

4

≠ 2
(Ï̃Á + C̃)3

|ˆÏ̃|2
g

≠ 2
(ẪÁ + C̃)3

|ˆẪÁ|2
g

+ CA

|s|2
h

tr
Ê̂

ÊÁ

.

For the last term, we may assume without of generality that

CA

|s|2
h

tr
Ê̂

ÊÁ

Æ (tr
Ê0 ÊÁ)1/A,

since otherwise H
”

is already uniformly bounded. Using

tr
Ê0 ÊÁ Æ n

3(ÊÁ)n

Ên

0

4
(tr

Ê

Á Ê
0

)n≠1,

and tr
Ê0 ÊÁ Ø 1 at (t

0

, x
0

), we get

CA

|s|2
h

tr
Ê̂

ÊÁ

Æ C
1

tr
Ê0 ÊÁ, (3.5.16)

for A > n ≠ 1.
It follows from (3.5.5) that

1
2A◊Á ≠ (1 + ”)R

h

Ø c
0

Ê
0

,

for all A sufficiently large. Therefore we can choose A sufficiently large such that

A2◊Á ≠ A(1 + ”)R
h

= 1
2A2◊Á + A

31
2A◊Á ≠ (1 + ”)R

h

4

Ø C
0

(A + 1)Ê̂ + (C
0

+ C
1

+ 1)Ê
0

. (3.5.17)
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Compute at (t
0

, x
0

), using (3.5.16), (3.5.17), ẪÁ + C̃ Ø 1 and Ï̃Á + C̃ Ø 1,

0 Æ ≠ tr
Ê0 ÊÁ + 2

(tr
Ê0 ÊÁ)2

Re
1
gkq̄(T

0

)i

ki

ˆ
q̄

tr
Ê

Á Ê̂
2

+
A

A + 1
(Ï̃Á + C̃)2

B
2

(tr
Ê̂

ÊÁ)2

Re
1
gkq̄T̂ i

ki

ˆ
q̄

tr
Ê

Á Ê̂
2

≠BÂ̇Á ≠ 2
(Ï̃Á + C̃)3

|ˆÏ̃|2
g

≠ 2
(ẪÁ + C̃)3

|ˆẪÁ|2
g

+ C Õ,

for B is a constant in [A2, A2 + A + 1].

By the same argument in [TW13, Lemma 3.5], we get, at (t
0

, x
0

),

0 Æ ≠1
4 tr

Ê

Á Ê
0

≠ B log (ÊÁ)n

�
X

+ C Õ. (3.5.18)

As in the proof of Lemma 3.5.5, we infer that tr
Ê0 ÊÁ is bounded from above at (t

0

, x
0

).
Therefore, it follows from Lemma 3.5.4 and Lemma 3.5.5 that H

”

is bounded from above
uniformly in ”. Let ” æ 0, we get

log tr
Ê0 ÊÁ + A log(|s|2

h

tr
Ê̂

ÊÁ) Æ C.

Since tr
Ê0 ÊÁ Æ C tr

Ê̂

ÊÁ, we have

log(tr
Ê0 ÊÁ)A+1|s|2A

h

Æ C,

and the desired inequality follows with ⁄ = 1/(A + 1) > 0.

Proof of Proposition 3.5.3. On Y , the function „Á := fiúÂÁ

t

satisfies

ˆ„Á

ˆt
= log

!
Ê̂

Y

+ Á

T

(Ê
Y

≠ fiúÊ
0

) + ddc„Á

"
n

�
Y

, ÂÁ|
t=T

= fiúÏ(T ≠ Á). (3.5.19)

Since –Á

t

= Ê̂
Y

+ Á

T

(Ê
Y

≠fiúÊ
0

) is uniformly equivalent to Ê̂
Y

for all Á œ [0, Á
0

] and t œ [T, T Õ],
we can follow the same argument as in Section 3.3 to obtain the Ck-estimates for „Á

t

which
are independent of Á, for all t œ (T, T Õ]. By Arzela-Ascoli theorem, after extracting a
subsequence, we can assume that „Á converges to „̃, as Á æ 0+, in CŒ([”, T Õ] ◊ Y ) for all
” œ (T, T Õ). Moreover „̃

t

uniformly converges to „
T

, hence „̃ satisfies (3.5.4). Thanks to
Theorem 3.4.2, „̃ is equal to the solution „ of (3.5.4). Using Lemma 3.5.6 and the standard
local parabolic theory, we obtain the CŒ estimates ÊÁ on compact sets away from E. Hence
„ is the smooth solution of 3.5.1 on [T, T Õ] ◊ Y \ {y

0

}. Finally, Proposition 3.5.3 follows
directly from Lemma 3.5.5 and Lemma 3.5.6.

Finally, we get the following:
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Theorem 3.5.7. The solution Ê
t

of (3.5.3) smoothly converges to ÊÕ, as t æ T +, in
CŒ

loc

(Y \ {y
0

}) and (Y, Ê
t

) converges in the Gromov-Hausdorff sense to (Y, d
T

) as t æ T +.

Proof. It follows from the proof of Proposition 3.5.3 that „ œ CŒ([T, T Õ]◊Y \{y
0

}), hence
Ê

t

smoothly converges to Ê|
t=T

= ÊÕ in CŒ
loc

(Y \ {y
0

}).

Denote by d
Êt the metric induced from Ê

t

and S
r

the 2n ≠ 1 sphere of radius r in B
centered at the origin. Then it follows from Lemma 3.5.5 and the argument of [SW13a,
Lemma 2.7(i)] that:

(a) There exists a uniform constant C such that

diam
dÊt

(S
r

) Æ C, ’t œ (T, T Õ]. (3.5.20)

Following the same argument of [SW13a, Lemma 2.7 (ii)], we have

(b) For any z œ B(0, 1

2

) \ {0}, the length of a radial path “(s) = sz for s œ (0, 1] with
respect to Ê

t

is uniformly bounded from above by C|z|⁄, where C is a uniformly constant
and ⁄ as in Lemma 3.5.6.

Given (a) and (b), the Gromov-Hausdorff convergence follows exactly as in [SW13a,
Section 3]. This completes the proof of Theorem 3.5.7 and Conjecture 3.5.1.

3.6 Twisted Chern-Ricci flow
3.6.1 Maximal existence time for the twisted Chern-Ricci flow
Let (X, g) be a compact Hermitian manifold of complex dimension n. We define here the
twisted Chern-Ricci flow on X as

ˆÊ
t

ˆt
= ≠Ric(Ê

t

) + ÷, Ê|
t=0

= Ê
0

(3.6.1)

where ÷ is a smooth (1, 1)-form. Set Ê̂
t

= Ê
0

+ t÷ ≠ tRic(Ê
0

). We now define

T := sup{t Ø 0|÷Â œ CŒ(X) such that Ê̂
t

+ ddcÂ > 0}
= sup{T Õ Ø 0|’t œ [0, T Õ], ÷Â œ CŒ(X) such that Ê̂

t

+ ddcÂ > 0}.

We now prove the following theorem generalizing the same result due to Tosatti-
Weinkove [TW15, Theorem 1.2]. We remark that our ingredients for the proof come from
a priori estimates proved in Section 3.3 which are different from the approach of Tosatti
and Weinkove.

Theorem 3.6.1. There exists a unique maximal solution to the twisted Chern-Ricci flow
on [0, T ).



3.6. TWISTED CHERN-RICCI FLOW 87

Proof. Fix T Õ < T . We show that there exists a solution of (3.6.1) on [0, T Õ]. First we
prove that the twisted Chern-Ricci flow is equivalent to a Monge-Ampère flow. Indeed,
consider the following Monge-Ampère flow

ˆÏ

ˆt
= log (Ê̂

t

+ ddcÏ)n

Ên

0

. (3.6.2)

If Ï solves (3.6.2) on [0.T Õ] then taking Ê
t

:= Ê̂
t

+ ddcÏ, we get

ˆ

ˆt
(Ê

t

≠ Ê̂
t

) = ddc log Ên

t

Ên

0

,

hence
ˆ

ˆt
Ê

t

= ≠Ric(Ê
t

) + ÷.

Conversely, if Ê
t

solves (3.6.1) on [0, T Õ], then we get

ˆ

ˆt
(Ê

t

≠ Ê̂
t

) = ≠Ric(Ê
t

) + Ric(Ê
0

) = ddc log Ên

t

Ên

0

.

Therefore if Ï satisfies
ˆ

ˆt
(Ê

t

≠ Ê̂
t

≠ ddcÏ) = 0,

so Ê
t

= Ê̂
t

+ ddcÏ and Ï satisfies (3.6.2).
By the standard parabolic theory [Lie96], there exists a maximal solution of (3.6.2) on

some time interval [0, T
max

) with 0 < T
max

Æ Œ. We may assume without loss of generality
that T

max

< T Õ. We now show that a solution of (3.6.2) exists beyond T
max

. Indeed, the
a priori estimates for more general Monge-Ampère flows in Section 3.3 gives us uniform
estimates for Ï in [0, T

max

) (see Theorem 3.3.12), so we get a solution on [0, T
max

]. By the
short time existence theory the flow (3.6.2) can go beyond T

max

, this gives a contradiction.
So the twisted Chern-Ricci flow has a solution in [0, T ). Finally, the uniqueness of solution
follows from Theorem 3.4.1.

3.6.2 Twisted Einstein metric on Hermitian manifolds
We fix a smooth (1, 1)-form ÷. A solution of the equation

Ric(Ê) = µÊ + ÷ (3.6.3)

with µ = 1 or ≠1, is called a twisted Einstein metric. We recall

{÷} := {–|÷f œ CŒ(X) with – = ÷ + ddcf},

the equivalence class of ÷.
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In the sequel we study the convergence of the normalized twisted Chern-Ricci flow to
a twisted Einstein metric Ê = ‰ + ddcÏ œ ≠(cBC

1

≠ {÷}) assuming that cBC

1

≠ {÷} < 0 and
µ = ≠1. Note that if cBC

1

(X) < 0 (resp. cBC

1

(X) > 0) implies that X is a Kähler manifold
which admits a Kähler metric in ≠c

1

(X) (resp. in c
1

(X)). Therefore the positivity of the
twisted Bott-Chern class is somehow more natural in our context.

Assume the twisted first Bott-Chern class – := cBC

1

(X) ≠ {÷} is negative. We now use
a result in elliptic Monge-Ampère equation due to Cherrier [Che87] to prove the existence
of twisted Einstein metric. An alternative proof using the convergence of the twisted
Chern-Ricci flow will be given in Theorem 3.6.3.

Theorem 3.6.2. There exists a unique twisted Einstein metric in ≠– satisfying (3.6.3):

Ric(Ê) = ≠Ê + ÷. (3.6.4)

Proof. Let ‰ = ÷ ≠ Ric(�) be a Hermitian metric in –, then any Hermitian metric in –
can be written as Ê = ‰ + ddcÏ where Ï is smooth strictly and ‰-psh. Since

Ê ≠ ÷ = ‰ + ddcÏ ≠ ÷ = ≠Ric(�) ≠ ddcÏ,

we get
ddc log Ên

� = ≠Ric(Ê) + Ric(�) = ddcÏ.

Therefore the equation (3.6.4) can be written as the following Monge-Ampère equation

(‰ + ddcÏ)n = eÏ� (3.6.5)

It follows from [Che87] that (3.6.5) admits an unique smooth ‰-psh solution, therefore
there exists an unique twisted Einstein metric in ≠(cBC

1

(X) ≠ {÷}).

3.6.3 Convergence of the flow when cBC

1

(X) ≠ {÷} < 0
We defined the normalized twisted Chern-Ricci flow as follows

ˆ

ˆt
Ê

t

= ≠Ric(Ê
t

) ≠ Ê
t

+ ÷, (3.6.6)

We have (3.6.6) is equivalent to the following Monge-Ampère flow

ˆÏ

ˆt
= log (Ê̂n

t

+ ddcÏ)n

� ≠ Ï,

where Ê̂
t

= e≠t + (1 ≠ e≠t) (÷ ≠ Ric(�)) and � is a fixed smooth volume form on X. Since
we assume cBC

1

(X)≠{÷} is negative, the flow (3.6.6) has a longtime solution. The longtime
behavior of (3.6.6) is as follows
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Theorem 3.6.3. Suppose c
1

(X) ≠ {÷} < 0. Then the normalized twisted Chern-Ricci flow
starting from any initial Hermitian metric Ê

0

smoothly converges, as t æ +Œ, to a twisted
Einstein Hermitian metric ÊŒ = ÷ ≠ Ric(�) + ddcÏŒ which satisfies

Ric(ÊŒ) = ÷ ≠ ÊŒ.

Proof. We now derive the uniform estimates for the solution Ï of the following Monge-
Ampère

ˆÏ

ˆt
= log (Ê̂

t

+ ddcÏ)n

� ≠ Ï, Ï|
t=0

= 0,

where Ê̂
t

:= e≠tÊ
0

+ (1 ≠ e≠t)‰, and ‰ = ÷ ≠ Ric(�) > 0.

The C0-estimates for Ï and Ï̇ follow from the same arguments as in [Cao85, TZ06,
Tsu88] for Kähler-Ricci flow (see [TW15] for the same estimates for the Chern-Ricci flow).
Moreover, since

3
ˆ

ˆt
≠ �

Êt

4
(Ï + Ï̇ + nt) = tr

Êt ‰.

and 3
ˆ

ˆt
≠ �

Êt

4
(etÏ̇) = ≠ tr

Êt(Ê0

≠ ‰)

therefore 3
ˆ

ˆt
≠ �

Êt

4
((et ≠ 1)Ï̇ ≠ Ï ≠ nt) = ≠ tr

Êt Ê
0

< 0.

The maximum principle follows that (et ≠ 1)Ï̇ ≠ Ï ≠ nt Æ C, hence

Ï̇ Æ Cte≠t. (3.6.7)

For the second order estimate, we follow the method of Tosatti and Weinkove [TW15,
Lemma 4.1 (iii)] in which they have used a technical trick due to Phong and Sturn [PS10].

Lemma 3.6.4. There exists uniform constant C > 1 such that

log tr
Ê̂

(Ê
t

) Æ C.

Proof. Since Ï is uniformly bounded, we can choose C
0

such that Ï + C
0

Ø 1. Set

P = log tr
Ê̂

Ê
t

≠ AÏ + 1
Ï + C

0

,

where A > 0 will be chosen hereafter. The idea of adding the third term in P is due to
Phong-Sturn [PS10] and was used in the context of Chern-Ricci flow (cf. [TW15], [TW13],
[TWY15]).
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Assume without loss of generality that tr
Ê̂

Ê
t

Ø 1 at a maximum point (t
0

, x
0

) with
t
0

> 0 of P . It follows from the same calculation in Lemma 3.5.5 that at (t
0

, x
0

), we have
3

ˆ

ˆt
≠ �

Êt

4
log tr

Ê̂

Ê
t

Æ 2
(tr

Ê̂

Ê
t

)2

Re(ĝi

¯

lgkq̄T̂
ki

¯

l

ˆ
q̄

tr
Ê̂

Ê
t

) + C tr
Êt Ê̂ + tr

Ê̂

÷

tr
Ê̂

Ê
t

Æ 2
(tr

Ê̂

Ê
t

)2

Re(ĝi

¯

lgkq̄T̂
ki

¯

l

ˆ
q̄

tr
Ê̂

Ê
t

) + C tr
Êt Ê̂ + C

1

,

where C
1

> 0 satisfies ÷ Æ C
1

Ê̂.
Now at a maximum point (t

0

, x
0

) with t
0

> 0 we have ÒP = 0, hence
1

tr
Ê̂

Ê
t

¯̂

i

tr
Ê̂

Ê
t

≠ AÏ
¯

i

≠ Ï
¯

i

(Ï + C
0

)2

= 0.

Therefore
----

2
(tr

Ê̂

Ê
t

)2

Re(ĝi

¯

lgkq̄T̂
ki

¯

l

ˆ
q̄

tr
Ê̂

Ê
t

)
----

=
----

2
(tr

Ê̂

Ê
t

)2

Re
3

(A + 1
(Ï + C

0

)2

)ĝi

¯

lgkq̄T̂
ki

¯

l

Ï
q̄

4----

Æ CA2

(tr
Ê̂

Ê
t

)2

(Ï + C
0

)3gkq̄ ĝi

¯

lT̂
ki

¯

l

ĝm

¯

jT̂
qjm̄

+
|ˆÏ|2

g

(Ï + C
0

)3

Æ CA2 tr
Êt Ê̂

(tr
Ê̂

Ê
t

)2

(Ï + C
0

)3 +
|ˆÏ|2

g

(Ï + C
0

)3

.

Moreover, we have
3

ˆ

ˆt
≠ �

Êt

4
(≠AÏ + 1

Ï + C
0

) = ≠AÏ̇ + A�
ÊtÏ ≠ Ï̇

(Ï + C
0

)2

+ �
ÊtÏ

(Ï + C
0

)2

≠ 2|ˆÏ|2
g

(Ï + C
0

)3

= ≠
3

A + 1
(Ï + C

0

)2

4
Ï̇ ≠ 2|ˆÏ|2

g

(Ï + C
0

)3

+
3

A + 1
(Ï + C

0

)2

4
(n ≠ tr

Êt Ê̂).

Combining these inequalities, at (t
0

, z
0

) we have

0 Æ
3

ˆ

ˆt
≠ �

Êt

4
P Æ CA2 tr

Êt Ê̂

(tr
Ê̂

Ê
t

)2

+ C tr
Êt Ê̂ ≠ (A + 1

(Ï + C
0

)2

)Ï̇ + C
1

+
3

A + 1
(Ï + C

0

)2

4
(n ≠ tr

Êt Ê̂) ≠ |ˆÏ|2
g

(Ï + C
0

)3

Æ CA2 tr
Êt Ê̂

(tr
Ê̂

Ê
t

)2

(Ï + C
0

)3 ≠ C
2

+ (C ≠ A) tr
Êt Ê̂.
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We can choose A sufficiently large such that at the maximum of P either tr
Ê̂

Ê
t

Æ A2(Ï +
C

0

)3, then we are done, or tr
Ê̂

Ê
t

Ø A2(Ï + C
0

)3, and A Ø 2C. For the second case, we
obtain at the maximum of P , there exists a uniform constant C

3

> 0 so that

tr
Êt Ê̂ Æ C

3

,

Hence combining with the following inequality (see Lemma 2.2.3)

tr
Ê̂

Ê
t

Æ n(tr
Êt Ê̂)n≠1

Ên

t

Ê̂n

,

we have
tr

Ê̂

Ê
t

Æ n(tr
Êt Ê̂)n≠1

Ên

t

Ê̂n

Æ C
4

.

This implies that P is bounded from above at its maximum, so we complete the proof of
the lemma.

It follows from Lemma 3.6.4 that Ê
t

is uniformly equivalent to Ê̂ independent of t,
hence 3

ˆ

ˆt
≠ �

Êt

4
(etÏ̇) = ≠ tr

Êt(Ê0

) + tr
Êt ‰ Ø ≠C,

hence Ï̇ Ø ≠C(1 + t)e≠t by the maximum principle. Combining with (3.6.7), we infer that
Ï converges uniformly exponentially fast to a continuous function ÏŒ. Moreover, by the
same argument in Section 3.3, Evans-Krylov and Schauder estimates give us the uniform
higher order estimates for Ï. Therefore ÏŒ is smooth and Ï

t

converges to ÏŒ in CŒ.

Finally, we get the limiting metric ÊŒ = ÷≠Ric(�)+ddcÏŒ which satisfies the twisted
Einstein equation

Ric(ÊŒ) = ≠ÊŒ + ÷.

This proves the existence of a twisted Einstein metric in ≠cBC

1

(X) + {÷}.

As an application, we prove the existence of a unique solution of the Monge-Ampère
equation on Hermitian manifolds. This result was first proved by Cherrier [Che87, Théorème
1, p. 373].

Theorem 3.6.5. Let (X, Ê) be a Hermitian manifold, � be a smooth volume form on X.
Then there exists a unique smooth Ê-psh fucntion Ï satisfying

(Ê + ddcÏ)n = eÏ�.

Proof. Set ÷ = Ê +Ric(�), then we have cBC

1

(X)≠{÷} < 0. It follows from Theorem 3.6.3
that the twisted normalized Chern-Ricci flow

ˆ

ˆt
Ê

t

= ≠Ric(Ê
t

) ≠ Ê
t

+ ÷
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admits unique solution which smoothly converges to a twisted Einstein Hermitian metric
ÊŒ = ÷ ≠ Ric(�) + ddcÏŒ = Ê + ddcÏŒ which satisfies Ric(ÊŒ) = ≠ÊŒ + ÷ = Ric(�) ≠
ddcÏŒ. Therefore ÏŒ is a solution of the Monge-Ampère equation

(Ê + ddcÏ)n = eÏ�.

The uniqueness of solution follows from the comparison principle.



Chapter 4

Fully non-linear parabolic
equations on compact Hermitian
manifolds

A notion of parabolic C-subsolutions is introduced for parabolic equations, extending the
theory of C-subsolutions recently developed by B. Guan and more specifically G. Széke-
lyhidi for elliptic equations. The resulting parabolic theory provides a convenient unified
approach for the study of many geometric flows.

The results of this chapter are joint work with Duong H. Phong [PT17].

4.1 Introduction

Subsolutions play an important role in the theory of partial differential equations. Their
existence can be viewed as an indication of the absence of any global obstruction. Perhaps
more importantly, it can imply crucial a priori estimates, as for example in the Dirichlet
problem for the complex Monge-Ampère equation [Spr05, Gua94]. However, for compact
manifolds without boundary, it is necessary to extend the notion of subsolution, since
the standard notion may be excluded by either the maximum principle or cohomological
constraints. Very recently, more flexible and compelling notions of subsolutions have been
proposed by Guan [Gua14] and Székelyhidi [Sze15]. In particular, they show that their
notions, called C-subsolution in [Sze15], do imply the existence of solutions and estimates
for a wide variety of fully non-linear elliptic equations on Hermitian manifolds. It is natural
to consider also the parabolic case. This was done by Guan, Shi, and Sui in [GSS15] for
the usual notion of subsolution and for the Dirichlet problem. We now carry this out for
the more general notion of C-subsolution on compact Hermitian manifolds, adapting the
methods of [Gua14] and especially [Sze15]. As we shall see, the resulting parabolic theory

93
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provides a convenient unified approach to the many parabolic equations which have been
studied in the literature.

Let (X, –) be a compact Hermitian manifold of dimension n, – = i –
¯

kj

dzj · dz̄k > 0,
and ‰(z) be a real (1, 1)- form,

‰ = i ‰
¯

kj

(z)dzj · dz̄k.

If u œ C2(X), let A[u] be the matrix with entries A[u]k
j

= –km̄(‰
m̄j

+ˆ
j

ˆ
m̄

u). We consider
the fully nonlinear parabolic equation,

ˆ
t

u = F (A[u]) ≠ Â(z), (4.1.1)

where F (A) is a smooth symmetric function F (A) = f(⁄[u]) of the eigenvalues ⁄
j

[u],
1 Æ j Æ n of A[u], defined on a open symmetric, convex cone � µ Rn with vertex at the
origin and containing the positive orthant �

n

. We shall assume throughout the paper that
f satisfies the following conditions:

(1) f
i

> 0 for all i, and f is concave.
(2) f(⁄) æ ≠Œ as ⁄ æ ˆ�
(3) For any ‡ < sup

�

f and ⁄ œ �, we have lim
tæŒ f(t⁄) > ‡.

We shall say that a C2 function u on X is admissible if the vector of eigenvalues of
the corresponding matrix A is in � for any z œ X. Fix T œ (0, Œ]. To alleviate the
terminology, we shall also designate by the same adjective functions in C2,1(X ◊ [0, T ))
which are admissible for each fixed t œ [0, T ). The following notion of subsolution is an
adaptation to the parabolic case of Székelyhidi’s [Sze15] notion in the elliptic case:

Definition 4.1.1. An admissible function u œ C2,1(X ◊ [0, T )) is said to be a (parabolic)
C-subsolution of (4.1.1), if there exist constants ”, K > 0, so that for any (z, t) œ X ◊[0, T ),
the condition

f(⁄[u(z, t)] + µ) ≠ ˆ
t

u + · = Â(z), µ + ”I œ �
n

, · > ≠” (4.1.2)

implies that |µ|+|· | < K. Here I denotes the vector (1, · · · , 1) of eigenvalues of the identity
matrix.

We shall see below (§4.1) that this notion is more general than the classical notion
defined by f(⁄([u])) ≠ ˆ

t

u(z, t) > Â(z, t) and studied by Guan-Shi-Sui [GSS15]. A C-
subsolution in the sense of Székelyhidi of the equation F (A[u]) ≠ Â = 0 can be viewed as
a parabolic C-subsolution of the equation (4.1.1) which is time-independent. But more
generally, to solve the equation F (A[u]) ≠ Â = 0 by say the method of continuity, we
must choose a time-dependent deformation of this equation, and we would need then a
C-subsolution for each time. The heat equation (4.1.1) and the above notion of parabolic
subsolution can be viewed as a canonical choice of deformation.
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To discuss our results, we need a finer classification of non-linear partial differential
operators due to Trudinger [Tru95]. Let �Œ be the projection of �

n

onto Rn≠1,

�Œ = {⁄Õ = (⁄
1

, · · · , ⁄
n≠1

); ⁄ = (⁄
1

, · · · , ⁄
n

) œ � for some ⁄
n

} (4.1.3)

and define the function fŒ on �Œ by

fŒ(⁄Õ) = lim
⁄næŒf(⁄Õ, ⁄

n

). (4.1.4)

It is shown in [Tru95] that, as a consequence of the concavity of f , the limit is either
finite for all ⁄Õ œ �Œ or infinite for all ⁄Õ œ �Œ. We shall refer to the first case as the
bounded case, and to the second case as the unbounded case. For example, Monge-Ampère
flows belong to the unbounded case, while the J-flow and Hessian quotient flows belong to
the bounded case. In the unbounded case, any admissible function, and in particular 0 if
⁄[‰] œ �, is a C-subsolution in both the elliptic and parabolic cases. We have then:

Theorem 4.1.2. Consider the flow (4.1.1), and assume that f is in the unbounded case.
Then for any admissible initial data u

0

, the flow admits a smooth solution u(z, t) on [0, Œ),
and its normalization ũ defined by

ũ := u ≠ 1
V

⁄

X

u –n, V =
⁄

X

–n, (4.1.5)

converges in CŒ to a function ũŒ satisfying the following equation for some constant c,

F (A[ũŒ]) = Â(z) + c. (4.1.6)

The situation is more complicated when f belongs to the bounded case:

Theorem 4.1.3. Consider the flow (4.1.1), and assume that it admits a subsolution u on
X ◊[0, Œ), but that f is in the bounded case. Then for any admissible data u

0

, the equation
admits a smooth solution u(z, t) on (0, Œ). Let ũ be the normalization of the solution u,
defined as before by (4.1.5). Assume that either one of the following two conditions holds.

