
HAL Id: tel-02093064
https://theses.hal.science/tel-02093064

Submitted on 8 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware and software co-design toward flexible terabits
per second traffic processing

Franck Cornevaux-Juignet

To cite this version:
Franck Cornevaux-Juignet. Hardware and software co-design toward flexible terabits per second traffic
processing. Electronics. Ecole nationale supérieure Mines-Télécom Atlantique, 2018. English. �NNT :
2018IMTA0081�. �tel-02093064�

https://theses.hal.science/tel-02093064
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE

BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE

COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Électronique

Hardware and software co-design toward flexible terabits per second
traffic processing

Thèse présentée et soutenue à l’IMT Atlantique, site de Brest, le 4 juillet 2018
Unité de recherche : Lab-STICC CACS
Thèse N° : 2018IMTA0081

Par

Franck CORNEVAUX-JUIGNET

Rapporteurs avant soutenance :

Yvon SAVARIA Professeur, Polytechnique Montréal
Christophe JÉGOT Professeur, Bordeaux INP

Composition du Jury :

Président : Frédéric ROUSSEAU Professeur, Université Grenoble Alpes
Examinateurs : Yvon SAVARIA Professeur, Polytechnique Montréal

Christophe JÉGOT Professeur, Bordeaux INP
Christine HENNEBERT Docteure Ingénieure de recherche, CEA
Matthieu ARZEL Maître de Conférences, IMT Atlantique
Pierre-Henri HORREIN Docteur Ingénieur de recherche, OVH

Dir. de thèse : Christian PERSON Professeur, IMT Atlantique

Invité
Tristan GROLÉAT Docteur Ingénieur de recherche, OVH

Remerciements

Les travaux de recherche présentés dans ce manuscrit sont le fruit d’un travail de plus
de 3 ans. J’aimerais en introduction remercier l’ensemble des personnes qui ont permis
l’achèvement de ces travaux.

Je souhaite premièrement remercier les membres extérieurs de mon jury de thèse
pour leur déplacement : Madame Christine Hennebert ainsi que Messieurs Yvon Savaria,
Christophe Jégo et Frédéric Rousseau. Merci d’avoir fait le déplacement, j’ai apprécié
échanger avec vous pendant et après la soutenance.

Ce long travail n’aurait pas pu être mené à son terme sans le soutien de mon équipe
encradrante. Je remercie mon directeur de thèse, Christian Person, dont la bienveil-
lance a permis d’éviter un arrêt prématuré de ma thèse. Je tiens à remercier tout partic-
ulièrement Matthieu Arzel et Pierre-Henri Horrein, mes encadrants, pour leur support
et leurs conseils avisés pendant toute la durée de la thèse. J’ai grandement apprécié
travailler avec vous, et j’espère que nous pourrons collaborer dans le futur.

Je remercie ma famille qui m’a soutenu tout au long de ces années. Je souhaite dire
un grand merci à mes amis et mes collègues thésards pour votre soutien, et en partic-
ulier à Paul, Erwan, Benoît, Valentin, Pierre, Paul et André. Je remercie aussi toutes
les personnes venues aux séances de rugby à toucher le jeudi midi avec lesquelles j’ai
partagé des moments très conviviaux.

Je tiens enfin à remercier l’ensemble du personnel du département ELEC de l’IMT
Atlantique pour leur accueil. Vous m’avez permis de travailler dans une très bonne
ambiance qui a sans nul doute contribué à l’achèvement de mes travaux.

i

Résumé

La fiabilité et la sécurité des réseaux de communication nécessitent des composants ef-
ficaces pour analyser finement le trafic de données. La diversification des services ainsi
que l’augmentation des débits obligent les systèmes d’analyse à être plus performants
pour gérer des débits de plusieurs centaines, voire milliers de Gigabits par seconde.
Les solutions logicielles communément utilisées offrent une flexibilité et une accessi-
bilité bienvenues pour les opérateurs du réseau mais ne suffisent plus pour répondre à
ces fortes contraintes dans de nombreux cas critiques.

Cette thèse étudie des solutions architecturales reposant sur des puces programmables
de type Field-Programmable Gate Array (FPGA) qui allient puissance de calcul et flex-
ibilité de traitement. Des cartes équipées de telles puces sont intégrées dans un flot de
traitement commun logiciel/matériel afin de compenser les lacunes de chaque élément.
Les composants du réseau développés avec cette approche innovante garantissent un
traitement exhaustif des paquets circulant sur les liens physiques tout en conservant la
flexibilité des solutions logicielles conventionnelles, ce qui est unique dans l’état de
l’art.

Cette approche est validée par la conception et l’implémentation d’une architecture
de traitement de paquets flexible sur FPGA. Celle-ci peut traiter n’importe quel type
de paquet au coût d’un faible surplus de consommation de ressources. Elle est de plus
complètement paramétrable à partir du logiciel. La solution proposée permet ainsi un
usage transparent de la puissance d’un accélérateur matériel par un ingénieur réseau
sans nécessiter de compétence préalable en conception de circuits numériques.

Mots-clés : Surveillance de trafic, FPGA, architecture hétérogène, traitements
haute performance, co-conception logicielle/matérielle

ii

Abstract

The reliability and the security of communication networks require efficient compo-
nents to finely analyze the traffic of data. Service diversification and throughput in-
crease force network operators to constantly improve analysis systems in order to han-
dle throughputs of hundreds, even thousands of Gigabits per second. Commonly used
solutions are software oriented solutions that offer a flexibility and an accessibility
welcome for network operators, but they can no more answer these strong constraints
in many critical cases.

This thesis studies architectural solutions based on programmable chips like Field-
Programmable Gate Arrays (FPGAs) combining computation power and processing
flexibility. Boards equipped with such chips are integrated into a common software/hard-
ware processing flow in order to balance shortcomings of each element. Network
components developed with this innovative approach ensure an exhaustive processing
of packets transmitted on physical links while keeping the flexibility of usual software
solutions, which was never encountered in the previous state of the art.

This approach is validated by the design and the implementation of a flexible packet
processing architecture on FPGA. It is able to process any packet type at the cost of
slight resources overconsumption. It is moreover fully customizable from the software
part. With the proposed solution, network engineers can transparently use the process-
ing power of an hardware accelerator without the need of prior knowledge in digital
circuit design.

Keywords: Traffic monitoring, FPGA, heterogeneous architecture, high perfor-
mance computing, hardware/software co-design

iii

Résumé étendu

1 Introduction
Les réseaux de communication informatiques sont la clé de voute de la société actuelle,
axée sur le développement du numérique. L’infrastructure réseau est l’épine dorsale
permettant le bon fonctionnement des activités modernes les plus prospères. Le com-
merce en ligne, les réseaux sociaux, la vidéo à la demande sont des examples parmi
les nombreux services existants grâce à un réseau performant. Cette importance donne
un status critique aux réseaux, nécessitant une résilience aux pannes et aux comporte-
ments malveillants. Afin maintenir la fiabilité et la sécurité des communications, les
opérateurs de réseau contrôlent le trafic en circulation. Il est possible d’extraire une
vision de l’état du réseau afin de réagir de façon efficace aux problèmes. Pour avoir
un suivi le plus précise possible, les systèmes de surveillance doivent être capable de
suivre le trafic au débit des liens.

En réponse à l’évolution de la demande, les sondes réseaux sont confrontées à la
constante agumentation des débits des liens. Les utilisateurs disposent de connexions
de plus en plus rapides afin de profiter de l’ensemble des services proposés. Selon les
index de Cisco, Cisco Visual Networking Index (VNI) [Cisa], 46% de la population
mondiale était connectée en 2016, avec un débit de connexion moyen de 27.5 Mbps.
Le trafic IP mondial était de 1.2 Zettaoctets (1021 octets) pour l’année 2016, soit 3.2
Exaoctets (1018 octets) de trafic par jour, et un trafic moyen de 292 Tbps. Le réseau
va continuer à être de plus en plus utilisé pour atteindre en 2021, selon les prévisions
de Cisco, un trafic annuel de 3.3 Zettaoctets, soit un trafic moyen de 874 Tbps. Il est
nécessaire de pouvoir surveiller minutieusement une telle bande passante. En effet, le
botnet Mirai [OVHb] a montré en septembre 2016 qu’il était possible d’utiliser cette
bande passante afin d’envoyer une quantité massive de trafic. 1 Tbps de trafic Trans-
mission Control Protocol (TCP) malicieux envoyé à partir d’objets connectés infectés
a ciblé le fournisseur de service web OVH. Sur un lien à très haut débit, même un
petit flot de données ou un petit laps de temps représente une quantité de données non
négligeable et potentiellement dommageable. 1% d’un trafic de 1 Tbps représente tout
de même 10 Gbps. Les acteurs du réseau doivent pouvoir avoir à leur disposition des
sondes précises et réactives afin d’éviter tout impact potentiellement considérable sur
l’infrastructure.

En plus de l’augmentation des débits, les équipements réseaux doivent faire face
à un trafic disparate dont la composition change constamment. Ce trafic est composé
d’un ensemble de paquets issus d’une multitude de services différents qui ne sont pas
utilisés de façon uniforme, que ce soit temporellement ou spatialement. Cette dis-
parité peut créer des pics de trafic correspondant à des pics d’utilisation de certains

iv

services. En 2016, les heures de haute fréquentation généraient un pic de 1 Pbps (1015

bits) [Cisa]. Les opérateurs réseaux doivent dimensionner leurs infrastructures pour
continuer un bon fonctionnement même pendant ces heures de pointe. De plus, dans
ce trafic de composition très variée, les paquets correspondants à chaque service ont
des besoins de transmission spécifiques. Appels vidéos, streaming, navigation internet
ou jeux en lignes sont des exemples de différents besoins en termes de débit, latence
or gigue. Cette coexistence de différents types de trafic nécessite d’avoir des outils
qui peuvent supporter les modifications de la forme du trafic tout en respectant les
différents usages du réseau. Pour supporter cette diversité et de possibles futures évo-
lutions, les infrastructures sont actuellement construites avec des systèmes de surveil-
lances compatible avec un paradigme, Software Defined Networking (SDN) [Zil+15].
Ce paradigme, recommandant la séparation du plan de données et du plan de contrôle,
permet d’avoir un réseau programmable. Il est alors possible de gérer globalement le
réseau et de calibrer dynamiquement l’architecture au contenu du trafic.

La performance et la sécurité d’un réseau dépendent de la réponse des systèmes
surveillance à ces nombreuses contraintes. Les sondes réseaux, briques de base ré-
parties dans l’infrastructure pour collecter le trafic, doivent alors répondre à certains
critères :

• fiabilité,

• très haut débit,

• flexibilité,

• passage à l’échelle,

• réactivité.

Réaliser une sonde combinant ces différents critères est un défi clé pour concevoir les
réseaux de demain.

Cette thèse étudie des solutions architecturales permettant de lever les différentes
contraintes s’appliquant sur des sondes réseaux. Après une étude approfondie de la
littérature, nous allons A partir de la littérature, il est possible de déterminer que les
solutions reposant sur des puces programmables de type Field-Programmable Gate Ar-
ray (FPGA) sont les plus à Elles allient puissance de calcul et flexibilité de traitement.
En intégrant des cartes équipées de telles puces dans un flot de traitement commun
logiciel/matériel, il est possible de compenser les lacunes de chaque élément. Cepen-
dant, les flots de développement FPGA courants limite la flexibilité des solutions. C’est
pourquoi une architecture matérielle conforme à cette approche est proposée. Cette ap-
proche sera validée avec la conception d’une application de classification de paquets
rapide, fiable et flexible.

2 Systèmes de surveillance de trafic
Savoir gérer le trafic est un élément crucial pour la bonne gestion d’un réseau. Quelle
que soit l’application, il est nécessaire de récupérer des informations à partir des pa-
quets en circulation. Pour cela, de nombreuses plate-formes ont été conçues et dévelop-

v

pées pour la manipulation du trafic. Ce large spectre de solutions offre plusieurs com-
promis entre performance et flexibilité. Afin de supporter des sondes adaptées aux
contraintes de réseaux à très haut débit, une plate-forme de développement doit répon-
dre à certaines critères :

• analyser précisemment le trafic à très haut débit,

• offrir de la flexibilité pour :

– être conforme aux besoins du SDN,

– être continuellement adaptable au trafic,

• permettre une adaptation des traitements avec une faible latence comparé à l’échelle
du temps du lien,

• être facilement réutilisée pour des plus gros réseaux avec des débits plus impor-
tants,

• être accessible à n’importe quel ingénieur réseau sans connaissance préalable du
matériel,

• être portable pour être intégrée dans différents systèmes de surveillance de trafic.

Lors de la sélection d’une plate-forme, il est nécessaire de prendre en compte que
les contraintes de traitement du trafic viennent majoritairement du traitement des pa-
quets composant le trafic. En effet, ils ont une structure variable qui dépend des besoins
des services émetteurs. Leur taille est de plus variable, allant de 64 octets à 1522 octets
pour les liens Ethernet considérés. Cela signifie qu’à un débit fixé, il y aura plus de
paquets à traiter si les paquets transmis sont de taille minimale que de taille maximale.
Par exemple, un lien à 40 Gbps correpond à 59,523 millions de paquets de 64 octets
par seconde contre 3,251 millions de paquets de 1522 octets par seconde. Comme le
trafic en circulation n’est pas maîtrisé, le pire cas est à prendre en compte.

Dans les plate-formes existantes, la plus courante est une plate-forme basée sur du
matériel du commerce. Elle est composée d’une ou plusieurs cartes réseaux, un pro-
cesseur généraliste (Central Processing Unit (CPU)) et potentiellement un processeur
graphique (Graphics Processing Unit (GPU)) pour accélérer les traitements. Un tel
type de plate-forme sur étagère a un coût relativement faible, la rendant aisément
accessible. Elle est largement répandue, et la généricité du CPU offre une facilité
d’utilisation et une grande portabilité. Cela permet d’avoir une grande banque d’outils
disponibles pour le traitement des paquets. Ces solutions sont toutefois limitées par
leur généricité. Malgré l’optimisation des pilotes de communications avec les cartes
réseaux, elles n’arrivent pas à suivre la montée en débit, même avec l’utilisation in-
tensive de GPU. La puissance de calcul d’une seule plate-forme est trop faible pour
tenir les débits actuels de 40 Gbps ou 100 Gbps, et encore moins les débits à venir. La
seule possibilité pour passer à l’échelle est la construction de datacenters, ce qui rend
la solution très onéreuse.

À l’opposé du matériel du commerce se trouvent les solutions à base de puces spé-
cifiques à une application (Application-Specific Integrated Circuit (ASIC)). Grâce à
une spécialisation des traitements et une grande possibilité de parallélisme, l’application

vi

considérée peut atteindre des débits bien plus importants qu’avec un CPU. Cependant,
un ASIC étant dédiée à une application, il est nécessaire d’en créer une nouvelle quand
les besoins ou l’application changent. Le temps et le coût de développement de telles
puces en font une solution peu adaptée pour les besoins de flexibilité d’une sonde
réseau. Il est possible d’intégrer plusieurs ASICs à côté d’un processeur généraliste
dans un élément appelé processeur réseau pour avoir plus de flexibilité. Cependant,
cette solution groupe les inconvénients des deux précédentes solutions quand il s’agit
de prendre en considération plusieurs applications.

Une solution à mi-chemin est l’utilisation de FPGAs. En s’appuyant sur la spécial-
isation des traitements et du parallélisme, de même que pour un ASIC, une applica-
tion peut atteindre des débits lignes à très haut débit. Cependant, un FPGA offre une
puissance de calcul moindre qu’un ASIC, mais cela est compensé par la possibilité
de reconfigurer le FPGA. Il est possible de changer tout ou partie de l’application en
fonctionnement sur le FPGA. L’accessibilité à cette flexibilité est assurée par des outils
de développement haut niveau, bien que cela nuise à la portabilité et à la réactivité de
la plate-forme. Avec une grande puissance de calcul et de la flexibilité de traitement,
le FPGA est la plate-forme de choix pour le développement de sondes réseaux à très
haut débit.

3 Éléments réseaux matériels/logiciels
L’adaptation du FPGA pour répondre aux contraintes réseaux a attisé l’intérêt pour
le développement de solutions de traitement. Celui-ci est notamment montré par
l’intégration de FPGAs dans des cartes réseaux intelligentes, smart Network Interface
Card (NIC), à côté d’une carte réseau commune. Les smart NICs peuvent être insérées,
comme leurs contre-parties sans FPGA, dans la chaîne de traitement du matériel du
commerce. La puissance de calcul du FPGA, plus proche de l’interface réseau, offre la
possibilité de décharger des traitements du CPU tout en réduisant la quantité de trafic
transférée à l’hôte. Une collaboration entre le FPGA et le CPU assure la flexibilité
des traitements tout en améliorant les capacités de traitement d’au moins un ordre de
magnitude. L’intégration d’un smart NICs dans du matériel du commerce permet aussi
de conserver l’accès à l’ensemble des outils réseaux existants.

Ce rapprochement est néanmoins limité par le flot de développement couramment
utilisé pour les FPGAs. Outre l’utilisation d’outils propriétaires limitant la portabil-
ité, il repose sur l’utilisation du FPGA comme accélérateur hautement spécialisé de-
vant être changé pour chaque application. Bien que bien moins coûteuse que pour les
ASICs, l’étape de génération d’un nouveau design a une durée qui se compte tout de
même en heures, voire en jours pour les FPGAs les plus récents. De plus, la reconfigu-
ration d’un FPGA entraîne la nécessité d’arrêter les traitements pendant la procédure.
Même avec les améliorations apportées par la reconfiguration partielle, cette technique
est restreinte à de rares mises à jour firmware. Il n’est alors pas possible de profiter pas
de la proximité du FPGA avec le CPU pour raffiner en temps réel les traitements en
fonction du trafic observé.

Néanmoins, avec la bonne architecture matérielle, cette approche est modifiable
afin de tirer partie de la puissance de calcul du FPGA tout en ayant la possibilité de
configurer les traitements en temps réel. En effet, baser les traitements matériels sur

vii

des paramètres modifiables donne la possibilité de les changer à la volée. Le FPGA
n’est plus uniquement configurable, il est aussi paramétrable. Le FPGA du smart NIC
peut ainsi être intégré dans un flot de traitement logiciel flexible tout en conservant ses
capacités de haute performance. Les opérateurs de réseaux ont alors accès à un matériel
aussi accessible que le logiciel tout en maîtrisant complètement la chaîne de traitement.
Ils possèdent la capacité d’avoir un équipement efficace, réactif et complètement digne
de confiance dont le comportement est parfaitement connu.

Cependant, l’optimisation des performances d’une telle approche nécessite une sé-
paration adéquate des applications réseaux entre le matériel et le logiciel. Tous les
traitements ne profitent pas de manière égale de l’accélération apportée par le FPGA.
L’augmentation des débits de traitement passe par la conservation au mieux des avan-
tages des deux domaines logiciel et matériel dans le flot de manipulation des paquets.
L’étude des points critiques est nécessaire pour avoir des sondes prenant en compte
les spécificités du réseau. Pour cela, l’approche combinée logicielle et matérielle est
utilisée sur deux applications.

Dans un premier temps, un générateur de trafic flexible illustre la nécessité de sé-
parer les actions de décision et la gestion des paquets afin d’obtenir un traitement haute
performance et flexible. Afin d’atteindre les débits maximums du lien, la gestion de
l’envoi des paquets est laissée à la charge du FPGA. La sélection des paquets à en-
voyer, leur ordre et le débit sont pilotés par des paramètres de configuration envoyés
du logiciel. Le programme de génération des paramètres permet à l’utilisateur d’avoir
la main mise sur le trafic émis. Cela offre la possibilité de créer des motifs de trafic
bien précis afin de tester et potentiellement mettre en défaut des équipements réseaux.
L’architecture ne permet pas, pour l’instant, la création d’un trafic avec le contrôle
absolu paquet par paquet. Un groupe de paquets peut être configuré et rejoué succes-
sivement jusqu’à ce qu’une nouvelle configuration soit envoyée par la partie logicielle.
Grâce à cette architecture, il est tou de même possible de générer du trafic jusqu’à
160 Gbps sur la carte de test disponible, avec une composition du trafic qui évolue en
fonction du temps d’une façon choisie par l’opérateur. Les débits atteints sont inac-
cessible pour des générateurs complètement logiciels. De plus, le contrôle instantané
de la forme du trafic est une inovation par rapport aux autres solutions matérielles
déjà existantes. Cette application, émettrice de trafic, est néanmoins privilégiée par la
connaissance a priori des paquets à transmettre.

La deuxième application se concentre sur la réception des paquets par une sonde.
En étudiant le traitement d’un paquet par le logiciel, il est possible de déterminer
plusieurs étapes :

• l’analyse du paquet lors de sa réception,

• sa classification avec un ensemble de règles pour le filtrage et la distribution du
paquet,

• l’utilisation du paquet par l’application finale.

Les deux premières étapes sont communes à toutes les applications fonctionnant sur le
logiciel, elles doivent être exécutées à la vitesse du lien et profitent du parallélisme du
FPGA. Les applications finales, au contraire, réalisent des décisions sur les paquets et

viii

ne profitent pas toutes de l’accélération du FPGA. Leur accélération est moins critique
et peut être décidée au coup par coup.

En réception, une sonde souffre de la non connaissance du trafic en circulation.
L’étude du logiciel montre que les applications décident des paquets qui leur sont
délivrées. Afin de reproduire ce phénomène, il est possible de créer une boucle de
rétro-action entre le logiciel et le matériel. Les applications, en fonction des résul-
tats des traitements, prennent la décision de changer la configuration du traitements
effectués sur le matériel. Le pré-traitement de chaque paquet doit pour cela avoir une
architecture matérielle configurable.

4 Architecture d’analyse de paquets novatrice pour de
la surveillance de trafic adaptative

Les étapes de traitement des paquets à considérer pour l’architecture matérielle sont
avant tout l’analyse des paquets et leur filtrage. L’étape d’analyse interprète les bits
du paquet arrivant sur le lien et détermine les protocoles en présence ainsi que les
différentes caractéristiques de ces protocoles. Le filtrage ne sert qu’à déterminer si
un paquet doit être délivré à une application. Là où le filtrage des paquets est une
étape spécifique dont l’exécution peut être laissée au soin de chaque application le
nécessitant, l’analyse est une étape commune à effectuer en amont pour toutes les
applications afin d’éviter les opérations en doublon. Sa configurabilité détermine la
flexibilité sur les types de paquets qui peuvent être traités par la sonde. Son temps de
réaction à la gestion de nouveau paquet est critique pour l’ensemble de la sonde. Il est
donc extrêmement important de réussir à faire un analyseur de paquets qui extrait les
types de paquets et leurs caractéristiques dynamiquement.

L’étude de la structure d’un paquet montre que toutes les informations nécessaires
pour désencapsuler un paquet sont embarquées dedans. L’organisation des octets d’un
en-tête est défini selon une spécification, chaque champ ou caractéritique étant à une
place précise dans l’en-tête. De plus, les en-têtes de chaque protocoles sont soit de
taille fixe, soit contiennent un champ à un endroit fixe de l’en-tête donnant sa taille.
Les en-têtes ont aussi un champ permettant de déterminer le protocole utilisé dans
l’en-tête de niveau supérieur. Ces informations peuvent être utilisées à chaque niveau
d’encapsulation pour extraire les informations voulues.

Les solutions d’analyse de paquets existantes fixent ces paramètres d’en-tête lors
de la génération de l’architecture matérielle. Des outils sont utilisés pour accélérer les
développement, mais un changement de protocoles envisagés entraînent toujours une
reconfiguration du FPGA, que ce soit totale ou partielle. A l’inverse, ce manuscrit
propose une architecture qui utilisent les paramètres des en-têtes comme paramètres
de traitement. Il est alors possible de changer les types d’en-têtes et les caractéris-
tiques extraites sans avoir besoin de reconfigurer le FPGA. Dans un premier temps,
un pipeline d’analyse d’en-tête est utilisé pour supprimer la séquentialité entre les dif-
férents niveaux d’encapsulation. Les différents en-têtes extraits sont ensuite envoyés
dans un ensemble d’extracteurs de caractéristiques en parallèle. Cette extraction en
deux temps permet d’extraire n’importe quel nombre de caractéristiques des en-têtes à
n’importe quel niveau d’encapsulation.

ix

Le dimensionnement de l’architecture proposée permet de tenir le débit de paquets
du lien, même dans le pire cas, comme les architectures existantes. L’avantage de
l’innovation proposée, l’utilisation du FPGA en statique, permet d’éviter la perte de
paquets lors du changement de paramètres. Ce changement est de plus complètement
contrôlé à partir d’une suite logicielle sur la machine hôte, ce qui évite d’avoir besoin
de connaissance spécifique en FPGA pour configurer l’architecture. Cependant, la
généricité du design vient avec un coût pour la consommation en ressources de la puce.
En comparaison avec les autres solutions, cette consommation est légèrement plus
élevée et est largement compensée par la diversité de protocole pouvant être traités. Il
est tout de même bon de noter le nombre de caractéristiques à extraire est le facteur
majoritaire de cette consommation de ressources. Quand le nombre de caractéristiques
à extraire augmente, la taille du design augmente en proportion.

Cette influence est à prendre en compte pour la transmission des caractéristiques
extraites aux applications après l’analyseur dans la chaîne de traitement. En effet,
afin d’avoir une sonde complètement dynamique, ces caractéristiques doivent pouvoir
être distribuées dynamiquement aux éléments de traitement. Une caractéristique doit
pouvoir être délivrée à un ou plusieurs éléments de traitement à la demande des appli-
cations utilisatrices. Comme les chemins sur le FPGA sont fixes après la configuration,
le moyen le plus simple est d’extraire une caractéristique pour chaque entrée des élé-
ments de traitement, quitte à dupliquer l’extraction de certaines caractéristiques. Cette
duplication a néanmoins un coût important en termes de consommation de ressources,
ce qui limite le nombre total de caractéristiques extraites.

Un moyen plus efficace de connecter l’analyseur aux moteurs de traitement est
l’utilisation d’un élément spécialisé appelé réseau d’interconnexion. La capacité d’un
réseau d’interconnexion à connecter une entrée à certaines sorties dépend de sa topolo-
gie. Pour répondre aux besoins de l’architecture, le réseau à utilisé doit être asymétrique,
avoir des connexions réarrangeables, une latence de transmission constante et pou-
voir supporter des connexions en multicast. Cette propriété doivent être répondues
avec un minimum de points d’interconnexion afin de minimiser la consommation de
ressources.

Une famille de réseaux d’interconnexion répondant à ces critères est l’ensemble
des réseaux d’interconnexion à plusieurs étages, Multistage Interconnexion Networks
(MIN). Cependant, aucune implémentation pour l’asymétrie n’a été trouvée. Une im-
plémentation basique d’un réseau asymétrique est faite à partir d’étages de duplication
et de réseaux de Benes, topologie d’interconnexion symétrique couramment utilisée.
Cette solution offre alors un réseau d’interconnexion asymétrique capable de connecter
les entrées à des milliers de sorties. Une solution plus générale basée sur les réseaux
de Clos semble plus adaptée aux besoins en théorie mais elle nécessite une étude ap-
profondie de nombreux paramètres pour être implémentée. Bien que non optimal, le
choix effectué permet de réduire de façon significante la consommation en ressources
comparé à la duplication de caractéristiques.

Avec la combinaison de l’analyseur de paquets et du réseau d’interconnexion pro-
posés, l’architecture exécute l’extraction de n’importe caractéristiques de n’importe
quel en-tête et peut les distribuer à n’importe moteur de traitement. Cette unique ar-
chitecture est un bloc de base important pour la réalisation d’applications de traitement
de paquets flexibles à très haut débit.

x

5 Vers de la surveillance de trafic agile à très haut débit
Le développement de sondes de surveillance de trafic permet l’évaluation de la perti-
nence de l’approche de conception commune logicielle et matérielle. Cela permet de
tester la capacité de l’architecture proposée à s’adapter aux paquets arrivant sur le lien.
Étudier le comportement de telles applications donne les clés nécessaires pour assurer
la tenue des débits du lien tout en conservant un maximum de flexibilité. Cette partie
s’intéresse à la mise en place de deux applications de surveillance de trafic conservant
une agilité importante même à très haut débit.

Afin d’évaluer les performances des applications, une plate-forme de test capable
de générer un trafic de stress est utilisée. Constituée d’une partie génération et d’une
partie réception basées sur des cartes NetFPGA SUME, cette plate-forme génère du
trafic à 40 Gbps. Le trafic généré sature le lien, même dans le pire cas de paquets de 64
octets, et est de composition variable. Pour cela le générateur de trafic présenté dans
ce manuscrit est utilisé. Des programmes créés par l’utilisateur génèrent des profils de
trafic qui peuvent être répétés afin d’être utilisés comme gabarits de test.

Une partie importante de la protection des réseaux vient de l’étude des anomalies
dans le trafic. La détection et la compréhension de ces anomalies permettent de révéler
des motifs d’attaques. Ces motifs d’attaque peuvent être constitués de toute la diver-
sité de paquets existante. Le suivi de tels motifs impose d’être capable de s’adapter
dynamiquement au trafic pour rafiner la récupération de données.

Dans cet exemple, une application de traitement de trafic simple est exécutée avec
l’analyseur d’en-tête proposé. Chaque caractéristique extraite des paquets est asso-
ciée avec un compteur de motif. Les compteurs sont ensuite exportés en logiciel où
une application développée en Python détecte les anomalies en cours et change les
paramètres pour rafiner les traitements. Grâce à l’unique flexibilité de l’architecture
matérielle, cette application est capable de collecter une information plus diversifiée
sur le trafic que les applications habituelles. En effet, les applications logicielles ne
prennent en compte que les champs discrimants des paquets pour cause de problèmes
de performance. Les solutions matérielles utilisent ces mêmes champs à cause du
coût de la reconfiguration du FPGA. L’adaptation en temps réel de la sonde proposée
permet de surveiller des protocoles non communs qui peuvent devenir une source de
danger parce qu’ils sont moins surveillé, surtout à des débits de 40 Gbps. Finalement,
le réseau est plus sûr malgré la simplicité de la sonde.

La seconde application testée combine l’architecture de l’analyseur de paquet et
du réseau d’interconnexion and des processeurs de règles pour créer un classificateur
de paquets à très haute performance. Les processeurs de règles utilisent les champs
extraits de l’analyseur pour déterminer si un paquet doit être transmis aux applications
en logiciel pour un traitement plus poussé sur un débit moins élevé. Cette sélection en
matériel peut ensuite être rafinée au niveau logiciel si il y a besoin. Une bibliothèque
logicielle permet aux applications de manipuler la configuration de l’architecture sans
avoir besoin de connaissances préalables. Il y a une boucle de rétro-action entre le logi-
ciel et le matériel qui laisse la possibilité aux applications de contrôler les informations
issues de la carte selon leur besoin.

La haute programmabilité de cette architecture offre une plus grande liberté dans
la configuration des règles qu’aucun autre classificateur à très haut débit. Grâce à

xi

l’analyseur configurable, l’utilisateur a la possibilité de configurer les caractéristiques
utilisées dans chaque processeur de règles, ce qui rend le classificateur proposé unique.
La généricité de l’architecture coûte de la consommation de ressources sur le FPGA,
moins de règles pouvant être effectuée que d’autres solutions matérielles existantes.
Cela est compensé par sa flexibilité qui autorise l’utilisation d’un processeur de règles
pour n’importe quel type de paquet. De plus, le test vérifie le fonctionnement de la
sonde à 40 Gbps sans perte de paquets, mais l’architecture est capable de réaliser la
classification jusqu’à 120 Gbps de trafic constitué de paquets de 64 octets.

Bien que simples, les applications présentées mettent en exergue la pertinence de
l’approche proposée dans le manuscrit. Avec des blocs de base adaptés en matériel,
cette approche amènent au développement de sondes innovantes capable de :

• soutenir le débit du lien sans perte de paquet, même à très haut débit,

• exécuter des traitements flexibles,

• contrôler le nombre de données traitées par le CPU,

• augmenter la réactivité des traitements.

L’unique combinaison de ces propriétés est rendue possible par une conception com-
mune logicielle et matérielle. Cela rend les sondes au courant du trafic en circulation
qui peuvent s’adapter et être résilientes à un grand nombre de types de trafic. Des
larges attaques volumétriques aux petites attaques cachées, les opérations réseaux peu-
vent parfaitement suivre l’évolution du trafic en évitant toute faille de sécurité.

6 Conclusion
Le développement des réseaux informatiques va de pair avec une augmentation de la
quantité et de la diversité de trafic. Cette évolution amène de nouvelles contraintes pour
les systèmes de surveillance de trafic protégeant les réseaux. Les solutions actuelles
n’arrivent pas à faire face à ce nouveau set de contraintes. Les solutions logicielles ne
sont plus assez performantes et les solutions matérielles pas assez flexibles. L’intégration
de FPGAs dans des cartes réseaux amène une solution intermédiaire réussissant à lever
les contraintes.

Cependant, ces smart NICs sont majoritairement utilisées comme des accélérateurs
de traitement spécialisés. La proximité avec le CPU n’est pas pleinement utilisée, ce
qui limite la flexibilité et la réactivité des traitements nécessaires au bon fonction-
nement des équipements réseaux. Cette thèse propose une approche combinant le
logiciel et le matériel dès la conception d’une sonde de surveillance. Sans déléguer
toute une application au FPGA, mais seulement les parties critiques de la réception
des paquets, les traitements sont accélérés mais gagnent en flexibilité. Pour cela, il est
nécessaire d’avoir une architecture matérielle adéquate.

La conception d’un analyseur de paquets paramétrable montre qu’il est possible
de d’échanger un peu d’espace sur une puce pour gagner beaucoup de flexibilité en
comparaison avec les solutions existantes. Deux applications agiles et performantes
sont conçues grâce à l’architecture proposée. La première, une application de détec-
tion d’anomalies dans le trafic, prouve que l’approche commune logicielle et matérielle

xii

gagne en flexibilité et diversité de paquets traités. La seconde application est une appli-
cation agile d’analyse de trafic. Avec l’ajout d’un classificateur matériel paramétrable,
il est possible de rafiner les traitements sur certains paquets choisis parmi l’ensemble
du trafic. Par rapport à l’existant, l’architecture de classification ne sacrifie que peu
de ressources pour un gain en agilité et en diversité de paquets traités important.
L’intégration de ces solutions dans une infrastructure de test permet de valider que
les performances sont toujours au rendez-vous. Les applications sont capables de cap-
turer tout le trafic généré à 40 Gbps, même pour les plus petits paquets de 64 octets,
avec le générateur flexible proposé dans le manuscrit.

La validation des architectures n’est effectuée que sur 40 Gbps à cause des équipements
de test. Le passage à l’échelle de la solution est à étudier pour envisager les réseaux in-
formatiques de demain à des débits toujours plus importants. Avec de nouvelles cartes
disponibles, équipées d’interfaces plus récentes, il sera possible de tester l’architecture
sur des débits 160 Gbps à 400 Gbps. Passer à l’échelle nécessite d’optimiser la con-
sommation en ressources du pré-traitement, afin de laisser de la place pour accélérer
les applications utilisateurs. Dans cette optique, l’utilisation d’un réseau d’un réseau
de Clos pour la distribution des caractéristiques issues de l’analyseur est à étudier. Il
est aussi possible d’étudier l’intégration des évolutions technologiques des FPGAs,
comme la reconfiguration partielle, dans l’architecture.

