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Résumé

La prédiction des vibrations induites par un écoulement est essentielle dans la con-
ception des conduits de nombreuses installations industrielles, en particulier dans
l’industrie du gaz. Notre étude concerne la prévision du bruit et la vibration des
conduits soumis à un écoulement turbulent à faible nombre de Mach. Notre objectif
est de présenter une étude numérique et expérimentale permettant aux ingénieurs
de mieux comprendre le couplage entre l’excitation aléatoire et le conduit pour deux
géométries (circulaire ou rectangulaire). Une approche expérimentale est développée
et utilisée pour valider les prévisions numériques. Deux cas sont étudiés : (i) un con-
duit droit sans singularité, où les modes acoustiques du conduit sont excités par une
couche limite turbulente (TBL) et (ii) un conduit droit avec un diaphragme inséré
en amont qui génère une source acoustique localisée. La contribution acoustique est
déterminée soit par des méthodes de mesure d’interspectres, soit à l’aide des outils de
mécanique des fluides numérique (CFD) et d’analogies aéroacoustiques. La réponse
de la structure est estimée par une approche dite de ‘couplage faible’ qui utilise des
fonctions de transfert modale d’un conduit fini simplement appuyé. Les mesures con-
duiront à évaluer et suggérer des améliorations de modèles empiriques existants de
densité interspectrale de puissance (CPSD) dans un contexte d’écoulements internes
turbulents. Une analyse modale expérimentale d’un conduit rectangulaire finie est
confrontée à des méthodes de calcul pour évaluer l’effet des conditions aux limites, du
rayonnement acoustique et de l’amortissement aérodynamique. Le couplage fluide-
structure est analysé par la fonction de ‘joint acceptance’ à la fois dans le domaine
spatial et dans le domaine des nombres d’onde. L’excitation comprend à la fois les
contributions acoustiques et hydrodynamiques à l’aide des CPSD exprimées sur la
base des fonctions de cohérence de type Corcos, champ diffus et modes acoustiques
d’ordre élevé. Enfin, les études numériques et expérimentales de cette thèse ont été
utilisées pour développer un cadre d’étude et de modélisation du bruit et des vibra-
tions dans les conduites, qui relie la dynamique des fluides, les modèles analytiques
et empiriques à des techniques efficaces d’analyse aléatoire.
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Abstract

Pipeline and duct vibrations can cause a range of issues from unplanned shutdowns
to decreased equipment life time. Thus, the prediction of flow-induced vibrations
is essential in piping design in many industrial plants, especially, for Gas industry.
This study deals with the prediction of pipe flow noise and vibration at low Mach
number. We aim to present a numerical and experimental study which can offer
engineers a better understanding of the coupling between random excitation and duct
section for two geometries (circular or rectangular). An experimental facility and
measurement approach is developed and used to validate numerical predictions. Two
cases are investigated: (i) a straight duct with no singularity, duct acoustic modes
are excited by the Turbulent Boundary Layer (TBL) and (ii) a straight duct with
a diaphragm inserted upstream generating a localized acoustic source. The acoustic
contribution is either measured via cross-spectra based methods or calculated using
Computational Fluid Dynamics (CFD) and aeroacoustic analogies. The response of
the structure is estimated via a ‘blocked’ approach using analytical modal Frequency
Response Functions (FRFs) of a simply supported finite duct. Measurements will
lead to evaluate and suggest improvements to existing Cross Power Spectral Density
(CPSD) empirical models in a context of internal turbulent flows. Experimental modal
analysis of a finite rectangular duct are confronted to computational methods to assess
the effect of the Boundary Conditions (BCs), the resistive damping from coupling with
the internal acoustic medium and aerodynamic damping. The fluid-structure coupling
is analyzed through the joint acceptance function both in the spatial and wavenumber
domain. The excitation includes both the acoustic and hydrodynamic contributions
using CPSD written on the basis of Corcos, Diffuse Acoustic Field (DAF) and acoustic
duct mode coherence functions. Finally, the numerical and experimental studies in
this thesis were used to develop a framework for studying and modelling pipe flow
noise and vibration which links CFD, analytical and empirical models to efficient
random analysis techniques.

Keywords: Flow induced Noise and Vibration, Aero-Vibro-Acoustics, Turbulent
Flow, Joint Acceptance Function, Acoustic duct modes.
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Introduction

0.1 Context

This PhD originated from 3 previous PhD programs. David [1] started his PhD in
2013 to study the vibration of gas transport network in partnership with FIVES
company, a world’s leader for equipment used in aluminum production. The vibra-
tion response of finite duct with rectangular cross-section has been investigated using
empirical models to calculate the wall pressure field. In parallel, Bennouna [2] and
Papaxanthos [3] started their PhD the same year in partnership with the CEVAS
(Conception d’Equipements de Ventilation d’Air Silencieux) project, funded by the
Picardie region and FEDER (Fonds Européen de Développement Régional). The
aeroacoustic of Heating, Ventilation and Air-Conditioning (HVAC) components has
been studied both numerically and experimentally. The present PhD was initiated
to combine the main results of these previous studies in order to tackle more broadly
pipe vibrations generated by internal flow disturbances (see Fig. 1). The following
PhD is founded by the French government.

0.2 Present Research Objectives

Flow induced noise vibrations are often encountered in piping systems in a variety
of applications: (air conditioning systems (HVAC) or gas transmission pipelines in
the industry, for instance). Pipe vibrations can cause noise disturbances and prema-
ture aging structures sometimes requiring interventions after installation, difficult to
implement and very expensive.

The main objective of this thesis is to develop numerical models for a better under-
standing of the physical phenomena of noise generation and the vibration generated by
(i) a turbulent flow in a straight duct and (ii) a vortex shedding after a discontinuity
in the pipe (elbow, constriction or the presence of a diaphragm).

1



2 CONTENTS

Figure 1: Origins of the present PhD thesis.

Simulations (numerical models) will be confronted with experimental data, hereby
by two strategies:

• Analysis of the generation mechanisms for the unsteady wall pressure by using
numerical simulation with CFD commercial code (Computational Fluid Dynam-
ics): STAR-CCM+.

• Development and use of appropriate numerical methods to develop a framework
for studying and modelling pipe flow noise and vibration which links CFD,
analytical and empirical models to efficient random analysis techniques.

This work has been partly addressed in 2 papers published during the first and
second year of the PhD:

• A paper in the Journal of Sound and Vibration [4] as second author. Hence, the
first version paper (see Chapter 3 in [1]) could not be published in its current
form.

• A paper in the book research Flinovia II [5] as main author appended to this
thesis in Chapter 5.

The chapter 4 is written in the form of a paper, yet to be submitted to an academic
journal.



Chapter 1

Background and Literature review

This chapter presents the state-of-the-art research in flow induced noise and vibration
for piping systems submitted to internal turbulent flow at low Mach number. The rela-
tion between internal wall pressure fluctuations and the structure response of the pipe
wall is highlighted using modern and standard representations. A choice of methodol-
ogy will be proposed to tackle flow induced noise and vibration issues in a context of
finite pipe excited by low Mach number flows.
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4 Chapter 1 – Background and Literature review

Excitation of structures by flows and the resulting vibration and radiated noise is
a problem of practical interest in various fields; as example of applications one can
cite the prediction and reduction of cabin noise in aircrafts, sound in sonar domes
in underwater acoustics, and vibration and noise generated in pipes. Analyses of
the vibroacoustic response of a structure to the stochastic loading by TBL pressure
fluctuations have been investigated extensively over the past forty years. The list is
not exhaustive and we just cite research which may offer a relevant framework for this
PhD. A starting point is Blake’s book [6, 7], which remains to this day, a reference
in the field of Flow induced Noise and Vibration. Due to the interdisciplinary nature
of the subject, this book unifies all disciplines: fluid mechanics, structural dynamics,
vibration, acoustics, and statistics.

For a more specific application in the field of pipe flow noise and vibration, the
reader is referred to Norton’s book [8] (see Chap.7) for discussion on a case study of
steel pipelines with internal gas flows. Hambric et al. published an overview about
noise sources and transmission in piping systems [9], and a review of analysis methods
for structural and acoustic noise sources due to turbulent flow through an elbow [10].
Durant et al. performed both numerical simulation and experimental investigation of
the vibroacoustic response of a thin cylindrical shell excited by a turbulent internal
air flow [11, 12]. Bonness et al. also performed a complete analysis with internal
water flow [13, 14].

1.1 Fundamentals of low Mach number wall pres-
sure fluctuations

The basic fluid dynamics equations for an incompressible fluid in terms of velocity
and pressure fluctuations writes

∂(ρui)
∂xi

= 0, (1.1)

∂(ρui)
∂t

+ ∂(ρujui)
∂xj

= − ∂p

∂xi
+ ∂τij
∂xj

, (1.2)
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where ρ, ui and p are the density, the i-component of the velocity and the pressure.
The viscous stress tensor τij writes

τij = µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
, (1.3)

where µ is the dynamical viscosity of the fluid. The equation governing the pressure
field is obtained by taking the divergence of the momentum equation. It writes for an
incompressible flow

∇2p = −ρ∂ui
∂xj

∂uj
∂xi

. (1.4)

In practice, the pressure field governed by Eq.(1.4) is not analyzed in the time or
frequency domain due to its random nature. Hence, the overall framework for the
analysis is based on random analyze techniques. Thus, mean quadratic quantities,
spectra, space-time correlation, cross-spectra are required to analysis the flow field. All
statistical ingredients necessary to calculate these quantities are recalled in Appendix
A. In general, the key quantity to evaluate the influence of the flow is the cross spectral
density (CSD) of wall pressure fluctuations. Three approaches can be distinguished
in order to evaluate this quantity:

1. The time resolved flow field is available (unsteady approach) and averaged quan-
tities are computed a posteriori.

2. The time resolved flow is not available and a statistical expression is required
(through the Poisson equation (1.4)). This statistical approach uses time av-
eraged turbulence statistics from Reynolds-averaged Navier-Stokes Simulation
(RANS).

3. Semi-empirical models based on experimental data are used.

The first approach consists of performing unsteady simulation such as Direct Nu-
merical Simulations (DNS) or Large Eddy Simulations (LES). A direct estimation of
the time-evolution of the pressure fluctuations allows to obtain statistical properties
by signal post-processing [15]. To take into account compressibility effects (the acous-
tic part of the pressure fluctuations), the Poisson equation (1.4) has to be replaced by
a ‘wave equation’. However, and despite the continuous development of computational
tools and resources, it is still challenging to solve aeroacoustic problems following a
direct manner, such as, via a single calculation. In general, the simulation method
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is a two-step approach assuming the decoupling of noise generation and propagation
[16–18]. This leads to different strategies to compute the aeroacoustic field as shown
in Fig. 1.1. In Chapter 5, a two-step approach is proposed to calculate the acoustic
part of the pressure fluctuations in a context of pipeline singularity using LES and
aeroacoustic analogies (green line in Fig. 1.1). It will allow to quantify the relative
weight of each contribution (acoustic and hydrodynamic) on the structure response.

Figure 1.1: Different numerical strategies to compute aerodynamic noise from [19].
LEE: Linearized Euler’s Equations; NLDE: Non Linear Disturbance Equations,
SNGR: Stochastic Noise Generation and Radiation. In green, the strategy adopted
in Chapter 5.

The second approach consists in forming a statistical expression (through the Pois-
son equation (1.4)) expressed as the space-time correlation function, or its wavevector
frequency spectrum. In general, it started with analytical expressions [20] of the
fluctuating pressure which is calculated from the convolution of the free-space Green
function of the Poisson equation (1.4) with the right-hand side source term. A statis-
tical expression is written in term of correlation function (also called surface-pressure
covariance). The cross-spectral density function defined as the Fourier transform of
the space-time correlation function is also frequently used. Statistical modelling has
been first developed for jet noise evaluation. The input data needed by the stochastic
model only stem from preliminary steady RANS computations. The k-ε model is
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usually chosen to provide turbulence statistics. The main idea is that turbulent field
is generated by a sum of Fourier modes [21]. Bailly et al. [22] used this idea to predict
the noise of free turbulent flows using a volume source model based on the Stochastic
Noise Generation and Radiation (SNGR) approach [23–25]. Further improvement of
these methods have been conducted at ONERA (see for instance [26–28]). Tam and
Auriault also developed a stochastic method to evaluate jet mixing noise from fine
scale turbulence [29]. Hu [30] predicted the turbulent boundary layer wall pressure
fluctuations by solving Poisson equation using synthetic turbulence generated by the
Fast Random Particle-Mesh Method (FRPM) of Ewert [31, 32]. Here, the velocity
fluctuations are deduced from the convolution of the correlation functions with a filter
based on the spatial filtering of white noise. Peltier and Hambric [33] also published
a stochastic method to estimate the turbulent-boundary-layer wall-pressure contribu-
tion.

The third approach consists of using semi-empirical models based on experimental
data. A detailed overview of the last 50 years of development of semi-empirical mod-
els to predict the turbulent boundary layer wall pressure frequency spectrum (auto-
spectrum, cross-spectrum, wavenumber-spectrum) has been summarized by Hwang
[34], whose work is based on observations from Bull [35], Farabee [36] and Blake [37].
Many fundamental experiments have been carried out to measure the characteristics
of the wall pressure fluctuations. It started with the measurements of the statistical
properties of the wall-pressure field beneath turbulent boundary layers made by Will-
marth and Wooldridge [38], Bull [39] and Corcos [40]. Measurements are presented
in term of cross-spectral densities and they are found to agree closely with the model
proposed by Corcos, which is expressed in a separable form

Spp(s1 − s2, ω) = Φpp(ω)A(ωξs/Uc)B(ωξz/Uc)exp(−iωξz/Uc), (1.5)

where s1 − s2 = (ξs, ξz) is the separation vector. Here s = (s, z) are the coordinates
of a point on the duct wall, s corresponds to the spanwise and z the streamwise
direction. In this work, we shall follow the work of Durant et al [11, 12] for circular
pipes and consider the Corcos model for the TBL excitation. Note that the model is
no longer truly valid for ducts with rectangular sections due to the corner edges. The
TBL is supposed to be fully developed, stationary and homogeneous so that the point
auto-spectrum Φpp is spatially independent and the cross spectrum is only function
of the separation vector. The sign in the last exponent depends on the definition of
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the Fourier transform. Thus, the CSD of wall pressure fluctuations can be written
in its general form as the product of the power spectral density Φpp(ω) and a spatial
correlation function Γ(s1 − s2, ω) as follows:

Spp(s1 − s2, ω) = Φpp(ω)Γ(s1 − s2, ω). (1.6)

Eq.(1.5) shows that pressure fluctuations are convected with the flow at mean convec-
tion velocity Uc. The unknown functions A and B are determined from experimental
data and suggested an approximation by decreasing exponential function as

A(ωξs/Uc) = exp(−|ξs|/Ls(ω)), B(ωξz/Uc) = exp(−|ξz|/Lz(ω)), (1.7)

where Ls(ω) and Lz(ω) are respectively the longitudinal and circumferential correla-
tion lengths of pressure fluctuations. In the standard form of the Corcos model, A
and B are expressed in terms of two parameters γs and γz related to the coherence
lengths by γs = Uc/(ωLs) and by γz = Uc/(ωLz).

A quantity of pratical interest in the framework of flow induced noise and vibration
is the 2D wavenumber spectrum of pressure fluctuations Φ̃pp(k, ω). The knowledge of
the wavenumber spectrum is essential to study the coupling between the structure and
a random pressure load. The 2D wavenumber spectrum can be obtained by taking
the spatial Fourier transform of Eq.(1.6) defined as :

Φ̃pp(k, ω) = Φpp(ω)
∫∫

Γ(s1 − s2, ω)exp[−i(ksξs + kzξz)]dξsdξz, (1.8)

with k = (ks, kz), the wavenumbers of a plane structure.

Note that equation (1.8) assume an homogeneous pressure field depending only
on the separation vector s1 − s2 = (ξs, ξz). In practice, it is also possible to define
an estimation of the 2D wavenumber spectrum even in presence of non homogeneous
flow. According to the knowledge of temporal (or frequency) pressure field data at
each point of a given spatial grid, it writes

Φ̃pp(k, ω) = lim
T→∞

lim
D→∞

2π
T

(2π)2

D
E [p(k, ω)p∗(k, ω)] , (1.9)

where p(k, ω) is obtained after successively applying a temporal fourier transform over
a time domain T and a spatial fourier transform over a spatial domain D. These steps
are recalled in Appendix A and more details can be found in Van Herpe’s paper [41]
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for the case study of the wind noise from a vehicle’s side windows.

The measurement of wavenumber-frequency spectrum has attracted considerable
attention for now more than 50 years. The main difficulty is to cover high spatial
frequencies (hydrodynamic contribution) and low spatial frequencies (acoustic contri-
bution). First measurements were performed by Wills [42], Blake and Chase [43]. The
limitations were primarily due to acoustic contamination and spatial aliasing. More
recently, better measurements have been obtained using either linear array of micro-
phones [44], irregular sensor arrangement [45], microphones mounted on a rotating
disk [46] or on a spiral-shaped rotative array [47]. These 50 years of measurement has
driven the community to adopt the following view of the wavenumber spectrum illus-
trated in Fig. 1.3. The 1D wavenumber spectrum is here a function of the streamwise
wavenumber, kz, for a fixed frequency ω. The majority of the energy is concentrated
in what is termed the convective domain. This part of the spectrum is often referred
to as the convective ridge. It is centered on the convective wavenumber, kc = ω/Uc,
where Uc, is the convection velocity. The convection velocity is the speed at which the
large scale eddies within the turbulent boundary layer travel. The sonic or acoustic
domain (kz ' ω/c0) is expected to have a local finite peak in the vicinity of k0. The
Corcos wall pressure wavevector frequency spectrum can be obtained by taking the
spatial Fourier transform of Eq.(1.5)

Φ̃pp(k, ω) = Φpp(ω)
(
Uc
ω

)2 4γzγs[
γ2
z +

(
1− kx

kc

)2
] [
γ2
s +

(
ky
kc

)2
] . (1.10)

Fig. 1.2 shows the Corcos’s coherence function in both the spatial and wavenumber
domain. Corcos’s spectrum is considered to be ‘wavenumber white’, since there are
only slight variations of the spectral levels in the low-wavenumber region. In com-
parison to Fig. 1.3, the Corcos model suffers from deficiencies. In particular, it can
be shown that for strictly incompressible flows, the pressure spectrum must display a
variation in k2

z at low wavenumbers (known as the Kraichnan condition [48, 49]). This
feature is absent in the Corcos model (Fig. 1.2(d)). Although most of the theorists
accept the so-called Kraichnan-Philips theorem, there is no experimental evidence to
support it. Bull [35] reported that there is no indication that the incompressible k2

z

low wavenumber limit of Kraichnan is approached in any way. This observation is
based on the contribution of Leehey [50] whose measurements have shown that the
low-wavenumber region domain become independent of wavenumber ("wavenumber



10 Chapter 1 – Background and Literature review

-0.2 -0.1 0 0.1 0.2
-0.2

-0.1

0

0.1

0.2

(a)

-0.2 -0.1 0 0.1 0.2
-1

-0.5

0

0.5

1

(b)

(c)

100 101 102
-90

-80

-70

-60

-50

(d)

Figure 1.2: Different representations of the Corcos’s coherence function at 500 Hz
with correlation values (γz, γs) = (0.125, 1): (a) and (b) in the spatial domain; (c)
and (d) in the wavenumber domain.
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white"). Another deficiency of the model is that it does not take into account the
compressibility of the fluid. Even for low Mach number flows, compressibility effects
are important for very low values of the wavenumber associated with supersonic phase
velocities. The spectrum in this region is dominated by acoustic wave propagation
due to the noise generated by the turbulent structures in the boundary layer. Chase
[51–54]) reexamined the character of the wavevector-frequency spectrum and modified
the spectrum to be consistent with experimental data in the subconvective domain.
Chase model’s is believed to better describe the low-wavenumber domain compared to
the Corcos’s one which overpredicts experimental data. Other empirical models have
also been developed in the 1980’s and 1990’s. For examples: Efimtsov [55], Ffowcs
Williams [56], Witting [57], Smol’yakov and Tkachenko [58] and the Modified Corcos
models used by Ko and Schloemer [59]. The reader is referred to [34] where various
models of wavenumber spectrum are reviewed and analyzed.

The last quantity of interest is the point autospectrum Φpp which can be obtained
using semi-empirical models. A comparison of semi-empirical models for TBL wall
pressure spectra can be found in [60–62]. Its value is usually determined according to
experimental curves plotted according to certain scaling laws where the dimensionless
spectral density is represented as a function of dimensionless frequency. The point
spectrum can be scaled with inner, outer or mixed variable to provide the collapse
of experimental data. In general, for the case of a boundary layer along a flat plate,
the outer scales: U∞, 1

2ρU
2
∞, δ, δ∗ and the inner scales: uτ , τw, ν are commonly used.

They are respectively the free stream velocity, the dynamic pressure, the boundary
layer and displacement thickness for the outer variables and the friction velocity, the
wall shear stress and the kinematic viscosity of fluid for the inner variables. Unfortu-
nately, there is no single scaling that leads to a satisfactory collapse of experimental
data at all pertinent frequencies. This is due to the repartition of energetic structures
all over the TBL. From very close to the wall up to the boundary layer thickness,
wall-bounded flows are more complex than free flows (jets for example) due to the
coexistence of various length and velocity scales. It can be divided into two distinct
families, associated to motion near the wall (known as the inner layer) and the other
with motion in the region away from the wall (known as the outer layer). In the
near vicinity of the wall, viscous effects are dominant over turbulent effects and outer
scales (or global scales) are no more characteristic of the local flow structure. In this
case, new scales have to be defined based on the viscosity of the fluid and on the wall
shear stress. The separation of this two regions occurs at the frequency where the
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point spectrum exhibits its maximum value. The universal region can be interpreted
as an overlap of the two region as shown Fig. 1.4. A number of point spectral models
have been developed for the last 30 years [37, 61]. The more comprehensive multiple
scale models were published recently by Smol’yakov [63] and Goody [64]. In practice,
models of point spectra are expressed with only global flow quantities called inner
or outer variables. These quantities can be easily obtained trough standard RANS.
This approach gives satisfying results but only for a Zero Pressure Gradient (ZPG).
Schloemer [65] experimentally observed the strong effect of the mean-pressure gra-
dient on the wall-pressure fluctuations. Rozenberg et al. [66] more recently found
that the effect of an Adverse Pressure Gradient (APG), which is the part of the wind
tunnel where the flow is decelerated, cannot be neglected because it leads to an un-
derestimation of the point autospectrum. It is also proposed a modification of the
initial Goody’s formula to predict APG wall pressure spectrum. Note that the model
is limited to APG flows and cannot be applied to Favorable Pressure Gradient (FPG)
which is the part of the wind tunnel where the flow is accelerated.

Figure 1.3: A scheme representing the wavenumber-frequency spectrum as a function
of the streamwise wavenumber, at constant frequency [14].
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Figure 1.4: General spectral characteristics of a TBL wall pressure spectrum at various
frequency regions [61]. Here, u∗ stands for the friction velocity.

1.2 Response of structures to random pressure fields

The response of structure to a random pressure field requires random analysis tech-
niques. Many articles, publications are available about the mathematics of random
variables. Paez [67] published an interesting paper about the history of random vibra-
tion through 1958. The starting point of the modern field of probabilistic structural
dynamics is credited to Crandall and its famous proceeding [68] of 1958. Standard
texts on this topic have been published since this date. Bendat et Piersol [69], New-
land [70] or Elishakoff [71] are particularly referred to introduce random vibration
analysis techniques to take account a stochastic load distribution. Thus, the cross
power spectral density of the resulting vibration between points r1 and r2 located on
the duct due to a random pressure field is defined as

Sww(r1, r2, ω) =
∫
S

∫
S
H∗(r1, s1, ω)Spp(s1, s2, ω)H(r2, s2, ω) ds1 ds2, (1.11)

where H corresponds to the frequency response function (FRF), which represents the
FRFs between input forces on the surface S and vibration at desired response loca-
tion. The CPSD of the wall pressure fluctuations, also called, the forcing function, is
assumed to be stationary and ergodic. This essentially means that the system is in
a steady state response and that the forcing function time history repeats itself for
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all time. Different strategies exist to calculate the frequency response functions. For
instance, FRFs may be computed using finite element (FE) or analytical models. The
dynamic response of the structure can be described by a modal expansion method
or a wave method. The modal method is particularly suitable for excitation at lower
frequencies. Peak responses are generally dominated by the response of a few indi-
vidual modes. The total frequency response function is therefore easily represented
as a superposition of modal responses. A wave method may be preferable since reso-
nance response predicted by the modal expansion method can be interpreted as the
coincidence superposition of traveling waves with opposite wave-number vectors de-
scribed as incident and reflected waves [72]. Reaching a boundary or discontinuity in
the surface, these waves are partly reflected, partly transmitted across the boundary,
and also possibly partly transformed into different types of waves. Certain specific
problems are more easily solved using wave concepts rather than the mode viewpoint.
At higher frequencies, however, several modes contribute strongly to the response at
each frequency (high modal overlap), and the frequency response function is more eas-
ily calculated using statistical methods, like Statistical Energy Analysis (SEA). For
the current work, the highest vibration responses are assumed to be at frequencies
low enough to justify a modal approach over statistical analysis. Simply supported
boundary conditions (BCs) are considered, since the modes obtained are easy to incor-
porate into analyses of flow turbulence acting on structures. Analytical modal FRFs
for simply supported geometry can be obtained and make Eq.(1.11) easy to obtain.

In practice, flexible rubber sections, flanges or other expansion joints are used
to separate sections of pipe. These discontinuities at the interface of two pipe sec-
tions induces additional stiffness and mass. For finite pipe encountered in industrial
plants, BCs are likely to be a mix between pinned BCs and clamped BCs which dif-
fer from the standard simply supported BCs. Non ideal BCs can be incorporated in
analytical models to predict more accurately the effect of flanges or other expansion
joints. Sub-structuring approaches allow to couple semi-analytical models with finite
element method (FEM). Maxit et al. [73] developed the Circumferential Admittance
Approach (CAA) to estimate the vibro-acoustic behaviour of infinite axisymmetric
submerged shell periodically or non-periodically stiffened by internal frames. This in-
finite approach estimates the power energy dissipated at the interfaces and wavenum-
ber diagrams can be plotted to see the wave contributions during propagation. The
wave finite element (WFE) method can also be considered to address this task [74]. It
constitutes an efficient means to describe the dynamic behavior of waveguides whose
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cross-section can be multi-physics. It involves an elastic part (pipe) coupled with other
expansion joints. This approach has been used to compute the dynamic response of
an infinite railway track [75].

In our case, the frequency response function H is written using a modal expansion
or sometimes called eigenmode series representation. This approach requires subtle
attention for solving fluid loading problems with finite geometries as reported in [76,
77]. In general, the standard expression writes

H(r, s, ω) =
∑
mn

Wmn(ω)φmn(r)φmn(s), (1.12)

where φmn is the structural mode in vacuo for a given mode (m,n). However, as
pointed in Durant paper’s [12], two different expansions of the response of a duct can
be built: the outer expansion which is valid far from the resonant frequencies of the
structure and the inner expansion which is valid at and near these frequencies. In any
case, to find a solution, it is necessary to begin with a rather good approximation.
When the fluid is air, the in vacuo resonant frequencies provide a satisfying prediction.
The receptance function Wmn may be defined as

Wmn(ω) = 1
Mmn[ω2

mn(1 + iη)− ω2] , (1.13)

and has a sharp maximum at the resonance frequency for any given structural mode.
Mmn =

∫
S
ρhφ2

mn ds is the generalized mass where S is the surface of structure, ρ
its density, h the thickness, ωmn the natural frequency of mode (m,n) and η the loss
factor. From a physical point of view, the case η = 0 means that there is no energy loss
through the ends of the structure, by material damping or acoustic radiation. Here,
the structural problem is not coupled to a fluid medium. The loss factor is accounted
for as a complex factor in the stiffness matrix. In the following thesis, the properties of
a system with general structural damping is considered following the same procedure
as for proportionally damped system [78]. In any case, the use of any theoretical
analysis for the determination of the response of a structure to one or more excitation
forces will strongly depend on the accurate estimation of the structural or acoustic
damping quantity. Damping values are usually determined from measurements, and
values derived from past experience are used. Therefore, the reader should keep in
mind that the results from a response analysis will be approximated only.
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The frequency response function H defining the steady state harmonic response
of the duct at point r excited by a point force located at s is the solution of the
fundamental system

L [H]− ρhω2H = δ(r− s), (1.14)

where L is the structure operator obtained from a beam, plate or shell theory. Once
again, this approach assumes no fluid loading effects since the structural problem is
not coupled to a fluid medium.

1.2.1 Vibro-acoustic coupling

In practice, a pipe is coupled to an internal and external fluid. A vibrating struc-
ture in contact with a compressible fluid such as air or water will generate pressure
fluctuations in the fluid which, in turn, will react back on the structure and modify
its vibration behaviour. This loading by the pressure waves in the fluid is known as
radiation loading. The importance of this interaction depends on the fluid nature and
on the structure of interest. For this reason the area of Fluid Structure Interaction
(FSI) and Flow-Induced Vibration (FIV) are distinguished. FSI generally involves
two-way coupling that means a feedback loop between structure and fluid needs to
be fully captured (fluid and solid solution variables are solved simultaneously). FSI
problems are generally associated with large amplitude structure vibrations. Some-
time, the above-made definitions of FSI and FIV overlap. The reader is refereed to
Ohayon and Soize book’s [79] for a rigorous formulation of structures surrounding by
light or heavy fluids. In general, it is important to distinguish between structures
radiating into air or relatively dense fluids such as water or oil. For light fluids, it is
commonly admitted that the structural vibration and acoustic pressure can be eval-
uated independently. It means that structural motion has negligible impact on flow
field and surface pressure fluctuations (called sometime ‘blocked’ approach because a
blocked wall pressures is applied to the structure without creating a feedback). The
acoustic radiation calculated using the structural displacements in vacuo is consid-
ered as a good approximation. For dense fluids, the forces acting on the structure
are significantly modified by the radiation loading, and since the acoustic pressure is
dependent upon the structural response, a feedback coupling between the fluid and
structure exists. Thus, the structural vibration and acoustic pressure responses must
be evaluated simultaneously. In general, the fluid is assumed inviscid, that means, the
acoustic fluid has no viscosity and therefore cannot support shear forces. The only
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component of structural displacement that contributes to the radiated sound field is
the one normal to the surface of the structure. Similarly the acoustic medium can
only apply normal loads to a structure. Therefore, the coupling with a fluid can be
represented by adding a reacting pressure term p in the right-hand side of the struc-
ture equation governing the radial component. Vibro-acoustic analysis are generally
classified into three main categories: interior problems, exterior problems and mix
interior/exterior problems. The last one corresponds to our analysis since pipe struc-
tures contain an internal fluid surrounded by an external fluid. This vibro-acoustic
problem can be solved analytically and two main approximations are distinguished in
the literature.