(a) The initial data and the subsolution satisfy

ˆ
t

u Ø sup
X

(F (A[u
0

]) ≠ Â); (4.1.7)

(b) or there exists a function h(t) with hÕ(t) Æ 0 so that

sup
X

(u(t) ≠ h(t) ≠ u(t)) Ø 0 (4.1.8)

and the Harnack inequality

sup
X

(u(t) ≠ h(t)) Æ ≠C
1

inf
X

(u(t) ≠ h(t)) + C
2

(4.1.9)

holds for some constants C
1

, C
2

> 0 independent of time.
Then ũ converges in CŒ to a function ũŒ satisfying (4.1.6) for some constant c.
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The essence of the above theorems resides in the a priori estimates which are established
in §2. The C1 and C2 estimates can be adapted from the corresponding estimates for C-
subsolutions in the elliptic case, but the C0 estimate turns out to be more subtle. Following
Blocki [Blo05b] and Székelyhidi [Sze15], we obtain C0 estimates from the Alexandrov-
Bakelman-Pucci (ABP) inequality, using this time a parabolic version of ABP due to K.
Tso [Tso85]. However, it turns out that the existence of a C-subsolution gives only partial
information on the oscillation of u, and what can actually be estimated has to be formulated
with some care, leading to the distinction between the cases of f bounded and unbounded,
as well as Theorem 4.1.3.

The conditions (a) and especially (b) in Theorem 2 may seem impractical at first
sight since they involve the initial data as well as the long-time behavior of the solution.
Nevertheless, as we shall discuss in greater detail in section §4, Theorems 1 and 2 can be
successfully applied to a wide range of parabolic flows on Hermitian manifolds previously
studied in the literature, including the Kähler-Ricci flow, the Chern-Ricci flow, the J-flow,
the Hessian flows, the quotient Hessian flows, and mixed Hessian flows. We illustrate this
by deriving in §4 as a corollary of Theorem 2 a convergence theorem for a mixed Hessian
flow, which seems new to the best of our knowledge. It answers a question raised for general
1 Æ ¸ < k Æ n by Fang-Lai-Ma [FLM11] (see also Sun [Sun15a, Sun17a, Sun15b, Sun15c]),
and extends the solution obtained for k = n by Collins-Székelyhidi [CS17] and subsequently
also by Sun [Sun15c, Sun17c]:

Theorem 4.1.4. Assume that (X, –) is a compact Kähler n-manifold, and fix 1 Æ ¸ < k Æ
n. Fix a closed (1, 1)-form ‰ which is k-positive and non-negative constants c

j

, and assume
that there exists a form ‰Õ = ‰ + iˆ ¯̂u which is a closed k-positive form and satisfies

kc(‰Õ)k≠1 · –n≠k ≠
¸ÿ

j=1

jc
j

(‰Õ)j≠1 · –n≠j > 0, (4.1.10)

in the sense of positivity of (n ≠ 1, n ≠ 1)-forms. Here the constant c is given by

c[‰k][–n≠k] =
¸ÿ

j=1

c
j

[‰j ][–n≠j ]. (4.1.11)

Then the flow

ˆ
t

u = ≠
q

¸

j=1

c
j

‡
j

(⁄(A[u]))
‡

k

(⁄(A[u])) + c, u(·, 0) = 0, (4.1.12)

admits a solution for all time which converges smoothly to a function uŒ as t æ Œ. The
form Ê = ‰ + iˆ ¯̂uŒ is k-positive and satisfies the equation

c Êk · –n≠k =
¸ÿ

j=1

c
j

Êj · –n≠j . (4.1.13)
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Regarding the condition (a) in Theorem 2, we note that natural geometric flows whose
long-time behavior may be very sensitive to the initial data are appearing increasingly
frequently in non-Kähler geometry. A prime example is the Anomaly flow, studied in
[PPZ17a, PPZ16b, PPZ16c, PPZ17b, FHP17]. Finally, Theorem 4.1.3 will also be seen to
imply as a corollary a theorem of Székelyhidi ([Sze15], Proposition 26), and the condition
for solvability there will be seen to correspond to condition (a) in Theorem 4.1.3. This
suggests in particular that some additional conditions for the convergence of the flow
cannot be dispensed with altogether.

4.2 A Priori Estimates
4.2.1 C0 Estimates
We begin with the C0 estimates implied by the existence of a C-subsolution for the
parabolic flow (4.1.1). One of the key results of [Sze15] was that the existence of a subsolu-
tion in the elliptic case implies a uniform bound for the oscillation of the unknown function
u. In the parabolic case, we have only the following weaker estimate:

Lemma 4.2.1. Assume that the equation (4.1.1) admits a parabolic C-solution on X◊[0, T )
in the sense of Definition 4.1.1, and that there exists a C1 function h(t) with hÕ(t) Æ 0 and

sup
X

(u(·, t) ≠ u(·, t) ≠ h(t)) Ø 0. (4.2.1)

Then there exists a constant C depending only on ‰, –, ”, Îu
0

Î
C

0, and Îiˆ ¯̂uÎ
L

Œ so that

u(·, t) ≠ u(·, t) ≠ h(t) Ø ≠C for all (z, t) œ X ◊ [0, T ). (4.2.2)

Proof. First, note that by Lemma 4.3.1 proven later in Section 4.3, the function ˆ
t

u is
uniformly bounded for all time by a constant depending only on Â and the initial data u

0

.
Integrating this estimate on [0, ”] gives a bound for |u| on X ◊ [0, ”] depending only on Â,
u

0

and ”. Thus we need only consider the range t Ø ”. Next, the fact that u is a parabolic
subsolution and the condition that hÕ(t) Æ 0 imply that u + h(t) is a parabolic subsolution
as well. So it suffices to prove the desired inequality with h(t) = 0, as long as the constants
involved do not depend on ˆ

t

u. Fix now any T Õ < T , and set for each t, v = u ≠ u, and

L = min
X◊[0,T

Õ
]

v = v(z
0

, t
0

) (4.2.3)

for some (z
0

, t
0

) œ X ◊ [0, T Õ]. We shall show that L can be bounded from below by a
constant depending only on the initial data u

0

and independent of T Õ. We can assume that
t
0

> 0, otherwise we are already done. Let (z
1

, · · · , z
n

) be local holomorphic coordinates
for X centered at z

0

, U = {z; |z| < 1}, and define the following function on the set
U = U ◊ {t; ≠” Æ 2(t ≠ t

0

) < ”},

w = v + ”2

4 |z|2 + |t ≠ t
0

|2, (4.2.4)
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where ” > 0 is the constant appearing in the definition of subsolutions. Clearly w attains its
minimum on U at (z

0

, t
0

), and w Ø minUw + 1

4

”2 on the parabolic boundary of U . We can
thus apply the following parabolic version of the Alexandrov-Bakelman-Pucci inequality,
due to K. Tso ([Tso85], Proposition 2.1, with the function u there set to u = ≠w+minUw+
”

2
4

):
Let U be the subset of R2n+1 defined above, and let w : U æ R be a smooth function

which attains its minimum at (0, t
0

), and w Ø minUw + 1

4

”2 on the parabolic boundary of
U . Define the set

S :=
I

(x, t) œ U : w(x, t) Æ w(z
0

, t
0

) + 1

4

”2, |D
x

w(x, t)| < ”

2
8

, and
w(y, s) Ø w(x, t) + D

x

w(x, t).(y ≠ x), ’y œ U, s Æ t

J

. (4.2.5)

Then there is a constant C = C(n) > 0 so that

C”4n+2 Æ
⁄

S

(≠w
t

) det(w
ij

)dxdt.

Returning to the proof of Lemma 4.2.1, we claim that, on the set S, we have

|w
t

| + det (D2

jk

w) Æ C (4.2.6)

for some constant depending only on ”, and Îiˆ ¯̂uÎ
L

Œ . Indeed, let

µ = ⁄[u] ≠ ⁄[u], · = ≠ˆ
t

u + ˆ
t

u. (4.2.7)

Along S, we have D2

ij

w Ø 0 and ˆ
t

w Æ 0. In terms of µ and · , this means that µ + ”I œ �
n

and 0 Æ ≠ˆ
t

w = · ≠ 2(t ≠ t
0

) Æ · + ”. The fact that u is a solution of the equation (4.1.1)
can be expressed as

f(⁄[u] + µ) ≠ ˆ
t

u + · = Â(z). (4.2.8)

Thus the condition that u is a parabolic subsolution implies that |µ| and |· | are bounded
uniformly in (z, t). Since along S, we have det(D2

ij

w) Æ 2n(det(D2

¯

kj

w))2, it follows that
both |w

t

| and det(D2

ij

w) are bounded uniformly, as was to be shown.
Next, by the definition of the points (x, t) on S, we have w(x, t) Æ L + ”

2
4

. Since we
can assume that |L| > ”2, it follows that w < 0 and |w| Ø |L|

2

on S. Thus we can write, in
view of (4.2.6), for any p > 0,

C
n

”4n+2 Æ C
⁄

S

dxdt Æ
3 |L|

2

4≠p

⁄

S

|w(x, t)|pdxdt Æ
3 |L|

2

4≠p

⁄

U
|w(x, t)|pdxdt. (4.2.9)

Next write

|w| = ≠w = ≠v ≠ ”2

4 |z|2 ≠ (t ≠ t
0

)2 Æ ≠v

Æ ≠v + sup
X

v (4.2.10)
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since sup
X

v Ø 0 by the assumption (4.2.1). Since ⁄[u] œ � and the cone � is convex, it
follows that �u Ø ≠C and hence

�(v ≠ sup
X

v) = �u ≠ �u Ø ≠A (4.2.11)

for some constant A depending only on ‰, –, and Îiˆ ¯̂uÎ
L

Œ . The Harnack inequality
applied to the function v ≠ sup

X

v, in the version provided by Proposition 10, [Sze15],
implies that

Îv ≠ sup
X

vÎ
L

p
(X)

Æ C (4.2.12)

for C depending only on (X, –), A, and p. Substituting these bounds into (4.2.9) gives

C”4n+2 Æ
3 |L|

2

4≠p

⁄

|t|< 1
2 ”

Îsup
X

v ≠ vÎp

L

p
(X)

dt Æ C Õ”
3 |L|

2

4≠p

(4.2.13)

from which the desired bound for L follows. Q.E.D.

4.2.2 C2 Estimates
In this section we prove an estimate for the complex Hessian of u in terms of the gradi-
ent. The original strategy goes back to the work of Chou-Wang [CW01], with adaptation
to complex Hessian equations by Hou-Ma-Wu [HMW10], and to fully non-linear elliptic
equations admitting a C-subsolution by Guan [Gua14] and Székelyhidi [Sze15]. Other
adaptations to C2 estimates can be found in [STW15], [PPZ15], [PPZ16a], [Zhe16]. We
follow closely [Sze15].

Lemma 4.2.2. Assume that the flow (4.1.1) admits a C-subsolution on X ◊ [0, T ). Then
we have the following estimate

|iˆ ¯̂u| Æ C̃(1 + sup
X◊[0,T )

|Òu|2
–

) (4.2.14)

where C̃ depends only on Î–Î
C

2 , ÎÂÎ
C

2 , Î‰Î
C

2 , Îũ ≠ ũÎ
L

Œ , ÎÒuÎ
L

Œ , Îiˆ ¯̂uÎ
L

Œ , Îˆ
t

uÎ
L

Œ,
Îˆ

t

(u ≠ u)Î
L

Œ, and the dimension n.

Proof. Let L = ≠ˆ
t

+ F k

¯

kÒ
k

Ò
¯

k

. Denote g = ‰ + iˆ ¯̂u, then A[u]k
j

= –kp̄g
p̄j

. We would
like to apply the maximum principle to the function

G = log ⁄
1

+ „(|Òu|2) + Ï(ṽ) (4.2.15)

where v = u ≠ u, ṽ is the normalization of v, ⁄
1

: X æ R is the largest eigenvalue of the
matrix A[u] at each point, and the functions „ and Ï will be specified below. Since the
eigenvalues of A[u] may not be distinct, we perturb A[u] following the technique of [Sze15],
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Proposition 13. Thus assume that G attains its maximum on X ◊ [0, T Õ] at some (z
0

, t
0

),
with t

0

> 0. We choose local complex coordinates, so that z
0

corresponds to 0, and A[u]
is diagonal at 0 with eigenvalues ⁄

1

Ø · · · Ø ⁄
n

. Let B = (Bi

j

) be a diagonal matrix with
0 = B1

1

< B2

2

< · · · < Bn

n

and small constant entries, and set Ã = A ≠ B. Then at the
origin Ã has eigenvalues ⁄̃

1

= ⁄
1

, ⁄̃
i

= ⁄
i

≠ Bi

i

< ⁄̃
1

for all i > 1.
Since all the eigenvalues of Ã are distinct, we can define near 0 the following smooth

function G̃,

G̃ = log ⁄̃
1

+ „(|Òu|2) + Ï(ṽ) (4.2.16)

where

„(t) = ≠1
2 log(1 ≠ t

2P
), P = sup

X◊[0,T

Õ
]

(|Òu|2 + 1) (4.2.17)

and, following [STW15]

Ï(t) = D
1

e≠D2t (4.2.18)

for some large constants D
1

, D
2

to be chosen later. Note that

1
4P

Æ „Õ Æ 1
2P

, „ÕÕ = 2(„Õ)2 > 0. (4.2.19)

The norm |Òu|2 is taken with respect to the fixed Hermitian metric – on X, and we
shall compute using covariant derivatives Ò with respect to –. Since the matrix Bj

m

is
constant in a neighborhood of 0 and since we are using the Chern unitary connection, we
have Ò

¯

k

Bj

m

= 0. Our conventions for the curvature and torsion tensors of a Hermitian
metric – are as follows,

[Ò
—

, Ò
–

]V “ = R
–—

“

”

V ” + T ”

–—

Ò
”

V “ . (4.2.20)

We also set

F =
ÿ

i

f
i

(⁄[u]). (4.2.21)

An important observation is that there exists a constant C
1

, depending only on ÎÂÎ
L

Œ
(X)

and Îˆ
t

uÎ
L

Œ
(X◊[0,T ))

so that

F Ø C
1

. (4.2.22)

Indeed it follows from the properties of the cone � that
q

i

f
i

(⁄) Ø C(‡) for each fixed ‡
and ⁄ œ �‡. When ⁄ = ⁄[u], ‡ must lie in the range of ˆ

t

u + Â, which is a compact set
bounded by Îˆ

t

uÎ
L

Œ
(X◊[0,T ))

+ ÎÂÎ
L

Œ
(X)

, hence our claim.
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Estimate of L(log ⁄̃
1

)

Clearly

L log ⁄̃
1

= 1
⁄

1

(F k

¯

k⁄̃
1,

¯

kk

≠ ˆ
t

⁄̃
1

) ≠ F k

¯

k

|⁄̃
1,

¯

k

|2
⁄2

1

. (4.2.23)

We work out the term F k

¯

k⁄̃
1,

¯

kk

≠ ˆ
t

⁄̃
1

using the flow. The usual differentiation rules
([Spr05]) readily give

⁄̃
1,

¯

k

= Ò
¯

k

g
¯

11

(4.2.24)

and

⁄̃
1,

¯

kk

= Ò
k

Ò
¯

k

g
¯

11

+
ÿ

p>1

|Ò
¯

k

g
p̄1

|2 + |Ò
¯

k

g
¯

1p

|2
⁄

1

≠ ⁄̃
p

≠
ÿ

p>1

Ò
k

B1

p

Ò
¯

k

g
p̄1

+ Ò
k

Bp

1

Ò
¯

k

g
¯

1p

⁄
1

≠ ⁄̃
p

.(4.2.25)

while it follows from the flow that

ˆ
t

⁄̃
1

= ˆ
t

u
¯

11

= F l

¯

k,sr̄Ò
¯

1

g
¯

kl

Ò
1

g
r̄s

+ F k

¯

kÒ
1

Ò
¯

1

g
¯

kk

≠ Â
¯

11

. (4.2.26)

Thus

F k

¯

k⁄̃
1,

¯

kk

≠ ˆ
t

⁄̃
1

= F k

¯

k(Ò
k

Ò
¯

k

g
¯

11

≠ Ò
1

Ò
¯

1

g
¯

kk

) + F l

¯

k,sr̄Ò
¯

1

g
¯

kl

Ò
1

g
r̄s

≠ Â
¯

11

+F k

¯

k

ÿ

p>1

) |Ò
¯

k

g
p̄1

|2 + |Ò
¯

k

g
¯

1p

|2
⁄

1

≠ ⁄̃
p

≠ Ò
k

B1

p

Ò
¯

k

g
p̄1

+ Ò
k

Bp

1

Ò
¯

k

g
¯

1p

⁄
1

≠ ⁄̃
p

*

A simple computation gives

Ò
k

Ò
¯

k

g
¯

11

≠ Ò
1

Ò
¯

1

g
¯

kk

= ≠2Ÿ(T p

k1

Ò
¯

k

g
p̄1

) + T ı Ò‰ + R ı ÒÒ̄u + T ı T ı ÒÒ̄u

Ø ≠2Ÿ(T p

k1

Ò
¯

k

g
p̄1

) ≠ C
2

(⁄
1

+ 1), (4.2.27)

where C
2

depending only on Î–Î
C

2 and Î‰Î
C

2 . We also have

ÿ

p>1

) |Ò
¯

k

g
p̄1

|2 + |Ò
¯

k

g
¯

1p

|2
⁄

1

≠ ⁄̃
p

≠ Ò
k

B1

p

Ò
¯

k

g
p̄1

+ Ò
k

Bp

1

Ò
¯

k

g
¯

1p

⁄
1

≠ ⁄̃
p

*
(4.2.28)

Ø 1
2

ÿ

p>1

|Ò
¯

k

g
p̄1

|2 + |Ò
¯

k

g
¯

1p

|2
⁄

1

≠ ⁄̃
p

≠ C
3

Ø 1
2(n⁄

1

+ 1)
ÿ

p>1

|Ò
¯

k

g
p̄1

|2 + |Ò
¯

k

g
¯

1p

|2 ≠ C
3

,
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where C
3

only depends on the dimension n, and the second inequality is due to the fact
that (⁄

1

≠ ⁄̃
p

)≠1 Ø (n⁄
1

+ 1)≠1, which follows itself from the fact that
q

i

⁄
i

Ø 0 and B
was chosen to be small. Thus

Ò
k

Ò
¯

k

g
¯

11

≠ Ò
1

Ò
¯

1

g
¯

kk

+
ÿ

p>1

) |Ò
¯

k

g
p̄1

|2 + |Ò
¯

k

g
¯

1p

|2
⁄

1

≠ ⁄̃
p

≠ Ò
k

B1

p

Ò
¯

k

g
p̄1

+ Ò
k

Bp

1

Ò
¯

k

g
¯

1p

⁄
1

≠ ⁄̃
p

*

Ø ≠2Ÿ(T p

k1

Ò
¯

k

g
p̄1

) + 1
2(n⁄

1

+ 1)
ÿ

p>1

|Ò
¯

k

g
p̄1

|2 + |Ò
¯

k

g
¯

1p

|2 ≠ C
2

(⁄
1

+ 1) ≠ C
3

Ø ≠C
4

|Ò
¯

k

g
¯

11

| ≠ C
5

⁄
1

≠ C
6

(4.2.29)

where we have used the positive terms to absorb all the terms T p

k1

Ò
¯

k

g
p̄1

, except for T 1

k1

Ò
¯

k

g
¯

11

and C
4

, C
5

, C
6

only depend on Î–Î
C

2 , Î‰Î
C

2 , n. Altogether,

F k

¯

k⁄̃
1,

¯

kk

≠ ˆ
t

⁄̃
1

Ø ≠C
4

F k

¯

k|Ò
¯

k

g
¯

11

| + F l

¯

k,sr̄Ò
¯

1

g
¯

kl

Ò
1

g
r̄s

≠ Â
¯

11

≠ C
5

F⁄
1

≠ C
6

F (4.2.30)

and we find

L log ⁄̃
1

Ø ≠F k

¯

k

|⁄̃
1,

¯

k

|2
⁄2

1

≠ 1
⁄

1

F l

¯

k,sr̄Ò
¯

1

g
¯

kl

Ò
1

g
r̄s

≠ C
4

1
⁄

1

F k

¯

k|Ò
¯

k

g
¯

11

| ≠ C
7

F ,(4.2.31)

where we have bounded Â
¯

11

by a constant that can be absorbed in C
6

F/⁄
1

Æ C
6

F , since
⁄

1

Ø 1 by assumption, and F is bounded below by a constant depending on ÎÂÎ
L

Œ and
Îˆ

t

uÎ
L

Œ . The constant C
7

thus only depends on Î–Î
C

2 , Î‰Î
C

2 , n, Îˆ
t

uÎ
L

Œ and ÎÂÎ
C

2 . In
view of (4.2.24), this can also be rewritten as

L log ⁄̃
1

Ø ≠F k

¯

k

|⁄̃
1,

¯

k

|2
⁄2

1

≠ 1
⁄

1

F l

¯

k,sr̄Ò
¯

1

g
¯

kl

Ò
1

g
r̄s

≠ C
4

1
⁄

1

F k

¯

k|⁄̃
1,

¯

k

| ≠ C
7

F . (4.2.32)

Estimate for L„(|Òu|2)

Next, a direct calculation gives

L„(|Òu|2) = „Õ(F qq̄Ò
q

Ò
q̄

≠ ˆ
t

)|Òu|2 + „ÕÕF qq̄Ò
q

|Òu|2Ò
q̄

|Òu|2
= „Õ)Òju(F qq̄Ò

q

Ò
q̄

≠ ˆ
t

)Ò
j

u + Ò¯

ju(F qq̄Ò
q

Ò
q̄

≠ ˆ
t

)Ò
¯

j

u
*

+„ÕF qq̄(|Ò
q

Òu|2 + |Ò
q

Ò̄u|2) + „ÕÕF qq̄Ò
q

|Òu|2Ò
q̄

|Òu|2. (4.2.33)

In view of the flow, we have

Ò
j

ˆ
t

u = F k

¯

kÒ
j

g
¯

kk

≠ Â
j

, Ò
¯

j

ˆ
t

u = F k

¯

kÒ
¯

j

g
¯

kk

≠ Â
¯

j

. (4.2.34)

It follows that

(F k

¯

kÒ
k

Ò
¯

k

≠ ˆ
t

)Ò
¯

j

u = F k

¯

k(Ò
k

Ò
¯

k

u
¯

j

≠ Ò
¯

j

g
¯

kk

) + Â
¯

j

= F k

¯

k(≠Ò
¯

j

‰
¯

kk

+ T p

kj

Ò
¯

j

Ò
k

u + R
¯

jk

m̄

¯

k

Ò
m̄

u) + Â
¯

j

(4.2.35)
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and hence, for small Á, there is a constant C
8

> 0 depending only on Á, Î‰Î
C

2 , Î–Î
C

2 and
||ÂÎ

C

2 such that

„ÕÒ¯

ju(F qq̄Ò
q

Ò
q̄

≠ ˆ
t

)Ò
¯

j

u Ø ≠C
8

F ≠ Á

P
F qq̄(|Ò

q

Òu|2 + |Ò
q

Ò̄u|2) (4.2.36)

since we can assume that ⁄
1

>> P = sup
X◊[0,T

Õ
]

(|Òu|2 +1) (otherwise the desired estimate
⁄

1

< CP already holds), and (4P )≠1 < „Õ < (2P )≠1. Similarly we obtain the same estimate
for „ÕÒju(F qq̄Ò

q

Ò
q̄

≠ ˆ
t

)Ò
j

u. Thus by choosing Á = 1/24, we have

L„(|Òu|2) Ø ≠C
8

F + 1
8P

F qq̄(|Ò
q

Òu|2 + |Ò
q

Ò̄u|2) + „ÕÕF qq̄Ò
q

|Òu|2Ò
q̄

|Òu|2. (4.2.37)

Estimate for LG̃

The evaluation of the remaining term LÏ(ṽ) is straightforward,

LÏ(ṽ) = ÏÕ(ṽ)(F k

¯

kÒ
k

Ò
¯

k

ṽ ≠ ˆ
t

ṽ) + ÏÕÕ(ṽ)F k

¯

kÒ
k

ṽÒ
¯

k

ṽ. (4.2.38)

Altogether, we have established the following lower bound for LG̃,

LG̃ Ø ≠F k

¯

k

|⁄̃
1,

¯

k

|2
⁄2

1

≠ 1
⁄

1

F l

¯

k,sr̄Ò
¯

1

g
¯

kl

Ò
1

g
r̄s

≠ C
4

1
⁄

1

F k

¯

k|⁄
1,

¯

k

| ≠ C
9

F

+ 1
8P

F qq̄(|Ò
q

Òu|2 + |Ò
q

Ò̄u|2) + „ÕÕF qq̄Ò
q

|Òu|2Ò
q̄

|Òu|2

+ÏÕ(ṽ)(F k

¯

kÒ
k

Ò
¯

k

ṽ ≠ ˆ
t

ṽ) + ÏÕÕ(ṽ)F k

¯

kÒ
k

ṽÒ
¯

k

ṽ, (4.2.39)

where C
4

and C
9

only depend on Î‰Î
C

2 , Î–Î
C

2 , ÎÂÎ
C

2 , Îˆ
t

uÎ
L

Œ and the dimension n.

For a small ◊ > 0 to be chosen hereafter, we deal with two following cases.

