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de Minas Gerais, Belo Horizonte, Brésil

Rapporteur
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Résumé

Les images hyperspectrales (HSI) fournissent des informations spectrales détaillées sur

les objets analysés. Étant donné que différents matériaux ont des signatures spectrales

distinctes, les objets ayant des couleurs et des formes similaires peuvent être distingués

dans le domaine spectral.

Toutefois, l’énorme quantité de données peut poser des problèmes en termes de stock-

age et de transmission des données. De plus, la haute dimensionnalité des images

hyperspectrales peut entrâıner un surajustement du classificateur en cas de données

d’apprentissage insuffisantes. Une façon de résoudre de tels problèmes consiste à ef-

fectuer une sélection de bande (BS), car elle réduit la taille du jeu de données tout en

conservant des informations utiles et originales.

Dans cette thèse, nous proposons trois méthodes de sélection de bande différentes. La

première est supervisée, conçu pour utiliser seulement 20 % des données disponibles.

Pour chaque classe du jeu de données, une classification binaire un contre tous utilisant

un réseau de neurones est effectuée et les bandes liées aux poids le plus grand et le plus

petit sont sélectionnées. Au cours de ce processus, les bandes les plus corrélées avec les

bandes déjà sélectionnées sont rejetées. Par conséquent, la méthode proposée peut être

considérée comme une approche de sélection de bande orientée par des classes.

La deuxième méthode que nous proposons est une version non supervisée du premier

framework. Au lieu d’utiliser les informations de classe, l’algorithme K-Means est utilisé

pour effectuer une classification binaire successive de l’ensemble de données. Pour

chaque paire de grappes, un réseau de neurones à une seule couche est utilisé pour

rechercher l’hyperplan de séparation, puis la sélection des bandes est effectuée comme

décrit précédemment.

Pour la troisième méthode de BS proposée, nous tirons parti de la nature non supervisée

des auto-encodeurs. Pendant la phase d’apprentissage, le vecteur d’entrée est soumis

au bruit de masquage. Certaines positions de ce vecteur sont basculées de manière

aléatoire sur zéro et l’erreur de reconstruction est calculée sur la base du vecteur d’entrée

non corrompu. Plus l’erreur est importante, plus les fonctionnalités masquées sont

importantes. Ainsi, à la fin, il est possible d’avoir un classement des bandes spectrales

de l’ensemble de données.

Keywords: Sélection des bandes, images hyperspectrales, réseau de neurones.





Abstract

Hyperspectral images (HSIs) are capable of providing a detailed spectral information

about scenes or objects under analysis. It is possible thanks to both numerous and

contiguous bands contained in such images. Given that different materials have distinct

spectral signatures, objects that have similar colors and shape can be distinguished in

the spectral domain that goes beyond the visual range.

However, in a pattern recognition system, the huge amount of data contained in HSIs

may pose problems in terms of data storage and transmission. Also, the high dimen-

sionality of hyperspectral images can cause the overfitting of the classifier in case of

insufficient training data. One way to solve such problems is to perform band selection

(BS) in HSIs, because it decreases the size of the dataset while keeping both useful and

original information.

In this thesis, we propose three different band selection frameworks. The first one is a

supervised one, and it is designed to use only 20% of the available training data. For

each class in the dataset, a binary one-versus-all classification using a single-layer neural

network is performed, and the bands linked to the largest and smallest coefficients of

the resulting hyperplane are selected. During this process, the most correlated bands

with the bands already selected are automatically discarded, following a procedure also

proposed in this thesis. Consequently, the proposed method may be seen as a class-

oriented band selection approach, allowing a BS criterion that meets the needs of each

class.

The second method we propose is an unsupervised version of the first framework. Instead

of using the class information, the K-Means algorithm is used to perform successive

binary clustering of the dataset. For each pair of clusters, a single-layer neural network

is used to find the separating hyperplane, then the selection of bands is done as previously

described.

For the third proposed BS framework, we take advantage of the unsupervised nature

of autoencoders. During the training phase, the input vector is subjected to masking

noise—some positions of this vector are randomly flipped to zero—and the reconstruction

error is calculated based on the uncorrupted input vector. The bigger the error, the more

important the masked features are. Thus, at the end, it is possible to have a ranking of

the spectral bands of the dataset.

Keywords: Band selection, hyperspectral image, artificial neural network.
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Chapter 1

Introduction

1.1 General context

Single tasks of our daily life such as recognizing a handwritten character, a face, or

identifying a certain object in our pocket by feel can be considered Pattern Recognition

(PR) acts (Duda et al., 2001). The ease with which we perform such acts belies the

complex processes that must be followed when computers enter the scene to perform

those same single tasks.

Before a computer is used in a PR application, it must undergo a learning process in

order to be acquainted with the problem at hand. This learning process takes into

account the information from training samples related to the domain of interest. Thus,

new patterns —or objects—not seen during the learning phase may be correctly analyzed

by the computer in later executions of the algorithm. Furthermore, learning is done by

using some method for reducing the classification error on a set of training data. That

is, the computer teaches itself how to recognize the patterns by adjusting the classifier’s

parameters during the learning —or training—phase of the classifier.

Depending on the dataset, the learning process can be of one out of three types:

• Supervised: Under the supervised learning, a teacher gives a class information for

each data sample in the training set. Then, it seeks to reduce the sum of costs for

those patterns;

• Unsupervised: In this case there is no teacher. In unsupervised learning, or cluster-

ing, the system finds clusters of the input data. Consequently, the data structure

is taken into account; and

• Semi-supervised: In this case, both labeled and unlabeled data are used. Thus,

it can be seen as a mixture of supervised and unsupervised learning techniques.

1
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Normally, only few labeled samples are used, and the learning is based on the

assumption that data samples which are close to each other in the feature space

are more likely to have the same label.

The classifier along with its learning process are part of a Pattern Recognition System

(PRS). The PRS diagram shown in Figure 1.1 is composed of five steps, which lie between

the input and the final decision (Duda et al., 2001). Each step is briefly described as

follows:

• Sensing: Normally, the input to a PR system is a camera or a microphone array.

The difficulty of the problem is related to the limitations if this input device, such

as bandwidth, resolution, distortion, signal-to-noise ratio etc;

• Segmentation: All the analysis is made on individual patterns. Thus, those pat-

terns must be segmented from the background. It is indeed a difficult task, and

in many processes which have an image as input data, this issue is solved by

considering each pattern as a pixel or a patch of a certain size.

• Feature extraction/selection: The goal of the feature selection/extraction is to

describe a pattern to be recognized by measurements whose values are very similar

for patterns in the same class, and dissimilar for patterns that belong to different

classes. Also, the representation yielded by an ideal feature selection/extraction

process makes the job of the classifier trivial. Considering a hyperspectral image

(HSI), for example, a feature extraction process makes a combination of the original

bands to form new features, whereas under the feature selection approach the

resulting features set is a selection of the original bands.

• Classification: The task of the classifier is to use the feature vector provided by

the feature extraction/selection component and assign the pattern to a class. The

degree of difficulty of the classification task is related to the variance of the feature

values for patterns in the same class in relation to the difference amongst feature

values for patterns in different classes. In Figure 1.2, there are two examples of

feature space. In the first example, Figure 1.2 (a), the variance within the classes is

small, thus a linear classifier can be used in order to separate the two hypothetical

classes, considering the features f1 and f2. In Figure 1.2 (b), the variance within

classes is so high that a linear classification is no longer possible. Normally, the

classes present in a hyperspectral image, for example, belong to this second case,

that is, there is a high variance within the classes, what makes the classification

of such images a challenging task.

• Post-processing: The post-processing component takes into consideration the con-

text of the problem. It takes as input the classification map provided by the clas-

sification component, and analyzes each data point label by taking into account
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Figure 1.1: Components of a typical pattern recognition system.

Figure 1.2: Two examples of feature space. In (a), the variance within the classes are
small enough to permit a linear separation between the classes. In (b), there is a high
variance within the classes, consequently a linear separation is no longer possible.

its neighbors in the image domain. If a label is not consistent with its neighbors,

then the label is changed in order to match the label of the majority.

1.1.1 Sensing step issues

When the input to a pattern recognition system is a hyperspectral image, it is neces-

sary to consider the implications of working with such a huge source of information.

Compared with a RGB image, for example, a hyperspectral image (HSI) has much more

information about the scene under analysis due to the fact that it may have hundreds

of bands instead of only three (Pu, 2017), as shown in Figure 1.3. Consequently, the

richness of details in a hyperspectral image may provide a good discrimination amongst
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Figure 1.3: Comparison between HSI and RGB image. HSI is a three-dimensional
dataset of a 2D image on each wavelength. On the the lower left: the reflectance curve,
or spectral signature, of a pixel. The RGB image only has three image bands on red,
green, and blue wavelengths, respectively. On the lower right: the intensity curve of a
pixel in the RGB image (Lu and Fei, 2014).

patterns of different classes. However, the huge amount of data contained in HSIs may

pose hardware problems, such as data storage (Molisch, 2005) and transmission (Wijit-

dechakul et al., 2016), which belong to the sensing step of a pattern recognition system.

Data storage and transmission issues become more evident when unmanned aerial vehi-

cles (UAVs) are used, due to their small electronic components. UAVs-based technology,

for example, is vital for the next-generation monitoring systems, because UAVs can ob-

tain data at high altitudes (Zhang et al., 2018). Besides, due to the advantages of low

cost, small consumption, convenience and safety the unmanned aerial vehicles are widely

used in the military (Roberge et al., 2018) and civilian fields (Oliveira et al., 2018).

The UAV navigation can be performed either in an autonomous (da Silva et al., 2015;

Braga et al., 2015, 2016; Kuroswiski et al., 2018) or in an externally controlled fashion.

For the latter, it is possible to employ UAVs in a scenario where they are controlled

by a ground station computer, which can perform heavy computations using Graphic

Processing Units and parallelization (Silva et al., 2017), as shown in Figure 1.4. In this

case, each UAV sends the collected data to a computer, which in turn makes compu-

tations with its more powerful resources and then sends information back to the UAV

(Buyukyazi et al., 2013).

But, when hyperspectral data are used (Zhong et al., 2017; Freitas et al., 2018), the

hardware limitations may pose a threat to the real-time nature of the mission. Thus,

reducing the amount of transmitted data can be a good alternative.

Hyperspectral image data reduction may be done by means of band selection (BS) (Wang

et al., 2018a). Briefly, BS methods seek to select some few bands, based on a predefined

criterion such as classification accuracy—in supervised cases—, or data structure, when

there is no class information.
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Figure 1.4: Example of data transmission between an UAV and a ground station com-
puter.

1.1.2 Classification step issues

The resulting feature space after a BS operation has the same dimension as the number

of selected bands. Therefore, the feature space dimension can be drastically reduced if

only a small fraction of the original bands is selected.

By keeping the same quantity of training data, classifiers working in smaller dimensions

are less likely to be affected by the curse of dimensionality (Bai et al., 2017; Habermann

et al., 2017a), which hampers the classifiers’ job. Consequently, the data reduction

accomplished by band selection methods can also be beneficial to the classification step

of the PRS.

1.2 Band selection challenges

1.2.1 Selection strategy

Numerically speaking, band selection seems to be—and indeed could be—a very long

and computationally heavy process. For example, one could select 10 out of 150 spectral

bands in

C(150, 10) =
150!

(150− 10)!10!
≈ 1.17× 1015

ways. Obviously, it is both a huge and discouraging number.

Fortunately, the band selection methods found in literature do not perform an exhaustive

search on all possible band combinations. By adopting some criteria such as distance

measures (Keshava, 2004), class separability measures (Cui et al., 2011), dependence
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Figure 1.5: Band selection approaches.

(Camps-Valls et al., 2010), classification measures (Habermann et al., 2017b), it is pos-

sible to guide the band search and thus avoid an exhaustive search.

In general, as shown in Figure 1.5, BS methods can be divided into pointwise and

groupwise approaches (Theodoridis and Koutroumbas, 2008). The latter separates all

the spectral bands into several subsets. Then, the final band selection may done basically

in two ways: i) all the bands in a certain subset are selected; or ii) a representative of

each subset is selected. As for the pointwise methods, they can be subdivided into two

groups:

• Subset search: the number of bands to be selected is previously determined. At

each iteration, a band of interest is selected, and the algorithm stops when the

desired number of bands is achieved; and

• Band ranking: during the iterations, each band receives pertinence values that are

summed up. At the end, there is a ranking indicating the most important bands

according to a certain criterion. In this case, the number of bands does not need

to be defined a priori.

1.2.2 Paucity of the training data

Another important issue to be considered during the design of a BS framework is the

paucity of the training data.

Some band selection methods perform their job using the classifier of the pattern recog-

nition system, described in Section 1.1. This strategy—wrapper (Suto et al., 2016)

approach—seems to be very appealing, because the classifier can select the bands that

maximize its classification accuracy. However, some classifiers may have too many pa-

rameters to be adjusted, consequently, lots of training data are necessary, otherwise the

classifier will be subjected to overfitting (Bilbao and Bilbao, 2017).
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An alternative to this problem is the filter -based band selection (Adlakha and Chhikara,

2016). Under this approach, the band selection happens before the classification step of

the PRS. Thus, BS algorithms simpler than the classifier can be used, thus less training

data may be required.

1.3 Addressed Problems and Contributions

In the literature, different mathematical and statistical tools are used by the BS frame-

works. We may cite data manifolds (Li and Hao, 2007), data information analysis (Yan

et al., 2017), graph theory (Bollobás, 1998) and evolutionary computing (Eiben and

Smith, 2015).

Machine learning (ML) (Haykin, 2009) is a branch of Artificial Intelligence that uses

statistical tools to give machines and computers the capacity to learn. That is, a ML-

based BS algorithm is capable of learning by itself the most appropriate spectral bands

according to a certain criterion. Therefore, we chose to use ML in our proposed band

selection methods.

Thus, in this thesis, we address the BS subject by proposing three filter-based frame-

works. One of them is supervised and the other two are unsupervised. All of them follow

a pointwise search approach, as a consequence of the architectures we chose. They are:

• Supervised hyperspectral band selection using single-layer neural networks.

• Unsupervised hyperspectral band selection based on clustering and single-layer neu-

ral networks; and

• Unsupervised hyperspectral band selection using autoencoders.

1.3.1 Supervised hyperspectral band selection using single-layer neu-

ral networks

We propose a supervised filter-based BS approach using single-layer neural networks.

Thus, after the training phase, it is possible to draw conclusions about the spectral

bands based on the neural net’s weights.

For each class of the data set, a binary single-layer neural network finds a separating

hyperplane between that class and the remainder of the data. Then, the bands related

to the biggest and smallest hyperplane’s coefficients are selected, so, one can say that the

band selection process is class-oriented. This process iterates until a previously defined

number of bands is selected.
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By comparing with three state-of-the-art supervised band selection approaches, it is

possible to see that our method yields better results in many situations even with greatly

reduced training data size.

1.3.2 Unsupervised hyperspectral band selection based on clustering

We propose an unsupervised framework for band selection based on clustering and neural

networks.

The proposed method starts with a binary clustering of the whole data set performed

by k-Means algorithm. After that, a single-layer neural network is trained to perform

a binary classification between the two clusters. Then, the bands related to the biggest

and smallest separating hyperplane coefficients are selected. This process is repeated

using as input data the newly generated clusters until a predefined number of bands is

selected.

A comparison with four other BS methods shows the validity of our framework.

1.3.3 Unsupervised hyperspectral band selection using autoencoders

We propose an unsupervised approach for band selection using autoencoders, which are

unsupervised neural networks that learn the data structure, and reconstruct the input

vector at the output.

In sum, during the training phase of the autoencoder, some features of the data samples

are turned to zero, by a masking noise transform. The subsequent reconstruction error is

assigned to the indices that were subjected to the masking noise. We adopt the following

criterion: The bigger the error, the greater the importance of the masked features. Then,

the errors are summed up during the training phase. At the end, we select the bands

with the biggest indices.

A comparison with four other BS frameworks shows that the our algorithm yields better

results in some specific cases, and similar performance in other situations.

1.4 Publications

• Problem-based Band Selection for Hyperspectral Images (Mateus Haber-

mann, Vincent Frémont, Elcio Hideiti Shiguemori), 2017 IEEE International Geo-

science and Remote Sensing Symposium, IGARSS, (international conference pa-

per)
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• Feature Selection for Hyperspectral Images Using Single-Layer Neural

Networks, (Mateus Habermann, Vincent Frémont, Elcio Hideiti Shiguemori),

8th International Conference on Pattern Recognition Systems, 2017, (international

conference paper)

• Unsupervised Band Selection in Hyperspectral Images Using Autoen-

coder, (Mateus Habermann, Vincent Frémont, Elcio Hideiti Shiguemori), 9th

International Conference on Pattern Recognition Systems, 2018, (international

conference paper)

• Clustering-based Unsupervised Hyperspectral Band Selection

Using Single-Layer Neural Network, (Mateus Habermann, Vincent Frémont,

Elcio Hideiti Shiguemori), Conférence Française de Photogrammétrie et de

Télédétection, CFPT 2018, (french conferencer paper)

• Supervised Band Selection in Hyperspectral Images Using Single-Layer

Neural Networks, (Mateus Habermann, Vincent Frémont, Elcio Hideiti Shigue-

mori), International Journal of Remote Sensing, (journal paper, accepted)

• Unsupervised Hyperspectral Band Selection using Clustering and Single-

Layer Neural Network, (Mateus Habermann, Vincent Frémont, Elcio Hideiti

Shiguemori), Revue Française de Photogrammétrie et de Télédétection (under re-

view)

1.5 Thesis Structure

In order to make the reading of this thesis more pleasant, we divide the text into seven

parts. The first one, which you are now reading, is called Introduction. Here we presented

the context and motivation for the proposed BS frameworks.