In a context where the pipe is assumed infinite, shell theories are adopted and
modes of vibration are only in the circumferential direction. The fluid coincides with
the structure and both domains are infinite. Therefore, circumferential modes and
axial wavenumber are the same for the structure and the acoustic medium. The pres-
sure satisfies the Sommerfeld radiation condition and Euler’s relation at the interface
with the shell. As described by Junger and Feit [80], the solution to the problem of
infinite submerged shells can be solved in the wavenumber domain separately for each
circumferential mode n and axial wavenumber kz. Skelton and James’ book [81] is
particularly referred to as it provides all numerical ingredients to deal with the case of
an infinite shell with layered media and periodic rib stiffening including internal and
external acoustic radiation. Applying a 2D spatial Fourier transform of Eq.(1.14), the
radiation loading is taken into account by adding a fluid-loading term fL in the shell
operator defined as

fL = ρe
0ω

2 H|n|(γeR)
γeH ′|n|(γeR) − ρ

i
0ω

2 J|n|(γiR)
γiJ ′|n|(γiR) , (1.15)

where H|n| and J|n| are the nth order Hankel and Bessel functions respectively, ρe
0

is the exterior/interior density, γe,i =
√

(ke,i
0 )2 − k2

z , k
e,i
0 = ω/ce,i

0 and ce,i
0 is the exte-

rior/interior fluid sound speed. This fluid-loading terms can be decomposed into its
real and imaginary parts, respectively called resistance and reactance. The resistance
represents energy dissipation through acoustic radiation, while the reactance describes
the added mass or stiffness effect.

In a context where the pipe is assumed finite, a finite length isotropic shell is
connected to infinite rigid baffles. The structure response can be expressed as an ex-
pansion over the in vacuo structural modes. According to Guyader and Laulagnet [82],
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it is always possible to expand the structural vibratory field of fluid-loaded structures
using the in vacuo structural basis (let us recall that an analytical approach is consid-
ered here). A linear system is obtained with new modal amplitudes aαpqk as unknowns.
These amplitudes modify the orthogonal properties of the eigenvector components
due to the fluid loading so that the resulting linear system is no longer diagonal. The
non-diagonal terms correspond to the cross-terms of the internal/external radiation
impedances. The linear system takes the following form


. . .

mpqk(ω2
pqk(1 + iη)− ω2)

. . .


︸ ︷︷ ︸

diagonal matrix


...

aαpqk
...

 =


...

Fα
pqk
...

− iω


...

· · · Ze,i
pqk(ω)


︸ ︷︷ ︸

full matrix


...

aαpqk
...


(1.16)

where Fα
pqk is the generalized force due to a point excitation applied to the shell, ω2

pqk

is the in vacuo resonance frequencies, mpqk is the generalized mass and Ze,i
pqk(ω) is the

internal or external radiation impedance. The notation is taken from [83] and the
reader will note that the most difficult part of the calculation is to keep tracking of
the subscripts. Once again, the fluid acts not only as an added mass (real part of
Ze,i
pqk(ω)), but also as radiated loss (imaginary part of Ze,i

pqk(ω)). For many acoustic
problems in air, the cross-modal coupling terms are weak and can be neglected. In
this case, the acoustic radiation can be seen only as an added structural damping.

Numerical solutions exist to tackle complex geometries surrounded by a fluid for
all kinds of boundary conditions. FEM consists in solving the partial differential
equations by using the variational formulation of the local equations associated to
the structure and fluid problems. The latter are discretized into elements and lead
to a vibro-acoustic formulation. The boundary element method (BEM) can also be
considered for the acoustic problem starting from the Helmholtz integral equation.
Details of the BEM and FEM modeling procedures, as well as examples and some
practical suggestions, are provided in [84, 85].
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1.3 Analysis of the coupling of structural modes
and flow-induced excitation

Powell [86] introduced the concept of joint acceptance function to understand how the
forcing function couples with the modes of the structure. This concept was further
developed by Wilby [87] to study the response of simple panels to TBL excitation. At
that time, the response of flat plates due to TBL had been the subject of considerable
research. The contributions of Dyer [88], Maidanik [89], Ribner [90], Maestrello [91,
92], White [93] and Davies [94] can be cited. Hence, it has been shown that FRFs can
be determined by using a modal expansion, adding up the responses of the individual
modes so that Eq.(1.11) becomes

Sww(r, ω) =
∑
mn

∑
m′n′

Wmn(ω)W ∗
m′n′(ω)φmn(r)φ∗m′n′(r)× Imnm′n′(ω), (1.17)

where ∗ indicates the complex conjugate. In this thesis mode shapes are deliberately
assumed real. The integrals Imnm′n′ is commonly called the joint acceptance function
for (m,n) = (m′, n′) and the cross-joint acceptance function for (m,n) 6= (m′, n′). It
writes

Imnm′n′(ω) =
∫
S

∫
S
φmn(s1)Spp(s1, s2, ω)φ∗m′n′(s2) ds1 ds2. (1.18)

Note that a joint acceptance of unity means complete correlation of the forcing func-
tion and perfect matching between the pressure field and the mode shape. In some
instances, FRFs are expressed on the basis of infinite plate assumption. Strawderman
[95] reviewed turbulent-flow-induced plate-vibration models using finite or infinite thin
plates theory. The infinite-plate model is useful due to its simplicity in the mathe-
matical developments for the estimation of the injected power by the TBL. Especially,
at high frequency, the type of boundary condition does not influence the vibratory
behaviour so that there is an ‘equivalence’ between finite and infinite structure. This
principle is often used in SEA.

For finite or infinite structure, it is useful to represent the vibration behavior in the
wavenumber domain. This approach have been first dedicated to predict the sound
radiation of standard geometry such as flat, baffled surfaces, spherical and cylindrical
shells. General books such as those written by Junger and Feit [80], Fahy [72], Skelton
and James [81], and William [96] have introduced this representation. The spatial or
wavenumber Fourier transform of a structural mode (only for plane structures) writes
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Smn(k) =
∫
S
φmn(s)eiksd2s. (1.19)

The squared magnitude of this function is usually called the wavenumber sensitivity
function. The reader is referred to Shepherd [97] and Robin [98] papers to have
an update of its representation for the case of a rectangular, simply supported plate.
Note that the term ‘panel acceptance’ is consistent with the term ‘sensitivity function’
according to Blake’s textbook [99]. The inverse transform of Eq.(1.8) is

Spp(s1 − s2, ω) = 1
(2π)2

∫ +∞

−∞
Φ̃pp(k, ω)e−ik(s2−s1)d2k. (1.20)

The results Eq.(1.19) and Eq.(1.20) inserted in Eq.(1.18) give the joint acceptance
function expressed in the wavenumber domain and writes

Imn(ω) = 1
(2π)2

∫ +∞

−∞
Φ̃pp(k, ω)|Smn(k)|2d2k. (1.21)

This formulation is of a particular concern as TBL wall pressure fluctuations are often
analyzed in wavenumber space. In addition, the double integral over the spatial do-
main in Eq.(1.18) is transformed into a single integral over the wavenumber domain
which leads to reduced computing time. Graham [100–102] proposed this approach
to calculate boundary layer induced cabin noise. Maury et al. [103, 104] also applied
the wavenumber approach to obtain the vibro-acoustic response of a panel excited by
random excitations. This results led to the standard representation in the wavenum-
ber domain (see Fig 3.6 to 3.10 in Blake’s textbook [99]) because the evaluation of the
coupling is obtained by integration over the wavenumber of the product of the sensi-
tivity function and the TBL wavevector spectrum. Hwang and Maidanik [105] showed
that the matching depends on the shape of the sensitivity function Smn(k) and its
associated boundary conditions. Following this work, Hambric et al. [106] examined
the importance of surface and edge interaction between the plate structural modes
and the TBL wall pressure wavenumber content. Hence, mode shapes with non ideal
boundaries follow similar trends than those with simply supported BCs. The differ-
ences are observed near the edges. The modes of a finite pipe may be subdivided into
two region: the center pipe region, and pipe edge ends. Similarly, in the wavenumber
domain, the flexural vibration response of structures excited by a TBL is splitted into
two regions [106]: the low-wavenumber region; where so-called ‘surface interaction’
dominates the structural acceptance and the convective wavenumber region so-called
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‘edge interactions’ dominate the response.

1.4 Wavenumber spectrum, coincidence and panel
acceptance

There are different kinds of wavenumbers involved in the flow forcing function and
the structure. A typical plot is the wavenumber-frequency (k-ω) diagram for surface
pressure spectrum Φ̃pp(k, ω) as indicated in Fig. 1.5. This permits to examine wave
types on frequency-wavenumber plots. For instance, flexural waves travel along the
structure–fluid interface and match with more or less success to the acoustic or hydro-
dynamic waves in the fluid. Flexural waves in plates are characterized by the flexural
wavenumber defined as

kf (ω) =
(
ρh

D

) 1
4 √

ω, (1.22)

where D is the flexural rigidity, ρ the mass density and h the plate thickness. Flex-
ural waves are dispersive, meaning that their wave speeds increase with increasing
frequency. Flexural waves matching with the surrounding fluids depends on whether
these waves are subsonic (slower than the waves speed in the fluid) or supersonic
(faster than the waves speed in the fluid). For problems associated with low speed
flows (M ≈ 0.1), convected wavenumbers kc are up to two orders of magnitude greater
than corresponding acoustical k0 and structural kf wavenumbers as shown in Fig. 1.5.

If the dispersion relation of any two types of wave motions intersect, they then
have the same frequency, wavenumber, wavelength and wave speed. This condition
(termed ‘coincidence’) leads to an efficient interactions between the two wave-types.
The hydrodynamic coincidence is obtained at the angular frequency ωc for kc = kf

and the acoustic coincidence at ω0 for k0 = kf . At this stage, it is important to
distinguish infinite from finite structure to study the coincidences (hydrodynamic and
acoustic). For infinite panels free bending waves occur at any frequency. The reader
is referred to Pezerat et al. publication [108, 109] to have a clear overview of the
coincidence mechanism.

For finite panels, the discontinuities at the boundaries leads to a superposition of
traveling waves with opposite free bending waves vectors described as standing waves
which appear at natural or discrete frequencies ωmn (respectively discrete wavenumber
kmn) such as kf (ω = ωmn) = kmn = kresonance as shown Fig. 1.5. In principle, the panel
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Figure 1.5: Wavenumber-frequency (k-ω) diagram for surface pressure spectrum
Φ̃pp(k, ω) of a sub-sonic flow from [107]. Typical resonance wavenumber kresonance
obtained by interference between waves propagating at the free wavenumber kf .

is finite in the streamwise and spanwise direction. Therefore, standing waves form
in wavenumber space a two-dimensional regular lattice described by the sensitivity
function defined in Eq.(1.19). At a given frequency ω, the resonant modes are located
on a circle of radius kf . If a mode of vibration has its wavenumbers close to kc or k0,
Smn(k) is peaked about its wavenumbers and will preferentially accept power from
the flow for this mode of vibration. This is the concept of panel acceptance. This
condition might be termed ‘wavenumber coincidence’. ‘Complete coincidence’ can be
defined further as the condition in which there is not only wavenumber coincidence,
but also matching of frequencies. To illustrate the concept of spatial and frequency
filter, the averaged kinetic energy of the structure can be introduced and writes

Ec(ω) = ρh

2
ω2

S

∫
S
Sww(r, ω) dr. (1.23)

Introducing Eq.(1.17) into Eq.(1.23) yields:

Ec(ω) = ρh

2
ω2

S

∫
S

∑
mn

∑
m′n′

Wmn(ω)W ∗
m′n′(ω)φmn(r)φ∗m′n′(r)× Imnm′n′(ω) dr. (1.24)

In the ideal case where the fluid loading effects are neglected and accounting to only
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the real part of modes shapes, the average operation in Eq.(1.24) permits to use
the orthogonality of the mode shapes and finally one gets an approximation of the
averaged kinetic energy

Ec(ω) ' 1
2
ω2

S

∑
mn

Mmn|Wmn(ω)|2 × Imn(ω). (1.25)

This result shows that the vibrational response is proportional to the product of the
receptance function and the joint acceptance function. Thus, the coupling of the
structure with a turbulent flow act not only as a spatial filter traduced by the panel
acceptance mechanism in the joint acceptance function, but also as a frequency filter
traduced by the receptance function. This shows that at a given frequency ω modes
for finite panels can be

1. resonant (amplification of Wmn(ω) at ω = ωmn ). The resonant modes are
located on a circle of radius kf = ω/cf (ω), where cf is the phase speed of
flexural waves.

2. in hydrodynamic or acoustic coincidence (maximum of Imn(ω) at ω 6= ωmn ).
The convection wavenumber kc is equal or close to the axial structural wavenum-
ber km (at ω = ωmc) and the longitudinal and transverse projections of the
acoustic wavenumber k0 are equals or close to km (at ω = ωm0) and kn (at
ω = ωn0).

3. both resonant and in hydrodynamic or acoustic coincidence (at ω = ωmn = ωmc

for the hydrodynamic excitation for instance).

Therefore, the term ‘complete coincidence’ corresponds to the third condition. It
cannot in general be satisfied for a finite structure (see Norton’s book [8] Fig. 7.8 and
[110]). One can recall that the more frequencies of resonant and in coincidence modes
become close, the more coincidence effects are significant (the product |Wmn(ω)|2 ×
Imn(ω) is important).
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Finally, the acoustic and hydrodynamic contributions do not control the structural
response in the same manner. This can be observed in the dispersion relationship
which exhibits 3 main zones:

1. Below the hydrodynamic coincidence (ω < ωc), the structural wavenumbers are
higher than those of the hydrodynamic and acoustic contributions (cf < Uc

and cf < c0), some of the resonant modes are in hydrodynamic or acoustic
coincidence and the sum of the product |Wmn(ω)|2 × Imn(ω) is important. The
effect of hydrodynamic coincidence is maximum when cf ∼ Uc as the number of
resonant modes in hydrodynamic coincidence is maximum.

2. Between the hydrodynamic and acoustic coincidences (ωc < ω < ω0), the struc-
tural wavenumbers are higher than those of the acoustic contribution and lower
than those of the hydrodynamic contribution (cf > Uc and cf < c0). Some
of the resonant modes are in acoustic coincidence and the sum of product
|Wmn(ω)|2 × Imn(ω) is maintained due to the acoustic component. The hy-
drodynamic contribution contributes only on the panel edge vibration rather
beyond the hydrodynamic coincidence. The effect of acoustic coincidence is
maximum when cf ∼ c0 as the number of resonant modes in acoustic coinci-
dence is maximum.

3. Above the acoustic coincidence (ω > ω0), effects are only observed on the panel
edges.

These qualitative aspects are valid for a flat plate. Heckl [111] showed that the
main effect of curvature on the vibration modes of a cylinder is to increase their
structural wavespeeds. Therefore, the analysis of coincidences for pipes is studied
according to the shell ‘ring frequency’ defined as

fr = 1
2π

cl
R
, (1.26)

where cl = (E/(ρ(1−ν2)))1/2 is the velocity of compressional waves and R the radius.
The ring frequency is of practical interest because above this frequency, flexural wave-
lengths become short with respect to the radius of curvature and the shell effectively
becomes a flat plate. From that, the analysis of pipe coincidences become similar of
those of plates.
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1.5 Introduction of the acoustic contribution into
the CSD expression of the wall pressure distri-
bution

1.5.1 Diffuse Acoustic Field

The low wavenumber region or the acoustic contribution is usually modeled as a
diffuse field in a context of external flow. It is assumed that a diffuse field is a
reasonable approximation for low Mach number flows, on the basis that the turbulent
eddies are random acoustic sources in space and time. This acoustic contribution is
assumed to be generated by the turbulent boundary layer itself. The description of
the acoustic pressure field produced by the turbulent boundary layer over a flat plane
is far from being resolved. It requires subtle assumptions as well as sophisticated
theoretical developments and we can refer to well known standard textbooks (see
Ch.16 by Dowling [20] and Ch.2 in [37]) for further details. The coherence function
of a Diffuse Acoustic Field (DAF) excitation writes [112–115]

Γ(s1, s2) = sin k0|s1 − s2|
k0|s1 − s2|

. (1.27)

This is in general directly added to the Corcos formulation by using a coefficient
which traduces the energy ratio between the acoustic and aerodynamic terms as shown
Fig. 1.6. Arguillat et al. [116] measured the acoustic contribution by integrating the
measured Φ̃pp(k, ω) over the acoustic disk of radius k0. The energy ratio between
the acoustic and aerodynamic parts was found to decrease with frequency from ap-
proximately 10 to 0.1% . In addition, the same author proposed a second method to
extract the acoustic component using a least mean square procedure. Starting from
the measurement of the CPSD in the spatial domain, it was assumed a model of CPSD
on the basis of the sum of an aerodynamic contribution provided by the Corcos model
and an acoustic part given by a DAF coherence function written as:

Spp(s1 − s2, ω) = Φpp(ω)
(
ΓCorcos + A(ω)ΓDAF

)
, (1.28)

with A(ω) the ratio between the aerodynamic and the acoustic energies. For auto-
motive application [117], a constant ratio of 10 percent is applied, A(ω) = 0.1. Lecoq
[109] used this approach to model both aerodynamic and aeroacoustic contributions
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and applied a ratio of 5 percent following Arguillat work’s [116].

Figure 1.6: External turbulent flow: the acoustic contribution is generally modeled
as a DAF excitation and added to the Corcos coherence function.

1.5.2 Acoustic duct modes

In the context of an internal flow in straight pipes, the situation is quite different as
shown Fig. 1.7 (case 1). Boundary layer pressure fluctuations are distributed over the
entire surface of the duct and acoustic waves within the TBL flow excite acoustic duct
modes, which in turn excite the duct walls. Therefore, the duct pressure field of an
infinite rigid duct is written as a sum of propagating modes at a point s = (s, z) of
the wall and writes

p(s1, ω) =
∑
pq

C+
pqψpq(s)eik+

pqz +
∑
pq

C−pqψpq(s)eik−pqz, (1.29)

where C±pq stands for amplitude of the downstream (+) and upstream (-) propagating
mode and ψpq the acoustic mode (p, q). The convention s = (s, z) is adopted so that
s stands for the curvilinear abscissa and z the coordinate along the duct. Therefore,
the modes ψpq are defined as the projection of the acoustic mode along the curvilinear
abscissa s. The flow is assumed uniform and thermo-viscous attenuation is neglected
so that the axial wavenumbers k±pq writes

k±pq =
kM ±

√
k2 − (1−M2) k2

⊥

1−M2 , (1.30)

whereM is the Mach number and k⊥ is the transverse wavenumber. The condition for
an acoustic mode to propagate is that the wavenumber k±pq must be real. Otherwise
the wave is evanescent and decays exponentially. The frequency at which a mode
(p, q) begins to propagate is known as the cut-off frequency of the mode. For the
sake of clarity, the modal sums will be written with the symbol ± to include both
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positively and negatively propagating modes. In addition, the suffix pp of the function
Spp should not be confused with pq used to designate the acoustic duct modes.

To our knowledge, Norton’s thesis [118] was one of the first contribution to intro-
duce plane waves and higher order modes expressed in term of CPSD forcing function
in a context of internal flow induced vibration of pipes. The CPSD between the
pressure at 2 points s1 = (s1, z1) and s2 = (s2, z2) writes

Spp(s1, s2, ω) =
∑
pq

E
[∣∣∣C±pq(ω)

∣∣∣2]ψpq(s1)ψpq(s2)eik±pq(z1−z2)︸ ︷︷ ︸
Γ±pq(s1,s2)

+
∑
pq

pq 6=rs

E
[
C±pq(ω)C±rs(ω)∗

]
ψpq(s1)ψrs(s2)ei(k±pqz1−k±rsz2), (1.31)

where E [] is the ensemble average. The suffix rs is used to introduced the cross modal
amplitudes which are assumed all uncorrelated random variables so that E

[
C±pq(ω)C±rs(ω)∗

]
= 0. It is further assumed that the same mode propagating in opposite directions are
also uncorrelated.

The situation with an internal flow disturbance in the duct due to a singularity
such as a bend, a junction or a flow constriction is shown Fig. 1.7 (case 2). The
flow/obstacle interaction generates internal sound waves which propagate through
the piping system. The additional propagating sound waves are then superimposed
on the hydrodynamic TBL fluctuations. In the vicinity of an obstacle placed in the
duct, the ‘near-field’ is associated with strongly turbulent flow and non-propagating
acoustic waves which are attenuated rapidly with distance from the disturbance. In
what may be termed the ‘far-field’ of a flow disturbance in the duct, the pressure
fluctuations are associated with duct acoustic modes propagating downstream and the
distance is sufficient for the re-establishment of an undisturbed mean flow profile with
fully developed TBL. Rennison [119] examined in detail the coupling of the resulting
vibrational response of the pipe with the random wall pressure field associated with (i)
fully developed turbulent pipe flow and (ii) acoustic plane waves propagating inside
the pipe by focusing his study in the analysis of the joint acceptance functions of
both contributions. Finally, this PhD attends to bring Rennison and Norton thesis
up to date with comprehensive theoretical and experimental background to study
vibrational and acoustic effects of various internal flow disturbances in pipes with
an internal fully-developed turbulent flow. Sound generated by these disturbances
in duct and pipe systems is a strong contributor to the vibrational response and
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external acoustic radiation of the pipe from, for example, ventilation systems, air-
conditioners or intake and exhaust systems [2, 120, 121]. In addition, flow instabilities
caused by geometric features may generate acoustic signals. For instance, corrugated
flow pipes may produce powerful pure tones leading to major issues in Oil & Gas
industry [122, 123]. Such systems are often complex as they consist of many in-duct
components of individual intricacy like rotating machines (fans, compressors), heat-
exchangers, side branches, orifices, valves, silencing devices, and so on, which scatter
and generate acoustic fields when interacting with the fluid flow through the system.
The so-called two-port model [124] is a well-recognized model that uses the plane
wave to describe aeroacoustic disturbances in terms of their acoustic source strength
and their reflection/transmission or impedance/mobility properties. However, when
investigating systems with larger radius and higher frequency content higher-order
acoustic duct modes can propagate within the frequency range that contributes to the
vibration or noise annoyance. The two-port model can be extended to a multi-port
model, as demonstrated by Lavrentjev et al. [125]. On this basis, multi-modal acoustic
measurements can be performed to access to the auto-power spectrum E

[∣∣∣C±pq(ω)
∣∣∣2]

of a mode (p, q).
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Figure 1.7: Internal turbulent Flow with or without obstacle: 2 scenarios are investi-
gated.
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1.6 Contribution to research

Many researches can be found about the vibrations of cylindrical pipes excited by
fluid flow, to the authors’ knowledge, no publications concerning rectangularly-shaped
ducts can be found in the scientific literature. Although most of the fluid conveying
ducts are cylindrical, specific applications require the use of rectangular ducts. This
is the case of ventilation and air conditioning systems in buildings for space saving,
or in industrial applications requiring large duct sections for gas transportation. Gas
treatment centers used in the aluminum industry require such rectangular ducts due
to manufacturing purpose as shown in Fig.1.8.

Figure 1.8: Gas transport ductwork made of circular and rectangular cross sections
from [1].

Here we aim to present a numerical study which can offer engineers greater un-
derstanding of the coupling between the duct section (circular or rectangular) and
the excitation including both the acoustic, hydrodynamic contributions. This work
extends earlier work utilizing analysis of the forcing function and the fluid-structure
coupling through the joint acceptance, allowing for better prediction of structural re-
sponse. The experimental setup at the Roberval research laboratory used to validate
the methods will be described, and comparisons will be made between the simula-
tions and measurements. The generation of flow induced noise and vibration will be
distinguished through 2 scenarios: (i) a straight duct with no singularity, acoustic
waves are generated by the TBL itself and (ii) a straight duct with a flow constriction
inserted upstream generating a localized acoustic source.
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This thesis is structured as follows:
Chapter 2 presents the experimental facility and the measurement procedure,

which is developed for measuring the acoustic and hydrodynamic contribution of a
straight rectangular duct with and without singularities.

In chapter 3, the dynamic response of the structure due to an impulsed force is
analyzed. Two specific cross-sections are investigated and in both cases, material
properties and dimensions, i.e. width and cross-sectional aeras, are identical. Exper-
imental modal analysis of a finite rectangular duct are confronted to computational
methods to assess the ‘blocked’ approach using analytical modal FRFs of a simply
supported finite duct. Attention will be payed to quantify the effect of the Boundary
Conditions (BCs), acoustic radiation and aerodynamic damping.

In chapter 4, the fluid-structure coupling of both geometry (rectangular and cylin-
drical sections) is analyzed through the joint acceptance function. The excitation in-
cludes both acoustic and hydrodynamic contributions written on the basis of Corcos
model and using acoustic duct mode coherence functions. Attention will be devoted
to study the spatial coupling in the wavenumber domain and the evolution of the
vibration response due to each contribution.

In chapter 5, the structural response of a rectangular duct due to wall pressures
induced by turbulent flow is computed and confronted to measurements. Two sce-
narios, i.e with and without singularity, are investigated. The CPSD is calculated
using Computational Fluid Dynamics and aeroacoustic analogies to tackle complex
and no homogeneous flow in the vicinity of a singularity. This hybrid approach allows
to separate the acoustic and hydrodynamic contributions and study their influence
separately on the structural response. This chapter corresponds to the paper version
accepted in the research book ‘flow induced noise and vibration issues and aspects’
(FLINOVIA) [5]. The proceedings of the Second International Workshop on Flow
Induced Noise and Vibration which was held in Penn State, USA, in April 2016.
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1.7 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 Measurement of the cross power spectral density Spp(s1, s2, ω) for
both contributions: acoustic and hydrodynamic.

• Chapter 3 Study of the frequency response function H(r, s, ω) of a finite duct
with two specific cross-sections: rectangular and circular.

• Chapter 4 Prediction of the coupling through the joint acceptance function
Imn(ω) for both contributions and cross-sections.

• Chapter 5 Prediction and confrontation with measurements of the kinetic energy
of the structure Ec(ω) for the two scenarios.

Following the main body of this thesis are several appendices with additional
information and a bibliography.



Chapter 2

Measurement of wall pressure
fluctuations in duct

This chapter presents an experimental approach to characterize wall pressure fluc-
tuations in a straight rectangular duct flow with or without flow constriction. An
experimental facility originally designed to measure the acoustic power produced by
HVAC components is used. It is desired to quantify the relative weight of the hydro-
dynamic and acoustic contributions on the structure response. Therefore, attention
will be devoted to separate the contributions of the turbulent flow to the acoustic mode
amplitudes. These measurements will lead to evaluate and suggest improvements to
existing CPSD empirical models in a context of internal flow with disturbances or not
at low Mach number.

33
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2.1 Experimental set up

Experiments were performed on a test rig at the Roberval research laboratory. The
rig dimensions correspond to common dimensions of automotive heating, ventilation,
and air-conditioning (HVAC) systems. The primary air located in a first room (as
shown in Fig. 2.1(a)) is propelled at a slow speed by a centrifugal compressor with
frequency variator for controlling the flow speed, this can reach 20 m/s (with no
obstacle). Two mufflers connected with an elbow located upstream of the blower are
designed to reduce fan and flow noise. The air passes through a flow tranquillizing
box which minimizes the turbulence and a flow nozzle equipped with a differential
pressure gauge to measure the volumetric flow rate. Finally, the air arrives in the
last assembly (see Fig. 2.1(b)), which is made from interchangeable sections of steel
rectangular duct with hydraulic diameter of around 133 mm, a wall thickness of 3
mm and an overall length of about 8 m with anechoic termination at both ends. The
hydraulic diameter Dh is defined as

Dh = 4Ac
P

= 2LxLy
Lx + Ly

, (2.1)

where Ac = Lx×Ly = 0.2× 0.1 m2 is the cross-sectional area of the pipe and P is its
wetted perimeter. The pipe rig is guided over its entire length by a series of supports
effectively isolated from the building by anti-vibration rubber shock absorbers. The
interchangeable sections are connected to each other at their downstream and up-
stream ends by small butterfly twist latch with keeper plate. To prevent air leakage,
sealing between two sections is ensured by single sided gasket tapes. Every section is
centered in connection with the adjacent one so that the internal flow does not expe-
rience any surface discontinuities. The pipe rig contained probes and source sections
upstream and downstream of an exchangeable test-section. The order of the different
sections from upstream to downstream side is as follows: anechoic termination →
probe section → source section → probe section → test section → probe section →
source section → probe section → anechoic termination. A sketch of the pipe rig can
be found in Fig. 2.2.
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(a) Flow generation facility

(b) Aero-acoustic measurements facility

Figure 2.1: Experimental flow noise test rig.

Figure 2.2: Sketch of the pipe rig.



36 Chapter 2 – Measurement of wall pressure fluctuations in duct

2.1.1 Measurement devices

A testo 435 Pitot tube is inserted in the first probe section and placed in the duct
centerline. The pipe centerline velocity is computed from

U∞ = s

√
2∆P
ρ

, (2.2)

where s is the Pitot tube factor (here a straight Pitot tube so that s = 0.67), ρ the
air density and ∆P the differential pressure equals to the difference between total
pressure (at the stagnation pressure hole) and static pressure (at the plane of the
hole drilled parallel to the flow direction). In addition, 12 Brüel and Kjær 1/2-inch
4947 microphones are wall-mounted. The two source sections consists of loudspeaker
entrances mounted in a short side-branch connected to the main duct at 2×10 different
positions. Two probe sections with 3 arrays of 12 microphones are connected on both
sides of the test section. The last probe section which is the furthest downstream from
the test section is equipped with 12 microphones wall-mounted. Pressure signals are
recorded by a 96 channels LMS Scadas acquisition with a bandwidth of 6400 Hz and
4096 spectral lines. The measurement procedure was performed using an averaging
process over 600 realizations to achieve statistical convergence.

2.1.2 Calibration procedure

The microphones are calibrated relative to each other for amplitude and phase by
exposing them to the same sound field. The microphones are inserted into opposing
holes at the ends of a GRAS Phase Calibrator type 51AB. The transfer function
between the reference B&K 4231 type microphone (with sensibility of 11.71 mV/Pa)
and the ith microphone to be calibrated has to be measured (H1 estimator):

Href/i = Gref,i/Gref,ref in V/Pa, (2.3)

where Gref,ref is the autospectrum of the reference microphone and Gref,i the cross-
spectrum between reference and the ith microphone. Only the reference microphone
is calibrated, so the transfer function is obtained in V/Pa. This transfer function is
used as a correction function for the transfer functions, cross-spectra and auto-spectra
measured subsequently in the pipe rig.
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2.2 Hydrodynamic contribution

In our study, the vibration response will be calculated on the basis of empirical models
of wall pressure fluctuations. The prefix ’hydro’ is used here to remind that this
corresponds to the incompressible part of the flow. Although the pipe was originally
designed for acoustic measurements, it is desired to quantify the relative weight of
the hydrodynamic and acoustic contributions on the structure response. Therefore,
the spectral and cross-spectral features of the hydrodynamic contribution have to be
analyzed to assess the use of appropriate empirical TBL models. These empirical
forcing functions are postulated assuming certain functional forms like exponential
decays over space or oscillation in the convection direction according to Eq.(1.5).
Also, TBL parameters need to be known such as the boundary layer thickness or the
friction velocity. The hydrodynamic contribution is assumed to be fully developed
and homogeneous.

