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Abstract

This document aims to present this thesis results prepared in the Lab-STICC, IMT At-

lantique in the scope of the FITNESS project. FITNESS is a European project that aims to

prepare the future of Professional Mobile Radio (PMR), which are secured wireless radios

used by security services. Its goal is to design a new receiver compliant with the four PMR

norms in Europe, while adding new functionalities such as high data rate transmission. This

thesis contributions are limited to the backward compliance with current narrowband PMR

standards. A new receiver architecture was defined by FITNESS preliminary work. It appears

that due to the backward compliance with current PMR standards several requirements are

not achievable. Amongst others, the phase noise requirement was relaxed. This tradeoff im-

plies the presence of several powerful PMR signals close to the channel of the signal of interest.

However, the presence of multiple signals in the received bandwidth raises additional issues

linked to the receiver analog devices imperfections. A nonlinear phenomenon of saturation

creates several unwanted harmonics that are harmful for system performance. An answer

consists in making the receiver aware of its spectral environment. This methods may allow

to adjust dynamically the receiver analog parameters to make it works in its linear region.

A first chapter is devoted to analyze PMR radios and FITNESS constraints. As the receiver

architecture is already defined, only blind detection methods could be used to sense the en-

vironment. The cyclostationary approach is the most adapted in our context. Nonetheless,

state of the art methods are unable to answer FITNESS requirements. So, in a general point

a view, we propose a new detection method based on second order cyclic moments. Then,

this new tool is applied in a nonlinear context, to detect the presence of unwanted harmonics

created by the receiver nonlinear behavior. We show that it is possible to detect early if the

receiver works in a linear or in a nonlinear regime. Finally, based on the two previous studies,

we propose a new method to adjust automatically the receiver analog parameters. This proof

of concept improves significantly the bit error rate while allowing to relax additional analog

constraints.

xvii





Résumé

Introduction

Les utilisateurs de radios PMR sont les services de sureté, de transport, des industriels ou

plus largement des organismes professionnels qui ont besoin d’un système de communications

sécurisé dans leur travail quotidien. Bien que l’efficacité des réseaux PMR, ainsi que leur

robustesse aient été amélioré, ces professionnels réclament plus de fonctionnalités telles que

celles offertes par la 4G commerciale. La thèse est réalisée dans le contexte du projet Européen

FITNESS, qui a pour objectif de préparer le système PMR du futur en Europe et dans le

monde. Ce projet à pour vocation d’ajouter un système de communication large bande sécurisé

basé sur la technologie Long-Term-Evolution (LTE). Ses objectifs principaux sont d’étudier

et de lever les principaux verrous technologiques afin de rendre possible le développement

ultérieur d’un système PMR multi-standard, multi-usage à bas coût. De plus, ce nouveau

récepteur devra être compatible avec les standards PMR existants pour garantir une rétro-

compatibilité tout en ayant les nouvelles fonctionnalités critiques. De part le design d’un

système large bande, le projet FITNESS s’inscrit dans la ligné des efforts Européens de

déployer le système de communications sans fils PMR de prochaine génération.

L’IMT Atlantique est impliquée dans une petite part de ce projet. Dans la thèse, nous nous

sommes concentrés sur la partie qui concerne spécifiquement la rétro-compatibilité avec les

standards PMR actuels à bande étroite. Notre objectif est de proposer de nouvelles solutions

permettant de garantir que le nouveau récepteur sera à-même de fonctionner dans les bandes

350-510MHz et 870-921MHz. Le problème principal rencontré lors du design de la partie

analogique du nouveau récepteur est la difficulté de concilier une dynamique élevée (plus de

141dB), des canaux de communication de 12.5kHz dans un circuit tout intégré.

C’est pourquoi les spécification du nouveau récepteur sont particulièrement sévères au

niveau matériel. En effet, les composants électroniques du récepteur (RX) fonctionnement

en réalité de façon différente de la théorie. Certaines spécifications ne peuvent donc pas être

tenues, ce qui entraine une dégradation du signal utile. Cette situation arrive lorsque cer-

tains composants utilisés en radio fréquence (RF), comme les amplificateurs à faible bruit

(LNA), ou les multiplicateurs, sont utilisés en dehors de leur zone de fonctionnement nomi-

nale. Il peut alors s’agir d’une saturation du composant, ou de l’apparition d’harmoniques

indésirables dues aux produit d’intermodulation. Un rapport préliminaire au projet FITNESS

montre qu’il est possible de limiter certaines contraintes à l’aide d’un schéma spécifique. Cette

xix
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nouvelle architecture est supposée suffisante pour annuler les effets de divers mécanismes de

dégradation tels que : appairage I/Q, signal parasite à la fréquence image ou encore des

problèmes spécifiques d’architecture. Puisque le récepteur est supposé bien conçu, seules les

problématiques de saturation et de non linéarités ont été traitées dans la thèse.

La nouvelle architecture ne permet toutefois pas de sélectionner le canal de communi-

cation de la même façon que les récepteurs classiques. Des contraintes supplémentaires sont

donc ajoutées au niveau des convertisseurs analogiques/numériques (ADC). En effet, malgré

un nouveau mécanisme de sélection de canal, la spécification de bruit de phase n’est pas

atteignable. Plusieurs signaux indésirables et insuffisamment atténués peuvent alors se trou-

ver proche de la bande du signal utile. Toute la problématique deviens alors de numériser le

signal utile sans saturer la chaine, ni dégrader le signal reçu via l’intermodulation, et sans

saturation des convertisseurs.

Les systèmes PMR

Cette partie est consacrée à la description rapide des systèmes PMR et du récepteur utilisé

qui est décomposé en plusieurs couches hétérodynes. Nous proposons ensuite de modéliser

l’ensemble du récepteur comme un système de plusieurs blocs non linéaires en série. Dans

cette optique, nous définissions un modèle de non linéarités. Les conséquences sur le spectre

et la création de fréquences qui en découlent sont également traitées. Enfin, le signal reçu

en fréquence porteuse est modélisé comme une somme d’un signal utile et d’interféreurs qui

perturbent la détection en raison du mélange induit par le modèle choisi.

Les radios professionnelles mobiles -Professionnal Mobile Radios (PMR)- sont plutôt in-

connues du grand public. Une de leurs fonctionnalités est pourtant bien connue grâce à la

première déclinaison analogique d’un standard PMR (PMR446) qui a popularisé l’usage des

talkie-walkie. Les radios PMR sont des terminaux sans fils sécurisés utilisés par les services

de suretés ou de travaux publics. Ses autres fonctionnalités sont par exemple : appuyer pour

parler, communication point à point, positionnement GPS, appel d’urgence, multi-diffusion,

etc. Les réseaux PMR sont prévu pour couvrir la plus grande surface de territoire possible,

a contrario des réseaux commerciaux qui visent à couvrir la plus large portion possible de la

population. Le système lui-même est conçu pour fonctionner même en cas de catastrophe na-

turelle (cyclone, tremblement de terre, etc.) qui pourraient impliquer la destruction partielle

ou complète des différentes réseaux de communication.

Un point qui nous intéresse particulièrement est la multiplicité des réseaux PMR de nature

différente sur des zones restreintes. Simplement en Europe, quatre normes PMR différentes

coexistent (TETRA, TETRAPOL, P25 et leurs évolutions). Le cas de la Belgique est re-

présentatif avec un réseau TETRAPOL à la frontière Française, et un réseau TETRA à la

frontière Allemande. Le problème est la multiplicité des bandes utilisés, qui sont différentes

dans chaque pays. Bien qu’il existe des passerelles entre réseaux différents, les utilisateurs

en itinérance n’ont qu’un accès limité aux fonctionnalités du réseau hôte. Par conséquent, la

qualité de service n’est pas assurée et les coûts multipliés par la multiplicité de réseaux hété-
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rogènes. Le tableau tab.2.2 synthétise les caractéristiques principales des couches physiques

et réseau des standards PMR Européens visés par FITNESS.

Pour pouvoir répondre à l’exigence de rétro-compatibilité avec tous les standards PMR

actuels, une nouvelle architecture de récepteur à été définie. On notera qu’elle est de type

double hétérodyne avec un système de sélection de canal basé sur l’utilisation de filtres très

sélectifs et reconfigurables : les N-path filters. Ces filtres ont cependant une bande passante

trop élevée pour atténuer totalement les signaux de communications PMR des canaux ad-

jacent au signal utile. Le signal en bout de chaine est localisé sur une fréquence porteuse

fIF2 de 4.5MHz. Il sera constitué du signal utile et d’un ou plusieurs signaux d’interférences

insuffisamment atténués. Le signal résultant est numérisé à une fréquence d’échantillonnage

fs de 18MHz.

La présence de ces signaux indésirables est problématique lorsque les composants élec-

troniques du RX ne fonctionnent plus dans leur zone de fonctionnement optimale. Dans la

thèse on a considéré que le récepteur est constitué d’une mise en série de plusieurs compo-

sants imparfait (voir [Razavi, 2011]). Celui-ci est alors modélisé par une fonction non linéaire

d’ordre 3 en (2.1), tel que e(t) soit le signal reçu, les coefficients α{1,2,3} sont caractéristiques

du récepteur et s(t) le signal numérisé.

s(t) = α1e(t) + α2e2(t) + α3e3(t) + . . . (1)

Il a été montré dans [Razavi, 2011, Cripps, 2006] que suivant le modèle du signal e(t), deux

effets sont de nature à dégrader le signal utile et amplifié α1e(t). On peut aisément montrer que

lorsque e(t) est un signal sinusoïdal simple tel que e(t) = A1(t)cos(2πf1t), des harmoniques

indésirables ainsi qu’un repliement dans la bande du signal utile intervient si la puissance

du signal utile est trop importante (phénomène de saturation). A contrario, si e(t) est une

mixture d’au moins deux signaux sur porteuses différentes tel que e(t) = A1(t)cos(ω1t) +

TETRAPOL TETRA TEDS P25 (phase 2)

80, 380-490

380-390, 395-400

Frequency 410-420, 420-430 36-174

Band [MHz] 450-460, 460-470 403-512, 806-870

870-876, 415-921

Channel Size
12.5 6.25 (25-50-100-150) 6.25

[kHz]

Link Type Half-Duplex Full-Duplex Full-Duplex

Layer Access FDMA TDMA (4-8-16-32 channels) TDMA (2)

Modulation GMSK π
4 -QDPSK 4 to 64 QAM

H-CPM

H- DQPSK

Max. DL
76 36 691 12

Speed [kbits/s]

Table 1: Synthèse des caractéristiques des standards PMR pris en compte par le projet

FITNESS
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A2(t)cos(ω2t), alors le signal le plus puissant tends à réduire voire même annuler le gain du

circuit (phénomènes de blocage et d’intermodulation).

Dans un récepteur classique, pour contrer ces phénomènes, l’amplification est limitée et

d’importantes marges de numérisation sont conservées au niveau des convertisseurs. Dans le

projet FITNESS, l’innovation serai de rendre le récepteur conscient de son environnement

spectral, comme illustré en fig.2.7. L’idée est la suivante : dans une situation quelconque les

marges d’IP3 (mesure de la non linéarité du circuit) et de bruit (NF) sont fixées comme

schématisé en fig.2.7a. L’idéal serait de fixer une valeur d’IP3 la plus haute possible pour

avoir un récepteur le plus linéaire possible. D’autre par on souhaiterai fixer une valeur de

NF le plus bas possible pour avoir une meilleure sensibilité. Cependant ces deux paramètres

sont liés par le gain du récepteur. Ainsi, la maximisation de la linéarité ne peut se faire qu’au

détriment de la sensibilité. Un compromis est donc réalisé entre ces deux paramètres dans un

récepteur classique.

En rendant le récepteur conscient de son environnement spectral grâce à une méthode

de détection, ces bornes pourraient être ajustées. Prenons un cas ou aucun signal indésirable

n’est détecté (sensing scenario en fig.2.7b). Dans ce cas de figure, la borne d’IP3 pourrait être

relâchée, permettant d’augmenter le gain sans risquer de saturer la chaine de réception. Un

autre situation serait celle de la présence de signaux interféreurs ou de saturation du circuit

par le signal utile (linearity scenario en fig.2.7c). La borne de bruit peut alors être relâchée

permettant de diminuer le gain, sans compromettre la numérisation car le signal reçu est

d’amplitude importante. L’information de présence ou d’absence serait ensuite exploitée via

une boucle de rétroaction pour agir sur les composants reconfigurables du RX.

Détection aveugle de signaux sur porteuse

Lorsqu’il s’agit de détecter un signal sans connaissances préalables, on parle générale-

ment de détection aveugle. Ces méthodes sont utilisés pour des applications tant civiles que

militaires. Dans un but militaire, comme dans la guerre électronique par exemple, il s’agi-

rait d’intercepter et de décoder des messages transmis par l’ennemi, sans information (par

exemple modulation, période des symboles, code, cryptage, etc.). Dans le domaine des télé-

communications civiles, il existe de nombreuses applications pour les radio intelligentes. En

= =

(a) Unknown scenario (c) Linearity scenario

Fixed IIP3 and NF

(b) Sensing Scenario

Relaxed IIP3 Relaxed NF
=

NF

IIP3

Figure 1: Scénarios d’adaptation du récepteur
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effet, le spectre électromagnétique devient une ressource rare et la majeure partie de la bande

passante est réservée à des utilisateurs spécifiques appelés "primaires". Ces utilisateurs sont

reconnus dans l’application grâce à des "licences" payantes. Toutefois, ces utilisateurs peuvent

laisser le spectre inutilisé pendant de longues périodes. Pour pallier à cette utilisation ineffi-

cace du spectre, il a été proposé par J. Mitola dans [Mitola and Maguire, 1999] et plus tard

par S. Haykin dans [Haykin, 2005], de permettre à des utilisateurs "secondaires" d’accéder

aux bandes non utilisés. Une telle application implique une connaissance de l’environnement

spectral et, par conséquent, exige une capacité pour l’étudier. De cette façon, les utilisateurs

secondaires viennent balayer le spectre à la recherche d’un canal radio exempt d’utilisateurs

primaires.

Les deux applications représentent un défi, tant du point de vue du logiciel que du point

de vue conception analogique. Ces problématiques sont soulevés par T. Yucek et H. Arslan

dans [Yucek and Arslan, 2009], qui introduisent plusieurs méthodes statistiques de détection

aveugle. Ce travail met en évidence les exigences principales des méthodes de détection :

un taux d’échantillonnage élevé, une haute résolution de l’ADC, une large plage dynamique

importante et enfin des capacités de calcul importantes. Ces contraintes sont très similaires à

celles auxquelles nous sommes confrontés dans le cadre du projet FITNESS. Cependant, dans

de nombreux cas, la détection nécessite une technique d’estimation de la puissance du bruit,

ce qui n’est pas envisageable en raison des contraintes importantes imposées par FITNESS.

Bien qu’il existe de nombreuses méthodes de détection, nous nous sommes concentrés sur

deux méthodes en particulier : a) le détecteur d’énergie, qui est la méthode la plus simple ; b)

le détecteur cyclostationnaire, qui est plus sophistiqué mais avec des inconvénients différents.

La première étape identifiée est de balayer une partie de l’environnement spectral, comme

dans le cas des radios intelligentes.

A notre connaissance, une grande partie des méthodes existantes proposent une détection

en bande de base. Comme nous devons détecter les signaux indésirables le plus tôt possible

dans la chaîne de réception, nous proposons de réaliser la détection directement à fréquence

intermédiaire, juste après numérisation. Toutefois, ce traitement peut modifier les statistiques

du signal reçu. Ce détail revêt une importance particulière, car les méthodes de détection

reposent sur une décision statistique.

Détecteur cyclostationnaire de signaux à modulation de phase

sur porteuse

Dans le chapitre 3 de la thèse, nous avons développé des outils théoriques pour détecter

les signaux aléatoires. Nous proposons maintenant de les utiliser dans le cadre du projet

FITNESS. Nous avons déjà souligné les avantages d’utiliser les propriétés cyclostationnaires

du signal reçu dans ce contexte. En effet, la contrainte principale est de détecter des signaux

à modulation de phase (c’est-à-dire O-QPSK et QAM) sur fréquence porteuse fci (avec fci

la i-ème porteuse, i = 1 étant la porteuse du signal utile). Avec la connaissance du modèle

cyclostationnaire du signal reçu, il a été montré dans [Gardner, 1994] qu’une détection et
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même une classification est possible. Cela signifie qu’une connaissance préalable du signal

étudié est nécessaire pour rechercher un modèle cyclostationnaire connu. Le problème dans

notre étude est que le signal reçu est un mélange de plusieurs signaux PMR. Le détecteur

doit donc obligatoirement être capable de distinguer chacun des signaux sans ambiguïté. Le

seul paramètre différent pour chaque signal du mélange reçu est sa fréquence porteuse. Pour

cette raison, et comme recommandé dans [Jouini et al., 2012], nous supposons connaitre a

priori les fréquences porteuse des signaux possiblement reçus. Ainsi, nous nous concentrons

sur les méthodes permettant de détecter une fréquence particulière dans l’ensemble étudié.

Néanmoins, un autre problème se pose. Il est bien connu que les signaux modulés en phase sur

porteuse ne présentent pas de fréquences cycliques multiples de fci, ce qui limite les méthodes

pour effectuer un test. C’est pourquoi les détecteurs classiques, tels que le détecteur proposé

par A.V. Dandawate et G.B. Giannakis qui consiste à estimer la fonction d’auto corrélation

cyclique du second ordre (voir [Dandawate and Giannakis, 1994a]), ne sont pas adaptés.

Ce chapitre est donc consacré à une revue des méthodes cyclostationnaires permettant

de détecter un signal modulé en phase sur porteuse. Les méthodes des moments deux ne

sont pas adaptées car certaines modulations PMR n’ont pas d’énergie à des multiples de leur

fréquence cyclique. Par conséquent, des statistiques cycliques d’ordre supérieur doivent être

utilisées. Une autre possibilité serait d’utiliser ou la méthode de transformation non linéaire.

Mais ces méthodes (qui ont des caractéristiques très similaires) nécessitent un grand nombre

d’échantillons comme principal inconvénient. C’est pourquoi, nous avons proposé une nouvelle

méthode pour détecter les signaux modulés en phase en utilisant une méthode de moments

d’ordre deux.

Nous avons montré qu’il est possible de détecter la présence d’un signal à une fréquence

cyclique où il n’y a théoriquement aucune énergie. Au moyen de simulations, nous avons

exploré différentes caractéristiques de ce critère. Un avantage majeur de cette méthode est

que le détecteur fonctionne bien en n’utilisant que 8 symboles, ce qui est particulièrement

peu. A titre de comparaison, nous avons réalisé un test de détection avec la méthode de

transformation non linéaire. Nos performances de détection sont beaucoup plus intéressantes

lorsque la taille du signal d’entrée est petite, mais sont clairement inférieures lorsque le

nombre de symboles est élevé. De plus, notre critère permet un ajustement de la probabilité

de détection en modifiant l’un de ses paramètres. Toute amélioration du taux de détection

est cependant obtenue au prix d’une augmentation du temps de calcul.

Les méthodes de détection sont souvent appliquées dans des conditions idéales, c’est-à-dire

sans canal en négligeant l’effet du milieu. Dans la dernière partie de ce chapitre, nous avons

essayé de répondre aux problèmes de sélectivité temporelle et fréquentielle. Nous avons montré

qu’avec notre méthode, l’influence du canal est négligeable. Une brève analyse a également

montré que la méthode est robuste à l’effet Doppler. Notre détecteur présente donc plusieurs

avantages qui peuvent justifier une intégration dans le prototype de récepteur FITNESS. De

plus, les résultats obtenus avec la modulation Q-PSK sont facilement extensibles aux signaux

M-PSK ou M-QAM modulés en phase (avec M > 2).

Bien que qu’une étude de l’influence de l’excès de bande du filtre d’émission soit absente



RÉSUMÉ xxv

de notre étude, l’influence d’un tel paramètre est connue. Plus l’excès de bande passante est

proche de 1, meilleure est la probabilité de détection. A titre d’exemple, le travail réalisé

dans [Houcke, 2002] est complet sur ce sujet. Refaire la même étude dans notre contexte n’est

donc pas d’un grand intérêt. Nous n’avons analysé les taux de détection du critère proposé

que dans le cas de signaux modulés en phase. Toutefois, il n’y a aucune raison pour que

notre méthode fonctionne différemment lorsqu’il y a une énergie non nulle à la fréquence

cyclique testée. Dans ce cas, des méthodes issues de l’état de l’art pourraient être utilisées, et

potentiellement être plus efficaces que la méthode proposé. Cependant, l’utilisation de notre

algorithme permet d’effectuer une détection sans la connaissance de la puissance du bruit, ce

qui est un avantage certain.

Récepteur RF analogique conscient de son environnement spec-

tral

Le chapitre 2 était consacré au nouveau récepteur PMR et à la description de ses

contraintes. Comme nous l’avons vu, la convergence de plusieurs normes en un seul récepteur

rend les spécifications de l’ADC difficiles à atteindre. Ceci est dû à la présence de signaux

indésirables à l’entrée des convertisseurs, ce qui limite leur dynamique. Par conséquent, une

méthode de détection de ces signaux doit être identifiée, ce qui justifie cette étude. Le modèle

de signal et les méthodes de détection de base ont été développés dans le chapitre 3. La

méthode de détection la plus appropriée est l’approche cyclostationnaire. Cependant, comme

nous l’avons vu dans chapitre 4, certaines modulations PMR ne peuvent être détectées de

manière simple. Ainsi, afin de résoudre le problème de la détection des signaux modulés en

phase sur porteuse, nous avons développé une nouvelle méthode.

Dans ce chapitre, nous proposons d’utiliser ce nouvel outil pour détecter les signaux

indésirables dans le contexte du projet FITNESS. Comme développé dans le chapitre 1, en

raison de ses composantes analogiques internes, le récepteur n’est pas parfaitement linéaire

et est modélisé comme un polynôme. En présence d’au moins deux signaux (c’est-à-dire le

signal utile et un brouilleur), des harmoniques supplémentaires apparaissent en raison de la

saturation. Ainsi, pour répondre aux exigences de FITNESS, nous devons déterminer quand

la chaine de réception ou les convertissent commencent à saturer selon le mécanisme décrit

dans la figure 2.7. Deux scénarios sont envisagés :

a) Un signal utile uniquement (scénario de sensibilité) ;

b) Un signal utile plus un signal brouilleur (scénario de linéarité).

Dans le cas a), si la puissance du signal utile est trop élevée, le récepteur peut cependant être

saturer et créer des harmoniques indésirables. Dans le cas b), deux situations sont possibles :

b.i) La puissance du brouilleur est suffisamment faible, de sorte que la puissance des harmo-

niques indésirables sont également faibles, ce qui n’est pas gênant pour les performances

du système ;
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b.ii) La puissance de l’interféreur est suffisamment élevée pour créer de puissantes harmo-

niques et ainsi dégrader les performances de décodage.

Dans ce chapitre, nous proposons une méthode pour distinguer ces trois cas. Notre but est

de réaliser plusieurs détections successives grâce à notre méthode de détection cyclostation-

naire. La première étape consiste à décider si un brouilleur est présent ou non, en surveillant

notre nouveau critère aux fréquences cycliques 2fc2 (avec fc2 est la fréquence porteuse du

brouilleur). La deuxième étape, consiste à identifier si le récepteur à un comportement non

linéaire ou non. On doit ensuite identifier si ce comportement est dû à la présence d’un puis-

sant brouilleur, ou à un excès de puissance du signal utile. La surveillance des harmoniques

spécifiquement créées par la fonction non linéaire à 4fc1 et 4fc2 permet l’identification du

scénario.

Les densité de probabilité théoriques de ces trois tests ne sont cependant définis qu’en

l’absence de signal à détecter. Dans un contexte non linéaire, il est nécessaire de souligner les

différences entre une détection de signal unique et une détection de signal dans un mélange

de plusieurs signaux. Comme avantage supplémentaire, cette méthode permet également de

déterminer la raison pour laquelle le système fonctionne en régime non linéaire.

Comme principaux avantages, notre méthode contourne l’identification non-linéaire du

modèle. En effet, en pratique aucune connaissance préalable des paramètres du modèle n’est

requise (c.-à-d. ni l’ordre polynomial, ni les coefficients αk). Une détection peut être effectuée

sans aucune connaissance préalable. Comme développé dans le chapitre précédent, les mesures

de performances de détection montrent que l’approche choisie est sensible et fiable. Nous

considérons donc qu’elle pourrait être utilisée pour mettre en place une boucle de rétroaction.

Dans un tel schéma, le gain est le paramètre à ajuster en tenant compte du scénario de travail

du récepteur, ce qui est considéré dans le chapitre suivant.

Mécanisme d’ajustement automatique de gain pour un récep-

teur PMR

Notre objectif principal dans ce chapitre est de proposer une méthode pour assouplir les

contraintes qui pèsent sur les convertisseurs. Dans le chapitre 5, nous avons montré que nous

sommes capables de détecter si le récepteur fonctionne ou non en régime non linéaire. Cepen-

dant, nous n’avons évalué que la faisabilité de détection des interférences. Cela signifie qu’au-

cune rétroaction de cette information n’a été réalisée. Dans la continuité de cette idée, nous

considérons que notre récepteur est conscient de son environnement spectral (voir chapitre

5). Nous proposons maintenant d’adapter ses paramètres en fonction de cette connaissance.

Le mécanisme de détection numérique a pour but de diminuer les contraintes sur les ADC,

tout en maintenant constante la consommation d’énergie. En outre, l’exigence d’un termi-

nal de faible encombrement que le front-end analogique doit être aussi limité que possible.

Entre autres raisons, le récepteur est prévu pour être entièrement intégré et reconfigurable.

L’utilisation de filtres SAW (c’est-à-dire de dispositifs externes) n’est pas possible car cela
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conduirait à une stratégie de parallélisation couteuse en énergie et en encombrement. La

plupart des méthodes avancées d’égalisation des non-linéarités reposent sur des termes d’in-

termodulation et des mécanismes de soustraction modélisés pour surmonter ce problème.

Malgré l’efficacité de ces techniques, comme détaillé dans ce chapitre, leurs caractéristiques

ne répondent pas aux spécifications FITNESS. Nous proposons donc une validation de prin-

cipe d’une nouvelle méthode pour limiter les effets nocifs des non-linéarités. Selon la méthode

d’identification spectrale proposée dans le chapitre 5, le gain du circuit pourrait être diminué

si le récepteur fonctionne en régime non linéaire. A l’inverse, le gain pourrait être augmenté

si aucun brouilleur et ni saturation ne sont détectés. Nous proposons d’utiliser une boucle de

rétroaction comme mécanisme d’adaptation du gain qui doit fonctionner le plus rapidement

possible. La modification du gain implique que la linéarité du circuit est impactée, comme

cela est décrit par l’équivalent non linéaire de la formule Friis [Razavi, 2011]. Le mécanisme

proposé a été grossièrement défini dans le chapitre 2.

Dans ce chapitre, nous présentons d’abord les avantages et les inconvénients des méthodes

de l’état de l’art. Différentes possibilités pourraient être adaptées pour supprimer presque to-

talement les perturbations non linéaires indésirables dues à la présence de signaux de blocage.

Cependant, chacun s’appuie sur la connaissance des paramètres du modèle non linéaire, ce qui

s’avère inadéquat dans le contexte de FITNESS. Ensuite, nous avons développé une preuve

de concept de récepteur PMR conscient de son environnement spectral. Ce mécanisme est

basé sur le concept de boucle de rétroaction, qui permet au récepteur d’ajuster son gain pour

travailler dans une région plus linéaire. Malgré l’absence d’expression théorique de notre mé-

thode de détection, un mécanisme adaptatif a été proposé. Une analyse de la convergence de

nos algorithmes a été présentée. Nous avons vu qu’après un court laps de temps, une valeur

de gain stable peut être obtenue. Cependant, nous ne pouvons pas garantir que la valeur

obtenue soit optimale au sens d’un critère donné pour limiter la puissance des harmoniques

non linéaires. Enfin, une étude sur l’impact de cette méthode sur les performances de taux

erreur binaires (TEB) à été réalisée. Les résultats les plus notables sont listés ci-dessous :

a) Avec cette preuve de concept, nous avons montré que le TEB pouvait être considérable-

ment amélioré même lorsque le récepteur est saturé ;

b) Lorsqu’un brouilleur est présent, le mécanisme d’adaptation du gain améliore nettement

les performances de TEB du récepteur. La limite d’amplification la plus élevée est la

dynamique maximale admise par les ADC. La borne d’amplification inférieure est la

valeur de gain qui donne le plancher de bruit maximal acceptable ;

c) Nous avons introduit la métrique SIHR qui traduit la puissance de l’harmonique indési-

rable repliée dans la bande passante signal utile. Nous avons montré que le gain est lié à

la valeur de cette métrique.D’autre part, l’évolution du TEB est directement liée à celle

du SIR. Notre relation de mise à jour de gain donne une valeur proche de la valeur SIHR

optimale pour un seuil de fausse alarme de 5% ;

c) A notre connaissance, le concept de boucle de rétroaction de gain est un sujet qui n’a

pas encore été exploré, dont les premiers résultats présentés dans la thèse semblent
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prometteurs

Enfin, plusieurs points n’ont pas été abordés dans ce chapitre et doivent être dévelop-

pés succinctement. Comme preuve de concept, le mécanisme d’adaptation du gain est réalisé

sur un récepteur non linéaire simple. En d’autres termes, de nombreux paramètres ont été

négligés, comme par exemple : les effets de la quantification sur le taux de détection, les ajus-

tements des marges ADC, ou le nombre fini de valeurs de gain possibles (chaque composant

analogique du front-end ne peut pas être adapté à l’envie). De telles simplifications peuvent

conduire à une perte d’efficacité significative de notre méthode dans un récepteur réel, en par-

ticulier à cause de la quantification. Néanmoins, le relâchement des marges des convertisseurs

(qui n’ont pas été prises en compte dans nos simulations) pourrait entraîner d’autres effets

positifs qui sont difficiles à évaluer pour l’instant. En effet, comme discuté dans le chapitre 2,

d’importantes marges PAPR sont conservées pour assurer un signal numérique linéaire. Grâce

à notre mécanisme de détection, ces marges peuvent être réduites, ce qui permettrait d’aug-

menter le gain dans une certaine mesure pour améliorer le SNR. C’était une exigence majeure

exprimée dans le chapitre 2. Nous avons remarqué que pour maximiser l’effet de l’ajustement

de gain, la meilleure façon est d’adapter le gain des premières composantes analogiques du

récepteur car il affecte toute la chaîne en aval. Dans ce travail, nous avons supposé que les

paramètres de plusieurs étages peuvent être ajustés pour obtenir produire un réglage plus fin,

ce qui ne serait pas possible dans un récepteur réel. Un mécanisme permettant d’adapter le

gain récepteur dans un ensemble de valeurs fixées pourrait être réalisé à la place. La valeur

de gain idéale pourrait être approchée pour sélectionner la valeur de gain réel la plus proche.

