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Abstract

Life sciences produce a huge amount of data (e.g., clinical trials, scienti�c articles) so
that integrating and analyzing all the datasets related to a given research question
like the correlation between phenotypes and genotypes, is a key element for knowl-
edge discovery. The life sciences community adopted Semantic Web technologies
to achieve data integration and interoperability, especially ontologies which are the
key technology to represent and share the increasing amount of data on the Web.
Indeed, ontologies provide a common domain vocabulary for humans, and formal
entity de�nitions for machines.

A large number of biomedical ontologies and terminologies has been developed to
represent and annotate various datasets. However, datasets represented with di�er-
ent overlapping ontologies are not interoperable. It is therefore crucial to establish
correspondences between the ontologies used; an active area of research known as
ontology matching.

Original ontology matching methods usually exploit the lexical and structural
content of the ontologies to align. These methods are less e�ective when the ontolo-
gies to align are lexically heterogeneous i.e., when equivalent concepts are described
with di�erent labels. To overcome this issue, the ontology matching community has
turned to the use of external background knowledge resources (BK) as a seman-
tic bridge between the ontologies to align. This approach arises several new issues
mainly: (1) the selection of these background resources, (2) the exploitation of the
selected resources to enhance the matching results. Several works have dealt with
these issues jointly or separately. In our thesis, we made a systematic review and
historical evaluation comparison of state-of-the-art approaches.

Ontologies, others than the ones to align, are the most used background knowl-
edge resources. Related works often select a set of complete ontologies as background
knowledge, even if, only fragments of the selected ontologies are actually e�ective
for discovering new mappings. We propose a novel BK-based ontology matching
approach that selects and builds a knowledge resource with just the right concepts
chosen from a set of ontologies. The conducted experiments showed that our BK
selection approach improves e�ciency without loss of e�ectiveness.

Exploiting background knowledge resources in ontology matching is a double-
edged sword: while it may increase recall (i.e., retrieve more correct mappings), it
may lower precision (i.e., produce more incorrect mappings). We propose two meth-
ods to select the most relevant mappings from the candidate ones: (1) based on a
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set of rules and (2) with Supervised Machine Learning. We experiment and evalu-
ate our approach in the biomedical domain, thanks to the profusion of knowledge
resources in biomedicine (ontologies, terminologies and existing alignments).

We evaluated our approach with extensive experiments on two Ontology Align-
ment Evaluation Initiative (OAEI) benchmarks. Our results con�rm the e�ective-
ness and e�ciency of our approach and overcome or compete with state-of-the-art
matchers exploiting background knowledge resources.

As a preamble to the main subject of the thesis, we have reconciled, in a semi-
automatic way, multilingual mappings between French and English ontologies. We
have described the multilingual-mappings produced with semantic properties, and
made them available to the scienti�c community as a structured resource stored on
the SIFR BioPortal ontology repository.



Résumé

Les sciences de la vie produisent de grandes masses de données (par exemple, des
essais cliniques et des articles scienti�ques). L'intégration et l'analyse des di�érentes
bases de données liées à la même question de recherche, par exemple la corrélation
entre phénotypes et génotypes, sont essentielles pour découvrir de nouvelles con-
naissances. Pour cela, la communauté des sciences de la vie a adopté les techniques
du Web sémantique pour réaliser l'intégration et l'interopérabilité des données, en
particulier les ontologies. En e�et, les ontologies représentent la brique de base
pour représenter et partager la quantité croissante de données sur le Web. Elles
fournissent un vocabulaire commun pour les humains, et des dé�nitions d'entités
formelles pour les machines.

Un grand nombre d'ontologies et de terminologies biomédicales a été développé
pour représenter et annoter les di�érentes bases de données existantes. Cependant,
celles qui sont représentées avec di�érentes ontologies qui se chevauchent, c'est à
dire qui ont des parties communes, ne sont pas interopérables. Il est donc crucial
d'établir des correspondances entre les di�érentes ontologies utilisées, ce qui est un
domaine de recherche actif connu sous le nom d'alignement d'ontologies.

Les premières méthodes d'alignement d'ontologies exploitaient principalement
le contenu lexical et structurel des ontologies à aligner. Ces méthodes sont moins
e�caces lorsque les ontologies à aligner sont fortement hétérogènes lexicalement,
c'est à dire lorsque des concepts équivalents sont décrits avec des labels di�érents.
Pour pallier à ce problème, la communauté d'alignement d'ontologies s'est tournée
vers l'utilisation de ressources de connaissance externes en tant que pont séman-
tique entre les ontologies à aligner. Cette approche soulève plusieurs nouvelles ques-
tions de recherche, notamment : (1) la sélection des ressources de connaissance
à utiliser, (2) l'exploitation des ressources sélectionnées pour améliorer le résultat
d'alignement. Plusieurs travaux de recherche ont traité ces problèmes conjointement
ou séparément. Dans notre thèse, nous avons fait une revue systématique et une
comparaison des méthodes proposées dans la littérature. Puis, nous nous sommes
intéréssés aux deux questions.

Les ontologies, autres que celles à aligner, sont les ressources de connaissance
externes (Background Knowledge : BK) les plus utilisées. Les travaux apparentés
sélectionnent souvent un ensemble d'ontologies complètes en tant que BK même si,
seuls des fragments des ontologies sélectionnées sont réellement e�caces pour décou-
vrir de nouvelles correspondances. Nous proposons une nouvelle approche qui sélec-
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tionne et construit une ressource de connaissance à partir d'un ensemble d'ontologies.
La ressource construite, d'une taille réduite, améliore, comme nous le démontrons,
l'e�cience et l'e�cacité du processus d'alignement basé sur l'exploitation de BK.

L'exploitation de BK dans l'alignement d'ontologies est une épée à double tran-
chant : bien qu'elle puisse augmenter le rappel (i.e., aider à trouver plus de corre-
spondances correctes), elle peut réduire la précision (i.e., générer plus de correspon-
dances incorrectes). A�n de faire face à ce problème, nous proposons deux méthodes
pour sélectionner les correspondances les plus pertinentes parmi les candidates qui
se basent sur : (1) un ensemble de règles et (2) l'apprentissage automatique super-
visé. Nous avons expérimenté et évalué notre approche dans le domaine biomédical,
grâce à la profusion de ressources de connaissances en biomédecine (ontologies, ter-
minologies et alignements existants).

Nous avons e�ectué des expériences intensives sur deux benchmarks de référence
de la campagne d'évaluation de l'alignement d'ontologie (OAEI) réalisée chaque an-
née dans la communauté pour évaluer les outils. Nos résultats con�rment l'e�cacité
et l'e�cience de notre approche et dépassent ou rivalisent avec les meilleurs résul-
tats obtenus par les meilleurs systèmes d'alignement exploitant des ressources de
connaissance externes.

En préambule du sujet principal de la thèse nous avons réconcilié, d'une manière
semi-automatique, des correspondances multilingues entre des ontologies françaises
et anglaises. Les correspondances produites ont été décrites à l'aide des propriétés sé-
mantiques et mises au service de la communauté scienti�que sous forme de ressource
structurée stockée dans l'entrepôt d'ontologies biomédicales SIFR BioPortal.
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2 CHAPTER 1. INTRODUCTION

1.1 Context and motivations

In life sciences, such as medicine, biology, genetics, etc., researchers produce and
manage a large number of biomedical datasets (e.g., clinical trials, scienti�c articles).
Integrating and analyzing all the datasets related to a given research question, like
the correlation between genotype and phenotype (Coulet et al., 2008), is a key
element for knowledge discovery (Collins et al., 2003). Therefore, researchers are
increasingly publishing these datasets on the web to make them available for further
studies (see Figure 1.1).1

However, an e�ective exploitation of the knowledge included in these datasets
raises several challenges about their representation, integration and interoperability.
These challenges are the same addressed by the semantic web community on a larger
scale to manage the increasing amount of data published on the web in various do-
mains.

Figure 1.1: Linking Open Data cloud diagram 2017.

The semantic web is an extension of the current web that aims at giving a mean-
ing to published data such that both humans and machines can semantically process
and exploit them (Berners-Lee et al., 2001). Indeed, an enormous set of interlinked
documents in natural language is published on the web. These documents have
been created to be exploited by humans. However, with the exponential growth of
data on the web, manually analyzing and integrating web document knowledge is
becoming increasingly di�cult. Therefore, the semantic web community develops

1https://lod-cloud.net/

https://lod-cloud.net/
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models and techniques to enable machines managing web document knowledge.

Ontologies are the semantic web's key technology for representing, sharing and
querying web data (Berners-Lee et al., 2001). An ontology may be seen as a con-
ceptual model that represents the knowledge of a given domain. An ontology is
composed of a set of concepts, a set of semantic relations that link these concepts
and a set of axioms (i.e., logic rules) which ensure the coherence of the model. On-
tologies have multiple applications (Hoehndorf et al., 2015). An ontology can be
used as a query model for datasets or as a basis for their integration (Lambrix and
Tan, 2006). Further, it can be used to annotate di�erent datasets composing a given
repository and serves as an index. The annotation process consists in identifying the
ontology concepts in the content of the annotated datasets (Tchechmedjiev et al.,
2018).

Due to the decentralized nature of the semantic web, a large number of ontologies
has been developed during the last decade. To manage these ontologies and facilitate
their reuse, several ontology repositories (or libraries) have been created (d'Aquin
and Noy, 2012). This is especially true for the biomedical domain which has its
own ontology repositories such as the NCBO BioPortal (Noy et al., 2009), the OBO
Foundry (Smith et al., 2007) and the Ontology Lookup Service (Côté et al., 2008).
The number of biomedical ontologies is continuously increasing, for instance, in the
NCBO BioPortal, the number of ontologies has increased from 134 to more than
700 over a period of nine years (see Figure 1.2).2

134

200
226

300 320
350

437

500

716

2009 2010 2011 2012 2013 2014 2015 2016 2018

Figure 1.2: Number of ontologies per year in the NCBO BioPortal repository.

Creating a large number of ontologies in the same domain increases the overlap-
ping between these ontologies. For instance, all the ontologies showed in Figure 1.3,
have a fragment that describes human diseases.3 This is problematic for data inte-
gration. Indeed, datasets related to the same research problem, which are annotated

2We have collected these statistics from publications related to the NCBO BioPortal repository.
3On the �gure, we showed the ontology acronyms used in NCBO BioPortal to reference ontolo-

gies.
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or represented with di�erent ontologies are not interoperable. One possible solution
to address this issue is to establish correspondences (or mappings) between the se-
mantically related entities of ontologies belonging to the same domain; this process
is known as ontology matching.

MeSH

GO

DOID

SNOMED CT

HP

ORDO

Figure 1.3: Biomedical ontologies with overlapping fragments.

To illustrate our statements, we present an example in Figure 1.4. Let us suppose
that we have several datasets related to genotype-disease correlation studies, which
are annotated with di�erent ontologies such as the human disease ontology (DOID)
and the orphanet rare disease ontology (ORDO).

To seek the same information in the di�erent datasets, one has to customize a
query for each ontology, i.e., a query for DOID, a query for ORDO, etc. However,
when having mappings between ontologies, only a single query, customized for one
ontology (DOID in our example), is required.

Dataset 1 Dataset 2

DOID ORDO

Dataset n-1

Ontology n-1

Dataset n

Ontology n

……………..

Query1 customized for DOID

Mappings Mappings Mappings

Figure 1.4: Example: querying information using mappings.

Ontology matching is an active area of research because of its wide range of
applications such as ontology engineering, data integration, information sharing,
etc. (Euzenat and Shvaiko, 2013). However, ontologies are highly heterogeneous
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(Klein, 2001,Halevy, 2005) because they have been designed independently, by dif-
ferent developers, following diverse modeling principles and patterns. Furthermore,
the diversity of their heterogeneity: syntactic, lexical and structural, as well as their
size and formats makes ontology matching a complex and challenging task.

1.2 Challenges

Original automatic ontology matching methods are mainly based on the lexical and
structural information of the ontologies to align; this is known as direct matching.
To that end, several similarity measures have been developed (Cheatham and Hit-
zler, 2013,Ngo et al., 2013). The e�ectiveness of these approaches depends on the
lexical and structural overlap of the input ontologies. Indeed, they fail to discover
mappings when the input ontologies have equivalent concepts described by di�erent
labels (no common labels, no similar labels), and they are structured according to
di�erent modeling views (Aleksovski et al., 2006a,Pesquita et al., 2013).

To overcome this semantic heterogeneity, the community has turned to the ex-
ploitation of external knowledge resource(s), commonly called background knowl-
edge resources. In contrast to direct matching, this approach is known as indirect
matching or BK-based matching, as it exploits external resources to identify map-
pings between the ontologies to align. The type of these knowledge resources span
from thesaurus, lexical resources, ontologies other than those to align, etc. BK-
based ontology matching approach proved a successful alternative (Sabou et al.,
2008,Locoro et al., 2014). Indeed, the empirical results show that exploiting external
knowledge resources improves the alignment quality, especially by increasing recall
i.e., by �nding mappings that were missed by direct matching methods (Aleksovski
et al., 2006a,Mascardi et al., 2010,Annane et al., 2016a). BK-based matching arises
several new research issues mainly:

1.2.1 Background knowledge resource selection

Exploiting knowledge resources as a semantic bridge between the ontologies to align
helps to �nd mappings missed by the direct matching, thus increasing the quality
of produced alignments. However, the success of this matching approach depends
on the quality of the knowledge resources exploited in the matching process. Hence,
the challenge is to select e�ective background knowledge resources for a given on-
tology matching task (Shvaiko and Euzenat, 2013). In the initial related works, the
selection of these resources was performed manually. Manual resource selection as-
sumes that users, who have to make the selection, are familiar with all the available
knowledge resources, which is not always possible, especially in domains having a
large number of knowledge resources such as biomedicine. Therefore, an automatic
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selection method is required to increase the applicability of the BK-based ontology
matching approach (Faria et al., 2014). Furthermore, some knowledge resources are
of large size (e.g., DBpedia). In most cases, for a given ontology matching task,
we argue that only fragments from these resources are actually e�ective. Using the
whole resources a�ects heavily the e�ciency of the matching process. Thus, another
challenge for the automatic selection of knowledge resources is the extraction of the
e�ective fragments from the large knowledge resources.

1.2.2 Background knowledge resource exploitation

Exploiting background knowledge resources in the matching process includes three
steps. The �rst one, called anchoring, aims at linking the entities of the ontologies
to align to the entities of the selected resources. This is usually performed by a
direct matching between the ontologies to align and the selected resources. The
second one, called derivation, deduces (or derive) semantic relations between the
anchored entities � entities of the ontologies to be aligned � according to the relations
linking the anchors in the background knowledge resources (see Figure 1.5). Finally,
the third step aggregates the derived mappings and selects the most relevant ones.
These three steps are common to all BK-based matching methods, however each
one provides several choices:

Figure 1.5: Exploiting a background knowledge resource to generate mappings.

• The direct matcher to use for the anchoring step: a simple syntactic matcher
or a sophisticated one.

• The entities to be considered in the BK-based matching: all entities of the
ontologies to align or only entities that have not been directly mapped. Indeed,
BK-based matching aims to improve and complement the direct matching
alignments.
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• To derive mappings, the selected knowledge resources may be exploited inde-
pendently of each other, or combined together.

Di�erent choices lead to di�erent con�gurations and results. Determining the
con�guration that ensures the best performance is challenging. In addition, exploit-
ing background knowledge resources in ontology matching is a double-edged sword:
while it may increase recall (i.e., retrieve more correct mappings), it may lower
precision (i.e., generate more incorrect mappings) (Shvaiko and Euzenat, 2013).
Consequently, selecting correct mappings among the candidate ones in the context
of BK-based matching is particularly challenging.

1.3 Research contributions

Before proceeding to present the contributions of our research in detail, we clarify
the main goal of this dissertation, which is to provide a generic, e�cient and e�ec-
tive approach to enhance the direct matching results using ontologies as external
knowledge resources. Indeed, in the literature, ontologies are the most used knowl-
edge resources. This is explained by the fact that they are structured resources,
and their knowledge is validated by the community. Hence, it is easier to exploit
them as background knowledge than to use other knowledge resource types such as
textual documents. Research questions that we address in this thesis can be stated
as follows:

Research questions. Given a repository of knowledge resources (i.e., set of on-
tologies), and an ontology matching task (i.e., two ontologies to align):

• How to select e�ective and e�cient background knowledge resources for the
matching task from the initial repository?

• How to e�ectively exploit the selected background knowledge resources to en-
hance the direct-matching alignment?

We attempted to answer these research questions by making the following con-
tributions:

1. Review of methods related to the selection and exploitation of background-
knowledge resources in ontology matching

Since the exploitation of knowledge resources proved a successful technique to im-
prove the direct matching results, several works have investigated the bene�t of this
approach. Hence, the necessity of studying and comparing the related works. We
reviewed the di�erent methods dealing with the two main steps of BK-based on-
tology matching that are the selection and exploitation of background knowledge
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resources. In addition, we provided a synthetic classi�cation of the studied methods.
Finally, we presented a comparative evaluation of the BK-based ontology matching
systems by analyzing their performance results obtained during Ontology Alignment
Evaluation Initiative (OAEI) 2012-2016 campaigns. We thus evaluate the bene�t
of exploiting background knowledge resources and the improvement achieved with
systems implementing this approach comparing to the systems that do not.

2. A novel e�cient and e�ective background knowledge selection/build-
ing method

In the literature, several works have dealt with the automatic selection of ontologies
as background knowledge for ontology matching (see Chapter 4). All the proposed
methods consist in selecting m ontologies from the n ones available with m <= n.
These methods return a set of complete ontologies, however we believe that within
each selected ontology, especially large ones, only small fragments may actually prove
e�ective. Hence, the issue is that of the selection of these ontology fragments and
their combination to build an e�ective and e�cient background knowledge resource.

At the best of our knowledge, in the context of ontology matching, our work
is the �rst that promotes the extraction of e�ective fragments from background
knowledge resources and their combination.

In our thesis, we tackle this issue by selecting only the relevant concepts from the
background knowledge ontologies related to the matching task. We then combine
these selected concepts with mappings to build a new knowledge resource, that we
called the built BK. As it is shown in Chapter 4, the built BK has a small size
comparing to that of the background knowledge ontologies, which improves the
e�ciency of the BK-based matching. In addition, in Chapter 5, we show that the
reduced size of the built BK does not a�ect its e�ectiveness.

The built BK interconnects concepts from di�erent background knowledge on-
tologies enabling deriving mappings through several intermediate ontologies.

3. Methods for exploiting the selected/built background knowledge re-
source

As we explained previously in Section 1.2.2, exploiting background knowledge re-
sources in ontology matching includes three steps. Our contributions concerns the
second (i.e., deriving candidate mappings) and the third (i.e., aggregating and se-
lecting the most relevant mappings) steps. We experimentally compared several
derivation strategies according to the combination of intermediate resources, and
the entities to consider in the BK-based matching. We showed that the combina-
tion generates more correct mappings (see Section 5.3.1), and considering all the
entities in the indirect matching provides better results but consumes more time
(see Section 6.5). Moreover, to improve the e�ciency of the derivation process,
we implemented an algorithm that reduces the number of the returned paths (see
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Section 6.4).

The built BK is a graph where nodes are ontology concepts, and edges are equiva-
lence mappings. The derivation process returns paths of di�erent length between the
entities of the ontologies to align. To select the �nal mappings, we had to compose
the mappings composing each path, and aggregating the di�erent paths representing
the same candidate mappings. First, we proposed to use the multiplication function
to compose mapping scores, and aggregating with the maximum function i.e., for
each candidate mapping, keeping the occurrence with the highest score. We then
de�ned a set of rules to select the most relevant mappings. Secondly, we assumed
that the mapping selection method would be more e�ective when having a deeper
description of each candidate mapping. Hence, we designed a set of 27 selection
attributes for each candidate mapping e.g., number of paths, average path length.
Manually assessing the performance of all the possible combinations of these 27 se-
lection attributes is not feasible. Therefore, we proposed to transform the problem
of mapping selection into a classi�cation problem and use a machine learning algo-
rithm to combine these selection attributes, and classify candidate mappings. We
implemented the two selection methods and experimentally compared their perfor-
mance.

4. GBM: a prototype of a Generic BK-based ontology Matcher

Existing BK-based matchers implement the indirect matching technique in their
internal architectures, which makes any adaptation or reuse of the code di�cult.
Hence, when someone attempts to improve a particular step in the BK-based match-
ing process, he will have to code the whole process from scratch, which was our case.
Therefore, we judged interesting to propose to the community a Generic BK-based
Matcher (GBM).

GBM implements all the contributions mentioned above, and may be reused
with any existing matcher. In addition, it takes as input a set of various parame-
ters related to di�erent BK-based matching steps, which makes it customizable and
very appropriate to perform evaluation experiments. GBM has participated, with
YAM++ as a direct matcher, in the OAEI 2017, and OAEI 2017.5 campaigns, where
it has been successful on the biomedical benchmarks, and top ranked in several tasks.

5. Multilingual mapping reconciliation

As a preliminary work of this thesis, we constructed a resource composed of multilin-
gual mappings, which may be reused as a background knowledge resource to match
multilingual ontologies. Indeed, following a semi-automatized work�ow, we recon-
ciled more than 228K mappings between ten English ontologies hosted on NCBO
BioPortal and their French translations on SIFR BioPortal (Jonquet et al., 2016).
We have formalized and represented the generated mappings with semantic prop-
erties, and stored them on SIFR BioPortal in RDF format to be accessible to the
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community. Reconciling the mappings turned more complex than expected because
the translations are rarely exactly the same as the original ontologies.

This contribution is related to multilingual ontology matching, while all the
other contributions of this thesis are related to monolingual ontology matching.
Therefore, we decided to present the multilingual mapping reconciliation chapter as
an appendix to this thesis (see Appendix A).

1.4 Outline of the dissertation

Figure 1.6 shows the organization of the remaining chapters of this dissertation.
Each chapter references its related papers that have been published within this
thesis. The list of these papers is presented in the next Section (Section 1.5).

Chapter 3. Related Work (BK Selection and Exploitation) 

Chapter 4. BK Selection/Building 
[1][2] 

Chapter 5. BK Exploitation
[1] 

Chapter 6.  Generic BK-Based Matcher
[6][7]

Chapter 7. Conclusion and Open Issues

Chapter 2. Foundations

Appendix A: Multilingual Mapping Reconciliation
[3][4][5]

Figure 1.6: Organization of the remaining of this dissertation.

• Chapter 2 provides the de�nitions of the main concepts used in this thesis. In
particular, it introduces the necessary preliminaries on ontology matching and
BK-based ontology matching. The second part of this chapter presents the
general work�ow of BK-based ontology matching, and explains its sub-tasks.

• Chapter 3 reviews and compares the various works related to the exploitation of
background knowledge resources in ontology matching. It includes three main
sections. The �rst one focuses in methods dealing with the automatic selection
of background knowledge resources, while the second section describes the
methods exploiting the selected resources in the matching process. Finally,
the third section provides an evaluation of the BK-based matching approaches
based on the OAEI results.
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• Chapter 4 starts by presenting the novel method that we have proposed to
select (or build) a background knowledge resource, called built BK, from
a set of initial ontologies. It then presents the experimental materials used,
explains the adopted implementation techniques, and discusses the evaluation
results regarding the size and the e�ciency of the built BK.

• Chapter 5 describes our methods dealing with the exploitation of the built BK
in the matching process. More precisely, this chapter explains in detail (i) how
we may exploit the built BK to derive candidate mappings, and (ii) how to
select the most relevant mappings among the candidate ones.

• Chapter 6 describes GBM, a Generic BK based Matcher, which implements
our BK selection and exploitation methods. GBM provides a set of parame-
ters that allows various con�gurations. In this chapter, we present and explain
these di�erent parameters. Moreover, we present the results of our participa-
tion in OAEI 2017 and OAEI 2017.5 campaigns.

• Chapter 7 summarizes the thesis with a discussion about the di�erent results
and concludes with some perspectives for future research directions.

• Appendix A describes our work related to the reconciliation of multilingual
mappings between French and English ontologies. First, we present the treated
ontologies, the work�ow followed, and we discuss the choice of the semantic
properties used to represent the multilingual mappings produced. Secondly,
we show and discuss the results of this study.

1.5 Publications

The following published papers are partial outputs of this thesis.

International journals

[1] Amina Annane, Zohra Bellahsene, Faiçal Azouaou, and Clement Jonquet,
Building an e�ective and e�cient background knowledge resource to enhance on-
tology matching, Journal of web Semantics, 2018. https://doi.org/10.1016/j.

websem.2018.04.001

International conferences

[2] Amina Annane, Zohra Bellahsene, Faiçal Azouaou, and Clement Jonquet,
Selection and combination of heterogeneous mappings to enhance biomedical on-
tology matching, in 20th International Conference on Knowledge Engineering and
Knowledge Management, EKAW, Bologna, Italy, November 2016, vol. 10024 LNAI,
pp. 19�33.

https://doi.org/10.1016/j.websem.2018.04.001
https://doi.org/10.1016/j.websem.2018.04.001


12 CHAPTER 1. INTRODUCTION

[3] Amina Annane, Vincent Emonet, Faical Azouaou, and Clement Jonquet, Mul-
tilingual mapping reconciliation between English-French biomedical ontologies, in
6th International Conference on web Intelligence, Mining and Semantics, WIMS,
Nîmes, France, June 2016, pp. 13:1-13:12.

French conferences

[4] Amina Annane, Vincent Emonet, Faiçal Azouaou, and Clement Jonquet, Ré-
conciliation d'alignements multilingues dans BioPortal, in 27th Journées franco-
phones d'Ingénierie des Connaissances, IC, Montpellier, France, June 2016.

[5] Clement Jonquet, Amina Annane, Khedidja Bouarech, Vincent Emonet, and
Soumia Melzi, SIFR BioPortal : Un portail ouvert et générique d'ontologies et de
terminologies biomédicales francaises au service de l'annotation sémantique, in 16th
Journées Francophones d'Informatique Médicale, JFIM, Geneve, Switzerland, June
2016.

Workshops

[6] Amina Annane, Zohra Bellahsene, Faiçal Azouaou, and Clement Jonquet,
YAM-BIO: Results for OAEI 2017 (System paper), in 12th International Workshop
on Ontology Matching, OM, Vienna, Austria, October 2017, pp. 201�206.

[7] Ernesto Jimenez-Ruiz, Tzanina Saveta, Ond°ej Zamazal, Sven Hertling, Michael
Röder, Irini Fundulaki, Axel-Cyrille Ngonga Ngomo, Mohamed Ahmed Sherif, Am-
ina Annane, Zohra Bellahsene, Sadok Ben Yahia, Gayo Diallo, Daniel Faria,
Marouen Kachroudi, Abderrahmane Khiat, Patrick Lambrix, Huanyu Li, Maxim-
ilian Mackeprang, Majid Mohammadi, Maciej Rybinski, Booma Sowkarthiga Bala-
subramani and Cassia Trojahn, Introducing the HOBBIT platform into the Ontol-
ogy Alignment Evaluation Campaign, in 13th International Workshop on Ontology
Matching, OM, Mountery, USA, October 2018.



Chapter

2

Foundations

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Ontology matching . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Ontology matching evaluation . . . . . . . . . . . . . . . . 16

2.2.4 Background knowledge . . . . . . . . . . . . . . . . . . . . 17

2.2.5 Direct matching vs. BK-based matching . . . . . . . . . . 17

2.2.6 Ontology Alignment Evaluation Initiative . . . . . . . . . 18

2.2.7 Supervised machine learning . . . . . . . . . . . . . . . . . 19

2.3 Common BK-based ontology matching work�ow . . . . . 19

2.3.1 Knowledge resource pool . . . . . . . . . . . . . . . . . . . 19

2.3.2 BK selection . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 BK exploitation . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

13



14 CHAPTER 2. FOUNDATIONS

2.1 Introduction

Our work focuses on BK-based ontology matching, which is a branch of the ontology
matching problem. In this chapter, we introduce the preliminaries required for the
readability and understanding of our thesis manuscript. In the �rst part of this chap-
ter, we start by de�ning the basic concepts of the ontology matching problem, the
evaluation measures, and what we mean by background knowledge in the context
of ontology matching (Section 2.2). The second part is dedicated to the descrip-
tion of the general work�ow of BK-based ontology matching (Section 2.3). Indeed,
based on the related works, we proposed a general work�ow which consists of two
main components: (i) the selection of the background knowledge resources, (ii) the
exploitation of the selected resources in the matching process to derive mappings
between the ontologies to be aligned.