2.2.1 Static pressure

The test section is located 13 Dh (around 1.7 m) downstream of the pipe entrance
which seems a little too low to assure a fully developed turbulent pipe flow. For
space reason, the pipe length can not be increased. In many pipe flows of practical
engineering interest, the entrance effects become insignificant beyond a pipe length of
about 25 to 40 diameters according to Schlichting [126]. The velocity profile is known
to remain unchanged in the hydrodynamically fully developed region and the wall
shear stress also remains constant in that region. This last quantity can be estimated
via static pressure drop measurements because the pressure loss for all types of fully
developed internal flows is expressed as

∆P = f
L

Dh

ρU2
∞

2 , (2.4)

where ρU2
∞/2 is the dynamic pressure and f is the Darcy friction factor related to the

wall shear stress through
f = 8τw

ρU2
∞
. (2.5)

It should not be confused with the friction coefficient Cf defined as Cf = f/4. Static
pressure measurements have been performed at different distances along the pipe and
different flow speeds as shown in Fig. 2.3(a). Static pressure is given by the difference
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between the pressure in the pipe and the atmospheric pressure. It follows a linear law
along the wall of the straight duct. The slope of each linear curve allow to calculate
the wall shear stress according to Eq.(2.5) and Eq.(2.6). The wall friction velocity is
defined as:

uτ =
√
τw
ρ
. (2.6)

Results are shown in Fig. 2.3(b) and measured friction velocities show good agreement
with the Darcy friction factor for rectangular section according to [127]:

f = 0.178
Re1/5

Dh

, (2.7)

where ReDh is the Reynolds number ranging from 4.4×104 to 1.8×105 in this study.
It is also consistent with calculations based on the Moody diagram or equivalently
from the Colebrook equation for turbulent pipe flow:

1√
f

= −2log10

(
ε/Dh

3.7 + 2.51
ReDh

√
f

)
, (2.8)

with ε the roughness of a commercial steel taken from the literature (ε = 0.045
mm). Note that Eq.(2.8) cannot be solved analytically for f when ε/Dh and ReDh
are given and has to be computed using a numerical root-finding procedure. These
previous agreements can not be considered sufficient in this study to confirm that the
turbulent flow in the pipe test section is fully developed since the experimental set up
is limited. The wall shear stress and friction velocity values at different flow speeds
are summarized in Table 2.1. Values obtained from the Colebrook equation are used
in the next step to calculate TBL wall pressure empirical models.

U∞ (m/s) 5 10 15 20
τω (Pa) 0.10 0.40 0.73 1.17
uτ (m/s) 0.28 0.58 0.78 1.00

Table 2.1: Wall shear stress and friction velocity
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Figure 2.3: (a) Static pressure evolution along the duct. (b) Friction velocity: com-
parison between measurement and Darcy law.
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2.2.2 Calculation of TBL parameters

Numerical ingredients are recalled to estimate TBL parameters. These quantities are
provided by empirical approximation of the boundary layer equations. Most empirical
estimates of TBL wall pressure fluctuations are based on ideal flat plate, straight
channel and straight pipe flow measurements.

The boundary layer thickness δ is defined as the distance to the wall where the
longitudinal velocity is equal to 99 percent of the external velocity:

u(x, y = δ) = 0.99 U∞. (2.9)

The boundary layer thickness is a function of the distance x along the plate. This
classical length scale is considered as "outer" variable in the same way as U∞. In
practice it is difficult to measure δ with precision as the velocity profile tends asymp-
totically to U∞. Two other outer scales are generally preferred, defined by integrals
of the velocity profiles: the displacement thickness δ∗ and the momentum thickness
θ. These scales are defined by:

δ∗ =
∫ ∞

0

(
1− u

U∞

)
dy (2.10)

θ =
∫ ∞

0

u

U∞

(
1− u

U∞

)
dy (2.11)

One common empirical approximation for the time-averaged velocity profile of a tur-
bulent flat plate boundary layer is the one-seventh-power law such as

u

U∞
∼=
(
y

δ

)1/7
. (2.12)

Note that the first derivative of u with respect to y at the wall is directly proportional
to the wall shear stress [τw = µ (∂u/∂y)y=0]. Another common approximation is the
log law, a semi-empirical expression that turns out to be valid not only for flat plate
boundary layers but also for fully developed turbulent pipe flow velocity profiles. The
log law is commonly expressed in dimensionless variables by a characteristic velocity
which is actually the friction velocity uτ defined in Eq.(2.6) such as:

u

uτ
= 1
κ

ln yuτ
ν

+B, (2.13)



2.2 Hydrodynamic contribution 41

where ν is the kinematic viscosity, κ is a universal constant equal to 0.41 (von Kár-
mán’s constant) and B is slightly depending upon the Reynolds number and is ap-
proximately equal to 5. Hence, the wall shear stress τw and the friction velocity uτ
are characteristic of the flow in the near vicinity of the wall where viscous effects
are dominant over turbulent effects. These two variables are considered as "inner" or
viscous scales.

In many practical engineering applications, we do not need to know all the details
inside the boundary layer. The momentum integral technique utilizes a control volume
approach to obtain such quantitative approximations of boundary layer properties
along surfaces with zero or nonzero pressure gradients. A result of this technique is
the Kármán integral equation which is useful to estimate boundary layer properties
such as boundary layer thickness and skin friction. It writes

Cf,x
2 = dθ

dx + (2 +H) θ
U

dU
dx , (2.14)

where we define the shape factor H as

H = δ∗

θ
(2.15)

and the local skin friction coefficient Cf,x as

Cf,x = τw
1
2ρU

2 . (2.16)

Note that both H and Cf,x are functions of x for the general case of a boundary layer
with a nonzero pressure gradient developing along a surface (Eq.(2.17) is equivalent
to Eq.(2.5) but x dependent). For the special case of the boundary layer on a flat
plate, U(x) = U = U∞ and Eq.(2.15) reduces to the Kármán integral equation for flat
plat boundary layer:

Cf,x = 2 dθ
dx. (2.17)

Hence, if two quantities are known about the turbulent boundary layer over a flat
plate such as the local skin friction coefficient and the one-seventh-power law ap-
proximation for the boudary layer profile shape, then the quantities δ, δ∗ and θ can
be calculated using the definitions of displacement thickness, momentum thickness
and employing the Kármán integral for flat plat boundary layer. Fig. 2.4 shows a
summary of expressions for laminar and turbulent boundary layers on a smooth flate
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plate. Note the value of the local skin friction coefficient obtained from empirical data
for turbulent flow through smooth pipe (column (b)) in comparison with Eq.(2.7) (di-
vided by 4). In fact, the expression used for the rectangular duct is reduced slightly
from the common expression used for a circular duct. The expressions in Fig. 2.4
for the turbulent flat plate boundary layer are valid only for a very smooth surface.
Even a small amount of surface roughness greatly affects properties of the turbulent
boundary layer, such as momentum thickness and local skin friction coefficient. The
effect of surface roughness on a turbulent flat plate boundary layer has been subject
of considerable research and the reader is refereed to [7, 128, 129] for instance.

Figure 2.4: Summary of classical expressions to calculate TBL variables [130].

2.2.3 Measurement of the Power Spectral Density

The pressure spectra at the different section locations are recorded. Fig. 2.5 shows
the spectra from the 12 microphones of sections S4 and S5. A variation of 5 dB can be
observed between microphones over the entire frequency range and a variation of 10
dB between 200-600 Hz. It is chosen to average autospectra measured by microphones
located at the same section. The average power spectral densities Φpp(ω) from different
sections are displayed in Fig. 2.6. The frequency range for which measurements were
conducted varies from 1 up to 6 kHz. The levels appear to be rather similar except for
the frequency bands 200-600 Hz with a variation of 5 dB. From these results, it can be
noted that the TBL is not fully developed and homogeneous. In addition, the corner
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edges may be responsible of these discrepancies. However, in the following step, the
point frequency spectrum will be considered as homogeneous despite some obvious
differences between 200 and 600 Hz. The averaged power spectral density (in blue)
from S4 and S5 (in red) shall be retained in our analysis. The averaged PSD is shown
in Fig. 2.7 for four retained centerline velocities. The overall shape remains nearly
identical except at 5 m/s. In this latter case, the spectrum decreases more rapidly with
increasing frequency from 600 Hz and the presence of sharp peaks above 2000 Hz is
thought to be due to background fan noise. It will be shown that this behavior is due to
the effect of area averaging over the sensor. Hence, pressure fluctuations smaller than
the transducer sensing area are spatially integrated, and thereby attenuated. This
causes the measured power spectrum of surface pressure fluctuations to be attenuated
at high frequencies. At low frequencies, standing waves can occur due to imperfect
anechoic terminations. The acoustic pressure field is amplified at discrete frequencies
approximatively given by fm = mc0/2Lp, where Lp is the total pipe length (' 8.5 m).
Note the emergence of the second transverse acoustic propagating duct mode f rec

10 in
blue at 1700 Hz. The first duct frequency cut on fc = f rec

01 appears at 850 Hz.
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Figure 2.5: PSD of the 12 microphones at (a) the inlet test section S4 and (b) the
outlet test section S5.

2.2.4 Background noise decontamination and effect of area
averaging over the sensor

As mentioned above, the wall pressure is likely to be subject to acoustic or unwanted
signal contamination especially at low frequencies. These components can be removed



44 Chapter 2 – Measurement of wall pressure fluctuations in duct

101 102 103

Frequency (Hz)

40

50

60

70

80

90

100

110

120

P
S
D

(d
B
)
re
f=

4
.1
0
−
10

P
a
2
/
H
z

S3

S4

S5

S6

S7

Mean

Figure 2.6: Evolution of PSD at different sections at 20 m/s (in red microphones
sections between the test section).

Figure 2.7: Evolution of PSD with velocity at 5 m/s, 10 m/s, 15 m/s and 20 m/s.
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using coherence with microphones mounted at section S8. Unwanted acoustic pressure
waves are expected to produce coherent signals over long distance. This is not the
case for TBL. The unwanted signals can be canceled using either a Coherent Output
Power (COP) technique or a temporal subtraction method. Durant [11] analyzed the
difference between these two methods. He concluded that the COP technique proves
to be the most robust and the simplest solution to implement since the subtraction
technique requires acquisition of the time signals plus a post-processing. This tech-
nique described by Bendat and Persol [69] allows to decontaminate the PSD Φi

pp(ω)
’measured’ at the ith microphone, using the coherence γi,j between microphone i and
j (the latter is mounted at section S8 far enough from the others). It writes

Φi,cor1
pp (ω) = Φi

pp(ω) (1− γi,j) , (2.18)

where Φi,cor1
pp (ω) is the corrected auto spectrum at the ith microphone using the COP

technique. At higher frequencies, the decrease in PSD is accentuated by the effect of
area averaging over the sensors. In this work, 1/2-inch microphones are used which
corresponds to a sensing radius for a circular transducer r = 6.35 mm. Autospectra
are corrected following Corcos’ work (see Table I in [40]) who provides an attenuation
table in the form

Φpp(ω)
Φcor2
pp (ω) (2.19)

as a function of ωr/Uc, where Φcor2
pp (ω) is the autospectrum corrected following Corcos’

table. As pointed by Durant [11], the effective sensing radius reff of the active face
of the microphone (where the sensibility is constant) is given approximatively by
reff ' 0.62r. In the following, r = reff is adopted and Uc = 0.85U∞. Goody in
[64] reported that the true high-frequency spectral values are correctly recovered for
ωr/Uc < 4. This condition gives the limit frequencies flim for the different speed flows
as depicted in Fig. 2.7.

Corrected values Φcor1
pp (ω) and Φcor2

pp (ω) are reported in Fig. 2.8 and compared to
the wall pressure spectrum Φpp(ω) without correction. Results are given at 20 m/s and
show that the effects of unwanted signal contamination and the size of the microphones
are non-negligible. The first shaded area indicates the frequency band where the
background noise and standing waves resonances dominate. The second corresponds
to the frequency limit beyond which the spectral level is assumed to be attenuated
more than 10 dB at 20 m/s. At low frequencies Φcor1

pp (ω) is about 20-15 dB lower up to
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200 Hz than the original spectrum. The corrected Φcor2
pp (ω) spectrum is 10 dB higher

above 1400 Hz. The small vertical line indicates the limit frequency flim of the Corcos
correction. This limit corresponds to a step change, as it can be observed at 2700 Hz.
It should be recalled that this pipe rig was designed to measure the acoustic power
produced by inserted HVAC component and further improvement would give more
accurate measurement of the hydrodynamic contribution. Nevertheless, it allows to
validate measurements with semi-empirical models from the literature and quantify
the relative weight of the hydrodynamic contribution in comparison with the acoustic
one.

Figure 2.8: Corrected values Φcor1
pp (after noise reduction) and Φcor2

pp (after taking into
account sensor area averaging) at 20 m/s. The grey area indicates the uncertainties
about the true low and high frequency spectral components of the point spectrum.
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2.2.5 Dimensionless point spectrum

The analysis of the dimensionless point spectrum allows to reveal important properties
of the phenomenon under consideration which is its self-similarity, which means that
a phenomenon reproduces itself on different length scales. But the application of self-
similarity principles to turbulent boundary layers is complicated because the character
of the boundary layer varies with the distance to the wall. The different boundary
layer scales (inner, outer or a ’mixed’ of both) are related to organized motions or
coherent structures that exist in the boundary layer which vary in the regions normal
to the wall. It is divided into two families: one associated to motion near the wall
("inner" variables) and the other to motion in the region away from the wall ("outer"
variables). Since the structure of the wall pressure field is complex, it is very difficult
to find a single universal scaling for the boundary layer. It is generally agreed the
outer region determines the pressure levels at low frequencies and the inner region
is most responsible for the high frequency content of the point spectrum as shown
in Fig. 1.4. The separation between this two regions occurs where the point auto-
spectrum exhibits its maximum value.

For the case of a boundary layer along a flat plate, the outer scales: U∞, 1
2ρU

2
∞,

δ, δ∗ and the inner scales: uτ , τw, ν are commonly used. However, for an internal
flow, the outer scales δ and δ∗ are not defined explicitly. It is common [12, 14] to
assimilate δ to the radius Rh and δ∗ to Rh/8. In this section, three point spectra
found in the literature expressed in outer or mixed variable scaling are chosen and
confronted with measurements. In the comparisons presented here, all ambiguities
with regard to single or double-sided spectra, or from factors of 2π have been taken
into account. The one-sided spectrum can be calculated from Φpp(ω) using

Gpp(f) = 2πΦpp(2πf). (2.20)

Note that Gpp is defined so that p2 =
∫∞

0 Gpp(f)df and the wall-pressure spectra Φpp

follows the single-sided convention p2 =
∫∞

0 Φpp(ω)dω.
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The first one comes from Durant’s measurement [11, 12]. It is expressed in outer
variable scaling:

log10

[
Gpp(f)U∞

q2R

]
= −5.1− 0.9 log10(fR/U∞)

− 0.34 [log10(fR/U∞)]2

− 0.04 [log10(fR/U∞)]3 , (2.21)

where q = 1
2ρU

2
∞ is the dynamic pressure. The second one is the Goody’s model

[64] which has become a widely used point spectrum model. It is expressed in mixed
variable scaling and writes:

Φpp(ω)U∞
τ 2
wδ

= C2(ωδ/U∞)2

[(ωδ/U∞)0.75 + C1]3.7 + [C3(ωδ/U∞)]7 , (2.22)

where RT ≡ (uτδ/ν)
√
Cf/2 can be interpreted as a Reynolds number. In this formula,

coefficients C1, C2 and C3 are three empirical constants obtained by fitting a large
number of experimental data, and are set to C1 = 0.5, C2 = 3 and C3 = 0.11R−0.57

T .
The third one is the Lysak fit of the Chase-Howe model [131]:

Gpp(f) = 3ρ2u4
τ

f ∗

(
f

f ∗

)2 e−14fν/u2
τ[

(f/f ∗)2 + α̂2
]3/2 , (2.23)

where f ∗ = U∞/(2πδ∗). This model has been developed for modeling the wall pressure
spectrum in turbulent pipe flows. In Lysak’s paper, the final form of the model is
expressed as an integral of the turbulent sources over the boundary layer thickness.
Its expression can be found in [132, 133].

Fig. 2.9(a),(b) and Fig. 2.9(c),(d) show the measured wall spectra with or without
correction for different flow speeds expressed in either outer or mixed variable scaling
to allow a comparison with Durant measured data and Goody model. In all cases, data
collapses relatively well using both scaling over the majority of the measured frequency
range. The correction procedure described earlier allows to obtain the general trend of
the wall pressure fluctuations. According to the literature (see Fig. 1.4), the shape of
the point wall pressure spectrum exhibits a slope of ω2 as the frequency goes to zero,
a slope of around ω−1 in the overlap region, and a slope of between ω−7/3 and ω−5 in
the high frequency range. The measured spectra level with corrections are about 15
dB higher than Durant measured data and 5 dB lower than the Goody model.
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It is recalled that the Colebrook equation is chosen to obtain the friction velocity
because it gives the most satisfactory results compared to experimental data from
static pressure measurements. However, the constant pressure fluctuation region cor-
responding to developed turbulent flow is not observed especially between 100 and
1000 Hz (Fig. 2.5, 2.6). It was also observed (Fig. 2.3(a)) that the static pressure has
not a linear decrease near the test section region. In addition, the boundary layer
thickness is assimilated to the radius Rh. As pointed out by some authors [134, 135],
flows in ‘complex’ ducts (here of rectangular cross-section) are understood to a much
lesser extent compared to canonical flows in plane channels and circular pipes, par-
ticularly with respect to turbulence modeling close to the wall and corner regions.
Hence, secondary flows appear near the corners of the duct cross-section, leading to
a deformation of the mean velocity contours [136, 137]. Based on all these consider-
ations, it can be concluded that uncertainties remain about the true friction velocity
and boundary layer thickness values.

The measured data is compared to the Chase-Howe-Lysak model using different
boundary layer heights as well as flow speeds as shown Fig. 2.10(a). Red curves
correspond to a boundary layer thickness of Dh/2. In blue, it corresponds to bound-
ary layer thicknesses taken at a downstream distance x of about 2 meters using the
standard formula taken from Fig. 2.4:

δ

x
∼=

0.38
(Rex)1/5 . (2.24)

Fig. 2.10(b) shows the boundary layer displacement thickness as a function of the
downstream distance. It appears that the Chase-Howe-Lysak model gives the best
results (difference lower than 4 dB in our frequency range). The calculated point spec-
tra are only modified at low frequencies when the boundary layer thickness formula
Eq.(2.24) is used. The approximation δ = Dh/2, therefore, is acceptable. Results are
mainly sensitive to friction velocity values in our frequency range. This is due to the
test section position in the pipe rig. Recently, Selvam et al [138] have shown that the
entrance region effect can be neglected for x/Dh above 30 (x/Dh ≈ 13 in our case).
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Figure 2.9: Dimensionless point spectrum: (a) and (b) comparison with Robert
model’s and (c) and (d) with Goody model’s. The point spectrum without correction
Φpp is used (left) and with correction Φcor

pp (right).
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Figure 2.10: (a) Comparison with the Chase-Howe-Lysak model using different bound-
ary layer heights as well as flow speeds. (b) Boundary layer displacement thickness
as a function of downstream distance for TBL flow at 5, 10, 15 and 20 m/s.

2.2.6 Measurement of the Cross Power Spectral Density

The following is an attempt to predict some key parameters of the cross spectral em-
pirical models defined in Eq.(1.5) according to Corcos’ work, namely the exponential
decays rate of coherence functions and convection velocity of oscillations in the flow
direction. These features stem from the fact that the turbulent wall spectrum is par-
tially correlated over space and convected at a certain velocity. The cross-spectrum
is a complex function, ie Spp = |Spp| eiθ and the results in this section are presented in
terms of coherence, or normalized cross-spectral magnitude, between two microphones
located in s1 and s2, defined by

γ(s1, s2) = |Spp(s1, s2, ω)|√
Φpp(s1, ω)Φpp(s2, ω)

. (2.25)

All acquisitions data use an averaging process over 600 realizations. According to
Eq.(1.5), convection velocity can be computed from the phase between pairs of dy-
namic pressure sensors in the streamwise direction

Uc ≈
−ωξz
θ(ω, ξz)

. (2.26)

Fig. 2.11(a) shows the unwrapped phase θ(ω, ξz) as a function of frequency with the
shortest streamwise separation distance ξz = 3.5 cm. The phase decreased linearly
with frequency up to 500 Hz. Note that background noise is not removed from the
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phase as indicated in the small ’bump’ in the spectrum at very low frequencies. Corre-
sponding values for normalized convection velocity, Uc/U∞, are plotted in Fig. 2.11(b).
It is compared with an estimate for convection velocity suggested by Ko [139] based
on Bull’s work [39] where

Uc ∼= 0.6 + 0.4e−0.8ωδ∗/U∞ . (2.27)

The phase noise contamination appears to have a major influence on the convection
velocity prediction at low frequencies. The size of the sensor and the streamwise
separation distance seem to be unadapted for the estimation of the convection velocity.
Despite this, the linear dashed blue curve from Fig. 2.11(b) is used to estimated the
ratio between the convection velocity and the centerline velocity. A ratio of 0.85 is
found between the convection velocity and the centerline velocity.

The TBL wall pressure coherences are estimated in the spanwise and streamwise
direction for different flow speeds and separation distances. Results are given in
Fig. 2.12. An exponential shape is expected for the coherences according to Corcos
model, see Eq.(1.5). The spanwise coherence is defined as:

A(ξs, ω) = |Spp(ξs, ω)|√
Φpp(s1, ω)Φpp(s2, ω)

, (2.28)

and the streamwise coherence as:

B(ξz, ω) = |Spp(ξz, ω)|√
Φpp(z1, ω)Φpp(z2, ω)

. (2.29)

Note that the coherence γi,j used in Eq.(2.18) to decontaminate the measured PSD
is consistent with Eq.(2.29). The coherences for the shortest spanwise and stream-
wise separation distances at various flow speeds are shown respectively in Fig. 2.12(a)
and Fig. 2.12(b). As expected, coherences become stronger as the flow speed in-
creases except at low frequencies. Coherences for a fixed flow speed at various span-
wise and streamwise separation distances are shown respectively in Fig. 2.12(c) and
Fig. 2.12(d). The correlations decrease as the spanwise and streamwise separation
distances between the pressure probes increase. The spanwise coherence is weak and
concentrated in a small frequency band whereas the streamwise coherence decrease
gently over a largest frequency range. Note that there is any significant changes
in the spanwise coherence with separations distances. The streamwise coherence is
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Figure 2.11: (a) Phase function of the cross-spectrum. (b) Comparison of measured
convection velocity with Ko model’s (in red) according to Eq.(2.27). The dashed blue
curve comes from the corresponding linear asymptote in Fig. 2.11(a).
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the strongest for the smallest streamwise separation and decreases as the streamwise
separation increases. These measurements are limited since the greatest spanwise
separation for which there is any significant coherence is the shortest spanwise sep-
aration distance given by the pipe rig set up. In addition to that, the evolution of
the streamwise coherence is limited to two streamwise separation distances since the
next accessible streamwise separation is irrelevant and corresponds to a separation
distance of 70 cm. In all cases, the residual coherence at low frequencies corresponds
to the background noise. Despite the limitations imposed by the pipe rig, it suggests
a simple formulation for the coherences by fitting data with Corcos’ exponential func-
tions. The coefficients found are γs = 1 and γz = 0.18 as shown in Fig. 2.12(e) and
Fig. 2.12(f).
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Figure 2.12: Spanwise and Streamwise coherences: (a) and (b) for different flow
speeds; (c) and (d) for different separation vectors; and, (e) and (f) with Corcos
correlation envelope for (γz, γs) = (0.18, 1).
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2.3 Acoustic contribution

The acoustic modal amplitudes
∣∣∣C±pq(ω)

∣∣∣ are measured using two methods. For the
first scenario, the estimation of the acoustic contribution is performed using a method
based on the measurement of several cross-spectra between microphones at the four
sections S1, S4, S7 and S8. For the second scenario, the duct is obstructed by a
diaphragm and the 2N-port method is used.

2.3.1 Cross-spectra based method: no obstruction in the duct

The duct is straight with no singularity, so that propagating acoustic modes are
generated by the TBL itself all along the duct. The input data is a set of cross-
spectra between microphones at the four sections S1, S4, S7 and S8 as illustrated in
Fig. 2.13. The pressure fields that we will consider can be decomposed into three
parts, such that,

p(s1, ω) = ph(s1, ω) + pac(s1, ω) + n, (2.30)

where ph gathers the turbulent fluctuations, pac represents the acoustic pressure field
and n is some measurement noise inherent to the acquisition process (including vibra-
tion of supporting structures, electrical perturbations occurring in electronic circuits).
It is assumed that distances between microphones are much larger than the correlation

Figure 2.13: Illustration of the set of cross-spectra between microphones at the four
sections S1, S4, S7 and S8.

lengths of the hydrodynamic wall pressure fluctuations so that turbulent fluctuations
and the acoustic component are assumed uncorrelated random variables. According
to the cross spectrum definition between 2 microphones placed fairly far away and
assuming that all uncorrelated random variables tends to zero with the averaging
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process, the measured cross spectrum is approximated by the following relationship

S∆z�1
pp (s1, s2, ω) ≈ lim

T→∞

2π
T
E [pac(s1, ω)p∗ac(s2, ω)] , (2.31)

with ∆z a fairly large distance between two microphones. It is assumed that the
pressure field is written as a sum of propagating modes, for instance at point s1 =
(s1, z1) can be

pac(s1, ω) =
∑
pq

C+
pqψpq(s1)eik+

pqz1 +
∑
pq

C−pqψpq(s1)eik−pqz1 , (2.32)

where C±pq stands for amplitude of the downstream (+) and upstream (-) propagating
mode and ψpq the acoustic mode (p, q). Transverse acoustic modes ψpq are conveniently
defined as the projection of the acoustic mode along the curvilinear abscissa s giving

ψpq(s) =



cos
(
pπs

Lx

)
; s ∈ [0;Lx]

cos (pπ) cos
(
qπ [s− Lx]

Ly

)
; s ∈ [Lx;Lx + Ly]

cos
(
pπ [2Lx + Ly − s]

Lx

)
cos (qπ) ; s ∈ [Lx + Ly; 2Lx + Ly]

cos
(
qπ [2Lx + 2Ly − s]

Ly

)
; s ∈ [2Lx + Ly; 2Lx + 2Ly]

(2.33)

The pressure field given by Eq.(2.32) is introduced in Eq.(2.31), thus the cross spec-
trum between two microphones separated with a sufficient distance ∆z = z2 − z1

writes

S∆z�1
pp (s1, s2, ω) =

∑
pq

E
[∣∣∣C±pq(ω)

∣∣∣2]ψpq(s1)ψpq(s2)eik±pq∆z

+
∑
pq

pq 6=rs

E
[
C±pq(ω)C±rs(ω)∗

]
ψpq(s1)ψrs(s2)ei(k±pqz1−k±rsz2), (2.34)

where E [] is the ensemble average. The mode amplitudes are assumed all uncorrelated
so that E

[
C+
pq(ω)C+

rs(ω)∗
]

= 0. It is further assumed that the same mode propagating
in opposite directions are also uncorrelated E

[
C+
pq(ω)C−pq(ω)∗

]
= 0. Here, acoustic

modes are deliberately not normalized (for instance the plane mode is simply ψ00 = 1)
so the quantity E [|Cpq(ω)|2] can be regarded as the auto-power spectrum. To simplify
the analysis, the flow is assumed uniform and we neglect thermo-viscous attenuation.
The axial wavenumbers k±pq including convection have the following expression (here
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k = ω/c):

k±pq =
kM ±

√
k2 − (1−M2)

((
pπ
Lx

)2
+
(
qπ
Ly

)2
)

1−M2 , (2.35)

where M is the Mach number. The condition for an acoustic mode to propagate is
that the wavenumber k±pq must be real. Otherwise the wave will decay exponentially
and is known as an evanescent wave. The frequency at which a mode (p, q) begins
to propagate is the cut-off frequency of the mode. Note that evanescent waves are
neglected here. The study is limited to the plane wave and the first transverse duct
mode so that Eq.(2.34) contains only four terms:

S∆z�1
pp (si, sj, ω) =

∣∣∣C+
00

∣∣∣2 ψ00(si)ψ00(sj) exp
[
ik+

00∆z
]

+
∣∣∣C−00

∣∣∣2 ψ00(si)ψ00(sj) exp
[
ik−00∆z

]
+

∣∣∣C+
10

∣∣∣2 ψ10(si)ψ10(sj) exp
[
ik+

10∆z
]

+
∣∣∣C−10

∣∣∣2 ψ10(si)ψ10(sj) exp
[
ik−10∆z

]
. (2.36)

Here, si and sj are the locations of the microphone at each section (remind that each
section is equipped with 12 microphones regularly distributed on the duct wall for
mode separation). The E [] notations are omitted for the sake of clarity. Considering
all sensor points, we can rewrite Eq.(2.36) in matrix notation

s∆z
pp (ω) = Φ±(ω)g∆z

s± (ω) (2.37)

where s∆z
pp (ω) ∈ C[n×1] is the vector containing the cross spectra sampled at n =

12 × 12 spatial positions, g∆z
s± (ω) ∈ C[4×1] is the vector containing the mode ampli-

tudes 〈
∣∣∣C−00

∣∣∣2 ∣∣∣C+
00

∣∣∣2 ∣∣∣C−00

∣∣∣2 ∣∣∣C+
10

∣∣∣2〉 and Φ±(ω) ∈ C[n×4] contains the values of acoustic
modes at each sensor. The duct mode amplitudes are obtained by minimizing the
overdetermined system in Eq.(2.37). The solution is given by inverting Φ± using
the Moore-Penrose pseudo inverse. The solutions for the four different distances
∆z = L1, L2, L3, L4 between sections are simply averaged.

Results for the plane wave using 600 averages are shown in Fig. 2.14(a) for each
flow velocity. Fig. 2.14(b) shows the modal coefficients and the auto-spectrum wall
pressure at 20 m/s. The energy ratio between the acoustic and hydrodynamic parts
decreases with frequency from approximately 10 %(-10 dB) to 0.1 %(-30 dB) showing
a slight increase of acoustic energy with the emergence of the transverse mode.
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(a) Evolution of plane wave amplitudes |C00|2 with velocity at 5 m/s,
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(b) Estimation of the acoustic plane wave and transverse propagating
duct mode in the case of a straight duct with no singularity, the flow
speed is 20 m/s.

