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We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the ferric and ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a histidine and a methionine side chain as ligands. We have derived permanent multipoles from second-order Møller-Plesset perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT) calculations. In a second validation step, we consider interaction energies with large aggregates comprising around 80 H 2 O molecules. These calculations are repeated for 30 structures extracted from semiempirical PM7 DM simulations. Very encouraging agreement is found between DFT and the AMOEBA force field, which results from an accurate treatment of electrostatic interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA testing both the 2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High Performance) program. In conclusion, owing to their ubiquity in biology, we think the present work opens a wide array of applications of the polarizable AMOEBA force field on hemeproteins.

Résumé

Les transferts d'électrons sont des processus physico-chimiques fondamentaux qui ont lieu au coeur des biosystèmes (photosynthèse, respiration cellulaire, catalyse enzymatique, mécanismes de protections et de réparations de dommages photo-induits ou radio-induits). Comprendre les mécanismes par lesquels les systèmes naturels parviennent à générer des transferts efficaces dans les protéines permettrait le développement de catalyseurs biomimétiques. Ces processus impliquent des déplacements d'électrons sur des échelles de temps très courtes (de 10 -5 au 10 -18 s). La simulation numérique est un moyen puissant d'étudier ces mécanismes au niveau microscopique. Mon travail de doctorat vise à augmenter la précision des méthodes de simulation moléculaire pour décrire les transferts d'électrons dans les systèmes biologiques. Il s'articule autour de deux projets.

Dans la premièr projet nous cherchons à comprendre les transferts d'électrons dans les proteines qui sont dominés par le mouvement nucléaire. De nombreux travaux expérimentaux et théoriques ont cherché à élucider les propriétés d'oxydo-réduction associées à ces transferts d'électrons. La simulation en biologie est un domaine en plein développement. Mais il reste encore beaucoup de progrès à faire notamment pour améliorer les précisions afin de prédire les mécanismes enzymatiques. La complexité des protéines nécessite des méthodologies de calcul avancées. La simulation existante est insuffisamment précise par rapport aux résultats des expériences. En conséquence, ce travail vise à mettre en place une nouvelle approche qui améliore significativement la précision pour simuler des propriétés redox des protéines, et plus particulièrement des hémoprotéines.

Une étape importante a été de construire de champ de force reposant sur une description multipolaire des interactions électrostatiques (AMOEBA) pour estimer les potentiels redox des hémoprotéines. Nous avons dérivé des paramètres pour AMOEBA afin de décrire précisément les interactions électrostatiques avec l'hème. Une amélioration très encourageante est obtenue par rapport aux champs de forces standards. Maintenant, ils ont utilisés pour le calcul des potentiels d'oxydo-réduction sur une série d'hémoprotéines pour lesquelles des données expérimentales sont disponibles. En raison de l'omniprésence des protéines contenant un hème en biologie, ces travaux ouvriraient alors vers de très larges applications. Par exemple, simuler les mécanismes de transport d'oxygène et réactions enzymatiques au sein du métabolisme.

Le second projet de cette thèse consiste à explorer le domaine fascinant de la dynamique des électrons à l'échelle de l'attoseconde (10 -18 s) dans des molécules complexes. Du côté numérique, beaucoup d'efforts ont été consacrés à la conception d'algorithmes de simulation. Mais la plupart des implémentations ont été conçues pour étudier des systèmes moléculaires en phase gazeuse ou dans un environnement homogène. J'ai développé des nouvelles méthodes pour étudier la dynamique des électrons dans des biomolécules à l'échelle attoseconde en incluant les effets d'environnement hétèrogène. Nous avons conçu un couplage original entre la théorie de la fonctionnelle de la en temps réel densité dépendant du temps (RT-TDDFT) et un modèle de mécanique moléculaire polarisable (MMpol). Une implémentation efficace et robuste de cette méthode a été réalisée dans le logiciel deMon2k. L'utilisation de techniques d'ajustements de densités électroniques auxiliaires permet de réduire drastiquement le coût de calcul des propagations RT-TDDFT/MMpol. La méthode est appliquée à l'analyse de la dissipation d'énergie dans l'environement d'un peptide excité par une impulsion laser. Les simulations ont montré que cette méthode est suffisamment efficace pour envisager de simuler la dynamique des électrons dans de grands systèmes moléculaires. De plus, ces développements ont permis d'ouvrir une nouvelle ligne de recherche sur les effets des rayonnements ionisants sur les biomolécules.

GENERAL INTRODUCTION

Electron transfers (ET) are basic chemical processes, with prominent importance in chemistry, physics, biology, life science, materials and microelectronics disciplines. In biology, ET are involved in numerous processes like light harvesting, cellular respiratory chains, enzymatic reactions or defense against oxidative stress. Unravealing the mechanisms by which natural systems manage to control the directionality, speed and efficiency of ET within proteins is commonly expected to feed reflection to design innovative catalytic processes for industrial applications, or to inspire innovative medicinal projects, for example, for the development of selective enzymatic inhibitors or of new antibiotics. In this context, numerical approaches offer powerful means to understand ET mechanisms at the microscopic level. Simulations can even provide mechanistic insights that are not accessible by experiments.

A fascinating characteristic of biological ET is the temporal scales associated with these phenomena. They cover several orders of magnitude, ranging from a few microseconds in long-range ET down to tens of attoseconds in charge migration. For theoretical physical-chemists, understanding how such a wide range of rates is possible requires advanced computational methodologies, both for molecular dynamics (MD) and for electron dynamics (ED) simulations. The objective of this PhD thesis is to contribute to the development of advanced approaches for simulating these phenomena. This manuscript contains two distinct, though connected parts.

In Part I, we are interested in redox potentials of heme cofactors when inserted within proteins. Redox potentials are a central quantity of redox theories as they are related to the free energies of redox reactions, hence their thermodynamical feasibilities, and also to the reaction rates, for example in the Marcus Theory.

The accuracy of numerical simulations to predict redox potentials of cofactors encapsulated in protein matrices is far from reaching the experimental ones. My PhD project aims at improving the reliability of computational approaches dedicated to the simulation of redox potentials.

The computational machineries for the evaluation of redox potentials based on the linear response approximation are now well established. They often involve combinations of quantum mechanical calculations and classical molecular dynamics simulations. The computed redox potentials depend not only on the structure of the heme cofactors but also on the interactions between hemes and their environments (protein, solvent, counter-ions). The accuracy of simulations to evaluate the latter is highly dependent on the functional form of mechanical Force Fields (FF). It has been shown by several research groups that electrostatic induction (polarization) is essential and must be taken into account. On the other hand electrostatic interactions among permanent charge densities are also important. Our objective is to make significant progress in the evaluation of redox potential by using advanced FF. In Chapter 1 we will describe the computational methodology for redox potentials evaluation in proteins based on the Linear Response Approximation. In Chapter 2 we will report an important step toward equivalent simulations with the sophisticated AMOEBA force field, namely the development of dedicated parameters describing multipolar electrostatic interactions of heme in ferric and ferrous forms.

In Part II, we are interested in ultrafast electron transfers taking place at the sub-femtosecond time scales.

These ET are driven by electronic correlation. They take place when tunneling is involved between donor and acceptor, or more generally when a molecule is subjected to a perturbation (electric fields, components of electromagnetic waves or collisions with charged particles).

Real-Time Time-Dependent Density Functional Theory (RT-TDDFT) is a powerful method to simulate ED with excellent computational cost/accuracy ratio. With the development of efficient algorithms, a current challenge is to simulate ED in complex biological systems, where environment effects are possibly important. The developments described in Part II are intended to developing an original methodology coupling RT-TDDFT and polarizable force fields. Toward this end we report in Chapter 3 a new implementation of RT-TDDFT in the software deMon2k. The implementation relies on variationally fitted electron densities to improve computational performance. In Chapter 4 the coupling scheme between the two methods is justified and we report analyses of energy dissipation from the out-of-equilibrium electron density of a peptide toward its polarizable environment.

PART I Toward a More Accurate Evaluation of Redox Potentials of Hemoproteins Toward a More Accurate Evaluation of Redox Potentials of Hemoproteins

Redox potentials are reference values to characterize the propensity of molecules to accept or release electrons in a medium. In the Marcus theory of electron transfer, the redox potentials enter into the determination of the rates via the so-called driving force (-∆𝐺°). In biology common redox cofactors found in oxidoreductases are either of organic nature (flavins, nicotinamides or quinones) or inorganic complexes (iron, nickel, copper, vanadium or manganese). In the latter case we talk about metalloproteins. More than one third of all currently known proteins involve redox reactions which serve as significant catalysts for numerous biological processes. Figure 1 illustrates the remarkable diversity of redox potentials of these cofactors when they are embedded inside proteins. We are interested in heme proteins. They are abundant in biomolecules, and exist in the ferrous Fe II or ferric Fe III oxidation states. They participate in several biological functions: electron-transfer reactions, oxygen transport and storage, oxygen reduction to hydrogen peroxide or water, oxygenation of organic substrates, and the reduction of peroxides. This versatility in functions is made possible by a combination of differences in both the heme cofactor and the protein matrix of the various hemoproteins.

heme cofactor consists of a prosthetic group and different ligands. The prosthetic group contains an iron cation chelated by the four nitrogen atoms of a porphyrin ligand. According to the different structures of porphyrin rings, prosthetic groups are classified as different types of heme shown in Figure 2. The iron coordination sphere also incorporates other ligands in axial positions, i.e. below and above the porphyrin ring. In Figure 3, some common axial ligands found in cytochromes are shown. Histidine or methionine side chains commonly act as axial ligands but other types of ligands can be found in some enzymes (the structure C on the Figure 3, for instance). Theoretical chemistry presents an alternative to experimental methods to evaluate redox potentials of hemes incorporated into protein matrices. The Marcus theory of electron transfer initially developed for electron transfer in solutions and at electrodes was found by various groups to be adaptable for protein redox properties. Research is still on-going worldwide to identify situations where the underlying hypotheses of the theory fail. This includes for example ultrafast processes for which the characteristic time scales of the redox process are much shorter than the relaxation times of protein matrices. This also includes processes involving large conformational rearrangements of the solvation states of the cofactors, or strong polarization of the redox cofactors. Another road to be explored is the improvement of computational approaches for more accurate predictions of calculated redox potentials and electron transfer rates. This is the guiding line of Part I of this PhD thesis.

Toward this aim, a series of small heme proteins with known experimental redox potentials are considered.

The theory and the computational set up are described in Chapter 1 with the simulation results of nonpolarizable force fields. The second Chapter is to achieve MD simulations with an advanced force field, namely AMOEBA. This force field describes electrostatic interactions among molecules beyond the monopolar approximation, and for that reason we expect significant improvement of computed redox potentials. A first essential step is to derive force fields parameters. This is the topic of Chapter 2.

Numerical Simulations of Redox Potentials under the Linear

Response Approximation

The modern description of the Marcus theory from first principles considerations emerged in the 1980's from the works of Warshel 1 , Tachiya 2 and Hynes 3 , to name but a few key researchers of this research field. These authors developed the conceptual framework to relate the phenomenological theory developed by Marcus in the 1950's to microscopic description of matter. Importantly they also introduced algorithms for testing the theory by numerical simulations. These algorithms include classical continuum electrostatics 4 , Multi-Conformation Continuum Electrostatics (MCCE) 5 , Protein-Dipole Langevin-Dipoles (PDLD) 6 , semi-microscopic PDLD analysis 7 , free energy perturbation and microscopic Linear Response Approximation (LRA) 8 , Molecular Dynamics (MD) 9 , QM and QM/MM (Quantum Mechanics/Molecular Mechanics) methods 10 .

As explained in the Introduction the objective of this PhD thesis is to contribute to the improvement of redox potentials of proteins, and more particularly of heme proteins. Toward this end our approach will be to use advanced force fields (FF). This will be the object of Chapters 2.

Heme proteins, at least the simplest ones, can be understood with concepts from the Marcus Theory, which is equivalent for microscopic simulation in relying on the Linear Response Approximation. In this Chapter we therefore introduce the conceptual framework of the LRA, showing how to estimate redox free energies and the important reorganization energy. In the second section of the Chapter we illustrate how one uses this formalism taking a series of six small heme proteins as example with simple force fields.

I COMPUTATIONAL APPROACHES FOR REDOX PROPERTIES

In Section I we introduce the theoretical framework commonly used in the literature to rationalize the redox properties of proteins from numerical simulations based on the Linear Response Approximation.

We start by describing how thermodynamic properties can be computed from microscopic simulations based on the LRA. Formulation within the context of hybrid QM/MM methods is given and we discuss the different FF one can use for carrying out this type of simulation. This allows us to highlight the current methodological limitations.

I.1 The Linear Response Approximation

I.1.a The Marcus theory at the microscopic level

We are interested in Part I in the free energies associated with the reduction of a redox cofactor (C) encapsulated within a protein (P). The protein itself may be solvated in water (globular proteins) or inserted in a membrane:

C@P + 1e- C -@P The starting point is to consider the existence of two electronic states corresponding to the reactants and products. The initial and final states have potential energies 𝐸 1 and 𝐸 2 respectively. A redox reaction is different from more standard chemical reactions involving the transfer of atoms, or groups of atoms, from two molecular fragments, in the sense that the reduction of C introduces a change of electric charge on C that in turn, induces adjustment of the internal structure of C (inner-sphere contribution) and a different polarization of the environment (outer-sphere contribution). For biological systems the environment encompasses protein residues and solvent (water). By polarization we mean new orientations and translations of atoms or molecules and polarization of the electron cloud (electrostatic induction). The more polar the environment the larger the reorganization to stabilize the new redox form of the cofactor. This specificity of redox processes means that hundreds of thousands of atoms participate in the reaction coordinate.

I.1.b The vertical energy gap as reaction coordinate

A breakthrough came from the work of Warshel 1 who proposed to consider the vertical energy gap Δ𝐸 12 = 𝐸 2 -𝐸 1 as the reaction coordinate. The choice Δ𝐸 12 as reaction coordinate is justified by the fact that Δ𝐸 12 collects all the nuclear motions contributing to the progress of the reaction due to their distinct polarization in the two redox states. The free energy for state 𝑥(= 1 or 2) is expressed by the Landau formula:

𝐺 𝑥 (ε) = -𝛽𝑙𝑛(𝑝 𝑥 (ε)) + 𝐺 𝑥 0 (1) 
with 𝛽 = 1 𝑘 𝐵 𝑇 ⁄ and 𝑝 𝑖 (ε) the probability of having ε = Δ𝐸 12 energy gap when the system is on electronic state 𝑥. 𝐺 𝑥 0 is the "full" free energy of the state 𝑥. It is given by:

𝐺 𝑥 0 = -𝑘 𝐵 𝑇𝑙𝑛 [∫ exp (-𝛽𝐸 𝑥 )d𝛤] (2) 
where the integration is done over the entire phase space 𝛤 accessible to the system in state 𝑥. The probability function 𝑝 𝑥 (ε) is given by Eq. 3.

𝑝 𝑥 (𝜀) = ∫ exp(-𝛽𝐸 𝑥 ) 𝛿(Δ𝐸 -𝜀)𝑑Γ ∫ exp(-𝛽𝐸 𝑥 )𝑑Γ = ∫ exp(-𝛽𝐸 𝑥 ) 𝛿(Δ𝐸 -𝜀)𝑑Γ 𝑍 𝑥

From the definition of 𝑝 𝑥 (𝜀) in Eq. 3, if the system is ergodic we have:

𝐺 2 (𝜀) -𝐺 1 (𝜀) = -𝛽𝑙𝑛(𝑝 2 (ε) 𝑝 1 (ε) ⁄ ) = ε (4) 
If we assume that 𝑝 𝑖 (ε) follows a Gaussian statistics, we can write:

𝑝 𝑥 (ε) = 1 𝜎 𝑥 √2𝜋 exp (- (ε -〈Δ𝐸〉 𝑥 ) 2 2𝜎 𝑥 2 ) (5) 
where 〈Δ𝐸〉 𝑥 is the average vertical energy gap when the system is in state 𝑥 and 𝜎 𝑥 is the standard deviation of the distribution. By inserting Eq. 5 into Eq. 1 we have,

𝐺 𝑥 (ε) = 𝐺 𝑥 0 + (ε -〈Δ𝐸〉 𝑥 ) 2 4𝜆 𝑥 𝑣𝑎𝑟 + 𝑘 𝐵 𝑇 2 ln(4𝜋𝑘 𝐵 𝑇𝜆 𝑥 𝑣𝑎𝑟 ) (6) 
In this equation we have introduced a so-called reorganization energ 𝜆 𝑥 𝑣𝑎𝑟 = 𝛽𝜎 𝑥 2 2 ⁄ = 𝛽〈𝛿𝛥𝐸. 𝛿𝛥𝐸〉 𝑥 2 ⁄ , with 𝛿𝛥𝐸 = 𝛥𝐸 -〈𝛥𝐸〉 𝑥 . As it is defined from the variance of the energy gap we will refer to it as the "variance reorganization energy".

To fulfill Eq. 4 for all values of 𝜀 the distributions 𝑝 1 and 𝑝 2 should have the same standard deviations, therefore leading to the same variance reorganization energies: 𝜆 1 𝑣𝑎𝑟 = 𝜆 2 𝑣𝑎𝑟 . Applying Eq. 6 for 𝜀 = 〈Δ𝐸〉 1 and 𝜀 = 〈Δ𝐸〉 2 further leads to the two following relations:

Δ𝐺 0 = 𝐺 2 0 -𝐺 1 0 = 〈Δ𝐸〉 1 + 〈Δ𝐸〉 2 2 (7) 
𝜆 = 〈Δ𝐸〉 1 -〈Δ𝐸〉 2 2 = 𝜆 𝑆𝑡 (8) 
which give an alternative definition of the reorganization energy often referred to as the Stokes reorganization energy 𝜆 𝑆𝑡 . The "Marcus" reorganization free energies 𝜆 𝑥 𝑟 are also defined by the reversible work necessary to bring the system from its optimum configuration in state 𝑥 (𝑥 being 1 or

2) to the optimum configuration of the other state involved in the reduction of the cofactor (resp. 2 or 1). Using this definition, one gets:

𝜆 1 𝑟 = 𝐺 1 (〈Δ𝐸〉 2 ) -𝐺 1 (〈Δ𝐸〉 1 ) = (〈Δ𝐸〉 2 -〈ΔE〉 1 ) 2 4𝜆 = 𝜆 (9) 
and a similar result for 𝜆 2 𝑟 . As a consequence, the LRA leads to the equality between all the possible definitions of the reorganization energy: 𝜆 = 𝜆 1 𝑣𝑎𝑟 = 𝜆 2 𝑣𝑎𝑟 = 𝜆 1 𝑟 = 𝜆 2 𝑟 = 𝜆 𝑆𝑡 .

Figure 1 depicts a visual representation of the Marcus free energy parabolas. In I.1 we saw the central role of the vertical energy gap in the calculation of the free energies of reduction by numerical simulations. In practice one needs a methodology for calculating the potential energies in the two redox states. Various reviews have been published in the literature. We focus our attention on methodologies based on hybrid QM/MM approaches 12 .

i) Electrostatic embedding

A QM electronic structure theory is mandatory to account for the intrinsic electron affinity of the cofactor. Effectively the added electron on the redox cofactor interacts with the bath of electrons of the cofactor, creating geometrical relaxation of the nuclei. The longer-range interactions between the electrons of the cofactor and the atoms belonging to the protein and to the solvent can probably be captured by molecular mechanics FF. The QM/MM partition is straightforward. The QM region describes the cofactor and the MM region encompasses all other atoms. We will use the terms QM atoms and MM atoms to refer to the atoms belonging to the QM and MM regions respectively. We assume that Density Functional Theory (DFT) 13 , in its Kohn-Sham formulation 14 , is used for the QM region. For the MM region we use the same FF parameters in the two redox states. Two flavors of DFT/MM are possible depending on the treatment of the interaction between the QM and MM atoms, namely the mechanical and electrostatic embedding schemes. The latter is the most satisfactory. In that case the potential energy of state 𝑥 reads: (11) 𝜌 𝑥 is the electron density of the QM region in state 𝑥. The first four terms on the r.h.s. of Eq. 10 are the kinetic energy of the electrons of the reference Kohn-Sham system (𝑇 𝑠 ), the interaction energy of the electron density with the nuclei of the QM region (𝑉 𝑒𝑛 ), the classical Coulomb interaction among electrons (𝐽) and the exchange-correlation energy (𝐸 𝑥𝑐 ). The sum of these terms defines 𝐸 𝑥 𝐷𝐹𝑇 in Eq.

𝐸 𝑥 𝐷𝐹𝑇/
11. 𝑉 𝑒𝑚𝑏𝑒𝑑 is the embedding energy, that is, the electrostatic interaction energies between the electron density and the MM atoms. With the interaction energy of the QM nuclei and the MM atoms, these terms define 𝐸 𝑥 𝑒𝑚𝑏𝑒𝑑 . Finally 𝐸 𝑥 𝑀𝑀 is the MM energy. In the electrostatic embedding scheme, the electron density is optimized so as to minimize the energy functional 𝐸 𝑥 𝐷𝐹𝑇/𝑀𝑀𝑒𝑒 energy. The electron cloud of the QM region is polarized by the MM atoms thanks to the inclusion of the embedding Hamiltonian. The latter is defined as the derivative of 𝑉 𝑒𝑚𝑏𝑒𝑑 with respect to the density 𝜌 𝑥 .

After solving the Kohn-Sham equations for a given configuration of the atom nuclei the two redox states the vertical energy gap is obtained as: Δ𝐸 12 𝐷𝐹𝑇/𝑀𝑀𝑒𝑒 = Δ𝐸 12 𝐷𝐹𝑇𝑒𝑒 + Δ𝐸 12 𝑒𝑚𝑏𝑒𝑑 + Δ𝐸 12 𝑀𝑀 (12) After sampling of Δ𝐸 12 𝐷𝐹𝑇/𝑀𝑀𝑒𝑒 for the two potential energy surfaces the free energy of the reaction can be calculated by Eq. 7. The variance reorganization energy Δ𝐺 𝐷𝐹𝑇/𝑀𝑀𝑒𝑒 = Δ𝐺 12 𝐷𝐹𝑇𝑒𝑒 + Δ𝐺 12 𝑒𝑚𝑏𝑒𝑑 + Δ𝐺 12 𝑀𝑀 (13) ii) Non-polarizable -monopolar force fields

The specific form of the last two terms of Eq. 13 depends on the FF used for the MM part. Since we are interested in calculating vertical energy gaps, i.e. at constant nuclear/atomic positions, and that the same FF parameters are used for the two redox states, Δ𝐸 12 𝑀𝑀 will always involve only non-bonded terms (electrostatic and van der Waals). The bonded terms (bonds, angles, dihedrals, torsions…) cancel out when taking the difference between the two redox states. The main point is to evaluate the electrostatic interactions involving QM and/or MM atoms. A first distinction has to be made depending on whether the FF incorporates electronic induction (polarizable force fields MMpol) or not. A second distinction has to be made regarding the treatment of electrostatics arising from MM atoms, using only permanent charges or higher electrostatic multipoles.

For the sake of illustration we assume a simple FF which ignores electronic induction and relies on point charges 𝑞 𝐾 to describe the electrostatic potential generated by the MM atoms. In that case Δ𝐸 12 𝑀𝑀 vanishes to zero and Eq. 13 reduces to:

Δ𝐸 12 𝐷𝐹𝑇/𝑀𝑀𝑒𝑒 = Δ𝐸 12 𝐷𝐹𝑇𝑒𝑒 + ∑ ∫ (𝜌 2 (𝑟) -𝜌 1 (𝑟))𝑞 𝐾 |𝑟 -𝑅 𝐾 | 𝑑𝑟 𝐾∈𝑀𝑀 ( 14 
)
𝑅 𝐾 is the position of MM atom K. The application of the LRA (Eq. 7) leads to: 

Δ𝐺 0 =
When using a non-polarizable FF, the free energy of the reaction (and also the Stokes reorganization energy) can thus be written as a sum of an inner-sphere and an outer-sphere contribution. The former being computed at the hybrid DFT/MM level with electrostatic embedding includes polarization of the redox cofactor by the environment. For the modelling of the redox properties of highly polarizable redox cofactors like the special pair within the photo-reactive center, it is important to retain this feature of the QM/MM methodology 15 .

iii) Energy evaluation accuracy vs. conformational sampling

To apply Eq. 7-8 from the Marcus theory/LRA, the QM/MM energy gap (Eq.12 or 13) must be sampled for the entire phase space accessible to the systems in the two redox states (see Eq. 2). This is usually done by MD simulations. In general MD has to be run for several tens or hundreds of nanoseconds to reach proper conformational sampling. These timescales are currently inaccessible for plain DFT/MM MD simulations. One possible strategy is to rely on classical MD simulations to conduct molecular sampling in the two redox states, and then post-process the trajectories to evaluate the energy gap at the DFT/MM level 16 . This strategy is however delicate to follow. First because FF parameters must be available for the cofactor in the two redox states. Second because the ensemble of configurations sampled from the FF PES will not match exactly the ensemble of configurations that would have been obtained from exploration of the DFT/MM PES. This can introduce artefacts in the evaluation of Eq. 14-16. It should be also remarked that the DFT/MM PES can become extremely computationally consuming. In general the vertical energy gap fluctuates on the sub-picosecond time scale. Therefore a post-treatment of a 100 ns classical MD simulation every picosecond leads to 10 5 DFT/MM evaluations! In summary we see the nature of the central dilemma faced with the numerical simulation of redox properties of proteins: finding an optimum balance between extensiveness of conformational sampling and accuracy of the potential energy functions.

I.2.b The simplified QM+MM scheme i) Decoupling hypothesis Among the various alternative strategies that can be followed to reduce the computational cost is the so-called QM+MM approach 16b . It is based on the assumption that reorganization of the inner-sphere upon redox change is largely caused by local electronic and nuclear relaxation and that it is decoupled from the reorganization of the environment. Alternatively said, we ignore mechanical and electrostatic coupling between the cofactor and its environment. This hypothesis has been tested in various redox enzymes such as heme proteins or cryptochromes by comparison with MD simulations based on hybrid QM/MM PES 17 . It may not be true for other proteins like the photoreactive center where the redox cofactors can be extremely polarizable. Adopting the QM+MM approach to simulate redox properties is a choice that requires precautions. The mechanical embedding formulation of the DFT/MM energy provides a good starting point to reach the QM+MM formalism. The energy reads, for a non-polarizable FF: 

𝐸 𝑥 𝐷𝐹𝑇/𝑀𝑀𝑚𝑒 =
The main difference with Eq. 10 is that the interaction term (𝐸 𝑥 𝑐𝑙 ) between the QM and MM regions is calculated not from the electron density but by classical electrostatics. With a FF relying on monopolar approximations (charges) the 𝑉 𝐴-𝐾 interaction term between QM atom A and MM atom K is calculated by Coulomb's law. But with more advanced force fields relying on permanent multipoles 𝑉 𝐴-𝐾 takes more complex forms. Consequently the Kohn-Sham Hamiltonian doesn't include embedding by the environment. The electron density is not polarized by the MM region. This is a "gas phase calculation" leading to energy 𝐸 𝑥 𝐷𝐹𝑇𝑔𝑝 . Importantly the QM+MM approach can be made compatible with polarizable FF as long as the cofactor itself remains non-polarizable. Otherwise the decoupling assumption underlying the QM+MM idea breaks down.

ii)Inner-sphere contribution Thanks to this decoupling hypothesis the inner sphere contribution (Δ𝐸 𝑖𝑛 ) can be estimated from the energies of the isolated cofactor in the gas phase.

𝐼𝑃 = 𝐸 2 (𝑅 1 ) -𝐸 1 (𝑅 1 )

𝐸𝐴 = 𝐸 2 (𝑅 2 ) -𝐸 1 (𝑅 2 ) (21) 
𝜆 𝑖𝑛𝑛𝑒𝑟,1 = 𝐸 1 (𝑅 2 ) -𝐸 1 (𝑅 1 )

𝜆 𝑖𝑛𝑛𝑒𝑟,2 = 𝐸 2 (𝑅 1 ) -𝐸 2 (𝑅 2 )

Δ𝐸 𝑖𝑛 = 𝐼𝑃 -𝜆 2 = 𝐸 2 (𝑅 2 ) -𝐸 1 (𝑅 1 )

In these equations 𝐸 𝑥 (𝑅 𝑦 ) denotes the gas phase DFT energy for the cofactor in state 𝑥 for parametric nuclear coordinates corresponding to the minimum of the potential energy surface of state 𝑦.

iii) Outer-sphere contribution

The outer sphere contribution is more involved since the environment has many more atoms and a larger number of degrees of freedom. On the other hand, it involves only classical terms that can be evaluated by classical MD simulations, eventually polarizable. Thus by assuming a decoupling between the inner-and outer-spheres the major issue to finding the optimum balance has been partially lifted because the computationally time consuming quantum mechanical part is separated from the sampling of the environment by MD simulations. If the QM+MM approximation is valid, the main task for improving reliability of redox calculations is to improve the evaluation of electrostatic interactions for the outer-sphere. This largely relies on the quality of the force fields that are used. This important aspect will be surveyed now.

I.3 Force fields for redox property simulations

I.3.a. First generation force fields

Classical Molecular dynamics simulate the time evolution of energy of a system as a function of its atomic coordinates. The accuracy of such simulations relies on the set of potential energy functions and parameters referred to as a force field. First generation FF incorporate a relatively simple potential energy functions as shown in Eq 26. The first three terms correspond to covalent (bonded) interactions, i.e. bonds, angles and torsions, while the last terms are describing non-bonded interactions.

Electrostatic energy is described with Coulomb interactions between point charges 𝑞 𝐾 on each atom.

Van der Waals (vdW) interactions are often represented by a Lennard-Jones 6-12 potential.

𝑉(𝑟) = ∑ 𝑘 𝑏 (𝑏 -𝑏 0 ) 𝑛𝑜𝑛𝑏𝑜𝑛𝑑 𝑝𝑎𝑟𝑖𝑠 (26) First molecular dynamics simulations of proteins were carried out in 1977 18 . Over the past 30 years, a large number of FFs have been developed, including AMBER 19 , CHARMM 20 , GROMOS 21 , OPLS 22 and many others. They can be used with massively optimized codes for production runs 23 . These force fields share similar functional forms of Eq. 26. This generation of FF is also referred as additive FF and some developments are still ongoing 24 . They have been widely used in the study of proteins 25 . However, as many simulations have shown their limitations, advanced FF for proteins using more accurate potential energy functions are needed especially to get a better accuracy in the calculations of electrostatic effects 26 .

I.3.b. On the importance of electrostatic induction

It is well known that taking into account electronic polarization effects is crucial when modeling the redox free energy 16b, 27 . Polarization refers to the fact that the electron clouds of the environment molecules are deformed by the change of the redox state of the cofactor. There are three well-known theoretical models to include polarization effects in FF: fluctuating charges model, Drude oscillator model and induced dipole model. We introduce here their theoretical models in detail including their history, the mathematical formulas to include polarization, the corresponding energy term and some examples of the existing force fields. Then we mention their pros and cons in the case of modeling redox potentials of proteins.

i) Fluctuating charge model

The fluctuating charge (FQ) model 28 

where 𝜒 is the atomic electronegativity that controls the direction of electron flow, 𝐽 is the atomic hardness that represents the resistance to deformation of electron flow, 𝑄 𝑖 is the partial charge on atomic site 𝑖, 𝜆 𝑖 is the Lagrange multiplier which ensures the conservation of the total charge. These parameters are optimized to reproduce the molecular dipole moments and the associated molecular polarization response. Either extended Lagrangian or self-consistent iteration can be used to compute the fluctuating charges in the MD simulations. The first version of this model was developed for water in the year of 1985 29 . Later on, it has been developed by Patel, Brooks and coworkers within the CHARMM program named CHARMM-FQ 30 and has been applied to simulations of biomolecules 31 .

ii) Drude oscillator model

In the Drude oscillator model 32 , electronic polarization is based on the presence of a Drude particle attached to its parent atom via a harmonic spring with a defined force constant. This force is associated with the electric field felt by the Drude particle

The Drude oscillator, named after Paul Drude in 1902 33 , also is also known in the literature as the Shell model 32a or the Charge-On-Spring model 34 . Originally, it was designed to study ionic materials in the solid state. In this model, electronic polarization is accounted for by the presence of an auxiliary particle, called the Drude particle, which is attached to its parent atom via a harmonic spring, the force constant of which is 𝑘 𝐷 . After adding Drude particles, the functional form of the force field becomes that of a polarizable FF.

The energy terms for intramolecular energy (bond lengths, angles, and dihedrals) and the vdW interactions (Lennard-Jones ''12-6'' nonpolar contribution) remain the same as an additive FF. Only the electrostatic interactions are changed. Except the electrostatic interactions between atomatom(𝑉 𝐴𝐴 ), the electrostatic energies between atom-Drude particle (𝑉 𝐴𝐷 ), and Drude-Drude particles (𝑉 𝐷𝐷 ), have to be computed. One last term must to be added is the harmonic self-energy of the Drude oscillators, which represents the polarization energy (𝑉 𝑝𝑜𝑙 ).

𝐸 𝑒𝑙𝑒 = 𝑉 𝐴𝐴 + 𝑉 𝐴𝐷 + 𝑉 𝐷𝐷 + 𝑉 𝑝𝑜𝑙 (28)

𝐸 𝑒𝑙𝑒 = ∑ 𝑞 𝐴(𝑖) 𝑞 𝐴(𝑗) |𝑟 𝐴 (𝑖) -𝑟 𝐴 (𝑗)| 𝑁 𝑖<𝑗 + ∑ 𝑞 𝐷(𝑖) 𝑞 𝐴(𝑗) |𝑟 𝐷 (𝑖) -𝑟 𝐴 (𝑗)| + 𝑁,𝑁 𝐷 𝑖<𝑗 ∑ 𝑞 𝐷(𝑖) 𝑞 𝐷(𝑗) |𝑟 𝐷 (𝑖) -𝑟 𝐷 (𝑗)| + 𝑁 𝐷 𝑖<𝑗 1 2 ∑ 𝑘 𝐷 (𝑟 𝐷 (𝑖) 𝑁 𝐷 𝑖 -𝑟 𝐴 (𝑖)) 2 (29) 
One version of polarizable FF based on the Drude oscillator model is named "Drude-2013". It was built on its origins in the CHARMM additive FF. Its development and applications have recently been reviewed 35 . In the Drude-2013 polarizable FF 36 , the Drude particles are only associated to nonhydrogen atoms for the sake of computational efficiency. The restoring force constant 𝑘 𝐷 is assumed to be the same for all atoms with a fixed value of 1000 kcal/mol/Å 2 , such that the charge 𝑞 𝐷 is the parameter that governs the magnitude of α for a given atom. In addition, the model includes virtual particles representative of lone pairs, typically located on hydrogen bond-acceptor atoms. The anisotropic molecular polarization can be achieved by using a matrix form of the force constant 𝑘 𝐷 and decomposing the displacement distance in three dimensions 37 . The combination of lone pairs and anisotropic polarization leads to an improved description of hydrogen bonding in polar compounds and interactions with ions as a function of orientation 37 . The interactions between induced dipoles (but not charge-dipole interactions) are explicitly included for 1-2 and 1-3 atom pairs with short-range Thole damping to avoid a polarization catastrophe 38 .

iii) Induced dipole model

The third method presented here for including polarization effects into force fields is the induced dipole model. The theory of atom point dipoles was first introduced by Silberstein 39 and then applied by Applequist 40 . In this model, a classical point dipole moment is induced at each polarizable atom site according to the electric field felt by that site. The induced dipole at each atomic site is computed as 𝝁 𝒊 = 𝛼 𝑖 𝑭 𝒊 , where 𝛼 𝑖 represents the atomic polarizability. 𝛼 𝑖 can be generally treated as an isotropic quantity or an anisotropic tensor. 𝑭 𝑖 is the total electric field at atom 𝑖 and consists of the electric field created by the other permanent multipoles (𝑭 𝒊 𝟎 ) plus the field of the other induced dipoles in the systems (𝑭 𝑖 𝑖𝑛𝑑 ).

In the case of point charge model (for example AMBERff02 41 ),

𝑀 𝑗 = 𝑞 𝑗, 𝑇 𝛼 𝑖𝑗 = 1 𝑟 𝑖𝑗 and 𝑇 𝛼𝛽 𝑖𝑗 = 1 𝑟 𝑖𝑗 3 𝑰 - 3 𝑟 𝑖𝑗 5 [ 𝑥 2 𝑥𝑦 𝑥𝑧 𝑦𝑥 𝑦 2 𝑦𝑧 𝑧𝑥 𝑧𝑦 𝑧 2 ] (30)
where 𝑀 𝑗 is the charge on atom center j. 𝑇 is the interaction tensor between sites 𝑖 and j. In other FFs, 𝑀 𝑗 may be developed till higher orders of multipoles. This combination of polarization and multipolar electrostatics will be described in section III.

Since the induced dipoles alter the field at each site, the procedure must be iterated to generate a selfconsistent set of "mutual" induced dipoles arising from the mutual polarization until the induced dipoles at each site reach convergence. This is computationally demanding and is typically a limiting factor in efficiency of such simulations. A number of approaches has been contemplated to overcome the limitations of the SCF procedure 42 . This model reproduces well the average polarizabilities, but the polarization becomes infinite when the induced dipoles interaction distance is too small. To correct this 'polarization catastrophe' phenomenon, Thole proposes to use a damping factor 38 .

iv) Pros and cons

The advantage of the Fluctuating Charge model is that the polarization is obtained without introducing new interactions. Thus no additional term has to be computed compared to non-polarizable FFs.

However it needs a much smaller time step. The major disadvantage is that the charge-flow is limited by the chemical connectivity. It cannot represent polarization that does not occur in the direction of bonds. Thus it cannot capture the out of plane polarization (such as benzene, bifurcated hydrogen bonding). As these types of interactions are important in protein interactions, we have considered that this is not a relevant choice for the simulation of redox potentials of heme proteins.

The computational cost of the Drude model originates in the large increase in the number of particles and lone pairs in the simulated system. Compared to the classical induced dipole method, the Drude model based FF involves less complex numerical algorithms since a point charge framework is retained.

With the implementation in the NAMD package, the computational cost is about 1.2 to 1.8 times that of fixed-charge models 23 . The Drude-2013 FF has been applied to many systems including biomolecules, yielding quantitative improvements over additive force fields thanks to the inclusion of cooperative effects. In the case of simulated redox potentials, the Drude FF was applied to evaluate the reorganization free energy for electron self-exchange in aqueous Ru II to Ru III . The reorganization free energy was reduced by 22% in comparison to a non-polarizable water model 27a .

In the induced dipole model 43 , since the induced dipoles alter the field at each site, the procedure must be iterated until the induced dipoles at each site reach convergence. This is computationally demanding and is typically a limiting factor in the efficiency of such MD simulations. At the same time, with the iterative scheme one better reproduces anisotropy and non-additivity of the molecular polarization response across many different compounds. This is the major advantage over the Drude model for instance. The conformational dependence of electrostatics can be significant. One well known FF of this model is a point charge model named AMBERff02 41 . It has been applied to simulate redox properties in several papers 26b, 44 . Thus we would like to test this model too.

I.3.c. Electrostatic Multipole based force fields

In most FF, electrostatics between molecules are approximated by Coulomb's law between point charges (and eventually as we just saw by induction). Yet, it has been shown that the error on the computation of the molecular electrostatic potential can be reduced by orders of magnitude upon complementing atomic monopole interactions by interactions involving permanent dipole and quadrupole moments 45 . One may anticipate that FF going beyond the point charge approximation may significantly improve the accuracy of the computed redox potentials. Several FFs have multipole moment descriptions such as AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications) 46 , SIBFA (Sum of Interactions Between Fragments Ab Initio Computed) 47 or NEMO (Non-Empirical Molecular Orbital) 48 . Among them, AMOEBA is the most widely used FF because of its reasonable computational cost. A first decisive step toward the use of AMOEBA to the evaluation of redox properties of heme proteins, namely the parameterization of AMOEBA for the heme cofactor, will be reported in Chapter 2.

In summary, in Section I we have detailed the formalism for simulating redox potentials of cofactors embedded in protein matrices from microscopic considerations. We highlighted current weaknesses of the force fields which limit the predictability of these approaches to real systems. The bet of this PhD thesis is that significant progress toward more accurate calculations will be achieved along with a significant improvement of electrostatic interactions between the cofactors and the environment. Chapter 2 will report contributions toward that objective, by employing to AMOEBA simulations. For the moment we report in Section II application of the LRA formalism for a series of heme proteins. This will enable the reader to understand how this formalism actually works in practice. For simplicity we have chosen a non-polarizable force field.

II. THE LRA MACHINERY IN ACTION

In Section II we illustrate the Marcus Theory/Linear Response Approximation on actual hemeproteins. These results will allow us to understand how the LRA can be validated from microscopic simulations and what kind of information can be extracted from them at the atomic level. For the sake of simplicity the simulations are carried out with non-polarizable FF. The QM+MM strategy has been tested in the case of heme proteins and was found to be adequate 17a .

II.1 Model systems of heme proteins

II.1.a selection of heme proteins

The main line for Chapter 1-2 is to seek for alternative FF that would enable more reliable estimates of protein redox cofactors. The accuracy of calculated redox potentials depends on many factors, not only on the FF. To attempt separating errors from FF potential functions from other factors (extensiveness of computational sampling, limit of validity of the LRA, polarization of the cofactors…), we have chosen a series of six proteins bearing in mind the following points. First it has been demonstrated by others that in general the QM+MM strategy applies well to hemeproteins 16b . This simplifies the modelling and will put emphasis on MM FF electrostatic evaluation. Second the chosen proteins are small. Therefore we hope to alleviate as much as possible the problem of extensive conformational sampling † . Third the redox potential for these proteins are known from experiments.

Finally the redox potentials are scattered over more that 500 mV, from -210 mV to +350 mV. Figure 2 depicts the crystal or NMR structures obtained from the Protein Data Bank (PDB) 49 .

Table 1 lists some characteristics of the cytochromes. In particular the entry "ligands" indicates the amino acid residues linked in axial positions to the heme. The experimental redox potential measured with respect to the Standard Hydrogen Electrode (SHE) are reported. The six cytochromes can be classified into two types. As shown in Figure 2 
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Labels: identifiers for Figure1,5 and 6. PDB: Protein Data Band code. #RES: number of residues in the protein structure. 𝐸 𝑒𝑥𝑝 𝑆𝐻𝐸 : the experimental redox potential relative to a reference electrode (SHE) 50 . The uncertainty is around±30𝑚𝑉. 𝐸 𝑒𝑥𝑝 0 : The experimental relative result plus the potential of SHE=4.44 V.