Enfin, cette méthode est capable de détecter un brouilleur, de détecter si le circuit fonctionne

en régime non linéaire et d’en identifier la cause. Cette méthode semble donc être une bonne

réponse aux exigences de FITNESS.

Conclusions

D’après la définition de Minolta dans [Mitola, 2000], la définition d’une radio intelligente

est la suivante :

Radio intelligente : une radio ou un système qui analyse et est conscient de son

environnement opérationnel, et qui peut ajuster ses paramètres de fonctionnement

radio en conséquence de façon dynamique et autonome.

Compte tenu de cette définition, le mécanisme de détection conçu dans cette thèse permet

un ajustement autonome du gain du récepteur, ce qui limite ses interférences internes. A la

lumière des travaux présentés, nous considérons que le système proposé peut donc être qualifié

de radio PMR intelligente.

La première partie de cette thèse a été consacrée à l’analyse de l’environnement spectral

des radios PMR. Nous avons vu au cours du chapitre 2 que les spécifications des normes PMR

difficiles à adresser simplement par le design analogique seul. De plus, la conception globale

du récepteur étant déjà définie, elle implique des contraintes supplémentaires sur les réponses
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numériques qui pourraient être proposées (par exemple, mode aveugle, traitement rapide,

etc.). Par conséquent, la nouveauté du projet est de détecter quand et pourquoi le récepteur

fonctionne dans un régime non linéaire. Cet algorithme doit être réalisé dans le domaine

numérique, et pourrait permettre d’adapter les paramètres analogiques du récepteur grâce à

une boucle de retour. L’idée de mesurer la puissance harmonique non linéaire est nouvelle et

mérite une analyse approfondie.

C’est pourquoi le chapitre 3 est consacré à un état de l’art des méthodes de détection

aveugle. Comme les statistiques de puissance du signal et du bruit sont supposées inconnues,

le détecteur d’énergie ne peut pas être utilisé. D’autres méthodes efficaces telles que le filtre

adapté sont également écartées en raison du manque de connaissances sur le signal à détecter.

Il semble que l’approche cyclostationnaire soit la plus intéressante, car elle nécessite peu

d’informations et fonctionne bien à faible SNR.

Avec l’analyse précédente, nous poursuivons avec les contributions apportées par cette

thèse. Nous avons vu dans le chapitre 4 que la détection de signaux à modulation de phase

n’est pas possible en utilisant une méthode cyclique de moments du second ordre. Pour

détecter de tels signaux, les méthodes habituelles sont : utilisation des moments d’ordre

supérieur ou l’utilisation d’une transformation non linéaire. Nous avons montré que de telles

méthodes nécessitent trop de symboles pour fournir de bons taux de détection et un niveau

de confiance élevé. Nous avons donc proposé une nouvelle méthode de détection basée sur

des statistiques de second ordre. L’originalité de notre algorithme est de pouvoir détecter la

présence d’un signal en surveillant une fréquence cyclique où aucune énergie n’est présente en

théorie. Cet algorithme s’est avéré capable de détecter une énergie cyclique lorsque la valeur

théorique est nulle. Cette méthode peut être utilisée en mode semi-aveugle et nécessite très

peu de symboles pour détecter la présence d’un signal. Nous avons évalué par simulations

que cette méthode fournit de bons taux de détection à 0 dB. Notre détecteur est également

résistant à la sélectivité du canal, et à une mauvaise synchronisation, comme cela a été

démontré théoriquement et expérimentalement.

Ce nouvel outil est ensuite appliqué dans le contexte du projet FITNESS. Dans le cha-

pitre 5, nous avons modélisé le récepteur comme un polynôme en raison de ses composantes

analogiques, qui ont un comportement non linéaire. Nous avons vu que la présence d’un signal

PMR dans un canal proche du signal de la fréquence porteuse d’intérêt crée des harmoniques

supplémentaires. La méthode développée dans le chapitre 4 a été appliquée pour détecter les

harmoniques cycliques dues au régime non linéaire du récepteur. Une analyse théorique de ce

mécanisme est détaillée dans ce chapitre. L’utilisation de notre détecteur n’est cependant pas

obligatoire. Il permet néanmoins d’effectuer une détection avec un petit nombre de symboles,

sans estimation de la variance du bruit. Avec l’information de la présence d’harmoniques non

linéaires, nous sommes capables de décider si le récepteur fonctionne ou non dans sa région

linéaire. A travers des simulations, nous avons montré qu’une détection est possible bien avant

une dégradation du signal utile. Cette étude a été réalisée en coopération avec le CEA et a

donné lieu à une communication [Grollier et al., 2018].

Dans le chapitre 6, nous avons détaillé les grands principes des techniques de la littéra-
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ture pour diminuer l’influence des harmonique due aux effets non linéaires. Il existe peu de

solutions sur ce sujet. Plusieurs principes et méthodes sont développées succinctement au

début du chapitre. Ces méthodes imposent souvent les exigences importantes sur la partie

analogique des récepteurs, ce qui n’est pas acceptable dans le contexte de FITNESS. C’est

pourquoi nous proposons une méthode entièrement nouvelle basée sur le principe de la boucle

de rétroaction. Basé sur notre travail des chapitres 4 et 5, nous proposons une méthode pour

que le récepteur adapte ses paramètres dans le chapitre 6. Le concept d’adaptation est basé

sur la formule non linéaire de Friis. Cette relation implique qu’une diminution de gain en-

gendre un circuit plus linéaire. Ensuite, nous avons présenté un mécanisme pour adapter le

niveau de gain. L’efficacité de cette méthode a été démontrée par simulation, et nous avons vu

qu’elle conduit à une amélioration significative du débit d’erreur binaire. Ce travail étant ré-

cent il n’a pas encore fait l’objet pas de communications scientifiques. Cependant, une article

de conférence et un article de revue sont en cours de réaction à partir des résultats obtenus.



CHAPTER

1 General Introduction

1.1 Thesis Environment

Professional Mobile Radio (PMR) users are public safety, transport, industry and other

professional organizations who need reliable and secured radio communication solutions in

their daily work. Besides, PMR networks efficiency was improved as well as systems robust-

ness, professionals require more feature richness as those offered by commercial networks. This

thesis is realized in the context of the European project FITNESS (see [FITNESS, 2017]),

which aims to prepare the future of Professional Mobile Radio in Europe and in the world.

This project paves the way toward wireless broadband secured radios based on Long-Term

Evolution (LTE) technology. Its mains goals are to study and unlock technological issues,

to make possible the development of a multi-standard, multi-usage and low-cost PMR re-

ceiver. Moreover, this new PMR receiver has to be compliant with existing PMR standards

to guarantee backward compatibility, and present new critical functionalities. By developing

PMR broadband capability, FITNESS is supporting the European effort to deploy the next

PMR wireless applications generation. Project partners (ADS, NXP, BeSpoon, MKR-IC,

CEA, IMS, ISEP et IMT Atlantique) share interest and resources, according their respective

expertise fields.

Main challenges tackled by FITNESS are the following ones:

• Study and creation of a new low-cost narrowband PMR receiver based on Complementary

Metal Oxide Semiconductor(CMOS) and compliant with existing norms (TETRAPOL,

TETRA, TEDS and APCO P25):

1. Study and use of a Cartesian Feed Back Loop (CFBL);

2. Create a new interference detection algorithm;

3. Manage the usage in specific bandwidths.

• Integration of a highly-reconfigurable CMOS Radio Frequency (RF) transmitter:

1. Guarantee the compliance with standards LTE PMR;

2. Manage the usage in the 400 MHz and 700 MHz bandwidth;

3. Antenna coupling;

1



2 CHAPTER 1. GENERAL INTRODUCTION

4. Energy saving for mobile front-end.

• Integration of a geolocation system.

• Design of a 3D support allowing a coexistence of heterogeneous technologies and a highly

integration in a low-cost terminal.

IMT Atlantique was involved in a small part of this project. In this thesis, we focused

on the specific part that concerns the backward compliance with current narrowband PMR

standards. Our aim is to propose new technological solutions to guarantee system performance

in a narrowband multi-standard environment. More precisely, the new receiver has to be able

to transmit and receive within the bandwidth 350 MHz to 510 MHz and in the bandwidth

870 MHz to 921 MHz. The encountered problem is a the edge between analog and digital

domains. It appears that the main issue is to deal with a dynamic up to 141 dB with channel

bandwidth of 12.5 kHz. This is a particularly severe specification for a fully integrated Receiver

(RX).

Hence, the new receiver has tight analog specifications due to backwards compatibility.

Due to the effective behavior of Receiver (RX) analog components, some requirements may

not be hold and the signal of interest may be affected. A degradation can occur due to RF

components such as Low Noise Amplifier (LNA) or mixers when they are used outside of their

linear region. It might manifest through saturation, and presence of additional unwanted in-

termodulation products and harmonics. The FITNESS preliminary work showed that it is

possible to limit analog constraints thanks to a particular design. The chosen architecture

is assumed to be enough to counterbalance several analog mechanisms such as IQ imbal-

ance, image frequency signal or architecture inherent issues. As the receiver is assumed well

designed, in this document we focus on nonlinearities and saturation phenomena. However,

with such a receiver analog design, the communication channel selection is not realized the

same way as in classic receivers, which led to increase constraints on ADCs. Despite the new

channel selection mechanism, phase noise requirements are still unachievable due to energy

saving reasons and space consumption. The phase noise constraint could be released under

specific conditions, which are described in the following dissertation.

1.2 Framework

The first part of this dissertation deals with general information, that are required to fully

understand the raised issue. Thereby, chapter 2 is devoted to detail the FITNESS context.

A short overview of PMR systems specifications is done. A description of analog issues is

developed in the consideration of the FITNESS receiver architecture. As we will see, in

addition to a pure analog design a digital sensing mechanism is proposed. Then, a synthesis

of technological choices that led to this thesis is realized. The chapter is concluded by the

list of FITNESS specifications and working assumptions. Once the analog constraints topic

clarified, the problem is simplified to a blind detection in a nonlinear context.
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Hence, chapter 3 deals with mathematical models that are used in following parts. Then,

we go on with a blind detection state-of-the-art. A particular focus is made on the cyclo-

stationary theory. Indeed, almost all communication signals have cyclostationary properties.

Moreover, this technique allows a very fine detection and can be performed with a few working

assumptions. An interesting property of such detection methods is to perform well at rela-

tively low signal-to-noise-ratio. However, one major issue of cyclostationary techniques is the

blind detection of on-carrier phase modulated signals (i.e. Phase-Shift-Keying or Quadrature-

Amplitude modulations).

The second part of this document continues with answers we proposed to cope with

FITNESS requirements. In chapter 4 we assume a general context, we focus on current

cyclostationary methods to detect on carrier phase modulated signals. It appears that state

of the art methods are either unable to work in noisy conditions, or are too costly in calculation

time. Therefore, we propose a new method to detect on-carrier phase modulated signals. A

theoretical analysis of this detector is conducted with a simple received signal model. Then,

we propose a characterization through simulations. We show that our method is reliable in

noisy conditions and requires very few symbols. Finally, several simplifying assumptions are

released to show that this new detector is also efficient in a more real context. This work

led to several communications [Grollier and Houcke, 2017,Grollier and Houcke, 2018], and a

cooperation [Gouldieff et al., 2018].

In chapter 5, we use this new tool in the FITNESS context. The analog receiver is now

modeled as a polynomial to take into account its internal electronic components behavior.

We assume the presence of a PMR signal in a channel close to the signal of interest carrier

frequency. Due to the receiver nonlinear behavior, is creates additional harmonics. A theo-

retical analysis of this mechanism is provided. We then propose to detect particular cyclic

harmonics that are created only when the receiver works in a nonlinear regime. With the

information of nonlinear harmonics presence, we decide if the receiver works or not in its

linear region. Through simulations, we show that a detection is possible well before a degra-

dation of the useful signal. This study was realized in cooperation with the CEA, and led to

a communication [Grollier et al., 2018].

Finally, based on chapter 4 and chapter 5, we propose a method for the receiver to adapt

its parameters in chapter 6. There are few state of the art solutions on this topic, that are

recalled in the beginning of the chapter. Such solutions often tightens analog requirements,

which is not affordable in the FITNESS context. Hence, we propose a completely new method

based on the feedback loop principle. The overall adaptation concept is first developed. Then,

we go on with a mechanism to adapt its parameters, to make it works in a more linear fashion.

Our method efficiency is shown through simulations. We show that with our compensation

method a significant Bit-Error-Rate improvement is possible. As this work is recent, there

is still no scientific communications on this topic. However, a communication and a journal

paper are planed based on obtained results.



4 CHAPTER 1. GENERAL INTRODUCTION

1.3 Scientific Communications

The work accomplished in the second part of the dissertation led to the publication of

several communications in national and international conferences.

List of publications:

• Conferences:

1. (submitted )N. Grollier, S. Houcke and M. Pelissier, "Spectrally Aware RF front

end Nonlinear Receiver Performance Analysis" IEEE International Conference on

Communications (ICC), May 2019

2. V. Gouldieff, A. Nafkha, N. Grollier, J. Palicot and S. Daumont, "Cyclic Autocor-

relation based Spectrum Sensing:Theoretical Derivation Framework", 25th Interna-

tional Conference on Telecommunications (ICT), June 2018

3. N. Grollier, S. Houcke and M. Pelissier, "Enhanced Spectrally Aware RF front end

Receiver under Non-linearity", IEEE International Conference on Communications

(ICC), May 2018

4. N. Grollier and S. Houcke, "On Carrier QPSK Signal Detector Based on Second Or-

der Cyclic-Moments", IEEE Wireless Communications and Networking Conference

(WCNC), April 2018

5. N. Grollier and S. Houcke, "Détection de signaux QPSK sur porteuse en utilisant

les statistiques cycliques d’ordre 2", 26ème colloque du Groupement de Recherche

en Traitement du Signal et des Images (GRETSI), September 2017

• Journals:

1. (in preparation) N. Grollier, S. Houcke and M. Pelissier, "Variable Gain Enhance-

ment of a Nonlinear RF front end Receiver"
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CHAPTER

2 FITNESS Receiver

Description

2.1 Introduction

As presented in the general introduction, this document tackles the narrowband PMR

receiver backward compatibility with PMR standards, which takes place in the FITNESS

WP3. Hence, in this part we first focus on a brief existing PMR standard description in

section 2.2. Then, we pay attention to our technical subject, which is the narrowband analog

receiver. The architecture defined in the scope of FITNESS project is a discrete time doubly

super-heterodyne architecture and is mainly inspired by the work realized by L. Lolis [Lolis,

2011]. He realized a very complete work of discrete time architecture synthesis in his PhD.

thesis. [Razavi, 2011] is also a reference to understand the chosen analog design options. Such

an architecture is a combination of two different receivers: super-heterodyne, or discrete time

receiver. All issues of design, analog electronic and RF are tackled coarsly, but let us make

a brief sum up of the two architectures in section 2.3. Its internal mechanisms are defined

to make sense without to much useless details. We develop encountered issues and we define

the receiver limits in the second part of this section. In section 2.4, FITNESS requirements,

needs and assumptions are finally defined.

2.2 PMR System Overview

As it is, PMR systems are usually unknown from mainstream. However, their function-

alities are well known thanks to one of its first declination: the analog standard PMR446,

which popularized walky-talkies (see [Ketterling, 2004]). PMR radios are secured wireless

systems that main users are security services (military, police, firefighters, airports, etc.) but

also in industry or public works (power plants, transportation, etc.). Contrary to commer-

cials communication networks (telecommunication operators), PMR networks are designed

to cover the largest territory area (instead of largest customer density) to ensure a service

continuity. Its main functionalities are: push-to-talk, point-to-point communication, GPS po-

sitioning, emergency call, multi-diffusion, and a relatively long range amongst others. The

system is designed to work even in emergency cases as natural disaster (e.g. typhoon, earth-

7
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Figure 2.1: Example of the PMR network extension functionality

quake, flood, etc.) that may imply the partial or complete network destruction, thanks to its

point-to-point functionality. In addition, it allows confidential communications in the case of

private networks for security services, but this feature is not mandatory.

The overall communication principles can be briefly sum-up. Calls are given from a stan-

dard or directly by final users, which are gathered in two groups:

users: they use hand-held mobiles or portable terminals (e.g. embedded in a vehicle).

operators: which missions are diverse. The first is a tactical one, with the user configuration

responsibility and in the field organization. The second mission is the user coordination.

Finally, the last one is more technical and deals with operation and network maintenance.

Antenna networks support communications in a range of ten or so kilometers. There is also the

possibility to create sub-networks or to extend the range thanks to more powerful repeaters

as illustrated in fig.2.1.

Let now study PMR standards. First of them were designed in the late thirties and

were based on analog technologies. Nowadays, a few of them are still in use due to their

limited capacities and qualities (bad spectral efficiency, phone-tapping vulnerability, lack of

data). Digital narrowband standards were introduced in the beginning of 1990, which main

ones are TETRA, P25, TETRAPOL and their evolutions. Hence, they are based on old

technologies as GSM. The PMR users community has new claims and requires new services

offered by commercial 3G and 4G. It implies the development of a new broadband platform

which guaranty the backward compatibility with current narrowband standards. In the other

hand, states (main PMR users) chose different PMR solutions during the time. Therefore,

several PMR standards are likely to coexist on small distances, which ask the interoperability

question. The PMR system interoperability issue was analyzed and several solutions were

proposed in [Baldini et al., 2011].

An interesting point is that PMR standard at borders are often different even in small

areas. In Europe only, four standards are spread as shown in fig.2.2. The Belgium issue is

representative: with TETRAPOL at France border and TETRA at Germany border. As each

network is independent from others (even if they share the same norm), their bandwidth are
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Figure 2.2: PMR standards repartition across Europe

different, which is a limiting factor for interaction between them. Besides some link can be

defined, the granted user has a limited access and cannot use the full set of services. Hence,

the service continuity is not insured and costs are increased due to network multiplication.

2.2.1 TETRAPOL

Initially developed by MATRA communications this standard is developed and main-

tained by two entities: TETRAPOL Forum and TETRAPOL User’s Club. The TETRAPOL

Forum Technical working group has developed TETRAPOL as a Publicly Available Specifi-

cation, which makes it close to the definition of a standard. Last technical upgrades (in 2004),

allowed to use IP protocol and some new functionalities such as the handover, or encrypted

communications for IP based services. Deployed over 30 countries and more than 85 networks,

TETRAPOL users are around 1.85 millions across the world [UC, 2018].

TETRAPOL is a digital cellular half-duplex system. Data sharing is realized through

a encrypted narrowband system from user-to-user. TETRAPOL networks are designed such

that covered areas are divided into 28 km side cells maximum. However, in practice communi-

cations cells are usually close to 20 km side in countryside and 6 km side in cities. The system

is deployed in several frequency bands: 80 MHz and between 380 MHz to 490 MHz. Wireless

communications rely on FDMA, in which every channel of 10 kHz to 12.5 kHz corresponds to

a "voice user". Originally this choice allowed the adaptation of analog FM modulated PMR

to new TETRAPOL networks, which are GMSK modulated. A convolutional coder is used,

with an interleaving system and an error correction mechanism at reception. Maximum data

speed are humble and reach 8 kbit/s. Hence, even if this system has a large range and is

adapted for security services, the supported data transfer is much slower than commercial
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3G or LTE (which reach in theory 42 Mbit/s and 1 Gbit/s respectively).

2.2.2 TETRA Standard and Evolution

The TETRA standard (TErrestrial Tuncked Radio) is open, developed by ETSI, and

aims to tackle European PMR radios needs. Early standardization work began in 1988 to

achieve a first commercial version in the middle of 90s. The system is based on resources shar-

ing, which is very contemporary. TETRA offers same services than TETRAPOL (encrypted

communication, push-to-talk, multi-cast, uni-cast, data transmission, emergency call/status,

etc.).

TETRA cells have a maximum of 58 km side, which is often reduced to 8 km side de-

pending of the network environment. Civilian networks are designed for two main bandwidth

385 MHz to 470 MHz and 870 MHz to 921 MHz. TETRA Air Interface specifications are de-

veloped in [Germain, 2014, ETSI, 2007, ETSI, 2013, ETSI, 2002]. Contrary to TETRAPOL

the access layer method is based on TDMA, with 4 users interleaved within each 25 kHz

frequency slot, to decrease base stations antenna number. In its first version, the modulation
π
4 -DQPSK was used. The TEDS evolution increased the channel size to 150 kHz, to improve

the maximum data rate from 2.8 kbit/s to 691.2 kbit/s. However, this theoretical download

speed is obtained only for more efficient modulations, which are defined to be 4 to 64-QAM.

A network mechanism allows to switch to a less efficient modulation when service quality

comes too low. In addition, the TETRA spectrum is managed in a semi-duplex style with

the FDD duplexing method, which is a benefit compared to TETRAPOL or to VHF system.

Besides its technical capabilities, the TETRA protocol cannot offer data rates as high as

commercial technologies. In addition, the use of linear power amplifiers are needed to respect

ETSI requirements, which is a very important aspect in this study.

2.2.3 APCO P25

Project 25 (P25) is a US standards gathering, which were developed by the cooperation

of Association of Public Safety Communications Officials International (APCO): National

Association of State Telecommunications Directors (NASTD), Federal Agencies and the Na-

tional Communications Systems (NCS) under the lead of the Telecommunications Industry

Association (TIA). This standard is used by security services and governmental organiza-

tions in north America. Hence, P25 as the same role as TETRA, but the two standards are

unfortunately not compatible.

As for TETRA, a mechanism allows to tune the system if the service quality comes to low.

In its first phase, the system works in analog mode, digital mode or a mix of these two options.

The P25 modulation is the Continuous 4 Level FM (C4FM), which is a nonlinear modulation.

The usual communication channel is 12.5 kHz, which allows a 9.6 kbit/s maximum theoretical

data rate. A second development phase, which is not finalized, forecast a CQPSK modulation

and a FDMA as a layer control access. One major improvement from phase one to phase two,

is a better spectrum efficiency using amongst others 6.25 kHz channel size. P25 bandwidths
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are located in the VHF (136 MHz to 174 MHz) and UHF (403 MHz to 512 MHz and 806 MHz

to 870 MHz) spectrum part. As for TETRA and TETRAPOL, P25 offers same functionalities

with more or less same drawbacks. Amongst others, the data rate is well low compared to

commercial technologies.

2.3 New Narrowband PMR Receiver Environment

As developed in introduction, PMR users require new functionalities and better data

rates. To answer theses requirements in the idea to address a European market, Airbus Space

& Defense aims to create a new PMR receiver compliant with all European standards. The

backward compliance makes the receiver highly constrained. So, let now focus on the receiver

device. In this part we tackle the PMR receiver description in the FITNESS context, its limits

and mains requirements that led to this thesis formulation.

2.3.1 Architecture Description

An ideal and simplified doubly heterodyne RX architecture is outlined in fig.2.3 (see

[Rouphael, 2014]). Immediately after reception the signal is amplified and passes through

BandPass

Filter

LNA

LowPass

Filter

PA

LowPass

Filter

AGC
yRF (t)

to ADC

fIF1
fIF2

Figure 2.3: Example of double heterodyne RX architecture

a bandpass filter to select coarsely the PMR bandwidth to obtain a good attenuation of

unwanted signals. A mixer and a variable oscillator are then used to down-convert the carrier

frequency and choose the precise channel of communication. The first intermediate frequency,

denoted as fIF1 in the following document, is fixed at 126 MHz (see FITNESS report 3.3). A

high enough fIF1 , allows a out-of-band attenuation to be divided up in two parts (before/after

fIF1). As the channel selection is realized at intermediate frequency, it allows us to decrease

the bandwidth and release constraints on following components. Right after fIF1 , the received

signal is split into distinct ways (phase/quadrature) which are processed and digitalized

separately. In fig.2.3, only one path is represented, but same operations are realized for the

second path. This first down-conversion allows to suppress some unwanted signals at image

frequency thanks to a smart frequency plan. Second down-conversion at fIF2 (4.5 MHz) is

then realized to make the ADC sampling frequency four times greater than fIF1 . At this state,

the useful signal has fIF2 as a central frequency, and a bandwidth of 1 MHz. This operation

allows us to decrease constraints on ADCs (lower sampling frequency) and to realize the
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channel selection.

However, the real FITNESS RX shown in fig. 2.4 is slightly different from the ideal model.

First work realized on the "discrete time architecture" was originally motivated by the need

of multi-standard and multipurpose systems. Nowadays, such a receiver architecture drawn

interest for its performance. An interesting work was realized by Ru and al. in [Ru et al., 2010]

to clearly explain main principles. It was also shown, amongst others, by M. Muhammad et al

in [Muhammad et al., 2005] that its performance reaches current communication standards.

The main idea is that the useful signal bandwidth is much lower than its carrier frequency. So,

operations of down-sampling and filtering are applied to reject unwanted signals and decrease

ADC constraints of clock frequency and resolution. A drawback of such an operation earlier

in the RX chain is the harmonics creation at sampling frequency multiples.

BandPass

Filter

LNA

N-Path

Filter

VGA Md ↓

Analog

Decimation

to fIF2

N-Path

Filter

yRF (t)

to ADC

fIF1

Figure 2.4: Overall Narrowband PMR Receiver Architecture for FITNESS

Another difference with the ideal architecture is the channel selection mechanism. Due

to tight constraints of dynamic range, a tradeoff has to be made. Hence, two main issues

happens at local oscillator and filtering stages. Indeed, in a typical RF receiver the channel

is selected by downconversion of the useful signal to baseband and a filtering operation. As

detailed in [Razavi, 2011], the downconversion is realized thanks to mixers and frequency

adjustable oscillators. Usually, local oscillator frequency can be increased or decreased by

small steps, which depends on communication channel standards requirements (e.g. 6.25 kHz

in TETRAPOL standard). However, the introduced phase noise due to oscillator devices,

which depends on frequency steps size, does not fit the project requirements. No commercial

oscillator with a constant phase noise and able to cope with a 1 MHz bandwidth exist. A

solution consists in decreasing the noise influence. This is achievable at the cost of a larger

oscillator frequency step. But, if this solution is considered the RX has no channel selection

mechanism.

In the other side, a 80 dB spurious attenuation is mandatory before sampling. This re-

quirement is challenging to obtain in a fully integrated device. Moreover, to meet linearity

requirements imposed by PMR standards(e.g. TETRA standard [ETSI, 2011]), the common

solution is to use interstage Surface Acoustic Wave (SAW) filters. In the context of a fully

integrated RX, such an option could not be considered as SAW filters are external devices.

As external components SAW filters are not reconfigurable, which leads to expensive parallel

filtering strategy (one filtering path peer standard at least). This is the reason of N-path

filters presence in the FITNESS RX. Such filters are tunable in both central frequency and
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bandpass, and allow to face three issues encountered by the new RX constraints. Their band-

width could be adjusted to PMR channel size, which changes in every standard (see tab. 2.2).

As their central frequency is tunable, it also solves the channel selection issue. Finally, the

last remaining constraint is due to the small size of PMR channels (basically 12.5 kHz). So,

the filter selectivity has to be sharp enough to guarantee at least 80 dB attenuation and deal

with the SAW filter absence.

The proposed FITNESS architecture is able to provide a flexible and integrated solution.

In order to come up with challenges, the new solution that will be tackle in the framework

of FITNESS relies on the following principles:

• N-path RF filtering that enables to eliminate out of band strong interferences that exist

in the wide-band range, and RF image band;

• A clock synthesis used for a coarse channel selection that provides sliding IF in order

to enhance PLL cutoff frequency and facilitate Voltage Controlled Oscillator (VCO)

integration;

• A high dynamic range ADC to handle strong adjacent and bi-adjacent interference sce-

nario;

• A multi-mode configuration of the receiver to share noise and linearity constraints de-

pending on the environment allowed by advanced signal processing method.

2.3.2 Receiver Limits

Unfortunately, architectural tradeoffs are not enough to meet stringent requirements of

all PMR standards. By nature two main issues are raised from analog design: architecture

limitations and nonlinear analog devices issues.

Linked to Architecture Problems

As described in the previous section, the FITNESS narrowband RX is different from a clas-

sic RX architecture. An analysis of dynamic range PMR standards shows that TETRAPOL

requirements are the most stringent (the dynamic range is up to 141 dB) and linearity. To

deal with it on a fully integrated RX, a design tradeoff was made. As discussed earlier, prop-

erly selecting the correct channel with respect to noise budget, is a major constraint for the

overall system. So, a concession was made on local oscillator design to meet this requirement.

The problem of injected noise by local oscillators and mixers was bring up in the previous

part, but let us precise this problem.