Figure 2.14
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2.3.2 2N port method

Acoustic measurements can be performed on the basis of the so-called 2N port method
[120, 125] to tackle the problem of a pipeline singularity. In this study, a rigid obstacle
is inserted in the test section. It is appropriate to recall some of the main outline of
the 2N port method and all necessary details are given in Appendix B. The multiport
formulation in a duct, as in Fig. 2.15, can be written in a compact form

aout(ω) = S(ω)ain(ω) + as(ω), (2.38)

with

aout =
c−I
c+

II

 , ain =
c+

I

c−II

 and as =
c+

s

c−s

 . (2.39)

The scattering matrix S ∈ C[2N×2N ] contains the transmission and reflection of all
N modes at the inlet and the outlet. The complex vectors ain,out ∈ C[2N×1] are
respectively the incident and outgoing modal pressure amplitudes. The source vector
as ∈ C[2N×1] contains the sound waves which are generated by the element itself under
reflection-free conditions. We refer to the scattering matrix as passive part and to

Figure 2.15: An illustration of an acoustic multi-port. The vectors ain and aout

contain respectively the incident and outgoing modal pressure amplitudes, S is the
scattering matrix and as the source vector. The indices I and II denote the upstream
and downstream side of the multi-port.

the source vector as active part of the multi-port, where the aim of a full multi-port
analysis is to determine such characteristic properties.

The acoustic scattering matrix is first identified by measuring the acoustic response
to given external excitations. A transfer function method is implemented so that the
measured pressure signals at l = 12 sensor points in a section are expressed formally
by:

p(sl, z, ω) = Hz
e/l(ω)e(ω), (2.40)
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where e is the electrical signal (set to 1V) driving the external loudspeaker andHz
e/l the

transfer function between the lth microphone at section located in z and the electrical
signal. Here, the transfer function is defined using the ’H1 estimator’ convention (see
Eq.(2.4)) so that the pressure signals and the reference signal e are correlated which
allows to suppress the vector source term contribution in Eq.(2.38) (as = 0). Here,
the external sound fields were excited with a pseudo white noise. The scattering
matrix has the dimension 2N × 2N and therefore, we need 2m configurations linearly
independent with m > N . In addition, the complex mode amplitudes contained in
vectors ain,out need to be calculated in both propagating directions at the multi-port
inlet and outlet by applying a modal decomposition technique which is reminded in
Appendix B. The scattering matrix can be extracted solving Eq.(2.38) such as

S = aout(ω)
(
ain(ω)

)−1
, (2.41)

where (· · · )−1 denotes the pseudo-inverse, matrix ain and aout contain the decomposed
acoustic fields for each test case 1, 2, ..., 2N (denoted by the superscript), as columns
and writes

ain =
c+

I

c−II


1

c+
I

c−II


2

· · ·

c+
I

c−II


2N

 (2.42)

and

aout =
c−I

c+
II


1

c−I
c+

II


2

· · ·

c−I
c+

II


2N

 . (2.43)

In a second step, the source vector can theoretically be solved directly from
Eq.(2.38) turning off the loudspeakers. However, because of the turbulence, the
acoustic field is not directly accessible and a flow-noise suppression technique has
to be applied. The formulation extracts the source strength using cross-spectrum
densities between the four different sections S1, S4, S7, S8 as previously illustrated
in Fig. 2.13. The reflections induced by the test-rig terminations are accounted for,
incident from outgoing modes are separated and no assumption is made about the
modal cross coupling. The matrix of the test rig terminations is introduced as follows

R = ain
(
aout

)−1
=
Rzi 0

0 Rzj

 , (2.44)
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and calculated using the same data to solve the scattering problem Eq.(2.41). The ex-
citations at the downstream side is used to determine the reflection of the termination
at the upstream side and vice versa. The matrix of the test rig termination couples
the incident and the outgoing modal pressure so that Eq.(2.38) can be rearranged to
solve for the modal source vector as following

as = [I2N − SR] aout. (2.45)

The algorithm is built to post-process cross-spectra between section S1, S4, S7, S8.
Hence, sections S4 and S7 are defined as inlet and outlet so that in all previous
equations, zi = z4 and zj = z7. In addition, Eq.(2.45) can be transported to the
furthest upstream and downstream sections S1 and S8. These steps require some
algebra and are detailed in Appendix B. The source vector as at sections S4 and
S7 is expressed in term of a source cross-spectrum matrix Gs ∈ C[2N×2N ] to get a
formulation valid for random signals. One finally get

Gs = E [as (as)c] , (2.46)

where the superscript c denotes transpose and complex conjugate. The diagonal terms
represent the modal auto-spectra respectively at the section S4 and S7:

Gs =



. . . E
[
C−pq(ω)C−rs(ω)∗

]
E
[∣∣∣C−pq(ω)

∣∣∣2]
. . .

Modal cross terms: E
[

c−,z4
s (c+,z7

s )∗
]

Modal cross terms: E
[

c+,z7
s (c−,z4

s )∗
]

. . . E
[
C+
pq(ω)C+

rs(ω)∗
]

E
[∣∣∣C+

pq(ω)
∣∣∣2]

. . .


.
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2.4 Application of 2N-port method: noise due to
an air flow through a constriction

One of the originality of this PhD is to write the forcing function on the basis of a sum
of an hydrodynamic contribution provided by the Corcos’s model and an acoustic part
given by the coherence function of high order modes in the spirit of Norton’s work. The
forcing function adopted for the study of vibrations due to an internal wall pressure
fluctuation writes

Spp(s1, s2, ω) = Φpp(ω)ΓCorcos +
∑
pq

∣∣∣C±pq(ω)
∣∣∣2 Γ±pq, (2.47)

with
Γ±pq(s1, s2, ω) = ψpq(s1)ψpq(s2)eik±pq∆z. (2.48)

This formalism is adopted for the scenario without singularity and the scenario with
a flow constriction (in the region far from the obstacle). The auto-spectral quantity
Φpp(ω) is computed on the basis of Goody model using Eq.(2.8) and Eq.(2.5) to
compute the wall shear stress τw. An attempt to measure the acoustic energy

∣∣∣C±pq(ω)
∣∣∣2

has been proposed for the case with no constriction.

In the case of an obstacle inserted in the duct, the acoustic energy can be extracted
using the 2N port method as described previously. In the following, a reliable trend
based on the scaling law introduced by Nelson & Morphey [140] is proposed in order to
directly calculate the acoustic energy

∣∣∣C±pq(ω)
∣∣∣2 (at least for the plane wave) from only

the knowledge of geometrical characteristics of the obstacle. The flow constriction
is a diaphragm which is a 10 × 5 cm constriction centered in the duct as shown in
Fig. 2.16. Its thickness is 8 mm. The 2N port method is applied and results for
amplitudes of the downstream plane wave are shown in Fig. 2.17(a) at different flow
speeds. The drop loss caused by the diaphragm limits the study to a speed flow of 10
m/s. The cross-spectra are averaged over 600 realizations. As expected, the acoustic
pressure level increases with speed flow. Fig. 2.17(b) shows plane wave along with the
first transverse mode at 6.5 m/s.

The scaling law approach introduced by Nelson & Morphey relies on the pressure
drop and a scaled spectrum specific to the studied obstacle. To obtain this scaled
spectrum, experiments or RANS computation can be performed [141, 142]. Below
the first cut-off frequency, only the plane wave mode is allowed to propagate and, for
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Figure 2.16: Application of the 2N -port method for a diaphragm inserted in the duct.

compact obstacles, acoustic strength is approximated such as

pac ≈ eikz

2Ac
Fz, (2.49)

where
Fz =

∫
Sobs.

p nzdS (2.50)

represents the fluctuating drag force acting on the obstacle. The hypothesis used in
Nelson & Morphey paper is that the root mean square fluctuating drag force on the
obstacle is proportional to the steady drag force at a certain frequency band. The
fluctuating force is a broad-band random type of signal and best described by its
spectral density such as √

E
[
|Fz(ω)|2

]
= K(St)Fz. (2.51)

where the Strouhal number writes

St = fLc
uc

, (2.52)

with f the frequency band, Lc and uc are typical length and velocity scale. Here, the
plane wave coefficient is simply given by

C+
00 = Fz

2Ac
. (2.53)

The mean drag force Fz acting on the diaphragm is balanced by an equal and opposite
mean force acting on the fluid. The force on the fluid (which acts in the upstream
direction) is given by the product of the static drop pressure across the diaphragm
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(a) Evolution of plane wave amplitudes |C00|2 with velocity at 7 m/s,
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(b) Estimation of the acoustic plane wave and transverse propagating
duct mode in the case of a straight duct with a diapgram inserted, the
flow speed is 6.5 m/s.

Figure 2.17



66 Chapter 2 – Measurement of wall pressure fluctuations in duct

and the area of the duct. Hence, the mean drag force Fz can thus be written as

Fz = Acδp, (2.54)

where δp is the pressure drop over the constriction defined as

δp = 1
2ρU

2
∞CL, (2.55)

with CL the pressure loss coefficient. To get a formulation valid for random signals
the plane wave amplitude from Eq.(2.53) and Eq.(2.51) writes

E
[∣∣∣C+

00

∣∣∣2] =
E
[
|Fz(ω)|2

]
4A2

c

= K2(St)Fz
2

4A2
c

= K2(St)(δp)2

4 . (2.56)

The acoustic plane wave energy obeys the following scaling law |C+
00|2 ∼ (δp)2K2(St)

and can be computed directly from at least one measurement or calculation of the
static pressure loss and an appropriate definition of the Strouhal number. Several
definitions have been proposed, for instance, the component flow constriction uc is
defined as

uc = U∞
σ
, (2.57)

with σ the ’vena contracta’ ratio. Kårekull et al. [142, 143] defined the characteristic
length with an alternative definition of the the hydraulic diameter:

Lc =
√

4Acσ
π

. (2.58)

In our case, the hydraulic diameter Dh as defined Eq.(2.1) is retained. This yields a
definition of the strouhal number as

St = fDhσ

U∞
. (2.59)

In the case of a diaphragm, it can be useful to use the recent development of Kårekull
et al [143]. They revisited the Nelson-Morfey semi-empirical scaling law by suggesting
that the dynamic force is assumed to scale with the momentum flux, given by

Fz ∝ ρAcU∞Uvc = ρAcU
2
∞

σ
, (2.60)
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where ρAcU2
∞ corresponds to the mass flow and Uvc to the mean velocity at the vena

contracta area Aνc. Hence, the flow is constricted across the diaphragm orifice and a
jet is produced. This jet is smaller than the physical dimensions of the orifice due to
the ’vena contracta’ effect. The vena contracta ratio σ, i.e. the constriction openness,
is given by

σ = Aνc
Ac

. (2.61)

The vena contracta ratio is evaluated from the formula presented by Durrieu et al.
[144] and given by

σ =
Aorifice
Ac

1 +
√

0.5
(
1− Aorifice

Ac

) . (2.62)

This approach proposed by Kårekull allow us to directly access to the acoustic energy
from only the geometrical characteristics of the diagram according to Eq.(2.61) and
Eq.(2.62). Hence, no calculations or measurements of the static pressure loss due are
required. Therefore, injecting Eq.(2.60) to Eq.(2.56) yields to a new acoustic plane
wave amplitude expression and writes

∣∣∣C+
00

∣∣∣2 = ρ2K2(St)U4
∞

4σ2 = q2K2(St)
σ2 , (2.63)

with q is the dynamic pressure.

In Kårekull papers [142, 143], several publications are used to review orifice noise
in order to obtain a universal scaling spectrum K2(St). The general trend is

10log10

(
K2/10−12

)
=


60 St < 1,

60− (20 ∼ 28)log(St) St > 1.
(2.64)

The symbol ∼ stands for the incertitude about the true slope value. The general
inclination of −28log(St) can be seen as a mix between the source mechanisms of a
pure dipole, −20log(St), and a pure quadrupole −40log(St). Therefore, we propose
the following model to compute the acoustic energy of the plane wave generated by a
diaphragm: ∣∣∣C+

00(ω)
∣∣∣2 σ2

q2 =


10−6 St < 1,

10−6 × 10−2log(St) St > 1.
(2.65)

Here, the slope of a pure dipole, −20log(St), is considered. One may prefer a more
refined model of the scaled spectrum K2 as suggested by the results of Nelson &
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Morphey in [140]. Here, the model represents the best fit calculation of a large range
of orifice results.

Results from Fig. 2.17(a) are scaled following the model proposed and are given
Fig. 2.18 for a diaphragm whose area orifice is Aorifice = 0.1 × 0.05 m2 and a vena
contracta ratio σ = 0.16 (evaluated using Eq.(2.62)). A good collapse is found for all
velocities over the majority of the measured frequency range. The proposed model
takes the general trend of the ‘universal’ spectrum K2(St) from several experimen-
tal investigations reviewed in [142]. Although, the general behavior of the ‘universal
spectrum’ is somewhat more consistent with a inclination of −28log(St). But uncer-
tainties remain on the slope of the ‘universal spectrum’ for St > 1 and the choice of
an appropriate characteristic length in the stroual number definition.

Finally, this chapter is concluded by plotting the mean square value of the pressure
field as a function of the flow velocity for each scenario as shown in Fig. 2.19. The
acoustic energy of the plane wave mode obeys a velocity dependence of U4

∞ for the
case of a diaphragm inserted upstream (scenario 2), and U6

∞ for the case without
singularity (scenario 1). The general trend of scenario 1 is consistent with analytical
prediction given by Davies and Williams [145]. The latter found that the sound power
varies as the sixth power of velocity below a Mach number of 0.2. In the same spirit,
Van Herpe and Crighton [146] found a U7

∞ for their lowest Mach numbers value, and a
U6
∞ variation for their highest velocity. The scenario 2 obeys as expected to prediction

obtained by Nelson-Morphey dimensional analysis.
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Figure 2.18: Best Fit model according to a collection of experimental data reported
in [142, 143].
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2.5 Conclusion

Aero-acoustic test campaign has been performed in the experimental set up at the
Roberval research laboratory. Although the pipe rig was originally designed for acous-
tic measurements, attempts were made to characterize the wall pressure fluctuations
beneath a turbulent boundary layer. It has shown the importance of using reliable
measurement techniques and instrumentation. This has allowed us to collect general
trends about the turbulent energy level and cross-spectral features in order to assess
the use of empirical models in the calculation of the structure response. The acoustic
energy has been extracted from the turbulent flow using cross-spectra based tech-
niques or via the 2N -port method. Multi-modal decomposition has been performed
to calculate modal amplitudes of propagating acoustic duct modes. It has been dis-
tinguished through the 2 scenarios: (i) without singularity and (ii) with a diaphragm
inserted upstream. Cross-spectral measurements have allowed us to quantify the rel-
ative weight of the hydrodynamic and acoustic contributions, which will be used in
a second step for the vibrational response analysis. The case with a singularity will
serve as a reference to evaluate and suggest improvements to existing CPSD empirical
models in a context of internal flow with disturbances. In addition, the collected data
will be confronted to CFD calculation in Chapter 5.
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Chapter 3

Response of a finite duct to a point
force

This chapter presents the study of the dynamic response of a duct. Two specific cross-
sections are compared: circular and rectangular. In both cases, material properties
and dimensions, i.e. width and cross-sectional aeras, are identical. Simply supported
structures are considered, since the modes obtained are easy to incorporate into anal-
yses of flow turbulence acting on the structures. Moreover, simply supported geometry
can be used as a guideline for more complex geometries since it follows similar trends
in terms of energy levels and modal pattern behavior. Analytical modal Frequency Re-
sponse Functions are derived and will be used in a second step to study the coupling
with the wall pressure fluctuations. Experimental modal analysis of a finite rectangu-
lar duct are confronted to computational methods. Attention will be payed to quantify
the effect of the Boundary Conditions (BCs), the resistive damping from coupling with
the internal acoustic medium and aerodynamic damping.

73
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3.1 Analytical formulation for a simply supported
circular duct

Since cylindrical shells are typical components in pipeline designs, it is particularly im-
portant that their governing dynamics and structural response be understood. There
have been extensive studies related to shell theory. The reader is referred to the
work of Leissa [147] for a comprehensive review. Shell theory does not take into ac-
count stress through the thickness (i.e., perpendicular to the midsurface). That is
the reason why it is refereed as a 2D theory. Three kinds of analytical models can be
distinguished in the literature:

• The Classical thin Shell Theory (CST). It is based on Kirchhoff-Love assump-
tions where transverse shearing effects are neglected and the line originally nor-
mal to the midsurface remain perpendicular to the midsurface during deforma-
tions. The shell motion is governed by three coupled equations and described by
three components u, v and w which are respectively the longitudinal, tangential
and radial displacement.

• The First-order Shear Deformation Theory (FSDT). It is based on Reissner-
Mindlin assumptions where shear deformations are included, and therefore the
line originally normal to the midsurface in general does not remain perpendic-
ular to the midsurface during the deformations. This theory takes into account
shear resistance (linearly with respect to thickness) and rotary mass inertia.
This introduces two additional degrees of freedom relative to the classical the-
ory: ψθ and ψz, corresponding to two rotations of the normal to the midsurface
during deformations about the θ and z axes respectively. This theory is thus an
alternative to tackle larger thickness (thick shell) and valid for higher frequen-
cies.

• Higher order Shear Deformation Theories (HSDT). It allows to take into account
shear deformation more accurately. Daneshjou et al. [148] made a comparison
between results obtained with CST, FSDT and a developed Third-order Shear
Deformation Theory (TSDT) for different geometric ratios h/R where h is the
thickness and R is the radius of the cylinder. They showed that the three
methods give similar results on the Transmission Loss in the low frequency
domain, but differences appear at higher frequencies.
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Figure 3.1: Cylinder element showing normal and shear stresses.

In this study, the simplest possible constitutive law corresponding to an isotropic,
linear elastic material are considered and all materials will exhibit elastic behavior
under small deformations. The cylinder wall thickness is uniform and small compared
with the cylinder radius and length. For the element shown in Fig. 3.1, R is its radius
of curvature, σθr, σzr and σzθ are shear stresses, σz, σθ and σr are normal stresses in the
axial, tangential and radial directions respectively. The transverse normal stress, σr,
is small and may be neglected in comparison with the other normal stress components.
This implies that σr = 0. Normals to the undeformed middle surface of the wall of
the cylinder remain straight and normal to the deformed middle surface. This last
assumption is known as Kirchoff’s hypothesis and implies that:

σθr = σzr = γθr = γzr = 0, (3.1)

where γθr and γzr represents the shear strain at element δz. To satisfy Kirchhoff
hypothesis, the displacement field is restricted to the following linear relationships:

u(z, θ, ξ) = u0(z, θ) + ξφz(z, θ), (3.2a)

v(z, θ, ξ) = v0(z, θ) + ξφθ(z, θ), (3.2b)
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w(z, θ, ξ) = w0(z, θ), (3.2c)

where u0, v0 and w0 are the displacements at ξ = 0 in the axial, circumferential and
radial directions, φz and φθ are the rotations of the normal to the median surface
respect to z- and θ-axes. ξ is the distance of the infinitesimal segment, δξ, from the
central axis of the shell element. Note that ξ rather than r is used as the radial
coordinate, as it has its origin at the center of the shell element rather than the center
of curvature of the element. The strain displacement equations for a circular cylinder
may be derived from different shell theories, for instance, for the segment, δξ, it is
written for three shell theories widely used as [78]:

εz = εz + ξκz (3.3)

εθ =


εθ + ξκθ case ‘D’,

1
1+ξ/R (εθ + ξκθ) case ‘F’.

(3.4)

γzθ =


εzθ + ξτ case ‘D’,

1
1+ξ/R

(
εzθ + ξ

(
1 + ξ

2R

)
τ
)

case ‘F’.
(3.5)

where εz, εθ and γzθ are the normal and shear strains of the arbitrary segment, δξ,
and εz, εθ and εzθ are the normal and shear strains of the surface in the middle of the
wall thickness (mid-surface, ξ = 0). τ is the angular twist of this mid-surface and κz
and κθ are the changes in curvature of the same surface. These six latter quantities
corresponding to the Donnell–Mushtari (case ‘D’) and Flügge (case ‘F’) shell theories
writes

εz = ∂u0

∂z
, (3.6)

εθ = 1
R

∂v0

∂θ
+ w0

R
, (3.7)

εzθ = 1
R

∂u0

∂θ
+ ∂v0

∂z
, (3.8)

κz = −∂
2w0

∂z2 , (3.9)
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κθ = 1
R2

[
∂v0

∂θ
− ∂2w0

∂θ2

]
, (3.10)

τ = − 2
R

∂2w0

∂z∂θ
+ 2
R

∂v0

∂z
. (3.11)

For Donnell–Mushtari theory, the same previous six equations apply except that the
term involving v0 in Equations Eq.(3.10) and Eq.(3.11) is omitted. The strain-stress
relationship is obtained from the well known three-dimensional form of Hooke’s law.
In cases of plane stress, this yields


σz

σθ

σzθ

 = E

1− ν2


1 ν 0
ν 1 0
0 0 1−ν

2



εz

εθ

γzθ

 , (3.12)

where ν is Poisson’s ratio and E the Young Modulus. The equations of motion for
the cylinder may be derived by invoking Hamilton’s variational principle. That is:

δ
∫ t2

t1
(Ek − Ep) dt = 0 (3.13)

where Ek is the kinetic energy of the cylinder defined as

Ek = 1
2ρh

∫ 2π

0

∫ L

0

(∂u
∂t

)2

+
(
∂v

∂t

)2

+
(
∂w

∂t

)2
Rdzdθ, (3.14)

and Ep the strain energy derived from the theory of elasticity for a circular cylinder,
the following is obtained:

Ep =
∫∫∫

V
(σzεz + σθεθ + σzθγzθ) dV (3.15)

where dV is an elemental volume, which, when expressed in cylindrical shell coordi-
nates, is:

dV = (1 + ξ/R)Rdξdθdz. (3.16)

Substituting the strain-stress relationship into Eq.(3.15) gives:

Ep = E

2(1− ν2)

∫∫∫
V

[
ε2
z + ε2

θ + 2νεzεθ + 1− ν
2 γ2

zθ

]
dV. (3.17)
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After substitution of the strain–displacement relations, the derivation of Lagrange’s
equations of motion using Hamilton’s principle allows to obtain the shell equations of
motion. The details are not discussed here and only the results are given. The shell
equations of motion for harmonic free vibration take the following form

E

1− ν2 [L]


u0

v0

w0

+ ρhω2


u0

v0

w0

 =


0
0
0

 , (3.18)

where [L] is the shell matrix differential operator. This operator can be treated as
the sum of two operators

[L] = [LD−M] + h2

12 [LMOD] (3.19)

where [LD−M] is the differential operator according to the Donnell–Mushtari theory,
[LMOD] is a ‘modifying’ operator which alters the Donnell–Mushtari operator to yield
another shell theory. The boundary conditions are specified in terms of cylinder
displacements at each end and the forces and moments acting on the cylinder at each
end. Four boundary conditions must be specified for each end, one from each of the
pairs listed below [78]:

u = 0 or Nz = 0, (3.20)

v = 0 or Nzθ + Mzθ

R
= 0, (3.21)

w = 0 or Qr + 1
R

∂Mzθ

∂θ
= 0, (3.22)

∂w

∂z
= 0 or Mz = 0. (3.23)

The quantities, Nz, Nzθ, Qr, Mzθ and Mz, have not yet been defined. The first two
are in-plane forces, the third is a force normal to the cylinder surface, the fourth is a
twisting moment and the fifth term is a bending moment. The boundary condition
which is closest to the equivalent of a simply supported plate boundary condition is
referred to as the shear diaphragm (or SD) condition where:

v = w = Mz = Nz = 0. (3.24)
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This is equivalent to a cylinder closed at the end with a thin flat circular cover plate.
The plate has considerable stiffness in its own plane, thus, restraining the v and w

components of cylinder displacement. As the end plate is not very stiff in its transverse
plane, it would generate very little bending moment, Mz, and very little longitudinal
membrane force, Nz. For a simply-supported shell of length Lz the structural mode
shapes are expressed as following


uαmnj(θ, z)
vαmnj(θ, z)
wαmnj(θ, z)

 =


Dnmj sin(nθ + απ/2) cos(mπz/Lz)
Enmj cos(nθ + απ/2) sin(mπz/Lz)
1 sin(nθ + απ/2) sin(mπz/Lz)

 . (3.25)

Each mode can be distinguished by being either anti-symmetric or symmetric with the
index α = 0 (resp. 1), n is the circumferential order, m is the longitudinal order, and
j denotes the types of mode (extension-compression, torsion, bending). The n = 0
modes of a cylindrical shell are clustered around the ring frequency, which is the
frequency at which a membrane wave is continuous around the circumference:

fr = 1
2π

cl
R
, (3.26)

where cl = (E/(ρ(1 − ν2)))1/2 is the velocity of compressional waves. The ring fre-
quency is sometimes expressed in dimensionless form, normalized to the radius and
longitudinal wave speed: Ωr = 2πfrR/cl. n = 0 modes are called ‘breathing’ modes.
n = 1 modes correspond to a rigid body motion about the cylinder cross section.
These modes generally occur in long cylinders, and can be represented more simply
using beam theory. For long cylinders, beam theory can be used to model vibrations
up to the frequency where the higher order harmonics cut on. When harmonics above
n = 1 appear in a cylinder’s vibration, they are called ‘lobar’ modes. The first lobar
mode is n = 2, where the cross section deforms as an oval. Fig. 3.2 shows some of
these mode shapes. Substituting Eq.(3.25) into Eq.(3.18) yiels an eigenproblem of the
form 

ρhω2 − k11 k12 k13

k21 ρhω2 − k22 k23

k31 k32 ρhω2 − k33



A

B

C

 = 0, (3.27)

where coefficients kij are detailed in Appendix C for the Donnell–Mushtari, Gold-
enveizer–Novozhilov, Reissner-Naghdi-Berry and Flügge shell theories. In order to
solve for the natural frequencies, the determinant has to be zero. Expanding the
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determinant gives
ω6 + a1ω

4 + a2ω
2 + a3 = 0, (3.28)

which leads to a bi-cubic equation whose solutions have for every (m,n) combina-
tion three frequencies (detailed in Appendix C). The lowest is associated with the
mode where the bending component dominates. According to Soedel’s book [149] the
eigenvector components (Dnmj,Enmj,1) and natural frequencies ωmnj can be calculated
analytically (see Appendix for details). The analytical FRF of a simply supported
circular duct due to an harmonic point force located at s in the radial direction has
the following expression:

Hw(r, s, ω) =
1∑

α=0

3∑
j=1

∑
m,n

wαmnj(r)wαmnj(s)
Mα

mnj[ω2
mnj(1 + jη)− ω2] . (3.29)

where Mα
mn =

∫
S
ρh||q||2ds is the generalized mass (detailed in Appendix C) and η the

loss factor. The averaged Root Mean Square (RMS) acceleration is defined as

ARMS
c (s, ω) =

√∫
S |Ha(r, s, ω)|2d2r

S
, (3.30)

with Ha = −ω2Hw. As underlined by Hambric in [150], point mobility equations of

(a)

(b)

Figure 3.2: (a) Section mode shapes ; (b) 3D illustration of some global modes of the
duct.
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infinite structures can be useful, since they represent the mean vibration response of
finite structures to force and moment drives. The mobility Y∞ = (V/F )∞ of an infinite
pipe where V and F represent respectively the complex amplitude of the velocity and
that of the force, may be computed as [111, 151]

<(Y∞) =



1/
(

4πRρh
√

Ωc2
l√
2

)
Ω < 0.77 h

R
,

0.66
2.3clρh

√
Ω 0.77 h

R
< Ω < 0.6,

1
8
√
Dρh

Ω > 0.6.

(3.31)

Note that the 3rd case corresponds to the infinite plate mobility. Thus, when the
frequency is close to the ring frequency, the cylindrical shell mobility approaches that
of a flat plate. The flexural wavelengths become short with respect to the radius
of curvature of the shell and the flexural motion is uncoupled from the membrane
motion. This can be observed by plotting the wavenumber diagram of a simply
supported circular duct. Following [72], it is useful for the analysis to define the
effective wavenumber for the circular duct

kcyl
mn = (k2

s + k2
m)1/2, (3.32)

where ks = n/R is the circumferential wavenumber and km = mπ/Lz is the axial
wavenumber. Fig. 3.3 shows the dispersion curves of the effective wavenumbers along
with the free flexural wavenumber defined as:

kf =
√
ω

4

√
ρh

D
. (3.33)

Shell resonance frequencies fcyl
mn do not increase with the number of nodal lines. The

first lobar mode n = 2 is often the first mode to cut on in cylinders of medium length.
This well known phenomenon is characteristic of shells where a competition occurs
between axial and tangential membrane strains of the median surface of the shell,
and the strain energy associated with wall flexure. Above the ring frequency fr, the
effective wavenumber for the circular duct follows that of a flat plate.

Fig. 3.4 shows the averaged RMS acceleration due to a point force with coordinates
s=(θ=0°, z=30 cm) for different shell operators. The precision with the Donnell’s
operator (’D’) decreases as the frequency increases in comparison to other theories.
The Goldenveiser (’G’) and Reissner-Naghdi (’R’) models provides similar results
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Figure 3.3: Dispersion curves for a circular duct and an infinite plate.

to the Flügge’s operator (’F’) which is the most accurate thin shell operator. The
shell parameters are defined in Table 3.1. The shell diameter is computed according
to Eq.(2.1) with diameter corresponding to the rectangular duct, so Dh ≈ 13 cm.
Despite the small ratio h/R = 4.5%, there is a significant difference between the
Donnell’s operator and the other shell theories. The spectrum associated to the
Donnell’s operator is slightly offset toward the high frequencies. This trend seems
to be confirmed in Leissa’s textbook [147]. In that book, the percent by which the
shell frequency parameters differ from those found by an exact three-dimensional
elesticity solution is reported. In our case, the first resonant frequency corresponds
to the circumferential wave numbers n = 2, a length/radius ratio L/mR = 7.5,
for (R/h ≈ 22) and for ν = 0.22. In Leissa’s textbook (see Table 2.6 p 52), the
agreement among the theories is less than ±0.15%, except for the Donnell theory
showing significant deviation (around 4.85%).

The analytical model is validated using the commercial FE solver COMSOL Mul-
tiphysics ® software. The FEM model is assumed to be valid for higher frequencies
than the classical shell theory used to calculate the analytical FRFs. It is considered
as a reference since it takes into account more mechanical and geometrical effects in
the thickness such as the transverse shearing effect. MITC4 QUAD shell elements
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in COMSOL have a mixed interpolation formulation (also called MITC - Mixed In-
terpolated Tensorial Components) derived from the theory presented in [152]. Shell
elements in COMSOL refer to Naghdi shell theory and Mindlin-Reissner formulation,
so that transverse shear deformation is accounted for. Such a formulation includes
large deformation capabilities and can be used for thin and thick shells. The numer-
ical model has simply supported BCs at both ends and the geometry and material
parameters are those listed previously. To maintain at least 6 elements for each flex-
ural wavelength up to 5000 Hz, a mesh size of 1 cm is used. The mobility in the
radial direction due to a concentrated load (set to unity) on node s located at (θ=0°,
z=30 cm) is considered. Results are shown in Fig. 3.5. The levels are the same be-
tween the two spectra. The damped resonant frequencies of the FEM solution agree
with the analytical solution with a maximum difference of approximately 2%. Finally,
the results from this study validate our analytical solution for this type of geometry
and allow us to neglect the transverse shearing effect.