Les FPGAs, de par leur flexibilité et leur puissance de calcul, amènent de nou-
velles possibilités pour les applications réseaux, et permettent de continuer à suivre
l’évolution des débits. Un avantage important est la constante évolution technologique
des FPGAs qui ouvrent de nouvelles possibilités pour les réseaux. On peut se de-
mander si croissance démentielle des réseaux va finir par dépasser les capacités de
traitements des cartes réseaux basées sur le FPGA. Cependant, comme les autres plate-
formes sont déjà obsolètes, les seules solutions pour faire face aux réseaux de demain,
avec un trafic divers à débits de plusieurs terabits par seconde, viennent de la meilleure
exploitation du potentiel des puces reconfigurables.

xiii

xiv

Contents

Remerciements i

Résumé ii

Abstract iii

Résumé étendu iv

Contents xiv

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Network design issues . 1

1.1.1 Reliable networks . 2
1.1.2 High-speed networks . 2
1.1.3 Flexible networks . 3
1.1.4 Scalable networks . 3
1.1.5 Reactive networks . 3
1.1.6 Monitoring challenge . 4

1.2 Thesis structure . 4

2 Systems for network monitoring 7
2.1 Introduction . 7
2.2 Packet processing . 8

2.2.1 Packet structure . 8
2.2.2 High data rate links: a packet density issue 10

2.3 Commodity hardware . 11
2.3.1 Common architecture . 11
2.3.2 PCI Express . 12
2.3.3 CPU computation . 13
2.3.4 GPU computation . 15
2.3.5 Optimization solutions . 17

2.4 Specialized hardware . 18
2.4.1 Application specific hardware 18

xv

2.4.2 Network processors . 18
2.5 Novel network processors: FPGAs 20

2.5.1 Adapted platform for high performance networking 20
2.5.2 Improvement of FPGA development 22
2.5.3 Limited reactivity . 23
2.5.4 Towards CPU offload . 25

2.6 Conclusion . 25

3 Hardware/software network devices 27
3.1 Introduction . 27
3.2 Smart NIC approach . 27

3.2.1 Smart NIC system . 27
3.2.2 Smart NIC development boards 29

3.3 Hardware/software packet processing 31
3.3.1 Reactive processing flow . 31
3.3.2 Hardware high packet rate processing 33

3.4 Feed forward software to hardware: a mixed traffic generator 36
3.4.1 Overview . 36
3.4.2 Packet generator implementation 38
3.4.3 Strengths and limitations of the traffic generator 41

3.5 Hardware/Software feedback enabled probe 43
3.5.1 Packet processing steps . 43
3.5.2 Accelerated architecture . 45

3.6 Conclusion . 48

4 A novel flexible packet parser architecture for live monitoring 51
4.1 Introduction . 51
4.2 High performance and flexible packet parsing 52

4.2.1 Packet parsing challenge . 52
4.2.2 Existing parsers limitations 53
4.2.3 Feature extraction requirements 53

4.3 Packet parser architecture . 55
4.3.1 Global architecture . 55
4.3.2 Header parsing . 56
4.3.3 Feature selection . 59
4.3.4 Architecture results . 62

4.4 Interconnection architecture . 66
4.4.1 Interconnection network definition 66
4.4.2 Adapted interconnection architecture 69

4.5 Conclusion . 75

5 Towards agile high-speed network monitoring 77
5.1 Introduction . 77
5.2 Test-bed architecture . 78

5.2.1 Test organization . 78
5.2.2 40 Gbps test-bed . 79

5.3 Flexible high-speed packet parser validation 79

xvi

5.3.1 Experimental probe . 79
5.3.2 Benchmark scenario . 81
5.3.3 Test results . 83

5.4 Flexible packet classifier . 85
5.4.1 Packet classification . 85
5.4.2 Hardware classification . 86
5.4.3 Hardware/software packet classification 87
5.4.4 Hardware/software synergy 90
5.4.5 Experimental results . 93
5.4.6 Benchmark scenario . 93
5.4.7 Test results . 95
5.4.8 Rule processor study . 98

5.5 Conclusion . 99

6 Conclusion 101
6.1 Main contributions . 101

6.1.1 High performance monitoring systems 101
6.1.2 Hardware and software design 102
6.1.3 Innovative flexible packet parser hardware architecture 103
6.1.4 Validation of the flexible approach 104

6.2 Perspectives . 105

Glossary 107

Bibliography 113

xvii

xviii

List of Figures

2.1 Examples of layered communication 8
2.2 Packet structure for OSI model . 9
2.3 Transmission of 2 successive Ethernet packets 10
2.4 Packet throughput evolution as a function of packet mean size for a 40

Gbps link . 10
2.5 Common commodity hardware architecture 11
2.6 Evolution of processing throughputs for 15 years until 2016 [ZMC16] 12

3.1 Smart NIC integration in commodity hardware 28
3.2 Smart NIC architecture . 29
3.3 NetFPGA flow pipeline . 30
3.4 High level network design flow . 31
3.5 Smart NIC device adaptation loop 32
3.6 Ratio between link packet rate and FPGA packet rate 34
3.7 Datapath frequency as a function of packet size for a link of 40 Gbps . 35
3.8 Hardware and software packet generation architecture 38
3.9 Generation engine architecture . 39
3.10 Gaps between consecutive packets on a link when not full 40
3.11 Example of packet processing on a software architecture 44
3.12 Example of a mixed probe architecture 45
3.13 Example of a reactive mixed probe architecture 47
3.14 Example of a probe with a software part and multiple smart NICs . . . 48

4.1 Packet decapsulation process . 54
4.2 Header specifications for different protocols 54
4.3 Packet chunks example for a User Datagram Protocol (UDP) 64-byte

packet on a 256-bit datapath width 55
4.4 Packet parser global architecture . 56
4.5 Header parser pipeline . 57
4.6 Packet parser header parsing . 57
4.7 Example parse graph . 59
4.8 Transformed parse graph . 60
4.9 Feature selection architecture . 60
4.10 Feature selection . 61
4.11 Extraction of Internet Protocol version 4 (IPv4) source address from

256-bit chunk . 61
4.12 Multi-chunk extraction of IPv4 destination address from 256-bit chunks 62
4.13 Packet parser relative resource utilization on XC7VX690T 64

xix

4.14 Feature distribution example . 67
4.15 Network topology examples . 67
4.16 Crossbar matrix with 3 inputs and 5 outputs 70
4.17 A (8x8) benes network . 71
4.18 Implemented interconnection solution 72
4.19 (N1xN2) Clos network denoted µ(m,n1, r1, n2, r2) 74

5.1 Test solution architecture . 78
5.2 Test-bed with NetFPGA SUME board 79
5.3 Test solution architecture . 80
5.4 Incoming packet counters . 81
5.5 Detection decision steps . 82
5.6 Traffic distribution seen by the probe during the dynamic attack detection 84
5.7 Classification hardware architecture on the Smart NIC FPGA 88
5.8 Flexible rule processor of size 5 . 89
5.9 2-step detection and reconfiguration 91
5.10 Experimental probe architecture . 92
5.11 Incoming total traffic . 94
5.12 Counter values after packet filtering on the FPGA 95
5.13 Counter values of software filtering 97
5.14 Resource consumption for different rule processors number with 4-

depth rules . 98
5.15 Resource consumption for different rule depths with 50 rule processors 98

xx

List of Tables

2.1 Limit packet throughputs for different data link speed 11
2.2 Theoretical throughputs (Gbps) per direction of Peripherical Compo-

nent Interconnect express (PCIe) . 13
2.3 Comparison of platforms with networking criteria 26

3.1 Clock frequency to sustain different data link throughputs 34
3.2 Datapath frequency and throughput for different targeted link through-

puts . 36
3.3 4*40 Gbps packet generator implementations for different maximum

sizes of packet streams on XC7VX690T FPGA 42

4.1 Packet parser solutions on XC7VXH870T 65
4.2 Interconnection network resource utilization on XC7VX690T (%) . . 72

5.1 Field sets and associated rule sets . 85
5.2 Comparison of per-rule resource consumption 99

xxi

xxii

Chapter 1

Introduction

1.1 Network design issues
In the current Information Age, network communications are the keys of society devel-
opment. From business to entertainment by way of mobile communications, network
infrastructure is the backbone supporting the most modern and successful activities. E-
commerce, social networks, video on demand are examples of services existing thanks
to an efficient network.

To answer the evolution of the demand, the bandwidth of network data links has
been largely increased. Users are connected with fast connections to enjoy proposed
services. In 2016, according to Cisco Visual Networking Index (VNI) [Cisa], 46%
of the world population is connected with an average connection speed of 27.5 Mbps.
The resulting global IP traffic was 1.2 Zetabytes (1021 bytes) for the year 2016, making
3.2 Exabytes (1018 bytes) of traffic per day. This corresponds to an average throughput
of 292 Tbps.

Nonetheless, this traffic is not evenly geographically and temporally distributed.
Depending on their utility, multiple services are used across the day, with different
traffic consumptions. During busy hours, the traffic spike was 1 Pbps (1015 bits) in
2016 [Cisa]. Therefore, network operators must be sized to sustain traffic during high
demand periods. While aggregation of 10 Gbps links is currently the standard, it is
common to see backbone architectures of main actors based on 40 Gbps or 100 Gbps
links. For example, the French service provider OVH is currently upscaling its fiber
optic communication network to 100 Gbps links in order to offer a global capacity of
12 Tbps [OVHc].

Global traffic is mainly composed of business traffic, consumers traffic and to a
lesser extent network management traffic. Each service transmits packets through the
network with specific transmission requirements. Video calls, video streaming, web
browsing or gaming are examples of different requirements in terms of throughputs,
latencies and jitters. Coexistence of different traffic types on the same network requires
advanced management tools which can handle the modification of the traffic shape
according to the different network usages.

1

1.1.1 Reliable networks
The growing importance of network has become a source of instability. The more
services depend on network communications, the more pressure there is on the infras-
tructure. Indeed, if a network is down, all services relying on it are unavailable.

This critical status makes it sensible to failures or attacks. As a capital element
of transmission, the infrastructure is a target of choice for any malicious behavior. In
addition, any connected device may fail resulting in the generation of unwanted traffic.

To ensure reliability of the infrastructure, network actors control the network status
with traffic monitoring tools. They have the vital role to extract information from
packets in transit to deduce the network state. Knowing the traffic allows specialized
packet processing for the different services.

For instance, firewalls accept packets inside a subnetwork according to user-defined
policies. Traffic management systems handle packets priority and dynamic routing to
guarantee a good Quality of Service (QoS) for all services and to avoid congestion. In-
deed, traffic like video streams is much more sensible to delay than web browsing, thus
requiring priority routing. To have an accurate control over the network, equipment has
to tend to a lossless packet processing.

Thus, monitoring the traffic is crucial in terms of security and network manage-
ment. The detection of abnormal behaviors is the key to avoid congestion, potential
threats or service disruption. To offer an accurate management of the infrastructure,
monitoring systems must be able to follow traffic packets at line rate.

1.1.2 High-speed networks
With the growth of network-oriented services, network transmissions require more
and more bandwidth. Data links are regularly upgraded to absorb the growing traffic
generated by networked applications. Increased throughput is equivalent to increased
attack possibilities.

For instance, the growing number of Internet of Things devices is a major source
of permanent threat to the entire infrastructure. Once deployed, a wide number of the
same units are in service for an extended period of time. Representing 5.8 billions
devices [Cisa] in 2016, 34% of all the connected devices, IoT objects offer a leverage
to generate massive Distributed Denial of Service (DDoS) attacks [BI17]. Denial of
Service (DoS) attacks aim at exhausting the target resources to disrupt the provided
service.

One precedent was the Mirai botnet in autumn 2016. It took advantage of 150,000
poorly protected security cameras to generate DDoS attacks with traffic throughput
never encountered before. 1 Tbps of malicious Transmission Control Protocol (TCP)
traffic targeted the web service provider OVH in September 2016 [OVHb]. In October
2016 [Dyn], a similar attack targeted the Dyn company, provider of many well-known
service companies.

Despite the traffic data rate, this was a simple well-known attack. Nonetheless, it
paved the way to massive DoS attacks. The same leverage could be used by future
malicious attempts to create attacks more complex to counter, like the combination of
multiple classic attacks.

2

In high-speed traffic, even little data flows represent non negligible and potentially
damaging quantity of data. 1% of 1 Tbps traffic is still 10 Gbps. In such a case,
accuracy is the key to avoid any problem. Line rate packet processing is even more
important in high-speed networks.

1.1.3 Flexible networks
A network is the center of the cohabitation of a wide number of different traffic flows.
Services are not evenly and constantly used in a day. As a consequence, the result-
ing traffic composition is constantly in movement. Moreover, because of connection
possibilities, a network is proned to transmit traffic comming from new services not
anticipated before.

To cope with the current variety of traffic and its future evolution, a well-designed
infrastructure is built with monitoring systems compatible with Software Defined Net-
working (SDN) [Zil+15]. This network paradigm recommends the dissociation of the
data plane and the control plane. The goal is to abstract the network infrastructure to
improve the maintenance with a global management. The data plane is focused on
packet operations and offers a configuration interface. The control plane handles ex-
ceptions coming from data plane and adapts the data plane behavior. This approach
allows to separate common operations on high speed links and management of more
complex operations.

While respecting SDN standard requires to have programmable network equip-
ment, the resulting benefits are a flexible architecture and a reduced global complexity.
It is possible to dynamically tune the architecture to the traffic content. With the devel-
opment of IoT [PSS16] and the arrival of 5G [And+14], programmable network will
be required to handle concurrent intensive usage.

1.1.4 Scalable networks
The evolution of networks is linked with the evolution of dependent services. Estima-
tions forecast [Cisa] that, in 2021, annual Internet Protocol (IP) traffic will reach 3.3
Zettabytes, for an average traffic of 874 Tbps and busy hours traffic of 5 Pbps. IoT
modules will generate 5.1% of this traffic and smartphones will create 33% of it.

Thus, network monitoring importance is continuously increasing. The links will
be upgraded to absorb the traffic generated by connected devices consuming more and
more bandwith. Considering this future growth, monitoring systems must be scalable.

1.1.5 Reactive networks
Network actors face increasingly diverse and dense traffic. Considered data rates re-
duce the fault tolerance while the number of services increases the number of possible
threats. Therefore, network infrastructure must provide a nearly perfect transmission
service.

Monitoring systems must be not only flexible, but highly reactive too. Thus, flex-
ibility of monitoring systems must not be limited to sparse upgrades. Indeed, anoma-
lies in the network can quickly have a considerable impact. To efficiently protect a

3

network, monitoring systems must be adapted as fast as possible after the detection of
an anomaly.

1.1.6 Monitoring challenge
Addressing these contraints is the key for network service providers to have a secure
and well-functioning infrastructure. Monitoring probes are at the heart of the monitor-
ing system since they collect information throughout the whole network. Designing
them for tomorrow’s networks requires overcoming multiple challenges.

How is it possible to monitor the traffic in an efficient and flexible way ? How
to simultaneously cope with SDN requirements, high reactivity and high throughput
support ? What is the scalability of such a monitoring system ?

1.2 Thesis structure
This manuscript studies different ways of lifting constraints on SDN monitoring probes
in high throughput networks. An architecture is proposed to take advantage of hard-
ware and software combination. The resulting probe is able to process high speed
traffic with high configuration reactivity. Scalability is ensured by the portability of
the solution, with the possibility to change the development platform.

In chapter 2, multiple existing traffic monitoring platforms are compared. Their
compliancies with a set of essential constraints will be checked.

From limitations found in the literature, chapter 3 develops a novel approach for
packet processing. Integration advantages of smart Network Interface Card (NIC) plat-
forms are used to consider an architecture combining hardware and software. Sepa-
ration of common packet processing steps allows to set high performance processing
while keeping the flexibility. Moreover, a software Application Programming Interface
(API) keeps the solution accessible for the final users, network engineers. In addition
to accessibility, network operators preferably use trustworthy equipment whose behav-
ior can be verified. Therefore, all the work presented in this manuscript is available as
open-source.

Chapter 4 introduces an hardware architecture compliant with the global approach.
A packet parser extracts features of interest from the incoming packets. An intercon-
nection network distributes these features to the following processing elements. The
whole architecture is based on parameters configurable from the software part. Thus,
features are extracted from incoming packets on demand from processing applications.

The hardware architecture gives building blocks to set up a flexible and efficient
monitoring probe. Chapter 5 is focused on the integration of these blocks in a global
architecture to test the performance brought by the architecture. After counters set
behind filtered extracted features, a complete programmable rule classifier is set. A
software application is able to dynamically set up rules in order to detect anomalies
at data rates over 40 Gbps. Performance and reactivity of these tests demonstrate the
viability of the work.

Chapter 6 concludes the thesis. The different contributions are summarized. A
discussion is engaged about the limits of the presented architecture. Development

4

possibilities with this platform are given. Finally, some tracks are explored to improve
the solution.

5

6

Chapter 2

Systems for network monitoring

2.1 Introduction
Network infrastructure is currently under the pressure of the booming usage of network-
oriented services. Managing the traffic going through a network is crucial for QoS and
security. Network links are constantly upgraded to sustain a growing and diverse traf-
fic. Monitoring systems face the challenge of combining high performance, flexibility
and reactivity.

To overcome this challenge, monitoring systems must be composed of adapted
probes. Numerous development platforms exist for the design of packet processing
architectures. From classic CPU-oriented systems to Application-Specific Integrated
Circuit (ASIC) specialized hardware, the wide spectrum of solutions offers multiple
tradeoffs between performance and flexibility.

High speed network constraints define criteria for solution selection. To be consid-
ered adapted, a platform must fulfill the following requirements:

• precisely analyze the traffic at high speed,

• offer flexibility in order to:

– be compliant with SDN,

– continuously adapt the monitoring platform to the traffic,

• allow a low latency reaction with monitoring adaptation at link time scale,

• be easily adapted to larger throughputs and larger networks,

• be accessible to any network engineer without specific hardware knowledge,

• be portable for integration on various monitoring platforms.

Combined with a processing architecture, the resulting probe can sustain link rate pro-
cessing of 40 Gbps links and beyond while being programmable and reactive.

Monitoring constraints are mainly decided by packets structure. Main constraints
of monitoring come from packet transmission in network. After describing packet pro-
cessing constraints, this chapter investigates the limits, strengths and weaknesses, of
the different monitoring systems options. Each selected solution has a specific answer

7

Physical

Data link

Network

Transport

Session

Presentation

Application

Physical

Data link

Network

Transport

Session

Presentation

Application

Transmitter Receiver

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Bit

Frame

Packet

Datagram

Session PDU

Presentation PDU

Application PDU

(a) Original OSI model

Physical

Data link

Network

Transport

Application

Physical

Data link

Network

Transport

Application

Transmitter Receiver

Layer 1

Layer 2

Layer 3

Layer 4

Layer 7

Bit

Frame

Packet

Datagram

Data

(b) Internet model

Figure 2.1 – Examples of layered communication

to high performance live monitoring, impacting the networking architecture. From
these limitations, a platform is selected to develop a packet processing architecture
respecting the requirements of current and future networks.

2.2 Packet processing

2.2.1 Packet structure
Network packet is the building block of network transmissions. When a communica-
tion is needed, information from the transmitter application is embedded inside one or
multiple packets alongside control data. Control is used by the interconnection ele-
ments to deliver the payload to the destination. A packet is raw data formatted after
communication protocols.

The dynamic and incremental nature of network gathers heterogeneous intercon-
nection devices. Thus, the Open System Interconnection (OSI) reference model [Cisc]
defines a layered conception of a communication system, where each layer is assigned
to specific tasks. Figure 2.1a shows a communication example from an transmitter ap-
plication to a receiver application for the original OSI model with 7 layers. The path
of the packet is marked in black. Communications are made between two instances
of the same layer with messages of a common standard protocol called Protocol Data
Units (PDUs). Explicit names are given to messages corresponding to commonly used
protocols:

• bit for the layer 1,

• frame for the layer 2,

• packet for the layer 3,

8

Physical

Data link

Network

Transport

Session

Presentation

Application

Physical

Data link

Network

Transport

Session

Presentation

Application

payload data

Figure 2.2 – Packet structure for OSI model

• datagram or segment for the layer 4.

A layer provides services for the upper layer. For example, the transport layer
offers the transmission of data between two points on a network at higher layers. The
goal is to abstract the network infrastructure for systems interoperability. This concept
can be adapted according to the needs with a variable number of layers. Figure 2.1b
represents the layer model applied to Internet communications where layers 5 and 6
are commonly not used.

This hierarchical structure of network communications is reflected on packet struc-
ture. At transmission, each layer adds control information in the form of a header and
an optional trailer. This information is used by the corresponding layer at the receiving
side. Figure 2.2 demonstrates this encapsulation with the resulting packet at each layer
stage. At the physical layer, the packet is transmitted between network devices.

Data encapsulation is reversible at the reception side to extract the payload. Pro-
tocol header for one layer contains information to determine the higher level protocol.
This decapsulation allows to remove headers one by one to deliver the packet pay-
load to the right application. Removal of a packet header is dependent on information
from lower layers. As a consequence, decapsulation process as well as encapsulation
process are sequential. Processing parallelization is not possible on one packet.

Dynamic connected services create coexisting protocols at different layer levels.
While lower layers of the Internet network use standard protocol for users traffic,
higher layers are composed of as many protocols as existing services. Moreover, man-
agement traffic is transmitted alongside user traffic. As a consequence, there is a wide
variety of packet structures in transit on a network, all of which have their specific
needs regarding monitoring and protection against failures or attacks.

9

Packet 1
72-1530 bytes

Frame 1
64-1518 bytes

Interpacket
gap

Preamble
8 bytes

Packet 2
72-1530 bytes

Frame 2
64-1518 bytes

Preamble
8 bytes

Packet transmission
84-1538 bytes

Figure 2.3 – Transmission of 2 successive Ethernet packets

100 200 300 400 500 600 700 800 900 1,0001,1001,2001,3001,4001,500
0

20

40

60

Packet size (B)

Pa
ck

et
th

ro
ug

hp
ut

(M
pp

s)

Figure 2.4 – Packet throughput evolution as a function of packet mean size for a 40
Gbps link

2.2.2 High data rate links: a packet density issue
A network component has a standardized physical access. The main communication
protocol is Ethernet [Cisb], ruling the data link layer and partly the physical layer. It
defines rules for transmission of packets between two nodes of the network and the
composition of corresponding frames. Physically, this protocol is used for physical
communication over a single network. This is a legacy vision of the network when
the coaxial cable was shared among users. This cable has now been replaced by other
equipments, mainly "hubs" and "switches".

When a frame is sent, a preamble of 8 bytes mark the beginning of the transmission
forming an Ethernet packet. Between two packets, an interpacket gap of 12 bytes has
to be respected. Moreover, by definition, an Ethernet frame is limited in size, from
64 bytes to 1518 bytes. Figure 2.3 summarizes the transmission of two successive
packets. The restriction on the frame size brings the total transmission size between
84 bytes and 1538 bytes per packet.

The packet rate on the link can be evaluated with the mean packet number and the

10

Link throughput 64-byte packet throughput 1518-byte packet throughput
(Gbps) (Mpps) (Mpps)

1 1.488 0.081
4 5.952 0.325

10 14.881 0.813
40 59.523 3.251
100 148.809 8.127
160 238.095 13.004
400 595.238 32.510

Table 2.1 – Limit packet throughputs for different data link speed

PCI Express

CPU

NIC GPU

Figure 2.5 – Common commodity hardware architecture

link throughput, as seen in Equation 2.1.

Tpacket =
Tlink

(mean_size+ 20) ∗ 8
(2.1)

Figure 2.4 displays the packet throughput as a function of packet mean size for a 40
Gbps link. It can be easily observed that packet throughput is higher for 64-byte pack-
ets. The non-linearity of packet rate makes these packets a critical element for a net-
work infrastructure. This is the worst-case scenario for packet processing. Table 2.1
lists minimum and maximum packet rates for different link rates. While a link is not
constantly full of smallest packets, monitoring systems must be sized to prevent this
case of overwhelming traffic. We will see in next sections what different monitoring
systems offer and how they deal with the different traffic profiles.

2.3 Commodity hardware

2.3.1 Common architecture
Commodity hardware is based on common computer architecture to build a platform
capable of processing packets. Widespread off-the-shelf CPU-based hardware allows
a large accessibility. Combined with ease of use, this platform is an accessible target.

Figure 2.5 describes the architecture commonly used. A NIC handles packet trans-
mission on the link. Specialized for this task, the NIC determines the maximum

11

0
1

network switching

PCI-Express

SPEC int throughput
SPEC int speed

10

102

103

2 4 6
relative years

re
la

tiv
e

im
pr

ov
em

en
t

8 10 12 14

Figure 2.6 – Evolution of processing throughputs for 15 years until 2016 [ZMC16]

throughput that can be guaranteed by the probe. When received, packets are transferred
to the Central Processing Unit (CPU) via the Peripherical Component Interconnect ex-
press (PCIe) bus. After interpretation, the CPU handles the main packet processing. A
Graphics Processing Unit (GPU) is an optional element that can be added to offload
the CPU in order to improve processing capabilities of the probe.

CPUs are conceived to be versatile. Software systems are greatly flexible allow-
ing a reactive modification of processing and multiprocessing. Thus, software is the
main development platform for packet processing engines. It is the reference for SDN
development. Combined with the accessibility and portability, a large ecosystem of
libraries and tools exists to manipulate network packets.

However, for the last 20 years, networking devices have improved datapath band-
width more than CPU devices. In [ZMC16], Zilberman et al. studied this evolution.
Results are summarized in Figure 2.6. Standard Performance Evaluation Corporation
(SPEC) CPU2006 benchmark [Hen06] is a standardized and widely used benchmark
to test performance of CPU devices. It can be observed that network devices increased
their throughput far more quickly than CPU or PCIe.

While the NIC is designed to sustain the incoming traffic, the architecture of com-
modity hardware contains multiple possible bottlenecks. As main component of a
CPU-based machine, the CPU is the major limitation. A high-performance GPU is a
solution to offload processing from the CPU. However, between NIC and GPU com-
munications, the PCIe bus must be able to sustain the total throughput.

2.3.2 PCI Express
High-speed communications over PCIe are ensured by specifications maintained by the
PCI-SIG (Peripherical Component Interconnect (PCI) Special Group of Interest) [PS].
Table 2.2 shows throughput performance of PCIe generation 3 and generation 4 for
multiple lanes width. Generation 3 is the current most widespread version of PCIe

12

PCIe version
number of lanes

x1 x2 x4 x8 x16
Gen 3 7.88 15.76 31.52 64.04 126
Gen 4 15.76 31.52 64.04 126 252

Table 2.2 – Theoretical throughputs (Gbps) per direction of PCIe

while generation 4 begins to be integrated in new machines. The results demonstrate
the capability of commodity hardware to transfer the received network traffic.

It is common to see a CPU with 32 or 40 parallel PCIe Gen 3 lanes [Intc]. Com-
modity hardware with this configuration is able to sustain 100 Gbps of traffic with 16
lanes. Available lanes allow the connection of a GPU for processing acceleration.

However, protocol overhead and traffic overhead impact final performance of a
PCIe link. Xilinx [Xil14] and Intel Programmable Solutions [Int17] have demonstrated
that, for a PCIe Gen 3 link, the efficiency is 86% for write transactions and 76% for
read transactions. Moreover, using the link in full duplex decreases even more the
performance. Even given these issues, PCIe can still be sized to sustain real throughput
for link up to 100 Gbps.

2.3.3 CPU computation
2.3.3.1 Common network stack

With an adapted NIC and PCIe bandwidth, commodity hardware is able to send and
receive up to 100 Gbps traffic. Packet delivery is not sufficient to provide applications
in high-speed traffic. Network applications are mainly developed on Linux for reasons
of high accessibility and evolution possibilities.

Compatibility orientation and flexibility of modern Operating Systems (OSs) im-
pact packet capture performance. The network stack of Linux kernel offers limited
packet processing speed. A few improvements have been integrated to mitigate the
overload of CPU with high density of packets.

Receive Side Scaling (RSS) RSS is a mechanism provided by NICs [Int16] to dis-
tribute received packets across multiple hardware queues. A compliant RSS driver [Mic17]
allows to associate one CPU core to one queue. The developer configures distribution
rules. The configured value corresponds to a hash value computed by the NIC based
on some packet fields. While the linearity of packet processing avoids to distribute a
packet on multiple cores, this approach enables to concurrently process multiple pack-
ets.

New Application Programming Interface (NAPI) NAPI [Fou16] is a way for the
Linux kernel to reduce the impact of incoming packets on the CPU. NAPI compliant
drivers improve capture performance with two main ideas:

• Interrupt mitigation avoids the reception of interruptions for each received
packet. Interruptions are disabled when the first packet is received and a read
is scheduled. During this read, newly received packets are fetched in batch and

13

interruptions are reactivated. The CPU is not overloaded with intensive interrup-
tion reception of high-speed traffic.

• Packet throttling avoids useless CPU processing for dropped packets. When
the CPU is overloaded, packets are dropped at NIC level instead of dropping
packets at kernel level. This saves CPU resources to process more packets.

2.3.3.2 High-end operations optimization

Despite these improvements, Linux network stack is still not adapted to sustain high-
speed traffic. Further work on the architecture is necessary to upgrade performance.
Multiple capture engines [Fou] [RDC11] [Riz12] [Han+10] [Bon+12] [Mor+15] pro-
pose different tradeoffs between common techniques to improve the supported data
rate.

Memory resources pre-allocation The allocation of all needed resources for packet
storage is made at the beginning of capture process. An incoming packet is associated
with the already allocated memory. At packet removal, the memory is made available
but not freed and re-used for another packet. Expensive per-packet allocation and
deallocation is avoided, saving 2300 CPU cycles per packet [LZB11].

Queues consumption parallelism Although RSS queues allow different cores to
concurrently receive packets, the Linux network stack merges all packets with one
consumer process. With a modification of communication between kernel and user
levels, independent cores can consume packets from different RSS queues. Keeping
complete parallel paths allow to concurrently process incoming packets.

Memory mapping Mapping to user space memory regions allocated to packet stor-
age avoids kernel to user copy operation. If such a region is writable by the NIC, packet
data is immediately available for user space application and no copy is required. Oth-
erwise, one kernel to kernel copy is still required.

Affinity In Non Uniform Memory Access (NUMA) architecture [Lam13] of mod-
ern computers, each processor has a privileged memory. Accesses to this memory is
faster for the local processor than for the others. The capture process must be on the
core attached to the PCIe slot where the NIC is plugged. Affinity must be defined to
maximize the throughput. Moreover, processes using these packets will have to be set
on the same processor too.

Batch processing The reception of a packet creates system calls, implying a context
switch between user and kernel level. Processing batches of packets avoids creating a
context switch per packet, costing 1000 CPU cycles each [LZB11].

Prefetching Fetching a packet in advance while the previous is processed allows to
load the cache memory. The resulting fewer cache misses improve the overall perfor-
mance.

14

2.3.3.3 Limited performance

A study of these different packet capture engines [Mor+15] demonstrates a significant
increase in performance when compared to the standard Linux network stack. When
using the standard stack on a 10 Gbps link, in the best configuration case, 75% of
incoming packets can not be processed. This number is reduced to less than 5% for the
best configuration cases for improved capture engine frameworks.

The test machine is equipped with two 6-cores CPUs and one NIC with a 10 Gbps
interface. The best results are shown for less than 4 queues for all the capture engines.
Despite the emphasis on parallel processing, capture is not optimal for the 6 supplied
cores. This lack of scalability prevents the support of very high-speed NICs.

Moreover, it is worth noting that processing cores are nearly fully busy with the
capture of packets. PFQ [Bon+12], DPDK [Fou] and HPCAP [Mor+15] use more than
99% of the CPU. While PF_RING [RDC11] uses only 77.8%, Packet Shader [Han+10]
77.4% and netmap [Riz12] 66.2%.

Capture is the first step of packet processing. Packets are received and delivered
to following applications. All these frameworks have API to control communications
between user applications and capture engines. However, once the capture is executed,
few CPU processing power is available for applications. This is a real problem if
processing is required for an elaborate and accurate monitoring.

Non specialization of processors makes for a difficult optimization of packet pro-
cessing. The study of multiple frameworks [Gal+15] demonstrates that the most effi-
cient driver between DPDK, PF_RING and netmap takes at least 100 CPU cycles to
receive and send one packet. At 3.3 GHz, one CPU core must be able to receive 66
Mpps and transfer 33 Mpps, far more than 10 Gbps of 64-byte packets.

However, the executed application after the capture engines has a large importance
on performance. The analysis of a simple processing, packet forwarding, with a lookup
table of 256 MB in size leads to 7.1 Mpps processed [Gal+15]. This is less than 14.88
Mpps of 64-byte packets that need to be processed in a worst-case scenario on a 10
Gbps link.

A statistical classification application was built on the Packet Shader framework
[Rio+12]. The equipment is scaled to process two links at 10 Gbps with one 4-core
CPU per reception NIC. The final classification process is only able to process 15.2
Mpps out of 25.2 Mpps received for a worst case scenario. Intensive per-packet sniffing
and flow construction require high CPU processing power and process parallelization
and high CPU affinity are necessary. However, this way of processing is not scalable
because of the limited number of available processing cores.

NDPI [Der+14] is a Deep Packet Inspection (DPI) tool using PF_RING to capture
packets to study application level protocols. While the targeted throughput of 10 Gbps
is achieved, results must be taken with a grain of salt. Average size of test packets is
316 bytes, which is far from 64-byte packet traffic.

2.3.4 GPU computation
With General Purpose Processing on Graphics Processing Unit (GPGPU), it is possible
to execute applications formerly reserved to the CPU on GPU. High parallelism offered
by GPU increases the overall processing power of commodity hardware.

15

Among the previous capture engines, Packet Shader framework [Han+10] has the
possibility to unload captured packets processing to GPU. Internet Protocol version
4 (IPv4) forwarding sustains nearly 39 Gbps of 64-byte traffic where a CPU only ar-
chitecture is capable of processing less than 30 Gbps. Although there is an incon-
testable gain, the acceleration largely depends on types of considered applications.
For instance, Internet Protocol version 6 (IPv6) forwarding is able to process 38 Gbps
with GPU processing instead of 8 Gbps with only CPU where, flow monitoring only
achieves 34 Gbps instead of 28 Gbps.

GPU devices are accessible because GPU development is performed using tradi-
tional software development tools. However, applications efficiently accelerated meet
certain constraints [NVI18a].

Efficient offload Computation gain of operations offloaded to GPU must compen-
sate overheads of data transfer from CPU to GPU.

Massive parallelization The high number of cores offered by a GPU is optimally
used if operations are performed in parallel. Algorithms with independent per-packet
processing are an adapted target.

Coalesced memory To take advantage of small caches in GPU, data structures with
grouped memory are recommended, like arrays or hash tables.

Single Instruction Multiple Data (SIMD) instructions GPU development requires
a change in development paradigm, from independent threads to SIMD. GPU threads
are divided in multiple groups called warps. The minimum is 32 threads per warp. In
one group, all the threads have to execute the same instructions. It is then impossible
to offload code with conditional branches.

For algorithms checking these cases, GPU processing has an impact for networking
applications:

• The latency of global processing is increased by the two way trip from CPU to
GPU and the waiting time to have a full batch of packets. The average latency
added is 200µs [Han+10]. Such overhead could be critical for network services
requiring a global low latency like 5G [And+14].

• Once concurrently processed, packet reordering is necessary for some applica-
tions, further increasing the global latency.

Even though GPUs accelerate applications with high computation, high regularity
and memory intensive operations, GPU improvement does not reach targeted through-
put. With an architecture sized for 80 Gbps of traffic equipped with two 4-core CPUs,
each one receiving 40 Gbps and having an offload GPU, Packet Shader [Han+10] is
only able to sustain 39 Gbps of worst-case packets for the most efficient application,
an IPv4 forwarding. Similarly, Kargus [Jam+12] implements an Intrusion Detection
System (IDS) on a machine sized for 40 Gbps of traffic with two 6-core processors,
each one associated with 20 Gbps of traffic and a GPU. Final results show processing
of only 30 Gbps traffic of smaller Ethernet packets.

16

A more recent implementation of Packet Shader [Kim+15] demonstrates that a
commodity hardware system is not easily scalable. With two 8-core processors linked
to a 40 Gbps NIC and high-end graphic cards, this machine is only able to process 62
Gbps out of 80 Gbps of 64-packets traffic for IPv4 forwarding.

Recent GPUs [NVI18b] have the capability to receive directly traffic from NIC
without going through CPU thanks to Remote Direct Memory Access (RDMA). Nonethe-
less, obligation of SIMD limits greatly the possible algorithms.

2.3.5 Optimization solutions
With PCIe connection, commodity hardware has the bandwidth to transfer high-speed
traffic. The combination of CPU and GPU makes possible to have efficient systems.
However, sustaining high data rates is paired with multiple drawbacks.

Less flexibility Modifications made by capture engines to sustain rates specialize the
architecture. Processes are associated with predefined cores, which greatly reduces the
accessibility and flexibility of the platform.

Less portability Developed applications use specific frameworks with incompati-
ble optimization. Some frameworks have specific languages to ease the develop-
ment [Bon+14]. Software code is not portable or at the cost of high modifications,
and the results is not guaranteed.

Poor scalability Commodity hardware systems have a poor scalability on a machine.
Duplicating the machine is a solution to targeted high data rates. However, 100 Gbps
implies to have at least four parallel machines. The scalability of commodity hardware
requires the construction of a computer farm, which is an expensive solution.

Low reliability An OS hosts multiple concurrent tasks. Monitoring tasks have so
important timing constraints that any outside task can lower monitoring performance.
Therefore, the OS must be tuned to ensure a minimum reliability.

For the research of high performance, the different capture frameworks have opti-
mized all kernel operations to reduce the number of CPU operations per packet. These
works result in the specialization of processing on an architecture not specialized for
packet processing. This usage of CPU is counter intuitive.