As developed in [Perez, 1998], the self created noise is proportional to the PLL frequency

(oscillator design) thanks to a 1/f relation. The lower the PLL frequency, the greater the

noise power. Part of the solution is to use an heterodyne architecture: the signal is not down-

converted to baseband, where the noise is maximized. According to [Razavi, 2011] chap. 7,

both frequency and amplitude of oscillators are influenced by its own devices. Hence, the
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oscillator is no more an ideal sinusoidal but performs instead as depicted in fig. 2.5. In fact,

to meet FITNESS phase noise requirements the oscillator bandwidth has to be large enough

to select almost 10 channels. The purpose of N-path filters is precisely to complete the channel

selection mechanism. But, in presence of strong signals close to the Signal Of Interest (SOI),

its attenuation requirements may not be hold and the SOI may be affected despite the 80 dB

attenuation. Relaxing the oscillator frequency step increases device’s bandwidth, but at the

cost of linearity issues as we will see in the later part.

Figure 2.5: Output spectra of (a) an ideal, and (b) a noisy oscillator

Linked to Analog Devices Issues

As we consider real devices, their amplification behavior is no more ideal. If RF compo-

nents such as Low Noise Amplifier (LNA) or mixers (see [Razavi, 2011, Cripps, 2006]) are

considered memoryless, their output depend only on their corresponding input. Most of such

devices are based on transistors, which are at the root of numerous nonlinear phenomenon.

The usual state of the art model is recalled in eq. (2.1):

s(t) = α1e(t) + α2e2(t) + α3e3(t) + . . . (2.1)

where coefficients αk, k ∈ {1, 2, 3} are characteristic of the considered device. In eq. (2.1),

α1 corresponds an ideal gain and α2, α3 to additional unwanted terms, with α3 < 0 the

saturation coefficient. Higher order terms are often neglected as their power is insignificant.

If we consider a single sinusoidal signal (e.g. e(t) = A1(t)cos(2πf1t)), an input of eq. (2.1),

then its output (2.2), is constituted by additional unwanted harmonics multiples of f1 (the

signal carrier frequency) and plus a continuous part.

s(t) =
α2A2

1(t)

2
+ (α1A1(t) +

3α1α3A3
1(t)

4
)cos(2πf1t) +

α2A2
1(t)

2
cos(4πf1t)

+
3α3A3

1(t)

4
cos(6πf1t) (2.2)

In eq.(2.2), there is an additional term multiple of cos(2πf1t) (i.e. the SOI carrier frequency).

The term 3
4α3A3

1(t) is an unwanted harmonic component that implies the front-end saturation

if the A1(t) power comes too high.
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Now, if we consider an input that is the sum of at least two independent signals, as

described in eq. (2.3), special cases of SOI degradation can occur.

e(t) = A1(t)cos(ω1t) + A2(t)cos(ω2t) (2.3)

Replacing eq.(2.3) in (2.1) leads to the creation of harmonics due to the product between the

two components of A1(t) and A2(t). The complete formula, with all terms developed could

be found in [Zou et al., 2009]. Harmonics frequencies depends on combinations between the

SOI and the extra signal A2(t). As shown in fig. 2.6, there is many unwanted harmonics, of a

smaller power than original signals. Theses harmonics are called InterModulation Distortion

(IMD). Terms due to the (.)2 operation are denoted IMD2, and terms due to the (.)3 operation

are denoted IMD3. However, even harmonics could be easily removed by a filtering operation,

as they are far from the useful signal frequency. Only odd terms, which create harmonics at

2f1 − f2 and at 2f2 − f1 are problematic. As they are close to SOI carrier, such harmonics

can’t be suppressed completely and may overlap in SOI bandwidth, decreasing the Signal to

Interference and Noise Ratio (SINR).

Figure 2.6: Output spectra of a nonlinear combination of two independent sinusoidal signal

If a special case of A1(t) << A2(t) occurs, the largest signal tends to reduce the circuit

gain. Hence, the weakest signal could be completely canceled. This situation is refereed as a

"desensitization", and the largest signal is called a "blocker". The desensitization appears if

we focus on the SOI representation in a specific sub-band, and is given in eq.(2.4):

s(t) = (α1 +
3α3A2

2(t)

2
)A1(t)cos(ω1t) (2.4)

Thus, it turns out that due to α3, the signal A2(t) has an influence on the SOI range. Hence,
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since the coefficient α3 < 0, this function of A2(t) could drop to zero for a larger enough

A2(t) power.

There is two main scenarios, that are well known by analog designers, which can cause a

blocking situation:

• a SOI and a powerful interference signal close to the SOI bandwidth. In fig.2.6, this case

happens when the SOI central frequency is f1. This is also the situation described in

eq.(2.4);

• or two powerful signals far from the SOI but which central frequencies are distant of f1,

the SOI carrier frequency. This situation happens if the SOI is located at f2 − f1 with

f1 and f2 interferers carriers.

This last situation may be really problematic since its rare for the two unwanted signals

to be correctly digitized. As we saw previously, the FITNESS receiver is mainly concerned

by the first of these two situations. However, this last situation has a particular interest to

obtain the nonlinear parameters of eq.(2.1) during a laboratory experiment: the so called

"two-tone" test. It consists precisely to create such a situation, in absence of useful signal.

That way, making interferers powers grow, their unwanted contribution due to nonlinearity

can be measured at f2 −f1. Then, with the interference power knowledge (which is a function

of the jammer power), the model parameters can be obtained. This procedure was followed

to obtain FITNESS RX nonlinear parameters exploited in chapter 5 and chapter 6.

To sum-up, the SOI degradation is the result of nonlinearities caused by analog devices

used outside of their linear region. It might manifest through saturation, and presence of

intermodulation harmonics and blocking. In the following development, unwanted signals

are referred as blockers, jammers or interferers. Currently, important margins are left at

ADC input to deal with such signals. So, limiting interferers presence could be interesting to

decrease theses margins, which increases the Dynamic Range (DR).

2.4 Receiver Requirements: A Detection Issue

According to previous sections, the initial situation is presented. FITNESS RX architec-

ture and its limitations are also clearer. In this section, FITNESS requirements are developed

according to IMT Atlantique expertise. Some additional constraints as well as limiting hy-

pothesis are then detailed.

2.4.1 FITNESS Requirements

In addition to pure analog design, a sensing mechanism performed by a digital processing

could relax significantly the tight specifications of RX front end. More precisely, benefits in

term of Dynamic Range (DR) and filtering requirement were quantified in the FITNESS

report 3.1.
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PAPR [dB]

Useful Signal Adjacent Interferer Other Interferer

TETRAPOL 3 3 3

TETRA 6 6 3

TEDS 13 6 3

Table 2.1: PAPR requirement for PMR multi-standard depending on interference scenario

Extracted from this report, tab. 2.1 provides expected benefits on ADC PAPR specifica-

tion if the system is aware of the interferer presence. A quick comparison between the useful

signal PAPR requirement with other interferer PAPR margin, shows that 10 dB could be

saved in the TEDS case. The main novelty proposed in this project is to detect unwanted

harmonics in the analog signal that appear only if the RX works in a nonlinear regime. That

way, the RX could be partially aware of its environment. Then, a mechanism to adapt its

parameters dynamically to make the front-end work again in its linear region as fast as pos-

sible (see fig.2.7b) could be considered. To our best knowledge, the enhancement of a PMR

receiver through a spectrum sensing method was evaluated in [Bräysy et al., 2010], but not

realized. In the state-of-the-art almost all solutions implement the spectrum sensing unit and

interference cancellation in the digital domain. However, in our context an adaptation in the

analog domain might be useful.

= =

(a) Unknown scenario (c) Linearity scenario

Fixed IIP3 and NF

(b) Sensing Scenario

Relaxed IIP3 Relaxed NF
=

NF

IIP3

Figure 2.7: Sensing scenario cases

Providing a jammer detection, the adaptation main idea is the following one. In fig.2.7a,

the unknown scenario corresponds to a classic receiver. In such a case, the RX parameters

are fixed. The Input Interception Point of order 3 (IIP3) is a quantity which serves as a

comparison of linearity of different circuits. It has to be the highest as possible, in order to

make the receiver as linear as possible. The Noise Floor (NF) represents the noise added by

the analog RX to the received signal such as in eq.(2.5),

NF|dB = 10log10(
SNRin

SNRout
) (2.5)

where SNRin is the SNR of the SOI before its passage through the RX system, and SNRout

the SNR at the RX output. So, the lower the NF, the better the Signal to Noise Ratio (SNR).

However, NF and IIP3 are linked by the RX gain, and the maximization of IIP3 could be

done only at the trade-off of a higher NF (see Friis formula and its nonlinear counterpart for
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cascaded IIP3 in [Razavi, 2011]). We clearly understand the possible improvement if those

parameters could be changed separately, which is exactly what we propose to do. Indeed, in

the sensing scenario (fig.2.7b), we consider that the SOI is the only signal in presence (i.e.

no jammers) and has a low power. In that particular case, NF and IIP3 could be decreased

to improve the SNR. Indeed, no jammer is present, the IIP3 requirement could be relaxed.

In the linearity scenario (fig.2.7c), two cases could happened: the SOI is the only signal in

presence (i.e. no jammers) and has a strong power, or the SOI and jammers are present.

In both cases, we are not limited by sensitivity but rather by the RX linearity. So, the RX

gain could be decreased to increase the IIP3, to allow a better linearity at the cost of a NF

degradation. Moreover, it would be of some use to know if the RX is close to work in its

nonlinear region, and identify the reason.

If the receiver is able to detect in which scenario it has to work, it could improve sig-

nificantly its dynamic by applying a quick feedback loop to set up its parameters. Another

benefit is that this knowledge allows us to decrease the peak to average power ratio (PAPR)

margin, and thus decrease constraints on ADCs.

Band Pass

Filter

Innovative part

ADC

DAC

Mechanism

Sensing

f0

fc f1

NL Bloc

Figure 2.8: PMR Receiver scheme

This principle is depicted in fig.2.8, which represents a classic RX with the innovative part

in dashed lines. To develop such a RX, the first step is to be able to detect in which scenario

the RX is. The second one is the feedback loop design. The sensing mechanism allows us to:

a) detect the working region of the RX (i.e. linear or nonlinear mode);

b) detect the presence of interferer;

c) identify the reason of the nonlinear behavior : if it is due to the interferer or due to a

powerful SOI.

2.4.2 Miscellaneous Constraints

PMR signals characteristics are listed below, in tab.2.2 . The first comment is that, ob-

viously, the detection solution has to be compliant with all PMR standards. As we saw,

interferers are most likely other PMR signals close to SOI carrier due to architectural trade-

offs. Hence, the detection algorithm resolution has to be sensitive enough to detect smallest
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channels. Every modulated signal must be detected, which means that the detector should

be modulation independent, or a least have an adaptive detection threshold.

TETRAPOL TETRA TEDS P25 (phase 2)

80, 380-490

380-390, 395-400

Frequency 410-420, 420-430 36-174

Band [MHz] 450-460, 460-470 403-512, 806-870

870-876, 415-921

Channel Size
12.5 6.25 (25-50-100-150) 6.25

[kHz]

Link Type Half-Duplex Full-Duplex Full-Duplex

Layer Access FDMA TDMA (4-8-16-32 channels) TDMA (2)

Modulation GMSK π
4 -QDPSK 4 to 64 QAM

H-CPM

H- DQPSK

Max. DL
76 36 691 12

Speed [kbits/s]

Table 2.2: Characteristic of PMR standards tackled by FITNESS

Furthermore, the service quality also requests a detection as fast as possible. In other

words, the number of samples needed has to be small enough to allows the feedback loop to

adjust the RX parameters without loosing to much information. The ADC sampling frequency

is 18 MHz, which means that working with a small number of samples is not an option. Indeed,

the embedded CPU may not be able to deal with too much samples in a row. Finally, the

FITNESS RX architecture can’t be modified too much in order to maintain its space and

energy consumption as low as possible. To save the more space and energy, the feedback could

consist of a unique 3bits ADC for example. There is many detection strategies. However,

some of them, could not be considered as the PMR standards and FITNESS architecture are

already defined. This is typically the case of the cooperative sensing which requires either a

specific architecture or information sharing strategy and protocol.

2.4.3 Additional Hypothesis

Some simplification are required to realize the following study, which must be justified. Let

us begin with the analog issues hypothesis. Details on RF microelectronic and analog design

are available in following books [Razavi, 2011, Cripps, 2006, Villegas, 2007, Larson, 1997] for

example. In subsection 2.3.1 the image frequency issue was raised to justify architecture

choices. Indeed the frequency plan is a very problematic part in a RX analog conception.

However, as the architecture is well-defined thanks to the work of L. Lolis in [Lolis, 2011],

we consider that image frequency issues are solved by a clever frequency planning. In the

same way, it was shown in particular in [Valkama et al., 2005, Valkama et al., 2001, Tubbax

et al., 2005, Windisch and Fettweis, 2007, Traverso et al., 2009] that impairment problems

(also called I/Q gain mismatch) can be compensated. These papers show various methods,

adapted for both narrowband or broadband systems, to make the RX independent of such
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problem. Consequently, we consider that these issues are not relevant, and are not tackled as

a part of the detection issue in this document.

As real devices, analog components of the RX are by definition imperfect by nature. In

this study, we assume that nonlinearity is the first cause of SOI degradation. Indeed, the

following work is applied to narrowband signals. As analog devices mandatory have a large

bandwidth compared to SOI’s, the simplification of a constant phase hold. Moreover, the

chosen memoryless polynomial model in eq.(2.1) is broadly used in literature [Valkama et al.,

2006,Keehr and Hajimiri, 2008,Zou et al., 2009,Turunen et al., 2016]. Other frequency almost

independent models like Saleh’s [Saleh, 1981], or Ghorbani’s [Ghorbani and Sheikhan, 1991]

were not considered for implementation consideration. Available IIP3 data were obtained

through measurements on CEA demonstrator. That measure allows us to easily determine the

polynomial model parameters. Moreover, most of manufacturers use this common convention,

that way their products could be easily compared. On the other hand, the Volterra nonlinear

model [Haykin, 1996a], is far too complex in a first approach. So, the memoryless assumption

makes the study easier and could be relaxed in a future work. Finally, to limit the processing

time, the detection should be processed right after ADCs at intermediate frequency. That

way, all steps of down-conversion to baseband could be saved.

As developed in 2.4.1, jammers are assumed to be PMR communication signals close to

the SOI. So, we have a prior information on interferer’s carrier, but its others parameters

are still unknown. One can consider that interferer signal has same norm as the SOI, but it

may not be true in each situation. Moreover, nor the channel size, nor the modulation could

be determined with such an assumption. That way the only valuable hypothesis is the prior

information on carrier frequency. So, we propose a method that allows one or several close

channels, to be scanned in order to get the needed information.

Interferers are PMR signal, which means that they are emitted by a different emitter.

Hence, unwanted signals are independent of the SOI. Their power or probability distribution

are also unknown for the RX at time t.
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3 On Carrier Signals Blind

Detection

3.1 Introduction

When the point is to detect a signal without prior knowledge, it’s usual to speak about

blind detection. Such methods could be used with different aims, civilian or military. In mil-

itary aims, such as in electronic warfare for example, it consists in interception and decoding

of messages transmitted by the enemy, without information (e.g. modulation, symbol period,

code, encryption, . . . ). In civilian telecommunication there is many applications in Cogni-

tive Radio (CR). Indeed, the electromagnetic spectrum becomes a scarce resource and most

of the bandwidth is reserved to specific users called "primary", which are recognized in the

application thanks to "licenses". However, such users could left the spectrum unused during

long periods of time. To solve this inefficient use of spectrum, it was proposed by J. Mitola

in [Mitola and Maguire, 1999] and later by S. Haykin in [Haykin, 2005], to allow secondary

users to access unused frequency slots. Such an application implies a spectral environment

knowledge and consequently, requires an ability to sense it. That way, secondary users come

to scan the spectrum to look for a radio channel free of primary users.

The two applications are challenging in a software point of view, as well as in the ana-

log design. Problems are raised by T. Yucek, and H. Arslan in [Yucek and Arslan, 2009],

where they introduce several statistical blind detection methods. This work highlights re-

quirements of spectrum sensing: high sampling rate, high resolution of ADC, large dynamic

range, and high speed signal processor. In the scope of the FITNESS project we face iden-

tical to problems. However, in many cases the detection requires a noise power estimation

technique, which could not be afforded due to tights FITNESS requirements. Amongst many

methods, we will focus on two detectors: a) the energy detector, which is the simpler one; b)

the cyclostationary-based detector, which is more sophisticated but with different drawbacks.

The first identified step is to scan a part of the spectral environment, as in CR.

To our best knowledge, a large part of existing methods propose a baseband detection. As

we need to detect unwanted signals the earlier in the RX chain, the sensing mechanism input

is at intermediate frequency. However, this processing may change received signal statistics.

This detail has a notable importance, since detection methods rely on a statistical decision.

21
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In this chapter, received signal and channel model are described in section 3.2. In sec-

tion 3.3, we recall the detection theory basics and essential definitions for next chapters. The

most classical detector is described in section 3.4, unfortunately such a method can’t be used

in the context of FITNESS. This chapter is concluded by the section 3.5, where concepts of

cyclostationarity are developed.

3.2 Signal and Noise Models

3.2.1 Received Signal Model

Let us define the useful baseband signal continuous model in eq.(3.1).

z1(t) = z1R(t) + z1I(t) = β1

∞∑

k=−∞

akh(t − kT1) (3.1)

Let T1 be the symbol period, ak are complex random symbols with unit variance, h(t) is a

continuous low-pass filter (normalized in energy) and β1 is the square root power of z1(t). This

is the classical model of a narrowband signal. The tab.2.2 defines possible modulations (i.e.

values) of ak. We consider that for a specific period of time, the standard does not change. It

means that within this period, the symbols are random in one modulation (e.g. only 16-QAM

symbols). In the following, the only known parameter will be h(t) shape: a root raised cosine

filter. However, the symbol period T1 is unknown. z1(t) can be seen as a sum of a real and

imaginary part, which are assumed independent and identically distributed. The signal y1(t)

at carrier frequency fc1 can be expressed as:

y1(t) = ℜ[z1(t − ∆1t)e2π(fc1+∆fc1
)(t−∆1t)+φ1 ] (3.2)

Here y1(t) is considered as the useful signal at intermediate frequency fc1, ∆t is a propagation

delay, ∆fc1 is a carrier frequency shift and φ1 is the initial phase of the LO emitter.

In the same way, a baseband unwanted signal z2(t) could be defined exactly as z1(t) in

eq.(3.1). It should be expressed as eq.(3.3):

z2(t) = z2R(t) + z2I(t) = β2

∞∑

k=−∞

bkh(t − kT2) (3.3)

where the parameters can be interpreted as in eq.(3.1). Its narrowband model is the same as

for the SOI:

y2(t) = ℜ[z2(t − ∆2t)e2π(fc2+∆fc2
)(t−∆2t)+φ2 ] (3.4)

y2(t) parameters are assumed to be unknown, as discussed in chapter 2.

When another PMR signal is present in an adjacent channel, the composite signal is the

combination of SOI and jammer. This signal could be simplified as in eq.(3.5).

x(t) =
2∑

i=1

yi(t) (3.5)
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3.2.2 Radio Channel Model

Now that both signal’s and interferer’s models are defined, let us focus on the radio

channel. In every communication system, the received signal is not the same as the emitted

one.

g(t, τ) +
x(t)

w(t)

r(t) s(t)

Figure 3.1: Radio channel model

Due to the channel effect and electronic induced noise, as presented in fig.3.1, the received

signal is a combination of multiple perturbations ( [Dunlop and Smith, 1994]). s(t), the system

output of fig.3.1 is expressed as:

s(t) = r(t) + w(t) = x(t) ∗ g(t, τ) + w(t) (3.6)

where τ is a time delay, g(t, τ) is the channel impulse response, w(t) is the background noise

and (u ∗ v) stands for the convolution of u and v. Sources of background noise are analog

components of the RX and the channel effect. This type of perturbation is often due to natural

sources (i.e. thermal noise), which is the result of random moves from charged particles of

materials. Some devices however, could add specific noise that could be called "artificial"

and corresponds to impulse noise, which characteristics detailed in [Parsons, 2001], are very

different from Gaussian noise. It’s usual to neglect such a contribution, and to assume that

w(t) follows a normal distribution. Hence, in the following document, we assume a Additive

White Gaussian Noise (AWGN) of unknown power σ2
w, or equivalently of bilateral spectral

density N0
2 .

In fig.3.1, the channel effect g(t, τ), has not be developed yet. Due to the propagation of

signals, the resulting signal is subjected to several effects, which depends on the communi-

cation layer. For the considered application, the layer is obviously an electromagnetic wave.

Hence, the received signal is affected by limiting factors, which complete effects description

could be found in [Baudoin and Venard, 2013]:

Long term fading (path loss) is the signal fading, due to distance between emitter and

receiver. Generally, the path loss is considered to be proportional to 1/dn, where d is the

distance and n ∈ {2 − 6} an index which depends on the geometry of current location.

Medium term fading (shadowing) corresponds to a fading due to obstacles (buildings,

trees, etc.), since the receiver is rarely in the emitter line of sight. Usually the shadowing

is taken into account by adding a gain between 0 and 1. It is almost impossible to

estimate for real use cases, but measures shows that this attenuation follows a log-normal

distribution with a variance between 6 dB to 12 dB.
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Fast term fading (multi-path/Doppler shift) is due to two main issues:

• The multi-path effect is due to the signal reflexions. In such a case the terminal

receives a random number of multiple original signal delayed echoes, which have

their own magnitude and phase. Theses signals are generally a problem in reason of

destructive interference. The multi-path effect is at the root of channel frequency

selectivity. Hence, it is usually modeled as a low-pass filter.

• The Doppler shift, which is the root of channel time selectivity, is due to a difference

of relative speed between emitter and receiver. The maximal shift ∆fmax can be

obtained thanks to ∆fmax = ν
λ , where ν is the relative range speed between emitter

and receiver, and λ is the transmitted signal wavelength. The coherence time Tc =

1/∆fmax, corresponds to a moment during which the channel magnitude is constant.

g(t, τ) is the channel impulse response and the propagation could be modeled as a linear

time-variant system. So, g(t, τ) is a random function of time (number of coefficients), and

frequency (magnitude/phase of each path). Every communication system has to deal with

such a model. However, several hypothesis are usually made to simplify receiver’s design. This

suppositions are: a flat fading channel (constant impulse response), slow fading (no Doppler

shift), and wide sense stationary channel. That way g(t, τ) has an autocorrelation function

time independent, as well as its statistical parameters.
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Figure 3.2: Standardized channel comparison

In the current application, such constraints are taken into account in PMR standards,

which impose a particular digital baseband processing. Hence, in a first approach, we con-

sidered g(t, τ) as a dirac function such as g(t, τ) = δ0, where δ0 is the Kronecker symbol.
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That way, the channel selectivity has no influence on the received signal. This is a strong

assumption, but it simplifies greatly the study.

However, in chapter 4, these restrictive assumptions are relaxed. The multi-path channel

influence is evaluated by simulation. Four discrete channel equivalent models are used: Porat

and Friedlander channel, Macchi channel and Proakis "A" and "B" channels. Theses models

are standard and could be found in [Laot, 1997, Porat and Friedlander, 1989, Macchi et al.,

1993,Proakis, 2001]. In fig.3.2, a comparison of amplitude and phase response of such channels

is provided. Each one present different characteristics in amplitude and phase. For example,

the Porat and Friedlander channels present deep fading points and a nonlinear phase response

when Proakis "A" characteristics are almost opposite: small fading and an almost linear phase.

In facts, the number of poles and zeros of such filters are very different and theses models

were chosen to be representative of most real cases.

3.3 Detection Theory Basics

Our first task is to decide if a signal is present or not, which requires a detection method.

Before developing detection principles, a short part on general knowledge of detection theory

has to be made. This section introduces concepts and notations, which are useful in next

sections. Detection methods rely on hypothesis testing, which means to compare a criterion

(i.e. make a test) to a threshold. Several statistical detection methods are synthesized by

S.M. Kay in [Kay, 2009].

H :





H0 → s(t) = w(t),

H1 → s(t) = r(t) + w(t)
(3.7)

The test in eq.(3.7) is classic binary test. Here H0 denotes the absence of signal and H1 its

presence. With that test, the question is to choose a method that select one or other case,

with the minimum possible errors. There are two main solutions to decide H1:

A Likelyhood Test Ratio which relies on the probability distributions of P [s|H0] (under-

stand conditional probability of s given H0) and P [s|H1]. No additional assumption is

required to realize the test. Here, s is a set of data in Ωs the ensemble of realizations of

s(t);

or a Maximum Likelyhood method, which is based on a Bayesian approach of the binary

system. It implies to determine the prior probability distribution of P [H0] and P [H1].

To our best knowledge, in the FITNESS project context no prior distributions of P [H0] and

P [H1] could be determined. Indeed, such an hypothesis leads to the assumption that the

probability to have a signal s(t) or not is known, which is clearly unrealistic. Because the

maximum likelihood can’t be obtained, let focus on the likelihood test ratio.

Let P [s|H0] and P [s|H1] be marginal probability mass functions of the test eq.(3.7).

These distributions are assumed unknown since we try to perform a "blind" detection. The
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Pfa

Pd

1

1

coin flip line

Figure 3.3: ROC Example to illustrate the detection probability Pd in function of the false

alarm probability Pfa

question is to define a criterion able to distinguish the two distributions, thanks to a threshold.

With known distributions, a theoretical expression could be determined. In the other side, it

has to be set thanks to empirical densities. The most efficient way is to apply the Neyman-

Pearson theorem:

Theorem 3.3.1 (Neyman-Pearson). To maximize Pd for a given Pfa = κ, decide H1

if

L(T (s)) =
P

[
T (s)|H1

]

P [T (s)|H0]
> γ

where the threshold γ is found from

Pfa =

∫

{s:L(T (s))>γ}
P

[
T (s)|H0

]
δs = κ

Here s is a set of N values {s(1), ..., s(N)}, κ is a particular value in
[
0, 1

]
, and T (s)

is a particular statistical test. Pd stands for the detection probability and Pfa represents

the false alarm probability. T (s) is chosen to summarize all the relevant information in the

data (e.g. the mean operation). In such a case, the detection probability Pd = P
[
H1|H1

]
=

P
[
T (s) > γ|H1

]
, and the probability to detect a signal presence when the test is false is

Pfa = P
[
H1|H0

]
= P

[
T (s) > γ|H0

]
. Thanks to the theorem 3.3.1, we see that the theoretical

threshold expression is linked to the false alarm probability. The lower the Pfa, the lower the

detection probability.

With such a test, a 100% detection is not reachable, and two main errors can occur. The

type 1 error corresponds to decide H1 when there is no signal, which creates "false alarms" in
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radar terminology. Type 2 error is the opposite of type 1. It corresponds to choose H0 when a

signal is present. Such a decision create "false negatives". The test can be optimal in terms of

type 1 or type 2 errors, but the two of them can’t be decreased simultaneously. In a detection

system, a radar for example, the false alarm rate is often the only one specified. Indeed, it

is often more interesting to minimize the number of positive matches while increasing the

detection confidence.

Hence, detector efficiency is commonly visualized thanks to a Receiver Operating Char-

acteristic (ROC) representation, as represented in fig.3.3. This is a graphical way to draw Pd

evolution in function of Pfa. The test is considered interesting if it allows a good detection

more often than a binary test (coin flip). As the detection probability generally depends on

Signal to Noise Ratio (SNR) level, a comparison of several ROC is necessary. Such tests and

comparisons will be useful to present algorithm efficiency in the following document.

3.4 Energy Detection

The energy detection method is the simplest and the most spread way to determine

a signal presence. Its small computational time and simplicity are the reasons of such a

success. Every communication requires energy to be transmitted. Hence, the idea of power

consumption is fundamental. Let us consider s(t) the signal defined in eq.(3.6), and a bandpass

filter sharp enough to select only the useful signal. The process to detect a signal is described

by the bloc diagram presented in fig.3.4.

BandPass
Filter

(.)2
∫

∞

−∞
(.)dt

s(t) u(t) u2(t) Es

Figure 3.4: Block Diagram of a classic Energy detector

The main idea is to calculate u2(t) and its integration over a period, where u(t) = s(t) ∗
fbp(t) and fbp(t) a bandpass filter. The filtering operation allows to limit the noise bandwidth,

which spectral density is assumed constant. As defined in [Max, 1981], in the time domain

for a continuous time process u(t) the energy Es is defined in eq.(3.8):

Es =

∫ ∞

−∞
|u(t)|2dt (3.8)

A conversion of eq.(3.8) in frequency domain is possible thanks to the Parseval’s Theorem

and is developed below.

Es =

∫ ∞

−∞
Sss(ν)dν (3.9)
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In eq.(3.9), Sss(ν) = |S(ν)|2 is the power spectral density of s(t), where S(ν) is its Fourier

transform. If it exists, this transformation is defined as in eq.(3.10):

S(ν) =

∫ ∞

−∞
s(t)e−2πνtdt (3.10)

From eq.(3.8) and eq.(3.10), a link could be obtained with the periodogram estimator over

an integration period T , which is defined as:

PT (ν) =
1

T
Sss(ν) (3.11)

Considering above definitions, the global signal energy does not depend on the chosen

representation (i.e. in time or frequency domain). In [Urkowitz, 1967], H. Urkowitz proposes

a test based on the s(t) time representation. It was shown that eq.(3.12) obtained thanks to

the representation in fig.3.4, is a good approximation when N > T1.

Ês(N) =
N∑

n=0

|u(n)|2 (3.12)

In such conditions and assuming that symbols distribution of s(t) follows a Normal law, the

test eq.(3.7) could be expressed as in eq.(3.13). Symbols are assumed random and indepen-

dent, so the Normal law assumption is not restrictive in practice.