Case 1: ◊⁄
1

Æ ≠⁄
n

In this case, we have ◊2⁄2

1

Æ ⁄2

n

. Thus we can write

1
8P

F qq̄(|Ò
q

Òu|2 + |Ò
q

Ò̄u|2) Ø F nn̄

8P
|u

n̄n

|2 = F nn̄

8P
|⁄

n

≠ ‰
n̄n

|2 Ø F⁄2

n

10nP
≠ C

10

F
P

Ø ◊2

10nP
F⁄2

1

≠ C
10

F , (4.2.40)

where C
10

only depends on Î‰Î
C

2 . Next, it is convenient to combine the first and third
terms in the expression for LG̃,

≠F k

¯

k

|⁄̃
1,

¯

k

|2
⁄2

1

≠ C
4

1
⁄

1

F k

¯

k|⁄̃
1,

¯

k

| Ø ≠3
2F k

¯

k

|⁄̃
1,

¯

k

|2
⁄2

1

≠ C
11

F . (4.2.41)
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where C
11

only depends on C
4

.
At a maximum point for G̃, we have 0 Ø LG̃. Combining the lower bound (4.2.39) for
LG̃ with the preceding inequalities and dropping the second and last terms, which are
non-negative, we obtain

0 Ø ◊2

10nP
F⁄2

1

≠ C
12

F ≠ 3
2F k

¯

k

|⁄̃
1,

¯

k

|2
⁄2

1

+ „ÕÕF qq̄|Ò
q̄

|Òu|2|2 + ÏÕ(ṽ)(F k

¯

kÒ
k

Ò
¯

k

ṽ ≠ ˆ
t

ṽ),

(4.2.42)

where C
12

= C
9

+ C
10

+ C
11

, depending on Î‰Î
C

2 , Î–Î
C

2 , ÎÂÎ
C

2 , Îˆ
t

uÎ
L

Œ and n. Since we
are at a critical point of G̃, we also have ÒG̃ = 0, and hence

⁄̃
1,

¯

k

⁄
1

+ „ÕÒ
¯

k

|Òu|2 + ÏÕˆ
¯

k

ṽ = 0 (4.2.43)

which implies

3
2F k

¯

k| ⁄̃1,

¯

k

⁄
1

|2 = 3
2F k

¯

k|„ÕÒ
¯

k

|Òu|2 + ÏÕˆ
¯

k

ṽ|2 Æ 2F k

¯

k(„Õ)2|Ò
¯

k

|Òu|2|2 + 4F k

¯

k(ÏÕ)2|Ò
¯

k

ṽ|2

Æ F k

¯

k„ÕÕ|Ò
¯

k

|Òu|2|2 + C
13

FP, (4.2.44)

where C
13

depending on ÎṽÎ
L

Œ and ÎÒuÎ
L

Œ . Since ÏÕ(ṽ) is bounded in terms of ÎṽÎ
L

Œ

and ÎÒuÎ
L

Œ , and |F k

¯

kÒ
k

Ò
¯

k

ṽ ≠ ˆ
t

ṽ| Æ C
14

F⁄
1

+ C
13

, where C
14

depending on Îˆ
t

vÎ
L

Œ

and Îˆ ¯̂uÎ
L

Œ , we arrive at

0 Ø ◊2

10nP
F⁄2

1

≠ C
15

PF , (4.2.45)

where C
15

depends on Î‰Î
C

2 , Î–Î
C

2 , n, ÎÂÎ
C

2 , Îˆ ¯̂uÎ
L

Œ , ÎÒuÎ
L

Œ , ÎṽÎ
L

Œ , Îˆ
t

vÎ
L

Œ and Îˆ
t

uÎ
L

Œ .
This implies the desired estimate ⁄

1

Æ C̃ P .

The key estimate provided by subsolutions

In the second case when ◊⁄
1

> ≠⁄
n

, we need to use the following key property of subsolu-
tions.

Lemma 4.2.3. Let u be a subsolution of the equation (4.1.1) in the sense of Definition
4.1.1 with the pair (”, K). Then there exists a constant C = C(”, K), so that, if |⁄[u] ≠
⁄[u]| > K with K in Definition 4.1.1, then either

F pq(A[u])(Ap

q

[u] ≠ Ap

q

[u]) ≠ (ˆ
t

u ≠ ˆ
t

u) > C F (4.2.46)

or we have for any 1 Æ i Æ n,

F ii(A[u]) > C F . (4.2.47)
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Proof. The proof is an adaptation of the one for the elliptic version [Sze15, Proposition
6](see also [Gua14] for a similar argument). However, because of the time parameter t
which may tend to Œ, we need to produce explicit bounds which are independent of t. As
in [Sze15], it suffices to prove that

nÿ

i=1

f
i

(⁄[u])(⁄
i

[u] ≠ ⁄
i

[u]) ≠ (ˆ
t

u ≠ ˆ
t

u) > CF . (4.2.48)

For any (z
0

, t
0

) œ X ◊ [0, T Õ], since u is a C-subsolution as in Definition 4.1.1, the set

A
z0,t0 = {(w, s)| w + ”

2I œ �
n

, s Ø ≠”, f(⁄[u(z
0

, t
0

)] + w) ≠ ˆ
t

u(z
0

, t
0

) + s Æ Â(z
0

)}

is compact, and A
z0,t0 µ B

n+1

(0, K). For any (w, s) œ A
z0,t0 , then the set

C
w,s

= {v œ Rn|÷r > 0, w+rv œ ≠”I+�
n

, f(⁄[u(z
0

, t
0

)]+w+rv)≠ˆ
t

u(z
0

, t
0

)+s = Â(z
0

)}

is a cone with vertex at the origin.

We claim that C
w,s

is stricly larger than �
n

. Indeed, for any v œ �
n

, we can choose
r > 0 large enough so that |w +rv| > K, then by the definition of C-subsolution, at (z

0

, t
0

)

f(⁄[u] + w + rv) ≠ ˆ
t

u + s > Â(z
0

).

Therefore there exist rÕ > 0 such that f(⁄[u]) + w + rÕv) ≠ ˆ
t

u + s = Â(z
0

), hence v œ C
w,s

.
This implies that �

n

µ C
w,s

. Now, for any pair (i, j) with i ”= j and i, j = 1, . . . , n, we
choose v(i,j) := (v

1

, . . . , v
n

) with v
i

= K + ” and v
j

= ≠”/3 and v
k

= 0 for k ”= i, j, then
we have w + v(i,j) œ ≠”1 + �

n

. By the definition of C-subsolution, we also have, at (z
0

, t
0

)

f(⁄[u]) + w + v(i,j)) ≠ ˆ
t

u + s > Â(z
0

),

hence v(i,j) œ C
w,s

for any pair (i, j).

Denote by Cú
w,s

the dual cone of C
w,s

,

Cú
w,s

= {x œ Rn : Èx, yÍ > 0, ’y œ C
w,s

}.

We now prove that that there is an Á > 0 such that if x = (x
1

, . . . , x
n

) œ Cú
w,s

is a unit
vector, then x

i

> Á, ’i = 1, . . . n. First we remark that x
i

> 0, ’i = 1, n since �
n

µ C
w,s

Suppose that x
1

is the smallest element between x
i

, then Èx, v(1,j)Í > 0, implies that
(K + ”)x

1

Ø ”

3

x
j

, hence (K + ”)2x2

1

Ø (”2/9)x2

j

, ’j = 2, . . . , n, so n(K + ”)2x2

1

Ø ”2/9.
Therefore we can choose Á = ”

2

9n(K+”)

2 .

Fix (z
1

, t
1

) œ X ◊ [0, T Õ] such that at this point |⁄[u] ≠ ⁄[u]| > K. Let T be the tangent
plane to {(⁄, ·)| f(⁄) + · = ‡} at (⁄[u(z

1

, t
1

)], ≠ˆ
t

u(z
1

, t
1

)). There are two cases:
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1) There is some point (w, s) œ A
z1,t1 such that at (z

1

, t
1

)

(⁄[u] + w, ≠ˆ
t

u + s) œ T ,

i.e
Òf(⁄[u]).(⁄[u] + w ≠ ⁄[u]) + (≠ˆ

t

u + s + ˆ
t

u) = 0. (4.2.49)
Now for any v œ C

w,s

, there exist r > 0 such that f(⁄[u] + w + rv) ≠ ˆ
t

u + s = Â(z), this
implies that

Òf(⁄[u]).(⁄[u] + w + rv ≠ ⁄[u]) + (≠ˆ
t

u + s + ˆ
t

u) > 0,

so combing with (4.2.50) we get
Òf(⁄[u]).v > 0.

It follows that at (z
1

, t
1

) we have Òf(⁄[u])(z, t) œ Cú
w,s

, so f
i

(⁄[u]) Ø ÁÒf(⁄[u]), ’i =
1, . . . , n, hence

f
i

(⁄[u]) >
ÁÔ
n

ÿ

p

f
p

(⁄[u]), ’i = 1, . . . , n,

where
Á = ”2

9n(K + ”)2

.

2) Otherwise, we observe that if A
z1,t1 ”= ÿ, then (w

0

, s
0

) = (≠”/2, . . . , ≠”/2, ≠”) œ A
z1,t1

and at (z
1

, t
1

), (⁄[u] ≠ w
0

, ≠u
t

+ s
0

) must lie above T in the sense that

(Òf(⁄[u]), 1).(⁄[u] + w
0

≠ ⁄[u], ≠ˆ
t

u + s
0

+ ˆ
t

u) > 0, at (z
1

, t
1

). (4.2.50)

Indeed, if it is not the case, using the monotonicity of f we can find v œ �
n

such that
(⁄[u]+w

0

+v, ≠ˆ
t

u+s
0

) œ T , so the concavity of (⁄, ·) ‘æ f(⁄)+· implies that (w
0

+v, s
0

)
is in A

z1,t1 and then satisfies the first case, this gives a contradiction. Now it follows from
(4.2.50) that at (z

1

, t
1

)

(Òf(⁄[u]), 1).(⁄[u] ≠ ⁄[u], ≠ˆ
t

u + ˆ
t

u) Ø ≠Òf(⁄[u]).w
0

≠ s
0

= (”/2)F + ” Ø (”/2)F ,

where F =
q

i

f
i

(⁄[u]) > 0. This means
nÿ

i=1

f
i

(⁄[u])(⁄[u] ≠ ⁄[u]) ≠ (ˆ
t

u ≠ u
t

) > (”/2)F (4.2.51)

as required.
Now if A

z1,t1 = ÿ, then at (z
1

, t
1

)

f(⁄[u] + w
0

) ≠ ˆ
t

u + s
0

> Â(z
1

),

hence we also have that (⁄[u] + w
0

, ≠ˆ
t

u + s
0

) lies above T using the concavity of (⁄, ·) ‘æ
f(⁄) + · . By the same argument above, we also obtain the inequality (4.2.51).

So we get the desired inequalities. Q.E.D.
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Case 2: ◊⁄
1

> ≠⁄
n

Set

I = {i; F i

¯

i Ø ◊≠1F 1

¯

1}. (4.2.52)

At the maximum point ˆ
¯

k

G̃ = 0, and we can write

≠
ÿ

k ”œI

F k

¯

k

|⁄̃
1,

¯

k

|2
⁄2

1

= ≠
ÿ

k /œI

F k

¯

k|„ÕÒ
¯

k

|Òu|2 + ÏÕˆ
¯

k

ṽ|2

Ø ≠2(„Õ)2

ÿ

k /œI

F k

¯

k|Ò
¯

k

|Òu|2|2 ≠ 2(ÏÕ)2

ÿ

k /œI

F k

¯

k|Ò
¯

k

ṽ|2

Ø ≠„ÕÕ ÿ

k /œI

F k

¯

k|Ò
¯

k

|Òu|2|2 ≠ 2(ÏÕ)2◊≠1F 1

¯

1P ≠ C
16

F , (4.2.53)

where C
16

depends on ÎÒuÎ
L

Œ and ÎṽÎ
L

Œ . On the other hand,

≠2◊
ÿ

kœI

F k

¯

k

|⁄̃
1,

¯

k

|2
⁄2

1

Ø ≠2◊„ÕÕ ÿ

kœI

F k

¯

k|Ò
¯

k

|Òu|2|2 ≠ 4◊(ÏÕ)2

ÿ

kœI

F k

¯

k|Ò
¯

k

ṽ|2. (4.2.54)

Choose 0 < ◊ << 1 such that 4◊(ÏÕ)2 Æ 1

2

ÏÕÕ. Then (4.2.39) implies that

0 Ø ≠ 1
⁄

1

F l

¯

k,sr̄Ò
¯

1

g
¯

kl

Ò
1

g
r̄s

≠ (1 ≠ 2◊)
ÿ

kœI

F k

¯

k

|⁄̃
1,

¯

k

|2
⁄2

1

≠C
1
⁄

1

F k

¯

k|⁄̃
1,

¯

k

| + 1
8P

F qq̄(|Ò
q

Òu|2 + |Ò
q

Ò̄u|2)

+1
2ÏÕÕF k

¯

k|Ò
¯

k

ṽ|2 + ÏÕ(F k

¯

kÒ
k

Ò
¯

k

ṽ ≠ ˆ
t

ṽ) ≠ 2(ÏÕ)2◊≠1F 1

¯

1P ≠ C
17

F , (4.2.55)

where C
17

depend on Î‰Î
C

2 , Î–Î
C

2 , n, ÎÂÎ
C

2 , Îˆ
t

uÎ
L

Œ , ÎṽÎ
L

Œ and ÎÒuÎ
L

Œ . The concavity
of F implies that

F l

¯

k,sr̄Ò
¯

1

g
¯

kl

Ò
1

g
r̄s

Æ
ÿ

kœI

F 1

¯

1 ≠ F k

¯

k

⁄
1

≠ ⁄
k

|Ò
1

g
¯

1k

|2 (4.2.56)

since F

11̄≠F

kk̄

⁄1≠⁄k
Æ 0. Moreover, for k œ I, we have F 1

¯

1 Æ ◊F k

¯

k, and the assumption
◊⁄

1

Ø ≠⁄
n

yields
1 ≠ ◊

⁄
1

≠ ⁄
k

Ø 1 ≠ 2◊

⁄
1

. (4.2.57)

It follows that
ÿ

kœI

F 1

¯

1 ≠ F k

¯

k

⁄
1

≠ ⁄
k

|Ò
1

g
¯

1k

|2 Æ ≠
ÿ

kœI

(1 ≠ ◊)F k

¯

k

⁄
1

≠ ⁄
k

|Ò
1

g
¯

1k

|2 Æ ≠1 ≠ 2◊

⁄
1

ÿ

kœI

F k

¯

k|Ò
1

g
¯

1k

|2.(4.2.58)
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Combining with the previous inequalities, we obtain

0 Ø ≠(1 ≠ 2◊)
ÿ

kœI

F k

¯

k

|⁄̃
1,

¯

k

|2 ≠ |Ò
1

g
¯

1k

|2
⁄2

1

≠ C
17

F

≠C
4

⁄
1

F k

¯

k|⁄̃
1,

¯

k

| + 1
8P

F qq̄(|Ò
q

Òu|2 + |Ò
q

Ò̄u|2)

+1
2ÏÕÕF k

¯

k|Ò
¯

k

ṽ|2 + ÏÕ(F k

¯

kÒ
k

Ò
¯

k

ṽ ≠ ˆ
t

ṽ) ≠ 2(ÏÕ)2◊≠1F 1

¯

1P. (4.2.59)

Since Ò
1

g
¯

1k

= ⁄̃
1,⁄

+ O(⁄
1

), we have

≠ (1 ≠ 2◊)
ÿ

kœI

F k

¯

k

|⁄̃
1,

¯

k

|2 ≠ |Ò
1

g
¯

1k

|2
⁄2

1

Ø ≠C
18

F (4.2.60)

where C
18

depends on Î‰Î
C

2 and Î–Î
C

2 . Next, using again the equations for critical points,
we can write

C
4

⁄
1

F k

¯

k|⁄̃
1,

¯

k

| = C
4

⁄
1

F k

¯

k|„ÕÒ
¯

k

|Òu|2 + ÏÕÒ
¯

k

ṽ| (4.2.61)

Æ 1
2K

1
2

ÿ
F k

¯

k(|Ò
¯

k

Ò
p

u| + |Ò
¯

k

Ò
p̄

u|) + C
Á

|ÏÕ|F k

¯

k|Ò
¯

k

ṽ|2 + ÁC
19

|ÏÕ|F + C
20

F ,

where C
19

and C
20

depend on C
4

. Accordingly, the previous inequality implies

0 Ø 1
10K

F qq̄(|Ò
q

Òu|2 + |Ò
q

Ò̄u|2) + 1
2ÏÕÕF k

¯

k|Ò
¯

k

ṽ|2 + ÏÕ(F k

¯

kÒ
k

Ò
¯

k

ṽ ≠ ˆ
t

ṽ)

≠2(ÏÕ)2◊≠1F 1

¯

1P ≠ C
Á

|ÏÕ|F k

¯

k|Ò
¯

k

ṽ|2 ≠ ÁC
19

|ÏÕ|F ≠ C
21

F , (4.2.62)

where C
21

depending only on Î‰Î
C

2 , Î–Î
C

2 , n, ÎÂÎ
C

2 , Îˆ
t

vÎ
C

0 , ÎṽÎ
L

Œ , Îˆ
t

uÎ
L

Œ and ÎÒuÎ
L

Œ .
Finally we get

0 Ø F 1

¯

1( ⁄2

1

20P
≠ 2(ÏÕ)2◊≠1P ) + (1

2ÏÕÕ ≠ C
Á

|ÏÕ|)F k

¯

k|Ò
¯

k

ṽ|2

≠ÁC
19

|ÏÕ|F + ÏÕ(F k

¯

kÒ
k

Ò
¯

k

ṽ ≠ ˆ
t

ṽ) ≠ C
21

F . (4.2.63)

We now apply Lemma 4.2.3. Fix ” and K as in Definition 4.1.1, if ⁄
1

> K, then there are
two possibilities:

• Either F k

¯

k(u
¯

kk

≠ u
¯

kk

) + (ˆ
t

u ≠ ˆ
t

u) Ø ŸF , for some Ÿ depending only on ” and K,
equivalently,

F k

¯

kÒ
k

Ò
¯

k

ṽ ≠ ˆ
t

ṽ ≠
⁄

X

ˆ
t

v–n Æ ≠ŸF + C
22

F , (4.2.64)
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where C
22

depends on Îˆ
t

vÎ
L

Œ . Since ÏÕ < 0, we find

0 Ø F 1

¯

1( ⁄2

1

20P
≠ 2(ÏÕ)2◊≠1P ) + (1

2ÏÕÕ ≠ C
Á

|ÏÕ|)F k

¯

k|Ò
¯

k

ṽ|2

≠C
23

F ≠ ÁC
19

|ÏÕ|F ≠ ÏÕŸF (4.2.65)

with C
23

depending only on n, Î‰Î
C

2 , Î–Î
C

2 , ÎÂÎ
C

2 , Îˆ
t

vÎ
L

Œ , ÎṽÎ
L

Œ , Îˆ
t

uÎ
L

Œ and ÎÒuÎ
L

Œ .
We first choose Á small enough so that ÁC

19

< Ÿ/2, then D
2

large enough so that
ÏÕÕ > 2C

Á

|ÏÕ|. We obtain

0 Ø F 1

¯

1( ⁄2

1

20P
≠ 2(ÏÕ)2◊≠1P ) ≠ C

23

F ≠ 1
2ÏÕŸF . (4.2.66)

We now choose D
1

large enough (depending on ÎṽÎ
L

Œ) so that ≠C
23

≠ 1

2

ÏÕŸ > 0. Then

⁄2

1

20P
Æ 2(ÏÕ)2◊≠1P (4.2.67)

and the desired upper bound for ⁄
1

/P follows.
• Or F 1

¯

1 Ø ŸF . With D
1

, D
2

, and ◊ as above, the inequality (4.2.63) implies

0 Ø ŸF( ⁄2

1

20P
≠ 2(ÏÕ)2◊≠1P ) ≠ C

24

F ≠ ÏÕF k

¯

kg
¯

kk

, (4.2.68)

with C
24

depending only on Î‰Î
C

2 , Î–Î
C

2 , n, ÎÂÎ
C

2 , Îˆ
t

vÎ
L

Œ , ÎṽÎ
L

Œ , Îˆ
t

uÎ
L

Œ , ÎÒuÎ
L

Œ ,
and Îiˆ ¯̂uÎ

L

Œ . Since F k

¯

kg
¯

kk

Æ F⁄
1

, we can divide by FP to get

0 Ø Ÿ
⁄2

1

20P 2

≠ C
25

(1 + 1
P

+ ⁄
1

P
) (4.2.69)

with a constant C
25

depending only on Î‰Î
C

2 , Î–Î
C

2 , n, ÎÂÎ
C

2 , ÎṽÎ
L

Œ , Îˆ
t

vÎ
L

Œ , Îˆ
t

uÎ
L

Œ ,
ÎÒuÎ

L

Œ , and Îiˆ ¯̂uÎ
L

Œ . Thus we obtain the desired bound for ⁄
1

/P .
It was pointed out in [Sze15] that, under an extra concavity condition on f , C2 esti-

mates can be derived directly from C0 estimates in the elliptic case, using a test function
introduced in [PS09]. The same holds in the parabolic case, but we omit a fuller discussion.

4.2.3 C1 Estimates
The C1 estimates are also adapted from [Sze15], which reduce the estimates by a blow-up
argument to a key Liouville theorem for Hessian equations due to Székelyhidi [Sze15] and
Dinew and Kolodziej [DK17].

Lemma 4.2.4. There exist a constant C > 0, depending on u, Îˆ
t

uÎ
L

Œ
(X◊[0,T ))

, ÎũÎ
L

Œ
(X◊[0,T ))

Î–Î
C

2 , ‰, Â and the constant C̃ in Lemma 4.2.2 such that

sup
X◊[0,T )

|Òu|2
–

Æ C. (4.2.70)



110 CHAPTER 4. FULLY NON-LINEAR PARABOLIC EQUATIONS

Proof. Assume by contradiction that (4.2.70) does not hold. Then there exists a sequence
(x

k

, t
k

) œ X ◊ [0, T ) with t
k

æ T such that

lim
kæŒ

|Òu(t
k

, x
k

)|
–

= +Œ.

We can assume further that

R
k

= |Òu(x
k

, t
k

)|
–

= sup
X◊[0,tk]

|Òu(x, t)|
–

, as k æ +Œ,

and lim
kæŒ x

k

= x.
Using localization, we choose a coordinate chart {U, (z

1

, . . . , z
n

)} centered at x, identifying
with the ball B

2

(0) µ Cn of radius 2 centered at the origin such that –(0) = —, where
— =

q
j

idzj · dz̄j . We also assume that k is sufficiently large so that z
k

:= z(x
k

) œ B
1

(0).
Define the following maps

�
k

: Cn æ Cn, �
k

(z) := R≠1

k

z + z
k

,

ũ
k

: B
Rk(0) æ R, ũ

k

(z) := ũ(�
k

(z), t
k

) = ũ(R≠1

k

z + z
k

, t
k

),

where ũ = u ≠ s
X

u –n. Then the equation

u
t

= F (A) ≠ Â(z),

implies that

f
1
R2

k

⁄[—ip̄

k

(‰
k,p̄j

+ ũ
k,p̄j

)]
2

= Â(R≠1

k

z + z
k

) + u
t

(�
k

(z), t
k

), (4.2.71)

where —
k

:= R2

k

�ú
k

–, ‰
k

:= �ú
k

‰. Since —
k

æ —, and ‰
k

(z, t) æ 0, in CŒ
loc

as k æ Œ, we get

⁄[—ip̄

k

(‰
k,p̄j

+ ũ
k,p̄j

)] = ⁄(ũ
k,

¯

ji

) + O

A
|z|
R2

k

B

. (4.2.72)

By the construction, we have

sup
BRk

(0)

ũ
k

Æ C, sup
BRk

(0)

|Òũ
k

| Æ C (4.2.73)

where C depending on ÎũÎ
L

Œ , and

|Òũ
k

|(0) = R≠1

k

|Òu
k

|
–

(x
k

) = 1.

Thanks to Lemma 4.2.2, we also have that

sup
BRk

(0)

|ˆ ¯̂ũ
k

|
—

Æ CR≠2

k

sup
X

|ˆ ¯̂u(., t
k

)|
–

Æ C Õ. (4.2.74)
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As the argument in [Sze15, TW17], it follows from (4.2.73), (4.2.74), the elliptic estimates
for � and the Sobolev embedding that for each given K µ Cn compact, 0 < “ < 1 and
p > 1, there is a constant C such that

Îũ
k

Î
C

1,“
(K)

+ Îũ
k

Î
W

2,p
(K)

Æ C.

Therefore there is a subsequence of ũ
k

converges strongly in C1,“

loc

(Cn), and weakly in
W 2,p

loc

(Cn) to a function v with supCn(|v| + |Òv|) Æ C and Òv(0) ”= 0, in particular v is not
constant.

The proof can now be completed exactly as in [Sze15]. The function v is shown to be
a �-solution in the sense of Székelyhidi [Sze15, Definition 15], and the fact that v is not
constant contradicts Szekelyhidi’s Liouville theorem for �-solutions [Sze15, Theorem 20],
which is itself based on the Liouville theorem of Dinew and Kolodziej [DK17]. Q.E.D.

4.2.4 Higher Order Estimates
Under the conditions on f(⁄), the uniform parabolicity of the equation (4.1.1) will follow
once we have established an a priori estimate on Îiˆ ¯̂uÎ

L

Œ and hence an upper bound
for the eigenvalues ⁄[u]. However, we shall often not have uniform control of Îu(·, t)Î

L

Œ .
Thus we shall require the following version of the Evans-Krylov theorem for uniformly
parabolic and concave equations, with the precise dependence of constants spelled out,
and which can be proved using the arguments of Trudinger [Tru83], and more particularly
Tosatti-Weinkove [TW10a] and Gill [Gil11].

Lemma 4.2.5. Assume that u is a solution of the equation (4.1.1) on X ◊ [0, T ) and that
there exists a constant C

0

with Îiˆ ¯̂uÎ
L

Œ Æ C
0

. Then there exist positive constants C and
“ œ (0, 1) depending only on –, ‰, C

0

and ÎÂÎ
C

2 such that

Îiˆ ¯̂uÎ
C

“
(X◊[0,T ))

Æ C. (4.2.75)

Once the C“ estimate for iˆ ¯̂u has been established, it is well known that a priori
estimates of arbitrary order follow by bootstrap, as shown in detail for the Monge-Ampère
equation in Yau [Yau78]. We omit reproducing the proofs.

4.3 Proof of Theorems 1 and 2
We begin with the following simple lemma, which follows immediately by differentiating
the equation (4.1.1) with respect to t, and applying the maximum principle, which shows
that the solution of a linear heat equation at any time can be controlled by its initial value:

Lemma 4.3.1. Let u(z, t) be a smooth solution of the flow (4.1.1) on any time interval
[0, T ). Then ˆ

t

u satisfies the following linear heat equation

ˆ
t

(ˆ
t

u) = F j

k

–km̄ˆ
j

ˆ
m̄

(ˆ
t

u) (4.3.1)
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and we have the following estimate for any t œ [0, T ),

min
X

(F (A[u
0

]) ≠ Â) Æ ˆ
t

u(t, ·) Æ max
X

F (A[u
0

] ≠ Â) (4.3.2)

We can now prove a lemma which provides general sufficient conditions for the convergence
of the flow:

Lemma 4.3.2. Consider the flow (4.1.1). Assume that the equation admits a parabolic
C-subsolution u œ C2,1(X ◊ [0, Œ)), and that there exists a constant C independent of time
so that

osc
X

u(t, ·) Æ C. (4.3.3)

Then a smooth solution u(z, t) exists for all time, and its normalization ũ converges in CŒ

to a solution uŒ of the equation (4.1.6) for some constant c.

In particular, if we assume further that ÎuÎ
L

Œ
(X◊[0,Œ))

Æ C and for each t > 0, there
exists y = y(t) œ X such that ˆ

t

u(y, t) = 0, then u converges in CŒ to a solution uŒ of
the equation (4.1.6) for the constant c = 0.