In Chapter 2, there are some basic concepts of Remote Sensing, as well as some informa-

tion about the electromagnetic spectrum. Furthermore, we will see that a hyperspectral

image has hundreds of bands, and that the resulting high dimensional feature space may

pose sparsity-related problems, affecting the classifier’s performance. Due to the high

correlation amongst neighboring bands, it is possible to reduce the feature space dimen-

sionality without losing much useful information. For this, we opt for band selection,

whose state-of-the-art methods can be found in Chapter 3.

Then, in Chapter 4, we present our supervised band selection framework. Chapters 5

and 6 contain our two unsupervised BS frameworks. Finally, in Chapter 7 one can find

the conclusion to this thesis.





Chapter 2

Fundamental Tools

This thesis addresses the feature selection (FS) subject. In order to be precise, it is more

appropriate to speak of band selection, instead of FS, due to the fact that the data sets

to be analyzed in this thesis are exclusively composed of hyperspectral images.

Hyperspectral band selection is a task that demands the knowledge of techniques that

go beyond the Pattern Recognition sphere. It also requires a certain comprehension of

other subjects, such as Remote Sensing and Spectroscopy, so that one can understand

the image formation and the reason why adjacent spectral bands are highly correlated.

By the way, because of this correlation, it is possible to perform hyperspectral band

selection without discarding important information.

2.1 Fundamentals of Remote Sensing

Sensing something remotely, in its strict sense, is to measure it indirectly, i.e., without

a physical contact. In many applications, it is not possible to measure features of the

objects of interest directly, therefore it is necessary to resort to the measurement of some

other quantities related to the sought ones (Ustinov, 2015).

The idea of sensing an area or object without physical contact is rather old. Concerning

aerial images, for example, the French photographer and balloonist Gaspard-Félix Tour-

nachon1 took the first known aerial photograph in the year of 1858. In 1903, a small

light weight camera was attached to a pigeon of the Bavarian Pigeon Corps, in order to

capture aerial images, as shown in Figure 2.12. The aerospace industry improved the

Remote Sensing (RS) technology, especially with the space exploration in the sixties.

In our days, one can see spaceborne images on television during weather forecasts, for

1https://francearchives.fr/commemo/recueil-2010/39161
2https://www.pinterest.fr/pin/109353097178882074/?lp=true

11
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Figure 2.1: Left: a pigeon of Bavarian Pigeon Corps, with a light weight camera. Center
and right: some images acquired during the flight.

Figure 2.2: Electromagnetic spectrum with emphasis on visible light.

instance. The advances in technology allow for the unbounded increasing of RS appli-

cations, such as X-Rays and Magnetic Resonance Imaging. However, it is worth noting

that the main driving force behind the RS technology is the military industry.

Remote Sensing, as a science, is a recognized inter-disciplinary field. In this thesis, the

RS’s facet we will explore is that of classification of objects on the surface of the Earth,

by analyzing aerial images taken by satellites. In reality, this thesis’ contribution is

focused on a preprocessing step before the classification itself takes place. More precisely,

we perform the selection of spectral bands, which are, in turn, the measurements of

the electromagnetic energy that emanates from the targets. Thus, it is important to

understand some principles of emission and reflectance (Khorram et al., 2016). Before

that, though, let us remember some basic aspects of the electromagnetic spectrum.

2.1.1 The electromagnetic spectrum

In Figure 2.2, the electromagnetic (EM) spectrum is shown. It is normally characterized

by the wavelength, which ranges from radio waves until gamma rays (Solimini, 2016).

The visible light embraces only a small fraction of the spectrum, exposing the fact that

there are much more information in the world than our eyes are able to see.

Some sensors are capable of capturing the electromagnetic energy beyond the visual spec-

trum, thus obtaining more information from the objects under scrutiny when compared
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Figure 2.3: Earth emission and reflectance curves.

to RGB cameras, for instance. In fact, the interaction between matter and electromag-

netic radiation is particular for each material, creating, consequently, a peculiar spectral

signature (Schowengerdt, 2006).

2.1.2 Emission and reflectance

When the electromagnetic radiation comes into contact with the matter, there is an

interaction between them. It can be: absorption, scattering, reflection or emission of

the energy by the matter. There is also the transmission of the energy through the

matter (Khorram et al., 2016). Normally, Remote Sensing deals with the reflected and

emitted energy.

When it comes to Earth reflectance—see Figure 2.33—, it is worth noting that its irradi-

ance peak takes place in the spectrum region with wavelengths varying between 0.4 m−6

and 0.7 m−6, which coincides with the spectrum range that humans can see.

When the incident radiation hits an object, a fraction of it is reflected and the remaining

energy is absorbed. Thus,

P (i) = P (r) + P (a), (2.1)

where P (i) is the incident irradiance, P (r) is the reflected irradiance, and P (a) is the

energy absorbed by the material (Solimini, 2016). In Figure 2.4 we can see this relation.

In fact, what a sensor measures is the reflectance ρλ, which varies according to the

wavelength λ. More precisely,

ρλ =
P

(r)
λ

P
(i)
λ

. (2.2)

3http://www.markelowitz.com/Hyperspectral.html
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Figure 2.4: Reflected and absorbed energy.

Figure 2.5: Spectral signatures of different elements. The shape of the signatures is
defined by the absorption regions.

From (2.1) and (2.2), concerning the reflected energy, it is evident that:

• There must be a source of electromagnetic energy so that the reflectance of a target

may be detected. It is the reason why a sensor that captures the reflected energy

cannot work at night, for example; and

• The spectral signature of a target is modeled by the regions of energy absorption.

This topic is addressed by Imaging Spectroscopy.

2.2 Imaging Spectroscopy

The main objective of Imaging Spectroscopy—also known as Hyperspectral Imaging—is

to measure the chemical composition of the image content. This is possible due to the
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Figure 2.6: A stack of single-band images, also called hyperspectral cube. Consequently,
each pixel is a vector containing a spectral signature.

energy absorption characteristics of each material (Antonio and Huynh, 2012). In Figure

2.54, it is possible to see that different materials have their own spectral signature.

Hyperspectral imaging systems employ sensors that mostly operate from visible up to

SWIR (Short Wavelengths InfraRed). Also, those sensors can simultaneously acquire

hundreds of both contiguous and narrow spectral channels. Consequently, each pixel

of the resulting hyperspectral image (HSI) can be seen as a vector whose elements are

measurements corresponding to specific wavelengths. The dimensionality of such vectors

indicates the number of spectral bands of that image. In other words, HSIs can be seen

as a three dimensional hyperspectral cube, as shown in Figure 2.6.

The detailed spectral information contained in HSI increases the possibility of correctly

detecting specific targets and materials of interest, according to their spectral signature.

Thus, many applications take advantage of using hyperspectral images:

• Mineralogy : A wide range of minerals can be identified by using hyperspectral

data. Moreover, it is possible to investigate the effect of oil and gas leakages from

natural wells and pipelines (Klima et al., 2014).

• Precision agriculture: Healthy green plants have a peculiar spectral signature. In

the visible region of the spectrum, the curve shape is a consequence of absorption

effects from chlorophyll and other leaf pigments. Chlorophyll has the property of

absorbing visible light effectively, but it absorbs blue and red wavelengths more

strongly than green, causing, as a consequence, the fact that healthy plants appear

to us in green color. Reflectance value rises significantly across the limit between

4http://eumetrain.org/data/4/461/navmenu.php?tab=4&page=2.0.0
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Figure 2.7: Spectral signatures of healthy plants, soil and stressed plants.

red and near infrared wavelengths, and this region is normally called red edge, as

depicted in Figure 2.7 5 At longer wavelengths, that is, in the near infrared region,

water absorption prevails and the reflectance drops, and the spectral signature

shape gives information on possible plant water stress. Consequently, HSIs provide

the location of unhealthy crop spots, thus only those regions are subjected to

specific treatments and measures, what can save both time and money (Murugan

et al., 2016).

• Geological science: By using hyperspectral imagery, it is possible to recover physico-

chemical mineral properties in terms of composition and abundance (Murphy et al.,

2012).

• Ecological science: The biomass and carbon, and also the biodiversity in dense

forest zones can be estimated by using hyperspectral images. Thus, land cover

changes can be assessed (Lu et al., 2009).

• Hydrological science: Changes in wetland characteristics can be evaluated by

means of HSIs. Furthermore, both water quality and coastal zones can also be

analyzed by means of hyperspectral data (Klemas, 2014).

• Military applications: The rich spectral information provided by hyperspectral

images can also be used for military purposes (Wang et al., 2018b). Camouflage,

for instance, can deceit human eyes because a hidden target may end up having

colors and texture that imitate its surroundings. However, since HSIs are able to

sense wavelengths beyond the visual range, they may render camouflage useless

(Hua et al., 2015).

5https://www.korecgroup.com/product/parrot-sequoia-sensor/
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Figure 2.8: The peaking phenomenon (Theodoridis and Koutroumbas, 2008).

Thus, we can perceive that the spectral richness contained in hyperspectral images

provides valuable information to be used in different science areas. This very spectral

richness, on the other hand, also means that the feature space ends up having high

dimensionality, and this can cause some negative consequences.

2.3 High Dimensional Data Issues

Hyperspectral images are known to have hundreds of bands, in some cases. When

it comes to supervised classification approaches, for example, the number of labeled

instances plays an important role in the performance of the classifier. More precisely,

the number of training samples, N , must be large enough with respect to the number

of bands, d, which is the dimensionality of the feature space.

Taking into account the accuracy of a classifier, for a given N , by increasing the number

of spectral bands one gets an initial improvement in performance. But, after a critical

value, a further increase of the quantity of bands yields an increase of the probability

of error. This is called peaking phenomenon, or more popularly known as curse of

dimensionality (Theodoridis and Koutroumbas, 2008). Figure 2.8 illustrates the general

tendency we should expect by playing with the number of bands and the cardinality of

the training data set. When N2 � N1, the error values corresponding to N2 are lower

than those of N1. Besides, the peaking phenomenon occurs for d2 > d1. For each value

of N , the probability of error Pe decreases when d gets bigger until a critical point, after

which Pe increases.
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One plausible explanation for the peaking phenomenon is the sparsity of data points in

high dimensional feature spaces. It can be understood by using Geometry, and we can

state the problem as follows:

As dimensionality increases, the volume of a hypercube concentrates in corners (Scott,

1992).

The volume of a hypersphere with radius r and dimension d is calculated by

Vs(r) =
2rdπd/2

Γ(d2)d
, (2.3)

where Γ is the gamma function. The volume of a hypercube in [−r, r]d is given by

Vc(r) = (2r)d. (2.4)

The fraction fsc between the volumes of a hypersphere inscribed in a hypercube is

calculated according to

fsc =
Vs(r)

Vc(r)
=

πd/2

Γ(d2)(2d−1)d
. (2.5)

It is easy to see that limd→∞ fsc = 0. That is, as d increases, the volume of the hy-

percube—that may represent a feature space—increasingly concentrates in the corners.

It is now obvious that high-dimensional spaces are completely different from 3-D ones.

Thus, in such a situation, the data points would be so sparse that many different hyper-

planes, for example, could provide a good separation amongst the classes. The resulting

high variance of the hyperplane parameters reduces the statistical significance of the

classifier’s generalization power. The ratio N/d can be used as an indicator of this

generalization (Theodoridis and Koutroumbas, 2008), because a large number of spec-

tral bands can be translated into a large number of classifier parameters. Moreover,

few training samples would make the data points so sparse in high dimensional feature

spaces. So, the bigger this ratio, the better the classifier generalization.

Thus, one could conclude that increasing the number of training samples—to increase

N/d—is a reasonable way to avoid high dimensionality-related problems. However, su-

pervised approaches require labeled data during the training phase of the algorithm,

and the labeling process of a hyperspectral image is done manually pixel by pixel, gen-

erally using some field measurements. It means that the collection of these labeled

samples is both expensive and time consuming. Consequently, the number of available

hyperspectral training data is normally limited, what causes serious issues in supervised

classification.
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Since it is expensive to have enough training data, we can resort to another way to

increase the ratio N/d, namely, making d smaller. Decreasing d means decreasing the

dimensionality of the feature space. Fortunately, there are, at least, two facts that

support the HSI dimensionality reduction:

• Due to the high HSI dimensionality, the different classes present in the image may

lie in manifolds embedded in subspaces of the original feature space. Thus, it is

possible to explore the sparsity of the data set in order to find a more meaningful

data representation (Bitar et al., 2017).

• The bands of a hyperspectral image are not only contiguous, but also have a very

small bandwidth—10 nanometers or less. Consequently, neighboring bands have

almost the same information, what is characterized by the high correlation that

exists among them (Schowengerdt, 2006).

According to the HSI-related literature (Zhang et al., 2016; Cao et al., 2017a), there are

two methods that perform dimensionality reduction, namely, feature extraction (FE)

and feature selection (FS).

2.3.1 Feature extraction

According to the FE approach, new features are generated by linear, or non-linear, com-

binations of the original ones (Theodoridis and Koutroumbas, 2008). The new features

have a lower dimension, and normally they still retain much of the original data variance.

In Pattern Recognition, one seeks to extract features that provide discrimination amongst

classes. However, it is important to balance the dimensionality reduction and its conse-

quent loss of information, which can impair the classifier’s discriminating power (Webb

and Copsey, 2011).

Feature extraction techniques can be divided into two branches, supervised and unsu-

pervised. Supervised methods are used for data redundancy reduction, aiming for a

better classification accuracy. Discriminant Analysis Feature Extraction (Luo et al.,

2015) is commonly used for this purpose, and it takes into consideration within-class

and between-class scatter matrices, that is, labeled data are needed. Unsupervised FE

approaches are used for the purpose of data representation. When it comes to multi- or

hyperspectral images, Minimum Noise Fraction (Wu et al., 2013) and Principal Com-

ponent Analysis (PCA) (Silva et al., 2013; Uddin et al., 2017) are largely used for

dimensionality reduction by means of feature extraction.



20 Chapter 2 Fundamental Tools

2.3.1.1 Principal Component Analysis

PCA is an unsupervised technique, which is used for dimensionality reduction, lossy data

compression, feature extraction and data visualization. It is also known as Karhunen-

Loève transform (Duda et al., 2001).

PCA can be defined as the orthogonal projection of the data onto a lower dimensional

linear space, such that the variance of the projected data is maximized (Bishop, 2006).

Let X be a hyperspectral dataset with samples xi ∈ Rd, where d is the number of

spectral bands. One seeks to project the data onto a space with dimensionality d
′
< d,

while maximizing data variance.

Let us consider the projection onto a one-dimensional space, that is, d
′

= 1. One can

define the direction of this space using a d-dimensional vector u1, which, for convenience,

is set to be a unit vector, resulting uT1 u1 = 1. Each data point is then projected onto a

scalar value uT1 xi. The mean of the projected data is uT1 x̄, where x̄ is given by

x̄ =
1

N

N∑
i=1

xi,

where N is the total amount of data samples. The variance of the projected data is

calculated by

1

N

N∑
i=1

{uT1 xi − uT1 x̄}2 = uT1 Su1,

where S is the covariance matrix given by

S =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T .

We seek a reduced d
′
-dimensional feature space that keeps the most original data vari-

ance. For that, the variance uT1 Su1 of the new feature space is maximized with respect to

u1. Naturally, this has to be a constrained optimization in order to prevent ‖u1‖ → ∞.
So, we condition uT1 u1 = 1, by using a Lagrange multiplier λ1. Then, we proceed to an

unconstrained maximization of uT1 Su1 + λ1(1− uT1 u1).

We set the derivative with respect to u1 equal to zero, then there will be a stationary

point when

Su1 = λ1u1.
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Consequently, u1 must be an eigenvector of S. Multiplying on the left by uT1 , the

variance of the projection is given by

uT1 Su1 = λ1,

and the variance of the reduced feature space will be a maximum when u1 equals the

eigenvector with the largest eigenvalue λ1. This eigenvector is known as the first principal

component.

Let U be a d× d matrix whose columns are the uj eigenvectors of S, with j = 1, 2, ..., d.

The multiplication X·U projects the original data set onto a new set of orthogonal axes,

which are the eigenvectors of S, with variance v =
∑d

j=1 λj , which equals the variance

of the original data set X.

In practice, however, most of the variance of the projected data are concentrated on the

first m principal components, and it is given by v
′

=
∑m

i=1 λi. Thus, it is possible to

have a d×m matrix U
′

whose columns are the first m eigenvectors of S, with variance

v
′
< v. The multiplication

X·U′
(2.6)

gives a N × m matrix of the projected data, with m < d, yielding, consequently, a

reduction in the dataset dimensionality.

It is worth noting, however, that the Equation 2.6 performs a linear transform on the

original data set X. This means that the original information—reflectance values for

each pixel—is lost.

Feature extraction techniques, as a whole, change the original data representation, and

this changing renders the post-processing analysis unfeasible, when the physical meaning

of individual bands needs to be maintained (Feng et al., 2017), (Li and Liu, 2017).