As a consequence, despite good improvements, the low scalability of commodity
is an obstacle to process high packet rates. An alternative solution is to execute an
adaptive sampling [Bra+13]. When the traffic rate is low, it is possible to watch all the
packets. At the opposite, during traffic spikes, the CPU is not overwhelmed by packets
improving the overall performance.

Supplying the right level of specialization to capture engines is equivalent to the
usage of a dedicated commodity hardware. If a dedicated machine is required, special-
ized hardware must be considered. Indeed, for the past 20 years, processing bandwidth
of more specialized systems has more increased than CPU and GPU [Zil+15].

17

2.4 Specialized hardware

2.4.1 Application specific hardware
While commodity hardware has processing power capability, it lacks operations op-
timized for packet processing. A common way to improve processing power for an
application is the development of specialized hardware for this application. ASICs
provide specific digital circuits tuned for targeted applications.

ASICs offer operations and instructions adapted to the application needs. It is pos-
sible to use parallelization to provide concurrent processing as well as highly pipelined
designs. The association of these features allows to reach higher processing power [Goo].
An other advantage is an optimal consumption per operation.

Despite a substantial acceleration, dedicated hardware specialization leads to mul-
tiple major drawbacks for network applications [Xilb]:

• Hardware is not upgradable

• Time to market is very long

• Production costs are very high

• Proprietary designs are not specialized for customers

ASIC-based systems flexibility is restricted to the launch of a new product limiting
at the same time the reactivity. Thus, this approach is not viable for emerging SDN.

Moreover, despite their importance, network components represent a niche market
where network operators want to control final processing. The outlet is not of millions
of copies, making production costs prohibitive. ASICs are mainly used for simple
widespread high performance hardware like switches [Jun]. However, with growing
adoption of SDN, even these elements require a certain level of programmability.

2.4.2 Network processors
Instead of ASICs, it is possible to use hardware designed to support a whole class of
applications. Network Processing Units (NPUs) are specialized versions of CPUs for
networking, offering a midway solution between CPUs and ASICs. NPUs are con-
ceived to accelerate a collection of networking functions in addition to more classical
operations packaged in CPUs.

In an NPU, processing units are directly connected to network interfaces. With
adapted accelerated network functions, traffic processing is offloaded and performed
at full rate. A maximum computation time is spared by the main processing unit to
execute applications.

A wide variety of architectures exists for network processors depending on the
different vendors. It is still possible to extract common elements [Com04]:

• Network interfaces communicates with the data link. They define the targeted
data rate.

18

• One or multiple processors work like in a CPU in commodity hardware. Spe-
cialized for handling traffic, they have a reduced instruction set with special
instructions to use co-processors.

• Network co-processors are ASICs associated with a networking task. These
diverse co-processors give the specialization of the NPU.

• Global memory is available for processors and local memory is associated with
co-processors if needed.

This architecture allows NPUs to sustain high data rates while keeping flexibility in
processing possibilities. Development for these platforms is eased with the utilization
of common language subsets and APIs. For example, Mellanox has a network proces-
sor [Mel] which is announced to support up to 240 Gbps of traffic. Simulation tools
allow to have a cycle accuracy on the results. Nokia networks revealed the FP4 [Nok],
a promising network processor for traffic up to 2.4 Tbps.

However, these platforms are specific to a vendor. Moreover, architectures are spe-
cific to a problem. The combination of these constraints leads to multiple drawbacks.

Reserved performance Proclaimed performance of an NPU is obtained in a con-
figuration decided by the vendor. Usually, this configuration is chosen as a situation
for which the architecture has been specially optimized. For example, a classification
engine developed on Mellanox NP-5 processor [Pan+17] demonstrates that only 100
Gbps is reached only with packets longer than 127 bytes. It is far from 240 Gbps
announced by Mellanox. It is easy to imagine that results would be far worst with 64-
byte packets. When processing outside of co-processors scope is needed, performance
collapses.

Limited flexibility For performance issues, flexibility of applications is limited by
the offered co-processors. No update is possible to support unanticipated needs, except
the production of a new NPU.

Lack of portability The code developed for a platform uses a language specific to a
vendor. For performance improvements, assembly optimizations are advised by ven-
dors [Com04]. Therefore, an application is specific to a vendor, and even to a platform
with a specific co-processor, limiting the portability.

By merging CPU and ASIC approaches, NPUs seem to take drawbacks of both
solutions. An application is reduced to choose between efficient but restricted or flexi-
ble but inefficient operations. To compensate, NPU vendors [Mel] tend to embedded a
wide variety of co-processors in NPUs. As a consequence, end-users have NPUs with
unused hardware overhead.

As NPUs are not adapted for many situations, one can observe the desertion of
multiple leading actors. For instance, Intel produced its last NPU in 2007 [Inta]. Un-
fortunately, NPUs do not match the growing requirements of SDN wide flexibility and
reactivity.

19

2.5 Novel network processors: FPGAs

2.5.1 Adapted platform for high performance networking
2.5.1.1 Platform features

Field-Programmable Gate Arrays (FPGAs) are integrated circuits that can be config-
ured to behave like any digital circuit. At crossroads between commodity hardware
and ASIC, FPGAs offer at the same time processing power close to ASIC and a level
of programmability. Primarily used for ASIC incremental design, circuits can be tested
and modified without the production of new chips at every modification.

An FPGA uses a programming paradigm similar to an ASIC combined with con-
figuration possibility. This gives FPGA devices unique features:

• High parallelization can achieve high data rate processing. Largest FPGAs cur-
rently have millions of parallel logic cells [Xilc]

• Reconfiguration of the FPGA allows to change an existing design, update or
substitution, offering a wide flexibility.

• Design implemented on an FPGA is controlled in terms of functionality and
latency.

These features are interesting to solve challenges linked with constraints of network
applications. It offers a compromise between high data rate processing and flexibility.

2.5.1.2 High performance processing

The main issue in network monitoring is the considerable flow of packets. When an
application is accelerated on an FPGA, common acceleration factors are:

• design specialization,

• massive parallelism,

• data pipelining.

A design targeting an FPGA device is fully controlled by the developer. It is pos-
sible to specialize the behavior of an FPGA to act like an digital circuit. Therefore, as
with ASIC development, operators dedicated to the targeted application can be used.
This specialization of FPGA designs is one the keys to achieve high data rates. By
unloading the per-packet processing to an FPGA, Antichi et al. [ACG12] succeeded to
reduce the CPU utilization of nearly 100% for a full 64-byte 1 Gbps link. At the same
time, packet loss was reduced from nearly 100% to 0%.

To increase the processing throughput of an FPGA design, the sequential steps of
an application can be executed in parallel forming a processing pipeline. Packet data is
sequentially transferred through pipeline stages allowing the consideration of depen-
dent operations. At a given moment, the steps work on different data. For instance,
packet parser architectures extensively use processing pipelines to achieve high data

20

rates. In [AB11], implementation results show that the presented architecture can pro-
cess up to 400 Gbps of worst-case traffic. An other design [PKK12] [PKK14] demon-
strates that 400 Gbps is not out of reach. In addition to pipeline processing, these
two solutions take advantage of the possibility to use a specific datapath on FPGAs.
A 2048-bit datapath allows to achieve these very high performance. Unfortunately,
even if FPGAs have the processing power, no board with enough connection interfaces
existed at the time to have a final test-bed.

Other applications hit the same wall. For instance, flow classification with Support
Vector Machine (SVM) [GAV14] takes advantage of high parallelism to implement
multiple computation units. As each computation unit processes one packet, traffic
speed can be processed at up to 400 Gbps. However, with a board equipped with only
four 10 Gpbs interfaces, tests are limited only to 40 Gbps.

With massive parallelism and data pipelining, the structure of FPGAs is adapted to
process packets at line rate on high-speed links. Designs making use of FPGA features
have high performance, even processing data rates better than those proposed by input
and output connections. With recent and future FPGA generations, Xilinx [Xilc] and
Intel [Intb] announce devices supporting 400 Gbps data rate.

2.5.1.3 SDN compliance

Like ASICs, FPGAs’ gain comes in large part from application specialization. How-
ever, while designs implemented on an FPGA are specialized, the chip itself is not and
can be reprogrammed. This feature offers a large flexibility to end-users. FPGAs are
not bound to a single task. A single FPGA can be used to run different networking
application.

Moreover, it is possible to adapt some applications to the different resources of an
FPGA. For instance, in [FHS17], performance of multiple classification engines are
compared on the XC7VX690T FPGA. These different architectures provide different
tradeoffs between logic and Random Access Memory (RAM) consumption to achieve
a similar application. This capability enables the organization of resources according
to the requested operations for a high number of monitoring possibilities.

However, the flexibility is limited for applications relying on specific rare resources.
For performance constraints, it can be not possible for multiple applications to concur-
rently use these resources. For instance, Forconesi et al. [For+13] succeeded in upgrad-
ing the number of concurrent flows tracked by the monitoring device from 16,384 to
786,432 with the usage of an external Quad Data Rate (QDR) memory. More accurate
monitoring results are obtained because of less collisions in the hash function used.
Despite superior performance, this design prevents the usage of the unique communi-
cation port to external memory for any other applications added on the spared resources
of the FPGA. In [Var+15], Varga et al. developed a switch enhanced with traffic flow
management capabilities to selectively distribute a 100 Gbps traffic on multiple other
monitoring devices. Parallelism on an FPGA is limited by the resource consumption.

2.5.1.4 Portability

While each implementation is specific to an FPGA chip, this specificity is obtained via
implementation tools. Designs are mainly developed with common Hardware Descrip-

21

tion Language (HDL) languages, Verilog and VHSIC Hardware Description Language
(VHDL), supported by Xilinx and Intel. Implementations tools map the design to the
resources of an FPGA chip. Therefore, proposed networking applications are portable
across multiple platforms. This situation brings two main advantages.

Full flexibility Portability of designs allows to access to a wide variety of accelerated
applications. The final functionality can be tuned according to the needs of the user.
Similar blocks can be found even for vendor specific Intellectual Properties (IPs).

Scalability Having portable design boosts the scalability of network equipment. In-
deed, it is possible to target recent hardware with a tried and tested design. Most
recent hardware often provides more inputs and outputs connection, more resources
and better target frequencies. As performance is often limited by clock frequency or
resources consumption, portability to most recent hardware is linked to performance
improvements.

2.5.2 Improvement of FPGA development
2.5.2.1 Automated design generation

Despite multiple advantages, FPGA systems are limited by long development time
and specific expertise. For equivalent functionality, it is more complex to develop for
FPGA than commodity hardware [Che+08]. In addition, applications have more lines
of codes, and so are more complex to maintain.

To attenuate this limitation, work has been done to ease the development of algo-
rithms for FPGA. High-Level Synthesis (HLS) tools use algorithm descriptions in a
subset of a language, like C or C++, to generate a corresponding HDL design with the
described functionality. Common HLS tools are Vivado HLS and CatapultC. With the
development of a traffic manager in C, Benacer et al. [BBS17] demonstrated the pos-
sibility to have a complete networking application in HLS. This application succeeded
to reach 15.8 Gbps of 64-byte traffic, which is enough for the 10 Gbps interface of the
board.

Despite its proximity to common software, personal experiments with the design
of networking applications have shown two main drawbacks of common HLS tools:
lack of control and limited portability. Controlling parameters of the final design like
latency, throughput requires mastery of the tool. The inference of the resulting gener-
ated circuit is not as obvious as with HDL languages. Moreover, as hardware systems
are targeted, HLS solutions are nearly new languages to learn. Each tool uses a spe-
cific subset of common languages. Therefore, although the HDL code is portable, high
level code is bound to the tool.

Common HLS tools are not adapted to networking usage constraints. Yet, software
assisted development is a necessity to give access to FPGA processing power. For
critical parts of a design, more specific HLS solutions have been studied.

Brebner [Bre09] defined a first packet-centric language, G language. A description
of the design is compiled towards an architecture composed of specific blocks ensuring
data rate. A label switched router is designed with G sustaining 40 Gbps traffic, with a

22

meaningful reduction of design time from 13 days for C-to-gates tools to 2 days for G
approach. A flow monitor [McG+10] has been developed with G language, noting sim-
ilarly design improvement results. This work was followed and developed with multi-
ple other solutions. In addition to an architecture capable of processing up to 400 Gbps
of packets, PP-based parsing stages [AB11] are based on an updatable microcode. If
too significant changes are done between two updates, the parser architecture must be
regenerated. PX language [BJ14] introduced an automated management of updates by
the tool flow. A generated OpenFlow packet classifier processes packets at data rate of
100 Gbps. After multiple iterations, the outcome of Xilinx’s research is the SDNet full
product [Xila]. It combines automated generation and partial reconfiguration of FPGA
to increase the flexibility while sustaining 100 Gbps.

Gorilla [LDC12] is an other design generation tool using a NPU like architecture.
Processing is divided in multiple block operations, each coded in a subset of C. Opera-
tions are mapped on processing engines on an hardware architecture. A network router
processing 100 Gbps is implemented with this solution.

Software-Defined Monitoring [KPK14] [Kek+16] uses the same approach in blocks.
Multiple parsers extract metadata from packets transferred to computation units ac-
cording to defined rules. Computation units are specific functions declared in C or C++
and compiled with HLS tools. It allows to easily add new computation units [Ben+14].
Packet parsers can be specifically generated for a protocol from P4 language defini-
tion [BPK16].

Despite different approaches, HLS tools ease the development of design targeting
FPGAs for non specialist users. However, it is worth noting that these tools are using
their own subset of common languages or even their own languages. As a consequence,
FPGA design trades ease of use for less portability.

2.5.3 Limited reactivity
2.5.3.1 Reconfiguration cost

While FPGAs bring flexibility to network equipment, this flexibility is quite rigid. The
modification of an already programmed design has two main drawbacks. Even if the
complex and time-consuming design creation is attenuated by the usage of high-level
tools, the generation takes hours, even days for complex architectures. In addition,
programming an FPGA chip forces to stop current processing.

In [Fie+16], classification is done partly in hardware and partly in software to gain
flexibility. However, when the rule set manager modifies rules on hardware part, the
specialized rule classifier [Hag+14] must be regenerated. This operation comes with a
cost:

• 45 minutes are necessary to generate a new design.

• 17 seconds are necessary to reprogram the FPGA.

In this case, the generation time is reduced because the design is a small specialized
design. The generation time is a significant boundary for flexiblity.

Due to limited FPGA resources, designs are often tuned to fit requirements of spe-
cific processing for space optimization or performance issues. Therefore, it is not

23

possible to integrate processing for all expected configurations and then dynamically
select the adapted operation. To mitigate the generation time, it is possible to use a
set of pre-designed firmwares and to select a solution according to the situation. How-
ever, the FPGA configuration still requires several seconds during which processing is
completely shut down. At 40 Gbps, the system has to buffer and recover or drop tens
of GigaBytes of packets. Furthermore, if an unpredicted case occurs, a new firmware
must be generated. This work is complex and time-consuming, even with the help of
high-level tools, to meet the required performance in terms of latency and throughput
while fitting FPGA constraints.

Common FPGA-based solutions provide a coarse-grain agility ideal for sparse
firmware updates. Fast runtime adaptation of designs to the incoming traffic is not
possible and requires a different approach.

2.5.3.2 Partial reconfiguration

A method to increase the reactivity is the recent possibility of partial reconfiguration
of FPGAs. It allows to divide the chip in multiple independent reconfigurable areas.
Therefore, an area can be reconfigured without impacting applications of the others.

A Network on Chip (NoC)-Enhanced packet parser [BAB15] hosts an header parser
on each node. Routes between parsers can be reconfigured to change the decapsula-
tion of the packet. The ultimate purpose of this design is to hold dynamic protocol
configuration with a partial reconfiguration of router nodes.

Hager et al. [HBS15] defined a reconfigurable zone for core processing inside a
static design. When a new processing is required, a bypass pipeline is used to continue
to transfer packets to the following elements of the design. The probe is blind but no
packet is lost during the reconfiguration.

Zazo et al. [Zaz+16] combined automated design generation and partial reconfig-
uration for a dynamic filter at 100 Gbps. The low occupation space of one specialized
filtering pipeline allows to plan two parallel areas that can be reconfigured in ping-
pong. When a new configuration is required, tools produce a specialized design from
the new rule set. Then, filters can be changed without stopping the processing probe
alternating between these two zones.

The interesting flexibility brought by partial reconfiguration has led its considera-
tion as a research subject for networking applications inside the laboratory. The work
focused on bitstream relocation aiming to minimize the number of bitstreams required
for an FPGA with multiple reconfigurable areas [Lal+16]. This solution has been ap-
plied in the case of traffic generation [Lal17].

Despite the gain with reconfigurable zones, the designer must take into account
the biggest fitting candidate design leading to resources overconsumption and limiting
capabilities. Furthermore, the large size of newest FPGAs impacts the generation time
for even parts of the FPGA, and specific tools are still required to handle the generation
and the configuration. Partial reconfiguration is a good tool for the reconfiguration of
non critical parts of a packet processing pipeline without impacting the rest.

24

2.5.4 Towards CPU offload
FPGAs offer a good compromise between high data rate processing and flexibility.
However, the flexibility is provided at the cost of low reactivity. Continuous need of
flexibility leads to consider using FPGAs paired with CPUs.

With FPGA-enhanced NICs [Bia+06], two paths are built for packets. The slow
path reproduces the common path of commodity hardware through the network stack
while the fast path transfers packets on a direct link between NICs. With classification
abilities, FPGAs are able to select the right path for the packet. By bypassing the
network stack, 400 Mbps processing was upgraded into 3 Gbps processing with a
better usage of the PCI link.

In [Gar+12], Garnica et al. processed packets to detect suspicious IPv4 addresses.
When a packet is tagged, it is transferred to the host CPU where Uniform Resource
Locator (URL)’s legality is verified. Tested on a 10 Gbps link, this design has the
scalability to sustain URL filtering on a 100 Gbps link, out of reach for commodity
hardware.

As packet preprocessing is the key to reduce CPU processing load, Velan et al.
[VP15] proposed an architecture where an FPGA extracts packet headers in CPU be-
half. Headers are transferred to CPU memory via PCIe link like full packets on com-
modity hardware. This enhanced commodity hardware allows to process 160 Gbps of
128-byte packets. While only half of the traffic is processed for 64-byte packets, it is
still an improvement compared to the solution with only commodity hardware.

To gain in flexibility, CPUs must be able to control the unloaded preprocessing.
HyPaFilter solution [Fie+16] [Fie+17] paved the way to collaboration between CPU
and FPGA. An automated tool compiles a set of rules partly on hardware and partly on
software. Therefore, complex rules can be continued in software after a first reduction
in hardware. Moreover, software rules are easily updated when needed without impact-
ing the 40 Gbps traffic processing. Yet, the flexibility is limited due to the impossibility
to quickly generate and reconfigure the hardware part.

Combination of flexibility and performance is the attractive trait of FPGAs. Asso-
ciated to a CPU, an FPGA creates the next generation NPU. With the presence of an
FPGA on the packet path, a CPU is able to offload processing with accelerated applica-
tion on demand. Relevance of FPGAs for high speed SDN requirements has upgraded
their status from prototyping platform to end-user product. Recent networking solu-
tions are considering the usage of NICs enhanced with FPGAs [Bre15], called smart
NICs, as seen in Microsoft Azure [Fir16].

However, monitoring high data rate links requires a fast reaction time to anomalies
in the traffic evolution. To become a platform for future networking, FPGA-based
solutions must compensate the low reactivity brought by classic conception flows.

2.6 Conclusion
Network monitoring faces high-speed links and a wide variety of packet structure.
These constraints are the main challenges for monitoring platforms. Moreover, re-
activity is an essential feature to avoid failures. In order to follow traffic evolution,
scalability must be considered. In addition, a monitoring systems must be accessible

25

Criteria
Solution

CPU CPU+GPU ASIC NPU FPGA

Throughput very low low very high very high very high
Flexibility very high very high very low low high

Reaction time high high none medium low
Scalability very low very low very high very high very high

Accessibility very high high very low medium low
Portability very high high very low low high

Table 2.3 – Comparison of platforms with networking criteria

and portable on multiple hardware targets to ease the development for network engi-
neers. Multiple monitoring solutions offer a variety of compromises between these
constraints which are summed up in Table 2.3.

Commodity hardware is the original platform for network monitoring. Accessi-
bility, portability, flexibility and reactivity are main features of software development.
Therefore, numerous tools for packet processing exist and ease the development of ap-
plications. However, packet processing power is limited, and the scalability means the
construction of datacenters.

At the opposite, ASICs and NPUs offer high processing throughputs but answer
few of other constraints. FPGA is a midway solution, programmable and capable
of processing packets at line rate. Although accessibility is ensured by high level
development tools, it comes at the cost of portability and processing flow restricts the
reactivity. With the development of smart NICs, collaboration between the FPGA and
CPU enables a gain in flexibility and an access to the wide pool of existing networking
tools, but still requires further investigations, proposed in the next chapter.

26

Chapter 3

Hardware/software network devices

3.1 Introduction
With high processing power and flexibility, FPGAs make great solutions to answer
networking constraints. The performance gain of the parallelization and specializa-
tion of processing is undeniable, but reconfiguration drawbacks restrain the flexibility
to sparse firmware upgrades. This limited flexibility of the common working flow
for FPGA acceleration is not high enough to answer the live adaptation requirement.
Highly flexible processing needs a modification of the approach used for the develop-
ment flow taking advantage of the integration of FPGAs in smart NICs.

After presenting the current approach used with smart NICs, this chapter focuses
on their usage for the development of flexible high performance architectures. Using
both hardware and software strengths, these mixed architectures answer constraints of
network monitoring while bringing more reactivity for better management. A major
consideration will be the study of a separation of networking applications between
hardware and software. In addition to accessibility, network operators preferably use
trustworthy equipment whose behavior can be verified. Therefore, for a guarantee of
transparency, all the work presented in this manuscript is available as open-source.

A configurable packet generator will first be designed with a feed-forward mecha-
nism. The software creates configuration parameters and assigns them to the hardware
part. The generation is only driven by scripts in software. While this solution is appro-
priate for some situations, a more complex separation between hardware and software
is needed for packet monitoring. The second design will consider a feedback loop
allowing the continuous adaptation of a global processing chain to incoming packets.
The different parts of this chain are detailed in the next chapters.

3.2 Smart NIC approach

3.2.1 Smart NIC system
Major networking tools work on commodity hardware, the most widespread develop-
ment. It is then impossible to bypass commodity hardware without loosing accumu-
lated networking knowledge. Recent solutions bring intelligence to the common NICs.

27

packet
NIC

packet

CPU computation

packet processing

packet

(a) Commodity hardware with
common NIC

selected data
FPGA

configuration

packet
NIC

packet

CPU
computation

packet processing

packet

Hardware
design
flow

(b) Commodity hardware with smart NIC

Figure 3.1 – Smart NIC integration in commodity hardware

These smart NIC devices aim at offloading CPU processing while taking advantage of
the commodity hardware architecture.

Smart NICs offer programmable accelerators at the network interface level. The
goal is the execution of a first stage of processing directly on the packet datapath
in order to reduce the information transmitted to the CPU. These solutions combine
hardware processing power with software flexibility to have high performance adapt-
able networking applications. Multiple approaches exist to implement this concept,
but they often require specific development skills locked to a vendor’s platform.

A widespread solution is the integration of an FPGAs into the commodity hard-
ware packet processing flow. FPGA-based smart NICs take advantage of a well known
development flow, more accessible, where the processing design is portable between
different FPGA chips. The combination of high processing power and flexibility
has already seduced multiple leading networking companies, like Microsoft [Mic] or
OVH [OVH]. Figure 3.1 shows the difference between standard and FPGA-based
smart NICs.

In Figure 3.1a, the totality of packets is transmitted between NIC and CPU. The
CPU handles the whole network flow and processing chain. Basic packet processing,
which provides no real value but is required before actual computation, can quickly
overwhelms the CPU with a high quantity of simple operations, as seen in 2.3. The
processor is then left unable to process any useful advanced computation.

In Figure 3.1b, an FPGA is inserted between the NIC and CPU. Intensive packet
processing is moved to the FPGA part [Bre15]. FPGA processing power ensures link
rate processing without packet loss. A reduced and adapted quantity of useful selected
data is sent to the CPU. Moreover, FPGAs offer reconfigurable acceleration devices to
offload CPU processing which can be adapted according to the needs [Fir16].

The combination of FPGA performance and CPU flexibility in a smart NIC based
platform makes it a pertinent choice for high speed SDN requirements. Thus, smart
NIC is a pertinent platform for high speed SDN requirements. The compromise of
smart NICs between high processing power and flexibility has enhanced the status
from prototyping platform to end-user product [Xilb].

28

Network
interface

packet

PCIe interface

packet

FPGA

selected data

Network
interface

Memory
Packet

processing

Figure 3.2 – Smart NIC architecture

3.2.2 Smart NIC development boards
3.2.2.1 Board features

The development of smart NIC architectures is linked to cards with adapted features.
In addition to FPGA, such cards must be able to communicate with network link and
the local host.

Figure 3.2 illustrates the architecture composition of a smart NIC. A smart NIC is
composed of several key elements [Fri+13].

• The FPGA is the main component allowing a configurable specialized design to
efficiently process incoming packets.

• The PCIe interface is the common connection interface to the local host of com-
modity hardware.

• Network interfaces handle the communication with other network devices thanks
to Ethernet traffic on wired links.

• Complementary memory in addition to FPGA on-chip RAM is required for large
packet storage, like Double Data Rate (DDR) Dynamic Random Access Mem-
ory (DRAM), or high-throughput accesses, like QDR Static Random Access
Memory (SRAM).

In addition to packet processing, the FPGA part must have glue logic to control the
different interfaces. Multiple boards present different tradeoffs for these features.

29

10G MAC
RX 3

10G MAC
RX 2

10G MAC
RX 1

10G MAC
RX 0

DMA RX

packet
from host

DMA

Input
arbiter

User defined
probe

BRAM output
queues

packet

10G MAC
TX 3

10G MAC
TX 2

10G MAC
TX 1

10G MAC
TX 0

DMA TX

packet

packet
to host

PCIe

register
operation

Figure 3.3 – NetFPGA flow pipeline

3.2.2.2 Prototyping: NetFPGA SUME board

NetFPGA project The NetFPGA project aims to offer the possibility to validate
research work in high performance networking field. The NetFPGA SUME is an af-
fordable platform designed for smart NIC prototyping. The Virtex 7 XC7VX690T
FPGA offers high throughput performance for flow processing. The board is primar-
ily designed for 40 Gbps of traffic with four enhanced Small Form-factor Pluggables
(SFPs+) interfaces, but is able to reach 120 Gbps [Zil+14] traffic with extra interfaces
added via an extension card. The board contains a PCIe Gen 3 connection giving the
possibility to communicate with a host.

Design integration In addition to an adapted board, the project facilitates the integra-
tion of user-designed modules for the processing of a 40 Gbps traffic. Figure 3.3 shows
the processing flow where incoming packets are focused and transmitted to pipelined
modules. With only interfaces adaptation, a user-defined design can be inserted inside
the flow to sustain the full data rate.

Network interfaces are supplied with FPGA IPs. A Direct Memory Access (DMA)
system handles the PCIe controller for communications with the host computer. This
implements the separation between register operation, reading and writing, and packet
transmission. A software driver brings an easy manipulation of the multiple opera-
tions. Register operations are useful to transfer configuration parameters to the design.
Processing results are sent to the host through local forged packets with user-defined
protocols. The ease of integration makes the NetFPGA SUME a valuable source of
test-bed for architecture tests.

30

Functional
specifications

HDL design

Implementation
tools

Binary image
Device driver
configuration

Compilation
tools

Figure 3.4 – High level network design flow

3.2.2.3 Commercial boards

The evolution of smart NIC requirements for networking has been followed by the
production of adapted boards. Multiple leading FPGA board vendors like Terasic,
HiTech Global or BittWare currently provide smart NICs. The market is galvanized
by main network actors using smart NICs for networking applications. For instance,
Microsoft [Mic] uses smart NICs for 30 Gbps networking operations and OVH [OVH]
uses smart NICs in the attack mitigation architecture.

This concurrence has lead to the improvement of smart NICs. A major improve-
ment is the direct integration in silicon of common connection controllers, like PCIe or
Ethernet controllers. Removing this glue logic of high constraints reduces the pressure
on the packet processing design implementation.

3.3 Hardware/software packet processing

3.3.1 Reactive processing flow
3.3.1.1 Considered approach

In current utilization of smart NICs, the FPGA is used as a classic hardware accelerator
with upgrade possibilities. The conception flow of a specialized design is summarized
in Figure 3.4. A set of specifications is used to determine the final architecture and its
constraints. HLS and automated generation tools add a conception layer for accelerat-
ing the creation of a specialized HDL design for FPGA development tools compared to
human development. Implementation on a target creates a binary image fitting FPGA

31

Monitoring
applications

monitoring
results

Device
driver

Software Environment

processing
configuration

firmware
upgrade

forwarded
data

Smart NIC device
packet packet

packet set
modification

processing
updatedriver

configuration
Design

generation

processing
update

Supervision
service

(a) Common

Monitoring
applications

monitoring
results

Device driver

Software Environment

processing
configuration

forwarded
data

Smart NIC device
packet packet

packet set
modification

processing
update

processing
update

Supervision
service

(b) Proposed

Figure 3.5 – Smart NIC device adaptation loop

constraints and optional configuration files to drive the final device. This process is
time-consuming, varying from hours to days for the most recent FPGA chips. More-
over, failure is possible when the design does not fit the target occupation constraints
or the required throughput.

Packet processing designs are mainly specialized for a specific set of packets and
specific information from packets. With the volatile nature of network traffic, some sit-
uations require extracting additional information as a complement to the current mon-
itored set. Even if some solutions offer dynamic reconfiguration, the scope is focused
on minor modifications of processing behavior like filtering actions or classification
rule set. The support of volatile traffic and information is not considered, as seen in
Section 2.5. Figure 3.5a shows the software feedback loop when a modification is re-
quired for a smart NIC. Monitoring processes rely heavily on the generation of new
designs to handle traffic volatility. In addition to generation time, the reconfiguration
process makes the FPGA chip unable to process incoming packets meanwhile, so the
probe is blind during this time.

This problem is easily mitigated by the redundancy of networking critical systems
with the reconfiguration of one system at a time avoiding any processing interruption.
However, this procedure is heavy to set up and requires numerous operations to have
a stable global system. Therefore, it is often reserved for planned maintenance or
security issues. Moreover, the reconfiguration time is not reduced, the system still
lacks reaction time. A standard FPGA design flow limits the reactivity of systems to
sparse firmware upgrades. While sufficient for SDN flexibility, it is not enough for live
adaptation to incoming traffic.

In order to tackle this problem, this work is focused on architectures based on a
different paradigm. Smart NICs offer the possibility to use the combined advantages
of FPGA and commodity hardware. Instead of generating HDL for each modification,
it is possible to gain flexibility with the design and reuse of hardware processing el-
ements for the maximum number of different packets without FPGA reconfiguration.
With configuration parameters provided dynamically from the software, the generic
architecture is only configured once on the FPGA; but the behavior can be modified
according to the needs. Parameters are used for runtime adaptation, while reconfigura-
tion is kept as a way to provide less frequent upgrade. Figure 3.5b shows the implied
modifications in the software feedback loop. While a static hardware architecture is

32

not ideal for flexibility, using a processing based on update parameters reduces this
limitation. A software API is an efficient way to integrate the configuration in a classic
software flow for end-users. Moreover, handling all the parameters in software allows
to track the configuration for a fast content-aware monitoring application. Combin-
ing hardware and software is the key to have developer friendly, high throughput and
adaptive monitoring applications.

3.3.1.2 Network users friendly

The configuration of an FPGA-based system requires a specific knowledge to manipu-
late the tools and to resolve encountered problems. With configuration parameters, full
control of the probe is executed in software without using specialized external tools.
Controlling driver operations with an API abstracts the usage of hardware. Network
engineers require no prior knowledge. Network applications interact transparently with
hardware processing functions.

3.3.1.3 High throughput

Raw performance of FPGA guarantees to sustain a targeted packet rate with stability.
The global monitoring architecture is then reliable and resilient to saturation traffic.
It is possible to offload CPU from per-packet processing at full link speed. Using a
static hardware design, the proposed approach does not need to stop monitoring for
new configurations. The traffic is fully processed without packet loss.

3.3.1.4 Live flexibility

While the static design ensures the throughput, configurable parameters provides live
specialization of processing units. The full software control of the configuration of-
fers flexibility without the need of time-expensive FPGA reconfiguration. Runtime
modifications are possible, allowing the probe to be content-aware and to adapt itself
to the incoming traffic. Specialization of the hardware design brings a controlled low
latency. The feedback loop is then low latency, enabling a reactive probe. Moreover,
this approach is also fully compliant with slow firmware updates.

3.3.2 Hardware high packet rate processing
One main advantage of FPGA processing is the possibility to have a datapath adapted
to applications. Where CPU datapath is limited to 64 bits, wider datapath can be used
on FPGA. However, FPGA flexibility is linked to smaller operating frequencies. The
announced maximum frequencies, 891 MHz for Virtex Ultrascale+ [Xil18] and 1.1
GHz for Stratix 10 [FPG17], are largely under frequencies of CPUs. With designs and
components diversity, these theoretical values are never reached after implementation.
Wider datapath is then mandatory to process high-speed data flow.

33

Link data rate (Gbps) Datapath frequency (MHz)
10 14.881
40 59.523
100 148.809
160 238.095
400 595.238

Table 3.1 – Clock frequency to sustain different data link throughputs

packet1 packet 2

0 64

(a) 64-bit datawidth

packet1 packet 2

0 128

(b) 128-bit datawidth

packet1 packet 2

0 256

(c) 256-bit datawidth
packet1 packet 2

0 512

(d) 512-bit datawidth

Figure 3.6 – Ratio between link packet rate and FPGA packet rate

3.3.2.1 Fully parallel datapath

The maximum number of packets on a link is easily calculated with minimal size
packets, as seen in Section 2.2. A simple solution is to have a data width equivalent to
packet width to process one packet in one cycle. The operating frequency must be set
to sustain the packet rate of the link. Table 3.1 lists frequencies for different targeted
link speeds. Target frequencies can be easily achieved.

However, using this solution on full packets is limited by packet size. Indeed,
packet size on FPGA datapath ranges from 60 bytes to 1514 bytes, because Ethernet
4-byte trailer is added or removed by the interface. A huge 12112-bit datapath must
be used, which puts a lot of constraints on the implementation. Variable size packets
are most of the time not max size packets, so the datapath is not efficiently filled. In
addition, the mutual dependence of elements inside a packet creates high propagation
times, preventing the design to meet final timing constraints.

This approach is not adapted for full packet processing. Nonetheless, a low operat-
ing frequency is an interesting property. It can be used for processing elements which
do not require a whole packet.

3.3.2.2 Pipelined datapath

The previous limitations are mitigated thank to the transmission of packets with multi-
ple pipelined chunks on smaller datapaths. Common datawidths used are 64, 128, 256
and 512 bits. Figure 3.6 shows chunk divisions of a 64-byte packet for the different
widths. The packet has a size of 60 bytes without the Ethernet trailer. Datapaths over
512 bits are not considered because too large for minimal size packets. Therefore, the
design must be able to process multiple packets at the same time. This is equivalent to
have multiple concurrent instances of the same design processing packets on a 512-bit
wide datapath.

34

100 200 300 400 500 600 700 800 900 1,0001,1001,2001,3001,4001,500
0

200

400

600

Packet size (B)

Fr
eq

(M
H

z)

64-bit datapath
128-bit datapath
256-bit datapath
512-bit datapath

Figure 3.7 – Datapath frequency as a function of packet size for a link of 40 Gbps

The throughput of transferred packets is dependent on the datapath width and the
associated clock frequency, as seen in Equation 3.1.

Tpacket/fpga =
Freqdatapath

ceil((mean_size−4)∗8
datapath_width

)
(3.1)

The size of the packet on the FPGA is reduced by 4 bytes because of the removed
Ethernet trailer. It is possible to set the frequency to reach a specific packet throughput.
Equation 3.2 gives the formula to calculate the frequency necessary to fully absorb the
traffic of a link. To have the real size of the packet on the link, 20 bytes corresponding
to the preamble and the interpacket gap must be added to the packet’s size.

Freqdatapath =
ceil((mean_size−4)∗8

datapath_width
)

(mean_size+ 20) ∗ 8
∗ Tlink (3.2)

Figure 3.7 displays the frequency evolution as a function of packet size for different
datapath widths on a 40 Gbps link.