Proof of Lemma 4.3.2. We begin by establishing the existence of the solution for all time.
For any fixed T > 0, Lemma 4.3.1 shows that |ˆ

t

u| is uniformly bounded by a constant C.
Integrating between 0 and T , we deduce that |u| is uniformly bounded by C T . We can
now apply Lemma 4.2.4, 4.2.2, 4.2.5, to conclude that the function u is uniformly bounded
in Ck norm (by constants depending on k and T ) for arbitrary k. This implies that the
solution can be extended beyond T , and since T is arbitrary, that it exists for all time.

Next, we establish the convergence. For this, we adapt the arguments of Cao [Cao85]
and especially Gill [Gil11] based on the Harnack inequality.

Since osc
X

u(t, ·) is uniformly bounded by assumption, and since ˆ
t

u is uniformly
bounded in view of Lemma 4.3.1, we can apply Lemma 4.2.2 and deduce that the eigen-
values of the matrix [‰ + iˆ ¯̂u] are uniformly bounded over the time interval [0, Œ). The
uniform ellipticity of the equation (4.3.5) follows in turn from the properties (1) and (2) of
the function f(⁄). Next set

v = ˆ
t

u + A (4.3.4)

for some large constant A so that v > 0. The function v satisfies the same heat equation

ˆ
t

v = F i

¯

jˆ
i

ˆ
¯

j

v. (4.3.5)

Since the equation (4.3.5) is uniformly elliptic, by the differential Harnack inequality proved
originally in the Riemannian case by Li and Yau in [LY86], and extended to the Hermitian
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case by Gill [Gil11], section 6, it follows that there exist positive constants C
1

, C
2

, C
3

,
depending only on ellipticity bounds, so that for all 0 < t

1

< t
2

, we have

sup
X

v(·, t
1

) Æ inf
X

v(·, t
2

)
3

t
2

t
1

4
C2

exp
3

C
3

t
2

≠ t
1

+ C
1

(t
2

≠ t
1

)
4

. (4.3.6)

The same argument as in Cao [Cao85], section 2, and Gill [Gil11], section 7, shows that
this estimate implies the existence of constants C

4

and ÷ > 0 so that

osc
X

v(·, t) Æ C
4

e≠÷t (4.3.7)

If we set

ṽ(z, t) = v(z, t) ≠ 1
V

⁄

X

v –n = ˆ
t

u(z, t) ≠ 1
V

⁄

X

ˆ
t

u –n = ˆ
t

ũ, (4.3.8)

it follows that

|ṽ(z, t)| Æ C
4

e≠÷t (4.3.9)

for all z œ X. In particular,

ˆ
t

(ũ + C
4

÷
e≠÷t) = ṽ ≠ C

4

e≠÷t Æ 0, (4.3.10)

and the function ũ(z, t)+ C4
÷

e≠÷t is decreasing in t. By the assumption (4.3.3), this function
is uniformly bounded. Thus it converges to a function uŒ(z). By the higher order estimates
in section §2, the derivatives to any order of ũ are uniformly bounded, so the convergence
of ũ + C4

÷

e≠÷t is actually in CŒ The function ũ(z, t) will also converge in CŒ, to the same
limit uŒ(z). Now the function ũ(z, t) satisfies the following flow,

ˆ
t

ũ = F (A[ũ]) ≠ Â(z) ≠ 1
V

⁄

X

ˆ
t

u –n. (4.3.11)

Taking limits, we obtain

0 = F (A[ũŒ]) ≠ Â(z) ≠ lim
tæŒ

⁄

X

ˆ
t

u –n (4.3.12)

where the existence of the limit of the integral on the right hand side follows from the
equation. Define the constant c as the value of this limit. This implies the first statement
in Lemma 4.3.2.

Now we assume that ÎuÎ
L

Œ
(X◊[0,Œ))

Æ C and for each t Ø 0, there exists y = y(t) œ X
such that ˆ

t

u(y, t) = 0. By the same argument above, we have

osc
X

ˆ
t

u(·, t) Æ C
4

e≠÷t, (4.3.13)
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for some C
4

, ÷ > 0. Since for each t Ø 0, there exists y = y(t) œ X such that ˆ
t

u(y, t) = 0,
we imply that for any z œ X,

|ˆ
t

u(z, t)| = |ˆ
t

u(z, t) ≠ ˆ
t

u(y, t)| Æ osc
X

ˆ
t

u(·, t) Æ C
4

e≠÷t. (4.3.14)

Therefore by the same argument above, the function u(z, t) + C4
÷

e≠÷t converges in CŒ and
ˆ

t

u converges to 0 as t æ +Œ. We thus infer that u converges in CŒ, to uŒ satisfying
the equation

F (A[ũŒ]) = Â(z). (4.3.15)

Lemma 4.3.2 is proved.

Proof of Theorem 4.1.2. Since f is unbounded, the function u = u
0

is a C-subsolution of
the flow. In view of Lemma 4.3.2, it suffices to establish a uniform bound for osc

X

u(t, ·).
But the flow can be re-expressed as the elliptic equation

F (A) = Â + ˆ
t

u (4.3.16)

where the right hand side Â + ˆ
t

u is bounded uniformly in t, since we have seen that ˆ
t

u
is uniformly bounded in t. Furthermore, because f is unbounded, the function u = u

0

is a
C-subsolution of (4.3.16). By the C0 estimate of [Sze15], the oscillation osc

X

u(t, ·) can be
bounded for each t by the C0 norm of the right hand side, and is hence uniformly bounded.
Q.E.D.

Proof of Theorem 4.1.3. Again, it suffices to establish a uniform bound in t for osc
X

u(t, ·).
Consider first the case (a). In view of Lemma 4.3.1 and the hypothesis, we have

ˆ
t

u Ø ˆ
t

u (4.3.17)

on all of X ◊ [0, Œ). But if we rewrite the flow (4.1.1) as

F (A) = Â + ˆ
t

u (4.3.18)

we see that the condition that u be a parabolic C-subsolution for the equation (4.1.1)
together with (4.3.17) implies that u is a C-subsolution for the equation (4.3.18) in the
elliptic sense. We can then apply Székelyhidi’s C0 estimate for the elliptic equation to
obtain a uniform bound for osc

X

u(t, ·).
Next, we consider the case (b). In this case, the existence of a function h(t) with

the indicated properties allows us to apply Lemma 4.2.1, and obtain immediately a lower
bound,

u ≠ u ≠ h(t) Ø ≠C (4.3.19)

for some constant C independent of time. The inequality (4.1.9) implies then a uniform
bound for osc

X

u.
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4.4 Applications to Geometric Flows
Theorems 4.1.2 and 4.1.3 can be applied to many geometric flows. We should stress that
they don’t provide a completely independent approach, as they themselves are built on
many techniques that had been developed to study these flows. Nevertheless, they may
provide an attractive uniform approach.

4.4.1 A criterion for subsolutions
In practice, it is easier to verify that a given function u on X ◊ [0, Œ) is a C-subsolution
of the equation (4.1.1) using the following lemma rather than the original Definition 4.1.1:

Lemma 4.4.1. Let u be a C2,1 admissible function on X ◊ [0, Œ), with ÎuÎ
C

2,1
(X◊[0,Œ))

<
Œ. Then u is a parabolic C-subsolution in the sense of Definition 4.1.1 if and only if there
exists a constant ”̃ > 0 independent from (z, t) so that

lim
µæ+Œf(⁄[u(z, t)] + µe

i

) ≠ ˆ
t

u(z, t) > ”̃ + Â(z) (4.4.1)

for each 1 Æ i Æ n. In particular, if u is independent of t, then u is a parabolic C-
subsolution if and only if

lim
µæ+Œf(⁄[u(z, t)] + µe

i

) > Â(z). (4.4.2)

Note that there is a similar lemma in the case of subsolutions for elliptic equations
(see [Sze15], Remark 8). Here the argument has to be more careful, not just because of
the additional time parameter t, but also because the time interval [0, Œ) is not bounded,
invalidating certain compactness arguments.

Proof of Lemma 4.4.1. We show first that the condition (4.4.1) implies that u is a C-
subsolution.

We begin by showing that the condition (4.4.1) implies that there exists ‘
0

> 0 and
M > 0, so that for all ‘ Æ ‘

0

, all ‹ > M , all (z, t), and all 1 Æ i Æ n, we have

f(⁄[u(z, t)] ≠ ‘I + ‹e
i

) ≠ ˆ
t

u(z, t) >
”̃

4 + Â(z). (4.4.3)

This is because the condition (4.4.1) is equivalent to

fŒ(⁄Õ[u(z, t)]) ≠ ˆ
t

u(z, t) > ”̃ + Â(z). (4.4.4)

Now the concavity of f(⁄) implies the concavity of its limit fŒ(⁄Õ) and hence the continuity
of fŒ(⁄Õ). Furthermore, the set

� = {⁄[u(z, t)], ’(z, t) œ X ◊ [0, Œ)}, (4.4.5)
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as well as any of its translates by ≠‘I for a fixed ‘ small enough, is compact in �. So are
their projections on Rn≠1. By the uniform continuity of continuous functions on compact
sets, it follows that there exists ‘

0

> 0 so that

fŒ(⁄Õ[u(z, t)] ≠ ‘I) ≠ ˆ
t

u(z, t) >
”̃

2 + Â(z) (4.4.6)

for all (z, t) and all ‘ Æ ‘
0

. But fŒ is the continuous limit of a sequence of monotone
increasing continuous functions

fŒ(⁄Õ ≠ ‘I) = lim
‹æŒf(⁄ ≠ ‘I + ‹e

i

). (4.4.7)

By Dini’s theorem, the convergence is uniform over any compact subset. Thus there exists
M > 0 large enough so that ‹ > M implies that

f(⁄[u(z, t)] ≠ ‘I + ‹e
i

) > fŒ(⁄Õ[u(z, t)] ≠ ‘I) ≠ ”̃

4 (4.4.8)

for all (z, t) and all ‘ Æ ‘
0

. The desired inequality (4.4.3) follows from (4.4.6) and (4.4.8).
Assume now that u is not a C-subsolution. Then there exists ‘

m

, ‹
m

, ·
m

, with ‘
m

æ 0,
‹

m

œ ≠‘
m

I + �
n

, ·
m

> ≠‘
m

, and |·
m

| + |‹
m

| æ Œ, so that

f(⁄[u(z
m

, t
m

)] + ‹
m

) ≠ ˆ
t

u(z
m

, t
m

) + ·
m

= Â(z
m

, t
m

). (4.4.9)

Set ‹
m

= ≠‘
m

+ µ
m

, with µ
m

œ �
n

. Then we can write

·
m

= ≠f(⁄[u(z
m

, t
m

)] ≠ ‘
m

I + µ
m

) + ˆ
t

u(z
m

, t
m

) + Â(z
m

, t
m

)
Æ ≠f(⁄[u(z

m

, t
m

)] ≠ ‘
m

I) + ˆ
t

u(z
m

, t
m

) + Â(z
m

, t
m

) (4.4.10)

which is bounded by a constant. Thus we must have |‹
m

| tending to +Œ, or equivalently,
|µ

m

| tending to +Œ.
By going to a subsequence, we may assume that there is an index i for which the i-th

components µi

m

of the vector µ
m

tend to Œ as m æ Œ. By the monotonicity of f in each
component, we have

f(⁄[u(z
m

, t
m

)] ≠ ‘
m

I + µi

m

e
i

) ≠ ˆ
t

u(z
m

, t
m

) Æ f(⁄[u(z
m

, t
m

)] ≠ ‘
m

I + µ
m

) ≠ ˆ
t

u(z
m

, t
m

)
= f(⁄[u(z

m

, t
m

)] + ‹
m

) ≠ ˆ
t

u(z
m

, t
m

).

In view of (4.4.3), the left hand side is Ø ˜

”

4

+Â(z
m

, t
m

) for µi

m

large and ‘
m

small enough. On
the other hand, the equation (4.4.9) implies that the right hand side is equal to Â(z

m

, t
m

)≠
·

m

. Thus we obtain

”̃

4 + Â(z
m

, t
m

) Æ Â(z
m

, t
m

) ≠ ·
m

Æ Â(z
m

, t
m

) + ‘
m

. (4.4.11)
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Hence ˜

”

4

Æ ‘
m

, which is a contradiction, since ‘
m

æ 0.
Finally, we show that if u is a subsolution, it must satisfy the condition (4.4.1). Assume

otherwise. Then there exists an index i and a sequence ”
m

æ 0 and points (z
m

, t
m

) so that

lim
‹æŒf(⁄[u(z

m

, t
m

)] + ‹e
i

) ≠ ˆ
t

u(z
m

, t
m

) Æ ”
m

+ Â(z
m

). (4.4.12)

Since f is increasing in ‹, this implies that for any ‹ œ R
+

, we have

f(⁄[u(z
m

, t
m

)] + ‹e
i

) ≠ ˆ
t

u(z
m

, t
m

) Æ ”
m

+ Â(z
m

). (4.4.13)

For each ‹ œ R
+

, define ·
m

by the equation

f(⁄[u(z
m

, t
m

)] + ‹e
i

) ≠ ˆ
t

u(z
m

, t
m

) + ·
m

= Â
m

. (4.4.14)

The previous inequality means that ·
m

Ø ≠”
m

, and thus the pair (·
m

, µ = ‹e
i

) satisfies
the equation (4.1.2). Since we can take ‹ æ +Œ, this contradicts the defining property of
C-subsolutions. The proof of Lemma 4.4.1 is complete.

4.4.2 Székelyhidi’s theorem
Theorem 4.1.3 can be applied to provide a proof by parabolic methods of the following
theorem originally proved by Székelyhidi [Sze15]:

Corollary 4.4.2. Let (X, –) be a compact Hermitian manifold, and f(⁄) be a function
satisfying the conditions (1-3) spelled out in §1 and in the bounded case. Let Â be a smooth
function on X. If there exists an admissible function u

0

with F (A[u
0

]) Æ Â, and if the
equation F (A[u]) = Â admits a C-subsolution in the sense of [Sze15], then the equation
F (A[u]) = Â + c admits a smooth solution for some constant c.

Proof of Corollary 4.4.2. It follows from Lemma 4.4.1 that a C-subsolution in the sense of
[Sze15] of the elliptic equation F (A[u]) = Â can be viewed as a time-independent parabolic
C-subsolution u of the equation (4.1.1). Consider this flow with initial value u

0

. Then

ˆ
t

u = 0 Ø F (A[u
0

]) ≠ Â. (4.4.15)

Thus condition (a) of Theorem 4.1.3 is satisfied, and the corollary follows.

4.4.3 The Kähler-Ricci flow and the Chern-Ricci flow
On Kähler manifolds (X, –) with c

1

(X) = 0, the Kähler-Ricci flow is the flow ġ
¯

kj

= ≠R
¯

kj

.
For initial data in the Kähler class [–], the evolving metric can be expressed as g

¯

kj

=
–

¯

kj

+ ˆ
j

ˆ
¯

k

Ï, and the flow is equivalent to the following Monge-Ampère flow,

ˆ
t

Ï = log (– + iˆ ¯̂Ï)n

–n

≠ Â(z) (4.4.16)
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for a suitable function Â(z) satisfying the compatibility condition
s

X

eÂ–n =
s

X

–n. The
convergence of this flow was proved by Cao [Cao85], thus giving a parabolic proof of Yau’s
solution of the Calabi conjecture [Yau78]. We can readily derive Cao’s result from Theorem
4.1.2:

Corollary 4.4.3. For any initial data, the normalization Ï̃ of the flow (4.4.16) converges
in CŒ to a solution of the equation (– + iˆ ¯̂Ï)n = eÂ–n.

Proof of Corollary 4.4.3. The Monge-Ampère flow (4.4.16) corresponds to the equation
(4.1.1) with ‰ = –, f(⁄) = log

r
n

j=1

⁄
j

, and � being the full octant �
n

. It is straightforward
that f satisfies the condition (1-3) in §1. In particular f is in the unbounded case, and
Theorem 4.1.2 applies, giving the convergence of the normalizations ũ(·, t) to a smooth
solution of the equation (– + iˆ ¯̂Ï)n = eÂ+c–n for some constant c. Integrating both sides
of this equation and using the compatibility condition on Â, we find that c = 0. The
corollary is proved.

The generalization of the flow (4.4.16) to the more general set-up of a compact Hermi-
tian manifold (X, –) was introduced by Gill [Gil11]. It is known as the Chern-Ricci flow,
with the Chern-Ricci tensor RicC(Ê) = ≠iˆ ¯̂ log Ên playing the role of the Ricci tensor in
the Kähler-Ricci flow (we refer to [TW13, TW15, TWY15, Tô18] and references therein).
Gill proved the convergence of this flow, thus providing an alternative proof of the general-
ization of Yau’s theorem proved earlier by Tosatti and Weinkove [TW10b]. Generalizations
of Yau’s theorem had attracted a lot of attention, and many partial results had been ob-
tained before, including those of Cherrier [Che87], Guan-Li [GL10], and others. Theorem
4.1.2 gives immediately another proof of Gill’s theorem:

Corollary 4.4.4. For any initial data, the normalizations Ï̃ of the Chern-Ricci flow con-
verge in CŒ to a solution of the equation (– + iˆ ¯̂Ï)n = eÂ+c–n, for some constant c.

We note that there is a rich literature on Monge-Ampère equations, including consider-
able progress using pluripotential theory. We refer to [Ko�l98, EGZ09, DP10, GZ17, GZ17b,
PSS12, Tô17, Tô18, Nie14, Nie17] and references therein.

4.4.4 Hessian flows
Hessian equations, where the Laplacian or the Monge-Ampère determinant of the unknown
function u are replaced by the k-th symmetric polynomial of the eigenvalues of the Hessian
of u, were introduced by Caffarelli, Nirenberg, and Spruck [CNS85]. More general right
hand sides and Kähler versions were considered respectively by Chou and Wang [CW01]
and Hou-Ma-Wu [HMW10], who introduced in the process some of the key techniques for
C2 estimates that we discussed in §2. A general existence result on compact Hermitian
manifolds was recently obtained by Dinew and Kolodziej [DK17], Sun [Sun17b], and Széke-
lyhidi [Sze15]. See also Zhang [Zha17]. Again, we can derive this theorem as a corollary of
Theorem 4.1.2:



4.4. APPLICATIONS TO GEOMETRIC FLOWS 119

Corollary 4.4.5. Let (X, –) be a compact Hermitian n-dimensional manifold, and let ‰
be a positive real (1, 1)-form which is k-positive for a given k, 1 Æ k Æ n. Consider the
following parabolic flow for the unknown function u,

ˆ
t

u = log (‰ + iˆ ¯̂u)k · –n≠k

–n

≠ Â(z). (4.4.17)

Then for any admissible initial data u
0

, the flow admits a solution u(z, t) for all time, and
its normalization ũ(z, t) converge in CŒ to a function uŒ œ CŒ(X) so that Ê = ‰+iˆ ¯̂uŒ
satisfies the following k-Hessian equation,

Êk · –n≠k = eÂ+c–n. (4.4.18)

Proof of Corollary 4.4.5. This is an equation of the form (4.1.1), with F = f(⁄) =
log ‡

k

(⁄), defined on the cone

�
k

= {⁄; ‡
j

(⁄) > 0, j = 1, · · · , k}, (4.4.19)

where
!

n

k

"
‡

k

is the k-th symmetric polynomial in the components ⁄
j

, 1 Æ j Æ n. In our
setting,

‡
k

(⁄[u]) = (‰ + iˆ ¯̂u)k · –n≠k

–n

. (4.4.20)

It follows from [Spr05, Corollary 2.4] that g = ‡1/k

k

is concave and g
i

= ˆg

ˆ⁄i
> 0 on �

k

,
hence f = log g satisfies the conditions (1-3) mentioned in §1.

The function u = 0 is a subsolution of (4.4.17) and f is in the unbounded case since
for any µ = (µ

1

, · · · , µ
n

) œ �
k

, and any 1 Æ i Æ n,

lim
sæŒ log ‡

k

(µ
1

, · · · , µ
i

+ s, · · · , µ
n

) = Œ. (4.4.21)

The desired statement follows then from Theorem 4.1.2.

4.4.5 The J flow and quotient Hessian flows
The J-flow on Kähler manifolds was introduced independently by Donaldson [Don99] and
Chen [Chen00]. The case n = 2 was solved by Weinkove [Wei04, Wei06], and the case of
general dimension by Song and Weinkove [SW08], who identified a necessary and sufficient
condition for the long-time existence and convergence of the flow as the existence of a
Kähler form ‰ satisfying

nc‰n≠1 ≠ (n ≠ 1)‰n≠2 · Ê > 0 (4.4.22)

in the sense of positivity of (n ≠ 1, n ≠ 1)-forms. The constant c is actually determined
by cohomology. Their work was subsequently extended to inverse Hessian flows on Kähler
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manifolds by Fang, Lai, and Ma [FLM11], and to inverse Hessian flows on Hermitian
manifolds by Sun [Sun15a]. These flows are all special cases of quotient Hessian flows
on Hermitian manifolds. Their stationary points are given by the corresponding quotient
Hessian equations. Our results can be applied to prove the following generalization to
quotient Hessian flows of the results of [Wei04, Wei06, FLM11], as well as an alternative
proof of a result of Székelyhidi [Sze15, Proposition 22] on the Hessian quotient equations.
The flow (4.4.24) below has also been studied recently by Sun [Sun15b] where he obtained
a uniform C0 estimate using Moser iteration. Our proof should be viewed as different
from all of these, since its C0 estimate uses neither Moser iteration nor strict C2 estimates
Tr

–

‰
u

Æ C eu≠infXu.

Corollary 4.4.6. Assume that (X, –) is a compact Kähler n-manifold, and fix 1 Æ ¸ < k Æ
n. Fix a closed (1, 1)-form ‰ which is k-positive, and assume that there exists a function
u so that the form ‰Õ = ‰ + iˆ ¯̂u is closed k-positive and satisfies

kc (‰Õ)k≠1 · –n≠k ≠ ¸(‰Õ)¸≠1 · –n≠¸ > 0 (4.4.23)

in the sense of the positivity of (n ≠ 1, n ≠ 1)-forms. Here c = [‰

¸
]fi[–

n≠¸
]

[‰

k
]fi[‰

n≠k
]

. Then for any
admissible initial data u

0

œ CŒ(X), the flow

ˆ
t

u = c ≠ ‰¸

u

· –n≠¸

‰k

u

· –n≠k

(4.4.24)

admits a solution u for all time, and it converges to a smooth function uŒ. The form
Ê = ‰ + iˆ ¯̂uŒ is k-positive and satisfies the equation

Ê¸ · –n≠¸ = c Êk · –n≠k. (4.4.25)

Proof of Corollary 4.4.6. The flow (4.4.24) is of the form (4.1.1), with

f(⁄) = ≠ ‡
¸

(⁄)
‡

k

(⁄) ,

defined on the cone

�
k

= {⁄; ‡
j

(⁄) > 0, j = 1, · · · , k}. (4.4.26)

By the Maclaurin’s inequality (cf. [Spr05]), we have ‡1/k

k

Æ ‡1/¸

¸

on �
k

, hence f(⁄) æ ≠Œ
as ⁄ æ ˆ�

k

. It follows from [Spr05, Theorem 2.16] that the function g = (‡
k

/‡
¸

)
1

(k≠¸)

satisfies g
i

= ˆg

ˆ⁄i
> 0, ’i = 1, . . . , n and g is concave on �

k

. Therefore f = ≠g≠(k≠¸)

satisfies the conditions (1), (2) and (3) spelled out in Section 4.1. Moreover, f is in the
bounded case with

fŒ(⁄Õ) = ≠¸‡
¸≠1

(⁄Õ)
k‡

k≠1

(⁄Õ where ⁄Õ œ �Œ = �
k≠1

.
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We can assume that u
0

= 0 by replacing ‰ (resp. u and u) by ‰ + iˆ ¯̂u
0

(resp. u ≠ u
0

and u ≠ u
0

). The inequality (4.4.23) infers that u is a subsolution of the equation (4.4.24).
Indeed, for any (z, t) œ X ◊ [0, Œ), set µ = ⁄(B), Bi

j

= –j

¯

k(‰
¯

kj

+ u
¯

kj

)(z, t). Since u is
independent of t, it follows from Lemma 4.4.1 and the symmetry of f that we just need to
show that for any z œ X if µÕ = (µ

1

, · · · , µ
n≠1

) then

lim
sæŒf(µÕ, µ

n

+ s) > ≠c. (4.4.27)

This means

fŒ(µÕ) = ≠ ¸‡
¸≠1

(µÕ)
k‡

k≠1

(µÕ) > ≠c. (4.4.28)

As in [Sze15], we restrict to the tangent space of X spanned by by the eigenvalues corre-
sponding to µÕ. Then on this subspace

‡
j

(µÕ) = ‰j≠1 · –n≠j

–n≠1

(4.4.29)

for all j. Thus the preceding inequality is equivalent to

kc(‰Õ)k · –n≠k ≠ ¸(‰Õ)¸≠1 · –n≠¸ > 0. (4.4.30)

By a priori estimates in Section 2, the solution exists for all times. We now use the second
statement in Lemma 4.3.2 to prove the convergence. It suffices to check that u is uniformly
bounded in X ◊ [0, +Œ) and for all t > 0, there exists y such that ˆ

t

u(y, t) = 0. The second
condition is straightforward since

⁄

X

ˆ
t

u‰k

u

· –n≠k = 0.