H :





H0 → Ês(N) ∼ χ2
L(0),

H1 → Ês(N) ∼ χ2
L(λ)

(3.13)

In eq.(3.13), χ2
L(λ) is a non-central chi-square distribution of L freedom degrees, with a non-

centrality parameter λ = Ês(N)
N0

. For large enough N , instead of χ2 distributions H. Urkowitz

recommends to make an approximation with Normal distributions. In such a case, means and

variances could be determined, as defined in eq.(3.14).

H :





H0 → N (
2Nσ2

w, 4Nσ2
w

)
,

H1 → N (
2Nσ2

w + SNR, 4N(σ2
w + SNR)

) (3.14)

With that approximation, the false alarm and miss detection rates could be expressed with

the use of Q function, the reciprocal normal distribution. Theses expressions are obtained in

eq.(3.15) and eq.(3.16):

Pfa = Q
[

γ − µ0

σ0

]
(3.15)

Pmd = Q
[
−γ − µ1

σ1

]
(3.16)

where µ0 = 2Nσ2
w, µ1 = 2Nσ2

w + SNR, σ2
0 = 4Nσ2

w and σ2
1 = 4N(σ2

w + SNR). As shown

in [Tang, 2005], to minimize errors (of all types), a tradeoff between Pfa and Pmd is mandatory.

The threshold γ is determined when Q function’s arguments of eq.(3.15) and eq.(3.16) are

equal, making Pfa = Pmd.

Results presented in [Yucek and Arslan, 2009,Urkowitz, 1967,Tang, 2005] show that the

choice of an optimal threshold depends on N , the number of samples used in signal’s energy
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estimate. However, the threshold expression and distributions parameters in eq.(3.14) under

H0 and H1 also depends on signal and noise power. Hence, a method to estimate such variables

is needed. As recalled in [Yucek and Arslan, 2009], many methods exist as iterative algorithms

for example, or the MUSIC algorithm. From [Hayes, 1996], details of such methods could be

obtained. But, as the estimation precision depends on SNR level, estimated parameters could

be far from their real values. As illustrated in [Ghozzi, 2008], even a small incertitude in

power estimation leads to a significant detection performance loss. Still in [Yucek and Arslan,

2009], it is also recalled that even with a known noise power, the energy detection method

gives poor results for small SNR (close to 0 dB).

In the FITNESS project context, the energy detection method face several issues. Due to

space and energy savings requirements, the energy detector can’t be implemented with analog

devices, and should be realized completely in digital domain. Besides the MUSIC algorithm

is known for its substantial estimation precision, its implementation has to be balanced by

its cost in computation and storage. Finally, such a method allows the detection of a unique

signal. But, the received signal may be composed of almost 10 channels, which makes it

incompatible with FITNESS requirements. Another drawback is the impossibility to detect if

the receiver works in its linear region. This is the major issue, as the first benefit anticipated

by FITNESS for the detection algorithm is to make the RX able to change its parameters.

3.5 Cyclostationary Model: General Knowledge

In the previous section, the energy detection method was developed. We detailed its

principle, and its pros and cons to show why this method is not adapted in our context. The

work in [Yucek and Arslan, 2009] also proposes alternative detection solutions. But, theses

methods are not really interesting due to our lack of knowledge on the received signal. As we

saw, the energy detector needs the signal and noise power knowledge. Another method, the

waveform sensing, needs the knowledge of emission shaping filter, which can’t be assumed for

adjacent channel signals. A third method, particularly efficient and very useful in RADAR

context, is the matched filter detection. Unfortunately, it requires a known pattern such as

pilots symbols. However, as we try to perform a detection the closer of analog chain, we have

no access to such information. So, amongst all these methods, since no more prior information

is required, exploiting cyclostationary properties of the received signal seems the most adapted

solution. Thanks to its properties, this theory is used in several applications such as signal

detection [Gardner, 1988a], source separation [Houcke, 2002], channel identification [Tong

et al., 1995, Ciblat et al., 2000], or modulation type classification [Boiteau and Martret,

1998].

3.5.1 Statistical Cyclostationarity

This first part develops basic knowledge on cyclostationary properties and links it with

stationary processes.
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Time Domain

In signal processing a founding assumption is to assume constant properties in time of the

studied signal. As developed in [Barkat, 2005] this assumption is called strict-sense stationary,

and is recalled by definition 3.5.1.

Definition 3.5.1 (strict-sense stationarity). A random process is strictly stationary or sta-

tionary, in the strict-sense if its statistics are unchanged by a time shift in the time domain.

Hence, a continuous time complex stochastic process {Xt} (t ∈ R) is said stationary if,

for all k, all τ and for all t1, . . . , tk, the cumulative distribution function of the uncondi-

tional joint distribution FX(x(t1), . . . , x(tk)) of {Xt} is not affected by a time shift τ (i.e.

FX(x(t1), . . . , x(tk)) = FX(x(t1 + τ), . . . , x(tk + τ))). It is important to underline that this

definition implies ensemble statistics and not temporal statistics. However, this assumption

is very restrictive in practice since it is often impossible to determine the studied signal cu-

mulative distribution function. So, the assumption is relaxed and we consider that such a

stochastic process is well described by its mean and variance.

Definition 3.5.2 (wide-sense stationarity). A random process is widely stationary, or sta-

tionary in the wide-sense when its mean and autocorrelation functions vary only with the

time difference |t1 − t2|.

Let us define the mean and autocorrelation in eq.(3.17) and eq.(3.18).

mx(t) = E [{Xt}] =

∫

R

xfX(x; t)dx (3.17)

rxx(t1, t2) = E [{Xt1} {Xt2}∗] =

∫

R

∫

R

x1x∗
2fX1X2(x1, x2; t1, t2)dx1dx2 (3.18)

In eq.(3.18), the notation (.)∗ stands for a complex conjugate operation. Thanks to the wide-

sense stationarity definition, the autocorrelation function could be written as a function of

one argument τ = t1 − t2. So, by definition in terms of τ only, the autocorrelation function is

rxx(t + τ, t) = rxx(τ). (3.19)

Hence, {Xt} statistics are unchanged by a time shift, which means independent of time.

However, this is a major simplification. Indeed, many natural signals arise from periodic

phenomena but may not be periodic functions of time. Their statistical characteristics vary

periodically within time and are called cyclostationary processes. For example in physics,

meteorological processes are perturbed by the earth rotation. Another example is periodical

noises created by broken ball-bearings. In telecommunication, a periodic behavior could be

due to modulation, sampling or filtering operations. In [Antoni, 2007], J. Antoni gives a

good and simple example of a cyclostationary process in Telecommunication. He considers

a periodically amplitude modulated white noise expressed as: x(t) = s(t)w(t), with s(t) =

s(t+T ) a T-periodic function and w(t) a stationary white noise. This is an interesting example

since it is clear that x(t) may not exhibit a periodic temporal waveform, but has a random

behavior synchronized with some periodic mechanism.
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An excellent and complete state of the art reviewing work and explanation was conducted

by W. A. Gardner and al. in [Gardner et al., 2006]. Hence, to study cyclostationary processes

the wide-sense stationarity assumption is relaxed to obtain a more general framework. See

fig.3.5 from [Gardner, 1994] as an illustration of different processes classes.

Stationary

Cyclostationary

Poly-Cyclostationary

Almost-Cyclostationary

Non-Cyclostationary

Figure 3.5: Venn diagram of classes of stochastic processes [Gardner, 1994]

In this diagram, stationary processes are a particular case of cyclostationary processes.

Let us precise definitions for cyclostationary (def.3.5.3) and poly-cyclostationary processes

(def.3.5.4), which are of some interest.

Definition 3.5.3. {Xt} is a cyclostationary process with period T if and only if

FX(x(t1), . . . , x(tk)) is periodic in t with period T .

Definition 3.5.4. {Xt} is a poly-cyclostationary process with periods {T} = T1, T2, . . . if

and only if FX(x(t1), . . . , x(tk)) is poly-periodic in t with periods {T} (which is the sum of

periodic functions with single periods T1, T2, . . .) and T1, T2, . . . incommensurable.

Considering def.3.5.3, for a cyclostationary random process {Xt}, its autocorrelation func-

tion depends on time and on delay τ = t1 − t2 between x(t1) and x(t2). Its means that the

mean and the autocorrelation function of {Xt} verify:

mx(t + T ) = mx(t) and rxx(t + T, τ) = rxx(t, τ). (3.20)

In that case {Xt} is a large-sense cyclostationary process, and T is called a cyclic period. As

a function of time, the autocorrelation admits a Fourier series decomposition as:

rxx(t, τ) = E [x(t)x∗(t − τ)] =
∑

α∈Ix

Rα
xx(τ)e2παt (3.21)

In eq.(3.21), the summation is realized over integer multiples of the fundamental frequency

α = 1
T , so α is the cyclic frequency (to get close to the cyclic period, its time counterpart).
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Let Ix = { k
T , k ∈ Z} be the set of cyclic frequencies of x(t), and Fourier series coefficients

Rα
xx(τ) are called Cyclic Autocorrelation Function (CAF). The theoretical CAF at a cyclic

frequency α is defined as the Fourier transform of rxx(t, τ).

Rα
xx(τ) = lim

Tα→∞

1

Tα

∫ Tα

0
rxx(t, τ)e−j2παtdt (3.22)

Coefficients Rα
xx(τ) are complex continuous function in τ , but discrete variables on α.

Eq.(3.22) equals zero for each α /∈ Ix. Theses coefficients are also symmetric in τ (Rα
xx(τ) =

Rα
xx(−τ)), as the autocorrelation function in stationary field. For the special value α = 0, the

CAF becomes exactly the classic autocorrelation function in the stationary theory.

This analysis is also true for poly-cyclostationary processes, with slight differences. In that

case, the set of cyclic frequencies in the sum (3.21) becomes Ix = { k
T1

, k
T2

, . . . , k ∈ Z}. The

CAF definition is also different: as developed in [Gardner, 1994], Rα
xx(τ) are Fourier-Bohr

coefficients, due to the generalized Fourier series development. For the following parts, the

considered signals in eq.(3.2), eq.(3.4) and (3.5) are clearly poly-cyclostationary. Indeed, they

contain at least two incommensurable periods due to shaping filter and carrier frequency.

Frequency Domain

For stationary signals, the link between time and frequency domain was shown by N.

Wiener for deterministic functions and A. Khinchin for its extension to stationary stochastic

processes. Let us recall this important definition from [Barkat, 2005].

Theorem 3.5.5 (Wiener-Khinchin). If x(t) is stationary in the wide-sense, the power

spectral density Sxx(f) can be expressed as the Fourier transform of the autocorrelation

function Rxx(τ), that is

Sxx(f) =

∫

R

Rxx(τ)e−2πfτ dτ

An extension of th.3.5.5 for cyclostationary signals was shown by W.A. Gardner in [Gard-

ner, 1988b]. Hence, this property is still true, that way:

sxx(t, f) =

∫

R

rxx(t, τ)e−2πfτ dτ (3.23)

As the power spectral density is periodic in time it admits a decomposition in Fourier series

in eq.(3.24).

Sα
xx(τ) =

∑

α∈Ix

sxx(t, τ)e2παt (3.24)

Coefficients Sα
xx(τ) are called Cyclic Spectrum Density Function (SCD), and exhibit same

properties than their time domain counterparts. This link is determined thanks to the Cyclic

Wiener Theorem and is simply expressed in eq.(3.25).

Sα
xx(f) =

∫

R

Rα
xx(τ)e−2πfτ dτ (3.25)
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For the particular value α = 0, the SCD S0
xx(τ) becomes simply the signal’s Power Spectral

Density (PSD).

Another interesting cyclostationarity property, besides not directly linked with the fre-

quency domain development, is the linear filtering effect. The description of such an operation

is easier in the frequency domain, since it could be simplified to a spectrum product. Indeed,

as shown in [Gardner et al., 2006], for a filtered signal y(t) = x(t) ∗ h(t) =
∫
R

h(u)x(t − u)du,

its SCD depends on the filter transfer function H(ν) =
∫
R

h(t)e−2πftdt. Hence, its spectral

correlation function could be defined as in eq.(3.26).

Sα
yy(f) = H(f +

α

2
)H(f − α

2
)Sα

xx(f) (3.26)

This property will be useful, in chapter 4 to determine the multi-path channel influence in

our detection method.

3.5.2 Time Series Application

It turns out that the stochastic processes approach is only a mathematical point of view.

In practice, we obviously have no access to a realization space Ω, and only one realization of

the process is available. Hence, an alternative approach to the classical stochastic model was

developed to determine cyclic properties of time-series. This framework is called fraction-of-

time probability. In such a framework, probabilistic parameters are defined through infinite-

time averages of a single time series rather than through expected values or ensemble averages

of a stochastic process. More details on that theory may be obtained in [Gardner, 1994,

Gardner et al., 2006]. But, the two theories may coexist thanks to the ergodic and latter,

on cycloergodic properties of signals. Hence, in this part we link the continuous stochastic

theory of cyclostationarity to time-series and discrete time processes.

In the large sense, a stochastic process is ergodic if all of its statistics can be determined

from a sample function of the process. Equivalently, this process is ergodic if its ensemble

average equals its time average with probability one. This condition is very restrictive, so

several definitions of ergodicity are available depending on the needs (see [Barkat, 2005,

Gardner, 1994]). Let us recall the wide-sense ergodicity definition in the mean:

Definition 3.5.6 (Ergodicity). A random process {Xt} is ergodic in the mean if the

time-averaged mean value of a sample function x(t) is equal to the ensemble-averaged mean

function value. That is,

E [{Xt}] = 〈x(t)〉t

where 〈.〉t denotes a time average and is defined to be

〈x(t)〉t = lim
T →∞

1

2T

∫ T

−T
x(t)dt
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This concept could be extended to cyclostationary processes, and its definition is called

cycloergodicity. In [Boyles and Gardner, 1983], both wide-sense and strict-sense cycloergod-

icity are developed, but we just recall here the wide-sense definition.

Definition 3.5.7 (Cycloergodicity). For any real number α, a random process X(t) is

α-cycloergodic in the mean if

lim
N→∞

E

[∣∣ 1

N

N−1∑

k=0

(
X(tk) − E [X(tk)]

)
e−2παk

∣∣2
]

= 0

In other words, def.3.5.7 guarantees the equality of asymptotic sinusoidally weighted sam-

ple time averages with the corresponding time-averaged sinusoidally weighted probabilistic

parameters, such as

〈E [{Xt}] e−2παt〉t , lim
N→∞

1

N

N∑

k=1

E [X(t)] e−2παt = 〈
{

X(t)e−2παt
}

〉t (3.27)

In the case of a cyclostationary cycloergodic process, this definition allows an interesting

simplification of eq.(3.22), which becomes

Rα
xx(τ) = 〈x(t − τ

2
)x∗(t +

τ

2
)e−j2παt〉t (3.28)

Classically, to estimate the CAF, the expectation operator is replaced by a temporal average

operator. Hence, eq.(3.27) is the link between continuous and discrete time, which leads to

the estimate R̂α
x,N [l] of Rα

x [lTs], with Ts the sampling period in eq.(3.29).

R̂α
xx,N [l] =

1

N + 1

N/2∑

k=−N/2

x [k] x∗ [k − l] e−2παk (3.29)

When N tends to its asymptotic limit (i.e. infinity), eq.(3.29) meets the CAF definition in

eq.(3.28).



Part I - Conclusions

In the first part of this document, we detailed the environment in which this study takes

place. Tights FITNESS requirements of space and energy consumption impose a specific

receiver architecture. However, to relax constraints on ADC, the received signal bandwidth

was increased. That way, the useful signal and several adjacent channels go through the

receiver. Interferer’s presence may affect the useful signal quality due to a possible nonlinear

regime of the receiver. Hence, a method based on interferer detection is required to make the

receiver work in a linear way. Such a technique may allow a gain of almost 10 dB on ADC

dynamic range.

To deal with the detection technique the received signal model was exposed. Assumptions

due to FITNESS requirements were taken into account to fix a specific model. To make

it clear, we detailed the detection theory basics and the most known method: the energy

detector. Unfortunately, such a detection can’t be performed in the FITNESS context. It

requires noise and/or signal’s power knowledge, or at least a noise power estimate. For those

reasons, we choose the cyclostationary detection method.

However, several issues of detection were not tackled yet. Cyclostationary properties de-

pend on received signal modulation. Some of FITNESS modulation schemes are in fact prob-

lematic as the chosen method does not allow a detection. This topic is developed in following

chapters.
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CHAPTER

4 On-Carrier Phase

Modulated Signal

Cyclostationary Detector

4.1 Introduction

In the previous chapter, we developed theoretical tools to detect random signals. Now,

we come to use them in the FITNESS project scope. We already underlined benefits to use

cyclostationary properties of the received signal in our context. As we said earlier, our main

constraint is the detection of phase modulated (i.e. O-QPSK and QAM) on carrier signals.

Knowing the received signal particular cyclostationary pattern, it was shown in [Gardner,

1994] that a detection and even a classification is possible. It means that a prior knowledge

of the studied signal is required, to look for a known cyclostationary pattern. A problem here

is that our received signal is a mixture of several PMR channels. To deal with this issue,

the detector must mandatory be able to detect a specific signal within the given set. The

only parameter that is different for every signal in such a mixture is its carrier frequency. For

this reason and as recommended in [Jouini et al., 2012], we assume the a priori knowledge of

the carrier frequency set. So, in the following we focus on methods that are able to detect a

particular frequency in the studied set. Nonetheless, another problem arise. It is well known

that on-carrier phase modulated signals does not exhibit cyclic frequencies multiple of fci,

which limits methods to perform a test. That’s why classical detectors, such as the A.V.

Dandawate and G.B. Giannakis in [Dandawate and Giannakis, 1994a] cyclic second order

method, are not adapted.

Hence, we first present a higher order methods study in section 4.2. We analyze their

benefits and drawbacks, to check their compliance to FITNESS context. As we will see, none

of these methods perfectly fit our needs. The cyclostationary second order detection method

is presented in section 4.3, in which we also point out a theoretical explanation of the QPSK

detection issue. So, we propose a new algorithm to take advantage of the behavior difference

between the Cyclic Autocorrelation Function (CAF) estimation and its theoretical expression.

A mathematical solution, and an illustration of this concept is shown in section 4.4. At first,

our theoretical results were obtained with following assumptions: neither multi-path, nor
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carrier frequency shift. We also present detection results and performance metrics in this

last part. These assumptions are finally released and an analysis of our criterion resilience

is developed in this final section. For the following document the delay ∆t1 in eq.(3.2) is

considered zero, since it has no impact on the method and does not lead to a loss of generality.

This demonstration is developed in Annexe A.

4.2 QPSK Detection - State of the Art

Several cyclostationary methods propose a joint presence detection and modulation clas-

sification of the received signal. For example, a second order cyclic-moments based approach

is developed in [Kim et al., 2007] for modulation classification. But, this method uses the

particularity that there is no cyclic frequency at 2fci for QPSK signals, to distinguish it from

others modulations. In other words, the absence of cyclic frequency at 2fci discriminates the

QPSK modulation in a set of several possible modulations. Nonetheless, this kind of ap-

proach can only be used for classification and not for detection. Classic methods are based

on higher order statistics, or a nonlinear transformation to take advantage from the signal’s

specific properties. These methods are divided into two steps: a) measurement of a peak in

signal’s Cyclic Spectrum Density Function (SCD) or Cyclic Autocorrelation Function (CAF)

at an existing cyclic frequency; b) estimation of its power and comparison to tabulated values

to select the most likely modulation. Obviously, for a detection only, the processing can be

stopped after the step a). Let develop this concept in following sections.

4.2.1 Higher Order Statistics

Higher order statistics are moments and cumulants higher than order two. They can be

used to characterize the signal statistical properties when its mean and variance are not

enough. In [Spooner, 2001] the n-th order moment function is defined as in eq.(4.1):

Rs(t, τ ; n, m) = E

[ m∏

k=1

s∗(t + τk)
n∏

k=m+1

s(t + τk)

]
(4.1)

Here m is the number of conjugated factors and τ =
{
τ1, . . . , τn,

}
. Rs(t, τ ; n, m) is linked to

its cumulant counter part by eq.(4.2).

Cs(t, τ ; n, m) =
∑

Pn

(−1)(p−1)(p − 1)!
p∏

k=1

Rsνk
(t, τνk

; nk, mk) (4.2)

where
{
νk

}p

k=1
are distinct partitions of the index {1, 2, . . . , n}, and Pn is the set of all

partitions. This relation is fully explored in numerous papers, for example in [Gardner and

Spooner, 1994] or [Gardner, 1994]. As an autocorrelation function combination, the cumulant

function is periodic in time and admits a Fourier decomposition. Series coefficients are called

cyclic cumulants and have cyclic frequencies.

In [Dandawate and Giannakis, 1994a], authors propose to use at least the third order

cumulant to detect a on carrier M-PSK modulated signal. In such a case with Is the set of
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cyclic frequencies of s(t), eq.(3.6) becomes:

Ĉ3s(τ1, τ2) =
1

N

∑

α∈Is

N−1∑

t=0

s(t)s∗(t − τ1)s(t − τ2)e−2παt (4.3)

The overall method is developed in section 4.3 at the order two. However, one major issue of

this representation is its need of a covariance matrix estimation. Indeed, this matrix inverse

is used to normalize the detection test, which may introduce instabilities in the algorithm.

We also underline that this approach is limited by the estimated variance, which increases

due to the additional product (compared to the order two) of delayed version s(t − τ2). The

only way to reduce that variance is to use a larger number of samples.

In [Spooner, 2001], it is also proposed to use higher order statistics to discriminate, and

hence detect, a signal from a particular set. Forth and sixth order cumulants approaches are

proposed and compared. The working assumption relies on a signal specific model, which is

exposed in eq.(4.4).

x(t) =
M∑

i=1

∞∑

k=−∞

ai,kr(t − kTi)e
2πfcit+Φi + w(t) (4.4)

Here w(t) is an AWGN noise, ai,k are complex symbols and r(t) is a complex Fourier trans-

formable pulse function of symbol rate 1/Ti. Knowing the signal’s carrier frequency fci gives

its cyclic frequency knowledge, that allows to find the corresponding nonzero Fourier coeffi-

cient and solves the problem. The M signals case is tackled here, but a simplification where

M = 1 is close to our formulation. This model is quite similar to our assumptions in eq.(4.17),

with the notable difference that eq.(4.4) is baseband, with a carrier frequency residue. For

the model eq.(4.4), C.M Spooner has shown that the cyclic cumulant function definition can

be reduced to:

Cβ
x (τ ; n, m) =

Ca,n,m

T

∫

R

n∏

k=1

r(∗)k(t + τk)e−2πβtdt. (4.5)

This relation is particularly interesting due to the factor Ca,n,m, which is the cumulant of

random complex symbols ai,k, of order n with m conjugation. Under the wide-sense cyclosta-

tionary hypothesis, we consider that a finite alphabet (i.e. a constellation) remains identical

during a time T for each carrier. Hence, statistics of s(t) keep same properties, and Ca,n,m is

constant. All values of Ca,n,m are provided for QPSK, M-PSK, 8-256QAM and V29 constel-

lations in [Spooner, 2001]. The remaining part of eq.(4.5) is deterministic. So, the coefficient

Ca,n,m alone allows to detect a modulation, as Cβ
x (τ ; n, m) differs only in the mean for each

modulation.

This detection method efficiency is interesting and allows a good discrimination between

the different modulations. Spooner’s experimental results show that the Pd reaches quickly

1. However, that performance has to be balanced by an expensive computational cost as it

requires a large number of symbols for detection (at least 1000). A better detection rate is

achieved in most of presented cases when the number of symbols are greater than 3000. Hence,

this is not compliant with FITNESS requirements. Moreover, the detection is performed at

a SNR relatively high compared to the nonlinear transformation method that is presented in

the next part.
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4.2.2 Non-Linear Transformation

Another common detection technique is to apply a nonlinear transformation on the signal

to create a DC component at a particular cyclic frequency. In [Hill and Bodie, 2001] a detector

and a classifier are designed. However, the method relies on a filtering operation and an

envelop detector, which is close to the energy detector that we discussed earlier. Hence,

the technique developed by J. Reichert in [Reichert, 1992] is far more interesting. In this

paper, the author developed a relation to maximize the SCD power. This is achieved when

the original constellation is projected into a unique state different from zero. This concept

is easier to understand on concrete examples. For a BPSK signal, the nonlinear transform

(.)2 projects the two symbols (±1) onto +1. But, for the QPSK modulation case, two cases

remains: ±1, so the operation (.)4 is considered. That way, a constant harmonic is created

in the signal, equivalent to a line in its spectrum. The corresponding relation is developed in

eq.(4.6) below.

Sα
ss(τ0) =

1

T1

∫

R

rα
ss(τ0)e−2πατ dτ (4.6)

where, rα
ss(τ0) is the averaged squared complex input signal autocorrelation such as:

rα
ss(τ0) =

1

T1

∫ T1

0
E [s(t)s(t − τ0)s∗(t − τ)s∗(t − τ0 − τ)] dt (4.7)

In eq.(4.6), Sα
ss(τ0) is homogeneous to a SCD. This definition meets results in [Reichert, 1992]

for the particular value of τ0 = 0. The delay τ0 is introduced in eq.(4.6) and eq.(4.7) to be

coherent with the J. E. Mazo notation in [Mazo, 1978]. Developing eq.(4.7) expectation leads

to:

rα
ss(τ0) =

1

T1

∫ T1

0

∞∑

i,j,k,l=−∞

E [aiaja∗
ka∗

l ] h0
i hτ0

j h∗τ
k h∗τ+τ0

l dt (4.8)

where hx
k(t) = h(t−kT1 +x)e2πfc1(t+x), and

∑
i,j,k,l is equivalent to four distinct summations

over i, j, k, l. We clearly see that eq.(4.8) splits eq.(4.7) into a random and a deterministic

part, in the same way that we discussed about Spooner’s method. It was shown in [Mazo,

1978] that E [aiaja∗
ka∗

l ] (the random part of eq.(4.8)) can be expressed as in eq.(4.9):

E [aiaja∗
ka∗

l ] = δijδkl + δikδjl + µ2
2δilδjk − (2 + µ2

2 − µ∗
4)δijδikδil (4.9)

In eq.(4.9), the notation δij stands for the Kronecker symbol, µ2
2 is the second order moment

and µ∗
4 is the fourth order two-conjugated moment. So, E [aiaja∗

ka∗
l ] is clearly the only part

that depends on the modulation. The remaining part of eq.(4.8) is deterministic, with a unique

value for each modulation (considering a integration over T1). This is definitely different

from [Dandawate and Giannakis, 1994a] or [Gardner and Spooner, 1992] approaches, which

focus on the asymptotic behavior of their cyclostationary detectors. Here, eq.(4.7) is clearly

a derivation of the CAF probabilistic behavior. In a similar manner to [Spooner, 2001],

µ∗
4 and µ2 take specific values for each modulation. Second and forth order moments taken

separately may be identical for two modulation. So, the couple has to be considered to choose

the correct modulation. Then, a power detection of Sα
s (τ0) is performed in a classical way by

the resolution of a Neyman-Pearson test.
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This method allows a good detection and, knowing its statistics (i.e. E [aiaja∗
ka∗

l ]), also

allows to classify the modulation. However, several modulations may have their low-order

statistics identical, which implies to use higher order nonlinear function and perform the test

for the two nonlinear functions (i.e. (.)2 and (.)4). Obviously, the detector becomes more

sensitive to noise power due to higher orders. In a other hand, [Reichert, 1992] results shows

that the QPSK classification rate is low when compared to other modulations. Indeed, a

classification rate of 98% is obtained only for a SNR 8 dB higher than the classification rate

obtained for a PAM modulation. We also notice that created spectral lines are located at 2fc1

and 4fc1. This implies that the sampling frequency fs has to be greater than 8fc1 in order

to avoid aliasing effects. In a general point of view this requirement seems reachable. But, in

the FITNESS context the sampling rate fs = 4fc1. So, the anti-aliasing condition can’t be

respected.

4.3 Low-order Moment Detector

It is usually admitted that first order moment (mean) and second order moment (vari-

ance) are enough to characterize a stochastic process distribution. Moreover, the estimation of

higher order moments consists in a mean delayed versions products of the original stochastic

process. So, as the SNR decreases, it becomes harder to estimate the process high order mo-

ments with confidence. Furthermore, the algorithm computational complexity grows quickly

as the order increases. For now, to limit the computational cost, let us first consider existing

second order detection methods.

One approach to exploit a signal cyclostationary properties is to detect its cyclic fre-

quencies, as described in [Gardner, 1988b]. The detection relies on the SCD estimation at

a specific cycle frequency to measure the most powerful spectral line. Based on this idea,

the complete work realized in [Gardner and Spooner, 1992], compares several detectors in

terms of detection rate. However, as once again pointed out in this last document, there is no

cyclic feature at the cycle frequency 2fc1 for a QPSK signal. Alternative methods to exploit

cyclostationary properties of a signal also exist, as the work developed in [Ciblat et al., 2002].

The main idea is to consider cyclic frequencies as sinusoids embedded in noise. Nonetheless,

it requires to make an assumption on the studied signal number of cyclic frequencies. Let

now introduce the second order cyclic detector in order to become more familiar with the

cyclostationarity detection concept.

4.3.1 A statistical Test Presence

Conveniently, the [Dandawate and Giannakis, 1994a] method allows a cycle detection

presence without assuming any specific distribution of input data. A normal asymptotic test

was developed, and recalled here for its lower order form. Both time and frequency test

are tackled in the original paper, but let us use the time-domain only. This method allows

to estimate the signal cyclic frequencies without prior input signal knowledge (i.e. unknown

period symbol, carrier frequency, symbols distribution). It can be seen as a detection problem,
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since it requires to estimate all CAF coefficients of eq.(3.22) to determine if they present

some energy. If the energy is high enough, then the corresponding candidate cycle frequency

is declared a cyclic frequency and the signal is detected. Let now develop the concept, keeping

the detection problem in the line of sight. With the cycloergodic assumption, s(t) (eq.(3.6))

estimated CAF (defined in eq.(3.29)) can be express in eq.(4.10).