The spikes are created by the final chunk of a packet transmission, which can be
incompletely filled. The transmission is still done with a full chunk leading to an
overhead for packets whose sizes are not multiples of the chunk length. The real
throughput is then lower than the raw throughput. This phenomenon is softened thanks
to smaller datapaths and longer packets. The datapath must operate at the maximum
frequency to avoid loosing packet of any size.

Table 3.2 summarizes the minimum frequencies to use for the different datapaths
and the corresponding raw throughputs. It can be observed that 64-bit and 128-bit dat-
apaths work at raw throughputs, but base frequencies are high enough to be prohibitive
for high data rates. Wider datapaths allow to have frequencies more appropriate for
FPGA design. For example, the NetFPGA SUME project uses a margin with 180
MHz for 40 Gbps traffic and a datapath width of 256 bits.

35

Link Datapath Min frequency Associated
T’put (Gbps) width (MHz) T’put (Gbps)

10

64 156.250 10.000
128 78.125 10.000
256 42.136 10.786
512 28.125 14.400

40

64 625.000 40.000
128 312.500 40.000
256 168.540 43.146
512 112.500 57.600

100

64 1562.000 100.000
128 781.250 100.000
256 412.349 107.865
512 281.250 144.000

512

64 2500.000 160.000
128 1250.000 160.000
256 674.158 172.584
512 450.000 230.400

Table 3.2 – Datapath frequency and throughput for different targeted link throughputs

3.4 Feed forward software to hardware: a mixed traffic
generator

3.4.1 Overview
3.4.1.1 Generation requirements

Traffic generation is a necessity to be able to test network equipment. Although a direct
access to real traffic is good, a controlled environment is required to stress the target
with uncommon but probable traffic. The ability to generate synthetic traffic is the key
to study limitations of a system. The generation of the traffic must be deterministic
to be reproducible. A flexible and reactive architecture must be associated with live
variation of traffic shape.

A large number of software tools enables an easy manipulation of packets for flex-
ible packet generation. However, performance of software monitoring engines limits
possible data rates, as seen in section 2.3. Moreover, creation process is conducted
with processing of the full packet, still reducing the final performance of a software
generator.

Adding an hardware block to sustain high data rates must not greatly reduce the
easy manipulation of packets brought by the software. To generate variable traffic, the
final packet generation architecture has multiple constraints.

• Packet must be generated at line rate.

• Several features of the generated synthetic traffic must be controlled from the
software part:

36

– the traffic composition,

– the packet succession on the link,

– the modification of traffic composition at runtime.

• A test must be reproducible.

The software control of traffic flows is ideal for packet manipulation taking advantage
of regular software tools like scripts or PCAP files. During the packet generation,
packets sent to the link are known and controlled in advance by the user. The goal
of such a generation engine is the generation of controlled load traffic to fill the link.
Dynamic replay of PCAP traffic at X×10 Gbps is not possible because it is going
through the CPU.

3.4.1.2 Solutions limitations

A common solution is the purchase of a commercial network generator. The high cost
of these systems is an element of consideration. Proprietary, it is difficult to judge
performance in terms of flexibility and throughput. For instance, a Xena generator
was tested and unable to sustain the advertised 20 Gbps with 64-byte traffic. Having
multiple hardware for flexibility is not a viable option.

An alternative solution is to use FPGAs to program an adapted generator. The
generator used in the OSNT project [Ant] was the best promising solution with 20
Gbps of 64-byte traffic. It is presented [Ant+14] with multiple concurrent generation
engines. Each engine is able to replay PCAP previously loaded on the FPGA RAM
or to generate multiple synthetic traffic flows. In addition, this generator is designed
to work on the NetFPGA SUME board, the same platform acquired for our tests. No
supplementary hardware is required.

Unfortunately, only the replay engines are currently available for OSNT. These
engines are designed to work with a full PCAP replay file. Therefore, does not allow
to load data during packet generation. The solution is an increased size of the loaded
file. However, the transfer time is 21 seconds for 10 MB files up to 28 minutes for 1
GB files [Ant]. 1 GB is equivalent to 0.2 second at 40 Gbps. Having 1 second of traffic
requires to have at least 5 GB memory on the board for 40 Gbps traffic and 12.5 GB
for 100 Gbps traffic. This solution is then not scalable and is not adapted for live traffic
generation.

Groléat et al. [Gro+13] developed a synthetic traffic generator for 10 Gbps 64-byte
traffic. Concurrent flow generators create a traffic stream corresponding to one type of
packets, each one based on one different header skeleton. Successive blocks execute
a specific operation, like random bits generation or value increment. Results of these
operations are used to modify configurable bytes of the skeleton. Packets out of stream
generators are merged on the link without control on the order. The offered flexibility
is relative because stream generators are specialized for one type of packet. If a new
type of packet is required, all the stream generators must be replaced.

37

packet

packet

Generation
application

Driver

TX0

TX1

TX2

TX3

Generation
engine

Generation
engine

Generation
engine

Generation
engine

packet

packet

FPGA

Software

packet
list

packet descriptor

Software

Figure 3.8 – Hardware and software packet generation architecture

3.4.2 Packet generator implementation
3.4.2.1 Objectives

The required packet generator aims to execute stress test on targeted devices. However,
the goal is the generation of a dynamic load traffic, not the generation of synthetic traf-
fic mimicking real traffic. The generated traffic can be composed of a limited amount
of packets, while it is possible to change the composition.

As seen previously, using defined streams of packets allows a total control on the
composition and the order of packets sent on the link, but large streams reduce the flex-
ibility. The time taken to transfer the streams to the FPGA makes impossible runtime
modification of the traffic. Thus, this generator focuses on the replay of small packet
streams which can be dynamically changed at runtime. This streams can be generated
from software scripts or PCAP files.

3.4.2.2 Architecture

The proposed packet generator creates synthetic traffic from the dynamic update of a
replayed packet stream. The generation is divided into two distinct parts. The soft-
ware part handles the creation of packet flows and the configuration parameters. The
hardware part handles the traffic generation from the replayed packets at a precise link
rate. Figure 3.8 shows hardware and software interactions for an architecture with four
network interfaces.

An application requests the generation of traffic from one or multiple packet lists at
a precise link rate. The list of packets is the list of bytes to send on the link. The soft-
ware driver translates this packet list into a packet descriptor list. A packet descriptor
contains information related to each packet:

• control parameters for the generation engine configuration,

38

packet

Delay
control

chunk

Packet
control

Chunk
read

packet
packet

descriptors

Configuration

interpktinterpkt

size

Generation

control

chunk

Memory 1 Memory 2

Memory

element n

Addr
selection

Figure 3.9 – Generation engine architecture

• bytes to sent for this packet.

One descriptor list is transferred to one generation engine.
Generator engines, one by interface, are in charge of the replay of the packet stream

sent by the software driver with a specific configuration. The configuration is used to
transmit the replayed packets at a targeted rate. This hardware engine ensures that the
packet order and the data rate are observed. One generator is able to load a new con-
figuration while transmitting with the current configuration. This feature is essential to
dynamically change the transmission rate or the traffic composition.

This task separation enables the abstraction of the generation for the software. The
driver can consider the different interfaces as a unique global link or as separated links.
This change is done only with software configuration. For instance, if the four inter-
faces on Figure 3.8 are considered 10 Gbps interfaces, it is possible to have one 40
Gbps link, four 10 Gbps interfaces or any set division between the two.

Although it is not considered, traffic could be concurrently monitored to have a
context-aware packet generator. The main usage of this generator is the saturation of a
link with controlled packets for edge cases.

3.4.2.3 Generation engine

Figure 3.9 describes operations inside the generation engine. A generation engine is
composed of three parts: a configuration part, a memory part and a generation part.
While implemented on the NetFPGA SUME board, the design is fully generic and can
be adapted according to the needs.

Memory A memory block is the combination of a control memory and a chunk
memory. The chunk memory contains the bytes of packets to transmit. The transmis-
sion on a fixed datapath on the FPGA requires the separation of packets into successive
data chunks. This division is already saved in the memory, each line corresponding to
the chunk of one packet.

The control memory contains information useful for the packet stream generation:

• The address of the first chunk of a packet inside chunk memory.

39

packet1 packet 2

preamble IPG preamble IPG preamble IPG

packet gap

packet 3

Figure 3.10 – Gaps between consecutive packets on a link when not full

• The length of a packet to know the number of chunks to use.

• The interpacket delay with the next packet of the stream.

With an interpacket delay adapted to the length of packets, it is possible to approximate
a target throughput. This will be demonstrated in the next section.

The memory block is composed of two distinct memories. A memory is filled with
a new configuration while the other is used for generation with the current configu-
ration. At the end of configuration, the two memories are switched. This ping-pong
solution allows the non-stop generation of traffic on the link.

Configuration The configuration block receives packet descriptors from the soft-
ware. Information is separated between control information of a packet and the packet
itself. The unused memory block is selected and configuration data are dispatched to
control and chunk memories.

Generation The generation block uses the configuration to generate the successive
packets on the link. After reading control information, chunks of the packet are read
until the size is reached. These are transferred to the link, one at each clock cycle.
When a packet is completely sent, the delay module blocks the transmission of the
following packet during the configured interpacket gap time. It allows to observe the
packet throughput set by the software.

3.4.2.4 Software architecture

Software integration At a software level, a driver handles the configuration of the
hardware architecture. Applications have the possibility to use an API to control the
generator. A list of packets is sent to the driver alongside a targeted link throughput
for a specified interface. The driver handles the translation of the packet list into a
descriptor list, and sends this configuration to the generator. It is currently possible
to generate traffic directly with C++ and Python programs, allowing an easy access to
network engineers.

Throughput and interpacket delay When the targeted throughput is smaller than
the maximum throughput, the link is not filled with packets. A gap is created between
two packets in addition to the common InterPacket Gap (IPG). Figure 3.10 demon-
strates such a gap between packets 2 and 3.

A mean interpacket gap can be calculated corresponding to the gap if all the packets
are uniformly distributed on the link. It can be considered as if wider packets were

40

transmitted on the link, leading to the packet throughput expressed in Equation 3.3.
The mean interpacket gap in bytes is calculated in Equation 3.4.

Tpacket/link =
Treduced_link

(mean_size+ 20) ∗ 8
,

=
Tfull_link

(mean_size+ 20 +mean_interpkt_gap) ∗ 8
,

(3.3)

mean_interpkt_gap = (mean_size+ 20) ∗ (Treduced_link

Tfull_link
− 1), (3.4)

mean_gap_cycles =
Freqdatapath
Tpacket/link

− ceil((mean_size− 4) ∗ 8
datapath_width

) (3.5)

To achieve the same throughput as on the link, this interpacket gap must be applied
to the transmission of packets on the FPGA. The only way is the insertion of gap cycles
between the transmission of two consecutive packets. From the mean interpacket gap,
it is possible to compute the mean number of cycles to leave between two packets, as
seen in Equation 3.5. This value is always greater than or equal to zero with a datapath
frequency sustaining the worst case scenario.

Packet descriptor creation In addition to the packet, a packet descriptor contains
the packet size and the interpacket delay, the number of cycles to let blank after the
transmission of the associated packet. Therefore, this interpacket delay is an integer.
During the creation of the list of descriptors, the driver sets the interpacket delay of
each packet to estimate the mean number of gap cycles corresponding to the targeted
throughput.

The mean number of gap cycles can be approximated in two ways. When the
approximation is constantly over the targeted value, the resulting throughput is always
under the targeted throughput, it is the maximal throughput wanted on the link. When
the approximation is constantly under the targeted value, the resulting throughput is
always over the targeted throughput, it is the minimal throughput wanted on the link.
Moreover, the longer the packet stream is, the better the approximation of the value is.
If the memory depth allows it, the packet stream is duplicated to create a longer stream
with the same packet composition.

With this approach, it is possible to create a packet stream composed of multi-
ple flows. By controlling the weight ratio of each flow inside the packet stream, it
is possible to control the throughput of each flow in relation to the total throughput.
The generation process currently handles only uniformly distributed traffic. With easy
software improvements, it would be possible to have a complex distribution interpacket
delays inside the stream like Poisson distribution.

3.4.3 Strengths and limitations of the traffic generator
3.4.3.1 Implementation results

This generator is able to send continuously evolving traffic. Packet streams definition
in software ensures a full control on sent packets, and configuration can be modi-
fied dynamically, which provides interesting flexibility. The hardware part ensures the

41

Number
LUTs (%) FFs (%) BRAM (%) Slices (%) LUT/FF pairs (%)

of chunks
512 8.68 6.04 12.52 14.77 4.42

1024 8.69 6.04 16.60 14.95 4.43
2048 8.69 6.07 24.76 15.17 4.44
4096 8.70 6.11 45.44 15.64 4.44
8192 8.72 6.19 83.81 17.67 4.40

Table 3.3 – 4*40 Gbps packet generator implementations for different maximum sizes
of packet streams on XC7VX690T FPGA

configured data rate on the link, allowing link saturation which is otherwise difficult
to check. The software API allows to drive the generator from common networking
programs.

The performance of the generator is tied to the performance of the hardware de-
sign performance. The resource consumption on the chip is the limiting factor for
performance as well as scalability. Table 3.3 displays the resource consumption for
different maximum numbers of 256-bit chunks in the packet streams. All the designs
have a successful implementation for four interfaces at a clock of 180 MHz, allowing
40 Gbps per interface. Unfortunately, the NetFPGA SUME test board is only equipped
with four 10 Gbps interfaces. Results in the table contains a flat resource consump-
tion corresponding in particular to the glue logic of the different network and PCIe
interfaces.

Two main observations can be extracted from Table 3.3. This simple generator is
using few logic elements, even when the packet stream length increases. The generator
will be easily scalable for upgraded interfaces. However, the memory consumption
heavily increases with the number of chunks. The limited number of Block RAMs
(BRAMs) available on FPGAs is the limiting factor for the creation of longer and
more diverse packet streams.

3.4.3.2 Generator adaptation and perspectives

This simple traffic generator is an adapted solution for the creation of load traffic for
the test of networking devices. It answers the requirements of multiple criteria:

• high-throughput traffic,

• live variation of traffic composition,

• control on the exact succession of packets on a link,

• an easy traffic generation from software,

• scripted generation thanks to the software API allowing the reproduction of tests.

This solution is used for the test-beds presented in chapter 5. As for all the test mate-
rials, it is available under an open-source license.

Multiple minor improvements have not been added to the proposed architecture
because of time shortage.

42

• Packet reuse in memory for different places in the packet stream would allow
a more efficient usage of the memory, enabling the generation of longer packet
streams.

• Changing only one packet in the stream during the generation would remove the
necessity to use two alternate memories. In addition, the modification of few
packets would not trigger the reconfiguration of a full packet stream which can
be time-consuming.

• The development of a management Graphical User Interface (GUI) would create
a fully functional standalone generator for a better software integration.

An easy improvement of the architecture is the increase of the diversity of replayed
packets. With increased memory, it is possible to have longer packet streams. How-
ever, this solution is not advisable as, for large packet streams, the transmission time
from the host to the FPGA limits the flexibility and the reactivity, as seen for OSNT
generator [Ant]. The low logic requirements of this design offers the possibility to
transform memory into logic by the direct generation of packets on the FPGA. It would
then be possible to reduce the amount of data transferred between the host and the
FPGA. Thus, large packet streams would be possible.

3.4.3.3 Task separation validation

This solution validates the approach using smart NICs for more than just specialized
reconfigurable accelerators. With a right task partition, the interaction between soft-
ware and hardware makes the flexible generation of packets at high-speed link rate
possible.

The hardware architecture is dedicated to high-speed packet generation, but it is
designed with runtime configuration capabilities. Interactions with the user applica-
tion, inducing complex decision and generation modification, are made in software for
more flexibility. Modifications are translated in a new set of configuration parameters
for the hardware part.

The key element for a working collaboration is the reduction of the amount of data
transferred between the host and the FPGA chip compared to a solution in commodity
hardware. The transmission of minimal information between the host and the FPGA
avoids the overload of the software.

3.5 Hardware/Software feedback enabled probe

3.5.1 Packet processing steps
Monitoring applications use information extracted from packets, mainly packet head-
ers, to determine the status of the network. CPU-based platforms usually used by
network engineers are designed for general usage and reuse possibility. Therefore,
mutual processing steps have been standardized for software packet processing. This
allows resources optimization and avoids the new development of an existing task.
Despite Linux stacks improvements, such steps are still present, as seen in section 2.3.
Figure 3.11 illustrates these steps with the example of a packet processing architecture.

43

packet

NIC RX

packet

Packet
parsing

Application_1Classification
enginepacket NIC TX

filter processing

Application_n

results
aggregation

Decision

results

packet

aggregate

packet
filter processing

packet

Software

10 Gbps

Figure 3.11 – Example of packet processing on a software architecture

3.5.1.1 Packet parsing

Packet parsing is a mandatory step for every packet processing. Packets are decapsu-
lated and interpreted by the software. A data structure is filled with all the information
about the packet. This common task is done by the network stack of the OS.

All data of interest are extracted from headers, like specific fields or selected bytes.
A packet is ready to be processed by any networking application. Each packet is then
distributed to monitoring programs running on the platform.

3.5.1.2 Packet selection

Networking applications are most of the time working on a subset of packets. Indeed,
monitoring protects a service or a group of services. Thus, an application is inter-
ested only in packets related to these services. For example, an application processing
Domain Name Service (DNS) traffic is not interested by Internet Control Message
Protocol (ICMP) traffic.

Software applications have the possibility to define filtering rules in order to select
only the traffic of interest. Multiple filtering frameworks, like Berkeley Packet Filter
(BPF) [MJ93] or netfilter [Net], exist to create the adapted rule set. Rules are compiled
and processed by the network stack in order to distribute packets to the corresponding
applications.

3.5.1.3 Monitoring applications

Monitoring applications execute the end-user processing. Two types of applications
are used in networking:

• Applications working directly on the content of packets. For instance, DPI ap-
plications require to go all over the packet payload.

• Applications creating statistics on incoming packets and working on these statis-
tics. For instance, some classification applications use mean values on a flow of
packets to determine the nature of this flow.

Results of applications processing have variable usage. Monitoring applications
have different purposes from data collector for a global SDN controller to a local fire-
wall. The results are used according to the purpose of the application, either sent to

44

packet

Packet
parsing

PE 1

packet

filter aggregation

PE n

results
Decision

packet

filter

FPGA

40/100/
400 Gbps

packet

features

features

Software host

App 1Classification
engine

filter processing

App n

packet
filter processing

packet

packet

FIFO

aggregate

Processing elements

results

Figure 3.12 – Example of a mixed probe architecture

a master controller (or logged on the machine),or used to execute commands on in-
coming packets. In Figure 3.11, applications results are used to take a decision on the
continuity of the packet on the link.

3.5.2 Accelerated architecture
As shown in section 2.3, the full software architecture has limited packet processing
power and is not scalable. Packet throughputs for links over 10 Gbps are too high to
be processed only by software engines. The key to increased processing power is to
offload packet intensive processing to more specialized architectures.

Figure 3.12 displays a common accelerated architecture on a smart NIC corre-
sponding to the software packet processing of Figure 3.11. Front end traffic is handled
by FPGA processing in order to reduce the data bandwidth sent to the software. The
CPU then works only on data of interest extracted from the main traffic and corre-
sponding to the needs of applications. Main elements on the packet path have been
moved to the FPGA to free CPU processing for software applications. While global
processing steps architecture are still present, these steps have received several modi-
fications.

3.5.2.1 Common smart NIC hardware architecture

Packet parsing Hardware implementation of this block ensures that all packets can
be processed, even when working with high data rates. Instead of creating a full mem-
ory structure to assign the packet features, the packet parser directly extracts the fea-

45

tures of interest for the following applications. The classical network 5-tuple, IP ad-
dresses, TCP/User Datagram Protocol (UDP) port and protocol, is commonly used,
however the parser is not limited to these usual elements. These extracted features are
then transferred to the corresponding processing elements.

Processing elements Processing elements execute filtering and accelerated process-
ing adapted to the different monitoring applications. Implementations are specialized
for the task.

3.5.2.2 Software architecture

The migration of some computing from the software to the hardware reduces the com-
plexity of the software architecture. This improvement has two major impacts.

• Packets are filtered at the smart NIC level. The traffic reduction lowers the com-
munication bandwidth required between the FPGA and the CPU in a controlled
way.

• The removal of packet intensive processing reduces the load on the CPU. As a
consequence, software applications have the possibility to use a maximum CPU
workload to realize complex monitoring adapted to the incoming traffic.

Offloaded applications must be chosen with care. While the core processing is
required to be offloaded to the FPGA for performance, some applications do not take
advantage of FPGA parallelization or intensively use scarce resource impacting the
overall performance. The high flexibility offered by the software part is also useful for
networking systems with many updates.

3.5.2.3 Flexible packet processing

The approach used for the presented probe is the common approach used for FPGA
platforms. It does not take advantage of the close relation between the smart NIC and
the commodity hardware, but it simply uses the FPGA as a static acceleration device
with a reconfiguration capability. Despite the flexibility of high level applications, the
specialization of generated designs limits the flexibility because of the implementation
and reconfiguration times.

A main issue of traffic monitoring is the lack of knowledge about the received
packets. Unlike the packet generator presented in the previous section, the traffic com-
position is not known at design generation time. Applications must be able to adapt
the extracted pieces of information in reaction to the incoming traffic.

A novel solution is the consideration of the smart NIC as a dynamic accelerator,
configurable at runtime. Figure 3.13 shows modifications brought to the architecture
in order to create a reactive design. The adaptation of the probe is done through an
advanced collaboration between hardware and software. An innovative paradigm is
the consideration of feedback loop mechanism for packet processing. The results ob-
tained with software processing can be used to instantly refined the configuration of the
hardware probe. Using this paradigm requires a compatible processing partition. The
high configuration importance is different depending on the position on the processing
datapath.

46

packet

Flexible
packet
parsing

PE 1

packet

filter aggregation

PE n

results
Decision

packet

filter

FPGA

40/100/
400 Gbps

packet

features

features

Software host

App 1Classification
engine

filter processing

App n

packet
filter processing

packet

packet

FIFO

aggregate

Processing elements

results

Configuration
driver

software configuration

configuration
parameters

Figure 3.13 – Example of a reactive mixed probe architecture

Packet parsing The packet parser is the front-end of packet processing on the packet
path. Hence, stopping the packet parser for reconfiguration removes the distribution of
vital information for the following processing elements.

Having a configurable packet parser with a static architecture is the key to follow
the dynamic evolution of the traffic. With configuration parameters, packets parsed are
set at runtime. Thus, this packet parser can be adapted to the situation enabling agile
processing.

Processing elements The flexibility required by this solution aims at promoting the
partition of applications with a configurable part on hardware. However, some applica-
tions are very specific. As all the processing elements are able to compute packets con-
currently, the modification of one element does not impact the operating capabilities
of another one. Therefore, partial reconfiguration can be considered. Moreover, this
approach fits the upgrade of a software application, which is shut down and restarted,
with the reconfiguration of the hardware part when the software is upgraded.

On the contrary, when processing elements are critical for the correct behavior of
multiple software applications, they must be configurable at runtime, in order to avoid
any unwanted processing interruption. An example would be a hardware classification
and filtering engine shared between all applications. A dynamic packet filter allows
applications to select incoming packets at runtime. Thus, the processor can apply
dynamic complex packet extraction without sub-sampling or being overloaded.

47

packet

Flexible
packet
parsing

PE 1

packet

filter aggregation

PE n

results
Decision

packet

filter

FPGA 1

40/100/
400 Gbps

packet

features

features

Software host

App 1Classification
engine

filter processing

App n

packet
filter processing

packet

packet

FIFO

aggregate

Processing elements

results

Configuration
driver

software configuration

configuration
parameters

FPGA 2

FPGA n

Figure 3.14 – Example of a probe with a software part and multiple smart NICs

3.5.2.4 Opened perspectives

With the feedback loop, the proposed paradigm offers dynamic adaptation of moni-
toring applications with a full control while keeping the packet processing at line rate.
Nonetheless, this solution is compatible with the common usage of specialized designs.

With the right partition and accelerated applications, the software part would be
greatly offloaded. With such a performance gain, it is possible to consider that a
software element is capable of controlling multiple smart NICs at the same time, as
illustrated in Figure 3.14. The resulting probe would have an increased link capacity
tending towards hundreds of Gigabits with current smart NICs, and even beyond Ter-
abit. One control software element would allow an extremely fast coordination of the
processing on the different smart NICs.

3.6 Conclusion
Combined with commodity hardware, smart NICs improve the processing performance
by at least an order of magnitude. Processing power of FPGA, which is closer to the
network interfaces than the CPU, offers high performance for the offloaded processing
while reducing at the same time the quantity of traffic transferred to the host.

48

However, current solutions do not take advantage of the proximity of the smart NIC
and the CPU. FPGAs are only used as highly specialized accelerators. The flexibility is
limited by a long generation time and the processing interruption during the reconfigu-
ration time. In this chapter, the approach considered for this thesis was presented. It is
based on the partition of an application between hardware and software for a combined
processing. Advantages from both domain can be used to achieve line rate processing
with high flexibility.

This approach was illustrated with a traffic generation application. The feed for-
ward paradigm used in the design allows the dynamic modification of replayed packet
streams. Thanks to the transmission of configuration parameters, the software part is
able to control the replayed packets sent at line rate by the static hardware architecture.
With streams modification possibility during generation, this generator is able to use
all the capabilities of software packet manipulation to create user-defined reproducible
load traffic ideal to test flexible networking equipment. It can be concluded that pro-
cessing on packet path and decision actions must be separated for a high performance
and flexible networking device.

However, this paradigm is not sufficient for all networking applications. In the case
of monitoring applications, the received traffic is not known in advance. Packet pro-
cessing must be adapted in reaction to the traffic composition at one time. A feedback
loop must be created between the hardware and the software. Application partition
between hardware and software must consider the decomposition of the packet pro-
cessing steps. An appropriate combined usage of FPGA and CPU is the key to create
a monitoring probe capable of adapting its processing to the received packets. The
study of this approach has led to two publications [CJ+17c] [CJ+17a]. In the next
chapter, I will investigate the application of this concept to a critical function in packet
processing: packet parsing.

49

50

Chapter 4

A novel flexible packet parser
architecture for live monitoring

4.1 Introduction
Smart NICs offer reconfigurable devices capable of offloading packet processing oper-
ations from the CPU sustaining high data rates. The closer location of these devices to
the network interfaces when compared to the CPU allows the reduction of data trans-
mitted between the CPU and the data link. However, a modification of the common
development paradigm is necessary to extend the flexibility and the reaction time of
commodity hardware. Instead of having custom-made designs for a specific problem,
static and flexible elements are required on the packet datapath to ensure continuous
processing of incoming packets.

The packet processing procedure can be decomposed into multiple steps. Packet
parsing is the front-end operation executing the decomposition of the packet and the
extraction of features of interest from the packet. These features are used to filter the
packet if needed, and then transferred to the following processing applications. Instead
of being repeated by every processing element, the critical step of packet parsing can
be executed one time before all the applications. For the realization of a flexible probe,
the packet parser must be able to dynamically extract the features and distribute them
among the processing elements. It influences the performance of the whole packet
processing design.

This chapter is focused on the design of a hardware architecture for dynamic packet
parsing. This architecture is compliant with the paradigm defined in the previous chap-
ter. The resulting design is completely static and ensures packet processing at line rate
of high-speed links. Parameters allow the configuration of the processed headers and
extracted features. The modification of the packet types processed is done at runtime
by an operator on the software host.

For a totally dynamic probe, extracted features from packet headers must be dy-
namically distributed to the processing elements. A feature must be delivered to one or
multiple processing elements on demand from end-users applications. As datapaths on
FPGAs are fixed once the chip is configured, a straightforward solution is the extrac-
tion of one feature for each processing input. This oversized packet parser is then able
to duplicate the extraction of a specific feature for multiple processing elements. But,

51

extraction duplication is a costly process in terms of resource consumption limiting the
total number of possible features to extract. A better solution is investigated to offer a
good compromise between space occupation and flexibility.

The latter section of this chapter studies optimized data distribution through the us-
age of interconnection network. After formulating the requirements of such a network
for the proposed solution, a simple interconnection network is proposed. Perspectives
are given with the study of Clos networks for a more efficient interconnection.

4.2 High performance and flexible packet parsing

4.2.1 Packet parsing challenge
Packet parsing is the first step responsible for detecting and extracting required features
in a packet, often in protocol headers. A packet parser supplies inputs from packets to
next operations in the processing chain.

Although headers to process are known, incoming packet composition is not. Net-
work packet construction flexibility allows to create as many different packets as needed.
Therefore, a high performance flexible parser must face multiple challenges [Gib+13].

Line-rate throughput Incoming packets must be processed at link speed. The front-
end location of a packet parser is critical for accurate processing. Hardware implemen-
tation has to ensure features are produced without packet loss.

Headers sequential dependency A network packet is sequentially built. Informa-
tion identifying a header is contained in the previous header, corresponding to the pro-
tocol layer directly under this protocol. The decapsulation task is inevitably sequential,
processing one header after an other.

Protocols and headers heterogeneity With the openness of packet construction, nu-
merous communication protocols co-exist on the same layer level. In addition, more
recent encapsulations are more complex than the standard OSI model. The packet
parser must be able to process header formats for different protocols found at different
places in the packet.

Header format programmability Common network applications use a fixed parser
extracting a constant feature set. These features are source and destination IP ad-
dresses, source and destination UDP or TCP ports, and the transport protocol. Despite
rich information, this 5-tuple limits the network analysis to track these flows. However,
networking algorithms could need complementary protocol information on packets.
Layer 7 protocol header fields bring additional information on the final application.

Moreover, monitored protocols format is subject to change. Some network oper-
ators create their own custom protocol to allow maintenance or identification traffic.
New usage leads to the creation of new protocols.

For these reasons, formats used by the packet parser have to be generic. Configura-
tion of the decapsulation is primordial to have flexible and reactive packet processing.

52

Feature distribution to processing elements The packet parser must assign the
right feature sets to the right processing elements. Feature sets are considered com-
pletely independent. One feature may be in multiple sets.

4.2.2 Existing parsers limitations
The evolution of network traffic places packet parsers at the center of networking de-
vices. A few solutions tried to solve the high performance generic packet parsing
problem.

Pus et al. [PKK14] presented a pipelined design for packet parsing. This architec-
ture extracts fixed features from a fixed headers set at a throughput of 100 Gbps. It is
the basis for an automatic high level parser generation tool [BPK16]. The presented
P4-to-VHDL parser generator uses a P4 description to create an HDL packet parser
design. The resulting architecture is parsing packets, as the original, at 100 Gbps after
synthesis.

The successive development of packet parsing languages for software assisted de-
velopment, such as G [Bre09], PP [AB11] and PX [BJ14] has led to the development
of the parser for the full SDNet product [Xila]. The packet parsing [AB11] pipeline is
able to process traffic beyond 100 Gbps. Parsing cores can be reconfigured with partial
reconfiguration to modify possible packet features extracted at a processing stage.

Bitar et al. [BAB15] proposed a NoC-Enhanced FPGA packet parser. A NoC hosts
a header parser on each node and can reconfigure routes between parsers. Based on
synthesis results, they extrapolate a design working at 400 Gbps with 512-byte packets.
Although the ultimate purpose is to hold dynamic parser configuration with a partial
reconfiguration of router nodes, this architecture is not developed. The high parallelism
of the NoC is an interesting idea for packet distribution to the different processing
elements.

Despite good performance, these two solutions fail to answer multiple require-
ments:

• full or partial FPGA reconfiguration is necessary,

• features sent to the processing elements are not dynamically selected.

4.2.3 Feature extraction requirements
Presented parser architectures are focused on the specialization of parser engines on a
set of known protocols. The flexibility is left to the reconfiguration possibility of the
FPGA. However, packet structure is designed to be reversible in a standardized way
for the decapsulation by any networking device.

The decapsulation of a packet relies on the knowledge that, for each layer, the
protocol header contains two pieces of information:

• its current length or fixed length,

• the identification of the type of the next header, called the Service Access Point
(SAP).

53

UDPIPv4 PayloadEthernet
S

A
P
:

0
x
0

8
0

0

S
A

P
:

0
x
1

1

Le
n
g

th
:

2
0

B
Figure 4.1 – Packet decapsulation process

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Destination MAC Address

Source MAC Address

Ethertype

(a) Ethernet

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version
Header
Length Service Type Total Length

Identification Flags Fragment Offset

Time to Live Protocol Checksum

Source Address

Destination Address

Options + padding

(b) IPv4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source port Destination port

Total length Checksum

(c) UDP

Figure 4.2 – Header specifications for different protocols

Figure 4.1 illustrates the decapsulation to obtain the UDP header inside a packet. Find-
ing a specific header requires to process all the previous headers.

Interpretation of the succession of raw bytes inside each header is done according
to the header specification of the protocol. Figure 4.2 shows header specifications for
Ethernet (4.2a), IPv4 (4.2b) and UDP (4.2c) protocols. A header feature, one field
or aggregate of multiple successive fields, begins and ends at fixed offset from the
beginning of the header. For instance, the UDP destination field is located between
bits of and an offset of the previously found UDP header, for a size of 16 bits.

In conclusion, a parser must execute two actions to extract a specific feature from
a packet:

• the target header must be located,

• the feature must be extracted from the corresponding header with the definition
of its lower and upper offsets.

54

UDPIPv4 PayloadEthernet
S

A
P
:

0
x
0

8
0

0

S
A

P
:

0
x
1

1

Le
n
g
th

:
2

0
B

0 255112

chunk 1 chunk 2

0 16 80 255

Figure 4.3 – Packet chunks example for a UDP 64-byte packet on a 256-bit datapath
width

4.3 Packet parser architecture

4.3.1 Global architecture
4.3.1.1 Chunk processing

Previous example in Figure 4.1 shows the processing of a packet for a continuous
stream of bytes. The transmission of a packet in chunks on the FPGA datapath make
the packet not continuous. Figure 4.3 displays the decomposition in two chunks of the
previous 64-byte Ethernet packet on a 256-bit wide datapath. It can be observed that
the IPv4 header is broken in two parts, one in each chunk. Moreover, inside the IPv4
header, the IP destination address field is cut in half between the two chunks.

With variable lengths, packet headers have the possibility to span on multiple
chunks. While this is also valid for features, header fields of interest are limited in
length. For instance, common used longer fields are IPv4 and IPv6 addresses, which
are 32 bits and 128 bits. Thus, it is safe to assume that a feature will not be on more
than two consecutive chunks. In any case, extraction of wider fields can be executed
with the extraction of multiple consecutive smaller fields.

Extraction actions must be adapted to FPGA constraints. Translated requirements
are:

• headers may be located in every chunks,

• a feature is extracted from a header with offsets definition,

• a feature is limited in size and is contained by at most two consecutive chunks.

4.3.1.2 Processing steps

From previous requirements definition, it is possible to consider the feature extraction
as a 2-step operation. Figure 4.4 illustrates this operation. The header parser handles
the location of the different headers inside the chunks of incoming packets. The feature
selector extracts the features from the packet chunks based on headers location. Both
parts are working on configuration parameters sent from the software host.

This separation is crucial for a generic and flexible design. Indeed, headers are
composed of a different number of fields. The number of features to extract for each

55

packet data Feature
selection

feature m

feature 1
Header
parsing

header data 1

packet data

header data n

header
configuration

configuration
parameters

feature
configuration

packet data

Figure 4.4 – Packet parser global architecture

protocol is not known a priori. The number of features allocated to each protocol can
be adapted according to the needs with a global pool of extracted features.

This allows to share a global pool of extracted features. The number allocated to
each protocol can be configured and adapted to the needs.

Moreover, feature results are outputted at the same time, synchronized on the end
of the packet. The working data path is detached from the chunk transmission datapath.
It is equivalent for the following processing units to work at packet arrival rate, so at a
lower frequency than line frequency. For instance, the packet parser is able to process
at maximum 60 Mpps of 64-byte packets with a clock frequency of 180 MHz and a
datapath of 256 bits. Therefore, a clock frequency of at most 60 MHz is necessary for
the following processing.

4.3.2 Header parsing
4.3.2.1 Architecture

Due to data encapsulation in network packets, protocol headers need to be processed
in encapsulation order. It is therefore not possible to concurrently handle all headers
of the packet. To achieve high processing throughputs, the sequential processing of
consecutive headers must be pipelined. Figure 4.5 shows the pipelined architecture.
Each stage takes care of one layer of encapsulation.

One header parsing stage identifies the protocol location of the associated layer in
chunks and determines the following header type if possible. On the FPGA, the type
of protocol corresponds to the unique identifier of a protocol during the packet parsing
process. The next header type and the current offset in the packet are transmitted to
the header parser stage to continue the decapsulation process. In this way, the different
protocols are unstacked from the packet.