Feature selection methods, on the other hand, can also be used as a dimensionality

reduction tool. The difference in relation to FE approaches lies in the fact that FS

techniques keep the original information—or bands—of the hyperspectral images.

2.3.2 Feature selection

As already mentioned, feature or band selection seeks to reduce the dimensionality of a

data set without changing the original information.

When it comes to classification tasks, the focus of a BS method is on the bands that pro-

vide a good class separability, when the class labels are provided. For data sets without
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class information, unsupervised approaches must be used, and, in this case, the BS pro-

cess is focused on bands that best preserve the original data structure. For unsupervised

approaches, the band selection procedure can follow one out of three methods:

• Ranking : the bands are quantified according to their importance. At the end of the

process, the top-ranked bands are selected (Emmanuel Arzuaga-Cruz, 2003). More

formally, let A be the original set of spectral bands, with cardinality |A| = d. The

band selection process is based on the assignment of weights pj to each band ai ∈
A, defining their relative importance. Some methods give a weighed linear order

of bands, whereas other approaches yield a subset of the original bands, whose

weights pj are binary (Molina et al., 2002). Normally, ranking-based methods do

not take into account the correlation amongst spectral bands (Sun et al., 2017);

• Clustering : under this approach, the correlation amongst bands are considered.

The most appropriate bands are selected by clustering (Datta et al., 2012); and

• Searching methods: The searching scheme evolves a good solution of band selection

by optimizing a given measure (Xia et al., 2013).

In both supervised and unsupervised cases, the band selection algorithms preserve the

HSI original information, which makes the results more interpretable, as indicated by (Li

and Liu, 2017). For a judicious BS process, only the relevant bands should be selected,

and the relevance of a spectral band is thus defined:

• A relevant band should provide useful information, based on a given criterion

(Molina et al., 2002);

• A relevant band should not be redundant in relation to others already selected

(Monteiro and Murphy, 2011); and

• A relevant band provides a better class separation in the feature space, and, con-

sequently, improves the generalization power of the classifier—for supervised ap-

proaches (Duda et al., 2001).

In Figure 2.9, there are two 2D feature spaces for a hypothetical classification prob-

lem, in which two classes—red circle and blue asterisk—are to be distinguished by a

classifier. In Feature space 1, the bands a1 and a2 are highly correlated. Thus, the

band a1, for example, would suffice to carry out the classification. Therefore, a2 can be

considered redundant information and can be, consequently, discarded from the original

data set. In Feature space 2, the band a1 provides a good class separability between the

classes. However, a3 is not a discriminant band for this classification task, that is, a3

has irrelevant information and can be discarded.
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Figure 2.9: Two examples of feature spaces considering a binary classification. The band
a1 is relevant, whereas bands a2 and a3 are redundant and irrelevant, respectively.

2.3.2.1 Characterization

A BS method can be characterized under four aspects:

• Search organization;

• Generation of features subset;

• General schemes for feature selection ; and

• Evaluation measure.

Search organization: In relation to the number of bands that a method can analyze

at a given instant, there are three possibilities:

• Exponential search: It can evaluate more than one band at a time. The optimal

solution is achieved due to an exhaustive search. Sometimes, however, if the eval-

uation measure is monotonic, not all the possible combinations need be visited. In

such a case, a branch and bound algorithm (Narendra and Fukunaga, 1977) may

be used (Theodoridis and Koutroumbas, 2008);

• Sequential search: This method chooses one amongst all candidates to be the

current state. It is an iterative method, so it is not possible to go back once one

band is selected (Habermann et al., 2017b); and
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Figure 2.10: In (a): A flowchart of a typical filter-based band selection method. In (b):
Wrapper approaches perform the band selection using the classifier.

• Random search: The intention is to use the randomness in order to avoid getting

trapped in local minimum solution, and also to allow some movements towards

states with suboptimal results (Kang et al., 2016).

Generation of features subset: The output of a band selection method is the

subset A′ ⊂ A, containing the selected spectral bands.

One approach starts with the original set A with d elements, and, at each step, one band

is dropped out from A until the desired number of bands is achieved. This method is

called sequential backward selection.

Another method, which is the reverse of the preceding procedure, is referred to as

sequential forward selection. It starts from an empty set, and the best band—according

to a specified criterion—is added to the set after each iteration. Sequential forward band

selection is appropriate because in many cases the classifiers perform better with a small

portion of the total number of available bands (Kohavi and John, 1997). Thus, it is

faster to start with a empty set A
′

and iteratively add bands to it, instead of discarding

unwanted bands from the original data set.

The two afore-mentioned methods, however, suffer from the nesting effect. That is, once

a spectral band is discarded or selected, depending on the method, it cannot be undone

(Theodoridis and Koutroumbas, 2008). In order to mitigate such setbacks, compound

methods make a combination of both forward and backward methods.

General schemes for features selection: For supervised approaches, the relation-

ship between a band selection algorithm and the subsequent classifier can normally have

two forms : filter and wrapper (Molina et al., 2002).
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• Filter: Under this approach, the band selection takes place before the classifier

training phase. That is, the BS method is used as a data preprocessing step.

Consequently, the band selection method is independent of the classifier. The ad-

vantage of this strategy is its speed in relation to wrapper methods. Furthermore,

filter-based band selection methods are most useful in situations in which wrapper

algorithms may overfit due to small training data sets. The disadvantage of filter

methods is that the band selection is not assisted by the classifier, what normally

yields suboptimal results (Shahana and Preeja, 2016) (Molina et al., 2002). In

Figure 2.10 (a), there is a simple flowchart depicting the relation between a filter-

based band selection and a classifier. The horizontal arrow indicates that the

training phase of the classifier starts after the band selection process is finished.

• Wrapper: In this case, the HSI bands are selected during the training phase of

the classifier. For each feature ai added to the bands subset A
′
—or discarded

from it—, the classifier should be trained again in order to evaluate the bands

in A
′
. Thus, the main disadvantage of this method is its heavy computational

cost. Its advantage is the good overall classifier’s accuracy (Shahana and Preeja,

2016) (Molina et al., 2002). A strong argument for wrapper approaches lies in the

fact that the estimated accuracy of the classifier is the best available heuristic for

measuring the degree of appropriateness of the selected bands. Moreover, different

classifiers may yield different results using as input the same subset of selected

bands. Thus, it is desirable that a classifier be able to select its own features

(Kohavi and John, 1997). In Figure 2.10 (b), we see that both the band selection

process and the classifier training phase are run at the same time.

Unsupervised approaches: As wrapper-based methods need the classes information

to evaluate a given subset A
′
, there is no point talking about unsupervised wrapper-

based algorithms, because, in principle, such a thing cannot exist. Thus, unsupervised

band selection methods always follow a filter strategy.

Evaluation measures: There are some ways to assess how good a subset of selected

bands is. Most evaluation measures such as Divergence and Chernoff Bound and Bhat-

tacharyya Distance take into account the probability distribution of the classes (Molina

et al., 2002). But, they are not easily computed.

For supervised approaches, a non-parametric measure called Scatter Matrices can be

adopted (Theodoridis and Koutroumbas, 2008).

Scatter Matrices measure how well the data samples are scattered in the feature space.

For this purpose, the following three matrices are defined:
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• Within-class scatter matrix:

Mw =

q∑
k=1

PkΣk, (2.7)

where q is the number of classes, Σk stands for the covariance matrix for class k,

and Pk is the a priori probability of class k;

• Between-class scatter matrix:

Mb =

q∑
k=1

Pk(µk − µ0)(µk − µ0)T , (2.8)

where µk is the mean vector of class k, and µ0 stands for the mean vector of the

whole data set; and

• Mixture scatter matrix: it is given by

Mm = Mw + Mb. (2.9)

The trace of Mm represents the sum of the features’ variances around their respective

global mean. Thus,

J =
trace(Mm)

trace(Mw)
(2.10)

has larger values when:

• The data samples are well clustered inside their respective classes; and

• The clusters of different classes are well separated.

By using the index J , it is possible to have an early idea about the classifier’s perfor-

mance. Indeed, indices with large values indicate that the classes are well separated in

the feature space. Consequently, the classifier will not have difficulties in finding ap-

propriate separating boundaries amongst classes. In general, a good feature selection

process is the first step towards a successful Pattern Recognition framework.

The use of the index J is, though, restricted to supervised approaches. When it comes to

unsupervised BS methods, clustering algorithms may be used to compare the clustering

results between A and A
′
, using, for example, the Adjusted Rand Index (Rand, 1971).

Most band selection works found in the literature, however, do not use any sort of index

nor clustering methods to assess their proposed BS framework. They just compare their

results with other approaches by using the same classifiers.
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Figure 2.11: A single-layer neural network (Haykin, 2009).

2.4 Machine Learning Basics

Machine learning is a multidisciplinary research field that embraces different areas such

as computer science, probability and statistics, psychology and brain science (Liu et al.,

2018). Basically, the aim of machine learning is to automatically discover and acquire

knowledge from datasets like humans do.

As an example of ML algorithm, artificial neural networks (ANN) imitate the function-

ing of the human brain, which is known for its highly complex, nonlinear and parallel

computing power (Haykin, 2009).

In the sequel, we present the two ANN-based algorithms to be used in this thesis.

2.4.1 Single-Layer Neural Network

A single-layer neural network (SLNN) is the simplest neural net framework.

There is an input layer of source nodes that projects directly to an output layer of

neurons, i.e., it is a strictly feedforward neural network. It is illustrated in Figure 2.11

depicting a four-node case in both the input and output layers. Such an architecture is

called a single-layer network, with the designation single-layer referring to the output

layer of computation neurons. That is, one does not count the input layer due to the

fact that no computation is performed there.

2.4.1.1 Positive aspect

One advantage of the SLNN is that it has less parameters to be adjusted in relation to a

neural network with hidden layers. This characteristic is specially important when one
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Figure 2.12: Example of an autoencoder architecture for dimensionality reduction.

works with hyperspectral data following a supervised approach, because assigning labels

to such data is expensive. Thus, the less data needed, the better.

2.4.1.2 Negative aspect

Since the decision boundaries in the feature space are linear—a single or a set of hyper-

planes—, it is important that the different classes be linearly separable.

2.4.2 Autoencoders

Autoencoders are a type of artificial neural network. They are used to learn efficient

data codings in an unsupervised manner, because the output is the same as the input,

thus, the class information is not needed.

The objective of an autoencoder is to learn a representation for a dataset, and it is

oftentimes used for the purpose of dimensionality reduction. In this case, the hidden

layers size must be smaller than that of the input layer, as illustrated in Figure 2.12.

2.4.2.1 Positive aspect

One advantage of the autoencoders is their unsupervised nature. The focus is done on

the dataset structure, thus it is possible to draw conclusion about the importance of the

input features—or spectral bands—, for example.
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2.5 Hyperspectral Images Used

In this thesis, all the results and analyses are made by taking into account four hy-

perspectral datasets6. They are also used in several other scientific papers, thus it is

possible to compare results.

1. Botswana: This image has a spatial resolution of 30 m. It has 145 bands covering

the 0.4-2.5 µm range with a spectral resolution of 10 nanometer. The Botswana

image comprises 1476 × 256 pixels, with 14 classes to be classified, as shown in

Figure 2.13.

2. Kennedy Space Center (KSC): The spatial resolution of this image is 18 m.

The KSC image comprises 512× 614 pixels and has 176 spectral bands. There 13

classes to be classified, as illustrated in Figure 2.14.

3. Indian Pines: This scene was acquired by the AVIRIS sensor over the Indian

Pines test site in north-western Indiana. It consists of 145 × 145 pixels and 224

spectral reflectance bands in the 0.4-2.5 µm wavelength range. The image contains

two-thirds agriculture, and one-third forest or other natural perennial vegetation.

Regarding the ground truth, there are 16 classes, as shown in Figure 2.15.

4. Pavia University: The Pavia University image has 103 spectral bands. It has 9

classes, as shown in Figure 2.16.

6http://www.ehu.eus/ccwintco/index.php/Hyperspectral Remote Sensing Scenes
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Figure 2.13: The Botswana image and its ground truth. In (a) a color composition, and
in (b) the ground-truth classification map.

Figure 2.14: The KSC hyperspectral image and its classes.
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Figure 2.15: The Indian Pines image and its classes. In (a), a color composition, and in
(b) the ground-truth classification map.

Figure 2.16: The Pavia University dataset. In (a) a color composition. In (b), the
ground-truth.





Chapter 3

Literature Review on

Hyperspectral Band Selection

Methods

In this thesis, we propose three hyperspectral band selection frameworks. Two of them

are unsupervised, and one is supervised.

As explained in Chapter 2.3.2, the strategy followed by supervised-based frameworks

are different from that used by unsupervised approaches. Therefore, we present the BS

state-of-the-art methods in two separate sections:

• Supervised approaches; and

• Unsupervised approaches.

3.1 Supervised approaches

According to Chapter 2.3.2.1, supervised band selection methods can be divided into

filter and wrapper approaches.

3.1.1 Wrapper-based band selection frameworks

Wrapper methods perform the selection of bands based on the accuracy of the classifier.

For example, (Monteiro and Murphy, 2011) proposes a band selection framework for

hyperspectral images using boosted decision trees (DT). Several DTs are generated and

the most recurrent features are selected.
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In (Fauvel et al., 2015), it is proposed a method that iteratively selects spectral bands

that will be assessed by a Gaussian Mixture Model classifier. The selection of bands is

made by a method called nonlinear parsimonious feature selection. One positive aspect

of the proposed framework is the selection of few bands—about 5% of the total amount.

The authors propose, in (Cao et al., 2016b), a BS framework based on local spatial

information. Initially, the subset of selected bands is empty, and at each iteration a

band is added to it. Then, this subset is used as input to a Markov Random Field-based

classifier. Based on the local smoothness, the last inserted band is accepted or discarded.

Due to the paucity of the training data, this method could not achieved better results

than its competitors.

A framework based on Convolutional Neural Networks (CNN) and Distance Density

(DD) is proposed in (Zhan et al., 2017). In this case, DD is used, instead of random

search, for the selection of the candidate bands, which are assessed by a CNN classifier.

Experiments show that the DD-based BS is faster than its random counterpart.

In (Bris et al., 2014), the authors address the problem of designing superspectral cameras

dedicated to specific applications. Thus, they seek to find the best number of bands

and the most useful spectrum regions suitable for their necessities. For this, they use

two different band selection methods, namely, Sequential Forward Floating Search and

Genetic Algorithm-based approach. The classifier used is SVM.

The authors proposed a wrapper-based framework using extreme learning machine as

classifier (Su et al., 2017). Both the selection of bands and optimization of classifier’s

parameters are performed by an evolutionary optimization algorithm called Firefly.

In (Ma et al., 2017), it is proposed a framework that measure the band importance by

means of gain ratio, then the bands subset is evaluated by polygon-based algorithm with

SVM. The authors use not only spectral data, but also other types of features.

3.1.2 Filter-based band selection frameworks

When it comes to filter-based approaches, there are some different criteria for the band

selection, such as, distances measures (Keshava, 2004), class separability measures (Cui

et al., 2011), information, dependence (Camps-Valls et al., 2010), correlation, searching

strategies (Jahanshahi, 2016) (Su et al., 2016) and classification measures (Habermann

et al., 2017b).

For example, in (Damodaran et al., 2017), the authors propose a class separability-based

approach. To be more precise, a new class separability measure based on surrogate kernel

and Hilbert space independence criterion in the kernel Hilbert space is devised. Then, the

proposed class separability is used as a objective function using LASSO optimization
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(Hastie et al., 2015). The authors claim that this framework allows the selection of

spectral bands to increase the class separability, thus avoiding an intensive subset search.

In (Jahanshahi, 2016), the author proposes a framework for hyperspectral band selection

based on an evolutionary algorithm to perform the band selection, and then he uses

a SVM classifier to assess the selected band subsets. The BS step is performed by

Multi-Objective Particle Swarm Optimization, which ranks the bands according to the

relevance between each band and the ground-truth information.

In this paper, the Firefly algorithm is used for the selection of bands (Su et al., 2016).

The bands subsets found during the search are evaluated by Jeffreys-Matusita distance.

In (Monteiro and Murphy, 2011), the authors list some of the pros and cons of wrapper

and filter methods for feature selection, and propose a filter-based forward selection

algorithm that shares some common features with the wrapper method. The proposed

framework uses boosted decision stumps. Over series of iterations, the features that

correctly predict the classes’ labels are chosen.

Rough Set theory (RST) (Pawlak, 1992), which has already been applied in image

classification tasks (Pessoa et al., 2011), is used in a BS framework proposed in (Patra

et al., 2015). The authors propose a BS framework based on RST, which is a paradigm to

deal with vagueness, incompleteness and uncertainty of data. Firstly, informative bands

are selected by RST, based on relevance and significance. Comparison of classification

results shows that this method outperforms its competitors when a small number of

bands is selected.

Normally, researchers working on the supervised band selection area have to devise

methods capable of handling few training data. It may be a challenging issue for filter-

based methods based on classification and class separability measures. For wrapper

approaches, the paucity of training data poses an even worse problem, since such meth-

ods rely exclusively on classifiers to generate results. So, in order to alleviate this

inconvenience, unlabeled instances are added to the training data, constituting, thus, a

semisupervised model.