Young’s modulus E 210×109 GPa Poisson’s ratio ν 0.22
Density ρ 7800 kg/m3 Section Lx × Ly 0.2×0.1 m2

Thickness h 3 mm Length Lz 0.5 m
Loss factor η 5.10−3 Diameter Dh 2LxLy/(Lx + Ly)

Table 3.1: Parameters of the tested duct.
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Figure 3.4: Comparison between the Donnell–Mushtari, Goldenveizer–Novozhilov,
Reissner-Naghdi-Berry and Flügge shell theories.
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Figure 3.5: Comparison between Kirchoff and Reissner-Mindlin formulation. The
Reissner-Naghdi (’R’) shell operator has been chosen for the analytical solution.

3.1.1 Comments on BCs

In practice, flexible rubber sections, flanges or other expansion joints are used to
separate sections of pipe. These discontinuities at the interface of two pipe sections
induces additional stiffness and mass. For finite pipe encountered in industrial plants,
BCs are likely a mix between pinned BCs and clamped BCs which differ from the
standard simply supported BCs. Although computationally difficult, it is possible to
analytically obtain the eigenvector components (Dnmj,Enmj,1) and natural frequencies
ωmnj for the different boundary conditions possible at each end of the cylinder. In
this study, the previous FE model is used to illustrate the BCs effects. Fig. 3.6 shows
the results for the free (FF), simply supported (SS) and the clamped (CC) cases at
both ends. As expected, the structure becomes stiffer by increasing constraints at the
edge ends and resonant frequencies are shifted toward higher frequencies.

3.1.2 Fluid loading effects

Numerical solutions exist to tackle complex geometries surrounded by a fluid for
all kinds of boundary conditions. For instance, the finite element method consists
in solving the partial differential equations by using the variational formulation of
the local equations associated to the structure and fluid problems. The latter are
discretized into elements and lead to the most basic form of vibro-acoustic formulation
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Figure 3.6: Averaged structure response for different BCs.

described by an unsymmetrical system of equations [84]
K− ω2M −C
−ω2CT H− ω2Q

u
p

 =

f
0

 , (3.34)

where u, and p denote the nodal vector of unknowns for the structure and the fluid, re-
spectively. Matrices M and K denote the mass and stiffness matrices of the structure,
respectively. f is the external loading nodal vector acting on the structure. Matrices
H and Q are related to the kinetic energy and compressional energy matrices of the
fluid. Note that this formulation stands for interior problem and is altered for a inte-
rior/exterior problem. Hency, matrices H and Q are corrected to include a Perfectly
Match Layer (PML). Matrix C is a surface coupling matrix between the structure and
the fluid. In our case, a numerical study is performed with the commercial software
COMSOL Multiphysics® to illustrate the fluid-loading effect. An enclosed spheri-
cal volume bounded by a Perfectly Match Layer (PML) is modeled and meshed to
describe the acoustic medium. The mesh size and PML properties are chosen to main-
tain enough elements for each acoustic wavenumber and checked by convergence. A
direct frequency domain analysis is performed to solve Eq.(3.34). The model is simple
and does not allocate too much memory. Thus, solving Eq.(3.34) in a direct manner
requires reasonable computation time with a modern machine. Fig. 3.7(a) shows the
averaged acceleration due to a point force for a simply supported shell surrounded by
a fluid or without. Air or water are considered and compared to the case ’in vacuo’.
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There are no major changes when the structure is coupled to air. However, the impact
is far more important with water. The acoustic power radiated by the shell surface
vibrations at 643 Hz is shown in Fig. 3.7(b). The fluid domain including a common
PML can be seen.



3.1 Analytical formulation for a simply supported circular duct 87

200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency (Hz)

-10

-5

0

5

10

15

20
A
v
er
a
g
ed

R
M
S
A
cc
el
er
a
ti
o
n
(d
B
)

SS vacuum
SS air
SS water

(a)

(b)

Figure 3.7: Fluid loading effect: (a) averaged acceleration and (b) acoustic radiation
in air of a circular duct due to a point force F using PML at 643 Hz.
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3.2 Analytical formulation for a simply supported
rectangular duct

Although most of the fluid conveying ducts are cylindrical, specific applications require
the use of rectangular ducts. This is the case of ventilation and air conditioning
systems in buildings for space saving, or in industrial applications requiring large
duct sections for gas transportation. At first sight, the geometry suggests the use
of thin plate theory which solves only flexural wave. However, a pure bending wave
impinging at a corner junction will induce in-plane longitudinal and in-plane shear
waves, as well as other flexural waves in the connected plates. This phenomenon
is a well-know problem for SEA specialists as in-plane waves becomes significant in
high frequency region. The inclusion of in-plane modes using SEA models of plate
structures has been investigated by several researchers [153–155]. They emphasize
the importance of the in-plane response at high frequencies and in large coupled
plate-like structures. Fig. 3.8 shows the displacements and coordinate system for the
rectangular duct. The adjacent plates are coupled to the other edges along the z axis.
To facilitate the geometrical coordinate system, the duct is modeled as a plate in its
unrolled form, thus the coordinate system (s,z) is adopted. The differential equations
of motion for the flexural, in-plane longitudinal, and in-plane shear free wave motions
are respectively given by

D∇4w − ρhω2w = 0, (3.35)

∂2u

∂s2 + 1− ν
2

∂2u

∂z2 + 1 + ν

2
∂2v

∂s∂z
+ 1− ν2

E
ρω2u = 0, (3.36)

∂2v

∂s2 + 1− ν
2

∂2v

∂z2 + 1 + ν

2
∂2u

∂s∂z
+ 1− ν2

E
ρω2v = 0, (3.37)

where w, u and v represent the flexural, in-plane longitudinal and in-plane shear
plate displacements, respectively. D = Eh3/12(1−ν2) is the bending stiffness. Recall
that cl =

√
E/(1− ν2)ρ is the velocity of longitudinal waves (L-waves) for a thin

homogeneous plate, G = E/2(1 + ν) is the shear modulus and ct =
√
G/ρ is the

velocity of transverse/shear waves (T-waves). Note that the coupled wave equations
for longitudinal and transverse waves are of second order contrary to the bending
wave equation which is of four order in space. Also, the wave speed does not appear
explicitly in the flexural wave equation since bending wave speeds are dispersive. The
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flexural wave speed in plates is defined as cf = 4
√
Dω2/ρh. Fig. 3.8 also shows the

forces and moments acting on the edges of two plate elements i,j. N i
s is the in-plane

longitudinal force, N i
sz is the in-plane shear force and M i

s is the bending moment. V i
s

is the net vertical shear force. The force and moment equations are given by

N i
s = Eh

1− ν2

(
∂u

∂s
+ ν

∂v

∂z

)
, (3.38)

N i
sz = Eh

2(1 + ν)

(
∂u

∂s
+ ∂v

∂z

)
, (3.39)

M i
s = −D

(
∂2w

∂s2 + ν
∂2w

∂z2

)
, (3.40)

V i
s = Qi

s + ∂M i
sz

∂z
, (3.41)

with
Qi
s = −D

(
∂3w

∂s3 + ν
∂3w

∂s∂z2

)
, (3.42)

M i
sz = −D(1− ν)

(
∂2w

∂s∂z

)
. (3.43)

The plates are simply supported at both ends located at z = 0 and z = L, therefore
the out-of-plane solution can be expressed as

wi(s, z) =
∑
mn

[
Ain sin(α1s) +Bi

n cos(α1s) + Ci
n sinh(α2s) +Di

n cosh(α2s)
]

︸ ︷︷ ︸
ϕin(s)

sin
(
mπz

L

)
,

(3.44)
where mπ/L is the modal wavenumber along the z direction and m corresponds to the
number of half-periods along the z axis. The free flexural wavenumber kf = (ω4/cf )1/4,
α1 =

√
k2
f − (mπ/L)2 and α2 =

√
k2
f + (mπ/L)2 are respectively the wavenumbers

along the s direction for the propagating and evanescent flexural waves. The in-plane
deflections are respectively expressed as

ui(s, z) =
∑
mn

[
Ei
nλ1eλ1s + F i

nλ2eλ2s +Gi
n

mπ

L
eγ1s +H i

n

mπ

L
eγ2s

]
︸ ︷︷ ︸

ξin(s)

sin
(
mπz

L

)
(3.45)
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and

vi(s, z) =
∑
mn

[
Ei
n

mπ

L
eγ1s + F i

n

mπ

L
eγ2s +Gi

nλ1eλ1s +H i
nλ2eλ2s

]
︸ ︷︷ ︸

ζin(s)

cos
(
mπz

L

)
. (3.46)

kl = ω/cl and kt = ω/ct are respectively the free wavenumbers of the L- and T-waves,
λ1,2 = ±

√
k2
l − (mπ/L)2 and γ1,2 = ±

√
k2
t − (mπ/L)2 are respectively the associated

wavenumbers along the s direction. (ϕin, ξin, ζ in) represent the section mode shapes
for the three components. For each plate i = 1 · · · 4, 8 unknown coefficients must be
solved. They are stored to the following vector VT

i = 〈Ain, Bi
n, C

i
n, D

i
n, E

i
n, F

i
n, G

i
n, H

i
n〉.

Thus, 8× 4 equations can be developed from the BCs at the junction of two adjacent
plates i and j. These 8 BCs correspond to

• the continuity of displacements in the s and z directions for two consecutive
plates i and j:

wi = uj, ui = −wj and vi = vj. (3.47)

• the continuity of the rotation for two consecutive plates i and j. The rotation
is assumed to be constant even during bending. This leads to

∂wi

∂s
= ∂wj

∂s
. (3.48)

• the equilibrium of bending moments:

∂2wi

∂s2 = ∂2wj

∂s2 . (3.49)

• the equilibrium of forces:

N i
s = −V j

s , N
i
sz = N j

sz and V i
s = V j

s . (3.50)

At first approximation, the thickness of the plates is assumed to remain small com-
pared to the bending wavelength so that the shearing effect is not considered. The
influence of in-plane wave generation is neglected. This last assumption implies that

u = v = Ns = Nsz = Vs = 0. (3.51)
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Figure 3.8: Coordinate system and resulting forces and moments between two plates
i and j.
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All that remains is 4 unknowns coefficients VT
i = 〈Ain, Bi

n, C
i
n, D

i
n〉 solved from the

remaining 4 BCs for each plate i = 1 · · · 4. These conditions between two adjacent
plates i and j are written as

Aim sin(α2Li) +Bi
m cos(α2Li) + Ci

m sinh(α1Li) +Di
m cosh(α1Li) = 0, (3.52a)

Ajm sin(α2Lj) +Bj
m cos(α2Lj) + Cj

m sinh(α1Lj) +Dj
m cosh(α1Lj) = 0, (3.52b)

α2
[
−Aim cos(α2Li) +Bi

m sin(α2Li)
]

+ α1
[
Ci
m cosh(α1Li) +Di

m sinh(α1Li)
]

= −α2A
j
m + α1C

j
m,

(3.52c)

α2
2

[
−Aim sin(α2Li)−Bi

m cos(α2Li)
]

+ α2
1

[
Ci
m sinh(α1Li) +Di

m cosh(α1Li)
]

= −α2
2B

j
m + α2

1D
j
m.

(3.52d)

where Li,Lj = Lx or Ly according to the plate index. Then by writing these four
equations at each coupled edges, we obtain a set of sixteen equations which can be
expressed in a matrix form


Z12 Z21 0 0
0 Z23 Z32 0
0 0 Z34 Z43

Z14 0 0 Z41


︸ ︷︷ ︸

Z(ω,m)



V1

V2

V3

V4

︸ ︷︷ ︸
V

=



0
0
0
0


, (3.53)

where Z is a 16×16 matrix which contains all the coupling terms and is composed of
4×4 sub-matrices Zij containing the coupling terms between plates i and j. Once the
structural parameters of each plate are known, Z depends only on ω andm. According
to Eq. (3.53), for a given m, the natural frequencies ωmn of the duct are obtained by
solving the non-linear equation

det Z(ω,m) = 0 , (3.54)

Finally, the shape associated with themnth mode is obtained by solving Z(ωmn,m)V =
0. The global shape of the unrolled duct φmn is given by

φmn(s) = φmn(s, z) = ϕn(s) sin
(
mπz

Lz

)
. (3.55)
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The frequency reponse fonction H has the following expression:

H(r, s, ω) =
4∑
i=1

∑
m,n

φimn(r)φimn(s)
Mmn[ω2

mnj(1 + jη)− ω2] , (3.56)

where Mmn =
∫
S
ρhφ2

mn ds is the generalized mass.
The following model is compared with the commercial solver COMSOL Multi-

physics ®. The rectangular duct is meshed with shell elements as for the cylindrical
case. As previously explained, in the case of the cylindrical duct, the FEM model
takes into account coupling between flexural and in plane waves as well as shearing
effect within the duct thickness. The mesh is built for simulating the free flexural
wavenumber of a plate up to 5000 Hz. A mesh size of 1 cm is used to maintain 6
elements for each flexural wavelength. Fig. 3.10 gives a comparison between the ana-
lytical and finite element solutions. The mobility in the transverse direction due to a
point force located at (x=5 cm, y=0 cm, z=40 cm) is considered. The FEM mobility
is compared to the analytical solution along with the point mobility of an infinite
plate as shown in Fig. 3.10. The overall shape is respected and levels agree. However,
some noticeable differences are observed for certain frequencies. The inclusion of the
in-plane waves in the FEM solution may have the effect of modifying the structural
behavior. Flexural waves are partly converted into in-plane waves upon transmission
through a structural junction and then, converted back into flexural waves via other
junctions. Above 900 Hz, the analytical solution seems to be slightly stiffer than the
FEM solution. Finally, this preliminary study shows satisfactory agreement obtained
by the analytical model when compared to a FEM solution. Discrepancies appear at
higher frequencies with a maximum difference of 10% regarding the damped resonant
frequencies.
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(a)

(b)

Figure 3.9: (a) Section mode shapes ϕn (m = 1) ; (b) 3D illustration of some global
modes of the duct φmn.
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Figure 3.10: Comparison between the proposed analytical model and FEM calcula-
tion.
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3.2.1 Identification of BC effects via measurement

The resonance frequencies calculated by the analytical model assume ideal boundary
conditions. Thus, a modal analysis is performed to determine the experimental modal
parameters for two configurations: (a) Free-Free (FF) and (b) operational (OP) BCs
as shown in Fig. 3.11. These parameters, such as resonant frequencies, damping ratios
and modal shapes are compared to the FEM solution and analytical model. Hence,
the modal analysis provide an opportunity to verify the accuracy of FE modeling
procedure and by extension, the limit of the analytical model.

Duct response was acquired using 3 axis accelerometer PCB 356A16 type (with
sensibility of 103.5 mV/g) which allows to measure in-plane waves. A shock hammer
is used (with sensibility of 2.56 mV/N) for the excitation. Signal processing and data
acquisition was carried out using an 4-channel Siemens LMS Data acquisition system
using the Siemens Impact Testing module to collect transient response of the duct.
The reference point with coordinates (x=5 cm, y=10 cm, z=10 cm) is placed such
that all modes are excited in the frequency range of interest (200 - 1400 Hz). A
grid was drawn on the duct to locate the hammer impact positions with a regular
interval of 2.5 cm along the cross-flow direction and 5 cm along the flow direction.
The dynamic response was sampled at 4096 Hz with a spectral resolution of 0.5 Hz
for a time period of 2 s. The time response data was processed using the Time MDOF
module where damping and natural frequencies where extracted for the first 8th (then
for the first 20th modes for the final analysis). The duct was hung vertically with
1/8 diameter bungee cords from a horizontal rod to provide ’free structure condition’.
Here, rigid body modes are sufficiently low (≈ 20 Hz) in relation to the first bending
mode. The amplitude of the force spectrum is kept as much as possible constant
over the frequency domain of interest. This set up can be seen in Fig. 3.11(a). In
a second phase, the modal analysis is performed ’in situ’, i.e., inserted in the aero-
acoustic bench as shown in Fig. 3.11(b). The stabilization diagram obtained from a
Least-Square Complex Exponential (LSCE) algorithm is represented Fig. 3.12. The
evolution of the identified natural frequencies can be seen with the model order.
To facilitate the extraction of the physical poles, the sum of the measure FRFs is
superimposed. Physical modes can then be easily separated from spurious modes by
looking for poles which appear at nearly identical frequencies for the different model
orders considered. The natural frequency and the damping ratio of the stable poles
are listed in Table 3.2. The extracted damping ratios are stable and not too high
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when the model order increases. The extracted mode shapes exhibit very clear modal
deformations and are shown in Fig. 3.13 for the 6 first. Note that only the modes 2
and 4 are torsional modes and the others are bending modes.

The commercial FE solver COMSOL Multiphysics® is used to calculate the mass-
normalized displacement mode shapes and resonance frequencies of the duct as shown
in Fig. 3.14. As shown in Table 3.2, the experimental resonance frequencies (fFF

exp) are
lower than the numerical frequencies (fFEM−0) of the initial FE model presented in
Fig. 3.14(a). The geometry is updated by including realistic frames. It is meshed with
shell elements with different thicknesses and is shown in Fig. 3.14(b). The discrep-
ancies between the experimental resonance frequencies and the numerical frequencies
(fFEM−F ) after adding the frames are smaller, and more particularly the torsional
modes (T) are correctly paired. Some adjustments or modification can be performed
to accurately represent the dynamic behavior of the structure. For instance, including
periodic frames to the structure would probably adjust sources of discrepancies. How-
ever, the mode shapes extracted provides an acceptable representation of the modal
pattern behavior as shown in Fig. 3.15 from the MAC matrix representation. Thus,
to compare the experimental and analytical mode shapes, φ

(1)
i and φ

(2)
j respectively,

the modal assurance criteria (MAC) is computed and defined as

MAC(φ(1)
i ,φ

(2)
j ) =

 φ
(1)T
i φ

(2)
j

||φ(1)
i || ||φ

(2)
j ||

2

. (3.57)

The MAC matrix shows a good agreement between analytical and experimental mode
shapes (MAC coefficients above 0.9). Finally, the analytical mode shapes are identified
according to the highest MAC coefficients. The entire evaluation is summarized in
Table 3.4 showing some of resonant frequencies and damping coefficients retained. The
procedure described above is performed again for different flow speeds (varying from
10 m/s to 20 m/s) in order to quantify the impact of the flow on modal parameters.
Table 3.5 shows the modal parameter extracted for two speed flows along with those
obtained without flow. Small deviations of resonant frequencies and modal damping
coefficients is found (less than 2% for all cases). The main sources of uncertainties is
likely due to disassembling and reassembling the test apparatus between measurement
periods which introduced slight structural differences rather than the effect of the
flow. Depending on the flow speed, the natural frequencies and damping ratio of the
analytical model are reassessed using values obtained in Table 3.5.
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(a) Experimental setup using LMS impact Test capabilities.
At the bottom, the impact hammer used for excitation can
be seen.

(b) Tested duct inserted in the aero-acoustic bench.

Figure 3.11: Experimental set up: (a) Free-Free (FF) and (b) Operational (OP) BCs.
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Figure 3.12: Stabilization diagram in the 200-500 Hz range.

Mode no fFF
exp (Hz) ξ(%) mode description

1 244 0.17 1st bending
2 282 0.47 1st torsion
3 292 0.06 2nd bending
4 342 0.39 2nd torsion
5 349 0.05 higher bending mode
6 361 0.06 ”
7 405 0.04 ”
8 471 0.05 ”

Table 3.2: Natural frequencies and damping ratios for Free-Free BCs.

Mode no fFF
exp (Hz) fFEM−0 (Hz) fFEM−F (Hz)

1 244 188 (T) 244
2 282 (T) 206 (T) 270 (T)
3 292 259 313
4 342 (T) 279 327 (T)
5 349 344 360

Table 3.3: Experimental and numerical frequency comparison (Free-Free BCs). Influ-
ence of the frames: the initial geometry (FEM-0) is modified to take into account the
frames (FEM-F) as shown in Fig. 3.14. The (T) letter stands for the torsional modes
identified.
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(a) Mode shape 1: first bending. (b) Mode shape 2: first torsion

(c) Mode shape 3: second bending (d) Mode shape 4: second torsion

(e) Mode shape 5: third bending (f) Mode shape 6: forth bending

Figure 3.13: Representation of the extracted mode shapes for Free-Free BCs (LSCE
method).
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X

Y

Z

(a)

X

Y

Z

(b)

Figure 3.14: Influence of the frames: (a) initial geometry (FEM-0) and (b) frames
added (FEM-F).

Figure 3.15: MAC matrix.
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Mode no fOP0
exp (Hz) ξ0(%) (m,n) fSS

AN (Hz) (m,n) ∆f/f MAC
1 253 1.04 (1,1) 284 (1,1) 12% 0.97

344 (1,2) not identified
2 293 0.73 (2,1) 360 (2,1) 23% 0.97
3 331 3.16 (2,2) 407 (2,2) 23% 0.91
4 410 0.78 (3,1) 493 (3,1) 20% 0.93

527 (3,2) not identified
5 560 0.86 (4,1) 686 (4,1) 23% 0.96

710 (4,2) not identified

Table 3.4: Natural frequencies and damping ratios for operational BCs without flow
(OP0). The analytical mode shapes are well identified and selected according to the
MAC matrix as shown in Fig. 3.15.

Mode no fOP0
exp (Hz) ξ0(%) fOP1

exp (Hz) ξ1(%) fOP2
exp (Hz) ξ2(%)

(1,1) 253 1.04 252 1.50 253 1.30
(2,1) 293 0.73 294 0.90 294 1.00
(2,2) 331 3.16 332 3.16 332 3.16
(3,1) 410 0.78 404 1.90 405 1.20
(4,1) 560 0.86 568 0.80 566 0.60

Table 3.5: Natural frequencies and damping ratios for operational BCs without flow
(OP0), at 13 m/s (OP1) and at 20 m/s (OP2).
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3.2.2 Fluid loading effect: experimental analysis in a vacuum
chamber

A vacuo chamber has been used to asses the acoustic radiation effect of the rectangular
duct. The whole test facility is mounted in a vacuum chamber. An ambient pressure
of 3 hPa is applied inside the vacuum chamber. The duct is hanged with two strings
in order to have free boundary conditions. A shaker is placed at x=20 cm, y=5 cm,
z=5 cm to apply a harmonic point force to the duct. The measurements are made
with a bandwidth of 1600 Hz and 3200 spectral lines to obtain frequency resolution
∆f = 0.5 Hz. The study is focused at low frequency in order to have at least the
first 8 modes with a good signal to noise ratio. A Polytec PSV400 scanning laser
vibrometer was used and focused through a plexiglass door approximately 5 meters
from the tested duct as shown in Fig. 3.16. At the end, the FRFs velocity/force
are squared and averaged over the exposed face for the case with or without air as
plotted in Fig. 3.17. The results presented in earlier sections showed that the first
two resonances are ’bending’ and ’torsion’ type operating shapes. It is confirmed with
Fig. 3.18 which shows the operating deflection shapes at 252 Hz and 283 Hz. Small
discrepancies can be observed between the case in vacuum and with air. The first
damped resonant frequency is shifted toward low frequencies due to a small added
mass effect. The spectrum associated to the case with air is more damped due to
the dissipation of vibration energy into acoustic radiation. The loss factor can be
estimated based on values related to the sharpness of the resonance peaks. It can be
approximated as

η ∼=
ω2 − ω1

ω0
(3.58)

where ω2 and ω1 are the two frequencies above and below the resonance frequency, ω0,
where the average power has dropped to one-half of its original resonace peak value
(3 dB below). The structural loss factor ηs at the first ’in vacuo’ resonant frequency
is found to be 0.12%. The first ’wetted’ resonant frequency gives a total damping
η of 0.26%. The acoustic radiation damping ηa is then obtained by removing the
structural loss from the total damping and equals to 0.14%.
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Figure 3.16: Experimental setup using a Polytec PSV400 scanning laser vibrometer.
The tested duct is mounted in a vacuum chamber.
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Figure 3.17: FRFs velocity/force averaged over the exposed face in presence of air or
not.

(a) Mode shape 1: first bending. (b) Mode shape 2: first torsion

Figure 3.18: Operating deflection shapes at (a) 252 Hz and (b) 283 Hz.



3.3 Conclusion 105

3.3 Conclusion

The dynamic response of the duct has been investigated for two cross-sections: circular
and rectangular. The classical thin shell theory is adopted for the circular geometry
including the coupling between in-plane and out-of-plane waves. The rectangular
duct model neglects in-plane longitudinal and in-plane shear waves induced at corner
junctions. In both cases, simple analytical modal FRFs for simply supported geometry
are adopted in order to facilitate numerical treatments for the calculation of the
coupling between the turbulent flow and the structure. Small discrepancies are found
between the proposed models and the FEM solution. In addition, a modal analysis has
been performed on an operational rectangular pipe. The analytical mode shapes have
shown good correlations after a confrontation with measurements. It suggests that
simple analytical modal FRFs for simply supported geometry can be used as a guide
for more complex geometry with complex BCs since it follows similar trends in terms
of modal pattern and energy. For both cross-sections, the effects of the boundary
conditions and acoustic radiation have been studied using either a commercial vibro-
acoustic FEM solver or measurement performed in a vacuo chamber to ensure that
the weak coupling assumption is reasonable for air fluid.
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Chapter 4

Coupling between wall pressure
fluctuations and the duct structure

This chapter presents numerical predictions of pipe flow noise and the associated vi-
bration response of a straight duct of finite length due to a rigid obstacle inserted in the
duct. Special attention will be paid on the coupling between acoustic propagating duct
modes and the duct structure for two specific cross-sections: circular and rectangular.
The wall pressure distribution is decomposed into hydrodynamic and acoustic contri-
butions where the energy level is computed according to ‘universal’ trends found in the
literature. In the following, a reliable spectrum based on the scaling law introduced
by Nelson and Morphey is proposed in order to directly calculate the acoustic energy.
The Turbulent Boundary layer (TBL) energy is calculated on the basis of the Goody’s
model. The excitation includes both acoustic and hydrodynamic contributions written
on the basis of Corcos model and using acoustic duct mode coherence functions. Far
from the obstacle, the relative weight of the hydrodynamic and acoustic contributions
on the structural response is quantified for circular an rectangular ducts. The result-
ing chapter is written in order to be submitted to an academic journal, this explains
why some theoretical ingredients already shown in previous chapter are reminded here
briefly.

107
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4.1 Introduction

Pipeline and duct vibrations can cause a range of issues from unplanned shutdowns
to decreased equipment life. Thus, predicting flow-induced vibrations is essential in
piping design in many industrial plants, especially for Oil & Gas industries.

In the ideal case of a fully developed turbulent flow in a straight cylindrical duct
with no flow discontinuities or pipe fittings, vibrations are generally caused by the
wall pressure fluctuations in the Turbulent Boundary Layer (TBL). This has been
intensively investigated by Durant et al. [12] for internal air flow and Bonness et al. [14]
for internal water flow. However, Norton’s textbook (see Ch.7 in [8]) emphasizes
the importance of considering plane wave and high order modes in the prediction of
thin cylindrical pipe vibration. A study of the vibration response of a straight duct
with rectangular cross-section [4] excited by a turbulent internal flow has shown that
acoustic waves must be taken into account in the analysis to predict the vibration
response. Hence, it appears that the prediction of pipe vibration due to internal
turbulent flow gives different conclusions depending on the cross-section considered:
circular or rectangular.

The origin of the sound is relatively well identified and localized in a context
of internal flow disturbance due to a singularity in the duct (bend, junction, flow
constriction or an obstacle). This generates internal broadband noise which propagate
through the piping system. These additional sound waves are then superimposed
on the hydrodynamic TBL fluctuations and are likely to dominate above a certain
distance from the discontinuity. In the context of external flow, empirical models
can be used to described the flow forcing function. The acoustic contribution written
as a diffuse acoustic field (DAF) coherence function is directly added to the Corcos
formulation [109, 116, 117] by using a coefficient which traduces the energy ratio
between the acoustic and aerodynamic terms. For internal ducted flow, the acoustic
energy produced by any given obstruction can be predicted according to the scaling
law introduced by Nelson & Morphey [140]. This scaling law approach relies on the
pressure drop and a scaled spectrum specific to the studied obstacle. To obtain this
scaled spectrum, experiments or RANS computation can be performed [141, 142]. In
the case of flow constriction, it can be useful to use the recent development of Kårekull
et al. [143] where the only mere of the constriction geometrical characteristics, ie, the
orifice and the duct cross-section area allows to predict the acoustic power. It is valid
not only for the acoustic plane wave energy below the first cut-off frequency but also,
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for high order acoustic modes.
Although most of the fluid conveying ducts are cylindrical, specific applications

require the use of rectangular ducts. Here we aim to present a numerical study which
can offer engineers a better understanding of the coupling between the duct section
(circular or rectangular) and the excitation including both acoustic and hydrody-
namic contributions. In this work, we are interested in the numerical prediction of
flow-induced vibrations in the region where the entrance region effect is neglected as
shown Fig. 4.1. In the vicinity of an obstacle placed in the duct, the ‘near-field’ is
associated with strongly turbulent flow and non-propagating acoustic waves which
are attenuated rapidly with distance away from the disturbance. The wall pressure
fluctuations (including its acoustic part) can no more be analytically described and
full computational aeroacoustic simulations are required [5]. ‘Far from the obstacle’,
the pressure fluctuations are associated with duct acoustic modes propagating down-
stream and the distance is sufficient for the re-establishment of an undisturbed mean
flow profile (the flow is considered uniform here) with fully developed TBL.

Figure 4.1: Flow-induced vibrations in the ‘near-field’ and ‘far from the obstacle’ due
to an obstacle inserted in a duct (red lines denote the flexible part of the wall duct
prone to vibrations).

The objective of this Chapter is to study the vibration response of a simply sup-
ported duct to a turbulent internal flow including both contributions (hydrodynamic
and acoustic) for two specific cross-sections (circular and rectangular). In both cases,
material properties and dimensions, i.e. width and cross-sectional aeras, are identical
as shown in Fig. 4.2.

First, the flow forcing functions are described via Corcos model and acoustic duct
mode coherence functions. The TBL and acoustic energies are based on the Goody



110 Chapter 4 – Coupling between wall pressure fluctuations and the duct structure

Figure 4.2: Two geometries are investigated with the same cross-sectional aeras Ac =
Arec
c = Acir

c . The studied obstacle is a diaphragm with the same area orifice Aorifice =
Arec

orifice = Acir
orifice for each geometry.

model and a ‘universal’ trend based on the scaling law introduced by Nelson & Mor-
phey respectively. Then, the numerical ingredients necessary for the prediction of flow
induced vibration are described. It is based on a ‘blocked’ approach using analytical
modal FRFs of a simply supported finite duct. Validations of our model are shown for
the case of a simply supported plate excited by TBL, plane wave and diffuse acoustic
field excitations. The coupling between the duct and the excitation is investigated in
the wavenumber space. Finally, the duct vibration response due to a TBL and acoustic
duct modes excitations are investigated for the two specific cross-sections. Attention
is payed on the cylindrical duct which behavior depends on the modal density.