For the uniform bound we make use of the following lemma

Lemma 4.4.7. Let „ œ CŒ(X) function and {Ï
s

}
sœ[0,1]

be a path with Ï(0) = 0 and
Ï(1) = „. Then we have

⁄
1

0

⁄

X

ˆÏ

ˆs
‰k

Ï

· –n≠kds = 1
k + 1

kÿ

j=0

⁄

X

Ï‰j

Ï

· ‰k≠j · –n≠k, (4.4.31)

so the left hand side is independent of Ï. Therefore we can define the following functional

I
k

(„) =
⁄

1

0

⁄

X

ˆÏ

ˆs
‰k

Ï

· –n≠kds. (4.4.32)
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We remark that when k = n and ‰ is Kähler, this functional is well-known (see for
instance [Wei06]). We discuss here the general case.
Proof of Lemma 4.4.7. Observe that

⁄
1

0

⁄

X

ˆÏ

ˆs
‰k

Ï

· –n≠kds =
kÿ

j=1

A
k

j

B ⁄
1

0

⁄

X

ˆÏ

ˆs
(iˆ ¯̂Ï)j · ‰k≠j · –n≠kds. (4.4.33)

For any j = 0, . . . , k we have
⁄

1

0

⁄

X

ˆÏ

ˆs
(iˆ ¯̂Ï)j · ‰k≠j · –n≠kds =

⁄
1

0

d

ds

3⁄

X

Ï(iˆ ¯̂Ï)j · ‰k≠j · –n≠k

4
ds

≠
⁄

1

0

⁄

X

Ï
ˆ

ˆs

1
(iˆ ¯̂Ï)j · ‰k≠j · –n≠k

2
ds

=
⁄

X

„(iˆ ¯̂„)j · ‰k≠j · –n≠k (4.4.34)

≠
⁄

1

0

⁄

X

Ï
ˆ

ˆs

1
(iˆ ¯̂Ï)j · ‰k≠j · –n≠k

2
ds

We also have
⁄

1

0

⁄

X

Ï
ˆ

ˆs

1
(iˆ ¯̂Ï)j · ‰k≠j · –n≠k

2
ds =

⁄
1

0

⁄

X

jÏ
3

iˆ ¯̂ˆÏ

ˆs

4
· (iˆ ¯̂Ï)j≠1 · ‰k≠j · –n≠kds

=
⁄

1

0

⁄

X

j
ˆÏ

ˆs
(iˆ ¯̂Ï)j · ‰k≠j · –n≠kds, (4.4.35)

here we used in the second identity the integration by parts and the fact that ‰ and – are
closed. Combining (4.4.34) and (4.4.35) yields

⁄
1

0

⁄

X

ˆÏ

ˆs
(iˆ ¯̂Ï)j · ‰k≠j · –n≠kds = 1

j + 1

⁄

X

„(iˆ ¯̂„)j · ‰k≠j · –n≠k. (4.4.36)

Therefore (4.4.33) implies that
⁄

1

0

⁄

X

ˆÏ

ˆs
‰k

Ï

· –n≠kds =
kÿ

j=1

A
k

j

B
1

j + 1

⁄

X

„(iˆ ¯̂„)j · ‰k≠j · –n≠k

=
kÿ

j=1

A
k

j

B
1

j + 1

⁄

X

„(‰
„

≠ ‰)j · ‰k≠j · –n≠k

=
kÿ

j=1

A
k

j

B
1

j + 1

⁄

X

jÿ

p=0

A
j

p

B

(≠1)j≠p„‰p

„

· ‰k≠p · –n≠k(4.4.37)

=
kÿ

p=0

Q

a
kÿ

j=p

A
k

j

B
1

j + 1

A
j

p

B

(≠1)j≠p

R

b
⁄

X

„‰p

„

· ‰k≠p · –n≠k.
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By changing m = j ≠ p, we get
kÿ

j=p

A
k

j

B
1

j + 1

A
j

p

B

(≠1)j≠p =
A

k

p

B
k≠pÿ

m=0

(≠1)m

m + p + 1

A
k ≠ p

m

B

. (4.4.38)

The right hand side can be computed by
A

k

p

B
k≠pÿ

m=0

(≠1)m

m + p + 1

A
k ≠ p

m

B

=
A

k

p

B ⁄
1

0

(1 ≠ x)k≠pxpdx

=
A

k

p

B

p!
⁄

1

0

1
(k ≠ p + 1) . . . k

(1 ≠ x)kdx = 1
k + 1 ,

where we used the integration by parts p times in the second identity. Combining this with
(4.4.37) and (4.4.38) we get the desired identity (4.4.31). Q.E.D.

We now have for any tú > 0, along the flow

I
k

(u(tú)) =
⁄

t

ú

0

⁄

X

ˆu

ˆt
‰k

u

· –n≠k =
⁄

t

ú

0

A

c ≠ ‰¸

u

· –n≠¸

‰k

u

· –n≠k

B

‰k

u

· –n≠k = 0.

As in Weinkove [Wei04, Wei06], there exist C
1

, C
2

> 0 such that for all t œ [0, Œ),
0 Æ sup

X

u(., t) Æ ≠C
1

inf
X

u(., t) + C
2

. (4.4.39)

Indeed, in view of (4.4.31), I
k

(u) = 0 along the flow implies that
kÿ

j=0

⁄

X

u‰j

u

· ‰k≠j · –n≠k = 0, (4.4.40)

hence sup
X

u Ø 0 and inf
X

u Æ 0. For the right inequality in (4.4.39), we remark that
there exists a positive constant B such that

–n Æ B‰k · –n≠k.

Therefore combining with (4.4.40) gives
⁄

X

u–n =
⁄

X

(u ≠ inf
X

u)–n +
⁄

X

inf
X

u –n

Æ B
⁄

X

(u ≠ inf
X

u)‰k · –n≠k + inf
X

u
⁄

X

–n

= ≠B
kÿ

j=1

⁄

X

u‰j

u

· ‰k≠j · –n≠k + inf
X

u
3⁄

X

–n ≠ B
⁄

X

‰k · –n≠k

4

= ≠B
kÿ

j=1

⁄

X

3
u ≠ inf

X

u
4

‰j

u

· ‰k≠j · –n≠k + inf
X

u
3⁄

X

–n ≠ B(k + 1)
⁄

X

‰k · –n≠k

4

Æ inf
X

u
3⁄

X

–n ≠ B(k + 1)
⁄

X

‰k · –n≠k

4
= ≠C

1

inf
X

u.
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Since �
–

u Ø ≠ tr
–

‰ Ø ≠A, using the fact that the Green’s function G(., .) of – is bounded
from below we infer that

u(x, t) =
⁄

X

u–n ≠
⁄

X

�
–

u(y, t)G(x, y)–n(y)

Æ ≠C
1

inf
X

u + C
2

.

Hence we obtain the Harnack inequality, sup
X

u Æ ≠C
1

inf
X

u + C
2

.
Since we can normalize u by sup

X

u = 0, the left inequality in (4.4.40) implies

sup
X

(u(·, t) ≠ u(·, t)) Ø 0.

It follows from Lemma 4.2.1 that
u Ø u ≠ C

3

for some constant C
3

. This give a lower bound for u since u is bounded. The Harnack
inequality in (4.4.39) implies then a uniform bound for u. Now the second statement in
Lemma 4.3.2 implies the convergence of u. Q.E.D.

A natural generalization of the Hessian quotient flows on Hermitian manifolds is the
following flow

ˆ
t

u = log ‰k

u

· –n≠k

‰¸

u

· –n≠¸

≠ Â (4.4.41)

where Â œ CŒ(X), the admissible cone is �
k

, 1 Æ ¸ < k Æ n, and ‰
u

= ‰ + iˆ ¯̂u. This
flow was introduced by Sun [Sun15a] when k = n. We can apply Theorem 4.1.3 to obtain
the following result, which is analogous to one of the main results in Sun [Sun15a], and
analogous to the results of Song-Weinkove [SW08] and Fang-Lai-Ma [FLM11] for k = n:

Corollary 4.4.8. Let (X, –) be a compact Hermitian manifold and ‰ be a (1, 1)-form
which is k-positive. Assume that there exists a form ‰Õ = ‰+ iˆ ¯̂u which is k-positive, and
satisfies

k (‰Õ)k≠1 · –n≠k ≠ eÂ ¸(‰Õ)¸≠1 · –n≠¸ > 0 (4.4.42)

in the sense of the positivity of (n ≠ 1, n ≠ 1)-forms. Assume further that there exists an
admissible u

0

œ CŒ(X) satisfying

eÂ Ø ‰k

u0 · –n≠k

‰¸

u0 · –n≠¸

(4.4.43)

Then the flow (4.4.41) admits a smooth solution for all time with initial data u
0

. Further-
more, there exists a unique constant c so that the normalization

ũ = u ≠ 1
[–n]

⁄

X

u–n (4.4.44)
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converges in CŒ to a function uŒ with ÊŒ = ‰ + iˆ ¯̂uŒ satisfying

Êk

Œ · –n≠k = eÂ+cÊ¸

Œ · –n≠¸. (4.4.45)

Proof of Corollary 4.4.8. This equation is of the form (4.1.1), with

F (A) = f(⁄) = log ‡
k

(⁄)
‡

¸

(⁄) , with ⁄ = ⁄(A), (4.4.46)

defined on �
k

. As in the proof of Corollary 4.4.6 we also have that f satisfies the conditions
(1-3) mentioned in §1. Moreover, f is in the bounded case with

fŒ(⁄Õ) = log k‡
k≠1

(⁄Õ)
¸‡

¸≠1

(⁄Õ) where ⁄Õ œ �Œ = �
k≠1

.

It suffices to verify that u = 0 is a subsolution of the equation (4.4.41). For any (z, t) œ
X ◊ [0, Œ), set µ = ⁄(B), Bi

j

= –j

¯

k‰
¯

kj

(z, t). Since u is independent of t, Lemma 4.4.1
implies that we just need to show that for any z œ X if µÕ = (µ

1

, · · · , µ
n≠1

),

lim
sæŒf(µÕ, s) > Â(z). (4.4.47)

This means

fŒ(µÕ) = log k‡
k≠1

(µÕ)
¸‡

¸≠1

(µÕ) > Â(z), (4.4.48)

where we restrict to the tangent space of X spanned by by the eigenvalues corresponding
to µÕ. As the argument in the proof of Corollary 4.4.6, this inequality is equivalent to

k‰k · –n≠k ≠ ¸eÂ‰¸≠1 · –n≠¸ > 0. (4.4.49)

Moreover, the condition (4.4.43) is equivalent to

0 = u Ø F (A[u
0

]) ≠ Â. (4.4.50)

We can now apply Theorem 4.1.3 to complete the proof. Q.E.D

In the case of (X, –) compact Kähler, the condition on Â can be simplified, and we
obtain an alternative proof to the main result of Sun in [Sun17a]. We recently learnt that
Sun [Sun17c] also provided independently another proof of [Sun17a] using the same flow
as below:

Corollary 4.4.9. Let (X, –) be Kähler and ‰ be a k-positive closed (1, 1)-form. Assume
that there exists a closed form ‰Õ = ‰ + iˆ ¯̂u which is k-positive, and satisfies

k (‰Õ)k≠1 · –n≠k ≠ eÂ ¸(‰Õ)¸≠1 · –n≠¸ > 0 (4.4.51)
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in the sense of the positivity of (n ≠ 1, n ≠ 1)-forms. Assume further that

eÂ Ø c
k,¸

= [‰k] fi [‰n≠k]
[‰¸] fi [–n≠¸] . (4.4.52)

Then for any admissible initial data u
0

œ CŒ(X), the flow (4.4.41) admits a smooth solu-
tion for all time. Furthermore, there exists a unique constant c so that the normalization

ũ = u ≠ 1
[–n]

⁄

X

u–n (4.4.53)

converges in CŒ to a function uŒ with ÊŒ = ‰ + iˆ ¯̂uŒ satisfying

Êk

Œ · –n≠k = eÂ+cÊ¸

Œ · –n≠¸. (4.4.54)

Proof of Corollary 4.4.8. By the same argument above, the admissible function u œ CŒ(X)
with sup

X

u = 0 satisfying (4.4.51) is a C-subsolution. As explained in the proof of
Corollary 4.4.6, we can assume that u

0

= 0.

We first observe that along the flow, the functional I
¸

defined in Lemma 4.4.7 is de-
creasing. Indeed, using Jensen’s inequality and then (4.4.52) we have

d

dt
I

¸

(u) =
⁄

X

ˆu

ˆt
‰¸

u

· –n≠¸ =
⁄

X

A

log ‰k

u

· –n≠k

‰¸

u

· –n≠¸

≠ Â

B

‰¸

u

· –n≠¸

Æ log c
k,¸

⁄

X

‰¸

u

· –n≠¸ ≠
⁄

X

Â‰¸

u

· –n≠¸ Æ 0. (4.4.55)

Set

û := u ≠ h(t), h(t) = I
¸

(u)s
X

‰¸ · –n≠¸

. (4.4.56)

For any tú œ [0, Œ) we have

I
¸

(û(tú)) =
⁄

t

ú

0

⁄

X

ˆû

ˆt
‰¸

u

· –n≠¸ =
⁄

t

ú

0

⁄

X

A
ˆu

ˆt
≠ 1s

X

‰¸ · –n≠¸

d

dt
I

¸

(u)
B

‰¸

u

· –n≠¸ = 0.

By the same argument in Corollary 4.4.6, we deduce that there exist C
1

, C
2

> 0 such that

0 Æ sup
X

û(., t) Æ ≠C
1

inf
X

û(., t) + C
2

, (4.4.57)

for all t œ [0, Œ). By our choice, sup
X

u = 0, and (4.4.57) implies that

sup
X

(u ≠ h(t) ≠ u) = sup
X

(û ≠ u) Ø 0, ’t Ø 0.
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Since I
¸

(u) is decreasing along the flow, we also have hÕ(t) Æ 0. Theorem 4.1.3 now gives
us the required result. Q.E.D.

Similarly, we can consider the flow (4.1.1) with

ˆ
t

u = ≠
A

‰¸

u

· –n≠¸

‰k

u

· –n≠k

B 1
k≠¸

+ Â(z), u(z, 0) = 0, (4.4.58)

where 1 Æ ¸ < k Æ n. When (X, –) is Kähler, Â is constant and k = n, this is the inverse
Hessian flow studied by Fang-Lai-Ma [FLM11]. We can apply Theorem 4.1.3 to obtain
another corollary which is analogous to the main result of Fang-Lai-Ma [FLM11].

Corollary 4.4.10. Let (X, –), and ‰ as in Corollary 4.4.8. Assume further that Â œ
CŒ(X,R+) and there exists a smooth function u with ‰Õ = ‰ + iˆ ¯̂u a k-positive (1, 1)-
form which satisfies

kÂk≠¸(‰Õ)k≠1 · –n≠k ≠ ¸(‰Õ)n≠¸≠1 · –n≠¸ > 0 (4.4.59)

in the sense of positivity of (n ≠ 1, n ≠ 1) forms, and

Âk≠¸ Æ ‰¸ · –n≠¸

‰k · –n≠k

. (4.4.60)

Then the flow (4.4.58) exists for all time, and there is a unique constant c so that the
normalized function ũ converges to a function uŒ with Ê = ‰ + iˆ ¯̂uŒ a k-positive form
satisfying the equation

Ên≠¸ · –n≠¸ = (Â + c)k≠¸Êk · –n≠k. (4.4.61)

In particular, if (X, –) is Kähler, we assume further that ‰ is closed, then the condition
(4.4.60) can be simplified as

Âk≠¸ Æ c
¸,k

= [‰¸] fi [–n≠¸]
[‰k] fi [–n≠k] . (4.4.62)

Proof of Corollary 4.4.10. This equation is of the form (4.1.1), with

F (A) = f(⁄) = ≠
3

‡
¸

(⁄)
‡

k

(⁄)

4 1
k≠¸

, with ⁄ = ⁄(A), (4.4.63)

defined on �
k

. As in Corollary 4.4.6, it follows from the Maclaurin’s inequality, the mono-
tonicity and concavity of g = (‡

k

/‡
¸

)
1

k≠¸ (cf. [Spr05]) that f satisfies the conditions (1-3)
spelled out in §1. Moreover, f is in the bounded case with

fŒ(⁄Õ) = ≠
3

¸‡
¸≠1

(⁄Õ)
k‡

k≠1

(⁄Õ)

4 1
k≠¸

where ⁄Õ œ �Œ = �
k≠1

.
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In addition, as the same argument in previous corollaries, the condition (4.4.59) is equiva-
lent to that u = 0 is a C-subsolution for (4.4.58). Moreover, the condition (4.4.60) implies
that

0 = u Ø F (A[0]) + Â. (4.4.64)
We can now apply Theorem 4.1.3 to get the first result.

Next, assume that (X, –) is Kähler and ‰ is closed. As in Corollary 4.4.9 and [FLM11],
the functional I

¸

(see Lemma 4.4.7) is decreasing along the flow. Indeed, using (4.4.62),

d

dt
I

¸

(u) =
⁄

X

ˆu

ˆt
‰¸

u

· –n≠¸ =
⁄

X

Q

a≠
3

‡
¸

(⁄)
‡

k

(⁄)

4 1
k≠¸

+ Â

R

b ‰¸

u

· –n≠¸

Æ ≠
⁄

X

3
‡

¸

(⁄)
‡

k

(⁄)

4 1
k≠¸

‰¸

u

· –n≠¸ + c
1

k≠¸

¸,k

⁄

X

‰¸

u

· –n≠¸. (4.4.65)

Using the Hölder inequality, we get
⁄

X

‰¸

u

· –n≠¸ =
⁄

X

‡
¸

–n =
⁄

X

A
‡

¸

‡1/(k≠¸+1)

k

B

‡
1

k≠¸+1
k

–n

Æ
S

U
⁄

X

A
‡

¸

‡1/(k≠¸+1)

k

B k≠¸+1
k≠¸

–n

T

V

k≠¸
k≠¸+1 3⁄

X

‡
k

–n

4 1
k≠¸+1
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S

U
⁄

X

3
‡

¸

(⁄)
‡

k

(⁄)
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k≠¸

‰¸

u

· –n≠¸

T

V

k≠¸
k≠¸+1 3⁄

X

‰k
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· –n≠k

4 1
k≠¸+1
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S

U
⁄

X

3
‡

¸
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‰¸
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· –n≠¸

T
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k≠¸
k≠¸+1

c
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k≠¸+1
¸,k
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‰¸
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.

This implies that

c
1

k≠¸

¸,k

⁄

X

‰¸

u

· –n≠¸ Æ
⁄

X

3
‡

¸

(⁄)
‡

k

(⁄)

4 1
k≠¸

‰¸

u

· –n≠¸,

hence dI
¸

(u)/dt Æ 0.
For the rest of the proof, we follow the argument in Corollary 4.4.9, starting from the

fact that I
¸

(û) = 0 where

û = u ≠ I
¸

(u)s
X

‰¸ · –n≠¸

.

Then we obtain the Harnack inequality
0 Æ sup

X

û(., t) Æ ≠C
1

inf
X

û(., t) + C
2

, (4.4.66)

for some constants C
1

, C
2

> 0. Finally, Theorem 4.1.3 gives us the last claim. Q.E.D.



4.4. APPLICATIONS TO GEOMETRIC FLOWS 129

4.4.6 Flows with mixed Hessians ‡
k

Our method can be applied to solve other equations containing many terms of ‡
k

. We
illustrate this with the equation

¸ÿ

j=1

c
j

‰j

u

· –n≠j = c‰k

u

· –n≠k (4.4.67)

on a Kähler manifold (X, –), where 1 Æ ¸ < k Æ n, c
j

Ø 0 are given non-negative constants,
and c Ø 0 is determined by c

j

by integrating the equation over X.

When k = n, It was conjectured by Fang-Lai-Ma [FLM11] that this equation is solvable
assuming that

nc‰Õn≠1 ≠
n≠1ÿ

k=1

kc
k

‰Õk≠1 · –n≠k > 0,

for some closed k-positive form ‰Õ = ‰ + iˆ ¯̂v. This conjecture was solved recently by
Collins-Székelyhidi [CS17] using the continuity method. An alternative proof by flow meth-
ods is in Sun [Sun15c]. Theorem 4.1.4 stated earlier in Section 4.1 is an existence result for
more general equations (4.4.67) using the flow (4.1.12) In particular, it gives a parabolic
proof of a generalization of the conjecture due to Fang-Lai-Ma [FLM11, Conjecture 5.1].
We also remark that the flow (4.1.12) was mentioned in Sun [Sun15a], but no result given
there, to the best of our understanding.

Proof of Theorem 4.1.4. This equation is of the form (4.1.1), with

F (A) = f(⁄) = ≠
q

¸

j=1

c
j

‡
j

(⁄)
‡

k

(⁄) + c,

defined on the cone �
k

. As in the proof of Corollary 4.4.6, for any j = 1, . . . , ¸, the function
≠‡

j

/‡
k

on �
k

satisfies the conditions (1-3) in §1, so does f . We also have that f is in the
bounded case with

fŒ(⁄Õ) = ≠
q

¸

j=1

jc
j

‡
j≠1

(⁄)
k‡

k≠1

(⁄) where ⁄Õ œ �Œ = �
k

.

Suppose ‰Õ = ‰ + iˆ ¯̂u with sup
X

u = 0 satisfies

kc(‰Õ)k≠1 · –n≠k ≠
¸ÿ

j=1

jc
j

(‰Õ)j≠1 · –n≠j > 0.
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By the same argument in Corollary 4.4.6, this is equivalent to that u is a C-subsolution of
(4.1.12). Observe that for all tú > 0,

I
k

(u(tú)) =
⁄

t

ú

0

⁄

X

ˆu

ˆt
‰k

u

· –n≠k =
⁄

t

ú

0

⁄

X

A

c ≠
q

¸

j=1

c
j

‡
j

(⁄)
‡

k

(⁄)

B

‰k

u

· –n≠k

=
⁄

t

ú

0

Q

ac
⁄

X

‰k

u

· –n≠k ≠
¸ÿ

j=1

c
j

⁄

X

‰j

u

· –n≠j

R

b = 0. (4.4.68)

Therefore Lemma 4.4.7 implies that

kÿ

j=0

⁄

X

u‰j

u

· ‰k≠j · –n≠k = 0.

Therefore we can obtain the Harnack inequality as in Corollary 4.4.6:

0 Æ sup
X

u(., t) Æ ≠C
1

inf u(., t) + C
2

, (4.4.69)

and inf
X

u < 0, for some positive constants C
1

, C
2

. Lemma 4.2.1 then gives a uniform
bound for u. Since ⁄

X

ˆ
t

u‰k

u

· –n≠k = 0,

for any t > 0, there exists y = y(t) such that ˆ
t

u(y, t) = 0. The rest of the proof is the
same to the proof of Corollary 4.4.6 where we used Lemma 4.3.2 to imply the convergence
of the flow. Q.E.D.

We observe that equations mixing several Hessians seem to appear increasingly fre-
quently in complex geometry. A recent example of particular interest is the Fu-Yau equa-
tion [FY08, FY07, PPZ15, PPZ17c] and its corresponding geometric flows [PPZ16b].

4.4.7 Concluding Remarks

We conclude with a few open questions.
It has been conjectured by Lejmi and Székelyhidi [LS15] that conditions of the form

(4.4.22) and their generalizations can be interpreted as geometric stability conditions. This
conjecture has been proved in the case of the J-flow on toric varieties by Collins and
Székelyhidi [CS17]. Presumably there should be similar interpretations in terms of stability
of the conditions formulated in the previous section. A discussion of stability conditions
for constant scalar curvature Kähler metrics can be found in [PS09].

It would also be very helpful to have a suitable geometric interpretation of conditions
such as the one on the initial data u

0

. Geometric flows whose behavior may behave very
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differently depending on the initial data include the anomaly flows studied in [PPZ17a],
[PPZ17b], [FHP17].

For many geometric applications, it would be desirable to extend the theory of subso-
lutions to allow the forms ‰ and Â to depend on time as well as on u and Òu.
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Chapter 5

A viscosity approach to the
Dirichlet problem for degenerate
complex Hessian type equations

In this chapter, a viscosity approach is introduced for the Dirichlet problem associated
to complex Hessian type equations on domains in Cn. The arguments are modelled on
the theory of viscosity solutions for real Hessian type equations developed by Trudinger
[Tru90]. As consequence we solve the Dirichlet problem for the Hessian quotient and special
Lagrangian equations. We also establish basic regularity results for the solutions.

The results of this chapter are joint work with S�lawomir Dinew and Hoang-Son Do
[DDT17].

5.1 Introduction
Partial differential equations play pivotal role in modern complex geometric analysis. Their
applications typically involve a geometric problem which can be reduced to the solvability
of an associated equation. This solvability can be deducted by various methods yet most
of the basic approaches exploit a priori estimates for suitably defined weak solutions. Thus
although geometers work in the smooth category, the associated weak theory plays an
important role.

One of the most successful such theories is the pluripotential theory associated to the
complex Monge-Ampère eqution developed by Bedford and Taylor [BT76, BT82], Ko�lodziej
[Ko�l98], Guedj and Zeriahi [GZ05] and many others. Roughly speaking pluripotential
theory allows to define (iˆ ¯̂u)k as a measure valued positive closed differential form (i.e. a
closed positive current) for any locally bounded plurisubharmonic function which in turn
allows to deal with non smooth weak solutions of Monge-Ampère equations. Unfortunately
the pluripotential approach is applicable only for a limited class of nonlinear operators, such

133
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as the m-Hessian equations- see [DK17, Lu13].
Some of the most important examples on nonlinear operators for which pluripotential

tools do not seem to apply directly are the complex Hessian quotient operators. These are
not only interesting for themselves but also appear in interesting geometrical problems.
One such example is the Donaldson equation that we describe below.

Given a compact Kähler manifold (X, Ê) equipped with another Kähler form ‰ one
seeks a Kähler form ‰̃ cohomologous to ‰ such that

Ê · ‰̃n≠1 = c‰̃n (5.1.1)

with the constant c dependent only on the cohomology classes of ‰ and Ê.
In [Don99] Donaldson introduced this equation in order to study the properness of the

Mabuchi functional. Its parabolic version known as the J-flow was introduced indepen-
dently by Donaldson [Don99] and Chen [Chen00] and investigated afterwards by Song and
Weinkove [Wei04, Wei06],[SW08]. It is known that the equation (5.1.1) is not always solv-
able. It was shown in [SW08] that a necessary and sufficient condition for the solvability
of (5.1.1) is that there exists a metric ‰Õ in [‰], the Kähler class of ‰, satisfying

(nc‰Õ ≠ (n ≠ 1)Ê) · ‰Õn≠2 > 0, (5.1.2)

in the sense of (n ≠ 1, n ≠ 1) forms. A conjecture of Lejmi and Székelyhidi [LS15] predicts
that the solvability is linked to positivity of certain integrals which can be viewed as geo-
metric stability conditions. It was also proved that, in general, these positivity conditions
are equivalent to the existence of C-subsolutions introduced by Székelyhidi [Sze15]. They
are also equivalent to the existence of parabolic C-subsolutions for the corresponding flows
(cf. [PT17]). It would be helpful to study the boundary case when we only have nonneg-
ativity conditions (see [FLSW14] for Donaldson equation on surfaces). It is expected that
in this boundary case the equation admits suitably defined singular solutions which are
smooth except on some analytic set. This has been confirmed in complex dimension two in
[FLSW14] but the proof cannot be generalized to higher dimensions. In fact a major part
of the problem is to develop the associated theory of weak solutions for the given Hessian
quotient equation. An essential problem in applying some version of pluripotential theory
for this equation is that one has to define the quotient of two measure valued operators.

In order to circumvent this difficulty one can look for possibly different theory of weak
solutions. One such approach, known as the viscosity method was invented long ago in the
real setting [CIL92], but was only recently introduced for complex Monge-Ampère equations
by Eyssidieux-Guedj-Zeriahi [EGZ11], Wang [Wan12] and Harvey-Lawson [HL09].