2.2 De�nitions

2.2.1 Ontology

In philosophy, ontology is the study of the nature of Being and the essence of things.
In the early 1990s computer scientists, particularly those in Arti�cial Intelligence,
gave to the term a new, but related, meaning. In the literature, there are several
de�nitions of ontology, the most quoted one is proposed by Gruber (Gruber, 1995):
an ontology is a formal, explicit speci�cation of a shared conceptualization. This
de�nition identi�es four main concepts involved: an abstract model of a phenomenon
termed conceptualization, a precise mathematical description hints the word formal,
the precision of concepts and their relationships clearly de�ned are expressed by the
term explicit, and the existence of an agreement between ontology users is hinted
by the term shared (O'Leary, 2005,Foguem et al., 2008). An ontology O is mainly
composed of a set of concepts C, a set of relations R among these concepts and a
set of axioms A:

O = (C,R,A)

Concept is a class of things grouped together due to some shared property. It is
named with a label, called preferred label, and sometimes with additional informa-
tion such as alternative names (synonyms).

Axioms are used to formalize domain knowledge and make constraints on ontol-
ogy entities. We may cite disjointness, equivalence, restriction or cardinality axioms
for concepts, and transitivity, symmetry, functional or inverse axioms for properties.

When R contains single relation, the is-a relation, O belongs to a speci�c type of
ontologies, called taxonomy, which is the most widely used type of ontologies (Ivanova
and Lambrix, 2013), particularly in the biomedical domain. In the following, we use
ontologies and taxonomies interchangeably.
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2.2.2 Ontology matching

The following de�nitions were adopted from (Euzenat and Shvaiko, 2007, Euzenat
and Shvaiko, 2013).

A Similarity measure is a function f : Es × Et → [0..1] where Es is the set
of Os entities and Et is the set of Ot entities. For each pair of entities (es, et), a
similarity measure computes a real number, generally between 0 and 1, expressing
the similarity between the two entities by comparing their syntactic or structural in-
formation (Cheatham and Hitzler, 2013,Ngo et al., 2013). Other similarity measures
may use external resources such as WordNet to compute the similarity between the
two entities (Pedersen et al., 2004).

A Mapping (or a correspondence) between an entity es (e.g., concept, relation)
belonging to ontology Os and an entity et belonging to ontology Ot is a four-tuple
of the form: m = 〈es, et, r, k〉 where:

• r is a relation between es and et such as equivalence (≡), subsumes (w),
subsumed by (v), etc.

• k is a con�dence score (typically in the [0, 1] range) holding for the correspon-
dence between the entities es and et. The k value is the score returned by one
similarity measure, or a combination of several ones.

This thesis focuses on biomedical ontologies, which are mainly taxonomies as
discussed in Section 2.2.1. Hence, we have interested in �nding mappings only
between concepts.

AnAlignment of ontologies Os and Ot is a set of mappings (or correspondences)
between their entities (concepts and properties).

Ontology matching can be formally de�ned as a function that takes two on-
tologies Os and Ot, a set of parameters P , and a set of resources R, and returns an
alignment A between Os and Ot.

AMatcher is an algorithm that implements one similarity measure or combines
several to discover mappings between the input ontologies. In addition, a matcher
includes a decision function to select which mappings will be kept in the produced
alignment (Duchateau and Bellahsene, 2016). For instance the decision function may
be based on a threshold value: only mappings that have a score equal to or superior
than the threshold value are kept in the produced alignment. In the following, we
refer to a matcher by the letter M , and we adopt the following annotation:

M(Os, Ot) = A = {m1,m2, ...,mn}.

Where A represents the alignment generated by the matcherM between the ontolo-
gies Os and Ot. A is composed of n mappings mi
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Figure 2.1 shows an example extracted from (Ivanova and Lambrix, 2013). There
are two fragments of two ontologies. The orange nodes are concepts of the mouse
ontology1, while the blue nodes are concepts of the NCIT ontology.2 As we can
see, the two fragments includes anatomy concepts. Directed edges represent the
is-a relations between concepts, and the bidirectional dashed edges are mappings
between the ontology concepts. These mappings establish links between the mouse
anatomy and human anatomy.

Figure 2.1: Example: ontology matching.

2.2.3 Ontology matching evaluation

Evaluating alignments produced by a given matcher is a challenging issue. Cur-
rently, the evaluation is performed using the three measures: precision, recall and
F-measure (Do et al., 2002). These measures are computed against a reference align-
ment that contains all the correct mappings. Precision is de�ned as the number of
correctly identi�ed mappings divided by the total number of mappings found (cor-
rect + incorrect). Recall is de�ned as the number of correctly identi�ed mappings
divided by the number of all possible correct mappings (the size of the reference
alignment). A perfect precision score of 1.0 means that every mapping returned by
the matcher is correct; precision measures correctness. A perfect recall score of 1.0
means that all correct mappings were returned; recall measures completeness. The
F-measure is the harmonic mean of precision and recall. It measures the overall
accuracy of an alignment.

Let A be an alignment produced by a given matcher and R the reference align-
ment. Precision, Recall and F-measure are computed as follows:

1https://bioportal.bioontology.org/ontologies/MA
2https://bioportal.bioontology.org/ontologies/NCIT/

https://bioportal.bioontology.org/ontologies/MA
https://bioportal.bioontology.org/ontologies/NCIT/
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Precision = |A∩R|
|A|

Recall = |A∩R|
|R|

F −measure = 2∗Precision∗Recall
Precision+Recall

2.2.4 Background knowledge

In the context of ontology matching, there is no commonly accepted or strict de�ni-
tion of what background knowledge is. We de�ne it as any set of external knowledge
resources that provides lexical or semantic information about the domain(s) of the
ontologies to align or some of the entities therein. It could be any datasets related
to the ontologies to align, other ontologies than the ones to align, other previously
generated mappings, lexical sources, the Web, etc.

In this manuscript, we use the acronym BK to refer to a non empty set of
background knowledge resources used within the matching process. For instance,
if such a resource is an ontology, we will call it a BK ontology. Similarly, the
expression BK-based method denotes a method that exploits a set of background
knowledge resources within the matching process.

2.2.5 Direct matching vs. BK-based matching

Initial ontology matching methods were based only on the exploitation of the lexical
and structural content of the ontologies to be aligned, which is known as direct
matching or content-based matching. However, direct matching is less e�ective when
the ontologies to align use di�erent labels to describe equivalent concepts, or they are
structured according to di�erent modeling views (Aleksovski et al., 2006a,Pesquita
et al., 2013).

To overcome this semantic heterogeneity, the community has turned to the ex-
ploitation of external knowledge resource(s), commonly called background knowl-
edge resources. In contrast to direct matching, this approach is known as indirect
matching, BK-based matching or context-based matching (Locoro et al., 2014), as it
exploits external resources to identify mappings between the ontologies to align. We
note that the objective of BK-based matching is to complement direct matching but
not to replace it. Indeed, direct matching may identify mappings that are missed
with the BK-based matching and vice-versa.

Figure 2.2 shows a realistic example in the context of life-sciences, originally pre-
sented in (Aleksovski et al., 2006b). When directly matching the ontology CRISP to
the ontology MeSH, no relation is found between the two concepts CRISP:Brain and
MeSH:Head. Indeed, no syntactic similarity between the concept labels. In addi-
tion, MeSH contains the concept Brain but it is classi�ed under the concept Central
nervous system, which is no way related to the concept Head (di�erent modeling
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views). To overcome this semantic heterogeneity, we may exploit an external knowl-
edge resource, the FMA ontology in our example. The concept CRISP:Brain is
anchored to the concept BK:Brain and the concept MeSH:Head is anchored to the
concept BK:Head. In the BK, the concepts BK:Brain and BK:Head are related via
the relation is part of. Hence, we may derive the mapping CRISP:Brain is part of
MeSH:Head.

Brain

Head

HeadBrain

knowledge resource: FMA ontology

MeSHCRISP

Is part of

Is part of

Figure 2.2: Example of BK-based matching.

2.2.6 Ontology Alignment Evaluation Initiative

Organizing and evaluating the growing number of ontology alignment systems (or
methods) needs united rules and organization. The Ontology Alignment Evaluation
Initiative (OAEI) is a coordinated international initiative to �ll this need (Amini,
2016). It has held an annual evaluation of ontology alignment systems since 2004.3

The main goals of the OAEI are:

• assessing strengths and weaknesses of matching systems;

• comparing performance of techniques;

• increase communication among algorithm developers;

• improve evaluation techniques;

• most of all, helping improving the work on ontology matching.

The OAEI has di�erent tracks such as Anatomy, Conference, MultiFarm, etc.
The results of the participating systems are published for further analysis.

3http://oaei.ontologymatching.org/

http://oaei.ontologymatching.org/
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2.2.7 Supervised machine learning

Supervised machine learning is the task of automatically inferring a function from
training data (Mehryar et al., 2012). The learned function f : x → y maps the
input object x to an output y. When using the machine learning technique for a
classi�cation task, the learned function is called a classi�er. The input x is composed
of a set of attribute values that describe the object to classify, while the output y
is the class in which the object x will be classi�ed by the learned classi�er. The
training data is a set of objects already classi�ed (containing both attributes and
class), while the test data is the set of objects to classify. A supervised machine
learning algorithm analyzes the training data and produces a classi�er that will be
used to classify the test data objects.

2.3 Common BK-based ontology matching work�ow

In related work, there were two propositions of the general work�ow of BK-based
matching. The �rst one included only the BK exploitation step with the two sub-
steps: anchoring and derivation. At that time the issue of BK selection was not
highlighted neither represented (Aleksovski et al., 2006b, Safar et al., 2007). The
second one described in (Locoro et al., 2014) is richer. However, the authors have
focused only on ontological resources as BK. In addition, in their work�ow the BK
selection and BK exploitation steps are based on the anchoring step �called contex-
tualization step� while some works did not use anchoring for BK selection (Quix
et al., 2011, Chen et al., 2014). In the following we propose a generic BK-based
ontology-matching work�ow that covers most existing works. It includes two main
steps: (1) BK Selection and (2) BK exploitation (see Figure 2.3).

2.3.1 Knowledge resource pool

It is a set of knowledge resources, KRP = {KR1, KR2, .., KRn}, from which the
BK, BK = {KR1, KR2, .., KRm}, will be selected (BK ⊆ KRP ). It may include
all ontologies on the web (Sabou et al., 2008), a local repository of ontologies (Faria
et al., 2014), existing mappings (Annane et al., 2016a), lexical resources or any
combination of the previous ones.

Choosing the initial set of knowledge resources� the knowledge resource pool �
may be seen as a preselection of the BK to be used in the matching process. A very
large set of knowledge resources, such as all knowledge resources on the web, is time
consuming and may require a lot of computational resources in the BK selection
process, and a reduced set may eliminates e�ective knowledge resources. Hence,
identifying the knowledge resource pool is an important task that should be well
thought. Currently, this task is always performed manually.
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Figure 2.3: General work�ow of BK-based ontology matching.
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Figure 2.4: BK Selection.

2.3.2 BK selection

E�ective background knowledge resources, to be used in the matching process, are
those containing knowledge beyond that contained in the ontologies to match but
which is relevant to match them.

BK selection is the process that attempts to �nd such relevant resources from a
given knowledge resource pool. However, there is no measure that allows evaluating
the e�ectiveness of a given BK before exploiting it. Indeed, currently, the evaluation
is based on the comparison between the alignments obtained with and without a
given BK. If the evaluation measures, especially Recall, with BK are higher than
those without, we conclude that the BK used is e�ective.

De�nition: We can formally de�ne BK selection as a function that takes as
input the knowledge resource pool KRP , ontologies to be aligned O, and optionally,
a set of parameters P (e.g., threshold values), and returns the BK to be used in the
matching process (see Figure 2.4).

Basically, it is about selecting a set of knowledge resources from the knowledge
resource pool (e.g., one or more ontologies from a repository). Indeed, related works
demonstrate that not all resources contribute with the same degree to the enhance-
ment of the matching quality (Faria et al., 2014,Hartung et al., 2012). Furthermore,
it may happen that using several resources will provide the same result as using one
resource, but will require more computational resources . Therefore, several methods
have recently been proposed to automatically select the BK from a given knowledge
resource pool (Hartung et al., 2012, Faria et al., 2014,Quix et al., 2011). Another
alternative is to dynamically build a customized BK by combining the resources
of the knowledge resource pool in one global resource, then select the appropriate
fragment from it. For example, in our previous work (Annane et al., 2016a), when
using existing mappings as a knowledge resource pool, we selected only the map-
pings that were relevant for the ontology matching task avoiding the burden and
complexity of dealing with whole ontologies as a BK. Another example can be found
in (Kingkaew, 2012), where the author has built a customized BK resource from the
textual content of a set of web pages.
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2.3.3 BK exploitation

Exploiting the selected BK in the matching process includes three steps. The �rst
one, called anchoring, aims at linking the entities of the ontologies to align to the
entities of the selected resources. The second one, called derivation, deduces se-
mantic relationships between the anchored entities � entities of the ontologies to be
aligned � according to the relations linking the BK entities. Finally, the third step
aggregates the candidate mappings derived and selects the most relevant ones to
produce the alignment.

2.3.3.1 Anchoring

Anchoring, called also Contextualization in (Locoro et al., 2014), is a direct matching
between the ontologies to be aligned and the selected BK. The aim of anchoring is
to localize the entities of the ontologies to be aligned in the BK (Aleksovski et al.,
2006b, Sabou et al., 2008). Thus, the BK may serve to generate mappings for the
localized entities.

De�nition: Let M be a matcher, Os and Ot two ontologies to align, es an
entity belonging to Os, et an entity belonging to Ot and e′s, e

′
t entities belonging

to the BK. Anchoring consists in producing two alignments As and At with the
matcher M , where:

• As =M(Os, BK) a set of mappings of the form m = 〈es, e′s, r, k〉

• At =M(BK,Ot) a set of mappings of the form m = 〈e′t, et, r, k〉

BK entities e′s and e
′
t that appear in As and At are called anchors, while es and et

are called the anchored entities.
Depending on the used matcher, the relationship r may be equivalence only or

including other types (e.g., subsumes and disjoint relationships). In principle, any
matcher may be used for anchoring; in practice, the matcher used is usually a fast
matcher (Locoro et al., 2014).

Anchoring is an important step that heavily impacts the �nal matching results.
Indeed, the BK can not be exploited to match the non-anchored entities.

2.3.3.2 Candidate mapping derivation

Candidate mapping derivation is mainly based on the anchors resulted from the
previous step.

De�nition: Candidate mapping derivation consists in �nding the relations link-
ing the anchors (i.e., e′s and e

′
t) in the BK when these relations exist. Then, deriving

(inferring) the relations between the anchored entities (i.e., es and et) by composing
the relations of the three mappings as follows:

• m1 = 〈es, e′s, r1, k〉,
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• m2 = 〈e′t, et, r2, k〉,

• m3 = 〈e′s, e′t, r3, k〉.

The �rst two mappings are resulted from the anchoring step, while the third one
is inferred from the structure of the BK used (see Figure 2.2). The term structure
refers to the semantic relations linking the BK entities. The third mapping may be
the composition of several relations in the BK used.

We note that mappings generated with the indirect matching approach are some-
times represented as triples (m = 〈es, et, r〉) instead of four-tuple (Aleksovski et al.,
2006a,Annane et al., 2016a). Indeed, in these cases the derivation of the semantic
relation between the source and target entities is performed by exploiting the BK
structure and not with similarity measures. Consequently, there is no score for this
kind of mappings.

The exploration of the BK structure to derive mappings has several con�gura-
tions depending on: (i) The relationships to produce in the �nal alignment; (ii) The
type of semantic relationships to consider in the exploration (is-a, part-of, etc.);
(iii) The number of resources that composes the BK (one or several); and (iv) The
type of the background knowledge resources (existing mappings, text, ontologies,
etc.). These di�erent options have resulted in various derivation techniques reported
in the literature that we will discuss in the next chapter.

2.3.3.3 Candidate mapping aggregation and selection

The result of the derivation step is a set of candidate mappings. Aggregating the
derived candidate mappings and selecting the most relevant ones is a classical task
in ontology matching process. In the direct matching approach, all candidate map-
pings have a score which is the combination of the similarity measures used. Then,
usually, a threshold value is computed statically or dynamically to decide whether
to keep or not a given candidate mapping in the �nal alignment. However, sim-
ilarity scores are sometimes absent in the mappings produced by some BK-based
methods (Aleksovski et al., 2006a,Sabou et al., 2008,Annane et al., 2016a). Further-
more, depending on the quality and diversity of the BK used, candidate mappings
are not always correct (Tordai et al., 2010). Therefore, there is a need of using
alternative strategies, especially in case of multi-resources background knowledge.
Indeed, for the same couple (es, et), it is possible to have anchors in more than one
background knowledge resource, then derive di�erent semantic relationships from
one resource to another (Sabou et al., 2008).

De�nition: Let BK = {KR1, KR2, ..., KRm} be the BK used to derive a map-
ping between two entities es and et, mi = 〈es, et, ri, ki〉 a derived mapping between
es and et using the knowledge resource KRi with i ≤ m.

The aggregation is the strategy that combines the di�erent mappings mi into
one mapping 〈es, et, r, k〉 where r is the combination of di�erent ri and k is the
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combination of di�erent ki, while the selection is the strategy that allows deciding
to keep or not the derived mapping in the �nal alignment.

2.4 Conclusion

In the �rst part of this chapter, we have introduced the main notions of the ontology
matching �eld, which are necessary for understanding our manuscript. In the second
part, we have presented the general work�ow of the BK-based ontology matching
approach and described its di�erent tasks. This work�ow will serve as a common
denominator to describe and compare the related works in the next chapter.
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3.1 Introduction

BK-based ontology matching is an approach that exploits external knowledge re-
sources to overcome the semantic heterogeneity between the ontologies to be aligned.
In the last decade, several works have investigated the use of this approach to en-
hance the ontology matching results. In this chapter we review and compare these
works trying to get answers to the following research questions:

• In which cases the use of BK is justi�ed and necessary?

• What are the application domains in which BK-based matching approach can
be used?

• What is the cost of using the BK-based matching approach?

• BK-based ontology matching an alternative or a complementary solution?

The review includes three main sections. In the �rst section, we present the
di�erent BK selection methods. Then, in the second section, we discuss the vari-
ous BK exploitation methods according to a synthetic classi�cation that we have
elaborated. In the third section, we compare and analyze the results of BK-based
matching systems, which are obtained within Ontology Alignment Evaluation Ini-
tiative (OAEI) 2012-2016 campaigns. We thus evaluate the bene�t of exploiting BK
and the improvement achieved by this approach with regard to the systems that
do not use BK. Finally, we conclude with some considerations in response to the
questions arisen above.

3.2 Review of automatic BK selection methods

BK selection is a critical step in the BK-based matching since it determines the BK
to be used in the matching process. Initial works exploiting external resources in
ontology matching, the BK selection step was performed manually. Although the ef-
fectiveness of the manual selection, it is not practical, especially when having a large
knowledge resource pool. Indeed, manual BK selection assumes the person doing
the selection has an expertise and a deep understanding of the available knowledge
resources, which is not always possible. To overcome this limitation, several works
have investigated the automating of the BK selection process. In the following, we
will review these works according to the classi�cation showed in Figure 3.1.

3.2.1 BK selection from the Web

Using Search Engines
To the best of our knowledge, the �rst work that has dealt with the automatic

BK selection was presented in (Sabou et al., 2008). The authors have considered
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(Aleksovski et al. 2006; 
Mascardi et al. 2010)

Figure 3.1: Classi�cation of BK selection methods.
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all ontologies indexed by the semantic search engine Swoogle (Ding et al., 2004) as
a knowledge resource pool. For each candidate mapping (source and target con-
cepts), one or several ontologies are selected dynamically as background knowledge.
The authors experimented various selection strategies. According to the adopted
strategy, for each candidate mapping, selected BK ontology should cover one or
both concept labels. To query Swoogle the concept labels were used as they are
(i.e., without any modi�cations), or undergone syntactic and lexical pretreatments
(e.g., string normalization, synonyms with WordNet). With the normalized labels,
the experimental results were better because they allowed to retrieve BK ontologies
that have been missed when searching with the original labels.

Performing a BK selection for each candidate mapping is time consuming. There-
fore, in (Locoro et al., 2014) the authors proposed to select a BK�a set of ontologies�
once for the whole matching task, and not for each candidate mapping as in the pre-
vious work. They used the semantic search engine Watson (d'Aquin et al., 2007) to
search for ontologies. The selection was controlled by the number of anchors that
have to be found between the ontologies to be matched and candidate BK ontologies.

In addition to ontologies, there was an attempt that to use web pages (i.e., their
textual content) as BK. The text represents a rich knowledge resource, but it is more
di�cult to exploit than ontologies. It should be processed, generally using natural
language processing techniques to produce a structured knowledge resource that will
serve as a BK. In (Kingkaew, 2012), the authors proposed to compose a query dy-
namically using the important terms in the ontologies to be aligned (i.e., the most
frequent terms). The retrieved web pages were downloaded to a local database and
indexed using Apache Lucene, then they were ranked using the similarity measure
proposed in (Quix et al., 2011) and described below in Section 3.2.2. Finally, the
top-k web pages are selected.

Using web services of an ontology repository In (Chen et al., 2014),
the authors have considered the NCBO BioPortal as a knowledge resource pool for
matching biomedical ontologies. NCBO BioPortal is a rich repository of biomedical
ontologies and datasets (more than 600 ontologies) (Noy et al., 2009) that o�ers vari-
ous web services such text annotation, ontology recommendation, etc. The selection
method includes two main steps. The �rst one produces a baseline alignment, called
A, between the ontologies to be aligned with a lexical matcher. The second step
extracts labels of the concepts belonging to the alignment A, then for each extracted
label, a query is made and sent to the NCBO BioPortal to search for all ontologies
that have a concept with this label. Other statistics are returned such as the number
of label synonyms in each candidate BK ontology. The selection process stops if the
number of the candidate BK ontologies does not change after a speci�ed number
N of queries to the repository or when there are no more labels to check. Finally,
the �ve top ontologies are selected according to the number of labels and synonyms
found.
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3.2.2 BK selection from a local repository

Instead of using simply the number of anchors as a selection criteria, (Quix et al.,
2011), (Hartung et al., 2012) and (Faria et al., 2014) have proposed more sophis-
ticated measures to select a set of BK ontologies from a local repository. In the
following, we will describe these measures. The notations OS, OT and OBK refer to
ontology source, ontology target and candidate BK ontology respectively.

Similarity measure. Using information retrieval techniques, (Quix et al., 2011)
proposed to index each ontology of the knowledge resource pool (a local repository of
ontologies) as a document with the vector space model (Salton et al., 1975) by using
Apache Lucene. The indexing process takes into account the lexical information of
the ontology (labels, comments, etc.) but also the structural information: several
structural features have been computed and aggregated into a boosting factor. This
factor is used to prioritize ontologies with a high class hierarchy since they allow to
infer more relationships. The authors did not provide detail about how they have
computed and aggregated the structural features.

The selection of the BK ontologies consists of two steps. In the �rst step, two
queries are dynamically constructed �one for each ontology source and target� using
their lexical information. Using the index built previously, each query returns many
candidate BK ontologies. If no BK ontology is found in the local repository, another
query is made to search ontologies on the web. The retrieved ontologies are indexed
and added to the local repository. The second step consists in ranking the candidate
BK ontologies, and selecting the top-k ones. For that end, the authors proposed the
following similarity measure:

α(sim(OBK , OS) + sim(OBK , OT ))− β|sim(OBK , OS)− sim(OBK , OT )|.

The idea is to prioritize the BK ontologies that are the most similar to the source
and target ontologies (i.e., maximize sim(OBK , OS)+sim(OBK , OT )) and are similar
to both ontologies, not only to one (i.e., minimize sim(OBK , OS)− sim(OBK , OT )).
The sim(OBK , Ox) function returned the Lucene similarity score between the query
made of Ox and the indexed ontology OBK .

E�ectiveness measure. (Hartung et al., 2012) proposed a measure to rate the
e�ectiveness of a BK ontology for a given ontology matching task. The authors
proposed to anchor the ontologies to be aligned to all ontologies in the knowl-
edge resource pool �a local repository� using a given matcher M . For each BK
ontology, the anchoring produces two alignments: AS,BK = M(OS, OBK), and
ABK,T = M(OBK , OT ), which allows to compute its e�ectiveness score with the
following formula:

eff(OS, OBK , OT ) =
2|range(AS,BK)∩domain(ABK,T )|

|OS |+|OT |
.
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Where range(AS,BK) and domain(ABK,T ) are the OBK concepts that have map-
pings in A.

This measure is based on the number of the BK ontology concepts that are
mapped to both source and target concepts. Indeed, these BK concepts will play
the role of intermediate and generate mappings between the ontologies to be aligned.

Using the e�ectiveness score, the authors proposed two BK selection strategies,
called topKByE�ectiveness and topKByComplement. As their names suggest, the
�rst one consists simply in ranking all candidate ontologies using the e�ectiveness
scores and selecting the top-k ones. The second one takes into account the com-
plementarity: the BK ontology with the highest e�ectiveness score is the �rst one
selected, then the second one is the most e�ective according to the parts of source
and target ontologies that are not covered by the �rst BK ontology and so on. Ac-
cording to the experimental results, the second strategy provided the best results.

Mapping gain measure. A similar work has been presented in (Faria et al.,
2014), where a selection measure, called mapping gain, is designed to select the
most e�ective BK ontologies. The measure computes the number of mappings in
an alignment A that is generated by exploiting a given BK with respect to another
alignment B.

MG(A,B) = |A∩¬B|
|B|

The BK selection process is subdivided into two steps: a ranking step and a
selection step. The �rst one allows to identify and rank the candidate BK ontologies.
For each ontology in the knowledge resource pool, a mapping gain score is computed
with respect to the direct alignment of the ontologies to be aligned. In this step,
BK ontologies that have a mapping gain score less than a de�ned threshold are
eliminated. The second step reevaluates the preselected BK ontologies taking into
account the complementarity to select those to be used in the matching process.
The �rst BK ontology selected is the one that has the highest mapping gain score
comparing to the baseline alignment, then for selecting the second BK resource, the
B alignment is the baseline enriched with the new mappings identi�ed thanks to the
�rst BK ontology and so on.

3.2.3 Discussion

Ontologies are the knowledge resources the most used as BK in ontology matching.
Indeed, ontologies are structured knowledge resources validated by the community
and can be directly exploited, while unstructured resources (e.g., web pages) require
more treatments to structure their knowledge before exploiting them. Hence, almost
all automatic BK selection methods deal with the selection of a set of ontologies as
background knowledge among the candidate ones. However, the selection of other
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knowledge resource types (e.g., datasets published on the web) may be an interesting
research issue in the future.

The most of BK selection methods described previously are based on anchoring
source and target ontologies on all knowledge resource pool, which is time consuming,
especially for large knowledge resource pool. The idea proposed in (Quix et al., 2011)
is more e�cient: it uses information retrieval techniques to preselect a reduced set
of candidate BK ontologies, then applies a selection measure only on the preselected
ontologies.

According to the experimental results presented in the reviewed methods, it
is not always possible to �nd one knowledge resource that �lls the semantic gap
between the ontologies to be aligned. Hence, it is more e�ective to select a multiple
resource BK. In addition to the overlap between the ontologies to be aligned and
the BK ontologies, (Hartung et al., 2012) and (Faria et al., 2014) have taken into
account the complementarity criteria to avoid the redundancy and ensure the most
e�cient BK.

The mapping gain is the unique measure that performs a selection after deriving
mappings using each BK ontology. Indeed, the measure takes as parameters two
alignments between the ontologies to be aligned: the �rst with a BK and the second
without this BK.

Currently, there is no measure or an approach to evaluate the e�ectiveness of a
given BK selection method separately from the BK exploitation method. The eval-
uation is done at the end of the matching process by comparing the two alignments:
(i) the one generated without exploiting the selected BK and (ii) the one that did.
If the second one is better, we conclude that the selected BK is e�ective.

3.3 Review of BK exploitation methods

In this section, we review the various methods used to exploit background knowledge
resources in ontology matching. We present and compare the reviewed works accord-
ing to the BK exploitation tasks: (i) anchoring, (ii) derivation, and (iii) aggregation
and selection.

3.3.1 Anchoring

As explained in Chapter 2, anchoring is a direct matching between the ontologies
to be aligned and the selected BK. It aims to �nd BK entities related to the entities
of the source and target ontologies, which permits to exploit the BK as a mediator.
Usually, it is performed with an automatic matcher, except in (Aleksovski et al.,
2006a) where the anchoring was manual (by a human expert) and automatic.

In the literature, the complexity of the matcher used for the anchoring step
varies from one work to another. It was a simple matcher that implements only a
token-based string equality in (Locoro et al., 2014), a combination of label inclusion
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and Levenstein similarity measures in (Aleksovski et al., 2006a), a trigram similarity
measure in (Groÿ et al., 2011) and a combination of syntactic and lexical similarity
measures in (Mascardi et al., 2010). In other works, more sophisticated matchers
have been used for anchoring such as GeRoMeSuite in (Quix et al., 2011) and
LogMap in (Jiménez-Ruiz et al., 2015).