A synchronization block delays header information of each stage waiting for the
rest of header processing. As a consequence, all header data are concurrently trans-
ferred for feature selection at the same time as the corresponding packet chunks.

56

packet data

header
configuration Header parsing

 pipeline

Header
parsing

Header
parsing

Header
parsing

packet datapacket data

Header data synchronization

header
data

header
data

header
data

header data n

header type

header offset

header data 2

header data 1

Figure 4.5 – Header parser pipeline

next header type

next header offset

packet data

Descriptor
reading

header type

header offset

packet data

Descriptor
memory

Protocol
mapping
memory

Protocol
field

extraction

Length
field

extraction

length

protocol
protocol

descriptor

length
descriptor

header
type

header
min

index

header
max
index

Next protocol
search

Header
location

header
configuration

Figure 4.6 – Packet parser header parsing

57

4.3.2.2 Header parsing module

This generic module decapsulates one header of the packet. If the current header type
has no associated configuration, packet header processing is finished. Figure 4.6 sum-
marizes the header parser module. Configuration is held in two Content-Addressable
Memories (CAMs). The first memory contains a protocol descriptor used to process
the current header. The second memory contains the translation to get the next protocol
from the extracted value inside the current header.

The first step in the module is to fetch the descriptor corresponding to the type
given by the previous block. This descriptor is composed of configuration parameters
for the selection of the current protocol header:

• length field low and high offsets,

• protocol field low and high offsets.

The search key in the memory is the identifier of the header. Length and protocol are
extracted from the current header with their offsets as shown later in subsection 4.3.3.2.
Special combinations of offset values allow determining if the header has a fixed length
or is the last protocol in the packet.

Length and protocol extracted values are then used to process the current header.
The location of the header is found by computing the min and max indexes in each
packet data chunk. The protocol field value is combined with the current protocol id in
order to find the next header protocol id. This protocol is processed by the next block
in the pipeline.

The global processing pipeline is configured to input one chunk per cycle in order
to target the link throughput. The header parser block must be fully pipelined to sustain
the chunk rate. While it is not shown for clarity, used data and outputs are registered
to be synchronized on chunks of the datapath. An other advantage of the pipelined
processing is a controlled and constant latency. One header parser takes eight clock
cycles to process incoming chunks.

Referring to the example in Figure 4.1, configuration parameters values stored in
the second stage header parser to decapsulate IPv4 header and get the UDP header are:

• IPv4 length field low offset : 4 bits

• IPv4 length field high offset : 8 bits

• IPv4 protocol field low offset : 72 bits

• IPv4 protocol field high offset : 80 bits

• UDP protocol field value : 6

4.3.2.3 Parse graph dimensions

A common way to represent the header sequence inside a packet is to use a parse graph.
The parse graph associated with a device describes all the packets that can be recog-
nized by this device. As the design does not changed once configured on the FPGA,
the number of different parse graphs which can be mapped on the running design is
limited by parameters of the architecture set at generation time. These parameters are:

58

Ethernet VLAN VLAN

IPv4 IPv6

TCP UDP ICMP

Figure 4.7 – Example parse graph

• the number of consecutive header parser modules inside the pipeline,

• the size of the descriptor memory of a header parser module,

• the size of the mapping memory of a header parser module.

Figure 4.7 displays a parse graph presented in [Gib+13]. Figure 4.8 is an equivalent
staged representation of the parse graph more adapted to the architecture. Protocol
headers have been duplicated when necessary. Each stage of the graph corresponds to
headers that must be processed at the same stage of the header parsing pipeline. The
first stage has always Ethernet as a unique protocol because it is linked to the physical
layer.

From this representation, it is easy to deduce the impact of the generation param-
eters. The number of parser modules defines the depth of a path from the root, so the
number of possible encapsulated headers. The size of the descriptor memory defines
the number of different protocols that can be processed at a given distance from the
root, so the number of possible headers at a given layer of the packet. The size of the
mapping memory defines the total number of possible transitions between two stages.

4.3.3 Feature selection
4.3.3.1 Architecture

After header parsing, the sequential dependency between headers is removed. Informa-
tion on every processed header is sufficient to locate the associated header. Moreover,
header fields are not dependent on information inside packets, but can be determined
with fixed offsets from header beginning. It is then possible to process all features in
parallel. Parallel feature processing minimizes the overall latency overhead.

Figure 4.9 describes the parallel feature extraction architecture. Features from the
same header use offsets from the same part of the packet. Thus, using the same block
to extract all these features reduces the FPGA resource consumption by sharing similar
resources. The number of features extracted by each selector must be set with attention
to avoid overhead. This parameter is configurable at generation time, as well as fea-
tures maximal width. For instance, IPv6 addresses are the biggest features to extract
with 128 bits. It is four features of 32 bits. Most protocols have at least four fields of
interest, so it is a good compromise.

59

Ethernet VLAN

IPv4

IPv6

VLAN

IPv4

IPv6

TCP

UDP

ICMP

IPv4

IPv6

TCP

UDP

ICMP

TCP

UDP

ICMP

Figure 4.8 – Transformed parse graph

feature
configuration

Feature
selection

packet data feature 1

feature kxp

feature p

header data 1

header data n

Feature
selection

feature (k-1)xp+1

packet data

Figure 4.9 – Feature selection architecture

60

packet data

Type
validation

header types

header min indices

header max indices

header min index

header max index

Feature
location

Feature
location

Type
reg

Feature offsets
memory

feature
configuration

min index

max index

Feature
extraction

Feature
extraction

feature extracted

feature validity

feature extracted

feature validity
min index

max index

Figure 4.10 – Feature selection

Ethernet IPv4

0 255112

src address

Ethernet

chunk

extended chunk

Indices
computation

0 64
min index

max index

mask

part index

feature
&

packet data

Chunk processing

0 25516

IPv4

144

0 64

0 64

Figure 4.11 – Extraction of IPv4 source address from 256-bit chunk

4.3.3.2 Selection component

The selection module extracts header fields according to their definition in the protocol
header specification. One selector is able to extract several features from a header. Fig-
ure 4.10 presents the different steps leading to features extraction. This block relies on
two configuration parameters set dynamically in memory. The header type determines
which protocol header is processed by the block. Minimum and maximum offsets of
features are used to locate features inside the header.

The first step is the selection of proper header information. All header location
data are received from the header parser. The configured type is used to get header
data corresponding to the wanted protocol. In this way, a selector can process the same
header located at different layer level in packets.

Header location indices are then combined with feature offsets to compute the loca-
tion indices of the associated feature. As some features are not aligned on byte values,
the extraction of features requires a bit precision. Figure 4.11 summarizes the feature
extraction procedure on the IPv4 source address field for 256-bit packet chunks and a
feature max width of 64 bits.

To correctly align data on receiving feature register, the big-endian byte ordering
of network data is transformed in little-endian ordering inside each chunk. Then, an
extended chunk is created to provide all the possible feature alignments. Calculated

61

Ethernet IPv4

chunk 1 chunk 2

0 112 255 0 16 255176

UDP Payload

0 64

feature

Figure 4.12 – Multi-chunk extraction of IPv4 destination address from 256-bit chunks

indices are used to select data with the right alignment and a mask of the size of the
feature to extract. The extracted feature is finally obtained by making a bitwise AND
between data extracted from the chunk and the mask.

A limit case is when a feature is spread over two chunks. It must be extracted in
two times from the two consecutive chunks. Endianness of network data implies that
the first part contains the most significant bits. When all the parts of the feature are
processed, the feature is considered extracted. Figure 4.12 demonstrates this process
with the IPv4 destination address field. All the extracted features are sent at the same
time as the packet last chunk. If a feature is not completely extracted, it is considered
as not valid.

For example, to get UDP source destination port field, the begin offset, 16 bits, and
the end offset, 31 bits, of the field are needed. Referring to the example in Figure 4.1,
configuration parameters values stored to get the UDP destination port field are:

• protocol type associated to UDP protocol, for instance 3,

• low offset from the beginning of UDP header : 16 bits,

• high offset from the beginning of UDP header : 31 bits.

As for the header parsers, processing is fully pipelined in order to sustain the
throughput. The latency of a single feature selector is 6 clock cycles.

4.3.4 Architecture results
4.3.4.1 Flexible and reactive architecture

The full processing architecture is based on abstract parameters. As long as these
configuration parameters are properly set, the packet parser is able to decapsulate any
protocol header based on length and protocol fields. Any feature at a fixed offset from
the header head can be extracted.

As parameter values are stored in memory, they can be defined from outside the
design, and even software without any consequence for the running processing. With
a well-designed API, it is possible to translate end-user specifications to configuration
parameters for the architecture. This runtime modification of parameters gives the
packet parser high flexibility and reactivity.

62

Unlike cutting edge parsing solutions, this architecture is configurable at runtime
without stopping probe processing, thanks to simple one-cycle read and write opera-
tions in integrated SRAM memory. Since supported data rate is only determined by
data width and clock frequency on the FPGA, the flexible packet parser can be pro-
grammed to support high data rates alongside being highly flexible.

4.3.4.2 Packet parser dimensions

The design is able to dynamically process incoming packets, but size parameters of the
hardware architecture must be set at design time. These parameters have influence on
the capabilities of the design:

• the encapsulation depths of headers inside packets,

• the number of protocols processed at each stage,

• the number of possible features to extract.

Increasing these parameters to process a wider diversity of packets increases the size
of the design. Moreover, a design without protocol specialization brings flexibility
but could lead to resources over-utilization. For complex traffic, this drawback can be
mitigated thanks to the possibility to share resources between protocols.

Hardware resources are not infinite on an FPGA. As a front-end processing ele-
ment, it is interesting to study the impact of the packet parser on resource consump-
tion. Spare resources are important to have the possibility to set processing elements
on the FPGA. Finding a good compromise for design sizing is crucial to ensure pro-
cessing a maximum of packets at hardware level. Specific packets with unanticipated
composition must be transferred to the software part for further processing.

The study of design parameters impact is done with the variation of these param-
eters around a base reference design. The reference packet of network devices is a
classic TCP/IP packet. Parameters of the base design are calculated to have a test de-
sign capable of processing parse graphs of all the use cases proposed in [Gib+13]. The
values are set high on purpose to highlight the impact of design variation. To avoid
a too large oversize of the design during the tests, the architecture is not capable of
processing the union of all the use cases used in [Gib+13] at the same time. However,
it is worth noting that this unnecessary large parse graph is set for a fixed parser un-
able to be configured for a specific use case unlike the architecture proposed in this
manuscript. The base design is then composed of:

• 10 header parsers,

• each header parser has local memories up to 32 values which is largely enough
to process all the 28 protocol nodes of the wider parse graph of [Gib+13],

• 15 feature selectors,

• 4 feature extracted per selector because most of the considered protocols have at
least 4 fields,

• feature width of 32 bits to be able to extract the .

63

5 10 15 20
0

20

40

60

80

100

Number of parsers

U
til

iz
at

io
n

(%
)

LUT FF
LUT/FF pairs Slices

(a) Header parser number variation

5 10 15 20
0

20

40

60

80

100

Number of 4-feature selectors

U
til

iz
at

io
n

(%
)

LUT FF
LUT/FF pairs Slices

(b) Feature selector number variation

2 4 6 8 10
0

20

40

60

80

100

Number of features (15 selectors)

U
til

iz
at

io
n

(%
)

LUT FF
LUT/FF pairs Slices

(c) Feature per selector variation

32 64 128
0

20

40

60

80

100

Feature width

U
til

iz
at

io
n

(%
)

LUT FF
LUT/FF pairs Slices

(d) Feature width variation

Figure 4.13 – Packet parser relative resource utilization on XC7VX690T

Figure 4.13 summarizes the impact of the variation of different configurations on
the consumption of FPGA resources. When not variating, base values are used. These
results correspond to a complete and successful implementation process with Vivado
2016.4 tool with NetFPGA interfaces overheads on Virtex 7 XC7VX690T for a 180
MHz clock.

It can be observed that resource consumption is a linear function of the different pa-
rameters. The resource consumption of a given configuration can be easily computed.
In addition, the widest full design uses less than 60 % of FPGA’s resource. With the
linearity of the consumption, it can be assumed that reasonable designs would take
less than 30 % of resources, which lets plenty of space available to implement further
preprocessing.

It is worth noting that the design does not efficiently use the Look-Up Table (LUT)
and Flip-Flop (FF) pairs on the FPGA. The LUT consumption is far more important
than the FF consumption and increases more with the size of the design. This is prob-
ably mostly due to the necessity of routing large datapaths. This low efficiency is the
limiting factor of the design scalability.

One key component of the design not shown on graphs is the processing latency.
The design latency is another key component. Each header parser has a latency of

64

proposed [AB11] [PKK14]
Datapath width 512 1024 2048

Raw T’put (Gbps) 160 325 333
Clock period (ns) 3.2 3.154 n.c.

Latency (ns) 96 309 25.9
Slices (% FPGA) 10 12.4 3.9

Table 4.1 – Packet parser solutions on XC7VXH870T

8 cycles and each selector has a latency of 6 cycles. Parsers are designed as serial
pipelines, so the global latency of header parsing is the addition of each latency. On
the opposite, selectors are parallel, so the global latency of feature selection is 6 cycles.
The packet parser processing latency linearly increases with the number of header
parsers, from 38 to 166 clock cycles in the examples. The latency of the extreme
header parser case corresponds to 929.6 ns with a 180 MHz frequency. This latency
to the packet path is negligible when compared to the transfer latency to the host of
hundredth of microseconds [Han+10].

In Figure 4.13b and Figure 4.13c, it can be observed that the consumption of
FPGA’s resources increases with the number of extracted features. While feature du-
plication is a possible solution to distribute features among the different processing
elements, resource consumption is a strict limitation to the number of features that can
be extracted. Indeed, for 150 extracted features, the design has already a slice occu-
pation of more than 60 %. The study of an interconnection network is necessary to
connect more processing elements outputs.

4.3.4.3 Packet parser architectures comparison

Despite the design singularity, comparing it with other generic architectures gives a
good overview of the performance. Table 4.1 shows the comparison between the pro-
posed solution with a 512-bit wide datapath and other packet parser designs on Virtex
7 XC7VXH870T. Results are given for a TCPandIP4andIP6 specialized parser after
synthesis for the proposed design and [PKK14], and after implementation for [AB11].
These solutions are focused on feature extraction, not on the distribution of these fea-
tures to the following processing elements.

In order to provide a fair comparison between the related works and the proposed
architecture, the parser was configured with 3 header parsers, 3 feature selectors and
64-bit feature width. This allows parsing the same protocols, with all the important
features with spare ones.

The different solutions are compared in terms of throughput, latency, and resource
usage. Flexibility is also discussed in terms of expected agility. Even if this is not mea-
surable, by studying the architecture and its integration, a good idea of its adaptability
can be obtained.

Despite its high flexibility, the proposed approach has a comparable resource usage
with [AB11], but greatly improves the latency and the flexibility. Comparison with
[PKK14] is difficult on a fair basis, since this solution is very dedicated, with almost
no flexibility. Resource usage is 2.5 times as large for the proposed solution, but it

65

stays acceptable. Latency is 4 times as large but, once again, remains acceptable at
100 ns, which means a buffering of only 4 kbits. This comparison is done on a simple
example and more complex and diverse traffic could lead to compensate the overhead
on resource usage by resource sharing between different protocols.

This is compensated by the clear advantage of flexibility, and by the independence
from proprietary tools provided by the approach. Adding a new protocol can be done
in software only, using the API, while the compared solutions require a new synthe-
sis and configuration of the FPGA. This requires using proprietary tools and stopping
current processing on the probe. [AB11] achieves some level of flexibility, by allow-
ing upgrades with partial reconfiguration by SDNet solution [Xila]. However, partial
reconfiguration requires to reserve space on FPGA for the wider design and imposes
strong routing constraints, impacting final performances. It also takes longer than a
simple change in parameters.

Another interesting difference lies in the datapath. The compared solutions use
a wider datapath. The width of the datapath is linked to the parallelism level of the
architecture. The higher it is, the higher the expected throughput is. However, it also
creates a constraint on the minimal packet size. If 64-byte packets must be processed at
line rate , the datapath cannot be wider than 64 bytes (512 bits). Saturating the link with
64-byte packets on the compared solution will lead to packet loss. Higher parallelism
also means more duplication in the resources, which might limit the preprocessing.

4.4 Interconnection architecture

4.4.1 Interconnection network definition
4.4.1.1 Flexibility constraints

Even if the packet parser dynamically extracts features, one or more processing ele-
ments may require the same feature. One way to supply the feature to each processing
element is to duplicate the extraction of this feature. However, this reduces the total
number of available analyzers for different features. It is possible to make sure to have
more analyzers than needed, but it is costly in terms of FPGA resources, especially
if a large number of processing elements is required. Another way is the dynamic
distribution of features with an interconnection element.

Figure 4.14 shows an example of feature distribution between multiple processing
elements. To complete the flexible packet parser, the interconnection element must
respect multiple constraints:

• one feature must be sent to any processing element,

• one feature can be supplied to multiple elements at the same time,

• the distribution of features must be programmable,

• the distribution is considered fixed between two configurations,

• extracted features synchronization must be kept.

66

Interconnection
network

Feature
selection

Feature
selection

feature1

featurep

feature(k−1)×p+1

featurek×p

Processing
element

Processing
element

featurep

featurek×p

featurep

feature1

Figure 4.14 – Feature distribution example

1 2 3 4 5 6 7 8

(a) Tree

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

(b) Butterfly

Figure 4.15 – Network topology examples

4.4.1.2 Network properties

An interconnection network is used to simultaneously connect input nodes to output
nodes. It is composed of a collection of smaller connection devices with local routing
tables in order to maintain paths between inputs and outputs. These routers have only
an interconnection purpose, reducing the complexity and the resource cost compared
to NoCs. Permutations possibilities [CP15] of the network offer a coprocessor for
special computations, as for instance sorting algorithms [CP17]. Some properties of
networks [Fen81] influence the interconnection capabilities. These properties must be
considered to select a network adapted to the needs.

Topology The topology is the organization of the router inside the network. Depend-
ing on the topology, it is possible to create one-sided, where outputs are the same as
inputs, or two-sided networks. Figure 4.15 shows two different network topologies. It

67

can be observed that the topology impacts the communication latency. Figure 4.15a
displays a tree network with 8 inputs and outputs where the latency is dependent of
the positions of the transmitter and the receiver. In Figure 4.15b is represented a (8x8)
butterfly network. In this case, the transmission latency has a constant value.

Symmetry It is important to consider the symmetry of a network. Some topology
can only be used to create symmetric networks with the same amount of inputs and
outputs while it is possible with others to have asymmetric networks with a different
number of inputs and outputs.

Switching mechanism The switching mechanism of the network determines the way
information is transferred inside the network.

Packet switching distributes the routing across all the routers of the network. Trans-
mitted data is embedded in packets where the header contains the routing information.
The same routing algorithm is used by all the routers to transfer packets through the
network using the header overhead. The header information can be for instance the
source or the destination of the transmission. Depending on the routing scheme, a link
between two routers can be consecutively used for packets of different connections.

With circuit switching, paths from inputs to outputs are reserved by previous ne-
gotiations. In the opposite of packet switching, this path is dedicated to the current
communication and can not be used for other transmissions. A global controller takes
care of the selection of the different connections. Between two configurations, the
network is considered static.

Both of these methods have an overhead compared to a simple communication.
Packet switching adds information to transmit alongside data and the local routers are
more complex. Circuit switching has a computation overhead before the transmission.

Blocking When two communication paths have to use the same section between two
internal routers, the network is called a blocking network. Indeed, it is not possible
to have two concurrent communications on the same link. Arbitration is required to
decide which communication has priority.

A network can have three non-blocking conditions [Hwa03]. A strictly non-blocking
network is always able to connect any input to any output regardless on the already used
connections. A wide-sense non-blocking network is always able to connect any input
to any output if all the connections follow the same routing algorithm. A rearrange-
ably non-blocking network is able to establish any connection, but might require a new
organization of the connections inside the network. Lighter non-blocking conditions
reduce the complexity of the network, as they usually require less routers. However,
they usually impose constraints on their configuration. For example, the selection of
communication paths in rearrangeably non-blocking networks is a non-trivial problem.

Multicasting ability Interconnection networks are mostly used to set unicast con-
nection, a point-to-point connection from one source to one destination. However,
some networks offer the possibility to have multicast connections going from one in-
put to multiple outputs, and even broadcast connections (one input to all outputs).

68

4.4.1.3 Network selection conditions

The selection of a network topology is linked to its adaptation to interconnection needs.
Therefore, it is necessary to translate flexibility constraints into selection conditions.

Inputs and outputs constraints As any feature can be transmitted to multiple output
processing elements, the network must support multicast. In addition, the design aims
to have the maximum possible number of processing elements, and then the network
must be asymmetric.

Synchronized transmission The synchronization of features ensures that, at each
clock cycle, information about a whole packet is transmitted. This synchronization
must be kept and imposes that the features must be transmitted concurrently at the
same constant latency inside the network. The constant latency implies a non-blocking
architecture to avoid information loss.

Configurable connections The goal of the interconnection is the control of the dis-
tribution of input features among the output features to have a maximum flexibility.
The state of the network only has to be modified when the operator or a software ap-
plication require new specifications.

This configuration condition is compliant with a circuit switched network as no
dynamic routing is required between two configurations. With no data transmission
overhead and less complex routers, this solution is preferred over a packet switched
network. Furthermore, the computation of connections can be directly computed in
software to reduce the complexity of the design.

A new configuration from the software changes the network state and triggers the
reconfiguration of the connections. A strong non-blocking condition is then not nec-
essary for the network. A rearrangeably non-blocking network is sufficient to ensure
that all the connections can be made at configuration time, while requiring as little
resources as possible.

As a conclusion, the final interconnection network must be:

• asymmetric,

• supporting multicast communications,

• with constant latency,

• circuit switched,

• rearrangeably non-blocking.

4.4.2 Adapted interconnection architecture
4.4.2.1 Crossbar matrix

The crossbar matrix is the most basic interconnection architecture. It is composed of
crosspoints dedicated to the connection of one input to one output. For N1 inputs and

69

1

2

3

3 inputs

1 2 3 4 5

5 outputs

Figure 4.16 – Crossbar matrix with 3 inputs and 5 outputs

N2 outputs, the crossbar is composed of N1N2 crosspoints. Figure 4.16 displays an
example crossbar with 3 inputs and 5 outputs.

The crossbar contains all the possible connections between inputs and outputs.
Therefore, this architecture has enough connection points to ensure that the result-
ing network is strictly non-blocking for unicast communication [Clo53]. Moreover, a
crossbar can be configured to support strictly non-blocking broadcast connections [MP10].
It is a one-stage switching network and it is possible to have operations processed in
constant latency.

This interconnection network satisfies the requirements set by the parser design.
However, the crosspoint matrix is not a scalable structure. Increasing the size of a
crossbar matrix is not conceivable due to its high cost.

4.4.2.2 Multistage network

Widespread architectures are the multistage interconnection networks [Fen81]. They
use multiple stages of parallel crossbar switches to concurrently connect an arbitrary
number of inputs to an arbitrary number of outputs. The executed permutation is se-
lected by a control algorithm determining the state of each switch of the network.

The different topologies of this network family are not focused on the execution
of the same subsets of permutations. The permutation set executed by the network
directly influences the number of switching elements composing the network as well
as the interconnection between these elements. A network with a wider permutation set
requires more switching elements and a larger transmission latency. For instance, the
butterfly network presented in Figure 4.15b has a reduced permutation set compared to
the Benes network in Figure 4.17, but is smaller. It is possible to design a multistage
interconnection network for the execution of specific permutations with an optimized
number of switching elements [Soo83]. The searched interconnection network must
be able to connect any input to any output, and then must execute any permutation
between inputs and outputs.

In addition, these networks can be design with a non-blocking topology which
support multicast connections [YM91]. Multistage interconnection networks are an
adapted solution for the feature distribution problem.

70

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

Figure 4.17 – A (8x8) benes network

4.4.2.3 Simple implementation

The Benes network [Ben62] is a symmetric rearrangeably non-blocking multistage
network based on (2x2) crossbar switches. Figure 4.17 shows a (8x8) Benes network
architecture. This simple structure has well-known performance: N = 2 ∗ r inputs
with 2 ∗ log2(N) − 1 stages and N/2 crossbar per stage. A Benes network is capable
of sustaining multicast connections [MF97]. Its simplicity makes it ideal for a simple
implementation.

The purpose of the proposed interconnection network is the connection of the N1

inputs to a wider number of outputs N2. As the Benes network is not designed to
support asymmetric inputs and outputs, the construction of an asymmetric network is
done by using parallel benes networks, each connecting the N1 inputs to a subset of
N1 outputs. Figure 4.18 describes this solution where N2 = k × N1. A first step
executes k duplications of each input to supply the N1 inputs to each Benes network.
The second step connects the inputs to the outputs through k Benes networks. The
rearrangeably non-blocking property of Benes networks ensures that any output can
be associated with any input. As these networks support multicast connections, it is
possible to distribute one input to multiple outputs and even all outputs.

Table 4.2 summarizes the resource consumption relative to the Virtex 7 XC7VX690T
FPGA for the transmission of 32-bit data for multiple inputs and outputs. Thanks to
the usage of Benes networks, the complexity of the number of crossbars required in
the overall design is O(N2log2(N1)), which is confirmed by the results.

Moreover, the LUT/FF pairs consumption in Table 4.2c is nearly the same as the
LUT consumption in Table 4.2a. This architecture takes advantage of the division of
LUT6 in two LUT3 to execute two (2x2) crossbars. This design allows to increase
the number of inputs and outputs with a limited spread on the chip seen in Table 4.2d.
This highly distributed interconnection architecture is very compact, allowing to reach
a very high number of inputs and outputs.

Despite efficient occupation space, these results must be compared to results ob-
tained for the packet parser in Figure 4.13 to estimate the impact of the overhead of the
interconnection network. For 150 extracted features, the packet parser uses 60 % of
the FPGA slices and 40 % of the LUT. For the same space on the chip, a packet parser
with an interconnection network is capable of distributing 32 features to 512 outputs

71

1

N1

Benes
network1

Benes
network2

1

N1

1

N1

1

N1

N2 −N1 + 1

N2

k

k

N1 inputs N2 = kN1 outputs

Duplication step Interconnection step

Figure 4.18 – Implemented interconnection solution

O
I

32 64 128

256 8.517 10.405 12.295
512 17.032 20.809 24.588

1024 34.181 41.616 49.175
2048 68.242 83.466 n.a.

(a) LUTs consumption

O
I

32 64 128

256 9.254 11.210 12.869
512 18.425 22.503 26.405

1024 36.412 44.852 53.003
2048 72.623 88.841 n.a.

(b) FFs consumption

O
I

32 64 128

256 8.512 10.403 12.293
512 17.023 20.803 24.585

1024 34.161 41.605 49.169
2048 68.203 83.446 n.a.

(c) LUT/FF pairs consumption

O
I

32 64 128

256 11.693 15.765 16.080
512 22.966 29.845 36.350

1024 44.789 54.791 64.846
2048 85.669 95.326 n.a.

(d) Slices consumption

Table 4.2 – Interconnection network resource utilization on XC7VX690T (%)

72

or 64 features to 256 outputs which is a substantial gain. However, adding the inter-
connection network increases the processing latency of the packet processing, with the
formula in Equation 4.1.

latency = log2(
N2

N1

) + 2log2(N1)− 1 (4.1)

In the presented cases, the latency is increased by 25 and 15 clock cycles, or 139 and
84.3 ns at 180 MHz.

Despite good performance, this solution is not the most efficient in terms of re-
source consumption. The usage of Benes networks leads to overheads in resources
consumption. Indeed, the number of inputs and outputs of a Benes network must be
aligned on a power of two, imposing N1 = 2p−1 with p the number of stages of the
Benes network. It is also necessary to haveN2 = kN1 These problems have been stud-
ied in the literature. Chang et al. [CM97] proposed a recursive structure for the creation
of arbitrary size Benes network where the number of crossbars linearly increases as a
function of inputs and not by stages. When the number of inputs and outputs are not
aligned on a power of two, the number of interconnection points saved is substantial.
This structure has been improved in [SH16] to consider an arbitrary size Benes with
less outputs than inputs, which can be used in our case when N2 is not a multiple of
N1.

4.4.2.4 Toward efficient interconnection network: Clos network

While the proposed architecture answers the required constraints of an interconnection
network, more efficient solutions exist. Clos networks [Clo53] are a set of symmetric
and asymmetric interconnection networks composed of arbitrary size crossbar switches
designed to be the most efficient as possible. The Benes network is a specific example
of a symmetric Clos network composed of only (2x2) crossbar switches. This section
studies the ability to use a Clos network for the dynamic distribution of the packet
features to multiple processing elements.

The interconnection scheme of Clos network is made up of three different stages
relying on smaller interconnection switches. Figure 4.19 describes the general decom-
position of an asymmetrical Clos network denoted µ(m,n1, r1, n2, r2). It is separated
into an input, a middle and an output stages. The input stage is composed of r1 (n1×m)
crossbar switches. The output stage is composed of r2 (m × n2) crossbar switches.
The middle stage has m parallel smaller interconnection networks with r1 inputs and
r2 outputs. The total number of inputs is N1 = n1r1 and the total number of outputs is
N2 = n2r2.

With the right parameters, this solution offers the most optimized number of cross-
points used in comparison to crossbars while being strictly non-blocking if m >=
(n1−1)+(n2−1)+1 [Clo53]. An other advantage of Clos networks is their recursive
construction. Indeed, interconnection networks of the middle stage can be considered
as Clos networks on their own. They can be divided with the same principle in three
stages constituting a global interconnection network with five stages. It is possible to
repeat this division until the middle stage is constituted of basic crossbars.

Primarly described for unicast communications, these results have been extended
to multicast connections. As the multicasting ability increases the complexity of in-

73

1

r1

1
n1

1

m

1
n1

1

m

1

m

1

r1

1

r2

1

r1

1

r2

1

r2

1

m

1
n2

1

m

1
n2

N1 = n1r1 N2 = n2r2

Figure 4.19 – (N1xN2) Clos network denoted µ(m,n1, r1, n2, r2)

terconnection switches, multiple models exist depending on the stage of the network
which has no multicasting ability [Hwa03]:

• model 0: all the stages have multicast connections,

• model 1: the input stage is not able to create multicast connections,

• model 2: the middle stage is not able to create multicast connections,

• model 3: the output stage is not able to create multicast connections.

These models requires a different number of interconnection points to answer the
non-blocking conditions. An advantage of the model 2 is a lower network hard-
ware complexity or control mechanism of the middle interconnection. Masson et
al. [MMWJJ72] demonstrated that the model 2 Clos network is rearrangeably non-
blocking for multicast connections, and the condition was refined in [Hwa05] tom >=
max{min{n1r2, N2},min{n2, N1}}.

The limit of Clos networks is efficient routing because the rearrangeability of a
multicast Clos network is an NP-complete problem [JK10]. However, for a model 2
multicast network, adding a new connection costs at most r2−1 rearrangements [MMWJJ72].
The proposed solution is able to compute the new arrangement in software. The config-
uration is done at the same time on the network, connections are not singularly moved.
A rearrangeably non-blocking Clos network only ensures that any connection can be
routed through the network.

Rearrangeably non-blocking multicast Clos networks are adapted for the connec-
tion of the packet parser to the processing elements. In addition to fill the requirements,
this type of network can be easily built in a recursive manner and is more scalable than
classic crossbars. However, many parameters can be tuned to optimize the network
and multiple model exist for multicast communications. As no implementation was
found on FPGA, further work is required to study the influence of these parameters on
the number of crosspoints, latency and FPGA resources consumption.

74

4.5 Conclusion
This chapter has introduced a novel flexible packet parser architecture. The design
relies on a static hardware architecture to be able to sustain determined high rates of
traffic. Unlike solutions of the literature, this design is entirely based on configuration
parameters to process incoming packets. This approach is highly flexible allowing the
modification of considered headers as well as extracted features at runtime. This flex-
ibility makes possible the selection of processed headers from the software according
to the immediate needs of end-user applications. The design and the implementation
of this architecture has led to a publication [CJ+17b].

However, the genericity of the design does not come for free. The increase of re-
sources consumption is not negligible especially when adding new extracted features.
The distribution of features to the processing elements costs lots of interconnection
resources, especially if the same feature must be supplied to multiple processing ele-
ments.

An efficient way to connect the packet parser and the processing elements is the
use of a specialized element called an interconnection network. To answer the require-
ments of the architecture, this network must be asymmetric, with a low number of
crosspoints, having rearrangeable connections and a constant transmission latency and
sustaining multicast connections. Multistage interconnection networks are a class of
networks answering the needs. A basic implementation of an asymmetric interconnec-
tion network is built with duplication stages and parallel Benes symmetric networks.
No alternative has been found in the literature. This solution offers an asymmetric
network capable of connecting inputs to thousands of outputs. While this is not the
optimal choice, results demonstrate that, when integrated in the packet parsing archi-
tecture, this interconnection network leads to better occupation space than feature du-
plication. Clos networks, the generalized version of Benes networks, seem to offer the
best interconnection alternative, but a large number of parameters must be tuned to ob-
tain the right network. As no implementation on FPGA devices has been found, future
works will focus on the study of these parameters for optimized resource consumption.

With the combination of the proposed packet parser and interconnection network,
the resulting packet parser executes the extraction of any feature from any header and
can distribute these features to any processing element. This unique architecture is a
great building block for flexible packet processing applications. Indeed, in the next
chapter, based on this work, I will propose a novel agile high-speed network probe
with properties never encountered before.

75

76

Chapter 5

Towards agile high-speed network
monitoring

5.1 Introduction
The work presented in the previous chapters aimed at finding clues for the design of
architectures for flexible packet processing on high-speed links. In this chapter, the
concepts and architectures previously defined are used to develop monitoring probes.
These novel probes are used to execute packet monitoring applications at 40 Gbps with
a flexibility never encountered before. After a succinct description of the test-bed used
for high-speed network processing, the two considered application cases are presented
and evaluated.

A main part of network protection is the study of traffic anomalies for the detection
of attack patterns. Network forensics is a use case of interest, because it requires a
dynamic adaptation to the traffic content for the refinement of collected data. For
this example, a simple forensic application is executed based on the proposed packet
parser. With the unique flexibility of the hardware architecture, this application is able
to collect more diverse information on the traffic than common applications. Indeed,
for performance issues, common monitoring applications targeting high-speed links
only consider information from the main network traffic. The proposed application is
capable of adapting at runtime the monitoring probe to process non common protocols,
which can be a main threat to the network because they are less monitored. As a
consequence, the proble makes the network more secure despite its simplicity.

The second test is focused on a more complete application for live packet analysis.
The hardware packet parser is associated with hardware rule processors to create a high
performance packet classifier. The simple application defines hardware packet selec-
tion rules to extract packets of interest from the network traffic for further processing
on a reduced data rate. This hardware selection is refined in software with a second
layer of advanced rules. This highly programmable architecture offers more advanced
rule configuration possibilities than any current high-speed classifier solution. In ad-
dition to the feature values, the features used in each rule can be defined. The large
possible rule set and the hardware/software feedback loop allow a fine control of the
traffic according to the needs of end-user applications.

77

Reception
control

result
values

Packet
generation

Test
application

packet

Test
design

Test side

FPGA

test
configuration

result
values

Operator
(human or software)

Generation
application

packet

Result control
application

Control side

packet set
configuration

FPGA

Software Software

Figure 5.1 – Test solution architecture

5.2 Test-bed architecture

5.2.1 Test organization
The test infrastructure aims at verifying the functionality and the performance of the
design in a controlled environment. A stress test with a synthetic load traffic is applied
to the tested probe. Figure 5.1 illustrates the test structure which is divided into two
parts.

The test side contains the application to stimulate. The design to verify is set on
the FPGA of the smart NIC. The software environment of the test host offers to the
operator the possibility to add a software test application. This application is able to
monitor the probe results and to configure the probe during the test duration.

The control side is used to set the test environment. A generator sends the stress
traffic to the tested equipment. With the generator presented in Section 3.4, it is possi-
ble to have a load traffic with composition variation. An optional reception engine can
be added to control the transmitted packets when the tested element transfers packets.
This functionality is not used in the tests presented in the following sections.

C++ and Python APIs are available for interaction with the hardware part of the
generator and the receiver. This software-oriented approach makes the development
of high-speed tests accessible to network engineers, which are the most capable of
verifying the functionality of the devices under test.