4.2 Acoustic and hydrodynamic contribution

4.2.1 Turbulent boundary layer

The Cross-Spectral Density (CSD) of the wall pressure fluctuation can be calculated
using empirical models. Because the Corcos model is known to overestimate the levels
in the subconvective domain, a modified Corcos model proposed in [34], which better
estimates low-wavenumber excitation is considered in this work, so we take

Sh
pp(s1 − s2, ω) = Φpp(ω)(1 + γzω|ξz|/Uc)e−γsω|ξs|/Uce−γzω|ξz |/Uce−iωξz/Uc , (4.1)

where s1 − s2 = (ξs, ξz) is the separation vector. The coefficient Uc defines the TBL
velocity and is expressed as a fraction of the flow speed at the center of the duct
U∞ and this is set to Uc/U∞ = 0.85. Corcos parameters γz and γs are related to
the axial and lateral correlation lengths and set to (0.125, 1) respectively. The point
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spectrum is estimated on the basis of empirical models. In practice, empirical formula
are considered such as the Goody model [64], Robert model formula [156] (see [157]
for aeronautics application) or also a Chase model for the case of internal flow [14].

4.2.2 Acoustic field

The acoustic contribution is usually modeled as a diffuse field in a context of external
flow. It is assumed that a diffuse field is a reasonable approximation for low Mach
number flows, on the basis that the turbulent eddies are random acoustic sources in
space and time. The coherence function of a Diffuse Acoustic Field (DAF) excitation
writes [115]

Γ(s1 − s2) = sin k0|s1 − s2|
k0|s1 − s2|

. (4.2)

This is in general directly added to the Corcos formulation by using a coefficient which
traduces the energy ratio between the acoustic and aerodynamic terms. Arguillat et
al. [116] measured the acoustic contribution by integrating the measured wavenumber
cross spectrum over the acoustic disk of radius k0. Starting from the measurement of
the CPSD in the spatial domain, it was assumed a model of CPSD on the basis of
the sum of an aerodynamic contribution provided by Corcos coherence function and
an acoustic part given by a DAF written as:

Spp(s1 − s2, ω) = Φpp(ω)
(
ΓCorcos + A(ω)ΓDAF

)
, (4.3)

with A(ω) the ratio between the aerodynamic and the acoustic energies frequently
dependent. For instance, in automotive applications [117], a constant ratio of 10
percent is applied. Lecoq [109] used this approach to model both aerodynamic and
aeroacoustic contributions and applied a ratio of 5 percent according to Arguillat
work’s [116] to an external flow exciting a flat plate.

The situation with an internal flow disturbance in the duct due to a singularity
such as a bend, a junction or a flow constriction is different. ‘Far from the obstacle’,
the flow/obstacle interaction generates internal sound waves which propagate through
the piping system. The additional propagating sound waves are then superimposed
on the hydrodynamic TBL fluctuations. The acoustic contribution is chosen to be
described as a series of propagating acoustic duct mode. The duct pressure field of an
infinite rigid duct is written for only modes propagating in the downstream direction,
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for instance at point s1 = (s1, z1) of the wall, it writes

p(s1, ω) =
∑
pq

C+
pqψpq(s1)eik+

pqz1 , (4.4)

where C+
pq stands for amplitude of the downstream (+) propagating mode and ψpq

the acoustic mode (p, q). The convention s = (s, z) is adopted so that s stands for
the curvilinear abscissa and z the coordinate along the duct. Therefore, the modes
ψpq are defined as the projection of the acoustic mode along the curvilinear abscissa
s. The flow is assumed uniform and thermo-viscous attenuation is neglected so that
the axial wavenumbers k+

pq writes

k+
pq =

kM +
√
k2 − (1−M2) k2

⊥

1−M2 , (4.5)

where M is the Mach number and k⊥ is the transverse wavenumber.

To our knowledge, Norton’s thesis [118] was one of the first contribution to intro-
duce plane waves and higher order modes expressed in term of CPSD forcing function
in a context of internal flow induced vibration of pipes. The CPSD between the
pressure at 2 points s1 = (s1, z1) and s2 = (s2, z2) writes

Spp(s1, s2, ω) =
∑
pq

E
[∣∣∣C+

pq(ω)
∣∣∣2]ψpq(s1)ψpq(s2)eik+

pq(z1−z2)︸ ︷︷ ︸
Γ+
pq(s1,s2)

+
∑
pq

pq 6=rs

E
[
C+
pq(ω)C+

rs(ω)∗
]
ψpq(s1)ψrs(s2)ei(k+

pqz1−k+
rsz2), (4.6)

where E [] is the ensemble average. The mode amplitudes are assumed all uncorrelated
random variables so that E

[
C+
pq(ω)C+

rs(ω)∗
]

= 0. The function Γ+
pq(s1, s2) is introduced

in the spirit of the Corcos and the DAF coherence functions and writes

Γ+
pq(s1, s2, ω) = ψpq(s1)ψpq(s2)eik+

pq∆z. (4.7)

The coherence function range is from 0 to 1 to account for the effect of acoustic pres-
sure ‘node’ and ‘antinode’. Therefore, the acoustic energy

∣∣∣C+
pq(ω)

∣∣∣2 represents the
maximum value expected at an acoustic pressure ‘antinode’. It is a measurable quan-
tity expressed in Pa2 where the acoustic pressure is maximum. Transverse acoustic



4.2 Acoustic and hydrodynamic contribution 113

duct modes ψpq, for circular an rectangular ducts, are given by

ψcyl
pq (s) = eipθ, (4.8)

where p ∈ Z because acoustic duct modes for circular ducts are 2π-periodic along the
circumference, and

ψrec
pq (s) =



cos
(
pπs

Lx

)
; s ∈ [0;Lx]

cos (pπ) cos
(
qπ [s− Lx]

Ly

)
; s ∈ [Lx;Lx + Ly]

cos
(
pπ [2Lx + Ly − s]

Lx

)
cos (qπ) ; s ∈ [Lx + Ly; 2Lx + Ly]

cos
(
qπ [2Lx + 2Ly − s]

Ly

)
; s ∈ [2Lx + Ly; 2Lx + 2Ly].

(4.9)

4.2.3 Flow forcing function based on universal scaling law

In this study, the forcing function adopted for the study of vibrations due to an
internal wall pressure fluctuation writes

Spp(s1, s2, ω) = Φpp(ω)ΓCorcos

︸ ︷︷ ︸
hydrodynamic (h)

+
∑
pq

∣∣∣C+
pq(ω)

∣∣∣2 Γ+
pq︸ ︷︷ ︸

acoustic (ac)

, (4.10)

where the point spectrum Φpp(ω) is computed on the basis of the Goody model. It is
expressed in mixed variable scaling and writes

Φpp(ω)U∞
τ 2
wδ

= C2(ωδ/U∞)2

[(ωδ/U∞)0.75 + C1]3.7 + [C3(ωδ/U∞)]7 , (4.11)

where RT ≡ (uτδ/ν)
√
Cf/2 can be interpreted as a Reynolds number. In this formula,

coefficients C1, C2 and C3 are set to C1 = 0.5, C2 = 3 and C3 = 0.11R−0.57
T . For an

internal flow, the outer scale δ corresponds to the boundary layer thickness which is
not defined explicitly. It is common [12, 14] to assimilate δ to the hydraulic diameter
radius defined as Dh = 4Ac/P , where P is the duct wetted perimeter. The test
section is assumed to be located far enough from the diaphragm (above 10 hydraulic
diameters Dh) so the turbulent boundary layer is fully developed corresponding to an
undisturbed mean flow profile. The inner scale τw corresponds to the shear stress at
the wall. It is defined as τw = CfρU

2
0/2, where the friction coefficient Cf has been
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estimated via empirical approximation of the boundary layer equations [127, 130]:

Ccir
f
∼=

0.059
(ReDh)1/5 and Crec

f
∼=

0.046
(ReDh)1/5 , (4.12)

where ReDh is the Reynold number of the pipe. The friction velocity is given through
uτ = (τw/ρ)1/2 and ν is the kinematic viscosity.

The acoustic energy
∣∣∣C+

pq(ω)
∣∣∣2 is calculated on the basis of scaling law introduced by

Nelson & Morphey [140]. It is assumed that the acoustic power is equally distributed
over N propaging duct modes as follows:

C+
pq(ω) =

√√√√ 2ρωW
Nk+

pqNpq

, (4.13)

where W stands for the acoustic power defined in dB as

Lw = 10log10

(
W

W0

)
, (4.14)

where W0 = 10−12W. The normalization factor Npq =
∫
Ac

ψ̃2
pq ds becomes for the rect-

angular duct,

N rec
pq = LxLyΛpΛq with



Λp = 1 p = 0,

Λq = 1 q = 0,

Λp = 1/2 p > 0,

Λq = 1/2 q > 0

(4.15)

and for the circular duct
N cir
pq = πr2(1− p2

χ2
pq

), (4.16)

where χpq are Bessel function zeros.

The scaling law approach introduced by Nelson & Morphey relies on the pressure
drop and a scaled spectrum specific to the studied obstacle. To obtain this scaled
spectrum, experiments or RANS computation can be performed [141, 142]. The hy-
pothesis used in Nelson & Morphey paper is that the root mean square fluctuating
drag force Fz on the obstacle is proportional to the steady drag force Fz at a certain
frequency band. The fluctuating force is a broad-band random type and is described



4.2 Acoustic and hydrodynamic contribution 115

by its spectral density such as
√
E
[
|Fz(ω)|2

]
= K(St)Fz, (4.17)

where the Strouhal number writes

St = fLc
uc

, (4.18)

with f the frequency band, Lc and uc are typical length and velocity scale. Several
definitions have been proposed for its definition, for instance, the component flow
constriction uc is defined as

uc = U∞
σ
, (4.19)

with σ the ‘vena contracta’ ratio. In our case, the hydraulic diameter Dh is retained
for the length scale. This yields a definition of the strouhal number as

St = fDhσ

U∞
. (4.20)

The sound power in a frequency band, generated in the downstream direction of the
duct is given by

W = RE
[
|Fz(ω)|2

]
, (4.21)

where R is the radiation resistance for an infinite duct [142]. According to Nelson &
Morphey assumption law Eq.(4.17), the sound power writes

W = RFz
2
K2(St). (4.22)

The radiation resistance is depending on the duct dimensions and is divided into
two regimes: a plane wave or high order acoustic modes propagation. Hence, for
wavenumber above the first duct frequency cut on fc, all propagating modes needs
to be considered. The average radiation resistances in the downstream direction, for
circular an rectangular ducts, are given by

Rpl.w. = 1
8Acρc

k < kc, (4.23)

Rcir = k2 (1 + (3π/4rk))
48πρc k > kc, (4.24)
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Rrec = k2 (1 + (3π/4k)) (Lx + Ly/Ac)
48πρc k > kc. (4.25)

In the case of a diaphragm, it can be useful to use the recent development of
Kårekull et al. [143]. They revisited the Nelson-Morfey semi-empirical scaling law by
suggesting that the dynamic force is assumed to scale with the momentum flux, given
by

Fz ∝ ρAcU∞Uvc = ρAcU
2
∞

σ
, (4.26)

where ρAcU2
∞ corresponds to the mass flow and Uvc to the mean velocity at the vena

contracta area Aνc. The vena contracta ratio σ, i.e. the constriction openness, is given
by

σ = Aνc
Ac

. (4.27)

The vena contracta ratio is evaluated from the formula presented by Durrieu et al.
[144] and given by

σ =
Aorifice
Ac

1 +
√

0.5
(
1− Aorifice

Ac

) . (4.28)

In Kårekull papers [142, 143], several publications are used to review orifice noise in
order to obtained a universal scaling spectrum K2(St). The general trend is

10log10

(
K2/10−12

)
=


60 St < 1,

60− (20 ∼ 28)log(St) St > 1.
(4.29)

The symbol ∼ stands for the incertitude about the true slope value. The general
inclination of −28log(St) can be seen as a mix between the source mechanisms of a
pure dipole, −20log(St), and a pure quadrupole −40log(St). In this Chapter, the
slope of a pure dipole, −20log(St), is considered.

Fig. 4.3 shows the acoustic power used in Eq.(4.13) to calculate the acoustic energy∣∣∣C+
pq(ω)

∣∣∣2 for circular an rectangular ducts at 10 m/s. Two regimes are dissociated:
one corresponds to a plane wave propagation until the first duct frequency cut on fc
(continuous line) and the other is associated to high order acoustic modes propagating
in the duct (dashed line). It can be shown that, Eq.(4.22) predicts W ∝ U6

∞c
−3 for

multi-modal propagation (f > fc) as for a free field dipole and W ∝ U4
∞c
−1 for plane

wave propagation (f < fc), which is usually associated with a free field monopole [140].
This explains why the acoustic power increases more rapidly above the first duct cut
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on fc. Here, the acoustic power W has been compared successfully with experimental
data at low speed flow for the rectangular duct [121, 158]. It is extended for this study
to higher speed flows and for the circular duct case.

Fig. 4.4 shows the acoustic modal amplitudes
∣∣∣C+

pq(ω)
∣∣∣2 calculated trough Eq.(4.13)

along with the TBL point spectrum calculated with the Goody model for two flow
speeds for the rectangular case Fig. 4.4(a),(c) and the circular case Fig. 4.4(b),(d).
As expected, the plane wave energy is the same for the two cross-sections. Above
the first duct frequency cut on fc, the acoustic energy is equally distributed over
the N modes excited in the frequency range [200, 5000] Hz. Peaks appear at the
natural frequencies of the acoustic propagating duct modes.‘Far from the obstacle’,
the diaphragm generates acoustic waves which are more energetic (+20 dB) than the
TBL. Some uncertainties remain about the TBL spectrum true value. Measurements
in Chapter 2 for the rectangular duct have shown that the entrance region effect exists
still for x/Dh ≈ 13. This difference is underlined by an arrow.
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Figure 4.3: Acoustic power at 10 and 60 m/s: (a) rectangular and (b) circular cross-
sections. Continuous and dashed lines stand respectively for the plane wave and
multimodal propagation.
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(b) circular case: 10 m/s.
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(c) rectangular case: 60 m/s.
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(d) circular case: 60 m/s.

Figure 4.4: TBL and acoustic energies in rectangular and circular ducts for two flow
speeds. The arrow indicates uncertainties about the TBL spectrum true value.
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4.3 Vibrating structures excited by random pres-
sure

The overall framework for the analysis is based on random analysis techniques that
takes into account the stochastic turbulent wall pressure distribution. Different tech-
niques exist to take into account the TBL excitation in vibroacoustic models. A review
of these methods can be found in [159]. The first one is the spatial method which
consists in a direct computation of the PSD of the resulting vibration at a point r of
the structure in the spatial domain:

Sww(r, ω) =
∫
S

∫
S
H∗(r, s1, ω)Spp(s1, s2, ω)H(r, s2, ω) ds1 ds2, (4.30)

where H corresponds to the frequency response function (FRF) of the structure and
Spp the cross-spectral density (CSD) of the stochastic distributed excitation containing
both the acoustic and turbulent component as defined in Eq.(4.10). A key parameter
of this approach is the spatial resolution of the discretization to resolve both flexu-
ral waves and the excitation field under TBL. For finite element applications, this
approach requires high memory capacity due to the difference in size of flexural and
turbulent wavelengths and precautions had to be taken in terms of grid resolution.
Contributions in search of innovative and fast solutions for combining empirical TBL
forcing function models with complex FE structural models can be found in [160, 161].
The PSD of the resulting vibration at point r is computed using analytical modal FRFs
associated with in-vacuum structural modes. The FRF defining the steady state har-
monic response of the duct at point r1 excited by a point force located at s1 is written
as a modal series:

H(r1, s1, ω) =
∑
m,n

Wmn(ω)φmn(r1)φmn(s1), (4.31)

where φmn is the structural mode in vacuum for a given mode (m,n), Mmn =∫
S
ρhφ2

mn ds is the generalized mass where S is the surface of structure, ωmn the nat-
ural frequency of mode (m,n) and η the loss factor. The receptance function Wmn is
defined as

Wmn(ω) = 1
Mmn[ω2

mn(1 + iη)− ω2] , (4.32)

and has a sharp maximum at the resonance frequency for any given structural
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mode. The response of the structure here is estimated via a ‘blocked’ approach.
Thus, it is assumed that the structural motion has negligible impact on flow field
and surface pressure fluctuation because a ‘blocked’ wall pressures is applied to the
structure without created a feedback. This assumption is no longer valid for relatively
dense fluids such as water or oil. Substituting the modal expansion relationship into
Eq.(4.30) gives:

Sww(r, ω) =
∑
mn

(|Wmn(ω)|φmn(r))2︸ ︷︷ ︸
modal receptance

×
∫
S

∫
S
φmn(s1)Spp(s1, s2, ω)φmn(s2) ds1 ds2︸ ︷︷ ︸

Ih,ac
mn (ω): joint acceptance function

+
∑
mn

∑
pq

pq 6=mn

(
Wmn(ω)W ∗

pq(ω)φmn(r)φpq(r)
)

︸ ︷︷ ︸
modal cross-terms

×Ih,ac
mnpq(ω). (4.33)

The second term corresponds to the cross-joint acceptance which is generally very
small compared with the joint acceptance. The averaged kinetic energy of the duct
writes

Ec(ω) = ρh

2
ω2

S

∫
S
Sww(r, ω) dr, (4.34)

and allows us to quantify the global response of the structure. In the ideal case where
the fluid loading effects are neglected, the average operation in Eq.(4.34) permits to
use the orthogonality of the mode shapes and finally one gets an approximation of
the averaged kinetic energy

Ec(ω) ' 1
2
ω2

S

∑
mn

Mmn|Wmn(ω)|2 × Ih,ac
mn (ω). (4.35)

This shows that the vibrational response is proportional to the product of two terms
frequency dependent acting as frequency and spatial filters. The Corcos model and
high order acoustic duct modes coherence functions are written as a separable form (in
s and z) using exponential functions which allows analytical treatments. Therefore,
in our case, it can be recast in the form of a product of two double integrals each
relating the longitudinal coupling and the transverse coupling. The joint acceptance
either for the hydrodynamic or the acoustic case according to Eq.(4.10) writes

Ih
mn(ω) = j2

n(ω) j2
m(ω) and Iac

mnpq(ω) = j2
npq j

2+
mpq(ω). (4.36)

These four double integrals are computed analytically by using a formal calculation
software like Maple and appropriate change of variable.
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4.3.1 Modal frequency response function of a simply sup-
ported finite duct

The simplest possible constitutive law corresponding to an isotropic, linear elastic
material are considered and all materials exhibit elastic behavior under small defor-
mations. The duct wall thickness is uniform and small compared with the cylinder
radius and length. The duct response is based on Kirchhoff-Love assumptions where
transverse shearing effects are neglected and the line originally normal to the mid-
surface remain perpendicular to the midsurface during deformations. It is assumed
that the duct is simply supported at both ends located at z = 0 and z = Lz. The
frequency response function for a rectangular duct section Hrec due to an harmonic
point force located at s in the radial direction writes

Hrec
w (r, s, ω) =

4∑
i=1

∑
m,n

φimn(r1)φimn(s1)
Mmn[ω2

mnj(1 + jη)− ω2] , (4.37)

where φimn stands for the mode associated to each plate i = 1 . . . 4 bonded together
which form a rectangular shape. It is expressed [149] as :

φimn(s, z) =
[
Ain sin(α2s) +Bi

n cos(α2s) + Ci
n sinh(α1s) +Di

n cosh(α1s)
]

︸ ︷︷ ︸
ϕin(s)

sin
(
mπz

Lz

)
,

(4.38)
with α1 =

√
k2
f + (mπ/Lz)2, α2 =

√
k2
f − (mπ/Lz)2, kf is the free flexural wavenum-

ber kf = (ω4/cf )1/4 and cf the flexural wave speed in plates defined as cf = 4
√
Dω2/ρh.

Here, the bending stiffness D writes D = Eh3/12(1− ν2), with h the duct thickness,
ν is the Poisson’s ratio and E the Young Modulus. The first index stands for the
type of section mode and the second index corresponds to the number of half-periods
along the z axis. For each mode m, the value of coefficients An, Bn, Cn and Dn

is determined by writing the zero displacement conditions along the coupled edges,
the continuity of the rotation and bending momentum. Note that the geometry sug-
gests the use of thin plate theory which solves only flexural wave. However, a pure
bending wave impinging at a corner junction will induce in-plane longitudinal and in-
plane shear waves [155]. The present model neglects in-plane waves. However, it has
been compared successfully with the commercial solver COMSOL Multiphysics® by
meshing the geometry with shell elements. Discrepancies appear at higher frequencies
with a maximum difference of 10% regarding the damped resonant frequencies. The
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duct response due to a point force is quantified with the averaged Root Mean Square
(RMS) acceleration, defined as

ARMS
c (s, ω) =

√∫
S |Ha(r, s, ω)|2d2r

S
. (4.39)

For the circular duct, the Classical thin Shell Theory (CST) is used. The Donnell’s
operator [L] is often referred as a reference and can be modified by adding higher
order terms of (h/r)2. Leissa discusses in Ref. [147] a number of additional models
describing the vibration of cylinders. The Flügge’s operator model which is one of the
most accurate thin shell operator is chosen. The analytical FRF of a simply supported
circular duct section Hcir due to an harmonic point force located at s in the radial
direction has the following expression:

Hcir
w (r, s, ω) =

1∑
α=0

3∑
j=1

∑
m,n

wαmnj(r1)wαmnj(s1)
Mα

mnj[ω2
mnj(1 + jη)− ω2] , (4.40)

where Mα
mn =

∫
S
ρh||q||2ds is the generelized mass where q refers to three components

u, v and w which are respectively the longitudinal, tangential and radial displacement.
Each mode can be distinguished by being either anti-symmetric or symmetric with
the index α = 0 (resp. 1), n is the circumferential order, m is the longitudinal order,
and j denotes the types of mode (extension-compression, torsion, bending). The shell
‘ring frequency’ is reminded here:

fr = 1
2π

cl
r
, (4.41)

where cl = (E/(ρ(1− ν2)))1/2 is the velocity of compressional waves.

Fig. 4.5 shows the averaged RMS acceleration due to a point force located at
(s=5 cm, z=10 cm) and (θ=0°, z=30 cm) for the rectangular and circular duct respec-
tively. The dimensions of duct cross-sections correspond to those depicted Fig. 4.2.
Physical parameters are defined in Table 4.1. The mean level is the same between the
two spectra. However, the modal content differs despite the same material properties
and dimensions with 10 structural modes excited up to first acoustic duct frequency
cut on fc for the rectangular duct and only 2 for the circular duct. Attention is given
to the first section mode shapes n = 1 and n = 0 for the rectangular and circular duct
respectively. Four structural modes n = 1 are found in the frequency range [200 Hz,
fc] for the rectangular duct whereas the first mode family n = 0 of the circular duct
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corresponding to breathing modes, appears at higher frequencies. The n = 0 modes
of a cylindrical shell are clustered around the ring frequency as shown in Fig. 4.6.
Therefore, breathing modes will contribute at very high frequencies (here fr = 10610
Hz).

Young’s modulus E 210×109 Pa Poisson’s ratio ν 0.3
Density ρ 7800 kg/m3 Thickness h 3 mm
Loss factor η 5.10−3 Length Lz 0.5 m

Table 4.1: Physical parameters.

(a) Modes shapes n = 1. (b) Modes shapes n = 0 appear at higher fre-
quencies.

Figure 4.5: Analytical modal FRF: (a) rectangular and (b) circular cross-sections.
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Figure 4.6: Visualization of breathing modes clustered around the ring frequency.

4.3.2 Coupling between the structure and TBL wall pressure
fluctuations

Another approach consists in formulating Eq.(4.30) in the wavenumber domain [7].
If the forcing function depends on the separation vector s1 − s2 and defining the
wavenumber-frequency spectrum of the wall pressure Φ̃pp as the space Fourier trans-
form of Spp yields:

Spp(s1 − s2, ω) = 1
(2π)2

∫ +∞

−∞
Φ̃pp(k, ω)e−ik(s2−s1)d2k. (4.42)

Introducing the function H̃(r,k, ω) as

H̃(r,k, ω) =
∫
S
H(r, s, ω)eiksd2s, (4.43)

the point spectrum of the structure displacement Sww is transformed into a single
integral over the wavenumber domain as follow

Sww(r, ω) = 1
(2π)2

∫ +∞

−∞
Φ̃pp(k, ω)|H̃(r,k, ω)|2d2k, (4.44)

where H(r,k, ω) is generally called the sensitivity function. This technique is partic-
ularly use in aeronautics [162] and ship building industry [73] since the integration
domain is transformed into a single integral which reduces computational time. There-
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fore, the joint acceptance function can be evaluated in the wavenumber domain ’w’
and writes

Ih,ac
mn,w(ω) = 1

(2π)2

∫ +∞

−∞
Φ̃pp(k, ω)|Smn(k)|2d2k, (4.45)

where
Smn(k) =

∫
S
φmn(s)eiksd2s, (4.46)

or in the spatial domain as seen previously in Eq.(4.33). This formulation is of a
particular concern as the coupling of flexural waves with TBL wall pressure fluctua-
tions is often analysed in wavenumber space. For instance, the wavenumber response
of a plate bending mode superposed on a TBL wall pressure wavenumber frequency
spectrum is illustrated in Ref. [99]. In our case, the duct refer to the simply supported
boundary condition at both ends for which the related modal sensitivity function in
the axial direction is the same as for the simply supported rectangular plate. The
analytical expression can be found in Ref. [72, 97]. The Corcos coherence function
and the modified one can be easily transformed into wavenumber space. The TBL
streamwise wavenumber spectrum is plotted in Fig. 4.7 along with the modal sensi-
tivity function at modal wavenumber km = mπ/Lz with m = 3, for two flow speeds.
Most of the energy in the turbulent boundary layer is contained around kc = ω/Uc,
where Uc is related to the average speed at which eddies are convected. The strong
peak at the convective wavenumber is obtained as expected. If a mode of vibration
has its wavenumbers close to kc or k0, Smn(k) is peaked about its wavenumbers and
will preferentially accept power from the flow for this mode of vibration. At low
Mach number, the convective wavenumber is too high to match wavenumbers of the
bending waves as shown in Fig. 4.7(a),(b). For higher Mach number flow, convective
wavenumbers in the flow tend to match wavenumbers of the bending waves as shown
in Fig. 4.7(c). In all cases, the Corcos model is higher than the so-called Modified
Corcos model from the low to intermediate wavenumber content in TBL wall pressures
except for high flow speeds and relative low frequencies.
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Figure 4.7: Coupling of flexural waves with TBL wall pressure fluctuations.
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4.3.3 Coupling between the structure and a plane wave

As previously, the coupling between bending waves and a plane wave is analyzed in
the wavenumber domain. The coherence function of an acoustic plane wave is defined
as

Γ(s1, s2, ω) = eik+
00ξz , (4.47)

where k+
00 is the acoustic wavenumber defined in Eq.(4.5). Thus, the associated 2D

Fourier transform leads to the following analytical expression

Φ̃pp(k, ω) = δ(ks)δ(kz − k+
00), (4.48)

where δ is the Dirac function. According to Eq.(4.45), wavenumber transforms of the
mode shapes are multiplied by the wavevector-frequency spectrum of a plane wave
defined in Eq.(4.48), so that the joint acceptance function Iac

mn,w writes formally

Iac
mn,w(ω) = |Smn(k+

00, 0)|2. (4.49)

This expression shows that the coupling of the structure with a plane wave can be
analyzed by looking at non zero values of the sensitivity function at wavenumbers k =
(k+

00, 0). A two-dimensional fast Fourier transform (FFT) needs to be performed for
estimating the modal sensitivity function. The duct (rectangular or circular sections)
is modelled in its unrolled form for the implementation of 2D FFT procedure. Note
that precautions must be taken for cyclic function with period 2π to get a formulation
valid between Fourier series and Fourier Transform. The modal sensitivity functions
Smn(k, ω) with its associated mode shapes are shown in Fig. 4.8 for the rectangular
case and Fig. 4.9 for the cylindrical case. It is shown that the sensitivity functions
have non-zero values at k = (k+

00, 0) with section modes type n = 1 or n = 5 for the
rectangular duct case and only for the section mode n = 0 for the cylindrical case (i.e.
only with breathing modes).
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(a)

(b)

Figure 4.8: (a) Structural modes shapes and (b) the associated wavenumber transform

(a)

(b)

Figure 4.9: (a) Structural modes shapes and (b) the associated wavenumber transform
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4.4 Validation for a simply supported rectangular
plate

A validation has been made with a simply supported plate excited by TBL, plane wave
and Diffuse Acoustic Field (DAF) excitations. The acoustic power is chosen in order
to have the acoustic plane wave energy |C+

00(ω)|2 equals to 1 Pa2. It corresponds to an
acoustic power of 52 dB (W = 1.8×10−7 W). This study case serves as a reference and
validates the calculation of Ih,ac

mn (ω) using both the analytical ‘s’ and the wavenumber
‘w’ approach. Note that the coherence function of a DAF excitation is not a separable
function in the axial and circumferential direction as it writes

Γ(s1, s2) = sin k0|s1 − s2|
k0|s1 − s2|

, (4.50)

where k0 = ω/c is the acoustic wavenumber. Thus, the joint acceptance is calculated
via a simply regular spatial discretization of the panel surface and Ih,ac

mn (ω) becomes:

IDAF
mn (ω) ≈

Np∑
i

Np∑
j

φmn(si)ΓDAF(si, sj, ω)φmn(sj) ∆2, (4.51)

where Np is the number of cells and ∆ = dsdz is the constant elementary surface. The
discretized grid is chosen to resolve both flexural waves in the plate and the excitation
field under the DAF. An exact solution of the joint acceptance function Ih

mn(ω) using
a Corcos coherence function can be found in chapter 15 of Nilsson textbook’s [163]
(see also Ref.[157] in the Appendix).