The choice of the anchoring matcher is a compromise between the e�ciency and
the e�ectiveness. Indeed, using a simple matcher is faster than using a complex one
but less e�ective. In (Sabou et al., 2008), the authors have evaluated the impact
of the anchoring matcher on the BK-based matching result. They implemented
two matchers. The �rst one used only a strict string equivalence, while the second
normalizes the concept labels, deals with compound names (e.g., di�erent order of
the label terms) and exploits WordNet to extract semantic relations between terms.
The experimental results showed that the second matcher generated more correct
mappings than the �rst one. However, the anchoring matcher should ensure a high
precision, otherwise the BK-based matching may return more incorrect mappings
than correct ones. The experiments conducted by (Safar et al., 2007) compared
the label inclusion to strict string equivalence matchers. The use of the label in-
clusion matcher generated many incorrect mappings comparing to the strict string
equivalence matcher.

As we have seen in Section 3.2, several BK selection methods considered the
number of anchors between a given knowledge resource and the ontologies to align
as a selection criteria of this knowledge resource. Hence, the anchoring is performed
for selecting the BK and to exploit it.

Some works have reused existing alignments that include mappings between the
ontologies to align and the selected BK. Hence, the anchoring step was ignored (Groÿ
et al., 2011,Annane et al., 2016a) in BK exploitation.

3.3.2 Derivation

In this step, the selected BK is used as a mediator to derive mappings between
the ontologies to be aligned. In the following, we will review the various deriva-
tion strategies according to the number of knowledge resources used as background
knowledge, as well as the exploration or not of their structure during the derivation
process.

3.3.2.1 Using one knowledge resource without structure exploration

Once the anchoring step is performed, the selected knowledge resources �the BK� is
no more used. The mapping derivation consists in composing the mappings resulted
from anchoring without exploiting the relations linking the BK entities. We present
an example in Figure 3.2 (a) to illustrate this derivation strategy. As we can see, the
anchoring produced four mappings m1 =< CS1, CBK1,≡>, m2 =< CT1, CBK1,≡>,
m3 =< CS2, CBK2,≡>, m4 =< CT2, CBK3,⊆>. Only m1 and m2 are composed
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Figure 3.2: Mapping derivation using one knowledge resource and (a) with/ (b)
without structure exploration.

because they have a common anchor CBK1. This composition derives one mapping
between the source and target ontologies (m =< CS1, CT1,≡>).

This derivation strategy has been implemented in (Mascardi et al., 2010). The
authors have exploited an upper level ontology as background knowledge. They de-
rived equivalence mappings, where the score was the multiplication of the composed
mapping scores. The union of all the derived mappings constituted the �nal align-
ment. The authors have evaluated their method by matching 17 small ontologies
(<200 concepts) downloaded from the web. According to the experiment results,
the use of upper ontologies as background knowledge ensures an improvement of the
direct matching F-measure at the price of a long alignment process (several hours)
because of their large size.

3.3.2.2 Using one knowledge resource with structure exploration

In this derivation strategy, the internal relations between the knowledge resource
entities (e.g., subClass, disjoint) are explored during the derivation process. On the
opposite of the previous approach, the derivation requires to reuse the knowledge
resources after the anchoring step. This process is illustrated in in Figure 3.2 (b),
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Figure 3.3: Mapping derivation strategies (Aleksovski et al., 2006b)

the mapping derivation step takes into account the subClass relation between the
concepts CBK3 and CBK2 which allows to derive the mapping < CS2, CT2,⊆>. Note
that in Figure 3.2 (a) this mapping has not been derived because the derivation is
performed without exploring the BK structure.

Methods exploiting the BK structure varies according to the internal BK rela-
tions considered within the derivation process, and the technique used to compose
relations of the anchoring mappings with those of the BK.

In (Aleksovski et al., 2006a), to match two biomedical vocabularies (�at lists), the
authors exploited DICE �a biomedical ontology� as background knowledge. They
have explored the structure of the BK ontology through an internal relation, named
kinds-Of, to derive mappings of various types: subsumes, subsumed by, and equiva-
lence mappings. The experiments showed good results with 76% correct mappings
and 24% wrong ones vs. 46% and 54% when using the direct matching approach.
Advanced experiments have been conducted in (Aleksovski et al., 2006b) to con�rm
the e�ectiveness of the proposed method. The two anatomy parts of the biomedical
ontologies CRISP1 and MeSH2 have been matched exploiting the FMA3 ontology
as a BK. The derivation considered isA and partOf relations of the BK ontology
�FMA ontology. Both of these relations are specializations of the broaderThan re-
lation, hence they had the same representation (i.e., C1 isA C2 → C1 ⊆ C2 and
C1 partOf C2 → C1 ⊆ C2). The authors evaluated several strategies depending on
the composition of the isA and partOf relations: (i) without composition: only
one internal relation �isA or partOf� should link two anchors, (ii) several relations
may link two anchors but they have to be of the same type, (iii) both relations are
composed with each other in any order , and �nally (iv) composing the two relations
such that there is no isA relations before the partOf relations. In Figure 3.3, the
di�erent strategies are illustrated, and derive the same mapping < CS1, CT1,⊆>.
The best results were obtained using the last strategy.

In addition to the ontologies, WordNet (Miller, 1995) is widely used as an exter-
nal knowledge resource. It is an English lexical resource that groups terms (nouns,

1Computer Retrieval of Information on Scienti�c Projects
2Medical Subject Headings
3Foundational Model of Anatomy
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verbs, adjectives and adverbs) in sets of synonym called Synsets. The Synsets are
related by relationships such as isA, kindOf. There are two strategies to exploit
WordNet in ontology matching. The �rst one consists in extending concept labels
with synonyms (Lin and Sandkuhl, 2008). The second one, on which we focus in
this thesis, considers WordNet as a hierarchy of concepts and exploits the relations
between these concepts to derive mappings, which is the case of the work presented
in (Safar et al., 2007,Reynaud and Safar, 2007). To solve the ambiguity problem
in WordNet (i.e., one label may have several senses), a human expert should se-
lect from WordNet one or several concepts �called roots� that cover the domain of
the ontologies to align. Then, only descendants of the selected roots are considered
within the derivation process. To derive mappings, the authors used two techniques:
(i) A semantic technique that consists in �nding the �rst target concepts in paths
leading to the roots; (ii) A structural technique based on the Wu and Palmer (Wu
and Palmer, 1994) which is a WordNet node similarity measure (Pedersen et al.,
2004). The mappings generated with these techniques had isA and isClose rela-
tions, respectively.

Another mapping derivation approach has been investigated in (Giunchiglia
et al., 2004). The ontology matching problem is transformed into a propositional sat-
is�ability one, and a SAT Solver is used to derive mappings between the source and
target concepts. S-Match is an ontology matching algorithm based on this approach
with WordNet as background knowledge. S-Match includes two phases. In the �rst
one, concept labels of the ontologies to be aligned are tokenized, lemmatized, and an-
chored to WordNet. Then, each concept is represented by a propositional expression
using its labels and speci�c rules that translate prepositions, conjunctions, etc. into
logical connectives. Additional axioms are generated using WordNet. For instance,
if A and B are connected by the synonymy relation in WordNet, the axiom A↔ B
is generated, where A and B are terms of the source and target ontologies, respec-
tively. In the second phase, the SAT Solver used the generated axioms to verify the
accuracy of a given mapping. For example the mapping < CS, CT ,⊆> is considered
as correct if the implication CS → CT is validated by the SAT solver. S-Match does
not need a complete lexical overlap between the ontologies to be aligned and the
BK used, which is an advantage. S-Match generates mappings of di�erent relation
types: disjoint, subsumedBy and equivalence. According to the presented experi-
ments, and comparing to the state-of-the-art systems, S-Match is e�ective but not
e�cient. Indeed, the mapping derivation using the SAT solver is time consuming.

S-Match algorithm has been adapted to match biomedical ontologies in (Sham-
dasani et al., 2009) where WordNet is replaced by a specialized domain knowledge
resource: the Uni�ed Medical Language System Meta-thesaurus (UMLS). UMLS is
a lexical resource aggregating multiple biomedical ontologies and terminologies (Bo-
denreider, 2004). Since UMLS does not explicitly state antonymy between concepts
as WordNet does, disjoint mappings have not been derived in this version.

The approaches using the resource structure within the derivation process gener-



36 CHAPTER 3. RELATED WORK

ate mappings of various relations, while the approaches that do not use the resource
structure generate only equivalence mappings.

3.3.2.3 Using several knowledge resources without structure exploration

This derivation strategy reuses the technique explained in Section 3.3.2.1 for each BK
resource. It is implemented by several ontology matching systems such as LogMap-
Bio (Jiménez-Ruiz et al., 2015) and AML (Faria et al., 2013b), which exploit a set
of ontologies as BK to generate equivalence mappings. The GOMMA system (Groÿ
et al., 2011,Groÿ et al., 2012) reused existing mappings as BK. Indeed, with this
derivation strategy, no need to process the selected BK within the derivation process.

All the ontology matching systems cited previously compose only anchoring map-
pings related to the same BK ontology, they do not derive mappings across several
intermediate ontologies (see Figure 3.4 (a)). However, in (Annane et al., 2016a), in
addition to the anchoring mappings, the authors exploited alignments produced by
matching BK ontologies between each other. For instance, this permits to gener-
ate the mapping between CS2 and CT2 in Figure 3.4 (b). The exploited mappings
in (Annane et al., 2016a) were extracted from the repository of biomedical ontolo-
gies NCBO BioPortal (Noy et al., 2009), and they were of equivalence type but of
various provenances. These were produced either manually by human experts or au-
tomatically by a simple syntactic matcher called LOOM (Ghazvinian et al., 2009b).
The authors proposed to combine these mappings in one global graph, called Global
Mapping Graph, where nodes were concepts of di�erent ontologies and edges were
various mappings linking these concepts. The edges were tagged with the mapping
provenance and no score value was used. First, only the source ontology is anchored
to the Global Mapping Graph to select a customized fragment called Speci�c Map-
ping Graph. Then, the target ontology is anchored to the selected fragment to allow
deriving equivalence mappings between the source and target concepts.

3.3.2.4 Using several knowledge resources with structure exploration

This derivation strategy reuses the technique explained in Section 3.3.2.2 for each
BK resource.

In (Quix et al., 2011), the authors used a set of ontologies as background knowl-
edge. Each BK ontology has been exploited separately to derive mappings. The
structure of the BK ontologies were explored via the isA relation.

In the previous work (Quix et al., 2011), the derivation strategy assumes that the
mapping between a pair of source and target concepts should be covered by one BK
ontology. This assumption has been also experimented in (Sabou et al., 2008) and
compared to another one which assumes that the relation may be distributed over
several ontologies � derivation across several BK ontologies. The result comparison
of the two assumptions showed that the derivation across several BK ontologies is
more e�ective, i.e. it �nds more correct mappings.
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Figure 3.4: Derivation cross several BK ontologies and (a) with/ (b) without struc-
ture exploration.

The work described in (Sabou et al., 2008) has been extended in (Locoro et al.,
2014) to a generic framework, called Scarlet2.0. In this framework, the derivation
step was controlled by various parameters such as: the exploration type that speci�es
the relation to be used to explore the BK ontology structure; and the maximum
global path to limit the maximum number of BK ontologies that can link a source
concept to a target one. The relation composition to derive mappings was performed
using the algebra of relations de�ned in (Euzenat, 2008). The experimental results
con�rmed that deriving mappings across several BK ontologies increases the recall.

Ontologies or mappings are structured knowledge resources whereas text is an
unstructured one. Textual resources require more treatments to be exploited as BK.
They should be structured beforehand, which is not an easy task. Only few works
have dealt with such type of knowledge resources. For instance, (Kingkaew, 2012)
has attempted to use the text content of web pages. The web pages, which were
automatically selected, are given as input to a natural language processing compo-
nent that extracted concepts and linked them by similarities in a customized graph,
called Similarity Graph (see Section 3.2 for more details about the automatic selec-
tion of the web pages). Once this graph is built, source and target ontologies are
anchored to it using a lexical matcher. Then, mappings are derived between source
and target concepts using paths in the Similarity Graph. According to the experi-
mental results, this method provides good results but building the similarity graph
with the natural-language processing component is complex and time-consuming.
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For which entities the selected BK should be exploited? In (Reynaud and
Safar, 2007), BK-based matching concerned only source concepts that have not been
mapped with the direct matching approach, while in (Groÿ et al., 2011), the method
starts by matching the ontologies indirectly exploiting the BK then, source and
target concepts that have not been mapped were extracted and matched directly.
In other works, whole ontology entities are matched directly and indirectly, then
the results are aggregated (Quix et al., 2011,Locoro et al., 2014). According to the
empirical results of these works, exploiting BK improves the direct-alignment quality
(i.e., Recall and F-measure), however, no evaluation has been made to highlight the
best BK exploitation strategy.

3.3.3 Aggregation and Selection

Aggregation. Depending on the mapping cardinality generated by the anchor-
ing matcher (i.e., one to one, one to many, or many to many), and the number of
knowledge resources exploited in the matching process, for the same pair of source
and target concepts, we may derive various mapping relations (Sabou et al., 2008).
The simplest aggregation strategy is the union of all the derived mappings (Quix
et al., 2011,Groÿ et al., 2011), however, in some cases more sophisticated aggrega-
tion strategies are required. For instance, the union strategy is not appropriate to
aggregate the two mappings m1 =< CS, CT ,⊆> and m2 =< CS, CT ,⊥ > derived
using two knowledge resources KR1 and KR2, respectively. In (Locoro et al., 2014),
the authors proposed to use other strategies such as algebraic operations (i.e., con-
junction, disjunction) or popularity. The popularity aggregation keeps the most fre-
quent mapping relation obtained between a given pair of source and target concepts.

Selection. In the �rst BK-based matching works, all the derived mappings were
returned without a speci�c selection strategy (Aleksovski et al., 2006b,Sabou et al.,
2008). However, the derived mappings are not always correct, even when using
knowledge resource of high quality such as ontologies (Tordai et al., 2010). Hence,
the need of an e�ective mapping selection strategy after the derivation step.

In (Groÿ et al., 2011), the selection of the �nal mappings is controlled by the
minimum occurrence necessary for a given mapping to be selected in the �nal align-
ment.

Selecting the most relevant mappings among the candidate ones is a common
task between direct and BK-based matching. Indeed, ontology matching systems,
which implement a BK-based component, aggregate the direct matching candidate
mappings, with the derived ones before applying selection strategies (Quix et al.,
2011, Faria et al., 2013b). In the following, we will describe brie�y some mapping
selection strategies implemented in direct matching methods.

Threshold �lter. A threshold �lter is a simple �lter that selects mappings hav-
ing con�dence values equal to or higher than a prede�ned threshold value. Indeed,
the con�dence value re�ects the degree of con�dence that two entities are similar, the
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Figure 3.5: Classi�cation of mapping derivation methods (Symbols⊇,⊆,≡ represent
respectively subsumes, subsumed by and equivalence mappings.)
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higher the con�dence value is, the more likely two entities are matched. However,
con�dence values given to the same pair of entities are di�erent from one matcher
to another, which makes the task of identifying the best threshold value for a given
matcher and a matching task challenging.

Semantic selection. The semantic selection deals with logical inconsistencies.
Input ontologies and candidate mappings are interpreted as sets of axioms in descrip-
tion logic, and logical reasoners are applied to detect inconsistency (Jiménez-Ruiz
et al., 2013). Thus, inconsistent candidate mappings are detected and eliminated to
generate the �nal alignment. After having applied such a selection method, merging
the input ontologies using the resulted alignment should be consistent.

Supervised machine learning.The mapping selection problem may be trans-
formed to a classi�cation problem. Indeed, deciding to keep or not a given candidate
mapping in the �nal alignment may be seen as classifying a candidate mapping as
correct or incorrect. The general work�ow of supervised machine learning is generic,
but it requires the de�nition of two key parameters: the attributes that describe the
training data and test data objects, and how to obtain or generate the training data
(classi�ed objects). Syntactic, structural and lexical similarity measures are used
as attributes to describe a candidate mapping. However, the generation of training
data varies from one work to another. (Spohr et al., 2011a) proposed to use manu-
ally produced mappings as training data. This technique was criticized because it is
based on the cognitive abilities in terms of memory and decision-making of the user
that should manually create the mappings. In addition, it is fastidious, and may not
provide enough data to learn an e�ective classi�er (Dragisic et al., 2016). Other tools
such as APFEL (Ehrig et al., 2005) generates mappings automatically, and asks a
user to validate them. Both correct and incorrect mappings are used as training
data. Despite the drawbacks of generating the training data by users, the advan-
tage is that user preferences are captured from his mappings. Another solution was
adopted in (Rong et al., 2012) considers mappings that are generated automatically
as training data. This technique generates larger training data than the previous
one. However, it does not take into account the user preferences. Moreover, it may
consider incorrect mappings as correct, which a�ects the learned classi�er.

3.4 Evaluation and comparison

The aim of this section is to provide a comparative review of the BK-based matching
systems by analyzing their performance in order to evaluate the bene�t of using BK.
For this purpose, and for the sake of a fair comparison, we extract their results (i.e.,
Precision, Recall and F-measure values) from the Ontology Alignment Evaluation
Initiative (OAEI4) campaigns. More precisely, we consider here the two tracks of
OAEI in which the participating systems have used BK to enhance the matching
results: the Anatomy (see Section 3.4.2) and LargeBio (see Section 3.4.3) tracks.

4http://oaei.ontologymatching.org/
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The LargeBio track has been initiated in 2012, consequently our study concerns
the 2012-2016 OAEI campaigns.

In the following, we present the ontology matching systems using BK that par-
ticipated in the studied campaigns. Then, we describe the datasets on which the
evaluation was done and we compare the obtained results.

3.4.1 Ontology matching systems using BK

GOMMA-BK(Generic Ontology Matching and mapping Management). It is the
�rst system that has implemented BK-based approach in 2012 by using mappings
composition (Groÿ et al., 2011)(see Section 3.3).

AML-BK. A version of AgreementMakerLight ontology matching system (Faria
et al., 2013b). AML-BK used the Uber Anatomy Ontology (UBERON) ontology as
BK in 2013. Since 2014, it uses two biomedical ontologies as a knowledge resource
pool that are : UBERON, Human Disease Ontology (DOID). For each ontology
matching task, AML-BK selects automatically using the mapping gain measure the
ontologies to be exploited as BK from its prede�ned knowledge resource pool. In
addition, AML takes as input the Lexicon �le of the Medical Subject Headings
(MeSH) ontology.

LogMap-BK/LogMapBio. They are two versions of the LogMap ontology
matching system that used BK. LogMap-BK used UMLS Lexicon While LogMapBio
includes an extension for selecting automatically a set of biomedical ontologies as
BK from NCBO BioPortal (Chen et al., 2014)(See Section 3.2).

Note that, in 2016, AML did not use anymore the su�x BK in its name even if
the system actually used BK. For better readability, we have explicitly post �xed
its name with BK (same thing for LogMap in 2012, 2015, 2016).

3.4.2 Anatomy track

The Anatomy track consists in �nding an alignment of 1, 516 mappings between the
Adult Mouse Anatomy (2,744 classes) and a subset of the National Cancer Institute
(NCI) Thesaurus (3, 304 classes) describing human anatomy (Dragisic et al., 2017).

Figure 3.6 shows the results of the systems using BK for the Anatomy track from
2012 to 2016. We added the result of the best system that do not use BK (tagged
with BSW) to compare with their results.

In 2012, GOMMA reused mappings to three external resources (UMLS, UBERON
and FMA), which increases its F-measure to 0.923, keeping an acceptable execu-
tion time, while the best system that did not use specialized knowledge resources,
YAM++ (Ngo and Bellahsene, 2016), had only 0.898.

In 2013, AML-BK implemented the mapping composition technique, which al-
lowed it to be the top ranked system with an F-measure of 0.942.

We observe that even if AML-BK used only UBERON ontology as BK, it had a
higher F-measure value than GOMMA-BK that used two biomedical ontologies in
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Figure 3.6: Anatomy track matching quality results (BS: Best system using BK;
BSW: Best System Without BK)

addition to UBERON. This shows that the �nal results do not depend only on the
BK used, but on the whole matching process implemented in each system.

From 2014 to 2016, LogMapBio participated in the Anatomy track, and obtained
almost the same F-measure value of 0.891. It is the lowest F-measure of systems
using BK, and lower than the F-measure value of the best system without BK (i.e.,
XMAP), which had an F-measure of 0.896.

In 2016, for the �rst time, the CroMatcher system used the UBERON ontology
as background knowledge, which improved its F-measure value from 0.861 in 2015
to 0.925 in 2016.

Figure 3.7 shows the evolution of the Anatomy track results over the last four
years (from 2012 to 2016). As we can see, from 2012 to 2016 the best F-measure
value is obtained systematically by the BK-based systems. In particular, by using a
specialized domain knowledge resources (i.e., biomedical ontologies). The F-measure
values have stabilized from 2013 to 2016, AML-BK system dominates the task with
almost the same F-measure value every year. The same thing for the results of the
systems that do not use BK. The best F-measure value is obtained by the XMAP
system since 2014.

3.4.3 Large Biomedical track

The Large Biomedical (LargeBio) OAEI track5 aims at �nding alignments between
several large and semantically rich biomedical ontologies: the Foundational Model
of Anatomy (FMA) (Rosse and Mejino, 2003), National Cancer Institute Thesaurus
(NCI) (Sioutos et al., 2007) and SNOMED Clinical Terms (SNOMED-CT) (Don-
nelly, 2006), which contain 78, 989, 66, 724 and 306, 591 concepts, respectively. In

5http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/
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Figure 3.7: Evolution of the Anatomy track results.

Table 3.1 , we present the six matching tasks of LargeBio corresponding to the dif-
ferent sizes of input ontologies (small fragments/whole ontology of FMA and NCI
and small/large fragments of SNOMED-CT). The last column shows the number
of mappings in the reference alignment. The Uni�ed Medical Language System
(UMLS) (Bodenreider, 2004) has been used as the basis to produce the reference
alignments (Cheatham et al., 2015).

Table 3.1: Matching tasks of the OAEI LargeBio track.
Task # Task name #Source #Target #Mappings
Task 1 FMA-NCI small fragments 3,696 6,488 2,686
Task 2 NCI-FMA Whole ontologies 66,724 78,989 2,686
Task 3 FMA-SNOMED small fragments 10,157 13,412 6,026
Task 4 FMA whole with SNOMED large fragment 78,989 122,464 6,026
Task 5 NCI-SNOMED small fragments 23,958 51,128 17,210
Task 6 NCI whole with SNOMED large fragment 66,724 122,464 17,210

Figure 3.8 and Figure 3.9 depict the LargBio sub-tasks results obtained by BK-
based ontology matching systems from 2012 to 2016.

2012. Two systems using BK have participated to this track: GOMMA-BK and
LogMap-BK. GOMMA-BK obtained the best F-measure value in Task 1 and Task 2,
while LogMap-BK was the top ranked system in Task 5. In the large fragment tasks
(i.e., Task 2, 4, and 6), the systems that do not use BK (YAM++ and ServOMapL)
were more e�ective.

2013. In addition to LogMap-BK and GOMMA-BK, AML participated with a
BK-based version for the �rst time. AML-BK obtained the best F-measure value in
Task 1 and 5. It had also, a very close F-measure to the best one in Task 3 that was
obtained by LogMap-BK. For the large fragment tasks, the best results was obtained
by the systems that do not use BK (i.e., YAM++ , LogMap and ServOMap).
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Figure 3.8: LargeBio track results (small fragments).
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Figure 3.9: LargeBio track results (Large fragments).



46 CHAPTER 3. RELATED WORK

2014. LogMap-BK has been replaced by LogMapBio that has not used the
UMLS Lexicon as the previous years, instead, it selected dynamically a set of
biomedical ontologies as BK from NCBO BioPortal. The systems that use BK
have obtained the best results, in particular AML-BK which was the top ranked in
all LargeBio tasks. We note also the absence of the three systems GOMMA-BK,
YAM++ and ServOMap.

2015. AML-BK maintained its �rst position and results in the LargeBio tasks.

2016. The same BK-based systems from the previous year have participated,
and obtained the best F-measure values in the six LargeBio tasks.

To observe the evolution of the LargeBio track performances in terms of F-
measure over the last four years, we have represented in Figure 3.10 the best F-
measures obtained by the systems using BK and the best F-measure values of the
systems that did not use BK. As we can see in Figure 3.10, the exploitation of the
BK for the small fragment tasks, especially Task 1 and 3, increases always slightly
the F-measure values. The results of the same tasks obtained by the systems that
do not use BK have been improved and converge to those obtained using special-
ized BK. For instance, in 2016 FCA-Map has obtained the best F-measure values in
Task1, higher than the AML-BK and LogMapBio F-measure value (see Figure 3.8).

In 2012 and 2013, for large fragments tasks (i.e., Task 2, 4 and 6), we observe
that the systems that do not use BK (YAM++ and ServOMap) have obtained the
best results. From 2014 to 2016, YAM++ and ServOMap did not participate any-
more and the systems with BK had the best results.

Task 5 represents the largest one in small fragment tasks in terms of concepts
number (see Table 3.1). In 2012 and 2013, the results of the systems with BK are
slightly better than those of the systems that did not use BK. However, from 2014
we observe a divergence. In particular, results of the systems that do not use BK
are decreasing, and results of BK-based systems are stable.

According to this analysis and the results presented in Figure 3.10, we may derive
that the use of BK enhances the quality of LargeBio task alignments. The trend
of the last four years shows that the use of BK is more e�ective for large fragment
tasks. However, for small fragments tasks, the e�ectiveness of BK exploitation seems
to be limited since the systems without BK obtained the best or very close to the
best F-measure values.



3.4. EVALUATION AND COMPARISON 47

0.3

0.5

0.7

0.9

2012 2013 2014 2015 2016

TASK2

BS-BK BSW

0.3

0.5

0.7

0.9

2012 2013 2014 2015 2016

TASK4

BS-BK BSW

0.3

0.5

0.7

0.9

2012 2013 2014 2015 2016

TASK6

BS-BK BSW

0.3

0.5

0.7

0.9

2012 2013 2014 2015 2016

TASK1

BS-BK BSW

0.3

0.5

0.7

0.9

2012 2013 2014 2015 2016

TASK3

BS-BK BSW

0.3

0.5

0.7

0.9

2012 2013 2014 2015 2016

TASK5

BS-BK BSW

Figure 3.10: Evolution of the LargeBio track results.
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3.4.4 Computation-time vs. F-measure improvement

The computation time is an important evaluation criteria of the matching strategy.
The aim of this section is to attempt to evaluate the cost of using BK in terms of
computation time. For this purpose, we compare the performance of the systems
with and without BK. For a fair comparison, we do not compare the di�erent systems
to each other, we compare the di�erent versions of the same system.

In Table 3.2, we summarize the computation time and matching quality of the
systems that participated in Anatomy and LargeBio tracks with two versions from
2012 to 2016: GOMMA and GOMMA-BK in 2012 (Groÿ et al., 2012), AML and
AML-BK in 2013 (Faria et al., 2013a), LogMap and LogMap-BK in 2013, and
�nally LogMap versus LogMapBio in 2016. Computation time is in seconds and the
F-measure Gain is computed as follows:

F-measure Gain= (F-measure BK - F-measure)/F-measure)

As we can observe in Table 3.2, in almost all cases BK-based versions generated
alignments with higher F-measure values. The exploitation of BK allows to discover
more correct mappings, which enhances recall and F-measure.

The versions using BK take slightly more time to accomplish a given matching
task than the versions that do not use BK.

In 2016, the gain is not signi�cant for LogMapBio comparing to LogMap. This
may be explained by the fact that LogMap used also UMLS Lexicon. The impact
of using BK is negative in Task 1, 2 and 4. Indeed, for these tasks the use of BK
leads to a low precision that decreases the F-measure. LogMapBio takes too much
time to accomplish the LargeBio tasks with respect to the other systems because
it does an automatic selection from an external web repository (NCBO BioPortal).
LogMapBio selected 10 ontologies for each task from the NCBO BioPortal which
contains more than 500 ontologies. It then downloaded the selected ontologies to
exploit them. This process explains why LogMapBio spent much more time to com-
plete the tasks when comparing to the LogMap system and AML that selects BK
from only two preselected ontologies.

Table 3.2 shows that the exploitation of BK enhances the ontology matching
quality mainly by increasing recall. The computation time in the BK-based versions
varies from one system to another. Indeed, it depends on the size of the knowledge
resource pool, and the methods implemented to select and exploit the BK.
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3.5 Discussion

BK-based ontology matching raises several questions. In the following, we will try
to provide some answers to the questions raised in the introduction of this chapter
according to our study.

In which cases is BK-based matching relevant and necessary?