II.1.b Structure preparation

The structures have been obtained from the Protein Data bank (PDB entry codes in Table 1). All X-ray structures had been obtained with high resolution (around 2 Å). The X-ray structure of 1c2r is a dimer, although the protein is monomeric in solution. Only the first chain (A) was simulated. The PDB structure of 1cyo misses the last five residues and the structure 1cxy misses the first four residues and the last five residues. This situation is likely to be related to the flexibility of these terminal loops that prevents structural identification. However since the sequence is known for these proteins, the missing residues were added with the CHARMM package 51 (version 35). The other structures have a complete structure. The structure of 1B5A was obtained from NMR measurements which had the position of hydrogen atoms, the other X-ray structures were hydrogenated with the HBUILD module of the CHARMM package and solvated in a water box. Three different water box sizes were tested: 90, 100 and 110 Å 3 (with TIP3 52 water molecules). All crystallographic water molecules were retained. The pKa values of ionizable amino-acid side chains were determined using the Propka server 53 . It was found that all amino acid side chains adopt standard protonation states at neutral pH. Therefore glutamic acid and aspartic acid side chains were deprotonated and all lysine side chains were protonated. We added Na + and Cl -counter ions to ensure electrical neutrality and to reach an ionic strength of 0.015 mol/L. The CHARMM22 FF 54 with CMAP correction (to improve backbone torsions) was chosen for the classical MD simulations together with the TIP3P FF for water. The FF parameters for the heme with deprotonated propionate and for the axial ligands were taken from all22_prot_heme 55 . The energies of the whole systems were minimized for 2500 steps with CHARMM.

II.2 Inner sphere energy: QM calculations in gas phase

Within the QM+MM methodology the inner-sphere is modelled from gas phase calculations of the redox cofactor. The structures of the heme prosthetic group treated with QM calculations are depicted in Figure 3. For these six models, we have two different types of inner spheres. Figure 3(a) is the innersphere of Cyt.c. The amino acid backbone atoms of histidine, methionine and cysteine have been truncated as methyl-imidazole (ImMe), ethyl-methyl-sulfide (EMS) and two methyl-methyl-sulfide (MMS) respectively. Figure 3 (b) is the inner sphere of Cyt.b modeled as iron porphyrin (PFe) with two ImMe axial ligands. We have protonated the two propionate groups of heme. This is mandatory to control the electronic structure of the iron cation in the complex. Indeed in the gas phase, contrary to protein or solvent media, the molecular orbitals of the carboxylate groups are not stabilized and are of similar energies to the iron 3d orbitals. Therefore the self-consistent-field iterations involved in DFT calculations for the ferric state tend to oxidize the carboxylate functions leading to the Fe(II)COO• electronic structure instead of the expected Fe(III)COO -electronic structure. This problem is not present with full QM/MM where the negative carboxylate functions are stabilized by counter-ions or hydrogen bond donors. Protonation avoids this inconvenience of the QM+MM framework. The structures have been optimized with deMon2k 56 with the OPTX-PBE functional 57 . This functional was shown to perform well for transition metal cations 58 . The DZVP-GGA 59 basis set is used for all atoms.

The auxiliary basis sets GEN-A2 (for C, H and O) and GEN-A2* (for Fe, N and S, the star denotes the inclusion of f and g auxiliary functions) have been employed to expand the auxiliary electronic densities as employed in the so-called auxiliary DFT framework. An adaptive DFT grid of fine accuracy has been used for the numerical evaluations of the XC energy and potential and a multipolar expansion scheme has been employed to evaluate the long-range Coulomb integrals. The relative energy to the singlet states are summarized in Table 2. The singlet and doublet states are the most stable for the ferrous and ferric states respectively. This is true for both complexes, in agreement with experimental values.

The energies of the inner sphere are calculated as Fe II the initial state (1) and Fe III the final state (2) (Eq. 25). We obtained the Δ𝐸 𝑖𝑛 for PFe-ImMe2 of 4.827 eV and PFe-ImMe-EMS-MMS2 of 5.304 eV. 

i) Equilibration

The outer sphere contributions are obtained from MD simulations of the solvated proteins. Since the protein structures are different for each protein, MD simulations for the six proteins, each in the two states have been carried out. The CHARMM22 FF with CMAP corrections have been used 54 . The point charges of heme cofactor were modified for the two different redox states: Fe II and Fe III . Atom charges were obtained from population analysis of the DFT electronic densities of optimized structures with the iterative Hirshfeld scheme 60 . The optimized structures were computed with two propionates protonated. However, in the MD simulations, the cofactor is not protonated. The charges of COO -of the two propionates were included in the outer-sphere using the parameters from CHARMM FF (atomic charges of 0.62 for C and -0.76 for O). The extra charges were added to the CH2 connected to COO -to ensure a total charge of -2 and -1 for Fe II and Fe III states, respectively. The point charges used for cofactors PFe-ImMe2 and PFe-ImMe-EMS-MMS2 are summarized in Tables I and II of Annex I.

MD simulations have been carried out with the NAMD software 61 (version 2.0). Equilibration phase has been carried out in the isothermal-isobaric ensemble (NPT) under periodic boundary conditions. The velocity Verlet integrator has been used with a 2 fs time step. Langevin barostat was applied with a target pressure of 1 bar. The solvated protein was initially minimized for 10,000 steps and subsequently equilibrated with all protein atoms kept frozen. The temperature was increased slowly from 25 K to 298 K with increase of 50 K each step during 20 ps MD. The temperature was then fixed to 298 K with a Langevin thermostat. The protein was then slowly released by applying harmonic restraints around the initial positions with force constants of 10.0, 5.0 and 1.0 kcal mol -1 Å -2 . The duration of each of these runs was 100 ps. Eventually, all position restraints were dropped and the protein was equilibrated for 500 ps. After this equilibration, the volume was held with the same temperature. The particle-mesh Ewald (PME) method 62 was employed for the calculation of electrostatic interactions to avoid truncation of these long-range forces. Nonbonding interactions were treated using a cutoff of 12.0 Å.

Production runs in the canonical ensemble (NVT) were then carried out for each state. Geometries were saved every ps during each simulation. Thus geometries for each state were collected form each trajectory trj(Fe II ) and trj(Fe III ).

ii) Numerical uncertainties

The vertical energy gap of each trajectory was then calculated. The uncertainty on the energy gap is calculated as:

𝑢 = 𝜎 √ 𝑁 𝑒𝑓𝑓 (31) 
𝑈 = 𝑢 1 + 𝑢 2 2 (32)
where 𝜎 is the standard deviation of the energy gap. 𝑁 𝑒𝑓𝑓 is the effective statistical sample. It has been calculated with the program R 63 and the CODA package 64 . The uncertainty 𝑈 of ∆𝐺 𝑜𝑢𝑡 0 and 𝜆 𝑠𝑡 can be calculated as the average of the uncertainty of the energy gap of each state (𝑢 1 , 𝑢 2 ).

II.3.b Box sizes, simulation lengths, starting structures

Several simulation parameters need to be tested. For example the size of the water box, the effect of the initial structure or the length of simulations are likely to influence the computed redox potentials or the reorganization energies.

i) Simulation box size

The choice of the size of water solvation boxes complies to various rules. Of course one should choose large enough water boxes to solvate the system entirely, while trying to minimize its size to reduce the computational cost. One should also ensure that distances between periodic images are larger than the cutoff used for non-bonding interactions. This means that the minimal distance between the solute protein and the wall should be bigger than half the cutoff used. If not, we get duplicate force evaluations from the images. When using an NPT ensemble, the box dimension will fluctuate due to the pressure and thus it is better to have an even bigger size than the minimal one.

Cyt. c551 (PDB: 351c) was chosen as an example. The cell size of Cyt.c551 is 30*50*50 Å. We decided to test with a cube box since we will used it for other proteins. Three different water boxe sizes were chosen: (90 Å) 3 , (100 Å) 3 and (110 Å) 3 . For each of them we run 30 ns MD in each state. The first 4 ns were discarded to evaluate the energy gaps. Outer-sphere free energies ∆𝐺 𝑜𝑢𝑡𝑒𝑟-𝑠𝑝ℎ𝑒𝑟𝑒 0 and reorganization energies 𝜆 𝑠𝑡 were obtained as described before and the results are summarized in Table 3. These tests have been carried out with a preliminary set of FF parameters for the heme, that we finally refined for the production runs (see below).

As shown in Table 3, the uncertainties are quite small, around 0.006 eV. This indicates that we have enough vertical gap values to have a good statistical knowledge on the average energy gaps, therefore on ∆𝐺 𝑜𝑢𝑡 0 and 𝜆 𝑠𝑡 . The value of 𝐺 𝑜𝑢𝑡 0 are very similar in each case, with a difference of around 0.01 eV.

However, we are not sure if the ∆𝐺 𝑜𝑢𝑡 0 is converged during 30 ns. 4.

ii) Simulation length

As the beginning we ran 30 ns for each MD. The variation in the case of the water box with (90 Å) 3 is around 0.01 eV. Thus we decided to continue the dynamics until 80 ns. We observed that the fluctuation converges at the end of 80 ns. However, this could be a too expensive simulation time. In the case of (100 Å) 3 and (110 Å) 3 , the fluctuation converges within 30 ns with a value within 0.005 eV. Thus we decided to choose a water box of (100 Å) 3 which has the same accuracy as (110 Å) 3 but which is less expensive. With this water box, we have around 32,100 TIP3 52 water molecules. The distance between the protein and the wall is at least around 25 Å which is c.a. twice bigger than the cutoff of 12 Å. One thing to be mentioned is that these results were obtained out a wrong version of inner sphere charge. However the total charge of the two states was correct. Since it is quite expensive to redo all these tests, we assumed that with the new version of charge distribution, the result will be similar. All other simulations were then carried out with a water box of (110 Å) 3 and with the right version of charge distribution.

II.3.c Stabilities of MD simulations

We now report results for the six proteins depicted in Figure 2. We run 30 ns dynamics for each redox state. The root-mean-square deviation (RMSD) of protein backbone during the dynamics is shown in RMSD of the ferrous state is in black while that for the ferric state is in red. Labels (a-f) for six cytochromes are the same as in Table 1. RMSD for proteins (a), (b) and (d) are within 2 Å, which means that the dynamics are rather stable. For proteins (c) (e) and (f), the RMSD are much higher. For Protein(c) and (f) we added residue coordinates that were misssing in the PDB structure, while protein (e) had been obtained by Nuclear Magnetic

Resonance. We recomputed the RMSD exlucding the terminal residues (green and blue curves). These curves fluctuate around 2 Å like for the other proteins. This indicates that the large RMSD were due to these terminal residues which adopt very flexible conformations. This is consistent with the fact thah the position of these atoms could not be obtianed in X-ray sturctures.

In conclusion, apart from the inherent flexibility of the terminal loop for some proteins, the RMSD of all these dynamics are less than 2.5 Å. This indicated that MD simulations produced stable structures for protein backbone atoms.

II.3.d Marcus parameters i) On the validity of the Linear Response Approximation

As a first step, we wish to check whether the hypothesis of Gaussian distributions for the energy gap is correct for the proteins considered here. This is equivalent to the hypothesis of parabolic shapes of the free energy functions. We show on Figure 6 the free energy curves. For each graph and each diabatic state, two curves are plotted. The dashed-dotted curves correspond to parabolas obtained from the fitting of the probability distribution of 𝑝 𝑥 (see Eq 3). The linear regression coefficients reported in Table 4 are all close to 1.00. This indicates that the Gaussian approximation for 𝑝 𝑥 is justified (Eq. 5) for all the proteins in all redox states considered here. Note that most of the fitting points are located close to the energy minima of the parabolas (circles on the graphs). Eq. 4 translates this by stating that the difference between the two free energy curves equals the value of the free potential energy gap (the reaction coordinate), for any value of the reaction coordinate.

The triangles on the graphs are obtained thus from application of Eq. 4. For example, for a given graph, all the points directly obtained from the simulations that generate the 𝐺 1 (∆𝐸 12 ) curve are shifted by (∆𝐸 12 ) to generate new points for the 𝐺 2 (∆𝐸 12 ) curve, by virtue of Eq. 4. Therefore the plain curves which are obtained by a linear regression fitting on both the circles and triangles are expected to match the dashed-dotted curves if the system is effectively ergodic. This is true for many systems (for example proteins a, c, e), but can be somehow different for other proteins (b). This is in line with the small differences between 𝜆 1 𝑣𝑎𝑟 and 𝜆 2 𝑣𝑎𝑟 (Table 5) for proteins c, d, f, and more pronounced differences for proteins b for instance. Does this mean this reduction is taking place beyond the ergodic approximation?

It must be remarked that it is difficult to test if the system is ergodic or not because it strongly depends on the capability of the MD methodology we have used to fully explore the conformation space.

Apparent lack or ergodicity may simply be due to a lack of conformational sampling. It is hard to claim a non-ergodic system here. Instead these results illustrate the difficulties to reach complete sampling of the conformational space when running this kind of simulations. for example in the case of c, d and f. In the case of a, b and e the differences are bigger at around 0.1 to 0.2 eV. This could come from not enough sampling of the potential energy surface.

We see clearly that the ∆𝐺 𝑜𝑢𝑡 0 of protein a and b are bigger than the others. The value of protein f is the smallest one and the energy is negative. 

II.4 Analyses of computed Marcus theory parameters

II.4.a Comparison to experimental values

The result of simulated inner sphere energies (∆𝐸 𝑖𝑛 ), outer sphere energies(∆𝐺 𝑜𝑢𝑡 0 ) and theoretical redox potential (𝐸 𝑡ℎ 0 ) are summarized in Table 6. The theoretical redox potential is calculated as 𝐸 𝑡ℎ 0 = (∆𝐸 𝑖𝑛 + ∆𝐺 𝑜𝑢𝑡 0 )/𝐹 .These results are compared with experimental results ( 𝐸 𝑒𝑥𝑝 0 ), the difference between simulations and experiment are calculated (diff). Instead of obtaining the exact absolute values, we consider the relative differences of the potentials.

The comparison curve between experimental and computed redox potential is plotted in Figure 7. The quite small (39mV), a value which is just slightly higher than the uncertainty (±30mV). The presented method gives an overall agreement with experimental results. However, it is not accurate enough to distinguish a difference of 0.05 V. The difference between Cyt.c and Cyt.b may also be a problem of FF. Since in the inner sphere of Cyt.c there is a sulfur atom of the MET ligand, which is a highly polarizable atom, with a non-polarizable FF, one may miss important information.

II.4.b Energy decompositions at the level of amino acids i) Free energies of reduction

In order to better understand why there is a big difference between redox potential of Cyt.c and Cyt b, we chose one cytochrome from each group, Cyt. c551 (PDB code: 351c) and Cyt. b5 (PDB code: 1b5a)

to analyze the contribution of redox free energy ∆𝐺 𝑜𝑢𝑡 0 and reorganization energy 𝜆 𝑠𝑡 of each amino acid. The method is the same as we described in section I.3.b. Each energy is calculated as below:

∆𝐸 12 = 𝐸 𝑎𝑎-𝐹𝑒 𝐼𝐼𝐼 -𝐸 𝑎𝑎-𝐹𝑒 𝐼𝐼 ( 33 
)
∆𝐺 𝑎𝑎-𝐹𝑒 0 = 1 2 (〈∆𝐸 12 〉 1 + 〈Δ𝐸 12 〉 2 ) (34) 
∆𝜆 𝑎-𝐹𝑒 𝑆𝑡 = 1 2 (〈∆𝐸 12 〉 1 -〈Δ𝐸 12 〉 2 ) (35) 
where 𝑎𝑎 -𝐹𝑒 𝐼𝐼𝐼/𝐼𝐼 indicates the interaction of each amino acid (aa) with the heme cofactor in different redox states. Results of free energy and reorganization energy are shown in Figure 8 and Figure 9 respectively. In Figure8, the color corresponds to their contribution to ∆𝐺 𝑜𝑢𝑡 0 . Blue is positive and red is negative. If the value is negative (red), it means that 𝐸 𝑎𝑎-𝐹𝑒 𝐼𝐼𝐼 < 𝐸 𝑎𝑎-𝐹𝑒 𝐼𝐼 . It favors the 𝐹𝑒 𝐼𝐼𝐼 state and vice versa.

In both 1b5a and 351c, the amino acids in blue are arginine (ARG) and lysine(LYS) which have positive charge, while in red are aspartic acid (ASP) and glutamic acid (GLU) which are negatively charged. This is reasonable because the negative charge stabilized more the 𝐹𝑒 𝐼𝐼𝐼 state than the 𝐹𝑒 𝐼𝐼 state. The neutral amino acids do not have a big influence on ∆𝐺 𝑎𝑎-𝐹𝑒 0 . The exact value of the ten most positive and negative free energy residues are summarized in Table 7.

In the case of 1b5a, the highest contribution comes from ARG68 (0.895 eV), the lowest comes from GLU59 (-0.845 eV). For 351c, the highest comes from LYS33 (0.778 eV) and the lowest comes from GLU 70 (-0.592 eV). They are very close to the heme cofactor. 

As shown in Eq. 36, the energy is coming from Coulomb interaction between charges on atoms of each aa (𝑞 𝑖 ) and charges on atoms of heme cofactor of different states ( 𝑞 𝑗 ). As the distance between the charges of amino acid and heme increases, the contribution decreases. Thus the closer the amino acid is to the heme center, the stronger its contribution. Therefore, free energy contributions coming from interactions between protein and heme cofactors depend on how many charged amino acids in the protein and their distance to the heme center. As shown in Figure 2, protein of 1b5a forms αβ, while 351c contains only α ‡ . They have very different shapes. In addition, the heme cofactor of 1b5a is more accessible to water molecules while for 351c, the heme cofactor is buried in the protein center. The free energy comes from interaction of water and the heme cofactor could be a source of this difference too. We see that the accuracy of this interaction is highly dependent on the accuracy of the evaluation of Coulomb interactions between proteins and Heme cofactors.

ii) Stokes reorganization energies

The same analyzes have been done for the reorganization energy. This time the color bar is 10 time smaller than for the free energy. This is obtained from the difference of the energy gap of each amino acide (Eq. 31). The residues giving the ten most positive and negative reorganization energies are listed in Table 8.

For the 1b5a contribution, the highest value comes from LEU94 (0.059 eV) which is the last amino acid at the end of the protein. The lowest comes from LYS16 (-0.037 eV). For 351c, the highest comes from ‡ α means helices, while β means β sheets.

TYR27 (0.061) and the lowest comes from LYS28 (-0.016eV). This is different than in the case of the redox free energy, although most of the important contributions of the reorganization energy are coming from charged residues, but there are some neutral aa which give important contributions too.

For example, LEU94 which is a neutral amino acid gives the highest contribution. This could be due to the great flexibility of these residues and we haven't sampled all possible conformations. As shown in Figure 5(e), the RMSD of these residues are quite large especially for the Fe III state (5 Å). More simulations are needed. This could also explain the result in Table 5 for which 𝜆 2 𝑣𝑎𝑟 of 1b5a is larger by c.a. 0.2 eV than 𝜆 1 𝑣𝑎𝑟 . In order to analyze the differences coming from the ligands which are linked with iron, their contributions to free energy and organization energy are summarized in Table 9.

We observe that their contributions are not that high, out of the first-ten ranking. The two HIS in the case of 1b5a give very similar contribution to ∆𝐺 𝑜𝑢𝑡 0 which is 0.1 eV bigger than the HIS contribution in 351c. The two CYS connected to heme cofactors give negative contributions to the free energy, which means that they help to stabilize the Fe III state. A recent publication has shown that the insertion of cysteine linkages accelerates electron flow through tetra-heme protein 17b . The contribution of reorganization energy of two HIS in 351c is quite small, less than 0.1 eV. They are quite rigid due to the fact that they are linked to the heme center. Energetics for Biomolecular Applications) 3 , SIBFA (Sum of Interactions Between Fragments Ab Initio Computed) 2,4 or NEMO (Non-Empirical Molecular Orbital) 5 .

Among them, AMOEBA is the most widely used FF because of its reasonable computational cost. It has been historically developed by Ponder, Ren and co-workers 3,6 . AMOEBA was first implemented in the TINKER modeling package 7 . Recently, a parallelized version was implemented in OpenMM 8 using Open Multi-Processing (openMP) and recently updated to Graphics Processing Unit (GPU) using the CUDA programming language. Another highly parallelized version named TINKER-HP 9 using Message Passing Interface (MPI) was developed very recently by the group of J. -P. Piquemal (Sorbonne University Paris).

These algorithmic developments open the door toward the application of AMOEBA to the simulation of large biomolecular systems, in particular in the context of the present PhD thesis, to the simulation of redox properties of proteins.

In the past decade, AMOEBA parameters of many molecules have been developed including water 3b, 10 , ions 11 , small molecules 12 , biomolecules (peptides 13 , protein 14 , lipid 15 , nucleic acids 16 ). Many applications of these parameters have been reported such as the computation of ion hydration free energy 11a, 11d, e, 16-17 , the structures and the thermodynamics of organic molecules 18 , and protein-ligand binding 19 . These applications have demonstrated that AMOEBA is able to perform well both in gas and solution phases for various chemical properties. Based on these relevant results, we considered that AMOEBA could be a good potential choice to simulate redox potentials of heme proteins. Toward this objective an unavoidable step is to have access to force field parameters for the heme. However, to the best of our knowledge such parameters were not available in the literature at the beginning of this PhD work. Therefore a key step of this PhD work was to create a reliable set of parameters for the heme cofactor in both its ferrous and ferric forms.

In Section I, we introduce the formalism of AMOEBA. We then describe in Section II the standard parametrization procedure of AMOEBA that we followed for the heme cofactor. 

I. AMOEBA FORMALISM

The AMOEBA force field has the following general functional form for the interactions among atoms. 

𝑈 = 𝑈

The first five terms describe the short-range valence interactions bond stretching (𝑈 𝑏𝑜𝑛𝑑 ), angle bending (𝑈 𝑎𝑛𝑔𝑙𝑒 ) bond-angle cross term (𝑈 𝑏𝜃 ), out-of-plane bending (𝑈 𝑜𝑝𝑝 ), and torsional rotation (𝑈 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 ) while the last three terms are respectively the non-bonded van der Waals (𝑈 𝑣𝑑𝑊 ) and electrostatic contributions including interaction among permanent multipoles (𝑈 𝑒𝑙𝑒 𝑝𝑒𝑟 ) and electronic induction (𝑈 𝑒𝑙𝑒 𝑖𝑛𝑑 ).

I.1 Short-range valence interactions

The AMOEBA potential includes full intramolecular flexibility, which is important to explore different conformations of large and flexible molecules. The functional forms for bond stretching and angle bending were adapted from the MM3 force field 21 and include anharmonicity through the use of higher-order deviations from ideal bond lengths and angles.

The potential for bond stretching takes the form of Taylor serial development at 4 th order of the Morse potential, with 𝐾 𝑏 being the bond force constant, b the both length and 𝑏 0 the reference value.

𝑈 𝑏𝑜𝑛𝑑 = 𝐾 𝑏 (𝑏 + 𝑏 0 ) 2 [1 -2.55(𝑏 -𝑏 0 ) + ( 7 12 ) 2.55(𝑏 -𝑏 0 ) 2 ] (2) 
This potential function mimics the anharmonic shape of a bond stretching. According to the authors of MM3, the constant of order 3 is sufficient in the vast majority of cases to bring in the effect anharmonicity, the term of order 4 being justified only as a safeguard to avoid problematic situations of dissociative states when the structure encountered is far from standard distances.

The potential for angle bending is described by a potential at 6 th order, with 𝜽 this angle and 𝜃 0 its reference value.

𝑈 𝑎𝑛𝑔𝑙𝑒 = 𝐾 𝜃 (𝜃 + 𝜃 0 ) 2 [1 -0.014(𝜃 -𝜃 0 ) + 5.6 × 10 -5 (𝜃 -𝜃 0 ) 2 -7.

× 10 -7 (𝜃 -𝜃 0 ) 3 + 2.2 × 10 -8 (𝜃 -𝜃 0 ) 4 ]

(

The coupling between bond and angle deformation takes the form:

𝑈 𝑏𝜃 = 𝐾 𝑏𝜃 [(𝑏 -𝑏 0 ) + (𝑏 ′ -𝑏 0 ′)](𝜃 -𝜃 0 ) (4) 
with 𝐾 𝑏𝜃 the force constant, (𝜃 -𝜃 0 ) the angle deformation, (𝑏 -𝑏 0 ) and (𝑏 ′ -𝑏 0 ′) the bond stretching of the two bonds forming the angle considered.

A Wilson-Decius-Cross function 22 is used at sp 2 -hybridized trigonal centers to restrain the out-of-plane bending, where χ is the dihedral angle formed by the four sequentially bonded atoms.

𝑈 𝑜𝑜𝑝 = 𝐾 𝑥 𝑥 2 (5) 
The torsion energy is described by a traditional Fourier expansion (a 1-fold through 6-fold trigonometric form) torsional functional. It is used to aid in merging the short-range "valence" terms with the long-range "non-bonded" interactions.

𝑈 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = ∑ 𝐾 𝑛𝜙 𝑛 [1 + 𝑐𝑜𝑠(𝑛𝜙 ± 𝛿)] (6) 
𝜙 is the dihedral angle computed from the p-orbital directions at the two trigonal centers, rather than from the usual bond vectors. It allows appropriately to increase the flexibility of atoms bonded to trigonal centers (e.g., aromatic hydrogen atoms). The torsional parameters may be refined after the determination of the non-bonded parameters with the hope that the improved AMOEBA intramolecular electrostatic model will lead to a more physical balance between the local and longrange interactions in the potential energy.

I.2 Long-range nonbonded interactions

The pairwise additive van der Waals interaction in AMOEBA adopts the buffered 14-7 functional form proposed by Halgren 23 . The 14-7 potential was shown to be more effective than the 12-6 Lennard-Jones (LJ) potential to reproduce interaction energies of rare gases 23 . By comparison with quantum chemical calculations,

𝑈
Halgren showed that the repulsive part in r -12 of the LJ leads to a repulsive potential that is too soft. It can be improved by the shape in r -14 of the buffered 14-7. The AMOEBA van der Waals parameters are usually derived by comparison with quantum mechanical interaction energies in gas phase and they are often refined using condensed phase simulations. Each atom in AMOEBA possesses a vdW site. For non-hydrogen atoms, the site is located at the position of the atomic nucleus. For a hydrogen atom connected to an atom X, the vdW site is shifted from the hydrogen center to atom X according to the percentage of the full bond length 24 . It was found to simultaneously improve the fit to accurate QM water dimer structures and energies for several configurations 21 .

The electrostatic energy is calculated using derived multipoles composed of charge 

There are typically five independent quadrupole components due to symmetry (𝑄 𝛼𝛽 = 𝑄 𝛽𝛼 ). Usually, the FF uses traceless quadrupoles (∑ 𝑄 𝛼𝛼 = 0). 

The interaction energy named 𝑈 𝑒𝑙𝑒 𝑝𝑒𝑟 between two multipole sites 𝑖 and 𝑗 is written as: 

)

for 𝑎, 𝑏 = {𝑥, 𝑦, 𝑧}

where 𝑀 𝑗 = [𝑞 𝑗, 𝜇 𝑗,𝑥 , 𝜇 𝑗,𝑦 , 𝜇 𝑗,𝑧 , 𝑄 𝑗,𝑥𝑥 , 𝑄 𝑗,𝑥𝑦 , 𝑄 𝑗,𝑥𝑧,⋯, 𝑄 𝑗,𝑧𝑧 ] 𝑡 is the multipole distribution already described on atom center 𝑗. 𝑇 𝑎 𝑖𝑗 = [𝑇 𝑎 , 𝑇 𝑎𝑥 , 𝑇 𝑎𝑦 , 𝑇 𝑎𝑧 , … ] is the interaction tensor between sites 𝑖 and 𝑗.

The polarizability 𝛼 𝑖 for carbon, hydrogen, nitrogen and oxygen in AMOEBA are adopted from the Thole model 25 . The others such as aromatic carbon and hydrogen atoms and ions are usually computed from QM.

The above equations have to be solved iteratively for all atomic sites of the system at the same time.

The damped induction approach initially developed by Thole is adopted in order to avoid the divergence of the polarization energy at short distances 25 . The damping is effectively achieved by smearing the atomic multipole moments in each pair of interaction sites. The smearing function for charges adopted by AMOEBA has the following functional form:

𝜌 = 3𝛼 4𝜋 𝑒𝑥𝑝(-𝑎𝜇 3 ) (13) 
where

𝜇 = 𝑅 𝑖𝑗 (𝛼 𝑖 𝛼 𝑗 ) 1 6
is the effective distance as a function of linear separation 𝑅 𝑖𝑗 and 𝛼 𝑖, 𝛼 𝑗 are atomic polarizabilities of sites 𝑖 and 𝑗. The factor "a" is a dimensionless width parameter of the smeared charge distribution, and effectively controls the damping strength. In the original model of Thole, "a" was chosen to be 0.572 for all atoms. In the first version of the AMOEBA water parameters, "a" was chosen to be 0.39 after fitting the interaction energies of a series of small water clusters. This value is used in AMOEBA for all atoms except for multiply-charged cations 11b-e, 17a . In these cases, it is necessary to use stronger damping (a < 0.39) to better represent the electric field around the ions. Corresponding damping functions for charge, dipole, and quadrupole interactions were derived through their chain rule relationships 3b .

Many-body effects consist of both polarization and charge transfer (CT). SIBFA 2,4 for instance accounts for CT terms, but CT is not explicitly taken into account in advanced FF. Usually, researchers consider CT to be a secondary effect that can be indirectly included in vdW and electrostatics parameters. But sometimes the lack of CT may be problematic, especially for transition-metal systems. In these cases, special care must be taken in the parameterization and the validation procedure. Another way to include full many-body effects is to use a model in which both charges and dipoles are fluctuating such as in the work of Friesner and Berne 26 . Furthermore when two atoms are close enough, their charge densities can overlap. As a consequence, the screening of the charge of a nucleus by its own electronic density decreases. This interaction is called 'electrostatic penetration' or 'charge penetration'.

Different strategies have been proposed to include this effect in molecular modeling 27 . An optimized model has been added into the AMOEBA force field 28 .

II. STANDARD PARAMETRIZATION STRATEGY

One of the challenges of advanced force fields is the development of parameter sets which is made complicated with AMOEBA owing to the complicated mathematical form of the potential energy function. In this Section, we describe the standard parameterization of the AMOEBA force field.

II.1 Define atom types and classes

In derived from a similar structure whose parameters exist already. However in some cases, one should modify the parameters, for example to adjust the torsion parameters according to QM results 30 .

Moreover, new atom types are sometimes necessary to describe diverse electrostatic interactions. A key step is to obtain an accurate multipole distribution of the molecule.

II.2 Extraction of atomic multipoles

Electrostatic multipoles are located on atomic centers and defined in the local frame for each site (atom or lone pair) 3b , constructed from neighboring atoms (Figure 1). While the molecule vibrates, turns or diffuses during the simulation, the atomic multipoles remain constant within the defined local context shown in Figure 1. (c)) is used for sites such as the sulfur atom of dimethylsulfoxide, which has a distinct primary Z axis and symmetry or pseudo-symmetry along a secondary direction. In each case, the positive Y axis is defined to create a cubic right-handed coordinate system. In the AMOEBA parameter set, we use a negative sign (-) to signal a multipole orientation in this bisector convention.

The distributed multipole analysis (DMA) 31 method is used to obtain the multipole distribution. This method was implemented in the GDMA software developed by Stone 32 . It evaluates the exact representations of charge density on Gaussian basis sets and approximates each of them by a multipole expansion on atomic nuclei sites and possible additional sites. However, the method is strongly basis-set dependent. When the procedure is used with diffuse basis sets, the distribution of the multipoles leads frequently to non-physical values 33 . A new version of DMA was developed to solve this problem by using numerical quadrature for the diffuse functions, while retaining the original method for the more compact ones 33 . Furthermore, DMA multipoles truncated at quadrupoles is an approximation and could lead to errors in comparison with the electrostatic energy surface. 34 After parameters of the system are created, validation steps need to be carried out by comparing with ab initio simulations or experimental results. One can adjust the original parameters to enforce agreement with the reference results 35 .

III. PARAMETERS OF THE HEME COFACTOR IN ITS FERROUS AND FERRIC FORMS

Our first objective toward simulation of heme proteins with AMOEBA has been the derivation of parameters for heme. This work has been described in an article published in 2018 in the Journal of Chemical Theory and Computation 20 . It is reproduced in the following pages.

Abstract "We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the ferric and ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a histidine and a methionine side chains as ligands. We have derived permanent multipoles from second-order Møller-Plesset perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT) calculations.

In a second validation step we consider interaction energies with large aggregates comprising around 80 H2O molecules. These calculations are repeated for thirty structures extracted from semi-empirical PM7 MD simulations. Very encouraging agreement is found between DFT and AMOEBA force field which results from an accurate treatment of electrostatic interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA testing both the 2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High Performance)

program. In conclusion, owing to their ubiquity in biology we think the present work opens a wide array of applications of the polarizable AMOEBA force field on hemeproteins."

I. INTRODUCTION

Hemeproteins play important roles in diverse biological functions including transportation or storage of dioxygen (e.g., hemoglobin, myoglobin, neuroglobin), electron transport (e.g., cytochromes), or in enzymatic reactions (e.g., cytochromes P450). This remarkable diversity of functions results from the specific chemical structure of the heme motif, which consists of an iron cation chelated by the four nitrogen atoms of a deprotonated porphyrin ligand. The iron cation arranges in an almost planar geometry with one or two ligands completing the coordination sphere in axial position. The axial ligand may either be amino acid residues, typically histidine or methionine side chains, or exogenous ligands (O 2 , NO, H 2 O...). Both the ferrous and ferric forms of the iron cation can be stabilized by the complex. This ensemble of structural and redox properties confers distinct biological functions to hemeproteins. Intensive research in both experiments [1][2][3][4] and theoretical simulations [5][6][7][8][9][10][11][12][13][14] have been done to unravel the molecular mechanisms associated with the biological functions of hemeproteins.

Focusing on the modeling of the redox properties of hemeproteins, much progress has been realized over the past two decades. 7,8,10,15,16 Computational modeling is essential in this research field to help understand the variability of redox properties of different hemeproteins. For example, one can rationalize variations of redox potentials or of reorganization energies of hemeproteins from the secondary structure of the protein. Indeed, the presence of charged or polar chemical groups is important in determining the free energies of oxidation of hemes. It is now well documented that the redox properties of hemeproteins depend not only on the structure of the heme cofactor but also on the structure and on the dynamics of the protein matrix and on the hydration level of the proteins. 17 When interested in evaluating redox potentials or electron transfer rates, a particularly powerful approach consists of combining quantum mechanical (QM) methodologies to molecular dynamics (MD) simulations with molecular mechanics (MM) methodologies (i.e., classical force fields). We refer the reader to recent review papers detailing the different strategies employed so far in the literature to evaluate redox properties of proteins. 15,18,19 There are several parameters that impact the accuracy of computed redox properties: (i) the choice of the QM method to evaluate the intrinsic propensity of heme to lose an electron (ionization potential), (ii) the accuracy of the force field (FF) to describe the environment and its interaction with the heme, and (iii) the extensiveness of the conformational sampling of the proteins in the different redox states. Even though much progress has been realized in past decades in terms of the accuracy of redox property computations, numerical approaches are still far from reaching experimental precision. For instance, uncertainties of a few millivolts on the redox potentials which are reachable by electrochemical means correspond to an accuracy of less than 1 kcal/mol on free energies of oxidation. A key challenge is to accurately describe electrostatic interactions between the heme cofactor and its environment (protein, water, counterions...). Indeed the change from the +II to +III (or vice versa) induces significant conformational rearrangements of the environment. Previous studies showed that inclusion of electrostatic induction in classical FFs is mandatory to capture reorganization of surrounding atoms. 17,[20][21][22] Indeed, the associated reorganization energy is related to the optical dielectric constant of the medium and can only be reproduced by polarizable FFs. 8,15,18 Another fundamental limitation of standard FFs is the monopolar representation of the permanent electron cloud of molecules.

Force field parameters for heme have been proposed for various nonpolarizable FFs. [23][24][25][26][27][28][29][30] In this work, we are interested in the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field implemented in the Tinker program package (version 7.1.2). 31 AMOEBA stands as a highly accurate FF for water 32,33 and for ion hydration [34][35][36][37][38] and to reproduce the structures and thermodynamics of organic molecules and biomolecules. [39][40][41][42][43] The AMOEBA water model was also compared to the Drude polarizable force field 44 to evaluate reorganization free energy for electron self-exchange in aqueous Ru(II)-Ru(III). 45 Electrostatic interactions between permanent charge distributions are accounted for by sets of permanent monopolar, dipolar, and quadrupolar moments centered on atoms. Moreover, AMOEBA implements an induction model which allows reproduction of the anisotropy and the nonadditivity of the molecular polarization response. Furthermore, recent developments have introduced short-range penetration corrections between molecules. [46][47][48] We are not aware of any MD simulation of hemeproteins carried out with AMOEBA, a situation undoubtedly related on one hand to the lack of parameters for the heme cofactor and on the other hand to the computational cost of such simulations with common computer codes. Indeed, as one can expect, such a sophisticated FF is far more expensive than standard force fields developed to study biomolecules. In that regard, noticeable algorithmic developments in the Tinker-HP (High-Performance) software 49 have been carried out by some of us which enable long (>100 ns) MD simulations on biological systems with AMOEBA. 50,51 The development of AMOEBA FF parameters of heme is therefore timely. We report here to the best of our knowledge the first sets of AMOEBA parameters for the heme cofactor in both the ferric and ferrous states.

The details of the parametrization procedure will be given in section II. The sets of parameters will be validated against quantum chemistry calculations in section III. The results show a clear improvement of interaction energies between heme and surrounding molecules compared to point-charge FF. Finally, we will report in section IV, to the best of our knowledge, the first nanosecond MD simulations of a cytochrome with AMOEBA as implemented in TINKER-HP. 49 II. METHODOLOGY II.A. The Amoeba Potential Energy Model. The functional form of the potential energy computed by AMOEBA is given by eq 1:

= + + + + + + + U U U U U U U U U bond angle cross opp torsion vdW ele perm ele ind (1) 
The first five terms are the valence interactions including bonds, angles, bond-angle cross coupling terms, out-of-plane deformations, and torsional rotations. AMOEBA uses mathematically flexible expressions that go beyond the harmonic approximation for the intramolecular terms. These terms have the same functional forms as those used by the MM3 force field. 52 Analytical expressions for each of these terms can be found in ref 39. The last three terms of eq 1 gather intermolecular interactions. U vdw refers to van der Waals interactions and is calculated with Halgren's buffered 14-7 function. This function yields a repulsive region softer than the Lennard-Jones 6-12 function but steeper than typical Buckingham exp-6 formulations. U ele perm collects the electrostatic interactions between permanent multipoles. Monopoles, dipole vectors, and quadrupole tensors are positioned on each atom site in order to reproduce the molecular electrostatic potentials accurately. These permanent atomic multipoles are defined with respect to local frame and maintain a constant orientation during simulations. Finally, U ele ind refers to interactions between permanent charges and induced dipoles. Atomic polarizabilities are included to determine induced dipole moments on each polarizable site. Electronic induction is achieved via an interactive atomic dipole induction scheme. 51 The induced dipole at site i further polarizes all other sites until the induced dipoles at each site reach convergence. The simulations use a preconditioned conjugate gradient solver coupled to Kolafa's Always Stable Predictor-Corrector (ASPC) algorithm. 53 To avoid the polarization catastrophe phenomenon, AMOEBA employs Thole's short-range damping method. 54 In the present work, we do not include short-range penetration corrections. 46,48 II.B. Parametrization Strategy. We have followed the standardized parametrization protocol of AMOEBA FF. 55 As recalled in the Introduction, the coordination sphere of Fe in heme can encompass various chemical groups depending on the protein of interest. For example, the Fe cation can be coordinated by one or two histidine residues (e.g., cytochrome P450 or cytochrome b 5 ), by one histidine and one methionine residue (cytochrome c551), or by histidine and small ligands (like O 2 , NO...). These different coordination spheres would necessitate distinct sets of parameters. In this work, we are primarily interested in six-coordinated hemes with either two histidines or one histidine and one methionine axial ligand. Such coordination patterns are, for instance, frequently encountered in cytochromes or globins. In our first parametrization attempts, we considered the full six-coordinated complexes; however, we experienced difficulties in obtaining reliable multipoles, and we therefore decided to adopt another strategy. Our approach consists of parametrizing the fourcoordinated iron porphyrin (PFe II/III ), on one hand, and the axial ligands separately. This approach is justified when the axial ligands are either histidine or methionine residues by the fact that charge transfer from the iron cation toward the ligand is rather small. Indeed, charge transfer from the axial ligands to the iron-porphyrin complex amounts to 0.05 e -and 0.15 e -in the ferrous and ferric states respectively, based on Density Functional Theory (DFT) calculations combined with the iterative Hirshfeld 56 electronic population scheme (Table S1). We expect the multipolar description of the FF to describe sufficiently well the interaction between PFe and the axial ligands. The chemical structure of the PFe group used during the parametrization protocol is depicted in Figure 1. This PFe group has been further truncated into three fragments as shown in the figure. The amino acid backbone atoms of histidine and methionine have been modeled as methyl-imidazole (ImMe) and ethyl-methyl-sulfide (EMS), respectively. Note that this strategy also assumes that no spin density is transferred from the iron porphyrin core to the axial ligands (see Table S1).

Figure 1 depicts the atom types for all atoms. For the intramolecular terms, the atom types and classes of PFe atoms and the two ligands have been defined by analogy with parameters from the AMOEBA-2013 FF for proteins. 43 For example, the AMOEBA classes and types of atoms CD2, CE2, and NE1 within the porphyrin ligand were transposed from the analogous atoms of the five-membered ring of the tryptophan residue. NE1 is nitrogen atoms pertaining to the azole ring, CE2 is sp 2 's of the azole cycle linked to NE1 and to one sp 3 carbon and one sp 2 carbon. Finally, CD2 is sp 2 's of the azole cycle linked to two other sp 2 carbon atoms. The valence parameters (bond stretching, angle bending, torsions, van der Waals, and polarizabilities) were taken from the set without modification. The van der Waals and atomic polarizability for Fe were taken from the work of Semrouni et al. for the ferrous state. 34 The same van der Waals parameters are here for both the ferrous and ferric state. This has been common practice for simulations of hemeproteins using more standard force fields. 18,27 We actually think that for iron cations nested at the heart of the porphyrin ligand in well-defined coordination spheres, the differences of nonbonding interactions between the two redox states can be captured by adequately tuned sets of multipoles on the metal ion and its coordination sphere. This methodological strategy will be validated extensively in sections II and III.