In the current note we initiate the viscosity theory for general complex nonlinear elliptic
PDEs. As the manifold case is much harder we focus only on the local theory i.e. we deal
with functions defined over domains in Cn. Precisely, let � µ Cn be a bounded domain,
we consider the equation

F [u] := f(⁄(Hu)) = Â(x, u), (5.1.3)
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where ⁄(Hu) denotes the vector of the eigenvalues of the complex Hessian Hu of the real
valued function u and Â : � ◊ R æ R

+

is a given nonnegative function which is weakly
increasing in the second variable. We wish to point out that nonlinear PDEs appear also
in geometric problems which are defined over domains in Cn- see for example [CPW17],
where a Dirichlet problem for the special Lagrangian type equation is studied. These are
the equations defined for a given function h by

F [u] :=
nÿ

i=1

arctan ⁄
i

= h(z),

with ⁄
i

denoting the eigenvalues of the Hessian of u at z. In the real case the special
Lagrangian equations were introduced by Harvey and Lawson [HL82] in the study of cal-
ibrated geometies. More precisely the graphs of gradients of the solutions correspond to
calibrated minimal submanifolds. We show in Section 5.6 that our method can be applied
to solve the Dirichlet problem for the special degenerate Lagrangian type equation.

In our investigations we heavily rely on the corresponding real theory developed by
Trudinger in [Tru90]. Some of our results can be seen as complex analogues of the real
results that can be found there. In particular we have focused on various comparison
principles in Section 5.3. Our first major result can be summarized as follows (we refer to
the next section for the definitions of the objects involved):

Theorem 5.1.1 (Comparison principle). Let � be the ellipticity cone associated to the
equation (5.1.3). Assume that the operator F [u] = f(⁄(Hu)) in (5.1.3) satisfies

f œ C0(�̄), f > 0 on �, f = 0 on ˆ�,

and
f(⁄ + µ) Ø f(⁄), ’⁄ œ �, µ œ �

n

.

Assume moreover that either
nÿ

i=1

ˆf

ˆ⁄
i

⁄
i

=
nÿ

i=1

f
i

⁄
i

Ø ‹(f) in �, and inf
zœ�

Â(z, ·) > 0

for some positive increasing function ‹, or

f is concave and homogeneous.

Then any bounded subsolution u and supersolution v in � to the equation (5.1.3) satisfy

sup
�

(u ≠ v) Æ max
ˆ�

{(u ≠ v)ú, 0} .

We use later on this seemingly technical result to study existence, uniqueness and
regularity of the associated Dirichlet problems. One of our main result is the solvability
and sharp regularity for viscosity solutions to the Dirichlet problem for a very general class
of operators including Hessian quotient type equations.
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Theorem 5.1.2. The Dirichlet problem
I

F [w] = f(⁄(Hw)) = Â(z, w(z))
u = Ï on ˆ�

admits a continuous solution for any bounded �-pseudoconvex domain �. Under natu-
ral growth assumptions on Â the solution is Hölder continuous for any Hölder continous
boundary data Ï.

Another interesting topic is the comparison between viscosity and pluripotential theory
whenever the latter can be reasonably defined. A guiding principle for us is the basic ob-
servation made by Eyssidieux, Guedj and Zeriahi [EGZ11] that plurisubharmonic functions
correspond to viscosity subsolutions to the complex Monge-Ampère equation. We prove
several analogous results for general complex nonlinear operators. It has to be stressed
that the notion of a supersolution, which does not appear in pluripotential theory, is a
very subtle one for nonlinear elliptic PDEs and several alternative definitions are possible.
We in particular compare these and introduce a notion of supersolution that unifies the
previously known approaches.

A large part of the note is devoted to complex Hessian quotient equations in domains
in Cn. One of our goals in this case was to initiate the construction of the undeveloped
pluripotential theory associated to such equations. We rely on connections with the cor-
responding viscosity theory. Our findings yield in particular that the natural domain of
definition of these operators is strictly smaller than what standard pluripotential theory
would predict. We prove the following theorem:

Theorem 5.1.3. Assume that 0 < Â œ C0(�) and u œ PSH(�) fl LŒ
loc

(�) is a viscosity

subsolution of (ddcu)n

(ddcu)n≠k · Êk

= Â(z) in �. Then

(ddcu)n Ø Â(ddcu)n≠k · Êk

and

(ddcu)k Ø
A

n

k

B≠1

ÂÊk

in the pluripotential sense.

We guess that this observation, rather obvious in the case of smooth functions, will
play an important role in the resolution of the issue caused by the division of measures.

The chapter is organized as follows: in the next section we collect the basic notions
from linear algebra, viscosity and pluripotential theory. Then we investigate the various
notions of supersolutions in [EGZ11] and [Lu13] and compare them with the complex
analogue of Trudinger’s supersolutions. Section 3 is devoted to the proof of a very general
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comparison principle. Then in Section 4 we restrict our attention to operators depending
on the eigenvalues of the complex Hessian matrix of the unknown function. We show
existence and uniqueness of viscosity solutions under fairly mild conditions. One subsection
is devoted to the regularity of these weak solutions. Using classical methods due to Walsh
[Wal68] (see also [BT76]) we show the optimal Hölder regularity for sufficiently regular
data. Secton 5 is devoted to comparisons between viscosity and pluripotential subsolutions
and supersolutions. Finally in Section 5.6 we solve the Dirichlet problem for the Lagrangian
phase operator.

5.2 Preliminaries
In this section we collect the notation and the basic results and definitions that will be
used throughout the note.

5.2.1 Linear algebra toolkit

We begin by introducing the notion of an admissible cone that will be used throughout the
note:

Definition 5.2.1. A cone � in Rn with vertex at the origin is called admissible if:

(1) � is open and convex, � ”= Rn;

(2) � is symmetric i.e. if x = (x
1

, · · · , x
n

) œ � then for any permutation of indices
i = (i

1

, · · · , i
n

) the vector (x
i1 , · · · , x

in) also belongs to �;

(3) �
n

µ �, where �
n

:= {x œ Rn| x
i

> 0, i œ 1, · · · , n}.

From the very definition it follows that �
n

is an admissible cone. Other examples
involve the �

k

cones that we describe below:
Consider the m-th elementary symmetric polynomial defined by

‡
m

(x) =
ÿ

1Æj1<...<jmÆn

x
j1x

j2 ...x
jm .

We shall use also the normalized version

S
m

(x) :=
A

n

m

B≠1

‡
m

.

Definition 5.2.2. For any m = 1, . . . n, the positive cone �
m

of vectors x = (x
1

, · · · , x
n

) œ
Rn is defined by

�
m

= {x œ Rn| ‡
1

(x) > 0, · · · , ‡
m

(x) > 0}. (5.2.1)
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It is obvious that these cones are open and symmetric with respect to a permutation
of the x

i

’s. It is a nontrivial but classical fact that �
m

is also convex.
Exploiting the symmetry of � it is possible to discuss � positivity for Hermitian matri-

ces:

Definition 5.2.3. A Hermitian n ◊ n matrix A is called � positive (respectively �-semi
positive) if the vector of eigenvalues ⁄(A) := (⁄

1

(A), · · · , ⁄
n

(A)) belongs to � (resp. to the
Euclidean closure �̄ of �). The definition is independent of the ordering of the eigenvalues.

Finally one can define, following [Li04], the notion of �-admissible and �-subharmonic
functions through the following definitions:

Definition 5.2.4. A C2 function u defined on a domain � µ C is called �-admissible if
for any z œ � the complex Hessian Hu(z) := [ ˆ

2
ˆzjˆz̄k

]n
j,k=1

is �-positive.

In particular, if � is an admissible cone, then � µ �
1

(see [CNS85]), hence we have the
following corollary:

Corollary 5.2.5. Any �-admissible function is subharmonic.

Definition 5.2.6. An upper semicontinuous function v defined on a domain � µ Cn is
called �-subharmonic if near any z œ � it can be written as a decreasing limit of local
�-admissible functions.

We refer to [HL09] for a detailed discussion and potential theoretic properties of general
�-subharmonic functions.

5.2.2 Viscosity sub(super)-solutions
Let � be a bounded domain in Cn. Consider the following equation:

F [u] := F (x, u, Du, Hu) = 0, on �, (5.2.2)

where Du = (ˆ
z1u, . . . , ˆ

znu), Hu = (u
j

¯

k

) is the Hessian matrix of u and F is continuous
on � ◊ R ◊ Cn ◊ Hn. The operator F is called degenerate elliptic at a point (z, s, p, M) if

F (z, s, p, M + N) Ø F (z, s, p, M) for all N Ø 0, N œ Hn, (5.2.3)

where Hn is the set of Hermitian matrices of size n ◊ n. We remark that in our case
F (z, s, p, M) is not necessarily degenerate elliptic everywhere on �◊R◊Cn◊Hn. Motivated
by the paper of Trudinger [Tru90] we pose the following definition:

Definition 5.2.7. A function u œ LŒ(�) is a viscosity subsolution of (5.2.2) if it is upper
semi-continuous in � and for any z

0

œ �, and any C2 smooth function q defined in some
neighbourhood of z

0

and satisfying u Æ q, u(z
0

) = q(z
0

), the inequality

F [q](z
0

) Ø 0 (5.2.4)
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holds. We also say that F [u] Ø 0 in the viscosity sense and q is an upper (differential) test
for u at z

0

.
A function v œ LŒ(�) is a viscosity supersolution of equation (5.2.2) if it is lower

semi-continuous and there are no points z
0

œ � and functions C2 smooth functions defined
locally around z

0

, such that v Ø q in �, v(z
0

) = q(z
0

) and

inf
NØ0

F (z
0

, q(z
0

), Dq(z
0

), N + HÂ(z
0

)) > 0. (5.2.5)

We also say that F [u] Æ 0 in the viscosity sense and q is a lower (differential) test for u at
z

0

.
For fixed (z, s, p) œ � ◊ R ◊ Cn the set of all Hermitian matrices M , such that F is

degenerate elliptic at (z, s, p, M) is called the ellipticity set A(z, s, p) for the data (z, s, p).
Note that the ellipticity set has the property that

A(z, s, p) + �
n

µ A(z, s, p),

but it may not be a cone. Throughout the note we shall however focus on the situation
when the ellipticity set is a cone which is moreover constant for all the possible data sets.
We then define the ellipticity cone associated to the operator F which is modelled on the
notion of a subequation coined by Harvey and Lawson in [HL09] :
Definition 5.2.8. An operator F (z, s, p, M) has an ellipticity cone � if for any M in
the ellipticity set the vector ⁄(M) of the eigenvalues of M belongs to the closure �̄ of �.
Furthermore � is the minimal cone with such properties.

Throughout the note we consider only the situation when � is an admissible cone in the
sense of Definition 5.2.1. We shall make also the following additional assumption (compare
with Condition (2) in Subsection 5.4.1):

’⁄ œ ˆ�, ’(z, s, p) œ � ◊ R ◊ Cn F (z, s, p, ⁄) Æ 0. (5.2.6)

This condition arises naturally whenever one seeks solutions to

F (z, u(z), Du(z), Hu(z)) = 0

with pointwise Hessian eigenvalues in � (recall that F increases in the �
n

directions).
It is evident that in Definition 5.2.7 the notion of a supersolution is different and

substantially more difficult that the notion of a subsolution. The reason for this is that
there is no analog for the role of the positive cone �

n

from the case of subsolutions in the
supersolutions’ case. As an illustration we recall that while any plurisubharmonic function
is a subsolution for F (u) := det(H(u)) = 0 (see [EGZ11]) it is far from being true that all
supersolutions can be written as the negative of a plurisubharmonic function.

Below we also give another notion of a supersolution that was coined in [EGZ11] for
the Monge-Ampère equation (see also [Lu13] for the case of m-Hessian operator). It can
be generalized for all operators admitting an elliptic admissible cone:



140 CHAPTER 5. VISCOSITY APPROACH FOR HESSIAN TYPE EQUATIONS

Definition 2. A lower semicontinuous function u is said to be a supersolution for the
operator F (z, s, p, M) with the associated ellipticity cone � iff for any z

0

œ � and every
lower differential test q at z

0

for which ⁄(Hq(z
0

)) œ �̄ one has

F (z, q(z
0

), Dq(z
0

), Hq(z
0

)) Æ 0.

Note that in the definition we limit the differential tests only to those for which
⁄(Hq(z

0

)) œ �̄ .
The next proposition shows that under the assumption (5.2.6) the definition above

coincides with the one from Definition 5.2.7.

Proposition 5.2.9. Suppose that the operator F (z, s, p, M) satisfies (5.2.6). Then a lower
semicontinous function u defined on a domain � is a supersolution for F(z,s,p,M)= 0 in
the sense of Definition 2 if and only if it is a supersolution in the sense of Definition 5.2.7.

Proof. Suppose first that u is a supersolution in the sense of Definition 2. Fix any z
0

in �
and q a lower differential test for u at z

0

. If ⁄(Hq(z
0

)) œ � then

F (z, q(z
0

), Dq(z
0

), Hq(z
0

)) Æ 0,

hence taking N = 0 in Definition 5.2.7 we see that the condition is fulfilled. If ⁄(Hq(z
0

))
fails to be in � then there is a positive definite matrix N and a positive number t such that
⁄(Hq(z

0

) + tN) œ ˆ�. But this implies that F (z, q(z
0

), Dq(z
0

), Hq(z
0

) + tN) Æ 0 which
fulfills the condition in Definition 5.2.7 again.

Suppose now that u is a supersolution in the sense of Definition 5.2.7. Again choose z
0

in � and q a lower differential test for u at z
0

. We can assume that ⁄(Hq(z
0

)) is in �, for
otherwise such a differential test cannot be applied in Definition 2. But then by ellipticity

F (z, q(z
0

), Dq(z
0

), Hq(z
0

)) Æ F (z, q(z
0

), Dq(z
0

), Hq(z
0

) + N), ’N Ø 0, N œ Hn.

The infimum over N for the right hand side is non positive by definition which implies

F (z, q(z
0

), Dq(z
0

), Hq(z
0

)) Æ 0

which was to be proved.

5.2.3 Aleksandrov-Bakelman-Pucci maximum principle
In this section, we recall a variant of Aleksandrov-Bakelman-Pucci (ABP) maximum prin-
ciple following [Jen88]. We first recall the following definition (cf. [Jen88]):

Definition 5.2.10. Let � be a bounded domain in Rn centered at the origion, and u œ
C(�). We define

E
”

= {x œ �| for some p œ B(0, ”), u(z) Æ u(x) + p.(z ≠ x), ’z œ �}.
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Then we have the following lemma due to Jensen [Jen88] which will be used in the proof
of Lemma 5.3.1. Recall that a function u is said to be semi-convex if u + k|z|2 is convex
for a sufficiently large constant k.

Lemma 5.2.11. Let u œ C(�) be semi-convex for some constant k > 0. If u has an
interior maximum and sup

�

u ≠ sup
ˆ�

u = ”
0

d > 0, where d = diam(�). Then there is a
constant C = C(n, k) > 0 such that

|E
”

| Ø C”n, for all ” œ (0, ”
0

). (5.2.7)

Proof. As in Jensen [Jen88], by regularization, we can reduce to the case when u œ C2(�).
Now, suppose that u has an interior maximum at x

0

and

”
0

= sup
�

u ≠ sup
ˆ�

u

d
= u(x

0

) ≠ sup
ˆ�

u

d
,

where d = diam(�).

We now prove that for ” < ”
0

we have B(0, ”) µ Du(E
”

). Indeed, for any p œ B(0, ”),
consider the hyperplane ¸

p

(x) = h + Èp, xÍ where h = sup
yœ�

(u(y) ≠ Èp, yÍ). Then we have
u(x) Æ ¸

p

(x) on � and u(x
1

) = ¸
p

(x
1

) for some x
1

œ �. If we can prove that x
1

œ �, then
Du(x

1

) = p, so B(0, ”) µ Du(E
”

). Suppose by contradiction that x
1

œ ˆ�, then

sup
�

u = u(x
0

)

Æ ¸
p

(x
1

) + Èp, x
0

≠ x
1

Í
= u(x

1

) + Èp, x
0

≠ x
1

Í Æ sup
ˆ�

u + ”d < sup
ˆ�

u + ”
0

d = sup
�

u,

hence we get a contradiction.

Next, as we have proved that B(0, ”) µ Du(E
”

), then by comparing volumes, we infer
that

c(n)”n Æ
⁄

E”

| det(D2u)|. (5.2.8)

Since u is semi-convex with the constant k > 0 and D2u Æ 0 in E
”

, we have | det(D2u)| Æ
kn. It follows that |E

”

| Ø c(n)k≠n”n.

5.2.4 �-subharmonic functions
We have defined � subharmonic functions as limits of admissible ones. Below we present
the alternative viscosity and pluripotential points of view:

Let � µ Cn be a bounded domain. Denote Ê = ddc|z|2, where d := i( ¯̂ + ˆ) and
dc := i

2fi

( ¯̂ ≠ ˆ) so that ddc = i

fi

ˆ ¯̂. Let � ( Rn be an admissible cone as in Definition
5.2.1. We first recall the definition of k-subharmonic function:
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Definition 3. We call a function u œ C2(�) is k-subharmonic if for any z œ �, the Hessian
matrix (u

i

¯

j

) has eigenvalues forming a vector in the closure of the cone �
k

.

Following the ideas of Bedford-Taylor [BT82], Blocki [Blo05a] introduced the pluripo-
tential definition of the k-sh function.

Definition 5.2.12. Let u be subharmonic function on a domain � µ Cn. Then u is
called k-subharmonic (k-sh for short) if for any collection of C2-smooth k-sh functions
v

1

, . . . , v
k≠1

, the inequality

ddcu · ddcv
1

· . . . · ddcv
k≠1

· Ên≠k Ø 0

holds in the weak sense of currents.

For a general cone �, we have the following definition in the spirit of viscosity theory:

Definition 5.2.13. An upper semicontinuous function u is called �-subharmonic (resp.
strictly �-subharmonic) if for any z œ �, and any upper test function q of u at z, we have

⁄(Hq(z)) œ � (resp. ⁄(Hq(z)) œ �).

By definition, if u is a �-subharmonic function, it is a �-subsolution in the sense of
Székelyhidi [Sze15]. In particular, when � = �

k

for k = 1, . . . n, u is a viscosity subsolution
of the equation

S
k

(⁄(Hu)) = 0,

where
S

k

(⁄(Hu)) = (ddcu)k · Ên≠k

Ên

.

Then it follows from [EGZ11, Lu13] that u is a k-subharmonic function on �, hence u is a
subharmonic function if k = 1 and a plurisubharmonic function if k = n.

We also have the following definition generalizing the pseudoconvex domains (see also
[Li04] for similar definition for smooth domains):

Definition 5.2.14. Let � be a bounded domain in Cn, we say that � is a �-pseudoconvex
domain if there is a constant C

�

> 0 depending only on � so that ≠d(z) + C
�

d2(z) is
�-subharmonic on ˆ�, where d(z) := dist(z, ˆ�).

We recall the following lemma which was proved in [Li04, Theorem 3.1].

Lemma 5.2.15. Let � be bounded domain in Cn with C2 smooth boundary. Let fl œ C2(�̄)
be a defining function of � so that ⁄(Hfl) œ � on ˆ�. Then there exists a defining function
fl̃ œ C2(�̄) for � such that ⁄(H fl̃) œ � on �.

Finally we wish to recall the survey article [Zer13] where the Reader may find a thorough
discussion of the viscosity theory associated to complex Monge-Ampère type equations.
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5.3 Comparison principles
Comparison principles are basic tools in pluripotential theory- we refer to [Ko�l98, GZ17b]
for a thorough discussion of these inequalities. In viscosity theory one compares sub-
and supersolutions to the same equation. It is a crucial observation (cf. [EGZ11]) that
even though supersolutions may fail to have nice pluripotential properties a version of the
comparison principle holds for the complex Monge-Ampère equation. In this section we
discuss under what assumptions such comparison principles hold for general operators.

5.3.1 A preliminary comparison principle
Let � be a bounded domain in Cn. In this subsection we prove a comparison principle for
viscosity solutions of the following equation:

F [u] := F (x, u, Du, Hu) = 0. (5.3.1)

It is well known that mere ellipticity is insuffiecient to guarantee comparison type result.
Hence we add some natural structural conditions for the equation (5.3.1).

First of all we assume that F is decreasing in the s variable, namely

’r > 0 F (z, s, p, M) ≠ F (z, s + r, p, M) Ø 0. (5.3.2)

This is a natural assumption in the theory (see [Zer13]) as it yields an inequality in the
"right" direction for the maximum principle.

Next we assume certain continuity property with respect to the z and p variables:

|F (z
1

, s, p
1

, M) ≠ F (z
2

, s, p
2

, M)| Æ –
z

(|z
1

≠ z
2

|) + –
p

(|p
1

≠ p
2

|), (5.3.3)

for all z
1

, z
2

œ �, ‡ œ R, p
1

, p
2

œ Cn, M œ Hn. Here –
z

and –
p

are certain moduli of
continuity i.e. increasing functions defined for nonnegative reals which tend to zero as the
parameter decreases to zero.

We can now state the following general comparison principle for the equation (5.3.1).
Lemma 5.3.1. Suppose u œ LŒ(�) (resp. v œ LŒ(�)) satisfies F [u] Ø ” (resp. F [v] Æ 0)
in � in the viscosity sense for some ” > 0. Then

sup
�

(u ≠ v) Æ max
ˆ�

{(u ≠ v)ú, 0} , (5.3.4)

with ú denoting the standard upper semicontinuous regularization.
Proof. The idea comes from [Tru90]. We use Jensen’s approximation (cf. [Jen88]) for u, v
which is defined by

uÁ(z) = sup
z

Õœ�

;
u(zÕ) ≠ C

0

Á
|zÕ ≠ z|2

<
,

v
Á

(z) = inf
z

Õœ�

;
v(zÕ) + C

0

Á
|zÕ ≠ z|2

<
, (5.3.5)
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where Á > 0 and C
0

= max{osc
�

u, osc
�

v} with osc(u) = sup u
�

≠ inf
�

u. Then the
supermum and infimum in (5.3.5) are achieved at points zú, zú œ � with |z≠zú|, |z≠zú| < Á
provided that z œ �

Á

= {z œ �| dist(z, ˆ�) > Á}. It follows from [CC95] (see also [Wan12]
for an adaption in the complex case) that uÁ (resp. v

Á

) is Lipschitz and semi-convex (resp.
semi-concave) in �

Á

, with

|DuÁ|, |Dv
Á

| Æ 2C
0

Á
, HuÁ, ≠Hv

Á

Ø ≠2C
0

Á2

Id, (5.3.6)

whenever these derivatives are well defined.
Exploiting the definition of viscosity subsolution one can show that uÁ satisfies

F (zú, uÁ(z), DuÁ(z), HuÁ(z)) Ø ” (5.3.7)

in the viscosity sense for all z œ �
Á

. Indeed, let q be an upper test of uÁ at z
0

, then the
function

q̃(z) := q(z + z
0

≠ zú
0

) + 1
Á

|z
0

≠ zú
0

|2

is an upper test for u at zú
0

. Therefore we get (5.3.7) as u is a viscosity subsolution. This
also implies that

F (zú, uÁ(z), DuÁ(z), N + HuÁ(z)) Ø ”, (5.3.8)
in the viscosity sense for any fixed matrix N Ø 0. Since any locally semi-convex (semi-
concave) function is twice differentiable almost everywhere by Aleksandroff’s theorem, we
infer that for almost all z œ �

Á

, F is degenerate elliptic at (zú, uÁ(z), DuÁ(z), HuÁ(z)) and

F (zú, uÁ(z), DuÁ(z), N + HuÁ(z)) Ø ”, (5.3.9)

for all N œ Hn such that N Ø 0.
We assume by contradiction that sup

�

(u ≠ v) = u(z
0

) ≠ v(z
0

) = a > 0 for some z
0

œ �.
For any Á sufficiently small the function w

Á

:= uÁ ≠ v
Á

has a positive maximum on �
Á

at
some point z

Á

œ �
Á

such that z
Á

æ z
0

as Á æ 0. So we can choose Á
0

> 0 such that that
for any Á < Á

0

, w
Á

:= uÁ ≠ v
Á

has a positive maximum on �
Á

at some point z
Á

œ � with
d(z

Á

, ˆ�) > Á
0

. Applying the ABP maximum principle (Lemma 5.2.11), for the function
w

Á

on �
Á0 and for any ⁄ > 0 sufficiently small, there exist a set E

⁄

µ �
Á0 containing z

Á

with |E
⁄

| Ø c⁄n, where c is c(n)Á2n, such that |Dw
Á

| Æ ⁄ and Hw
Á

Æ 0 almost everywhere
in E

⁄

. Since w
Á

(z
Á

) > 0, we can choose ⁄ small enough such that w
Á

Ø 0 in E
⁄

. The
condition (5.3.2) and the fact that F is degenerate elliptic at (zú, uÁ(z), DuÁ(z), HuÁ(z))
for almost all z œ E

⁄

, imply that

F (zú, uÁ(z), DuÁ(z), N + HuÁ(z)) Æ F (zú, v
Á

(z), DuÁ(z), N + HvÁ(z)). (5.3.10)

Using (5.3.3) and the fact that |D(uÁ ≠ v
Á

)| Æ ⁄, we get

F (zú, v
Á

(z), DuÁ(z), N + HvÁ(z)) Æ F (zú, v
Á

(z), DvÁ(z), N + HvÁ(z)) + –
p

(⁄).
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Combining with (5.3.3), (5.3.9), (5.3.10) and |zú ≠ zú| < Á that for almost all z œ E
⁄

,

F (zú, v
Á

(z), Dv
Á

(z), N + Hv
Á

(z)) Ø ” ≠ –
z

(Á) ≠ –
p

(⁄). (5.3.11)

By taking ⁄, and then Á sufficiently small and using the fact that v
Á

is twice differentiable
almost everywhere on �, we can find at a fixed point z

1

œ E
⁄

a lower test q of v at z
1

such
that

F (z
0

, q(z
0

), D(z
0

), N + Hq(z
0

)) Ø 1
2”, (5.3.12)

for all N Ø 0. This contradicts the definition of viscosity supersolution. Therefore we get
(5.3.4).

Remark. By assuming more properties of F , it is possible to obtain ” = 0 in the previous
result. This is the case for the Monge-Ampère equation. Otherwise we need to adjust
function u to achieve a strict inequality in order to use Lemma 5.3.1.