In (Bai et al., 2015b), the authors propose a framework based on spectral-spatial hyper-

graph model. Firstly, the method builds a hypergraph model using all data to measure

the similarity amongst pixels. Then, a semisupervised learning algorithm is used in

order to assign class labels to unlabeled samples. After that, the selection of bands is

performed by a linear regression model that uses group sparsity constraint. Finally, the

selected data are used to train a SVM classifier. This method has the advantage of using

the spatial information of pixels.

In another paper, the authors assert that most band selection methods do their job

taking into consideration all the classes at the same time, and this could result in sub-

optimal band subset choice (Bai et al., 2015a). It is, then, proposed a framework that
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selects bands for each class in a pairwise fashion. Initially, the Expectation-Maximization

(ExpM) algorithm is used to measure the mean vectors and covariance matrices of each

class. Then, for each pair of classes, Bhattacharyya distances are calculated and the best

subset of bands are chosen. After that, a binary classifier is embedded into the ExpM

process in order to get the posterior probabilities of instances, based on the selected

bands. Finally, all the binary classifiers are fused.

Based on affinity propagation, which is an exemplar-based clustering method, the au-

thors propose a semisupervised framework for the selection of bands (Jiao et al., 2015).

Band correlation and band preference are also taken into account. In the paper, a new

normalized trivariable mutual information is devised to measure band correlation. Due

to the noisy bands the clustering step is disturbed, so a new method based on Statistics

is devised, that is, the mean value of the neighboring bands correlation is compared to

the correlation between two contiguous bands in order to find bands bearing low infor-

mation. Finally, the framework is capable of selecting informative bands, whereas it can

discard redundant ones.

3.2 Unsupervised approaches

In the literature, it is possible to find lots of BS works following many different perspec-

tives and methodologies, such as data manifold, data information analysis, graph theory,

evolutionary computation and clustering.

3.2.1 Data manifold

Due to the high HSI dimensionality, the different classes present in the image may lie

in manifolds embedded in subspaces of the original feature space. Furthermore, it is

also possible to explore the sparsity of the data set in order to find a more meaningful

data representation. For example, in (Wang et al., 2016), the authors propose a new

method in which they look for salient bands. The number σ of selected bands is user-

defined. Then, the band selection algorithm has two steps. Firstly, β bands are selected

by means of clone selection algorithm, which seeks to minimize the Euclidean distance

amongst elements of the same class, whereas maximizing the distance of elements from

different classes. After that, if β < σ, those β bands already chosen will serve as seeds

to a Manifold Ranking (MR) algorithm. MR sorts the remaining bands, and the most

dissimilar band is added to the β group. This step is repeated until β = σ.

In (Wang et al., 2017), the authors propose a BS framework based on sparsity. Initially,

the most representative bands are obtained according to the correlation matrix, whereas

the block-diagonal structure is measured to segment bands into subspaces. Then, a

method for band selection based on trace LASSO and spectral clustering is used.
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The authors of the paper (Sun et al., 2015) propose a method that initially represents

data instances as sparse coefficient vectors by solving a L2-norm optimization using the

least squares regression (LSR) algorithm. Then, a correct segmentation of band vectors

is made using the resulting LSR matrix with sparse and block-diagonal structure. After

that, a similarity matrix is constructed by angular similarity measurement, and then the

size of the band subset is calculated by the distribution compactness plot algorithm.

In (Gan et al., 2017), the authors state that all HSI bands can be represented by a

band subset. Thus, they propose a sparse representation of bands with row-sparsity

constraint. Besides, a dissimilarity-weighted regularization term is integrated with the

self-representation model, to avoid contiguous bands. The problem is solved by the

alternating direction method of multipliers, and the representative bands can be chosen.

A fast and robust self-representation framework to select a band subset is proposed (Sun

et al., 2017). It is assumed the separability structure of the spectral bands, thus the

problem may be seen as non-negative matrix factorization. After that, an optimizing

convex problem is addressed and augmented Lagrangian multipliers are used to select

the band subset.

The authors in (Zhu et al., 2017) propose a BS framework that can capture the inter-

band redundancy through low-rank modeling. Then, by using an affinity matrix and

concepts of data quality, the most representative bands are selected.

In (Wang et al., 2015), a BS method based on column subset selection is proposed. By

means of column subset selection problem, it is possible to select some bands maximizing

the volume of the selected subset of columns. The high dimensionality decreases the

contrast amongst bands, thus Manhattan distance is used to get a higher quality in the

BS process.

As a last example on data manifold, in (Cao et al., 2016a), the authors propose a

framework that removes low-discriminating bands that normally need to be discarded

manually. Based on the spatial structure of the data set, it is possible to determine which

bands have low-discriminating power. Then, a new clustering algorithm is proposed in

order to define the optimum number of bands to be selected.

3.2.2 Data information analysis

Another criterion that can be used in BS strategies is the HSI data information analysis.

For example, in (Sui et al., 2015), the authors propose a framework that integrates both

the overall accuracy and redundancy. Thus, an optimization problem using adaptive

balance parameter is devised to handle the trade-off between the overall accuracy and

redundancy. Furthermore, an unsupervised overall accuracy prediction method was

adopted.
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In (Sun et al., 2014), the authors propose a framework that merges the concept of noise-

adjusted principal components with maximum determinant of covariance matrix. A new

index to measure the HSI quality is also proposed, taking into account signal-to-noise

ratios (SNR) and correlation of bands. Based on the new index, the authors devise

an unsupervised band selection method, which considers the quality of the data set as

selection criterion. It selects bands with both high SNR and low correlation.

The authors in (dos Santos et al., 2015) propose a BS method based on the dissimilarity

amongst neighboring bands. They use an intermediary representation named spectral

rhythm, which can take advantage of a pixel sampling strategy, what ends up improving

its efficiency without reducing the selected bands quality.

Another BS framework is based on information-assisted density peak index (Luo et al.,

2017). It takes into account the intraband information entropy into the local density and

intercluster distance to ensure cluster centers with a high quality. Besides, the channel

proximity and band distance are integrated to control the local density compactness.

The bands with top-ranked scores may get clear global distinction, good local density

and also high informative quality.

In (Chang et al., 2017), the authors formulate the BS as a channel capacity problem.

After constructing a band channel with the original bands. Then, some bands are

selected by Blahut’s algorithm, which iteratively finds a feature space that provides the

best channel capacity. Thus, neither band prioritization nor interband decorrelation are

required. Two iterative methods are devised to find the best band subset, which avoid

an exhaustive search.

3.2.3 Graph theory

Using graph theory, in (Yuan et al., 2017) the authors propose a multigraph determinan-

tal point process (MDPP). The aim is to capture the structure amongst bands and find

the optimal band subset. For this, multiple graphs are designed to capture the intrinsic

relationship amongst bands. Besides, the proposed MDPP is used to model the multiple

dependencies in graphs, providing an efficient search strategy for the BS process.

3.2.4 Evolutionary computation

Evolutionary computation with optimization have been largely used by BS methods.

For example, in (Xu et al., 2017), the authors propose an incorporated rank-based

multiobjective band selection framework, to avoid conflicting objective functions, such

as Jeffreys-Matusita (JF) and Bhattacharyya distances. During the processing, the

spectral bands are transformed into binary vectors, whose elements are subjected to

flipping with a certain probability.
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In this approach, the authors propose a framework that handles two conflicting objective

functions (Gong et al., 2016). One function is designed to represent the information

contained in the selected bands, by means of entropy. The other function is set as the

number of selected bands. Both objective functions are optimized simultaneously by a

multiobjective evolutionary algorithm.

The authors of the paper (Su et al., 2014) propose a framework for band selection which

employs two objective functions using JF. During the search process, the spectral bands

are treated as firefly variables.

In (Zhang et al., 2017a), a framework for band selection based on fuzzy clustering and

swarm optimization in proposed. The authors devise a modified fuzzy clustering method

for band selection, whose drawbacks are alleviated by swarm optimization.

Memetic algorithms (MA) are also used in BS frameworks (Zhang et al., 2017b). Firstly,

MA is used to select a subset of spectral bands. Also, a objective function is designed

to select bands considering both bands information and redundancy deduction. The

authors claim that this method is not only computationally faster than exhaustive search

approaches, but also has comparable performances.

3.2.5 Clustering

Finally, clustering techniques can also be used in band selection methods. For in-

stance, in (Datta et al., 2012) the authors propose a framework that removes redundancy

amongst bands by means of clustering. Then, from each cluster one representative band

is selected. After that, the bands are ranked according to their classification capabilities.

A framework based on dual clustering that takes into account the contextual information

is also proposed (Yuan et al., 2016). For this, a novel descriptor that reveals the image

context is devised, in order to select the representatives of each cluster, taking into

consideration the mutual effects of each cluster.





Chapter 4

Supervised Band Selection using

Single-Layer Neural Network

In this chapter, the hyperspectral band selection problem will be addressed under a

supervised approach.

This means that we need to have the class information of the training samples in order

to perform the BS process. As already explained in Section 2.3, assigning class labels to

pixels is not only expensive, but also highly time consuming. Thus, we devised a band

selection algorithm that works well with very few training data.

The supervised framework we propose is a new BS method based on single-layer neural

networks, acting as a binary linear classifier. The band selection is done in a class-wise

fashion, that is, the selection of bands is based on the separability of each class in relation

to the remainder of the data set. As a result, the most representative bands of each

class can be selected.

By comparing the proposed method with other three BS frameworks it is possible to

see that our framework has a good performance even with greatly reduced training data

size.

4.1 Motivation

There are some benchmark hyperspectral images available on internet1. It is worth

noting that not all the pixels have their respective class information, but it is still

possible to perform supervised methods in general—be it for classification or feature

selection/extraction—, since the ratio N/d be appropriate for the application at hand.

1http://www.ehu.eus/ccwintco/index.php/Hyperspectral Remote Sensing Scenes
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The proposed method is based on single-layer neural networks with only one neuron in

the output layer, i.e., it’s a very simple neural net architecture. Thus, it is supposed to

work well even when there are few training data available.

4.2 Proposed Framework

4.2.1 Definitions

Let X be the data set corresponding to a hyperspectral image, where each element of

X is a tuple (xi, yi), and xi ∈ Rd×1 is a vector containing a spectral signature and

yi ∈ {1, 2, ..., q} is its corresponding class—or label; where q is the number of classes cj ,

with j = 1, 2, ..., q, and d is the dimensionality of the feature space F.

Let S be the set of selected bands, and G the set containing bands highly correlated

to those in S. Let A be the set containing the original spectral bands ak, with k =

1, 2, ..., d0; where d0 is the original quantity of bands. And let γ be the previously

determined number of bands to be selected.

Finally, let f : F −→ t be a single-layer neural network, where t = {0, 1}, and the feature

space F initially equals A and is updated by A\ (S∪G) after each iteration. The input

to f is a vector x and its output is a scalar given by

t̂ = f(z) =
1

1 + e−z
, (4.1)

with z = wTx+b, where w ∈ Rd×1 and b are the weights and bias of the neural network,

respectively.

According to Equation 4.1, t̂ ∈ [0, 1], and in order to assign a binary value to it, the

following criteria are adopted:

If z < 0 =⇒ f < 0.5 =⇒ t̂← 0, and (4.2)

if z ≥ 0 =⇒ f ≥ 0.5 =⇒ t̂← 1. (4.3)

From Equations (4.2) and (4.3), it is clear that the sign of z determines whether an

input vector is to be assigned to class 0 or to class 1.

As the input data is normalized into [0, 1], the coefficients wl ∈ w, with l = 1, ..., d, in

the hyperplane equation
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Figure 4.1: Flowchart of a filter approach. The band selection takes place before the
training phase of the classifier.

zi = x1iw1 + x2iw2 + ...+ xdiwd + b (4.4)

play an important role in determining the signal of z, and, as a consequence, the estimate

t̂i for xi.

The cost function of this single-layer network is quadratic, and the training is done by

stochastic gradient descent, using the back-propagation algorithm (Haykin, 2009).

4.2.2 Description

The proposed method follows a filter approach, that is, it takes place before the classifier2

undergoes its training phase, as illustrated in Figure 4.1.

Our framework is also based on a sequential forward selection approach, meaning that

it starts with an empty subset, i.e., S = ∅, to which the bands selected from A will

be added. As it is based on single-layer neural networks, we shall call it SLN, whose

characteristics are described below.

4.2.2.1 Iterations

SLN is an iterative class-oriented band selection method that starts at class c1 and ends

at the last class, that is, cq. At each iteration a binary classification problem is to be

solved by the function f . At iteration j, for j = 1, 2, ..., q, two groups, class j-vs-all, are

to be separated by a hyperplane defined by w and b, where the class j is composed of

all xi ∈ X with yi = j, and the remainder of the data is a balanced composition of all

xi ∈ X whose yi 6= j. That is, there are two groups of data samples whose cardinalities

are the same. The total amount of iterations is always q.

2Naturally, a single-layer neural network is a classifier. However, in this work it is used during the
band selection process. The classifier referred to by the filter approach is used to perform the final data
classification using the selected bands as input. In this work, KNN and CART are used as classifiers, as
we shall see later on.
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4.2.2.2 Selection of bands

After the training of the single-layer network, it is possible to assign degrees of pertinence

to all ak ∈ A\(S∪G). Since every element xl of x is directly linked to wl, the value of wl

is a token for the band al. This is the reason why we choose a single-layer neural network

for BS. Deeper architectures would create more complex relationships among weights

and spectral bands, thus, the consequent band selection based on weights magnitudes

would not be a straightforward task. Besides, architectures with hidden layers have

more parameters to be adjusted, and it would demand more training data.

In a one-vs-all scheme, in many cases the two groups are linearly separable. There are

other situations in which a hyperplane cannot separate the two classes, however it may

still provide a reasonable separation. To illustrate this, in Figure 4.2, all the 14 classes

present in the Botswana image are displayed in a one-vs-all fashion. We reduced the data

dimensionality by using the first two principal components from Principal Components

Analysis. The data samples in green color represent the class j under analysis, for

j = 1, ..., 14, and the blue points stand for a balanced composition of the remaining

classes. That is, the number of green and blue points are the same. Thus, for each

frame in Figure 4.2, the number of green and blue points is practically the same. The

red line segment in each frame represents the separating boundary provided by a single-

layer neural network. In Figure 4.3, the same analysis is done, using the Indian Pines

dataset.

Note that our interest is not on the hyperplane defined by z in Equation 4.4, but on

how the weights affect the sign of z, as in Equations 4.2 and 4.3. The signal of z ends

up determining the binary class of an input vector x. Thus, our focus is not on the

classification itself, but on the behavior of the features.

In Equation 4.4, the largest and the smallest—the negative value with the biggest mag-

nitude—weights make the most important contributions to the sign of z. For this reason

the bands corresponding to these weights are also considered the most important, and,

consequently these bands are added to the set S. This strategy to select bands has, at

least, two advantages:

• This method selects the most discriminant bands for the one-vs-all cases; and

• It is possible to assign either 0 or 1 to the class of interest during the training of

the single-layer neural network.

After each iteration, the feature space F is updated by A \ (S∪G), and this procedure

is repeated until the last class is reached. In this way, each class chooses its most

discriminant bands.
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Figure 4.2: One-vs-all illustration for each class of the Botswana image. In each frame,
the horizontal and vertical axis are, respectively, the first and the second principal
components. The green dots represent the class under scrutiny, whereas the blue ones
stand for data samples of the remaining classes. The red line segment is given by a
single-layer neural network.

4.2.2.3 Avoiding highly correlated bands

By definition, the bands of a hyperspectral image are contiguous, which implies a high

correlation between neighboring bands (Schowengerdt, 2006). In Figure 4.4 this fact is

depicted, emphasizing the high correlation amongst neighboring bands, taking the band

72 as reference.

Based on this fact, it is possible to devise a method to avoid the selection of highly

correlated bands. Thus, for each band ak ∈ F we build in a off-line fashion a vector vk,

in such a way that its elements are the bands indices in a descending order in relation

to the correlation to the band ak. That is, vk(1) is the index of the band the most

correlated to ak.

Finally, the following procedure is adopted:

• At a given iteration, some band ak will be selected, so S← ak;

• G← avk(1), where G is initially an empty set; and
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Figure 4.3: One-vs-all illustration for each class of the Indian Pines dataset. In each
frame, the horizontal and vertical axis are, respectively, the first and the second principal
components. The green dots represent the class under scrutiny, whereas the blue ones
stand for data samples of the remaining classes. The red line segment is calculated by
a single-layer neural network.

• After the iteration, the feature space F is updated by A \ (S ∪G).

It is worth noting that only ak ∈ S will be the selected bands, and the bands in G are

discarded.

4.2.2.4 Number of bands selected

The number γ of selected bands is user-defined3. Thus, for each class cj , with j =

1, 2, ..., q, round(γ/q) bands can be selected, where round() is an operator that rounds

up the value of its argument to the next integer. Sometimes, at the end of the BS

process, |S| > γ. In such a case, it is possible to use the k-Means algorithm (Su et al.,

2011) to select the γ sought bands.

3Note that for the purposes of this thesis, we assume that the user has the appropriate knowledge to
determine the number of bands to be selected.
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Figure 4.4: Correlation values of spectral bands in relation to the band 72 of the
Botswana image. It is evident the higher degree of correlation amongst neighboring
bands compared to more distant ones.