A central aspect of the parametrization procedure is the fitting of multipoles for PFe. The sets of multipoles have to be different in the ferrous and ferric redox states. To that end, we have optimized the geometry of the [PFe-ImMe-EMS] complex by DFT calculations with the OPTX-PBE functional 57,58 and the DZVP-GGA basis set. 59 These calculations have been carried out with deMon2k. 60 To avoid spurious electronic delocalization between the iron cation and the carboxylate functions, the latter have been protonated during geometry optimizations. The OPTX-PBE functional has been chosen for its good performance to reproduce the electronic energies of different spin states in transition metal complexes. 61,62 deMon2k relies on auxiliary fitted densities to calculate the Coulomb and exchange correlation energies and potentials. 63 The auxiliary basis sets are automatically generated by the program. 59 We chose the GEN-A2 for H and C, and the more flexible, therefore more accurate, GEN-A2* for Fe, N, and S. Geometry optimizations have been conducted in the singlet, triplet, and quintet spin states for the ferrous state and in the doublet, quartet, and sextet spin states for the ferric state. We have found the singlet and doublet spin states to be the most stable for ferrous and ferric redox states, respectively, by 0.72 and 0.57 eV. We have restricted our parametrization procedure to these two spin states.

After geometry optimization, the structures have been fragmented according to the partition of Figure 1. Hydrogen atoms have been added at the cutting positions between the porphyrin ring and the propionate groups, and we have reoptimized the hydrogen atom positions. Following the AMOEBA parametrization procedure, single point calculations of each fragment have been performed at the MP2/cc-pVDZ level of theory with Gaussian 09. 64 The ground states of fourcoordinated iron-porphyrins are of intermediate spin. MP2 calculations on the fragments have been carried out in the lowest spin state to be consistent with the lowest spin state of the six-coordinated iron-porphyrin. The Distributed Multipole Analysis (DMA) has been carried out from the MP2 electron density using the GDMA program (version 2.2.11) and the original DMA algorithm. [65][66][67][68] The default relative atomic radii used in the DMA algorithm have been chosen except for hydrogen, for which a value of 0.31 has been chosen. This value was previously shown to be appropriate to avoid erroneous charges during the DMA procedure. 69 The POLEDIT program available in Tinker 31 has been subsequently run on the GDMA outputs with the suggested polarizability values. All atoms are placed into a single polarization group by default. This resulting version of multipoles is obtained directly from the DMA procedure. This set of parameters will be referred to as "AMOEBA DMA." Another approach to derive atomic multipoles involves an optimization against the QM electrostatic potential around the system. The AMOEBA DMA multipole values have been used as starting values to the fitting against the MP2/cc-pVDZ electrostatic potential. The DMA partial charges are held fixed during the potential fitting process, while dipoles and quadrupoles are readjusted. The final gradient convergence value has been set to 0.5 kcal mol -1 electron -2 to avoid overfitting. Indeed, a tighter convergence criterion can lead to multipoles that depend strongly on the geometry used for the extraction, and therefore that are less transferable. We will refer to this second set of parameters as "AMOEBA FIT." Finally, according to the defined atom types, the multipole values have been averaged over the equivalent atoms. The procedure was carried out for each fragment. Two versions of each multipole set have been created for both ferrous and ferric states. At the end, all the fragments have been combined by removing excess hydrogens, and the global charge has been adjusted to be -2 and -1 for ferrous and ferric states, respectively. In summary, four parameter sets have been generated and named Fe II AMOEBA DMA, Fe II AMOEBA FIT, Fe III AMOEBA DMA, and Fe III AMOEBA FIT. They will be now tested against quantum mechanical calculations. The parameters are available in the SI.

III. VALIDATION AND SIMULATIONS

In section III, we validate the different AMOEBA parameter sets on the calculation of interaction energies between the heme and its environment. We start by gas phase interaction energies (IE) between the [PFe-ImMe-EMS] complex and different molecules relevant to biological systems. We continue by calculating IE with large clusters of water molecules. We also address the transferability of our parameters for the [PFe-(ImMe) 2 ] complex. We finally conclude the section by the adjustment of the internal bond and valence angle terms to tune the geometry of the iron first coordination shell.

III.A. Computational Details. As a first test of the sets of AMOEBA parameters, we here report interaction energies between the [PFe-ImMe-EMS] and various molecules in the gas phase. The IE between the iron complex and a molecule (M) is defined as

Δ = - - E E E E ([PFe, M]) ([PFe]) (M) int (2) 
where E([PFe,M]) is the energy of the supramolecular complex and E([PFe]) and E(M) are the energies of the two fragments. For each supramolecular system, the geometry has been constructed by associating the [PFe II -ImMe-EMS] complex, geometrically optimized in the absence of the partner M, with the geometry of the fragment. A restrained geometry optimization of the supramolecular ensemble has been carried

out at the DFT level, freezing the geometry of the heme partner, and optimizing only the internal geometry of partner M. In these restrained optimizations, we have eventually further imposed the distances between the two partners to a given value. Basis set superposition error corrections have not been computed. The list of molecules includes H 2 O, CH 3 CH 2 NH 3 + (a model of lysine side chain), CH 3 COO -(a model of aspartate and glutamate side chains), phenol (a model of tyrosine side chain), and the chlorine and sodium ions. This is a list of representative types of interactions one can find in hemeproteins between the heme cofactors and its environment.

In particular, charged or polar residues are known to play a special role in determining redox properties. For example, in flavohemoglobin, a lysine residue is hydrogen bonded to one propionate group of the heme, 70,71 and a glutamate residue interacts with axial histidine residues. 70 Tyrosine residues have also been found to interact with heme propionates, for instance, in cytochrome c oxidase. 72 It is therefore important to assess whether the parameters developed in this work are able to accurately reproduce the associated interaction energies. The various supramolecular complexes are depicted in Figure 2. Two types of QM calculations have been carried out, relying either on DFT (B3LYP 73 ) or on MP2. Note that we have tested B3LYP-D3 calculations for some complexes and found negligible effects of dispersion on the computed interaction energies. We mention that convergence of Hartree-Fock or the DFT self-consistent field of deprotonated heme is tedious in the gas phase, especially for the ferric state. Indeed, the terminal propionate groups tend to be oxidized instead of the iron cation, eventually causing severe self-consistent field (SCF) convergence issues and unexpected electronic structures. It was therefore not always possible to obtain QM results for some geometries. MP2 single-point calculations have been performed within the Resolution of the Identity (RI) approach using the TZVP basis set for all atoms with the Turbomole 7.1 program. 74 DFT single-point energies have been calculated with deMon2k at the B3LYP/TZVP level (DZVP-GGA for Fe) and with the auxiliary function set GEN-A2* for all atoms. An adaptive grid of accuracy 10 -8 Ha was defined to integrate the exchange correlation energy and potential. 75 Exact exchange was computed via a variational fitting of the Fock potential. 76 For the FF calculations, the interaction energies with AMOEBA have been computed with the ANALYZE program from the TINKER package. The parameters of the small molecules and ions are taken from the AMOEBA-2013 parameter set for proteins. For H 2 O, two versions of the AMOEBA water model, water03 32 and water14, 33 are tested. For CH 3 CH 2 NH 3 + and CH 3 COO -, sets of multipoles have been determined with the previously described procedure for the heme. The energies entering eq 2 were calculated with eq 1 (AMOEBA). The AMOEBA interaction energies therefore include energy differences from the van der Waals, permanent electrostatic, and induction contributions to the energy. We have also tested a nonpolarizable FF based on the permanent point charge model. For this FF, the reported interaction energies include van der Waals contributions calculated with a 12-6 Lennard-Jones potential and a charge-charge Coulomb interaction. The parameters of vdW are taken from the CHARMM for ferrous heme. 27 The punctual charges have been derived by an iterative Hirshfeld (IH) population analysis 56 as implemented in deMon2k. 77 For water, the IH charges are close to those given by the TIP3P water model. All the computed interaction energies can be found in Table S2.

III.B. Interaction between Heme and Single Molecules.

Heme-Water. We start our discussion with results on IE between heme and a water molecule (see Figure 2a-d). Geometries a correspond to a water molecule engaged in hydrogen bonding with one propionate side chain with different lengths (1.8 Å for A, 3.0 Å for B, 6.0 Å for C, 8.0 Å for D). Geometry b,E corresponds to a hydrogen-bond interaction from the NH group of ImMe toward the oxygen atom of water. The equilibrium distance resulting from geometry optimization with DFT amounts to 2.4 Å. Geometry c,F corresponds to a weak OH-π interaction between one C C double bond of heme and one hydrogen atom of water, with an interaction distance of 3.0 Å. Finally, geometry d,G involves a double hydrogen-bond interaction with the water bridging the two propionate side chains with the O-H distances amounting to 2.1 and 2.9 Å. Results are plotted in Figure 3. For geometries A to D, all the methods give the same trend. As expected, the interaction becomes less favorable as the distance increases.

The interaction energy differences for each method with respect to MP2 are provided in Table 1. For geometries C and D, in which the hydrogen bond is weak (>3 Å), all the methods give an IE within 0.3 kcal/mol to that given by MP2. For such long-distance interactions, a monopolar description of the electron density is likely to be valid and therefore accounts for the convergence of nonpolarizable and AMOEBA FF results. For geometries A and B, the differences are more significant between the methods. Among them, the IH results are the closest to MP2 with an error of less than 1.0 kcal/mol. For AMOEBA calculations on geometry B, all parameter sets give similar results. For geometry A, a larger error is found with the water03 model. A plausible explanation for this discrepancy may be the lack of correction for penetration effects. 46 These effects are not taken into account by the version of the AMOEBA FF used in this work. On the other hand, the water14 model is able to significantly reduce the error with respect to MP2 due to the reparameterization of the electrostatic term.

For geometry E, the results for IH and AMOEBA are almost similar. The differences of IE with respect to MP2 are ca. 2 kcal/mol for the ferrous state, while they are only ca. 0.7 kcal/ mol for the ferric state. The results with the different FFS for geometry F are similar for the ferrous state with a difference at ca. 1.6 kcal/mol. However, regarding the ferric state, AMOEBA gives a difference of 2.1 kcal/mol, while IH has a difference of 2.9 kcal/mol. For geometry G, the error for both states is ca. 3.5 and 5 kcal/mol for the water14 and water03 parameters, respectively. As for geometry A, we find that the water14 model seems to perform better, and the nonpolarizable model gives as accurate results.

Heme-Atomic Ions. Five geometries were created to test the accuracy of the interaction with the sodium cation. As shown in Figure 2e, we have investigated interactions with either the propionates groups (A, B, C, or D) or the sulfur atom of the EMS ligand (E). The results obtained with the different computational methods are plotted in Figure 4 for the ferrous and ferric states (panels a and b, respectively). For the A, B, C, and D series, the interaction becomes less favorable with increasing the distance, while the difference between the various methods decreases. This is similar to what was found for the interaction with H 2 O. For geometries C and D in the ferrous state, all methods are within 4 kcal/mol of the MP2 values. The energy differences are larger (ca.7 kcal/mol) for the ferric state. For geometries A and B, IH gives good results with errors lower than 5 kcal/mol. With the AMOEBA FF, we obtain differences around 19 and 9 kcal/mol for geometries A and B, respectively. For geometry E, AMOEBA gives a difference of 14 and 7 kcal/mol with respect to MP2 for the ferrous and ferric states, respectively. For this type of interaction involving a large and polarizable group (thioether), AMOEBA represents a clear improvement over nonpolarizable FF for which differences larger than 55 kcal/mol are found.

We now turn to interaction with chlorine (Figure 2). Geometries A, B, and C correspond to interaction with the ImMe, while geometry D corresponds to a weak dispersive interaction between Cl -and one CC bond or the porphyrin ring. Results are shown in Figure 4 (panels c and d). We remark that as a consequence of the overall -2 or -1 charge of the heme complex in the ferrous and ferric states, the interaction energies with the chlorine anion are almost always positive. Nevertheless, in actual biosystems, other interactions with positively charged residues may counterbalance the repulsive interaction with heme so that anions may still approach them. It is therefore important to test the capability of the AMOEBA parameters to correctly describe the electrostatic interactions between heme and anions. For geometries A, B, and C, AMOEBA reproduces the increase of IE with the distance between heme and Cl -. The difference between AMOEBA and MP2 amounts to 2 kcal/mol in the ferrous states and is a little bit larger in the ferric state. The IH curves exhibit, on the other hand, opposite trends, failing to reproduce even qualitatively the evolution of IE provided by QM methods. We could trace back this discrepancy in the unbalanced treatment of electrostatic and Lennard-Jones interactions. AMOEBA provides a better description of the noncovalent interaction between atomic anions and heme. For geometry D also, AMOEBA gives better results for the ferrous state than IH by ca. 21 kcal/mol. This large difference can be mainly due to the interaction with the CC bond. Here again, we see the advantage of using a polarizable force field.

Heme-CH 3 CH 2 NH 3 + . As shown in Figure 2, geometries (i) A, B, C, and D represent hydrogen-bonded interactions between the propionate side chain of heme and CH 3 CH 2 NH 3 + with increasing length. Geometry D involves an interaction with the thioether. The values of the interaction energies are plotted in Figure 5a for the ferrous state and 5b for the ferric state. Overall, we find that AMOEBA gives a satisfactory treatment of the interaction between this cationic organic species and the heme. IH also gives good results for geometries A, B, and C; however, it fails for geometry D with a difference ca. 50 kcal/mol with MP2. This finding is reminiscent of the difficulty of treating the interaction between Na + and the thioether ligand, illustrating again the advantage of FF relying on a balanced treatment of electrostatic interactions involving permanent multipoles and induced dipoles. That said, like for geometry D, it is probably not likely to be encountered often in the course of MD simulations owing to the short distance between the two interacting partners.

Heme-CH 3 COO -. Geometries A, B, C, and D involve a hydrogen bond between ImMe and CH 3 COO -with increasing length (Figure 2k). The values of the interaction energies are plotted in Figure 5. At long distances, all the FF results are very close to the QM based method (<0.1 kcal/mol), for both redox states. When decreasing the hydrogen bond length, the interaction between the two anionic partners becomes less unfavorable. AMOEBA as well as IH adequately reproduce the trend provided by MP2 or B3LYP. One noticeable exception is geometry A, which is overstabilized with a simple point-charge model (IH).

Heme-Phenol. As shown in Figure 2l, geometries A, B, and C represent the hydrogen-bond interaction between the phenol and the propionate side chain of heme. Interaction energies are given in Figure 5. We first remark on a systematic difference of 6.5 kcal/mol between MP2 and B3LYP for the ferrous state, which is difficult to interpret. The IH results are close to the B3LYP ones, while the AMOEBA results lie in between the B3LYP and MP2. For the ferric state, we could not converge either MP2 or DFT calculations of the heme cofactor. A similar trend than the ferrous state is obtained with the three FFs.

Summary. In summary, AMOEBA is globally in good agreement with QM methods (MP2 and DFT). This is especially true for interaction with highly polarizable groups such as S, CC double bonds, or anions like Cl -. Finally, no large difference has been observed between the two sets of multipoles (DMA or FIT). We can observe that the FIT version gives slightly better results than the DMA one by ca. 1 kcal/mol. For short distances, larger deviations between AMOEBA and QM have been found.

III.C. Heme within Droplets of Water. In the previous section, we validated our AMOEBA parameters looking at interaction energies between the [PFe II/III -ImMe-EMS] complex and various molecules. We now address collective effects by computing interaction energies between the [PFe II/III -ImMe-EMS-(H 2 O) 6 ] complexes and a large ensemble of water molecules. Note that we have included six water molecules around the propionate moieties of the heme to avoid spurious oxidation by the Fe III cation. We also address in this section the transferability of the parameters to the description of the [PFe II -(ImMe) 2 -(H 2 O) 6 ] complex.

In a preliminary step, MD simulations have been carried out with the PM7 semiempirical method and the CUBY4 environment. 79 Details of the PM7MD simulations can be found in the SI. The heme complexes ([PFe II -ImMe-EMS] and [PFe II -(ImMe) 2 ]) are embedded in droplets of water comprising around 1850 water molecules. After geometry optimization, MD simulations have been carried out for 80 ps. Interaction energies have been computed according to eq 2 with energies calculated using deMon2k (DFT) or Tinker (AMOEBA). The normalized autocorrelation functions of the IE obtained with AMOEBA approach zero in periods of a few hundreds of femtoseconds to a few picoseconds (Figure S1). Consequently, we have extracted snapshots for subsequent interaction energy calculations every 2 ps during the last 60 ps, leading to a total of 30 geometries for each complex that can be considered as uncorrelated. To make the DFT level tractable, the geometries have been pruned to retain only the water molecules within less than 8 Å from the iron cation. The pruned geometries typically comprise 75 to 80 H 2 O (for a total of 330 atoms on average). To carry out these computationally very intensive calculations, the Coulomb, local exchangecorrelation, and nonlocal exact exchange contribution to the Kohan-Sham potential have been computed with auxiliary fitted quantities. 63,76 We have used the DZVP-GGA/GEN-A2* combination of atomic orbital and auxiliary basis sets. The grid accuracy to integrate the exchange correlation energy and potential has been set to 10 -8 Ha. Calculations have been carried out with B3LYP, 73 PBE, 58 and PBE0. 80 For complexes in the ferrous states, SCF convergence has been reached with a tolerance of 10 -7 Ha on the SCF energy and 10 -6 on density fitting coefficients. For the ferric state, SCF convergence is much more difficult to obtain on all the complexes, and tolerance thresholds have been set to 10 -4 Ha and 4.10 -4 for some of them. However, we have verified on nine geometries for which tight convergence could be reached up to 10 -7 Ha and 10 -6 respectively, that the computed interaction energies are within 0.05 kcal/mol of those obtained with the looser 10 -4 Ha and 4.10 -4 convergence thresholds (Table S3).

Results are summarized in Table 2 for PBE0 and in Table S4 for PBE and B3LYP. The full list of IE is given in Table S5. For each complex, we report the average difference between the DFT and force field interaction energies (⟨ΔIE⟩) over the series and the associated standard deviation (σ (ΔIE) ). We also report the Root-Mean-Square Error (RMSE) and the linear correlation coefficient between DFT results and FF results (R 2 ). We start by remarking noticeable differences among DFT methods for the [PFeII-ImMe-EMS-(H 2 O) 6 ] complex. On one hand, PBE and PBE0 give similar IEs, with an average difference of ca. 3 kcal/mol. On the other hand, interaction energies calculated with B3LYP are shifted by 30 kcal/mol with respect to both PBE and PBE0 (Table S4). This discrepancy among various DFT XC functionals is large and illustrates the difficulty of obtaining reference values for validating our FF parameters. Recent benchmark calculations of relative energies of large water clusters against CCSD(T)/CBS (Complete Basis Set Limit) showed the sensitivity of such computations with XC functionals. 81 The authors recommended the use of rangeseparated hybrids (ωB97XD 82 or LC-ωPBE-D3 83,84 ) or meta-GGA global hybrids (M05-2X 85 ) for this type of calculation. These classes of DFT functionals are not currently available in the version of deMon2k we are using. PBE0 was ranked before PBE and B3LYP in this study, and we will mainly base our discussion on the PBE0 results.

We start our discussion with the [PFe II/III -ImMe-EMS-(H 2 O) 6 ] complex. The interaction energies computed with the nonpolarizable FF (using IH charges) lead to an average shift larger than 23 kcal/mol with respect to the PBE0 results. The scattering of the computed data is also large. As can be seen in Figure 6 (top, black points) the agreement with DFT is poor. This is reflected by a correlation coefficient of only 0.7. IEs obtained with AMOEBA are much more satisfactory, as seen from the figure and from the values of R 2 . The agreement between AMOEBA and DFT (either PBE or PBE0) is especially good when we use the 2014 AMOEBA water model with R 2 approaching 0.9. The RMSE drops from 30 to 8.2 kcal/mol between the nonpolarizable FF and AMOEBA. These are very satisfactory results, indicating that moving from ] complex, we find that correlation between AMOEBA and DFT is much better than with nonpolarizable FF (R 2 = 0.94 vs 0.62). In summary, these calculations validate our parametrization approach for the heme complex. The computed interaction energies clearly indicate that the sets of multipoles are able to accurately reproduce the electrostatic potential created by the heme complex in both ferrous and ferric states. III.D. Heme Coordination Patterns. Before moving in section IV to the simulation of hemeproteins with AMOEBA, we focus here on the inner-sphere coordination of the iron cation. We observed that in AMOEBA MD simulations of the [PFe II/III -ImMe-EMS] complex in water, the (bi)squared pyramidal geometry around Fe is lost. This means that the sole presence of electrostatic multipoles on the heme atoms is not sufficient to define a proper coordination pattern for iron. This is somehow not surprising because the Fe-N or Fe-S bonds are more complex than resulting from a mere electrostatic interaction. We thus introduce supplementary terms in the potential energy between the iron atom and the two coordinating atoms in axial positions. To avoid the introduction of new atom classes in TINKER or TINKER-HP that would multiply the number of parameters, we have introduced the bonding and angle terms with the "Restrain" option of the program. A restraint term takes the form of a flat-welled harmonic potential. When we use the restrain option, we provide a force constant in kcal/Å 2 and two distances to define a distance range. If the distance between the two atoms under consideration is in this range, the energy from the restraint potential is zero. Outside the distance bounds, a standard harmonic term is used using the force constant and the interatomic distance. We have determined the parameters for the restraints by trial and error. We finally decided to restrain bonds between Fe and the coordinating atoms of the axial ligands (NE2 for histidine and SD for methionine) as well as the angles NE1-Fe-NE2 and NE1-Fe-SD where NE1 and NE2 are the porphyrin nitrogen atoms. The restraint parameters are given in Table S6.

Polarizable MD simulations have been performed with TINKER-HP (version 1.0). 49 The [PFe-ImMe-EMS] complex is immersed into a water box of edge length 24.875 Å. The Particle Mesh Ewald (PME) summation technique has been applied to treat electrostatic interactions, including polarization, with a real-space cutoff distance of 7.0 Å, a grid of 64 × 64 × 64, and fifth-order B-splines. A cutoff with a switching window at 10 Å has been applied to the van der Waals interactions. Induced dipoles have been iterated to convergence, until the Root-Mean-Square (RMS) change between interactions fell below 10 -5 D per atom using the ASPC approach. 53 The trajectories have been propagated using a velocity form of Bernie Brook's "Better Beeman" integration algorithm with a 1.0 fs time step. The system temperature has been controlled with a Berendsen thermostat at 300 K. 86 The average values and standard deviations of a few geometrical parameters of iron coordination are gathered in Table 3. The upper part of the table refers to the bond distances and angles that were specifically restrained to a target value, while the lower part refers to other relevant parameters. Data for both redox states are provided. For comparison, we also provide similar values from an X-ray structure of cytochrome c551. The coordination around heme in this protein is representative and agrees well with the mean value of seven high resolution X-ray structures of other cytochromes containing the same heme group. 27 We also provide values extracted from the DFT optimized structure on which we fitted the sets of multipoles (Table 3) and average values obtained from MD simulations with PM7 (see previous subsection and SI).

The Fe-N his , Fe-N por , and Fe-S met average bond lengths obtained with AMOEBA DMA amount to 2.07, 2.10, and 2.39 Å, respectively, in the ferrous state. Similar values are obtained in the ferric state. These values are slightly larger than those obtained from PM7MD simulations or DFT geometry optimizations but within the experimental uncertainty of Xray structures. The fluctuations of bond length are found to be on the order of 0.03 Å, in close agreement with PM7 simulations and on the order of the expected values for this type of chemical bonding. It could be possible to further increase the restraint force constants to further reduce the gap with DFT values, but we found that very strong force constants were needed to achieve this goal, probably because of repulsion between the axial ligand and the heme fragment originating from the van der Waals and permanent multipoles. It is still also possible that the distances are too long due to the lack of charge transfer between the metal and the porphyrin in the AMOEBA potential. Moreover, increasing the force constants would reduce too much the amplitude of the bond length fluctuations. We therefore decided to retain the set of restraints given in Table S6. The angles around the iron cation are also well reproduced by the AMOEBA simulations when comparing to the experimental and theoretical references. We find few differences for all these parameters when using either the AMOEBA DMA or AMOEBA FIT sets of multipoles. Regarding the C2-Fe-C2 angle (Figure 1) and the out-of-plane deformation of Fe (doming), we find slight displacement of the cation from the average plane of the porphyrin nitrogen atoms. We investigated also the energy profile corresponding to the rotation of the C his -N his -Fe-N por dihedral angle (Figure S2). The global minimum of the profile is located at 0°both at DFT and at AMOEBA levels of theory. The secondary minima are at the same positions with AMOEBA and PBE. The global potential well depth is more pronounced with AMOEBA than in DFT. However, we expect the dihedral distribution during a MD simulation to have similar behavior in AMOEBA and in DFT, centered around 0°, but slightly broader in DFT. Finally, we have inspected an extensive list of complementary geometrical parameters and found excellent agreement between AMOEBA and DFT or X-ray data (Tables S7).

IV. APPLICATION TO MD SIMULATIONS OF CYTOCHROME

In the last section of this article, we report simulations of cytochromes in the ferrous and ferric states with the newly developed AMOEBA FF parameters using the Tinker-HP program. 49 The FIT parameter sets are used. We consider cytochrome b 5 of Rattus norvegicus (PDB code: 1B5A 87 ). The prosthetic group of cytochrome b 5 consists of a heme core with the two axial ligands being histidine residue side chains (His39 and His63). The initial structure has been extracted from NMR data and has been solvated in a cubic water box (edge length of 100 Å) using the CHARMM package. 88 The simulated system is comprised of 97 858 atoms. The protonation state of the residues has been evaluated with the PROPKa server. Aspartate and glutamate residues are deprotonated, while all histidine residues are protonated on δ positions. The system has been neutralized by adding 10 sodium cations. We have subsequently added nine (Na + ,Cl -) ion pairs to reach a salt concentration of 0.15 M. The NMR structure has been preliminarily prepared using the nonpolarizable c31 CHARMM. 88 To this end, we have first carried out 10 000 steps of energy minimization with NAMD. 89 Equilibration has then been reached running successive 20 ps MD with a progressive increase of the temperature from 50 to 298 K by steps of 25 K. During the heating, the protein heavy atoms have been kept fixed by adding harmonic restraints on their positions with force constants of 10 kcal/mol/Å 2 . Subsequently, four successive MD simulations in the NPT ensemble have been conducted over 3 × 100 and 500 ps with restraint force constants of 10, 5, 1, and 0 kcal/mol/Å 2 , respectively. A time step of 2 fs has been used. The final equilibrated structure is used as the starting geometry for AMOEBA polarizable simulations.

Simulations have been conducted in the two redox states and with either the water03 or water14 models. The same parameters as in the previous section are used, except that a RESPA integration algorithm allowing a 2.0 fs time step is used here. The temperature has been controlled by a Bussi thermostat. 90 The Particle Mesh Ewald (PME) summation technique has been applied to treat electrostatic interactions, including polarization, with a real-space cutoff distance of 7.0 Å, a grid of 64 × 64 × 64, and fifth-order B-splines. A cutoff with a switching window at 10 Å has been applied to the van der Waals interactions. Induced dipoles have been iterated to convergence, until the Root-Mean-Square (RMS) change between interactions fell below 10 -5 D per atom and simulations used the ASPC approach. With the equilibrated structure obtained with the nonpolarizable FF, we have performed another equilibration procedure with AMOEBA parameters. For this, we have first fixed the hemeprotein, and have done energy minimization with a convergence value of 0.5 kcal mol -1 Å -1 . Equilibration has been obtained running successive 50 ps NVT MD with a progressive increase of the temperature from 50 to 300 K by steps of 50 K keeping hemeprotein fixed. Then, we have carried out another equilibration with the hemeprotein atom free to move. Finally, we have conducted an 80 ps NPT simulation at 300 K and 1 atm to obtain a stable density of the system (higher than 1 gr/ cm 3 ). A 10 ns MD simulation in the NVT ensemble has been accumulated for analysis. Restraints on angles and bonds involving the iron cation have been set as explained in the previous section. For comparisons, we also carried out MD simulations with a nonpolarizable force field (CHARMM) using the NAMD program. 89 The RMSDs of the protein backbone (focusing on residues 1 to 87) during MD simulation dynamics are shown in Figure 7. For each simulation, the RMSD value is below 3 Å. When focusing on amino acid residues pertaining to structured alpha helices, the RMSDs are, as expected, smaller. We have not noticed any unfolding of tertiary secondary structures during the simulations. Compared to simulations with nonpolarizable FF, the RMSDs show more slight fluctuations but remain on the same order. In regard to the heme coordination sphere, AMOEBA gives good agreement for bond lengths and angles with NMR and DFT data (Table 4, Table S8). The force constants adjusted to define the iron cation inner-sphere coordination are transferable to the heme embedded into the protein matrix. Overall, these data indicate stable dynamics with the here developed parameters in both ferrous and ferric forms. The atom RMSDs for amino acid residues localized within 10 Å are shown in Figure S3. They are examined by types of residues (polar, charged, apolar...). Again, we have not found any conformational changes of theses residues that would be suspicious. However, conformation fluctuations are often more pronounced for the AMOEBA force field, probably because of the more flexible form of the underlying potential energy function. Future works will have to consider much longer simulations to assess the stability of hemoproteins and to investigate whether the herein developed AMOEBA force field for heme leads to more accurate redox properties than standard force fields. These MD simulations have been run using 1440 2.6-GHz processors connected via infinite band technology (IB 4x FDR). The total wall clock time was approximately 12 h/ns of simulation on the Occigen machine at CINES (Montpellier, France). We mention that recent algorithmic developments of Tinker-HP should further improve efficiency. MD simulation of hemeproteins with AMOEBA is now computationally feasible in reasonable times.

V. CONCLUSION

In this article, we have reported to our knowledge the first parameters of heme for the polarizable AMOEBA force field. They have been derived both for the ferrous and ferric forms. Extensive validation has been obtained from calculations of interaction energies with series of small molecules of biological interest and on large water aggregates comprising around 80 water molecules. We have found that the description of the electrostatic interaction with the heme is greatly improved with AMOEBA. This is especially noticeable regarding interaction energies with water aggregates for which the correlation with DFT results outperforms that of a nonpolarizable model. That said, we have also found the model for water to have strong influence on the accuracy of the computed interaction energies. The 2014 water model has been found to be in better agreement with the reported DFT reference calculations, although results obtained with the 2003 potential are similar in nature. We have finally reported MD simulation of a cytochrome using the AMOEBA force field.

The availability of parameters for heme combined with the advent of highly efficient implementation of AMOEBA in the TINKER-HP software opens the door to wide applications of MD simulations of hemeproteins with AMOEBA. The herein devised parameters are freely available in the SI or upon request to the authors.
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Table S1: Atomic charges on heme gas phase model derived from DFT.

Table S2: Interaction energies of heme with single molecules.

Table S3: Average interaction energies (kcal/mol) for the [PFeIIIImMe-EMS-(H2O)6] complex with SCF convergence criteria.

Table S4: PBE and B3LYP interaction energies statistics for the heme@water droplets.

Table S5: Full list of interaction energies for the heme@water droplets with PBE0.
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Restrain parameters defining the iron coordination sphere.

Table S7:

Summary of important geometrical parameters along an MD simulation of reduced heme in water.

Table S8:

Summary of important geometrical parameters along an MD simulation of reduced heme in cytochrome. We used the CUBY4 framework 1 which is interfaced to MOPAC2016 2 to carry out geometry optimization and MD simulations. We first carried 200 steps of geometry optimizations at the PM7 semi-empirical method 3 . Tests with PM6 4 were not conclusive since the iron coordination in the optimized geometry was not meaningful. Also simulations for the ferric state frequently failed to converge. We therefore restricted our simulation to the ferrous state. MD simulations were launched for 80 ps with a time step of 2 fs. Temperature was controlled with a Nose-Hoover thermostat (coupling frequency of 0.1 ps -1 ). The shape of the water droplet was controlled with the confinement algorithm developed by Belgov and Roux et al. as implemented in CUBY4 5 .

MD simulation of heme cofactors embedded in water droplets with the PM7 methods

AMOEBA fitted multipoles for the heme complexes

AMOEBA Force Field parameters

The parameters created for heme cofactor in its ferrous and ferric forms will be available on the TINKER-HP website soon.

CONCLUSION

In this chapter, we reported efforts toward the use of sophisticated force fields going beyond the point charge description of electrostatics. The objective underlying these efforts is to reach significantly more accurate evaluation of redox potentials of biological redox cofactors nested within proteins.

AMOEBA FF was chosen as a workhorse. We have developed sets of electrostatic multipoles for heme in both ferrous and ferric states. Extensive validations have been carried out against DFT and MP2 calculations. In the case of interaction between heme and small molecules, AMOEBA parameters give better results especially for highly polarizable groups. The interaction energies calculated with

AMOEBA have an excellent correlation with DFT results outperforming non-polarizable models. The The perspective of the development reported in this Chapter are wide. The next step would be to use the AMOEBA parameters to evaluate redox potentials in the series of heme proteins introduced in Chapter 1. The heme parameters for AMOEBA will also be useful for other research groups interested in hemoproteins. According the specific aim, these parameters may also be adapted for other chemical variants of the heme cofactors.

Real-Time Propagation of the Electronic Density in polarizable environment

Electron transport (ET) is a fundamental process taking place in biological systems. For example light harvesting, the cellular respiratory chains, enzymatic reactions or defenses against oxidative stress all rely on transport of electrons over nanometers 1 . The temporal scales associated with these phenomena cover several orders of magnitude ranging from a few microseconds (e.g. long-range ET in cytochromes in the respiratory chain) down to tens of atto-seconds (e.g. charge migration within molecules). Understanding the molecular mechanism governing these fascinating processes is extremely motivating. The conceptual frameworks commonly used to rationalize electron transfers between molecules can be classified into two categories.

The first class covers ET limited by nuclear motion and can be understood using the Marcus theory. The Beratan and Onuchic to map the ET pathway 2 . Some researchers sought the rationale of tunneling pathways based on the calculation by modern electronic structure theory programs, of tunneling density currents. In particular Stuchebruhkov thoroughly investigated how the electron flows from the donor to the acceptor 3 highlighting the protein residues that are the most important for efficient tunneling (Figure 1).

Another kind of electron transfer is the class of those governed by electron correlations as described by During the first years of the development, much effort was placed on devising efficient and robust algorithms. With these developments, we can now apply RT-TDDFT to molecular systems comprised of hundreds of atoms 4 . The current challenges are two-fold. On one hand, it is needed to continue developing highly efficient algorithms to simulate larger system and on the other hand, to account for environment effects, especially for heterogeneous environments. The objective of the present Part II is to contribute to the development of an original and highly effective RT-TDDFT methodology to deal with ED in large and heterogeneous environment.

In Chapter 4, we introduce the RT-TDDFT methodology. In Chapter 5, we report an original coupling between RT-TDDFT and a polarizable force field to take into account the heterogeneous environment. 

Efficient and Robust Implementation of RT-TDDFT in deMon2k

The theory of Time-Dependent Density Functional Theory (TDDFT) was developed in the 1980's by Runge and Gross 1 . They proved that the evolution of the electron density of a molecular system is uniquely defined by the time dependent external potential acting on the electrons (within an arbitrary constant). This theory opens the door toward the understanding of the response of a molecular system subjected to external perturbations like the electric field component of an electromagnetic wave. The TDDFT equations can be solved by application of the Linear Response theory giving rise to the so-called Linear-Response TDDFT (LR-TDDFT) 2 method. This formalism is adapted for weak perturbations. LR-TDDFT has found many applications in theoretical chemistry to calculate electronic excitation energies and oscillator strengths, making possible the simulation of absorption spectra of molecules 3 . LR-TDDFT has also been used in combination with molecular dynamics to simulate non-adiabatic chemical reactivity 4 . The acronym RT-(Real Time)-TDDFT on the other hand, refers to methodologies that attempt to propagate the equations-of-motion for the electron density (𝜌) explicitly by numerical integration. RT-TDDFT simulations date back to the works of Theilhaber 2b , Calvayrac, Reinhard, and Suraud 5 , and of Bertsch and Yabana 6 . The explicit propagation of the Runge and Gross equations has multiple advantages. First, the perturbations applied in RT-TDDFT are not necessarily weak as in LR-TDDFT which opens the possibility to simulate non-linear optical phenomena, for example the generation of High Harmonics 7 (HHG) or the ionization of molecules under strong electric fields 8 .

Second, RT-TDDFT gives access to the realm of attosecond electron dynamics, the understanding of which is essential in the description of various physical-chemical processes such as the response of a molecule to irradiation by photons or massive particles (protons, electrons …). Finally the algorithms of simulating the evolution of the density look formally straightforward.

While RT-TDDFT has emerged in the physics community already in the 1990's, it has gained strong momentum in theoretical chemistry more recently. Implementations of RT-TDDFT for molecular systems have been reported in Octopus 9 , GAUSSIAN 10 , SIESTA 11 , NWCHEM 12 , QBOX 13 , CPMD 14 , and Qchem 15 . The range of applications includes the simulation of spectroscopic observables (UV-visible spectra 16 , core-level near-edge X-ray absorption spectra 17 , photoelectron emission spectra 18 ), the investigation of coherence and ultrafast charge-transfer dynamics in small molecules 19 , the study of molecular conductance in polymers 20 , or the simulation of non-adiabatic electron-nuclear dynamics 14 .

A current challenge for RT-TDDFT approaches is to achieve efficient and robust implementations in order to address large molecular systems comprised of hundreds of atoms. The simulation of electron dynamics (ED) by RT-TDDFT requires a huge number of Kohn-Sham potential calculations, which can limit the accessible simulation lengths or the size of the simulated systems. In the context of stationary DFT, algorithmic developments such as the Resolution of the Identity 21 (RI) or variational Density Fittings 22 (DF) have been decisive to reach high computational efficiency. RT-TDDFT methods could potentially benefit from such algorithms. This is the objective of the work described in this Chapter, namely to carry out a new implementation of RT-TDDFT within the deMon2k 23 software that provides this kind of advanced algorithms. In section I, we will detail the formalism employed in RT-TDDFT equations. We will cover the mathematical expressions for carrying out ED simulations, details on the auxiliary DFT framework used in deMon2k, the types of available perturbations to trigger electron dynamics and finally the tools implemented to analyze the time dependent electron density. In Section II, we will report various ED simulations results aimed at testing the computational performance of the implementation. We will occasionally refer to the article published in the Journal of Chemical Theory and Computation describing our implementation. This manuscript is reproduced at the end of Part II.

I. REAL-TIME AUXILIARY TDDFT I.1 Electronic Equations-of-Motion

I.1.a Linear Combination of Atomic Orbitals formalism

Runge and Gross developed the many body wave function TD Schrödinger equation into the singleparticle TD density functional theory 24 . They showed that there is a one-to-one correspondence between the time-dependent density 𝜌(𝒓, 𝑡) and the time-dependent potential 𝑣 𝑒𝑥𝑡 (𝐫, t) for a given set of initial conditions. The most attractive way to calculate approximate densities is provided by the TD Kohn-Sham (TDKS) 25 framework that refers to a fictitious system of non-interacting electrons having the same ground-state density as the real system of interacting electrons. Each TDKS single particle wave function 𝜓 𝑖 obeys a time-dependent Schrödinger equation that reads, in atomic units:

𝑖 𝜕𝜓 𝑖 (𝒓, 𝑡) 𝜕𝑡 = 𝐻 ̂[𝜌(𝐫, 𝑡)]𝜓 𝑖 (𝒓, 𝑡) (1) 
The non-relativistic TDKS operator 𝐻 ̂ is a functional of the density which is comprised of four terms.

𝐻 ̂(𝒓, 𝑡) = 𝑣 𝑒𝑥𝑡 (𝒓, 𝑡) - 1 2 ∇ 2 + ∫ 𝜌(𝒓 ′ , 𝑡) |𝒓 -𝒓 ′ | 𝑑𝑟 ′ + 𝑣 𝑋𝐶 [𝜌(𝒓, 𝑡)] (2) 
The first term on the r.h.s is the external potential 𝑣 𝑒𝑥𝑡 felt by the electrons. It includes the potential created by the nuclei. It can be supplemented by other terms describing, for example the interaction with an external electric field or a charged projectile. In the context of hybrid QM/MM simulations the external potential is supplemented by the potential created by charged or polarized MM atoms (cf.

Chapter 4). The last three terms are the kinetic energy operator, the classical Coulomb potential and the exchange correlation (XC) potential. 𝑣 𝑋𝐶 is a functional of the density that is in principle non local in space and time. In many implementations though the dependence in time of 𝑣 𝑋𝐶 is neglected. This is called the adiabatic approximation 26 . Under this hypothesis, the approximate XC functionals developed for stationary DFT calculations can be re-used in RT-TDDFT without special reprogramming.

Although the adiabatic approximation is valid for many applications 27 , it introduces a supplementary approximation in the propagation besides the unknown nature of the exact XC functional. Attempts are currently underway to go beyond the adiabatic approximation 28 , but we will not consider them in this Chapter.

The density 𝜌 of the non-interacting reference system is obtained from the manifold of KS orbitals, the electronic occupations of which are denoted 𝑛 𝑖 .

𝜌(𝒓, 𝑡) = ∑ 𝑛 𝑖 𝜓 𝑖 * (𝒓, 𝑡)𝜓 𝑖 (𝒓, 𝑡)

𝑎𝑙𝑙 𝑖 (3) 
The energy of the molecular systems 𝐸[𝜌(𝒓, 𝑡)] reads,

𝐸[𝜌(𝒓, 𝑡)] = ∫ 𝑣 𝑒𝑥𝑡 (𝐫, t)𝜌(𝒓, 𝑡)𝑑𝑟 + ∑ ∫ 𝑛 𝑖 𝜓 𝑖 * (𝒓, 𝑡) (- 1 2 ∇ 2 ) 𝜓 𝑖 (𝒓, 𝑡) 𝑎𝑙𝑙 𝑖 𝑑𝑟 + 1 2 ∫ ∫ 𝜌(𝐫, 𝑡)𝜌(𝒓 ′ , 𝑡) |𝒓 -𝒓 ′ | 𝑑𝒓𝑑𝒓 ′ + 𝐸 𝑥𝑐 [𝜌(𝒓, 𝑡)] (4) 
In practice, in order to code the above equation it is necessary to choose a methodology to represent the KS molecular orbitals (MOs). A common strategy is to define a basis set and to expand the KS MO as linear combinations of the basis set elements 29 . Localized atomic orbitals (e.g. Gaussian functions)

or plane waves have been proposed in RT-TDDFT. The former choice is well suited for confined molecular systems ("cluster approach"). This is the choice made in NWChem 30 , Gaussian 31 , Qchem 32 or deMon2k 23 . The latter is more adapted for periodic systems (e.g. CPMD). An alternative which is more frequently encountered in codes developed by physicists is to represent KS MOs on discretized grids in real space (see for instance the Octopus 33 or TELEMAN 34 codes).