78

Control host Test host40 Gbps

SUME SUME

4x10 Gbps

Figure 5.2 – Test-bed with NetFPGA SUME board

5.2.2 40 Gbps test-bed
The main test platform is built with two hosts containing NetFPGA SUME boards.
Figure 5.2 shows the interconnection of the two smart NICs with their four 10 Gbps
interfaces. An FPGA design is able to concentrate the links on one common datapath.
Therefore, the resulting link can be used as four different 10 Gbps links or as one 40
Gbps link. This is the platform used for the tests in this chapter.

5.3 Flexible high-speed packet parser validation

5.3.1 Experimental probe
A common threat to computer networks is a volumetric attack. The malicious traffic
aims to exhaust resources of a server with the reception of a massive number of packets.
The wide presence of connected objects facilitates the creation of malicious traffic and
increases the intensity with any protocol as a target [BI17]. Moreover, volumetric
attacks can be used as vectors of other attacks which are hidden inside the massive
traffic.

The overload orientation of these attacks makes them detectable if enough pro-
cessing power is available and if it is possible to monitor the targeted protocol. Such
an application is a good candidate to validate the probe: it saturates data links, and
it requires a good agility to adapt to the protocol being targeted by the attack. The
ability to efficiently protect a network from such an attack relies only on the ability to
monitor all affected protocols at a sufficient speed. Absorbing all the overload traffic
is necessary to determine if no other problem is hidden.

The proposed experimental setup aims at providing sufficient proof that the packet
parser is able to perform at the expected performance level, and to evaluate its impact
on applications in terms of configuration latency and ease of use. A simple config-
urable hardware monitoring is created by coupling the packet parser to a basic pre-
processing unit, as illustrated in Figure 5.3. The hardware part is completed with a
software application, which performs the actual attack detection and takes decisions
to adapt the configuration. The hardware test design has a limited consumption of
FPGA’s resources: 34.22% of the LUTs, 15.17% of the FFs, 46.58% of the slices,
40.15% of the LUT/FF pairs. Spare resources are available to implement accelerated
application processing on the FPGA.

The preprocessing unit is composed of filtered counters on selected features and
an anomaly detection based on destination IPv4 count. One parametrable filter and
one counter are available for each possible extracted feature. The anomaly detection is
done with a change point detection over Count Min Sketch (CMS) [SVG10] coupled

79

packet

preprocessing config

parser
config

Attack
detection

Packet
parsing

features

Counting

Counting

Threshold
comparison

Alert
generationCMS

CUSUM

alerts
counters
values

FPGA

Software

Data
logging

Anomaly Detection

Feature Count

Packet Preprocessing

sketches
count

Configuration
driver

hardware configuration

Figure 5.3 – Test solution architecture

with threshold detection. Counters and alerts generated are transferred to the host
machine via the PCIe connection for further processing.

Based on this simple probe implementation, a first remark can be made: making
use of features from hardware is as easy as processing a FIFO queue. This means that
common data processing elements can be easily integrated, removing the complexity
induced by data extraction and frame management. Using a generic unit, the same
preprocessing can also be applied to different fields without any hardware change. For
example, with a counter able to process up to six-byte fields, the same architecture can
be used to count Ethernet packets or IP packets.

Required information is decided by the software part with the configuration of
fields to monitor. In addition, filters can be programmed to count only one value for
a feature. With duplicate extraction, it is possible to watch the evolution of multiple
values for the same field. The configuration is entirely done through software calls to
a simple API, which completely abstracts the hardware implementation. The use of
hardware for preprocessing is completely hidden from the developer view.

80

0 100 200 300 400
0

20

40

60

| |
(1)

| |
(2)
| |
(3)
| |

(4)

Time (s)

N
um

be
ro

fp
ac

ke
ts

(M
pp

s)

total traffic 192.168.1.1
192.168.1.2 192.168.1.3
192.168.1.4

Figure 5.4 – Incoming packet counters

5.3.2 Benchmark scenario
The test probe is fed with a synthetic traffic composed of a base traffic mixed with
attacks on different protocols. Considered attacks in the experimentation are common
ones like ICMP ping flood, TCP syn flood, DNS QUERY flood and HyperText Transfer
Protocol (HTTP) GET flood [OVHa]. This list only affects the software part: any
attack which can be detected by counting occurrences of a field and comparing to a
threshold can be processed by the probe, as long as a configuration is provided.

For the sake of clarity, each attack is targeting a distinct IP address. The base traffic
creates a floor of 30 Gbps of minimal size 64-byte packets, being 44.642 Mpps. At-
tacks are sent successively completing the base traffic to reach 40 Gbps, 59.523 Mpps,
the maximum rate achievable with the current card interfaces. Global traffic shape re-
ceived by the probe is visible on figure 5.4. Different spikes in traffic correspond to
different attacks:

• ICMP ping flood on 192.168.1.1 (1)

• TCP syn flood on 192.168.1.2 (2)

• DNS QUERY flood on 192.168.1.3 (3)

• HTTP GET flood on 192.168.1.4 (4)

This test-bed is available under an open-source license on NetFPGA SUME for verifi-
cation [CJb].

A program developed on purpose in Python is monitoring this incoming traffic.
This very basic program detects volumetric attacks, including the ones inserted inside
the test, on a destination IP address. This program decides which kind of protocol is
monitored. As many features as decided at design time can be simultaneously ana-
lyzed. A first interesting advantage of the proposed solution is that the huge amount of
data is hidden from the software program.

81

No Alert

IP AlertICMP Alert

Ping Flood TCP Alert

UDP Alert

alert nbip < tipnbicmp ≥ ticmp

nbicmp < ticmp

nbicmp ≥ ticmp

nbping ≥ tping
nbping < tping

nbping ≥ tping

(a) Branch detection

No Alert

IP AlertICMP Alert

Ping Flood TCP Alert

Syn Flood Ack Flood HTTP Alert

Get Flood Post Flood

UDP Alert DNS Alert

QUERY Flood

(b) Global decision steps

Figure 5.5 – Detection decision steps

82

When an alert is set, parameters of the probe are incrementally computed by the
Python program, to refine the detection with adapted counter values while keeping
track of other possible threats. Decision steps are shown in Figure 5.5.

Figure 5.5b describes all the states of the monitoring program and their transitions.
The No Alert state is the normal state when no anomaly exists on the network. Ellipse
with double lines are detection states when an attack is confirmed and countermea-
sures are executed. Each step leads to the modification of the parameters sets with the
addition or removal of extracted features adapted to the observed traffic.

Figure 5.5a refines the description with the addition of the transition conditions for
Ping Flood detection. Dotted branches are not described in the diagram. This simple
application uses the comparison of the counter values from the chip with a threshold
to determine if further forensics is required. For one transition, the used threshold is
associated to a set of features.

This procedure takes advantage of the flexibility of the approach to selectively
monitor protocols according to the traffic shape at a given time. Any protocol can be
described using the proposed set of parameters, and software integration is as simple
as calling the corresponding functions. This application is a proof of concept, and only
implements basic functionality. More complex forensic applications could obviously
take full advantage of the proposed agile and high data rate probe.

5.3.3 Test results
Figure 5.6 summarizes counter values over time for traffic content-aware specialization
on IP, TCP and HTTP protocols, as response forensics for received traffic shown in
Figure 5.4. Figure 5.6a shows the recorded traffic for a specific IP, Figure 5.6b a
refinement on TCP traffic, and Figure 5.6c a refinement on HTTP traffic.

Holes in the curves represent time intervals when no anomaly is detected, and then
no recording is necessary for these protocols. The same behavior can be observed with
ICMP, UDP and DNS test traffic. All configuration refinements are done at runtime
on demand of the software. Dash vertical lines represent the moment when attacks are
detected. The detection of these attacks are performed at the beginning of each traffic
spike, showing the short reaction time of the probe. Counter values export interval is
configurable in a range from micro-seconds to seconds, directly influencing detection
time. The probe is able to differentiate protocols at a rate of 40 Gbps.

This example shows the possibility to monitor high data rate traffic in an agile way.
To monitor the same type of traffic, a classic FPGA approach will reserve resources
for each protocol, even if the usage is not optimal. Finally, on a classic approach, if a
new protocol needs to be added to the monitoring list, a new binary needs to be gener-
ated and the FPGA needs to be reconfigured. For the proposed design, adding simply
corresponding protocol parameters to settings is enough and done by the software.

This test shows that the probe is adaptive and always tuned for current incom-
ing traffic, even at 40 Gbps. In addition to be easily done in Python via an API,
parametrization of the packet parser allows considering the same protocols as in soft-
ware. This test probe even processes data rates way beyond those processed by its full
software counterpart.

The presented packet parser combines high performance, high agility and ease of

83

0 50 100 150 200 250 300 350 400
0

20

40

60

| |
(1)

| |
(2)

| |
(3)

| |
(4)

Time (s)

N
um

be
ro

fp
ac

ke
ts

(M
pp

s) monitored IP ICMP type
TCP type UDP type

(a) IP counters

0 50 100 150 200 250 300 350 400
0

20

40

60

| |
(1)

| |
(2)

| |
(3)

| |
(4)

Time (s)

N
um

be
ro

fp
ac

ke
ts

(M
pp

s) total SYN ACK
HTTP port HTTPS port

(b) TCP counters

0 50 100 150 200 250 300 350 400
0

20

40

60

| |
(1)

| |
(2)

| |
(3)

| |
(4)

Time (s)

N
um

be
ro

fp
ac

ke
ts

(M
pp

s) total GET
POST

(c) HTTP counters

Figure 5.6 – Traffic distribution seen by the probe during the dynamic attack detection

84

Rules Description
R1 F1 = 10 and F2 = 30
R2 F2 ≥ 0 and F2 ≤ 20
R3 F1 = 10 and F2 = 5 and F3 = 30
R4 F1 = 5 and F3 ≥ 10 and F3 ≥ 20
R5 F2 = 40 and F4 = 10 and F5 = 50

(a) Rules

Field set Composition Associated rule sets
F F1,F2 R
F ′ F1,F2,F3 R′1,R′2
F ′′ F2,F4,F5 R′′

(b) Field sets

Rule sets Description
R R1,R2

R′1 R1,R2,R3

R′2 R1,R2,R4

R′′ R2,R5

(c) Associated rule sets

Table 5.1 – Field sets and associated rule sets

use for end-users, as never encountered before. The test probe is able to switch between
observed protocols at runtime which is not possible with packet parsers in the literature.
The presented application is easily scalable with a smart NIC with more interfaces, or
with multiple smart NICs connected at the same host, as seen in Chapter 3.

5.4 Flexible packet classifier

5.4.1 Packet classification
Packet classification is an important tool for network equipment. Monitoring applica-
tions heavily rely on classification engines to discriminate the different packet flows.
Determining the nature of packets is the key to distribute them across the right fol-
lowing monitoring applications. These applications are in charge of taking adapted
actions, such as packet filtering or traffic priority routing.

The discrimination of packets is done with a classifier composed of a collection of
rules based on a set of fields extracted from the packet header. A rule is the definition of
specific values for the different fields of a field set. Table 5.1a describes five different
rules using five different fields of a packet header. One rule is matched when values of
the packet fields correspond to those defined by the rule.

The achievable rule set depends on the field set used. Different field sets lead to
different rule sets. Table 5.1b shows different field sets and the possible associated
rule sets with the defined rules. Table 5.1c describes these rule sets. The classification
process determines the rule matched by incoming packets inside the defined set of
rules.

The comparison of a packet with a rule set can be done in multiple ways. Gupta et
al. [GM01] presented a wide variety of existing classification algorithms. From basic
linear search to complex tree-based search, the different data structures provide multi-
ple tradeoffs between search speed, storage requirement, update speed and scalability.

85

SDN requirements impose to dynamically handle the rule sets in order to have a
fine-grained and dynamic packet management. The widespread off-the-shelf CPU-
based hardware, with software flexibility and ease of use, is the main development
platform for classification engines. Except for high-end classification applications,
popular software classification frameworks are built around BPF [MJ93] and netfil-
ter [Net]. Even if it is not the most efficient approach, they offer complete semantics
for rule set specifications and are easy to update. This justifies their wide usage as a
front-end to distribute packets among following applications.

5.4.2 Hardware classification
Performance limitations of commodity hardware with high speed links reduce the per-
formance of conventional software classification engines. Growing importance of FP-
GAs and smart NICs have led to the proposition of architectures offloading the classi-
fication from CPUs.

5.4.2.1 Specific classification engines

The most straightforward solution is the creation of a circuit fitting the considered clas-
sifier. This approach is commonly used when processing acceleration is needed. With
the reconfiguration ability of FPGAs, the design can be modified when the classifier
changes. A preprocessing part translates the desired rule set into a specific circuit built
for a search structure. So, the FPGA logic is tuned to implement an algorithm for
the given problem. The rule set as well as the field set are fixed once implemented.
A good example is the MPFC [Hag+14] approach processing 64-byte packets at 100
Gbps where the common linear search takes advantage of parallelization to execute all
the rule matching in parallel. Such specific designs trade flexibility with long genera-
tion time for low occupation of the FPGA.

It is possible to combine this solution with partial reconfiguration of the FPGA
to remove the processing stop during reconfiguration time [HBS15]. The ping-pong
solution between two reconfigurable classification pipelines of Zazo et al. [Zaz+16]
allows to execute a specific BPF rules set without stopping the card. This design is
able to process a fully filled 100 Gbps link of 64-byte packets without loss.

5.4.2.2 Configurable classification

To achieve dynamic rule set management with rule modification, insertion or deletion,
generic and configurable classification engines are required. The most common con-
figurable architecture are CAM and Ternary Content-Addressable Memory (TCAM)
architectures. They provide the possibility to concurrently match multiple rules on the
same cycle, with an input key built on the full field set. The FPGA architecture is how-
ever not adapted to host such designs leading to resource overconsumption, limiting
frequency performance and design scalability [Xil17].

Alternative solutions implement decomposition-based approach to use FPGA par-
allelism and to increase the performance. This approach is focused on the separation
of packet header fields or subfields processing. Partial results are merged to compute
rules and to obtain the classification results. In [PK09], partial results are processed

86

concurrently and merged to create a key for a hash-based technique. Performance is
gained at the cost of a lot of memory consumption and an extensive number of ac-
cesses. With the StrideBV solution [GP12] [GJP14], exact match and range search
subrules are sequentially matched in a pipeline and merged with a bitwise AND. The
final result is obtained after the last stage. Qu et al. [QP16] refined this approach with
a two dimension pipeline to increase the overall performance.

The configurability of these designs allow to change the rule set, but the field set
is fixed once programmed. These solutions have a limited flexibility using an unique
search key for the rules. As it is not possible to constantly extract a large set of fields
due to resource consumption, these solutions use the classic 5-tuple used by network-
ing applications for relevant information. This tuple is composed of the source IP
address, the destination IP address, the port source, the port destination and the trans-
port protocol, UDP or TCP. No complementary information can be obtained for the
classification.

5.4.2.3 Architecture combination

More recent solutions combine multiple architectures in order to compensate the flaws
of the different solutions. Kekely et al. [Kek+14] used multiple parallel architectures
for effective FPGA utilization and fast search to handle smallest packets at 100 Gbps.
An hash-based search engine is used for exact rule match while a binary search tree is
focused on a prefix match. Both these engines are configured at runtime with a config-
uration from a memory. Fiessler et al. [FHS17] sequentially set a specific classifier for
immutable rules and a generic classifier for dynamic rules.

While this approach optimizes the space consumption, these solutions use rule sets
based on a static field set too. Thus, these designs have a limited flexibility.

5.4.2.4 Mixed architecture

To compensate the fixed key, HyPaFilter [Fie+16] and its upgraded version HyPaFil-
ter+ [Fie+17] combine an hardware and a software classification engines. While the
hardware engine is generated for exact matches on one rule set, this hybrid manage-
ment gives access to advanced rules on a reduced traffic manageable by the software.

Even if this solution allows to apply more advanced rules on the packet with the
software part, a traffic spike of unanticipated traffic would be able to blind this probe
because of the lack of fast configuration of the hardware. For maximum flexibility
and probe reactivity, it is necessary to have an adaptable rule set at the hardware level.
Classification must be able to dynamically modify the rule set at runtime with rule
inputs from any field from any header and from any protocol level. Modification of the
field set is then required too.

5.4.3 Hardware/software packet classification
5.4.3.1 Flexible classification hardware architecture

The packet parser proposed in this manuscript dynamically supplies features to a clas-
sifier. To produce an innovative architecture for high throughput packet classification,

87

extracted
features

rule result
vector

Rule processors

Rule processor 1

Rule processor n

rule set
configuration

Packet
parser

packet

Packet delay
fifo

Action
application

packet packet

packet forwarded
to host

packet forwarded
to processing

Figure 5.7 – Classification hardware architecture on the Smart NIC FPGA

the packet parser is associated with a configurable classifier. The architecture is com-
posed of the packet parser and a set of rule processors, as described in Figure 5.7.

The packet parser decapsulates any configured packet header. Features of interest
extracted from packet headers give distinctive information about the packet, even on
application level protocols. Combined with the interconnection network, the packet
parser is able to supply any extracted feature to any input of the classifier. The con-
figuration of the parser from the software allows to extract information at will. For
instance, this packet parser is able to change the supplied field set from F ′ to F ′′ in the
example presented in Table 5.1b.

The classifier uses the input field set to determine monitoring rules matched by
the incoming packet. To support high throughput and to limit the processing latency,
the classification architecture takes advantage of full parallelization on the FPGA. The
latency of the classifier is equivalent to the latency of one rule processor.

Rule processors concurrently execute rule matching, each one with its own set
of feature. The interconnection capability of the packet parser is handy to distribute
features across the parallel rule processors. Classification produces a result vector used
by a decision module to apply an action on the packet. The result is a bit vector where
one bit describes if the corresponding rule is validated. Depending on the matched
rules, the packet is forwarded to the host or to specific accelerated elements for further
processing.

In order to dynamically process incoming packets, the classifier must be programmable
in addition to the packet parser. Programmable rule processors are necessary to have
a classifier which can be adapted to the needed rule configuration. In the example of
Table 5.1c, rule processors configured to process the rule set R′1 must be able to be
updated to process R′2 or R′′ with a new field set. With control API in software, it is
possible to manage the hardware classifier as easily as a software classifier.

Hardware implementation forces to have parameters set at design time:

• the number of rules,

88

rule ALU 1
x =

192.168.10.1

rule ALU 4
52 <=

 x <= 100

rule ALU 2
x = 53

rule ALU 3
x = 53

op result
vector

rule result
operations
reduction

1 and
(2 or 3) and 4

rule set
configuration

feature_1
IP dst

feature_2
UDP dport

feature_3
TCP dport

feature_4
IP tot length

rule ALU 5
NOP

feature_5

LUT

Figure 5.8 – Flexible rule processor of size 5

• the number of inputs per rule.

Packet parser header depth and maximum number of extracted features must be set at
design time too.

The combination of the packet parser and multiple independent rule processors
gives the classifier a unique range of abilities, never encountered in the literature:

• configurable field set,

• configurable rule set,

• input selection for each rule,

• line rate packet matching,

• rule selection entirely handled in software for user-friendly usage.

This hardware supports high throughput processing applications with high-flexibility
and precise packet selection for advanced processing.

5.4.3.2 Flexible rule processor

Rule processors are the building blocks of the classification engine. One rule processor
has a fixed number of inputs to validate the associated rule. The execution of a rule is
a 2-step process following a map and reduce approach. Multiple parallel elementary
matching operations are done by parallel Arithmetic Logic Units (ALUs). The bit
vector result of operations is used by a LUT to compile the total rule.

89

The number of parallel ALUs gives the maximum length of the rule that can be
processed. Every ALU uses one input feature of the processor. Therefore, the number
of inputs gives the possible length of rules. While the number of available rule proces-
sors and the size of processed rules are limited on the hardware, further processing are
possible on a reduced traffic to complete complex rules of the rule set. This partition
of the packet classification between the hardware and the software is compliant with
the paradigm presented in Chapter 3.

Figure 5.8 shows the different steps of rule validation on a rule processor of size
5. The example is associated with the rule dst host 192.168.0.1 and (udp
dst port 53 or tcp dst port 53) and ip[2:2] >= 52 and
ip[2:2] <= 500 written in BPF syntax. This rule tracks packets traveling to a
machine used as a DNS server and with a specific size range.

The behavior of the different ALUs is configurable from the computer host. ALU
are able to execute a range of matching operations, but only one is configured at one
time. The simple operation set is composed of equal, smaller than, smaller than or
equal to, range inclusion and no operation.

Opposite operations are possible with the negation included in the LUT capability.
The LUT combines the different elementary operations to produce the rule. The main
advantage of a LUT is to be programmed to execute any logic function between its
inputs. Therefore, the reduction can be configured to operate any combination between
the elementary elements.

This classification architecture takes advantage of FPGA architecture to have par-
allel rule processors. Thus, it is possible to sustain high data rates and low latency.
One processor takes two cycles to process one rule: one for ALUs computation, one
for LUT operation. For instance, this represents less than 12 ns with a 180 MHz clock.
This is negligible in the larger processing latency.

These rule processors have programmable operations and programmable feature
operands from incoming packets. The classification has a unique flexibility, capable
of dynamically processing more diverse rule sets than current hardware classification
solutions. Moreover, since it is based on an FPGA, common reconfiguration is still
available to upgrade or to resize the design according to the needs.

5.4.4 Hardware/software synergy
Classification engines produce a result vector used to determine actions to take on the
packet. The pool of available actions is determined by the user at design time. It can
vary from forwarding masks to decisions on most important rule matched with a pri-
ority encoder. This step transfers the packet to the subsequent accelerated processing
stage, the combined host or simply drops the packet. While these decisions and the
associated rules are prone to be modified according to the traffic evolution, they are
configurable on the fly.

Figure 5.9 shows an example of a live feedback loop possible with the presented
architecture. An anomaly detection in software triggers the reconfiguration of the clas-
sification chain. Based on some results from accelerated processing, the software mon-
itoring application detects an anomaly and decides to refine the rule set in order to
obtain detailed information in Figure 5.9a.

90

host
forwarding mask

000
extracted
features

rule result
vector

Rule processors

Rule processor 1
rule a

Rule processor 3

rule set
configuration

Packet
parser

packet

Action
applicationpacket

Device driver
Monitoring
application

packet

computing
forwarding mask

110

F1
F2
F3
F4

FIFO

Rule processor 2
rule b

Processing

Software Environment

FPGA

packet

filtered
packet

processing
results

rule set update

rule result
vector

(a) Anomaly detection by the monitoring application

extracted
features

rule result
vector

Rule processors

Rule processor 1
rule a

Rule processor 3
rule c

rule set
configuration

Packet
parser

packet

Action
applicationpacket

Device driver
Monitoring
application

host
forwarding mask

001

packet

computing
forwarding mask

110

F1
F2
F3
F4
F5
F6

FIFO

Rule processor 2
rule b'

Processing

Software Environment

FPGA

packet

filtered
packet

processing
results

rule set update

(b) Rule set update

Figure 5.9 – 2-step detection and reconfiguration

91

extracted
features

rule result
vectorRule

processors

rule set
configuration

Packet
parser

packet

packet

Monitoring
interfacing

Counter
bank

packet

Forwarding
mask

FIFO

Software Environment

FPGA

filtered
packet

counter
values

Data
logging

formatted
results

Rule
controller

Rule
database

Operator
(human or software)

Figure 5.10 – Experimental probe architecture

In Figure 5.9b, the update process is modifying the processing chain according to
the application requirements. New fields, F5 and F6, are extracted from the incoming
packets. The rule set is changed to take advantage of these 2 new fields. Rule b is
replaced by rule b’ and rule c is added in hundreds of microseconds. Alongside the
set modification, packets matching the rule c are forwarded to the host for further
investigation.

As the whole design is based on configuration parameters, the control of the pro-
posed probe is entirely done by the host software, and API calls allow manipulation
of the probe. This software oriented approach completely abstracts the hardware part,
thus improving the user experience. Moreover, final applications have a full control
and knowledge on the preprocessing on packets received.

Thanks to this architecture, a high level of collaboration can be achieved between
the hardware part and the end-user software applications. A possible application is
a multi-layer filtering application, like in [Fie+16], with dynamic adaptation. A first
step of traffic reduction is possible in hardware on the full link, and a second layer of
advanced rules is done on a reduced traffic. This division allows complex classification
with the CPU on the whole traffic and a reactivity of the probe as never done before,
paving the way to future agile high-speed packet processing.

92

5.4.5 Experimental results
5.4.5.1 Experimental probe

The proposed architecture has been deployed on the NetFPGA smart NIC to build
a 40 Gbps experimental probe. This setup focuses on the test of the flexibility and
performance of the proposed classification architecture. Therefore, in addition to the
classifier, the probe offers basic packet processing elements. Figure 5.10 summarizes
hardware and software steps of the experimental probe.

Hardware processing is completed with a forwarding filter mask and a counter
bank after the rule processors. One counter is tracking the number of times one rule
is matched. It is then possible to know the distribution of the packets inside the global
traffic. The forwarding mask allows to select packets matching specific rules for host
transmission. These packets can be studied in detail while avoiding to overwhelm the
host.

The final monitoring application uses the counter values to track the traffic evolu-
tion on the monitored high speed link. Depending on the observed results, an operator
is able to refine the monitoring by updating the rule set. Rules are selected from a pre-
compiled rule database filled in advance. This database can be dynamically completed
according to the needs. The result is a live adaptive packet sampling probe providing
an on-demand detailed view of the current traffic.

Based on this simple probe implementation, it is worth noting that the decision pro-
cess for fields to monitor is totally handled by software through simple API calls. Soft-
ware modifications of the implementation can be done with the abstraction of hardware
implementation. Thus, the use of hardware for preprocessing is completely hidden
from the developer. Moreover, hardware common processing elements do not depend
on the classification part, and can be easily integrated, no overhead is necessary. This
solution is then easy to use and to port between multiple end-user applications.

5.4.6 Benchmark scenario
The test scenario is built around the acceleration of BPF filtering rules. Although
the test is centered on one filtering framework, the classifier can be used to process
rules with any syntax if an adapted compiler is provided. Nonetheless, the growing
importance of the BPF framework [Cil18] for network filtering in the Linux kernel
makes essential the support of this framework.

The test traffic is again a volumetric traffic in order to test performance limits of
the probe. The proposed test probe is fed with a synthetic traffic composed of a base
traffic mixed with traffic spikes on different protocols. This kind of traffic offers a suit-
able validation ground for the test probe with saturated data links. Packet processing
limitation of software makes the management of traffic spike out of reach. Continu-
ous live adaptation to incoming traffic is required to avoid to saturate the probe with
overwhelming traffic.

Figure 5.11 shows the profile of the traffic received by the probe. The base traffic
creates a floor of 30 Gbps of minimal size 64-byte packets, being 44.642 Mpps. This
traffic is composed of a combination of UDP and TCP packets. Traffic spikes are
injected on the link alongside the base traffic to reach 40 Gbps, 59.523 Mpps, the

93

0 20 40 60 80 100 120 140
0

20

40

60

| |α | |
β

Time (s)

N
um

be
ro

fp
ac

ke
ts

(M
pp

s)

Figure 5.11 – Incoming total traffic

maximum rate achievable with the current card interfaces. This new traffic is a mix
between the base traffic and packets targeting specific protocols. The different traffic
spikes are visible in the global traffic shape on Figure 5.11. Spike α contains mainly
ICMP packets and spike β contains mainly DNS packets. The generation of this traffic
is done by a custom generator with the possibility of producing a 40 Gbps traffic of
64-byte packets. The test-bed is available under an open-source license on NetFPGA
SUME for verification [CJa].

The reception of this traffic is handled by the proposed experimental probe. The
hardware test design has a limited consumption of FPGA’s resources: 28.80% of the
LUTs, 12.66% of the FFs, 39.78% of the slices, 34.37% of the LUT/FF pairs. Spare
resources are available to implement additional processing on the FPGA.

The rule set configuration classifies incoming packets with four permanent rules
using constantly the first four rule processors. The last rule processors are left empty
for live rule set adaptation when anomalies are detected because of the traffic spikes.
The four static rules are, in BPF syntax [Bpf]:

1: net 192.168.1

2: ip host 192.168.1.10 and not 192.168.1.20

3: tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and
dst net 192.168.1

4: port 80 and dst ip 192.168.1.10 and (((ip[2:2] -
((ip[0]&0xf) « 2)) - ((tcp[12]&0xf)»2)) != 0)

As operation dependency in not yet handled by the rule processors, the first part of the
rule 4 is done in hardware and the second part is continued in software.

Literature solutions have limited answer to this scenario because of limited flexi-
bility. If observed traffic is unanticipated, a new firmware generation is needed with
the new rule set. This time is too long to hope adapting the probe to incoming traffic

94

0 20 40 60 80 100 120 140
0

20

40

60

| |α | |
β

Time (s)

N
um

be
ro

fp
ac

ke
ts

(M
pp

s)

filter2 filter3 filter4
filter5 filter6 filter7

(a) Global rule counters

0 20 40 60 80 100 120 140
0

20

40

60

80

100

| |α | |
β

Time (s)

N
um

be
ro

fp
ac

ke
ts

(K
pp

s)

filter4 filter6
filter7

(b) Zoomed scale

Figure 5.12 – Counter values after packet filtering on the FPGA

spikes. For several solutions, the static search key makes impossible to process ICMP
packets. This lack of flexibility leaves limited options for network protection. Either
all the unanticipated traffic is blocked, which can not be acceptable, or it is not watched
creating a massive security flaw.

5.4.7 Test results
The stress test aims at analyzing if the proposed design succeeds in achieving flexible
link speed packet classification. At the same time, new rules configuration must be
set at runtime without loosing incoming packets. Therefore, studying counter values
associated to the different rules allows us to have a glimpse of the traffic seen by the
probe.

Figure 5.11 shows the evolution of the counter values over time for the rule 1

95

matching all the packets of the incoming traffic. Figure 5.12 is focused on the counters
on the FPGA for the other rules, each matching a subset of the packets. Some packet
flows have few packets compared to the global traffic and the count is not visible on
Figure 5.12a. So Figure 5.12b presents a zoomed version of the previous one. From
figures, it can be observed that the probe is able to track a wide variety of amount
of traffic. It is possible to monitor a full 40 Gbps link of 64-byte packets, nearly 60
Mpps as shown in Figure 5.11. Figure 5.12 demonstrates that, at the same time, the
probe is able to extract multiple smaller flows of packets from the global traffics, and
even a small flow like the one matched by rule 4 of 30000 pps, representing 0.05% of
the total traffic. It offers the possibility to concurrently maintain coarse-grained and
fine-grained packet processing. With subsampling, a probe has a very low probability
to watch packets of small flows. Thus, seeing all the traffic removes a security flaw.
Indeed, a subtle attack can be covered by a massive but simple one.

An omniscient probe is a fine tool, but configuration adaptation is the key to refine
the observation depending on the traffic distribution. Vertical dashed lines in Fig-
ure 5.12 represent moments when a new configuration is sent to add or remove new
filtering rules following the detection of abnormal packets by the operator. The rule set
is modified on the rule processors 5, 6 and 7 to watch complementary packets. Holes in
the counts show exactly when these rule processors are not configured, in the opposite
to those always in place in the rule set.

Traffic spike α triggers a software anomaly detector which automatically asks for
2 rules to be added to follow the evolution of ICMP traffic. These 2 rules are, in BPF
syntax [Bpf]:

5a: icmp

6a: icmp[icmptype] != icmp-echo and icmp[icmptype] !=
icmp-echoreply

These rules are removed when counters show a reduced abnormal activity. Similarly,
spike β leads to the automatic insertion of 3 new rules monitoring DNS traffic based
on an anomaly detection by software:

5b: udp port 53

6b: udp port 53 and ip dst 192.168.1.20

7b: udp port 53 and ip[2:2] >= 700

It can be observed in Figure 5.12 that the configuration time of one rule in hun-
dreds of microseconds is seen as instant. The configuration length is mainly due to the
NetFPGA driver performance. With a more efficient driver, this time can be greatly
reduced. It is worth noting that the modification of the rule set on the probe has no
impact on the filters already in place. Thus, the design offers a proper way of rapid
adaptation to incoming traffic without loss of packets.

To monitor the same type of traffic, a classic FPGA approach will specialize the
design to meet the wanted application. The addition of new fields to the monitoring
rules list leads to the generation of a new design and the reconfiguration of the FPGA.
The proposed design succeeds in building an adaptive probe without packet loss. The

96

0 20 40 60 80 100 120 140
0

20

40

60

80

100

| |a | |b

Time (s)

N
um

be
ro

fp
ac

ke
ts

(K
pp

s)

http filter
icmp type 3
icmp type 5

Figure 5.13 – Counter values of software filtering

different levels of stress do not impact performance and rapid modifications of the
setup. Thus, it is validated that the proposed design allows to track incoming packets
under any condition.

Figure 5.13 shows the counter values of packet flows composed of packet for-
warded from the FPGA to the host. These packets are matched by the rules 4 and 6a.
The rule 4 results lead to the observation that the hardware part tracks packets with
more precision. Indeed, the evolution of values in Figure 5.12b is smoother than the
ones in Figure 5.13. Approximations in Figure 5.13 are created by software disruptions
during packet processing.

The rule 6a extracts ICMP packets which are not ping or reply from the principal
traffic. Figure 5.13 shows a simple example of advanced processing. An advanced rule
divides ICMP packets transferred to the host into ICMP packets of type 3 and type 5.

More than a flexible probe, the design offers a tool for puncturing precise traffic
flows from the global traffic and refining the monitoring in software. With an adapted
application driving the probe, monitoring the traffic can evolve following the distri-
bution of the traffic. This highly dynamic rule set management enables the execution
of precise packet processing applications on high data rate traffic. This performance
is unmatched by other solutions in the literature. Alongside a relatively limited con-
figurability, hardware only solutions are not able to define complex rules in software.
HyPaFilter+ [Fie+17] considers a similar approach, but the fixed hardware rules limits
the performance. This is a problem for very high speed networks with variable traffic
where even a fraction of traffic can overwhelm the software.

In addition, this classification architecture works at the frequency of the NetFPGA
based design, which is 180 MHz. However, the packet parser unties the packet from
the chunk datapath with the production of one set of feature results at each packet. As
the fully pipelined design is capable of processing a new packet at each clock cycle,
it would be possible to process up to 180 Mpps with a packet parser fast enough,
corresponding to 120 Gbps of 64-byte packets. The classification design could be
working at smaller frequency, releasing some of the placement constraints.

97

0 50 100 150 200 250 300 350 400 450 500
0

20

40

Number of rule processors

U
til

iz
at

io
n

(%
)

Relative LUT usage
Relative FF usage

Figure 5.14 – Resource consumption for different rule processors number with 4-depth
rules

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

Depth of rules

U
til

iz
at

io
n

(%
)

Relative LUT usage
Relative FF usage

Figure 5.15 – Resource consumption for different rule depths with 50 rule processors

5.4.8 Rule processor study
The finite number of resources on an FPGA inevitably limits the scalability of the
design. Meaningful elements of the design are the number of parallel processors and
the rule depth capability of the processors. These parameters determine the number of
rules the classifier can support as well as the length of these rules.

Figures 5.14 and 5.15 summarize the impact of the variation of such parameters on
the occupation space of rule processors relative to the resource of Xilinx XC7VX690T
FPGA. Figure 5.14 is expending the number of concurrent rule processors until the
implemented design is not able to sustain the required timing target. Rule processors
are sized to process rules of a depth of 4 with 32-bit inputs. It can be observed that
the resource consumption is growing linearly with the number of rule processors. In
Figure 5.15, occupation results are shown for multiple depth configurations of 50-rule
processors. While the number of LUTs is increasing linearly, the number of FFs is
increasing slightly faster.

The obtained results can be used to extract the resource consumption for one rule,
and therefore to estimate the space occupation for a target configuration. This is the
key to achieve an efficient hardware and software partition of the application. The
purpose of this architecture is designed to cut the number of packets that an associated
software has to process. Therefore, rules of limited length can be executed in hardware
to avoid resource overconsumption, as larger rules being are allowed by the following
software processing.

Table 5.2 shows the comparison between the proposed solution and multiple classi-
fication solutions presented in [FHS17]. All these results are obtained after implemen-
tation on the same platform, the NetFPGA SUME, and on the same FPGA. These

98

proposed MPFC [FHS17] StrideBV [FHS17] TCAM [FHS17]
LUTs/rule 280 2.01 11.65 65.82
FFs/rule 426 3.46 13.70 193.40

BRAM/rule 0.00 0.00 0.27 0.00

Table 5.2 – Comparison of per-rule resource consumption

results are focused on the per rule consumption of FPGA resources. The designs
in [FHS17] are operating on a static input key representing the standard network 5-
tuple composed of 104 bits. For the sake of fair comparison, the rule processors have
been tuned to be able to support rule classification on equivalent parameters. Thus,
processors take 4 inputs of 32 bits for a total of 128 bits, approximating the key of
other solutions.