It is worth noting that, at the end of the proposed band selection process, |S| = |G|.
Thus, |S|+|G| ≤ d0, and, consequently, |S| ≤ d0/2 is a requirement that must be met. In

other words, this means that the maximum amount of bands that the proposed method

is capable of selecting is the half of the total amount of original bands. In practice,

however, this limitation is not supposed to impair a BS process due to, at least, two

reasons: i) the high correlation amongst neighboring bands, permitting a certain band

to bear its neighbors’s information; and ii) in order to avoid either heavy processing

burden or Hughes phenomenon (Sun et al., 2016), it is desirable to greatly decrease the

dimension of the input data.

There is no minimum limit of bands to be selected. However, when γ < q, not all the

classes can contribute to the band selection. In this case, suboptimal results may be

achieved.

Algorithm 1 summarizes the steps followed by our SLN approach.

Figure 4.5 depicts the proposed method. For each class cj , Figure 4.5 (a), a binary

one-vs-all classification is performed between class cj and the remainder of the data set.

In Figure 4.5 (b), the bands ak corresponding to the largest and smallest weights are

then added to set S, and, in Figure 4.5 (c), the highly correlated bands avk(1) are added

to set G. Finally, in Figure 4.5 (d), the feature space F is updated to A \ (S∪G). This

process iterates from the first class, c1, until the last class, cq.
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Algorithm 1 Proposed band selection framework

1: Input : X, F = A, S = ∅, G = ∅, q and γ.
2: for r = 1 : q do
3: Assign the value 1 to samples that belong to class cr, and the value 0 to a

balanced composition of the remaining classes
4: Use f : F −→ {0, 1} to find a separating hyperplane z between class cr and the

remaining classes of the data set
5: Identify the round(γ/q) bands a ∈ F related to the largest and smallest w ∈ w,

and insert their indices in the temporary set S0

6: for k=1:round(γ/q) do
7: S← aS0(k), and G← avS0(k)(1)
8: end for
9: S0 = ∅

10: F = A \ (S ∪G)
11: end for
12: if |S| > γ then
13: Use k -Means algorithm to select γ bands
14: end if
15: Return: S

Figure 4.5: Flowchart of the proposed SLN method.

4.3 Experiments and Results

In this Section, the bands selected by the proposed method and their subsequent classi-

fication accuracies by two classifiers are shown and analyzed.

Before that, the data sets used in this thesis were presented. Also, the classifiers used

to obtain the results will be shortly described, as well as the three competitors used to

compare results.
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Three hyperspectral images will be used: i) Botswana; ii) Indian Pines; and iii) Kennedy

Space Center.

4.3.1 Classifiers

One way to compare the output of the different band selection methods is to perform a

classification of the datasets using their respective selected bands as input.

We do not seek to find the best classifiers for a given task and dataset (Damodaran

et al., 2016). Since the focus of this thesis is on the relative comparison amongst dif-

ferent BS methods, we restrict the analysis to only two classifiers that are largely used

in hyperspectral images classification. They are k-Nearest Neighbors (KNN) and Clas-

sification and Regression Trees (CART) (Theodoridis and Koutroumbas, 2008), (Duda

et al., 2001).

4.3.1.1 KNN

k-Nearest Neighbors is a nonparametric classifier. It takes into consideration the spatial

relationship amongst data points. Each new entry is classified according to its k nearest

neighbors in the feature space, being assigned the label of the majority. Different k values

lead to different outcomes, so, in order to find the most suitable number of neighbors,

for each kn = n, with n ∈ {1, 2, ...15}, the KNN classification using the three images

described in Section 4.3 was performed. The mean results are shown in Figure 4.6. All

the spectral bands were used in order not to favor any BS method compared in this

work. The best accuracy was achieved with k = 13 using Euclidean distance, thus we

will keep this setting throughout this chapter.

4.3.1.2 CART

Classification and Regression Trees is a nonparametric classifier based on Decision Trees.

Basically, it defines features thresholds in order to split the feature space into homoge-

neous regions. For the classification of a new entry, its features are analyzed according to

the previously learned thresholds, and its label will be assigned according to the feature

space region this entry falls into.

4.3.2 Related Works for Comparison

Results obtained by the method proposed in this chapter are compared with results from

three other supervised band selection approaches. The framework we propose is based

on Machine Learning, so, for the sake of a more diverse comparison, we chose methods
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Figure 4.6: KNN mean classification accuracies using the three images with different
numbers of neighbors.

from three different branches, namely Statistical Models, Evolutionary Algorithms (EA)

and Image Processing (IP).

4.3.2.1 Statistical Models-based Approach

In the first method (Feng et al., 2017), the authors propose a framework that uses non-

homogeneous hidden Markov chains (NHHMC) and wavelet transform as tools for band

selection. Spectral signatures are first processed by wavelet transform, which is capable

of encoding compactly the locations and scales at which the signal structure is present.

A zero-mean Gaussian mixture model is then used to provide discrete values for the

wavelet coefficients. The more Gaussian components used, the greater the detail in the

descriptors generated. However, the authors demonstrate that the accuracy obtained

using just two Gaussian components is usually only 1% less than where multiple Gaussian

components are used and therefore in this thesis, we have limited ourselves to two in order

to reduce computational load. Since wavelet coefficient properties can be accurately

modeled by a NHHMC, this hidden Markov Chain is also used. Processing yields a set

of candidate bands, among which those with the highest score in terms of correlation

form the final output of this framework. The authors use the Support Vector Machine

(SVM) classifier to measure the accuracy of the resulting bands.

This is a filter-based method, because the selection of bands is done before the clas-

sification is performed by SVM. It is also a sequential search algorithm, performing a

sequential forward selection.
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4.3.2.2 EA-based Approach

The second method is based on EA (Saqui et al., 2016). More precisely, it uses a Genetic

Algorithm (GenA). Normally, GenA methods use three operators: selection, crossover

and mutation of individuals. Each element of the population is a binary vector vi ∈
N1×d0 —also called chromosome —where d0 is the number of spectral bands in the image.

Each component, or gene, vki in vi indicates the presence of the kth band when vki = 1.

At each generation of the algorithm, the population is evaluated by the fitness function,

which is a Gaussian Maximum Likelihood Classifier. This classifier classifies the image

using the bands indicated by the different vectors vi, and the classification accuracy is

used as the fitness of the chromosome. After each iteration, the best chromosomes are

retained, following which they are subjected to crossover and mutations. The whole

process is repeated until a predefined number of generations is reached. At the end, the

selected fittest chromosome is the one with the selected bands.

Clearly, this is a wrapper-based method, i.e., the process of selecting features is em-

bedded in the classifier. It also performs a random search, in virtue of the intrinsic

characteristics of EA-based methods.

4.3.2.3 Image Processing-based Approach

The third competitor (Cao et al., 2017b) is a semi-supervised method that uses Image

Processing tools in its wrapper-based band selection framework. Firstly, it trains a SVM

classifier based on labeled instances, then this classifier assigns class label to unlabeled

data, which end up having wrong labels —or pseudo ground-truth. After that, the

resulting classification map is improved by an IP-based edge-preserving filter. At this

point, there are two data sets: one with the original ground-truth information, and

other with calculated pseudo ground-truth information. Then, for each combination of

candidate bands to be selected, another SVM is trained using the data with original

ground-truth, and its accuracy is assessed by the data set with pseudo ground-truth.

By testing several band combinations, it is possible to select the one with the highest

classifier accuracy.

4.3.3 Results

Supervised approaches rely on labeled training data to obtain their results. As already

stated, the assignment of labels to pixels is an expensive task. So, in this thesis, the

proposed BS framework uses only a small percentage of the available training data to

get its results.
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Figure 4.7: KNN accuracies with different percentages of Botswana training data.

4.3.3.1 Percentage of the training data used

We ran the proposed band selection algorithm ten times, with different fractions of the

available training data. For each percentage ps = s/100, with s ∈ {10, 20, ..., 100}, the

proposed BS method has been used to select bands, and the cardinality of its training

set was |X| × ps. Thus, for each ps there is a set Ss of selected bands. Each Ss has 50

selected bands.

Using all the three images, Figure 4.7 shows how the KNN classifier’s mean accuracies

change with different quantities of training data. In general, there is a tendency of

getting higher accuracies as the amount of training data increases. With 20% of the

available training data, the proposed algorithm had an accuracy similar to that of 30%

and 40%. As it is desirable to work only a small fraction of the available training data,

we chose to use only 20% of the data to select bands using the proposed method.

4.3.3.2 Methods Comparison

The bands selected by each competitor will be compared. We measure the validity of

each subset of selected bands using two classifiers, namely, KNN and CART, which are

largely used in classification of hyperspectral images (Wang et al., 2017, 2016; Zhu et al.,

2017; Zhang et al., 2017b).

The classifiers are run using Matlab. For the KNN classifier, we used fitcknn com-

mand, from Statistics and Machine Learning toolbox. For CART, fitctree was used,

also from Statistics and Machine Learning toolbox. The proposed BS framework was also

implemented in Matlab, and we used the trainSoftmaxLayer command, from Neural

Network Toolbox, for single-layer neural network, with 2000 training epochs—normally
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Figure 4.8: (a) Mean spectral signatures for the Botswana image. (b) Mean spectral
signatures for the KSC image. (c) Mean spectral signatures for the Indian Pines image.

the training phase stopped before this, so other training epochs quantities were not

tested.

First, it is important to analyze the data set to have an idea of the complexity of the

problem. Figure 4.8 shows the mean spectral signature of each class. In Figure 4.8 (a),

for example, it can be seen that in some regions the spectral signatures are further apart

than in other regions of the electromagnetic spectrum. Since each spectral signature

corresponds to a class, one might conclude intuitively that the bands where the curves

are more spread out will provide a better class separability. In Figure 4.8 (b), the

spectral signatures of classes are practically juxtaposed, except in a handful of regions.

This can prevent the classifier from achieving a good outcome.

The competitor described in Section 4.3.2.1 will be called NHMC. The method described

in Section 4.3.2.2 will be called GA. Finally, the algorithm described in Section 4.3.2.3

will be referred to as ICM.

All the classifiers results that will be exhibited in this chapter are the mean values of 10

runs. Standard-deviation values are also calculated.

Botswana Table 4.1 shows the bands selected by the proposed method, SLN. In Table

4.2, which exhibits the KNN mean accuracies and their respective standard-deviation

for Botswana image, we see that the SLN method outperformed its competitors with 50

bands. Figure 4.9 gives a plot of the results of the four methods. It is then possible to

see the advantage of the proposed method with 50 selected bands.
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Table 4.3 shows the CART mean accuracies and standard-deviations for Botswana image.

The proposed SLN method got the best results with 10, 20 and 50 bands. Figure 4.10

gives a visual perspective about the results, and it is possible to notice the superior

results.

Table 4.1: Selected bands for the Botswana image.

10 bands 1 3 20 27 32 37 43 50 54 68

20 bands 1 4 7 16 20 21 24 26 31 35 37 44 47 50 57 59 62 69 93 98

30 bands 1 4 6 10 13 16 21 24 29 33 35 38 41 43 47 49 50 55 59 61

67 71 75 84 89 93 107 113 122 125

40 bands 1 4 6 10 11 13 16 21 23 24 25 27 29 32 33 35 38 40 41 43

47 49 50 52 54 55 59 61 67 71 74 75 84 89 93 106 107 112

122 125

50 bands 1 2 6 13 15 19 20 23 24 26 27 29 32 34 35 41 43 44 47 49

50 52 53 54 55 61 63 64 65 66 69 71 73 74 75 79 84 87 94

96 98 103 106 107 112 115 117 122 125 131

Table 4.2: KNN results for Botswana image.

10 bands 20 bands 30 bands 40 bands 50 bands

Method mean std mean std mean std mean std mean std

SLN 88.50% 1.19% 88.19% 1.34% 89.73% 0.76% 90.55% 0.76% 90.35% 0.73%

NHMC 89.32% 1.17% 89.49% 0.57% 90.38% 1.86% 89.22% 0.37% 90.14% 0.37%

GA 89.43% 0.74% 89.97% 0.93% 89.97% 0.49% 90.93% 1.10% 89.53% 0.10%

ICM 89.05% 0.51% 89.08% 0.21% 89.15% 0.31% 88.60% 0.53% 88.40% 0.36%

Table 4.3: CART results for Botswana image.

10 bands 20 bands 30 bands 40 bands 50 bands

Method mean std mean std mean std mean std mean std

SLN 85.63% 1.36% 85.22% 1.26% 83.16% 1.39% 84.80% 1.20% 85.83% 1.43%

NHMC 84.46% 0.63% 83.61% 2.12% 85.08% 1.40% 83.37% 0.72% 85.25% 1.37%

GA 84.80% 0.18% 84.67% 0.51% 85.56% 1.40% 85.63% 0.62% 85.69% 1.47%

ICM 85.39% 0.16% 83.78% 1.82% 84.70% 0. 36% 85.63% 0.74% 84.70% 0.98%

KSC In Table 4.4 all the bands selected by the SLN approach are displayed.

Table 4.5 shows the KNN mean accuracies and standard-deviation for KSC image. The

proposed method SLN got the best results with 30, 40 and 50 bands. Figure 4.11 shows

the results.
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Figure 4.9: KNN classification results using the Botswana dataset.

Figure 4.10: The Botswana image under the CART classification.

In Table 4.6, the CART classifier results are exhibited. The same results are depicted

in Figure 4.12. The proposed method got the best results again with 30, 40 and 50 bands.

Indian Pines The bands selected by our approach are shown in Table 4.7.

According to Table 4.8, the proposed method got the best result with 30 bands, using

the KNN classifier with Indian Pines image. In Figure 4.13, the results are displayed.

In Table 4.9, the proposed SLN method has the best result with 20 and 30 bands. The

results can be visualized in Figure 4.14.
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Table 4.4: Selected bands for KSC image.

10 bands 1 17 34 37 48 74 98 134 161 175

20 bands 1 6 8 19 25 28 33 48 53 72 76 95 133 139 143 150 163 168

173 176

30 bands 1 2 9 15 19 28 31 34 37 41 44 47 48 72 74 75 96 97 101

110 124 133 135 139 143 147 160 163 167 175

40 bands 1 3 7 16 19 26 28 30 32 34 35 39 40 43 49 51 53 56 71 73

77 93 94 95 96 101 104 125 133 134 142 145 150 153 159

162 167 169 171 174

50 bands 1 3 7 9 18 19 26 28 33 34 37 38 39 41 42 47 48 51 53 59

68 69 70 71 72 73 78 96 97 100 101 107 110 111 120 121

125 127 131 133 135 137 140 142 143 159 162 171 173 175

Table 4.5: KNN results for KSC image.

10 bands 20 bands 30 bands 40 bands 50 bands

Method mean std mean std mean std mean std mean std

SLN 92.80% 0.23% 93.83% 0.68% 94.88% 0.45% 95.02% 0.36% 94.62% 0.50%

NHMC 92.39% 0.81% 93.51% 0.59% 93.25% 1.04% 94.02% 0.14% 93.54% 0.63%

GA 92.64% 0.18% 94.05% 0.27% 93.70% 0.23% 93.92% 0.09% 94.18% 0.09%

ICM 93.09% 0.63% 94.69% 0.36% 93.89% 0.59% 94.72% 0.14% 94.43% 0.27%

Table 4.6: CART results for KSC image.

10 bands 20 bands 30 bands 40 bands 50 bands

Method mean std mean std mean std mean std mean std

SLN 85.64% 0.14% 84.96% 1.27% 87.88% 0.41% 88.11% 1.18% 87.94% 1.49%

NHMC 85.25% 0.86% 85.22% 0.90% 85.00% 2.31% 85.73% 0.45% 85.96% 0.50%

GA 86.18% 0.36% 87.08% 2.08% 86.02% 0.68% 87.27% 0.54% 86.76% 0.72%

ICM 85.96% 1.58% 87.91% 0.18% 87.30% 0.41% 88.04% 0.72% 87.40% 0.63%

4.3.4 Different training data sizes

As stated in Section 4.3.3.1, all the results shown in Section 4.3.3.2 are achieved by using

only 20% of the available training data.

One question that naturally arises is

What happens if we use more than 20% of the available training data?
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Figure 4.11: The KSC image classified by KNN.

Figure 4.12: The KSC dataset classified by CART.

In order to answer this question, it is necessary to run the Algorithm 1 for each different

amount of training data X. We compare the results using from 30% to 100% of the

available training data.

Botswana: For the Botswana dataset, the mean classification accuracies achieved

by KNN and CART classifiers are shown in Figure 4.15. It is possible to see that using

more training data does not necessarily increase the classification accuracy.

In Figure 4.16, the mean processing time for band selection using from 20% until 100%

of the available training data is shown. For each percentage of training data, we measure
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Table 4.7: Selected bands for Indian Pines image.

10 bands 10 25 32 39 42 48 63 75 91 98

20 bands 5 11 18 23 25 29 36 44 52 56 60 64 75 91 94 98 106 117

132 168

30 bands 5 6 11 16 18 20 23 25 29 30 31 36 38 44 47 52 54 56 60

62 64 74 75 91 94 98 106 117 132 168

40 bands 1 8 10 12 15 19 20 23 27 30 32 36 39 41 49 51 54 56 58

60 64 66 71 74 75 80 91 94 98 101 113 117 149 156 167

170 173 178 206 218

50 bands 4 8 11 14 18 20 22 27 30 32 36 38 41 44 46 48 52 58 60

62 64 66 68 71 75 77 81 84 86 88 90 94 95 98 100 109

117 124 137 140 149 153 156 167 170 172 174 178 202 216

Table 4.8: KNN results for Indian Pines image.