In deMon2k, the KS molecular orbitals are expanded as Linear Combinations of Gaussian-Type Orbitals (LCGTO). We use Greek letters 𝜇 , 𝜈 to denote AO. For simplicity the same notations are used to index them. The KS MOs read:

𝜓 𝑖 (𝒓, 𝑡) = ∑ 𝑐 𝜇𝑖 (𝑡)𝜇(𝒓) 𝑁 𝐴𝑂 𝜇=1 (5) 
where 𝑁 𝐴𝑂 is the number of atomic orbitals (AO). The MO coefficients 𝑐 𝜇𝑖 hold the dependence in time.

It has to be noticed that because of the occurrence of the imaginary unit in the time-dependent Schrödinger equations, the MO coefficients are complex numbers in RT-TDDFT simulations (𝑐 𝜇𝑖 = 𝑐 𝜇𝑖 𝑅 + 𝑖𝑐 𝜇𝑖 𝐼 , 𝑐 𝜇𝑖 * denoting the complex conjugate of 𝑐 𝜇𝑖 ). The electron density can be written from the density matrix 𝑃, the elements of which are given by Eq. 7.

𝜌(𝑡, 𝒓) = ∑ 𝑃 𝜇𝜐 (𝑡)𝜇(𝒓)𝜈(𝐫) 

𝑁 𝐴𝑂 𝜇,𝜈 (6) 

I.1.b Numerical approaches to the Liouville-von Neuman equation i) Generalities on propagators

Eq. 2 can be recast using the density matrix 𝑃 into a Liouville-von Neumann type equation 35 .

𝑖 𝜕𝑃 ′ (𝑡) 𝜕𝑡 = [𝐻 ′ (𝑡), 𝑃 ′ (𝑡)] (10) 
This expression assumes that the electronic wave functions are expressed on an orthogonal basis (as emphasized by the use of primes). Yet, in general the sets of atomic orbitals for polyatomic molecules are not orthogonal. To use Eq. 10 a transformation to an orthogonal basis set is needed. This procedure is similar to that employed in stationary DFT calculations where a transformation to an orthogonal basis is operated to facilitate the resolution of the Roothaan-Hall equations 29 . We use the Löwdin orthogonalization scheme relying on 𝑆 -1 2 ⁄ , 𝑆 being the overlap matrix (𝑆 𝜇𝑣 = ⟨𝜇|𝜈⟩). We provide in Annex II of the Chapter the working equations to transform the density matrix or the KS matrix into the AO or MO basis.

A formal solution of Eq. 10 is given by Eq. 11, where 𝑈 is the evolution operator.

𝑃 ′ (𝑡) = 𝑈(𝑡, 𝑡 0 )𝑃 ′ (𝑡 0 )𝑈 † (𝑡, 𝑡 0 ) (11) 
Eq. 11 provides the electron density at time 𝑡 from the density at time 𝑡 0 . It is however not useful by itself. A powerful alternative is to seek for numerical simulations of this equation. The starting point is to discretize the time 𝑡 into a series of successive steps of length ∆𝑡 (Eq. 12). The evolution operator for each discretized step is given by Eq. 13. 𝒯 is the time-ordering operator, ensuring that operators associated with later times always appear to the left of those associated with earlier times.

𝑈(𝑡, 𝑡

0 ) = ∏ 𝑈(𝑡 𝑖 + ∆𝑡, 𝑡 𝑖 ) 𝑛-1 𝑖 (12) 
𝑈(𝑡 𝑖 + ∆𝑡, 𝑡 𝑖 ) = 𝒯𝑒𝑥𝑝 {-𝑖 ∫ 𝐻′(𝜏)𝑑𝜏 𝑡 𝑖 +Δ𝑡 𝑡 𝑖 } (13) 
Several different algorithms (propagators) have been proposed to construct 𝑈 in discretized time 36 .

Propagators differ by their respective performances and stabilities. On one hand the term performance is related to the wall-clock time required to propagate the density over a certain amount of time. This can be a time consuming task due to the calculation of integrals involved in electronelectron Coulomb interactions and in exchange correlation terms (see Eq. 9). In addition certain algorithms involve iterative procedures that require more than one calculation of the KS potential at each propagation step (details will be given later). Therefore a common strategy to many algorithms is to minimize the number of propagation steps by taking the largest time step (∆𝑡). It has to be kept in mind that there is a physical limit to the maximum size of ∆𝑡 𝑚𝑎𝑥 depending on the physical process of interest. If 𝜔 𝑚𝑎𝑥 is the maximum frequency to be time resolved in the simulation, Δ𝑡 𝑚𝑎𝑥 should not be larger than ca. 1/𝜔 𝑚𝑎𝑥 . In most of our applications ∆𝑡 is set to 1 or 2 as. On the other hand the term stability refers to the quality of the propagated solution after a certain simulation length. The propagator should be unitary to ensure that the density matrix satisfies the following important properties: 𝑃 ′2 = 𝑃 ′ (idempotent), 𝑃′ † = 𝑃′ (self-adjoint) and 𝑇𝑟(𝑃 ′ ) = 𝑁 , 𝑁 being the number of electrons (conservation of the total number of electrons). Clearly, in many cases stability can be enhanced by decreasing the time-step but the numerical performance will be decreased. One should find a propagator that allows the best trade-off between performance and stability.

The TDKS equations fall into the category of systems of initial-value first-order ordinary differential equations (ODEs). However not all numerical methods to solve the ODEs are suitable to solve the TDKS equations. The literature contains several studies investigating the optimum propagation for RT-TDDFT such as the implicit midpoint rule (Euler, Runge-Kutta, Crank-Nicolson), the exponential midpoint rule, the time-reversal symmetry based propagator, splitting techniques or Magnus propagators, etc. 36a, 37 38 Recently, Castro and coworker tested several multi-step based propagators including exponential Runge-Kutta, and the commutator free Magnus schemes 39 . It turns out to be that the commutator free Magnus integrator is the most robust, simple and efficient propagator for the application reported by the authors. In fact, most studies conclude that the choice depends on the internal characteristics of the system investigated, on the frequency and intensity of the perturbation and on the subsequent response of the electron cloud. Consequently it is desirable to have various alternatives in a code for production runs.

We now focus more specifically on the propagators that we implemented in deMon2k. The first one is the Euler propagator. It is based on Lagrange's mean value theorem:

𝑃 ′ (𝑡 𝑖 + ∆𝑡) = 𝑃 ′ (𝑡 𝑖 ) -𝑖[𝐻 ′ (𝑡 𝑖 ), 𝑃 ′ (𝑡 𝑖 )] * ∆𝑡 (14) 
The propagation of the density matrix requires only the value of the density matrix and of the Kohn-Sham matrix at the current time. This propagation scheme doesn't guarantee preservation of the norm of the KS wave-function. This can lead to divergence of the electronic propagation even with very small time steps. It is therefore not recommended to use it in production runs. 

In practice, the series is truncated at the n th order. The integrals are approximated by a quadrature formula 36a . 20 . They also concluded that SOMP offered a well-balanced propagator between stability and performance. In view of the conclusions of earlier studies we decided to base our implementation on the SOMP.

Ω 1 (𝑡 + Δ𝑡, 𝑡) ≃ -𝑖𝐻 ′ (𝑡 + Δ𝑡 2 ) . Δ𝑡 (18) 

ii) Iterative and Propagator-Corrector versions of SOMP

To apply the Magnus propagator to the electron density at time 𝑡, the values of the KS matrix at later time 𝐻(𝑡 + Δ𝑡 2 ⁄ ) should be used, which is unknown. To overcome this difficulty two methods have been implemented, namely an iterative method and a predictor-corrector (PC) method. The algorithm of the iterative method is depicted in Figure 1. In the first step one builds a guess for 𝐻 0 (𝑡 𝑛 + Δ𝑡 2 ⁄ )

by extrapolation from 𝐻(𝑡 𝑛 ) and 𝐻(𝑡 𝑛-1 ). Then one operates an SOMP step on 𝑃 0 (𝑡 𝑛 ) to obtain 𝑃 0 (𝑡 𝑛 + Δ𝑡) using 𝐻 0 (𝑡 𝑛 + Δ𝑡 2 ⁄ ). The knowledge of 𝑃 0 (𝑡 𝑛 + Δ𝑡) allows the construction of the KS potential at 𝑡 𝑛 + Δ𝑡 (third step) and a new KS potential at 𝑡 𝑛 + Δ𝑡 2 ⁄ is constructed by interpolation from the potentials at 𝑡 𝑛 and 𝑡 𝑛 + Δ𝑡 (fourth step). It is denoted by 𝐻 𝑖 (𝑡 𝑛 + Δ𝑡 2 ⁄ ) in Figure 1. With this improved potential at 𝑡 𝑛 + Δ𝑡 2 ⁄ , one loops back at step 2 and proceeds to another iteration. The process is repeated until convergence of the density or of the potential. In deMon2k we define a convergence threshold based on the variation of the auxiliary fitted density as it will be explained in I.2. This is similar to the criteria employed in the self-consistent-field approach to obtain stationary densities 41 . At convergence the potentials at times 𝑡 𝑛 and 𝑡 𝑛 + Δ𝑡 are saved in preparation for the subsequent propagation step. The electron density at 𝑡 𝑛 + Δ𝑡 is analyzed to provide insights in to the electron dynamics. The iterative method implies several calculations i) of the KS potential and ii) of the SOMP exponential 𝑒 -𝑖𝐻 ′ (𝑡+Δ𝑡 2 ⁄ )Δ𝑡 both being potentially time consuming. To alleviate the computational effort of the propagation Van Voorhis and co-workers proposed a PC method 20 . The algorithm is illustrated in Figure In many cases the PC method combined with the SOMP is efficient and stable, but as usual cautious tests need to be carried out, for instance in case of strong perturbations. Tests with deMon2k will be reported in Section II. 

I.1.c The exponential of an operator

The application of the SOMP requires the evaluation of 𝑒 -𝑖𝐻 ′ Δ𝑡 . This is not a trivial task because of the complex nature of the argument of the exponential. The evaluation of the matrix exponential is another time consuming step besides the calculation of the KS potential. Several elegant solutions have been devised over the years to evaluate matrix exponentials 36b, 37, 42 . The most common methods are the diagonalization or the polynomial expansions (e.g. Taylor, Chebychev). More sophisticated methods are the Krylov subspace projection (Lanczos algorithm), the splitting techniques (Suzuki-Trotter) or the Leja and Pade interpolations. Each method has its pros and cons. The method employed to compute the exponential of the matrix has impact on the performance and on the stability of the propagation. This is still a very active research area. We focus here on the four methods we implemented in deMon2k.

i) Diagonalization

The first one proceeds via the diagonalization of the complex matrix 𝑊 (Eq. 17). The diagonalization is performed using optimized external libraries (Lapack). This is usually a robust approach. It turns to be cumbersome for large matrices (i.e. large basis sets) since the cost grows as 𝑁 𝐴𝑂 3 . Moreover parallelized versions of these libraries are not efficient. Therefore the diagonalization is well suited for serial calculations only.

𝑒 𝑊 = 𝑈𝑒 𝑤 𝑈 † , with 𝑊𝑈 = 𝑤𝑈 (20)

ii) Taylor expansion

To overcome the scaling problem, the methods based on expansions are more advantageous. One way is to use a Taylor expansion for the exponential:

𝑒 𝑊 = ∑ 1 𝑛! 𝑊 𝑛 ∞ 𝑛=0 (21) 
in practice the number of terms introduced in the expansions is of course not infinite but limited to a finite number of terms (𝑘). 𝑘 has to be large enough to achieve convergence of the Taylor series.

Depending on the systems and the physical processes investigated, the number of terms to be included in the series can be rather large. Numerical difficulties can also arise due to the fact that the method involves the multiplication of potentially very large floating point numbers by very small numbers (1 𝑛! ⁄ )

iii) Chebychev expansion

An alternative is to use Chebychev expansions 36a, 43 . The Chebychev polynomials are only defined in the range [-1,1]. The Hamiltonian matrix has to be scaled by a factor 𝛾 beforehand so that its spectrum lies within this range. We therefore define a scaled matrix 𝑊 ̃ in the form of -𝑖𝐻𝑎 ̃, with 𝑎 ̃= 𝛾Δ𝑡 The Chebyshev expansion reads:

𝑒 𝑊 = 𝒩 ∑(-𝑖) 𝑛 𝑐 𝑛 (𝑎 ̃)𝑇 𝑛 (𝑊 ̃) ∞ 𝑛=0 ( 22 
)
where 𝒩 is a normalization constant. ). 𝑇 𝑛 are the Chebychev polynomials of order n. They are defined by recurrence relationships.

𝑇 0 (𝑊 ̃) = 𝐼 (23a) 𝑇 1 (𝑊 ̃) = 𝑊 ̃ (23b) 𝑇 𝑛 (𝑊 ̃) = 2𝑊 ̃𝑇𝑛-1 (𝑊 ̃) -𝑇 𝑛-2 (𝑊 ̃) (23c) 
The scaling factor (𝛾) is system dependent and has to be chosen carefully. One possibility is to scale with the upper 𝜀 𝑚𝑎𝑥 and lower 𝜀 𝑚𝑖𝑛 bounds of the eigenspectrum of 𝐻. 𝛾 = (𝜀 𝑚𝑎𝑥 -𝜀 𝑚𝑖𝑛 ) 2 ⁄ or as suggested by Williams-Young et al. 43a 𝛾 = 3. (𝜀 𝑚𝑎𝑥 -𝜀 𝑚𝑖𝑛 ) 2 ⁄ . This defines 𝒩 = 𝑒 -2𝑖(𝛾+𝜀 𝑚𝑖𝑛 )Δ𝑡 .

iv) Baker-Campbell-Haussdorff expansion

The last method is based on the Baker-Campbell-Haussdorff (BCH) scheme 16b, 44 . It gives the exponential 𝑒 𝑊 and the propagation 𝑃 ′ (𝑡 + ∆𝑡) = 𝑒 𝑊 𝑃 ′ (𝑡) 𝑒 -𝑊 at the same time. The KS matrix should be Hermitian to apply the BCH, which limits its applications.

𝑃′(𝑡 + ∆𝑡) = 𝑃′(𝑡) + 1 1 [𝑊, 𝑃′(𝑡)] + 1 2 [𝑊, [𝑊, 𝑃′(t)]] + 1 3! [𝑊, [𝑊, [𝑊, 𝑃′(𝑡)]]] + ⋯ ( (24) 
𝑃 ′ (𝑡 + ∆𝑡) = 𝐶 0 + ∑ 1 𝑛! [𝑊, 𝐶 𝑛-1 ] ∞ 𝑛=1 (25) 
with 𝐶 0 = 𝑃′(𝑡). The three methods relying on expansions are in principle exact but in practice the accuracy is highly dependent on the choice of 𝑘. Two possibilities are available in deMon2k. Either one specifies the number of terms 𝑘 to use throughout the ED simulation, or a tolerance threshold is given and, each time a matrix exponential has to be computed, a specific number of terms 𝑘 is determined to reach a certain accuracy. In practice for each new matrix added to the series, we calculate the modules of the diagonal elements and take the sum of them. If the sum is below the threshold then the convergence of the expansion is considered to be obtained. We typically use thresholds of 1.0E-30.

I.1.d External perturbations

In general a simulation starts by a stationary SCF calculation to determine the ground state electron density of the systems of interest. Then ED simulations are carried out with the introduction of the perturbation. This is done through the addition of terms to the external potential 𝑣 𝑒𝑥𝑡 term which enters Eq. 3. One possibility is to simulate the interaction of the electron cloud with the electric field of an electromagnetic wave. We make the assumption of the dipole interaction and express the interaction energy as:

𝐸 𝑒𝑓𝑖𝑒𝑙𝑑 = -𝝁(𝑡) • 𝑭(𝑡) (26) 
where 𝝁 is the molecular dipole:

𝝁(𝑡) = ∑ 𝑍 𝐴 𝑹 𝐴 𝐴 -∫ 𝜌(𝒓, 𝑡)𝒓𝑑𝒓 = ∑ 𝑍 𝐴 𝑹 𝐴 𝐴 -∑ 𝑃 𝜇𝜈 𝑫 𝜇𝜈 𝜇,𝜈
, with the elements of the dipole operator defined as 𝑫 𝜇𝜈 = ⟨𝜇|𝒓|𝜈⟩. The external potential to be included in the KS potential during the propagation is obtained by differentiation of the interaction energy with respect to the electron density. In matrix notation it reads:

𝜕𝐸 𝑒𝑓𝑖𝑒𝑙𝑑 𝜕𝑃 𝜇𝜈 = 𝑭(𝑡)𝑫 𝜇𝜈 (27) 
The general expression for the field is 𝑭(𝑡) = 𝐹 𝑚𝑎𝑥 𝛸(t)cos 𝜔𝑡 𝒅, where 𝐹 𝑚𝑎𝑥 is the maximum field strength, 𝛸 is the envelop of the pulse, 𝒅 is the direction vector of the pulse and 𝜔 is the frequency of the light. All these parameters can be set by the user. We have implemented four different shapes of electric fields 𝑭 as represented in Figure 3. These are the Gaussian pulses, squared sinusoidal pulse, Dirac (infinitely narrow pulse or "kick") and linear ramp. Another type of perturbation available in deMon2k is the collision with a charged classical particle 45 .

This allows the to simulation of inelastic collisions (i.e. collisions not affecting the projectile's trajectory) 46 . The interaction energy between the molecule and the projectile is given by Eq. 28.

𝐸 𝑝𝑟𝑜𝑗 = -∫𝜌(𝒓, 𝑡). 𝜙 𝑝𝑟𝑜𝑗 (𝒓, 𝑡). 𝒅𝒓 + ∑ 𝑍 𝐴 𝑹 𝐴 . 𝜙 𝑝𝑟𝑜𝑗 (𝒓, 𝑡)

𝐴 ( 28 
)
𝜙 𝑝𝑟𝑜𝑗 is the potential created by the projectile with charge 𝑞 𝑝𝑟𝑜𝑗 . For slow projectiles compared to the speed of light (𝑐) the potential is calculated by a Coulomb law. For projectiles approaching the speed of light (for example alpha particles with kinetic energies above 1 MeV), a Liénard-Wiechert potential is appropriate 47 :

𝜙 𝑝𝑟𝑜𝑗 (𝒓) = 𝑞 𝑝𝑟𝑜𝑗 𝑹 [1 - 𝑣 𝑝𝑟𝑜𝑗 2 𝑠𝑖𝑛 2 𝜃 𝑐 2 ] 1 2 ⁄ = 𝛾. 𝑞 𝑝𝑟𝑜𝑗 𝑹 (29) 
where 𝑞 𝑝𝑟𝑜𝑗 and 𝑣 𝑝𝑟𝑜𝑗 , are the charge and velocity of the projectile, 𝜃 is the angle between the propagation direction and the distance vector between an electron and the particle (𝑹 = 𝒓 -𝒓 𝑝𝑟𝑜𝑗 ).

𝛾 = (1 -𝑣 𝑝𝑟𝑜𝑗 2 𝑠𝑖𝑛 2 𝜃 𝑐 2 ⁄ ) -1 2
⁄ is the angle-dependent Lorentz factor. For particles travelling at speeds much lower than the speed of light (𝑣 𝑝𝑟𝑜𝑗 2 ≪ 𝑐 2 ) 𝛾 ≈ 1 and Eq. 29 reduces to a standard Coulomb potential. On the other hand, when 𝑣 𝑝𝑟𝑜𝑗 2 → 𝑐 2 , 𝛾 → 1 if 𝜃 → 0 (i.e. for electrons positioned on the particle trajectory) and 𝛾 → +∞ if 𝜃 → 𝜋 2 ⁄ (i.e. for electrons positioned perpendicular to the particle trajectory). The corresponding potential term 𝐻 𝑝𝑟𝑜𝑗 is added to the KS matrix.

I.1.e Complex Absorbing Potentials

An appealing application of RT-TDDFT is the simulation of ionization of molecules by application of strong electric fields or upon collisions with charged particles 18b . Upon such perturbation a large amount of energy is deposited into the electron cloud which promotes electronic excitations. A fraction of electron density may escape the attraction potential created by the nuclei. Simulating these phenomena at the DFT level is however a challenging objective especially for computer codes relying on localized atomic basis sets like deMon2k. Indeed for describing the emission of electrons having non zero kinetic energy the basis set should span a large spatial area around the ionized molecules.

The basis sets customarily used in quantum chemistry calculations haven't been designed for such applications. On the contrary they have been optimized to describe bound electrons in the vicinity of atomic nuclei.

To simulate ionization with RT-TDDFT we first use very diffuse basis sets, as developed by Schlegel and co-workers 48 . They are built on the aug-cc-pVTZ basis set with addition of several diffuse functions going up to f second quantum number. The lowest Gaussian exponents go down to 0.0064 for s functions. This is however not sufficient because the localized basis sets have physical boundaries whatever their diffuseness. We therefore add a Complex Absorbing Potential (CAP) to the Hamiltonian to absorb the emitted electrons when they are far from the molecule of interest. To better understand how CAP work in RT-TDDFT simulations let us calculate the norm of the electronic wave function:

𝑑 𝑑𝑡 ⟨𝜓|𝜓⟩ = [ 𝑑 𝑑𝑡 ⟨𝜓|] |𝜓⟩ + ⟨𝜓| [ 𝑑 𝑑𝑡 |𝜓⟩] (30) 
The time dependent Schrodinger equation gives ⟨𝜓|𝐻 † + ⟨𝜓|𝑉 𝑎𝑏𝑠 . Inserting these equalities in Eq. 3 we have:

𝑑 𝑑𝑡 ⟨𝜓|𝜓⟩ = 2⟨𝜓|𝑉 𝑎𝑏𝑠 |𝜓⟩ (32) 
When the Hamiltonian is not Hermitian the norm of the wave function is not conserved. The idea of introducing a CAP in RT-TDDFT simulations is therefore to allow for the injection or removal of electron density during ED simulations. This is an ad hoc methodology that must be used with care to avoid artefacts in the propagation. Ideally the CAP should affect only unbound electrons. Some authors suggested to define CAPs based on the energies of the KS MOs 49 . We have decided to implement in deMon2k a real space based definition of CAP 50 . The CAP function is written as a superposition of atomcentered spherical 𝑉 𝑎𝑏𝑠 𝑎 .

𝑉 𝑎𝑏𝑠 (𝑅) = min 𝑎 𝑉 𝑎𝑏𝑠 𝑎 (𝑅)

𝑉 𝑎𝑏𝑠 𝑎 (𝑅) = { 0 𝑉 𝑚𝑎𝑥 sin 2 ( 𝜋 2𝑊 (𝑅 -𝑅°)) 𝑉 𝑚𝑎𝑥 𝑓𝑜𝑟 𝑅 < 𝑅°𝑓 𝑜𝑟 𝑅°+ 𝑊 < 𝑅 < 𝑅°𝑅 > 𝑅°+ 𝑊 (33) 
where 𝑉 𝑚𝑎𝑥 is the maximum value of the absorbing potential, 𝑊 is the width of increase of the atomic CAP and 𝑅° is the distance threshold at which the atomic CAP starts.

I.2 Auxiliary Density Functional Theory

Having described the algorithms to propagate the electron density at the TDDFT level, we will now be more specific about the implementation of these algorithms in deMon2k. Indeed a major advantage of deMon2k for stationary DFT based methods is its reliant on density fitting (DF) and other algorithmic tricks to accelerate the calculations 51 . Since our objective is to achieve an efficient implementation of RT-TDDFT building on the already optimized Auxiliary DFT (ADFT) framework we will describe it first in this section. The variational density fitting was originally introduced by Dunlap 52 to avoid the calculation of four-centers electron repulsion integrals (ERIS) entering the KS energy and potential (Eq. 8-9). Besides the Kohn-Sham density 𝜌 which is built on the KS MOs (Eq. 6), an auxiliary density 𝜌 ̃ is expressed as a linear combination of auxiliary functions 𝑘(𝒓): 𝜌 ̃(𝒓, 𝑡) = ∑ 𝑥 𝑘 (𝑡)𝑘(𝒓)

𝑘

. The 𝑥 𝑘 are the density fitting coefficients. The DF formalism was proposed originally for stationary densities. Here we introduce the dependence on time of the auxiliary coefficients for future use in RT-TDDFT. For computational efficiency we use in deMon2k primitive Hermite Gaussian functions at atom K with the exponent 𝜁 𝑘 having the form given by Eq 35 53 .

𝑘(𝒓) = ( 𝜕 𝜕𝐾 𝑥 ) 𝑘 𝑥 ( 𝜕 𝜕𝐾 𝑦 ) 𝑘 𝑦 ( 𝜕 𝜕𝐾 𝑧 ) 𝑘 𝑧 𝑒 -𝜁 𝑘 (𝒓-𝐾) 2 (35) 
The fitting coefficients are obtained by minimization of a self-interacting error function 52 :

𝜀 = 1 2 〈𝜌 -𝜌 ̃‖𝜌 -𝜌 ̃〉 = 1 2 〈𝜌‖𝜌〉 -〈𝜌‖𝜌 ̃〉 + 1 2 〈𝜌 ̃‖𝜌 ̃〉 (36) 
In matrix notation this gives:

𝜀 = 1 2 ∑ ∑ 𝑃 𝜇𝜈 (𝑡)⟨𝜇𝜈‖𝜎𝜏⟩ - 𝜎,𝜏 𝜇,𝜈 ∑ ∑ 𝑃 𝜇𝜈 (𝑡)⟨𝜇𝜈‖𝑘⟩𝑥 𝑘 (t) - 1 2 ∑ 𝑥 𝑘 (𝑡)𝑥 𝑙 (𝑡)⟨𝑘‖𝑙⟩ 𝑘,𝑙 𝑘 𝜇,𝜈 (37) 
The function 𝜀 is minimized with respect to all the coefficients 𝑥 𝑘 :

( 𝜕𝜀 𝜕𝑥 𝑘 ) 𝑃 = -∑ 𝑃 𝜇𝑣 〈𝜇𝑣‖𝑘〉 𝜇,𝑣 + ∑ 𝑥 𝑙 𝑙 〈𝑙‖𝑘〉 = 0 ∀ 𝑘 (38) ( 𝜕 2 𝜀 𝜕𝑥 𝑙 𝜕𝑥 𝑘 ) 𝑃 = 〈𝑙‖𝑘〉 ≡ 𝐺 𝑘𝑙 (39) 
Because the auxiliary function Coulomb matrix 𝐺 is always positive definite the above variation is indeed a minimization of the fitting error 𝜀. As a result, the following solution for the auxiliary function fitting coefficients is obtained:

𝑥(𝑡) = 𝐺 -1 𝐽(𝑡) (40) 
with the so-called Coulomb vector 𝐽 being defined as:

𝐽 𝑘 (𝑡) = ∑ 𝑃 𝜇,𝑣 (𝑡)〈𝜇𝑣‖𝑘〉 𝜇,𝑣 (41) 
This set of coupled equations can be solved either by analytical or by iterative approaches 54 . In principle the minimization should be carried out under the constraint that the fitted density integrates to the total number of electrons 52 . This can be done with a Lagrange multiplier method. In practice however, experience from the deMon2k developers showed that the fitted density naturally integrates to the desired value without explicit introduction of such a constraint † . The latter is now dropped out from the set of fitting equations in deMon2k. Because of the positive nature of the function 𝜀, we have

1 2 〈𝜌‖𝜌〉 ≥ 〈𝜌‖𝜌 ̃〉 - 1 2 〈𝜌 ̃‖𝜌 ̃〉 (42) 
This inequality permits a variational substitution of the classical Coulomb repulsion in the total energy (Eq. 8). 

𝐸(𝑡

The elements of the Kohn-Sham potential are given by Eq. 44. Compared to Eq. 8-9, there are no four-centers ERIS but only two-and three-centers ERIS entering the energy or the potential. This approximation reduces the formal scaling of the Coulomb integral calculation from 𝑁 𝐴𝑂 4 to 𝑁 𝐴𝑂 2 . 𝑀 𝐴𝐹 with 𝑁 𝐴𝑂 and 𝑀 𝐴𝐹 denoting the number of atomic orbitals and auxiliary basis functions respectively. The number M is typically three to five times the number of basis functions, but this is much less than the number of products of AO.

𝐻 𝜇

Once the fitted coefficients obtained for a given Kohn-Sham density, they can be used for the calculation of the exchange-correlation (XC) energy and potential too 55 . 𝐸 𝑥𝑐 [𝜌] is replaced by 𝐸 𝑥𝑐 [𝜌 ̃] in Eq. 43. In that case the matrix elements of the Kohn-Sham potential are given by 55 :

𝐻 𝜇𝜈 ≡ 𝜕𝐸 𝜕𝑃 𝜇𝜈 = 𝐻 𝜇𝜈 𝑒𝑥𝑡 + ⟨𝜇|- 1 2 ∇ 2 |𝑣⟩ + ∑⟨𝜇𝜈‖𝑘⟩(𝑥 𝑘 (𝑡) 𝑘 ̅ + 𝑧 𝑘 (t)) (45) 
with

𝑧 𝑘 (t) = ∑⟨𝑘‖𝑙⟩ -1 ⟨𝑙|𝑉 𝑥𝑐 ⌈𝜌 ̃(𝑡)⌉⟩ 𝑙 (46) 
The combination of density fitting with RT-TDDFT is in principle straightforward. Returning back to 

I.3 Analyzing tools for Electron Dynamics simulations

The formalism described above provides a prescription to simulate attosecond electron dynamics at the DFT level. It is also very important to devise dedicated methodologies to analyze the fluctuating electron density in the course of the simulations. Some physical observables can be obtained by considering the associated quantum mechanical operator, for example the electronic energy (Eq. 43)

or the multipole moments of the system. Other descriptive tools are also valuable and will be described in the following subsections.

I.3.a Molecular multipoles

The total number of electrons 𝑁(𝑡) and higher multipole moments such as the dipole moment 𝝁(𝑡)

and quadrupole tensor are given by Eqs. 47-49. The total spin charge (𝑆) defined as the integrated difference between densities of alpha and beta electrons can also be calculated. 

𝑆(𝑡) = ∫ (𝜌 𝛼 (𝒓, 𝑡) -𝜌 𝛽 (𝒓, 𝑡)) 𝑑𝒓

For isolated QM systems, the evolution of the total number of electrons is a good indicator of the stability of the ED simulation since this should remain constant. Variation of the number of electrons is a sign that the propagation is not unitary, i.e. that the simulation parameters are not well tuned for the system under investigation. When simulating collisions with charged particles one expected outcome is ionization of the molecule and emission of unbound electrons. A way to capture this phenomenon with a code working with localized atomic orbitals is to add a complex absorbing potential (CAP) in the imaginary part of the KS potential 50 . The CAP only acts on electron density typically beyond 10 Å of the molecule by removing these electrons from the pool. In this particular type of simulations 𝑁 doesn't have to be conserved. On the contrary it describes ionization of the molecule since the CAP collects (in ideal situations) the density of unbound electrons.

The dipole moment is a key quantity to describe the deformation of the electron cloud upon application of a perturbation. It gives access to the polarizability tensor which is a basic quantity to simulate absorption spectra 16b, 58 .

I.3.b Intrinsic multipoles on atoms or fragments

As for stationary DFT calculation the total density can be projected onto atoms. Therefore one can define atomic charges and so-called intrinsic atomic dipoles and quadrupoles provided a prescription for defining the atoms within the molecules are specified. In deMon2k Hirshfeld 59 , Becke 60 and Voronoi deformation density 61 are for example available and have been made compatible with the use of RT-TDDFT 62 . Atomic charges are useful to describe charge transfers among atoms during ED simulations. Charge migrations 63 for example can be highlighted with this tool. On the other hand fluctuations of the intrinsic atomic dipoles provides information on the internal polarization of each atom.

Finally, the level of coarse graining of population analyses can be adapted to the level of fragments. 

I.3.d Kinetic energy of electrons

To help understand electronic relaxation following perturbation one can evaluate the electron kinetic energy. Following Bader and Preston 64 the total kinetic density on each point in space (𝐾(𝒓)) is determined by the Laplacian of the total density (𝐿(𝒓)) and by the gradient of its components (𝐺(𝒓)).

𝐾(𝒓) = 𝐿(𝒓) + 𝐺(𝒓)

𝐿(𝒓) ≡ - 1 4 ∇ 2 𝜌(𝒓) (51) 
𝐺(𝒓) ≡ 1 8 ∑ ∇𝜌 𝑖 (𝒓). ∇𝜌 𝑖 (𝒓) 𝜌 𝑖 (𝒓) 𝑖 ( (52) 
) 53 
Integration of 𝐾 over the entire space leads to the total electron kinetic energies while 𝐿, which can locally take positive or negative values, globally integrates to zero 64 . When the Laplacian contribution is integrated over atoms, or over molecular fragments we found that ∫ 𝐿𝑑𝑟 is already close to zero (typically 10 -2 Ha). The investigation of the kinetic energy per fragment provides a very insightful tool to analyze sub-femtosecond relaxation processes. This tool has been used for example by the TheoSim group recently to investigate ionization following collision of the guanine DNA base by charged particles 45 .

I.3.e Graphical representation of molecular fields

Electron Dynamics simulations are particularly amenable to pictorial representations. It is for example instructive to calculate the electron density (𝜌(𝒓, 𝑡)), the deformation density (𝜌(𝒓, 𝑡) -𝜌(𝒓, 𝑡 0 )) or other fields such as the Time-Dependent Electron Localization Function 65 on grids of points and later to visualize them with appropriate software (e.g. VMD 66 ). For illustrative purpose we depict in Figure 

I.4 Implementation in deMon2k

deMon stands for "density of Montréal". It refers to a computer code based on DFT that was created in the 1980's in the group of Prof. Salahub 67 . deMon2k is a new version of the program that emerged in the early 2000's from the fusion of the deMon and ALLCHEM programs. deMon2k has been -Taylor, Chebyshev and BCH expansions for evaluating the exponential of complex matrices (described in I.1.c).

-Analysis tools during ED simulations (described in I.3).

-Combination with the CONVENTIONAL, DIRECT or MIXED schemes. These are options available in deMon2k to handle the calculation and storage of ERIS.

-Restart calculations.

-Parallelization of the code using the pre-existing MPI architecture in deMon2k.

-Complex absorbing potentials.

II. COMPUTATIONAL PERFORMANCE AND VALIDATION

Various validation tests of the RT-TDDFT module have been reported in the article reproduced at the end of Part II. These tests involved the calculation of static polarizabilities or of absorption spectra. In Section II we report complementary tests calculations and more in-depth analyses of the efficiency of the implementation. We will start by comparing the iterative and PC version of the SOMP (II.1). Then we report comparison of the different methods available in deMon2k for calculating the exponential of a matrix (II.2).

II.1 On the efficiency of the Propagator-Corrector scheme

In the methodology section we introduced two propagation methods for the SOMP, namely the iterative and Predictor-Corrector (PC) algorithms. Both have their own pro and cons. The objective of this section is to compare the relative efficiency of the two approaches, and to analyze the computational performance of our implementation in deMon2k.

II.1.a Computational details

We consider two molecules. One is coumarin which is a seventeen-atom organic molecule. The other one is an Fe(II) inorganic complex (heme) containing ninety-nine atoms. Both molecules have been geometrically optimized at the DFT level (Figure 5).

For the ED simulations we have used the PBE functional and the DZVP-GGA/GEN-A2* combination of atomic and auxiliary basis sets. This choice leads to a total of 84/1155 and 466/6130 atomic/auxiliary functions for coumarin and heme respectively. The initial electron density of the ground state was obtained by a stationary DFT energy minimization through an SCF procedure. To collect computational performance data the simulations have been propagated during 200 as. We used the BCH expansion to perform the propagation steps. We have added as many terms as necessary in the BCH expansion to arrive at a convergence threshold of 10 -30 bohr -3 . The intrinsic atomic multipoles (charge, dipole, and quadrupoles) have been calculated on-the-fly at every time step by numerical integration of fitted densities with a grid of medium accuracy 62 . To integrate the exchange-correlation potential and energy we have used fitted densities and a very fine grid of points associated to an accuracy of 10 -8 Ha on diagonal elements of the XC matrix. The Electron Repulsion Integrals (ERIS) are handled with a mixed scheme to optimize computational efficiency of the Coulomb repulsion terms. Table 1 and Table 2 gather the timings for the two molecules. All the simulations have been run on twelve 2.67GHz Intel® Xeon® X5650 processors with the MPI protocol. 

II.1.b Stability and performance for weak perturbations

We start to investigate weak perturbations by an infinitely narrow electric pulse. In the first step of RT-TDDFT propagation an electric kick is applied to the electron cloud. This creates a perturbation in the electron density that, in turn, starts to fluctuate. The perturbing electric field vector is aligned on the x-axis and its strength is set to 0.0001 a.u. (0.05 V/nm, which corresponds to an intensity of 7.03x10 8 W•cm -2 ). Four mutually exclusive entries are reported in Table 1. The entry "AO<->MO " refers to the total time spent in switching from the AO to the MO basis (and vice versa). The entry "SOMP" refers to the calculation of 𝑈(𝑡, 𝑡 0 )𝑃 ′ (𝑡 0 )𝑈 † (𝑡, 𝑡 0 ), excluding the time taken to calculate the potential itself.

The SOMP time is essentially the time taken to evaluate the exponential of the matrix with the BCH expansion. The KS potential refers to the time spent in calculating the KS potential. This timing includes all the operations related to density fitting. Finally the entry "population analyses" refers to the atomic multipole calculations. Starting with coumarin we note that the PC algorithm is average 2.44 times faster than the iterative algorithm whatever the value of ∆𝑡. This is explained by the higher number of KS potential calculations and of Magnus propagation steps required in the iterative scheme. On average three iterations are needed for each propagation step, leading to three KS potential calculations and three SOMP steps.

With the PC scheme, only one KS potential calculation and two SOMP steps are needed for each propagation step. The evaluation of the KS potential is the most time consuming, followed by the SOMP step. Transformation between the atomic orbitals and molecular orbitals as well as population analysis are much less computationally demanding.

To analyze the computational time more in depth, we report in Figure 6 a pie chart illustrating the proportion of the different tasks. For space reasons, we consider only simulations with 1 as time steps.

Matrix multiplications are needed in atomic orbital to molecular-orbital basis transformations and in Magnus propagation. Together they represent 18% of the total time. In fact basis transformation is a minor task representing only 2.3%. The time for KS potential evaluation encompasses three main contributions, the calculation of the XC potential, the calculation of electron Coulomb repulsion terms in which we include both ERIS calculations and density fitting steps, and finally, the calculation of the core Hamiltonian. The XC contribution represents 76 % of the overall cost. We remark that a very accurate grid has been chosen, inducing a significant computational cost. Calculation of the Coulomb contribution is almost negligible (2%). This remarkable performance is achieved thanks to the mixed scheme implemented in deMon2k to store short-range ERIS in RAM and to compute long-range ERIS by double asymptotic expansions 68 . The calculation of core integrals is less than 1% only. In fact because the core Hamiltonian is independent on the density it only needs to be calculated once at the beginning of the propagation. The repeated analysis of the time-dependent electron density induces only a small supplementary cost to the calculation (<1%). We now look at the influence of the time step size on the computational performance. The evolution of overall simulation time follows the size of ∆t. For example it takes 332.85 s to perform 200 as of simulation with a time step of 1 as (PC), but only 112.1 s with a Δ𝑡 of 3 as, that is a reduction by factor 3. To quantify the scaling we provide in Table 1 numbers quantifying the deviation from an "ideal scaling" (numbers in brackets). For each entry this indicator is calculated from the ratio of timings using the 1as time step ED and multiplied by the ratio of integration time step. Therefore a value of 1

indicates the computational effort for this entry is strictly proportional to Δ𝑡. This is the case for instance of population analyses that are obtained by numerical integration on a grid of points. This is an operation which is totally disconnected from the choice of propagation algorithm. Therefore the total time for population analysis depends only on the number of propagation steps and not on the length of the time step. Most indicators are close to one. This indicates that increasing the time step doesn't induce an increase of computational cost of each step. The only deviation from unity we observe is for the "Magnus propagation" entry which amounts to 0.7 and even 0.4 for a 3 as and 10 as time steps respectively. This is due to the higher number of nested commutators that are included in the BCH expansion to ensure stability of the propagation.

Alternatively said, the computational time saving obtained by choosing a larger time step is partially lost by the fact that more terms are needed in the evaluation of the BCH expansion to ensure stability.

Nevertheless one can increase the integration time length without affecting propagation stability and still gain a proportional advantage in terms of computer time. This is the case both for the iterative and the propagator-corrector methods.

Most of these conclusions are relevant for ED simulations on the larger heme complex (Table 2). The PC algorithm is average 2.11 times faster than the iterative one. A main difference is, as expected, the higher overall computational cost which is due to the much larger number of basis functions in heme compared to coumarin. Matrix multiplication (42%) and XC potential calculations (48%) are now almost equally time consuming (Figure 6). Therefore for a larger system like heme, the scaling for linear algebra is less favorable than for the numerical integration of the XC contributions on grids of points. Stable simulations for heme turned out to be more difficult to achieve. For instance no stable simulation could be obtained with a 4 as integration time step ‡ . It also becomes less and less efficient to increase the time step as more and more terms are needed to converge the BCH expansion, which results in an increase of the computational cost of each time step. For example, a single PC propagation step takes 1.04 min vs. 1.57 min with 1 as or 3 as time step lengths respectively. This is probably due to the more complex electronic structure of heme compared to coumarin (e.g. presence of d orbitals on the iron cation). A recent study also suggested that core electrons are those animated by the fastest motion thereby setting a lighter limit to the integration time length. The deep iron core electrons might therefore also contribute to making RT-TDDFT ED simulations of heme difficult. Satisfactorily though, ‡ When using the more robust diagonalization of the propagator the simulation remained stable with a 10 as integration time step suggesting that the instability was due to numerical error accumulation in the BCH routines.

we find that the iterative as well as the PC algorithms implemented in deMon2k permit to carry out such simulations in reasonable times.