5.3.2 Comparison principle for Hessian type equations
We now consider the Hessian type equation of the form

F [u] = Â(z, u), (5.3.13)

where Â œ C0(� ◊ R) and F [u] = f(⁄(Hu)) such that

s ‘æ Â(·, s) is weakly increasing, (5.3.14)
f œ C0(�̄), f > 0 on �, f = 0 on ˆ�, (5.3.15)

and
f(⁄ + µ) Ø f(⁄), ’⁄ œ �, µ œ �

n

. (5.3.16)
First, in order to use Lemma 5.3.1, we extend f continuously on Rn by taking f(⁄) = 0

for all ⁄ œ Rn \ �. For a ” independent comparison principle we need more assumptions
on F . Similarly to [Tru90], we can assume that the operator F [u] = f(⁄(Hu)) satisfies

nÿ

i=1

ˆf

ˆ⁄
i

⁄
i

=
nÿ

i=1

f
i

⁄
i

Ø ‹(f) in �, inf
zœ�

Â(z, ·) > 0 (5.3.17)

for some positive increasing function ‹.
This condition is satisfied for example in the case of the complex Hessian equations

F [u] := ‡
k

(⁄(Hu)), k œ {1, · · · , n}.
We also study a new condition namely

f is concave and homogeneous, (5.3.18)

i.e f(t⁄) = tf(⁄), ’t œ R+.
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Theorem 5.3.2. Let u, v œ LŒ(�) be viscosity subsolution and supersolution of equation
(5.3.13) in �. Assume that either f satisfies either (5.3.17) or (5.3.18). Then

sup
�

(u ≠ v) Æ max
ˆ�

{(u ≠ v)ú, 0} . (5.3.19)

Proof. Assume first that f satisfies (5.3.17). Then following [Tru90], we set for any t œ
(1, 2),

u
t

(z) = tu(z) ≠ C(t ≠ 1),

where C = sup
�

u. Therefore we have u
t

(z) Æ u(z) on � for all t œ (1, 2). Then for any
z

0

œ � and an upper test function q
t

(z) of u
t

at z
0

we have q(z) := t≠1q
t

(z) ≠ C(t≠1 ≠ 1)
is also an upper test for u at z

0

. Set ⁄ = ⁄[q](z
0

), then ⁄[q
t

](z
0

) = t⁄ and q(z
0

) Ø q
t

(z
0

).
We also recall that the function s ‘æ f(s⁄) is increasing on R+ (by (5.3.17)) and f(⁄) Ø
Â(z, u(z

0

)) since q is an upper test for u at z
0

. It follows that at z
0

,

F [q
t

] = f(⁄[q
t

]) = f(t⁄)
Ø f(⁄) + (t ≠ 1)

ÿ
⁄

i

f
i

(tú⁄)

Ø Â(z
0

, q(z
0

)) + (t ≠ 1)
ÿ

⁄
i

f
i

(tú⁄)

Ø Â(z
0

, q
t

(z
0

)) + t ≠ 1
2 ‹(inf

�

Â(z, inf
�

u))

for 1 Æ tú < t, sufficiently close to 1. Therefore we have for some ” > 0

F [u
t

] Ø Â(z, u
t

) + ”,

in the viscosity sense in �. Thus the inequality (5.3.19) follows from Lemma 5.3.1.

Next, consider the second case when f is concave and homogeneous. Suppose, without
loss of generality, that 0 œ �. We set

u
·

(z) = u(z) + ·(|z|2 ≠ R),

where R = diam(�). Then for any q
·

œ C2(�) such that q
·

Ø u
·

near z
0

and q
·

(z
0

) =
u

·

(z
0

), we have q = q
·

≠·(|z|2 ≠R) Ø q
·

, and q is also an upper test for u at z
0

. Therefore,
we have at z

0

,

F [q
·

] = 2df
3

⁄(Hq) + ·1
2

4
(5.3.20)

Ø f(⁄(Hq)) + f(·1)
Ø Â(z

0

, q
·

) + ”.

Therefore F [u
·

] Ø Â + ” in the viscosity sense. Applying Lemma 5.3.1 we get (5.3.19).
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By definition, we have the following properties of sub(super)-solutions. Their proofs
follow in a straightforward way from [CIL92, Proposition 4.3].

Lemma 5.3.3. (a) Let {u
j

} be viscosity subsolutions of (5.3.13) in �, which are uniformly
bounded from above. Then (lim sup

�

u
j

)ú is also a viscosity subsolution of (5.3.13) in �.
(b) Let {v

j

} be viscosity supersolutions of (5.3.13) in �, which are uniformly bounded from
below. Then (lim inf

�

v
j

)ú is also a viscosity supersolution of (5.3.13) in �.

Now using Perron’s method (see for instance [CIL92]), we obtain the next result:

Lemma 5.3.4. Let u, u œ LŒ(�) are a subsolution and a supersolution of (5.3.13) on �.
Suppose that uú(z) = uú(z) on the boundary of �. Then the function

u := sup{v œ LŒ(�) fl USC(�) : v is a subsolution of (5.3.13), u Æ v Æ u}

satisfies u œ C0(�) and
F [u] = Â(x, u) in �,

is the viscosity sense.

Proof. It is straightforward that uú is a viscosity subsolution of (5.3.13). We next prove that
uú is a supersolution of (5.3.13). Assume by contradiction that uú is not a supersolution
of (5.3.13), then there exists a point z

0

œ � and a lower differential test q for uú at z
0

such
that

F [q](z
0

) > Â(z
0

, q(z
0

)). (5.3.21)

Set q̃(z) = q(z) + b ≠ a|z ≠ z
0

|2, where b = (ar2)/6 with a, r > 0 small enough so that
F [q̃] Ø Â(x, q̃) for all |z ≠ z

0

| Æ r. Since uú Ø q for |z ≠ z
0

| Æ r, we get uú Ø uú > q̃ for
r/2 Æ |z ≠ z

0

| < r. Then the function

w(z) =
I

max{uú(z), q̃(z)} if |z ≠ z
0

| Æ r,

uú(z) otherwise

is a viscosity subsolution of (5.3.13). By choosing a sequence z
n

æ z
0

so that u(z
n

) æ
uú(z

0

), we have q̃(z
n

) æ uú(z
0

) + b. Therefore, for n sufficiently large, we have w(z
n

) >
u(z

n

) and this contradicts the definition of u. Thus we have uú is also a supersolution.
Then it follows from Theorem 5.3.2 and uú(z) = uú(z) for z œ ˆ� that uú Æ uú on �, hence
u = uú = uú.
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5.4 Dirichlet problems
5.4.1 Viscosity solutions in �-pseudoconvex domains
Let � µ Cn be a C2 bounded domain. In this section, we study the following Dirichlet
problem I

F [u] = f(⁄(Hu)) = Â(x, u) on �
u = Ï on ˆ�,

(5.4.1)

where Ï œ C0(ˆ�) and Â œ C0(� ◊ R) such that Â > 0 and

s ‘æ Â(., s) is weakly increasing.

Let � ( Rn be an admissible cone. We assume further that f œ C0(�) satisfies:

(1) f is concave and f(⁄ + µ) Ø f(⁄), ’⁄ œ �, µ œ �
n

.

(2) sup
ˆ�

f = 0, and f > 0 in �.

(3) f is homogeneous on �.

We remark that, the condition ((2)) and ((3)) imply that for any ⁄ œ � we have

lim
tæŒ

f(t⁄) = +Œ. (5.4.2)

We now can solve the equation (5.4.1) in the viscosity sense:

Theorem 5.4.1. Let � be a C2 bounded �-pseudoconvex domain in Cn. The the Dirichlet
problem

f(⁄[u]) = Â(x, u) in �, u = Ï on ˆ�.

admits a unique admissible solution u œ C0(�̄).
In particular, we have a LŒ bound for u which only depends on ||Ï||

L

Œ and ||Â(x, C)||
L

Œ

and �, where C is a constant depending on �.

Proof. By Lemma 5.2.15, there is a defining function fl œ C2(�) for � such that ⁄(Hfl) œ �
on �. The C2-smoothness of the boundary implies the existence of a harmonic function h
on � for arbitrary given continuous boundary data Ï. Set

u = (A
1

fl + h) + A
2

fl,

where A
1

> 0 is chosen so that A
1

fl + h is admissible and A
2

will be chosen later.
By the concavity of f and (5.4.2), for A

2

sufficiently large we get

f(⁄[u]) Ø 1
2f(2⁄[A

1

fl + h]) + 1
2f(2A

2

⁄[fl])

Ø max
�

Â(x, h) Ø Â(x, u).
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Therefore u is a subsolution of (5.4.1).

Since h is harmonic, for each z œ � there is a Hermitian matrix N Ø 0 so that
⁄(N + H(h)(z)) œ ˆ�. But then then f(⁄(N + H(h)(z))) = 0. Therefore, v̄ := h is a
supersolution of (5.4.1).

Finally, the existence of solution follows from Perron’s method. We set

u := sup{w is subsolution of (5.4.1) on �, u Æ w Æ v}.

As in the argument from Lemma 5.3.4 we have uú (resp. uú) is a subsolution (resp.
supersolution) of (5.4.1). It follows from the comparison principle (Theorem 5.3.2) that

uú(z) ≠ uú(z) Æ lim sup
wæˆ�

(uú ≠ uú)+(w).

Since u and v are continuous and u = v = Ï on ˆ� we infer that uú Æ uú on � and uú = uú
on ˆ�. Therefore u = uú = uú is a viscosity solution of (5.4.1). The uniqueness follows
from the comparison principle (Theorem 5.3.2).

As a corollary of Theorem 5.4.1, we solve the following Dirichlet problem for Hessian
quotient equations

I
S

k,¸

(⁄(Hu)) := Sk
S¸

(⁄(Hu)) = Â(x, u) on �
u = Ï on ˆ�

, (5.4.3)

where � µ Cn be a smooth bounded �
k

-pseudoconvex domain, 1 Æ ¸ < k Æ n and

S
k

(⁄(Hu)) = (ddcu)k · Ên≠k

Ên

.

Note that the operator S1/(k≠l)

k,¸

is concave and homogeneous (see [Spr05]).

Corollary 5.4.2. The Dirichlet problem (5.4.3) admits a unique viscosity solution u œ
C0(�̄) for any continuous data Ï.

We also remark that a viscosity subsolution is always a �-subharmonic function.

Lemma 5.4.3. Any viscosity subsolution of the equation f(⁄(Hu)) = Â(z, u) is a �-
subharmonic function. In particular, if u is a viscosity subsolution of the equation

S
k,¸

(⁄(Hu)) = Â(z, u), (5.4.4)

then u is k-subharmonic.
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Proof. Let z
0

œ � and q œ C2

loc

({z
0

}), such that u ≠ q attains its maximum at z
0

and
u(z

0

) = q(z
0

). By definition we have

f(⁄(Hq)(z
0

)) > 0.

Observe that for any semi-positive Hermitian matrix N , the function

q
N

(z) := q(z) + ÈN(z ≠ z
0

), z ≠ z
0

Í
is also an upper test function for u at z

0

. By the definition of viscosity subsolutions we
have

f(⁄(Hq̃)(z
0

)) > 0. (5.4.5)

Suppose that ⁄(Hq)(z
0

) /œ �̄. Then we can find N Ø 0 so that ⁄(Hq̃)(z
0

) œ ˆ�, so
f(⁄(Hq̃)(z

0

)) = 0 by the condition (3) above, this contradicts to (5.4.5). Hence we always
have ⁄[q](z

0

) Ø 0, and so u is �-subharmonic.

5.4.2 Hölder continuity of Hessian type equations
In this subsection, we study the Hölder continuity of the viscosity solution obtained in
Section 5.4.1 to the Dirichlet problem

I
F [u] = f(⁄(Hu)) = Â(x, u) on �
u = Ï on ˆ�,

(5.4.6)

where f, Ï and Â satisfy the conditions spelled out in the previous subsection. We prove
the following result:

Theorem 5.4.4. Let � be a strictly � pseudoconvex domain. Let u be the viscosity solution
of (5.4.6). Suppose that Ï œ C2–(ˆ�) for some – œ (0, 1). If additionally Â(z, s) satisfies

(1) |Â(z, s)| Æ M
1

(s) for some LŒ
loc

function M
1

;

(2) |Â(z, s) ≠ Â(w, s)| Æ M
2

(s)|z ≠ w|– for some LŒ
loc

function M
2

;

Then u œ C–(�).

Remark. Classical examples (see [BT76]) show that the claimed regularity cannot be
improved. Conditions 1 and 2 can be regarded as a weak growth conditions and seem to
be optimal. If Â does not depend on the second variable then these conditions mean that
Â is globally bounded and contained in C–.

Proof. The proof relies on the classical idea of Walsh-[Wal68]. Similar agrument was used
by Bedford and Taylor- [BT76] who dealt with the complex Monge-Ampère operator. We
shall apply a small adjustment in the construction of the local barriers which is due to
Charabati [Cha16].
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Suppose for definiteness that 0 œ �. Assume without loss of generality that the �-
subharmonic function fl = ≠dist(z, ˆ�) + C

�

dist(z, ˆ�)2 satisfies F (fl) Ø 2 (multiply fl by
a constant if necessary and exploit the homogeneity of F ). Recall fl vanishes on ˆ�. As
ˆ� œ C2 we know that fl œ C2 near the boundary. Then it is easy to find a continuation of
fl in the interior of � (still denoted by fl), so that fl is �-subharmonic and satisfies F (fl) Ø 1.

Fix › œ ˆ�. There is a uniform C >> 1 (dependent on �, but independent on ›) such
that the function

g
›

(z) := Cfl(z) ≠ |z ≠ ›|2

is �-sh. In particular g
›

Æ 0 in �.
By definition there is a constant C̃, such that for any z œ ˆ�

Ï(z) Ø Ï(›) ≠ C̃|z ≠ ›|2–.

Consider the function h
›

(z) := ≠C̃(≠g
›

(z))–. Then

H(h
›

(z)) Ø C̃–(1 ≠ –)(≠g
›

(z))–≠2H(g
›

(z)), (5.4.7)

where ⁄(H(g
›

(z))) œ �, thus h
›

is �-subharmonic.
Observe that

h
›

(z) Æ ≠C̃|z ≠ ›|2– Æ Ï(z) ≠ Ï(›).

Thus h
›

(z) + Ï(›) are local boundary barriers constructed following the method of Chara-
bati from [Cha16] (in the paper [BT76], where the Monge-Ampère case was considered, h

›

was simply chosen as ≠(x
n

)– in a suitable coordinate system, but this is not possible in
the general case).

At this stage we recall that u is bounded a priori by Theorem 5.4.1. Hence we know
that for some uniform constant A one has F [u] Æ A in the viscosity sense.

From the gathered information one can produce a global barrier for u in a standard
way (see [BT76]). Indeed, consider the function h̃(z) := sup

›

{ah
›

(z) + Ï(›)} for a large
but uniform constant a. Using the balayage procedure it is easy to show that F (h̃(z)) Ø A
in the viscosity sense once a is taken large enough. Thus h̃ majorizes u by the comparison
principle and so is a global barrier for u matching the boundary data given by Ï. By
construction h̃ is globally –-Hölder continuous.

Note on the other hand that u is subharmonic as � µ �
1

, thus the harmonic extenstion
u

Ï

of Ï in � majorizes u from above. Recall that u
Ï

is –-Hölder continuous by classical
elliptic regularity.

Coupling the information for both the lower and the upper barrier one obtains

’z œ �, ’› œ ˆ� |u(z) ≠ u(›)| Æ K|z ≠ ›|– (5.4.8)

Denote by K
1

the quantity K
2

diam2(�)max{1, f(1)} + K, where 1 = (1, . . . , 1) œ Rn

is the vector of the eigenvalues of the identity matrix, while K
2

:= C̃f(1)≠1 and finally C̃
is the –-Lipschitz constant of Â. Consider for a small vector · œ Cn the function
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v(z) := u(z + ·) + K
2

|· |–|z|2 ≠ K
1

|· |–
defined over �

·

:= {z œ �|z + · œ �}.
It is easy to see by using the barriers that if z + · œ ˆ� or z œ ˆ� then

v(z) Æ u(z) + K|· |– + K
2

diam2�|· |– ≠ K
1

|· |– Æ u(z).
We now claim that v(z) Æ u(z) in �

·

. By the previous inequality this holds on ˆ(�
·

).
Suppose the claim is false and consider the open subdomain Uof �

·

defined by U
·

= {z œ
�

·

| v(z) > u(z)}.
We will now prove that v is a subsolution to F [u] = f(⁄(Hu)) = Â(z, u(z)) in U . To

this end pick a point z
0

and an upper differential test q for v at z
0

. Observe then that
q̃(z) := q(z)≠K

2

|· |–|z|2 ≠K
1

|· |– is then an upper differential test for u(· + .) at the point
z

0

. Hence

F [q(z
0

)] = f(⁄(Hq̃(z
0

)) + K
2

|· |–1)
Ø f(⁄(Hq̃(z

0

)) + K
2

|· |–f(1)
Ø Â(z

0

+ ·, u(z
0

+ ·)) + K
2

|· |–f(1),

where we have used the concavity and homogeneity of f in the first inequality and the fact
that q̃ is an upper differential test for u(· + .) for the second one.

Next

Â(z
0

+ ·, u(z
0

+ ·)) + K
2

|· |–f(1)
Ø Â(z

0

+ ·, u(z
0

+ ·) + K
2

|· |–|z
0

|2 ≠ K
1

|· |–) + K
2

|· |–f(1)
= Â(z

0

+ ·, v(z
0

)) + K
2

|· |–f(1)
Ø Â(z

0

+ ·, u(z
0

)) + K
2

|· |–f(1),

where we have exploited twice the monotonicity of Â with respect to the second variable
(and the fact that z

0

œ U
·

).
Exploiting now the Hölder continuity of Â with respect to the first variable we obtain

Â(z
0

+ ·, u(z
0

+ ·)) + K
2

|· |–f(1) Ø Â(z
0

+ ·, u(z
0

)) + K
2

|· |–f(1) Ø Â(z
0

, u(z
0

)).

This proves that F [q(z
0

)] Ø Â(z
0

, u(z
0

)) and hence F [v(z)] Ø Â(z, v(z)) in the viscosity
sense.

Thus over U
·

, v is subsolution and u is a solution, which implies by comparison principle
that v Æ u there, a contradiction unless the set U

·

is empty.
We have thus proven that

’z œ �
·

u(z + ·) + K
2

|· |–|z|2 ≠ K
1

|· |– Æ u(z),

which implies the claimed –- Hölder continuity.
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5.5 Viscosity vs. pluripotential solutions
Let � be a bounded smooth strictly pseudoconvex domain in Cn. Let 0 < Â œ C(�̄ ◊ R)
be a continuous function non-decreasing in the last variable. In this section, we study the
relations between viscosity concepts with respect to the inverse ‡

k

equations

(ddcu)n

(ddcu)n≠k · Êk

= Â(z, u) in �, (5.5.1)

and pluripotential concepts with respect to the equation

(ddcu)n = Â(z, u)(ddcu)n≠k · Êk in �. (5.5.2)

For the regular case, the following result was shown in [GS15]:

Theorem 5.5.1 (Guan-Sun). Let 0 < h œ CŒ(�̄) and Ï œ CŒ(ˆ�). Then, there exists a
smooth strictly plurisubharmonic function u in �̄ such that

(ddcu)n

(ddcu)n≠k · Êk

= h(z) in �, u = Ï in ˆ�. (5.5.3)

Note that the function u in Theorem 5.5.1 is a viscosity solution of (5.5.1) in the case
when Â(z, u) = h(z). Using Theorem 5.5.1, we obtain

Proposition 5.5.2. If u œ C(�̄) fl PSH(�) is a viscosity solution of (5.5.1) then there
exists a sequence of smooth plurisubharmonic functions u

j

in � such that u
j

is decreasing

to u and the function (ddcu
j

)n

(ddcu
j

)n≠k · Êk

converges uniformly to Â(z, u) as j æ Œ. In

particular, u is a solution of (5.5.2) in the pluripotential sense.

Proof. Let Ï
j

œ CŒ(ˆ�) and 0 < Â
j

œ CŒ(�̄) be sequences of smooth functions such that
Ï

j

√ Ï and Â
j

¬ Â(z, u) as j æ Œ. Then, by Theorem 5.5.1, for any j = 1, 2, ..., there
exists a smooth strictly plurisubharmonic function u

j

in �̄ such that

(ddcu
j

)n

(ddcu
j

)n≠k · Êk

= Â
j

(z) in �, u
j

= Ï
j

in ˆ�. (5.5.4)

By the comparison principle, we have

u
1

Ø u
2

Ø ... Ø u
j

Ø ... Ø u.

Let C > sup
�

|z|2. By the homogeneity and the concavity of S1/k

n,n≠k

, we have

(ddc(u
j

+ ‘|z|2))n

(ddc(u
j

+ ‘|z|2))n≠k · Êk

Ø (ddcu
j

)n

(ddcu
j

)n≠k · Êk

+ ‘k.
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Then, by the comparison principle, for any ‘ > 0, there exists N > 0 such that

u
j

+ ‘(|z|2 ≠ C) Æ u,

for any j > N . Hence, u
j

is decreasing to u as j æ Œ.

Observe that a continuous solution of (5.5.2) in the pluripotential sense may not be
a viscosity solution of (5.5.1). For example, if a continuous plurisubharmonic function
u : � æ R depends only on n ≠ k ≠ 1 variables then u is a solution of (5.5.2) in the
pluripotential sense but u is not a viscosity solution of (5.5.1). Moreover, by Theorem
5.5.6, we know that a viscosity solution of (5.5.1) has to sastisfy (ddcu)k Ø aÊk for some
a > 0. The following question is natural:

Question 5.5.3. If u œ PSH(�) fl C(�̄) satisfies (5.5.2) in the pluripotential sense and

(ddcu)k Ø aÊk (5.5.5)

for some a > 0, does u satisfy (5.5.1) in the viscosity sense?

At the end of this section, we will give the answer to a special case of this question.
Now, we consider the relation between viscosity subsolutions of (5.5.1) and pluripotential
subsolutions of (5.5.2). Recall that according to the definition in subsection 2.1 for any
n ◊ n complex matrix A and k œ {1, ..., n}, S

k

(A) denotes the coefficient with respect to
tn≠k of the polynomial

!
n

k

"≠1 det(A + tId
n

).
Next we prove the following technical result:

Lemma 5.5.4. Assume that A, B are n ◊ n complex matrices and k œ {1, ..., n}. Then

S
k

(AAú)S
k

(BBú) Ø |S
k

(ABú)|2.

Proof. Denote by a
1

, ..., a
n

and b
1

, ..., b
n

, respectively, the row vectors of A and B. Then

S
k

(AAú) = (
!

n

k

"
)≠1

q

˘J=k

det (Èa
p

, a
q

Í)
p,qœJ

,

S
k

(BBú) = (
!

n

k

"
)≠1

q

˘J=k

det (Èb
p

, b
q

Í)
p,qœJ

,

and

S
k

(ABú) = (
!

n

k

"
)≠1

q

˘J=k

det (Èa
p

, b
q

Í)
p,qœJ

.

We will show that, for any J = {p
1

, ..., p
k

} with 1 Æ p
1

< ... < p
k

Æ n,

det (Èa
p

, a
q

Í)
p,qœJ

. det (Èb
p

, b
q

Í)
p,qœJ

Ø | det (Èa
p

, b
q

Í)
p,qœJ

|2. (5.5.6)

Indeed, if either {a
p1 , ..., a

pk} or {b
p1 , ..., b

pk} are linearly dependent then both sides of
(5.5.6) are equal to 0. Otherwise, exploiting the Gram-Schmidt process, we can assume
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that {a
p1 , ..., a

pk} and {b
p1 , ..., b

pk} are orthogonal systems (observe that the quantities in
question do not change during the orthogonalization process). Next normalizing the vectors
a

pj and b
pj , j = 1, · · · , n to unit length both sides change by the same factor. Hence it

suffices to prove the statement for two collections of orthonormal bases.
Under this assumption we have

(Èa
p

, a
q

Í)
p,qœJ

= (Èb
p

, b
q

Í)
p,qœJ

= Id
k

. (5.5.7)

Let M = (Èa
p

, b
q

Í)
p,qœJ

. Then MMú is semi-positive Hermitian matrix, and

Tr(MMú) =
kÿ

l=1

kÿ

j=1

|Èb
pj , a

plÍ|2

=
kÿ

j=1

Èb
pj ,

kÿ

l=1

Èb
pj , a

plÍaplÍ

Æ
kÿ

j=1

Îb
pj Î2 = k.

Therefore, | det(M)| =


det(MMú) Æ 1, hence we obtain (5.5.6). Finally, using (5.5.6)
and the Cauchy-Schwarz inequality, we infer that

S
k

(AAú)S
k

(BBú) Ø |S
k

(ABú)|2,

as required.

For any n ◊ n Hermitian matrix A = (a
j

¯

¸

), we denote

Ê
A

=
nq

j,¸=1

a
j

¯

¸

i

fi
dz

j

· dz̄
¸

,

and

B(A, k) := {B œ Hn

+

|Ê
k

B

· Ên≠k

A

Ên

= 1},

where k = 1, 2..., n.

Theorem 5.5.5. Let u œ PSH(�) fl LŒ
loc

(�) and 0 < g œ C(�). Then the following are
equivalent:

(i) (ddcu)n

(ddcu)n≠k · Êk

Ø gk(z) in the viscosity sense.

(ii) For all B œ B(Id, n ≠ k),
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(ddcu)k · Ên≠k

B

2 Ø gk(z)Ên,

in viscosity sense.

(iii) For any open set U b �, there are smooth plurisubharmonic functions u
‘

and func-
tions 0 < g‘ œ CŒ(U) such that u

‘

are decreasing to u and g‘ converge uniformly to
g as ‘ √ 0, and

(ddcu
‘

) · Ê
A1 · ... · Ê

Ak≠1 · Ên≠k

B

2 Ø g‘Ên, (5.5.8)

pointwise in U for any B œ B(Id, n ≠ k) and A
1

, ..., A
k≠1

œ B(B2, k).

(iv) For any open set U b �, there are smooth strictly plurisubharmonic functions u
‘

and functions 0 < g‘ œ CŒ(U) such that the sequence u
‘

is decreasing to u and the
sequence g‘ converges uniformly to g as ‘ √ 0, and

(ddcu
‘

)n

(ddcu
‘

)n≠k · Êk

Ø (g‘)k, (5.5.9)

pointwise in U for any B œ B(Id, n ≠ k).

Proof. (iv ∆ i) is obvious. It remains to show (i ∆ ii ∆ iii ∆ iv).