The background knowledge resources play the role of a semantic bridge between
the ontologies to be aligned. The exploitation of these resources allows to �nd new
mappings missed by the direct matching methods. Exploiting BK is thus necessary
in the presence of high lexical or structural heterogeneity between the ontologies to
be aligned (e.g., equivalent concepts described with dissimilar labels). Furthermore,
BK-based matching �nds mappings with semantic relations such as less general,
more general, etc. which are convenient for reasoning purposes.

What are the application domains in which such a matching approach can be
used?

BK-based ontology matching approach is domain independent. It has been
implemented to match ontologies of various domains (see Section 3.3) exploiting
generic knowledge resources (e.g., WordNet, upper-level ontologies) or specialized
ones (e.g., biomedical ontologies). However, experiments show that generic knowl-
edge resources such as WordNet are prone to produce erroneous mappings in domains
with specialized vocabularies, such as the biomedical domain (Faria et al., 2015).
In this case, specialized knowledge resources seem to be more e�ective than the
generic ones. Consequently, domains that promote BK-based matching are those
rich in specialized and structured knowledge resources. For instance, this approach
is widely adopted to match biomedical ontologies thanks to the profusion of knowl-
edge resources in biomedicine (ontologies, terminologies and existing alignments).

Unstructured resources such as text may be an interesting alternative for do-
mains that do not have this richness. However, they require the development of
e�cient and e�ective methods to structure them (i.e., extract entities and semantic
relations linking them) into an e�ective knowledge resources.

What is the cost of the BK-based matching approach?

Exploiting external knowledge resources in ontology matching implies more com-
putational time and memory resources (see Table 3.2). This cost depends on many
factors, we can cite: (i) the number, the type (i.e., structured or not), the size, and
the complexity of the knowledge resources in the selected BK and the BK resource
pool in case of automatic BK selection; (ii) the location of these knowledge resources
(e.g., the web or a local repository); and (iii) the methods used for BK selection and
BK exploitation.

Another cost that should be highlighted, is the impact on the precision of the
�nal alignments. Indeed, the BK-based matching approach may decrease the preci-
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sion by generating additional incorrect mappings (see Section 3.4.4).

BK-based ontology matching an alternative or a complementary solution?
BK exploitation depends on the direct matching between the ontologies to align

and the selected BK (anchoring). Hence, it cannot replace the direct matching
methods. However, and as demonstrated by the experimental results of the reviewed
works, it allows �nding mappings that are missed by the direct matching due to the
semantic heterogeneity i.e., it allows to complement the direct matching results.
Indeed, as we have seen in Section 3.4, the BK-based systems have the best results.
These systems uses a BK-based component as an extension in the biomedical tracks.

Moreover, BK-based matching depends on the quality and the availability of
structured knowledge resources and their overlapping with the ontologies to be
aligned; without such resources it cannot be e�ective.

3.6 Conclusion

The exploitation of external knowledge resources is one of the main ontology match-
ing challenges (Shvaiko and Euzenat, 2013). In this chapter we have attempted to
review the works related to this challenge according to the common work�ow pre-
sented in the previous chapter. Moreover, we have elaborated two classi�cations to
highlight the various BK selection and mapping derivation methods. Finally, we
have compared and discussed the results of the BK-based ontology matching sys-
tems in OAEI from 2012 to 2016.
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4.1 Introduction

As we have seen in the previous chapter, the automatic selection of ontologies as
background knowledge has been proposed in several works (Sabou et al., 2008,Quix
et al., 2011, Hartung et al., 2012, Faria et al., 2014). However, all the proposed
methods return complete ontologies as background knowledge resources to be used
in the matching process.

Our hypothesis is that within each e�ective BK ontology, especially large ones,
only fragments are actually e�ective. Hence, the issue is that of the selection of
these fragments from each BK ontology and their combination to build an e�cient
and e�ective BK.

In our BK selection approach, we tackle this issue by selecting only the concepts
that are related to the matching task from the preselected ontologies. We then com-
bine these selected concepts to build the BK: a novel knowledge resource (Annane
et al., 2016a,Annane et al., 2018).

As we will experimentally demonstrate, following our approach, the built BK has
a very reduced size comparing to that of the preselected ontologies, which improves
the e�ciency of the BK selection process. Furthermore, the built BK intercon-
nects concepts from di�erent preselected ontologies via mappings, thereby allowing
deriving mappings across several intermediate ontologies.

The remainder of this chapter is organized as follows. Section 4.2 describes our
BK selection approach and Section 4.3 demonstrates its e�ciency. Then, Sections 4.4
and 4.5 present the experiment materials and the implementation techniques used
for evaluation. Section 4.6 presents and discusses the obtained results. Finally,
Section 4.7 concludes this chapter.

4.2 Description of our BK selection approach

Our BK selection approach includes four steps illustrated in Figure 4.1. In the
following, we will describe these steps.

4.2.1 Ontology preselection

Today, a simple Google Search for "�letype:owl" returns around 34K results. Fit-
tingly, these ontologies are often organized per domain or community in ontology
libraries (Ying and Dieter, 2001,d'Aquin and Noy, 2012) such as the NCBO BioPor-
tal, the AgroPortal (Jonquet et al., 2017) or the Marine Metadata Interoperability
repository (Rueda et al., 2009). Ontology preselection consists in determining which
ontologies to consider for the BK selection process among all the ontologies that ex-
ist. It aims at reducing the search space for the BK selection process by eliminating
at the outset ontologies that would not be e�ective to identify new mappings (e.g.,
ontologies that are not of the same domain as the ontologies to align). The prese-
lected ontologies may be an ontology repository (Chen et al., 2014), a speci�c set of
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2.Mapping extraction

Built BK

3.Mapping filtering

Source 
ontology

Same concept 

4.Mapping combination

Selecting 
mappings

1.Ontology preselection

Figure 4.1: Overview of the BK selection process.
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ontologies (Faria et al., 2014,Faria et al., 2016,Hartung et al., 2012) or all ontologies
indexed by a given semantic web search engine (Sabou et al., 2008, Locoro et al.,
2014).

In the related works, ontology preselection has not been formalized as a step of
the BK-based ontology matching work�ow, except in (Locoro et al., 2014) where
ontology preselection was called ontology arrangement.

In our approach, and, at the best of our knowledge, in all related works, ontology
preselection is performed manually (Sabou et al., 2008,Faria et al., 2014,Faria et al.,
2016,Hartung et al., 2012,Locoro et al., 2014).

4.2.2 Mapping extraction

The experiments reported in (Ivanova and Lambrix, 2013,Sabou et al., 2008,Locoro
et al., 2014) showed that combining several BK ontologies generates more correct
mappings. Figure 4.2, sampled from our evaluation, illustrates this bene�t. Each
concept is represented with the term ontology#ConceptIdenti�er and is intercon-
nected with mappings. As we can see, the source and target concepts are linked via
at least two intermediate concepts that belong to two di�erent BK ontologies. Such
correct mapping would not have been identi�ed if we had used each intermediate
ontology separately from the others (one intermediate concept at a time). Therefore,
in this step, we extract all possible mappings between the preselected ontologies to
be able to generate mappings across several intermediate concepts that belong to
di�erent BK ontologies.

NCI#External-ear-infection

GALEN#OtitisExterna RCTV2#F502z00

DOID#9463

SNOMED#Otitis-externa-NOS

Figure 4.2: Example of a correct mapping between NCI and SNOMED derived
across intermediate concepts from di�erent BK ontologies.

Let S = {O1, O2, ..., On} be the set of preselected ontologies. In this step, each
ontology Oi in S is matched to the other preselected ontologies that have a higher
index (i.e., Oi+1, Oi+2,....,On). The matching of each couple of ontologies (Oi, Oj)
provides an alignment that is a set of s mappings Aij = {m1,m2, ...,ms}. For n

preselected ontologies, the result is the union of
n−1∑
i=1

(n− i) alignments. More specif-

ically, the result is the union of all mappings that compose the di�erent alignments
Aij: M =

⋃n−1
i=1

⋃n
j=i+1Aij.

The easiest way to extract these mappings is to use an automatic matcher.
Several state-of-the-art matchers, such as YAM++ (Ngo and Bellahsene, 2016),
LogMap (Jiménez-Ruiz et al., 2015), AML (Faria et al., 2013b), etc., are readily
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available. As shown in the previous OAEI campaigns, these systems provide high-
quality alignments (i.e., alignments with high F-measure score).

Furthermore, if available, mappings between the preselected ontologies that
are manually created or human-curated should be added to the automatically ex-
tracted ones. For instance, in the biomedical domain, cross-references between OBO
Foundry ontologies (Smith et al., 2007) may be considered as manual mappings.

Note that the mapping extraction task may be ignored if the preselected ontolo-
gies are not to be combined. In addition, this step is performed only once for a given
set of preselected ontologies.

4.2.3 Mapping �ltering

The preselected ontology concepts likely to generate new mappings should be related
directly or indirectly to the source ontology. Conversely, those concepts not related
to the source ontology will not help generate new mappings. Hence, it seems more
e�cient to eliminate the latter at the outset.

We start by matching the source ontology Os to the preselected ontologies in S.
In order to improve e�ciency, the smallest of the ontologies to align is chosen as the
source ontology. Indeed, the source ontology will be matched to all the preselected
ontologies, while the target ontology will be matched only to the built BK (see the
next section).

The mappings obtained by matching the source ontology to the preselected on-
tologies initialize the set of �ltered mappings, noted FM . Recursively, we enrich
FM by selecting all the mappings in M related to the target concepts of mappings
already present in FM , and so on, until no new mapping is found in M . More
precisely, until all mappings related to the source ontology inM are in FM . In each
step, FM is enriched as follows:
FM = FM ∪ {mi/mi ∈M and Cs(mi) = Ct(mj) and mj ∈ FM}

where Cs(mi) is a function that returns the source concept of the mapping mi

and Ct(mj) is a function that returns the target concept of the mapping mj.

4.2.4 Mapping combination

Mappings �ltered in the previous step are then combined in one unique graph where
nodes are concepts and edges are mappings that link these concepts. This com-
bination insures that each concept appears only once (i.e., mappings that share a
concept are merged). Figure 4.3 shows an example of mapping combination. m1 and
m2 are two mappings that have a common concept e2. The combination keeps only
one occurrence of the concept e2. Note that, thanks to this combination, concepts
that are not directly connected (e1 and e3 in Figure 4.3) may be indirectly connected
through common concepts.

In the resulted graph, each selected concept (node) is described with four at-
tributes:
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m1=

m2=

e2e1

e2 e3
Combination e2e1 e3

≡

≡

≡ ≡

Figure 4.3: Mapping combination example.

1. the URI of the concept

2. the URI of the ontology to which the concept belongs

3. the preferred label of the concept

4. the concept synonyms

The mappings (or edges) between concepts are described with three attributes:

1. the source from which each mapping has been extracted. It may be the name
of a resource such as UMLS, or the ontology matching tool name when the
mapping was generated automatically.

2. the mapping score.

3. the type attribute that indicates whether the mapping was generated manually
or automatically.

The generated graph is the built BK that will be used in the BK exploitation step.

4.3 E�ciency gain with the built BK

Building a new resource (i.e., the built BK) from the preselected ontologies is more
e�cient than returning complete ontologies as background knowledge. In this sec-
tion, we estimate the computation time of our BK selection approach and that of
the traditional approach, then we compare them to demonstrate the e�ciency of
our approach.

The traditional approach refers to the BK selection methods that match the
source and target ontologies to all the preselected ontologies, and then they use
the generated alignments to select the ontologies to be exploited as background
knowledge (Hartung et al., 2012,Faria et al., 2014,Locoro et al., 2014).

Anchoring is the step that follows BK selection, its computation time depends
on the selected BK: a set of ontologies or the built BK. Therefore, we include the
anchoring computation time in our comparison. However, we do not include the
mapping extraction computation time because it is performed once between the pre-
selected ontologies independently of the matching tasks. Moreover, when comparing
our approach to those that use each BK ontology separately (derivation across only
one intermediate concept) (Hartung et al., 2012, Faria et al., 2014), the mapping
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S T

Traditional approach Our approach

Reusing A1, A3, A5 
and A7
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Figure 4.4: BK Selection and anchoring: Traditional approach vs. our approach.

extraction time has a zero value. Indeed, these works do not match BK ontologies
between each other.

Let KR = {O1, O2,..., On} be the set of preselected ontologies, OS the source
ontology and OT the target ontology, t(M,O1, O2) the function that returns the
time required by the matcher M to align the ontologies O1 and O2. When using the
traditional approach, the selected BK is a set of k ontologies SR = {SO1,..., SOk},
with SR ⊆ KR. However, when using our approach, the selected BK is one resource
built from KR ontologies, called BBK. The BK selection computation-time is
computed as follows.

• Traditional approach:

T1 =
∑n

i=1 t(M,OS, Oi) +
∑n

i=1 t(M,OT , Oi) + α.

• Our approach:

T ′1 =
∑n

i=1 t(M,OS, Oi) + β.

Where α and β are the computation times required for the treatments performed
after the BK selection matching tasks. In the traditional approach, it may be the
time of computing similarity measures and ranking the preselected ontologies (Har-
tung et al., 2012,Faria et al., 2014, Locoro et al., 2014). In our approach, it is the
time of selecting the mappings related to the source ontology and combining them.
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Usually, the values of α and β are negligible comparing to that of the matching tasks
performed within the BK selection process.

In the example illustrated in Figure 4.4, with four preselected ontologies, the
traditional approach performs eight matching tasks generating the alignments A1 to
A8, while our approach performs four matching tasks generating the alignments A1

to A4.
For the anchoring step, we distinguish two cases:

Case 1: Reusing BK selection alignments as anchoring alignments.
The anchoring computation time is computed as follows.

• Traditional approach: the anchoring alignments are already available, no ad-
ditional matching task is necessary.

T2 = 0.

• Our approach: The BK selection alignments are related only to the source
ontology. Hence, another matching task is necessary to anchor the target
ontology to the BBK (e.g., the time necessary to generate the alignment B2

in Figure 4.4 (b)).

T ′2 = t(M,OT , BBK).

The computation time of BK selection and anchoring is estimated as follows.

• Traditional approach:

T = T1 + T2 =
n∑

i=1

t(M,OS, Oi) +
n∑

i=1

t(M,OT , Oi) + α. (4.1)

• Our approach:

T ′ = T ′1 + T ′2 =
n∑

i=1

t(M,OS, Oi) + β + t(M,OT , BBK). (4.2)

• Comparison: Traditional approach vs. our approach

T − T ′ =
n∑

i=1

t(M,OT , Oi)− t(M,OT , BBK) + (α− β). (4.3)

Intuitively the di�erence T − T ′ is always positive. Indeed, the di�erence (α − β)
tends to zero, and matching the target ontology to all the preselected ontologies
takes more much time than matching the target ontology to the BBK. This intu-
ition is validated with experiments in Section 4.6.2.
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Case 2: The source and target ontologies are anchored to the selected BK with
another matcher M ′.

In our approach, the anchoring step requires two matching tasks, while in the
traditional approach, the number of matching tasks depends on the number of the
selected BK ontologies. For instance, in Figure 4.4 (a), with two selected BK ontolo-
gies, four matching tasks are necessary to generate B1 to B4. Thus, the anchoring
computation time is computed as follows.

• Traditional approach:

T2 =
∑k

j=1 t(M
′, OS, SOj) +

∑k
j=1 t(M

′, OT , SOj).

• Our approach:

T ′2 = t(M ′, OS, BBK) + t(M ′, OT , BBK).

The computation time of BK selection and anchoring is estimated as follows.

• Traditional approach:

T = T1 + T2 =

(4.1) +
∑k

j=1 t(M
′, OS, SOj) +

∑k
j=1 t(M

′, OT , SOj).

• Our approach:

T ′ = T ′1 + T ′2 = (4.2) + t(M ′, OS, BBK).

• Comparison: Traditional approach vs. our approach

T − T ′ = (4.3) +
∑k

j=1 t(M
′, OS, SOj)+∑k

j=1 t(M
′, OT , SOj)− t(M ′, OS, BBK).

Our hypothesis is that the di�erence T−T ′ is always positive. Indeed, the formula
(4.3) is positive as explained in Case 1, and matching the ontologies to align to the
selected BK ontologies (i.e.,

∑k
j=1 t(M

′, OS, SOj)+
∑k

j=1 t(M
′, OT , SOj)) takes more

time than matching the source ontology to the BBK (i.e., t(M ′, OS, BBK)). Note
that, in our approach, matching the target ontology to the BBK (e.g., generating
B2 in Figure 8 (b)) is common to the two cases, and its computation time is already
included in the formula (4.3). We discussed this case at the end of Section 4.6.2.

4.4 Experiment materials

4.4.1 Evaluation datasets

To evaluate our approach, we chose two OAEI tracks: Anatomy and Large biomedi-
cal ontology (LargeBio) that we have presented in Chapter 3. Our choice was moti-
vated by the fact that, only for these tracks, state-of-the-art systems use ontologies
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as background knowledge to enhance the quality of their alignments. Hence, eval-
uating with these tracks with the same preselected ontologies allows us to compare
our results to the state-of-the-art ones.

4.4.2 Preselected ontologies

According to the OAEI 2016 campaign, AML (Faria et al., 2016) and LogMap-
Bio (Jiménez-Ruiz et al., 2016) are the best BK-based ontology matching systems.
To establish a fair comparison with these systems, our evaluation employs the same
set of preselected ontologies as follows:

• AML-Ontologies: Three ontologies are preselected for AML: UBERON,
DOID and MeSH1. AML makes a dynamic selection from these ontologies
using the Mapping Gain measure (Faria et al., 2014).

• LogMapBio-Ontologies: In OAEI2016, LogMapBio considered the NCBO
BioPortal as the set of preselected ontologies. LogMapBio selected 10 ontolo-
gies for each matching task. For our evaluation, we considered the combination
of all the ontologies selected by LogMapBio as the preselected ontologies in
order to establish a fair �nal result comparison. The combination yields 21 on-
tologies. However, YAM++ could not parse three of those ontologies. Indeed,
these ontologies require importing external ontologies, a process which is not
managed by YAM++. Thus, we ended up using 18 (out of the 21) ontologies
for our comparison with LogMapBio. These ontologies are listed in Table 4.1
with their NCBO BioPortal acronyms2. Excluded ontologies are tagged by *.

For each matching task, we name BBK1 the background knowledge resource
built from AML-Ontologies and BBK2 the one built from LogMapBio-Ontologies.
Building the BK is performed according to the process described in Section 4.1 with
YAM++ as a matcher.

4.4.3 Tools and resources

YAM++. YAM++ is an ontology matching system previously developed by our
team at LIRMM3 (Ngo and Bellahsene, 2016); it does not rely on a specialized BK
to match biomedical ontologies. It is considered as one of the state-of-the-art on-
tology matching systems, and was the top ranked system in OAEI 2013. YAM++
combines several syntactic and structural similarity measures.

OBO DbXref. In addition to the mappings generated by YAM++, we also
extracted cross-reference properties from the preselected ontologies when available

1MeSH is used as lexicon (Faria et al., 2015)
2These ontologies are accessible on NCBO BioPortal with the link

https://bioportal.bioontology.org/ontologies/ontologyAcronym
3http://www.lirmm.fr/yam-plus-plus
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Table 4.1: LogMapBio-Ontologies.
N◦ Ontology acronym Number of concepts
1 BIRNLEX 3,580
2 BTO 5,902
3 CCONT 19,991
4 CL* 2,352
5 CLO 40,884
6 CSEO 20,085
7 DDO* 6,444
8 DINTO* 28,178
9 DOID 12,432
10 EFO 19,909
11 EHDAA2 2,772
12 GALEN 23,141
13 HP 15,804
14 MA 3,257
15 ONTOAD 5,899
16 RCTV2 88,854
17 SYN 14,462
18 UBERON 19,761
19 VHOG 1,185
20 XAO 1,621
21 ZFA 3,168

(i.e., from the preselected ontologies present in the OBO Foundry). As previously
pointed out (see Section 4.2.2), these cross-references may be considered as manually
curated mappings. Therefore, we added them to the extracted mappings and as-
signed them a score of 1. Figure 4.5 shows an example of the OBO DbXref property;
the concept of the UBERON ontology that has 0010501 as identi�er, references the
concept of the FMA ontology that has the identi�er 72059. Hence, we ca extract
the mapping < UBERON : 0010501, FMA : 72059,≡, 1 >

Neo4j. It is a graph database4 intrinsically designed to work with paths within
graphs. It implements many graph algorithms. Indeed, with relational databases,
one has to implement an algorithm and perform several queries to �nd all paths be-
tween a given source and target concepts. Instead, with a graph database, a single
simple query is su�cient.

Machine speci�cations. We run our experiments on an HP ZBook computer
that has an Intel Core i7-4910MQ processor, 2.90 GHz of clock, 32 GB of RAM,

4https://neo4j.com/
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Figure 4.5: OBO DbXref example.

and a 64-bit Operating System (Windows 8.1 pro).

4.5 Implementation

In this section we will describe the technical implementation details of our BK
selection approach.

Mapping extraction: We matched the preselected ontologies (i.e., AML-Ontologies
or LogMapBio-Ontologies) between each others using the YAM++ matcher. For
each matching task, YAM++ generates an RDF �le that contains the mappings
found between the input ontologies. YAM++ produces only equivalence mappings.
Note that this process is performed once for each set of preselected ontologies, be-
cause it does not depend on the ontologies to align.

Mapping �ltering: We matched the source ontology to the preselected on-
tologies using the YAM++. We then selected the mappings related to the source
ontology according to the procedure described in Section 4.2.3. Ontology matching
tools take as input two ontologies in OWL or RDF formats, and as we will see in
the next chapter, the target ontology has to be matched to the built BK. There-
fore, the implemented mapping �ltering method generates two �les: (i) an OWL �le
containing all the selected concepts with their labels; it may be seen as a �ctional
ontology that is created to enable anchoring to the target ontology by matching
systems, and (ii) a CSV �le containing all the �ltered mappings in the following
format (URI source, URI ontology source, URI target, URI ontology target, score,
relation, manualMapping). manualMapping is a boolean property that takes "true"
or "false" as value.

To generate the OWL �le, we group the concepts per ontology, then for each on-
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tology we perform two SPARQL queries: the �rst query is to extract the preferred
labels of the concepts, while the second one is to extract the synonyms. We used
the Jena API to load and query ontologies, and the SKOS vocabulary to describe
the concept labels. Figure 4.6 shows an example of the description of two concepts
belonging to two di�erent ontologies (i.e., DOID and UBERON ontologies) in the
OWL �le.

Figure 4.6: Description of two concepts in the OWL �le.

Mapping combination: In this step, we load the �ltered mappings from the
CSV �le into Neo4j as a graph database. We used the command merge to ensure
that each concept (node) is created once, hence linking the mappings that have
common concepts.

4.6 Experimental evaluation

In this section, we evaluate the e�ciency of our BK selection approach. We organize
the evaluation in two sections. Each section is introduced with an assumption that
we try to validate through experiments.

4.6.1 Built BK size vs. preselected ontologies size

Assumption 1: Our BK selection method builds a reduced-size BK comparing to
that of the preselected ontologies.

As discussed previously, our BK selection approach does not return a set of
ontologies. Instead, it builds a novel knowledge resource that combines concepts
selected from the initial preselected ontologies. To verify the assumption of this
section, we compare the size (i.e., the number of concepts) of our built BK with that
of the preselected ontologies (i.e., AML-Ontologies and LogMapBio-Ontologies).

In Table 4.2, for each matching task, we present the size of the built BK (BBK1
or BBK2) in number of concepts. Furthermore, we compute a percentage by dividing
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the size of the built BK by the size of the preselected ontologies. BBK1 is built from
three ontologies, which have a global size of 297, 031 concepts while BBK2 is built
from 18 ontologies, which have a global size of 302, 707 concepts. For instance, the
size of Task 1 BBK1 is 6, 809; dividing 6, 809 by 297, 031 gives a percentage of 2%,
which means that the BBK1 size represents only 2% of the preselected ontologies
size.

The results reported in Table 4.2 validate Assumption 1. Indeed, for all matching
tasks, the size of the built BK is much smaller than the size of the preselected
ontologies. The percentage varies from one task to another with respect to the size
of the ontologies to align. Tasks 2 and 6 share exactly the same built BK because
they have the same source ontology; this shows that, when matching the source
ontology with several target ontologies, the BK selection step may be performed
once, and the built BK can be reused for each target ontology.

Table 4.2: Size comparisons: built BK vs. preselected ontologies.
Task BBK1 size BBK2 size
Anatomy 3,173 1% 11,090 4%
Task 1 6,809 2% 18,104 5%
Task 2 46,280 15% 48,521 16%
Task 3 13,036 4% 27,465 8%
Task 4 16,251 5% 34,626 10%
Task 5 12,895 4% 36,456 12%
Task 6 46,280 15% 48,521 16%

4.6.2 E�ciency gain with the built BK

Assumption 2: Our BK selection approach is more e�cient than that of the tra-
ditional approach.
Our approach reduces the computation time of the BK-based matching process,
especially that of BK selection and anchoring as explained in Section 4.3. In our
evaluation, we used the same matcher (i.e., YAM++) for BK selection and anchor-
ing. Hence, we are in Case 1 that reuses the BK selection alignments as anchoring
alignments. We compare T and T' computed according to the formulas (4.1) and
(4.2) introduced in Section 4.3, respectively.

In Figures 4.7 and 4.8, we present the following values:

• T: the time necessary for matching the source and target ontologies to the
preselected ontologies in the traditional approach. We ignore α because it has
a small value and variates from one work to another as explained in Section 4.3;

• T': the time necessary for mapping �ltering, mapping combination and an-
choring the target ontology to the built BK in our approach;
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• the percentage ratio comparing the two values T and T'. This ratio is computed
by dividing T ′ by T .

As we can observe, in all cases, our approach is more e�cient than the traditional
approach (i.e., T ′ < T ). The gain is between 42% (for Task 2 with BBK1) and 60%
(for Task 4 with BBK2). These results are expected since T and T' have a common
part: matching the source ontology to the preselected ontologies. However, matching
the target ontology to the preselected ontologies takes more time comparing to
matching the target ontology to the BBK. For instance, in all tasks, matching the
target ontology to BBK1 takes less than four minutes, while matching the target
ontology to the large ontology MeSH always takes about 30 minutes.

With YAM++, the average time to match an ontology of LargeBio or Anatomy
to: (i) one of the 18 ontologies listed in Table 4.1 is 2.8(min), (ii) the BK built from
the 18 ontologies is 5.5(min). We may use these values to check our intuition about
the e�ciency gain in Case 2. When selecting only one ontology as background
knowledge from the 18 ontologies, the di�erence between T and T' in Case 2 is
computed as follows.
T − T ′ = E + (2.8 + 2.8)− 5.5 = E + 0.1(min) where E is the value of the formula
(3) that is the di�erence between T and T ′ in Case 1. As we can see in Figure 4.7
and 4.8, E is always positive. Hence, E + 0.1(min) is positive.

In Case 2, the e�ciency gain becomes more signi�cant as the number of selected
ontologies increases. For instance, with two ontologies as BK, the di�erence becomes:
T − T ′ = E + (2.8 ∗ 2 + 2.8 ∗ 2)− 5.5 = E + 5.7(min)

Based on the obtained results, we conclude that our BK selection approach builds
an e�cient BK, which validates Assumption 2. Indeed, the built BK reduces the BK
selection and anchoring computation-time comparing to the traditional approach.
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Figure 4.7: E�ciency gain with BBK1.



68 CHAPTER 4. BK SELECTION/BUILDING

0%

10%

20%

30%

40%

50%

60%

70%

0

20

40

60

80

100

120

140

Anatomy Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

T (traditional appraoch) T' (our approach) Ratio

Figure 4.8: E�ciency gain with BBK2.

4.7 Conclusion

Ontologies are the knowledge resources the most used as background knowledge
resources. However, a large number of ontologies is available which makes the BK
selection a challenging issue. In this chapter, we have presented and evaluated
our BK selection approach. Instead of returning a set of complete ontologies, our
approach builds a novel knowledge resource from the initial preselected ontologies.

According to the experiments that we have conducted, our BK selection approach
is e�cient; it allows to reduce the BK selection time up to 60%.

As we have highlighted in Chapter 2, currently there is no measure to evaluate
the e�ectiveness of a given BK for a given matching task. The idea is to exploit the
selected BK and measure whether it allows to improve the recall of the direct match-
ing alignment. In the next chapter, we will present our BK exploitation approach
and verify the e�ectiveness of the built BK.
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5.1 Introduction

In this chapter, we present how we exploit the BK built in the previous chapter to
derive mappings between the source and target ontologies. Related works showed
that deriving mappings across several intermediate ontologies is more e�ective, how-
ever combining ontologies within the derivation process is time consuming (Sabou
et al., 2008). As we will show, the built BK keeps the advantage of deriving across
several intermediate ontologies without a�ecting e�ciency.