R̂α
ss,N (l) ,

1

N

N−1∑

k=0

s(k)s∗(k − l)e−2παk (4.10)

= Rα
ss,N (l) + εα

ss,N (l) (4.11)

In eq.(4.11), εα
ss,N (l) is an estimation error and becomes asymptotically zero when N

tends to infinity. In such a case, the estimate R̂α
ss,N (l) comes closer of its theoretical

value Rα
ss,N (l). So, due to εα

ss,N (l) presence, the estimated CAF is never exactly zero.

The remaining question is to decide when a candidate α is really a cyclic frequency (if

α ∈ Is =
{

k
T1

, 2m
Tc1

, 2m
Tc1

± 1
T1

, {k, m} ∈ Z

}
). So, the following test is proposed:

H :





H0 : α /∈ Is, ∀{l}l=1,..,N → R̂α
ss,N (l) = εα

ss,N (l),

H1 : α ∈ Is, for some {l}l=1,..,N → R̂α
ss,N (l) = Rss,N (l) + εα

ss,N (l).
(4.12)

All the power of this concept lies in eq.(4.12). It allows a cycle detection of a single input

signal. Since Rss,N (l) is nonrandom, R̂α
ss,N (l) distributions under H0 and H1 differ only in

the mean.

This test can be performed for a specific unique lag l or for several lags to improve the

precision. For a set of lag {l}l=1,..,N , let us define the 1 × 2N row vector R̂α
ss,N by,

R̂α
ss(l) ,

[
ℜ{R̂α

ss,N (1)}, . . . , ℜ{R̂α
ss,N (N)},

ℑ{R̂α
ss,N (1)}, . . . , ℑ{R̂α

ss,N (N)}
]

(4.13)

In a simplified version, only one lag is necessary and R̂α
ss(l) becomes a 1 × 2 vector. As the

input data distribution is unknown, the asymptotic properties of R̂α
ss(l) have to be derived

to determine the asymptotic error distribution. With the assumption that samples of s(k)

are well separated in time and are independent, [Dandawate and Giannakis, 1994a] shows

that the estimator in eq.(4.11) is consistent (i.e. limN→∞ R̂α
ss,N (l) = Rα

ss,N (l)). Another inter-

esting result is the demonstration that
√

Nεα
ss,N (l) follows asymptotically a complex normal

distribution with covariance matrix Σ2c, which estimated expression is provided in eq.(4.14).

Σ̂2c =

[
ℜ{Q̂2 + Q̂∗

2

2
}, ℑ{Q̂2 − Q̂∗

2

2
},

ℑ{Q̂2 + Q̂∗
2

2
}, ℜ{Q̂2 + Q̂∗

2

2
}
]

(4.14)
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where Q̂2 and Q̂∗
2 are homogeneous to periodograms of s(k)s(k + l) such as,

Q̂2 = Ŝ2(2α, α) =
1

NL

(L−1)/2∑

i=−(L−1)/2)

W (i)FT (α − 2πi

N
)FT (α +

2πi

N
),

Q̂∗
2 = Ŝ2(0, −α) =

1

NL

(L−1)/2∑

i=−(L−1)/2)

W (i)FT (α +
2πi

N
)F ∗

T (α +
2πi

N
) (4.15)

with W (i) a spectral window of length L and FT (s) =
∑N−1

k=0 s(k)s(k + l)e−2πik the Fourier

transform of s(k)s(k+l). This knowledge leads to normalize the test eq.(4.12) by its covariance

to get a generalized maximum-likelihood function. Its asymptotic distribution turns out to

be expressed as in eq.(4.16).

H :





H0 : τ2c ∼ N (0, 4R̂α
ssΣ̂

−1
2c

R̂α′
ss),

H1 : τ2c ∼ N (NR̂α
ssΣ̂

−1
2c

R̂α′
ss, 4NR̂α

ssΣ̂
−1
2c

R̂α′
ss).

(4.16)

where, Σ̂2c is the R̂α
ss covariance matrix and (.)′ is the vector transpose operation. The 2 × 2

matrix Σ̂2c is obtained using the relation eq.(4.14). A theoretical threshold is then obtained

thanks to the Q function (reciprocal normal distribution).

Hence, this method seems particularly well adapted to look for cyclic frequencies of a

communication signal. The proposed test is simple, with a simple detection metric. However, a

few remarks could be made. The first one concerns the funding assumption of that work, which

implies that input samples are well separated in time and independent. If this condition is not

restrictive for stable linear processes, it is a real problem for communication signals. Indeed,

due to the shaping filter and oversampling, samples could not be considered independent.

This is all the more true when the symbol period is long compared to the sampling period.

A second limitation is the need of the estimated covariance matrix. For a single lag, the

matrix Σ̂2c is small (2 × 2). So, the inversion process is not an expensive calculation time.

But, due to inversion it may introduce instabilities in the process, if the inverse matrix is ill-

conditioned. Finally, as a second order method it does not allow a detection of QPSK signals

on carrier, since by definition for a QPSK signal α = 2fc1 corresponds to the H0 hypothesis

in eq.(4.12).

Let us give an example with signal y1(t) for which z1(t) are BPSK symbols. In that

case, eq.(3.2) could be simplified into eq.(4.17) which is a real signal (z1I
(t) = 0). That way

s(t) = y1R
(t) + w(t), and one can show that Rα

ss(τ) = Rα
yy(τ).

y1(t) =
N∑

k=0

akh(t − kT ) cos(2πfc1t) ≡ z1R
(t) cos(2πfc1t) (4.17)

The quadratic form y1(t)y1(t − τ), which complete expression is detailed in eq.(4.18), allows
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to determine y1(t) cyclic frequencies.

y1(t)y1(t − τ) =
1

4

(
z1R

(t)z1R
(t − τ)e2πfc1τ )

+
1

4

(
z1R

(t)z1R
(t − τ)e−2πfc1τ )

+
1

4

(
z1R

(t)z1R
(t − τ)e2πfc1(2t−τ))

+
1

4

(
z1R

(t)z1R
(t − τ)e−2πfc1(2t−τ)) (4.18)

As we see, this quadratic form clearly exhibits temporal sine-wave components for α ± 2fc1.

However, the analysis is not that obvious for the two first terms of eq.(4.18). Let us make a

focus on the first right hand-side term. Thanks eq.(3.21), its autocorrelation is:

Rzz(t, τ) =
1

4
E

[
z1R

(t)z1R
(t − τ)e−2παt

]
e2πfc1τ

= e2πfc1τ
∞∑

u=−∞

∞∑

v=−∞

E [aua∗
v] h(t − uT1)h(t − τ − vT1) (4.19)

The variable change t = t + T1 leads to eq.(4.20).

Rzz(t + T1, τ) = e2πfc1τ
∞∑

u=−∞

∞∑

v=−∞

E [aua∗
v] h(t + T1 − uT1)h(t − τ − vT1 + T1) ≡ Rzz(t, τ)

(4.20)

So, the z1R
(t) autocorrelation has a periodic behavior in ±T1, which produces cyclic

frequencies α = ± 1
T1

. Hence, the theoretical CAF of eq.(4.18), with a set Iy1 =

0 0.1 0.2 0.3 0.4 0.5

Normalized candidate cyclic frequency
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Figure 4.1: CAF magnitude for a BPSK signal, at SNR of 0dB, 512 symbols, averaged over

100 independent run
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{0, ± 1
T1

, ±2fc1, ±2fc1 ± 1
T1

} is

Rα
yy(τ) =

1

4
E

[
z1R

(t)z1R
(t − τ)e−2παt

]
e2πfc1τ

+
1

4
E

[
z1R

(t)z1R
(t − τ)e−2παt

]
e−2πfc1τ

+
1

4
E

[
z1R

(t)z1R
(t − τ)e2π(2fc1−α)t

]
e−2πfc1τ

+
1

4
E

[
z1R

(t)z1R
(t − τ)e−2π(2fc1+α)t

]
e2πfc1τ (4.21)

Or for more convenience,

Rα
yy(τ) =





1
2cos(2πfc1τ)Rα

zz(τ) if α = 0 or ± 1
T1

,

1
4e±j2πfc1τ Rα

zz(τ) if α = ±2fc1 or ±2fc1 ± 1
T1

,

0 otherwise.

(4.22)

Fig.4.1 represents |Rα
ss(τ)|2 (i.e. the s(t) CAF energy) versus α. As expected, the energy

is different from zero only for α in Is ≡ Iy1 . This representation was obtained for τ = 0,

Ns = 512 symbols, a SNR of 0 dB, a symbol period T1 = 1 (Tech = 1/20) and a normalized

carrier frequency fc1 = 0.15 over 100 independent realizations. We clearly see the classic

autocorrelation range in the main peak at α = 0. There is also a peak at α = 0.05, which

corresponds to the symbol period. An important peak shows the carrier frequency influence

at α = 2fc1 = 0.3 with smaller responses at each side due to the symbol period. Moreover,

when the candidate cyclic frequency does not belong to Is, the CAF energy tends to be zero

but not seldom zero, as expected.

4.3.2 The Carrier QPSK Signal Cyclostationary Detection Issue

However, if the same example with an input signal QPSK modulated is done, no cyclic

frequency at α = 2fc1 can be found. An illustration of this result is proposed in fig.4.2, which

was realized with same parameters as for fig.4.1. We clearly see that there is no energy close

to α = 2fc1.

Let us now derive the cyclostationary analysis for the signal y1(t) in this case. We need

first to complete the notation introduced in chapter 3.

y1R
(t) = ℜ [z1(t)] cos(2πfc1t) and y1I

(t) = ℑ [z1(t)] sin(2πfc1t) (4.23)

That way s(t) = y1R
(t) − y1I

(t) + w(t). Using eq.(3.22), one can easily show the following

relation:

Rα
ss(τ) = Rα

y1R
(τ) + Rα

y1I
(τ). (4.24)

So, eq.(4.24) is the sum of the CAF of y1R
(t) and y1I

(t). The theoretical CAF of y1R
(t) is

given by:

Rα
y1R

y1R
(τ) =





1
2cos(2πfc1τ)Rα

z1R
z1R

(τ) if α = 0 or ± 1
T1

,

1
4e±j2πfc1τ Rα

z1R
z1R

(τ) if α = ±2fc1 or ±2fc1 ± 1
T1

,

0 otherwise.

(4.25)
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Figure 4.2: CAF magnitude for a QPSK signal, at SNR of 0dB, 512 symbols, averaged over

100 independent run

With Iy1R
=

{
{ k

T1
, 2kfc1, 2kfc1 ± k

T1
}, k ∈ Z

}
the set of cyclic frequencies of y1R

(t), which is

defined in eq.(4.23). As Iy1R
contains elements that are not multiple to each other, the signal

y1R
(t) is poly-cyclostationary (see section 3.5 for more details).

Note that the CAF expression of y1I
(t) is detailed in eq.(4.26).

Rα
y1I

y1I
(τ) =





1
2cos(2πfc1τ)Rα

z1I
z1I

(τ) if α = 0 or ± 1
T1

,

−1
4e±j2πfc1τ Rα

z1I
z1I

(τ) if α = ±2fc1 or ±2fc1 ± 1
T1

,

0 otherwise.

(4.26)

With Iy1I
=

{
{ k

T1
, 2kfc1, 2kfc1 ± k

T1
}, k ∈ Z

}
the set of cyclic frequencies of y1I

(t) de-

fined in eq.(4.21). We underline that cyclic frequencies multiple of fc1 exist in eq.(4.25)

and eq.(4.22). Indeed, for baseband QPSK signals, the constellation projection in the com-

plex or real plan is consistent to BPSK modulation. Consequently, real and imaginary parts

of baseband QPSK have cyclic frequencies multiple of the carrier frequency. Noticing that

R±2fc1
y1R

y1R
(τ) = −R±2fc1

y1I
y1I

(τ), and replacing eq.(4.25) and eq.(4.22) in eq.(4.24) leads to the

following expression for α ∈ Is:

Rα
ss(τ) =

1

2
cos(2πfc1τ)Rα

z1R
z1R

(τ) +
1

2
cos(2πfc1τ)Rα

z1I
z1I

(τ). (4.27)

In eq.(4.27), s(t) is cyclostationary with Is = { k
T1

, k ∈ Z}. We notice that Is does not have

any cyclic frequency depending on fc1, in agreement with state of the art analysis.
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Figure 4.3: CAF energy versus the observation duration (number of samples) for different

modulation schemes (i.e. QPSK, BPSK) and for different α

4.4 New Detection Feature Analysis

As we saw, the basic method of second order cyclic-moments is unable to detect any CAF

energy linked to the signal carrier for phase modulated signals. Based on this analysis, we

propose a new method to perform the detection thanks to second order cyclostationarity

theory. This method exploits the convergence speed of the cyclic autocorrelation function

estimator. We also develop a statistical test and derive the asymptotic probability density

function of the criterion to propose a detection threshold. Detection performance simulation

results are then evaluated by Monte Carlo simulations and compared to the fourth order

nonlinear transformation method.

4.4.1 New Detector Definition

We saw that QPSK signal’s CAF converges to zero, but not in the same way if the cyclic

frequency is a multiple of the carrier frequency or not. Let us develop this concept graphically.

The fig.4.3 illustrates the CAF speed convergence for different values of cyclic frequencies if

α ∈ Is or if α /∈ Iy1R
. Experimental conditions are detailed in the next section. In fig.4.3 when

α ∈ Iy1R
, the CAF estimator applied to a BSPK signal (i.e. to y1R

(t) or y1I
(t)) converges

quickly through a non zero constant value (triangle yellow curve). In the same way, when

α /∈ Is, the estimator decreases in 1/N and tends to zero (red circled curve). For a QPSK

signal, when α = 2fc1, the estimated speed convergence is similar but with a different leading

coefficient. However, there is a gap between the curves α = 2fc1 and α /∈ Is, which gives an
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indication on the idea that we develop in this section.

Let now develop our detection method expression. As shown in subsection 4.3.2, for any

α /∈ Is, Rα
ss(τ) = 0. This is also true for particular values of α = ±2fc1. But we also notice

that R±2fc1
y1R

y1R
(τ) = −R±2fc1

y1I
y1I

(τ) 6= 0 which leads to:

R±2fc1
ss (τ) = R±2fc1

y1R
(τ) + R±2fc1

y1I
(τ) = 0. (4.28)

This is the property we harness to develop our criterion: we expect that the estimation of R̂α
ss

will not converge in the same way to zero if α = ±2fc1 and α /∈ Iy1R
as shown in fig.4.3. By

definition, for a given α /∈ Is, R̂α
ss(l) , 0 since α is not a cyclic frequency. Using eq.(3.29), if

we invoke the cycloergodic character of y1(t), it comes that eq.(4.28) leads to 0 only when N

tends to infinity since limN→∞ R̂±2fc1
y1R

(l) = limN→∞ R̂±2fc1
y1I

(l) 6= 0. Consequently, with finite

number of samples, the behavior of the CAF estimator is different between the α = ±2fc1

and all the other non-cyclic frequency. Hence, we propose to take advantage of the variance

difference between the two cases.

Our criterion ĴL,N (α) is defined as follows:

ĴL,N (2fc1) =
Ĉ2fc1

N (L)

Ĉβ
N (L)

, (4.29)

where β /∈ Is and:

Ĉα
N (L) =

1

L + 1

L∑

l=0

|R̂α
ss,N (l)|2. (4.30)

L is the number of lags of the autocorrelation function considered, and |.| is the modulus

operator. As the precision of the estimated CAF in eq.(3.29) depends on N , so does eq.(4.30).

This criterion can be interpreted as a reciprocal correlation coefficient (see [Gardner, 1994]).

Indeed, it makes a comparison between the estimated CAF at two α that are not cyclic

frequencies. Our criterion can also be used for MPSK or MQAM modulations with M >= 2.

The only constraint is that z1R
(t) and z1I

(t) of eq.(3.1) have to be independent. Our criterion

exploits the property of quasi-constant energy shift within the two curves at α = 2fc1 in

fig.4.3.

This idea is similar to several applications in cognitive radio, as [Muraoka et al., 2008]

where a method called Maximum Cyclic Autocorrelation Selection (MCAS) is proposed for

the first time. The idea is to compare the peaks and non peaks values of CAF to decide

whether a signal/user is present or not. In other words, the idea is to decide the presence if

Rα
ss(τ) ≥ Rε

ss(τ), with α ∈ Is and ε /∈ Is. This method could also be refined using several εi,

to decrease the estimation variance. Still in the context of CR, another interesting idea was

proposed in [Narieda and Hada, 2017]. Using the MCAS method, in this work |Rα
ss(τ)|2 is

assumed to be a signal component and Rε
ss(τ) a noise component. The ratio in eq.(4.31) is

proposed as a "CAF SNR".

CAF SNR =
|Rα

ss(τ)|2
|Rε

ss(τ)|2 . (4.31)

Although very interesting, these methods cannot be applied directly in our context since

the R2fc1
ss (τ) tends to zero, i.e. there is no cyclic energy to measure. Hence, our criteria is

completely new.
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4.4.2 Binary Test

As we defined the criterion to test, let now realize its theoretical analysis. To find a thresh-

old, statistical distributions of ĴL,N (α) under both assumptions have to be considered. Using

the Neyman-Pearson approach [Kay, 2009], a threshold Γ is determined with a constrained

Probability of False alarm Pfa = P [ĴL,N (2fc1) > Γ|H0]. The following statistical hypothesis

test is defined below:

H :





H0 → s(t) = w(t),

H1 → s(t) = y1(t) + w(t).
(4.32)

Here H0 denotes the absence of signal and H1 denotes its presence.

When no signal is present, the criterion distribution is obtained more easily. So, to define

Γ, let us consider the H0 hypothesis, where the numerator and the denominator of eq.(4.29)

have same statistical properties. It was shown in [Dandawate and Giannakis, 1994b], that the

CAF estimator is unbiased and that the estimation error is asymptotically complex normal.

Using eq.(3.29) as the sum of a real and imaginary part leads to:

R̂α
ss,N (l) = ℜ[R̂α

ss,N (l)] + ℑ[R̂α
ss,N (l)], (4.33)

where both real and complex terms follow asymptotically complex independent normal dis-

tributions for each l. The mean power expression in eq.(4.30) is consequently a sum of normal

values, not reduced and non-centered. Under H0, one can write the modulus expression of

eq.(4.33):

|R̂α
ss,N (l)|2 = ℜ[R̂α

ss,N (l)]2 + ℑ[R̂α
ss,N (l)]2. (4.34)

From eq.(4.30) and eq.(4.34) we obtain:

(L + 1)Ĉ2fc1

N (L) =
L∑

l=0

ℜ[R̂2fc1
ss (l)]2 +

L∑

l=0

ℑ[R̂2fc1
ss (l)]2. (4.35)

Real and imaginary parts are independents and have same mean and variance.

Let now show that ĴL,N (2fc1) follows a doubly non-central Fisher distribution. Thanks to

[Kay, 2009], we noticed that eq.(4.35) is quite similar to a non-central chi-square distribution

χ2
ν(λ), defined as:

χ2
ν(λ) ∼

ν∑

i=0

X2
i

σ2
i

. (4.36)

Where λ =
∑

µ2
i is the non-centrality parameter, ν = 2(L + 1) is the number of degrees of

freedom and Xi’s are independent and Xi ∼ N (µi, 1). However, eq.(4.35) is not a sum of

reduced Normal distributions. We also notice that the doubly non-central Fisher distribution

is the ratio of two independent chi-2 distributions. Using eq.(4.36), F ′′
ν1,ν2

(λ, δ) is denoted as:

F ′′
ν1,ν2

(λ, δ) ∼

ν1∑

l=0

X2
l

σ2
l

ν2∑

k=0

Y 2
k

σ2
k

. (4.37)
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With our considered criterion, we have σ2
l = σ2

k since we use eq.(4.30) to estimate ĴL,N (2fc).

Consequently we proved that ĴL,N (α) ∼ F ′′
ν1,ν2

(λ, δ).

Non-centrality parameters λ and δ tend to zero asymptotically, and the degrees of freedom

ν1 = ν2 = 2(L + 1). As eq.(4.29) is a ratio of random laws of similar moments, there is no

need to determine λ and δ since the ratio tends to 1. At the asymptotic (N is large) both

Ĉ2fc1

N (L) and Ĉε
N (L) tend to zero. Non-centrality parameters become then λ = δ = 0. In

that case eq.(4.29) follows a central Fisher law F (ν1, ν2). This approximation works well in

practice even for N small.

In the other hand, when H1 is considered, the nominator and denominator variances of

eq.(4.37) are different (i.e. σ2
k 6= σ2

l ). It was shown in [Dandawate and Giannakis, 1994a] that

var
[
R̂α

ss(l)
]

does not depends on lags l, which is also verified in simulations. It means that

eq.(4.37) could be written as:

F ′′
ν1,ν2

(λ, δ) ∼ (
σ2

Y

σ2
X

)

ν1∑

l=0

X2
l

ν2∑

k=0

Y 2
k

. (4.38)

It comes that way that ĴL,N (α) ∼ (
σ2

X

σ2
Y

)F ′′
ν1,ν2

(λ, δ) since ĴL,N (α) is not reduced. σ2
X and σ2

Y

correspond to the criterion nominator and denominator variances respectively (i.e. CAF en-

ergy at 2fc1 and at ε). It was shown in [Gouldieff et al., 2018] that σ2
X is related to y1(t) power,

and that σ2
Y is related w(t) power. Hence,

σ2
X

σ2
Y

is equivalent to the SNR. This is particularly in-

teresting for a coarse analysis of ĴL,N (α) under H1. As we said, ĴL,N (α) ∼ (SNR)F ′′
ν1,ν2

(λ, δ).

So, E
[
ĴL,N (α)

]
= (SNR)E

[
ĴL,N (α)

]
. Consequently, the criterion mean is directly propor-

tional to the SNR. As the SNR decreases, the criterion distribution under H1 comes closer to

its distribution under H0. Another effect due to this factor is the distribution scaling. Indeed,

var
[
ĴL,N (α)

]
= (SNR)2var

[
ĴL,N (α)

]
, which implies the distribution enlargement.

Finally, to determine a threshold value to choose between H0 and H1, we simply have to

refer to ĴL,N (α) under H0 since its distributions is simply a central Fisher law with known

freedom degrees. So, to fix Γ, the inverse function of F (ν1, ν2) is required. A simple close form

of F (ν1, ν2) is detailed in [Johnson and Kotz, 1972]. However, it implies to use the inverse

incomplete beta function, for which no close form expression exists. The usual method consists

then in realizing an approximation. Thanks to the Newton algorithm and to the theoretical

quantile function of central Fisher law, it becomes possible to determine a threshold Γ. So, let

choose Γ for a given false alarm probability such as Pfa = P [F2(L+1),2(L+1) > Γ|H0]. Then,

the same threshold will be applied for any SNR level.

4.4.3 Obtained Results

Experimental conditions

In this part, we propose several simulations to show our criterion accuracy and usefulness.

We set a sampling rate fs = 10fc1 , in order to make a comparison with a high order moment



4.4. NEW DETECTION FEATURE ANALYSIS 53

0 0.2 0.4 0.6 0.8 1

False alarm rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 d

e
te

c
ti

o
n

 r
a
te

N =   8

N =  16

N =  32

N =  64

N = 128

N = 256

N = 512

Figure 4.4: ROC curves at fixed SNR = 0dB, 2048 Monte-Carlo run, performance evolution

for N = 8 to N = 512 symbols used

detection method. In our context fc1 is the signal carrier frequency after down conversion. A

square-root raised cosine filter of bandwidth T = 2.5T1, is used as shaping filter with roll-of at

0.8 and span at 6 symbols. For first results, as discussed in subsection 3.2.2, channel’s impulse

response is considered as a dirac function. We also consider a perfect synchronization, but

when these assumptions are relaxed, the limits are indicated. The SNR level is fixed at 0 dB,

except when its values are given. Monte Carlo simulations were run, in which we considered

2048 realizations to determine the false alarm probability (H0) and the power of the test (H1).

Simulations - part 1

We first analyze our criterion detection rate in function of the number of symbols used

to estimate it. Overall parameters are: a fixed SNR level of 0 dB, the maximum number of

delays L is fixed at 20, and we plot ROC curves for N = 8 to N = 512. As we can see

in fig.4.4, our algorithm provides similar detection probability for each N . Also, we notice

that the detector gives about 65% of good detection for a false alarm rate of 5%. The strong

point is that even with a small number of symbols, we are able to differentiate the presence

or absence of the signal to detect. This is an advantage, because the number of samples

is dramatically decreased compared to state of the art methods (e.g over 3000 symbols are

required in [Spooner, 2001]). On the other hand, our algorithm is inconsistent since increasing

N also doesn’t improve the detection rate. This behavior is due to the constant ratio of

our criterion nominator and denominator. It was highlighted in fig.4.3 by the constant gap

between α = 2fc1 and α /∈ Is . Besides increasing N doesn’t improve the detection rate, an
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Figure 4.5: ROC curves at fixed SNR = 0dB, 2048 Monte-Carlo run, performance evolution

for N = 8 or N = 512 symbols used. Comparison with fourth order moment method in

[Reichert, 1992]

improvement could be obtained by adjusting the parameter L. This study is realized further.

As shown in fig.4.4, eq.(4.29) is independent of N . Let compare our detection rate with

the fourth order moment method (dashed lines) described in [Reichert, 1992] in fig.4.5. It is

clear that this method outperforms our algorithm for N = 512. But, we also noticed that for

N = 8, the probability of detection provided by the fourth order moment method dropped.

This point is particularly interesting, since using our algorithm could significantly decreases

the number of operations and consequently allows a quick decision.

Let us now illustrate the influence of the parameter L on detection rate, with N set at

8 symbols. We plot ROC curves for several numbers of delay in fig.4.6. Considering only

L = 5 leads to poor detection performances. There is an improvement around 20% of true

detection rate for the rise of L from 5 to 20 delays. Then, increasing by 2.5 times the number

of delays leads to another 20% rise of true detection rate. Consequently, better detection

rates are achieved by increasing the number of delay used in the criterion estimation. The

most important result is that increasing L provides a better rate of true detection. However,

a trade-off between complexity and performance has to be made.

The eq.(4.38) showed that our criterion statistics are linked to the SNR. So, another

important aspect to tackle is our statistical test reliability with respect to the SNR. That is

why we present ROC curves for several SNR levels (from 0 dB to 10 dB) in fig.4.7. We set

N equals 8 symbols and L equals 20 delays. We can see a noticeable evolution depending

on SNR level. At SNR = 5dB, the detection probability reaches around 90% for a given 5%

Pfa. The 10dB SNR obviously outperforms previous performance with more than 98% true
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Figure 4.6: ROC curves at fixed SNR = 0dB, 2048 Monte-Carlo run, fixed number of

samples (64 symbols), performance evolution with several delays L

detection at same false alarm probability.
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Fig.4.8 illustrates benefits to measure ĴL,N (α) with a large L versus the SNR level, which

vary in −12 dB to 6 dB. A threshold at 5% Pfa is set for several delays for each curves (20

and 1000). As we can see, the two curves decrease with the SNR level, to finally reach the

Pd = 5%. This is in fact the 5% false alarm rate that we defined as a parameter. If we

consider a Pd = 70% at SNR = 0dB and L = 20 as a reference, this value is obtained at a

SNR around -8dB for L = 1000. We notice a detection rate improvement about 8 dB. We also

see that a 100% detection rate is achieved for SNR = -5dB. For any SNR smaller than -5dB,

when L is large, the Pd decreases also quickly. In fact, as L increases, the Fisher distribution

tends to normality (see [Kay, 2009]). So, ĴL,N (α) distribution could be approximated by a

Normal distribution. This approximation explains why the curve for L = 1000 decreases more

quickly than the other one: the Fisher distribution have a positive skewness when the Normal

distribution is symmetric.
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Figure 4.8: Comparison of true detection rate for several delays L, with threshold Γ defined

set for a SNR = 0dB

Simulations - part 2

Let now relax the assumption of an ideal impulse channel, and consider a static multi-path

channel. As discussed in subsection 3.2.2, the channel impulse response model is different de-

pending on the signal’s propagation path. In fig.4.9, we considered the Porat channel influence

on detection probability under H1. This simulation was realized considering that the behavior

of ĴL,N (α) may be different under a multi-path channel assumption. Several ROC curves were

obtained for different number of symbols from N = 8 to N = 512. We clearly see that all

curves have a similar detection rate. It illustrates that this particular channel has no influence



4.4. NEW DETECTION FEATURE ANALYSIS 57

0 0.2 0.4 0.6 0.8 1

False alarm rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 d

e
te

c
ti

o
n

 r
a
te

N =   8

N =  16

N =  32

N =  64

N = 128

N = 256

N = 512

Figure 4.9: Comparison of true detection rate under the influence of Porat Channel in

function of N , with threshold Γ defined at SNR fixed at 0dB

neither on the overall criterion behavior nor on the detection probability. Moreover, we can

see in fig.4.10 the Porat channel influence, as the probability of detection is similar to the

case when g(t, τ) = δ0. In fig.4.10 other channel models were considered. We clearly see that

all curves are superimposed. It seems that none of considered channels has any influence on

the detection probability. Indeed, as introduced in section 3.5, Sα
ss(f) is a product of shifted

versions of the channel G(f), which is the channel Fourier transform. Starting from eq.(4.30),

let us consider a limit case where L tends to infinity, to make limN→∞ Ĉα
N (L) = Sα

ss(0). That

way, from eq.(3.6) and eq.(3.26) one can write the relation in eq.(4.39) below.