II.1.c Stability and performance for strong perturbations

The PC scheme has a clear advantage in computational time compared to the iterative one. However in the previous tests, a weak perturbation was applied -an infinitely narrow electric kick of strength 0.0001 a.u (0.1 V/nm). We now analyze similar simulations with a stronger electric field over a longer period of time. The mathematical expression of the external electric field is given by:

𝑭(𝑡) = 𝐹 𝑚𝑎𝑥 𝑒𝑥𝑝[(-(𝑡 -𝑡 0 ) 2 /2𝑢 𝐹 2 ]cos (𝜔𝑡)𝒅 ( 54 
)
where 𝐹 𝑚𝑎𝑥 is the maximum field strength, 𝑡 0 and 𝑢 𝐹 are respectively the center and width of the Gaussian envelope and 𝜔 is the frequency of the electric field. These parameters were set to 0.005 a.u.

(5 V/nm), 0.1 fs, 0.015 fs and 0.114 a.u, respectively. The value for 𝜔 is the excitation energy of 3.10 eV (400 nm), which corresponds to typical Soret band of heme systems. Therefore application of this electric pulse should trigger transition of the ground state density to the Soret band. Results are shown in Table 3.

We find again a computational advantage of the PC over the iterative scheme. In fact most of the conclusions drawn for the weak kick are also transferrable to the case of a Gaussian pulse. 

II.2 On the efficiency of the exponential of an operator

As introduced in section I, the methods available in deMon2k to evaluate the exponential of the matrix entering the SOMP are i) the diagonalization of the 𝑒 𝑊 (diago), ii) the Baker-Campbell-Hausdorff formula (BCH), iii) the Taylor expansion (Taylor) of the 𝑒 𝑊 and for iv) the series expansion of 𝑒 𝑊 using Chebyshev polynomials (Chebyshev). The numerical performances of each type of method depend on the nature of linear algebra operations, and for this reason are system dependent. Methods ii, iii and iv depend on a user defined convergence criterion. According to this criterion, different expansion terms (k) will be used (Eqs. 21-25). We have considered five molecular systems consisting of a coumarin molecule solvated by droplets of water molecules of different sizes (Figure 7). Systems S1, S2, S3, S4 and S6 respectively encompass 76, 196, 436, 916 We report in Table 4 the wall-clock timings corresponding to a propagation of the electron density for 400 steps. The SOMP/PC scheme has been used to simulate the response of the ground state electron cloud to an electric field kick of strength 0.001 a.u. applied along the x-direction. We switched for this series of tests from the highly accurate (10 -8 Ha) numerical grid § as used in the previous section to a grid of accuracy 10 -7 Ha. The latter grid permits a noticeable decrease of computational cost of the XC contribution to the Kohn-Sham potential while still retaining high accuracy. It is also more § deMon2k uses Lebedev grids centered on atoms to integrate XC contributions. The number of angular points for each radial shell is optimized for the molecular structure with an accuracy criterion applying on the diagonal elements of the XC potential matrix. This is the criteria we are referring to in the main text.

representative of the computational set-ups now commonly used in the group to carry out RT-TDDFT simulations with deMon2k. For the BCH, Taylor and Chebyshev, iterations over the number of terms introduced in the series were pursued with a tolerance criterion of 10 -30 . All the simulations have been Thanks to the use of the density fitting formalism, our implementation is very efficient. Tests of auxiliary densities with RT-TDDFT show that using auxiliary basis sets containing polarization functions (GEN-An*) is sufficient to achieve accurate simulations. Moreover, during the implementation, we took full advantage of the highly optimized algorithmic machinery in deMon2k such as the mixed ERIS scheme and XC numerical integration. We validated our implementation by comparing polarizabilities and the absorption spectra of molecules with results obtained by finite difference or perturbative approaches.

Performance tests of different algorithms and depth analyses of efficiency of the implementation have been carried out. In the test of two different versions of SOMP, we found that a computational advantage of the Predictor-Corrector over the iterative scheme in both weak and strong perturbations.

The speed up depends both on the systems and the time step. Roughly speaking, PC is around 2.2 times faster than iterative schemes. With the tests of different methods for calculating the exponential of a matrix, we conclude that diagonalization is efficient for small systems containing less than 500 atomic orbitals, while expansion methods (Chebyshev, Taylor and BCH) should be used for systems of larger sizes. A molecular system that contains around 3000 atomic orbitals can be carried out with our implementation. This is achievable thanks to the use of fitting density and efficient algorithms in deMon2k which reduce considerably the computational time of the KS potential.

The bottleneck of RT-TDDFT simulation is in the SOMP steps. Future efforts will be pursued to increase the efficiency and stability of this propagation. The efficiency can be improved by optimizing the workload among processors of MPI or to use different types of architectures like GPUs (Graphical Processor Units). Other propagators and algorithms could be tested to increase the stability such as higher order truncated Magnus expansion, commutator free Magnus schemes 39 . We would like to update the code to be compatible with hybrid functionals which will introduce a complex KS matrix.

special functional should be implemented to go beyond the adiabatic approximation of the exchangecorrelation part.

Electron Dynamics in Contact with Polarizable Environments

In Chapter 3 we introduced a Real-Time Time-Dependent Density Functional Theory (RT-TDDFT) methodology to simulate electron dynamics in isolated molecular systems. Thanks to the involvement of auxiliary fitted density, the implementation allows the treatment of with large molecular systems comprised of tens of atoms, and possibly several hundreds of atoms once linear algebra operations are optimized. Although encouraging this computational set-up will face hurdles when attempts will be made to simulate molecular systems comprised of thousands or hundreds of thousands of atoms such as those encountered in biology (e.g. proteins, DNA, lipid layers…). One easily foresees the incredible complexity of simulating the electronic response of very large molecular systems subjected to a widely spread perturbation. At the present time plain RT-TDDFT simulations on nanometer scales seems intractable. On the other hand one may be interested in simulating electron dynamics explicitly only within a restricted area of space. The space beyond that specific region would be considered as its environment. This pointof-view recalls the strategy of continuum polarizable models 1 or of hybrid QM/MM (Quantum Mechanics/Molecular Mechanics) approaches 2 . In fact certain classes of perturbations can be localized, as for example the initial collision of a molecular fragment by a fast moving particle. It seems natural to seek for coupled schemes between RT-TDDFT and approximate representations of environments. The simplest option is to embed the region-of-special-interest (RSI) by a static environment 3 . In hybrid QM/MM, for example this can be achieved by adding the electrostatic potential created by the atomic charges of the MM atoms into the quantum Hamiltonian. This solution doesn't seem sufficient though because of the intuitive need to account for the subtle interplay between the electron dynamics which is treated explicitly within the region of special interest, and the electron density in the environment.

If the environment can be regarded as homogeneous the combination of RT-TDDFT with implicit polarizable continuum models (PCM) is a possible option. This kind of implementation has been recently reported by a few groups 4 . RT-TDDFT/PCM ED simulations lose atomic resolution of the environment. For highly inhomogeneous environment or/and if the coupling between the RSI and it environment is subtle, polarizable hybrid QM/MM approaches are good alternative candidates. To the best of our knowledge the only hybrid RT-TDDFT/MMpol implementation reported at the beginning of this work was due to Dinh et al.. 5 † These authors combined a grid based implementation of RT-TDDFT to a molecular mechanics force field to describe the MgO (001) solid surface. They were interested in the optical response properties of sodium clusters adsorbed on magnesium oxides. Electronic induction was introduced by distinguishing core from valence electrons on the oxygen atoms (O 2-). The average position of the core electrons + nucleus and the average position of valence electrons had the possibility to be different depending on the electrical environment, thereby creating induced dipoles. Although interesting, a generalization of this approach to polarizable FF for biomolecular simulation doesn't seem straightforward without complete parametrization of a dedicated FF. Methodologies adapted to simulate ED in biomolecules need to be devised. This is the objective of the work reported in this Chapter.

In the first section we introduce the methodology we chose to couple RT-TDDFT to polarizable force field.

A particular focus will be put on the choice of induction model for the types of physical processes of interest with RT-TDDFT, as well on the introduction of retardation effects. With this new methodology in hand we analyze in section II the dynamics of the response of the environment of a peptide subjected to a strong perturbation. It will be shown how the introduction of a polarizable force field permits to introduced a new kind of dissipation mechanism into the algorithm.

I. METHODOLOGY I.1 The charge point dipole mode for attosecond electron dynamics?

I.1.a. Stationary vs. dynamical description of induction

As seen in Part I there are various ways to include electronic induction in polarizable FF, hence in QM/MMpol methodologies, namely the fluctuating charge model 7 , the Drude particle model 8 and the charge point dipole model 2 . These approaches have been validated for stationary calculations although coupled to molecular dynamics simulations. The stationary solutions are achieved by iterative procedures or approximated by propagating a fictitious dynamics of the "induction degrees of freedoms" 9 . In this Chapter we are interested in different dynamical regimes, namely the sub-femtosecond time domain. We wish to simulate the as-fs dynamical responses of the QM region's electron cloud after application of a † In the course of the PhD, another implementation of a RT-TDDFT/MMpol scheme sharing important similarities with our approach appeared in the literature 6 . Donati, G.; Wildman, A.; Caprasecca, S.; Lingerfelt, D. B.; Lipparini, F.; Mennucci, B.; Li, X., Coupling Real-Time Time-Dependent Density Functional Theory with Polarizable Force Field. The journal of physical chemistry letters 2017, 8 (21), 5283-5289. (a few weeks after publication of our own work). perturbation. The choice of an induction model in the context of RT-TDDFT/MMpol simulations has to be done carefully. Can the well-tested QM/MMpol approaches developed for electronic stationary states be safely adapted in the context of as ED? A first obvious difference is that we don't look for stationary states of the electron density and the polarization state but we wish to describe their coupled dynamics. Second, for the typical applications we envision, the interaction of matter with strong laser fields or collisions with charged particles, it is not guaranteed not to push the standard induction models beyond their limits of validity. For example the strength of the electric fields applying on MM atoms may become large or may fluctuate rapidly on the as time scale. Finally it should be recalled that light travels at finite speed (approximately 3Å/as in vacuum) and that the question of retardation in the propagation of electric fields, which underlies all induction models, has to be posed in the context of as RT-TDDFT/MMpol simulations.

In this subsection we justify our model for induction that we plan to couple to RT-TDDFT.

I.1.b. Expressions of atomic induced dipoles

We decided to rely on the description of induction by means of point dipole moments on atoms. The general expression for the induced point dipole (𝝁) on an atom subjected to electric field 𝑭 can be expressed as a series expansion:

𝝁 𝑖 (𝐹) = ∑ 𝛼 𝑖𝑗 (𝜔) 𝑗 𝐹 𝑗 + 1 2 ∑ 𝛽 𝑖𝑗𝑘 (𝜔)𝐹 𝑗 𝐹 𝑘 𝑗,𝑘 + 1 6 ∑ 𝛾 𝑖𝑗𝑘𝑙 (𝜔)𝐹 𝑗 𝐹 𝑘 𝐹 𝑙 𝑗,𝑘,𝑙 + ⋯ (1) 
where 𝑖, 𝑗, 𝑘, 𝑙 = {𝑥, 𝑦, 𝑧} are the Cartesian components of vectors or tensors. 𝛼 𝑖𝑗 , 𝛽 𝑖𝑗𝑘 and 𝛾 𝑖𝑗𝑘𝑙 are the components of the polarizability, first hyperpolarizability and second hyperpolarizability tensors respectively. These tensors depend in principle on the frequency of the electric field applied on the MM atom K. In the context of RT-TDDFT simulations, if the electron density on the RSI generates a fast fluctuating electric field on the as time scale, this could be accounted for by the dynamical character of the polarizability. On the other hand the first and second hyperpolarizabilities go beyond the linear regime in case the fields generated by the RSI would be very strong. Building a polarizable FF based on Eq. 1 can be cumbersome and it might not be necessary to reach such a high level of sophistication. To decide which simplifications can be made we therefore need to know within which ranges of strength and of frequency the electric fields generated by the RSI are susceptible to fall in actual ED (Electron Dynamics) simulations.

I.1.c. Field strength and frequency in typical ED simulations

To investigate this point we simulate the dynamics of the electron cloud of a coumarin molecule in the gas phase after application of a perturbation. During the ED simulation we probe the value of the electric field created by the electrons and by the nuclei at various distances. Four types of perturbation are tested. The first type of perturbation is the application of an electric field kick of strength 0.01 a.u (5 V/nm), which is a high, although transient value. The field has been applied perpendicular to the aromatic plane. For the second perturbation a Gaussian electric pulse of strength 0.001 a.u. (500mV/nm) is applied along the zaxis direction (in the molecular plane). The full-width at half-maximum of the envelop pulse is 1.65 fs and it is centered at 5 fs. The envelop is multiplied by a cosine function the frequency of which corresponds to an energy of 0.1528 Ha (close to the first excitation energy of coumarine). The two aforementioned perturbations are expected to bring the electron density in low lying excited states. The next two perturbations are designed to cause ionization of coumarin. They are consequently much stronger.

The third type of perturbation named "linear ramp" corresponds to application of a strong ionizing laser field aligned along the x-axis (perpendicular to the aromatic plane). The applied field increases linearly from 0 to 5 fs where it reaches a constant value of 0.1 u.a. To deal with this kind of process a complex absorbing potential has been placed 10 Å away from the coumarin to absorb emitted electrons (see Chapter 3 for details) 10 . In addition very diffuse atomic basis sets are used on H atoms to expand the MOs of electrons localized a few Angstroms away from the nuclei 10a . The last type of perturbation named "radiation" is a collision with a 0.1 MeV proton travelling along the x-axis. Such a collision puts the electron cloud in high lying excited states with a fraction of electron becoming unbound 11 . This results in the emission of so-called secondary electrons that are absorbed by the CAP. We probe the electric field generated by the electron cloud along each ED simulation at several points. The points have been chosen

taking the geometry of the microsolvated coumarin investigated in Chapter 3 (Figure 7, aggregate S5). The electric field is calculated at the positions of water molecule oxygen atoms ‡ . We have defined four ranges of distances from the coumarine: 0-3 Å; 3-4 Å, 4-6 Å and 6-7 Å. We report in Figure 1 the evolution of the maximum and minimum field strength for each layer and each type of perturbation. Roughly, the longer the distance from coumarin the weaker the electric field. This is an expected trend.

For the first two kinds of perturbations (upper panel) the electric field generated by the coumarin is weak (<0.005 u.a.) except for the closest probing points (0.01 u.a.). For these two simulations the initial perturbation is not strong essentially putting the electron cloud in low lying excited states. The amplitude of the fluctuations of the fields generated by the electron density are very small (already <0.00001 u.a. for the closest probing point). We are clearly in a weakly perturbation regime. If we were conducting RT-TDDFT/MMpol simulations, the induced dipoles on the oxygen atoms would be proportional to the electric field ( 𝜇 𝑖 (𝐹) ≅ ∑ 𝛼 𝑖𝑗 (𝜔) 𝑗 𝐹 𝑗 ). The introduction of first and second hyperpolarizability would not be necessary.

We also see that the fluctuations of the electric field at the closest probing point are slow compared to the ED taking place on the as time scale. For an eventual MM atom positioned near the coumarin the variation of electric field would be uncoupled from its own polarization. Therefore we could safely drop out the frequency dependence of the polarizability tensor and consider static polarizabilities: 𝜇 𝑖 (𝐹) ≅ ∑ 𝛼 𝑖𝑗 𝑗 𝐹 𝑗 .

In the case of strong field ionization (bottom-left) the electric field generated by the electron cloud is much more important (> 0.01 a.u. even at 7 Å). This is because the electron density is largely displaced by the applied field. In this simulation almost 3e-have been absorbed by the complex absorbing potential. The question arises: whether such high fields would put the description of electronics beyond the linear regime? Finally, considering the case of collision of coumarin by fast protons, we find an intermediate situation.

The electric field increases moderately around the coumarin, making the linear response probably valid.

On the other hand the amplitudes of the fluctuations are rather pronounced (e.g. 0.005 considering distances from the molecule of around 4Å). Yet these fluctuations are not fast enough compared to the attosecond dynamics of the electrons. The inclusion of dynamical polarizabilities is therefore not needed.

In summary the ED simulation reported in Figure 1 tends to indicate that for typical applications of RT-TDDFT, a model of induction in which the induced dipoles on MM atoms is proportional to the electric field, neglecting hyperpolarizabilities and dynamic polarizabilities, is perfectly adapted. Instead of Eq. 1 an adequate FF to be coupled to RT-TDDFT could be based on 𝜇 𝑖 (𝐹) ≅ ∑ 𝛼 𝑖𝑗 𝑗 𝐹 𝑗 . We can make a further simplification by assuming that the atom polarizabilities are isotropic 𝝁 𝐾 = 𝛼 𝐾 𝑭 𝐾 . This set of hypotheses defines a model of induction for the MMpol force field. From this, supplementary approximations can be made. The polarizability could be made dependent on the type of atom 7 , for example an oxygen atom within an water molecule may have different intrinsic polarizability than an oxygen atom within a peptide bond.

I.2 Electron dynamics in contact with a polarizable environment

I.2.a. Determination of point dipoles

Having defined the induction model we now describe the mathematical expressions that are necessary to proceed to implementation in deMon2k. From now the indices 𝑖, 𝐴, 𝐾 respectively refer to electrons, atom nuclei from the QM region and from MM atoms. Each MM site K is characterized i) by a permanent charge (𝑞 𝐾 ) and a static polarizability 𝛼 𝐾 which is taken to be isotropic. The latter permits to determine an induced dipole 𝝁 𝐾 from the electric field felt by atom K (𝑭 𝐾 ). 𝑭 𝐾 includes the electric field created by other MM atoms that arises both from other permanent multipoles 𝑭 𝐾 (0) and from other induced dipoles 𝑭 𝐾 𝑖𝑛𝑑 . For simplicity we will assume that only permanent charges are present in the FF (i.e. no permanent dipoles, quadrupoles, like in AMOEBA). 𝑭 𝐾 also includes the electric field created by the QM region, that is from the QM nuclei 𝑭 𝐾 𝑍𝑄𝑀 and from the electron density (𝜌) 𝑭 𝐾 𝜌 . In principle we could also include the field created by an external perturbation but we will not consider this possibility here for simplicity.

𝝁 𝐾 = 𝛼 𝐾 𝑭 𝐾 = 𝛼 𝐾 (𝑭 𝐾 (0) + 𝑭 𝐾 𝑍𝑄𝑀 + 𝑭 𝐾 𝜌 + 𝑭 𝐾 𝑖𝑛𝑑 ) (2) 
The mathematical expressions to compute the electric fields are given below:

𝑭 𝐾 𝑍𝑄𝑀 = ∑ 𝑍 𝐴 𝑟 𝐾𝐴 3 𝒓 𝐾𝐴 𝐴∈𝑄𝑀 (3) 
𝑭 𝐾 (0) = ∑ 𝑞 𝐿 𝑟 𝐾𝐿 3 𝒓 𝐾𝐿 𝐿∈𝑀𝑀 𝐿≠𝐾 (4) 
𝑭 𝐾 𝑖𝑛𝑑 = -∑ 𝑻 𝐾𝐿 𝝁 𝐿 (𝑡)

𝐿∈𝑀𝑀 𝐿≠𝐾

(5)

𝑻 𝐾𝐿 = 1 𝑟 𝐾𝐿 3 𝑰 - 3 𝑟 𝐾𝐿 5 [ 𝑥 2 𝑥𝑦 𝑥𝑧 𝑦𝑥 𝑦 2 𝑦𝑧 𝑧𝑥 𝑧𝑦 𝑧 2 ] ( 6 
)
𝑭 𝐾 𝜌 = -∫ 𝜌(𝒓, 𝑡) 𝑟 𝐾 3 𝒓 𝐾 𝑑𝒓 (7) 
𝒓 𝐾𝐿 is the vector between atoms 𝐾and 𝐿; 𝑻 𝐾𝐿 is the dipole-dipole interaction tensor and 𝑰 is the identity matrix. 𝑍 𝐴 is the nuclear charge of QM nucleus 𝐴. In ED simulations carried out with RT-TDDFT the nuclei may either be fixed or displaced by Newton's laws (Ehrenfest molecular dynamics 12 ). In this work we only consider the former possibility and carry out ED simulations at fixed nuclear positions. In that case 𝒓 𝐾𝐴 , 𝒓 𝐾𝐿 , hence 𝑭 𝐾 𝑍𝑄𝑀 and 𝑭 𝐾 (0) are constant in our simulations. The other electric fields are time-dependent.

I.2.b. Energy expression of QM/MMpol with electrostatic embedding

The total QM/MMpol Hamiltonian reads:

𝐸 𝑄𝑀/𝑀𝑀𝑝𝑜𝑙 [𝜌(𝒓, 𝑡), 𝝁(𝑡)] = 𝐸 𝑄𝑀 [𝜌(𝒓, 𝑡)] + 𝐸 𝑒𝑚𝑏𝑒𝑑 [𝜌(𝒓, 𝑡), 𝝁(𝑡)] + 𝐸 𝑀𝑀 [𝝁(𝑡)] (8) 
where 𝐸 𝑄𝑀 collects the energy of the QM region. In the Kohn-Sham DFT framework we have

𝐸 𝑄𝑀 = 𝑇 𝑠 [𝜌] + ∫ 𝜌(𝑟)𝑣 𝑒𝑥𝑡 𝑑𝑟 + 𝐽[𝜌] + 𝐸 𝑥𝑐 [𝜌] + 𝐸 𝑐𝑙𝑎𝑠𝑠
𝑄𝑀 that is, respectively, the sum of kinetic energy of the reference electron gas, the interaction energy with the external potential, the classical Coulomb repulsion, the exchange-correlation energy and the classical repulsion among QM nuclei (𝐸 𝑐𝑙𝑎𝑠𝑠 𝑄𝑀 ). 𝐸 𝑒𝑚𝑏𝑒𝑑 is the embedding energy.

𝐸 𝑒𝑚𝑏𝑒𝑑 = ∑ ∫ 𝜌(𝒓, 𝒕) |𝒓 𝐾 -𝒓| 𝑞 𝐾 𝑑𝒓 - 1 2 ∑ ∫ 𝜌(𝒓, 𝒕) |𝒓 𝐾 -𝒓| 3 𝝁 𝐾 (𝑡) • (𝒓 𝐾 -𝒓) 𝑑𝒓 𝐾∈𝑀𝑀 𝐾∈𝑀𝑀 + 𝐸 𝑐𝑙𝑎𝑠𝑠 𝑒𝑚𝑏𝑒𝑑 (9)
For a polarizable FF 𝐸 𝑒𝑚𝑏𝑒𝑑 encompasses the interaction with MM charges (𝑞 𝐾 ) and with the induced dipoles (𝝁 𝐾 ) (respectively the first two terms on the r.h.s. of Eq. 9) 𝐸 𝑐𝑙𝑎𝑠𝑠 𝑒𝑚𝑏𝑒𝑑 is the classical energy of MM atoms with the QM nuclei. 𝐸 𝑒𝑚𝑏𝑒𝑑 clearly appears as a coupling term between the QM and MM regions as it depends both on the electron density (QM region) and on the induced dipoles (MM region).

Finally 𝐸 𝑀𝑀 is the MM energy for the MM region. The MM energy involves bonded terms and non-bonded terms. The classical interaction among MM charges and the induction energy within the MM region:

- 1 2 ∑ 𝝁 𝐾 (𝑡) • 𝑭 𝐾 (0) 𝐾∈𝑀𝑀 .
For convenience we can also define an induction energy according to:

𝐸 𝑖𝑛𝑑 = 1 2 ∑ ∫ 𝜌(𝒓, 𝒕) |𝒓 𝐾 -𝒓| 3 𝝁 𝐾 (𝑡) • (𝒓 𝐾 -𝒓) 𝑑𝒓 𝐾∈𝑀𝑀 - 1 2 ∑ 𝝁 𝐾 (𝑡) • 𝑭 𝐴 𝑍𝑄𝑀 𝐴∈𝑀𝑀 - 1 2 ∑ 𝝁 𝐾 (𝑡) • 𝑭 𝐾 (0) 𝐾∈𝑀𝑀 (11) 
The potential entering the KS potential is obtained by differentiation of the embedding energy with respect to the electron density: 𝜕𝐸 𝑒𝑚𝑏𝑒𝑑 𝜕𝜌 ⁄ . Adopting the matrix notations introduced in Chapter 4 we have:

𝐸 𝑒𝑚𝑏𝑒𝑑 = ∑ ∑ 𝑞 𝐾 𝑃 𝜎𝜏 ⟨𝜎| 1 |𝒓 𝐾 -𝒓| |𝜏⟩ 𝜎,𝜏 𝐾∈𝑀𝑀 - 1 2 ∑ ∑ 𝑃 𝜎𝜏 ⟨𝜎| 𝝁 𝑖 (𝒓 𝐾 -𝒓) |𝒓 𝐾 -𝒓| 3 |𝜏⟩ 𝜎,𝜏 𝐾∈𝑀𝑀 + 𝐸 𝑐𝑙𝑎𝑠𝑠 𝑒𝑚𝑏𝑒𝑑 (12) 𝜕𝐸 𝑒𝑚𝑏𝑒𝑑 𝜕𝑃 𝜎𝜏 = ∑ 𝑞 𝐾 ⟨𝜎| 1 |𝒓 𝐾 -𝒓| |𝜏⟩ 𝐾∈𝑀𝑀 - 1 2 ∑ ⟨𝜎| 𝝁 𝑖 (𝒓 𝐾 -𝒓) |𝒓 𝐾 -𝒓| 3 |𝜏⟩ 𝐾∈𝑀𝑀 (13) 
𝑃 𝜎𝜏 are matrix elements of the Kohn-Sham density matrix. These two terms need to be added in the Kohn-Sham Hamiltonian to polarize the electron density by the MM region.

I.2.c. Coupling between RT-TDDFT MMpol? i) Stationary/dynamical solution

To solve the time-independent KS equations to determine the stationary states of the system of interest, a common procedure is to relax the MM induced dipoles at every SCF cycle. The MM dipoles are then injected in the next SCF cycle to calculate a new embedding potential. The convergence threshold for

𝐸 𝑐𝑙𝑎𝑠𝑠 𝑒𝑚𝑏𝑒𝑑 = ∑ ∑ 𝑍 𝐴 𝑞 𝐾 |𝒓 𝐾 -𝒓 𝐴 | 𝐴∈𝑄𝑀 𝐾∈𝑀𝑀 -∑ 1 2 𝝁 𝐾 (𝑡) • 𝑭 𝐴 𝑍𝑄𝑀 𝐴∈𝑄𝑀 (10) 
converging the MM dipole moments is tightened along with the SCF convergence to reach, at global convergence, a user-defined value, typically 10 -8 to 10 -10 D. On the other hand if one is interested in the time-dependent solutions of the KS equations more subtle algorithms are needed because of the time dependence of each terms of eq. 8. In principle one needs to set up the coupled equations of motion for the overall system. This is not a trivial task because of the composite quantum-classical nature of the system. One may think of coupling RT-TDDFT for the electron cloud to a fictitious dynamics of the MM induced dipoles, in the spirit of what is done for molecular dynamics simulations with MMpol 9 . In this PhD work we consider a simpler scheme in which we make the assumption that the MM dipoles completely relax at each RT-TDFT step. In other words, we look for the stationary polarization state of the environment along with the non-stationary propagation of the electron cloud. We call this a RT-TDDFT/MMpolstationary scheme.

ii) Implementation in deMon2k

The coupling between RT-TDDFT and MMpol has been carried out based on the implementation of RT-TDDFT described in Chapter 3. The strategy we have followed has been to build on the pre-existing "in-deMon2k QM/MM" methodology 13 . Indeed deMon2k includes an internal QM/MM approach meaning that both MM and QM (DFT) calculations are carried out by the program without needing program interfaces. The in-deMon2k QM/MM is based on the TINKER 14 format. It is currently compatible with the OPLS 15 , CHARMM 16 or Amber 17 force fields. Our strategy has been to upgrade this methodology to QM/MMpol, i.e. introduction electronic induction into the code, and the coupling of it to RT-TDDFT. The hope was that QM/MMpol calculation which needs several information passing between the DFT and MMpol calculations would benefit from fully local implementation.

An important feature of the QM/MMpol implementation was to use auxiliary fitted densities to evaluate the electric field created by the electron density (𝑭 𝐾 𝜌 ). This field is needed to evaluate the MM induced dipoles (Eq. 7). This can be a time consuming task. We showed the substitution of 𝜌 by 𝜌 ̃ decreased dramatically the computational cost of evaluating 𝑭 𝐾 𝜌 without affecting accuracy, as long as sufficiently flexible (i.e. including polarization functions) auxiliary basis sets are used, namely GEN-An*. These tests are described in details in the article reproduced at the end of Part II.

iii) Validation of the coupling scheme

To test the RT-TDDFT/ MMpol-stationary-scheme we consider a peptide (Tyr-Gly-Gly-Phe-Met) treated by DFT immersed in a box of 4,030 polarizable POL3 18 water molecules (Figure 3). The full system was previously equilibrated by classical MD simulations. We have used the PBE functional and the DZVP-GGA atomic basis set in combination with the GEN-A2* auxiliary sets. The fitted density has been used to calculate both the Coulomb and XC potentials 19 . A grid of high accuracy is used to integrate the XC contributions (10 -7 Ha). The induced dipoles have been updated at every SCF cycle by an iterative procedure until the Root-Mean-Square between two successive cycles is below 10 -9 D. After SCF convergence the electronic density of the peptide is perturbed by a Gaussian shaped electric field centered at 10 as and with standard deviation 1 as. Three field strengths have been tested: 0.001, 0.01 and 0.1 a.u.

The simulations have been run for 1 fs with the propagator-corrector Magnus and the Becker-Campbell-Haussdorff (see Chapter 3). 30 terms have been used in the expansion. The objective is to evaluate the error due to the RT-TDDFT/ MMpol-stationary-scheme. For short enough time steps the decoupling approximation is certainly valid. Indeed we find that the MM induced dipoles evolve very smoothly with such short time scales. No more than one iteration is needed to converge the induced dipole. The 0.1 as ED simulation will thus serve as reference. We have repeated the simulations with longer time steps of 0.25, 0.5, 0.75 and 1 as. Figure 4 depicts the differences of RT-TDDFT/MMpol total energy (Eq. 8), of induction energy (Eq. 12), and of embedding energy (Eq. 9) as a function of time taking the 0.1 as time-step simulation as reference. We first consider simulations with a weak initial perturbing pulse (Figure 4, Top, 0.001 a.u.). Clearly, the larger the time step the larger the difference with the 0.1as ED simulation. For the total energy and for the embedding energy the maximum error is of the order of a few thousandths of a kcal/mol with a 1 as time step. It is an order of magnitude smaller for the polarization energy. These values are rather small compared to the variations of the total energy in these simulations caused by the initial perturbation with the external electric field (around 0.06 kcal/mol). Interestingly the energy errors fluctuate around zero.

This suggests that the simulations with time steps larger than 1as eventually depart from the reference trajectory but do not diverge from it. We also find that the peptide dipole as well as the water dipoles of the first solvation layer (i.e. those mainly impacted by the electron dynamics taking place on the peptide)

were within 1.0E -5 D from those of the reference trajectory. This is a very small value. In simulations in which the initial perturbing electric field strength was increased to 0.01 a.u. (Figure 4, Middle), the same trends are obtained albeit with a factor of ten in the amplitudes of the errors. This again seems acceptable in view of the overall total energy change (6 kcal/mol). For an even stronger perturbing field (0.1 a.u., (Figure 4, Bottom) the errors in total, polarization energy and embedding energies are of the order of a kcal/mol, a tenth of a kcal/mol and a hundredth of a kcal/mol, respectively. These values are quite high, but again much smaller than the fluctuations of the total energy of the molecule (around 50 kcal/mol).

Altogether these tests justify the non-stationary/stationary coupling scheme between RT-TDDFT for the QM part and stationary MMpol for the environment although one should be careful to adapt the propagation time step to the amplitude of the electronic fluctuation that takes place in the QM region.

The most suitable time step might depend on the particular system of interest.

In principle though there should be a time step beyond which the decoupling between electrons and MM dipoles ceases to be valid. When we increased the time step (2 or 5 as) the electronic propagation was not stable anymore and diverged in a few steps. RT-TDDFT propagations are usually very sensitive to discontinuities that may arise in the time-dependent KS potential. Hence, a plausible explanation for the numerical instabilities observed in RT-TDDFT/MMpol simulations for the largest time steps may stem to potential discontinuities caused by significant variations of MM induced dipoles between two propagation steps. Interestingly, sudden instability of electron dynamics propagation may thus well be a sign of the breakdown of the decoupling hypothesis between the electron cloud dynamics and induced MM dipoles. 

I.3 On the introduction of retarded electric fields

I.3.b. How to introduce retardation effects? i) Retardation electric fields created by induced dipole

When building the KS potential at time 𝑡 𝑛 + Δ𝑡 during the iterative process one needs to account for the fact that the field created by other induced dipoles takes time to reach atom K. Let's first consider 𝑭 𝐾 𝑖𝑛𝑑 and imagine we can ride on atom K. The electric field created by other induced dipoles on MM atoms L should not be that arising from the dipoles 𝜇 𝐿 at 𝑡 𝑛 + Δ𝑡 but, rather, at a time earlier in the past. The further MM atoms L, the longer the delay for the electric field from this atom to reach MM atom K. The delay is determined by the distance between atoms (𝑑 𝐾𝐿 ) and by the speed of light in the medium of interest, i.e. 𝑡 𝑑𝑒𝑙𝑎𝑦 = 𝑑 𝐾𝐿 𝑛𝑐 ⁄ with 𝑛 the refractive index of the medium and 𝑐 the speed of light in vacuum. As a rule of thumb for 𝑛 = 1, 𝑐 ≈ 137 𝑎. 𝑢., approximately 3 Å/as. Introducing the delay is straightforward if one knows the history of induced dipoles. Being three-dimensional vectors they can be stored easily in RAM (Random Access Memory) or on machine hard disks. When 𝑭 𝐾 𝑖𝑛𝑑 on atom K is needed, a loop over all other MM atoms (L) is carried out. For each atom L, 𝑑 𝐾𝐿 is calculated, which defines 𝑡 𝑑𝑒𝑙𝑎𝑦 , hence 𝜇 𝐿 (𝑡 𝑛+1 -𝑡 𝑑𝑒𝑙𝑎𝑦 ) using the history of the 𝜇 𝐿 induced dipole. Because, in general, 𝑡 𝑑𝑒𝑙𝑎𝑦 doesn't correspond to an integer multiple of ∆𝑡, we use cubic splines to interpolate 𝜇 𝐿 (𝑡 𝑛+1 -𝑡 𝑑𝑒𝑙𝑎𝑦 ) 20 . The number of records, M, is determined from the speed of light and from a cutoff which is used to screen the field created by the induced dipoles. 𝑀 = 𝐶(𝑅 𝑐𝑢𝑡 𝑛𝑐 ∆𝑡 ⁄ ) where 𝐶(𝑋) is the least integer greater than or equal to X. 𝑅 𝑐𝑢𝑡 is usually set to around 50 Å.

ii) Retardation electric field created by the electric density

Similar considerations apply for the electric field produced by the electron cloud (𝑭 𝐾 𝜌 ). In such a case it is the history of the electron density that must be stored. Some difficulties arise though. First, the memory required for the storage of large and numerous density matrices is demanding and would alter computational performance. To circumvent this difficulty, we don't use the Kohn-Sham density to evaluate 𝑭 𝐾 𝜌 but instead an auxiliary density function 𝜌 ̃. We recall that 𝜌 ̃ is expressed as a linear combination of auxiliary functions 𝑓: 𝜌 ̃(𝒓, 𝑡 -𝑡 𝑑𝑒𝑙𝑎𝑦 ) = ∑ 𝑥 𝑓 (𝒓, 𝑡 -𝑡 𝑑𝑒𝑙𝑎𝑦 )𝑓(𝒓) 𝑓 (see Chapter 3). The time-dependent auxiliary coefficients 𝑥 𝑓 are determined from the KS density by a variational fitting procedure 21 . The number of auxiliary functions is usually three to four times that of atomic orbitals, but storing the history of the 𝑥 𝑓 coefficients which define 𝜌 ̃ is much less demanding than storing the history of density matrices.

Furthermore, we showed that 𝜌 ̃ could be used safely in place of 𝜌 for evaluating the electric field created by the QM region in stationary or time-dependent DFT/MMpol calculations (that replacing 𝑭 𝐾 𝜌 by 𝑭 𝐾 𝜌 ̃ ), or to evaluate atomic multipoles. A second difficulty is the practical definition of the distance to be used between electrons and atom K. Indeed, electrons are delocalized and one faces the well-known problem of defining an atom in a molecule. To solve this problem, we take as distance 𝑑 𝐾𝐴 that between MM atom K and the QM atom A holding the auxiliary function 𝑓(𝒓).

The above consideration introduce retardation effects in the determination of MM induced dipoles. We now turn to the Kohn-Sham potential. The same strategy as before is used to determine the effective 𝝁 𝐾 (𝑡 𝑛+1 -𝑡 𝑑𝑒𝑙𝑎𝑦 ) using the history of induced dipoles and cubic spline interpolations 20 .

I.3.c. Some tests with a simple model

As a first test we consider a dimer of water molecules at the QM/MMpol level. One is described by DFT and another by the polarizable POL3 model 18 (Figure 6). In the latter the oxygen and hydrogen atoms hold charges -0.730 and 0.365 and atomic polarizabilities of 0.528 and 0.170 Å 3 respectively. The ground state density is obtained in an SCF calculation. A Gaussian shaped electric field is applied during the ED simulation. It is centered at 𝑡 0 + 2as where 𝑡 0 is the initial time. The Gaussian pulse has a standard deviation of 0.1 as and a maximum strength of 0.9 e/bohr 2 . It is oriented along the hydrogen bond direction between the two molecules. Then the induction dynamics is clearly different for the three cases. The tight correlation between the QM and MM dipoles observed for n=10.0 is weakened. We also note that the back reaction of the MM dipole on the electron cloud is negligible as the dipole moment of the QM water follows the same trend for the simulation with different refractive indexes. 

II. RESPONSE MECHANISMS WITH HYBRID RT-TDDFT/MMpol

The methodology used for RT-TDDFT/MMpol with deMon2k has been described in section I. The method allows in principle to account for mutual polarization between the QM region where attosecond dynamics takes place and the environment. Dissipation of energy between the QM region and the environement are also in principle caught up by this computational set-up. In section II we investigate the response mechanisms of a peptide immersed in a water box after application of an ultrashort electric pulse. We first consider simulations without inclusion of retardation in the propagation of electric fields. These effects are analyzed in a second step. the electron cloud of the peptide that determines the response of MM induced dipoles. The oscillations of the MM induced dipoles essentially follow that of the peptide dipole moment (Figure 9). For the outer hydration layers, the response mechanism depends on the relative importance of 𝑭 𝑖 𝑖𝑛𝑑 and 𝑭 𝑖 𝜌 , the latter being itself dependent on the perturbing field strength. For the strongest perturbing field (0.1 a.u.) the response mechanism of the MM induced dipoles is completely imposed by 𝑭 𝑖 𝜌 for all hydration shells (except for water molecules beyond 15 Å). This explains why the average ACFs are almost superimposed.

The amplitude of the response decays with distance but the speed at which the induced dipoles vary is the same. In this regime 𝑭 𝑖 𝜌 ≫ 𝑭 𝑖 𝑖𝑛𝑑 so that 𝑭 𝑖 𝜌 imposes the response mechanism: the MM induced dipoles within 15 Å follow the variations of the peptide dipole moment. For the intermediate perturbing field (0.01 a. u.) 𝑭 𝑖 𝜌 dominates the response mechanism for the shorter distances (<9Å) and for short times (<50 as).

At longer distances or after a certain time, 50 as here, 𝑭 𝑖 𝑖𝑛𝑑 becomes more important and starts to introduce a distance dependence in the response delay of the MM induced dipoles.

We finally remark that including nuclear motion in the simulation protocol would further make the response mechanisms more complex by allowing 𝑭 𝑖 (0) to be time-dependent. This would enable to simulate the reorientation polarization of the environment molecule. We also neglected retardation in the propagation of the electric fields mediating the QM/MMpol interations. This will be the topic of the next section.

II.2. Response Dynamics with delayed potentials

In this last section we investigate if the delays taken by the electric fields mediating the interaction between the QM and MMpol regions impact the relaxation mechanisms that we outlined in the previous section. Toward this end we repeated the simulations using the algorithms described in Section I.3 to introduce retarded fields. To avoid artefacts from the RT-TDDFT/stationaryMMpol scheme we use a time step of 0.1 as for these simulations. The results are reported on Figure 10.

The simplest case to start with is the one initiated by the strongest external perturbation (Figure 10, bottom). In this case the induced dipole created on the peptide is so large that 𝑭 𝐾 𝜌 dominates over 𝑭 𝐾 𝑖𝑛𝑑 on all MM atoms K within 15 Å. This is seen on the ACF (Figure 10, bottom, right) for all solvation layers (< 15 Å) that all follow the same trends. The first solvation layer is clearly the most affected. A maximum polarization response is achieved around 80 as after the pulse (which corresponds to the ACF dropping to zero). The simulations have been carried out for 𝑐 = 137 𝑎. 𝑢. and 𝑐 = +∞ (which is equivalent to neglecting retardation). The curves reported in Figure 10 are almost exactly superimposable indicating no influence of retardation. To account for this result, let us first consider the innermost solvation layer (0 to 3 Å) . The water molecules in this layer feel the variations of electric field originating from the peptide with delays of just a few as since 𝑐 ≈ 3Å/as. Effectively, as seen in the insets of Figure 10 which depict zooms on the 0-50 as time window, the plain curves (ED simulations with 𝑐 = 137 𝑎. 𝑢.) are delayed by a few attoseconds over the dashed curves (ED simulations with 𝑐 = +∞). This delay is much less than the overall response mechanism that takes several tens of as. This means that the speed at which 𝑭 𝐾 𝜌 is fluctuating is not fast enough compared to the time at which it propagates to induce clear retardation effects on the MM dipoles. The response dynamics remains imposed by 𝑭 𝐾 𝜌 . One might expect that retardation would be more pronounced for outer solvation layers because the distance to cover for 𝑭 𝐾 𝜌 to reach remote K MM atoms is larger. However, the results shown on Figure 10 don't confirm this expectation. In addition, because the electric field created by a dipole decays as 𝑟 -3 retardation effects are damped rapidly with distance.

When considering simulations with weaker initial perturbing electric fields, conclusions are essentially the same. No retardation effects are highlighted. Now 𝑭 𝐾 𝜌 is weaker because the initial perturbation of the electron density is smaller. The reasons outlined in the previous case to account for the absence of visible retardation effects in the solvation layers still hold. Regarding 𝑭 𝐾 𝑖𝑛𝑑 , that now competes with 𝑭 𝐾 𝜌 to determine the induced dipole on atom K, a similar reasoning applies. Indeed, the dipoles that contribute the most to 𝑭 𝐾 𝑖𝑛𝑑 are those of the closest MM atoms L, say at a few Å. However, to observe retardation effects the fluctuations of electric fields created by dipoles 𝝁 𝐿 would have to be very pronounced and would have to take place on the attosecond timescales. In fact, as seen from the ACF depicted on Figure 10 the relaxation dynamics of induced dipoles requires tens of attoseconds.