Using background knowledge resources in ontology matching is a double-edged
sword. Indeed, though these resources provide new information to �nd correct map-
pings, incorrect mappings may also be generated (Locoro et al., 2014). Consequently,
selecting correct mappings from the candidate ones is particularly challenging in the
context of BK-based matching. In this chapter, we propose two new selection meth-
ods. The �rst one is based on a set of rules, while the second one is based on
supervised machine learning. To enable the use of a classi�cation machine learn-
ing algorithm, we designed a set of 27 attributes based on the built background
knowledge resource.

We performed extensive experiments on two datasets taken from OAEI, with
two sets of preselected ontologies, to evaluate the performance of our approach. The
experiment results con�rm the e�ectiveness of our approach. Moreover, we compared
our results to state-of-the-art systems that exploit background knowledge resources.
Our F-measure values are very competitive relative to the best ones reported in the
literature (Annane et al., 2018).

The rest of this chapter is organized as follows. Section 5.2 describes our BK
exploitation approach. Then, Section 5.3 presents and analyzes the evaluation re-
sults and Section 5.4 discusses some limitations. Finally, Section 5.5 concludes this
chapter.

5.2 Description of our BK exploitation approach

In this section, we present the di�erent steps of our BK exploitation process, which
includes:(i) anchoring, (ii) deriving candidate mappings and (iii) �nal mapping se-
lection (see Figure 5.1).

5.2.1 Anchoring

Anchoring consists in identifying the entities of the ontologies to align in the back-
ground knowledge resource (Aleksovski et al., 2006b, Sabou et al., 2008). In our
case, this is done by a direct matching between the ontologies to align and the built
BK. Anchoring mappings are then added to the built BK graph. For more detail
about the anchoring process, please see Section 2.3.3.1.

Note that, for the source ontology, we may simply reuse the mappings produced
in the mapping �ltering step (Section 4.2.3) between the source ontology and the
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Source ontology

Anchoring

Target ontology

Candidate mappings

Built BK

Deriving candidate mappings

Final mapping selection

Derived mappings

Figure 5.1: Overview of BK exploitation process.

preselected ontologies. This is feasible when both steps use the same matcher.
However, BK selection and BK exploitation can be two completely independent
steps.

5.2.2 Deriving candidate mappings

In this step, candidate mappings are derived between the ontologies to align using
the graph structure of the built BK. We search for each source concept anchored to
the built BK, all paths leading to the target ontology concepts. Each path found
may be represented by a set of n mappings as follows:
P = {〈es1, e′t1, r1, k1〉 , 〈e′s2, e′t2, r2, k2〉 , ..., 〈e′sn, etn, rn, kn〉}

Where es1 belongs to the source ontology, etn belongs to the target ontology
and e′ti = e′s(i+1). Each path found provides a candidate mapping 〈es1, etn, r, k〉. r
results from the composition of the di�erent ri on the path P . Similarly, k results
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from the composition of the di�erent ki on the path P . In this thesis, we only deal
with equivalence mappings (i.e., all ri are equivalences). However, our approach
may be extended to other kinds of mapping relationships, provided a strategy to
compose di�erent relationships on the same path is de�ned (Euzenat, 2008). Note
that the intermediate concepts of a given path originate from di�erent ontologies,
which represents a derivation across several intermediate ontologies.

In ontology matching, the objective of using background knowledge resources is
to complement direct matching but not to replace it. Indeed, direct matching may
identify mappings that can be missed in BK-based matching and vice versa. There-
fore, to complement the set of candidate mappings, we propose to add mappings
resulting from the direct-matching between source and target ontologies to the set
of derived candidate mappings.

5.2.3 Final mapping selection

To select the most accurate mappings, an e�ective mapping selection method must
be used. Candidate mappings consist in a set of paths linking the source to the
target concepts. Several paths may represent the same candidate mapping. Thus,
to compute the �nal score k for a given candidate mapping, we must address two
issues:

1. How to compose the di�erent mapping scores of the same path?

2. How to aggregate the scores of di�erent paths representing the same candi-
date mapping?

Related work suggested to use algebraic functions, such as multiplication, average,
maximum, etc. to compose di�erent mapping scores (Mascardi et al., 2010). These
functions may also be used for aggregation (issue 2).

In the following, we use the term con�guration for a given pair of composition
and aggregation functions. For instance, the multiplication-maximum con�guration
means that the composition (issue 1) is the multiplication of the path scores, while
the aggregation (issue 2) is performed with the maximum function. For a given
candidate mapping, we may compute one or multiple scores according to the selec-
tion method. Indeed, di�erent con�gurations return di�erent scores for the same
candidate mapping.

5.2.3.1 Rule-based selection

Rule-based selection of the �nal mappings consists in de�ning a set of rules to decide
whether or not to keep a given candidate mapping in the �nal alignment. In our
method, we propose the following rules:

1. Mappings returned by direct and indirect matching are selected.
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2. Mappings resulting from the composition of only manual mappings are se-
lected.

3. For each source concept, the target candidate with the highest mapping score
is selected.

4. For each target concept, the source candidate with the highest mapping score
is selected.

For rules 3 and 4, the score may be controlled by a given threshold. The score of the
candidate mappings is computed with the multiplication-maximum con�guration.

5.2.3.2 Machine learning-based selection

As previously discussed, there exist multiple possible algebraic function con�gu-
rations to compose mapping scores of the same path, and to aggregate scores of
di�erent paths representing the same candidate mapping. However, testing the per-
formance of all possible con�gurations to �nd the most suitable one for a given
matching task is fastidious. Additionally, manually �nding the best con�guration
for a given matching task does not amount to �nding it for all matching tasks.
Furthermore, one may combine several con�gurations to improve the e�ectiveness
of the selection method; for example, one could combine average-multiplication,
maximum-multiplication and average-average con�gurations. Indeed, each con�g-
uration may provide a piece of information which could help to select the most
relevant mappings. In this case, however, we would also have to de�ne how to com-
bine the di�erent values of these con�gurations to select the �nal mappings. This
renders the task even more complex.

Supervised Machine Learning technique (ML) is an appropriate option to address
this issue. Indeed, according to the training data, ML automatically customizes a
classi�cation function (classi�er) that combines several attributes (selection vari-
ables). We therefore propose to cast the problem of mapping selection into a clas-
si�cation problem as follows:

• The test data are the candidate mappings between the source and target on-
tologies to be classi�ed as true or false.

• The training data are a set of candidate mappings already classi�ed as true or
false. These candidate mappings are completely distinct from the test data
(the candidate mappings to classify).

• The attributes (or features) that describe each candidate mapping are the
di�erent con�gurations and any variable that can help to classify a given can-
didate mapping.

In the following, we present the candidate mapping attributes, the training data
as well as RandomForest, the machine learning algorithm used in this article.
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5.2.3.3 Candidate mapping attributes

In our case, the attributes are the selection variables. Indeed, each attribute is
a decision variable that will help to decide if a given candidate mapping will be
classi�ed as true or false. In related work, to classify the candidate mappings,
similarity measures between source and target concepts were used. Here, however,
the candidate mappings are a set of paths between source and target concepts.
Therefore, we need to de�ne new attributes. We thus propose a set of 27 selection
attributes for each candidate mapping:

Direct score: if the candidate mapping belongs to the alignment returned by
the direct matching, the direct score is the score of the candidate mapping in this
alignment; otherwise, it is 0. Our intuition is that the mappings returned by the
direct matching are likely to be correct.

Number of paths representing the candidate mapping: in fact, candidate map-
pings returned by many paths are more likely to be correct than those returned by
few paths.

Path length attributes: for each candidate mapping, we compute three at-
tributes that are (i) the minimum length, (ii) the maximum length and (iii) the
average length of paths that represent the candidate mapping. Our intuition is
that, the shorter the paths, the more relevant the candidate mapping will be.

Mapping score attributes: For each candidate mapping, 21 score attributes
are computed. Indeed, for each path that represents the candidate mapping, we com-
pute seven values with the following composition functions: (1) maximum, (2) min-
imum, (3) average, (4) multiplication, (5) sum, (6) variance and (7) average divided
by variance. Each function takes the scores of the mappings that make this path as
an input. We then aggregate path scores for each composition function with three
functions: (1) maximum, (2) minimum and (3) average. For instance, when using
variance as a composition function, we compute three attributes from the paths
that represent the candidate mapping with the following con�gurations: maximum-
variance, minimum-variance and average-variance. We repeat this process with the
other six composition functions to obtain 21 attributes.

Maximum average of manual mappings: For each path representing the
candidate mapping, we compute the average number of manual mappings (i.e., the
number of manual mappings divided by the number of mappings of this path). Then,
the maximum average is taken as an attribute. Indeed, paths containing manual
mappings are more relevant than those containing only automatic mappings.

Let us take an example to illustrate the computation of the various attributes.
Figure 5.2 shows an actual example from our evaluation (described further). Con-
cepts are represented in the form: ontology#ConceptIdenti�er; the values on edges
are the mapping scores returned by the automatic matcher; OBO is a manual map-
ping. As we can see, the source concept is anchored to three BK concepts, while
the target concept is anchored to only one. The derivation step returns four paths
linking the source concept to the target concept.



5.2. DESCRIPTION OF OUR BK EXPLOITATION APPROACH 75

Target concept
NCI#Disease and Disorders

Source concept
SNOMED#Disease

0.67

DOID#4

GALEN#HersDisease

CSEO#10000024
BIRNLex#11013

Figure 5.2: Example of candidate mapping derivation.

The following candidate mapping:
(SNOMED#Disease, NCI#Disease and Disorders) is described by the following at-
tributes:

Direct mapping score: 0; number of paths: 4; Average path length:(3 + 3 +
2 + 4)/4 = 3; minimum path length: 2; maximum path length: 4; Average man-
ual mapping: 1/3 because there is only one path of length 3 that contains one
manual mapping; For score attributes, we illustrate one (multiplication) of the
seven composition functions proposed. We start by computing a score for each
path, as shown in Table 5.1. Then, using these path scores, we compute the fol-
lowing attributes: maximum scores: 0.41; minimum scores: 0.27; average scores:
(0.36+0.33+0.41+0.27)/4=0.34.

Table 5.1: Path scores for Figure 5.2 example.
Path nodes Score
DOID#4,
GALEN#HersDisease

1*0.59*0.61=0.36

DOID#4,
GALEN#HersDisease

0.93*0.59*0.61=0.33

GALEN#HersDisease 0.67*0.61=0.41
BIRNLex#11013,
CSEO#10000024,
GALEN#HersDisease

0.79*0.84*0.66*0.61=
0.27

5.2.3.4 Training data

In our case, training data are candidate mappings annotated by true (correct map-
ping) or false (incorrect mapping) and described by all the previously presented
attributes. As is usual with supervised machine learning, obtaining training data
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Figure 5.3: Training data generation process.

requires previously generated and curated reference alignments from other ontolo-
gies than those to align. Preferably, the aligned ontologies are of the same domain
as the ontologies to align. To obtain the training data, we propose to apply our
approach to the aligned ontologies (i.e., BK selection and BK exploitation). We
then, compute the 27 attributes for each derived candidate mapping and annotate
it by true or false according to the reference alignments of the aligned ontologies
(see Figure 5.3).

5.2.3.5 RandomForest machine learning algorithm

There are several algorithms for learning a classi�cation function from a set of train-
ing data. In our experiments, we used RandomForest, a non-linear method for clas-
si�cation (Breiman, 2001). In the training step, it learns a multitude of decision
trees by creating a di�erent random subset to train each decision tree. In the classi-
�cation step, it aggregates the results of these trees by outputting the most frequent
class. Due to this strategy, Random Forest has the advantage of being e�ective on
any type of dataset. Our choice of this algorithm was motivated by its performance
in preliminary experiments. Indeed, we evaluated the classi�cation results produced
by di�erent ML algorithms implemented in the Weka framework (Hall et al., 2009)
such as trees algorithm (J48, RandomForest, RandomTree) and rules algorithms
(JRIP, oneR, etc.); RandomForest generated the best results. This corroborates the
results reported in (Isele and Bizer, 2012): for learning linkage rules, the non-linear
classi�ers (trees) are the most appropriate.

5.3 Experimental evaluation

In this section, we evaluate our BK-based ontology matching approach through
several experiments. We organize the evaluation in four sections. Each section is
introduced with an assumption that we try to validate through experiments. The
experimental materials are the same described in the previous chapter.
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5.3.1 Deriving mappings across several intermediate concepts

Assumption 1: Deriving mappings across several intermediate concepts generates
more correct mappings than deriving across one intermediate concept.

In our approach, mapping derivation is performed by searching all paths between
source and target concepts. Each path contains a number of intermediate concepts
belonging to the preselected ontologies. For instance, with three preselected ontolo-
gies, we may derive mappings with paths that contain one intermediate concept,
two intermediate concepts or three intermediate concepts. In our experiments, we
derived mappings with a maximum of three intermediate concepts.

In Tables 5.2, 5.3 and 5.4, we present the number of correct and incorrect
candidate-mappings, which have been derived across 1, 2 and 3 BK concepts. Then,
to observe the total number of the correct and incorrect derived mappings, we com-
puted the values Sum correct and Sum incorrect. For instance, in Table 5.2, for
Task 1 and path length equals 3, the number of distinct correct mappings derived
with paths with length 2 and 3 is 2013.

The small fragment tasks (i.e., Task 1, Task 3 and Task 5) have the same reference
alignments as the large fragment tasks (i.e., Task 2, Task 4, and Task 6, respectively).
Hence, the same number of correct candidate-mappings. They do not have the same
number of incorrect mappings derived, but for the sake of readability, and since we
focus in this section on studying the bene�t of deriving across several intermediate
concepts to discover correct mappings, we only present the results of the small
fragment tasks in Tables 5.2 and 5.3.

As we can observe, in all cases, paths of various length return much more correct
mappings than incorrect ones. We note that, generally, the incorrect mappings are
less precise ones; we mean by less precise that the returned entities are related, but
not equivalent, since the reference alignment contains only equivalent mappings,
these less precise mappings are considered as incorrect.

Sum correct and Sum incorrect rows allow to study the complementarity of
the various length paths to discover correct mappings. Increasing the number of
intermediate concepts (i.e., BK concepts), discovers more correct mappings. The
number of the new discovered correct candidate-mappings decreases from one path
length to another. For Anatomy, few new correct mappings are discovered with
more than one BK concept. This may be explained by the use of UBERON as BK
ontology, which is an integrative multi-species anatomy ontology. Indeed, UBERON,
employed as the only BK ontology, allows to identify more than 80% of Anatomy
reference alignment mappings.

Table 5.5 summarizes the results of Tables 5.2, 5.3 and 5.4. It shows the following
columns:

• A: the number of correct mappings derived across one BK concept;

• B: the number of correct mappings derived across one, two and three BK
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Table 5.2: LargeBio: correct and incorrect candidate mappings using BBK1.
Task #BK concepts Correct Incorrect Sum correct Sum Incorrect

Task 1

1 1938 80 1938 80
2 1710 106 2013 124
3 1509 119 2054 147

Task 3

1 2043 235 2043 235
2 1481 264 2125 347
3 958 276 2158 386

Task 5

1 4789 1298 4789 1298
2 3725 1820 5038 2203
3 3096 3178 5091 3905

Table 5.3: LargeBio: correct and incorrect candidate mappings using BBK2.
Task #BK concepts Correct Incorrect Sum correct Sum Incorrect

Task 1

1 2369 118 2369 118
2 2173 195 2423 205
3 2217 237 2442 247

Task 3

1 2511 306 2511 306
2 2045 464 2600 520
3 1983 544 2685 623

Task 5

1 9871 2123 9871 2123
2 6933 2811 10068 3101
3 7170 4477 10315 4818

Table 5.4: Anatomy: correct and incorrect candidate mappings.
BK #BK concepts Correct Incorrect Sum correct Sum Incorrect

BBK1

1 1401 93 1401 93
2 1092 64 1404 110
3 344 66 1405 128

BBK2

1 1411 103 1411 103
2 1412 109 1418 119
3 1246 137 1420 152
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concepts;

• Gain: the percentage of gain when using several BK concepts (Gain = B−A
A

).

As we can see, Assumption 1 is validated. Indeed, for each matching task, the
derivation across several intermediate concepts generates more correct mappings,
with a gain of up to 7%, compared to deriving mappings with only one intermediate
concept. Note that deriving mappings with only one intermediate concept is com-
parable to deriving with each BK ontology separately from the other BK ontologies,
which is the method adopted by almost all related works (Faria et al., 2016,Jiménez-
Ruiz et al., 2015, Hartung et al., 2012, Quix et al., 2011). Instead, thanks to the
mapping extraction task, our approach combines all preselected ontologies.

When deriving mappings across several intermediate concepts, we may notice
that the number of correct mappings derived with BBK1 is comparable to BBK2
for Tasks 1, 2, 3 and 4. However, for Tasks 5 and 6, the gap is larger: 10, 315 correct
mappings are derived with BBK while only 5, 091 correct mappings are derived with
BBK1. This shows that BBK2 is more e�ective than BBK1 for these tasks.

Table 5.5: Evaluation of derivation e�ectiveness across several BK concepts.
BK Task A B Gain

BBK1

Anatomy 1,403 1,405 0.1%
Task 1 & Task 2 1,938 2,054 6.0%
Task 3 & Task 4 2,043 2,158 5.6%
Task 5 & Task 6 4,789 5,091 6.3%

BBK2

Anatomy 1,411 1,420 0.6%
Task 1 & Task 2 2,369 2,442 3.1%
Task 3 & Task 4 2,511 2,685 6.9%
Task 5 & Task 6 9,871 10,315 4.5%

5.3.2 Final mapping selection

Assumption 2: Our rule-based and ML-based mapping-selection methods are ef-
fective.
As previously discussed, the selection of the most relevant mappings from the can-
didate ones is a crucial step in BK-based ontology matching as exploiting BK leads
to discover more correct and incorrect mappings. We have described two mapping
selection methods in Section 5.2.3 that we evaluate here to validate Assumption 2.
For our experiments, we have implemented the following mapping selection methods:

1. Baseline. This is the simplest method, it consists in keeping all candidate
mappings that have been derived without any selection.

2. Rule-based selection. This method is the implementation the rules de-
scribed in Section 5.2.3.1 to select the �nal mappings.
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3. ML-based selection. To evaluate the ML selection, we have implemented
two strategies that use the same ML algorithm and the same attributes to
describe candidate mappings but generate the training data di�erently. Note
that in both strategies there is a complete distinction between the test data
(candidate mappings to classify) and the training data.

(a) Cross validation. This strategy is often used to evaluate the perfor-
mance of the ML algorithm and attributes used for a given matching
task in case of using a training data objects similar to the objects to clas-
sify. The process for a given matching task is as follows: (1) we subdivide
the set of candidate mappings of this task into two equal subsets. (2) We
annotate the candidate of the �rst subset with true or false according
to the reference alignment. (3) We use the annotated subset as training
data to learn a classi�er. (4) Then, we classify the candidate mappings of
the second subset with the resulted classi�er. (5) We interchange the two
subsets such as we annotate the second subset and classify the candidate
of the �rst one. (6) Finally, we combine the two classi�cation results
(we take all candidate mappings classi�ed as true) to obtain the �nal
alignment.

(b) Separate learning. Here, we generate the training data for a given
matching task using the ontologies and reference alignments of other
tasks. For LargeBio benchmark, we adopt a leave one out strategy. For
each task, we generate the training data using the others tasks of the same
size. For instance, we have three large fragments tasks (Task 2,Task 4
and Task 6), to classify the candidate mappings of Task 2, we use the
ontologies and reference alignments of Task 4 and Task 6 to generate
the training data according to the process illustrated in Figure 5.3. For
Anatomy, we generate the training data with Task 1, Task 3 and Task 5.

Why 2-fold cross validation? We used the 2-fold cross validation rather than
the 10-fold (the most used one) to show that for a given matching task, if we have a
partial reference alignment (about 50%), we may use it to learn an e�ective classi�er
for selecting the most relevant mappings among the candidate ones for the rest
of concepts. Indeed, the cross-validation strategy with 10-fold uses 90% of the
annotated data as training data and the left 10% as test data. In this case we have
more training data, hence a more e�ective classi�er. Indeed, the results with 10-fold
cross validation are slightly higher.



5.3. EXPERIMENTAL EVALUATION 81

To fairly evaluate the performance of our selection methods, in this section, we
compute the recall with respect to the number of correct mappings that could be
derived, and not to the number of mappings in the reference alignment. Indeed, if
some correct mappings are not available in the set of candidate mappings, we cannot
blame the selection method for not having returned them.

Recall = TP
TPG

Where TP is the number of the correct mappings returned by a given selection
method and TPG is the number of all correct mappings that could be derived using
the built BK.

Figures 5.4, 5.5 and 5.6 present the results of our experiments for each matching
task using respectively BBK1 and BBK2. In particular, we present the precision,
recall and F-measure of the �nal alignment to observe the behavior of each mapping
selection method.

Precision
As we can see in Figures 5.4 (a) and (b), the baseline's precision for small size tasks
(Task 1, Task 3 and Anatomy) is comparable to that of other selection methods.
However, for larger size tasks (Tasks 2, 4, 5 and 6), the precision is low, especially
for Tasks 2 and 6.

Even if the precision curves display the same trend in Figures 5.4 (a) and (b),
the scores in Figure (b) are lower than those in Figure (a). This may be explained
by the fact that BBK2 is built from a larger number of preselected ontologies than
BBK1 18 vs. 3 ontologies). Hence, BBK2 generates more correct (see Table 5.5)
and incorrect mappings, which decreases precision.

The ML-based selection methods consistently yields higher precision than the
rule-based selection method, with an average of 0.915 for cross-validation and 0.909
for separate learning (vs. 0.881 for the rule-based selection). The largest gap is
observed in Task 2. This is due to the fact that the NCI Thesaurus includes a small
branch on mouse anatomy in addition to the human anatomy branch. Using the
cross-references extracted from UBERON (considered as manual mappings) and the
selection rule number 2 (see Section 4.1), the rule-based selection method returns
mappings between human and mouse anatomy. However, the UMLS, the source from
which the reference alignment is extracted, is focused only on human health, and
does not include mappings between the NCI mouse anatomy branch and MA (the
Mouse Anatomy ontology); therefore, these mappings are considered as incorrect,
which a�ects precision (Faria et al., 2014).

Recall
The baseline always shows a recall of 1, because we computed a customized recall
as described above (see Figures 5.5 (c) and (d)). Our selection methods yield a high
recall in all matching tasks. The rule-based mapping selection method obtained the
best recall scores, with an average of 0.979, while the cross-validation and separate-
learning methods had a recall average of 0.955 and 0.938, respectively.



82 CHAPTER 5. BK EXPLOITATION

0.600

0.650

0.700

0.750

0.800

0.850

0.900

0.950

1.000

A N A T O M Y T A S K 1 T A S K 2 T A S K 3 T A S K 4 T A S K 5 T A S K 6

BBK1

Baseline Rule based Cross validation Separate learning

a

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A N A T O MY T A S K 1 T A S K 2 T A S K 3 T A S K 4 T A S K 5 T A S K 6

BBK2

Baseline Rule based Cross validation Separate learning

b

Figure 5.4: Selection method comparison: Precision.

The di�erence between the rule-based and separate-learning selection is signi�-
cant in Task 4, while the gap is smaller with cross-validation. This may be explained
by the low precision of the baseline alignment of Tasks 2 and 6. This a�ects the
learned classi�er. Indeed, the baseline alignments of Tasks 2 and 6 are the training
data of Task 4. Training data contains many false candidate mappings increase
the probability of classifying a given candidate mapping as false, which, in turn,
decreases recall.
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Figure 5.5: Selection method comparison: Recall.

F-measure
We present the F-measure values in Figures 5.6 (e) and (f). The cross-validation
method yielded the best F-measure scores with an average of 0.942 when using BBK1
and of 0.928 when using BBK2. These results demonstrate that the ML technique
with the proposed attributes and similar training data is e�ective for the mapping
selection task. ML-based mapping selection is therefore particularly well-suited for
complementing an existing partial alignment between two ontologies (the partial
alignment may be used to generate the training data) (Lambrix and Liu, 2009,Mary
et al., 2017), or for matching new ontology versions when an alignment between
the old ontology versions already exist. Indeed, the training data may be generated
with the existing alignment.
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The separate-learning method produced high F-measure scores as well, close to
the cross-validation method's scores, with an F-measure average of 0.931 and 0.914
when using BBK1 and BBK2, respectively. These results are more interesting.
They show a concrete case where we may reuse existing alignments within the same
domain to learn an e�ective classi�er. Note that, we generated the training data
for the Anatomy (that has a gold standard reference alignment) using alignments
extracted automatically from UMLS (Tasks 1, 3 and 5 reference alignments), and
the selection results are promising.

The rule-based method provides results with an average of 0.931 and 0.910 when
using BBK1 and BBK2, respectively. It obtained the best F-measure values for the
small tasks (i.e., Anatomy, Tasks 1 and 3). However, its performance decreases (i.e.,
achieves lower precision) for large tasks, compared to ML-based selection, which is
more stable.

The results of the ML-based and rule-based mapping selection methods are com-
parable in terms of F-measure scores. However, the ML-based selection promotes
precision, while the rule-based selection promotes recall.
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Figure 5.6: Selection method comparison: F-measure.

Discussion
Rule-based mapping selection is simple and e�cient but static. Indeed, although
each ontology-matching task has its own speci�cities (for instance, the best thresh-
old value varies from one task to another), the same rules are applied all the time.
ML-based mapping selection is time consuming and requires aligned ontologies to
generate training data. However, it dynamically builds a customized classi�er that
combines multiple selection attributes (27 in our case). Mappings that are man-
ually created or validated stored in platforms such as YAM++ online (Bellahsene
et al., 2017)1, NCBO BioPortal or resources such as OBO ontologies may be used
to generate training data.

Based on our experiment results, we can validate Assumption 2. Our selection
methods are e�ective: they signi�cantly improve baseline precision and consistently
keep high recall.

1http://yamplusplus.lirmm.fr/

http://yamplusplus.lirmm.fr/
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5.3.3 E�ectiveness of the built BK

Assumption 3: The small size of the built BK does not a�ect its e�ectiveness.

In this section, we evaluate the e�ectiveness of our approach by comparing its
results to (i) the direct matching results which are the alignments generated with
YAM++, and (ii) the indirect matching alignments generated with LogMapBio and
AML within the OAEI 2016 campaign.

5.3.3.1 Our results vs. the direct matching results of YAM++

In Figures 5.7, 5.8 and 5.9, we present the �nal results of our approach with the
di�erent selection methods described in Section 5.3.2 (CV: cross validation, SL:
separate learning, R: rule based selection). As we can see, our approach signi�cantly
improved the results of the direct matching performed with YAM++, mainly by
increasing recall. For instance, for Anatomy, when exploiting BBK1 (see Figure
5.7), our approach increased the F-measure value from 0.841 to 0.929. This may
be explained by the e�ectiveness of the built BK, which generated more correct
mappings (high recall), and that of the mapping selection methods, which insured
high precision too. These results legitimate the current trend of exploiting BK
resources to enhance ontology matching.

When using BBK2, the direct matching with YAM++ has the best F-measure
value for Task 2. This may be explained by the loss in precision because of using
UBERON as explained previously in Section 5.3.2.

As expected (see Section 5.3.2), the F-measure values obtained using the var-
ious mapping selection methods are comparable however, and especially for large
fragment tasks, the ML based methods have the best precision values while the rule
based method has the best recall values.
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Figure 5.7: Anatomy results.

5.3.3.2 Our results vs. the state-of-the-art results

According to the OAEI campaigns (Achichi et al., 2016), AML and LogMapBio are
the best systems using ontologies as background knowledge. Hence, comparing our
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Figure 5.8: LargeBio results exploiting BBK1.
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Figure 5.9: LargeBio results exploiting BBK2.
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results to that of these systems permits to evaluate the e�ectiveness of our approach.
For a fair comparison, (i) our evaluation uses the ontologies that were preselected for
these systems in the OAEI 2016 campaign, (ii) only our rule-based selection results
are compared since the OAEI rules prohibit training on OAEI datasets2, and (iii) we
repaired the alignments generated by our approach with the LogMap's ontology
repair module (LogMap-Repair) (Jiménez-Ruiz et al., 2013), which is available as
a self-contained software component3. Indeed, AML and LogMapBio use logical
repair strategies to ensure the coherence of their alignments.

The aim of this comparison is to evaluate the performance of our approach
regarding the best results obtained using the same preselected ontologies. Thus, if
we obtain comparable results, we can conclude that the reduced size of the built BK
does not a�ect its e�ectiveness.