Fig. 4.10 shows the kinetic energy due to a TBL contribution (on the basis of Cor-
cos’s model), by using 144 modes for frequencies of resonance up to 7000 Hz. Good
agreements are obtained and this validation will serve as a reference for the duct.
Predicted kinetic energy due to different cross spectrm models with two different flow
speeds are compared in Fig. 4.11. Prediction were made using acoustic (plane wave in
flow direction and DAF) and TBL (Corcos and Modified Corcos) cross spectrum mod-
els. It shows that with equal energy the acoustic excitation clearly dominates. Similar
results can be found in [164, 165]. In grey line are plotted the aerodynamic coinci-
dence faero and the acoustic coincidence fac. Both DAF and Corcos models predict
similar response below the aerodynamic coincidence (phenomenon much more pro-
nounced with higher flow speed in Fig. 4.11(b)). Above the aerodynamic coincidence,
the global energy level due to the TBL excitation decreases rapidly whereas levels due
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Figure 4.10: Validation method for the formal calculation: comparison with the
wavenumber approach and Nilsson’s reference.

to the acoustic excitations are maintained up to the acoustic coincidence frequency.
This phenomena is well explained in the wavenumber domain (see Fig.3. in Ref.[109])
because the aerodynamic energy moves rapidly toward the high wavenumbers when
increasing frequency whereas the acoustic and flexural wavenumbers have the same
order of magnitude in a wide frequency range. At low mach number, the convection
velocity is much lower than the speed of sound and convective wavenumbers are too
high to match those of the vibrational modes. The original Corcos model is shown
to differ from the Modified one, especially after the aerodynamic coincidence. Above
this frequency, the response is clearly controlled by the low to mid wavenumber region
of the TBL excitation which differs by 10 to 20 dB between the two models.
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Figure 4.11: Effect of the acoustic and turbulent contributions on a simply supported
plate: DAF ( ), plane wave ( ), Corcos ( ) and Corcos Modified( ) at (a)
30 m/s and (b) 100 m/s
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4.5 Results

In the following, a reliable spectrum based on the scaling law introduced by Nelson
and Morphey is proposed in order to directly calculate the acoustic energy. The TBL
energy is calculated via the Goody model. Results obtained in Fig. 4.4 are used for
the calculation of the structural response according to Eq.(4.35) for the plane wave
and multimodal regime.

4.5.1 Vibration response due to TBL and acoustic duct modes

The kinetic energy of the duct for rectangular and circular cross-sections due to a TBL
and acoustic duct modes at various flow speeds are shown Fig. 4.12. The rectangular
case is shown in Fig. 4.12(a),(c) and the circular case see Fig. 4.12(b),(d) at 10 and 60
m/s respectively. Below the first duct frequency cut on fc, the plane wave contribution
clearly dominates for the rectangular duct whereas it is not as pronounced for the
cylindrical duct. As seen previously, acoustic plane waves couple only with section
modes type n = 1 or n = 5 for the rectangular duct case and only with breathing
modes clustered around the ring frequency for the cylindrical case (see Fig. 4.6).
Only one breathing mode type belongs to the frequency range [200 Hz - 5000 Hz]
which explains why the level due to the plane wave contribution is less pronounced
for circular duct. The TBL remains lower than the plane wave contribution. For the
two speed flows considered, the aerodynamic coincidences faero remain below 200 Hz.
Therefore, the structure accepts energy only from the low to intermediate wavenumber
content associated to the acoustic excitation. Therefore, the vibrational levels due to
the two TBL models differs by 15 dB since the corresponding levels in the low to
mid wavenumber region are different. Above, the first duct frequency cut on fc, high
order acoustic duct modes are coupled to the structure and the structure response is
no longer controlled by the plane wave excitation. As expected, the vibration level
is higher for high flow speed. The variation of the vibrational response with flow
speeds agrees with a velocity depence of U4

∞ for plane wave propagation and U6
∞ for

multi-modal propagation.
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(a) rectangular case: 10 m/s
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(b) circular case: 10 m/s
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(c) rectangular case: 60 m/s
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(d) circular case: 60 m/s

Figure 4.12: Kinetic energy for TBL and acoustic contributions: superposition of all
acoustic duct modes ( ), plane wave ( ), Corcos ( ) and Corcos Modified( ).

4.5.2 Modification of the circular duct modal density: in-
creasing r and decreasing h

The ring frequency is moved down by increasing r and the modal content is increased
by decreasing the shell thickness h. Results are shown in Fig. 4.13. Trends are similar
to those observed previously except when the thickness is divided by a factor 10.
Below the first duct frequency cut on fc, the vibration is controlled by the TBL alone,
especially at high speed flows as shown in Fig. 4.13(d). This behavior seems to answer
the question why TBL is often considered alone for pipe flow with no discontinuities as
in Durant’s paper [12]. Breathing modes are clustered around the ring frequency and
the vibration level due to a plane wave becomes important when the ring frequency
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(b) h/10 at 10 m/s
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(c) 4r at 60 m/s
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(d) h/10 at 60 m/s

Figure 4.13: Kinetic energy for TBL and acoustic contributions for the circular duct:
superposition of all acoustic duct modes ( ), plane wave ( ), Corcos ( ) and
Corcos Modified( ). Increasing r by a factor 4 and decreasing h by a factor 10.
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belongs to the frequency range of interest. This is confirmed in Fig. 4.13(a),(c) where
several breathing modes are excited by the plane wave and clustered around the ring
frequency.

4.6 Conclusion

The numerical prediction of pipe flow noise and vibration was investigated for two ge-
ometries: rectangular and cylindrical sections. The pressure loading on the structure
is expressed in terms of CSD accounting for both hydrodynamic and acoustic contri-
butions. These two contributions are expressed using (i) the Goody’s model and the
modified Corcos coherence function for the hydrodynamic excitation and (ii) the CSD
of propagating acoustic duct modes. The acoustic energy is calculated according to
scaling law introduced by Nelson and Morphey and the only knowledge of the con-
striction dimensions. The vibrational levels have been investigated for a straight duct
with a flow constriction (i.e. a diaphragm) inserted upstream based on a ‘blocked’
approach using analytical modal FRFs. The analysis of the joint acceptance functions
to study the transverse coupling between a section mode type n and the plane wave
mode has shown that there is only a coupling with section modes type n = 1 or n = 5
for the rectangular duct case and only with section mode n = 0 for the cylindrical case
(i.e. breathing modes). These observations can serve to explain why in a frequency
range below the first duct frequency cut on fc, the circular duct does not respond as
strongly as for the rectangular case. Especially, when the modal behaviour is modified
by moving the ring frequency in the low frequencies or decreasing stiffness. Above the
first duct frequency cut on fc, high order acoustic duct modes must be considered in
the analysis.
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Chapter 5

FLINOVIA paper

This chapter corresponds to the paper version accepted in the research book ‘flow in-
duced noise and vibration issues and aspects’ (FLINOVIA). This is a follow-up to
the second international workshop on flow induced noise and vibration organized in
Penn State, USA, in April 2016. This chapter presents the structural response of
a rectangular duct due to fluctuating wall pressure induced by turbulent flows. The
two scenarios with or without singularity are investigated and confronted to measure-
ments. In the vicinity of an obstacle placed in the duct, the ‘near-field’ is associated
with strongly turbulent flow. Therefore, the wall pressure fluctuations (including its
acoustic part) can no more be analytically described and full computational aeroacous-
tic simulations are required. The CPSD is calculated using CFD and aeroacoustic
analogies to tackle complex and no homogeneous flow in the vicinity of a diaphragm.
This hybrid approach allows to separate the acoustic and hydrodynamic contributions
and study their influence separately on the structural response.

ERRATUM! the considered centerline line velocity without obstacle is U0 = 20 m/s
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hydrodynamic contributions to the vibrational
response of an air-conveying rectangular duct
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e-mail: florian.hugues@utc.fr, emmanuel.perrey-debain@utc.fr,

nicolas.dauchez@utc.fr, nicolas.papaxanthos@utc.fr

Abstract. This paper focuses on the vibratory response of a rectangu-
lar duct of finite length excited by an internal turbulent flow. The wall
pressure distribution is decomposed into an hydrodynamic and acoustic
contribution. Two configurations are investigated: (i) a straight duct with
no singularity, duct acoustic modes are excited by the TBL and (ii) a
straight duct with a diaphragm inserted upstream generating a localized
acoustic source. The acoustic contribution is either measured via cross-
spectra based methods or calculated using Computational Fluid Dynam-
ics and aeroacoustic analogies. Semi-analytical predictions are compared
with experimental results. It is concluded that in both scenarios, the
acoustic contribution is largely dominant.

Keywords: internal turbulent flow, vibroacoustic response, numerical
methods

1 Introduction and problem statement

Gas transport ductwork in industrial plants or air conditioning networks can be
subject to vibrations induced by the internal flow. Although most of the fluid
conveying ducts are cylindrical, specific applications require the use of rectangu-
lar ducts. This is the case of ventilation and air conditioning systems in buildings
for space saving, or in industrial applications requiring large duct sections for
gas transportation. For instance, gas treatment centers used in the aluminum
industry require such rectangular ducts due to manufacturing constraint. These
ducts which convey gases at low speed flow condition, can be the subject to high
levels of vibration induced by the flow acting on the internal faces of the duct.
The prediction of such flow-induced vibrations is therefore essential in order to
optimize the geometry and characteristics of the duct according to the vibration
levels and mechanical fatigue objectives. While many studies have been pub-
lished on the vibrations of cylindrical pipes excited by fluid flow, much less is
known about rectangularly-shaped ducts.
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2 Florian Hugues et al.

The problem statement is showed Fig. 1. In a fully developed turbulent
straight pipe flow with no discontinuity or pipe fittings, the vibration of the
pipe wall are due to random fluctuating pressures along the inside wall of the
pipe. In general, the hydrodynamic turbulent boundary layer (TBL) excitation
is considered as responsible for the vibrations of the structure [1]. As a ran-
dom stochastic source, the wall pressure fluctuation is generally defined via its
cross-spectral density (CSD). Various semi-empirical models have been devel-
oped since the 60s and we can cite the well-known Corcos model [2] which is
probably the most popular. However, the acoustical contribution produced by
the turbulent flow is less understood and little data is available in the literature.
Boundary layer pressure fluctuations are distributed over the entire surface of
the duct and acoustic waves within the TBL flow excite acoustic duct modes,
which in turn excite the duct walls [3]. In the present work, it is shown that the
acoustic field is well described in terms of duct modes that corresponds to the
primary excitation source of the structure.

Fig. 1. Problem statement: two scenarios are investigated. (a) There is no singularity
and the vibrating structure is subject to both TBL excitation and acoustic waves. (b)
There is a flow constriction which generates flow disturbances in the vicinity of the
singularity as well as acoustic waves radiating from the obstacle.

The situation is quite different with an internal flow disturbance in the duct
due to a singularity such as a bend, a junction or a flow constriction as shown
Fig. 1(b). The flow/obstacle interaction generates internal sound waves which
propagate through the piping system. The origin of the sound is relatively well
identified and localised. In many instances, the broadband nature of the source
generation correponds to a dipole source due to the drag force fluctuations on
the obstacle [4]. The additional propagating sound waves are then superimposed
on the hydrodynamic TBL fluctuations. Furthermore, these sound sources are
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Acoustic and hydrodynamic contributions in a rectangular duct 3

likely to dominate above a certain distance from the discontinuity. Reference [5]
offers an overview of the effects of flow disturbances on pipeline noise.

The purpose of this paper is to quantify the TBL and acoustic contributions
to rectangular duct vibrations. The TBL excitation comprises an aerodynamic
part based on the semi-empirical model of Corcos and an acoustical contribution
described in terms of duct acoustic modes.The quantities of interest are the point
auto-spectrum of the TBL and the amplitudes of acoustic waves. They are either
measured or computed using aeroacoustics simulations.

The paper is organized as follows: the theoretical ingredients, including the
vibration model for the structure as well as the hydrodynamic and acoustic exci-
tations, are briefly presented in Section 2. The measurement and the numerical
computation of both components of the pressure is presented in Sections 3 and
4. In Section 5, experimental results are compared with numerical predictions.

2 Modelling the vibrational response of a rectangular
duct due to turbulent and acoustic excitation

The vibrational response is given for a 0.2×0.1×0.5 m3 duct made of 3 mm
steel plates excited by 20 m/s or 30 m/s flows as shown Fig. 2. To facilitate the
geometrical coordinate system, curvilinear abscissa s is used and the coordinate
system becomes s = (s, z). The general bending solution wi for each plate i =
1 . . . 4 can be expressed as a sum of shape functions φimn as

φimn(s, z) =
[
Aim sin(α2s) +Bim cos(α2s) + Cim sinh(α1s) +Di

m cosh(α1s)
]

︸ ︷︷ ︸
ϕi

m(s)

sin

(
nπz

Lz

)
,

(1)

with α1 =

√
β2 + (nπ/Lz)

2
, α2 =

√
β2 − (nπ/Lz)

2
and β4 = ω2ρh/D. D =

Eh3/12(1 − ν2) is the bending stiffness of the plate, h the thickness and ω the
angular frequency. The shape of the plate i along the s direction is defined
as ϕim(s). For each mode n, the value of coefficients Am, Bm, Cm and Dm is
determined by writing the zero displacement conditions along the coupled edges
and the continuity of the rotation and bending momentum. The reader is referred
to [6] for more details.

Fig. 3 shows global mode shapes computed analytically: the first index stands
for the type of section mode and the second index corresponds to the number of
half-periods along the z axis.

The frequency response function (FRF) H defining the steady state harmonic
response of the duct at point r1 excited by a point force located at s1 writes

H(r1, s1, ω) =
∑

m,n

φmn(r1)φmn(s1)

MmnZmn
, (2)

where S = 2Lz(Lx + Ly) is the duct surface and for a given mode mn, Mmn =∫
S

ρhφ2mn ds is the generalized mass. The dynamic mechanical impedance is given
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x

Fig. 2. The duct model

Fig. 3. Section mode shapes ϕm (n = 1) and 3D illustration of some global modes of
the duct φmn.

by

Zmn(ω) = ω2
mn − ω2 + 2iξmnωmnω, (3)

with ωmn and ξmn the natural frequency and modal damping of mode (m,n).
In this study, FRF are computed analytically (model in vacuum). The natu-
ral frequency and modal damping are reassessed from experimental data. The
calculation of the vibrational response of the structure is based on random anal-
ysis techniques that takes into account the stochastic turbulent wall pressure
distribution. The quantity of interest is the cross power spectral density of the
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Acoustic and hydrodynamic contributions in a rectangular duct 5

resulting vibration between points r1 and r2 located on the duct defined as

Sww(r1, r2, ω) =

∫

S

∫

S

H∗(r1, s1, ω)Spp(s1, s2, ω)H(r2, s2, ω) ds1 ds2, (4)

where H corresponds to the frequency response function (FRF) of the structure
defined in Eq.(2) and Spp the cross-spectral density (CSD) of the stochastic
distributed excitation. This formula can be simplified by considering the modal
decomposition response of the plate and by neglecting cross terms. The auto-
spectrum is expressed when r = r1 = r2 as

Sww(r, ω) =
∑

mn

(
φmn(r)

Mmn|Zmn|

)2

×

Imn(ω)︷ ︸︸ ︷∫

S

∫

S

φmn(s1)Spp(s1, s2, ω)φmn(s2) ds1 ds2 .

(5)
Finally, the quadratic acceleration of the duct:

Suu(ω) =
ω4

S

∫

S

Sww(r, ω) dr, (6)

allows us to quantify the global response of the structure.

The CSD of the wall pressure distribution can be decomposed into an hydro-
dynamic and acoustic contribution as follows

Spp(s1, s2, ω) = Shpp(s1, s2, ω) + Sacpp(s1, s2, ω). (7)

The hydrodynamic contribution can be represented by the Corcos model. Be-
cause the Corcos model is known to overestimate the levels in the subconvective
domain, a modified Corcos model proposed in [7] (see also [8]), which better
estimates low-wavenumber excitation is also considered in this work so we take

Shpp(s1, s2, ω) = Φpp(ω)(1 + αγzω|ξz|/Uc)e−γsω|ξs|/Uce−γzω|ξz|/Uce−iωξz/Uc . (8)

If α = 0, it corresponds to the original Corcos model and if α = 1 to the
modified Corcos. The coefficient Uc defines the TBL velocity and is expressed
as a fraction of the flow speed at the center of the duct U0 and this is set to
Uc/U0 = 0.85. Corcos parameters γz and γs are related to the axial and lateral
correlation lengths. The Corcos model or the modified one may be easily trans-
formed into wavenumber space and are compared to the wavenumber transform
of a plate bending mode for the simply supported case (at modal wavenumber
kn = nπ/Lz, where n is the number of half-periods along the z axis and Lz
the plate dimension). This is shown Fig. 4 following a similar analysis presented
in [9]. In the present study the frequency of interest ranges from 200 Hz to 1300
Hz and the flow speed is relatively low (30 m/s max) so the convective wavenum-
ber remains always much higher than structural wavenumbers (note that this is
not necessarily true for acoustic wavenumbers).
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Fig. 4. Coupling of TBL wall pressure cross spectrum models and the wavenumber
transform of a flexural plate mode (wavenumber sensitivity function) (a) at 200 Hz (b)
1300 Hz.

The acoustic contribution is described as a series of propagating duct acoustic
mode. The contribution of the pqth acoustic mode on the cross power spectral
density is obtained in the manner of [10] as

Sacpp(s1, s2, ω) =
∑

pq

∣∣C±pq
∣∣2 ψpq(s1)ψpq(s2) exp

(
ik±pq(z1 − z2)

)
︸ ︷︷ ︸

Sac±
pq (s1,s2,ω)

, (9)

where C±pq stands for the amplitude of the downstream (+) and upstream (-)
propagating mode. Here acoustic modes are deliberately not normalized so the
quantity |C±pq|2 can be regarded as the auto-power spectrum for the acoustic
pressure on the duct wall. To simplify the analysis, the flow is assumed uni-
form and we neglect damping. The axial wavenumbers k±pq have the well-known
expression (here k = ω/c):

k±pq =

kM ±
√
k2 − (1−M2)

((
pπ
Lx

)2
+
(
qπ
Ly

)2)

1−M2
, (10)

where M is the Mach number. The condition for an acoustic mode to propagate
is that the wavenumber k±pq must be real. Otherwise the wave will decay expo-
nentially and is known as an evanescent wave. The frequency at which a mode
(p, q) begins to propagate is known as the cut-off frequency of the mode. Note
that the evanescent waves are neglected in our model. In all cases, the integration
of Eq. (4) is carried out analytically.
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Acoustic and hydrodynamic contributions in a rectangular duct 7

3 Experimental determination of hydrodynamic and
acoustic components

In this section, we present the experimental methods to determine the wall pres-
sure distribution Φpp(ω) and the acoustic modal amplitudes C±pq.

The experiments have been performed on a test bench, as shown in Fig. 5(a),
designed for the multimodal characterization of the acoustic properties of ob-
stacles in the presence of a low Mach number flow. The duct facility is a rigid
rectangular duct of 0.2 m x 0.1 m section with an anechoic termination at both
ends. It is equipped with a radial fan able to generate an air flow up to 30 m/s.
The tested part of the duct is made of four 0.5 m long welded steel plates of
3 mm thickness and is inserted in the test section. The test bench is instrumented

(a)

(b)

Fig. 5. Overview of the experimental set-up.

with 8 sets of 12 microphones mounted on the wall of the duct. Each set, named
a4,a3,a2,a1 located upstream and b1,b2,b3,b6 located downstream the test
section (as indicated in Fig. 5(b)) corresponds to a given position (in z) along the
duct axis. The duct response is measured using two accelerometers, one of them
being used as a reference, the other one being successively positioned on the
measurement grid in order to get the average quadratic acceleration of the duct.
The measurement grid is defined on the duct with a regular interval of 2.5 cm
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along the cross-flow direction and 5 cm along the flow direction. The point pres-
sure auto-spectrum Φpp(ω) is determined experimentally using upstream as well
as downstream microphones sections, a3,a2,a1 and b1,b2,b3 respectively.

Two methods are used for determining the acoustic modal amplitude
∣∣C±pq

∣∣
and are presented below.

3.1 Cross-spectra based method : case with no singularity

The duct is straight with no singularity, so that propagating acoustic modes are
generated by the TBL itself all along the duct. The estimation of the acoustic
component is performed by minimizing an overdetermined system (Eq. (11)).
The input data is a set of cross-spectra between microphones at the four sec-
tions a1,b3,a4,b6 as illustrated in Fig. 5(b). Distances between microphones
are much larger than the correlation lengths of the hydrodynamic wall pres-
sure fluctuations so that only the acoustic part of the pressure is measured and
estimated as follows

S∆zpp (si, sj , ω) =
∣∣C+

00

∣∣2 ψ00(si)ψ00(sj) exp
[
ik+00∆z

]

+
∣∣C+

10

∣∣2 ψ10(si)ψ10(sj) exp
[
ik+10∆z

]
+ ... (11)

Results using 600 averages are shown in Fig. 6(a). The acoustic contribution is
found to be 10 dB up to 20 dB lower than the turbulent wall pressure fluctua-
tions. Note that upstream and downstream propagating modes are not distin-
guished as they have similar amplitudes.

3.2 2N-port method : case with a flow constriction

In the vicinity of a pipeline singularity such as a flow constriction, acoustic
waves are generated due to the drag force fluctuations. In this context, acous-
tic measurements can be performed on the basis of the so-called Multiport
method [11, 12]. The acoustic scattering matrix of the obstructed duct and the
impedance of the surrounding environment are first identified by measuring the
acoustic response to given external excitations. Then, the aeroacoustic noise pro-
duced by the interaction of the obstacle and the flow is extracted. The multiport
formulation can be written in a compact form

pout = Spin + ps (12)

where S is the scattering matrix, vector pout stands for the acoustic waves radi-
ating away and ps is the source vector containing the modal coefficients.

The quantity of interest is the source cross-spectrum matrix defined as

Gs = E[ps(ps)c] (13)

where the superscript c denotes transpose and complex conjugate. We obtain a
[2N × 2N ] matrix, where N is the number of acoustic duct modes considered,
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and the diagonal terms 〈
∣∣C−00

∣∣2 ...
∣∣C−NN

∣∣2 ,
∣∣C+

00

∣∣2 ...
∣∣C+
NN

∣∣2〉 represent the modal
auto-spectra respectively at the section a1(−) and b1(+).

Results are shown in Fig. 6(b). We notice the emergence of the first tranverse
acoustic mode above the cut-off frequency at 853 Hz (below that frequency, only
the plane mode propagates).
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Fig. 6. Estimation of the propagating duct acoustic modes. (a) In the case of a straight
duct with no singularity, the flow speed is 30 m/s. (b) With a flow constriction, the
flow speed is 6.5 m/s (measured upstream the constriction).

4 Numerical determination of the hydrodynamic and
acoustic components

In this section, we present a method to determine the two components, on the
basis of a Computational Fluid Dynamics approach coupled with an aeroacoustic
analogy.

At low Mach number and for sufficiently high Reynolds numbers, the Large
Eddy Simulation (LES) of an unsteady incompressible flow coupled with an
acoustic analogy is classicaly used as it should deliver reasonably accurate pre-
dictions for both the hydrodynamic and acoustic pressure [13]. Let us recall
that the hydrodynamic pressure ph which is provided by the incompressible-flow
simulation (Star-CCM+ is used here) must be solution to the Poisson’s equation:

∆ph = q (14)

where q is the source term containing mean and fluctuating velocity terms (all
physical quantities are interpreted in the frequency domain). Now, in order to
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take into account compressibility effects, Lighthill’s aeroacoustic analogy leads
to a somewhat similar equation of the form

(∆+ k2)p = q (15)

where k is the acoustic wavenumber and p can now be regarded as the true
pressure. By combining Eq. (14) and Eq. (15) the acoustic pressure defined as
the difference pa = p − ph can be shown to be the solution to the following
boundary integral equation [13]

pa =

∫

∂V

(
ph
∂ (G−G0)

∂n
+ pa

∂G

∂n

)
dS +

∫

S±

(
G0

∂ph
∂n
−GT (ph)

)
dS (16)

where the volume integral over the CFD domain, call it V , has been neglected [13].
G0 is the static Green’s function, G is the classical free-field Green’s function
and T (ph) is the operator associated with the anechoic condition at both ends
of the duct (the sign − and + corresponds to left and right end respectively).

Fig. 7. Computed pressure distribution in the duct.

The resolution of Eq. (16) requires the storage of the incompressible-flow
pressure ph on the surface of the domain and its derivative ∂nph on the inlet
and outlet. The mesh used for the CFD comprises 9 million cells. The mesh is
built using 4 resolution levels ranging from 0.5 mm to 4 mm. The smallest cells
are located in the vicinity of the diaphragm edges in order to capture correctly
the physics of the shear layers. A RANS k-ε simulation is first performed to give
an initial condition for the incompressible large eddy simulation. Inlet boundary
conditions, velocity components and turbulent kinetic energy, are prescribed
using realistic data provided by PIV measurement. The measured mass flow
rate is 565 kg/h which corresponds to an average velocity over the duct section
of 6.5 m/s. The LES is carried out with a simulated physical time of 0.32 s and
a time step δt = 10−5s. Due to the difference in size of acoustic and turbulent
wavelengths, the requirement in terms of grid resolution is less severe for the
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Acoustic and hydrodynamic contributions in a rectangular duct 11

acoustic computation than for the CFD. The integral equation Eq. (16) is solved
by collocation on a coarse mesh which is composed of around 8500 triangular
surface cells of maximum dimension 2 cm, which corresponds to λ/8 at 2125
Hz. The temporal boundary data ph and ∂nph are summed on the coarse mesh
centroids using a conservative mapping from Star-CCM+. The Fourier analysis
and the resolution of Eq. (16) is carried out on Matlab. The physical time of
0.32 s is divided into eight segments of 0.05 s each with 1/4 overlapping. A
window function is applied on each segment. A typical results is shown in Fig. 7
where small scale wall hydrodynamic pressure fluctuations and long wavelength
acoustic waves can be identified.

In order to compute the structural loads, two quantities of interest are con-
sidered: (i) the CSD of the wall pressure distribution, either of hydrodynamic or
acoustic nature

Sh,CFD
pp (s1, s2, ω) = E [php

∗
h] and Sac,CFD

pp (s1, s2, ω) = E [pap
∗
a] . (17)

and (ii) the duct acoustic modes radiating away from the obstacle, defined as

C+
pq =

∫

S+

paψpqdS. (18)

Fig. 8 shows reasonably good agreement between measured data using the 2N -
port method and numerical predictions.
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the obstacle.
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Fig. 9. Quadratic acceleration for each response contribution at 30 m/s.

5 Results and discussion

5.1 Straight duct with no obstacle

The global response of the duct, including both the aerodynamic and acoustic
contributions, can now be estimated via

Suu = Shuu + Sacuu (19)

where the hydrodynamic component is calculated via Corcos model. Here, Corcos
coefficients are set to γs = 1 and γz = 1/8. Fig. 9 shows the quadratic accelera-
tion due to each contribution, by using up to 20 structural modes. Note that as
opposed to the modified Corcos model, the original Corcos model is known to
overestimate low-wavenumber TBL loading showing 10-15 dB differences. Sim-
ilar results can be found in [14]. In both cases, however, the hydrodynamic
contribution remains marginal and the acoustic excitation clearly dominates.

Note that plane wave mode can only be coupled to the structural modes with
section mode m = 1 or m = 5 whereas the first transverse acoustic mode can
only be coupled to the section mode m = 3. Finally, reasonably good agreements
with experimental results are found once all contributions are summed up.

5.2 Straight duct with a flow constriction

5.2.1 Direct approach The vibrating structure is situated at L = 40 cm
downstream from the discontinuity. The vibrational response is estimated using
a direct approach based on a regular discretization of the duct surface with
triangular cells of average dimension of 2 cm. The computation of the quantity
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Imn(ω) defined in Eq. (5) is estimated as follows

Imn(ω) ≈
Np∑

i

Np∑

j

φmn(si)S
h/ac,CFD
pp (si, sj , ω)φmn(sj)∆i∆j (20)

where Np is the number of cells and ∆i is the elementary surface of the trian-
gular cells. Predicted quadratic acceleration is compared to measured data in

Fig. 10(a). The CSD matrix S
h/ac,CFD
pp is computed using either the hydrody-

namic pressure ph provided by LES or the acoustic pressure pa computed with
the acoustic analogy. Once again the acoustic contribution clearly dominates
and the overall energy is respected between predicted and measured vibrations
using the acoustic loads alone. Note that calculations were performed using a
frequency step ∆f = 20 Hz corresponding to about 0.3 s of CFD simulated
physical time.
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Fig. 10. Quadratic acceleration using (a) the direct approach and (b) the modal ap-
proach.

5.2.2 Modal approach Since the acoustic part is dominant, it is fair to
assume that only acoustic modes propagating downstream are considered as the
primary source of excitation. In this case, we have simply

Imn(ω) =
∣∣C+
pq

∣∣2
CFD

j2±mnpq(ω) (21)

where j2±mnpq(ω) is the joint acceptance function describing the coupling between
a structural mode (m,n) and a duct acoustic mode (p, q). Note that it is com-
puted analytically. The modal approach permits to save computation time as
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the storage of the CSD matrix requires high memory capacity. Fig. 10(b) shows
the quadratic acceleration due to each contribution and good agreements can be

observed. Here, a linear interpolation (in frequency) is applied to
∣∣C+

00

∣∣2
CFD

and∣∣C+
10

∣∣2
CFD

coefficients. This allows to refine the frequency analysis so as peaks at
the resonance frequencies of the structure are better predicted.

6 Conclusion

The vibrational response of a rectangular duct of finite length excited by an
internal turbulent flow was investigated both numerically and experimentally.
The pressure loading on the structure expressed in terms of CSD accounts for
both hydrodynamic and acoustic contributions. A CFD analysis coupled with
an acoustic analogy is used to compute these two contributions and assess their
relative influence on the vibrational response. Amplitudes of acoustic waves are
measured using either a cross-spectra based method or the 2N -port method. The
vibrational levels have been investigated for two scenarios (i) a straight duct with
no obstacle and (ii) with a flow constriction (i.e. a diaphragm) inserted upstream.
In both cases, the acoustic pressure field has been shown to have a great impact
on the vibrational response. Measured vibrational levels are found to be in good
agreement with our numerical simulations.
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Additional results

In this section complementary information to the published work presented in this
chapter are shown. The computed sound power level Lw and acoustic duct modes
amplitudes

∣∣∣C+
pq(ω)

∣∣∣2 using the Kårekull model (presented in Chapter 2 and 4) are
compared to the published results of the Flinovia paper.

Fig. 5.1(a) shows the computed and measured sound power level Lw due to a
diaphragm inserted in the duct at 6.5 m/s. It is reminded that two regimes are
dissociated in the Kårekull model: one corresponds to a plane wave propagation
until the first duct frequency cut on (continuous line) and the other is associated to
high order acoustic modes propagating in the duct (dashed line). The global level is
respected between the measurement and the computed power level using (i) CFD and
aeroacoustic analogy and (ii) the Kårekull model. Some discrepancies are observed
near the duct frequency cut on. This can be reduced using a longer CFD calculation
time to achieve a converged spectrum. Note that the computed power obtained from
CFD is taken from only the outlet surface of the duct. It is reminded that additional
information about the CFD procedure and the adopted aeroacoustic analogy can be
found in [166]. Fig. 5.1(b) shows the corresponding acoustic duct modes amplitudes
for the plane wave and the first transverse mode. The amplitudes are obtained using
Eq.(4.13) of Chapter 4. Good agreements between computed and measured data are
observed.