In summary, we have shown that retardation in the mutual electrostatic interactions between the molecule and its environment can be safely neglected. This is due to the fact that electric fields generated by the molecule or its environment do not fluctuate sufficiently rapidly to create noticeable retardation effects. Our simulations in Section II consisted in optical excitations of the central molecule by a laser field.

The induced dipole on the molecule was the main source of perturbation of its environment. Because the field created by a dipole decays rapidly with the distance (~1/r 3 ), any retardation in the potential is rapidly damped. In the eventuality of ionization of the central molecule one might eventually expect different conclusions since the overall charge variation might produce a rapidly fluctuating electric field. Our

I. INTRODUCTION

Recent years have seen a growing interest in the electron dynamics taking place in molecules when they are subjected to an external perturbation. This interest has been stimulated by progress in attosecond spectroscopy that now gives access to details on electron dynamics. The realm of subfemtosecond electron dynamics involves fascinating processes such as ultrafast charge migration, 1 Auger decays, and Intra Coulomb Decays. [2][3][4][5] These are not driven by nuclear dynamics but instead by electron correlation and energy redistribution. 6 This nascent research field has led to new debated concepts like attosecond chemistry, a possible promise of which would be the possibility to control chemical reactions by the control of electronic motion. 7 Electron dynamics is also important in the description of ultrafast nonadiabatic molecular dynamics. The relaxation pathways within molecules electronically excited or ionized by a photon or a high-energy particle are particularly rich and complex. They involve coupled electron-nuclear dynamics. 8 On the computational side, much effort has been spent to devise simulation algorithms of electron dynamics. In the family of wave function approaches the TD-HF (Time-dependent-Hartree-Fock), 9 TD-CI (Time-dependent-configuration interaction), 10,11 or the TD-MCSCF (Time-dependent multiconfiguational self consistent field) 12,13 methods have been developed. Another popular approach for simulating electron dynamics relies on time-dependent density functional theory (TDDFT). This approach is frequently referred to as real-time TDDFT (RT-TDDFT) to distinguish it from the linear response (LR-TDDFT) formalism. The latter relies on perturbation theory to simulate UV-visible absorption spectra. 14 Although not exempt from intrinsic limitations like the self-interaction-error, 15,16 a noticeable advantage of TDDFT is its excellent computational cost/accuracy ratio. TDDFT can be applied to molecular systems comprised of hundreds of atoms. TDDFT finds its root in the seminal work of Runge and Gross. 17 Under the Kohn-Sham framework that refers to a fictitious reference system of noninteracting electrons, the coupled time-dependent KS equations describe the time evolution of the KS molecular orbitals, hence the dynamics of the electron density of the real system. RT-TDDFT has been used to calculate static and dynamic polarizabilities and hyperpolarizabilities of molecules, 18 to simulate UV-visible spectra of molecules 19,20 and of nanoparticles, 21 to simulate core-level near-edge X-ray absorption spectra, 22,23 to simulate photoelectron emission spectra, 24,25 electron conductance in electronic junctions, 26,27 photoinduced electron transfer, 28,29 magnetization dynamics in inorganic complexes, 30 attosecond dynamics following X-ray photoionization of gas molecules, 3 or charge migration following radiolysis of water. 5,31 RT-TDDFT has also been coupled to mean-field (Ehrenfest) nuclear dynamics to simulate nonadiabatic processes [32][33][34] with many interesting applications, for example to simulate the ultrafast dynamics of photoexcited metal complexes or in optimal control of chemical reactions. 8 Curiously enough, most implementations have been designed for molecular systems in the gas phase and not in contact with environments. If the systems of interest are periodic, periodic boundary conditions can be used to simulate infinite systems, 35 but in many cases, systems are not periodic and alternatives must be found. A challenge is to account for the electronic response of the environment due to the changes in the electronic structure of the molecule and vice versa. The environment may be homogeneous (solutions) in which case a polarizable dielectric continuum (PCM) can be used. The environment may also be heterogeneous, as for example for extended biosystems (DNA, proteins, lipid membranes), nanoclusters, or interfaces. In such cases hybrid QM/MMpol (i.e., using polarizable force fields) 36 constitutes a method of choice to retain the atomistic details of the environment at moderate computational cost. In the linear response formalism, coupling between TDDFT and either PCM or polarizable QM/MMpol has been devised. [37][38][39] For explicit propagation in time of the TDDFT equations, a further challenge is to account, by definition, for the time-dependence of the environment's response. Remote atoms should take longer times to respond than closer ones, for instance. Li and coworkers developed a combined RT-TDDFT/PCM 40,41 method, with applications to charge transfer dynamics in bulk heterojunction models. 42 In their PCM model the dielectric constant of the environment was made time-dependent even though the PCM was made stationary with the evolving potential created by the QM region. Corni et al. 43,44 as well as Ding et al. 45 later described a more general approach of RT-TDDFT/PCM calculations where both the PCM and QM region were propagated in time. Regarding hybrid RT-TDDFT/MMpol approaches Dinh et al. reported a few years ago a coupling between RT-TDDFT and a polarizable force field (FF). 46 Induction was introduced by distinguishing core from valence electrons on MM atoms. The average position of the core electrons + nucleus and the average position of valence electrons had the possibility to be different depending on the electrical environment, thereby creating induced dipoles. The authors reported insightful applications to sodium clusters deposited on metal surfaces 46 with detailed analyses of their optical properties. In the computational setup of Dinh et al. the RT-TDDFT engine itself relies on a grid-based implementation of DFT. This is quite different from the algorithms employed in the community of quantum chemists that generally rely on local basis sets (Gaussian or Slater atomic orbitals). There is thus a clear need to develop hybrid RT-TDDFT/MMpol schemes for the modeling of electron dynamics with local basis sets in extended molecular systems.

The structure of the present article is as follows. First, we report an implementation of polarizable QM/MMpol based on the charge-induced dipole model 36 of electronic induction in the software deMon2k. 47 Second, we describe our implementation of RT-TDDFT and its coupling with polarizable MM. In both modules density fitting techniques are used to reduce the computational cost drastically. 48,49 In section III we carefully test the reliability of substituting the Kohn-Sham density by the auxiliary density for propagating the electron dynamics or for calculating the QM/MMpol coupling interactions. Very encouraging results are obtained. We investigate in section IV the time-dependent electronic response of molecules in vacuum and in solution.

II. METHODOLOGY

II.1. Auxiliary Kohn-Sham Density Functional Theory. We start the Methodology section by recalling the general DFT framework implemented in deMon2k. This program solves the Kohn-Sham DFT equations with KS molecular orbitals (MO) ψ i (r) represented as linear combinations of Gaussian-type atomic orbitals 50 (LCGTAO). For simplicity, we will consider only closed-shell molecules, but we mention that the methodologies presented in this work have been adapted to the open-shell case too.

∑ ψ σ = σ σ = r r c t ( ) ( ) ( ) i i 1 (1) ∑ ρ σ τ = σ τ στ r r r t P t ( , ) ( ) ( ) ( ) , (2) 
∑ = * στ σ τ P t c tc t ( ) 2 ( ) ( ) i N i i /2 MO (3) 
Greek letters are used both as indices and as AO function names. The MO coefficients (c σi ), hence the density matrix (P στ ) and the electron density (ρ), depend on time. When solving the stationary KS equations, this dependence would by definition vanish, but we keep here the more general RT-TDDFT formulation. Note that the MO coefficients are complex numbers in real time propagation. deMon2k relies heavily on the variational density fitting method originally introduced by Dunlap 48 to avoid the calculation of four-center electron repulsion integrals (ERIS). The fitted densities (ρ) are expressed as linear combinations of auxiliary basis functions k: ρ(r) = ∑ k x k k(r). For computational efficiency the auxiliary basis functions k are Hermite Gaussian polynomials that are grouped by functions sharing the same exponents. 50 With this auxiliary density, the electronic energy expression for an isolated molecule reads

∑ ∑∑ ∑ στ ρ = + ⟨ ⟩ - ⟨ ⟩ + σ τ στ στ σ τ στ E t P t H P t k x t x t x t k l E ( ) ( ) ( ) ( ) 1 2 ( ) ( ) [ ] k k k l k l x c , , , (4) 
The symbol ∥ stands for the coulomb operator ( (5) deMon2k offers also the possibility to use the fitted density in the calculation of the exchange-correlation (XC) energy, in which case E xc [ρ] is replaced by E xc [ρ] in eq 4 and eq 5. 51 Now the KS potential does not depend explicitly on the KS density but only on the auxiliary density. We refer to this framework as Auxiliary DFT. 52 II.2. Polarizable QM/MM in deMon2k. Model of Electronic Induction. There are various ways to carry out DFT/MM calculations with deMon2k, and we refer the interested reader to a recent review describing these alternatives. 53 In the present work we focus on the so-called in-deMon2k QM/MM by which both QM, here (TD)DFT, and MM calculations are carried out by deMon2k, without using program interfaces. 53 We expect advantages in terms of data passing management between the DFT and MM modules. The objective of the present work is to upgrade the pre-existing QM/MM method to QM/MMpol. Electrostatic induction can be introduced in classical force fields in different ways. 36,[54][55][56] We note, for example, that the Drude polarizable force field has recently shown great promise for ions interacting with protein models, for which additive fixed-charge force fields come up short. 57,58 We have chosen here to consider the point-charge dipole model by which induction is simulated by the introduction of induced dipoles (μ i , note that vectors are written in bold) on every polarizable MM site i. 36,37 Each induced dipole is determined from the electric field F i at the MM atom position. F i stems from the electric field created by other MM permanent charges (F i (0) ) and by other MM induced dipoles (F i ind ). In QM/MMpol calculations one further adds the electric field created by the QM region (F i QM ), that is by the atomic nuclear charges (F i ZQM ) and by the electron density (F i ρ ). We also introduced the possibility of adding an external electric field (F i ext ) to mimic for instance the interaction with the electric part of an electromagnetic wave. The mathematical expressions for the various contributions are given by

μ α α = = + + + ( ) F F F F F i i i i i i i i (0) ind QM ext (6) 
∑ = ∈ ≠ F r q r i j j i j ij ij (0) MM 3 (7) 
∑ μ = - ∈ ≠ F T i j j i ij i ind MM (8) = - ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ T I r r
x xy xz yx y yz zx zy z

1 3 ij ij ij 3 5 2 2 2 (9) 
∫ ∑ ρ = + = - | -| - ρ ∈ F F F r r r r r r Z r r ( ) ( )d i i i k k ik ik i i QM ZQM QM 3 3 (10) 
where α i is the polarizability of MM atom i. It is assumed to be isotropic. q j is the charge of MM atom j; r ij is the vector between atoms i and j; T ij is the dipole-dipole interaction tensor, and I is the identity matrix. Z k is the nuclear charge of QM nucleus k. The total induction energy is comprised of three terms that reflect the interaction between the MM induced dipoles with (i) the MM permanent charges (E μ-qMM ind ), (ii) the atomic nuclei of the QM atoms (E μ-ZQM ind ), and (iii) the electron cloud (E μ-ρ ind ).

= + + μ μ μρ - - - E E E E Z tot ind qMM ind QM ind ind (11) 
Contributions (i) and (ii) are calculated as

-1/2∑ i∈MM μ i •F i (0)
and -1/2∑ i∈MM μ i •F i ZQM , respectively. The last term depends on the electron density and is given by

∫ ∑ ∑ ∑ μ μ ρ σ τ = - • - = - - μ ρ σ τ στ - ∈ ∈ r r r r r r r r r E r P 1 2 ( ) ( )d 1 2 
( ) i i i i i i i i ind MM 3 MM , 3 (12) 
QM/MMpol calculations must capture the interdependence between the electron cloud and the polarizable environment.

For stationary DFT calculations this is done by regularly updating the induced dipoles that depend on F i QM and the electrostatic potential created by the induced dipoles to be included in the KS Hamiltonian. We use a similar algorithm for RT-TDDFT propagation. We will come back to this methodological point at the end of section II. Note that besides E μ-ρ ind , the interaction between the QM and MM atoms also includes the electrostatic energy between the electron cloud and the MM permanent charges (q i ).

∫ ∑ ∑∑

ρ σ τ = | -| • = | -| ρ σ τ στ - ∈ ∈ r r r r r r E q q P ( ) d 1 i i i i i i q perm MM MM , (13) 
Within this electrostatic embedding scheme, the potential created by permanent charges and induced dipoles on MM sites are obtained by differentiation of the respective interaction energies with respect to the electronic density. The calculation of electrostatic integrals ( σ τ r 1

) required in eq 13 was optimized by Alvarez et al. 53,59 To take advantage of these algorithmic developments we represent each induced dipole μ i by two charges of opposite sign (±δ i ) separated by 0.5 bohr and centered around the MM atom positions. [60][61][62] This way the potential created by the induced dipoles (H στ μρ ) are included in the KS potential via a set of point charges, the calculation of which is performed efficiently in deMon2k. 53,59 As for any QM/MM scheme, a critical point of DFT/MMpol and RT-TDDFT/MMpol calculations is to set the boundaries between MM and QM regions. Setting boundaries across polar groups may deteriorate the efficiency of the hybrid energies and the derived properties. The choice of QM/MM partitioning is the responsibility of the user. Our QM/MMpol implementation does not rely on interfaces between QM and MM software, and both DFT and MM calculations are done within deMon2k. This is a critical advantage to reach efficient DFT/MMpol calculations. Indeed, passing information between the DFT and MM branches of the same program is rapid compared to I/O operations. The electric field and the induced dipoles are vectors that can be stored in random access memory (RAM), and one can easily restart convergence of induced dipoles at every new SCF cycle or RT-TDDFT time step from previous steps. Finally, our in-deMon2k QM/MMpol uses a direct algorithm similar to the calculation of electron repulsion integrals (ERIS). 50,63 At every SCF cycle or RT-TDDFT step n, instead of calculating the QM electric field F i QM,(n) from the current density matrix P (n) , we increment it from F i QM,(n-1) and the difference density ΔP = P (n) -P (n-1) , namely

μ ν = -∑ Δ μ ν μν - F F P i n i n r r QM,( ) QM, ( 1) , 3 
. This procedure has the advantage that one can screen many terms of the sum if ΔP μν is below a predefined threshold. This helps to decrease the computational time in SCF calculations when the density is close to convergence or in RT-TDDFT simulations when the density evolves slowly. Direct SCF procedures have been used by other groups in the context of QM/MMpol calculations. 64,65 Polarization Catastrophe. A well-known pitfall of polarizable force fields is the risk of "polarization catastrophe" the origin of which has been exposed by Thole. 56,66,67 This term defines a divergence of the polarization energy that happens when adjacent dipoles align on the same line in head-to-tail configurations. Most polarizable MM implementations avoid the polarization catastrophe by damping the electric fields at short distance. For MM atoms bonded in 1-2, 1-3, or 1-4 positions to a given polarizable MM site, the electronic field can be simply ignored. In deMon2k, choice is given to the user to set up these parameters. For nonbonded atoms electric damping is achieved by the modification of the dipole interaction tensor with two distance-dependent screening functions (f e and f t ) Three alternatives of the screening function have been implemented in deMon2k following previous proposals reported in the literature. One is the linear scheme 67

υ α α = = r s s a / with ( ) ij i j 1/6 (16 
)

υ υ = > - < ⎧ ⎨ ⎪ ⎩ ⎪ f r s r s 1.0 if 4 3 if e ij ij 3 4 (17) υ = > < ⎧ ⎨ ⎪ ⎩ ⎪ f r s r s 1.0 if if t ij ij 4 (18) 
another is the exponential scheme

υ α α = ar /( ) ij i j 1/6 (19) 
υ υ υ = - + + - ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ f 1 2 1 exp( ) e 2 (20) 
υ υ υ υ = - + + + - ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ f 1 6 2 1 exp( ) t 3 2 (21) 
while the third one is the Tinker-exponential form

α α = u r /( ) ij i j 1/6 (22) = - - f au 1 exp( ) e 3 (23) 
= -+ f au au 1 ( 1) exp( )

t 3 3 (24) 
In these expressions a is a unitless parameter that depends on the force field. The higher the value of a, the faster the field damping with distance. In the water model of the AMOEBA force field a is, for example, set to 0.39. 68 On the Use of Fitted Densities. We have tested various alternatives for estimating F i QM, . The most correct way is to calculate it from the Kohn-Sham density ρ (eqs 2 and 10). Since F i QM, needs to be evaluated on every MM site at every SCF cycle and at every RT-TDDFT step, this task can become computationally expensive. A tempting alternative is to replace ρ by the auxiliary density ρ. Because the number of auxiliary basis functions is typically four to five times lower than the number of products of atomic basis functions, substituting ρ by ρ̃is expected to drastically reduce the cost of calculation of F i QM, . Such a substitution is, however, not guaranteed to yield reliable results. This is because auxiliary fitted densities are not designed to reproduce ρ but to provide auxiliary densities from which approximate electronic repulsion interactions can be computed with reduced computational cost. That said, we recently showed that electrostatic multipoles obtained either from the KS density or from the fitted density are very similar, provided sufficiently flexible auxiliary basis sets are used. 69 This is an encouraging result. Indeed, we may expect that if the intrinsic multipoles on QM atoms extracted from ρ̃are similar to those extracted from ρ, so will be the electric fields generated by ρ̃and ρ. We will thus test the accuracy of stationary and time-dependent DFT/MMpol calculations when replacing ρ by ρ.

II.3. Electron Dynamics Equations-of-Motion. We now move to the description of our RT-TDDFT implementation. It is largely based on algorithmic developments reported previously by other groups in the past decade. 9,20,26,70 We thus refer the reader to the original publications. We insist here on the specificities of the implementation in deMon2k and on the novel features that we have introduced, notably the coupling between RT-TDDFT and the QM/MMpol just described. Runge and Gross developed the many body wave function TD Schrodinger equation into the single-particle TD density Kohn-Sham (TDKS) equation with an effective Hamiltonian H(t) uniquely described by the TD electron density ρ(t) 17

ψ ρ ψ ∂ ∂ = i t t H t t ( ) [ ( )] ( ) i i ( 25 
)
where H is the time-dependent Kohn-Sham operator which is a functional of the charge density. It includes the KS potential of the isolated molecule, the matrix elements of which are given by eq 5, and the interaction potentials of the electron cloud with external electric fields H ext . In QM/MMpol the KS operator also includes the perturbation from the MM charges (H qρ ) and MM induced dipoles (H μρ ).

= + + + ρ μ ρ H t H t H H t H t ( ) ( ) ( ) ( ) q isol ext (26) 
H isol includes the contribution from the XC potential. We make the adiabatic approximation and consider only the spatial dependence of the XC potential, neglecting its temporal nonlocality. Eq 25 can be recast using the density matrix P(t) into a Liouville-von Neumann type of equation, which reads in the case of a nonorthogonal basis set

∂ ∂ = - iS P t t S H t P t S SP t H t ( ) ( ) ( ) ( ) ( ) (27) 
where S is the overlap matrix in the atomic orbital basis set. As in refs 9 and 20 we transform H and P to the orthogonal MO basis leading to H′ and P′. Since the MO are orthogonal eq 27 simplifies to

∂ ′ ∂ = ′ ′ i P t t H t P t ( ) [ ( ), ( )] (28) 
We will use primes to denote matrices in the molecular orbital (MO) basis and no primes to denote matrices in the atomic orbital (AO) basis. The formal solution of eq 28 can be expressed as

′ = ′ † P t U t t P t U t t ( ) ( , ) ( ) ( , ) 0 0 0 ( 29 
)
where U is the evolution operator, which can be discretized into small time steps Δt, (31) and is the time-ordering operator, ensuring that operators associated with later times always appear to the left of those associated with earlier times. Many schemes have been proposed to evaluate the propagator in RT-TDDFT, and we refer the reader to recent reviews describing the physical conditions that propagators should fulfill. 70,71 We have implemented in deMon2k the Euler and second-order Magnus propagators.

∏ = +Δ - U t t U t t t ( , ) ( , ) i n i i 0 1 (30) ∫ τ τ + Δ = - ′ +Δ U t t t i H ( , ) exp{ ( )d } t t t
Euler Propagation. To solve eq 28 by applying Lagrange's Mean Value Theorem we obtain

′ + Δ = ′ - ′ ′ *Δ P t t P t i H t P t t ( ) ( ) [ ( ), ( )] (32) 
The propagation of the density matrix requires only the value of the density matrix and the Kohn-Sham matrix at the current time. These are easy to obtain; however, this propagation scheme does not guarantee the preservation of the norm of the KS wave function which can lead to divergence of the electronic propagation. We found the Euler propagation to be unstable in most of our applications, and it will not be considered any further in this article. Magnus Propagation. A convenient solution to eq 31 is given by a Magnus expansion 72

∫ τ τ - ′ = = +Δ Ω +Ω + i H d e e exp{ ( ) } t t t W ... 1 2 (33) 
where {Ω i } is a series of nested commutator integrals:

∫ τ τ Ω + Δ = - ′ +Δ t t t i H ( , ) ( )d t t t 1 (34) 
∫ ∫

τ τ τ τ Ω + Δ = - ′ ′ τ +Δ t t t i H H ( , ) d d [ ( ), ( )] t t t t 2 1 2 1 2 1 (35) 
Stopping at second order: W = Ω 1 , this integral can be evaluated using a quadrature formula: 26

Ω + Δ ≃ -′ + Δ *Δ ⎜ ⎟ ⎛ ⎝ ⎞ ⎠ t t t iH t t t ( , ) 2 1 (36) 
This is equivalent to the well-known split-operator method. 70 Three algorithms have been implemented to calculate the matrix exponential e W entering eq 33. The first one is based on the diagonalization of the W matrix

= = † e Ue U WU wU with W w ( 37 
)
another is based on a Taylor expansion of the exponential

∑ = ! = e n W 1 W n k n 0 (38) 
while the third one is based on the Baker-Campbell-Hausdorff (BCH) scheme. 20,73 ′

+ Δ = ′ + ! ′ + ! ′ + ! ′ + P t t P t W P t W W P t W W W P t ( ) () 1 1 [ , ( )] 1 2 [ , [ , ( )]] 1 3 [ , [ , [ , ( )]]] ... (39) 
Note that the latter scheme assumes the Kohn-Sham matrix is Hermitian. Other methods based on polynomial Chebychev expansion or Krylov subspace projections have been considered by other groups to evaluate the matrix exponents. The iterations are continued until convergence. This is a robust but time-consuming procedure. An alternative is the two-step predictor-corrector scheme proposed by Van Voorhis and coworkers. 26 Application of an External Electric Field. We continue this section with the mathematical definitions of the external electric fields that can be applied in deMon2k. One option is to apply a Gaussian shaped pulse

ω = • -- F d t F t t u t ( ) exp[( ( ) )/2 ] cos( ) F max 0 2 2 (40) 
where t 0 is the center of the pulse, u F is the pulse width, ω is the field pulsation, d ̂= (x,y,z) is the polarization vector, and F max is the maximum field strength.

ω ω = ̂< ̂≥ ⎧ ⎨ ⎪ ⎩ ⎪ F d d t t t F t t t F t t t ( ) cos( ) ( ) cos( ) ( ) 0 max 0 max 0 (41) 
A drawback of the Gaussian shaped pulse or of the linear ramp is the possible introduction of spurious static field effects which arise if the zero pulse area condition (ZPAC, ∫ t=0 t max F(t)dt = 0) is not fulfilled. 75,76 Care must be taken to avoid such effects, for example by setting the center of the Gaussian pulse sufficiently far from the initial time. In fact Gaussian pulses are not convenient in practical applications because of the shallow decay of Gaussian functions which require long simulation times to ensure the ZPAC. To alleviate this inconvenience some authors proposed the use of squared sinusoidal functions. 75,77 We implemented the following one in deMon2k

π θ θ ω = • • • -• ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ F d t F t T t T t t ( ) sin ( ) ( ) cos( ) max 2 pulse pulse (42) 
where T pulse is the duration of the pulse, and θ is the Heaviside function. Finally we also implemented an infinitely narrow kick in the first step of the RT-TDDFT simulation. As illustrated below kick perturbations are useful to simulate absorption spectra.

The applied field excites the molecular system through the coupling with the electrostatic dipole. The corresponding potential term is added to the KS matrix. 

= - • t F t E t ( ) ( ) ( ) app (43) 
∑ ∑
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σ τ ≡ ∂ ∂ = ⟨ | | ⟩ στ στ r F H E P ext ext (45) 
Several analysis tools of the electron dynamics have been implemented. They will be introduced in the following applications sections as needed.

On the Coupling between the Electron and the Induced Dipole Intrinsic Dynamics. The full hybrid QM/MMpol Hamiltonian is given by eq 46

= + + H t H t H t H t ( ) ( ) ( ) ( ) QM/MM QM embed MM (46) 
where H QM is given by eq 5, and H embed collects the coupling between the QM and MM regions (embedding energy) which includes the interaction between the electrons and QM nuclei with the permanent and induced dipoles on MM sites. Finally H MM (t) is the energy of the MM part computed with molecular mechanics force field. The latter term also holds a dependence in time because of the interaction between the time-dependent MM induced dipoles and the MM permanent charges. If one is interested in solving the time-independent KS equations to determine the stationary states of the system of interest, a common procedure is to relax the MM induced dipoles at every SCF cycle. The MM dipoles are then injected in the next SCF cycle to calculate a new embedding potential. The convergence threshold for converging the MM dipole moments is tightened along with the SCF convergence to reach, at global convergence, a user-defined value, typically 10 -8 to 10 -10 D.

On the other hand, if one is interested in the time-dependent solutions of the KS equations, more subtle algorithms are needed because of the time dependence of each term of eq 46.

In principle one needs to set up the coupled equations of motion for the overall system. This is not a trivial task because of the composite quantum-classical nature of the system. One may think of coupling RT-TDDFT for the electron cloud to a fictitious dynamics of the MM induced dipoles, in the spirit of what is done for molecular dynamics simulations with MMpol. [78][79][80] Here we consider a simpler scheme in which we make the assumption that the MM dipoles completely relax at each RT-TDDFT step. In other words, we look for the stationary polarization state of the environment along with the nonstationary propagation of the electron cloud. For sufficiently small time steps this mixed stationary-nonstationary scheme is certainly a valid approximation to the real dynamics.

As shown in the Validation section we found this approximation to be acceptable for standard electron dynamics simulations with 1 as time steps or below.

III. PERFORMANCE AND VALIDATION

III.1. RT-TDDFT Propagation with Density Fitting. As explained in the Methodology section our implementation of RT-TDDFT relies on the use of fitted densities. In particular, one has the choice in deMon2k of using either the KS or the fitted density to calculate the (time-dependent) XC energies and potentials. These two approaches are referred to as BASIS and AUXIS, respectively. Using the fitted densities usually induces a reduction of the computational cost by a factor of 10, which is clearly advantageous, yet it remains to be tested if ρc an be used safely in RT-TDDFT propagation. As test cases, we consider two molecules: carbon monoxide and cysteine, a sulfur containing amino acid taken in the nonzwitterionic form. The propagation has been run using the Magnus propagator with an integration time step of 1 as and diagonalization (eq 37). The simulations have been carried out with the TZVP-FIP2 81 basis set and the PBE functional. 82 Auxiliary basis sets are generated by an automatic procedure implemented in deMon2k that depends on the atomic orbital basis set. The GEN-An auxiliary function sets contain groups of auxiliary functions with s and spd angular momenta. The index n determines the number of auxiliary function sets, i.e. the number of these sets increases with increasing n. We have considered the GEN-A2 and GEN-A3 auxiliary function sets, as well as the GEN-A2* and GEN-A3* that are supplemented by f and g auxiliary functions. As a general rule of thumb the larger the auxiliary basis set the more accurate the DFT-based energies and properties. An adaptive grid of accuracy 10 -7 Ha has been used to integrate the XC potential and energies. 51 In Figure 1 we report the fluctuations of the x-component of the dipole moment of the two molecules when subjected to a constant electric field of intensity 0.01 au along the z-axis. Similar conclusions looking at the y-or zcomponents of the induced dipoles can be drawn.

On the left-hand side of Figure 1 we analyze the sensitivity of the propagation to the electron density used to calculate the XC potential, using the GEN-A2* auxiliary basis set. During the 10 fs of the propagation we find no important differences between the BASIS (orange) and AUXIS (blue) approaches. The simulation corresponding to the graphs on the right-hand side has been obtained with the AUXIS approach but with different auxiliary basis sets. For CO 2 all the simulations give similar electronic evolution. The electronic response of CO 2 is well captured by each auxiliary basis set. For cysteine the results are clearly more contrasted. Taking GEN-A3* as the reference auxiliary basis set, we find that the simulations with GEN-A2 and GEN-A3 are clearly different. On the other hand, with GEN-A2* the simulation nicely reproduces the evolution of the induced dipole moment. This is an encouraging result. Provided sufficiently flexible auxiliary basis sets are chosen, one can rely on density fitting techniques to reduce the computational cost of the RT-TDDFT propagations similar to what is done in stationary auxiliary DFT or auxiliary perturbation theory calculations. Our RT-TDDFT implementation thus takes advantage fully of the optimized density fitting algorithms already implemented in deMon2k. We will come back to the code performance at the end of section III.

III.2. RT-TDDFT To Calculate Static Polarizabilities. We continue the Validation section with the calculation of polarizabilities of molecules. Static and dynamic polarizabilities, as well as hyperpolarizabilities, can be calculated with standard DFT either by finite-field methods, 83,84 by the coupledperturbed KS approach, 85,86 or by the auxiliary density perturbation theory. [87][88][89] These are actually recommended approaches for computing these properties at modest computational cost. Here they are used to test the validity of our RT-TDDFT module. After converging the stationary ground state of the molecule in the absence of an external field, an electric field F i ext is applied, and the response of the electron density is simulated by RT-TDDFT. The resulting induced dipole is related to the applied electric field vector via the polarizability tensor. The external electric field may either be constant or time-dependent, giving access to static or dynamic polarizabilities, respectively. Focusing here on the static case, the polarizability tensor elements are given by 83

α μ μ μ μ = ̅ -̅ - - ̅ -̅ - F F F F F 2 3 [ ( ) ( )] 1 12 [ (2 ) ( 2 )] ij j i j i j i j i j ( 47 
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where μ ̅ i (F j ) denotes the average contribution along i(= x, y, z) of the induced dipole when an external field F j has been applied along j. The uncertainty in the knowledge of μ ̅ i is given by μ

σ ̅ = u NS ( ) / i i
eff where σ i is the standard deviation of the sample of dipole moments calculated along the RT-TDDFT propagation. N is the number of terms in the sample, and S eff is the statistical chain efficiency. The latter has been evaluated with the Coda package of the R project for statistical computing. 90,[START_REF] Plummer | Convergence Diagnosis and Output Analysis for MCMC[END_REF] The calculations have been done with the PBE functional, 82 the TZVP-FIP1 basis set, 81 which has been optimized for electric properties calculations, and the GEN-A2* auxiliary basis set. Fields F j of 0.01 au have been applied. This value is also used by default in the finite field method in deMon2k. 84 The RT-TDDFT propagations have been run for 10 fs with an integration time step of 1 as. The propagatorcorrector Magnus scheme with diagonalization has been used. As can be seen in Table 1 the static polarizability tensors calculated from simulation of the electron density subjected to a perturbation by RT-TDDFT match nicely those obtained by the finite field method. The agreement between both approaches validates our implementation.

III.3. Absorption Spectra in the Gas Phase. A further validation of our RT-TDDFT implementation is now sought by comparing molecular absorption spectra calculated by LR-and by RT-TDDFT. Indeed, the electronic spectrum of a molecule is encoded in the evolution of the molecular dipole simulated by RT-TDDFT after a molecule is perturbed by an infinitely narrow electric field. The Fourier transform of the dipole signal gives access to the polarizability tensor in the frequency domain which in turn yields the dipole strength function (absorption spectrum). More details about this procedure can be found in many recent publications. [19][20][21] Coumarin has been chosen here as a test case because it is a solvatochromic dye, the dipole moment of which is strongly modified in the excited state corresponding to the first electronic absorption band. Calculations have been done with the DZVP/GEN-A2* combination of atomic and auxiliary basis sets and with the PBE XC functional. The LR-TDDFT absorption spectrum has been simulated by assigning a Lorentzian function of width 0.25 eV centered at each excited state energy and with an amplitude proportional to the oscillator strength of the transition. The first 493 singlet excited states have been included in the construction of the spectrum, spanning an energy window 18 eV wide. The LR-TDDFT calculation has been carried out with deMon2k within the framework of Auxiliary Density Perturbation Theory (ADPT). [START_REF] Carmona-Espíndola | Photoabsorption spectra from time-dependent auxiliary density functional theory[END_REF] For the RT-TDDFT spectrum three 15 fs simulations have been carried out, each with a different orientation of the initial kicking electric field. The strength of the field was set to 0.005 au. A time step of 1 as was used in the propagation (using the PC Magnus propagator and the diagonalization technique). To construct the spectrum the molecular dipole was damped by an exponential function (e -t/τ with τ = 180 au) to broaden the absorption peaks in the RT-TDDFT spectrum. In both the LR-and RT-TDDFT approaches fitted densities are employed to evaluate the Coulomb and the XC integrals. The spectra are depicted in Figure 2. The lowest energy transition with significant oscillator strength is found at 4.12 eV (300 nm). This excitation energy is close to the first band of the absorption spectra of coumarin in isopentane (310 nm). [START_REF] Song | Spectroscopic study of the excited states of coumarin[END_REF] As illustrated in Figure 3, this electronic excitation mainly corresponds to ππ* transitions from the HOMO-2 and HOMO toward the LUMO with coefficients of 0.53 and 0.29, respectively.

The agreement between the LR-and RT-TDDFT spectra is excellent over the entire range of energies. Both the positions of the maximum and the relative amplitude obtained match with the two types of TDDFT implementations. Our results validate the use of the Auxiliary DFT framework 52 for constructing absorption spectra from RT-TDDFT simulations. As usual though, the choice of the auxiliary basis is critical and must include polarization functions (GEN-An*) to reach good accuracy.

III.4. QM/MMpol Framework in Stationary and Nonstationary Cases. (DFT+Density Fitting)/MMpol: Stationary Calculations. We now present the first results of QM/MMpol calculations with the in-deMon2k QM/MM module. To this end we consider a peptide (Tyr-Gly-Gly-Phe-Met) treated by DFT immersed in a box of 4,030 polarizable POL3 [START_REF] Caldwell | Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N-Methylacetamide[END_REF] water molecules. The full system was previously equilibrated by classical MD simulations (data not shown). Five geometries extracted from the classical MD simulations have been calculated at the QM/MMpol level. For the latter we have used the PBE functional and the DZVP-GGA atomic basis set in combination with the GEN-A2, GEN-A2*, or GEN-A3* auxiliary sets. The fitted density has been used to calculate both the Coulomb and XC potentials. 52 A grid of high accuracy is used to integrate the XC contributions (10 -7 Ha). The induced dipoles have been updated at every SCF cycle by an iterative procedure until the Root-Mean-Square between two successive cycles is below 10 -9 D. To avoid the polarization catastrophe we have used the Tinker-exponential forms of field attenuation (eqs 22-24). For the calculation of the electric field created by the electron density (eq 10) we consider two options. The first one is to use the KS density; the other is to use the auxiliary fitted density, respectively referred to as FBASIS and FAUXIS. Let us first consider the QM/MMpol-FBASIS scheme. The timings reported in Table 2 indicate that including induction significantly increases the cost of the calculation. It represents 65% of the total time spent in the SCF module with GEN-A2*. This is for the most part the calculation of the electric field created by the electron density on the MM sites that leads to this timing. Thirty seconds are needed on average for each SCF cycle. For comparison, a nonpolarizable DFT/MM calculation on the same system requires 12 s per SCF cycle. There is indeed a clear cost to the inclusion of induction. When switching to the less accurate GEN-A2 auxiliary set, the computational cost is decreased to 21 s/SCF cycle, but more SCF cycles are needed to reach convergence so that 85% of the time is spent in the induction modules. In an attempt to reduce this supplementary cost, we consider the QM/MMpol-FAUXIS scheme. With GEN-A2* the cost drops to 16.1 s per SCF cycle, which is a just a little more than a nonpolarizable DFT/MM (12 s). This reduction comes from the calculation of the electric field created by the electron density that has dropped to almost zero. The remaining time for induction is spent in the induced dipole iterations and in the calculation of the induceddipole electrostatic potential. To assess whether the FAUXIS is reliable we report in Table 2 the different contributions to the polarization energy (eq 11). For each contribution, the Root-Mean-Square-Deviations are calculated taking the FBASIS/ GEN-A2* as reference. At SCF convergence we find that the RMSD of induction energies (E μ-ZQM ind + E μ-ρ

ind + E μ-qMM ind ) differs by less than 1.5 kcal/mol between the FBASIS and FAUXIS approaches with GEN-A2*. A similar value is found for FAUXIS/GEN-A3*. We can thus consider the FAUXIS/GEN-A2* combination to be an excellent approximation of FBASIS/ GEN-A2*, without further need to go to GEN-A3*. On the other hand, the comparison is less encouraging with GEN-A2. In this case, the RMSD of the induction energy between the FAUXIS and FBASIS approaches is 29 kcal/mol. This is a rather large value: the fitted density can be used safely in lieu of the KS density in QM/MMpol calculations as long as sufficiently flexible auxiliary basis sets are used (GEN-A2* or larger). In such cases the computational advantage of the FAUXIS approach is significant. We make two final remarks. First, rather expectedly, the induction terms that are the most sensitive to the choice of the auxiliary basis are those between the MM induced dipoles and the QM region. The induction energy between the dipoles and the MM charges (E μ-qMM

ind

) is always the same. Second, we note that the SCF process converges more rapidly with larger auxiliary basis sets, somewhat lowering the increase in computational cost due to the greater number of integrals to compute.

(DFT+Density Fitting)/MMpol: Nonstationary Calculations. We now examine the sensitivity of the RT-TDDFT/ MMpol simulation to the method chosen to calculate the electric field generated by the QM region. After SCF convergence the electronic density of the peptide is perturbed by a Gaussian shaped electric field centered at 10 as and with standard deviation 1 as. Three field strengths have been tested: 0.001, 0.01, and 0.1 au. The simulations have been run for 1 fs with the propagator-corrector Magnus scheme and a time-step of 1 as. The BCH formula (eq 39) has been used to calculate the exponential of the complex matrices. Thirty terms have been used in the expansion of eq 39. We report in Figure 4 the evolution of the peptide dipole moment (top) and the difference of polarization energy with respect to their values at the initial time. Both the FAUXIS and FBASIS schemes are tested. Each simulation has been carried out with either the GEN-A2 or GEN-A2* auxiliary basis set. As expected the stronger the intensity of the electric field perturbing the electron density at the beginning of the propagation, the larger the response of the system. This can be seen on the evolution of the peptide dipole moment, that exhibits larger amplitudes with the stronger field (0.1 au), and also on the fluctuations of the polarization energy. With the weakest field the subsequent variations of the polarization energy are small (of the order of 10 -2 kcal/mol). The agreement between the FAUXIS and FBASIS approaches is always very satisfactory. With the GEN-A2* auxiliary basis set the results between the FAUXIS and FBASIS simulations are even indistinguishable whatever the strength of the electric pulse that perturbs the system.

Coupling between Electron and MM Dipoles in RT-TDDFT/ MMpol Simulations. As explained in the Methodology section a central aspect of the present RT-TDDFT/MMpol implementation is the assumption that the MM induced dipoles respond instantaneously to the electronic motion taking place in the QM region. Technically, this means that the MM dipoles are fully converged at every RT-TDDFT step. We tested the suitability of this strategy by repeating the previous simulations of the solvated peptide with shorter time steps of 0.75, 0.5, 0.25, and 0.1 as. For short enough time steps the decoupling approximation is certainly valid. With a time step of 0.1 as we found, indeed, that the MM induced dipoles evolve very smoothly. Figure 5 depicts the differences of QM/MMpol total energy, of polarization energy, and of embedding energy as a function of time taking the 0.1 as time-step simulation as reference. The initial perturbing field was set to 0.001 au. Clearly, the larger the time step the larger the difference. For the total energy and for the embedding energy the maximum error is of the order of a few thousandths of a kcal/mol with a 1 as time step. It is an order of magnitude smaller for the polarization energy. These values are rather small compared to the variations of the total energy in these simulations caused by the initial perturbation with the external electric field (around 0.06 kcal/mol). Interestingly the energy errors fluctuate around zero. This suggests that the simulations with time steps larger than 1 as eventually depart from the reference trajectory but do not diverge from it. We also found that the peptide dipole as well as the water dipoles of the first solvation layer (i.e., those mainly impacted by the electron dynamics taking place on the peptide) were within 1.0E -5 D from those of the reference trajectory. This is a very small value. In simulations in which the initial perturbing electric field strength was increased to 0.01 au the same trends are obtained albeit with a factor of 10 in the amplitudes of the errors (Figure S1). This again seems acceptable in view of the overall total energy change (6 kcal/ mol). For an even stronger perturbing field (0.1 au) the errors in total, polarization energy, and embedding energies are of the order of a kcal/mol, a tenth of a kcal/mol, and a hundredth of a kcal/mol, respectively (Figure S2). These values are quite high but again much smaller than the fluctuations of the total energy of the molecule (around 50 kcal/mol). We note that such electric fields are extremely strong and would trigger nonlinear effects like ionization. Altogether these tests justify the nonstationary/stationary coupling scheme between RT-TDDFT for the QM part and stationary MMpol for the environment although one should be careful to adapt the propagation time step to the amplitude of the electronic fluctuations that take place in the QM region. The most suitable time step might depend on the particular system of interest.

In principle, though, there should be a time step beyond which the decoupling between electrons and MM dipoles ceases to be valid. When we increased the time step (2 or 5 as), the electronic propagation was not stable anymore and diverged in a few steps. RT-TDDFT propagations are usually very sensitive to discontinuities that may arise in the timedependent KS potential. Hence, a plausible explanation for the numerical instabilities observed in RT-TDDFT/MMpol simulations for the largest time steps may be that they arise from potential discontinuities caused by significant variations of MM induced dipoles between two propagation steps. Interestingly, sudden instability of electron dynamics propagation may thus well be a sign of the breakdown of the decoupling hypothesis between the electron cloud dynamics and induced MM dipoles. Further work will be needed to examine this point in more detail.