In Table 5.6, we present the di�erence between the F-measure values of the re-
paired alignments and those of the original ones. Generally, repairing the alignments
with LogMap-Repair has a positive impact on the F-measure values. This impact
is more signi�cant when using BBK2, especially for Task 2 and 4. This may be
explained by the fact that BBK2 generates more incorrect mappings than BBK1
(see Tables 5.2, 5.3 and 5.4; the values in bold are the baseline values), hence more
incoherent mappings.

Table 5.6: Repairing gain with LogMap-Repair.
Task Gain (BBK1) Gain (BBK2)
Anatomy 0.003 0.003
Task 1 -0.001 0.001
Task 2 0.007 0.034
Task 3 0.001 0.003
Task 4 0.002 0.015
Task 5 0.001 0.001
Task 6 0.004 0.008

In Figures 5.10 and 5.11, we present the precision, recall and F-measure values
of the alignments returned by:

• AML when our approach exploits BBK1.

• LogMapBio when our approach exploits BBK2.

• Our approach with the rule-based mapping selection method, and the LogMap-
Repair module.

The results of AML and LogMapBio are those reported in the OAEI 2016 campaign.

2http://oaei.ontologymatching.org/doc/oaei-rules.2.html
3https://code.google.com/archive/p/logmap-matcher/downloads
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Our approach slightly overcomes AML results in three tasks (Task 1,3 and 4) and
has a close results for the other tasks (see Figure 5.10). We may say that our results
are comparable to AML results in case of using the three preselected ontologies.
Our approach has a higher recall, while AML has a higher precision, which leads to
the same F-measure average of 0.843.

Our approach outperforms LogMapBio results in all tasks except Task 2 (see
Figure 5.11). This may be the result of the derivation across several intermedi-
ate concepts that increases the recall and the F-measure of our results. Indeed,
LogMapBio composes only two mappings related to the same BK ontology at a
time.
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Figure 5.10: Result comparison: our approach exploiting BBK1 vs. AML.

The use of the built BK increases the recall and more generally the quality (F-
measure) of the direct matching alignment. In addition, it provides results very
competitive to the state-of-the-art results, which corroborates Assumption 3.

5.3.4 Computation time evaluation: step by step

Assumption 4: The use of ontologies as background knowledge has a computation
time cost and our approach reduces this cost.

To validate Assumption 4, we evaluate the time necessary to perform the di�erent
steps of our approach. To ensure a global evaluation, we include the computation
time of the BK selection step (see Chapter 4).
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Figure 5.11: Result comparison: our approach exploiting BBK2 vs. LogMapBio.

Figures 5.12 and 5.13 show the time, in minutes, required for the di�erent steps
in our approach.

BK selection

The BK selection step includes three tasks: mapping extraction, mapping �lter-
ing and mapping combination.

Mapping extraction is the costliest task in terms of computation time, espe-
cially when using a large number of preselected ontologies, as is the case for BBK2
(18 ontologies). Indeed, extracting the mappings from the AML-Ontologies and
LogMapBio-Ontologies took 77 and 132 minutes, respectively. Fortunately, this
task is performed independently of matching tasks. In fact, for a given set (or
repository) of preselected ontologies, the mapping extraction task is performed only
once whereas its output (the set of alignments) is reused for any matching task.
Therefore, we report the computation time of the mapping extraction process once
for all matching tasks in Figures 5.12 and 5.13.

BBK1 is built from three ontologies. However, the time necessary for extracting
the mappings from the three ontologies is 58% the time necessary for performing
the same process from 18 ontologies. This may be explained by the fact that, in
terms of computation time, matching a large preselected ontology such as MeSH is
equivalent to matching several small ontologies.

The high computation time cost of the mapping extraction step is justi�ed by
the fact that the mapping derivation across several intermediate concepts generates
more correct mappings, as demonstrated in Section 5.3.1.

Mapping �ltering is the second costliest process. It includes two tasks: (i) match-
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ing the source ontology to the preselected ontologies and (ii) selecting the map-
pings related to the source ontology. The �rst task is time-consuming, especially
when dealing with large ontologies such as MeSH. Indeed, it is surprising to notice
that matching the source ontology to 3 preselected ontologies takes more time than
matching it to 18 preselected ontologies (see Figures 5.12 and 5.13). MeSH contains
265, 414 concepts, and each concept is described with multiple labels. Therefore,
YAM++ takes long time to match MeSH with any ontology, particularly when the
latter is large too. The second task takes only few seconds in all cases.

Mapping combination is performed with Neo4j allowing us to merge the same
nodes of di�erent mappings. It takes less than 2 seconds in all cases.

Anchoring and derivation
These steps take much less time than the BK selection step. The size of the target

ontology is larger than that of the source ontology however, we notice that anchoring
the target ontology takes much less time than matching the source ontology to the
preselected ontologies in the mapping �ltering step. This may be explained by the
fact that the target ontology is anchored only to the reduced-size built BK.

The derivation task is performed with Neo4j. It takes less than one minute for
small matching tasks and up to three minutes for large ones.

0 20 40 60 80 100 120 140
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Anatomy

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

ME:Mapping Extraction Mapping filtering Mapping combination

Anchoring Derivation Direct matching

Figure 5.12: Computation time in minutes (BBK1).

Final mapping selection
The rule-based mapping selection method takes less than two seconds in all cases.

However, when using ML-based selection, we have to precise what we consider as the
computation time of the mapping selection process. Indeed, classifying the candidate
mappings into true or false takes only few seconds however, generating the training
data and building the classi�er are time consuming. For example, in our evaluation,
we used Tasks 1 and 3 to generate the training data for classifying Task 5 candidate
mappings. Hence, the time necessary to generate the training data in this case is the
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Figure 5.13: Computation time in minutes (BBK2).

time necessary for BK selection and BK exploitation of Tasks 1 and 3. Note that
the training data for Task 5 may be generated with Task 1 only. Furthermore, the
learned classi�er is reusable in the same domain. Indeed, we tried to classify Task 4
candidate mappings derived from BBK2 with the classi�er trained with Tasks 2 and
6 candidate mappings derived from BBK1. We obtained almost the same results
as those obtained with the classi�er trained with candidate mappings derived from
BBK2. Hence, spending time to learn one classi�er for a given domain is acceptable
since it can be reused for di�erent matching tasks.

The obtained results validates Assumption 4. Indeed, comparing the time nec-
essary for direct matching to that required for BK-based matching (i.e., the whole
process) shows that exploiting ontologies as background knowledge has a signi�cant
computation-time cost, especially when using large BK ontologies as MeSH, or a
large number of BK ontologies (see Figures 5.12 and 5.13). However, as demon-
strated in the previous chapter (Section 4.6.2), comparing to the traditional ap-
proach, our approach reduces the BK selection and anchoring time up to 60%.

5.4 Limitations

As we have mentioned in the previous chapter (Section 4.2.3), to improve our ap-
proach e�ciency, we consider the smallest ontology as the source ontology. We tried
to check whether exchanging the ontology positions (i.e., source ontology becomes
target ontology and vice versa) has an impact on the results in terms of Precision,
Recall and F-measure.

Theoretically, this may happen when we reuse the BK selection alignments as
anchoring alignments (i.e., Case 1 in Section 4.3). Indeed, the source ontology is
anchored to the built BK using the syntactic and structural content of the preselected
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ontologies, while the target ontology is anchored to the built BK using only the
syntactic information of the selected concepts (i.e., labels). In Figure 5.14, we
illustrate this case with an example.

Let O1, O2 be two ontologies to align; Op a preselected ontology; e1, ep and e2
three concepts belonging to O1, Op and O2, respectively. We suppose that matching
e1 to ep requires structural techniques that exploit the hierarchy of O1 and Op, while
e2 can be matched to ep only with syntactic or lexical techniques.

epe2 e1

epe1 e2Structural Source: O1

Target:  O2

Syntactic

SyntacticSource: O2

Target:  O1

Figure 5.14: Example of exchanging source and target ontologies.

When O2 is the source ontology, the mapping between e2 and e1 cannot be
derived, since the structural information of the ontology Op is not kept in the built
BK.

We performed the same experiments as those presented in Section 5.3.3 exchang-
ing source and target ontologies. The results did not change. This may be explained
by the fact that the case described above is rare, at least in the used benchmarks.
Indeed, discovering mappings based on the structural information is di�cult as
di�erent ontologies can have di�erent models of the same concept (Pesquita et al.,
2013). Usually, the structural information is mainly used to endorse mappings found
thanks to syntactic or lexical techniques (Ngo and Bellahsene, 2016,Dragisic et al.,
2017).

The e�ectiveness of the built BK to improve the direct matching alignment
depends on two factors: (i) the initial set of preselected ontologies. Indeed, if the
preselected ontologies are not semantically rich (e.g., concepts with no synonyms
or de�nitions), and there is no overlap between them and the ontologies to align,
our approach, as all the BK-based matching approaches, will not improve the direct
matching alignment; and (ii) the quality of the alignments used to build and exploit
the BK. Hence, the matcher that generated these alignments (YAM ++ in our case).
We suppose that the more e�ective is the matcher, the higher quality will have the
alignments generated by our approach. We plan to study this hypothesis in the
future.

We have evaluated our approach on two OAEI benchmarks. Our choice was
motivated by the fact that only for these tracks, state-of-the-art systems use on-
tologies as background knowledge. Hence, evaluating on these benchmarks allows
us to compare our results to the state-of-the-art ones. However, these benchmarks
include ontologies of one domain, the biomedical domain, which may be considered
as a limitation of our evaluation. Nevertheless, the biomedical domain is suitable for
evaluating the BK-based matching approaches for two reasons: (i) the vocabulary
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of ontologies is complex and specialized, which limits the e�ectiveness of syntac-
tic similarity measures and generic lexical resources such as WordNet (Faria et al.,
2014); (ii) there are many biomedical ontologies with overlapping fragments, which
can be exploited as background knowledge.

5.5 Conclusion

In this chapter, we presented the di�erent steps of our BK exploitation approach:
(i) anchoring, (ii) derivation and (iii) �nal mapping selection.

Using BK in ontology matching generates more correct and incorrect candidate
mappings. To e�ectively select the �nal mappings, we proposed two methods: a
rule-based one and an ML-based one. For the second method, we designed a set of
27 attributes to enable the use of an ML classi�cation algorithm.

To evaluate our approach, we have conducted extensive experiments with two
OAEI tracks in which BK-based ontology matching systems participate: Anatomy
and LargeBio. The obtained results show that:

• The BK built with our approach is e�ective;

• Our mapping selection methods are e�ective, and yield almost the same F-
measure values. However, ML-based selection promotes precision, while rule-
based selection promotes recall;

• The results of our approach are competitive comparing to the state-of-the-art
results.
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6.1 Introduction

Evaluating the bene�t of exploiting a given BK can be done only at the end of
the matching process by comparing the alignments obtained with and without this
BK. Therefore, to perform experiments, one has to deal with the whole BK-based
matching process, even if he wants to focus on a speci�c step such as BK selection
or derivation. Indirect matching modules that are implemented in existing matchers
such as AML or LogMapBio are tightly related to their internal architectures. Hence,
reusing these modules requires a study and an adaptation of their code, which is not
always easy. The single generic BK-based matcher was Scarlet (Sabou et al., 2008),
however, according to the corresponding author � Marta Sabou �, the Scarlet code
is heavily outdated and no more functional.

Taking into account these constraints, we designed a Generic BK-based ontology
Matcher (GBM). GBM implements our BK selection and exploitation methods de-
scribed in Chapters 4 and 5. In addition, we have enriched GBM with new modules
to improve the derivation e�ciency (see Section 6.4) and generate mappings with
relations other than equivalence (see Section 6.3). GBM provides a set of parame-
ters that enables di�erent con�gurations, and may be easily coupled to any existing
matcher. This is particularly interesting to perform experiments.

We have participated in OAEI 2017 and OAEI 2017.5 campaigns with a system,
called YAM-BIO, which is GBM with YAM++ as a direct matcher. YAM-BIO
obtained good results and was top ranked in several tasks. Moreover, we performed
experiments with other direct matchers (LogMap and LogMapLite), to show that
GBM � our BK selection and exploitation methods � is generic, and its e�ectiveness
is independent of the direct matcher used.

In the following, we will give an overview of GBM and explain its various pa-
rameters in Section 6.2. Then, we will present the method dealing with BK building
with internal exploration of the preselected ontologies in Section 6.3. We will de-
scribe and evaluate the new derivation algorithm in Section 6.4. After that, we will
present and discuss GBM results with YAM++ in OAEI 2017 and OAEI 2017.5 in
Section 6.5, and with LogMap and LogMapLite in Section 6.6. Finally, we conclude
this chapter in Section 6.7.

6.2 GBM overview

Figure 6.1 shows the �ve main modules that composes GBM: (i) BK building, (ii)
Anchoring, (iii) Derivation, (iv) mapping selection, and �nally (v) Semantic veri�-
cation. We grouped the input parameters in categories (e.g., derivation parameters,
selection parameters, etc.). In the following, we will brie�y describe the di�erent
modules and parameters.

Direct matcher
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Ontologies to align

Alignment

Derivation parameters

Direct matcher

Mapping selection 
parameters

BK building 
parameters

Background knowledge 
resources

Alignment repository

1. BK building 2. Anchoring

3. Candidate mapping derivation

4. Mapping selection

5. Semantic verification

Semantic verification 
parameters

Figure 6.1: GBM architecture.

Any existing direct matcher that implements a basic function Align, which takes
as input two ontology URLs and returns the URL of the alignment generated by
this matcher. The alignment should be stored in RDF format with the API align-
ment (David et al., 2011) to be parsed correctly. Systems that have participated
in the OAEI campaigns, may use GBM directly without any adaptation. Indeed,
OAEI participants have to wrap their tools as SEALS packages, and the wrapping
procedure includes the implementation of the function Align.1

Background knowledge resources
GBM can exploit two background knowledge resource types: (i) ontologies, and

(ii) existing mappings. Since we use Jena API to load and parse ontologies, all
ontology formats supported by Jena API, such as RDF and OWL, are supported
by GBM. However, the formats of the background knowledge ontologies should be
supported by the direct matcher too. Existing mappings may be provided in two
formats: (a) RDF format: alignments stored using the alignment API or (b) CSV
format where each row has a value for the di�erent attributes illustrated in Fig-
ure 6.2.

Alignment repository

1http://oaei.ontologymatching.org/2017/

http://oaei.ontologymatching.org/2017/
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Attribute Value

URI source http://bioontology.org/projects/ontologies/fma/fmaOwlDlComponent_2_0#Abdominal_aorta

Ontology source http://bioontology.org/projects/ontologies/fma/fmaOwlDlComponent_2_0

URI target http://purl.obolibrary.org/obo/UBERON_0001516

Ontology target http://purl.obolibrary.org/obo/uberon.owl

Score 0.99

Relation =

Source YAM++

Figure 6.2: Example of an existing mapping format.

As we can see in Figure 6.1, GBM has its own Alignment repository. Indeed, the
idea is to avoid aligning the same pair of ontologies with the same matcher more
than once to gain in e�ciency. Hence, before performing any matching task, GBM
veri�es if an alignment between the input ontologies exists to reuse it. Otherwise,
GBM generates the required alignment and stores it in the alignment repository.

Alignment repository is a folder which contains RDF �les, where each �le stores
an alignment between two ontologies.

BK building The BK building module is the implementation of the approach
described in Chapter 4 which takes the two parameters: Direct matcher and Source
ontology. In addition, we added a new method that allows to enrich the built BK
with internal relations extracted from the preselected ontologies (see Section 6.3).

Derivation GBM provides two mapping derivation strategies. The �rst one
assumes that the Built BK is stored as a Neo4j graph database. It consists in
searching all possible paths between source and target concepts. This derivation
strategy is complete, i.e., it �nds all possible candidate mappings, however it is not
scalable for large built BK graphs and it depends on Neo4j. We tried to address
these issues by implementing Algorithm 2, which represents the second derivation
strategy. In Section 6.4, we explain in detail and evaluate Algorithm 2.

In both cases, the user has to specify theMaximum path length parameter, which
is the maximum length of paths to be returned by the derivation process (by default
it is 4). The length of a given path is the number of its edges.

Table 6.1: Mapping derivation parameters.
Parameter Possible values
Derivation strategy All paths or Algorithm 2
Maximum path length An integer, by default 4

Mapping selection
GBM implements the two mapping selection methods that we have presented in

Section 5.2.3: ML based selection and Rule based selection methods. When choosing
the ML based selection, the user has to provide one or several datasets, such that
each dataset is a folder that contains two ontologies and their validated alignment.
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These datasets will be used for training the classi�er. When using the second option,
the user may specify a threshold value to select only the mappings that have a score
equivalent to or higher than this threshold value.

Table 6.2: Mapping selection parameters
Parameter Possible values
Mapping selection strategy ML based or Rule based
Threshold a real value between 0 and 1
Datasets a folder for each dataset

Semantic veri�cation
Currently, GBM reuses the LogMapRepair module (Jiménez-Ruiz et al., 2013) to

verify the consistency of the generated alignment. LogMapRepair takes as parameter
the reasoner to use which may be Hermit or Alcomo. The semantic veri�cation is
optional and the user may disable it using the Semantic veri�cation parameter.

Table 6.3: Semantic veri�cation parameters
Parameter Possible values
Semantic veri�cation Yes or No
Reasoner Hermit or Alcomo

6.3 BK building with internal exploration

Our BK selection approach described in Section 4.2 selects only concepts from the
preselected ontologies. Most ontology matching systems generate only equivalence
mappings. Hence, using these matchers, the built BK can be exploited to derive
only equivalence mappings too. To enable deriving mappings with other relations
than equivalence such as subClassOf, we have to enrich the built BK with this kind
of relations. To that end, we may extend our BK selection approach to explore
the structure of the preselected ontologies and extract fragments, rather than only
concepts. The structure exploration is controlled by two parameters:

• the exploration relations. They are the mapping relations that the user wants
to generate in addition of equivalence such as subClassOf, and partOf relations.

• the exploration length. This parameter limits the internal exploration within a
given preselected ontology to a number of steps. For instance, an exploration
with the relation subClassof and length of 1 returns for each concept that
has a mapping in the set of �ltered mappings (see Section 4.2.3) its parents
and children (see Figure 6.3 (b)). If we change the length parameter to 2,
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the structure exploration returns for each concept its parents, grandparents,
children, grandchildren (see Figure 6.3 (c)).

These parameters may be compared to those proposed in (Locoro et al., 2014)
for the local inference step. However, in their work, the authors proposed to reload
each BK ontology to explore its structure in the BK exploitation step, which is time
consuming. Here, we propose to extract the potentially e�ective fragments from the
preselected ontologies in the BK selection step to prevent dealing or reasoning with
complete ontologies in the BK exploitation step.

The result of the structure exploration is a set of triples 〈ei, ej, r〉, such that ei
and ej belong to the same BK ontology, and r belongs to the exploration relations.
These triples are merged with the concepts of the built BK. In the following, we use
the term enriched BK to refer to a BK built with internal exploration.

Note that a large exploration length parameter may return large fragments or
whole BK ontologies, which limits the bene�t of our BK selection approach. Indeed,
our approach aims at extracting the e�ective BK ontology fragments � as small as
possible � rather than returning whole BK ontologies.
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Figure 6.3: Example: concept selection with structure exploration.

In Algorithm 1, we present the pseudo code of the BK building with internal
exploration method. Note that this method takes as input a list of source concepts
which may be all the source concepts. However, we think it is more e�cient to con-
sider only source concepts for which it was not possible to �nd an equivalent target
concept when exploiting the BK built without internal exploration. Indeed, building
an enriched BK for the whole source ontology may generate a large graph, which
decreases the derivation e�ciency, and the precision of the generated alignment.

The implementation of the method explained above o�ers three new parameters
summarized in Table 6.4. When the user assigns yes to the parameter Internal
BK ontology exploration, GBM builds a BK enriched with BK ontology relations
among the Internal relations to explore parameter and the concepts related to these
relations within a distance � number of edges � less than the Exploration length
parameter.
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Algorithm 1 Built BK enrichment
Require: explorationRelations, explorationLength, preselectedOntologies,
sourceConcepts
builtBK ← BKbuilding(sourceConcepts)
enrichedBK ← builtBK
newConcepts← getBKconcepts(builtBK)
for all pOntology ∈ preselectedOntologies do
for all relation ∈ explorationRelations do
for i← 0; i < explorationLength; i++ do
triples← getTriples(pOntology, relation, newConcepts)
oldConcepts← oldConcepts ∪ newConcepts
enrichedBK ← enrichedBKuniontriples
newConcepts← getBKconcepts(triples)− oldConcepts

end for
end for

end for
return enrichedBK

Preliminary evaluation
To the best of our knowledge, there is no biomedical benchmark to evaluate a

matcher tool that returns no-equivalent mappings. Evaluating the BK building with
internal-relation enrichment requires the production of a such benchmark by experts.
However, due to the lack of time, we performed only a preliminary evaluation on
the Anatomy track. We chose Anatomy because it is the smallest and the single
biomedical OAEI track that has a manually validated gold standard.

We executed the matching process in two phases: (i) GBM starts by looking
for the equivalence mappings following the process illustrated in Figure 6.1 until
the derivation step; (ii) then, it builds an enriched BK only for the source concepts
that have no equivalent target-concept candidates. We used YAM++ as a direct
matcher; we assigned the value 1 to the internal exploration length parameter, and
rdfs:subClassOf as the relation to explore parameter.2

Table 6.4: BK Building parameters
Parameter Possible values
Internal BK ontology exploration Yes or No
Internal relations to explore a hierarchical relation e.g., rdfs:subClassOf
Exploration length an integer

Among the 2744 mouse ontology concepts, 1269 concepts (46%) had no equiva-
lent target-concept candidates. The derivation using the enriched BK returned 965

2We used DOID and UBERON as preselected ontologies in all the experiments presented in
this chapter.
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mappings with subClassOf relation. 517 from the 1269 no-mapped source concepts
(41%) have been mapped to target concepts.

We observed that some derived mappings could be inferred from the equivalence
mappings without exploiting the enriched BK. For instance, in the mouse anatomy
ontology, the concept (MA_0002028;pudendal artery) is a subclass of the concept
(MA_0000064;artery). The concept (MA_0000064;artery) has an equivalent con-
cept in the NCIT ontology (NCI_C12372;artery), while the concept pudendal artery
did not. Thus, it is possible to derive that (MA_0002028;pudendal artery) is sub-
ClassOf (NCI_C12372;artery) without exploiting the enriched BK. In the future,
we plan to implement techniques to select only the concepts for which no mapping
can be inferred.

We manually evaluated 40 subClassOf mappings selected randomly. All the
evaluated mappings were correct. We present some examples in Table 6.5. The list
of the generated mappings as well as the 40 mappings validated are available in the
�le SubClassOfMappings.xls on GitHub https://goo.gl/gmGJey.

Table 6.5: Example of mappings with subClassOf relation between mouse and NCI
ontologies.
concept code pre�ered label concept code pre�ered label
MA_0000061 arterial blood vessel NCI_C12679 Blood Vessel
MA_0001871 right atrium valve NCI_C12729 Cardiac Valve
MA_0000111 annulus �brosus NCI_C32599 Fibrocartilage
MA_0000554 thoracic cavity blood vessel NCI_C12679 Blood Vessel
NCI_C53161 Hyoglossus Muscle MA_0002296 extrinsic tongue muscle
NCI_C53174 Pronator Teres Muscle MA_0000615 forelimb muscle
NCI_C53180 Transversus Thoracis MA_0000548 chest muscle
NCI_C53180 Transversus Thoracis MA_0000561 thorax muscle

6.4 Candidate mapping derivation algorithm

To participate in the OAEI 2017.5 campaign, we had to execute our algorithms
on the Hobbit platform (see Section 6.5). This platform o�ers limited memory
and computational time resources for each execution. Searching all possible paths
between source and target concepts � i.e., the �rst derivation strategy � in a cyclic
graph is a complex task which requires signi�cant resources, especially when the
graph has a large size. In Algorithm 2, we attempted to reduce the complexity of
the all path algorithm by reducing the number of the returned paths. The main idea
is to exploit each BK concept once for a given source concept. In Figure 6.4, we
present an example to illustrate the di�erence between the two derivation algorithms.
We suppose that all the mappings mi are equivalence mappings. The all-paths
algorithm (case a) returns four paths for the same candidate mapping between the

https://goo.gl/gmGJey
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source concept Cs1 and the target concept Ct1, while Algorithm 2 (case b) returns
only one path between the two concepts. Indeed, since CBK1 and CBK2 have been
already exploited to derive the �rst path, they cannot be reused to derive other
paths.

Ct1Cs1
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CBK2 CBK3m4

m2 m3

m5 m6
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Figure 6.4: Derivation algorithm: all paths vs. Algorithm 2 .

Algorithm 2 promotes short paths, considers only one edge between two con-
cepts. It starts by adding all the �ltered mappings and the anchoring mappings
to a collection that we call builtBK. In this collection, each concept points all the
concepts to which it has been mapped directly. After that, for each source concept,
we initiate the list of the paths to explore with one path that contains the source
concept itself. Then, while it remains paths to explore, we pick up the top path p,
we retrieve its last node; if this node has not been exploited before, we get the con-
cepts mapped to this node from the built BK, we extend p with each of the mapped
concepts found to obtain new paths, we verify for each new path whether its last
node belongs to the target ontology: if it does, we add the new path to the list of
the found paths, otherwise we add it to the list of the paths to be explored if its size
is less than the maxPathLength parameter.

Evaluation
Figures 6.5 and 6.6 show the results of the two derivation strategies on Task

1 and Task 2 of the OAEI LargeBio track; particularly they show the number of
paths, correct and incorrect candidate mappings resulted from the derivation step.
In addition, we computed a ratio by dividing Algorithm 1's values by the All-paths
values to compare the two derivation algorithms.

As we can see, comparing to the All-paths derivation strategy, Algorithm 1
generates (i) much less paths (37%), (ii) almost the same number of correct candidate
mappings (99%), and (iii) slightly less incorrect candidate mappings (82% and 93%
in Task 1 and Task 2, respectively). We obtained similar results for the rest of
LargeBio tasks and Anatomy.
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Algorithm 2 Derivation function
Require: filteredMappings, sourceConcepts, targetConcepts,maxPathLength
Variables:exploitedConcepts, pathsToExplore, builtBK
for all mapping ∈ filteredMappings do
addMapping(mapping, builtBK)

end for
for all sc ∈ sourceConcepts do
newPath.add(sc)
pathsToExplore.add(newPath)
while pathsToExplore.size() > 0 do
path← pathsToExplore.get(0) # get the top path
pathsToExplore.remove(0)# delete the top path
concept← path.getLastNode()
if concept 6∈ exploitedConcepts then
exploitedConcepts.add(concept)
mappedConcepts← builtBK.get(concept)
for all mc ∈ mappedConcepts do
newPath← path.add(mc)
if rc ∈ targetConcepts then
foundPaths.add(newPath)

else
if newPath.length() < maxPathLength then
pathsToExplore.add(newPath)

end if
end if

end for
end if

end while
pathsToExplore.clear()
exploitedConcepts.clear()

end for
return foundPaths
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The di�erence in the number of correct and incorrect mappings is explained
by the fact that Algorithm 2 does not return paths that includes target ontology
concepts as intermediate concepts, while the all path derivation using Neo4j does.
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Figure 6.5: Task 1: derivation strategy comparison
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Figure 6.6: Task 2 : derivation strategy comparison

6.5 YAM-BIO results in OAEI 2017 and OAEI 2017.5

We participated in the OAEI 2017 and OAEI 2017.5 campaigns in Anatomy and
LargeBio with YAM-BIO as a system, which is GBM with YAM++ as a direct
matcher.

In OAEI 2017, we used a basic version of GBM: we used only a set of existing
mappings (i.e., OBO mappings) extracted from the UBERON and DOID ontologies
as BK, and we applied the indirect matching technique (i.e., mapping composition)
only for the source concepts that have not been matched directly (see Figure 6.7).



104 CHAPTER 6. GENERIC BK-BASED ONTOLOGY MATCHER

1.YAM++

Source 

ontology

Target 

ontology

Alignment 1

Not-matched

source concepts

2.Mappings 

composition

Existing 

mappings

Alignment 23.Union

Final alignment
Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 6.7: OAEI 2017: YAM-BIO architecture.

Exploiting existing mappings as BK allowed YAM-BIO to be scored in second
position among the 12 systems that have participated in Anatomy track with al-
most the same precision and a slightly lower recall than the top ranked system (see
Figure 6.8 3).4

In LargeBio, YAM-BIO was the top-ranked system in Task 1 and Task 4 and
among the three top-ranked systems in the other tasks. Indeed, it is the second
top-ranked system when computing the average of LargeBio results as we can see in
Table 6.6. Detailed results are available on the OAEI web page https://goo.gl/

kU5cnK.