The observation of Table 5.2 highlights the cost of the flexibility brought by the
proposed solution. Compared to other solutions, presented rule processors are able to
process a dynamic rule set as well as a dynamic field set instead of using a static search
fixed key. Moreover, the proposed solution is using extended matching operations
leading to more diverse packet matching but more resource consumption too. Less
rule integration is compensated by the possible high collaboration with the software
brought by the flexibility. When integrated inside an end-user probe, this architecture
offers a plug-in to control packets from a software application at high data rate. Such
processing block is not designed to support a very large rule set sparsely updated, but
aims to be dynamically used to refine information on the traffic while reducing the
quantity traffic to process in the software part.

In opposition to other solutions, this approach defines a packet classifier with a
unique flexibility combining a flexible packet parser and rule processors. The processor-
oriented architecture allows to adapt the processors to provide extended or reduced
classification capabilities at a cost of resources or to save resources. Thus, the archi-
tecture can be tuned according to the needs.

Finally, the addition of a global controller can optimize the usage of processors.
Currently, one processor is used for one rule for every packets. However, headers of
incoming packets can be used to tune processors configuration. Such an architecture
would be able to process rules for different packets on the same processor.

5.5 Conclusion
This chapter is focused on the validation of the concepts introduced in the previous
chapters. Two experimental applications are used to test the functionality and the
performance of the designs. These applications observe constraints not met by the
solutions in the literature. Tests are executed with a test-bed capable of dynamically
saturating a 40 Gbps link.

The first application uses only the proposed packet parser to create a simple foren-
sic application. Thanks to the flexibility of the packet parser, it is possible to re-
fine monitored features to have an accurate view of the traffic composition when an
anomaly is detected. The forensic probe is able to detect different volumetric attacks

99

on different packet types on a saturated 40 Gbps link. This capability can not be ac-
quired with any other packet parser of the literature.

The second application combines the packet parser, an interconnection network
and rule processors to create an advanced solution for hardware and software packet
classification. This unique classifier makes possible to update the field set and the
rule set at runtime without packet loss. The software-oriented usage thanks to the API
allows to define the rule as any software classifier. While the test is done on 40 Gbps
traffic, the classification design is capable to process 120 Gbps of 64-byte packets
provided faster interfaces. The design of this innovative packet classifier has led to a
publication [CJ+18], which is currently under review.

These tests validate the proposed approach of a flexible probe based on mixed
hardware and software processing. With proper base blocks, this paradigm allows the
construction of innovative probes capable of:

• sustaining high throughput links at line rate without packet loss,

• executing flexible processing,

• controlling the amount of data processed by the CPU,

• enabling active and reactive software processing.

The unique combination of all these properties makes the designed probes content-
aware with adaptation and resilience to a large panel of traffic. From large volumetric
to small covered attacks, common networking operations can keep up with the traffic
while avoiding any security flaws, as never done before.

100

Chapter 6

Conclusion

6.1 Main contributions
This thesis aims at studying packet processing solutions meeting current and future
computer networks requirements. The quick expansion of networks usage requires
cutting edge networking elements able to sustain at the same time the flexibility re-
quired by SDN and the high data rate offered by network links. Current networking
solutions are facing a real challenge to provide a secure and manageable infrastructure
to end-users.

6.1.1 High performance monitoring systems
While optimizations can be done at algorithmic level, the performance of a networking
application is mainly linked to the hardware platform used. Each system offers differ-
ent advantages and drawbacks. In order to provide fitting solutions to modern network
requirements, the following criteria must be met, in order of importance:

• high throughput (from 10 Gbps up to 1 Tbps),

• high flexibility (SDN compliance),

• low reaction time (at link time scale),

• high scalability (from a 10 Gbps link to many links of 100 Gbps),

• high accessibility (for network engineers),

• high portability (not hardware vendor specific).

I studied already existing solutions in the light of these minimal requirements.

Commodity hardware Commodity hardware is the most common platform used
for packet processing. Indeed, CPU-based platforms are widespread due to a large
accessibility, flexibility and portability. Applications can be easily updated and a large
number of tools exists to perform networking actions. The platform is extendable with,
for instance, the addition of GPUs if more processing power is needed.

101

However, this genericity of commodity hardware limits the throughput of pro-
cessed packets. 20 Gbps and more per CPU chip is nearly impossible to obtain, except
for some highly optimized solutions. Such a solution removes all the flexibility aspects
of software, especially accessibility and portability, to build a solution which can be
considered as no longer commodity hardware. Moreover, no off-the-shelf motherboard
exists with more than two CPU sockets, so a solution based on commodity hardware
is not scalable for larger links.

Specialized hardware As is the case with most applications, performance issues
can be tackled by adopting ASIC devices. They take advantage of high parallelism
and processing specialization to accelerate specific applications. However, the lack of
flexibility of ASIC devices restricts their usage to specialized accelerators. They can
only perform operations included at design time, which means usually months or years
prior to actual usage.

The use of specialized processor (NPUs) combines the general approach of CPU
with ASICs used as coprocessors. Despite good performance, these elements are ven-
dor specific, limiting portability and accessibility, and cover only a fraction of net-
working operations. When incoming traffic or end-user applications do not match the
foreseen accelerated blocks, NPUs are as good as CPUs for packet processing. An
NPU combines both the drawbacks of CPU and ASIC.

Reconfigurable hardware FPGAs offer a similar approach as ASICs with high par-
allelism and specialization, but they trade some performance for reconfigurability.
They can still provide high processing power, even if at lower frequencies and with
lower density than ASIC. Yet, they can be reconfigured "in the field", which offers
the possibility to modify existing operations. This flexibility has an higher cost than
software flexibility, mainly with high design and compilation time, and processing in-
terruption during reconfiguration. The low accessibility of FPGA design can be com-
pensated by the existence of assisting tools and the portability of designs ensured by
HDL languages.

The good ratio between performance and flexibility and recent developments in
FPGA technology, with larger chips and partial reconfiguration, have changed the sta-
tus of FPGAs from ASIC prototyping elements to end-user products. In networking,
this increased interest has lead to the development of smart NICs, which are NICs
enhanced with the integration of an FPGA chip. These new NICs have the ability
to offload packet processing for CPU at the link level. Scalability is ensured by the
development of new chips with increased input and output bandwidth.

All these solutions are not able to answer alone the constraints of live traffic pro-
cessing. The arrival of smart NICs offers the possibility to combine FPGA and com-
modity hardware. These new solutions can counterbalance hardware and software
weaknesses to achieve results inaccessible until now.

6.1.2 Hardware and software design
The key of smart NICs integration into commodity hardware is the mitigation of the
FPGA drawbacks by the software. Current solutions try to improve the common design

102

flow of FPGAs. Reduced development time with high level tools and partial reconfig-
uration are used for the production of highly specialized architectures. However, the
implementation process of an architecture on an FPGA is time-consuming, can fail if
the design does not fit on the targeted FPGA and is mandatory.

Unlike other solutions, I considered a different approach from the common top
down design. Instead of using the FPGA as the main flexibility provider in the hard-
ware, a parameterized static architecture is used. With a well partitioned application
and configurable hardware blocks, it is possible to use a static architecture as a pro-
grammable accelerator with parameters modification at runtime. Runtime flexibility
is thus provided by parameters, while updatability is provided by the reconfigurable
nature of FPGA. This division aims at using the strengths of both FPGA and CPU to
offer a compromise between high flexibility and very high performance. I defined two
division concepts.

Feed forward The software is responsible for the definition of configuration param-
eters and the hardware executes accelerated processing according to these parameters.
I demonstrated the relevance of this paradigm with the design of a synthetic traffic gen-
erator. The software part takes advantage of common networking tools to create packet
streams to replay and dynamically transfers the corresponding configuration parame-
ters. The hardware part ensures the generation of the requested traffic at 40 Gbps, and
even 160 Gbps, even with the smallest Ethernet packets.

Feedback loop In this paradigm, software processing elements receive information
from the hardware processing elements. The constant flow of information gives the
knowledge about the state of the link. Thus, with a runtime configurable hardware
architecture, a monitoring probe can be continuously adapted to the incoming traffic.

Contributions on this hardware and software co-design paradigm have led to the
following publications:

• F. Cornevaux-Juignet et al. “Sonde matérielle-logicielle de surveillance de trafic
très haute performance”. In: Colloque du GDR SOC2. 2017

• F. Cornevaux-Juignet et al. “Combining FPGAs and processors for high-throughput
forensics”. In: 2017 IEEE Conference on Communications and Network Secu-
rity (CNS). 2017, pp. 388–389. DOI: 10.1109/CNS.2017.8228684

6.1.3 Innovative flexible packet parser hardware architecture
The existence of a flexible monitoring probe is directly linked to the existence of flex-
ible hardware architectures. I studied the design of a flexible front-end for packet
processing, a packet parser. This element is split in two parts.

Flexible packet parser This part executes the decapsulation of incoming packets.
The successive header layers of a packet are removed and features of interest for the
following processing are extracted. The innovative proposed architecture enables the
live configuration of the processed headers as well as the extracted features. The infor-
mation collected on packets is adapted to the current needs of applications.

103

https://doi.org/10.1109/CNS.2017.8228684

Efficient interconnection network The packet parser alone is not sufficient to dis-
tribute the features to the different processing elements of the next processing steps.
Duplicating the extraction of a feature for multiple processing elements is not effi-
cient in terms of resources. The development of a simple asymmetric multistage in-
terconnection network based on Benes networks validated the advantage of using an
interconnection network for the distribution of features. It is possible to connect more
outputs with less resource consumption. Further improvement has been studied with
the Clos asymmetric interconnection networks, but this is still in its early phase, and
need some further work.

Contributions on the implementation of the flexible packet parser have led to the
following publication:

• F. Cornevaux-Juignet et al. “Open-source flexible packet parser for high data rate
agile network probe”. In: Workshop on Network and Cloud Forensics hosted by
2017 IEEE Conference on Communications and Network Security (CNS). 2017,
pp. 610–618. DOI: 10.1109/CNS.2017.8228685

6.1.4 Validation of the flexible approach
For a complete performance evaluation of the proposed approach, I designed a test-
bed for the validation of networking devices. This platform is based on NetFPGA
SUME boards working at 40 Gbps with a generator capable of generating traffic with a
controlled packet composition. Two simple networking applications were developed to
test both the throughput and the functionality of the previously presented architectures.

In the first use case, the packet parser is completed with counting and anomaly
detection modules to create an application for network forensics. Thanks to the parser
flexibility, the software application is able to monitor the traffic with incremental re-
finement of the watched protocols to detect a volumetric attack on the link. This unique
functionality ensures the capability of the probe to process packets with any protocol
composition, as in software, at the link rate.

The second use case considers the addition of rule processors to the packet parser
to produce a highly flexible hardware packet classifier. With the definition of a rule
set translated in configuration parameters by a driver, applications can precisely select
specific packets inside the full link traffic. It is possible to dynamically change the rule
set as well as the feature set at runtime, as never seen in the literature. In addition, the
packet selection can be further refined with a second layer of complex classification in
software. This packet classifier is the base for dynamic packet analysis at 40 Gbps and
beyond.

Contributions on the implementation of the packet classifier have led to the follow-
ing publication:

• submitted: F. Cornevaux-Juignet et al. “High data rate dynamic rule processor
for live network packet analysis”. In: IEEE/ACM Transactions on Networking
(2018)

The recent evolution of the amount of generated network traffic and its diversity
left common networking solutions helpless to accurately handle the traffic. Costly or

104

https://doi.org/10.1109/CNS.2017.8228685

poorly adapted architectures are commonly used to cope with the required processing
power. Even if the latest solutions tried to tackle the increase of traffic throughput,
none was focused on the live adaptation of processing to the traffic content. Therefore,
they were unable to provide accurate and reliable network management and security. I
provided guidelines for hardware and software collaboration and the first basic blocks
to start building the next generation of smart NICs.

6.2 Perspectives
Because of the growing importance of computer networks in the everyday life, the
quantity of traffic is constantly increasing. The diversity of the traffic is maintained by
a wide number of network services. Moreover, it is not possible to predict the lead-
ing services of tomorrow and their impact on the network traffic. Today networking
devices must be able to foresee this growth of traffic and must be adapted for the new
applications.

The work proposed in this manuscript validates the design of flexible architectures
for high-speed network at 40 Gbps. As the scalability of the system is of prime interest
for future networks, it is planned to upgrade the test-bed to sustain 160 Gbps traffic.
The packet preprocessing part, the packet parser and rule processors, must efficiently
consume resources of the FPGA, saving a maximum resources for accelerated applica-
tions in order to meet the link throughput requirement. A point of optimization is the
interconnection network with the study of Clos interconnection networks to reduce the
number of crosspoints. Tuning the different configuration parameters would lead to
the discovery of the interconnection network the most suitable for the right number of
inputs and outputs. Further scalability of the designs will be studied with the collabo-
ration of multiple parallel boards driven by one software device, and with the upgrade
of smart NICs equipped with 400 Gbps interfaces.

The increased complexity of the network traffic is difficult to emulate with a simple
traffic generator. The proposed generator is a first step for the dynamic generation of
synthetic traffic. Dynamic traffic can be generated at 40 Gbps, and even 160 Gbps, but
the architecture can be improved to generate more complex traffic profiles for a better
approximation of real traffic. First, reducing the quantity of data to transmit between
the host and the FPGA would allow more frequent parameters modifications. Second,
the transmission of a new configuration still takes hundreds of microseconds and is
principally limited by the PCIe driver and hardware blocks supplied by the NetFPGA
project. More optimized PCIe communications would allow a closer collaboration be-
tween hardware and software with more frequent replayed packet stream modification.

Reconfigurable hardware offers a compromise for line rate packet processing at 40
Gbps and beyond as well as flexibility. FPGAs have the potential to solve the issue of
high performance networking while keeping a similar flexibility as current platforms.
This potential have led multiple major network actors, like Microsoft or OVH, to use
FPGAs in their infrastructures. The emergence of smart NICs has changed the status
of FPGA from prototyping platform to end-user product, stimulating the market and
the research.

A significant advantage is that the evolution of FPGA technology opens network-
ing possibilities. For example, with partial reconfiguration and bitstream relocation,

105

it would be easy integrate to change the behavior of established architectures with the
integration of new accelerated applications. Moreover, as FPGAs are not dedicated
to networking, any improvement created for other fields could benefit networking de-
vices.

Nonetheless, the adoption of FPGA-based devices by the community would require
an easy access from the currently widespread networking tools. Despite the promising
performance of this work for high-speed packet analysis, a software capture framework
is necessary to ease the accessibility for end-users. The addition of a control GUI
would allow an easier manipulation of the monitoring probe. For instance, the creation
of a plug-in for high-speed packet analysis in Wireshark would be an immense feature
for the adoption.

We could wonder if the huge growth of network will outmatch the processing ca-
pabilities of FPGA-based smart NICs. As any other platform is already obsolete, so-
lutions to face the challenges of tommorow’s networks, a diverse traffic and terabits
per second throughput, will only come from the best exploitation of the potential of
reconfigurable devices.

106

Glossary

ALU An Arithmetic Logic Unit (ALU) is a fundamental combinational block of com-
puting circuits performing configurable base arithmetic and logic operations for
a larger processing element. 89, 90

API An Application Programming Interface (API) is a specified interface a program
makes available, so as to communicate with other programs. It can be made of
function calls, network requests. . . . 4, 15, 19, 33, 40, 42, 62, 66, 78, 80, 83, 88,
92, 93, 100

ASIC An Application-Specific Integrated Circuit (ASIC) is designed at hardware level
using basic logic and arithmetic gates to realize a specific function at very high
speed. vi, vii, 7, 18–21, 26, 102

BPF Berkeley Packet Filter (BPF) is a widespread software framework for packet
filtering. It contains a way to collect packet and defines a language to set filtering
rules. 44, 86, 90, 93, 94, 96

BRAM A Block RAM (BRAM) is a memory module directly available on an FPGA.
It is smaller than external memory but more efficient than logic to locally store
data. 42

CAM A Content-Addressable Memory (CAM) is an associative memory comparing
the input search key against stored data and returning the matched data. 58, 86,
111

CMS A Count Min Sketch (CMS) is a probabilistic algorithm to store a list of counters
in a constrained memory space. 79

CPU A Central Processing Unit (CPU) is the integrated circuit used to make all basic
operations in a computer. It may contain multiple cores to be able to process
multiple operations concurrently. There may also be more than one CPU coop-
erating in a computer to increase the parallelism. vi, vii, xii, xvi, 12–20, 25, 26,
28, 33, 37, 43, 45, 46, 48, 49, 51, 86, 92, 100–103, 110

DDoS Distributed Denial of Service (DDoS) attacks use multiple computers con-
nected to the Internet to send more traffic to a target than it can handle, so as
to make it unresponsive. 2

107

DDR Double Data Rate (DDR) is a way of synchronous data transfer. Transfers occur
on both rising and falling edges of the clock. This allows a double transfer rate.
29

DMA Direct Memory Access (DMA) is a feature allowing hardware to access the
system memory without going through the CPU. 30

DNS Domain Name Service (DNS) is a protocol that maintains an association be-
tween easy-to-remember domain names and routable IP addresses. It provides
simpler addresses to contact machines. 44, 81, 83, 90, 94, 96

DoS Denial of Service (DDoS) attacks try to exhaust a target resources to make it
unavailable. 2

DPI Deep Packet Inspection (DPI) is a traffic classification technique which consists
in reading the full content of each received packet and check if it fits some pre-
defined signatures. Each signature belongs to a class of applications to which
the packet is then assigned. 15, 44

DRAM A Dynamic Random Access Memory (DRAM) stores bits in capacitors. Mem-
ory must be periodically refreshed because capacitors leak and eventually loose
stored data. 29, 111

FF A Flip-FLop (FF) is a bistable multivibrator used in clocked circuits to store a bit
of data. The output is only changed at one of the clock edges. 64, 71, 79, 94, 98

FIFO First In First Out (FIFO) is a method used to queue data. All received data items
are stored in an ordered way. The read item is always the one that was stored
first. Once an item is read, it is removed from the queue first. 80

FPGA A Field-Programmable Gate Array (FPGA) is an integrated circuit that can
be configured as many times as necessary at a very low level by connecting
logical gates and registers together. The main languages used to represent the
configuration are VHDL and Verilog. v, vii–xiii, xvi, xix, xxi, 20–35, 37–39,
41–43, 45, 46, 48, 49, 51, 53, 55, 56, 58, 59, 63–66, 71, 74, 75, 78, 79, 83,
86–88, 90, 94, 96–99, 102, 103, 105, 106

GPGPU General Purpose Processing on Graphics Processing Unit (GPU) uses GPU
to offload computation traditionaly made by CPU. The large number of parallel
cores provides a mean to improve computation time. 15

GPU A Graphics Processing Unit (GPU) is a specialized integrated circuit designed
for images manipulations. They are also used in other situations. They are partic-
ularly suited for highly parallel floating-point calculations on important amounts
of data. vi, 12, 13, 15–17, 101

GUI A Graphical User Interface (GUI) is a communication tool between a computer
and a human based on visual representations on a screen. It is the most current
kind of interface used on computers. 43, 106

108

HDL An Hardware Description Language (HDL) is a specialized language used to
describe electronic circuits. 21, 22, 31, 32, 53, 102

HLS High-Level Synthesis (HLS) is an automated process generating an hardware
design from a high-level algorithmic description in common software language.
22, 23, 31

HTTP HyperText Transfer Protocol (HTTP) is the communication protocol used by
the web. 81, 83

ICMP Internet Control Message Protocol (ICMP) is used by network devices to re-
quest and send status messages. It is mostly known for its "ping" feature that is
made to check the responsiveness of an IP address. 44, 81, 83, 94, 95, 97

IDS An Intrusion Detection System (IDS) is an application monitoring a network to
detect and mitigate malicious behaviors. 16

IoT Network of connected devices. 2, 3

IP Intellectual Property is a term used to design closed-source entities provided by
third-parties in electronics. 22, 30

IP Internet Protocol (IP) is the base protocol used on the Internet. 3, 46, 52, 55, 63,
80, 81, 83, 87

IPv4 Internet Protocol version 4 (IPv4) is the current version of the protocol. It is
slowly being replaced by version 6. xix, 16, 17, 25, 54, 55, 58, 61, 62, 79

IPv6 Internet Protocol version 6 (IPv6) is a new version of the protocol being currently
deployed. It has not yet replaced the current version 4, but should soon. 16, 55,
59

LUT A Look-Up Table (LUT) realizes a function that takes a word made of a certain
number of bits as input, and outputs another word made of another number of
bits, depending only on the input. It can be configured to link each input word
to any output word. 64, 71, 79, 89, 90, 94, 98

NAPI New Application Programming Interface (NAPI) is an improvement of the
Linux kernel to support high-speed networking with a lighter load on the CPU.
13

NIC A Network Interface Card (NIC) is a board that can be connected to a computer to
provide it a network connection. The most common wired boards use the low-
level Ethernet protocol. They usually manage the lowest parts of the network
stack to help the CPU. A driver is needed for the CPU to communicate with the
board. vii, viii, xii, xix, 4, 11–15, 17, 25–32, 43, 45, 46, 48, 49, 51, 78, 79, 85,
86, 93, 102, 105, 106

NoC A Network on Chip (NoC) is a communication system between multiple ele-
ments on the same chip. 24, 53, 67

109

NPU A Network Processing Unit (NPU) is a specialized integrated circuit designed
for network applications. It has a direct access to network interfaces, and some
specialized instructions (CRC computation for example) make frequent opera-
tions on packets faster. 18, 19, 23, 25, 26, 102

NUMA Non Uniform Memory Access (NUMA) is a computer architecture where
each processor is assigned an area of RAM with low access delays. Other areas
are accessible but slower. 14

OS An Operating System (OS) is a system software providing hardware resources and
software resources management. 13, 17, 44

OSI The Open System Interconnection (OSI) model is a model partitioning a com-
munication system into abstraction layers to aim at communication devices in-
teroperability. 8, 52

PCAP PCAP (Packet CAPture) is both an API to capture packets on a network inter-
face, and a file format used to save a trace of captured packets. Implementations
exist for Windows and Linux. 37, 38

PCI Peripheral Component Interconnect (PCI) is a standard for a local communica-
tion bus used to connect extension cards to the motherboard of a computer. 12,
25

PCIe Peripheral Component Interconnect express (PCIe) is a standard for a local se-
rial communication bus. It is used to connect extension cards to a motherboard.
xxi, 12–14, 17, 25, 29–31, 42, 80, 105

PDU A Protocol Data Unit (PDU) is a message specific to a protocol. 8

QDR Quad Data Rate (QDR) is a way of synchronous data transfer. Reads and writes
are made on separated clocks, and transfers occur on both rising and falling
edges of the clock. This allows to quadruple the transfer rate with interleaved
cycles. 21, 29

QoS Quality of Service (QoS) is a measure of the quality assured on a netwokr link.
Many parameters can be used: inter-packet delay, jitter, data rate, etc. 2, 7

RAM A Random Access Memory (RAM) is a memory with fast read and write op-
erations at any address. The memory is volatile, which means that data is lost
when power is cut. 21, 29

RDMA Remote Direct Memory Access (RDMA) is a system to transfer data directly
from one device to another device without going through the CPU. 17

RSS Receive Side Scaling (RSS) is a technology used by some NICs to send received
packets to the host CPU in different queues, which can be handled in parallel by
the CPU. 13, 14

110

SAP The Service Access Point (SAP) names the direct upper-layer protocol of OSI
model where the information is delivered. Its value indicates the protocol to
deliver to. 53

SDN Network conception paradigm setting the separation between the data plane and
the control plane to get a network abstraction. v, vi, 3, 4, 7, 12, 18, 19, 28, 32,
44, 86, 101

SFP+ An enhanced Small Form-factor Pluggable (SFP+) is a small pluggable transceiver
that converts optical signal to electrical signal and vice versa. 30

SIMD Single Instruction Multiple Data (SIMD) describes a computer architecture
where multiple elements simultaneously perform the same operation on different
data. 16, 17

SPEC The Standard Performance Evaluation Corporation (SPEC) is an organization
producing standardized performance benchmarks for computers. Obtained re-
sults are published on the organization’s web site. 12

SRAM A Static Random Access Memory (SRAM) stores bits in flip-flop. In the
contrary of DRAM, no periodic refresh is needed and SRAM is faster but more
expensive. 29

SVM Support Vector Machine (SVM) is a supervised learning algorithm used for clas-
sification. It is based on finding hyperplanes between categories. 21

TCAM A Ternary Content-Addressable Memory (TCAM) is a CAM where the input
key can have a "don’t care" state. 86

TCP Transmission Control Protocol (TCP) is a transport protocol very commonly
used over IP. It is designed for reliable connected data transfer. iv, 2, 46, 52, 63,
81, 83, 87, 93

UDP User Datagram Protocol (UDP) is a transport protocol very commonly used over
IP. It is designed for simple data transfer. xix, 46, 52, 54, 55, 58, 62, 83, 87, 93

URL Uniform Resource Locator (URL) is a string indicating the location of a resource
on a computer network. It is most commonly used to reference web pages. 25

VHDL VHSIC Hardware Description Language is an hardware description language
used to describe electronic circuits. 22

111

112

Bibliography

[And+14] J. G. Andrews et al. “What Will 5G Be?” In: IEEE Journal on Selected
Areas in Communications 32.6 (2014), pp. 1065–1082. ISSN: 0733-
8716. DOI: 10.1109/JSAC.2014.2328098.

[Ant] Antichi. OSNT. Accessed: 2018-03-05. URL: http://osnt.org/.

[ACG12] G. Antichi, C. Callegari, and S. Giordano. “An open hardware imple-
mentation of CUSUM based network anomaly detection”. In: Global
Communications Conference (GLOBECOM), 2012 IEEE. 2012, pp. 2760–
2765. DOI: 10.1109/GLOCOM.2012.6503534.

[Ant+14] G. Antichi et al. “OSNT: open source network tester”. In: IEEE Net-
work 28.5 (2014), pp. 6–12. ISSN: 0890-8044. DOI: 10.1109/MNET.
2014.6915433.

[AB11] M. Attig and G. Brebner. “400 Gb/s Programmable Packet Parsing on
a Single FPGA”. In: 2011 ACM/IEEE Seventh Symposium on Architec-
tures for Networking and Communications Systems. 2011, pp. 12–23.
DOI: 10.1109/ANCS.2011.12.

[Bpf] BPF filter syntax. Accessed: 2017-12-19. URL: http://alumni.
cs.ucr.edu/~marios/ethereal-tcpdump.pdf.

[BBS17] I. Benacer, F. R. Boyer, and Y. Savaria. “A high-speed traffic man-
ager architecture for flow-based networking”. In: 2017 15th IEEE In-
ternational New Circuits and Systems Conference (NEWCAS). 2017,
pp. 161–164. DOI: 10.1109/NEWCAS.2017.8010130.

[Ben62] V. E. Beneš. “Heuristic remarks and mathematical problems regarding
the theory of connecting systems”. In: The Bell System Technical Jour-
nal 41.4 (1962), pp. 1201–1247. ISSN: 0005-8580. DOI: 10.1002/
j.1538-7305.1962.tb03276.x.

[BPK16] P. Benáček, V. Pu, and H. Kubátová. “P4-to-VHDL: Automatic Gener-
ation of 100 Gbps Packet Parsers”. In: 2016 IEEE 24th Annual Inter-
national Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM). 2016, pp. 148–155. DOI: 10.1109/FCCM.2016.
46.

113

https://doi.org/10.1109/JSAC.2014.2328098
http://osnt.org/
https://doi.org/10.1109/GLOCOM.2012.6503534
https://doi.org/10.1109/MNET.2014.6915433
https://doi.org/10.1109/MNET.2014.6915433
https://doi.org/10.1109/ANCS.2011.12
http://alumni.cs.ucr.edu/~marios/ethereal-tcpdump.pdf
http://alumni.cs.ucr.edu/~marios/ethereal-tcpdump.pdf
https://doi.org/10.1109/NEWCAS.2017.8010130
https://doi.org/10.1002/j.1538-7305.1962.tb03276.x
https://doi.org/10.1002/j.1538-7305.1962.tb03276.x
https://doi.org/10.1109/FCCM.2016.46
https://doi.org/10.1109/FCCM.2016.46

[Ben+14] P. Benáček et al. “Change-point Detection Method on 100 Gb/s Eth-
ernet Interface”. In: Proceedings of the Tenth ACM/IEEE Symposium
on Architectures for Networking and Communications Systems. ANCS
’14. Los Angeles, California, USA: ACM, 2014, pp. 245–246. ISBN:
978-1-4503-2839-5. DOI: 10.1145/2658260.2661773.

[BI17] E. Bertino and N. Islam. “Botnets and Internet of Things Security”. In:
Computer 50.2 (2017), pp. 76–79. ISSN: 0018-9162. DOI: 10.1109/
MC.2017.62.

[Bia+06] A. Bianco et al. “Boosting the performance of PC-based software routers
with FPGA-enhanced network interface cards”. In: 2006 Workshop on
High Performance Switching and Routing. 2006, 6 pp.–. DOI: 10.
1109/HPSR.2006.1709693.

[BAB15] A. Bitar, M. S. Abdelfattah, and V. Betz. “Bringing programmability
to the data plane: Packet processing with a NoC-enhanced FPGA”.
In: 2015 International Conference on Field Programmable Technology
(FPT). 2015, pp. 24–31. DOI: 10.1109/FPT.2015.7393125.

[Bon+14] Nicola Bonelli et al. “A Purely Functional Approach to Packet Pro-
cessing”. In: Proceedings of the Tenth ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems. ANCS ’14.
Los Angeles, California, USA: ACM, 2014, pp. 219–230. ISBN: 978-
1-4503-2839-5. DOI: 10.1145/2658260.2658269.

[Bon+12] Nicola Bonelli et al. “On Multi—gigabit Packet Capturing with Multi—
core Commodity Hardware”. In: Proceedings of the 13th International
Conference on Passive and Active Measurement. PAM’12. Vienna, Aus-
tria: Springer-Verlag, 2012, pp. 64–73. ISBN: 978-3-642-28536-3. DOI:
10.1007/978-3-642-28537-0_7.

[Bra+13] L. Braun et al. “Adaptive load-aware sampling for network monitoring
on multicore commodity hardware”. In: 2013 IFIP Networking Con-
ference. 2013, pp. 1–9.

[Bre09] G. Brebner. “Packets everywhere: The great opportunity for field pro-
grammable technology”. In: 2009 International Conference on Field-
Programmable Technology. 2009, pp. 1–10. DOI: 10.1109/FPT.
2009.5377604.

[Bre15] G. Brebner. “Programmable hardware for high performance SDN”. In:
2015 Optical Fiber Communications Conference and Exhibition (OFC).
2015, pp. 1–3. DOI: 10.1364/OFC.2015.Th3J.3.

[BJ14] G. Brebner and W. Jiang. “High-Speed Packet Processing using Re-
configurable Computing”. In: IEEE Micro 34.1 (2014), pp. 8–18. ISSN:
0272-1732. DOI: 10.1109/MM.2014.19.

[CM97] Chihming Chang and Rami Melhem. “Arbitrary Size Benes Networks”.
In: Parallel Processing Letters 7 (1997), pp. 279–284.

114

https://doi.org/10.1145/2658260.2661773
https://doi.org/10.1109/MC.2017.62
https://doi.org/10.1109/MC.2017.62
https://doi.org/10.1109/HPSR.2006.1709693
https://doi.org/10.1109/HPSR.2006.1709693
https://doi.org/10.1109/FPT.2015.7393125
https://doi.org/10.1145/2658260.2658269
https://doi.org/10.1007/978-3-642-28537-0_7
https://doi.org/10.1109/FPT.2009.5377604
https://doi.org/10.1109/FPT.2009.5377604
https://doi.org/10.1364/OFC.2015.Th3J.3
https://doi.org/10.1109/MM.2014.19

[Che+08] S. Che et al. “Accelerating Compute-Intensive Applications with GPUs
and FPGAs”. In: 2008 Symposium on Application Specific Processors.
2008, pp. 101–107. DOI: 10.1109/SASP.2008.4570793.

[CP15] R. Chen and V. K. Prasanna. “Automatic generation of high through-
put energy efficient streaming architectures for arbitrary fixed permuta-
tions”. In: 2015 25th International Conference on Field Programmable
Logic and Applications (FPL). 2015, pp. 1–8. DOI: 10.1109/FPL.
2015.7293944.

[CP17] R. Chen and V. K. Prasanna. “Computer Generation of High Through-
put and Memory Efficient Sorting Designs on FPGA”. In: IEEE Trans-
actions on Parallel and Distributed Systems 28.11 (2017), pp. 3100–
3113. ISSN: 1045-9219. DOI: 10.1109/TPDS.2017.2705128.

[Cil18] Cilium. Why is the kernel community replacing iptables with BPF? Ac-
cessed: 2018-04-27. 2018. URL: https://cilium.io/blog/
2018/04/17/why-is-the-kernel-community-replacing-
iptables/.

[Cisa] Cisco. Cisco Visual Networking Index. Accessed: 2018-02-02. URL:
https://www.cisco.com/c/en/us/solutions/service-
provider / visual - networking - index - vni / index .
html.

[Cisb] Cisco. Ethernet documentation. Accessed: 2018-02-13. URL: http:
//docwiki.cisco.com/wiki/Ethernet_Technologies.

[Cisc] Cisco. Networking basic documentation. Accessed: 2018-02-13. URL:
http://docwiki.cisco.com/wiki/Internetworking_
Basics.

[Clo53] C. Clos. “A study of non-blocking switching networks”. In: The Bell
System Technical Journal 32.2 (1953), pp. 406–424. ISSN: 0005-8580.
DOI: 10.1002/j.1538-7305.1953.tb01433.x.

[Com04] Douglas Comer. “Network Processors: Programmable Technology for
Building Network Systems”. In: The Internet Protocol Journal 7.4 (2004).
URL: https://www.cisco.com/c/en/us/about/press/
internet- protocol- journal/back- issues/table-
contents-30/network-processors.html.

[CJ+17a] F. Cornevaux-Juignet et al. “Combining FPGAs and processors for high-
throughput forensics”. In: 2017 IEEE Conference on Communications
and Network Security (CNS). 2017, pp. 388–389. DOI: 10.1109/
CNS.2017.8228684.

[CJ+18] F. Cornevaux-Juignet et al. “High data rate dynamic rule processor
for live network packet analysis”. In: IEEE/ACM Transactions on Net-
working (2018).

115

https://doi.org/10.1109/SASP.2008.4570793
https://doi.org/10.1109/FPL.2015.7293944
https://doi.org/10.1109/FPL.2015.7293944
https://doi.org/10.1109/TPDS.2017.2705128
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
http://docwiki.cisco.com/wiki/Ethernet_Technologies
http://docwiki.cisco.com/wiki/Ethernet_Technologies
http://docwiki.cisco.com/wiki/Internetworking_Basics
http://docwiki.cisco.com/wiki/Internetworking_Basics
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/network-processors.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/network-processors.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/network-processors.html
https://doi.org/10.1109/CNS.2017.8228684
https://doi.org/10.1109/CNS.2017.8228684

[CJ+17b] F. Cornevaux-Juignet et al. “Open-source flexible packet parser for high
data rate agile network probe”. In: Workshop on Network and Cloud
Forensics hosted by 2017 IEEE Conference on Communications and
Network Security (CNS). 2017, pp. 610–618. DOI: 10.1109/CNS.
2017.8228685.

[CJ+17c] F. Cornevaux-Juignet et al. “Sonde matérielle-logicielle de surveillance
de trafic très haute performance”. In: Colloque du GDR SOC2. 2017.

[CJa] Franck Cornevaux-Juignet. Packet classifier sources. URL: https://
redmine.telecom-bretagne.eu/projects/cyberthd_
packetclassifier.

[CJb] Franck Cornevaux-Juignet. Packet parser sources. URL: https://
redmine.telecom-bretagne.eu/projects/\\cyberthd\
_packetparser.

[Der+14] L. Deri et al. “nDPI: Open-source high-speed deep packet inspection”.
In: 2014 International Wireless Communications and Mobile Comput-
ing Conference (IWCMC). 2014, pp. 617–622. DOI: 10.1109/IWCMC.
2014.6906427.

[Dyn] Dyn. Dyn Mirai attack. Accessed: 2017-02-27. URL: http://dyn.
com/blog/dyn-analysis-summary-of-friday-october-
21-attack/.