Sα
ss(0) = G(+

α

2
)G∗(−α

2
)Sα

xx(0) + Sα
ww(0) (4.39)

As the channel Fourier transform is not flat, the product G(α
2 )G∗(−α

2 ) becomes a constant

factor, that is simplified by the ratio in eq.(4.29). Hence, the independent character of ĴL,N (α)

for a multi-path channel influence is demonstrated. This result is of a major interest, since it

comforts us in the utility of our method and its usefulness in real use cases in the FITNESS

project context.

However, the channel is not the only assumption we made: we also assume a perfect

synchronization. So, it is also interesting to evaluate our approach robustness to a frequency

shift of the received signal. On carrier signal definition in eq.(3.2) could be adapted to become:

y1(t) = ℜ[z1(t)e2π(fc1+∆f )t]. (4.40)

In a first approach, a BPSK modulation is used to gives an answer when the CAF power

at 2fc1 is different from zero. We have to introduce that y1(t) in eq.(4.23) could be written
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Figure 4.10: Comparison of true detection rate under different channels influence, for N = 8

symbols and threshold Γ defined at SNR fixed at 0dB

as a product of the useful signal and a temporal rectangular window. Such an operation is

commonly considered to take the implicit temporal windowing into account. That way, for a

signal of length T, eq.(4.23) becomes:

sW (t) = s(t)Π[0,T ] (4.41)

In [Gardner, 1994], a temporal multiplication of two time series leads to a resulting CAF

which expression is the discrete circular convolution in the cycle frequency domain of these

signals. Applying a Fourier transform on the corresponding equation leads to the expression

in eq.(4.42), which is more convenient:

SsW sW
(f) =

∫ 1
2

− 1
2

∑

β∈(− 1
2

, 1
2 ]

Sβ
ss(ν)Sα−β

Π[0,T ]
(f − ν)dν (4.42)

for which SΠ[0,T ]
(f) = |F/t

{
Π[0,T ]

}
(f)|2, where F/t {.} (f) stands for the Fourier transform

with respect of time. It means that SΠ[0,T ]
(f) is a squared cardinal sine function.

Sα
Π[0,T ]

(f) =





SΠ[0,T ]
(f) for α = 0,

0 otherwise.
(4.43)

As presented in fig.4.11, around 2fc1 a squared cardinal sine shape indeed appears. When T

increases in the CAF estimate, the energy peak comes sharper. This is the normal effect of

windowing s(t), due to the cardinal sine function, which bandwidth is 2
T . A larger lobe could

be obtained for a shorter observation duration. As we can see, the main lobe bandwidth is
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Figure 4.11: Comparison of CAF power measure at cyclic frequency α = 2fc1, for a BPSK

signal of size N = 32 to N = 256

multiplied by a factor two for a proportional decrease of T . In [Houcke, 2002], this idea was

exploited to coarsely search for the received signal cyclic frequencies. Back to our frequency

shift problem, it means that if the shift is small enough, the CAF detector may still be useful.

More precisely, the detection could be performed with success if ∆f < 1
T . At an existing

cyclic frequency, this topic was analyzed in [Rebeiz et al., 2012], which results confirm our

analysis. A numeric application with FITNESS parameters for a signal length of 32 symbols

(with Fech =18 MHz and a channel of 12.5 kHz bandwidth) would lead to ∆f = 39.06 Hz (or

∆f = 156.24 Hz for a signal length of 8 symbols). These values are small compared to the

RX sampling frequency. Nonetheless, it answers FITNESS project requirements. The worst

Doppler shift is obtained only for the higher PMR communication band (i.e. around 900 MHz).

So, with ∆f = 156.24 Hz the corresponding relative speed limit to make the detection unable

to work is 187.7 km/h, which is a comfortable speed margin.

But, our detector was mainly designed to detect phase modulated signals: no peak can be

used to perform the detection. It was shown in [Gouldieff et al., 2018] that the CAF variance

is different if α ∈
[
− 1

T1
, 1

T1

]
. So, our detector gives a maximized detection at α = 2fc1 ,

and degraded values are obtained if the tested cyclic frequency is in
[
2fc1 − 1

T1
, 2fc1 + 1

T1

]
.

Outside this interval, only false alarms occurs. This is precisely what can be observed in

fig.4.12. The detection probability meet the value obtained in fig.4.4 for α = 2fc1 = 0.2. At

each side of α = 2fc1 , we see a detection rate degradation until bounds 2fc1 ± 1
T1

are reached.

With our detector, the detection could be performed with success if ∆f < 1
T1

, which is even

more interesting than using a classic cyclostationary detector where ∆f < 1
T .
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Figure 4.12: Pd resilience against a carrier frequency shift for a given Pfa = 5%

4.5 Conclusion & Perspectives

In this chapter, we realized a review of cyclostationary methods that allow to detect a

phase modulated signal on carrier. As we saw, low order moments methods are not adapted

because some PMR modulations has no energy at multiple of their cyclic frequency. Hence,

higher order statistics have to be used, or a nonlinear transformation method. But, theses

methods (which have very similar points) require a large amount of samples as main drawback.

That is why, we proposed a novel algorithm to detect phase modulated signals using a low

order moments method.

We showed that it is possible to detect a signal presence at a cyclic frequency where

there is theoretically no energy. Through simulations, we explored different characteristics of

that criterion. A major benefit of this method is that the detector performs well for only 8

symbols, which is particularly few. As a comparison, we realized a detection test with the

nonlinear transformation method. Our detection results are far more interesting when the

input signal size is small, but are clearly overcome when the number of symbols comes high.

Besides, our criterion is also tunable thanks to the parameter L. The number of delays taken

into account influences the detection probability, and allows a detection rate improvement.

A better detection rate is nevertheless obtained at the cost of a computational time increase.

Often, detection state of the art methods are performed in ideal conditions (i.e no channel).

In the last part of this chapter, we tried to answer issues of multi-path channel and bad

synchronization. We showed that with our method, the channel influence is negligible. A

short analysis on this topic showed that the method is also robust to Doppler shift. Hence,

our detector turns out to have several advantages that may justify an integration in the
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FITNESS receiver prototype. Moreover, results obtained with the QPSK modulation are

easily extended to phase modulated MPSK or MQAM (with M > 2) signals.

Besides no study of the emission filter excess band was done in this document, the influence

of such a parameter is known: an excess bandwidth the closer to 1 produces the better

detection. As an example, the work in [Houcke, 2002] is complete on this topic and the

adaptation to our context doesn’t have a great interest. Furthermore, we only analyzed our

criterion detection rates in the case of phase modulated signal. But, there is no reasons for

our method to perform in a different way when there is a non zero energy at the monitored

cyclic frequency. In such a case, state of the art methods could be used and might be more

efficient than our method. But, using our algorithm allows to perform a detection without

the noise power knowledge.

This work raises several perspectives:

1. In the present work, we only defined our criterion theoretical expression in the absence

of useful signal. However, the same work have to be done considering its presence. If

the theoretical probability distribution knowing H1 could be obtained, one could link it

with the signal power (or the SNR at least). An estimation of the signal power might be

useful, as we develop in following chapters.

2. As a prospective work to improve our criterion, we propose to modify its definition in

eq.(4.29). The denominator would become a mean of k values for a set of {ε1, · · · , εM−1}
such as in eq.(4.44).

K̂L,N (2fc1) = M

∑L
l=0 |R̂2fc1

ss,N (l)|2
∑M−1

m=0

∑L
l=0 |R̂εm

ss,N (l)|2
(4.44)

Here, εm are not in the set of s(t) cyclic frequencies. That way, the CAF power due to

noise variance would be averaged, which could improve the detection rate.

3. Another idea, similar to eq.(4.44) concerns the resilience against frequency shift. A test

on several values close to the cyclic frequency could be realized as developed in eq.(4.45),

K̃L,N (2fc1) =
M

J

∑J−1
j=0

∑L
l=0 |R̂βj

ss,N (l)|2
∑M−1

m=0

∑L
l=0 |R̂εm

ss,N (l)|2
, (4.45)

where βm ∈ [2fc1 ± m/Ts]. Thanks to this process, a detection could be maximized to

limit the issues due to Doppler shift.
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5 Enhanced Spectrally

Aware RF front end

Receiver under

Non-linearity

5.1 Introduction

The chapter 2 was devoted to the new PMR receiver and its constraints description. As

we saw, the convergence of several norms into one device makes ADC’s specifications difficult

to achieve. This is due to unwanted signals presence at ADC input, which limits its dynamic

range. Hence, a method to detect such signals has to be identified, which justifies this study.

Signal model and basic detection methods were developed in chapter 3. With considered

assumptions, the most appropriated detection method is the cyclostationary approach. How-

ever, as we saw in chapter 4, some PMR modulations can’t be detected in a simple manner.

So, in order to address the on carrier phase modulated signals detection problematic, we

developed a new method.

In this chapter, we propose to use this new tool to detect unwanted signals in the FITNESS

context. As seen in chapter 2, due its internal analog components, the receiver is not perfectly

linear and is modeled as a polynomial. In presence of at least two signals (i.e. the useful signal

and an interferer) additional harmonics appear due to saturation. Hence, to answer FITNESS

requirements, we have to determine when ADCs come to saturate according to the mechanism

described in fig.2.7. Two scenarios are considered:

a) useful signal only (sensitivity scenario);

b) useful signal plus an interferer signal (linearity scenario).

In case a), if SOI’s power is high enough, it may introduce a saturation and creation of

harmonics at frequencies that are multiple of SOI’s carrier. In case b), two situations are

possible:

b.i) interferer’s power is small enough. It implies that unwanted harmonics power are also

63
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small, which left the SOI unharmed;

b.ii) interferer’s power is high enough to create powerful unwanted harmonics.

In this chapter, we propose a method to distinguish these three cases. Our goal is to realize

several successive detections thanks to our cyclostationary sensing method. The first step is

to decide if an interferer is present or not, monitoring our new criterion at 2fc2 (where fc2

is the interferer’s carrier frequency). The second step, consists in identifying if the nonlinear

behavior is due to a powerful interferer’s presence, or to a powerful SOI. Monitoring specific

harmonics created by the nonlinear function at 4fc1 and 4fc2 allows the scenario identification.

Our founding assumptions are tackled in section 5.2. We realize a theoretical analysis to

show mechanisms that damage the SOI in linearity or sensitivity scenarios. Method principles

are developed there, as well as the detection theoretical analysis in the nonlinear distortion

context. The section 5.3 is devoted to present our results and to show the compliance to

FITNESS requirements. Thanks to simulations, we then show that this method is reliable

and allows a nonlinearity detection 16dB below the compression point.

5.2 Nonlinear Sensing Mechanism

5.2.1 Nonlinear Model

fNL(x(t)) +
x(t)

w(t)

p(t)

Figure 5.1: nonlinear received signal model

According to fig.5.1, the nonlinear RX which input is x(t) defined in eq.(3.5), is expressed

as a polynomial of order three:

p(t) = α1x(t) + α2x(t)2 + α3x(t)3 + w(t) (5.1)

Where αk, k ∈ {1, 2, 3} are characteristics of the RX front-end, x(t) =
∑2

i=1 yi(t) with yi(t)

on-carrier signals defined in eq.(3.1), eq.(3.3) and w(t) is AWGN. Let us recall from eq.(3.2)

that yi(t) = ℜ
[
zi(t)e

2πfci

]
, with fci signals carrier frequencies and zi(t) from eq.(3.1) signals

baseband representations. Let also define by β1 (respectively β2) the squared-root power of

signal z1(t) (respectively z2(t)). There is a significant difference between eq.(5.1) and the

model defined in eq.(3.6) and represented in fig.3.1. Here, the noise is added after that x(t)

goes through the nonlinear function. This assumptions is commonly admitted as in [Valkama

et al., 2006, Zou et al., 2009, Keehr and Hajimiri, 2008], and simplifies the following study.

However, it does not represent the real receiver behavior with confidence.
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Figure 5.2: Vin/Vout representation of a PMR receiver nonlinear model

We consider here that the α2 coefficient equals 0, since harmonics created by even coef-

ficients are located at twice the input signal carrier frequency. Such contributions are sup-

pressed by a low-pass filter and a differential architecture before digitization. Thus, there is

no harmonic leaks in SOI bandwidth due to IMD2, or in other words no harmful effects for

the useful signal. As in [Rebeiz et al., 2015], α3 is obtained thanks to the relation eq.(5.2):

α3 = −4

3

α1

V 2
IIP 3

(5.2)

where VIIP 3 is the RX Input Interception Point of third order (IIP3). Here, p(t) coefficients

are extracted from practical measurements on the PMR receiver demonstrator developed

in CEA lab. The input-output representation of p(t) with those parameters is displayed in

fig.5.2. Let us define V in
sat as the minimum input that makes the nonlinear RX saturate. In

this example, V in
sat is about 25 mV, for a saturated output V out

sat about 550 mV.

In this part, the whole RX is modeled as a nonlinear system to address the combination

of several nonlinear stages. This assumption holds, thanks to the nonlinear Friis formula

counterpart(see [Razavi, 2011]). For now on, as a simplification αk coefficients are assumed

constant. Indeed, in a classic receiver the systems analog parameters are fixed by design.

The substitution of eq.(3.5) into eq.(5.1) leads to the complete formula of harmonic cre-

ation for the nonlinear model. All terms are listed in [Zou et al., 2009], but α2 is not considered

here. We focus on the received signal baseband representation in a given sub-band of interest.
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The SOI in this sub-band is given by:

p(t) = ℜ
{(

α1z1(t) +
3α3

2
z1(t)|z1(t)2|

+ 3α3z1(t)|z2(t)|2)
ej2πfc1t

}
+ w(t) (5.3)

In the linearity scenario context (fig.2.7), we consider that the SOI is much smaller than

the blocker, so the term in z1(t)|z1(t)2| can be neglected. The term proportional to |z2(t)2|
becomes dominating as blocker’s power comes high, and may affect the SOI. In the other

hand, in the sensitivity scenario (in absence of interferer), the term in z1(t)|z1(t)2| becomes

harmful if SOI’s power is high enough.

5.2.2 Nonlinear Harmonics Cyclostationary Detection

Let now develop the cyclostationary analysis of p(t) after digitization. Considering the

linearity scenario, we assume that a powerful interferer y2(t) is present. Using the criterion

eq.(4.29), allows us to track the interferer presence at 2fc2. To determine if the RX works in

a nonlinear mode, we propose to realize a short cyclostationary analysis. Hence, we need to

understand how nonlinear harmonics impact received signal’s cyclostationarity properties.

Due to the (.)3 operation, eq.(5.1) is in fact a sum of 9 harmonics, that are detailed in [Zou

et al., 2009]. So, a theoretical search of cyclic frequencies (using eq.(3.29) and eq.(5.1)) leads

to a 81 terms expression, which are useless to detail. We focus only on nonlinear terms that are
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Figure 5.3: CAF energy in the cyclic frequency domain averaged over 100 realizations, in

SOI (fc1 = 0.05) and interferer (fc2 = 0.12) presence for a SIR = −30 dB, SNR = 0 dB, in

a weakly nonlinear circuit.
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the most powerful, as it seems reasonable that their detection is easier. Developing eq.(5.1),

we have eq.(5.4):

p(t) = α1

(
y1(t) + y2(t)

)
+ α3

(
y3

1(t) + y3
2(t) + 3y2

1(t)y2(t) + 3y2
2(t)y1(t)

)
(5.4)

An analysis of a single BPSK signal, developed in Annexe B, shows the presence of powerful

CAFs at cyclic frequencies 4fc1 and 4fc2. One can notice that, CAF expressions are homoge-

neous to high order moments due to the nonlinear transformation, which produce peaks of

significant power, as illustrated in fig.5.3. The most important peak is located at α = 2fc2,

which corresponds to the interferer’s presence. Peaks located at α = 2fc2 ± 1
T2

corresponds to

it’s symbol period. We also see additional peaks located at 4fc2, as discussed earlier. In this

example, the SOI contribution is completely overpowered by the interferer’s cyclic harmonics.

Hence, we focus on cyclic harmonics that are created by the nonlinear process: we propose

to monitor the criterion set M =
{
ĴL,N (2fc2), ĴL,N (4fc1), ĴL,N (4fc2)

}
(with ĴL,N (α) defined

in eq.(4.29)). That information is enough to select the corresponding linearity or sensitivity

scenario described in fig.2.7. We choose to use our criterion to monitor the cyclic frequencies

4fc1 and 4fc2, in spite of the fact these cyclic harmonics are created by the (.)3 operation.

Indeed, evident peaks are created at cyclic frequencies 4fc1 and 4fc2, which indicates that a

classic second order method could be used. Nonetheless, using our criterion allows to perform

a detection without neither the noise power knowledge nor a covariance matrix estimation.

5.2.3 Binary Hypothesis Testing

Each element Mk of M is tested accordingly to a Neyman-Pearson approach [Kay, 2009].

A constant false alarm threshold Γ, is set to satisfy Pfa = P [Mk ≥ Γ|H0], where H0 represents

the absence of harmonic corresponding to Mk, the k-th element of M (with k ∈ {1, 2, 3}).

But, as M is a set of three criterion, three tests have to be defined. Whatever the scenario,

and for any input signal, p(t) is a nonlinear function with fixed parameters. So, reasons for

the system to work in a nonlinear regime are the signals power β1 and β2.

For the test formulation, we defined intervals Ilin =
[
0, γ

]
where no detectable saturation

occurs, and Inl =
]
γ, Csat

]
its counterpart. Let γ > 0 be a power, such as replacing βi = γ

in eq.(3.1) (respectively eq.(3.3)) leads to p(t) in eq.(5.1) at the limit of saturation such as

P [M2 ≤ Γ|H1] (respectively P [M3 ≤ Γ|H1]). In other words, γ is the limit power for which

an existing nonlinear cyclic harmonic is not detected. At this state, we have no idea of the γ

real value with our method. So, let us define γ = C−1dB, where C−1dB is the input level for

which the nonlinear output is decreased by 1 dB in comparison with a linear output. C−1dB

is usually called the compression point: it allows to compare analog circuits linearity. The γ

value is adjusted in the end of this chapter, in the light of our method detection results in a

nonlinear environment.

The first test to be conducted is the interferer’s test presence with:

H1 :





H0 → p(t) = α1y1(t) + α3y1(t)3 + w(t) with β1 ∈ Ilin ∪ Inl and β2 = 0

H1 → p(t) = α1x(t) + α3x(t)3 + w(t) with βi ∈ Ilin ∪ Inl, i ∈ {1, 2}
(5.5)
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Figure 5.4: Cumulative distribution functions of P
[
ĴL,N (α) ≥ Γ|H0, {α /∈ Ip, β1 =

0, β2 = 0}
]

and P
[
H1|H0

]
with their corresponding theoretical Fisher cumulative distribu-

tion, where L = 20, SNR = 0 dB and averaged over 2048 realizations.

If no interferer is detected (i.e. H1|H0), a sub-test to determine if the SOI power causes a

saturation is done thanks to the test H2 in eq.(5.6):

H2 :





H0 → p(t) = α1y1(t) + α3y1(t)3 + w(t) with β1 ∈ Ilin and β2 = 0

H1 → p(t) = α1y1(t) + α3y1(t)3 + w(t) with β1 ∈ Inl and β2 = 0
(5.6)

Nonetheless, if an interferer is detected (i.e. H1|H1), we have to test if it degrades the SOI

thanks to test H3 in eq.(5.7):

H3 :





H0 → p(t) = α1x(t) + α3x(t)3 + w(t) with β1 ∈ Ilin ∪ Inl and β2 ∈ Ilin

H1 → p(t) = α1x(t) + α3x(t)3 + w(t) with β1 ∈ Ilin ∪ Inl and β2 ∈ Inl

(5.7)

We underline that for each test, the H0 hypothesis corresponds at least to the SOI presence

through the RX plus noise, instead of noise only as assumed in the previous chapter.

Such a difference causes a significant change in our method, as underlined in fig.5.4.

We clearly see a loss of freedom degrees of P
[H1 ≥ Γ|H0

]
in the nonlinear case. It leads

to a higher positive skewness of the false alarm probability. Indeed, the experimental cu-

mulative distribution function is closer to a F⌊L/2⌋+1,⌊L/2⌋+1 distribution, which neverthe-

less does not fit perfectly to experimental data. We showed analytically in chapter 4, that

P
[
ĴL,N (2fci),

{
βi = 0, i ∈ {1, 2}}]

follows a doubly non central Fisher law of 2(L + 1) free-

dom degrees. However, these results are different from the detection probability obtained

in chapter 5 (linear signal presence plus noise). In other words : P
[Hj |H0, j ∈ {1, 2, 3}] 6=
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ĴL,N(ε)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

v
e
 d

is
tr

ib
u

ti
o

n
 f

u
n

c
ti

o
n

 [
%

]

non normalized J

normalized J

F⌊L/2⌋+1,⌊L/2⌋+1

Figure 5.5: Cumulative distribution functions of P
[
H1 ≥ Γ|H0

]
with and without normal-

ized coefficients, where L = 25, SNR = 0 dB and averaged over 2048 realizations.

P
[
ĴL,N (2fci)|H1

{
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}]
. Let us develop further this analysis, in order to explain

this behavior difference. We investigated two possibilities that could explain this difference:
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Figure 5.6: Normalized Autocorrelation of CAF delays for noise only, undistorted signal

only and nonlinear signal, where L = 25, and averaged over 1000 Monte-Carlo realizations.
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1. ĴL,N (α) is the ratio of the CAF energy at α over the CAF energy at ε. Denominator and

numerator are not normalized. It means the scaling factor absence changes the distribu-

tion variance, as discussed for criterion analysis under H1 hypothesis in section 4.4. We

said that the CAF distributions for each delay are Normal due to central limit theorem.

So, the CAF energy mandatory follows a chi-square distribution if each component is

scaled by its standard deviation. Nevertheless, none of our criterion values (defined in

eq.(4.29)) R̂α
pp,N (l), ∀l ∈ {0, . . . , L} are normalized. Hence, if each element R̂α

pp,N (l) has

a different variance, then the CAF energy doesn’t follow a chi-square distribution. To

check this assumption, a simulation was conducted where each Ĉα
N (L) coefficient was

normalized. As shown in fig.5.5, there is no obvious difference due to normalization. It

means that the drop of freedom degrees is not a consequence of to a bad scaling.

2. The second possibility concerns the independence between each variables. The most

likely explanation would be that real and complex parts of the CAFs R̂ε
pp,N (l) are not

independent. It is also plausible that a correlation between samples exists when the over-

sampling factor is important. So, the search for a particular periodic pattern between

the different delays in CAF was considered. Fig.5.6 highlights this work. Considering the

noise only, the CAF autocorrelation tends to be a dirac, which is coherent due to samples

perfect independence. For the two remaining curves, a similar pattern appears, which

suggest a correlation between some R̂ε
pp,N (l). However, for y1(t) only (linear model) we

obtained the same kind of CAF correlation than when p(t) is the input signal (nonlinear

signals model).

The only explanation is that the loss of freedom degrees is due to the nonlinear model. For

now, this problem is still open: a link has to be found between the nonlinear model and the

loss of degrees of freedom. So in the following study, we assume that for Hj |H0, j ∈ {1, 2, 3}
the criterion distribution could be approximated by a F⌊L/2⌋+1,⌊L/2⌋+1 law. But, with correct

parameters the detection rate may probably be improved in a certain extent.

5.3 Main Results

In this section, we develop our simulation results, and we show that we are able to identify

precisely in which scenario the RX is. We also show thanks to simulations, that the proposed

detection method answers the problematics of rapidity, sensibility and reliability defined in

chapter 2.

5.3.1 Experimental Conditions

To make sure that there is no cyclic frequency overlap, we set a sampling rate fs = 10fc1.

The shaping filter h(t) is defined as a square-root raised cosine of period T = 2.5T1, a roll-off

at 0.8 and span at 6 symbols. As detailed in section 5.2, nonlinear model coefficients are

set thanks to measurements on an experimental RX. The RX gain is fixed at 32dB, when

the input interception point of order 3 VIIP 3 is set to 3.6 dBm. Blocker and useful signals
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Figure 5.7: ROC curves at fixed SNR = 2 dB, SIR = −30 dB, power of test for monitored

CAFs of set M

are in adjacent channels, and the blocker carrier frequency is defined as T2 = T1/2.4. Both

SOI and blocker are 4QAM symbols, independent and identically distributed. N the number

of symbols is set to 32, which is small, as discussed in the previous chapter. We set L, the

number of delays used in the ĴL,N (α) estimation at 25, in order to limit the calculation cost.

We defined the SOI power β1 to −106.0 dBm, and the Signal-to-Interference-Ratio (SIR) is

defined as β1/β2. 2048 Monte Carlo runs are performed to estimate our method’s performance.

5.3.2 Simulations

We begin this section with the power of the test analysis, for each element Mk of M, with

consideration of the corresponding test Hk, k ∈ {1, 2, 3}. We provide results only for tests H1

and H3, since the P [M2 ≥ Γ|H2] and P [M3 ≥ Γ|H3] have same distributions. To answer

the nonlinear sensibility issue, we designed a simulation that corresponds to the linearity

scenario (i.e. fig.2.7c) to analyze the impact of nonlinear cyclic harmonics of different power.

The Signal to Noise Ratio (SNR) is set to 2 dB and the SIR is defined as summed up in

tab.5.1.

In fig.5.7, we draw the power of the test using criteria M1 and M3 (i.e. ĴL,N (2fc2) and

ĴL,N (4fc2)) for tests H1 and H3 respectively. These curves represent the receiver operating

characteristic (ROC) for the two criteria. For each SIR, the criterion M1 allows us to reach

100% of good detection. Hence, the P [M1 ≥ Γ|H1, H1] ROC for a SIR set to −28 dB, is the

only one represented for convenience. With those simulation parameters the blocker presence

could be determined with high confidence. As the RX is weakly nonlinear, the 4fc2 cyclic
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SIR [dB] Blocker Range [mVpp] PD(4fc2) [%]

-28 4.0 23

-30 4.5 65

-32 5.0 95

Table 5.1: SIR values and corresponding detection probability, for a Pfa = 5%
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Figure 5.8: criterion probability of true detection in function of SNR level, with a fixed

threshold Pfa = 5% and SIR = −30 dB

harmonic is too small to be detected. But, we can see in fig.5.7 and in table 5.1, that a higher

SIR (in absolute value) allows a better nonlinear cyclic harmonic detection.

To answer to the nonlinear cyclic harmonic detection reliability against noise, we defined

the Pfa to 5%. The SIR is defined to −30 dB, to remain slightly nonlinear. We measure the

detection probability for several values of SNR, which is illustrated through fig.5.8. As we can

see, the blocker detection is perfect if the SNR is greater than −15 dB. Indeed, the blocker is

much more powerful than the nonlinear cyclic harmonics, and so, could be detected with a

higher confidence. As the RX works in a weakly nonlinear mode, the 4fc2 harmonic is small in

comparison to the noise floor. Hence, if the SNR increases, the detection probability increases

to reach 95% of good detection for a SNR of 10 dB.

Fig.5.9 is dedicated to illustrates the sensibility of our detector. This detection curve was

obtained for a SNR of 2 dB and the Pfa = 5%. The true detection rate grows quickly when the

SIR comes lower than −27 dB, which is consistent with remarks on fig.5.8. As VIIP 3 =3.6 dBm,

the corresponding compression point is VC1dB =−6 dBm. A perfect detection is obtained for

a SIR set at −32 dB, which corresponds to an input power of −22 dBm. Hence, the detection
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Figure 5.9: Criterion probability of true detection in function of SIR level, with a fixed

threshold Pfa = 5% and SNR = 2 dB

is performed 16 dB before the VC1dB. Our detector allows a detection before the system

comes in a strong nonlinear region. So, our method could be used to adjust accordingly the

RX dynamic range, before the degradation of its performance. Also, we can now redefine

precisely γ of eq.(5.5), with its current value of −22 dBm instead of the compression point

(which value is −6 dBm) as we first set it.

5.4 Conclusion & Perspectives

In this chapter, we applied our new detector defined in chapter 4, in the FITNESS context.

We first recall the two scenarios (presence/absence) of interference and conditions that makes

the RX works in a nonlinear regime. We go on with the nonlinear system model and the

adaptation of our detection algorithm. To determine if an interferer is present and if the

receiver works in a nonlinear regime we proposed three statistical tests. But, we only defined

their probability density functions in the absence of signal to detect, in the nonlinear context.

We point out differences between a single signal detection and a signal detection in a mixture

of several signals. Finally, we showed through simulations that using our criterion, we are

able to choose between the linearity or sensibility scenarios. As an additional benefit, this

method is also able to determine the reason for the system to work in a harmful nonlinear

regime. These two information fulfill the section 2.4 FITNESS requirements.

As main benefits, our method bypasses the nonlinear model identification. Indeed, the

proposed scheme in section 5.2 is only necessary to run simulations. In practice, no prior
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knowledge on model parameters is required (i.e. polynomial order, αk coefficients). A de-

tection could be performed without any knowledge and gives a reliable result. Also, the

detection performance metrics proves the sensibility and reliability of the chosen approach.

As the detection method is fast and sensitive, we consider that it could be used to implement

a feedback loop. In such a scheme, the gain is the parameter to modify, with consideration of

the receiver working scenario. The design and analysis of a feedback loop has to be carried

out according to fig.2.8. With the scenario knowledge, the RX parameters could be adjusted,

which is considered in chapter 6.

Nonetheless, the method also suffers from significant limitations. This work raised several

perspectives that are developed below.

1. Our detector implementation improvement points:

(a) To be detected blockers have to be digitized with respect of Shannon’s condition.

Hence, to monitor the interferer cyclic harmonics, the system sampling frequency

has to be at least four times higher than interferer’s carrier. Each higher cyclic

harmonic will alias in the cyclic domain. It is likely that our method allows to

monitor such cyclic harmonics. But, additional tests have to be conducted to confirm

this assumption.

(b) Another point that is still unclear is the probability distribution parameters if a

nonlinear signal is considered. As we saw, the chosen approximate distribution does

not fit perfectly the experimental probability density function. So, a significant

improvement could be obtained deriving its theoretical expression.