III.5. Absorption Spectra from RT-TDDFT/MMpol Simulations. We report in Figure 6 the absorption spectrum for the coumarin molecule solvated by a 30 Å radius sphere of water molecules. The system was equilibrated in a previous step by a classical MD simulation (data not shown) followed by a few-steps geometry optimization of the coumarin molecule before the RT-TDDFT/MMpol simulations. This partial optimization was intended to avoid too large distortions of the molecule, which would cause unreasonable displacements of the electronic absorption bands. We followed a similar protocol as for the gas phase case (see section III.3) to build the spectra. In most simulations the QM region encompasses the coumarin molecule, while the water environment is described by the force field. However, in order to define a reference spectrum we have also carried out RT-TDDFT/MMpol simulations including the first hydration layer of coumarin in the QM region (12 water molecules).

As seen in Figure 6 the environment has a significant effect on the spectrum. This is especially noticeable for the band around 4 eV that corresponds to a transition having charge transfer character. The center of this band is red-sifted by 0.22 eV when comparing the gas phase and the reference spectra (see inset). The nonpolarizable TIP3P model leads to a redshift of 0.15 eV, while the polarizable RT-TDDFT/MMpol (POL3) spectrum exhibits a more pronounced red-shift of 0.18 eV, that is closer to the reference. Electrostatic induction thus permits a slight improvement on the position of the most displaced absorption bands. We also remark that the absorption spectra calculated with polarizable water combined with either the FBASIS or the FAUXIS option (see above) are indistinguishable. This is a further element showing that as long as sufficiently flexible auxiliary basis sets are chosen (GEN-A2* here), density fitting techniques can be safely used in TDDFT/MMpol calculations.

III.6. Numerical Stability and Performances. We conclude section III with some notes on the numerical stabilities of RT-TDDFT simulations and on the computational performance of the implementation in deMon2k. It is known that simulating electron dynamics by RT-TDDFT can be difficult in terms of numerical stability. This numerical stability is highly system-dependent, and the best propagation scheme has to be sought for each new molecular system of interest. The list of parameters impacting the numerical stability encompasses not only those directly related to the propagation schemes (propagator, matrix exponentiation method, size of time-step, ...) but also other more general DFT parameters: the quality of atomic basis set, of auxiliary basis set, the grid quality for XC potential numerical integration, ... In particular, we found the initial conditions of the electronic propagation to be extremely important. For instance, in most of our calculations the preliminary stationary SCF needs to be converged with tolerance criteria below 10 -10 Ha for the total electronic energy and 10 -7 for the charge density error (respectively defined by the TOL and CDF options of the SCFTYPE keyword in deMon2k). These convergence thresholds are tight compared to those customarily used in stationary DFT calculations. We also found the method for determining the fitted density coefficients to be important. To solve the sets of inhomogeneous systems of linear equations associated with density fitting, one can either use an analytical [START_REF] Koster | A MinMax self-consistent-field approach for auxiliary density functional theory[END_REF] or numerical approach. [START_REF] Domínguez-Soria | Robust and efficient density fitting[END_REF] The former generally led to more stable RT-TDDFT simulations and has been used throughout.

In Figure 7 we report the computational timing to carry out a 1.5 fs RT-TDDFT/MMpol electron dynamics simulation on the solvated peptide just described. Following our previous conclusions, this simulation has been run with the AUXIS and FAUXIS approaches with the DZVP-GGA/GEN-A2* combination of basis sets. We have used the predictor-corrector Magnus propagator with the BCH expansion (30 terms) and a time step of 1 as. A grid of accuracy 10 -7 Ha has been used for the XC contributions. The time-dependent auxiliary density was integrated at every RT-TDDFT step to extract intrinsic atom multipoles (charges, dipole, quadrupole) according to the Hirshfeld scheme. With GEN-A2* multipoles extracted from ρã re very close to those extracted from ρ. 69 The simulation took 12 h on 48 processors with the message passing interface protocol.

The most time-consuming part of the simulation corresponds to the matrix multiplications (of which there are almost 400 000). These are needed (i) to transform the density and KS matrices between the MO and AO representation (ii) in the BCH approximation that involves nested commutators. In second position is the cost of including induction stemming from the embedding of the QM region by induced dipoles (8%) and by the convergence of MM induced dipoles by the iterative procedure (18%). This situation could be improved in the future by adopting more advanced simulation algorithms that avoid the iterative procedure used here to converge the MM induced dipoles. [START_REF] Lagardere | Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II. Toward Massively Parallel Computations Using Smooth Particle Mesh Ewald[END_REF] The XC potential represents 24% of the overall computational cost, while the calculation of the Coulomb contribution is almost negligible. This remarkable performance is possible thanks to the mixed scheme implemented in deMon2k to store short-range ERIS in RAM and to compute long-range ERIS by double asymptotic expansions. 100 Finally we note that the repeated analysis of the time-dependent electron density induced only a small supplementary cost to the calculation. 69 In summary, we think our RT-TDDFT/MMpol is efficient enough to tackle the simulation of electron dynamics in large molecular systems.

IV. ELECTRONIC POLARIZATION DYNAMICS

IV.1. Electron Dynamics within an Isolated Molecule.

In this subsection we analyze the electron dynamics taking place when a coumarin molecule in the gas phase is submitted to a monochromatic laser field. We choose a wavelength that corresponds to an excitation energy of 4.1547 eV (see section III.3). We have propagated the electron density for 25 fs with a time step of 10 as. A Gaussian shaped electric field centered at 9.5 fs and full-width at half-maximum of 3.53 fs (u F = 1.5 fs) was applied (eq 40). The electric field orientation was set in the molecular plane with an intensity of 10 -4 au (51 mV/nm). The frequency ω of the field was set to correspond to an excitation energy of ΔE = 0.1528 Ha. To follow the evolution of the electron density we have computed the molecular timedependent dipole moment and the time-dependent intrinsic atomic charges q i and dipole moments (μ X ). To define the latter three distinct population schemes have been tested, namely the Hirshfeld, 101 Becke, 102 and Voronoi Deformation lations may become time-consuming, we have extracted atomic charges and dipoles from the analysis of the auxiliary density (ρ) which is cheaper than from the KS density. 69 We have previously shown this alternative to be reliable as soon as the GEN-A2* auxiliary basis (or larger) is chosen, as is the case in this application.

The set of time-dependent atomic charges (q X ) permits the definition of a total charge-derived dipole moment μ q = ∑ X q X r X . The variations in time of μ q provide information on charge transfer between atoms in the course of the simulation. On the other hand, the sum of the intrinsic atomic dipoles μ pol = ∑ X μ X provides information on the internal polarization of the atoms during the simulation. The sum of μ q and μ pol gives rise to the full molecular dipole moment. As seen in Figure 8 the molecular dipole starts to oscillate at around 7 fs as a result of the application of the electric field. Regular oscillations are seen in subsequent times, the period of which (0.99 fs) corresponds well to the applied electric field energy (4.1547 eV). The molecular system thus undergoes Rabi oscillations between the ground and the targeted excited state. We observe soft beatings on a few fs that correspond to the Gaussian shaped pulse. Looking at the decomposition of the dipole moment we find that the oscillations are essentially due to μ q , i.e. they are caused by charge transfers between atoms. The sum of the internal polarization μ X (μ pol ) fluctuates much less, as well as each intrinsic dipole moment (Figure 8, right). Of course, the separation between μ q and μ pol is arbitrary and depends on the chosen population scheme. With Voronoi Deformation Density, we found very similar results as for Hirshfeld (Figure S3). On the other hand, with the Becke partitioning scheme a very different separation between polarization and charge transfer is obtained (Figure S4). Actually the Becke scheme is not recommended for extracting electrostatic multipoles because it may produce "nonchemical" charges in many cases (e.g. hydrogens always have charges around -0.5e). It should probably be avoided for analyzing time-dependent electron density. That said, we found fluctuations of the total dipole moment come from fluctuations of the charge-derived dipole moments whatever the chosen partitioning scheme.

The isosurfaces of the deformation electron density shown in Figure 9 render a pictorial view of ultrafast dynamics over three Rabi oscillations. For this simple excitation process involving two electronic states the overall shape of the deformation density can be rationalized looking at the shape of the MOs involved in the process. Especially the population of the LUMO can be identified looking at Figure 9.

IV.2. Dynamics of the Response of the Environment. In this section, we analyze the electronic response of the environment of a central molecule after perturbation of the latter by an external electric field. To this end we take the same system as in subsection III.4, namely a methionine enkephalin solvated in a box of POL3 water molecules. After tight SCF convergence, the central peptide was perturbed by a Gaussian shaped electric pulse centered at 20 as with 3 as width. The field strength was set to either 0.001, 0.01, or 0.1 au. Note the latter corresponds to a very strong intensity. Following our conclusions from the Validation section we use the AUXIS and FAUXIS approaches in combination with the GEN-A2* auxiliary basis. The simulations were conducted for 3 fs with a time step of 3 as using the predictor-corrector-Magnus/BCH propagator. We report in Figure 10 the variation of the induced dipoles on MM atoms with respect to the initial time (Δμ(t) = μ(t) -μ(0)) and their normalized autocorrelation functions (C(t), ACF). Both quantities are averaged by hydration layers as indicated by the angular brackets ⟨...⟩.

We start by considering the upper graphs that correspond to perturbing field strength of 0.001 au. As expected, the longer the distance between the water molecules and the peptide, the smaller the impact on the induced dipoles. The first hydration layer is the one that experiences the highest variations of induced dipoles. As evident from the black curve in Figure 10, top-left, the average induced dipoles undergo damped oscillations. These are caused by energy dissipation in the MM environment, which is possible thanks to the use of a polarizable FF. Dissipation is very pronounced for the first hydration layer, but it is also seen for the outer hydration layers. The induced dipoles for molecules pertaining to the inner hydration layer completely lose correlation within a few tens of as, while beyond 15 Å, the average ACF remains close to 0.8 at 200 as. The characteristic response time is distance dependent. This characteristic time increases for each successive hydration shell. Some of the averaged ACF become negative which is to be related to the oscillatory nature of the variations of ⟨Δμ⟩. We finally remark that the response of MM induced dipoles not only is fully instantaneous but also exhibits relaxation components over hundreds of attoseconds.

When the strength of the initial perturbing field is increased to 0.01 au, the amplitude of oscillation of the average induced dipoles is larger by a factor of 10. This is true for each hydration shell. When the field strength is further increased to 0.1 au, a further increase of response amplitudes is observed for ⟨Δμ⟩. The ACFs exhibit more complex evolutions with the increase of perturbing field strength. For the weakest perturbing field strength (0.001 au) we already mentioned that the response was distance dependent (top-right). For a perturbing field strength of 0.01 au the response of induced dipoles is not distance dependent within the first 50 as, apart from water molecules situated beyond 15 Å (middle-right). Only after this time a scattering of the average ACFs becomes apparent. Finally, for a perturbing field strength of 0.1 au all the average ACFs but one (again for water molecules situated beyond 15 Å) are almost superimposed (bottom-right). The response mechanism of MM induced dipoles is therefore not distance dependent at all within 15 Å. All these results reflect subtle response mechanisms that deserve a more detailed analysis.

We recall that the induced dipoles are determined by the electric field created by the other MM atoms (F i (0) + F i ind ) and by the QM region (F i QM ) (eqs 6-10). In the present RT-TDDFT simulations only F i ind and F i QM can account for the variations of the MM induced dipoles since the nuclei are fixed. We also recall that we employ here a mixed nonstationary/ stationary RT-TDDFT/MMpol scheme (see section III). Accordingly the response of the MM induced dipoles caused by variations of F i QM is expected to be enhanced in our scheme compared to what it would be in fully dynamical simulations. Nonetheless, the average ⟨Δμ(t)⟩ and the associated ACF extracted from a 0.1 as time-step simulation were found to be very similar to the graphs shown in Figure 10, thereby indicating that the artificial enhancement of the dipole relaxation due to the RT-TDDFT/MMpol coupling scheme is moderate. The response of MM dipoles should be less pronounced as the distance r increases because of the decay of F i QM with distance. On the other hand, the response caused by variation of F i ind should be associated with a certain delay, because it requires the other induced dipoles to be affected. For example, the induced dipoles of water molecules situated between 6 and 9 Å will be affected by induced dipoles of innermost hydration waters only when their induced dipoles have varied. The prevalence of one mechanism over the other should depend on the relative strength of F i ind and F i QM . For the inner hydration layer (<3 Å) C(t) is almost identical whatever the initial perturbation field. It decays to 0.3 in around 50 as (although the variations of induced dipole amplitudes are different for each perturbing electric field). For this hydration layer the source of variation of MM induced dipoles is primarily F i QM . It is the time-dependent field created by the electron cloud of the peptide that determines the response of MM induced dipoles. The oscillations of the MM induced dipoles essentially follow that of the peptide dipole moment (Figure S5). For the outer hydration layers, the response mechanism depends on the relative importance of F i ind and F i QM , the latter being itself dependent on the perturbing field strength. For the strongest perturbing field (0.1 au) the response mechanism of the MM induced dipoles is completely imposed by F i QM for all hydration shells (except for water molecules beyond 15 Å). This explains why the average ACFs are almost superimposed. The amplitude of the response decays with distance, but the speed at which the induced dipoles vary is the same. In this regime F i QM ≫ F i ind so that F i QM imposes the response mechanism: the MM induced dipoles within 15 Å follow the variations of the peptide dipole moment. For the intermediate perturbing field (0.01 au) F i QM dominates the response mechanism for the shorter distances (<9 Å) and for short times (<50 as). At longer distances or after a certain time, 50 as here, F i ind becomes more important and starts to introduce a distance dependence in the response delay of the MM induced dipoles.

We finally remark that including nuclear motion in the simulation protocol would further make the response mechanisms more complex by allowing F i (0) to be timedependent. This would enable simulating the reorientation polarization of the environment molecule. We leave this possibility for future work.

V. CONCLUSION

In this paper, we have reported the implementation in deMon2k of an original combination of RT-TDDFT and a polarizable force field based on the point charge-dipole model of induction. Our implementation is made efficient thanks to the use of fitted densities. Although we have focused here on applications combining both methods, RT-TDDFT or QM/ MMpol calculations can of course be run independently. Electron dynamics in complex molecular systems like those encountered in biology are now accessible. Applications will be reported in the future.

Our simulations have revealed the complexity of response mechanisms of the environment of a solute submitted to an external perturbation. We have focused on electronic induction, which corresponds to the optical dielectric constant. Inclusion of nuclear motion would further complexify even more of these mechanisms by making F i (0) nonconstant. In general cases, the response mechanisms will probably be strongly system and process dependent, but we expect the RT-TDDFT/MMpol scheme introduced in the present work to be capable of covering wide ranges of processes involving significant electron dynamics.

The present work may be extended along various lines. Improvements of the QM/MMpol engine could be sought to reduce the cost of induction, or we could couple RT-TDDFT to more advanced polarizable force fields like AMOEBA. Recent results in the context of linear-response TDDFT coupled to AMOEBA are promising. 104 The RT-TDDFT propagation itself could be made more efficient, for example by using adaptive time-steps. 105 An obvious extension would be to couple RT-TDDFT/MMpol to molecular dynamics in the socalled Ehrenfest scheme to simulate coupled electron-nuclear dynamics. Simulations based on the exact factorization of the electronic-nuclear wave function as introduced by Gross and co-workers may also constitute an interesting road to follow. 106 Introducing nuclear dynamics would open new energy dissipation channels that are not included in the present schemes. Efforts along the aforementioned lines are underway in our laboratories.
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such as perturbations by electric fields or inelastic collisions with charged particles. Various propagation algorithms and analysis tools were implemented.

In Chapter 4, we reported an original combination of RT-TDDFT and polarizable MM force field adapted to biomolecules. An efficient and robust implementation of this method has been realized in deMon2k software. Density fitting techniques allow again to reduce the computational cost in the RT-TDDFT propagations and QM/MM coupling. The code is ready to simulate electron dynamics in extended biomolecules. This method has been applied to understand the complexity of response mechanisms of environment of a solute peptide submitted to an external perturbation.
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 1 Figure 1. Reduction potential range of redox centers in electron transfer processes (Figure 1 in ref 1)

Figure 2 .

 2 Figure 2. Different type of heme found in cytochromes. (Figure 3 from ref 1)

Figure 3 .

 3 Figure 3. Commonly found heme axial ligands in various cytochromes. (A) Class I cyts c. (B) Cyts b. (C) cyt f. (D) c-type cytochromes. (Figure 4 from ref 1.)

Figure 1 .

 1 Figure 1. Free energy profile in the Marcus Theory where the collective reaction coordinate is taken to be the diabatic energy gap (Figure extracted from ref 11 )

  also known as charge equilibration or electronegativity equalization model 28e , uses the same partial charge description as traditional non-polarizable force fields. The difference is that these partial charges on each atom are allowed to change in order to adapt to different electrostatic environments during the simulation. The set of partial charges is calculated by minimizing the electrostatic energy of the given structure. The charge conservation is ensured by applying the principle of electronegativity equalization. The charge-dependent energy for a system of 𝑀 molecules containing 𝑁 𝑖 atoms per molecule is expressed as 𝐸(𝑄, 𝑅) = ∑ ∑ 𝜒 𝑖𝛼 𝑄 𝑖𝛼

.

  Drude particle carries a charge 𝑞 𝐷 , and the charge of the parent atom A is replaced by 𝑞 𝐴 = 𝑞 -𝑞 𝐷 to preserve the net charge of the atom-Drude (A-D) pair (𝑞). 𝑞 𝐷 is defined according to the isotropic atomic polarizability of the parent atom 𝛼 = In the presence of an electric field 𝑭, the Drude particle oscillates around a displaced position 𝑑 =

  (a) and (b) are folded within a globin motif and belong to type of cytochrome.c (Cyt.c), while Figure 2 (c) to (f) are formed of alpha helices and beta sheets (αβ) and belong to type of cytochrome.b (Cyt.b). Their cofactor prosthetic group and ligands are different too. Cyt.c (label a,b) consist of a heme and two ligands, histidine and methionine residuesconnected to the iron cation, with two cysteine residues covalently connected through thioether linkages to heme. On the other hand Cyt. b (label c,d,e,f) consist of heme ligated by the side chains of two histidine residues. † Indeed, some complex redox proteins, involving multiple domains may necessitate hundreds of nanoseconds of MD simulations to converge redox potentials.

Figure 2 .

 2 Figure 2. Cytochromes selected to illustrate the LRA/QM+MM machinary. (a) Globin (R. capsulatus C2), (b) Globin (P. aeruginosa, C551), (c) αβ (B. Taurus), (d) αβ (Rattus N. V451/V61I), (e) αβ (Rattus N.), (f) αβ (E. vacuolata)

Figure 3 .

 3 Figure 3. Inner sphere structure optimized by DFT. (a) Inner sphere of Cyt.c: PFe-ImMe-EMS-MMS2 (b) Inner sphere of Cyt. b: PFe-ImMe2.

Figure 5 .

 5 Figure 5. The PDB structures after energy minimization (section II.1.b) are taken as reference. The

Figure 4 .

 4 Figure 4. Fluctuation of free energy during dynamics with different sizes of water box.

Figure 5 .

 5 Figure 5. Root-mean-square deviation (RMSD) of six cytochromes protein backbone during 30ns molecular dynamics. The label is the same as in Table 1. Black and green is for dynamics in Fe II form. Red and blue is dynamics in Fe III form. Black and red is RMSD of whole proteins backbond while Green and Blue is RMSD of protein excluding flexible residues at the two end of proteins sequence. (c) we cut last five residues which were not resolved in PDB. (e) we cut the last seven residues. (f) we cut the first four and last five residues which was no resolute in PDB.

Figure 6 .

 6 Figure 6. Diabatic free energy curves of Eq.3 for initial (purple) and final (red) states obtained from the energy gap calculation during 30 ns. The circles correspond to the points obtained directly from MD simulations. The triangles are obtained from the circles by application of Eq. 4, that is enforcing the ergodic hypothesis. The dashed-dotted curves correspond to linear fitting of a parabolic free energy curve on circles. The plain curves correspond to linear fitting of a parabolic free energy curves on the circles and triangles (i.e. enforcing ergodic hypothesis).

  blue curve is the ideal result where simulation results equal to experimental results (y=x), while the read curve is the result we obtained. Overall, theoretical results reproduce well the trend of experimental results. However there is a large difference between Cyt.c (label a,b) and Cyt.b (label c,d,e and f) of around 0.5 V. This difference comes from both inner and outer sphere, especially from the inner part (0.46 eV). Restricting our attention to the Cyt. b. (the ones with the four lowest redox potentials) a linear regression factor R 2 =0.8377 is obtained. The tendency is correct except the result of the second point. The differences with the experimental result of these two points (d and e) are

Figure 7 .

 7 Figure 7. Comparison of experimental and computed redox potentials. The dashed line is the ideal result(𝒚 = 𝐱). The red line is the plot with 𝑬 𝒆𝒙𝒑 𝟎 against 𝑬 𝒕𝒉 𝟎 .

Figure 8 .

 8 Figure 8. Structure of Cyt.c (351c) and Cyt.b (1b5a). The amino acids are colored according to their contribution to outer sphere energy.

Figure 9 .

 9 Figure 9. Structure of Cyt. c and Cyt, b. The amino acids are colored according to their contribution to reorganization energy.

  Finally in Section III, a published article in the Journal of Chemical Theory and Computation 20 describing the parameterization work is reproduced.

  AMOEBA, parameters are classified by using different atom types and atom classes. Atoms with the same atom class will share parameters for short-range valence interactions (bond, angle, torsions ...) and the same vdW parameters. Within an atom class, atoms are further classified by types according to their chemical environment and consequently may have different parameters for multipole distribution and atomic polarizability. In the parameter set called AMOEBApro13 29 , there are 42 atom classes and 258 atom types. The first step to create parameters of a new molecule is to define the atom type and class of each atom of the new fragment we want to add to the FF. Usually they are

Figure 1 .

 1 Figure 1. Local coordinated frame definitions for atomic multipole sites (a) The Z-then-X convention (b) The bisector convention (c) The convention Z-then-bisector (figure 1 in ref 12b)The z-then-x convention in Figure1(a) is used for most sites for asymmetric triplets of atoms. By adding the orthogonal axis Y, chiral centers can be treated. The bisector convention (Figure1 (b)) is used when the Z axis can be defined by the angle bisector formed with the two neighbors. It is typically used in the case of C2V symmetry, such as water or a carboxylate group. The convention Z-bisector (Figure1

  Ren and Ponder have proposed a method based on a fit of the electrostatic potential. They optimized the multipoles extracted in DMA on an electrostatic potential surface computed at a quantum chemistry level, usually MP2, associated to a large basis set if the size of the system allows it. This fitting optimizes only the dipole and quadrupole moments while the monopoles are kept fixed. The convergence criterion should not be set too tight to avoid over fitting. Ponder et al. have shown some examples of properties computed using both DMA and fitted multipoles. In some cases, free energy results have shown an improvement, but other results have not demonstrated an obvious difference 12c .

Figure 1 .

 1 Figure 1. Heme structure, ligand models, and atom definitions for the parametrization procedure.

Figure 2 .

 2 Figure 2. Geometries of heme interacting with molecules used in the validation of the AMOEBA FF parameters. Picture made with VMD.78 

Figure 3 .

 3 Figure 3. Heme-water interaction energies (kcal/mol) of the different geometries represented in Figure 2. Left, results of ferrous state; right, results of ferric state.

Figure 4 .

 4 Figure 4. Heme-ions (Na + and Cl -) interaction energies (kcal/mol) of the different geometries represented in Figure 2. Left: results for the ferrous state. Right: results for the ferric state. B3LYP calculations for the ferric states are not reported because of self-consistent-field convergence issues.

Figure 5 .

 5 Figure 5. Heme-molecule interaction energies (kcal/mol) of the different geometries represented in Figure 2. Left: results for the ferrous state. Right: results for the ferric state. Missing points for quantum mechanical methods (MP2 and/or B3LYP) are due to self-consistent-field convergence issues.

Figure 6 .

 6 Figure 6. Interaction energies (kcal/mol) of the [PFe II -ImMe-EMS-(H 2 O) 6 ] (top), [PFe III -ImMe-EMS-(H 2 O) 6 ] (middle), and [PFe II -(ImMe) 2 -(H 2 O) 6 ] (bottom) complexes with droplets of water molecules. For each complex, a collection of 30 geometries is considered.

Figure 7 .

 7 Figure 7. Upper panel, RMSD of protein backbone atoms. Lower panel, RMSD of protein backbone atoms belonging to alpha helices only. In all cases, the last seven residues that belong to a flexible loop were not included in the RMSD calculation.
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Figure S1 :

 S1 Figure S1: Normalized autocorrelation function of the AMOEBA interaction energy of heme with water aggregates.

Figure S2 :

 S2 Figure S2: Energy profile associated to the rotation around the Nhis-Fe bond.

Figure S3 :

 S3 Figure S3: RMSD of aminoacid residues located within 10Å of the heme group using the AMOEBA or CHARMM (no_pol) force field.

Figure S1 :

 S1 Figure S1: Normalized autocorrelation functions of the AMOEBA interaction energy of heme in the ferrous and ferric states with water aggregates (using the water03 (a) and water14 (b) water models). See section II.3 for details.

Figure S2 :

 S2 Figure S2: Energy profile associated to the rotation around the Nhis-Fe bond. The angle is one of the Chis-Nhis-Fe-Nheme dihedral. The geometries corresponding to each extremum is schematized by a square holding four nitrogen atoms to symbolize the porphyrin ligand and by a pink three-branch fork representing the methyl-imidazole ligand. DFT calculations with PBE and OPTX-PBE functionals have been computed with deMon2k.

Figure S3 :

 S3 Figure S3: RMSD of aminoacid residues located within 10Å of the heme group using the AMOEBA or CHARMM (no_pol) force field.

  water model was found to be important, the 2014-water model giving better results than the 2003water model. Thanks to recent and decisive algorithmic developments in Tinker-HP software, we carried out MD simulations of heme proteins on the nanosecond time scale with the newly developed parameters.

  theory considers two electronic diabatic states corresponding to the transferred electron either of the electron donor or on the electron acceptor. In order to preserve energy, ET can only take place for nuclear configurations corresponding to degeneracy of the two diabatic states. Therefore nuclear motion gate the electron tunneling for biological ET, because proteins exhibit multiscale dynamics (femto-to microseconds), so it can be the overall rate of electron transfer. In the regions of the conformational space associated with degeneracy of the diabatic states, tunneling of electron from the donor to the acceptor over the intervening medium takes place on the atto-to femtosecond time scale depending on the strength of the quantum mechanical coupling between the diabats. A great deal of effort has been deployed over the last decade to unravel the microscopic mechanisms governing protein-mediated tunneling. Semi-empirical models such as the pathway model were developed in the mid-1980s by Hopfied,

Figure 1 .

 1 Figure 1. Tunneling currents involved in one of the inter iron-sulfur clusters electron transfer in the Respiratory complex 1. Interatomic distances are given in Å. The full and dashed arrows represent primary and secondary interatomic fluxes. The stronger the density flux through an atom, the darker its color. (Figure 2 from ref 3)

Cederbaum.

  They are called charge migration and proceed without any rearrangement of the nuclei. They also take place on attosecond time scales. The theoretical model to simulate real-time time-dependent electronic structure response to external perturbations is the time-dependent Schrödinger equation. As for stationary calculations, approximations are required to simulate the time-dependent Schrödinger equation. Two families of methods can be distinguished. One on hand the wave function approaches such as the TD-HF (Time-dependent-Hartree-Fock), TD-CI (Time-dependent-configuration interaction), or the TD-MCSCF (Time-dependent multi configurational self-consistent field); on the other hand the Real-Time time-dependent density functional theory (RT-TDDFT). The latter has been gaining strong momentum in the last years due to the advantage ratio of accuracy toefficiency.

  Moser, C. C.; Keske, J. M.; Warncke, K.; Farid, R. S.; Dutton, P. L., Nature of biological electron transfer. Nature. 1992, 355, 796; (b) Page, C. C.; Moser, C. C.; Chen, X.; Dutton, P. L., Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature. 1999, 402, 47; (c) Gray, H. B.; Winkler, J. R., Electron tunneling through proteins. Q. Rev. Biophysics. 2003, 36 (3), 341. 2. (a) Beratan, D. N.; Onuchic, J. N.; Hopfield, J. J., Electron tunneling through covalent and noncovalent pathways in proteins. J. Chem. Phys. 1987, 86 (8), 4488; (b) Beratan, D. N.; Onuchic, J. N.,

Figure 1 .

 1 Figure 1. Iterative SOMP scheme for the propagation of the density from time 𝒕 𝒏 to time 𝒕 𝒏+𝟏 .

Figure 2 .

 2 Figure 2. Predictor-Corrector SOMP scheme for the propagation of the density from time 𝒕 𝒏 to time 𝒕 𝒏+𝟏 .

(

  𝑐 𝑛 = (2 -𝛿 𝑛0 )𝐽 𝑛 (𝑎 ̃) with 𝐽 𝑛 being the Bessel functions of the first kind (𝐽 𝑛 = ∑

Figure 3 .

 3 Figure 3. Examples of electric fields applicable in ED simulations with deMon2k with an arbitrary maximum field strength 𝐅 𝐦𝐚𝐱 equal to 1. Top-left: Gaussian pulse, the center is 𝐭 𝟎 = 𝟗. 𝟓 𝐟𝐬, its width 𝛍 𝐅 = 𝟏. 𝟓 𝐟𝐬.The orange line corresponds to a white light (𝛚=0 a.u.) and the blue line a monochromatic pulse (𝛚=0.156 a.u). Top-right: same as Top-left but with a squared sinusoidal envelop and centered at 3.5 fs. Bottom-left infinitely narrow pulse centered at 𝟗. 𝟓 𝐟𝐬. Bottom-right: linear ramp with the maximum field achieved for 𝟗. 𝟓 𝐟𝐬. The orange line corresponds to white light (𝛚=0 a.u.) and the green line a monochromatic pulse (0.156 a.u).

  where 𝐻 † is the adjoint of 𝐻. The matrix elements of the Hamiltonian are 𝐻 𝑖𝑗 = ⟨𝑖|𝐻|𝑗⟩. If the Hamiltonian matrix elements are real, 𝐻 𝑖𝑗 † = ⟨𝑖|𝐻 † |𝑗⟩ = ⟨𝑗|𝐻|𝑖⟩ * = ⟨𝑗|𝐻|𝑖⟩ = 𝐻 𝑖𝑗 . Therefore Eq. 30 becomes Hermitian operator the norm of the electronic wave function is conserved. Now in presence of a CAP (𝑉 𝑎𝑏𝑠 ), 𝐻 = 𝐻 𝑅 + 𝑖𝑉 𝑎𝑏𝑠 , 𝐻 𝑖𝑗 † = ⟨𝑖|(𝐻 𝑅 + 𝑖𝑉 𝑎𝑏𝑠 ) † |𝑗⟩ = ⟨𝑗|𝐻 𝑅 + 𝑖𝑉 𝑎𝑏𝑠 |𝑖⟩ * = ⟨𝑗|𝐻 𝑅 -𝑖𝑉 𝑎𝑏𝑠 |𝑖⟩ ≠ 𝐻 𝑖𝑗 . We have now

Figure 1 and

 1 Figure1and Figure2describing the iterative and PC methods of the SOMP, each time a new Kohn-Sham electron density 𝜌 (or equivalently 𝑃) is formed by the SOMP, the fitting equations (Eqs.40-41) are used to determine an auxiliary density. The fitted density is then used to calculate the next Kohn-Sham potential. Now it must be remembered that DF provides an approximate solution to the Kohn-Sham equations that depends for the most part on the choice of the auxiliary basis set. Although ADFT can be regarded as well tested now for stationary DFT calculations 51a or Linear-Response TDDFT56 it is not yet clear whether ADFT can be safely used in the context of RT-TDDFT. For example the electron dynamics per se might not be well reproduced in DF based ED simulations. Actually our tests, reported in the article reproduced at the end of Part II57 , showed that provided sufficiently flexible auxiliary basis sets are chosen, one can rely on density fitting techniques to reduce the computational cost of the RT-TDDFT propagations without altering the stability or the accuracy of the propagations. In section II we will report computational performance tests showing that the implementation of RT-TDDFT in deMon2k fully takes advantage of DF techniques of the code.

I. 3 .

 3 c Occupation of Kohn-Sham molecular orbitals One way to analyze the ED is to define a set of KS MOs (𝑪 𝑘 ) as reference and to follow their occupation numbers (𝑛 𝑘 ) during the simulation. The set of MOs obtained at convergence of the SCF procedure is used for example. The occupation numbers are obtained as 𝑛 𝑘 (𝑡) = 𝑪 𝑘 † 𝑷′(𝑡)𝑪 𝑘 where the 𝑪 𝑘 are the eigenvectors of the Kohn-Sham potential obtained from a SCF calculation and 𝑷′ is the time dependent density matrix in the MO basis. Such analyses identify which MOs are associated with an electronic transition or ionization. It should be remembered that since any unitary transformation of the set of reference KS MOs is equally valid to determine the electron density and the electronic energy, this type of analysis is somehow arbitrary.

4

  the negative and positive isosurfaces of the deformation density for a benzene molecule subjected to an external electric field. The energy of the light corresponds to the first excitation energy of benzene. A recurrence of 0.6 fs is observed.

Figure 4 .

 4 Figure 4. Isosurfaces of the deformation density (0.01 bohr -3 ) of benzene subjected to a Gaussian monochromatic pulse corresponding to the transition from the ground to the first excited state. The field was oriented along the top-botton direction defined by the page. Yellow and violet surfaces correspond to region of accumulation and depletion of electron density. The orange rectangles illustrate the periodicity in the electron flows.

Figure 5 .

 5 Figure 5. Optimized structure of coumarin and heme in gas phase. White: hydrogen, red: oxygen, blue: nitrogen, pink: iron, cyan: carbon.

Figure 6 .

 6 Figure 6. Computational timing for 200 as of RT-TDDFT ED simulations of coumarin and heme. The time step was set to 1 as and the iterative SOMP was chosen. A grid of high accuracy was employed to evaluate the XC contribution to the potential.

  and 1256 electrons and 195, 495, 1095, 2295 and 3145 atomic orbitals (DZVP-GGA/GEN-A2* combination of atomic orbitals and auxiliary basis sets). The geometries have been extracted from a classical MD simulation of coumarin solvated in a box of solvent using periodic boundary conditions.

Figure 7 .

 7 Figure 7. Five molecular systems used for testing different methods to perform the SOMP.

  carried out on the Cedar supercomputer hosted by ComputeCanada (Intel Broadwell® CPUs at 2.1Ghz, model E5-2683 v4). Three 96 tasks distributed over 3 nodes have been used. The available RAM memory enabled the use of the MIXED ERIS option of deMon2k even for the largest system, thereby avoiding recalculation of Coulomb integrals in the course of the ED simulations.

Figure 8 .Figure 9 .

 89 Figure 8. Computational timings for propagating RT-TDDFT simulations on coumarin with different matrix exponentiation methods. Top: Total time of the computation. Bottom: timing of the SOMP step

Figure 1 .

 1 Figure 1. Variation of electric field on oxygen of water molecule in different shells after four different kind of perturbation on coumarin. The electric fields encompass both the electron and nucleus contributions. Color code: 0-3 Å in black,3-4 Å in red, 4-6 Å in green, 6-7 Å in blue. The plain and dashed curves correspond to the highest and the lowest electric fields for each layer. PBE/DZVP-GGA/GEN-A2* ED simulations relying on second order Magnus propagator with a time step of 2 as. For the ionizing radiations (bottom) a complex absorbing potential was placed 10 Å away from the coumarin to absorb emitted electrons. Very diffuse atomic basis sets were used on H atoms to expand the MOs of unbound electrons. Almost 3 e-were emitted in the strong laser field ionization and 0.3 e-upon proton collision (at 10 fs).

Figure 2

 2 Figure2brings a negative answer to this question. It shows the DFT based induced dipole (z-component) produced water, cysteine and phenol upon application of a constant external field. Even for highly polarizable molecules such as a cysteine (an amino acid encompassing a thiol function) or a phenol, we find a linear relationship between the applied electric field and the induced dipole moment on the [0, 0.05] range, in atomic units. We do not see electric field fluctuations on the sub-femtosecond time scale for this type of strong perturbation.

Figure 2 .

 2 Figure 2. z-component of the induced dipole moment computed at the DFT level as a function of applied electric field (along the Oz axis). The dashed lines correspond to linear regression fit of the DFT points.

Figure 3 .

 3 Figure 3. Metenkephalin solvated in a water box. The peptide is described by DFT while the aqueous environment is described by polarizable POL3 water model.

Figure 4 .

 4 Figure 4. Error estimations of the MMpol-stationary-RT-TDDFT scheme. The 0.1as time-step simulation is taken as a reference and the data for larger time steps are given with respect to the reference. light brown: 1 as, cyan : 0.75 as, marron: 0.5 as, violet: 0.25 as. All the energies are given in kcal/mol scaled by coefficients given on each graph. E is the total QM/MM energy, Epol is the total polarization energy and Eembed is the embedding energy (permanent charges and induced dipole). The initial field strengths is set to 0.001 (Top), 0.01 (Middle) and 0.1 (Bottom) a.u.

I. 3

 3 .a. Why consider retardation effects? In hybrid QM/MMpol calculations relying on polarizable force fields the mutual interactions between the QM and MM regions are mediated by electric fields generated within each region. In a charge point dipole model for example, the electric field generated by the quantum nuclei and the electron cloud contributes to determine induced dipoles on MM atoms. Conversely the electric field generated by the fixed MM charges and by the MM induced dipoles are incorporated into the Kohn-Sham Hamiltonian (assuming one uses DFT). Electric fields propagate at the speed of light (𝑐). In vacuum 𝑐 is around 3. 10 8 𝑚 𝑠 ⁄ ≈ 137 𝑎. 𝑢. (atomic units), that is around 3 Å 𝑎𝑠 ⁄ . It is less in condensed matter as reflected by the refractive index (𝑛). For molecular dynamics simulations relying on stationary DFT/MMpol potential energies, the typical time steps employed are of the order of 1 fs. One can safely assume infinite propagation of electric fields mediating QM/MMpol interactions. The situation is different in the context of RT-TDDFT/MMpol simulations. The typical propagation time steps (∆𝑡) are of the order of 1 as. As illustrated in Figure 5, an MM atom K situated for example 12 Å away from the RSI would feel fluctuations of electric field generated by the electron cloud with a delay of 4 as (4 propagation steps if ∆𝑡 is set to 1 as). Similarly the polarization state of MM atoms would take some times to reach other MM atoms or the RSI. The consideration of delays in the propagation of the electric fields is a point that has to be addressed and which is specific to RT-TDDFT/MMpol type of methodology couplings.

Figure 5 .

 5 Figure 5. Qualitative illustration of the finite speed propagation of electric fields mediating QM/MM interactions on the attosecond domain. Left: the electric field created by the fluctuating electron cloud of the RSI (in yellow) takes four propagation time steps to reach MM atom K which holds a point dipole 𝝁 𝑲 . The timings 𝒕 𝒊 refers to propagation times in the timeframe of ED simulation on the RSI. Right: the electric field created by the induced dipole on MM atom L takes a few propagation time steps to reach the RSI or MM atom K. The timings 𝒕 𝒊 refers to propagation times in the timeframe of atom L.

Figure 6 .

 6 Figure 6. Water dimer used to validate the implementation of retardation in hybrid RT-TDDFT/MMpol simulations.

Figure 7

 7 Figure 7 depicts the molecular dipole moment of the QM (Top) and MMpol (Bottom) water molecules for three ED simulations differing by the refractive indices defined to determine the retarded times, namely 10.0 (black, considered as equivalent to infinite speed of light), 1.0 (red) and 0.5 (green). When ignoring retardation (black curves), the dipole moment on the MM molecule instantaneously follows the perturbation on the QM region caused by the external electric pulse. Note however that while the dipole of the QM water varies by 0.07 D that of the MM water varies ten times less (0.007 D). This is a consequence of the rapidly decaying electric potential created by the electron density (eq. 22). The MMpol

Figure 7 .

 7 Figure 7. Dipole moment on the QM (Top) and MMpol (Bottom) water molecules after application of a short electric pulse on the QM molecule. Three values of the refractive index are considered, namely 10 (black), 1 (red) and 0.5 (green). Note the different scales between the upper and lower graphs. On the upper graph the three curves are superimposed.

beyond 15 Å

 15 ) are almost superimposed (Bottom-Right). The response mechanism of MM induced dipoles is therefore not distance dependent at all within 15 Å. All these results reflect subtle response mechanisms that deserve a detailed analysis.

Figure 8 .

 8 Figure 8. Left: variations of the average induced dipole moment by hydration layers 〈∆μ(t)〉=〈μ(t)-μ(0)〉. Note the change of scales for each graph. Right: normalized auto-correlation function of the water molecule induced dipole moments averaged by hydration layers for three values of the electric field affecting the peptide at the beginning of the RT-TDDFT/MMpol simulation. Color code: water molecules between 0-3 Å in black, 3-6 Å in red, 6-9 Å in green, 9-12 Å in blue, 12-15 Å in orange and beyond 15 Å in brown. The uncertainties on the curves are around 0.06.

Figure 9 .

 9 Figure 9. Correlation between the variations of the induced dipole moments on water molecules averaged by hydration shells 〈∆μ(t)〉=〈μ(t)-μ(0)〉 (upper-part of each graph) and the variation of dipole moment of the peptide (Lower-part of each graph). The three main graphs correspond to three perturbing field strengths of 0.001a.u (Top-Lefts), 0.01 (Bottom-Left) and 0.1 a.u. (Top-Right). The colors are defined in the caption of Figure 8.

  μ

Figure 1 .

 1 Figure 1. Influence of the accuracy of auxiliary fitted density on electron dynamics for CO 2 (top) and cysteine (bottom). The x-component of the molecular dipole moment is represented. Left: comparison of RT-TDDFT simulations using either the KS density (BASIS), in orange, or the auxiliary density (AUXIS), in blue, to integrate the XC potential in RT-TDDFT propagations. The GEN-A2* auxiliary basis set is used. Right: the simulations use the AUXIS approach with GEN-A2 (black), GEN-A3 (green), GEN-A2* (blue), and GEN-A3*(red) auxiliary basis sets.

Figure 2 .

 2 Figure 2. Absorption spectra of coumarin in the gas phase obtained from Linear-Response (blue) or real-time (red) TDDFT calculations. The LR-TDDFT excitation energies are indicated by vertical lines the heights of which are proportional to the oscillator strength of the transition. The convoluted spectra have been obtained from Lorentzian functions assigned to each excitation. Both spectra have been normalized on the absorption value at 4.12 eV.