10 bands 20 bands 30 bands 40 bands 50 bands

Method mean std mean std mean std mean std mean std

SLN 72.49% 2.37% 72.20% 2.16% 72.81% 2.60% 73.07% 0.78% 74.50% 0.67%

NHMC 75.27% 0.85% 76.98% 0.51% 71.66% 0.71% 73.37% 0.97% 74.89% 0.09%

GA 69.22% 1.03% 65.12% 0.02% 66.16% 0.30% 67.25% 0.14% 67.32% 0.23%

ICM 78.70% 0.09% 78.54% 0.87% 68.10% 0.64% 68.44% 0.53% 67.32% 1.38%

Table 4.9: CART results for Indian Pines image.

10 bands 20 bands 30 bands 40 bands 50 bands

Method mean std mean std mean std mean std mean std

SLN 69.69% 1.63% 73.27% 0.90% 74.50% 1.77% 72.16% 0.11% 74.05% 1.45%

NHMC 70.73% 0.60% 70.47% 0.23% 72.11% 0.99% 73.28% 0.76% 74.88% 0.34%

GA 68.18% 1.22% 71.35% 0.32% 74.21% 1.43% 74.37% 0.14% 73.56% 0.60%

ICM 74.72% 0.80% 73.17% 0.64% 73.61% 0.48% 73.19% 0.11% 74.31% 0.41%

the mean values taking into account the processing time for 10, 20, 30, 40 and 50 selected

bands. The mean processing time for each quantity of selected bands is exhibited in

Figure 4.17.

KSC: As for the KSC image, in Figure 4.18 we see the mean accuracies for each

percentage of available training data, from 20% until 100%, using the KNN and CART

classifiers. Again, increasing the amount of training data does not necessarily increases

the accuracies.
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Figure 4.13: Indian Pines classification using KNN.

Figure 4.14: Indian Pines classification using CART.

In Figure 4.19, the mean processing time for each amount of available training data is

shown. The mean values are measured by taking into consideration the processing time

for 10, 20, 30, 40 and 50 selected bands. Figure 4.20 shows the mean processing time

for each number of selected bands, using the KSC dataset.

Indin Pines: Considering the Indian Pines dataset, the mean classification accuracies

achieved by KNN and CART classifiers are shown in Figure 4.21. Using more training

data does not necessarily increase the classification accuracy.
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Figure 4.15: Mean accuracies by KNN and CART classifiers using from 20% to 100% of
the available training data, for Botswana image.

Figure 4.16: Mean processing time for band selection considering 10, 20, 30, 40 and 50
bands, for the Botswana image.

In Figure 4.22, the mean processing time for band selection varying the available training

data from 20% until 100% is shown. For each percentage, one measures the mean values

taking into consideration the processing time for 10, 20, 30, 40 and 50 selected bands.

The mean processing time for each quantity of selected bands is shown in Figure 4.23.

4.3.5 J index

As described in Section 2.3.2.1, the J index—see Equation 2.10—, which is based on

Scatter Matrices, can measure how well the the classes are separated from each other in
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Figure 4.17: Processing time for each number of selected bands, using the Botswana
dataset.

Figure 4.18: Mean accuracies by KNN and CART classifiers using from 20% to 100% of
the available training data, for KSC image.
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Figure 4.19: Mean processing time for band selection considering 10, 20, 30, 40 and 50
bands, for the KSC image.

Figure 4.20: Processing time for each number of selected bands, using the KSC dataset

the feature space.

For the calculation of J , it is necessary to have the class information of the data samples.

Thus, this analysis is only possible in supervised problems.

In Table 4.10, the J indices of all BS methods are shown, taking as input the Botswana

dataset. We see that the proposed method SLN has the best result with 50 bands. In

Figure ??, it is possible to see the J results.
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Figure 4.21: Mean accuracies by KNN and CART classifiers using from 20% to 100% of
the available training data, for Indian Pines image.

Figure 4.22: Mean processing time for band selection considering 10, 20, 30, 40 and 50
bands, for the Indian Pines image.

Table 4.10: J indices for the Botswana image.

Method 10 bands 20 bands 30 bands 40 bands 50 bands

SLN 182.0879 181.1352 184.0382 183.5925 190.3920

NHMC 168.4621 192.3552 198.0085 190.6596 189.5664

GA 250.9020 243.7681 109.7085 199.6179 109.7085

ICM 147.7290 150.1814 153.9822 154.1625 155.6518
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Figure 4.23: Processing time for each number of selected bands, using the Indian Pines
dataset

Figure 4.24: J indices for the Botswana image.
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Figure 4.25: Overall results considering all methods compared in this chapter, using all
the three images.

4.3.6 Remarks about the results

4.3.6.1 KNN versus CART

Both classifiers used in this chapter are nonparametric, that is, they do not assume

any hypothesis about data distribution nor about its parameters. Yet, they share more

dissimilarities than characteristics in common. To illustrate this, one can notice the

differences between the overall accuracies of the two classifiers, taking into account

all the methods compared in this chapter using the three hyperspectral images: For

KNN, the mean accuracies of all results are 84.89%, whereas CART has 81.41% of mean

accuracy. One possible explanation may be related to the highly nonlinearity of the

classes boundaries. For example, let hl be a homogeneous region of the feature space

defined by CART, whose a new entry xi will be classified as cl, even if it belongs to

class cj . This, obviously, is a classification error. KNN classifier, in this situation, would

inquire the k nearest neighbors of xi, and eventually assign the cj label to it.

The overall results for each number of selected bands can be seen in Figure 4.25. For the

CART classifier, the classification accuracy increased as the number of bands increased.

For the KNN classifier, there was an opposite effect. This indicates that CART is not

susceptible to the curse of dimensionality, at least in the dimensions and with the images

analyzed. In general, however, one can see that there is a general improvement in results

as the number bands increases from 10 to 50, as shown in Figure 4.27.
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Figure 4.26: Mean results of each method, using all images and both classifiers.

4.3.6.2 Filter versus Wrapper

It is frequently stated in the literature that wrapper-based methods are superior in

performance to filter approaches (Cao et al., 2017b; Theodoridis and Koutroumbas,

2008; Shahana and Preeja, 2016; Molina et al., 2002; Cao et al., 2016b; Ma et al.,

2017). Concerning the methods compared in this chapter, SLN and NHMC are filter-based

approaches; and GA and ICM are wrapper frameworks, using, respectively, Gaussian

Maximum Likelihood and SVM classifiers in their frameworks.

In Figure 4.26, the mean results of all methods are displayed. It uses all the three images

with both classifiers. In sum, Figure 4.26 shows the mean values of the Tables 4.2, 4.3,

4.5, 4.6, 4.8 and 4.9. It is evident that the wrapper methods are not necessarily better

than filter approaches. More precisely, the wrapper methods yield better results in only

two situations—with 10 and 20 bands—, and in the remaining cases filter methods have

a superior performance.

It is worth noting that a wrapper-based method proceeds to the band selection by using

a certain classifier, and this classifier is supposed to be used during the subsequent

classification process. It was not the case here. That is, the two wrapper competitors

selected bands using one classifier they are and used in this thesis with another one,

and this fact may explain why those two methods could not outperform the filter-based

frameworks. On the other hand, filter methods perform the BS task without any relation

with the classifier, which makes them more versatile compared to wrapper approaches.
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4.3.6.3 Methods comparison

In general, as we can see in Figures 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 all the four

methods had their best and worst results in different situations. Thus, pointing out the

best framework would not be an easy task.

In Figure 4.26, we can see the mean results of the four methods. The proposed method,

SLN, has the best mean results using 30 and 40 spectral bands. If we take the mean

value of all results—using the three images, both classifiers and also all bands—, the

results are thus:

1. ICM: 83.53%;

2. SLN: 83.30%;

3. NHMC: 83.26%; and

4. GA: 82.49%.

Basically, ICM framework has the best overall result because it gets very high accuracies

with less spectral bands. However, it does not achieve good results with more bands.

Thus, ICM has a instable behavior as the number of bands change.

For the sake of a fair comparison, we will count how many times each method yields

the best results—values in bold in Tables 4.2, 4.3, 4.5, 4.6, 4.8 and 4.9. In this case, we

have the following outcome:

1. SLN: 13;

2. GA: 7;

3. ICM: 6; and

4. NHMC: 4.

Consequently, one can infer that our proposed method has a stable good outcome,

achieving the best results in 43.33% of the tests.

4.3.6.4 Remarks about the proposed method

As shown in Figure 4.26, the proposed method has a tendency of achieving better results

as the number of selected bands increases. In fact, this is an expected behavior. In order

to see that, refer to Figure 4.27, which shows the overall results of all methods together,
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Figure 4.27: Mean accuracies of all results by both classifiers in relation to the number
of selected bands. All the three images are used.

using the three images and both classifiers. In general, the accuracies increase if more

bands are employed.

Concerning the J index, our method has a stable behavior as the number of bands

increases, reaching the best mark with 50 bands. This stability shows the reliability of the

proposed method, due to the fact that one can select more bands without compromising

the separability amongst classes. For example, the GA method has the second place in

terms of best results. However, as shown in Figure 4.24, its J indices vary abruptly

as the number of bands increases, indicating a weak reliability. More precisely, as the

number of bands changed from 20 to 30, the separability of classes sharply decreased,

meaning that not so good bands were chosen.

As already said in Section 4.2.2.4, there is not a minimum limit of bands to be selected

by SLN. However, Figure 4.26 shows that SLN achieves below-average results with 10

and 20 bands. When it comes to the 10-bands case, we may conclude that its poor

results—compared to its competitors—may be due to the fact that SLN does not inquiry

all the classes of band selection when γ < q.

Using 30, 40 and 50 bands, the proposed method gets above-average results, as shown

in Figure 4.26. In those cases, all the classes were inquired during the BS process.

Consequently, better results were achieved.

Finally, we should bear in mind that all the proposed method’s results were attained by

using only 20% of the available training data. Besides, the simplicity of the proposed

method, in terms of implementation, makes it a good choice in the feature selection area.
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4.3.6.5 What happens when more training data are used?

As shown in Figures 4.15 and 4.18, concerning the Botswana and KSC datasets, respec-

tively, there is not much difference in accuracies when the amount of available training

data is increased. This indicates that the proposed BS framework is really capable of

doing its job with few data. In other words, if the classes are well represented even

with few data samples, the proposed BS method can select good discriminating bands.

In Figure 4.21, there is a positive peak with 20% of training data, which is somewhat

unexpected. One possible explanation is that the single-layer neural net used with 20%

of training data might have had a very good weights and bias initialization, permitting

thus the framework to select very good spectral bands.

When more data are used, the training process takes generally longer, as shown in

Figures 4.16, 4.19 and 4.22. Some disturbances in those curves may happen due to the

random initialization of the neural network used during the band selection process.

As shown in Figures 4.17, 4.20 and 4.23, there is an increase in the processing time as

more bands are selected. At first, it seems strange, because after the step 4 in Algorithm

1, round(γ/q) bands are identified and selected, and, in computational terms, it does

not matter whether 4 or 10 bands, for instance, are selected. It happens, however, that

the bands selected at iteration r are removed from the feature space, consequently at

iteration r + 1 the BS framework does not count on them to find the separating hyper-

plane. Thus, if discriminating bands are removed from the feature space, it becomes

harder—and longer—for the single-layer net to converge to a good solution in subsequent

iterations. Furthermore, the more bands are selected, that is, the bigger the round(γ/q),

the more evident this issue becomes.

4.3.6.6 Visual inspection of the selected bands

In Figure 4.8, the mean values of the spectral signatures for each class are shown,

considering the three datasets analyzed. In the regions of the spectrum where the

signatures are more separated it is easier to find separating boundaries between the

classes. Also, the bands that lie in those regions are the most discriminating ones, and,

thus, they should be selected.

Figure 4.28 shows the mean values of the classes spectral signature in the Botswana

dataset. The red vertical lines indicate the positions of the 10 bands selected by the

proposed method, as shown Table 4.1. It is possible to notice that the selected bands are

located in the regions where the spectral signatures are more separated. Consequently,

one may infer that the proposed BS method is capable of selecting the bands that provide

a good separability amongst the classes.
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Figure 4.28: Mean spectral signature values of the Botswana image classes. The vertical
lines indicate the location of the 10 bands selected by the proposed method.

Figure 4.29: Mean spectral signature values of the KSC image classes. The vertical lines
indicate the location of the 10 bands selected by the proposed method

In Figure 4.29, the mean values of the spectral signatures KSC’s classes are exhibited. In

general, except for the band 17, the vertical lines show the positions where the spectral

signatures are more separated. The bands are enlisted in Table 4.4. Consequently, we

see that the proposed framework can select good bands.

As for the Indian Pines dataset, in Figure 6.6 we see the spectral signatures mean values

of the classes. The vertical lines, which indicate the location of the 10 bands selected by
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Figure 4.30: Mean spectral signature values of the Indian Pines image classes. The
vertical lines indicate the location of the 10 bands selected by the proposed method.

our method —see Table 4.7—, are located in the spectrum regions where the signatures

are more separated, which indicates the validity of the proposed method.





Chapter 5

Unsupervised Clustering-based

Band Selection using Single-Layer

Neural Network

An expected and useful improvement of a supervised band selection framework is the

capacity to tackle unlabeled data. In other words, an evolution in its operating power

marches towards the unsupervised approach.

Naturally, in terms of Pattern Recognition, the unsupervised issue poses a more chal-

lenging problem, because, without the class information, a plausible solution is to resort

to clustering (Duda et al., 2001), which is oftentimes a difficult task due to the fact that

one is supposed to define an appropriate measure for similarity between two feature

vectors. Besides, the algorithmic scheme that will cluster the vectors must be carefully

chosen (Theodoridis and Koutroumbas, 2008). As for the band selection approaches,

the lack of class information drives the BS methods to take into account the structure

of the dataset. That is, the relevant bands are those that maintain the original dataset

structure, while keeping low correlation amongst them.

Thus, in this chapter we propose a BS framework which is an unsupervised version of the

method proposed in Chapter 4. In sum, at each iteration, we cluster the data samples

in two groups, and then a single-layer neural network finds a separating hyperplane

between the two clusters. The bands related to the biggest and smallest hyperplane

parameters are selected, and this process iterates until the desired number of bands is

achieved. The most important difference in relation to the method proposed in Chapter

4 is the clustering step, which gives the framework its unsupervised characteristic.

Our method belongs to this last group. It uses bisecting k-Means to generate clusters

according to intrinsic structure of the data set in the feature space, taking into ac-

count only the spectral information. Between each pair of clusters, a single-layer neural
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network is used. Thus, we propose a very easily implementable framework for band

selection.

5.1 Proposed Framework

5.1.1 Definitions

Let C(0) be the whole data set corresponding to a hyperspectral image, whose elements

are vectors xi ∈ Rd×1 that contain spectral signatures, where d is the number of bands.

Finally, let C
(l)
g be a cluster of C(0), where l is the partition level, and C

(l)
1 ∪ C

(l)
2 ∪

· · · ∪ C
(l)
g = C(0), and C

(l)
p ∩ C

(l)
q = ∅,∀p 6= q. There may be several levels, that is,

l = 1, 2, 3, . . . , and for each level the number of partitions g is given by g = 2l.

5.1.2 Description

5.1.2.1 General view

The proposed framework begins with an empty subset of selected bands, that is, S = ∅,
to which the bands selected from A will be added. At the first iteration, C(0) is split by

the K-Means algorithm into two partitions, C
(1)
1 and C

(1)
2 , following a bisecting K-Means

approach (Banerjee et al., 2015). Since we consider that all the features have the same

variance —to simplify the problem—, all the samples fall in equal-size hyperspherical

clusters. Thus, the resulting discriminant function for a two-class case will be linear

(Duda et al., 2001). Consequently, the assignment of an input vector to a class will be

given by the Euclidean distance, which is used by K-Means.

Then, we use a single-layer neural network to find a hyperplane that separates those

two partitions. After that, two bands are selected, and consequently discarded from the

feature space F. If more bands are needed, we keep repeating this procedure in deeper

levels.

As the proposed method is based on both clustering and single-layer neural networks,

we shall call it CSLN. Its characteristics are described below.

5.1.2.2 Iterations

CSLN is an iterative band selection method. At each iteration, a binary classification

problem between k-Means-generated partitions C
(l)
p and C

(l)
q is to be solved by the

function f . Since two bands are selected at each iteration, one needs to repeat the
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Figure 5.1: An example of the single-layer neural network used in this thesis. This
architecture permits that each band xi be linked to only one weight wi.

process until the desired number of bands γ is attained. The following criteria are

adopted:

• If γ is even, one needs γ/2 iterations; and

• If γ is an odd number, (γ + 1)/2 iterations are necessary, and the first γ selected

bands are kept.

At each iteration, the neural net f is trained from scratch due to two reasons:

• In order to avoid possible local minimum regions from previous clusters; and

• After each iteration the feature space F decreases. Consequently, the sizes of w

and b also change. So, the whole architecture must be trained again.