[FPG17] Intel FPGA. Intel Stratix 10 Device Datasheet. 2017. URL: https://
www.altera.com/documentation/mcn1441092958198.
html.

[Fen81] Tse yun Feng. “A Survey of Interconnection Networks”. In: Computer
14.12 (1981), pp. 12–27. ISSN: 0018-9162. DOI: 10.1109/C-M.
1981.220290.

[FHS17] A. Fiessler, S. Hager, and B. Scheuermann. “Flexible line speed net-
work packet classification using hybrid on-chip matching circuits”. In:
2017 IEEE 18th International Conference on High Performance Switch-
ing and Routing (HPSR). 2017, pp. 1–8. DOI: 10.1109/HPSR.
2017.7968678.

[Fie+16] A. Fiessler et al. “HyPaFilter - A versatile hybrid FPGA packet filter”.
In: 2016 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). 2016, pp. 25–36. DOI: 10.1145/
2881025.2881033.

[Fie+17] A. Fiessler et al. “HyPaFilter+: Enhanced Hybrid Packet Filtering Us-
ing Hardware Assisted Classification and Header Space Analysis”. In:
IEEE/ACM Transactions on Networking 25.6 (2017), pp. 3655–3669.
ISSN: 1063-6692. DOI: 10.1109/TNET.2017.2749699.

116

https://doi.org/10.1109/CNS.2017.8228685
https://doi.org/10.1109/CNS.2017.8228685
https://redmine.telecom-bretagne.eu/projects/cyberthd_packetclassifier
https://redmine.telecom-bretagne.eu/projects/cyberthd_packetclassifier
https://redmine.telecom-bretagne.eu/projects/cyberthd_packetclassifier
https://redmine.telecom-bretagne.eu/projects/\\cyberthd_packetparser
https://redmine.telecom-bretagne.eu/projects/\\cyberthd_packetparser
https://redmine.telecom-bretagne.eu/projects/\\cyberthd_packetparser
https://doi.org/10.1109/IWCMC.2014.6906427
https://doi.org/10.1109/IWCMC.2014.6906427
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://www.altera.com/documentation/mcn1441092958198.html
https://www.altera.com/documentation/mcn1441092958198.html
https://www.altera.com/documentation/mcn1441092958198.html
https://doi.org/10.1109/C-M.1981.220290
https://doi.org/10.1109/C-M.1981.220290
https://doi.org/10.1109/HPSR.2017.7968678
https://doi.org/10.1109/HPSR.2017.7968678
https://doi.org/10.1145/2881025.2881033
https://doi.org/10.1145/2881025.2881033
https://doi.org/10.1109/TNET.2017.2749699

[Fir16] Daniel Firestone. “SmartNIC: Accelerating Azure’s Network with FP-
GAs on OCS servers”. In: OCP U.S. SUMMIT 2016. San Jose, CA,
2016. URL: http://files.opencompute.org/oc/public.
php?service=files\&t=5803e581b55\\e90e51669410559b91169\
&download\&path=//SmartNIC\%20OCP\%2020\\16.
pdf.

[For+13] M. Forconesi et al. “Accurate and flexible flow-based monitoring for
high-speed networks”. In: 2013 23rd International Conference on Field
programmable Logic and Applications. 2013, pp. 1–4. DOI: 10.1109/
FPL.2013.6645557.

[Fou] The Linux Foundation. DPDK. Accessed: 2018-02-15. URL: http:
//www.dpdk.org/.

[Fou16] The Linux Foundation. NAPI. 2016. URL: https://wiki.linuxfoundation.
org/networking/napi.

[Fri+13] Stepan Friedl et al. Designing a Card for 100 Gb/s Network Monitor-
ing. Tech. rep. CESNET, 2013.

[Gal+15] S. Gallenmüller et al. “Comparison of frameworks for high-performance
packet IO”. In: Architectures for Networking and Communications Sys-
tems (ANCS), 2015 ACM/IEEE Symposium on. 2015, pp. 29–38. DOI:
10.1109/ANCS.2015.7110118.

[GJP14] T. Ganegedara, W. Jiang, and V. K. Prasanna. “A Scalable and Modu-
lar Architecture for High-Performance Packet Classification”. In: IEEE
Transactions on Parallel and Distributed Systems 25.5 (2014), pp. 1135–
1144. ISSN: 1045-9219. DOI: 10.1109/TPDS.2013.261.

[GP12] T. Ganegedara and V. K. Prasanna. “StrideBV: Single chip 400G+ packet
classification”. In: 2012 IEEE 13th International Conference on High
Performance Switching and Routing. 2012, pp. 1–6. DOI: 10.1109/
HPSR.2012.6260820.

[Gar+12] J. J. Garnica et al. “A FPGA-based scalable architecture for URL le-
gal filtering in 100GbE networks”. In: 2012 International Conference
on Reconfigurable Computing and FPGAs. 2012, pp. 1–6. DOI: 10.
1109/ReConFig.2012.6416719.

[Gib+13] G. Gibb et al. “Design principles for packet parsers”. In: Architectures
for Networking and Communications Systems. 2013, pp. 13–24. DOI:
10.1109/ANCS.2013.6665172.

[Goo] Google. Google supercharges machine learning tasks with TPU custom
chip. Accessed: 2018-02-19. URL: https://cloudplatform.
googleblog.com/2016/05/Google-supercharges-machine-
learning-tasks-with-custom-chip.html.

[GAV14] T. Groléat, M. Arzel, and S. Vaton. “Stretching the Edges of SVM Traf-
fic Classification With FPGA Acceleration”. In: IEEE Transactions on
Network and Service Management 11.3 (2014), pp. 278–291. ISSN:
1932-4537. DOI: 10.1109/TNSM.2014.2346075.

117

http://files.opencompute.org/oc/public.php?service=files\&t=5803e581b55\\e90e51669410559b91169\&download\&path=//SmartNIC\%20OCP\%2020\\16.pdf
http://files.opencompute.org/oc/public.php?service=files\&t=5803e581b55\\e90e51669410559b91169\&download\&path=//SmartNIC\%20OCP\%2020\\16.pdf
http://files.opencompute.org/oc/public.php?service=files\&t=5803e581b55\\e90e51669410559b91169\&download\&path=//SmartNIC\%20OCP\%2020\\16.pdf
http://files.opencompute.org/oc/public.php?service=files\&t=5803e581b55\\e90e51669410559b91169\&download\&path=//SmartNIC\%20OCP\%2020\\16.pdf
https://doi.org/10.1109/FPL.2013.6645557
https://doi.org/10.1109/FPL.2013.6645557
http://www.dpdk.org/
http://www.dpdk.org/
https://wiki.linuxfoundation.org/networking/napi
https://wiki.linuxfoundation.org/networking/napi
https://doi.org/10.1109/ANCS.2015.7110118
https://doi.org/10.1109/TPDS.2013.261
https://doi.org/10.1109/HPSR.2012.6260820
https://doi.org/10.1109/HPSR.2012.6260820
https://doi.org/10.1109/ReConFig.2012.6416719
https://doi.org/10.1109/ReConFig.2012.6416719
https://doi.org/10.1109/ANCS.2013.6665172
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://doi.org/10.1109/TNSM.2014.2346075

[Gro+13] Tristan Groléat et al. “Flexible, Extensible, Open-source and Afford-
able FPGA-based Traffic Generator”. In: Proceedings of the First Edi-
tion Workshop on High Performance and Programmable Networking.
HPPN ’13. New York, New York, USA: ACM, 2013, pp. 23–30. ISBN:
978-1-4503-1981-2. DOI: 10.1145/2465839.2465843.

[GM01] P. Gupta and N. McKeown. “Algorithms for packet classification”. In:
IEEE Network 15.2 (2001), pp. 24–32. ISSN: 0890-8044. DOI: 10.
1109/65.912717.

[HBS15] S. Hager, D. Bendyk, and B. Scheuermann. “Partial reconfiguration
and specialized circuitry for flexible FPGA-based packet processing”.
In: 2015 International Conference on ReConFigurable Computing and
FPGAs (ReConFig). 2015, pp. 1–6. DOI: 10.1109/ReConFig.
2015.7393333.

[Hag+14] S. Hager et al. “MPFC: Massively Parallel Firewall Circuits”. In: 39th
Annual IEEE Conference on Local Computer Networks. 2014, pp. 305–
313. DOI: 10.1109/LCN.2014.6925785.

[Han+10] Sangjin Han et al. “PacketShader: A GPU-accelerated Software Router”.
In: SIGCOMM Comput. Commun. Rev. 40.4 (Aug. 2010), pp. 195–206.
ISSN: 0146-4833. DOI: 10.1145/1851275.1851207.

[Hen06] John L. Henning. “SPEC CPU2006 Benchmark Descriptions”. In: SIGARCH
Comput. Archit. News 34.4 (Sept. 2006), pp. 1–17. ISSN: 0163-5964.
DOI: 10.1145/1186736.1186737.

[Hwa03] F. K. Hwang. “A survey of nonblocking multicast three-stage Clos net-
works”. In: IEEE Communications Magazine 41.10 (2003), pp. 34–37.
ISSN: 0163-6804. DOI: 10.1109/MCOM.2003.1235592.

[Hwa05] F. K. Hwang. “A unifying approach to determine the necessary and suf-
ficient conditions for nonblocking multicast 3-stage Clos networks”. In:
IEEE Transactions on Communications 53.9 (2005), pp. 1581–1586.
ISSN: 0090-6778. DOI: 10.1109/TCOMM.2005.852839.

[Inta] Intel. IXP4XX Product Line of Network Processors. Accessed: 2018-
02-19. URL: https : / / www . intel . com / content / www /
us/en/intelligent-systems/previous-generation/
intel-ixp4xx-intel-network-processor-product-
line.html.

[Int16] Intel. Intel 82599 10 GbE Controller Datasheet. 2016. URL: https:
//www.intel.com/content/www/us/en/embedded/
products/networking/82599- 10- gbe- controller-
datasheet.html.

[Intb] Intel. Intel FPGA stratix 10 family. Accessed: 2017-02-21. URL: https:
//www.altera.com/products/fpga/stratix-series/
stratix-10/overview.html.

118

https://doi.org/10.1145/2465839.2465843
https://doi.org/10.1109/65.912717
https://doi.org/10.1109/65.912717
https://doi.org/10.1109/ReConFig.2015.7393333
https://doi.org/10.1109/ReConFig.2015.7393333
https://doi.org/10.1109/LCN.2014.6925785
https://doi.org/10.1145/1851275.1851207
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1109/MCOM.2003.1235592
https://doi.org/10.1109/TCOMM.2005.852839
https://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
https://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
https://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
https://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html

[Intc] Intel. Intel Processor E5-2699A v4. Accessed: 2018-02-15. URL: https:
//www.intel.com/content/www/us/en/products/
processors/xeon/e5-processors/e5-2699a-v4.html.

[Int17] Intel. PCI Express High Performance Reference Design. 2017. URL:
https://www.altera.com/en_US/pdfs/literature/
an/an456.pdf.

[Jam+12] Muhammad Asim Jamshed et al. “Kargus: A Highly-scalable Software-
based Intrusion Detection System”. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security. CCS ’12. Raleigh,
North Carolina, USA: ACM, 2012, pp. 317–328. ISBN: 978-1-4503-
1651-4. DOI: 10.1145/2382196.2382232.

[JK10] A. Jastrzębski and M. Kubale. “Rearrangeability in multicast clos net-
works is np-complete”. In: 2010 2nd International Conference on In-
formation Technology, (2010 ICIT). 2010, pp. 183–186.

[Jun] Juniper. EX Series Ethernet Switches. Accessed: 2018-02-19. URL: https:
/ / www . juniper . net / us / en / products - services /
switching/ex-series/.

[KPK14] L. Kekely, V. Puš, and J. Kořenek. “Software Defined Monitoring of ap-
plication protocols”. In: IEEE INFOCOM 2014 - IEEE Conference on
Computer Communications. 2014, pp. 1725–1733. DOI: 10.1109/
INFOCOM.2014.6848110.

[Kek+14] L. Kekely et al. “Fast lookup for dynamic packet filtering in FPGA”.
In: 17th International Symposium on Design and Diagnostics of Elec-
tronic Circuits Systems. 2014, pp. 219–222. DOI: 10.1109/DDECS.
2014.6868793.

[Kek+16] L. Kekely et al. “Software Defined Monitoring of Application Proto-
cols”. In: IEEE Transactions on Computers 65.2 (2016), pp. 615–626.
ISSN: 0018-9340. DOI: 10.1109/TC.2015.2423668.

[Kim+15] Joongi Kim et al. “NBA (Network Balancing Act): A High-performance
Packet Processing Framework for Heterogeneous Processors”. In: Pro-
ceedings of the Tenth European Conference on Computer Systems. Eu-
roSys ’15. Bordeaux, France: ACM, 2015, 22:1–22:14. ISBN: 978-1-
4503-3238-5. DOI: 10.1145/2741948.2741969.

[Lal+16] A. Lalevée et al. “AutoReloc: Automated Design Flow for Bitstream
Relocation on Xilinx FPGAs”. In: 2016 Euromicro Conference on Dig-
ital System Design (DSD). 2016, pp. 14–21. DOI: 10.1109/DSD.
2016.92.

[Lal17] André Lalevée. “Towards highly flexible hardware architectures for
high-speed data processing: a 100 Gbps network case study”. PhD the-
sis. 2017.

[Lam13] Christoph Lameter. “NUMA (Non-Uniform Memory Access): An Overview”.
In: Queue 11.7 (July 2013), 40:40–40:51. ISSN: 1542-7730. DOI: 10.
1145/2508834.2513149.

119

https://www.intel.com/content/www/us/en/products/processors/xeon/e5-processors/e5-2699a-v4.html
https://www.intel.com/content/www/us/en/products/processors/xeon/e5-processors/e5-2699a-v4.html
https://www.intel.com/content/www/us/en/products/processors/xeon/e5-processors/e5-2699a-v4.html
https://www.altera.com/en_US/pdfs/literature/an/an456.pdf
https://www.altera.com/en_US/pdfs/literature/an/an456.pdf
https://doi.org/10.1145/2382196.2382232
https://www.juniper.net/us/en/products-services/switching/ex-series/
https://www.juniper.net/us/en/products-services/switching/ex-series/
https://www.juniper.net/us/en/products-services/switching/ex-series/
https://doi.org/10.1109/INFOCOM.2014.6848110
https://doi.org/10.1109/INFOCOM.2014.6848110
https://doi.org/10.1109/DDECS.2014.6868793
https://doi.org/10.1109/DDECS.2014.6868793
https://doi.org/10.1109/TC.2015.2423668
https://doi.org/10.1145/2741948.2741969
https://doi.org/10.1109/DSD.2016.92
https://doi.org/10.1109/DSD.2016.92
https://doi.org/10.1145/2508834.2513149
https://doi.org/10.1145/2508834.2513149

[LDC12] Maysam Lavasani, Larry Dennison, and Derek Chiou. “Compiling High
Throughput Network Processors”. In: Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. FPGA
’12. Monterey, California, USA: ACM, 2012, pp. 87–96. ISBN: 978-1-
4503-1155-7. DOI: 10.1145/2145694.2145709.

[LZB11] G. Liao, X. Znu, and L. Bnuyan. “A new server I/O architecture for
high speed networks”. In: 2011 IEEE 17th International Symposium
on High Performance Computer Architecture. 2011, pp. 255–265. DOI:
10.1109/HPCA.2011.5749734.

[MMWJJ72] G M. Masson and B W. Jordan Jr. “Generalized Multi-Stage Connec-
tion Networks”. In: 2 (Jan. 1972), pp. 191 –209.

[MP10] Guido Maier and Achille Pattavina. “Multicast three-stage Clos net-
works”. In: Computer Communications 33.8 (2010). Special Section on
Hot Topics in Mesh Networking, pp. 923 –928. ISSN: 0140-3664. DOI:
https://doi.org/10.1016/j.comcom.2010.01.022.

[MJ93] Steven McCanne and Van Jacobson. “The BSD Packet Filter: A New
Architecture for User-level Packet Capture”. In: Proceedings of the
USENIX Winter 1993 Conference Proceedings on USENIX Winter 1993
Conference Proceedings. USENIX’93. San Diego, California: USENIX
Association, 1993, pp. 2–2. URL: http://dl.acm.org/citation.
cfm?id=1267303.1267305.

[McG+10] J. McGlone et al. “Design of a flexible high-speed FPGA-based flow
monitor for next generation networks”. In: 2010 International Confer-
ence on Embedded Computer Systems: Architectures, Modeling and
Simulation. 2010, pp. 37–44. DOI: 10.1109/ICSAMOS.2010.
5642096.

[Mel] Mellanox. NP-5 Network Processor. Accessed: 2018-02-19. URL: http:
//www.mellanox.com/related-docs/prod_npu/PB_
NP-5.pdf.

[Mic] Microsoft Azure. Maximize your VM’s Performance with Accelerated
Networking – now generally available for both Windows and Linux.
Accessed: 2018-04-16. URL: https://azure.microsoft.com/
en - au / blog / maximize - your - vm - s - performance -
with-accelerated-networking-now-generally-available-
for-both-windows-and-linux/.

[Mic17] Microsoft. Introduction to Receive Side Scaling. 2017. URL: https:
//docs.microsoft.com/fr-fr/windows-hardware/
drivers/network/introduction-to-receive-side-
scaling.

[MF97] N. Mir-Fakhraei. “Evaluation of a multistage switching network with
broadcast traffic”. In: Professional Program Proceedings. Electronic
Industries Forum of New England. 1997, pp. 143–147. DOI: 10.1109/
EIF.1997.605383.

120

https://doi.org/10.1145/2145694.2145709
https://doi.org/10.1109/HPCA.2011.5749734
https://doi.org/https://doi.org/10.1016/j.comcom.2010.01.022
http://dl.acm.org/citation.cfm?id=1267303.1267305
http://dl.acm.org/citation.cfm?id=1267303.1267305
https://doi.org/10.1109/ICSAMOS.2010.5642096
https://doi.org/10.1109/ICSAMOS.2010.5642096
http://www.mellanox.com/related-docs/prod_npu/PB_NP-5.pdf
http://www.mellanox.com/related-docs/prod_npu/PB_NP-5.pdf
http://www.mellanox.com/related-docs/prod_npu/PB_NP-5.pdf
https://azure.microsoft.com/en-au/blog/maximize-your-vm-s-performance-with-accelerated-networking-now-generally-available-for-both-windows-and-linux/
https://azure.microsoft.com/en-au/blog/maximize-your-vm-s-performance-with-accelerated-networking-now-generally-available-for-both-windows-and-linux/
https://azure.microsoft.com/en-au/blog/maximize-your-vm-s-performance-with-accelerated-networking-now-generally-available-for-both-windows-and-linux/
https://azure.microsoft.com/en-au/blog/maximize-your-vm-s-performance-with-accelerated-networking-now-generally-available-for-both-windows-and-linux/
https://docs.microsoft.com/fr-fr/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/fr-fr/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/fr-fr/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/fr-fr/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://doi.org/10.1109/EIF.1997.605383
https://doi.org/10.1109/EIF.1997.605383

[Mor+15] V. Moreno et al. “Commodity Packet Capture Engines: Tutorial, Cook-
book and Applicability”. In: IEEE Communications Surveys Tutori-
als 17.3 (2015), pp. 1364–1390. ISSN: 1553-877X. DOI: 10.1109/
COMST.2015.2424887.

[NVI18a] NVIDIA. CUDA C Best Practices Guide. 2018. URL: http://docs.
nvidia.com/cuda/cuda-c-best-practices-guide/
index.html.

[NVI18b] NVIDIA. Developing a Linux Kernel Module using GPUDirect RDMA.
2018. URL: http://docs.nvidia.com/cuda/gpudirect-
rdma/index.html.

[Net] Netfilter project. Accessed: 2017-12-18. URL: http://dyn.com/
blog/dyn-analysis-summary-of-friday-october-
21-attack/.

[Nok] Nokia. FP4: Delivering performance and capability without compro-
mise. Accessed: 2018-02-19. URL: https://networks.nokia.
com/solutions/fp4-network-processor.

[OVHa] OVH. Classical attack types on network link. Accessed: 2017-02-20.
URL: https://www.ovh.com/fr/anti-ddos/principe-
anti-ddos.xml.

[OVH] OVH. Comment OVH protège ses clients contre les attaques SYN flood.
Accessed: 2018-04-16. URL: https : / / www . ovh . com / fr /
blog/comment-ovh-protege-ses-clients-contre-
les-attaques-syn-flood/.

[OVHb] OVH. OVH Mirai attack. Accessed: 2017-02-27. URL: https://
www.ovh.com/fr/a2367.goutte-ddos-n-a-pas-fait-
deborder-le-vac.

[OVHc] OVH. OVH network infrastruture. Accessed: 2018-02-02. URL: https:
//www.ovh.com/fr/apropos/reseau.xml.

[PS] PCI-SIG. PCI Special Group of Interest. Accessed: 2018-02-15. URL:
http://pcisig.com/specifications.

[Pan+17] V. Pant et al. “Efficient Neural Computation on Network Processors for
IoT Protocol Classification”. In: 2017 New Generation of CAS (NG-
CAS). 2017, pp. 9–12. DOI: 10.1109/NGCAS.2017.55.

[PSS16] Nisha Panwar, Shantanu Sharma, and Awadhesh Kumar Singh. “A sur-
vey on 5G: The next generation of mobile communication”. In: Physi-
cal Communication 18 (2016). Special Issue on Radio Access Network
Architectures and Resource Management for 5G, pp. 64 –84. ISSN:
1874-4907. DOI: https://doi.org/10.1016/j.phycom.
2015.10.006. URL: http://www.sciencedirect.com/
science/article/pii/S1874490715000531.

121

https://doi.org/10.1109/COMST.2015.2424887
https://doi.org/10.1109/COMST.2015.2424887
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://networks.nokia.com/solutions/fp4-network-processor
https://networks.nokia.com/solutions/fp4-network-processor
https://www.ovh.com/fr/anti-ddos/principe-anti-ddos.xml
https://www.ovh.com/fr/anti-ddos/principe-anti-ddos.xml
https://www.ovh.com/fr/blog/comment-ovh-protege-ses-clients-contre-les-attaques-syn-flood/
https://www.ovh.com/fr/blog/comment-ovh-protege-ses-clients-contre-les-attaques-syn-flood/
https://www.ovh.com/fr/blog/comment-ovh-protege-ses-clients-contre-les-attaques-syn-flood/
https://www.ovh.com/fr/a2367.goutte-ddos-n-a-pas-fait-deborder-le-vac
https://www.ovh.com/fr/a2367.goutte-ddos-n-a-pas-fait-deborder-le-vac
https://www.ovh.com/fr/a2367.goutte-ddos-n-a-pas-fait-deborder-le-vac
https://www.ovh.com/fr/apropos/reseau.xml
https://www.ovh.com/fr/apropos/reseau.xml
http://pcisig.com/specifications
https://doi.org/10.1109/NGCAS.2017.55
https://doi.org/https://doi.org/10.1016/j.phycom.2015.10.006
https://doi.org/https://doi.org/10.1016/j.phycom.2015.10.006
http://www.sciencedirect.com/science/article/pii/S1874490715000531
http://www.sciencedirect.com/science/article/pii/S1874490715000531

[PKK14] V. Puš, L. Kekely, and J. Kořenek. “Design methodology of config-
urable high performance packet parser for FPGA”. In: 17th Interna-
tional Symposium on Design and Diagnostics of Electronic Circuits
Systems. 2014, pp. 189–194. DOI: 10.1109/DDECS.2014.6868788.

[PKK12] V. Puš, L. Kekely, and J. Kořenek. “Low-latency Modular Packet Header
Parser for FPGA”. In: Proceedings of the Eighth ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems.
ANCS ’12. Austin, Texas, USA: ACM, 2012, pp. 77–78. ISBN: 978-1-
4503-1685-9. DOI: 10.1145/2396556.2396571.

[PK09] Viktor Puš and Jan Korenek. “Fast and Scalable Packet Classification
Using Perfect Hash Functions”. In: Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. FPGA
’09. Monterey, California, USA: ACM, 2009, pp. 229–236. ISBN: 978-
1-60558-410-2. DOI: 10.1145/1508128.1508163.

[QP16] Y. R. Qu and V. K. Prasanna. “High-Performance and Dynamically Up-
datable Packet Classification Engine on FPGA”. In: IEEE Transactions
on Parallel and Distributed Systems 27.1 (2016), pp. 197–209. ISSN:
1045-9219. DOI: 10.1109/TPDS.2015.2389239.

[Rio+12] Pedro M. Santiago del Rio et al. “Wire-speed Statistical Classifica-
tion of Network Traffic on Commodity Hardware”. In: Proceedings of
the 2012 Internet Measurement Conference. IMC ’12. Boston, Mas-
sachusetts, USA: ACM, 2012, pp. 65–72. ISBN: 978-1-4503-1705-4.
DOI: 10.1145/2398776.2398784.

[Riz12] Luigi Rizzo. “netmap: A Novel Framework for Fast Packet I/O”. In:
2012 USENIX Annual Technical Conference (USENIX ATC 12). Boston,
MA: USENIX Association, 2012, pp. 101–112. ISBN: 978-931971-93-
5. URL: https://www.usenix.org/conference/atc12/
technical-sessions/presentation/rizzo.

[RDC11] Luigi Rizzo, Luca Deri, and Alfredo Cardigliano. “10 Gbit/s Line Rate
Packet Processing Using Commodity Hardware: Survey and new Pro-
posals”. In: 2011. URL: http://luca.ntop.org/10g.pdf.

[SH16] A. M. Sadek and A. I. Hussein. “Flexible FPGA implementation of
Min-Sum decoding algorithm for regular LDPC codes”. In: 2016 11th
International Conference on Computer Engineering Systems (ICCES).
2016, pp. 286–292. DOI: 10.1109/ICCES.2016.7822016.

[SVG10] Osman Salem, Sandrine Vaton, and Annie Gravey. “A scalable, effi-
cient and informative approach for anomaly-based intrusion detection
systems: theory and practice”. In: International Journal of Network
Management 20.5 (2010), pp. 271–293. ISSN: 1099-1190. DOI: 10.
1002/nem.748. URL: http://dx.doi.org/10.1002/nem.
748.

[Soo83] A. K. Sood. “Design of multistage interconnection networks”. In: IEE
Proceedings E - Computers and Digital Techniques 130.4 (1983), pp. 109–
115. ISSN: 0143-7062. DOI: 10.1049/ip-e:19830025.

122

https://doi.org/10.1109/DDECS.2014.6868788
https://doi.org/10.1145/2396556.2396571
https://doi.org/10.1145/1508128.1508163
https://doi.org/10.1109/TPDS.2015.2389239
https://doi.org/10.1145/2398776.2398784
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
http://luca.ntop.org/10g.pdf
https://doi.org/10.1109/ICCES.2016.7822016
https://doi.org/10.1002/nem.748
https://doi.org/10.1002/nem.748
http://dx.doi.org/10.1002/nem.748
http://dx.doi.org/10.1002/nem.748
https://doi.org/10.1049/ip-e:19830025

[Var+15] P. Varga et al. “C-GEP: 100 Gbit/s capable, FPGA-based, reconfig-
urable networking equipment”. In: 2015 IEEE 16th International Con-
ference on High Performance Switching and Routing (HPSR). 2015,
pp. 1–6. DOI: 10.1109/HPSR.2015.7483084.

[VP15] P. Velan and V. Puš. “High-density network flow monitoring”. In: 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM). 2015, pp. 996–1001. DOI: 10.1109/INM.2015.7140424.

[Xila] Xilinx. SDNet. Accessed: 2017-02-23. URL: https://www.xilinx.
com/products/design-tools/software-zone/sdnet.
html.

[Xil17] Xilinx. Ternary Content Addressable Memory (TCAM) Search IP for
SDNet (PG190). 2017. URL: https://www.xilinx.com/support/
documentation/ip_documentation/tcam/pg190-tcam.
pdf.

[Xil14] Xilinx. Understanding Performance of PCI Express Systems (WP350).
2014. URL: https://www.xilinx.com/support/documentation/
white_papers/wp350.pdf.

[Xil18] Xilinx. Virtex UltraScale+ FPGA Data Sheet:DC and AC Switching
Characteristics. 2018. URL: https://www.xilinx.com/support/
documentation/data_sheets/ds923-virtex-ultrascale-
plus.pdf.

[Xilb] Xilinx. Xilinx smart networks. Accessed: 2018-02-19. URL: https:
//www.xilinx.com/publications/prod_mktg/smarter-
networks-backgrounder.pdf.

[Xilc] Xilinx. Xilinx virtex ultrascale+ family. Accessed: 2017-02-21. URL:
https://www.xilinx.com/products/silicon-devices/
fpga/virtex-ultrascale-plus.html.

[YM91] Y. Yang and G. M. Masson. “Nonblocking broadcast switching net-
works”. In: IEEE Transactions on Computers 40.9 (1991), pp. 1005–
1015. ISSN: 0018-9340. DOI: 10.1109/12.83662.

[Zaz+16] J. F. Zazo et al. “Automated synthesis of FPGA-based packet filters
for 100 Gbps network monitoring applications”. In: 2016 International
Conference on ReConFigurable Computing and FPGAs (ReConFig).
2016, pp. 1–6. DOI: 10.1109/ReConFig.2016.7857156.

[Zil+14] N. Zilberman et al. “NetFPGA SUME: Toward 100 Gbps as Research
Commodity”. In: IEEE Micro 34.5 (2014), pp. 32–41. ISSN: 0272-
1732. DOI: 10.1109/MM.2014.61.

[Zil+15] N. Zilberman et al. “Reconfigurable Network Systems and Software-
Defined Networking”. In: Proceedings of the IEEE 103.7 (2015), pp. 1102–
1124. ISSN: 0018-9219. DOI: 10.1109/JPROC.2015.2435732.

123

https://doi.org/10.1109/HPSR.2015.7483084
https://doi.org/10.1109/INM.2015.7140424
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html
https://www.xilinx.com/support/documentation/ip_documentation/tcam/pg190-tcam.pdf
https://www.xilinx.com/support/documentation/ip_documentation/tcam/pg190-tcam.pdf
https://www.xilinx.com/support/documentation/ip_documentation/tcam/pg190-tcam.pdf
https://www.xilinx.com/support/documentation/white_papers/wp350.pdf
https://www.xilinx.com/support/documentation/white_papers/wp350.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/publications/prod_mktg/smarter-networks-backgrounder.pdf
https://www.xilinx.com/publications/prod_mktg/smarter-networks-backgrounder.pdf
https://www.xilinx.com/publications/prod_mktg/smarter-networks-backgrounder.pdf
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://doi.org/10.1109/12.83662
https://doi.org/10.1109/ReConFig.2016.7857156
https://doi.org/10.1109/MM.2014.61
https://doi.org/10.1109/JPROC.2015.2435732

[ZMC16] Noa Zilberman, Andrew W. Moore, and Jon A. Crowcroft. “From pho-
tons to big-data applications: terminating terabits”. In: Philosophical
Transactions of the Royal Society of London A: Mathematical, Physi-
cal and Engineering Sciences 374.2062 (2016). ISSN: 1364-503X. DOI:
10.1098/rsta.2014.0445.

124

https://doi.org/10.1098/rsta.2014.0445

Titre : Co-conception matérielle et logicielle pour du traitement de trafic flexible au-delà du terabit
par seconde

Mots clés : Surveillance de trafic, FPGA, architecture hétérogène, traitements haute performance,
co-conception logicielle/matérielle

Résumé : La fiabilité et la sécurité des réseaux de communication nécessitent des composants

efficaces pour analyser finement le trafic de données. La diversification des services ainsi que
l'augmentation des débits obligent les systèmes d'analyse à être plus performants pour gérer des
débits de plusieurs centaines, voire milliers de Gigabits par seconde. Les solutions logicielles
communément utilisées offrent une flexibilité et une accessibilité bienvenues pour les opérateurs
du réseau mais ne suffisent plus pour répondre à ces fortes contraintes dans de nombreux cas
critiques.
Cette thèse étudie des solutions architecturales reposant sur des puces programmables de type
Field-Programmable Gate Array (FPGA) qui allient puissance de calcul et flexibilité de traitement.
Des cartes équipées de telles puces sont intégrées dans un flot de traitement commun
logiciel/matériel afin de compenser les lacunes de chaque élément. Les composants du réseau
développés avec cette approche innovante garantissent un traitement exhaustif des paquets
circulant sur les liens physiques tout en conservant la flexibilité des solutions logicielles
conventionnelles, ce qui est unique dans l'état de l'art
Cette approche est validée par la conception et l'implémentation d'une architecture de traitement
de paquets flexible sur FPGA. Celle-ci peut traiter n'importe quel type de paquet au coût d'un
faible surplus de consommation de ressources. Elle est de plus complètement paramétrable à
partir du logiciel. La solution proposée permet ainsi un usage transparent de la puissance d'un
accélérateur matériel par un ingénieur réseau sans nécessiter de compétence préalable en
conception de circuits numériques.

Title : Hardware and software co-design toward flexible terabits per second traffic processing

Keywords : Traffic monitoring, FPGA, heterogeneous architecture, high performance computing,
hardware/software co-design

Abstract : The reliability and the security of communication networks require efficient components
to finely analyze the traffic of data. Service diversification and throughput increase force network
operators to constantly improve analysis systems in order to handle throughputs of hundreds,
even thousands of Gigabits per second. Commonly used solutions are software oriented solutions
that offer a flexibility and an accessibility welcome for network operators, but they can no more
answer these strong constraints in many critical cases.
This thesis studies architectural solutions based on programmable chips like Field-Programmable
Gate Arrays (FPGAs) combining computation power and processing flexibility. Boards equipped
with such chips are integrated into a common software/hardware processing flow in order to
balance shortcomings of each element. Network components developed with this innovative
approach ensure an exhaustive processing of packets transmitted on physical links while keeping
the flexibility of usual software solutions, which was never encountered in the previous state of the
art.
This approach is validated by the design and the implementation of a flexible packet processing
architecture on FPGA. It is able to process any packet type at the cost of slight resources
overconsumption. It is moreover fully customizable from the software part. With the proposed
solution, network engineers can transparently use the processing power of an hardware
accelerator without the need of prior knowledge in digital circuit design.

	Remerciements
	Résumé
	Abstract
	Résumé étendu
	Introduction
	Systèmes de surveillance de trafic
	Éléments réseaux matériels/logiciels
	Architecture d'analyse de paquets novatrice pour de la surveillance de trafic adaptative
	Vers de la surveillance de trafic agile à très haut débit
	Conclusion

	Contents
	List of Figures
	List of Tables
	Introduction
	Network design issues
	Reliable networks
	High-speed networks
	Flexible networks
	Scalable networks
	Reactive networks
	Monitoring challenge

	Thesis structure

	Systems for network monitoring
	Introduction
	Packet processing
	Packet structure
	High data rate links: a packet density issue

	Commodity hardware
	Common architecture
	PCI Express
	CPU computation
	GPU computation
	Optimization solutions

	Specialized hardware
	Application specific hardware
	Network processors

	Novel network processors: FPGAs
	Adapted platform for high performance networking
	Improvement of FPGA development
	Limited reactivity
	Towards CPU offload

	Conclusion

	Hardware/software network devices
	Introduction
	Smart NIC approach
	Smart NIC system
	Smart NIC development boards

	Hardware/software packet processing
	Reactive processing flow
	Hardware high packet rate processing

	Feed forward software to hardware: a mixed traffic generator
	Overview
	Packet generator implementation
	Strengths and limitations of the traffic generator

	Hardware/Software feedback enabled probe
	Packet processing steps
	Accelerated architecture

	Conclusion

	A novel flexible packet parser architecture for live monitoring
	Introduction
	High performance and flexible packet parsing
	Packet parsing challenge
	Existing parsers limitations
	Feature extraction requirements

	Packet parser architecture
	Global architecture
	Header parsing
	Feature selection
	Architecture results

	Interconnection architecture
	Interconnection network definition
	Adapted interconnection architecture

	Conclusion

	Towards agile high-speed network monitoring
	Introduction
	Test-bed architecture
	Test organization
	40 Gbps test-bed

	Flexible high-speed packet parser validation
	Experimental probe
	Benchmark scenario
	Test results

	Flexible packet classifier
	Packet classification
	Hardware classification
	Hardware/software packet classification
	Hardware/software synergy
	Experimental results
	Benchmark scenario
	Test results
	Rule processor study

	Conclusion

	Conclusion
	Main contributions
	High performance monitoring systems
	Hardware and software design
	Innovative flexible packet parser hardware architecture
	Validation of the flexible approach

	Perspectives

	Glossary
	Bibliography