(c) We only considered a memoryless nonlinear model, which could be a restrictive

assumption in some application (such as satellite communication). Some time could

be allocated to develop the same analysis using another nonlinear model such as

Saleh’s model or Volterra series.

2. A global questionable point concerns the signal’s model composed of a signal through

a nonlinear function plus a white Gaussian noise. This is a widely accepted assumption

and used amongst other in [Valkama et al., 2006, Keehr and Hajimiri, 2008, Zou et al.,

2009,Rebeiz et al., 2015]. Nevertheless, in a real use case the noise may not be white, due

to its transition into the nonlinear receiver. In that case, it questions all these studies

and our method. Moreover, for those ones that use one or several LMS algorithms, it

also implies to take the slower convergence speed into account. The speed decrease is

unavoidable and is due to impulse noise and correlated samples. So, an analysis to take

the correlated noise effect into account may be appropriate and valuable.
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6 Variable Gain

Enhancement of a

Nonlinear PMR Receiver

6.1 Introduction

Our main goal in this chapter is to propose a method to relax constrains that lay at ADC

level. In chapter 5, we showed that we are able to detect if the receiver is working in its

nonlinear region. However, we only evaluated the interference detection mechanism. It means

that no feedback of this information was realized. So, we continue in this way to make our

RX aware of its spectral environment (chapter 5), and able to adapt its parameters to it

(chapter 6).

We recall that in the new FITNESS receiver many constraints lay at ADC level, due to

the backward compliance of several PMR norms. The digital sensing mechanism is meant to

decrease these constraints, while keeping constant the energy consumption. Furthermore, the

additional requirement for a small size terminal implies an analog front-end size as small as

possible, which limits analog options. Amongst other reasons, as our receiver is all-integrated

and reconfigurable, the use of SAW filters (i.e. external devices) is not possible. Most advanced

nonlinearities equalization methods rely on modeled intermodulation terms and subtraction

mechanisms to overcome the issue. Besides such techniques seem powerful, as detailed in

this chapter, their characteristics doesn’t meet FITNESS specifications. So, we propose a

proof of concept for a novel technique to limit nonlinearities harmful effects. According to

the spectral enhancement method that was proposed in chapter 5, the circuit gain could be

decreased if the receiver works in a nonlinear regime. In the other hand, the gain could be

increased if no interferer and no saturation are detected. We propose to use a feedback loop

as a gain adaptation mechanism that has to work as quick as possible. Modifying the gain

also changes the circuit Input Interception Point of order 3 (IIP3) value, as described by the

Friis formula nonlinear counterpart [Razavi, 2011]. The proposed mechanism was coarsely

defined in chapter 2.

In section 6.2 we present several state of the art solutions, which main topics are non-

linearities cancellation. Without to much details, this part shows differences between our

75
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concept and such methods. Besides, their cancellation results are very interesting, a fair com-

parison between them is difficult since each one has its own performance metric. Then, the

section 6.3 is devoted to the adaptive mechanism description. Principles of the gain adapta-

tion are described, and a formulation of an adaptive gain based on a proportional relation is

proposed. We begin a discussion on this method. Finally, the method results are presented

in section 6.4. Benefits in term of bit error rate are studied and we show that our method

allows a significant improvement.

6.2 Nonlinearity Cancellation - State of the Art

The nonlinearity cancellation is a vast topic that is generally addressed in an analog way.

This is usually a well-known designer problem. Indeed, devices such as Power Amplifier (PA)

or mixers are meant to realize an analog operation (e.g. amplification or multiplication),

without input signal alteration. But, due to their basics components imperfect nature, input

signal gain and phase may be affected. A clever design [Cripps, 2006,Razavi, 2011,Kenington,

2000] limits such effects under specific bounds. Devices specifications could be adjusted by

proper analog design to maximize one or several criteria amongst power efficiency, linearity,

PAPR or adjacent channel power ratio. We propose the analysis in [Brandon et al., 2014] as

an example of such techniques.

6.2.1 Analog Canceler

An extensive literature is available on the "PA linearization" topic, for which [Raab et al.,

2002] is a good introduction. The linearization consists in improving the device linearity

to allow more efficiency at the cost of less linear operations. Main methods are: feedback,

feedforward and predistortion. The feedback method consists in forcing the output to fol-

low the input, thanks to a fed back and subtraction of output signal, without detection

or down-conversion. It can be applied directly on the RF PA output or indirectly on sig-

nal’s modulation (envelope, phase, I or Q components) thanks to envelop, polar or Cartesian

method. But, such techniques could be applied only with a known input to correct the PA

Presistorter System Linearized System

Figure 6.1: Predistortion Principles.
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output. Another popular technique is the predistortion (see [Kenington, 2000]), which main

idea is to compensate for nonlinearities before their occurrence so that the system becomes

linear. The device is then assimilated to a mathematical model with more or less fine-tuning

(phase effects, memory, etc. consideration). A nonlinear model synthesis was done in [Jung,

2013] and benefits/drawbacks for polynomial, Saleh and Volterra series are also discussed in

chapter 3. The model can be realized with analog circuits or look-up tables and a DSP. A

look-up table implementation requires a large chip area (DSP and memory). But, it avoids

calculations needs, which leads to a larger power consumption.

The feedforward method is more interesting and may be applied at RX level. As shown

in fig.6.2, its principle is to split the input signal in two different paths. A main path is sent

through the nonlinear device, and the second one is left distortion free. Then, with a gain,

phase and delay adjustment mechanism the secondary path is subtracted from main path to

only obtain nonlinear components. With a final scaling, nonlinear harmonics are subtracted

from the PA output, to obtain a linear PA output. The overall effectiveness depends on gain

and phase adjustments precision.

G Z−1

+

Z−1

G−1

Ĝ

+
x(t)

main Path

alternate Path

y(t)

+
−

+

−

Figure 6.2: Feedforward Principles

In spite of their obvious benefits (e.g. linearity improvement, spurious suppression, etc.),

these approaches are more adapted to transceivers, which input signal characteristics can be

controlled. In the other hand, they are meant to be used on a single analog component, and

could hardly be adapted to a complete RX front-end for energy and size consumption. So, in

the following section, we develop several state of the art methods that are inspired by analog

cancellation techniques. The former are applied to the whole receiver, when the latter are

applied to a single analog component.

6.2.2 Digital Methods

In this section, three methods based on the feedforward approach are briefly developed. As

we will see, each one has its own strategy and deserves a particular interest. Such a summary



78 CHAPTER 6. VARIABLE GAIN ENHANCEMENT OF A NONLINEAR PMR RECEIVER

Figure 6.3: [Valkama et al., 2006] ©2006 IEEE - Post Distortion Compensation Concept

allows to check their compliance with FITNESS requirements, and to compare our method

to existing ones. To our best knowledge the digital IMD3 compensation was first addressed

by [Valkama et al., 2006] in the broadband signals context. In previous works [Faulkner, 2002]

the compensation was limited to IMD2, but with a similar technique. As shown in fig.6.3,

it consists in a post distortion compensation thanks to an advanced digital processing. This

approach is applied directly after digitization, at intermediate frequency level. Thanks to

a very selective band-split filtering, the whole SOI bandwidth (HD path) is split from the

remaining bandwidth (HR path), which may contain several unwanted signals. The HR path

is fed to a nonlinear model to reproduce the component behavior and harmonics that lay into

SOI bandwidth. Then, an adaptive scaling mechanism, such as a least mean square (LMS)

algorithm, scales their amplitude and phase to subtract it from the main desired path (HD).

This correction leads to a 25 dB carrier to interference ratio improvement. It also allows in-

band nonlinearities compensation, that could be performed in blind mode. A HR path power

measure could be considered in our context, but does not perfectly fit our needs. Indeed, it

does not allow to choose the correct scenario for the circuit to work in its nonlinear region.

Nonetheless, this method also suffers from several drawbacks that must be considered. A

better speed convergence could be achieved modifying the algorithm step-size, but at degraded

effectiveness cost. This drawback is balanced observing that circuits nonlinear characteristic

can be considered constant, which is a restrictive assumption. However, the method major

drawback is the following one: ADCs sampling rate has to be high enough to respect Shannon’s

condition for all interfering signals. This last requirement is very stringent if we consider a

large bandwidth, and also puts additional requirements on ADCs. For these reasons such a

method is not adapted to FITNESS needs.

Another strategy was chosen by [Zou et al., 2009], which relaxes the [Valkama et al.,

2006] constant nonlinear characteristic assumption. Moreover, another strong aspect is a

SAW filter absence, which makes the whole system on-chip integrable and reconfigurable.

Hence, that makes it close to FITNESS requirements. The concept is shown in fig.6.4. One

path is used to acquire the signal in the desired band and a second one to acquire a blocker

signal. A noticeable difference with the previous method is that both SOI and blocker are

down-converted to baseband before processing. These two signals are then fed to the baseband

post-processing block, which works in two steps. The first step is very innovative: it exploits

the pilot sequence in the desired signal, which is present at the beginning of each packet,
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Figure 6.4: [Zou et al., 2009] ©2009 IEEE - Software Define Radio Processing Block

Diagram

to jointly estimates the channel response and nonlinear model parameters. With this known

sequence, channel and nonlinear parameters estimation are reduced to a least-square problem

formulated in eq.(6.1).

min
h

||y − AXh||2 (6.1)

Here, y is the discrete-time baseband SOI column vector, h is the discrete-time channel

impulse response column vector, X is the nonlinear parameters diagonal matrix and A is

the pilots observation matrix. Starting from eq.(6.1), a one dimensional search has to be

conducted to find the optimal nonlinear parameter matrix, which is then used to determine the

optimal h. This is all the more interesting after few iterations, when the RX has information

on channel response statistics. In that case, [Zou et al., 2009] shows that eq.(6.1) could be

solved using in a Minimum-Mean-Square-Error (MMSE) approach. A comparison with the

theoretical Cramer-Rao bound shows that even with powerful blockers, the compensation

works well for high SNR. However, the method is less interesting for low SNR (i.e. smaller than

5 dB in this application), since simulations show very few differences between the corrected

and uncorrected signals. Furthermore, the method is based on a baseband processing that

we try to avoid in FITNESS. The data flow interpretation to use this training approach may

also be not affordable in a real-time application.

As a final digital method, the recent work of [Rebeiz et al., 2015] is quite different and

opens new possibilities from the two previous methods. The principle is to estimate the

IMD3 terms that lay into the SOI bandwidth thanks to a cyclostationary sensing mechanism.

Blocker’s power is then estimated and fed to the model, which allows the detection. As in

previous methods, the next step is to split the received signal in several parts to obtain

blockers complex baseband and then subtracts it from SOI samples thanks to an adaptive

algorithm. But, here IMD3 terms are obtained from a measure and no longer thanks to a

model as in other approaches. Theoretical IMD probability distributions are also developed,

which is another strong aspect of this work. Nevertheless, the method requires two successive

adaptive minimization to obtain: 1) blockers power; 2) a nonlinearities compensation. Another

assumption limits greatly the method’s impact: the order three nonlinear parameter (α3 in
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eq.(2.1)) is assumed to be known. It’s hard to believe that in a industrial context, every single

device could be subjected to a two-tone test to determine its nonlinear parameters. This issue

could be solved thanks to an alternative approach using SOI training sequences to estimate

it. But, it requires an access to network level, which is time consuming. The proposed analysis

on this topic is not enough to allow a use of such a method in the FITNESS context.

As a brief sum-up, these methods allow to deal with reconfigurable circuits while almost

suppressing unwanted harmonics in the SOI band. On the other hand, each one require a

complex digital processing and often an access to particular data that are unknown in our

application.

6.2.3 Mixed Analog & Digital Solution

In [Keehr and Hajimiri, 2008], the chosen strategy uses a joint analog and digital lin-

earization method. The main principle is close to the feedforward mechanism presented in

subsection 6.2.1. Its graphical description is provided in fig.6.5. Every operation before low-

pass filter blocs (included) are realized in the analog domain. A down conversion to a low

frequency is done before the digitization. In the parallel alternate path, after a SOI heavy

attenuation, unwanted signals are fed to an analog cubic generator to create same IMD3

harmonics that occur in the main path. The digital equalization is then realized thanks to an

adaptive filter, which minimizes the subtraction of main and alternate paths. This method

achieves a sensitivity increase around 25 dB, compared with the blocking situation.

Figure 6.5: [Keehr and Hajimiri, 2008] ©2008 IEEE - Adaptive Feedforward error cancel-

lation concept applied to RF receiver IMD3

This clever electronic circuit solves the problem of high ADCs sampling rate to respect

Nyquist condition for blocking signals, which is a major issue in [Valkama et al., 2006]. Indeed,

there is no more need to digitize the full bandwidth to have access to original jammers. As

this technique is realized for an integrated receiver, there is no external SAW filters, which is

very interesting in our context. One could say that such a method is more power expensive
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due to additional circuitry. But, a total IMD3 power measure on the alternate path allows

to turn it off when the energy comes under a threshold, to decrease the power consumption.

However, as the RX was frozen by FITNESS preliminary work, our analog RX architecture

can’t be modified in proportions required in [Keehr and Hajimiri, 2008]. This solution also

requires additional analog components and thus probably consumes more size and power than

a simpler architecture, even when the alternate path is turned off. Furthermore, the main

path processing is similar to a classic receiver, so ADCs constraints are unchanged.

So, this architecture is not able to tackle the problem of circuit saturation due to a

powerful SOI. Finally, on the contrary to our detection method, this mixed analog/digital

strategy gives no knowledge for the reasons why the RX works in its nonlinear region.

6.2.4 Discussion on Prior Art Limits

All papers summarized in section 6.2 show that it is possible to almost completely remove

IMD3 terms at the cost of complex operations in analog and/or digital domain. But, none of

them allow to relax significantly ADCs requirements compared to a classic RX architecture.

Another point identified in each study is that IMD3 terms complete suppression is not possible

due to nonlinear parameters estimation error. Finally, the more restrictive assumption is often

a nonlinear model with constant parameters, which is not the case in the FITNESS receiver.

We believe that with the proposed following method, these issues could be overcome. So,

we based our analysis on a simple assessment: each of these studies left aside the fact that

powerful IMD3 harmonics are created when interferers power are stronger than SOI’s power

and/or close to the RX maximum dynamic. It is important to understand that a classic

receiver works usually in its nonlinear mode for a small fraction of time. However, with the

considered RX, such an assumption may not be true in a general scenario due to multiple

unattenuated blockers presence in adjacent channels. The usual solution consists to set a

large PAPR margin and limits the RX gain. But, it is done at the cost of a great decrease of

the available dynamic range.

That is why, our goal is now to propose a method to identify in which regime the RX works,

and design a feedback loop to adapt its parameters. We propose to adjust the gain to change

the RX regime and relax ADC margins according to the scenario (linearity or sensitivity)

described in fig.2.7. This method should not be considered as a new linearization method, since

it is not a compensation of unwanted harmonics. Moreover, on the contrary of Automatic

Gain Control (AGC) devices, the proposed feedback loop will not maintain constant the

output level. In addition, we made several assumptions that fit FITNESS needs, and that

can eventually be released in future works. We assume a perfect synchronization between

emitter and receiver in phase and frequency. We also consider the case of a nonlinear RX

front-end able to deal with narrowband PMR signals. We consider a model of third order with

no even coefficient, since even-order harmonics lay far from SOI carrier frequency and thus

can be discarded by a filtering operation and a differential architecture. This simplification

holds as higher odd-order harmonics are far less powerful than third-order harmonics. The

SOI selection and amplification are performed before digitization, as shown in fig.2.8.
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6.3 Proposed Concept

For now on, let develop the idea that makes a feedback loop possible. The feedback loop

design is tackled in a second time. The method we propose in following sections is completely

new and relies on a feedback loop concept. To our best knowledge, this idea has not been

explored yet. This work will lead to several scientific publications.

6.3.1 PMR Receiver Enhancement

Overall Principles

We rely on the work realized in chapter 5 to detect when the RX works in a nonlinear

regime, which allows us to decide if the gain has to be adapted. From chapter 5, we recall

that the whole receiver is modeled as a polynomial expressed as:

p(t) = α1x(t) + α2x(t)2 + α3x(t)3 + w(t) (6.2)

Where αk, k ∈ {1, 2, 3} are characteristics of the RX front-end, x(t) =
∑2

i=1 yi(t) with yi(t)

on-carrier signals defined in eq.(3.1), eq.(3.3) and w(t) is AWGN. Let us recall from eq.(3.2)

that yi(t) = ℜ
[
zi(t)e

2πfci

]
, with fci signals carrier frequencies and zi(t) from eq.(3.1) signals

baseband representations. Let define by β1 (respectively β2) the squared-root power of signal

z1(t) (respectively z2(t)). In the following chapter, α2 is assumed zero and α3 is obtained

thanks to eq.(5.2).

The main idea that we develop in chapter 6 consists in adjusting the receiver gain auto-

matically. Indeed, for a given input power, decreasing the gain allows the receiver to work in

a more linear regime. This concept is illustrated in fig.6.6. We clearly see that, for a constant

input a high gain (i.e. 32 dB in that example) saturates the output. However, when the gain

is adjusted (i.e. here we proposed the value 18 dB) the system output is much more linear.

On the other hand, when the input signal range is small, the gain could be increased. We

want our receiver to have this behavior in an automatic way.

For several cascaded nonlinear stages, the circuit nonlinearity can be estimated thanks

to a relation equivalent to the well known Friis formula. This equation analysis explains the

basic concept that we propose to exploit. From [Razavi, 2011], we have:

1

V 2
IIP 3,tot

≈ 1

V 2
IIP 3,1

+
α2

1,1

V 2
IIP 3,2

+ . . . +

∏n−1
k=1 α2

1,k

V 2
IIP 3,n

(6.3)

The eq.(6.3) is the general expression for n cascaded nonlinear stages. Let define α1,i the

linear gain of stage i and and VIIP 3,i their corresponding Input Interception Point of order

3 (IIP3), with i ∈ {1, 2, 3}. From chapter 5, we recall that VIIP 3,i coefficients are linked to

eq.(6.2) by the nonlinear gain α3 such as:

α3,i = −4

3

α1,i

V 2
IIP 3,i

(6.4)
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Figure 6.6: Vin/Vout representation for two nonlinear model of different α1

Eq.(6.4) is a relation that can be applied indifferently for each stage i or for the overall

cascaded stage. Hence, any modification on a particular analog component impacts the whole

following RX chain.

In particular, if we consider the linearity scenario: the linear gain has to be decreased.

A short analysis of eq.(6.3) shows that when coefficients α1,i decrease, so do the quantity

1/V 2
IIP 3,tot. In eq.(6.4), when VIIP 3i

increases the nonlinear gain α3,i decreases. So, increasing

VIIP 3,tot makes the circuit more linear, which is the searched effect in the linearity scenario.

However, the maximum gain decrease is limited by the overall noise floor than can be obtained

thanks to the Friis formula in eq.(6.5). For m stages, from [Razavi, 2011] we have:

NFtot = 1 + (NF1 − 1) +
NF2 − 1

α1,1
+ . . . +

NFm − 1
∏m−1

k=1 α1,k

(6.5)

Hence, a gain decrease makes the noise floor increases proportionally. In practice the gain

can be decreased until the noise floor comes too high.

So, by a clever RX linear gain decrease the circuit could becomes more linear. The inverse

effect can be obtained increasing the linear gain, which is the sensing scenario goal. Now, our

aim is clearer: the gain of one analog device (at least) has to be modified according to the

corresponding scenario. Let now tackle the practical method to realize such an operation.

Actual System Operating Mode

As we saw in fig.2.4, that the CEA experimental PMR platform is composed of several

nonlinear stages. It means that the number of tunable components is limited: only N-path

filters parameters are adjustable. This restriction implies that the analog feedback may only be
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able to combine few possibilities. So, the number of possible linear gain values is also reduced,

as represented in fig.6.7. In practice, modifying one stage parameters changes automatically

the nonlinear gain α3,tot. One can remark that in eq.(6.3) and eq.(6.5), a gain variation early

in the RX front-end has more influence than in following analog components. For now on,
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Figure 6.7: Example of a more realistic system gain against simulated gain

we consider a computer simulation to characterize our concept. Hence, we assume that α1,tot

and α3,tot are continuous and are continuously modifiable. In a real use case, the linear gain

could be approximated the closer of the theoretical function as represented in fig.6.7. As the

number of values is small, the feedback may be realized with a single low-cost digital-to-analog

converter with few bits (e.g. 3bits).

However, to realize computer simulations, a relation between α3,tot and α1,tot has to be

modeled. In the aim to change the linear gain parameter, one has to change accordingly the

VIIP 3,tot value. As seen in chapter 5, one value VIIP 3,tot can be measured for a given α1,tot.

This is done thanks to a two-tone test on the CEA experimental PMR circuit. During an

experiment in the CEA lab, we tested several linear gain values and performed a two-tone test

for each one. That way, we obtained an experimental relation between α1,tot and VIIP 3,tot.

For this particular receiver, this relation is proposed in eq.(6.6):

(VIIP 3,tot)|dB = −(
(α1,tot)|dB + 10.7

)
(6.6)

We notice the convenient linear behavior of eq.(6.6) in logarithmic scale (dB). So, when the

linear gain α1,tot decreases, so does the nonlinear gain α3,tot as described by eq.(6.4).
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Figure 6.8: Classic Optimal Feedback Loop Scheme

6.3.2 Feedback Loop Design

To present the method, we consider that an interferer detection (of cyclic frequency 2fc2)

was performed with success. So, the RX is at least weakly nonlinear, which corresponds to

the linearity scenario of fig.2.7. To relax constraints, coefficients αk, k ∈ {1, 3} have to be

modified to overcome the blocker influence. Hence, the chapter 5 assumption of constants αk

is released. We first present the optimal gain mechanism, then we develop our solution to

point out differences between the two approaches.

Wiener Optimal Approach

Our goal is to find a linear gain value such as any nonlinear cyclic harmonic can be

detected. To achieve it, the classic method consist of an adaptive filter mechanism. The

classic Wiener optimization method is represented in fig.6.8. Let define the input signal vector

xN (k) as a N samples vector such as xN (k) =
[
x(k), . . . , x(k + N − 1)

]
. N is considered

large enough to allow the iterative process to converge to its optimal value. Let also define

ΦN (k) =
[
xN (k); x3

N (k)
]

a 2 × N matrix, W =
[
α1, α3

]
a vector of gain and wN (k) =[

w(k), . . . , w(k + N − 1)
]

a 1 × N complex AGWN samples vector such as p
N

(k) is defined

as in eq.(6.7).

p
N

(k) = W ΦN (k) + wN (k) (6.7)

Let ê(k) be the error vector such as:

ê(k) = α1xN (k) − p
N

(k) (6.8)

where α1xN (k) is the ideally amplified output vector. Following S. Haykin method in

[Haykin, 1996b], knowing xN (k) theoretical expression is essential. The idea is to obtain

the gradient of ê(k)2 with respect to polynomial coefficients α1 and α3. This is the Minimum

Mean Square Error (MMSE) method, that allows to tend to an optimal solution to modify

the gain weights vector W . Nonetheless, we can’t use this method because in our receiver,

since we have no access to xN (k) without important architecture modification.
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Figure 6.9: Adaptive Feedback Loop with a Cyclostationary Nonlinear Harmonics Detector

(CNHD)

Experimental Approach

So, we propose a different scheme to take advantage of the nonlinear cyclic harmonic

detection that we performed earlier. Let now develop our feedback loop concept, that is

represented in fig.6.9. In this figure, the bloc CNHD stands for Cyclostationary Nonlinear

Harmonics Detector, which is the method developed and adapted in chapter 4 and chapter 5.

Following definitions are different from the Wiener method. Here, we process blocks instead

of samples. Let us define the input signal vector xN (k) as the k-th block of N samples such as

xN (k) =
[
x(kN), . . . , x(kN +N −1)

]
. N is considered large enough to perform the detection

with confidence (i.e. higher than 8 symbols). Let also define ΦN (k) =
[
xN (k); x3

N (k)
]

a

2 × N matrix, W =
[
α1, α3

]
a vector of gain and wN (k) =

[
w(kN), . . . , w(kN + N − 1)

]
a

1 × N complex AGWN samples vector such as p
N

(k) is defined as in eq.(6.7).

For each input vector of N samples the CNHD block estimates ĴN,L(4fc2) the criterion

output value. If ĴN,L(4fc2) is greater than Γ (the detection threshold), then we decide the

presence of unwanted harmonics. So, the distance of ĴN,L(4fc2) to the threshold gives us an

indication on the power of this unwanted harmonic. We want to keep it as close as possible

to the detection limit Γ. Let define the estimated error ê(k) for the block k in eq.(6.9).

ê(k) = ĴN,L(4fc2) − Γ (6.9)

This formulation is equivalent to maintaining the RX at the limit of detectable harmful har-

monics. It allows to take advantage of the largest affordable gain while decreasing the power

of unwanted components. However, one can notice that contrary to the Wiener formulation,

eq.(6.9) is not a function of the polynomial coefficients. So, it provides no information on the

optimal gain value.

The best way to adjust the gain value is to realize a gradient descent minimizing the

quadratic error ê(k)2. It requires to assume that ê(k)2 is convex, which implies that ĴN,L(4fc2)
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depends on α1 and is monotone. The ideal gradient descent updating relation is:

α̂1(k + 1)|dB = α̂1(k)|dB − µ
∂ê(k)2

∂α1
(6.10)

Here µ is a step size chosen in function of the algorithm complexity. Indeed, it can be constant,

function of k or optimal depending on the needs. Nonetheless, eq.(6.10) implies mandatory

the ĴN,L(4fc2) theoretical expression, in function of α1,tot. For now, we don’t have such an

expression that have to be obtain for future developments.

Hence, we chose to focus on a method able to decrease or cancel unwanted harmonics of

order 3. This topic has been tackled in details in chapter 5. As noticed, a cyclostationary

analysis at the order two shows that the 4fc2 cyclic harmonic exists. So, using our detec-

tor ĴN,L(4fc2) is not mandatory to realize the feedback. It could also be easier to replace

ĴN,L(4fc2) by the estimated CAF energy
∑L

l=0 |R̂4fc2
pp (l)|2. Such an operation could simplify

the eq.(6.9) expression.

As the FITNESS project is close to its end, we propose an experimental solution. We

propose to use eq.(6.9), as it represents the distance to the ideal gain value, to adjust the

amplification of the whole circuit. This approach is valid since the value of ĴN,L(4fc2) is

linked to the gain thanks to eq.(6.4). So, we propose an approximated solution that takes

into account the value of ê(k) in eq.(6.11).

α̂1(k + 1)|dB = α̂1(k)|dB − µ(k)sgn
(
ê(k)

)
log10

(
sgn

(
ê(k)

)
ê(k) + 1

)
(6.11)

Here, sgn
(
.
)

stands for the sign function and µ(k) = 10/k is a variable step size that allows

a convergence to a fixed value. In eq.(6.12), the VIIP 3 value is also updated with the new

linear gain value α̂1(k + 1)|dB following the relation eq.(6.6).

V̂IIP 3(k + 1)|dB = −(
α̂1(k + 1)|dB + 10.7

)
(6.12)

In the following sections, we develop an analysis of this function speed convergence. Nonethe-

less, the obtained values of α̂1(k + 1)|dB and V̂IIP 3(k + 1)|dB can’t be called "optimal". There

is no guaranty that final values of our algorithm minimize the MMSE problem in eq.(6.8).

So, an objective optimality criterion is required to make sure that for a k large enough,

α̂1(k + 1)|dB is an acceptable solution. After an analysis of the algorithm convergence, we

propose a metric that answers this issue. Indeed, the choice of this updating function is empir-

ical, but the function converges through gain values that minimize the BER. Obtained values

are in coherence with a theoretical analysis of a new metric that is developed below. Hence,

the updating relation were chosen accordingly to simulations and a theoretical analysis.

Finally, this approach was developed in the linearity scenario in line of sight, but the same

method can be used in the sensing scenario. In the two cases, the gain is only limited by the

range of its possible values. The minimum affordable gain is the one that makes the noise

floor too important, and the maximum amplification makes the circuit too nonlinear.
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6.4 Simulations

In this part, we first evaluate updating relations eq.(6.11) and eq.(6.12). The convergence

speed and the solution stability are studied for the gain, but are also valid for VIIP 3. Then,

we go on with a presentation of the feedback loop benefits in terms of Bit Error Rate (BER).

It allows us, to address the algorithm tuning.

6.4.1 Experimental Conditions

To respect the Shannon’s condition for the interferer signal, we set a sampling rate fs =

10fc1. The shaping filter h(t) is defined as a square-root raised cosine of period T = 2.5T1,

a roll-off at 0.8 and span at 6 symbols. Blocker and useful signal are in adjacent channels,

and the blocker carrier frequency is defined as T2 = T1/2.4. Both SOI and blocker are 4QAM

symbols, independent and identically distributed. As discussed in chapter 4, we assume that

8 symbols are enough to perform a detection of such signals, with the CNHD method. We set

L, the number of delays used in the ĴL,N (α) estimation at 25, in order to limit the calculation

cost. We defined the SOI power β1 to −106.0 dBm, and the Signal to Interference Ratio (SIR)

is defined as the ratio β1/β2 (SOI power over interferer power). The RX gain is initialized

at α1(1) = 32dB, when the corresponding VIIP 3(1) = −42.7dB. Nonlinear model coefficients

are then adapted thanks to relations eq.(6.11) and eq.(6.12).

6.4.2 Results

First results concern the gain evolution over the time. This study is realized in noiseless

conditions with a the SIR set to −30 dB. In our gain estimation algorithm, the parameter

that has the most influence is the detection threshold Γ, that depends on the chosen false

alarm probability. So, we represent several evolutions of α̂1(k+1)|dB, changing the Pfa of each

curve in fig.6.10. As we can see, for each curve there is a first transition phase that last about

20 blocs to be processed. Then, there is a stabilized part. We notice that the lowest Pfa (i.e.