Table 6.6: Average LargeBio results in OAEI 2017.
Matcher Precision Recall F-measure
AML 0.896 0.774 0.827
YAM-BIO 0.894 0.770 0.824
XMAP 0.887 0.760 0.811
LogMap 0.900 0.721 0.797
LogMapBio 0.871 0.734 0.794
LogMapLite 0.858 0.532 0.610
Tool1 0.869 0.367 0.454

3http://oaei.ontologymatching.org/2017/results/anatomy/index.html
4See Section 5.3.3.1 for the original results of YAM++.

https://goo.gl/kU5cnK
https://goo.gl/kU5cnK
http://oaei.ontologymatching.org/2017/results/anatomy/index.html
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Figure 6.8: Anatomy results in OAEI 2017.

In OAEI 2017.5, we participated with the last version of GBM, described in
Section 6.2, on the HOBBIT platform5 with UBERON and DOID as preselected
ontologies.

The Hobbit platform is a generic, modular and distributed platform for Big
Linked Data systems. It was designed with the aim of providing an open-source,
extensible, FAIR and scalable evaluation platform. However, the platform is not
stable yet, and we encountered several technical problems to wrap and run YAM-
BIO on it.

In Table 6.7, we report the results that we obtained in the OAEI 2017 (Annane
et al., 2017) and OAEI 2017.56 campaigns.

Table 6.7: YAM-BIO results in OAEI 2017 and OAEI 2017.5 campaigns.
Campaign OAEI 2017 OAEI 2017.5
Task Precision Recall F-measure T(s) Precision Recall F-measure T(s)
Anatomy 0.948 0.922 0.935 70 0.946 0.913 0.929 176
Task 1 0.968 0.896 0.931 56 0.971 0.902 0.935 197
Task 2 0.816 0.888 0.852 279 0.818 0.894 0.855 518
Task 3 0.966 0.733 0.834 60 0.962 0.741 0.837 244
Task 4 0.887 0.728 0.800 468 0.879 0.738 0.802 755
Task 5 0.899 0.677 0.772 220 0.927 0.703 0.800 478
Task 6 0.827 0.698 0.757 490 0.842 0.697 0.763 962

Generally, OAEI 2017.5 results are better than those obtained in OAEI 2017.
The precision improvement may be explained by the use of the rule based selection

5https://master.project-hobbit.eu/home
6Results may be consulted on the HOBBIT platform https://goo.gl/A496ug

https://master.project-hobbit.eu/home
https://goo.gl/A496ug
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method and the semantic veri�cation. Indeed, in OAEI 2017, we kept all the map-
pings generated indirectly in the �nal alignment, and we did not use any semantic
veri�cation technique what generated a high incoherence degree in some tasks such
as Task 3. However, these mapping selection techniques a�ected Anatomy recall
and F-measure. Such a negative impact of mapping selection techniques on the
�nal results has already been reported in the literature. For instance, when the in-
put ontologies have di�erent modeling views, the semantic veri�cation my eliminate
correct mappings (Pesquita et al., 2013).

In OAEI 2017, we did not generate any alignment other than the one between
the ontologies to align, we simply composed the existing mappings. However, in
OAEI 2017.5, we generated the di�erent alignments required for the BK building
and the BK exploitation steps, which improved the recall � especially in Task 3
and 5 � and increased the computation time. Note that the computation time is
not directly comparable since the experiments have been performed on two di�erent
platforms SEAL and HOBBIT. However, it is trivial that YAM-BIO in OAEI 2017.5
consumed more computation time because it performed more matching tasks.

According to YAM-BIO results in OAEI 2017 and OAEI 2017.5, we may suppose
that considering only the concepts that have not been matched directly in the BK-
based matching, may be a tradeo� � or a compromise � between the matching
quality (i.e., F-measure) and the computation time, which decreases slightly the F-
measure scores, and allows to gain in e�ciency. This hypothesis should be con�rmed
with deeper experiments.

OAEI 2017.5 campaign was aiming to test the Hobbit platform by the matching
systems. Hence, most of participants such as AML or LogMap have reused the
OAEI 2017 versions. Additionally, because of the technical constraints imposed by
this evaluation platform such as the maximum computation time, some systems
have not participated such as LogMapBio since it requires much time to select
background knowledge ontologies from NCBO BioPortal. Therefore, we compare
our OAEI 2017.5 results to the participant results in OAEI 2017.

With an F-measure of 0.929, YAM-BIO is the third top-ranked system in
Anatomy (see Figure 6.8), and with an average F-measure of 0.832, YAM-BIO is
the top-ranked system in LargeBio (see Tables 6.6 and 6.8).

Finally, we may note that there no ideal matching strategy, and it depends on
the user needs in terms of precision, recall and computation time. For instance,
even if YAM-BIO has almost the same F-measure (0.763) as AML in Task 6, AML
has a higher precision 0.904 vs. 0.842, while YAM-BIO has a higher recall 0.697 vs.
0.668.

Table 6.8: Average LargeBio results in OAEI 2017.5.
Measure Precision Recall F-measure
YAM-BIO 0.900 0.779 0.832

Comments on the OAEI evaluation
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When possible, we think it would be interesting to publish participants results
with and without exploiting of specialized background knowledge resources. On one
hand, this will allow to better evaluate the in�uence of background knowledge on
matching results and computation time. On the other hand, this will allow a fair
comparison with systems that do not use background knowledge.

Some components are common in all ontology matching system architectures;
others do not always exist � such as background knowledge resource selection or
semantic veri�cation. This makes the comparison of computation time particularly
cumbersome and not always fair. According to us, it would be more appropriate to
evaluate execution times for each separate component. For example, YAM-BIO used
a prede�ned background knowledge while LogMapBio made a dynamic selection
from an online repository necessarily taking additional time. Splitting running time
by components will also help the community to identify less e�cient components to
improve them, and most e�cient ones to reuse them.

6.6 GBM with LogMap and LogMapLite matchers

To verify the e�ectiveness of GBM with other matchers than YAM++, we performed
the same experiments replacing YAM++ by LogMap and LogMapLite matchers.
LogMap applies consistency principles and LogMapLite essentially applies direct
string matching techniques. We report the obtained results in Tables 6.9 and 6.10.

Comparing to the original results of LogMap, GBM shows slightly better results
(F-measure) in almost all tasks, except in Task 2 because of a low precision. This
low precision may be explained by the use of the preselected ontology UBERON
(see Section 5.3.2 for more detail). Note that LogMap exploits UMLS lexicon, a
rich biomedical lexicon, as external knowledge resource, which reduces the bene�t
of using other external biomedical knowledge resources. Indeed, the improvement is
more signi�cant with LogMapLite, especially in Tasks 3 and 4 (see Table 6.10).

Table 6.9: LogMap: original results vs. results with GBM.
TASK Original results Results with our framework
Measure Precision Recall F-measure T (s) Precision Recall F-measure T (s)
Anatomy 0.918 0.846 0.880 4 0.900 0.947 0.923 42
Task 1 0.944 0.897 0.920 7 0.945 0.896 0.920 53
Task 2 0.856 0.808 0.831 53 0.763 0.851 0.804 174
Task 3 0.947 0.690 0.798 43 0.924 0.735 0.819 104
Task 4 0.840 0.645 0.730 302 0.798 0.695 0.743 465
Task 5 0.947 0.69 0.798 192 0.924 0.705 0.800 332
Task 6 0.868 0.597 0.707 622 0.795 0.683 0.735 923

Figure 6.9 shows two series: (1) di�1: the di�erence between the LogMap F-
measure values and the LogMapLite F-measure values; (2) di�2: the di�erence
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Table 6.10: LogMapLite: original results vs. results with GBM.
TASK Original results Results with our framework
Measure Precision Recall F-measure T (s) Precision Recall F-measure T (s)
Anatomy 0.962 0.728 0.829 1 0.929 0.921 0.925 24
Task 1 0.967 0.819 0.887 1 0.963 0.860 0.909 25
Task 2 0.673 0.820 0.739 7 0.674 0.841 0.748 59
Task 3 0.968 0.209 0.344 2 0.942 0.394 0.555 29
Task 4 0.852 0.209 0.336 12 0.822 0.393 0.532 92
Task 5 0.892 0.567 0.693 6 0.924 0.667 0.774 62
Task 6 0.797 0.567 0.663 12 0.818 0.658 0.730 116
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Figure 6.9: F-measure di�erence: original results vs. our framework results.

between our framework results when using LogMap and LogMapLite. As we can
see, in all matching tasks di�1 is less than di�2, which means that exploiting the
BK allowed to reduce the gap between the two matchers (a sophisticated matcher
and a simple matcher).

6.7 Conclusion

In this chapter, we presented a generic BK-based Ontology Matcher, called GBM,
which implements the main contributions of our thesis. GBM o�ers several param-
eters and may be easily customized according to the user needs. GBM is publicly
available to the community in a GitHub project.7

We have used YAM-BIO � GBM with YAM++ � matcher to participate in the
OAEI 2017 and OAEI 2017.5 campaigns in two tracks: Anatomy and LargeBio. The
results obtained in those tracks were very close to top-ranked state-of-the-art sys-
tems, thanks to the di�erent content matching techniques implemented in YAM++,
the BK used and our BK selection and exploitation methods. Furthermore, we per-
formed experiments with two other matchers LogMap, and LogMapLite. In both
cases, GBM improved the original alignments generated by these matchers. This
demonstrates that the e�ectiveness of GBM is independent of the direct matcher
used.

7https://github.com/AminaANNANE/GenericBKbasedMatcher

https://github.com/AminaANNANE/GenericBKbasedMatcher
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Currently, the set of preselected ontologies is provided manually. In the fu-
ture, it will be interesting to integrate a new module that preselects automatically
a set of background knowledge ontologies. To that end, we plan to evaluate the
performance of an existing ontology recommender such as the NCBO ontology rec-
ommender (Romero et al., 2017).
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This chapter aims to summarize the main contributions of this thesis and to
outline a number of directions for future work. We start with Section 7.1 to highlight
our contributions to the list of research questions initiated in the introduction of this
thesis. Next, in Section 7.2, we present some open issues related to the topic of our
thesis.

7.1 Main contributions

In this thesis, we focused on enhancing direct ontology matching by exploiting ex-
ternal knowledge resources (BK). Our contributions concerned the two main issues
related to BK-based matching: (i) the selection of an e�ective BK for a given on-
tology matching task and (ii) the exploitation of the selected BK in the matching
process. In the following, we summarize our contributions.

7.1.1 Review of BK selection and BK exploitation methods

In the literature, several works have dealt jointly or separately with the BK-based
ontology matching issues. Hence, it was crucial to analyze and compare the existing
works. Studying these works allowed us to de�ne a common BK-based ontology
matching work�ow in Chapter 2. The work�ow includes two main components re-
lated to the two main issues (i.e., BK selection and BK exploitation) and, takes as
input the two ontologies to align and a set of knowledge resources that we called
knowledge resource pool. While the BK selection process is di�erent from one work
to another, the BK exploitation is common and composed of three sub-tasks which
are: anchoring, candidate mapping derivation and, mapping aggregation and selec-
tion. We used this work�ow to describe and compare the existing works in Chap-
ter 3. Initially, BK selection is performed manually, however the quantity and size
of the available knowledge resources motivated the community to develop auto-
matic BK selection methods. This automatic selection varies from a simple search
on the web to more sophisticated methods based on similarity measures. In BK
exploitation, the variety in methods is mainly observed in the mapping derivation
process. To facilitate the comparison, we elaborated a classi�cation based on three
criteria: (i) the structure exploration, (ii) the number and, (iii) combination of the
exploited resources. In addition, we tried to evaluate the impact of using external
knowledge resource in ontology matching using the results of the 2012-2016 OAEI
campaigns. Unfortunately, systems exploiting BK participate only in the biomed-
ical tracks which limits the evaluation to be domain independent. However, since
we are mainly interested in matching biomedical ontologies, we estimate that this
evaluation is reliable in the context of our thesis. The study showed that systems
exploiting BK obtain better results than systems that do not, especially by yielding
a higher recall. In addition, we observed that indirect matching techniques lead to
lower precision and longer computation time.
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7.1.2 A novel e�cient and e�ective BK selection/building
method

As we pointed out in chapter 3, ontologies are the most appropriate external knowl-
edge resources. In addition, in the biomedical domain, there is an abundance of
ontologies with overlapping fragments. Therefore, we chose to use a set of biomedi-
cal ontologies as a knowledge resource pool.

Existing automatic BK selection methods return complete ontologies as back-
ground knowledge to be used in the BK exploitation step. Our hypothesis was that,
for a given matching task, only fragments from the e�ective BK ontologies are ac-
tually e�ective , and returning complete ontologies, especially large ones, decreases
the e�ciency of the BK exploitation process. In this thesis (see Chapter 4), we
proposed to build dynamically one knowledge resource by selecting and combining
fragments from the preselected ontologies (i.e., ontologies of the knowledge resource
pool). BK building is based on the reuse of alignments (i) between the source ontol-
ogy and the preselected ontologies, and (ii) the preselected ontologies between each
other. These alignments may be generated by an automatic matcher or extracted
from an existing resource such as UMLS. The built BK depends only on the source
ontology. Consequently, for the same knowledge resource pool, the same built BK
may be reused to match this source ontology to any target one. Moreover, the built
BK enables the derivation across one or several intermediate BK ontologies. We
conducted experiments on two well known OAEI benchmarks, with two sets of pre-
selected ontologies, which demonstrated (i) the reduced size of the built BK, and
(ii) the gain in e�ciency obtained thanks to our BK selection approach.

7.1.3 BK exploitation methods

The built BK has a graph format which allows to use a graph database to derive
candidate mappings. Indeed, to search candidate mappings, we proposed to search
all paths between source and target concepts. This solution is complete since it
returns all the possible paths which may be interesting for the �nal mapping selection
methods, however, it is not scalable for large graphs. Therefore, we implemented
a derivation algorithm that reduces the number of derived paths up to 37% (see
Chapter 6).

Furthermore, in Chapter 5, we proposed two methods to select the �nal mappings
from the candidate ones. A rule-based and ML-based methods. For the second
method, we created a set of 27 attributes that describe each candidate mapping to
allow the use of a classi�cation ML algorithm. The two methods provide almost the
same results in terms of F-measure. However, according to the experiments, the ML-
based selection promotes precision while rule-based selection promotes recall. The
rule-based mapping selection is simple and e�cient but static. Indeed, the same
rules are applied all the time although each ontology matching task has its own
speci�cities. For instance, the best threshold value varies from one matching task to
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another. The ML-based mapping selection is time consuming and requires aligned
ontologies to generate the training data. However, it allows to build automatically
a customized classi�er that combines many selection attributes (27 in our case).
Our experimental results con�rm the e�ectiveness of our BK exploitation approach,
which improved signi�cantly the direct matching results and overcomes or competes
with state-of-the-art matchers exploiting background knowledge resources.

7.1.4 GBM: Generic BK-based Matcher

Finally, the output of this thesis is a generic BK-based ontology matching framework,
which is the implementation of our BK selection and BK exploitation methods
(see Chapter 6). This framework is con�gurable and may be easily integrated to
any existing matcher. GBM participated to the OAEI 2017 and OAEI 2017.5 in
biomedical tracks where it was top ranked in several matching tasks.

7.2 Open issues

We have identi�ed several research directions that deserve a deeper study.

7.2.1 Generating semantic mappings

One of the advantages of BK-based ontology matching is its ability to generate se-
mantic mappings i.e., mappings with semantic relationships such as disjoint and
subClassOf (Sabou et al., 2008). This kind of mappings allows reasoning with
alignments, which is one of the ontology matching challenges (Shvaiko and Euzenat,
2008). We recently implemented the BK-building with internal exploration module
(see Chapter 6). Preliminary results are promising; however, more in-depth experi-
ments should be conducted to evaluate the performance of the generated mappings
and study the impact of some parameter variations, such as the internal exploration
length parameter, on the generated results. To realize this evaluation, we plan to
work with experts to develop a gold standard including mappings with di�erent re-
lationships. The produced gold standard could be reused to introduce a new OAEI
matching task.

7.2.2 Extending the evaluation to other domains

In this thesis, we evaluated our BK-based ontology matching approach on seven
biomedical matching tasks (see Chapter 5); we obtained promising results, however,
to demonstrate that our approach is domain-independent, we have to perform more
experiments on benchmarks of other domains than biomedical. One possible target
domain is agriculture. Indeed, in the context of the AgroPortal project (Jonquet
et al., 2018), a repository that groups ontologies related to agriculture has been
created. As observed in the biomedical domain, it exists many mappings stored
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in several resources such as AGROVOC (Caracciolo et al., 2013). In the future,
we plan to evaluate our approach in matching agriculture ontologies and possibly
implement it as a service on the AgroPortal repository.1

7.2.3 User interaction

A graphical user interface (GUI) is necessary to help the user verify and validate
the mappings generated automatically. Moreover, we believe it would be interesting
for the user to visualize the part of the built BK graph that allowed deriving a
given mapping. This could provide explanations about how this mapping has been
derived. Indeed, explaining the generated mappings is recognized as an ontology
matching challenge (Shvaiko and Euzenat, 2008). Furthermore, such a GUI will
enable the framework usage by biomedical researchers that are not necessarily com-
puter scientists. The validated mappings may be stored and reused as a BK for
further matching tasks. We are aware that manual validation of all the mappings
generated is fastidious, and may require a long time, especially for large matching
tasks such as Task 6 of the OAEI LargeBio track (17210 mappings in the refer-
ence alignment). One challenging issue is to minimize the expert intervention such
that by validating a small set of candidate mappings the matcher can automatically
validate or not the remaining candidate mappings. Recently, machine learning com-
munity tends to propose methods using weak supervision strategies (Bach et al.,
2017,Ratner et al., 2017). The idea, called data programming, consists in generat-
ing automatically large training data from a small one. In the future, it would be
interesting to investigate data programming in ontology matching.

7.2.4 Exploiting other resource types than ontologies

Most BK-based ontology matching methods exploit ontologies as background knowl-
edge (see Chapter 3). However, there are not as many ontologies in all domains as
in the biomedical domain. Hence, it would be interesting to exploit other knowledge
resource type, particularly textual resources, which are available in all domains with-
out exception. Textual resources are not structured which makes their exploitation
di�cult. The recent advances in natural language processing, especially in named
entity recognition and relation extraction may facilitate the exploitation of textual
resources by o�ering methods and tools allowing to construct structured knowledge
resource from text (Niu et al., 2012,Song et al., 2015).

7.2.5 Derivation scalability

In our approach, deriving candidate mappings consists in �nding paths between
source and target nodes (i.e., concepts) through the built BK graph. Depending on
the size of the ontologies to align, the number, the size and the overlapping of the

1http://agroportal.lirmm.fr/

http://agroportal.lirmm.fr/
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preselected ontologies, the built BK may become a large cyclic graph. In such a case,
deriving all possible candidate mappings requires more memory and time. Scalabil-
ity of algorithms dealing with processing and analyzing large graphs such as social
networks, protein networks, and LinkedData graphs, is a known research issue and
one of the most timely problems facing the big data research community (Batar�
et al., 2015). A common approach, evaluated recently to improve SPARQL queries,
is to ask not for all, but only for the k shortest paths (Savenkov et al., 2017). In
the future, it would be interesting to evaluate the performance of such algorithms
in terms of matching quality (i.e., F-measure) and computation time using a large
knowledge resource pool such as NCBO BioPortal (more than 700 biomedical on-
tologies).

7.2.6 Combining several matchers

Currently, several matchers are available such as YAM++, AML and LogMap. How-
ever, according to the OAEI results, not all matchers �nd the same correct mappings.
In addition, none of them is able to achieve good results across all matching tasks.
Hence, we estimate that it would be more e�ective to combine alignments gener-
ated by di�erent matchers in our BK-based ontology matching approach. However,
such a combination, raises several research issues such as the selection of the match-
ers to be used, their number, and the combination of the mappings generated by
the selected matchers. These issues have been already highlighted by the ontology
matching community in the context of combining several similarity measures within
the same matcher (Shvaiko and Euzenat, 2008), and several methods have been
proposed (Duchateau and Bellahsene, 2016). It would be interesting to review the
proposed methods and, if necessary improve them or develop new ones, to evalu-
ate the impact of combining several matchers on the alignments produced by our
approach.
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A.1 Introduction

The biomedical domain is rich in terms of ontology1. However, the majority of these
ontologies are in English (Névéol et al., 2014) and even when ontologies are available
in other languages like French, there is a strong lack of related tools and services
to use them. This lack does not re�ect the huge amount of biomedical data pro-
duced, especially in the clinical world (e.g., electronic health records). The repository
of biomedical ontologies NCBO BioPortal (http://bioportal.bioontology.org) (Noy
et al., 2009) includes, as of end 2015, more than 433 ontologies, only six are not
in English, �ve in French and one in Spanish (Jonquet et al., 2015). Furthermore,
the UMLS (Uni�ed Medical Language System) Metathesaurus (Bodenreider, 2004),
even if it covers 21 languages, 75.1% of its terms are in English and only 1.82%
of its terms are in French (Bollegala et al., 2015). There have been initiatives in
the past to reinforce the involvement of French language in the UMLS (Darmoni
et al., 2003, Zweigenbaum et al., 2003) but most of these French ontologies are
still not included, they are most often aggregated and translated by the CISMeF
group2 (Grosjean et al., 2011) ( 324.000 French concepts in HeTOP vs. 85,000 in
the native UMLS)3. The lack of support for ontologies in di�erent languages repre-
sents a real barrier for non-English-speaking communities that produce and manage
biomedical data in their own languages. Indeed, when biomedical resources contain
text content, it is important that these resources' languages are the same as the
language of the ontologies that will help to index or exploit them. Hence there
is the need to have multilingual or translated ontologies (Meilicke et al., 2012, Fu
et al., 2009,Deléger et al., 2009). The translation of MeSH by the French organiza-
tion INSERM4 is a good example and has greatly enriched the French biomedical
vocabulary in UMLS (Névéol et al., 2014). However, except in Meta-thesaurus ap-
proaches such as the UMLS or CISMeF where ontologies are integrated in a common
model, when someone gets a translated ontology to work with, it is never formally
aligned to the original one and there is no standard format or resource to get such
alignments. It de�nitively prevents multilingual use of ontologies for annotation,
semantic search, and data indexing neither for integration or knowledge extraction
from these data. To ensure semantic interoperability, it is not enough to just trans-
late ontologies, we must also formally keep the link between objects of the translated
ontologies and the original ones (Buitelaar et al., 2009). Re-establishing this link is
the aim of this work, which we have called reconciliation of multilingual mappings.
These multilingual mappings, once established and represented in a formal way, can
have multiple applications (Fu et al., 2010). For example, they allow performing
a multilingual indexing of biomedical resources, which allow multilingual semantic

1In this work we use ontology to identify both of the (biomedical) terminological and ontological
resources.

2Rouen's University Hospital (http://www.chu-rouen.fr/cismef/ )
3(http://www.hetop.eu/hetop/)
4http://www.inserm.fr/

(
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search. A user types in a query using French terms and retrieves results within En-
glish data resources (and vice-versa). Multilingual mappings also allow integrating
biomedical data of di�erent languages. For example, resistance to diseases di�ers
from one population to another, and it is a research problem that could be studied
at a larger scale thanks to the multilingual mappings which enable cross-language
databases integration. Indeed, the correlation study between genotypes and dis-
eases (Köhler and al., 2014) across di�erent populations databases, annotated each
in its original language with biomedical ontologies, linked by multilingual mappings,
allow researchers to have a better vision of the problem and potentially, to discover
new knowledge.

Our work is part of the SIFR project (Semantic Indexing of French Biomedical
Data Resources - http://www.lirmm.fr/sifr) in which we are interested in exploiting
ontologies in construction of services like indexing, mining, and information retrieval
for French biomedical resources. In this project, we develop a semantic indexing
work�ow (called the French Annotator) based on ontologies similar to that existing
for English resources (Jonquet et al., 2009), but focused on the French resources.
To improve the work�ow and connect the used French ontologies to their English
equivalents, the project focuses on the reconciliation of multilingual mappings.

The present study concerns ten French ontologies hosted on the SIFR BioPortal
(http://bioportal.lirmm.fr) (a local instance of BioPortal dedicated to French) that
we wish to align formally with their original English ontologies hosted on the NCBO
BioPortal. The idea is to be able to retrieve from a French concept in the SIFR
BioPortal, its corresponding English concept in the NCBO BioPortal and vice versa.
As of now we are mainly focusing on monolingual ontologies but in parallel we are
studying how to manage multilingualism in BioPortal (Jonquet et al., 2015).

The rest of the chapter is organized as follows: Section 2 is dedicated to the pre-
sentation of related work in the �eld. Section 3 describes our approach to represent
multilingual mappings within the BioPortal architecture. Section 4 presents the
ontologies used in our work. Section 5 explains the followed methodology. Then,
section 6 exposes obtained results. Section 7 discusses the study and its results.
Finally, section 8 concludes and presents the perspectives of this work.

A.2 Related work

Multilingualism has always been considered as an important issue for the semantic
web (Buitelaar and Cimiano, 2014), that has even became more important with
the explosion of data. Several challenges are identi�ed (Gracia et al., 2012), in
particular cross-lingual ontology alignment and the representation of multilingual
lexical information in ontologies, which are the starting points for the cross-lingual
access and querying of linked data. In the following, we brie�y review related work
on these two issues. In the literature (dos Santos et al., 2014), several approaches
have been proposed to extract multilingual mappings. The �rst was the manual
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approach where mappings are extracted by human experts as in the work of Liang
and Sini (Liang and Sini, 2006), who manually aligned the English version of the
AGROVOC thesaurus to the Chinese Agriculture Thesaurus. Despite the accuracy
of the mappings generated by this approach, it cannot be used to process large and
complex ontologies. Therefore, researchers have turned to the automated approaches
using di�erent techniques: machine learning (Spohr et al., 2011b), machine transla-
tion (Fu et al., 2012), extraction mappings using multilingual background (Tigrine
et al., 2015), etc. Overall, the ontology alignment community mostly focuses on the
topic of generating mappings between di�erent ontologies in di�erent languages (dos
Santos et al., 2014,Euzenat and Shvaiko, 2013) and ignores the problem of mapping
reconciliation considered (truly) as a more easy issue. However, the reality shows us
that: (i) it is not that trivial: ontologies and their translation are always di�erent
(they do not follow the same evolution after the process of translation) and (ii) the
community still needs those mappings out there for use in concrete applications.

On the other hand, there have been several attempts to de�ne models repre-
senting the linguistic description of terminological resources on the web (thesaurus,
ontologies, etc.). The RDFS model allows to represent labels of concepts through the
rdfs:label property without more information. SKOS model re�ne this property and
decompose it into three properties which are preferred label, alternative label and
hidden label. However, these properties are not enough to describe the linguistic
characteristics and in particular cross-lingual speci�cations. To �ll these gaps, other
models were proposed such as: the GOLD ontology (General Ontology for Linguis-
tic Description) (Farrar and Langendoen, 2003), which allows to represent formal
linguistic concepts using an OWL ontology. The Lemon model (LExicon Model for
ONtologies) model (McCrae et al., 2011a), which is now the most widespread rep-
resentation for the publication of lexical resources as linked data. Indeed, Lemon
is the result of the evolution of several models: LMF (Lexical markup framework)
model, LexInfo model (Cimiano et al., 2011) and Linguistic Information Reposi-
tory (Montiel-Ponsoda et al., 2008). Lemon allows describing more information on
lexica, in particular: morphology, phrasing structure and subcategorization infor-
mation. It also allows representing lexical information relative to an ontology that
is shared on the semantic web. It has been gradually expanded to include new mod-
ules such as translations (Gracia et al., 2014) resulting in the newly developed model
OntoLex/Lemon (Bosque-Gil et al., 2015). It is really good to have such models to
represent all linguistic details of lexica, but we also need to think about the use of
proposed models. Rich models such as Lemon are complex to implement. Indeed,
details as parts of speech, morphology, etc. need linguistic experts to determine
them and formalize them. This task is very hard, especially for large and complex
ontologies like SNOMED-CT. Consequently, there is a need to speci�c tools to sup-
port these models use in order to convince stakeholders in the web of data to adopt
them (Gracia et al., 2012).