5.1.2.3 Selection of bands

After the training of the neural network, it is possible to give degrees of importance to all

a ∈ F. As every element xl ∈ x is directly linked to wl—see Figure 5.1—, for l = 1, ..., p,

the magnitude of wl is a indicator for the band al. As already seen in Equation 4.4, the

largest and the smallest weights constitute the most important contributions to the sign

of z. Thus, the bands linked to those weights are also considered the most important,

and, consequently they are added to the set S. The feature space F is then updated by

A \ (S ∪G).

5.1.2.4 Avoiding highly correlated bands

The bands of a hyperspectral image are contiguous, which causes a high correlation

among neighboring bands.
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Bearing this in mind, we adopt a method that avoids the selection of highly correlated

bands. For each band ak ∈ F we construct a vector vk, whose elements are the bands

indices in a descending order in relation to the correlation to the band ak. That is, vk(1)

is the index of the band avk(1), which is the band with the highest correlation with ak.

The correlation ρ between two bands aα and aβ is given by

ρ(aα,aβ) =
cov(aα, aβ)

σaασaβ
,

where cov() is the covariance and σ is the standard-deviation.

Thus, the following procedure is adopted:

• At a certain iteration, a band ak is selected, so S← ak;

• G← avk(1), and G is, at the beginning, an empty set;

• After this iteration, the feature space F is updated by A \ (S ∪G).

We emphasize that only ak ∈ S are the selected bands. The bands avk(1) ∈ G are

discarded.

Algorithm 2 gives the steps followed by the proposed CSLN framework.

Algorithm 2 Proposed band selection framework

1: Input : C(0), A, γ, S = ∅ and G = ∅
2: for r = 1 : maxIterations do
3: Train a single-layer neural network f to find a hyperplane that separates C

(l)
p

and C
(l)
q clustered by K-Means

4: Select the bands ak ∈ F related to the largest and smallest w ∈ w
5: S← ak, and G← avk(1)
6: Update the feature space F by A \ (S ∪G)
7: end for
8: Return: S

Fig. 5.2 depicts the proposed framework. Initially, the whole data set is split into two

clusters by K-Means. Then, a single-layer neural network f is used to find a hyperplane

that separates the clusters. This process is repeated until the desired number of bands

is selected.

5.2 Results

The results of the proposed method are exhibited in this Section. They are compared

with other band selection approaches by considering the accuracy of supervised classi-

fiers.
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Figure 5.2: A general view of the proposed BS framework. At each binary clustering, a
single-layer neural net f is used to select the bands.

5.2.1 Datasets and classifiers

In this chapter, we use two hyperspectral images, which are Indian Pines and Pavia

University, already described in Section 2.5.

As classifiers, for the the Indian Pines dataset we use Classification and Regression Trees

and k-Nearest Neighbors are used. For the Pavia University image, we use KNN, CART

and Support Vector Machine (Theodoridis and Koutroumbas, 2008).

The classifiers are run in Matlab. For KNN, we use the fitcknn command, k = 3 in

all experiments. For CART, fitctree is used, and to run SVM for multiple classes, we

use the command fitcecoc, with polynomial kernel. All those commands belong to the

Statistics and Machine Learning toolbox.

The proposed band selection framework is also implemented in Matlab, and we use

the trainSoftmaxLayer command, from Neural Network Toolbox, for single-layer neural

network, with 2000 training epochs—normally the training phase stopped before this,

so other training epochs quantities were not tested. For the k-Means algorithm, we use

the kmeans command, from the Statistics and Machine Learning toolbox.

The input data are the images with the selected bands. Furthermore, the number of

bands selected by our method are for comparison purposes. Therefore, it does not mean

they are the optimum number for any given application.

For the classification process, each dataset is divided into two subsets. The first subset is

used during the training phase of the classifier, with 70% of the total data. The remaining
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30% are used during the test phase of the classifier, yielding the results shown in Section

5.2.4.

5.2.2 Competitors

The performance of the proposed method is compared with six other BS approaches.

Four of them are used with the Indian Pines image:

• This method is also clustering-based (Martinez-Uso et al., 2007), and it will be

referred to as WaLuDi;

• This approach uses both ranking and clustering for band selection (Datta et al.,

2015), and we will call it CR;

• This competitor relies on information divergence, and this method will be called

ID (Chang and Wang, 2006); and

• This framework resorts to band elimination with partitioned image correlation

(Datta et al., 2014), and it will be referred to as EM.

For the Pavia University image, there are two competitors:

• The authors propose a framework that handles two conflicting objective functions.

One function is designed to represent the information contained in the selected

bands, by means of entropy (Gong et al., 2016). It will be called MOBS;

• In this approach, the authors construct a band channel with the original bands.

Then, some bands are selected by Blahut’s algorithm, which iteratively finds a

feature space that provides the best channel capacity (Chang et al., 2017). This

competitor will be referred to as CC.

As already stated in Section 5.1.2.1, our proposed method will be referred to as CSLN.

5.2.3 Selected bands

The bands selected by the proposed framework are displayed in Table 5.1. For Indian

Pines, we have only the first 18 best-ranked bands of our competitors, thus the analyses

of results are restricted to this number of bands. For the Pavia University image, we

select 21 bands for the same reason.

The bands in Table 5.1 are sorted according to the order they were selected. For example,

at the first iteration, the bands 2 and 42 were selected for Indian Pines.
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Figure 5.3: The Indian Pines dataset under the KNN classification.

The results comparisons are made with different quantities γ of selected bands, that is,

γs = s × 3, with s = 1, 2, 3, 4, 5, 6, for Indian Pines. Thus, for γ2 = 6, for example, the

first six bands of Table 5.1 are used. For the Pavia University image, s = 1, 2, 3, 4, 5, 6, 7.

Table 5.1: The selected bands according to the order of selection by the proposed
method.

Selected bands 2, 42, 6, 39, 22, 58, 25, 62,

for Indian Pines 71, 101, 94, 151, 111, 203,

156, 183, 171, 215.

Selected bands 69, 1, 68, 3, 92, 6, 77,18,

for Pavia University 101, 24, 99, 51, 14, 74, 9,

75, 29, 97, 95, 8, 103.

5.2.4 Results comparison

The classification results exhibited throughout this chapter are the mean values over ten

runs.

In Table 5.2, the results for the Indian Pines image are shown. Under KNN classification,

the proposed method CSLN has the best results using 3, 6 and 9 bands. It is illustrated

in Fig. 5.3.

The overall results achieved by the CART classifier using Indian Pines are also exhibited

Table 5.2. The proposed framework achieves the best results with 3 and 9 bands. Fig.

5.4 provides a visual perspective of the results.
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Table 5.2: Classification results for Indian Pines.

KNN results

3 bands 6 bands 9 bands 12 bands 15 bands 18 bands

Method acc. acc. acc. acc. acc. acc.

CSLN 71.63% 77.45% 80.69% 75.05% 75.88% 77.52%

WaLuDi 65.12% 64.65% 73.19% 78.05% 76.25% 76.50%

CR 69.06% 73.65% 75.07% 76.89% 76.47% 77.32%

EM 64.92% 66.86% 73.54% 74.54% 78.92% 80.50%

ID 63.85% 67.20% 69.90% 70.23% 71.35% 72.23%

CART results

3 bands 6 bands 9 bands 12 bands 15 bands 18 bands

Method acc. acc. acc. acc. acc. acc.

CSLN 53.51% 64.49% 68.56% 68.36% 69.41% 70.85%

WaLuDi 45.62% 53.71% 65.55% 68.68% 69.68% 70.96%

CR 52.03% 65.66% 66.93% 68.29% 70.46% 72.25%

EM 44.72% 55.72% 66.28% 66.57% 71.33% 73.12%

ID 49.07% 53.16% 58.85% 62.43% 63.37% 67.06%

Figure 5.4: The Indian Pines image classified by CART.
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Table 5.3: Classification results for Pavia University.

KNN results

3 bands 6 bands 9 bands 12 bands 15 bands 18 bands 21 bands

Method acc. acc. acc. acc. acc. acc. acc.

CSLN 86.66% 90.63% 91.32% 92.11% 92.64% 91.83% 91.82%

MOBS 70.30% 77.26% 87.68% 90.19% 91.15% 92.73% 93.21%

CC 85.98% 85.98% 86.32% 87.14% 87.91% 90.37% 91.00%

CART results

3 bands 6 bands 9 bands 12 bands 15 bands 18 bands 21 bands

Method acc. acc. acc. acc. acc. acc. acc.

CSLN 72.96% 81.91% 83.00% 84.37% 84.66% 84.54% 84.45%

MOBS 50.28% 60.13% 77.65% 81.64% 85.37% 88.19% 88.07%

CC 72.87% 73.36% 74.17% 75.18% 76.05% 81.92% 83.77%

SVM results

3 bands 6 bands 9 bands 12 bands 15 bands 18 bands 21 bands

Method acc. acc. acc. acc. acc. acc. acc.

CSLN 78.81% 87.17% 90.33% 93.03% 94.36% 83.76% 92.58%

MOBS 61.30% 71.50% 85.96% 91.65% 91.50% 98.23% 98.88%

CC 77.99% 79.47% 80.71% 82.33% 83.75% 84.63% 91.49%

As for the Pavia University image, the accuracy results are shown in Table 5.3. Using

the KNN classifier, the proposed method has the best results with 3, 6, 9, 12 and 15

bands. This is illustrated in Fig. 5.5.

For CART, our method achieves the best results with 3, 6, 9 and 12 bands. Fig. 5.6

shows it.

Using the SVM classifier, the proposed CSLN method has the best results with 3, 6, 9,

12 and 15 bands, which can be seen in Fig. 5.7.

5.2.4.1 Visual inspection of the selected bands

The spectral signatures of the different classes give us an idea of the features—or

bands—that provide a good separation amongst classes. The more the signatures are

far from one another, the better it is for the classifier.

Figures 5.8 and 5.9 show the mean spectral signatures of the classes present in Indian

Pines and Pavia University datasets, respectively. In order to avoid excessive visual

information, the location of only the first 6 selected bands is displayed, in vertical lines.
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Figure 5.5: The Pavia University dataset classified by KNN.

Figure 5.6: The Pavia University image classified by CART.

We notice that in both cases the selected bands fall in regions where the spectral sig-

natures are far from one another. It denotes that our BS framework proposed in this

chapter is capable of selecting appropriate spectral bands.

5.2.4.2 Considerations about the single-layer neural net choice

As already stated in Section 5.1.2.3, our rationale for the band selection is based on

Equation ??, which, in turn, is the separating hyperplane calculated by the single-layer

neural network used in this chapter.
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Figure 5.7: The Pavia University dataset under SVM classification.

Figure 5.8: Mean spectral signature values of the Indian Pines image classes. The
vertical lines indicate the location of the first 6 bands selected by the proposed CSLN

method.
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Figure 5.9: Mean spectral signature values of the Pavia University image classes. The
vertical lines indicate the location of the first 6 bands selected by the proposed CSLN

method.

If the neural net does not converge to a good local minimum, or if its architecture is

not appropriate for the problem at hand, no conclusion based on Equation 4.4 would be

reliable.

According to the framework proposed in this chapter, the binary classification problem

addressed by the single-layer neural network comes from the clustering performed by the

k-Means algorithm. Thus, the two groups are linearly separable, as shown in Figures

5.10 and 5.11, where the straight lines that separate the two clusters are calculated

using a single-layer neural network. The dimension of the datasets was reduced by the

Principal Components Analysis, whose the first two principal components—PC1 and

PC2, respectively—are kept, for a 2D illustration.

It is worth-noting that the two groups are linearly separable not only in a sparse fea-

ture space—Figure 5.10—, but also in a more dense situation, such as in Figure 5.11.

Consequently, it is reasonable to use a single-layer neural network in such situations.

5.2.5 Remarks about the results

5.2.5.1 KNN versus CART

For the Indian Pines image, KNN results are, in general, superior than that of CART:

73.26% and 63.13%, respectively. This may be attributed to the fact that CART splits

the feature space into regions that correspond to the classes. Therefore, if xi is found

in a region corresponding to a class α, for example, it will be classified as α, even if it
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Figure 5.10: Two Indian Pines clusters. The straight line is calculated by a single-layer
neural network.

Figure 5.11: Two clusters from the Pavia University image. The straight line that
separates the groups is calculated by a single-layer neural network.
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Figure 5.12: Mean results of the three classifiers used for the Pavia University image.

belongs to class β. Whereas, in this same situation, KNN would analyze the k nearest

neighbors of xi before assigning it a label. Consequently, KNN outperforms CART when

the class boundaries are highly non-linear.

5.2.5.2 KNN, CART and SVM

Concerning the Pavia University image, the mean results for the KNN, CART and SVM

are, respectively, 88.30%, 78.31% and 85.69%. This shows a slight superiority of KNN

in relation to SVM, what is somehow unexpected in high dimensional feature spaces, as

shown in Fig. 5.12.

It is worth mentioning that our objective in this thesis is the classification comparison

amongst different BS methods, and not the best attainable classification result. For this,

further studies on the classifiers hyperparameters would be necessary.

5.2.5.3 Band selection methods

As for the band selection methods, using the Indian Pines image, the proposed BS

framework achieves the best results in 5 out of 12 experiments, whereas the competitor

have 4/12, 2/12, 1/12 and 0/12.

For the Pavia University image, our method gets 14/21, and the competitors 7/21 and

0/21.

The CSLN framework not only gets superior results than its competitors, but it is also

easily implementable. Thus, one can conclude that it is a good method for band selection.



Chapter 6

Unsupervised Band Selection

using Autoencoder

Like Chapter 5, in this chapter we insist on the unsupervised issue. Indeed, methods that

do not need the data class information are more likely to be used in several occasions,

because unlabeled data are more abundant. Furthermore, as already stated in Chapter

2.3, giving labels to hyperspectral data is an expensive task.

Consequently, in this chapter a new unsupervised BS is proposed. It takes advantage of

the intrinsic unsupervised nature of autoencoders, which also explore the structure of

the dataset.

Basically, our method inserts a masking noise in the input samples during the training

phase of the autoencoder. The reconstruction error is measured taking into account the

uncorrupted input vector, thus it is possible to assess the importance of the missing

information. The correlation amongst adjacent bands is softened in the hidden layer of

the autoencoder.

The BS framework proposed in this chapter gives as output the ranking of all the spectral

bands. The bigger the rank, the more important the band is.

6.1 Proposed method

In this section, the proposed unsupervised band selection approach is described.
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Figure 6.1: Example in reduced size of the autoencoder used in the proposed framework.
All the layers have d neurons. W(1) and W(2) are the sets of weights.

6.1.1 Definitions

Let X be the hyperspectral dataset whose elements xi ∈ Rd×1 represent the pixels of this

image, with i = 1, 2, ..., n, where n is the cardinality of X and d is quantity of spectral

bands.

Let N : Rd×1 → Rd×1 be an autoencoder whose hidden layer has d neurons. Its cost

function is quadratic. And let W(1) and W(2) be the matrices of weights between the

input and hidden layers and between the hidden and output layers, respectively, as

shown in Fig. 6.1. And let b(1) and b(2) be the vectors of biases of the hidden and

output layers, respectively. Let os ∈ o be the output of the sth neuron of the hidden

layer, with s = 1, 2, . . . , d, and o ∈ Rd×1. Let A be the set containing the original d

spectral bands. And let r ∈ Rd×1 be a vector, whose element rh is the ranking of the

band ah ∈ A, with h = 1, 2, . . . , d.

Let yi ∈ Rd×1 be the output of the autoencoder Θ.

Finally, let sig() be the sigmoid function,

sig(z) =
1

1 + e−z
, (6.1)

which will be used as activation function of the autoencoder. Since every xki ∈ xi

belongs to the [0, 1] interval, we adopted the sigmoid as the activation function, because

the range of this function is also contained in the [0, 1] interval.

6.1.2 Description

Autoencoders seek to reconstruct in their output layer, the encoded information of the

input vector.
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Therefore, autoencoders are composed of two parts:

• Encoder: The encoding of the input vector takes place in the hidden layer; and

• Decoder: The output layer performs the decoding process.

Mathematically, the output yi = Θ(xi) is defined as

yi = sig(W(2)o + b(2)), (6.2)

where the vector o is given by

o = sig(m + b(1)), (6.3)

where m is a vector containing d multiplicative aggregation functions mk().

6.1.2.1 Multiplicative aggregation function

The multiplicative aggregation function (MAF) is an important component of the pro-

posed framework, and this function is used to soften the redundancy present in the

dataset. MAFs are placed in the hidden layer, and in order to exploit the correlation

amongst all bands, the input and hidden layers must have the same size. Thus, less

redundant information will be fed towards the output layer.

In this thesis, we propose a MAF simpler than the one proposed in (Chandra and

Sharma, 2015). It also yields simpler equations for the back-propagation algorithm.

For each neuron of the hidden layer, there is an associated multiplicative aggregation

function mk : Rd×1 → R, with k ∈ {1, 2, . . . , d}, given by

mk(xi) = xki (w
kk
(1))

2(1 +
∑
l 6=k
−2ρ2lkw

kl
(1)x

l
i), (6.4)

where ρlk is the correlation between the bands l and k, and the weights w(1) ∈W(1).

Finally, the output ok ∈ o of each hidden neuron is

ok = sig(mk(xi) + bk(1)), (6.5)

where bk(1) ∈ B
(1).