(i ∆ ii) Assume that q œ C2 is an upper test for u from at z
0

œ �. Then q is strictly
plurisubharmonic in a neighborhood of z

0

and

(ddcq)n

(ddcq)n≠k · Êk

Ø gk,

at z
0

.
By using Lemma 5.5.4 for

Ô
Hq and (

Ô
Hq)≠1B, we have

(ddcq)n≠k · Êk

(ddcq)n

(ddcq)k · Ên≠k

B

2

Ên

= (ddcq)n≠k · Êk

Ên

(ddcq)k · Ên≠k

B

2

(ddcq)n

Ø
A

Ên≠k

B

· Êk

Ên

B
2

,

for any B œ Hn

+

, (observe that S
n≠k

(CCú) =
(ddcq)k · Ên≠k

B

2

(ddcq)n

and S
n≠k

(
Ô

HqCú) =

Ên≠k

B

· Êk

Ên

for C = (
Ô

Hq)≠1B.)
Then, for any B œ B(Id, n ≠ k) we have

(ddcq)k · Ên≠k

B

2 Ø gkÊn,

at z
0

. Hence

(ddcu)k · Ên≠k

B

2 Ø gkÊn,
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in the viscosity sense.
(ii ∆ iii) Assume that q œ C2 touches u from above at z

0

œ �. Then, for any B œ
B(Id, n ≠ k),

(ddcq)k · Ên≠k

B

2 Ø gkÊn,

at z
0

. By the same arguments as in [Lu13], we have

(ddcq) · Ê
A1 · ... · Ê

Ak≠1 · Ên≠k

B

2 Ø gÊn,

for any B œ B(Id, n ≠ k), A
1

, ..., A
k≠1

œ B(B2, k). Hence

(ddcu) · Ê
A1 · ... · Ê

Ak≠1 · Ên≠k

B

2 Ø gÊn, (5.5.10)

in the viscosity sense for any B œ B(Id, n ≠ k), A
1

, ..., A
k≠1

œ B(B2, k).
Let g

j

be a sequence of smooth functions in � such that g
j

¬ g as j æ Œ. Then

(ddcu) · Ê
A1 · ... · Ê

Ak≠1 · Ên≠k

B

2 Ø g
j

Ên, (5.5.11)

in the viscosity sense for any j œ N, B œ B(Id, n ≠ k) and A
1

, ..., A
k≠1

œ B(B2, k). By
the same arguments as in [EGZ11] (the proof of Proposition 1.5), u satisfies (5.5.11) in the
sense of positive Radon measures. Using convolution to regularize u and setting u

‘

= uúfl
‘

,
we see that u

‘

is smooth strictly plurisubharmonic and

(ddcu
‘

) · Ê
A1 · ... · Ê

Ak≠1 · Ên≠k

B

2 Ø (g
j

)
‘

Ên,

pointwise in �
‘

. Choosing g‘ := (g
[1/‘]

)
‘

, we obtain (5.5.8).
(iii ∆ iv) At z

0

œ �
‘

, choosing

B = Hu
‘

(z
0

)
(S

n≠k

(Hu
‘

(z
0

)))1/(n≠k)

and

A
1

= A
2

= ... = A
k≠1

=
A

(ddcu
‘

(z
0

))k · Ên≠k

B

2

Ên

B≠1/k

Hu
‘

(z
0

),

we get,

g‘ Æ
A

(ddcu
‘

(z
0

))k · Ên≠k

B

2

Ên

B
1/k

=
3(ddcu

‘

(z
0

))n

Ên

1
S

n≠k

(Hu
‘

(z
0

))

4
1/k

=
3(ddcu

‘

(z
0

))n

Ên

Ên

(ddcu
‘

)n≠k · Êk

4
1/k

=
3 (ddcu

‘

)n

(ddcu
‘

)n≠k · Êk

4
1/k

,
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pointwise in �
‘

. Then
(ddcu

‘

)n

(ddcu
‘

)n≠k · Êk

Ø (g‘)k.

The proof is completed.

As a consequence, our result implies that a viscosity subsolution is a pluripotential
subsolution.

Theorem 5.5.6. Assume that Â(z, s) = Â(z) with Â œ C0(�) and u œ PSH(�) fl LŒ
loc

(�)
is a viscosity subsolution of (5.5.1). Then

(ddcu)n Ø Â(ddcu)n≠k · Êk, (5.5.12)

and

(ddcu)k Ø
A

n

k

B≠1

ÂÊk, (5.5.13)

in the pluripotential sense. If u is continuous then the conclusion still holds in the case
where Â depends on both variables.

Proof. By Theorem 5.5.5, for any open set U b �, there are strictly plurisubharmonic
functions u

‘

œ CŒ(U) and functions 0 < h‘ œ CŒ(U) such that u
‘

is decreasing to u and
h‘ converges uniformly to Â as ‘ √ 0, and

(ddcu
‘

)n

(ddcu
‘

)n≠k · Êk

Ø h‘, (5.5.14)

pointwise in U . Choosing B = Id
n

and letting ‘ æ 0, we obtain (5.5.12).

It also follows from Theorem 5.5.5 that we can choose u
‘

and h‘ so that

(ddcu
‘

)k · Ên≠k

B

2 Ø h‘Ên, (5.5.15)

pointwise in U for any B œ B(Id, n≠k). Fix z
0

œ U and 0 < ‘ π 1. We can choose complex
coordinates so that Hu

‘

(z
0

) = diag(⁄
1

, . . . , ⁄
n

), where 0 Æ ⁄
1

Æ . . . Æ ⁄
n

. Choosing

B =
!

n

k

"
1/(n≠k)diag(0, . . . , 0¸˚˙˝

k≠th

, 1, . . . , 1),

we get

⁄
1

. . . ⁄
k

Ø !
n

k

"≠1h‘.

Then

(ddcu
‘

)k Ø !
n

k

"≠1h‘Êk,
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pointwise in U . Letting ‘ æ 0, we obtain (5.5.13).

Remark Note that for strictly positive Â (5.5.13) implies that the natural space of
functions to consider for the Hessian quotient problem (5.5.1) is not the space of bounded
plurisubharmonic functions but a considerably smaller one.

By assuming an additional conditions, we can also prove that a pluripotential subsolu-
tion is a visocsity one.

Proposition 5.5.7. Assume that Â(z, s) = Â(z) > 0 with Â œ C0(�) and u is a local
bounded plurisubharmonic function in � satisfying

(ddcu)k Ø ÂÊk,

in the pluripotential sense. Then

(ddcu)n

(ddcu)n≠k · Êk

Ø Â,

in the viscosity sense.

Proof. By the assumption, for any A œ Hn

+

,

(ddcu)k · Ên≠k

A

Ø ÂÊk · Ên≠k

A

, (5.5.16)

in the pluripotential sense. By [Lu13], (5.5.16) also holds in the viscosity sense. If A = B2

for some B œ B(Id, n ≠ k) then, by using Lemma 5.5.4, we have

Êk · Ên≠k

B

2 Ø
A

Ên≠k

B

· Êk

Ên

B
2

Ên = Ên.

Then

(ddcu)k · Ên≠k

B

2 Ø ÂÊn,

in the viscosity sense, for any B œ B(Id, n ≠ k). Applying Theorem 5.5.5, we obtain
(ddcu)n

(ddcu)n≠k · Êk

Ø Â,

in the viscosity sense.

We now discuss the notion of a supersolution. By the same argument as in [GLZ17],
(relying on the Berman’s idea from [Ber13]) we obtain the following relation between
viscosity supersolutions of (5.5.1) and pluripotential supersolutions of (5.5.2):

Proposition 5.5.8. Let u œ PSH(�)flC(�̄) be a viscosity supersolution of (5.5.1). Then
there exists an increasing sequence of strictly psh functions u

j

œ CŒ(�̄) such that u
j

converges in capacity to u as j æ Œ, and
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(ddcu
j

)n

(ddcu
j

)n≠k · Êk

Æ Â(z, u),

pointwise in �. In particular,

(ddcu)n Æ Â(z, u)(ddcu)n≠k · Êk,

in the pluripotential sense.
If there exists a > 0 such that (ddcu)k Ø aÊk then u

j

can be chosen such that

(ddcu
j

)n

(ddcu
j

)n≠k · Êk

Ø b,

pointwise in � for some b > 0.

For the definition of convergence in capacity, we refer to [GZ17b] and references therein.

Proof. Denote Ï = u|
ˆ�

and g(z) = Â(z, u(z)). Then, for any j Ø 1, there exists a unique
viscosity solution v

j

of
Y
_]

_[

(ddcv
j

)n

(ddcv
j

)n≠k · Êk

= ej(vj≠u)g(z) in �,

v
j

= Ï in ˆ�.
(5.5.17)

Applying the comparison principle to the equation
(ddcv)n

(ddcv)n≠k · Êk

= ej(v≠u)g(z),

we get u Ø v
j

and v
j+1

Ø v
j

for any j Ø 1.
Note that, by Proposition 5.5.2,

(ddcv
j

)n = ej(vj≠u)g(z)(ddcv
j

)n≠k · Êk,

in the pluripotential sense. For any h œ PSH(�) such that ≠1 Æ h Æ 0, we have,

‘n

⁄

{vj<u≠2‘}

(ddch)n Æ
⁄

{vj<u+‘h≠‘}

(ddc(u + ‘h))n

Æ
⁄

{vj<u+‘h≠‘}

(ddcv
j

)n

Æ
⁄

{vj<u≠‘}

ej(vj≠u)g(z)(ddcv
j

)n≠k · Êk

Æ e≠j‘

⁄

{v1<u≠‘}

g(z)(ddcv
j

)n≠k · Êk

Æ Ce≠j‘,
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where C > 0 is independent of j. The last inequality holds by the Chern-Levine-Nirenberg
inequalities (cf. [GZ17b]). This implies that v

j

converges to u in capacity.

If there exists a > 0 such that (ddcu)k Ø aÊk then, by Proposition 5.5.7,

(ddcu)n

(ddcu)n≠k · Êk

Ø a,

in the viscosity sense. Choosing M ∫ 1 such that e≠M sup
�

g < a, we get

(ddcv
j

)n

(ddcv
j

)n≠k · Êk

Æ aej(vj≠u)+M .

Applying the comparison principle to the equation

(ddcv)n

(ddcv)n≠k · Êk

= aej(v≠u),

we get v
j

+ M

j
Ø u for any j Ø 1. Then

(ddcv
j

)n

(ddcv
j

)n≠k · Êk

= ej(vj≠u)g(z) Ø e≠M g(z),

for any j Ø 1. Hence, by Theorem 5.5.6,

(ddcv
j

)k Ø !
n

k

"≠1e≠M g(z) Ø !
n

k

"≠1e≠M min
¯

�

g,

for any j Ø 1.
Now, by Proposition 5.5.2, for any j we can choose a strictly plurisubharmonic function
u

j

œ CŒ(�̄), such that
v

j

≠ 1
2j

Æ u
j

Æ v
j

≠ 1
2j+1

and

≠ 1
2j

Æ (ddcu
j

)n

(ddcu
j

)n≠k · Êk

≠ ej(vj≠u)g(z) Æ 0.

It is easy to see that u
j

satisfies the required properties.

The next result gives the answer to a special case of Question 5.5.3:

Theorem 5.5.9. Let u œ PSH(�) fl C(�) such that

(ddcu)n

(ddcu)n≠k · Êk

Æ Â(z, u), (5.5.18)
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in the viscosity sense and

(ddcu)n Ø Â(z, u)(ddcu)n≠k · Êk, (5.5.19)

in the pluripotential sense. If there exists a > 0 such that (ddcu)k Ø aÊk then u is a
viscosity solution of the equation

(ddcu)n

(ddcu)n≠k · Êk

= Â(z, u). (5.5.20)

Proof. It remains to show that u is a viscosity subsolution of (5.5.20) in any smooth strictly
pseudoconvex domain U b �.

Let V be a smooth strictly pseudoconvex domain such that U b V b �. By Propo-
sition 5.5.8, there exists an increasing sequence of strictly plurisubharmonic functions
u

j

œ CŒ(V̄ ), such that u
j

converges in capacity to u as j æ Œ, and

b Æ (ddcu
j

)n

(ddcu
j

)n≠k · Êk

Æ Â(z, u),

pointwise in V , where b > 0. By Theorem 5.5.6, we have (ddcu
j

)k Ø !
n

k

"≠1bÊk. Then, there
exists C > 0 such that

(ddcu
j

)n≠k · Êk Ø 1
Â(z, u)(ddcu

j

)n Ø CÊn.

Denote

f
j

(z) := (ddcu
j

)n

(ddcu
j

)n≠k · Êk

.

Then f
j

(z) Æ Â(z, u) for any z œ V , and (Â ≠ f
j

)(ddcu
j

)n≠k · Êk Ø C(Â ≠ f
j

)Ên converges
weakly to 0. Hence f

j

converges in Lebesgue measure to Â in V as j æ Œ.
Now, by Theorem 5.5.5, we have

(ddcu
j

) · Ê
A1 · ... · Ê

Ak≠1 · Ên≠k

B

2 Ø (f
j

)1/kÊn,

pointwise in V for any B œ B(Id, n ≠ k) and A
1

, ..., A
k≠1

œ B(B2, k). Letting j æ Œ, we
get

(ddcu) · Ê
A1 · ... · Ê

Ak≠1 · Ên≠k

B

2 Ø Â1/kÊn,

in the sense of Radon measures. It follows from [Lu13] that

(ddcu)k · Ên≠k

B

2 Ø Â1/kÊn,

in the viscosity sense. Using Theorem 5.5.5, we get that u is a viscosity subsolution of
(5.5.20) in U . The proof is completed.
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5.6 Dirichlet problem for the Lagrangian phase operator
In this section, we prove the existence of unique viscosity solution to the Dirichlet problem
for the Lagrangian phase operator. The existence and uniqueness of the smooth version
was obtained recently by Collins-Picard-Wu [CPW17]. Let � µ Cn be a bounded domain.
Consider the Dirichlet problem

Y
__]

__[

F [u] :=
nÿ

i=1

arctan ⁄
i

= h(z), on �

u = Ï on ˆ�.

(5.6.1)

where ⁄
1

, . . . , ⁄
n

is the eigenvalues of the complex Hessian Hu. We can also write F [u] =
f(⁄(Hu)). We assume that Ï œ C0(ˆ�) and h : �̄ æ [(n ≠ 2)fi

2

+ ”, nfi

2

) is continuous, for
some ” > 0.

The Lagrangian phase operator F in (5.6.1) arises in geometry and mathematical
physics. We refer to [CPW17, HL82, JY17, CJY15, Yua06, WY13, WY14] and references
therein for the details.

Since h Ø (n ≠ 2)fi

2

, this case is called the supercritical phase following [Yua06, JY17,
CJY15, CPW17]. Recall first the following properties (cf. [Yua06, WY14, CPW17]);

Lemma 5.6.1. Suppose ⁄
1

Ø ⁄
2

Ø . . . Ø ⁄
n

satisfying
q

i

arctan ⁄
i

Ø (n ≠ 2)fi

2

+ ” for
some ” > 0. Then we have

(1) ⁄
1

Ø ⁄
2

Ø . . . Ø ⁄
n≠1

> 0 and |⁄
n

| Æ ⁄
n≠1

,

(2)
q

i

⁄
i

Ø 0, and ⁄
n

Ø ≠C(”),

(3)
q

⁄≠1

i

Æ ≠ tan(”) when ⁄
n

< 0.

(4) for any ‡ œ ((n ≠ 2)fi

2

, nfi

2

), the set �‡ := {⁄ œ Rn | q
i

arctan ⁄
i

> ‡} is a convex set
and ˆ�‡ is a smooth convex hypersurface.

It follows form Lemma 5.6.1 that the function f can be defined on a cone � satisfying
�

n

µ � µ �
1

. We also remark that if h Ø (n≠1)fi

2

, then F is concave while F have concave
level sets if (n ≠ 2)fi

2

h Æ (n ≠ 1)fi

2

, but in general F may not be concave (cf. [CPW17]).
Therefore we can not apply Theorem 5.3.2 directly. Fortunately, we still have a comparison
principle for the Lagrangian operator using Lemma 5.3.1.

Lemma 5.6.2. Let u, v œ LŒ(�) be viscosity subsolution and supersolution of equation
F [u] = f(⁄(Hu)) = h on �. Then

sup
�

(u ≠ v) Æ max
ˆ�

{(u ≠ v)ú, 0} . (5.6.2)
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Proof. We first define ‘ > 0 by max
¯

�

h = nfi

2

≠ ‘. Now for any 0 < · Æ ‘/2, set u
·

=
u + · |z|2. Let q

·

be any upper test for u
·

at any point z
0

œ �, then q = q
·

≠ · |z|2 is also
an upper test for u at z

0

. By the definition we have

F [q](z
0

) =
nÿ

i=1

arctan ⁄
i

(z
0

) Ø h(z
0

),

where ⁄(z
0

) = ⁄(Hq(z
0

)). We also have

F [q
·

](z
0

) =
nÿ

i=1

arctan(⁄
i

(z
0

) + ·). (5.6.3)

Next, if F [q](z
0

) Ø nfi

2

≠ ‘

2

, then F [q](z
0

) Ø h(z
0

) + ‘

2

hence

F [q
·

](z
0

) Ø h(z
0

) + ‘

2 . (5.6.4)

Conversely, if F [q](z
0

) < nfi

2

≠ ‘

2

, this implies that arctan(⁄
n

(z
0

)) Æ fi

2

≠ ‘

2n

. Combining
with Lemma 5.6.1 (2), we get ≠C(”) Æ ⁄

n

(z
0

) Æ C(‘). Using the Mean value theorem,
there exists ⁄̂

n

œ (⁄
n

(z
0

), ⁄
n

(z
0

) + ·) such that

arctan(⁄
n

(z
0

) + ·) ≠ arctan ⁄
n

(z
0

) = 1
1 + ⁄̂2

n

· Ø C(”, ‘, ·) > 0.

It follows that
F [q

·

](z
0

) Ø F [q](z
0

) + C(”, ‘, ·) Ø h(z
0

) + C(”, ‘, ·). (5.6.5)

Combing with (5.6.4) yields
F [q

·

](z
0

) Ø h(z
0

) + C,

where C > 0 depending only on ”, ‘, · . We thus infer that u
·

satisfies F [u
·

] Ø h(z) + C
in the viscosity sense. Therefore applying Lemma 5.3.1 to u

·

and v, then let · æ 0, we
obtain the desired inequality.

Theorem 5.6.3. Let � is a bounded C2 domain. Let u is an bounded upper semi-
continuous function on � satisfying F [u] Ø h(z) in � in the viscosity sense and u = Ï on
ˆ�. Then the Dirichlet problem 5.6.1 admits a unique viscosity solution u œ C0(�).

Proof. It suffices to find a viscosity supersolution ū for the equation F [u] = h(z), satisfying
ū = Ï on ˆ�. The C2-boundary implies the existence of a harmonic function „ on � for
arbitrary given continuous boundary data Ï. Since

q
i

⁄
i

(H„) = 0, it follows from Lemma
5.6.1 that we have F [„] < (n ≠ 2)fi

2

+ ” Æ h, hence „ is a supersolution for 5.6.1. The rest
of the proof is similar to the one of Theorem 5.4.1, by using Lemma 5.6.2.



Chapter 6

Projects

One of my future projects is to study the geometric convergence (in the Gromov-
Hausdorff sense) of the Kähler-Ricci flow on normal Kähler spaces. Most of the convergence
results obtained so far stay away from the singularities themselves, proving CŒ conver-
gence on compact sets away from the singularities. Understanding the global behavior of
the flow in the Gromov-Hausdorff topology is a fundamental and very challenging problem.

Another project is to study other geometric flows on compact Hermitian manifolds such
as the Chern-Ricci flow, the Anomaly flow. It is also important to study their degenerate
versions and their geometric convergence in the Gromov-Hausdorff sense.

I explain below in some detail two related and more specialized projects.

6.1 Convergence of the Kähler-Ricci flow on manifolds of
general type

We wish to study the normalized Kähler-Ricci flow on a projective variety of general type
X, whose canonical bundle K

X

is big but not nef:
I

ˆÊt
ˆt

= ≠Ric(Ê
t

) ≠ Ê
t

,

Ê|t=0 = Ê
0

,
. (6.1.1)

Let T < +Œ be the maximal existence time of the flow, then the limiting class of the flow
is

{–
T

} = lim
tæT

{Ê(t)} = e≠T {Ê
0

} ≠ (1 ≠ e≠t)c
1

(X).

Now at the maximal existence time T , the class –
T

is big and nef. However, for t > T , –
t

is not nef but big, thus we can not continue the flow in the classical sense. In the Analytic
Minimal Model Program by Song-Tian [ST17, ST12], they have tried to repair a finite time
singularity of the flow and start it over again. But in a different point of view, it was asked

165
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by Feldman-Ilmanen-Knopf [FIK03, Question 8, Section 10] whether one can define and
construct weak solutions of Kähler-Ricci flow after the maximal existence time for smooth
solutions. In this project we are trying to answer the question and also study the weak
convergence of the flow.

The key ingredient is the construction of weak solution for degenerate complex Monge-
Ampère flows. Degenerate complex elliptic Monge-Ampère equation on compact Kähler
manifold have recently been studied intensively using tools from pluripotential theory fol-
lowing the pioneering work of Bedford and Taylor in the local case [BT76, BT82, Ko�l98,
GZ05, GZ07, BEGZ10]. A complementary viscosity approach has been developed only
recently in [EGZ11, EGZ15a, HL09, Wan12]. The similar theory for the parabolic case
however has been developed in [EGZ15b, EGZ16].

In the first part of the project, we are developing a viscosity theory for degenerate
complex Monge-Ampère flows in big cohomology classes adapting the one in [EGZ15b,
EGZ16]. Let (◊

t

)
tœ[0,T ]

be a family of smooth closed (1, 1)-forms such that {◊
t

} is big and
Amp(◊

t

) contains � := Amp(–) for all t œ [0, T ], where – is a fixed big class and T œ (0, Œ)
is fixed. We first study the degenerate complex Monge-Ampère flow

(◊
t

+ ddcÏ
t

)n = eˆtÏt+F (t,x,Ït)µ on X
T

:= [0, T ) ◊ X, (6.1.2)

starting from Ï(0, t) = Ï
0

a ◊
0

-psh function with minimal singularities which is continuous
in Amp(–), where

• F (t, x, r) is a continuous in [0, T ) ◊ X and non decreasing in r.

• µ(x) Ø 0 is a bounded continuous volume form on X,

We have proved a viscosity comparison principle for this problem:

Theorem A.([Tô]) Let Ï (resp. Â) be a viscosity subsolution (resp. a supersolution) to
(6.1.2) with the initial condition Ï

0

is a ◊
0

-psh function with minimal singularities which
is continuous in Amp(–). Assume that ˆ

t

Ï is locally bounded in Amp(–). Then

Ï(t, x) Æ Â(t, x) in [0, T ) ◊ Amp(–).

By adding some condition of (◊)
tœ[0,T ]

, we can remove the condition on ˆ
t

Ï:

Theorem B. ([Tô]) Suppose that there exists a smooth positive function f : [0, T ] æ R
such that ‰

t

:= f(t)◊
t

is monotone. Then the comparison principle in Theorem A is also
true without assuming the condition on ˆ

t

Ï.
We can see that the monotone condition in Theorem B is natural in studying the

normalized Kähler-Ricci flow on Kähler manifolds of general type. Indeed, in this case the
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evolving class along the flow is ◊
t

= e≠tÊ
0

+(1≠e≠t)◊, where ◊ is a (1, 1) form representing
≠c

1

(X).
As a first application of the comparison principle, we study the Cauchy problem

(CP
1

)
I

(◊ + ddcÏ
t

)n = eˆtÏt+Ïtµ

Ï(0, x) = Ï
0

,

where Ï
0

is an ◊-psh function with minimal singularities which is continuous in Amp(–).
We prove the existence of viscosity subsolution and supersolution to (CP

1

) and con-
struct barriers at each point {0} ◊ Amp(–). We then use the Perron’s method to show the
existence of a unique viscosity solution to the corresponding Cauchy problem.

Corollary C. ([Tô]) The exists a unique viscosity solution to (CP
1

) in [0, T ) ◊ Amp(–).
Moreover, the flow asymptotically recovers the solution of the corresponding elliptic Monge-
Ampère equation.

The second part of the project is to study the normalized Kähler-Ricci flow on a pro-
jective variety of general type X. We first use the viscosity theory above to construct
the weak flow through the singularities. This gives an answer to the previous question by
Feldman-Ilmanen-Knopf. In addition, it follows from [BEGZ10, EGZ09] that there exists a
unique singular non-negatively curved metric on K

X

satisfying the Kähler-Einstein equa-
tion. The following question is motivated by the smooth convergence of the Kähler-Ricci
flow on Kähler manifolds with K

X

is ample (cf. [Cao85]):
Question D. Can we run the (normalized) Kähler-Ricci flow through the maximal existence
time for smooth solutions in a weak sense with long time existence and does this weak flow
converge to the singular Kähler-Einstein metric constructed in [BEGZ10]?

In particular, Corollary C gives an affirmative answer when the normalized Kähler-
Ricci flow starting from an initial data with minimal singularities in c

1

(X). In general,
by the viscosity method above, we can prove the long time existence of viscosity solution
to the flow by constructing sub/super solutions and barriers. The difficulty now comes
form the convergence of the flow. Using the singular Kähler-Einstein metric constructed
in [BEGZ10], we are trying to construct compatible sub/super solutions in order to show
the convergence to this metric in Amp(K

X

).

6.2 Viscosity theory for the Hessian type equations on com-
pact complex manifolds

A viscosity theory has been developed in [DDT17] for Hessian type equations on com-
plex domains (see Section 5). With S. Dinew and H-S. Do, we are trying to adapt this
construction to compact complex manifolds.
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Let (X, Ê) be a compact Hermitian manifold of dimension n, and ‰(z) be a real (1, 1)-
form. If u œ C2(X), let A[u] be the matrix with entries A[u]k

j

= Êkm̄(‰
m̄j

+ ˆ
j

ˆ
m̄

u). We
consider the fully nonlinear parabolic equation,

F (A[u]) = Â(z, u), (6.2.1)

where F (A) is a smooth symmetric function F (A) = f(⁄[u]) of the eigenvalues ⁄
j

[u],
1 Æ j Æ n of A[u], defined on a open symmetric, convex cone � µ Rn with vertex at
the origin and containing the positive orthant �

n

. We are adapting the local comparison
principle to prove the following comparison principle on this case:

(Comparison principle) Let � be the ellipticity cone associated to the equation (6.2.1).
Assume that the operator F (A[u]) = f(⁄[u]) in (6.2.1) satisfies

f œ C0(�̄), f > 0 on �, f = 0 on ˆ�,

and
f(⁄ + µ) Ø f(⁄), ’⁄ œ �, µ œ �

n

.

Assume moreover that either
nÿ

i=1

ˆf

ˆ⁄
i

⁄
i

=
nÿ

i=1

f
i

⁄
i

Ø ‹(f) in �

for some positive increasing function ‹, or

f is concave and homogeneous.

Then any bounded subsolution u and supersolution v to the equation (6.2.1) satisfy

u Æ v on X.

Once we obtain the comparison theorem for the sub/super-solutions, we can solve some
degenerate geometric equations such as the Donaldson equation, special Lagrangian type
equation, and also answer several open questions on the degenerate J flow in the boundary
case (cf. [SW13a, FLSW14]) on compact Kähler manifolds.
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