As of now, the biomedical domain is one of plenty of ontologies that are not being
lexically grounded, and are not multilingual. For which a translation has sometimes
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been produced by another group/project than the group that has developed the
original one (e.g., MeSH, MedlinePlus, ICD, MEDDRA, and ICPC). Many of these
ontologies are made available within the NCBO BioPortal (Noy et al., 2009) but this
platform is not multilingual even if it accepts both multilingual and monolingual on-
tologies (Jonquet and Musen, 2014). Another important resource in the biomedical
domain, the UMLS Metathesaurus, which is a set of terminologies manually inte-
grated and distributed (mostly publicly) by the United States National Library of
Medicine (Bodenreider, 2004). It does contain terminologies in other languages than
English and therefore, explicitly store the mappings between them. However, the
number of French resources in the UMLS is not su�cient to cover the diversity of the
biomedical domain. The HeTOP portal (Grosjean et al., 2011) also o�ers translated
terms in multiple languages, especially French, and enables cross lingual search but
most of its content is not publicly or easily accessible (e.g., No web service API
or ontology download functionality). Furthermore, in both cases, the underlying
approach is one of a common meta-model for all the integrated ontologies which
means that there exists a unique abstraction for concepts in di�erent sources (e.g.,
the UMLS Concept Unique Identi�ers (CUI)) and label properties o�er translations
to multiple languages. This is di�erent from the BioPortal approach that we are
also following. This approach does not build a global thesaurus but keep each ontol-
ogy separated and use mappings to interconnect them (Noy et al., 2008,Ghazvinian
et al., 2009a). Another di�erence with BioPortal, is that neither UMLS nor HeTOP
are built natively with semantic Web technologies and thus do not o�er semantic
representation to make multilingual ontologies or multilingual mappings available
as linked data. The review of the state of the art identi�es (i) the need (at least for
French) for an explicit reconciliation of the multilingual mappings between trans-
lated ontologies and their origin ones and (ii) the need for making them available as
linked data.

A.3 Multilingual mappings in BioPortal

Our aim is to link the French ontologies hosted on SIFR BioPortal with their En-
glish counterparts hosted on the NCBO BioPortal. For this purpose, we need to
represent multilingual mappings (Jonquet et al., 2015) in a way that will ensure the
interoperability between the two portals and avoid duplicating the data.

A.3.1 Choice of the mapping properties

BioPortal stores mappings in a particular format that rei�es a mapping as a RDF
resource. These mappings can have several properties including provenance informa-
tion (process, note, date, who created, etc.). Especially, BioPortal uses one property
of standard semantic web vocabularies to tag / describe a mapping between two
concepts of ontologies . For example, the property skos:exactMatch to indicate that
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Figure A.1: Translation properties of GOLD ontology

two concepts are identical and the property skos:closeMatch to mark a strong bond
of similarity between two concepts without being completely identical. With the
mapping being rei�ed, the triple e.g., (Cls1 skos:exactMatch Cls2) is not explicitly
materialized but can be retrieved any time. Indeed, all mappings (as any other data
in the portal) are available either via a SPARQL endpoint or via JSON-LD. We pro-
pose to represent multilingual mappings as any mapping in the portal, but with spe-
ci�c additional semantic properties to mark the linguistic aspect and formalize the
translation relationship between two concepts. For example, the concept Mélanome
(http://purl.lirmm.fr/ontology/MSHFRE/D008545) in the French version of MeSH
within the SIFR BioPortal should be mapped to concept Melanoma in the En-
glish version of MeSH (http://purl.bioontology.org/ontology/MESH/D008545) in
the NCBO BioPortal. This allows to specify that the two concepts Mélanome and
Melanoma have the same meaning and that the �rst label is the French translation
of the second one. We can still use the SKOS properties to represent that the two
concepts have the same meaning. Nevertheless, for the linguistic information, we
need another property to describe the translation relationship. For this purpose,
we propose to use Lemon or GOLD models. In the following, we have chosen to
use the GOLD properties, in particular gold:freeTranslation property to represent
an accurate translation, and gold:translation to represent a less precise translation
(see Figure A.1). As of now, we did not use Lemon as no other lexical or linguistic
layer was necessary for our biomedical ontologies.

A.3.2 Changes in BioPortal architecture

In order to store our multilingual mappings, we had to change their representa-
tion in the BioPortal architecture, especially: (1) Allow to tag the same mapping
with several semantic web properties to avoid duplicating the mappings (semantic
mapping and translation mapping); (2) Allow a BioPortal virtual appliance to store
mappings that target ontologies (i) in another instance of BioPortal (inter-portal),
(ii) that are not in any BioPortal instance (external mappings). In order to for-
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mally �gure out the source and target languages of a translation, we assumed the
metadata of the monolingual ontologies would mention the natural language used
for labels. Indeed, BioPortal o�ers the property omv:naturalLanguage included in
the OMV ontology (http://omv2.sourceforge.net) which uses ISO-639-3 to specify
the appropriate language for each ontology.

A.4 Ontologies to align

We have treated a set of 20 ontologies, 10 in French and 10 in English. These
ontologies are widely used in the biomedical �eld both in French and in English.
For example, the International Classi�cation of Diseases (CIM10ICD10) is used in
hospitals to code medical acts, the Medical Subject Heading (MeSH) is used for
indexing documents both by the NLM (English) and CISMeF (French). In our
study, all English ontologies come from the UMLS Metathesaurus (version 2015AA)
and were imported by the NCBO team in the NCBO BioPortal using the umls2rdf
tool (https://github.com/ncbo/umls2rdf). The French ontologies come from the
UMLS or were provided by the CISMeF group as an OWL �le. In this second case,
the translations were generally produced or synthesized by CISMeF. All processed
ontologies are stored in the SIFR BioPortal (see Table A.1).

A.5 Methodology

The followed methodology consists of: (1) Download ontology �les in .ttl or .owl
formats from the NCBO and SIFR BioPortals. (2) Parse them with the Jena API
to extract the necessary data for multilingual alignment. (3) Store the data in SQL
table (one table per ontology). (4) Make the relevant join queries between the two
tables on the �eld/property used to reconcile the mappings. (5) Finally, post the
produced mappings to SIFR BioPortal after choosing the relevant GOLD and SKOS
properties (see Figure A.2).

A.5.1 Downloading �les

For this study, we have chosen ten ontologies for which we have a French version in
the SIFR BioPortal and that contains labels that will be easily used by the SIFR
Annotator for identifying biomedical words in text. These ontologies have been
downloaded from English and French BioPortals. As an example, �les of the En-
glish and the French version of the SNOMED International terminology (SNMI)
are respectively available at: https://bioportal.bioontology.org/ontologies/SNMI,
http://bioportal.lirmm.fr/ontologies/SNMIFRE.
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Figure A.2: Overview of the multilingual mapping reconciliation process

A.5.2 Retrieving data from ontologies �les

We used the Jena API (https://jena.apache.org) to extract RDF triplets (concept,
property, propertyValue) from the ontology �les. To extract only the needed triplets,
we �ltered them according to a speci�c property. Mostly, this property is the �eld
that we are going to use to reconcile mappings. Indeed, ontologies always provide a
unique identi�er or code for the concepts / classes they de�ne. With recent OWL
ontologies, this is of course an URI, but this was not the case for ontologies that
have been originally designed not following a semantic web principles. To determine
the appropriate property, we had to study the ontologies one by one. In most cases,
the alignment was based on the internal code of concepts in ontologies. Except
MedlinePlus, as there is no internal code for its concepts, we had to use the UMLS
code (CUI). However, the code property name di�ers from one ontology to another,
the most frequent was skos:notation, used for 12 of the 20 ontologies. Other speci�c
properties have been used such as icpc2p:icpccode for ICPC2P or icd:icdCode for
ICF. In the �ve cases where a code property did not exist, we extracted the code
from the URI of classes (those were always provided as the �les were extracted
from BioPortal). In these cases, in order to retrieve only classes corresponding to a
concept in the ontology, we �ltered and retained only the classes that have a property
skos:prefLabel. Technically, we have developed a script (function) to extract the
code used for each alignment. Eventually, more treatments were necessary such as
elimination of the type attached to the value or use of regular expression to isolate
the exact code string. Table 2 summarizes the property used to retrieve the mapping
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code with examples for each ontology.

A.5.3 Saving data

To store the data extracted in the previous step, we have created a table within a
relational database for each ontology. Each triplet retrieved adds a new record in the
appropriate table. For example, the triplet (http://purl.bioontology.org/ontology/
MSHFRE/D001542; skos:notation; D001542) extracted from the French version of
MeSH generates the record shown in Table 4 with the three columns:

• Id: a sequential number that identi�es each record in the table

• Code: a string that contains the code previously extracted and which may be
an internal code of the concepts in the ontology, the CUI or any other relevant
mapping criteria.

• URI: globally identi�es the concept. This URI is either assigned by the ontol-
ogy designers or created by the BioPortals.

There is no unique constraint on the relational table for the two �elds Code
and URI. This is justi�ed by the fact that for a given URI it is possible to have
multiple codes, and for a given code we can have multiple URI. Even if this situation
should not occur in theory, it actually does happen in practice. Especially with
properties such as CUI that are not speci�c to the ontology but had been added
when the ontology was integrated with other ones in the UMLS Metathesaurus. For
instance, this is the case with the French version of the MEDLINEPLUS ontology,
which contains 442 concepts that have more than one CUI. For example the concept
minéraux (http://chu-rouen.fr/cismef/MedlinePlus#T4298) has nine di�erent CUI.
Consequently we have nine triplets that have the same concept (same URI) but
di�erent codes (di�erent CUI) which involves the creation of nine records that have
all the same URI. We also encountered cases where the code targets multiple URIs
within the same ontology (ICPC2P, MedlinePlus FR, and CIM10). We will address
these cases in more details in the Results section.

A.5.4 Reconciliation of mappings

At this stage, we do a join clause on the Code �eld between the two corresponding
tables. As we mentioned in the previous paragraph, the code used in the join is not
necessarily unique within the same ontology. Consequently, the number of couples
(fr URI, en URI) resulted from the join can be more than the number of concepts
of one of the ontologies (or both) (see Figure 3). For example, the CISP2 ontology
has generated 5063 mapping couples whereas it has only 745 concepts. The multiple
assignment of a code to several resources generates also duplicated couples that we
eliminated (using the SQL keyword �distinct� in the join query) because it represents
only redundant information (see Figure 4).
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A.5.5 Mapping property selection and loading in SIFR Bio-
Portal

This �nal step allows representing and storing produced mappings in a formal and
permanent way within the SIFR BioPortal. The particularity of our multilingual
mappings, compared to other BioPortal mappings resides in the couple of proper-
ties by which they were tagged (GOLD translation property and SKOS alignment
property) as follows:
skos:exactMatch/gold:freeTranslation: We used these properties when the French
concept has the same meaning as the English concept. This is usually the case when
the mapping is based on full equality between the internal code of the French con-
cept and the internal code of the English concept. In that case, there are no more
mappings generated than the minimum number of classes between the two ontolo-
gies being mapped. Fortunately, it is the most frequent case.
skos:broadMatch/gold:translation : We used these properties when the source
concept is more precise than the target concept. This situation occurs when the
translated ontology was modi�ed (e.g., new sub-concepts more precise). For exam-
ple, the French concept agression par un moyen non précisé établissement collectif
(http://chu-rouen.fr/cismef/CIM-10#Y09.1) from CIM-10 which has internal code
Y09.1, do not have an English concept having the same internal code in ICD10.
However, we can map it to the concept Assault by unspeci�ed means which has
internal code Y09 (http://purl.bioontology.org/ontology/ICD10/Y09) and tag this
mapping with these properties.
skos:narrowMatch/gold:translation: We used this couple of properties when
the target concept is more precise than the source concept. This situation occurs
when the original ontology has been modi�ed after the translation into French. We
had this case in the alignment of CISP2 to ICPC2P through the icpc-code (internal
code). Concepts of ICPC2P have the icpc-code following by another code (term-
code), which is not the case for the French ontology CISP2 that only uses original
icpc-code. Consequently, one French concept is mapped to several English concepts,
which have the same icpc-code. For example, the concept labelled tumeur bénigne
having B75 as a code, has been mapped to eight English concepts more precise,
three among them are (benign neoplasm of the blood, B75001), (benign neoplasm
of the lymphatics, B75002), (benign neoplasm of the spleen, B75003). Hence, the
need to use such properties.
skos:closeMatch/gold:translation: In the absence of an internal code, we had
to use less precise identi�ers such as the CUI for ontologies coming from UMLS.
CUIs are identi�ers at the Metathesaurus level, and not in the sources ontologies.
Therefore, it is not a direct translation of the concept from one language to another
but rather concepts that mean the same thing as they were a�ected to the same
CUI. The Table A.2 summarizes the semantic properties used to tag multilingual
mappings between two concepts in our study. The �rst column indicates the type
of translation equivalence as it was identi�ed by Chen and Chen [35], the second
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one describes possible relationships between concept and the last one indicates the
semantic properties used to tag our multilingual mappings. For more information
about how multilingual mappings are represented and stored on SIFR BioPortal see
section 6.9.

Table A.2: Summary of semantic properties used to describe the multilingual map-
pings
Translation Description Properties
exact Two equivalent concepts skos:exactMatch

gold:freeTranslation
inexact Two concepts very similar but not equivalent skos:closeMatch

gold:Translation

partial
Target concept is less precise skos:broadMatch

gold:translation
Target concept is more precise skos:narrowMatch

gold:translation

A.6 Results

Our aim is to provide multilingual alignment for French versions of ontologies. We
express our results as a percentage of the French ontology concepts for which, we
were able to provide at least one translation mapping (see Table A.3).

STY/STY, MDRFRE/MEDDRA, CIF/ICF: For these three couples of
ontologies, we got a full alignment, one to one for all concepts (percentage of 100%)
thanks to the internal code of concepts.

MTHMSTFRE/MSTDE Among the 1700 concepts of the French version,
only 2 concepts have not been mapped since their codes do not exist in the English
version. These two concepts have as an internal code MT180041 and MT180042.
In the English version, there is one concept that has not been mapped. Its internal
code is set to nocode. However, this concept has two CUI which are those assigned
to the unmapped French concepts. Thus, the mapping of these two French concepts
was done according to their CUI, which allowed us to get a percentage alignment of
100%. We estimate that this 'nocode' case is an error in the integration of MSTDE
in UMLS and we will share this with NLM.

MSHFRE/MESH: The number of concepts in the English version (252242
concept) is ten times greater than the number of concepts in the French version
(26142 concept), because the French version contains only the MeSH descriptors
without the other additional concepts . Our mappings cover almost all French
concepts with a percentage of 99.79%. Only 55 concepts of the French version
have not been aligned because their codes do not exist in the English one such as
D020185 (Acides benzoïques), D002134 (Protéine de liaison au calcium dépendant
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de la vitamine D), D006587 (Acides hexanoïques). Moreover, even trying to align
these 55 concepts using CUI, we have not found their CUI in the English MeSH.
When CUI are used in MSHFRE but they do not exist in MESH, we think they
are probably mistakes that were made by translators or problems which appeared
during the integration of the new translation into UMLS. Indeed, the two versions
should be perfectly aligned since they both come from UMLS 2015AA. To correct
this problem we will communicate the 55 non-mapped concepts to INSERM and
NLM.
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WHO-ARTFRE/WHO-ART: In the English version WHO-ART, the inter-
nal code of concepts can be retrieved through the skos:notation property. But in
the French version, this code cannot be found in any property of WHO-ARTFRE;
we had to extract it from URIs of concepts. Indeed, this code is located at the
end of the URI of each concept. For example, the code of the concept with URI
http://chu-rouen.fr/cismef/WHO-ART#1545_PT is 1545. We have noticed that
the French version has undergone some customization. Indeed, a code of the En-
glish version can reference several French sub-concepts that have the same code but
su�xed to di�erentiate them. For example, the code 1723 references four concepts
that have the following codes: 1723_IT0, 1723_IT1, 1723_IT2, 1723_PT. There-
fore, the number of French concepts is greater than the number of English concepts
(3320 vs 1724). The French version is more detailed, their concepts are more precise
than those of the English version, so we used the two properties (skos:broadMatch
; gold:translation) to describe mappings between these ontologies. Finally, all the
French concepts were mapped.

CISP2/ICPC2P The French version CISP2 contains 745 concepts while the
number of generated mappings was 5141. This is explained by the fact that the
English version which has been modi�ed in this time after the French translation.
English concepts have been customized to generate new more detailed concepts
(sub-concepts of the original ones: 7354 concepts). Therefore, an icpc-code of
the French version was mapped with one or several English concepts that have
the same icpc-code but di�erentiated through another code called �term code�.
For example, the code A01 is a�ected to a single concept in the French version
(Douleur générale/de sites multiples; A01) while the English version contains four
more precise concepts as follows: (generalised aches; A01001), (generalised pain;
A01003), (body pain; A01004), (chronic pain; A01005). Consequently, a single
concept of CISP2 may generate several couples of mapping, one for each English
concept that has the same icpc-code. For this reason, we used the properties
(skos:narrowMatch; gold:translation) to describe the mappings. 59 of the French
ontology concepts have not been aligned with the icpc-code such as: (Autre anal-
yse de laboratoire; 38), (Conseil thérap/écoute/psychothérapie; 58), (Examen mi-
crobiologique/immunologique; 33). We �gured out these concepts do not have an
icpc-code as the rest of the concepts that consists of a letter followed by two digits.
In addition, these concepts have no CUI property as well. It seems they have been
added in the translation, or removed from the English version. For this reason we
reached only 70% of mappings for CISP2 and we will communicate our results to
the translators.

MEDLINEPLUS FR/EN We had to use the CUI property to align MED-
LINEPLUS as its concepts have no other internal code . The French version of
MedlinePlus contains 795 concepts. Each concept has one or more CUI value (442
concepts have more than one) which gives 1686 distinct couples (concept, CUI). The
English version contains 1986 distinct concepts and each concept has a single CUI
value. Indeed, the URI of each English concept is su�xed by the CUI assigned to
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it, for example C0003803 is the CUI of the URI
http://purl.bioontology.org/ontology/MEDLINEPLUS/C0003803.
It is surprising to note that there are CUIs that do not exist in the English version
but are assigned to concepts of the French version. However, even if we ignore the
concepts with these CUI (147 concept), the number of couples (concept, CUI) remain
greater than the number of concept (1520 couples vs 795 concepts). 123 concepts
of these 147 have other CUIs belonging to the English version but the remaining
24 concepts have no CUI belonging to the English version. So these concepts do
not exist or no longer in the English version. Therefore, 24 French concepts are not
mapped and we obtain a percentage alignment of 90% in terms of aligned couples
and 97% in terms of aligned concepts. We have tried to re�ne the study, for eight
among concepts that do not appear in the English version at all, we applied the
following procedure:

1. Search the preferred label in the French ontology;

2. Translate manually the term, using the terminology portal TermSciences5 or
another lexical resource (e.g., BabelNet or even simple Google translation),
into English;

3. Search, in the English version, the obtained translated term and if the English
corresponding concept exists, note its CUI.

As we can see in the Table A.4, in seven cases over eight, we found the English
concept, which corresponds to the French concept but with a di�erent CUI. These
results make us think that these 24 unmapped concepts are mistakes in the CUI
choice during the translation process. We intend to communicate these concepts to
the translators in order to detect possible errors and possibly update their transla-
tion.

CIM10/ICD10 CIM10 contains 19853 concepts while its English version, ICD10,
contains 12318 concepts. Here again, we �gured out that the French version has
undergone some customizations; it was enriched with more detailed concepts re-
sulting from specialization of the original concepts. A �join� clause according to
the internal codes of concepts between the two ontologies generated mapping per-
centage of 62% (12 308 concepts were mapped). We observed that there are six
chapters in the French version, CIM-10, that do not have the same internal code
as their English counterparts such as chapter (autres maladies infectieuses; B99)
in CIM-10, while in ICD10 the same chapter is (Other infectious diseases; B99-
B99). These chapters have the characteristic to contain only one entry. We had
to treat them manually since the join according the code �eld did not work. All
of the previous mappings (automatic and manual) were tagged with properties
(skos:exactMatch; gold:freeTranslation). As for the concepts generated by special-
izations (which codes do not exist in the English version), we extracted the code

5www.termsciences.fr
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Table A.4: Correspondences between unmapped French concepts and English con-
cepts
Fr CUI Preferred Label En CUI Pro�ered Label
C0156543 Avortement C0392535 Abortion
C2362506 Fitness et exercice C1456706 Fitness and Exercise
C0021311 Infections C3714514 Infections
C1456593 santé mentale et comporte-

ment
C1832070 mental health and behavior

C1456620 vivre avec le SIDA C2963182 Living with HIV/AIDS
C1456571 nutrition des nourrissons et

des bébés
not found �nutrition of infants and ba-

bies�
C2362562 sécurité du patient C1113679 patient safety
C0002808 Anatomie C0700276 Anatomy

of their direct unique parent concept (the �rst 3 digits of their internal code) and
mapped them with the correspondent English parent concepts tagging them with
the properties (skos:broadMatch ; gold:translation). For example, all the French
concepts (Agression par d'autres moyens précisés /domicile ; Y08.0), (Agression par
d'autres moyens précisés/ établissement collectif ; Y08.1), (Agression par d'autres
moyens précisés /lieu de sport et d'athlétisme ; Y08.3) were mapped with the En-
glish concept (Assault by other speci�ed means ; Y08). By following this process,
we reduced the number of unmapped concepts from 7545 to 40 concepts, which gives
99% of mapped French concepts.

SNMIFRE/SNMI The French version SNMIFRE has 106266 concepts, while
the English version contains 109150 concepts; there is a di�erence of 2884 concepts.
Using the internal code, 102093 French concepts have been mapped (96% of the
French ontology). However, there remained 4173 concepts of the French version
without mapping. We tried then to use the CUI property, but those 4173 concepts
are part of a set of 9510 French concepts that do not have this property (whereas
all concepts of the English version does have a CUI). We have not found another
relevant �eld to use for mapping the remaining 4173 concepts.

Multilingual mappings hosted on SIFR BioPortal All alignments pro-
duced in our study are hosted on the SIFR BioPortal with a script that uses SIFR
BioPortal REST web service API6. As a result, for all ontologies processed dur-
ing this work, when browsing a concept (see Figure A.3), we can see in the Class
Mappings tab the multilingual alignments classi�ed as Interportal mappings with a
�ag to indicate that it is a linguistic mapping to English, we can also observe the
properties used. The aligned concept link allows the user to switch from the SIFR
BioPortal to the target concept in the NCBO BioPortal. Like all the content of the
SIFR BioPortal, in addition to the graphical interface, these multilingual mappings

6http://data.bioportal.lirmm.fr/documentation
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Figure A.3: Example of a multilingual mapping for the concept Prothèse in MTHM-
STFRE within the SIFR BioPortal.

are also available directly via the REST web service API and a SPARQL endpoint
which makes them part of the web of data; easily readable and reusable by any
semantic web applications.

A.7 Discussion

In this work, we propose an approach to formally represent semantic links between
translated ontologies and their original ones. Particularly, we focused on French
ontologies hosted within the SIFR BioPortal and their English counterparts hosted
within the NCBO BioPortal. Our approach consists in reconciling and representing
these links as multilingual mappings using semantic web properties. However, this
work should not be confused with multilingual mapping extraction that consists in
aligning two di�erent ontologies, which have no relationship with each other and
which are not in the same language. Indeed, in most of our cases, we have used
internal codes to reconcile links. Hence, the semantic link between the translated
concept and its origin existed implicitly through the internal code despite di�culties
we have met in certain cases. Our mission was to restore these links and represent
them in a formal way and publicly made them available where the ontologies actually
reside. However, our approach to represent and store the mappings can be used to
represent any kind of mappings either reconciled or extracted assuming the relevant
semantic properties will be used. In our case, we have chosen SKOS and GOLD
properties. They are complementary, especially in the linguistic aspect. Indeed, the
gold:translation does not represent the di�erence between the narrow translation,
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broad translation or close translation (see Table A.2), but combining with SKOS
properties we have the exact description. For example the couple (skos:narrowMatch
; gold:translation) describes inexact translation of type narrow. We could also have
tagged the best mappings with the owl:sameAs property because in theory the con-
cept is exactly the same, and their logical entailment should be equivalent. However,
we did not want to take the risk to assign such a property without experimentally
verifying that no other inconsistencies will show up. We therefore left it to future
users the choice of considering those mappings as owl:sameAs when materializing
the triples e.g., (Cls1 tag Cls2) out of BioPortal's mapping repository. It is neces-
sary to evaluate the result of an alignment process (dos Santos et al., 2014,Euzenat
and Shvaiko, 2013) to be able to use them. However, since we did a reconcilia-
tion of mappings, we have restored links between concepts based on internal code
of concepts and not on a terminological, structural or semantic measures (Shvaiko
and Euzenat, 2013). Consequently, our approach gives automatically reliable and
veri�able results. Indeed, as we can see in Figure A.4 92% of the produced map-
pings are the result of total equivalence of concepts internal code and 7% of partial
equivalence (the internal code of the French concept is included in the internal code
English concept or the reverse). We do acknowledge that the remaining 1% of MED-
LINEPLUS mappings had to be veri�ed because of the multiple a�ectation of CUI
to a given concept in the French version, which is not the case in the English version
(see section 6.4). For example, the concept santé au travail pour les professionnels
de santé has two CUIs (C1456673, C0206333), therefore, it was mapped with two
English concepts (Blood-Borne Pathogens, C0206333) and (Occupational Health
for Healthcare Providers, C1456673).Whereas in this case, only the second target
concept is correct. What causes the error was the wrong a�ectations of CUIs and
our work should help the translator of the ontology to �x them. It is important
to note that even if the community produces less and less 'monolingual' ontologies
and that designers are opting increasingly for �multilingual ontologies�; we cannot
assume that ontology translation will not happen anymore. Indeed, regardless of
the richness of an ontology in terms of language (2, 3 even 10 languages), it would
never cover all languages. Translated ontologies remain then an ineluctable solution
to ensure their exploitation in other languages that are not supported in native ver-
sion. We hope this study will convince ontology translators about the importance of
reusing the same identi�ers when creating a translated version. Eventually, the best
situation is to follow the semantic web principles and actually reuse the exact same
URI, when available, rather than creating a new one. Furthermore, in the process
of creating multilingual ontologies, there is still a challenge of going further than the
simple use of the xmllang tags and move to using lexical standards models such as
Lemon.

The multilingual mapping links produced in this study can have several ap-
plications including the integration of biomedical data of di�erent languages, and
multilingual semantic search and indexing. In the continuation of the SIFR project,
these links will be integrated into the French version of the NCBO Annotator (Jon-
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Figure A.4: Distribution of multilingual mappings per type

quet et al., 2009) which will expand direct annotations with French ontologies to new
annotations with (i) their corresponding English ontologies, (ii) other English-only
ontologies mapped one another inside the NCBO BioPortal. In addition, our map-
pings will also be a good corpus for automatic translation of biomedical ontologies
i.e., they can help translators themselves to translate more ontologies.

Although this is not mostly the case for the current 20 selected ontologies, we
have to assume both the original and the translated ones could be modi�ed in
the future . Therefore, it is necessary to implement a strategy to keep multilingual
mappings up to date (Hartung et al., 2008). Currently, we run the script again when
a new version is available; we remove all the old multilingual mappings to store the
new ones. This processing will be done automatically once the script of multilingual
mapping reconciliation will be integrated directly into the SIFR BioPortal.

A.8 Conclusion

Ontologies play a key role in the semantic interoperability of biomedical data. To
reuse them, they have often been created in a particular language(s) and then trans-
lated to other language(s). Indeed, the use of ontologies for annotation, search and
indexing of data is strongly linked to the syntactic correspondence between on-
tologies languages and the data languages. Hence, there is a need of multilingual
management to allow the exploitation of knowledge formalized in the ontologies in
languages other than their original ones.

In this work, we performed alignment reconciliations; we have restored formal se-
mantic links between ten translated French ontologies and their English counterparts
using semantic properties of SKOS and GOLD vocabularies. Finally, all these map-
pings (228k) are stored on the SIFR BioPortal platform (http://bioportal.lirmm.fr/mappings)
and they are available to the scienti�c community as linked open data through a
SPARQL endpoint and also as a web service API that returns JSON-LD format. In a
near future, we also plan to process LOINC (Logical Observation Identi�ers Names
and Codes) that was recently made available in French in UMLS. To accomplish
this work, we had to treat each pair of ontology apart with its speci�cities espe-
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cially in the choice of alignment property and how to recover it. Re�nements were
needed when translated ontologies did not follow exactly the content of the original
ontology (in English). Through this study, we have found some anomalies in cer-
tain pairs of ontologies which we intend to communicate to the translators in order
to review them and eventually correct them. The current listing of the anomalies
and the concepts that are concerned is available as well as our reconciliation scripts
and the data used at: https://github.com/sifrproject/multilingual_mappings. This
work represents a part of the SIFR project aiming to e�ciently manage multilin-
gualism in a repository of biomedical ontologies such as NCBO BioPortal. As future
work, will use these mappings for the development of a process to infer ontologies
translations automatically based on multilingual ontologies, di�erent dictionaries
and Metathesaurus like UMLS, BabelNet, etc. We will also work on the valoriza-
tion of these mappings in services such as indexing, annotation and semantic search.
Another interesting work to achieve will consist in materializing some of the rei�ed
mappings (exact mappings) into owl:sameAs direct mappings and use a reasoner to
check possible inconsistencies in the whole repository of interconnected ontologies.
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