0.1%) gives the highest gain. Indeed, a low false alarm probability implies that the detection

threshold Γ is high. When the gain is low enough, the probability mass functions of ĴL,N (4fc2)

under H0 and H1 are almost superimposed. In such a case, a high Γ implies that even under

H1 a detection is less likely than in a small Γ case (the mean value of P
[
ĴL,N (4fc2)|H1

]
has

to be higher than Γ). On the contrary, a high Pfa implies a low Γ. Hence, even in the absence

of the 4fc2 cyclic harmonic a signal is more likely to be detected and the estimated gain is

decreased more often. Another interesting result is the fast algorithm convergence: around

20 (i.e. 160 symbol period) are needed to obtain a final stable value. This solution allows a

quick adjustment of the nonlinear model parameters.

However, we saw in chapter 4 that our method detection rate depends on SNR level. So,

we realized the same study with the same SIR value, but with several noise powers. The

convergence behavior is similar to the fig.6.10 case. In tab.6.1 we sum up the gain values

after 40 blocs processing. For a given Pfa, we clearly see that when the noise level increases
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Figure 6.10: Gain convergence representation for several Pfa values, for Eb/N0 = ∞ and

SIR = −30 dB

the final gain value is much higher than in the noiseless case. Indeed, due to the noise level

our detection algorithm detection rates are lower (see subsection 4.4.3). It implies that the

estimated gain is decreased less often. This behavior might be a problem. In noisy conditions

the gain value could be far from its value in noiseless condition. For all Pfa values, the gain

increases in a range of 6.5 dB to 7.5 dB between the case Eb/N0 equals 20 dB and Eb/N0

equals 0 dB. So, in noisy conditions, the estimated gain would be misfitted.

α1(∞) [dB]
Pfa [%]

50 20 10 5 1 0.1

Eb/N0 [dB]

0 18.1 24.7 26.1 27.0 28.9 30.2

5 16.2 21.3 22.8 24.6 26.7 27.9

10 12.3 16.9 21.7 22.9 24.4 26.5

20 11.0 17.3 19.4 20.8 22.5 23.7

∞ 12.6 17.2 20.0 21.0 22.2 23.9

Table 6.1: Summary of Gain values after algorithm convergence for several Eb/N0 and false

alarm probability for a SIR = −30 dB

Before studying the effect of a too large gain value, let analyze the SIR influence on the

final gain value. Indeed, as we can see in fig.6.11, the gain value depends on the SIR level. In

this figure, the gain mean value is represented and that was obtained over 100 realizations
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Figure 6.11: Gain evolution in function of interferer’s power, for Eb/N0 = 0 dB and 10 dB

at fixed Pfa = 0.01, averaged over 100 realizations

for each SIR level. We defined the noise power such as Eb/N0 equals 0 dB, the maximum

gain at 50 dB and the Pfa = 0.01. It is clear that when the SIR comes too high, the circuit

linear gain decreases. This is the behavior we seek. When no nonlinear harmonic is detected,

the gain is increased (i.e. sensitivity scenario). In this example, there was no mechanism to

monitor nonlinear harmonics due to the SOI. So, the gain reached its maximum value defined

for the simulation. We notice that close to SIR equals −20 dB a detection occurs and the gain

is decreased, which is coherent with the linearity scenario. Indeed, in this case the nonlinear

harmonic detection is easier. After a short quick decrease (3 dB), the curve evolution shows

a smaller leading coefficient. We remark that at SIR equals −30 dB, the gain equals 28.5 dB,

which is the final value in tab.6.1 for a Pfa equals 1%. This value is also in coherence with

tab.5.1. One can notice that for a higher Eb/N0, the gain has an equivalent behavior but is

adapted for a lower SIR.

Let now determine if the obtained gain value is adapted and allows better system perfor-

mance in terms of BER. To realize this study, we propose to link the system performance with

the power of the nonlinear terms that lays in the SOI bandwidth. We saw in eq.(5.3) that the

theoretical expression of this unwanted harmonic, denoted as s(t), is: s(t) = 3α3z1(t)|z2(t)|2.

From this relation, s(t) theoretical power is developed in eq.(6.13).

Ps = E
[|s(t)|2]

=
(
3α3β1β2

2

)2
(6.13)

Let also introduce a new comparison metric between the power of s(t) and the power of
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Figure 6.12: Comparison of theoretical power of in-band components for several SIR values

in function of the RX gain

α1y1(t) (the ideally amplified SOI): the Signal to In-band Harmonic Ratio (SIHR).

SIHR =
Pα1y1

Ps
(6.14)

This relation is represented graphically in fig.6.12, in function of the gain for several SIR

values. The first noticeable point is the linear relation between the SIHR and the gain value

in logarithmic scale. Let study the −30 dB SIR curve as an example. For the initial 32 dB

gain value, the SIHR is −11.4 dB. It means that the in-band harmonic power is much higher

than the SOI power. Hence, a gain decrease is necessary. Let now see if we can answer how

much the value has to be decreased. To make sure that Ps is smaller than SOI’s power, we

provide the fig.6.13. For several noise level, we measured the influence of the SIHR value.

We see that for each Eb/N0 level, a low SIHR implies a higher BER, as expected. When the

SIHR increases, the BER value decreases to get closer of its theoretical value. One can see

that the BER decreases quickly to a stable value when the SIHR increases. Then, as the SIHR

increases its influence on the BER is much smaller. We assume that a SIHR close to 20 dB

is enough to reduce the BER significantly. Hence, the SIHR is a reliable criterion to measure

the unwanted harmonic power in the SOI bandwidth. In other words, it means that past this

particular value, even a large gain decrease may not lead to a significant BER improvement.

This behavior is verified in following simulations. So, one can use the fig.6.12 to choose the

correct value of α1 for other SIR values. That way, for a −30 dB SIR the optimal gain value is

located in the range of 18 dB to 21 dB, which is coherent with fig.6.11 analysis and tab.6.1 for
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Figure 6.13: Influence of SIHR on the BER for several Eb/N0 values at fixed SIR = −30 dB

the 1% and 5% Pfa. Knowing the nonlinear gain, signal and interferers powers, this method

gives the ideal gain value without any adaptive algorithm.

Let now tackle the effect of the gain adaptation through a BER analysis. In fig.6.14,

we defined a SIR such as the RX is faintly nonlinear (i.e. −30 dB). As it can be seen, the

uncorrected BER is severely degraded: for a −103 BER value, there is a 5 dB Eb/N0 gap when

compared to BER values in absence of blocker. Nonetheless, the RX is still able to decode a

part of the received signal as the curve decreases when the Eb/N0 ratio increases. It means

that the unwanted harmonic in the SOI band is powerful but not dominating. However, our

gain adjustment mechanism allows a significant BER improvement. We represent several BER

curves for which α1 is different. In compliance with the SIHR analysis, the more the gain is

decreased, the more the simulated BER is improved. For a BER of 10−4, the improvement

is close to the theoretical BER value. We analyzed previously that a 21 dB is enough to

meet the best results. Indeed, such a gain still provides a BER improvement compared to a

25 dB for which the SIHR is still too high. There is also a small difference between the 21 dB

and the 5 dB BER curves. Nonetheless, the BER improvement is too limited to decrease

the gain below 21 dB. All the more, this difference is negligible at low Eb/N0 but becomes

more important as the Eb/N0 increases. If we compare now the 21 dB BER curve with the

theoretical limit, for a 10−7 BER the improvement margin is about 0.85 dB, which is small.

Finally, there is still a small gap between the ideal value and algorithm output. This behavior

is normal as the interferer influence may not be completely removed by the RX adapted filter.

Finally, let us assume a SIR equals −40 dB such as the RX works in a highly nonlinear
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Figure 6.14: Comparison of BER curves for uncorrected and corrected RX gain, for a SIR

= −30 dB

regime. Such a powerful interferer makes the RX unable to decode the received signal, as

shown in fig.6.15. We clearly see that without the gain adaptation mechanism, the BER is

constant even when the noise power decreases. As noticed in fig.6.14, when the gain decreases

the BER is significantly improved. We also see a significant improvement between cases

21 dB and 15 dB curves. The 15 dB gain value was obtained for a SIHR close to 20 dB.

When compared with the 5 dB gain BER curve, the gap is very small, accordingly with

fig.6.13 remarks. However, as the interferer is very powerful (even after the adapted filter),

its contribution is too important to obtain a BER close to its theoretical limit. That is why

a large gap exists between the corrected gain BER curve and the theoretical bound.

False Alarm Probability Discussion

Thanks to the BER analysis, let now tackle the problem of choosing the best false alarm

probability. Indeed, we saw in the previous section that the Pfa had a large influence on the

final gain value. With the SIHR, we analyzed that the correct gain value has to be in the

range of 18 dB to 21 dB for a SIR equals −30 dB. According to tab.6.1, in absence of noise

the Pfa that gives the closest gain value is 5%. We saw that in noisy conditions the gain

value increases, which implies that obtained gain value is not optimal. But, when the noise

power is important the SIHR influence is much lower than the noise power. It can be seen in

fig.6.13, considering the Eb/N0 case. For a Eb/N0 of 0 dB, we see that even with a SIHR of

0 dB the BER improvement is small. So, a high amplification in noisy conditions may not be
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too harmful for the SOI. When the noise power is small the gain value is closer to its noiseless

value. It allows the best trade off between a high gain and a high BER correction.

We realized the same analysis for a SIR equals −40 dB. These results are presented in

tab.6.2. Thanks to fig.6.12, we forecast that the gain value has to be in the range 12 dB to

15 dB. As the interferer is more powerful, each Pfa leads to a final gain value closer to the

12 dB to 15 dB (except for Pfa = 0.5, which is much lower).

α1(∞) [dB]
Pfa [%]

50 20 10 5 1 0.1

Eb/N0 [dB]

0 5.6 11.0 12.4 13.4 14.7 15.9

5 4.0 9.1 10.6 11.8 13.6 14.4

10 4.9 8.3 11.0 11.4 12.4 13.8

20 4.7 8.5 9.5 10.6 12.3 13.4

∞ 5.2 8.3 9.7 11.1 12.6 14.1

Table 6.2: Summary of Gain values after algorithm convergence for several Eb/N0 and false

alarm probability for a SIR = −40 dB

Hence, we recommend to use a 5% Pfa as is seemed to be the value that allows to obtain

the best tradeoff between decreasing the BER while and the preserving the gain as high as

Figure 6.15: Comparison of BER curves for uncorrected and corrected RX gain, for a SIR

= −40 dB
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possible.

6.5 Conclusion & Perspectives

In this chapter, we first point out state-of-the-art methods pros and cons. Various possibil-

ities could be adapted to almost suppress unwanted nonlinear perturbations due to blocking

signals presence. However, each one rely on the nonlinear model parameters knowledge, which

turned out to be inadequate in the FITNESS context. Then, we developed a spectrally aware

PMR receiver proof of concept. This mechanism is based on the feedback loop concept, which

allows the receiver to adjust its gain and IP3 level to work in a more linear region. Despite

the lack of a theoretical expression for our detection method, an adaptive mechanism was

proposed. An analysis of our algorithm convergence was presented. We saw that after a short

time, a stable gain value can be obtained. However, we cannot guarantee that the obtained

value is the best one to limit the nonlinear harmonic power. Finally, a study on the impact

of our proposed method on the BER was done. Our most important results are:

a) With this proof of concept, we showed that the BER could be significantly improved even

when the receiver is saturated;

b) When an interferer is present, the gain adaptation mechanism improves significantly the

receiver BER performance. The higher amplification limit is the ADC maximum dy-

namic. The lower amplification bound is the gain value that gives the maximum accept-

able noise floor (as discussed in eq.(6.5));

c) We introduced the SIHR metric that represents the power of the unwanted harmonic

that lays in the SOI bandwidth. We have shown that a well chosen gain value allows to

increase the SIHR. The BER evolution is directly linked with the evolution of the SIR.

Our gain updating relation gives a value that is close to the optimal SIHR value for a

5%Pfa;

d) To our best knowledge the gain feedback loop concept is a topic that has not been explored

yet, and provide interesting results.

In the other hand, several points that were not discussed in this chapter have to be devel-

oped. As a proof of concept, the gain adaptation mechanism is realized on a simple nonlinear

receiver. In other words, many parameters were neglected, as for example: quantization effects

on detection rate, ADC margins adjustments, or finite number of possible gain values(every

front-end analog component is not tunable). Such simplifications may conduct to a significant

loss of efficiency of our method in a real receiver, especially the quantification. Nonetheless,

ADC margins relaxing (that were not considered in our simulations) may lead to additional

improvements that are difficult to evaluate for now. Indeed, as discussed in chapter 2, impor-

tant PAPR margins are left to ensure an unsaturated digital signal. Thanks to our detection

mechanism these margins could be decreased, which allows to increase the gain in a certain
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extent to improve the SNR. This was a major requirement expressed in chapter 2. We no-

ticed that, to maximize the tuning effect of our method, the best way is to adapt the gain

of the receiver’s first analog components as it impacts all the following chain. In our work,

we assumed that several stages parameters may be adjusted to produce fine gain and IIP3

tuning, which could not be possible in a real receiver. A mechanism that adapts the RX gain

in a fixed set of values could be realized instead. The ideal gain value could be approximated

to select the closest gain value. Finally, this method is able to detect a interferer, to detect if

the circuit works in a nonlinear regime and identify the reason. So, this method seems to be

a good answer to FITNESS requirements.

This work opened several interesting points as perspectives:

1. As we saw, having a theoretical expression for our detection criterion is essential to define

an optimal iterative algorithm. We forecast that benefits from this work are a quickest

convergence and a gain value the closer of optimality.

2. It is also essential to use this method in a experimental device to relax assumptions we

made. This work have to be done in cooperation with CEA lab that can also implement

this algorithm in an experimental platform.

3. The current context is devoted to detect a narrowband signal. But working at complex

baseband opens possibilities to use our method on OFDM systems. Indeed, the nonlinear

receiver is also a problem in the cognitive radio that deals with broadband signals.



Part II - Conclusions

In this thesis the second part, we answered FITNESS requirements that were defined in

the first part. As seen in chapter 4, several PMR modulations make difficult the unwanted

signal detection to be realized in blind mode. We first studied state-of-the-art methods to

perform the detection of phase modulated unwanted signals on carrier, in a general context.

These methods are not adapted to FITNESS needs, so we proposed a novel algorithm based

on second order cyclic moments. It turns out that our algorithm requires a small number

of symbols to provide interesting detection rates. Nevertheless, some remaining work on this

method has to be done. The complete mathematical description of our method is a major

point that lack to this study. The work presented in chapter 4 led to the publication of a

national (GRETSI 2017) and an international paper (WCNC 2018).

Then, we use this new tool in the FITNESS context. As seen in section 2.4, due to its

internal devices the analog receiver could not be considered as linear function. Hence, we

modeled it as a polynomial. When a unwanted signal is present close to the signal of interest

carrier, additional harmonics are created due to the nonlinear behavior. As analyzed in chap-

ter 5, a harmonic lays in the useful signal bandwidth, which degrades system performance.

That is why, we used the method defined in section 4.4, to detect particular harmonics that

are created only when the receiver works in a nonlinear regime. With the information of

nonlinear harmonics presence, we decide if the receiver works or not in its linear region.

Main principles and a theoretical analysis of obtained results were presented in chapter 5.

We showed that a detection is possible well before the receiver work in a highly nonlinear

regime. This analysis was published in an international conference (ICC 2018).

Finally, the method in chapter 4 and its application in chapter 5 are gathered in a final

chapter. In chapter 6, we considered that the receiver is able to analyze its spectral envi-

ronment. Hence, we developed a proof of concept for a mechanism that adapt automatically

the receiver parameters. This algorithm is based on the idea that the interferer and/or its

nonlinear harmonics detection, allows to identify two scenarios. When a powerful interferer

is detected (linearity scenario), the front-end amplification could be adjusted to decrease

unwanted harmonics influence. On the other hand, when there is only a useful signal of

small power in the received bandwidth (sensitivity scenario), the gain could be increased.

We showed through simulations that the presented method is able to adjust dynamically the

receiver gain. A theoretical analysis was also performed. Our most important result is that a

clever amplification mechanism allows a significant bit-error-rate improvement. As discussed
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in chapter 6, several parameters influence can’t be tested in a simple manner and requires the

development of a receiver full chain model. This is a completely original work that has not

been published yet. These results will soon be shared in several scientific communications as

a proof of concept.



General conclusions and

perspectives

Let take a look to the Minolta definition for cognitive radios [Mitola, 2000]:

Cognitive Radio: a radio or system that senses, and is aware of, its operational

environment and can dynamically and autonomously adjust its radio operating pa-

rameters accordingly.

Considering this definition, the sensing mechanism designed in this thesis allows an au-

tonomous adjustment of receiver gain, which limits its internal interferences. In the light

of the work presented in this thesis, we consider that the proposed system can be called a

cognitive PMR radio.

The first part of this thesis was devoted to the PMR spectral environment analysis.

We saw is chapter 2 that PMR standards specifications are tight to be addressed only by a

analog design. Moreover, as the overall receiver design is already defined, it implies additional

constraints on digital answers that could be proposed (e.g. blind mode, fast processing, etc.).

Hence, the novelty of the project is to detect when and why the receiver works in a nonlinear

regime. This algorithm have to be realized in the digital domain, and could allow to adapt

the receiver analog parameters thanks to a feedback loop. The idea to measure the nonlinear

harmonic power is new and deserve a deep analysis.

That is why, the chapter 3 is devoted to a state of the art of blind detection methods.

Because signal and noise powers statistics are assumed unknown, the energy detector can’t

be used. Other efficient methods such as matched filter are also discarded due to the lack of

knowledge on the signal to detect. It appears that the cyclostationary approach is the most

adapted one, as it requires a few information and performs well at low SNR.

With the previous analysis, we go on with this thesis achievements. We saw in chapter 4

that the detection of phase modulated signals is not possible using a cyclic second order

moments method. For detecting such signals usual methods are: higher order moments or to

use a nonlinear transformation. We showed that such methods require too much symbols to

provide good detection rates and a high confidence level. Hence, we proposed a new detection

method based on second order statistics. The originality of our algorithm is to be able to

detect the presence of a signal by monitoring a cyclic frequency where no energy is present in
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theory. This algorithm proved to be able to detect a cyclic energy when the theoretical value

is zero. This method can be performed in a semi-blind mode and require very few symbols to

detect a signal’s presence. We evaluated through simulations that this method provides good

detection rates at 0 dB. Our detector is also resilient to the channel selectivity, and to a bad

synchronization, as theoretically and experimentally shown.

This new tool is then applied in the FITNESS context. In chapter 5, we modeled the

receiver as a polynomial due to its analog components, which have a nonlinear behavior. We

saw that the presence of a PMR signal in a channel close to the signal of interest carrier

frequency creates additional harmonics. The method developed in chapter 4 was applied

to detect cyclic harmonics due the nonlinear regime of the receiver. A theoretical analysis

of this mechanism is provided. Besides the use of our detector is not mandatory, it allows

nonetheless to perform a detection with a small number of symbols, and without a noise

variance estimation technique. With the information of nonlinear harmonics presence, we

are able to decide if the receiver works or not in its linear region. Through simulations, we

showed that a detection is possible well before a degradation of the useful signal. This study

was realized in cooperation with the CEA, and led to a communication [Grollier et al., 2018].

In chapter 6, we detailed main principles of state-of-the-art method to decrease IMD3

harmonic influence. There are few state of the art solutions on this topic, that are recalled

in the beginning of the chapter. Such solutions often tightens analog requirements, which is

not affordable in the FITNESS context. Hence, we propose a completely new method based

on the feedback loop principle. Based on our work in chapter 4 and in chapter 5, we propose

a new method for the receiver to adapt its parameters in chapter 6. The adaptation concept

is based on the Friis nonlinear formula. This relation implies that a gain decrease implies

that the circuit becomes more linear. Then, we presented a mechanism to adapt the gain

level. This method efficiency was shown through simulations, and we saw that it leads to

a significant Bit-Error-Rate improvement. As this work is recent, there is still no scientific

communications on this topic. However, a communication and a journal paper are planed

based on obtained results.

Nonetheless, the work presented over this thesis could be continued. Several perspectives

were tackled in previous chapters, so let now concentrate on main ones:

a) The first point that should be developed is the estimator ĴL,N (α) (proposed in chapter 4)

theoretical description. Such an expression may allow to link the criterion value to the

interferer’s power.

b) This development is also a major interest for the feedback mechanism developed in chap-

ter 6. The feedback algorithm we proposed cannot grant a convergence to the best gain

value. Moreover, the convergence speed could be improved using the gradient descent

method, which require the knowledge of ĴL,N (4fc2).

c) It could also be interesting to implement this method on a demonstrator to show its

reliability in an effective receiver.

d) In chapter 5 and chapter 6 we assumed that the received additive noise is complex AWGN.
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But, as it goes through the nonlinear receiver, its statistical properties and distribution

necessary changed. So, state of the art method statistical properties, and our detector

statistics as well, are different. The new model should be expressed as in eq.(6.15), where

x(t) =
∑2

i=1 yi(t) + w(t):

p(t) = α1x(t) + α2x(t)2 + α3x(t)3 (6.15)

Hence, the same work has to be done taking the new model eq.(6.15) into consideration.





APPENDIX

A Demonstration relative

to Chapter 4

We propose here to show that considering δt1 = 0 in eq.(3.2) does not lead to a loss of

generality. Let us consider the general CAF definition eq.(3.28), in the case of a cycloergodic

process. The received signal will be y(t) = x(t − ∆t1), which CAF expression is given in

eq.(A.1)

Rα
yy(τ) = 〈x(t − ∆t1 − τ

2
)x∗(t − ∆t1

τ

2
)e−j2παt〉t (A.1)

A simple variable change u = t − ∆t1 leads to eq.(A.2).

Rα
yy(τ) = ej2πα∆t1 〈x(u − τ

2
)x∗(u +

τ

2
)e−j2παu〉u (A.2)

, ej2πα∆t1 Rα
xx(τ) (A.3)

In most methods presented in this document the CAF energy measure is realized thanks to

the |.|2 operation. Hence, we notice that the CAF energy of x(t) and y(t) are identical, which

is enough to justify the model simplification.

|Rα
yy(τ)|2 = |Rα

xx(τ)|2 (A.4)
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B Nonlinear Harmonics

Cyclic Frequency

Search

We propose to derive here the theoretical expression of a BPSK signal through a nonlinear

system in order to search for its cyclic frequencies. Let first define the input signal in eq.(B.1),

in agreement with the chapter 5.

y1(t) = zR(t) cos(2πfc1t) (B.1)

We assumed here that zR(t) =
∑∞

k=−∞ akh(t − kT1), where ak are BPSK symbols, which

explains the absence of imaginary part in eq.(B.1). Such an assumption allows to reduce the

number of terms to develop, in order to obtain more convenient expressions. The idea is to

show that a nonlinear distortion produces several terms having a cyclic frequency 4fc1. These

terms belongs to the most powerful one.

The nonlinear system is the following one:

p(t) = α1y1(t) + α3y3
1(t) (B.2)

As we saw in chapter 4, to realize the search for cyclic frequencies, one has to develop the

expression p(t)p(t − τ). From eq.(B.2) the eq.(B.3) expression is straightforward.

p(t)p(t−τ) = α2
1y1(t)y2

1(t−τ)+α2
3y3

1(t)y3
1(t−τ)+α1α3y1(t)y2

1(t−τ)+α1α3y2
1(t)y1(t−τ) (B.3)

We prefer to develop each terms one by one replacing eq.(B.1) into eq.(B.3). It gives following

expressions from eq.(B.4) to eq.(B.7), where ω1 = 2πfc1:

y1(t)y1(t − τ) =
1

2
zR(t)zR(t − τ)

(
cos(ω1(2t − τ) + cos(ω1τ)

)
(B.4)

y3
1(t)y1(t − τ) =

1

8
z3

R(t)zR(t − τ)

(
cos(ω1(4t − τ)) + cos(ω1(2t + τ)

+ cos(ω1(2t − τ) + cos(ω1τ)

)
(B.5)
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y1(t)y3
1(t − τ) =

1

8
zR(t)z3

R(t − τ)

(
cos(ω1(4t − 3τ)) + cos(ω1(2t − 3τ)

+ cos(ω1(2t − τ) + cos(ω1τ)

)
(B.6)

y3
1(t)y3

1(t − τ) =
1

32
z3

R(t)z3
R(t − τ)

(
cos(ω1(6t − 3τ)) + cos(ω1(4t − 3τ)

+ cos(ω1(4t − τ) + cos(ω1(2t − 3τ) + cos(ω1(2t − τ)

+ cos(ω1(2t + τ) + cos(ω1τ) + cos(3ω1τ)

)
(B.7)

As we see, terms in eq.(B.4) are only proportional to the linear amplification α2
1, when

others expressions depends on α3. Let study these last three terms frequency components to

determine which frequencies are due to the RX nonlinear behavior. In eq.(B.5), eq.(B.6) and

eq.(B.7), harmonics at baseband and at 2ω1 gets mixed up with same harmonics in eq.(B.4).

So, most powerful harmonics linked to the nonlinear gain have a frequency equal 4ω1. If we

apply the expectancy operation in eq.(B.3), we obtain R4f1
yy (τ) in eq.(B.8) the CAF expression

at cyclic frequency 4f1:

R4f1
yy (τ) =

1

8
α1α3E

[
z3

R(t)zR(t − τ) cos(ω1(4t − τ))e−2π4f1t
]

+
1

8
α1α3E

[
zR(t)z3

R(t − τ) cos(ω1(4t − 3τ))e−2π4f1t
]

+
1

32
α2

3E
[
z3

R(t)z3
R(t − τ) cos(ω1(4t − 3τ))e−2π4f1t

]

+
1

32
α2

3E
[
z3

R(t)z3
R(t − τ) cos(ω1(4t − τ))e−2π4f1t

]
(B.8)

In eq.(B.7) some harmonic at 6ω1 were not considered since their power is much less than

4ω1 components. So, tracking the 6ω1 harmonic becomes useless as the detection rate will be

lower than those obtained at 4ω1. In addition, to make such a measure, the system sampling

frequency as to be greater than 6ω1, which is an additional constraint in comparison to the

4ω1 monitoring.

The same method could be applied on a QPSK signal, but with y1(t) modeled as:

y1(t) = zR(t) cos(2πfc1t) − zI(t) sin(2πfc1t) (B.9)

Many additional terms would be added, but the previous analysis remain valid as created

harmonics could not be different.
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Titre : Identification aveugle de l’environnement spectral au plus près de la chaine d’acquisition pour un 
système PMR 

Mots clés : Détection aveugle, Non linéarités, Récepteur PMR, Cyclostationnarité 

Résumé : Cette thèse a été préparée à l’IMT atlantique 
dans le contexte du projet FITNESS. Ce projet Européen 
vise à moderniser les radios PMR (Professional Mobile 
Radio), utilisées par les services de sûretés. L'objectif est 
de développer un nouveau récepteur compatible avec les 4 
normes européennes, tout en ajoutant de nouvelles 
fonctionnalités. Les contributions de cette thèse à FITNESS 
concernent la rétrocompatibilité du nouveau récepteur avec 
les standards actuels. Un filtre de sélection de canal de 
fréquence centrale reconfigurable a été utilisé pour gérer 
cette interopérabilité. Toutefois on notera que sa bande 
passante est trop large et que plusieurs canaux de 
communications insuffisamment atténués serons présents 
au niveau des convertisseurs. Pour relâcher les contraintes 
de linéarité et les marges de numérisation, nous proposons 
de rendre le récepteur conscient de son environnement 
spectral. 
 

L’intérêt de cette méthode a été développé dans une 
première partie de la thèse. Une méthode de détection 
aveugle basée sur les propriétés cyclostationnaires du 
signal de communication a été proposée. Nous utilisons 
ensuite cet outil pour détecter la présence d'harmoniques 
indésirables créés lors d'un fonctionnement en régime non 
linéaire du récepteur. Nous montrons qu’il est ainsi possible 
de détecter très tôt le mode de fonctionnement du 
récepteur. Enfin, basé sur les deux études précédentes 
nous proposons une méthode permettant d'adapter 
automatiquement les paramètres de la chaine analogique. 
Cette preuve de concept basé sur une boucle de 
rétroaction permet une amélioration significative du taux 
d'erreur binaire tout en relâchant les contraintes au niveau 
analogique. 

 

Title : Spectral Environment Blind Identification for PMR System the Closer of Analog Receiver 

Keywords : Blind detection, Nonlinearities, PMR receiver, Cyclostationarity 

Abstract: This thesis was prepared at IMT Atlantique, in 
the context of the FITNESS project. This European project 
aims to modernize PMR (Professional Mobile Radio) 
radios, used by security services. The objective is to 
develop a new receiver compatible with the 4 European 
standards, while adding new features. The contributions of 
this thesis to FITNESS concern the backwards compatibility 
of the new receiver with current standards. A reconfigurable 
central frequency channel selection filter was used to 
manage this interoperability. However, it should be noted 
that its bandwidth is too large and that several insufficiently 
attenuated communication channels are present at the A/D 
converters input. To relax linearity constraints and 
digitization margins, we propose to make the receiver 
aware of its spectral environment. 
 

The interest of this method has been developed in a first 
part of this document. A method for blind detection based 
on the cyclostationary properties of the communication 
signal has been proposed. We then use this tool to detect 
the presence of unwanted harmonics created during non-
linear operation of the receiver. We show that it is possible 
to detect the operating mode of the receiver before the 
useful signal degradation. Finally, based on the two 
previous studies, we propose a method to automatically 
adapt the parameters of the analog receiver. This proof of 
concept based on a feedback loop allows a significant 
improvement in the bit error rate while relaxing constraints 
at the analog level. 
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