According to Equation (6.4), the negative summation makes mk smaller. More precisely,

the bigger the correlation amongst band k and the other bands, the smaller the value of

mk, and consequently, the smaller the magnitude of ok.
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6.1.2.2 Spectral bands ranking

The outcome of the proposed band selection framework is the ranking of all spectral

bands. At the end of the whole processing, for each band ah ∈ A there will be a

correspondent rh ∈ r indicating its ranking.

During the training of the autoencoder Θ, every input data sample xi is subjected to

the masking noise transform t, which has the following properties:

• each xki ∈ xi has equal probability p to be masked; and

• no position xki is masked in two consecutive iterations.

Let c ∈ Nd×1 be a vector that is initially zero. Each time a position k of the input vector

is masked, that is, x̃ki = 0,

ck ← ck + 1. (6.6)

Thus, the vector c counts how many times each feature is masked during the training

phase of the autoencoder.

In Equation 6.7, there is an example of an input vector xi along with its correspondent

corrupted version x̃i subjected to the masking noise. Note that in x̃i some positions are

flipped to zero. The bigger the probability p, the more features are masked.

xi =



x1i

x2i

x3i

x4i

x5i
...

xdi



x̃i =



x1i

0

x3i

x4i

0
...

xdi



(6.7)

Let ỹi be the output of the autoencoder when x̃i is the input sample. That is, ỹi = Θ(x̃i),

where x̃i = t(xi). Likewise, yi = Θ(xi), without masking the input sample.

Initially, r(0) = 0, and at iteration q, the calculation of the rankings r
(q)
h ∈ r(q) is

r
(q)
h =

1 + v1
1 + v2

+ r
(q−1)
h , (6.8)
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when x̃hi is masked. Where

v1 =

d∑
k=1

(ỹki − xki )2 (6.9)

and

v2 =
d∑

k=1

(yki − xki )2. (6.10)

From Equation 6.9, we see that v1 measures the reconstruction error between the cor-

rupted output ỹi and the input xi. If v1 takes small values, it means that the autoen-

coder Θ can reconstruct x̃i without any difficulties. Therefore, the masked features of

x̃i cannot be considered as unimportant information. On the other hand, if v1 takes

big values, one may infer that the masked bands are important to accomplish the input

vector reconstruction. In fact, the extent to which v1 > v2 indicates the importance of

the masked features—or bands.

The parameters update of the autoencoder is done by the back-propagation algorithm,

based on the quadratic error e between the output with masked input and the input

without masking noise. That is,

e =
1

2
(ỹi − xi)

2. (6.11)

Algorithm 3 shows the steps of the proposed BS method. The indices of the biggest

values of r are those of the best bands to be selected. As stated in the step 10 of Algo-

rithm 3, the division r/c means rk/ck, for k = 1, 2, . . . , d. This measure assures that all

spectral bands will be equally compared in the final ranking.

Algorithm 3 Proposed method.

1: input : X

2: initialize: r(0) = 0
3: for q = 1 : MaxIterations do
4: yi = Θ(xi)
5: ỹi = Θ(x̃i)
6: Update r(q) using Equation (6.8)
7: Update c using Equation (6.6)
8: Update the weights and biases of Θ using the back-propagation algorithm, ac-

cording to the error calculated in Equation (6.11)
9: end for

10: return: r/c
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6.2 Results

In this section, the results of the proposed method are shown. Furthermore, they will be

compared with other BS methods by analyzing the accuracy of two supervised classifiers

—k-Nearest Neighbors and Classification and Regression Trees—, which have as input

the selected bands.

The dataset is the Indian Pines image. Regarding the ground truth, there are 16 classes,

which are used only for classification comparison purposes.

6.2.1 Competitors

The band selection performance of the proposed method, which will be called AE, is

compared with four other methods from the literature. They are:

• One method is clustering-based (Martinez-Uso et al., 2007), which will be referred

to as WaLuDi;

• The other approach uses both clustering and ranking techniques for band selection

(Datta et al., 2015), which will be called CR;

• Another competitor uses band elimination with partitioned image correlation (Datta

et al., 2014), and this method will be called EM;

• This competitor is based on information divergence, and it will be referred to as

ID (Chang and Wang, 2006).

6.2.2 Masking noise percentage

In (Chandra and Sharma, 2015), each feature xki ∈ xi has a probability of p = 0.25 to be

masked. However, in this work we run our algorithm with ten different probability values,

with pv = 2.5v
100 , where v = 1, 2, . . . , 10. For each pv, we summed up the reconstruction

error for every input data sample, according to Equation 6.11. Figure 6.2 shows the

reconstruction error for each masking noise probability. The masking noise probability

that yielded the smallest reconstruction error was 7.5%.

The smaller the error, the better the autoencoder can reconstruct the input vector.

If an autoencoder can properly reconstruct an input vector, it means that this neural

network could sufficiently learn about the structure of the dataset. Consequently, this

noise probability of 7.5% is kept throughout this work.



Chapter 6 Unsupervised Band Selection using Autoencoder 93

Figure 6.2: Reconstruction error with different masking noise probabilities. The lower
the reconstruction error, the better the autoencoder.

6.2.3 Selected bands

Firstly, the bands selected by the proposed method can be found in Table 6.1. We let

them available to other researchers who may be interested in comparing results. Because

we have access to only the first 18 best-ranked bands of our competitors, we restrict the

analysis of results to this number of bands.

It is worth-mentioning that the bands in Table 6.1 are placed in descending order of

importance. That is, r43 > r13 > r133 > · · · > r99 > r215. For example, the value in the

43rd position of the vector r is the biggest. This indicates that the 43rd spectral band

is the most important, according to the proposed method.

Table 6.1: Selected bands in order of importance, according to the rankings R.

Selected bands 43, 13, 133, 190, 174, 123, 82, 118, 209,

144, 73, 98, 11, 137, 77, 106, 99, 215.

6.2.4 Results comparison

All the classification results shown in this chapter are the mean values over ten runs.

The standard-deviation values are also calculated.

In Table 6.2, the results of the KNN classifier are shown. The proposed method AE

achieves the best results in almost all cases. It is illustrated in Figure 6.3.
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Figure 6.3: The Indian Pines dataset under the KNN classification. The proposed AE

framework gets the best results in almost all cases.

Figure 6.4: The Indian Pines hyperspectral image classified by CART. The proposed
BS method achieves the best result in only one case.
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Table 6.3 shows the overall results achieved by the CART classifier. The proposed

method has the best result in only one case, with 12 spectral bands. In Figure 6.4, it is

possible to have a visual idea of the results.



96
C
h
ap

ter
6
U
n
su
p
erv

ised
B
an

d
S
election

u
sin

g
A
u
to
en

co
d
er

Table 6.2: KNN results.

3 bands 6 bands 9 bands 12 bands 15 bands 18 bands

Method mean std mean std mean std mean std mean std mean std

AE 64.79% 0.24% 76.65% 0.37% 77.53% 0.34% 80.76% 0.53% 82.30% 0.50% 82.59% 0.37%
WaLuDi 65.12% 1.02% 64.65% 0.25% 73.19% 0.72% 78.05% 0.56% 76.25% 0.19% 76.50% 0.67%
CR 69.06% 0.52% 73.65% 1.03% 75.07% 1.43% 76.89% 1.07% 76.47% 1.14% 77.32% 0.22%
EM 64.92% 1.15% 66.86% 1.03% 73.54% 0.28% 74.54% 1.07% 78.92% 0.41% 80.50% 0.52%
ID 63.85% 079% 67.20% 0.22% 69.90% 0.18% 70.23% 1.16% 71.35% 0.47% 72.23% 1.34%

Table 6.3: CART results.

3 bands 6 bands 9 bands 12 bands 15 bands 18 bands

Method mean std mean std mean std mean std mean std mean std

AE 41.32% 0.55% 61.13% 0.84% 64.38% 1.17% 69.98% 1.48% 70.07% 1.06% 71.23% 0.80%
WaLuDi 45.62% 1.00% 53.71% 1.23% 65.55% 0.95% 68.68% 0.28% 69.68% 0.75% 70.96% 1.15%
CR 52.03% 1.14% 65.66% 0.39% 66.93% 0.37% 68.29% 1.48% 70.46% 0.99% 72.25% 1.91%
EM 44.72% 0.93% 55.72% 1.04% 66.28% 0.52% 66.57% 1.24% 71.33% 0.76% 73.12% 0.51%
ID 49.07% 0.82% 53.16% 1.35% 58.85% 1.42% 62.43% 1.67% 63.37% 1.01% 67.06% 0.87%
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Figure 6.5: The autoencoder reconstruction error over training epochs.

6.2.4.1 Reconstruction-error based ranking

As stated in the step 10 of Algorithm 3, the ranking vector r is updated by taking into

consideration the number of times each feature of the input vector xi is masked.

As the autoencoder learns over the training epochs, it is reasonable to assume that

the rankings calculated —according to Equation 6.8—in the last training epochs could

have a bigger importance than the rankings calculated during the first training epochs.

However, as shown in Figure 6.5, the autoencoder converges to a minimum reconstruction

error very quickly, and it keeps this situation until the last training epoch.

Since this minimum position is kept throughout most of the training epochs, we consider

that all the rankings calculations have the same importance, under the reconstruction

error criterion. Consequently, the step 10 of Algorithm 3 suffices as a ranking update

measure.

6.2.4.2 Visual inspection of the selected bands

It is also useful to have a visual idea of the selected bands.

In Figure 6.6, the mean values of the spectral signature for each of the 16 classes of the

Indian Pines image are displayed. The red vertical lines indicate the location of the first

six selected bands, to avoid excessive visual information. The red circle near the 100th

spectral band indicates a place where all the spectral signatures seem to merge. There

are more regions like that in this spectral band × reflectance plot.



98 Chapter 6 Unsupervised Band Selection using Autoencoder

Figure 6.6: Mean spectral signature values of the Indian Pines image classes. The vertical
lines indicate the location of the first 6 bands selected by the proposed AE framework.
The red circle, near the band 100, indicates an example of region to be avoided, where
all the spectral signatures seem to merge.

It is important to note that all the first six selected bands fall in regions where the

spectral signatures are somehow spread, avoiding regions whose spectral bands are not

discriminative—for example, the red circle.

6.2.5 Remarks about the results

6.2.5.1 KNN versus CART

In general, KNN results are superior than CART accuracies, 73.36% and 62.65%, re-

spectively. It happens due to the fact that CART divides the feature space into several

regions, one for each class. So, once a xi falls in a region that belongs to the class α, for

instance, it will be given the label α, even if it belongs to class β. Whereas KNN would

inquire the k nearest neighbors of xi before giving it a label. For this reason, KNN is

better than CART in highly non-linear separating boundaries.

Another worth-mentioning fact is that the accuracies increase as more bands are used,

as shown in Tables 6.2 and 6.3.

Figure 6.7 shows that KNN has better accuracies than CART, considering all the BS

methods together. Moreover, it is possible to see that the more bands are used, the

better the classifier accuracies.
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Figure 6.7: Mean results of all methods together.

6.2.5.2 BS methods comparison

When it comes to the band selection approaches, considering the KNN classifier, the

proposed method has the best results in 5 out of 6 situations. Furthermore, the standard-

deviation values shown in Table 6.2 indicate that the AE method have statistically better

results.

Considering the CART classifier, the proposed method achieves the best accuracy only

with 12 bands, that is, in 1 out of 6 situations. With 9, 15 and 18 bands, our method

AE has similar results in relation to its competitors.

In general, considering all the 12 situations—6 for KNN and 6 for the CART classifier—,

the final score is thus:

1. AE (the proposed method): 6 best results;

2. CR: 4 best results;

3. EM: 2 best results; and

4. WaLuDi and ID: 0 best result.

Thus, it is possible to see that the proposed method has the best outcome, compared to

its competitors.





Chapter 7

Conclusion

7.1 Conclusions

Hyperspectral images provide rich spectral information about the scene under analysis

as a result of their both numerous and contiguous bands. Since different materials have

distinct spectral signatures, objects with similar characteristics in terms of colors and

shape may still be distinguished in the spectral domain that goes beyond the visual

range.

In a pattern recognition system, the huge amount of data contained in HSIs may pose

problems in terms of data storage and transmission, or cause the overfitting of the

classifier in case of insufficient training data. One way to solve or, at least, reduce those

troubles is to resort to band selection, because it decreases the size of the dataset while

keeping the useful information.

In supervised frameworks, it is possible to proceed to the band selection by taking into

account the class information of the data samples. Thus, classes separability measures,

for example, can be used to assess the validity of the selected spectral bands. As for

the unsupervised approaches, the BS task is done by selecting the bands that keep the

original data structure.

In this thesis, we proposed three band selection frameworks. Two unsupervised and one

of them is supervised, whose conclusions are given in the sequel.

7.1.1 Supervised Band Selection using Single-Layer Neural Network

In this context, the present thesis proposed a supervised filter-based band selection

framework based on single-layer neural networks using only 20% of the available training

data.

101
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For each class in the data set, a binary classification into class and non-class was per-

formed, and the bands corresponding to the largest and smallest weights were selected.

During this iterative process, the bands most correlated with the bands selected are au-

tomatically discarded, according to a procedure also proposed in this thesis. In general,

the proposed method may be seen as a class-oriented band selection approach, allowing

a BS criterion that meets the needs of each class.

A number of other filter-based BS algorithms perform their choice of bands based, for

instance, on statistical properties of the data set. A positive aspect of the filter-based

method proposed in this thesis is that it is based on classification, that is, it uses a

linear classifier to rank and select the bands. The proposed method outperformed its

competitors in 43% of the cases analyzed in this thesis.

As a secondary conclusion, we showed that wrapper-based approaches are not necessarily

better than their filter counterparts, when using different classifiers for the band selection

process and for the classification. More research on this subject is necessary.

7.1.2 Unsupervised Clustering-based Band Selection using Single-Layer

Neural Network

The proposed unsupervised BS method is based on k-Means clustering and single-layer

neural networks.

It starts by clustering the whole data set into two groups. Then, a single-layer neural

network is used to find a separating hyperplane between the clusters. The bands linked

to the biggest and smallest coefficients of the hyperplane equation are selected. Then,

this procedure is repeated using the generated clusters to select the desired number of

bands.

By analyzing the results, one could see that the proposed method outperformed its

competitors in both datasets analyzed. More specifically, using the Indian Pines image,

our method had the best results in 41.7% of the experiments, whereas the competitors

achieved their best results in 33%, 17%, 8.3% and 0% of the tests. For the Pavia

University dataset, our framework had the best result in 66.7% of the experiments, and

the competitors had the best performances in 33.3% and 0% of the experiments.

7.1.3 Unsupervised Band Selection using Autoencoder

The last proposed BS method is based on autoencoders.

During the training phase of the autoencoder, each input data sample is subjected to a

masking noise transform, which flips some features of the input vector into zero, following

a given probability. Then, the output error is assigned to those indices with masking
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noise. The errors are summed up to their respective positions during the whole training

phase. At the end, there is a ranking of the bands, and the most important are the ones

with the biggest rankings.

According to the results, one could conclude that the KNN classifier is better than

CART for the Indian Pines image, 73.36% and 62.65% of accuracy, respectively. Also,

the bigger the number of bands, the better the classifier accuracy. It is worth noting

that we selected from 3 up to 18 spectral bands.

Regarding the proposed method, it achieved the best results in almost all situations

using the KNN classifier. With the CART classifier, the proposed method got the best

results in one situation and similar to other competitors’ results in other situations.

In general, our method had the best results in 50% of the experiments, whereas the

competitors achieved the best marks in 33.3%, 16.7% and 0% of the tests.

7.2 Perspectives

The present work is still in progress. In this document, we presented the latest version

of the three methods we have been devising during the last three years. Indeed, the

more we work on the frameworks, the more ideas pop out.

Datasets types: In this thesis, we devised band selection methods and performed

tests and analyses using hyperspectral datasets acquired by satellites. In future de-

velopments, we intend to use UAV-borne sensors and try to use our methods in such

equipment.

Furthermore, it will be important to verify the performance of our methods with mul-

tispectral images, in which the spectral bands are not contiguous nor numerous. We

could use, for example, the Sequoia sensor1.

Input data type: All the proposed BS methods are designed to work in a pixel-wise

fashion. We did so for two reasons:

• To be consistent with the datasets, whose class information is associated with

pixels, and not image patches (for the supervised method); and

• To be consistent with the algorithm that we used (autoencoder).

Concerning future developments of our methods, it would be interesting to test other

frameworks, like convolutional neural networks.

1https://www.korecgroup.com/product/parrot-sequoia-sensor/
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7.2.1 Supervised Band Selection using Single-Layer Neural Network

A next step of this framework is to devise a methodology in order to find the optimum

number of bands to be selected for a given application and image. Thus, a specialist

would not be necessary.

Also, as already seen, when the number of bands to be selected in less than the number

of classes, not all the classes can indicate the bands to be selected. In future works, we

could devise a method that takes into account the importance of classes, and prioritize

the most important during the band selection.

7.2.2 Unsupervised Clustering-based Band Selection using Single-Layer

Neural Network

With regard to the future works, we will investigate other clustering algorithms and

binary classifiers and use them in our framework.

Moreover, we will investigate the impact of calculating the covariance matrix of the

dataset and use it during the clustering procedure. Thus, we will try other distances

measurements rather than Euclidean.

7.2.3 Unsupervised Band Selection using Autoencoder

Concerning the future works, we will investigate some heuristics to choose the features

to be masked, instead of using a uniform distribution.
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