Fig. 5.2 shows additional measured quadratic acceleration levels at different flow
speeds. The measured mass flow rate is 565, 648, and 734 kg/h which corresponds
to an average velocity over the duct section of 6.5, 7.5 and 8.5 m/s respectively.
Two cases are distinguished: Fig. 5.2(a) shows the quadratic acceleration level of the
vibrating structure situated at L = 10 cm and (b) at L = 40 cm downstream from
the diaphragm. For the case L = 40 cm, the global measured quadratic acceleration
level is around 3 dB higher than the case L = 10 cm. Some shifts can be observed
regarding the damped resonant frequencies. It is likely due to disassembling and
reassembling the test section between measurement periods which introduced slight
structural differences. However, the effect of the flow can be observed between 400
and 950 Hz regarding the peak amplitudes and the associated damping.
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Figure 5.1: Comparison of the Kårekull model to the published results of the Flinovia
paper. (a) Kårekull sound power prediction for the plane wave ( ) and multimodal
propagation ( ). (b) Measured acoustic duct mode amplitudes compared to predic-
tions.

(a) (b)

Figure 5.2: Additional measured quadratic accelerations of the vibrating structure
situated at: (a) L = 10 cm (b) L = 40 cm.



Conclusion and perspectives

As stated in the introduction, the purpose of this research is to develop a framework
for studying and modelling pipe flow noise and vibration which links CFD, analyt-
ical and empirical models to efficient random analysis techniques. The pipe rig at
the Roberval research laboratory was used to perform aero-acoustic test campaign
through 2 scenarios: (i) a straight duct with no singularity and (ii) a straight duct
with a diaphragm inserted upstream generating a localized acoustic source. The
relative contributions of turbulent and acoustic wall pressure fluctuations has been
investigated through cross-spectra based measurement methods. The collected data
was used as a basis for discussing and suggesting improvements to existing CPSD
empirical models in a context of internal flow with or not disturbances. Analytical
models of simply supported ducts with circular and rectangular cross-sections have
been developed to analyze the coupling between the duct section and the excitation.
Finally, full and hybrid numerical analysis have been performed and confronted with
measurements for the two scenarios.

Summary of results

The measurement campaign has allowed to estimate the acoustic and turbulent en-
ergy for the two scenarios at low Mach number flows. Although the pipe rig was
originally design for acoustic measurements, attempts were made to characterize the
wall pressure fluctuations beneath a turbulent boundary layer. The obtained over-
all dimensionless point spectrum is satisfactory in terms of shape and level, but the
adopted TBL parameters are less convincing. Particular attention has to be taken on
the entrance region effect and the position of the vibrating surface under study. In
our case, the ratio x/Dh is too small due to facility integration issue. In addition,
uncertainties remain on the nature of a TBL in ‘complex’ ducts here of rectangular
cross-section. It is understood to a much lesser extent compared to canonical flows in
plane channels and circular pipes, particularly with respect to turbulence modeling
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close to the wall and corner regions. It is also difficult to create a piping system with
perfectly flush joints with an interior surface uniformly smooth. These effects may
alter the TBL wall pressure spectrum. Despite these difficulties, the acoustic contri-
bution has been well extracted from the turbulent flow for the case with a singularity
and compared successfully to a universal spectrum obtained from the Nelson & Morfey
scaling law. Multi-modal decomposition has been performed to measure duct acous-
tic mode amplitudes. It has been confronted successfully to CFD predictions using
aeroacoustic analogies. For the case without obstacle, the measured acoustic ampli-
tudes was used to predict the vibrational level of a rectangular duct. Good agreement
has been found suggesting that the acoustic contribution was responsible of the duct
vibration. This key result has raised our interest to complete the study for cylindrical
cross section since previous works has shown different conclusions, suggesting that the
TBL alone was responsible of the duct response.

Appropriate duct structural models have been proposed to compute the duct vibra-
tion. Due to the high number of discretization points required to solve both flexural
and turbulent wavelengths, analytical modal FRFs for simply supported geometry
have been chosen to obtain reasonable computation time. Experimental modal analy-
sis of a finite rectangular duct was confronted to an analytical model of a rectangular
duct. The analytical mode shapes have shown good correlations suggesting that sim-
ple analytical modal FRFs for simply supported geometry can be used as a guide to
tackle more complex geometry with complex BCs since it follows similar trends in
terms of modal pattern and energy. The main sources of uncertainties in modal pa-
rameters is likely due to disassembling and reassembling the test apparatus between
measurement periods which introduced slight structural differences rather than the
effect of the flow. The effects of the boundary conditions and acoustic radiation have
been studied using either a commercial vibro-acoustic FEM solver or from measure-
ments performed in a vacuo chamber. This investigation has ensured that the weak
coupling assumption is reasonable for air fluid and that internal acoustic radiation
could be neglected. Simple analytical modal FRFs for simply supported geometry
have also been adopted in order to facilitate numerical treatments for the calculation
of the coupling between the turbulent flow and the structure.

One of the originality of this PhD is to write the forcing function on the basis of a
sum of an hydrodynamic contribution provided by the Corcos’s model and an acoustic
part given by the coherence function of high order modes in the spirit of Norton’s
work. For the case of flow constriction, few research was carried out for considering
high order acoustic modes in the duct structural response along with the contribution
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of the hydrodynamic contribution. In this PhD, a distinction is made between the
‘near-field’ and the ‘far-field’ of the studied obstacle. Despite some uncertainties
about the relative level of the TBL point spectrum in the undisturbed mean flow
zone, fully developed TBL point spectra are considered with Corcos type coherence
functions. Numerical prediction of pipe flow noise and vibration was investigated for
two cross-sections: rectangular and circular. The acoustic energy has been calculated
according to scaling laws providing realistic acoustic duct modes amplitudes based
on experimental results. The spatial coupling has been investigated between the
section mode shapes and the excitation through the analysis in the wavenumber space.
It has suggested the use of a modified version of the original Corcos model since
the latter overestimates the levels in the subconvective domain which is the zone
where the duct mostly accepts the flow energy for our frequency range of interest
and flow speeds. An innovative approach to represent the duct response for each
contribution has been proposed. In particular, a multi modal representation have
shown the importance of considering high order acoustic modes in the prediction of
duct vibration. A parametric study has allowed to answer the question why TBL is
often considered alone for circular pipe flow with no discontinuities.

Finally in chapter 5, in the vicinity of an obstacle placed in the duct, the ‘near-field’
is associated with strongly turbulent flow. Therefore, the flow forcing function was
calculated using CFD and aeroacoustic analogies to tackle complex and no homoge-
neous flow in the vicinity of a diaphragm. An existing procedure based on Lighthill’s
aeroacoustic analogy has been used. The simulation method is a two-step approach
assuming the decoupling of noise generation and propagation. The commercial soft-
ware Star-CCM+ was used to calculate the hydrodynamic pressure associated to the
incompressible flow. Results have been post-processed in Matlab to compute the
acoustic pressure accounting for compressible effects. The CSD matrix associated to
CFD data has been mapped on a regular grid discretized with triangular cells and
assuming a constant variation on an elementary surface. Due to the difference in size
of acoustic and turbulent wavelengths, precautions had to be taken in terms of grid
resolution. It corresponds to the grid used for the aeroacoustic analogy computation.
It has been shown that the only mere of the acoustic contribution was sufficient to
compute the duct vibration in the vicinity of a diaphragm.
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Key conclusions

The specific goal of this thesis was to address the relative contributions of turbulent
and acoustic wall pressure fluctuations on the vibrational response of a finite duct at
low Mach number. Several key conclusions were made about the prediction of pipe
flow noise and vibration, and are summarized as follows:

1. The energy ratio between the acoustic and hydrodynamic parts decreases with
frequency from approximately 10 %(-10 dB) to 0.1 %(-30 dB) for the case with-
out obstacle (Chapter 2).

2. In a context of internal flow for rectangular cross-section, the wall pressure
fluctuation TBL levels are uncertain due to the lack of reliable model in the
subconvective region. But in any case, it was found to be negligible (Chapter
2).

3. The Lysak fit of the Chase-Howe model provides a satisfactory point spectrum
in term of shape and spectral levels. The downstream distance, ie, the distance
from the pipe entrance region to the fully developed region or the hydraulic
diameter can be used as characteristic lengths for the Reynold number definition
leading to uncertainties for the prediction of TBL parameters (Chapter 2 and
4).

4. It is difficult to determine the origin of the acoustic excitation for the case
without singularity. Due to the non local behavior of the acoustic source, it can
not be concluded that the acoustic energy is only produced by the TBL, but its
contribution can not be neglected in any case for the prediction of rectangular
duct vibration (Chapter 2 and 5).

5. The circular duct does not respond as strongly as for the rectangular case to
acoustic excitations. Multi modal acoustic propagation must be taken into ac-
count in the flow forcing function above the first duct frequency cut on (Chapter
4).

6. Analytical modal FRFs for simply supported geometry facilitate numerical treat-
ments for the calculation of the coupling between the turbulent flow and the
structure. The effects of BCs and acoustic radiation do not alter the vibration
level and the weak coupling assumption is reasonable for air fluid (Chapter 3).
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Recommendations for future work

Future experiments may be implemented to quantify the TBL parameters of a rect-
angular duct along with the acoustic and turbulent energy by using non intrusive
techniques such as Laser Doppler Velocimetry (LDV).

Additional work could be performed to develop scaling laws and scaled spectra
data base for different internal flow obstacles in order to be used in a more qualitative
manner to predict pipe vibration.

Furthermore, a non-modal approach such as a k-space method could be explored
for computing the pipe vibration response. More advanced modeling techniques such
as sub-structuring approaches which allow to couple semi-analytical models with finite
element method (FEM) could also be used to include flanges or other expansion joints.
This could be used as efficient tool to describe the dynamic behavior of waveguides
whose cross-section can be multi-physics and may eliminate bias caused by the ideal
simply-supported boundary conditions. For instance, the noise and vibration could
be mitigated by optimizing the distance between flanges or by including non-periodic
part with the aim of testing anti-vibration solutions.

Alternatively, a new analytical model of duct structure could be developed in-
cluding in-plane longitudinal and in-plane shear waves induced at corner junctions.
In the same way, the analytical shell model could be extended to higher order shear
deformation theories including multilayer skins to control the vibration using smart
materials. These considerations would lead to more advanced structural models which
could serve to indirectly measure the internal wall pressure fluctuations features in a
context of inverse problem.

Research could also be performed to evaluate the 2D wavenumber spectrum of
pressure fluctuations obtained from unsteady aeroacoustic computations. 2D spatial
Fourier Transform could be performed to obtain more accurate TBL features in the
transition zone which overlaps the pipe entrance region to the fully developed region.
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Appendix A

Spectral analysis

The Fourier Transform (FT) of a random signal p(s, t) at a given sensor position s is
defined as

p(s, f) =
∫ +∞

−∞
p(s, t)e−iωtdt, (A.1)

and
p(s, ω) = 1

2πp(s, f). (A.2)

The inverse Fourier Transform is defined as

p(s, t) =
∫ +∞

−∞
p(s, ω)eiωtdt =

∫ +∞

−∞
p(s, f)ei2πftdt. (A.3)

For finite random signals, the Fourier Transform writes

p(s, f, T ) =
∫ T

0
p(s, t)e−iωtdt. (A.4)

The Fourier Transform used in spectrum analysis instrumentation is referred to as
the discrete Fourier transform (DFT), for which the functions p(s, f) and p(s, t) are
sampled in both the time and frequency domains. Thus:

p(s, tk) =
N−1∑
n=0

p(s, fn)ei2πnk/N k = 0, 1, ..., (N − 1), (A.5)

p(s, fn) = 1
N

N−1∑
k=0

p(s, tk)e−i2πnk/N n = 0, 1, ..., (N − 1), (A.6)

where k and n represent discrete sample numbers in the time and frequency domain
respectively. The spacing between frequency components, in Hz, is dependent on the
time, T , to acquire the N samples of data in the time domain and is equal to fs/N
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where fs is the sampling frequency.

The signal energy associated to a random signal can be estimated by the two-sided
power spectral density (PSD) defined as:

Spp(s, f) = lim
T→∞

1
T
E [p(s, f, T )p∗(s, f, T )] = lim

T→∞

1
T
E
[
|p(s, f, T )|2

]
(A.7)

or

Spp(s, ω) = lim
T→∞

(2π)2

T
E [p(s, ω, T )p∗(s, ω, T )] = lim

T→∞

(2π)2

T
E
[
|p(s, ω, T )|2

]
, (A.8)

where ‘two-sided’ indicates that the spectrum extends to negative as well as positive
frequencies. In practice, the single-sided power spectrum, Gpp(s, f) (positive frequen-
cies only), is the one of interest and this is expressed in terms of the two-sided power
spectrum density Spp(s, f) as:

Gpp(s, f) = 2Spp(s, f) f > 0, (A.9)

Gpp(s, f) = Spp(s, 0) f = 0. (A.10)

In the same manner, the cross power spectral density (CPSD) between two sensors
located in s1 and s2 writes

Spp(s1, s2, ω) = lim
T→∞

(2π)2

T
E [p(s1, ω, T )p∗(s2, ω, T )] . (A.11)

For stationary random process and ergodic signals, the (cross) power spectral density
can be obtained by the Fourier Transform of the cross/auto correlation function via
the Wiener-Khinchin theorem and writes

Spp(s1, s2, ω) =
∫ +∞

−∞
Rpp(s1, s2, τ)e−iωτdτ. (A.12)

Thus, the cross correlation function between two signals p(s1, t) and p(s2, t) writes

Rpp(s1, s2, τ, t) = E [p(s1, t)p∗(s2, t+ τ)] = lim
T→∞

1
T

∫ T

0
p(s1, t)p∗(s2, t+ τ)dt. (A.13)

Assuming ‘ergodicity’, the cross correlation function is no longer time dependent and
writes

Rpp(s1, s2, τ, t) = Rpp(s1, s2, τ). (A.14)
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The spatial cross correlation function is defined by:

Rpp(s1, s2, ξ, t) = E [p(s1, t)p∗(s2 + ξ, t)] = lim
D→∞

1
D

∫
D
p(s1, t)p∗(s2 + ξ, t)dt, (A.15)

with D the spatial domain. For spatially homogeneous fields, the spatial cross correla-
tion function is only function of the separation vector ξ = s1−s2 such asRpp(s1, s2, ξ, t) =
Rpp(ξ, t). The root mean square (RMS) value of signal p(s, t) is given by

pRMS =
√
Rpp(s, τ = 0) =

√
E [p(s, t)p∗(s, t)] =

√
lim
T→∞

1
T

∫ T

0
|p(s, t)|2 dt. (A.16)

The mean square value of p can be given by the following relation

p2
RMS(s) =

∫ +∞

−∞
Spp(s, f)df =

∫ +∞

0
Gpp(s, f)df. (A.17)

In practice, acquisition systems estimate the single-sided auto power spectrumGpp(s, f)
by averaging a large number of squared spectrum, p(s, fn). It is divided by 2 or not
to account for conversion from an amplitude squared spectrum to an RMS squared
spectrum and an additional scaling SA to account for the application of a window-
ing function to the sampled data. Thus, an estimator for the single-sided autopower
spectrum, using M averages writes

Gpp(fn) = SA
M

M∑
i=1

pi(s, fn)p∗i (s, fn) = SA
M

M∑
i=1
|pi(s, fn)|2 n = 0, 1, ..., (N−1), (A.18)

where i is the windowed Direct Fourier Transform of a block i, according to Eq.(A.6),
with a certain segmentation with or without overlap processing. The larger the value
of M , the more closely will the estimate of Gpp(s, f) approach its true value. This
estimator has square units, that is, if voltage is measured, the units of the autopower
spectrum becomes [V2]. The power spectral density can be obtained from the auto
power spectrum by dividing the amplitudes of each frequency component by the fre-
quency spacing ∆f and units becomes [V2/Hz]. The Welch’s method represents the
most commonly used method of spectral analysis in instrumentation and computer
software, such as MATLAB’s ® pwelch function.



Appendix B

2N port method

Figure B.1: Sketch of the pipe rig.

Figure B.2: An illustration of the acoustic multi-port. The indices I and II denote
the upstream and downstream side of the multi-port.
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The multiport formulation in a duct, as in Fig. B.2, can be written in a compact
form

aout(ω) = S(ω)ain(ω) + as(ω), (B.1)

with

aout =
c−I
c+

II

 , ain =
c+

I

c−II

 and as =
c+

s

c−s

 . (B.2)

The scattering matrix S ∈ C[2N×2N ] contains the transmission and reflection of all
N modes at the inlet and the outlet. The complex vectors ain,out ∈ C[2N×1] are
respectively the incident and outgoing modal pressure amplitudes. The source vector
as ∈ C[2N×1] contains the sound waves which are generated by the element itself under
reflection-free conditions.

The pressure field in the duct satisfies the convected Helmholtz equation and is
written as a sum of propagating modes, for instance at point s1 = (s1, z1) = (x1, y1, z1)

pac(s1, ω) =
∑
pq

C+
pqψpq(s1)eik+

pqz1 +
∑
pq

C−pqψpq(s1)eik−pqz1 , (B.3)

where the normalized duct modes ψpq writes

ψpq(x, y) =
cos(pπx

Lx
) cos( qπy

Ly
)√

Npq

, (B.4)

where

Npq = LxLyΛpΛq with



Λp = 1 p = 0,

Λq = 1 q = 0,

Λp = 1/2 p > 0,

Λq = 1/2 q > 0.

(B.5)

and C±pq stands for amplitude of the downstream (+) and upstream (-) propagating
mode. The flow is assumed uniform and thermo-viscous attenuation is neglected so
that the axial wavenumbers k±pq writes

k±pq =
kM ±

√
k2 − (1−M2) k2

⊥

1−M2 , (B.6)

whereM is the Mach number and k⊥ is the transverse wavenumber. For a rectangular
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section, it writes

k2
⊥ =

(
pπx

Lx

)2
+
(
qπy

Ly

)2

. (B.7)

Considering l = 12 sensor points in a section, we can rewrite Eq.(B.3) in matrix
notation

pz(ω) = Ma±,zα (ω), (B.8)

with

a±,zα (ω) = c+,z
α + c−,zα =



C+
0 (ω)eik+

r z

...
C+
r (ω)eik+

r z

...
C+
N(ω)eik+

Nz


+



C−0 (ω)eik−r z

...
C−r (ω)eik−r z

...
C−N(ω)eik−Nz


, and α = I, II. (B.9)

Note that the index r = (p, q) and modes are sorted by ascending cut-on frequencies.
pz(ω) ∈ C[l×1] is the vector of sampled pressures at the section position z, a±,zα (ω) ∈
C[N×1] is the vector of modal pressure amplitudes in both directions and M ∈ C[l×N ]

is the modal matrix containing the N duct modes as following

M =
[
ψ1| ... |ψN

]
. (B.10)

A transfer function method is implemented so that the measured pressure signals
at l = 12 sensor points in a section contained in pz(ω) are expressed formally by:

p(sl, z, ω) = Hz
e/l(ω)e(ω), (B.11)

where e is the electrical signal (set to 1V) driving the external loudspeaker and Hz
e/l

the transfer function between the lth microphone at section located in z and the
electrical signal.

The transfer function between the reference electrical signal and the lth micro-
phone is measured according to the H1 estimator:

He/l = Ge,l/Ge,e in V/V, (B.12)

where Ge,e is the autospectrum of the electrical signal and Ge,i the cross-spectrum
between electrical signal and the lth microphone. This transfer function is corrected
with the transfer function obtained from the calibration procedure Href/i defined in
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Eq.(2.3) so that

p(sl, z, ω) =
Hz

e/l(ω)
Href/l

e(ω) (B.13)

is expressed in Pa/V with the electrical signal set to 1V.
The modal decomposition technique is performed by solving the over-determined

system Eq.(B.8), in our case, for 2 × 10 different load cases according to the 10
loudspeaker positions upstream and the 10 others downstream designed for the pipe
rig as shown Fig. B.1. Another aspect is the separation of propagating waves in the
downstream and upstream directions. The well-known two microphone decomposition
method fails when the intermediate distance between the microphones equals half an
acoustical wavelength [167]. A multiple microphones enables an extension of the two
microphone method into an over-determined system of equations written as

a±α (ω) = E(ω)c±α (ω), (B.14)

with a±α (ω) ∈ C[3N×1], c±α (ω) ∈ C[2N×1] defined as

a±α (ω) =


a±,z2α (ω)
a±,z3α (ω)
a±,z4α (ω)

 , c±α (ω) =
c+,z2

α

c−,z2α

 , (B.15)

and E(ω) ∈ C[3N×2N ] defined as

E(ω) =



IN IN
�

eik+
r d1

�


N×N


�

eik−r d1

�


N×N

�
eik+

r d2

�


N×N


�

eik−r d2

�


N×N


, (B.16)

where distances d1 = z3 − z2 and d2 = z4 − z2 correspond to the separation between
respectively sections [S2, S3] and [S3, S4]. Note that modal pressure amplitudes are
obtained here in z2 (case α = I) and can be transported to zi multiplying by a transfer
vector γ±,ziα ∈ C[2N×1] defined as

γ±,ziα =
eik+

r (zi−z2)

eik−r (zi−z2)

 . (B.17)



184 Chapter B – 2N port method

It would be the same thing for the case α = II, replacing respectively (z2,z3,z4,zi) by
(z5,z6,z7,zj). Once a again, the over-determined system Eq.(B.14) induced singular
solution following the relative positions of measurement sensors. Jang [168] found
that the equidistant positioning of sensors yields to the most accurate solution.

Finally, the modal pressure amplitudes ain and aout are obtained by solving both
Eq.(B.8) and Eq.(B.14) for the 2 × 10 load cases using transfer functions measured
according to Eq.(B.13) as input data. The scattering matrix can be extracted solving
Eq.(B.1) such as

S = aout(ω)
(
ain(ω)

)−1
, (B.18)

where (· · · )−1 denotes the pseudo-inverse, matrix ain and aout contain the decomposed
acoustic fields for each test case 1, 2, ..., 2N (denoted by the superscript), as columns
and writes

ain =
c+

I

c−II


1

c+
I

c−II


2

· · ·

c+
I

c−II


2N

 (B.19)

and

aout =
c−I

c+
II


1

c−I
c+

II


2

· · ·

c−I
c+

II


2N

 . (B.20)

In a second step, the source vector is solved using cross-spectrum densities between
the four different sections S1, S4, S7, S8. The matrix of the test rig terminations is
introduced as follows

R = ain
(
aout

)−1
=
Rzi 0

0 Rzj

 , (B.21)

and calculated using the same data to solve the scattering problem Eq.(B.18). The ex-
citations at the downstream side is used to determine the reflection of the termination
at the upstream side and vice versa. The matrix of the test rig termination couples
the incident and the outgoing modal pressure so that Eq.(B.1) can be rearranged to
solve for the modal source vector as following

as = [I2N − SR] aout. (B.22)
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The source vector expressed in zi and zj writes

as = [I2N − SR] M̃pzizj = C1pzizj , (B.23)

where M̃ ∈ C[2N×2l] decomposes the sound fields at both sides of the multi-port as
following

M̃ =
M [Rzi + IN ] 0

0 M
[
Rzj + IN

]−1

, (B.24)

(· · · )−1 denotes the pseudo-inverse and pzizj ∈ C
[2l×1] is the vector which contains the

pressure field at section zi and zj.

The algorithm is built to post-process cross-spectra between section S1, S4, S7,
S8. Hence, sections S4 and S7 are defined as inlet and outlet so that in all previous
equations, zi = z4 and zj = z7. In addition, Eq.(B.23) can be transported to the
furthest upstream and downstream sections S1 and S8 so that

as = C2pz1z8 , (B.25)

where C2 contains transport matrices. It writes

C2 = Γ−1
out [I2N − S′R′] M̃′. (B.26)

where ′ denotes the transformations for the S, R and M̃ matrices from z4, z1 to z1, z8

using diagonal transfer matrices Γin ∈ C[2N×2N ] and Γout ∈ C[2N×2N ] obtained from

Γ±(Lα) =


�

eik±r Lα

�


N×N

, (B.27)

such as

Γout =
 Γ−1

− (LI) 0
0 Γ+(LII)

 , Γin =
 Γ−1

+ (LI) 0
0 Γ−(LII)

 , (B.28)

and LI and LII ar the distances from the reference cross-sections z4, z1 to the new
cross-sections z1, z8 as shown Fig. B.2. The translation of matrices along the duct are
finally given by

S′ = ΓoutSΓ−1
in , (B.29)



186 Chapter B – 2N port method

R′ = ΓinRΓ−1
out =

Rz1 0
0 Rz8

 , (B.30)

M̃′ =
M [Rz1 + IN ] 0

0 M [Rz8 + IN ] .

−1

. (B.31)

The source vector as at sections S4 and S7 is expressed in term of a source cross-
spectrum matrix Gs ∈ C[2N×2N ] to get a formulation valid for random signals. One
finally get

Gs = E [as (as)c] , (B.32)

where the superscript c denotes transpose and complex conjugate. The diagonal terms
represent the modal auto-spectra respectively at the section S4 and S7:

Gs =



. . . E
[
C−pq(ω)C−rs(ω)∗

]
E
[∣∣∣C−pq(ω)

∣∣∣2]
. . .

Modal cross terms: E
[

c−,z4
s (c+,z7

s )∗
]

Modal cross terms: E
[

c+,z7
s (c−,z4

s )∗
]

. . . E
[
C+
pq(ω)C+

rs(ω)∗
]

E
[∣∣∣C+

pq(ω)
∣∣∣2]

. . .


.

One can rewrite Eq.(B.32) in terms of measurable quantities using equations Eq.(B.23)
and Eq.(B.25) such as

Gs = E
[(

C1pz4z7
) (

C2pz1z8
)c]

= C1E
[
pz4z7(pz1z8)c

]
Cc

2 = C1

 SL1
pp SL2

pp

SL3
pp SL4

pp

Cc
2, (B.33)

with SLkpp ∈ C[l×l] the CSD matrix associated to the kth cross spectrum. Note that
if the test rig terminations are supposed perfect (R is set to 0) then C1 = C2 = M̂
with

M̂ =
 M 0

0 M

−1

(B.34)

and (· · · )−1 denotes the pseudo-inverse. Then, the source cross-spectrum matrix
writes

Gs = E
[(

M̂pz4z7
) (

M̂pz1z8
)c]

. (B.35)



Appendix C

Simply supported solution for
different shell theories

This Appendix recalls the coefficients kij of the eigenproblem Eq.(3.27) for the Don-
nell–Mushtari, Goldenveizer–Novozhilov, Reissner-Naghdi-Berry and Flügge shell the-
ories. They writes

k11 = K

[(
mπ

Lz

)2
+ 1− ν

2

(
n

R

)2
]

+ D

R2
1− ν

2

(
n

R

)2

︸ ︷︷ ︸
Flügge

, (C.1)

k12 = K
1 + ν

2
mπ

Lz

n

R
, (C.2)

k13 = νK

R

mπ

L
+ D

R

[(
mπ

Lz

)3
− (1− ν)

2
mπ

Lz

(
n

R

)2
]

︸ ︷︷ ︸
Flügge

, (C.3)

k21 = k12, (C.4)

k22 = K

[
1− ν

2

(
mπ

Lz

)2
+
(
n

R

)2
]

+ D

R2
3 (1− ν)

2

(
mπ

Lz

)2

︸ ︷︷ ︸
Flügge

, (C.5)

k23 = −K n

R2 −D
n

R2
(3− ν)

2

(
mπ

Lz

)2

︸ ︷︷ ︸
Flügge

, (C.6)

k31 = νK

R

mπ

Lz
− D

R

[(
mπ

Lz

)3
− (1− ν)

2
mπ

Lz

(
n

R2

)]
︸ ︷︷ ︸

Flügge

, (C.7)
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k32 = −K n

R2 −D
n

R2
(3− ν)

2

(
mπ

Lz

)2

︸ ︷︷ ︸
Flügge

, (C.8)

k33 = K

R2 +D

[(
mπ

Lz

)2
+
(
n

R

)2
]2

+ D

R4

(
1− 2n2

)
︸ ︷︷ ︸

Flügge

. (C.9)

For the Goldenveizer–Novozhilov shell operator, coefficients yield:

k22 = K

[
1− ν

2

(
mπ

Lz

)2
+
(
n

R

)2
]

+ D

R2

[
2(1− ν)

(
mπ

Lz

)2
+
(
n

R

)2
]

︸ ︷︷ ︸
Goldenveizer

(C.10)

and
k23 = −K n

R2 −D
n

R2

[
(2− ν)

(
mπ

Lz

)2
+
(
n

R2

)2
]

︸ ︷︷ ︸
Goldenveizer

. (C.11)

For Reissner-Naghdi-Berry shell operator:

k22 = K

[
1− ν

2

(
mπ

Lz

)2
+
(
n

R

)2
]

+ D

R2

[
1− ν

2

(
mπ

Lz

)2
+
(
n

R

)2
]

︸ ︷︷ ︸
Reissner

(C.12)

and
k23 = −K n

R2 −D
n

R2

[(
mπ

Lz

)2
+
(
n

R2

)2
]

︸ ︷︷ ︸
Reissner

. (C.13)

The coefficients D and K write respectively:

D = Eh3

12(1− ν2) and K = Eh

1− ν2 . (C.14)

The coeficients a1, a1 and a1 from Eq.(3.25) writes

a1 = − 1
ρh

[k11 + k22 + k33] , (C.15)

a2 = 1
(ρh)2 [k11k22 + k11k33 + k22k33 − k12k21 − k13k31 − k23k32] , (C.16)
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a3 = 1
(ρh)3 [k11k23k32 + k12k21k33 + k12k23k31 + k13k21k32 + k13k22k31 − k11k22k33] .

(C.17)
The solutions of the bi-cubic equation are

ω2
1mn = −2

3

√
a2

1 − 3a2 cos α3 −
a1

3 , (C.18)

ω2
2mn = −2

3

√
a2

1 − 3a2 cos α + 2π
3 − a1

3 , (C.19)

ω2
3mn = −2

3

√
a2

1 − 3a2 cos α + 4π
3 − a1

3 , (C.20)

where

α = cos−1 27a3 + 2a3
1 − 9a1a2

2
√

(a2
1 − 3a2)3

. (C.21)

The eigenvector components are given by

Ai
Ci

= − k13 (ρhω2
imn − k22)− k12k23

(ρhω2
imn − k11) (ρhω2

imn − k22)− k2
12
, (C.22)

Bi

Ci
= − k23 (ρhω2

imn − k11)− k21k13

(ρhω2
imn − k11) (ρhω2

imn − k22)− k2
12
. (C.23)

The normalization factor Nmn =
∫
S
||q||2ds becomes for n 6= 0 and m 6= 0,

Nmni =
[(
Amni
Bmni

)2
+
(
Bmni

Cmni

)2
+ 1

]
LzRπ

2 (C.24)

and for n = 0, m 6= 0,

Nmni =
[(
Amni
Bmni

)2
+ 1

]
LzRπ. (C.25)
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