Figure 3 .

 3 Figure 3. Frontier KS molecular orbitals for an isolated coumarin molecule calculated with the PBE XC functional. The isosurface corresponds to values of 0.05 bohr -3/2 . Picture made with gmolden[START_REF] Schaftenaar | Molden: a pre-and postprocessing program for molecular and electronic structures*[END_REF] and VMD.[START_REF] Humphrey | Visual molecular dynamics[END_REF] 

Figure 4 .

 4 Figure 4. Evolution of the peptide dipole moment (top) and of the polarization energy of POL3 water molecules (bottom) after an initial perturbation of the peptide electron density by a short electric pulse. Three intensities of the pulse have been applied: 0.001, 0.01, and 0.1 au. Simulations have been run with two types of auxiliary basis sets (GEN-A2 and GEN-A2*) to calculate the Coulomb and XC contribution to the KS potential. In addition to calculating the electric field created by the QM region, that contributes to determine the MM induced dipoles, we used either the KS density (FBASIS, dashed lines) or the auxiliary density (FAUXIS, full line). Blue: FBASIS/GEN-A2*, red: FAUXIS/GEN-A2*, green: FBASIS/GEN-A2, and orange: FAUXIS/GEN-A2.

Figure 5 .

 5 Figure 5. Error estimations of the MMpol-stationary-RT-TDDFT scheme. The 0.1 as time-step simulation is taken as a reference, and the data for larger time steps are given with respect to the reference: light brown, 1 as; cyan, 0.75 as; maroon, 0.5 as; violet, 0.25 as. All the energies are given in kcal/mol scaled by coefficients given in each graph. ΔE is the total QM/MM energy, ΔE pol is the total polarization energy, and ΔE embed is the embedding energy (permanent charges and induced dipole).

Figure 6 .

 6 Figure 6. Absorption spectra of coumarin in the gas phase (black) and in the condensed phase (other curves) calculated from RT-TDDFT. Blue: spectrum obtained with the TIP3P model for water (nonpolarizable), yellow and red: spectra obtained with the polarizable POL3 water model and within the FAUXIS/GEN-A2* and FBASIS/ GEN-A2* schemes, respectively, green and dashed: reference spectrum RT-TDDFT/MMpol (POL3) for which both the coumarin molecule and its first hydration level were treated at the quantum level. In the latter case we extracted the Hirshfeld intrinsic dipole of coumarin to remove absorption bands due to the QM water molecules. Inset: zoom on the 3.28-4.78 eV range.

Figure 7 .

 7 Figure 7. Computational timing for 1.5 fs of RT-TDDFT/MMpol electron simulations. Only the most time-consuming tasks are indicated. The numbers are the percentages of time spent in each type of task.

Figure 8 .

 8 Figure 8. Evolution of dipole moments (x component) during RT-TDDFT propagation with the Hirshfeld scheme. Left: the molecular dipole moment is shown in black, the atomic-charges-derived dipole is shown in green, and the sum of intrinsic atomic dipole moments is shown in red. Right: intrinsic atomic dipole moments are shown in red for each coumarin atom.

Figure 9 .

 9 Figure 9. Time-dependent deformation of the electron density taking the initial time as reference. The isosurface corresponds to values of 10 -5 bohr -3 in absolute value. The yellow surfaces correspond to positive values (accumulation of electron density), while the violet ones correspond to negative values (depletion of electron density). Each line corresponds to one Rabi oscillation period.

Figure 10 .

 10 Figure 10. Left: variations of the average induced dipole moment by hydration layers ⟨Δμ(t)⟩ = ⟨μ(t) -μ(0)⟩. Note the change of scales for each graph. Right: normalized autocorrelation function of the water molecule induced dipole moments averaged by hydration layers for three values of the electric field affecting the peptide at the beginning of the RT-TDDFT/MMpol simulation. Color code: water molecules between 0 and 3 Å in black, 3-6 Å in red, 6-9 Å in green, 9-12 Å in blue, 12-15 Å in orange, and beyond 15 Å in brown. The uncertainties on the curves are around 0.06.

  

  

  𝑀𝑀𝑒𝑒 [𝜌 𝑥 ] = 𝑇 𝑠 [𝜌 𝑥 ] + 𝑉 𝑛𝑢𝑐 [𝜌 𝑥 ] + 𝐽[𝜌 𝑥 ] + 𝐸 𝑥𝑐 [𝜌 𝑥 ] + 𝑉 𝑒𝑚𝑏𝑒𝑑 [𝜌 𝑥 ]

			(10)
	+ ∑ ∑ 𝑍 𝐴 𝑣 𝑒𝑚𝑏𝑒𝑑	+ 𝐸 𝑥 𝑀𝑀
	𝐴𝜖𝑄𝑀	𝐾∈𝑀𝑀
	𝐸 𝑥 𝐷𝐹𝑇/𝑀𝑀𝑒𝑒 [𝜌 𝑥 ] = 𝐸 𝑥 𝐷𝐹𝑇𝑒𝑒 [𝜌 𝑥 ] + 𝐸 𝑥 𝑒𝑚𝑏𝑒𝑑 [𝜌 𝑥 ] + 𝐸 𝑥 𝑀𝑀

  𝑇 𝑠 [𝜌 𝑥 ] + 𝑉 𝑛𝑢𝑐 [𝜌 𝑥 ] + 𝐽[𝜌 𝑥 ] + 𝐸 𝑥𝑐 [𝜌 𝑥 ] + 𝐸 𝑥 𝑐𝑙 + 𝐸 𝑥

		𝑀𝑀	(18)
	𝐸 𝑥 𝑐𝑙 = ∑ ∑ 𝑉 𝐴-𝐾	(19)
	𝐴𝜖𝑄𝑀	𝐾∈𝑀𝑀
	𝐸 𝑥 𝐷𝐹𝑇/𝑀𝑀𝑚𝑒 = 𝐸 𝑥 𝐷𝐹𝑇𝑔𝑝 + 𝐸 𝑥 𝑐𝑙 + 𝐸 𝑥 𝑀𝑀

Table

  

Table 1 . Information of selected models for six Cytochromes.

 1 

	Label	type	Organism	PDB #RES ligands	𝑬 𝒆𝒙𝒑 𝑺𝑯𝑬 (mV)	𝑬 𝒆𝒙𝒑 𝟎	(V)
	a	c2	R. capsulatus	1c2r	116	His-Met	350	4.790
	b	c551	P. aeruginosa	351c	82	His-Met	270	4.710
	c	b5	B. Taurus	1cyo	93	His-His	-10	4.430
	d	b5	Rattus n.. V451/V61I	1eue	94	His-His	-63	4.377
	e	b5	Rattus n.	1b5a	86	His-His	-102	4.338
	f	b558	E. vacuolata	1cxy	90	His-His	-210	

Table 2 . Relative minimum energies of two different type of cofactors in oxidized and reduced forms calculated with DFT. Energy of each spin state are shown in eV. The results of singlet state are taken as reference.

 2 

	Oxidized form	doublet	quadruplet	sextet
	PFe III -ImMe2	4.827	5.136	5.436
	PFe III -ImMe-EMS-MMS2	5.304	5.352	5.869
	Reduced form	singlet	triplet	quintuplet
	PFe II -ImMe2	0.000	0.680	0.799
	PFe II -ImMe-EMS-MMS2	0.000	0.413	0.696

Outer sphere energy: sampling from MD simulations

  

II.3.a Computational setup

Table 3 . Free energies and reorganization energies obtained with different sizes of water box with Cyt. c551 in eV.

 3 

	Water box edge	∆𝐺 𝑜𝑢𝑡 0	𝜆 𝑠𝑡	U
	(Å)			
	90	0.223	0.243	0.004
	100	0.234	0.208	0.006
	110	0.238	0.237	0.007
	For this, the variation of ∆𝐺 𝑜𝑢𝑡 0 were calculated for each
	case. As mentioned before, the energy gap of the first 4
	ns was dropped. The free energy obtained from all
	dynamics is used as reference (𝐺 𝑟𝑒𝑓 0 ). Free energy obtain
	with simulation time of t (∆𝐺 𝑡 0 ) is calculated during the
	trajectories. The difference of them gives the
	fluctuation of ∆𝐺 𝑜𝑢𝑡 0 . Results are shown in Figure

Table 4 : Linear regression coefficients associated to the linear fitting of the probability distributions (𝒑 𝒙 for 𝒙 = 𝟏 𝐨𝐫 𝟐) to Gaussian functions (Eq. 3).

 4 

	Label	𝑹 (𝟏) 𝟐	𝑹 (𝟐) 𝟐
	a	0.998	0.997
	b	0.998	0.997
	c	0.997	0.998
	d	0.997	0.996
	e	0.997	0.995
	f	0.996	0.998
	Having recognized the Gaussian approximation, if the systems are truly ergodic we should have the
	same curvatures for both the initial and final states (equivalently having 𝜆 1 𝑣𝑎𝑟 = 𝜆 2 𝑣𝑎𝑟 see section I.1).

Table 5 . Outer sphere energies and reorganization energy of six heme proteins in eV. 𝚫𝑮 𝒐𝒖𝒕 𝟎 calculated from Eq. 7. 𝝀 𝒔𝒕 and 𝝀 𝒓 are calculated from Eq.8 and 9 respectively.

 5 

	Label	PDB	ligand	𝚫𝑮 𝒐𝒖𝒕 𝟎	𝝀 𝒔𝒕	𝝀 𝟏 𝒗𝒂𝒓	𝝀 𝟐 𝒗𝒂𝒓	𝝀 𝒓	𝐔
	a	1c2r	His-Met	0.581	0.763	0.721	0.842	0.766	0.006
	b	351c	His-Met	0.570	0.826	0.667	0.882	0.828	0.005
	c	1cyo	His-His	0.216	0.838	0.839	0.879	0.832	0.004
	d	1eue	His-His	0.179	0.833	0.838	0.891	0.838	0.006
	e	1b5a	His-His	0.199	0.828	0.863	1.048	0.828	0.005
	f	1cxy	His-His	-0.077	0.822	0.889	0.808	0.825	0.005
		ii) Stokes and Marcus reorganization energies			
	Assuming the lack of convergence between 𝜆 1 𝑣𝑎𝑟 and 𝜆 2 𝑣𝑎𝑟 is due to insufficient sampling and that the
	LRA approximation holds here, we may estimate ∆𝐺 𝑜𝑢𝑡 0	and 𝜆 𝑠𝑡 and 𝜆 𝑀 by equations 7, 8 and 9. (Table
	5). The statistical uncertainties for ∆𝐺 𝑜𝑢𝑡 0	and 𝜆 𝑠𝑡 are listed in the last column of Table 5. There are
	quiet small at around 0.005 eV. We observed that the ∆𝐺 𝑜𝑢𝑡 0 of Cyt.c are around 0.3 eV higher than the
	other four Cyt.b. The reorganization energies 𝜆 𝑠𝑡 are almost the same at around 0.8 eV, except for the
	first Cyt.c with a lower reorganization energy at 0.763 eV. In most of the case 𝜆 1 𝑣𝑎𝑟 = 𝜆 2 𝑣𝑎𝑟 = 𝜆 𝑠𝑡 = 𝜆 𝑀 ;

Table 6 . Summary of inner sphere and outer sphere energies of six heme proteins as well as the theoretical and experimental redox potential.

 6 

	Label PDB	ligand	∆𝑬 𝒊𝒏 (eV)	∆𝑮 𝒐𝒖𝒕 𝟎 (eV)	𝑬 𝒕𝒉 𝟎 (V)	𝑬 𝒆𝒙𝒑 𝟎 (V)	diff(V)
	a	1c2r His-Met	5.304	0.581	5.886	4.790	1.096
	b	351c His-Met	5.304	0.570	5.874	4.710	1.164
	c	1cyo His-His	4.827	0.216	5.043	4.430	0.613
	d	1eue His-His	4.827	0.179	5.006	4.377	0.629
	e	1b5a His-His	4.827	0.199	5.026	4.338	0.688
	f	1cxy His-His	4.827	-0.077	4.750	4.230	0.520

Table 7 . Ranking of protein residues according to their contribution to free energy of 1b5a and 351c in eV.

 7 

	Cytochromes	1b5a		351c	
	Positive Ranking	Residue	∆𝑮 𝒐𝒖𝒕 𝟎	Residue	∆𝑮 𝒐𝒖𝒕 𝟎
	1	ARG68	0.895	LYS33	0.778
	2	ARG47	0.551	ARG44	0.739
	3	LYS72	0.499	LYS21	0.670
	4	LYS34	0.408	LYS10	0.595
	5	LYS89	0.389	LYS49	0.473
	6	LYS16	0.373	LYS8	0.430
	7	LYS28	0.360	LYS28	0.427
	8	ARG19	0.208	LYS76	0.360
	9	ARG84	0.202	GLY24	0.163
	10	LYS2	0.196	GLY51	0.123
	Negative Ranking				
	-1	GLU59	-0.846	GLU70	-0.592
	-2	GLU38	-0.731	GLU43	-0.557
	-3	ASP60	-0.719	ASP29	-0.549
	-4	ASP66	-0.694	GLU4	-0.497
	-5	GLU43	-0.632	ASP68	-0.476
	-6	GLU44	-0.603	GLU41	-0.442
	-7	ASP31	-0.567	ASP19	-0.440
	-8	GLU48	-0.549	ASP69	-0.376
	-9	ASP53	-0.542	ASP29	-0.337
	-10	GLU56	-0.522	PRO62	-0.134

Table 8 . Ranking of protein residues according to their contribution to reorganization energy of 1b5a and 351c in eV

 8 

	Cytochromes	1b5a		351c	
	Positive Ranking	Residue	𝝀 𝒔𝒕	Residue	𝝀 𝒔𝒕
	1	LEU94	0.059	TYR27	0.061
	2	SER71	0.048	LYS21	0.041
	3	GLU92	0.040	LYS82	0.028
	4	ASP53	0.037	GLU4	0.022
	5	LYS34	0.022	CYS12	0.017
	6	LYS89	0.020	CYS15	0.016
	7	GLN49	0.018	GLU70	0.013
	8	ASP3	0.017	ASP29	0.013
	9	LYS14	0.011	ASN64	0.012
	10	LYS72	0.011	HIS16	0.012
	Negative Ranking				
	-1	LYS16	-0.037	LYS28	-0.016
	-2	ASP17	-0.022	LYS8	-0.016
	-3	GLU48	-0.021	LYS33	-0.013
	-4	ASP31	-0.014	LYS49	-0.011
	-5	ASP17	-0.011	ASP69	-0.010
	-6	GLU44	-0.011	LYS10	-0.007
	-7	HIS26	-0.010	LYS76	-0.007
	-8	GLU38	-0.009	ASP2	-0.002
	-9	GLU11	-0.009	GLY54	-0.001
	-10	LYS86	-0.006	GLN37	-0.001

Table 9 . Ranking of ligands of 1b5a and 351c according to their contribution to free energy and reorganization energy in eV
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Beyond

the Point Charge Description AMOEBA Polarizable Force Field

  

	Much effort has been focused on including the response of the molecular environment by an explicit
	representation of polarization. The quality of the description of the permanent moment distribution is
	also very important to reproduce the global electrostatic interactions. This approach is inherently
	limited because point charges are intrinsically isotropic while real atoms are anisotropic in the electron
	distribution due to the presence of lone pairs, 𝜋 clouds, and 𝜎 holes. In some FFs extra point charges
	are added at different positions than atom nuclei. This allow the simulation of lone pairs 1 or centers of
	bonds 2 . An alternative is to compute the electrostatic potential created by a molecule from multipole
	distributions including not only monopoles (point charges) but also dipoles, quadrupoles or even
	higher-order terms. With these multipole moments, the non-spherical components of atomic charge
	density are better described and the anisotropy of the system is naturally captured. This can describe
	more accurately the flexibility of the interactions which is crucial especially around polar molecules.
	Several FFs have multipole moment descriptions such as AMOEBA (Atomic Multipole Optimized

  𝑏𝑜𝑛𝑑 + 𝑈 𝑎𝑛𝑔𝑙𝑒 + 𝑈 𝑏𝜃 + 𝑈 𝑜𝑝𝑝 + 𝑈 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 + 𝑈 𝑣𝑑𝑊 + 𝑈 𝑒𝑙𝑒 𝑝𝑒𝑟 + 𝑈 𝑒𝑙𝑒 𝑖𝑛𝑑

  The potential is a function of the separation distance 𝑅 𝑖𝑗 between the atoms 𝑖 and 𝑗 through the term

	𝜌 𝑖𝑗 =	𝑅 𝑖𝑗 0 𝑅 𝑖𝑗							(8)
	𝑅 𝑖𝑗 0 is the minimum energy distance. For heterogeneous atom pairs, 𝑅 𝑖𝑗 0 =	(𝑅 𝑖𝑖 0 ) 3 +(𝑅 𝑗𝑗 0 ) (𝑅 𝑖𝑖 0 ) 2 +(𝑅 𝑗𝑗 0 )	3 2 , the well-
	depth is given by 𝜀 𝑖𝑗 =	4𝜀 𝑖𝑖 𝜀 𝑗𝑗 ( 𝜀 𝑖𝑖 1/2 +𝜀 𝑗𝑗 1/2 )
	𝑣𝑑𝑊 = 𝜀 𝑖𝑗 (	1.07 𝜌 𝑖𝑗 + 0.07	)	7	(	1.12 7 + 0.12 𝜌 𝑖𝑗	-2)	(7)

2 .

  𝑞 𝑖, , dipoles 𝜇 𝑖𝛼 , and quadrupoles 𝑄 𝑖𝛽𝛾 . 𝑀 𝑖 = [𝑞 𝑖, 𝜇 𝑖,𝑥 , 𝜇 𝑖,𝑦 , 𝜇 𝑖,𝑧 , 𝑄 𝑖𝑥𝑥 , 𝑄 𝑖𝑥𝑦 , 𝑄 𝑖𝑥𝑧, , 𝑄 𝑖𝑦𝑥 , 𝑄 𝑖𝑦𝑦 , 𝑄 𝑖𝑦𝑧, 𝑄 𝑖𝑧𝑥 , 𝑄 𝑖𝑧𝑦 , 𝑄 𝑖𝑧𝑧, ]

	𝑡

  Furthermore, the 𝜇 𝑦 , 𝑄 𝑥𝑦 and 𝑄 𝑦𝑧 components are zero

	except for chiral atoms such as the backbone C in amino acids. Therefore, most non-chiral atoms 𝑀 𝑖 𝑛𝑐
	carry six unique, permanent electrostatic multipole parameters:
	𝑀 𝑖 𝑛𝑐 = [𝑞 𝑖, 𝜇 𝑖,𝑥 , 𝜇 𝑖,𝑧 , 𝑄 𝑖𝑥𝑥 , 𝑄 𝑖𝑦𝑦 , 𝑄 𝑖𝑧𝑥 , 𝑄 𝑖𝑧𝑧, ]	𝑡

  𝜇 𝑖,𝑎 = 𝛼 𝑖 𝐹 𝑖,𝑎 , where 𝛼 𝑖 is the atomic isotropic polarizability of atom 𝑖 . 𝑎 denotes the three Cartesian components. 𝑭 𝒊 is the electric field experienced by atom 𝑖 . The iterative model is used, thus the induced dipole on each atom will further polarize all other atoms both within and outside the molecule such that F becomes the sum of the fields generated by both permanent multipoles and induced dipoles at sites other than atom 𝑖.

	𝑈 𝑒𝑙𝑒 𝑝𝑒𝑟 =	[ 𝑄 𝑖𝑥𝑥 𝑞 𝑖 𝜇 𝑖𝑥 𝜇 𝑖𝑦 𝜇 𝑖𝑧 ⋮ ] 𝑇	[ 𝜕𝑥 𝑖 1 𝜕 𝜕 𝜕𝑦 𝑖 𝜕 𝜕𝑧 𝑖 ⋮	𝜕 𝜕𝑥 𝑗 𝜕 2 𝜕𝑥 𝑖 𝜕𝑥 𝑗 𝜕 2 𝜕𝑦 𝑖 𝜕𝑥 𝑗 𝜕 2 𝜕𝑧𝜕𝑥 𝑗 ⋮	𝜕 𝜕𝑥 𝑗 𝜕 2 𝜕𝑥 𝑖 𝜕𝑦 𝑗 𝜕 2 𝜕𝑦 𝑖 𝜕𝑦 𝑗 𝜕 2 𝜕𝑧 𝑖 𝜕𝑦 𝑗 ⋮	𝜕 𝜕 2 𝜕 2 𝜕𝑦 𝑖 𝜕𝑦 𝑗 𝜕 2 ⋮ 𝜕𝑧 𝑖 𝜕𝑧 𝑗 𝜕𝑥 𝑖 𝜕𝑥 𝑗 𝜕𝑥 𝑗	… ⋱ ] … … …	1 𝑅 𝑖𝑗	[ 𝑄 𝑗𝑥𝑥 ⋮ ] 𝜇 𝑗𝑧 𝜇 𝑗𝑦 𝜇 𝑗𝑥 𝑞 𝑗	(11)
	Electronic induction describes the polarization of electron density due to an external field. The induced
	dipole model is used by AMOEBA at atomic centers to describe many-body effects. The induced dipole
	at each atomic site is computed as					

𝜇 𝑖,𝑎 = 𝛼 𝑖 (∑ 𝑇 𝑎 𝑖𝑗 𝑀 𝑗 + ∑ 𝑇 𝑎𝑏 𝑖𝑗′ 𝜇 𝑗′,𝑏 𝑖𝑛𝑑 {𝑗′} {𝑗}

Table 1 .

 1 Interaction Energy Differences in kcal/mol Obtained at the Various Computational Levels with Respect to the MP2/ TZVP Reference

	geometry	B3LYP	IH	AMOEBA DMA + water14	AMOEB FIT + water14	AMOEBA DMA + water03	AMOEBA FIT + water03
					HEME(FeII) -H 2 O		
	A	0.03	0.61	1.86	1.28	4.72	4.18
	B	0.11	0.85	1.13	1.02	1.10	1.03
	C	0.19	0.00	0.30	0.28	0.26	0.25
	D	0.14	0.01	0.20	0.19	0.17	0.16
	E	1.03	1.14	1.67	2.13	1.61	2.10
	F	0.49	2.02	1.99	2.04	2.03	2.04
	G	1.48	0.42	3.62	3.80	4.92	4.83
					HEME(FeIII) -H 2 O		
	A	n.c. b	0.07	1.28	0.95	3.83	3.48
	B	n.c.	0.60	0.70	0.69	0.65	0.64
	C	n.c.	0.06	0.14	0.15	0.13	0.14
	D a	n.c.	0.00	0.12	0.12	0.11	0.11
	E	n.c.	0.86	0.74	0.34	0.69	0.30
	F	n.c.	2.85	2.19	2.16	2.30	2.26
	G	n.c.	0.00	3.36	3.73	3.81	4.10

a Neither MP2 nor B3LYP calculations converged for geometry D in the ferric state. For this series, IH is taken arbitrarily as a reference.

b 

The B3LYP SCF could not converge.

Table 2 .

 2 Average Interaction Energy (kcal/mol), Standard Deviation, RMSE, and Linear Correlation Coefficient between DFT (PBE0) Results and Force Field Results We emphasize that the same heme parameters are used in both series and that only the water model is changed. For the energies of present interest, the accuracy of the 2014 water model is superior. We note small differences between results obtained with either DMA or FIT sets of multipoles. Very similar conclusions can be drawn for the [PFe III -ImMe-EMS-(H 2 O) 6 ] complex with a better agreement of computed interaction energies with AMOEBA using the 2014 water model. Finally, for the [PFe II -(ImMe) 2 -(H 2 O) 6

				AMOEBA	
			DMA	FIT	DMA	FIT
		IH	water14	water14	water03	water 03
			[PFe II ImMe-EMS-(H 2 O) 6 ]		
	⟨ΔIE⟩	-26.36	0.95	2.27	1.91	3.29
	σ (ΔIE)	14.72	8.35	8.06	11.82	11.55
	RMSE	30.07	8.26	8.25	11.77	11.83
	R 2	0.70	0.86	0.87	0.73	0.74
			[PFe III ImMe-EMS-(H 2 O) 6 ]		
	⟨ΔIE⟩	-25.84	-3.74	-2.46	-4.37	-2.93
	σ (ΔIE)	13.26	7.82	7.57	10.02	10.06
	RMSE	28.91	8.52	7.80	10.73	10.26
	R 2	0.71	0.87	0.88	0.78	0.78
			[PFe II -(ImMe) 2 -(H 2 O) 6 ]		
	⟨ΔIE⟩	39.27	13.04	14.84	14.02	15.91
	σ (ΔIE)	17.68	7.18	7.22	8.41	8.57
	RMSE	42.94	14.82	16.44	16.27	18.00
	R 2	0.62	0.94	0.94	0.93	0.93

a monopolar to a multipolar and polarizable description of the electrostatic potential created by the heme is beneficial for the accuracy of the force field. With the 2003 AMOEBA water model, the agreement is a little bit less satisfactory, with some points of the series departing more from the DFT results, but results are similar in nature and the set of investigated points limited.

Table 3 .

 3 Bond Lengths (in Å), Angles (in degree), and Doming Effect Dihedrals for the reduced and oxidized (Italic) eme Structure a For the PM7 and AMOEBA MD simulations, we provide average values and standard deviations (in parentheses). b Analysis of cyt C551 in both oxidized form (PDB 351) and reduced form (PDB 451C) were performed with VMD program.

	parameters	451C/351C b	mean X-ray c	DFT	PM7 d	AMOEBA DMA	AMOEBA FIT
	Fe-N his	1.97	2.03 ± 0.15	1.97	1.97 (0.04)	2.07 (0.03)	2.06 (0.03)
		1.99		1.99		2.05 (0.03)	2.03 (0.03)
	Fe-S met	2.35	2.31 ± 0.18	2.28	2.33 (0.05)	2.39 (0.03)	2.39 (0.03)
		2.36		2.31		2.38 (0.03)	2.38 (0.03)
	Fe-N por	2.03	2.00 ± 0.05	2.00	1.95 (0.04)	2.10 (0.03)	2.10 (0.03)
		2.03		1.99		2.10 (0.03)	2.10 (0.03)
	N his -Fe-N por	91.19	90 ± 2	89.89	89.88 (3.23)	90.10 (2.60)	90.10 (2.61)
		90.89		90.24		89.72 (2.61)	89.88 (2.57)
	S met -Fe-N por	88.80	90 ± 2	90.10	90.12 (3.78)	89.99 (2.76)	89.87 (2.79)
		89.08		89.75		90.39 (2.81)	90.12 (2.85)
	C2-Fe-C2	174.58	174 ± 3	174.71	177.81 (2.99)	177.65 (2.21)	176.26 (2.17)
		174.76		167.20		176.09 (2.29)	176.17 (2.16)
	doming	0.04	0.04 ± 0.02 e	0.01	0.051 (0.025)	0.04 (0.03)	0.04 (0.03)
		0.03		0.00		0.04 (0.03)	0.04 (0.03)

a c 

Average variation observed in seven high resolution X-ray structures from ref FELIX (PDB: 5cyt, 1qn2, 3c2c, lio3, 1hro, 1c2r, 1cxc). d MD simulations showed that the coordination between Fe and the apical ligand is unphysical with the PM7 method in the ferric state. We thus do not report PM7 data for this redox state. Average variation observed in seven high resolution X-ray structures from 27. e Analysis using the seven structures used in ref

27. 

Table 4 .

 4 Bond Distance (Å) and Angle (degree) Values for Heme Structure a

	AMOEBA

a RMN structure. DFT optimized geometry and averaged over the trajectories of different MD simulations with the standard deviations (within parentheses).

Table S1 : Iterative Hirshfeld charges summed over fragments for the [PFe II/III -ImMe-EMS] and [PFe II/III -ImMe2] complexes (OPTX functionam) [PFe II/III -ImMe-EMS] ferrous

 S1 

			ferric
	Porphyrin	-1.72	-1.05
	Fe	1.60	1.71
	EMS	0.07	0.14
	ImMe	0.05	0.20
	[PFe II/III -ImMe2]		
	Porphyrin	-1.73	-1.05
	Fe	1.69	1.79
	ImMe	0.02	0.13
	ImMe	0.02	0.13

Table S2 : Interaction energy of heme and single molecules in kcal/mol obtained at the various computational levels.

 S2 

	A	-140.64	-132.66	-131.89	-	-	-141.70	-140.45
	B	-106.48	-97.32	-97.30	-	-	-103.30	-101.58
	C	-69.31	-63.48	-63.58	-	-	-65.50	-72.90
	D	-42.11	-89.48	-83.82	-	-	-94.20	nc.
	HEME(FeIII) -CH3CH2NH3 +					
	A	-106.75	-101.82	-99.90	-	-	-103.90	nc.
	B	-76.40	-69.89	-69.10	-	-	-69.70	nc.
	C	-45.54	-41.29	-41.00	-	-	-38.70	nc.
	D	18.82	-30.12	-27.06	-	-	-28.10	nc.
	HEME(FeII) -CH3COO -						
	A	-140.64	-132.66	-131.89	-	-	-141.70	-140.45
	B	-106.48	-97.32	-97.30	-	-	-103.30	-101.58
	C	-69.31	-63.48	-63.58	-	-	-65.50	-72.90
	D	-42.11	-89.48	-83.82	-	-	-94.20	nc.
	HEME(FeIII) -CH3COO -						
	A	-106.75	-101.82	-99.90	-	-	-103.90	nc.
	B	-76.40	-69.89	-69.10	-	-	-69.70	nc.
	C	-45.54	-41.29	-41.00	-	-	-38.70	nc.
	D	18.82	-30.12	-27.06	-	-	-28.10	nc.
	HEME(FeII) -Phenol						
	A	-17.11	-12.28	-12.59	-	-	-13.01	-19.32
	B	-10.64	-7.41	-7.51	-	-	-4.50	-11.04
	C	-3.58	-1.98	-1.99	-	-	3.90	-2.73
	HEME(FeIII) -Phenol						
	A	-15.64	-10.85	-10.98	-	-	nc.	nc.
	B	-9.44	-6.43	-6.43	-	-	nc.	nc.
	C	-2.89	-1.54	-1.53	-	-	nc.	nc.
	a: not computed (SCF convergence issues or obviously unreliable values)				
		IH		AMOEBA		MP2	B3LYP
			DMA	FIT	DMA	FIT		
		Water 14	Water 14	Water 03	Water 03		
	HEME(FeII) -H2O HEME(FeII) -Na +						
	A	-168.54	-146.98	-148.28	-	-	-166.15	nc.
	B	-135.29	-124.56	-125.33	-	-	-134.42	nc.
	C	-79.85	-73.92	-74.24	-	-	-75.61	nc.
	D	-63.69	-59.49	-59.72	-	-	-63.25	nc.
	E	-63.88	-107.79	-106.87	-	-	-121.70	nc.
	HEME(FeIII) -Na +						
	A	-131.89	-114.89	-114.83	-	-	-126.70	nc.
	B	-101.79	-94.60	-94.31	-	-	-97.50	nc.
	C	-54.04	-49.80	-49.61	-	-	-46.60	nc.
	D	-41.24	-38.22	-38.09	-	-	-32.00	nc.
	E	-0.39	-48.93	-49.47	-	-	-56.00	nc.
	HEME(FeII) -Cl -						
	A	58.84	34.67	35.13	-	-	36.60	40.30
	B	44.44	39.99	40.41	-	-	39.20	38.89
	C	45.33	45.15	45.19	-	-	45.20	44.93
	D	80.40	59.53	59.67	-	-	49.38	54.00
	HEME(FeIII) -Cl -						
	A	13.29	-5.83	-4.87	-	-	-12.31	nc.
	B	5.68	2.26	3.07	-	-	-1.19	nc.
	C	16.42	16.99	17.23	-	-	16.05	nc.
	D	41.26	14.99	14.46	-	-	8.33	nc.
	HEME(FeII) -CH3CH2NH3 +						

Table S3 : Average interaction energies (kcal/mol) for the [PFe III ImMe-EMS-(H2O)6] complex with two convergence criteria.

 S3 

		IH	AMOEBA			
	[PFe III ImMe-EMS-		DMA	FIT	DMA	FIT
	(H2O)6]		Water14	Water14	Water03	Water 03
	SCF converge 10 -4 Ha					
	〈∆𝐼𝐸〉	-22.84	-6.91	-5.44	-5.93	-4.25
	SCF converge 10 -6 Ha					
	〈∆𝐼𝐸〉	-22.80	-6.88	-5.40	-5.89	-4.21
	difference					
	〈∆𝐼𝐸〉	-0.04	-0.04	-0.04	-0.04	-0.04

Table S4 : Average interaction energies (kcal/mol), standard deviations, RMSE and linear correlation coefficient between DFT (PBE and B3LYP) results and force field results.

 S4 

	PFe II -ImMe-EMS-(H2O)6]			
		PBE0	B3LYP			
	1	-86.91	-56.70			
	2	-66.69	-36.58			
	3	-73.09	-48.78			
	4	-102.31	-71.45			
	5	-106.39	-72.58			
	6	-123.20	-99.94			
	7	-107.09	-78.62			
	8	-125.44	-95.71			
	9	-104.85	-75.35			
	10	-66.00	-35.69			
	11	-70.12	--			
	12	-95.39	-66.98			
	13	-75.77	-47.35			
	14	-79.24	-49.59			
	15	-88.10	-59.04			
	16	-77.96	-48.39			
	17	-66.33	-35.56			
	18	-82.19	-50.63			
	19	-95.92	-71.27			
	20 -115.52	--			
	21	-84.97	-73.87			
	22	-41.95	-12.88			
	23 -111.22	-79.02			
	24	-98.38	-73.00			
	25	-59.14	-21.96			
	26	-75.66	-42.32			
	27	-50.58	-20.91			
	28	-99.10	-63.10			
	29	-55.72	-22.86			
	30	-46.02	-20.67			
			IH		AMOEBA
		[PFe II ImMe-EMS-(H2O)6]	DMA	FIT	DMA	FIT
				Water14	Water14	Water03	Water 03
		PBE				
		〈∆𝐼𝐸〉	-23.65	3.66	4.98	4.61	6.00
		𝜎 (∆𝐼𝐸)	15.03	8.20	7.92	11.68	11.41
		RMSE	27.89	8.86	9.25	12.38	12.72
		R 2	0.69	0.87	0.88	0.73	0.75
		B3LYP				
		〈∆𝐼𝐸〉	-55.38	-28.46	-27.09	-27.55	-26.11
		𝜎 (∆𝐼𝐸)	17.04	9.24	8.93	11.26	10.99
		RMSE	57.85	29.87	28.47	29.68	28.26
		R 2	0.61	0.84	0.85	0.77	0.79

Tableau S6: Restrain parameters with force constants in kcal/Å 2 for distances and kcal/degree 2 for angles.

  

	restrain-distance	Fe	Nhis	250.0	1.9	2.0	
	restrain-distance	Fe	Smet	250.0	1.9	2.0	
	restrain-distance	Fe	Npor1	250.0	1.9	2.0	
	restrain-distance	Fe	Npor2	250.0	1.9	2.0	
	restrain-distance	Fe	Npor3	250.0	1.9	2.0	
	restrain-distance	Fe	Npor4	250.0	1.9	2.0	
	restrain-angle	Nhis	Fe	Npor1	10.0	85.0	95.0
	restrain-angle	Nhis	Fe	Npor2	10.0	85.0	95.0
	restrain-angle	Nhis	Fe	Npor3	10.0	85.0	95.0
	restrain-angle	Nhis	Fe	Npor4	10.0	85.0	95.0
	restrain-angle	Smet	Fe	Npor1	10.0	85.0	95.0
	restrain-angle	Smet	Fe	Npor2	10.0	85.0	95.0
	restrain-angle	Smet	Fe	Npor3	10.0	85.0	95.0
	restrain-angle	Smet	Fe	Npor4	10.0	85.0	95.0
	Tableau S7:						

Bond lengths (in Å) and valence angles (in degree) for the reduced heme structure (similar values are obtained for the ferric states for these parameters). MD simulations with the Standard deviations (in brackets).

  

	Tableau S8:				
	Parameters	351C a	DFT b	PM7	AMOEBA
	NE1-CE2	1.36	1.37	1.40 (0.02)	1.37 (0.03)
	CE2-CD2	1.39	1.45	1.45 (0.02)	1.40 (0.03)
	CD2-CD2	1.38	1.38	0.37 (0.02)	1.40 (0.03)
	CE2-C2	1.38	1.40	1.38 (0.02)	1.40 (0.03)
	NE2-CD2	1.36	1.38	1.40 (0.03)	1.34 (0.03)
	CD2-CG	1.38	1.38	1.40 (0.03)	1.35 (0.02)
	ND1-CG	1.36	1.38	1.40 (0.04)	1.37 (0.02)
	ND1-CE1	1.36	1.36	1.38 (0.04)	1.38 (0.03)
	CE1-NE2	1.36	1.33	1.37 (0.04)	1.38 (0.03)
	SD-CE	1.80	1.80	1.81 (0.03)	1.81 (0.04)
	CE2-C2-CE2	125	125	123 (2.6)	126 (0.3)
	NE1-FE-NE1(1)	90	90	90 (2.0)	90 (0.3)
	NE1-FE-NE1(2)	178	179	176 (2.0)	177 (1.8)
	CD2-NE2-CE1	108	107	107 (2.3)	107 (2.5)
	CG-CD2-NE2	107	105	108 (2.7)	111 (2.6)
	ND1-CE1-NE2	109	109	109 (2.0)	109 (2.4)
	CE-S-CG	105	104	102 (3.9)	100 (2.6)

a: geometrical data extracted from the X-ray structure contained in PDB file 351C. b: geometrical data obtained on a gas phase optimized geometry of the [PFe II -ImMe-EMS] complex. c: Data obtained from classical MD simulation with the standard CHARMM force field.

Bond lengths (in Å) and valence angles (in degree) for the reduced heme structure (similar values are obtained for the ferric states for these parameters). MD simulations with the Standard deviations (in brackets).

  : geometrical data extracted from the X-ray structure contained in PDB file 1B5A. b: geometrical data obtained on a gas phase optimized geometry of the [PFe II -ImMe2] complex. c: Data obtained from classical MD simulation with the standard CHARMM force field.

	Parameters	1B5A a	DFT b	CHARMM c	AMOEBA-FIT
	NE1-CE2	1.37	1.37	1.35 (0.02)	1.37 (0.02)
	CE2-CD2	1.45	1.45	1.46 (0.03)	1.40 (0.03)
	CD2-CD2	1.35	1.38	1.35 (0.03)	1.40 (0.03)
	CE2-C2	1.36	1.4	1.35 (0.03)	1.40 (0.03)
	NE2-CD2	1.33	1.38	1.38 (0.03)	1.38 (0.02)
	CD2-CG	1.36	1.38	1.36 (0.03)	1.38 (0.03)
	ND1-CG	1.38	1.38	1.37 (0.02)	1.37 (0.02)
	ND1-CE1	1.33	1.35	1.37 (0.02)	1.35 (0.02)
	CE1-NE2	1.36	1.33	1.32 (0.02)	1.34 (0.02)
	CE2-C2-CE2	126	125	126 (2.3)	126 (2.8)
	NE1-FE-NE1(1)	90	90	90 (1.8)	90 (2.8)
	NE1-FE-NE1(2)	179	179	176 (2.2)	177 (1.7)
	CD2-NE2-CE1	109	107	105 (1.8)	104 (2.3)
	CG-CD2-NE2	108	109	112 (1.9)	112 (2.4)
	ND1-CE1-NE2	108	109	106 (1.8)	111 (2.4)

a

  |𝑣⟩ are matrix elements of the external and kinetic operators. Together they form the core Hamiltonian. The symbol ∥ stands for the coulomb operator (1/|𝒓 -𝒓 ′ |). The Kohn-Sham potential is defined by differentiating the energy with respect to the electron density. In matrix notations the matrix elements of the KS potential are readily obtained by differentiation with respect to the elements of the density matrix.

	𝑁 𝑀𝑂 2 ⁄				
	𝑃 𝜇𝜈 (𝑡) = 2 ∑ 𝑐 𝜇𝑖 * (𝑡)𝑐 𝜈𝑖 (𝑡)		(7a)
	𝑖				
	𝑁 𝑀𝑂 /2				
	𝑃 𝜇𝜈 (𝑡) = 2 ∑ (𝑐 𝜇𝑖 R (𝑡)𝑐 𝑣𝑖 R (𝑡) + 𝑐 𝜇𝑖 I (𝑡)𝑐 𝑣𝑖 I (𝑡) + 𝑖 (𝑐 𝜇𝑖 I (𝑡)𝑐 𝑣𝑖 R (𝑡) -𝑐 𝜇𝑖 R (𝑡)𝑐 𝑣𝑖 I (𝑡)))	(7b)
	𝑖				
	𝑁 𝑀𝑂 /2				
	𝑃 𝜇𝜈 (𝑡) = 2 ∑ (𝑃 𝜇𝑣 R (𝑡) + 𝑖𝑃 𝜇𝑣 I (𝑡))	(7c)
	𝑖				
	𝐸[𝜌(𝒓, 𝑡)] = ∑ 𝑃 𝜇𝜈 𝐻 𝜇𝜈 𝑒𝑥𝑡 𝜇,𝑣	+ ∑ 𝑃 𝜇𝜈 ⟨𝜇|-𝜇,𝑣	1 2	∇ 2 |𝑣⟩	(8)
	+ ∑ ∑ 𝑃 𝜇𝜈 (𝑡)𝑃 𝜎𝜏 (𝑡)⟨𝜇𝜈‖𝜎𝜏⟩ + 𝐸 𝑥𝑐 [𝜌(𝒓, 𝑡)]
	𝜇,𝜈	𝜎,𝜏			
	𝐻 𝜇𝜈 𝑒𝑥𝑡 and 𝐻 𝜇𝜈 𝑘𝑖𝑛 = ⟨𝜇|-2 ∇ 2 𝐻 𝜇𝑣 ≡ 1 𝜕𝐸 𝜕𝑃 𝜇𝑣 = 𝐻 𝜇𝜈 𝑒𝑥𝑡 + ⟨𝜇|-	1 2	∇ 2 |𝑣⟩ + ∑ 𝑃 𝜎𝜏 (𝑡)⟨𝜇𝜈‖𝜎𝜏⟩ 𝜎,𝜏	+	𝜕𝐸 𝑥𝑐 [𝜌(𝒓, 𝑡)] 𝜕𝑃 𝜇𝑣

where 𝑁 𝑀𝑂 is the number of occupied MO. We have defined the matrices 𝑃 𝑅 and 𝑃 𝐼 that collect the real and imaginary elements of the full density matrix. One can show that 𝑃 𝑅 is symmetric while 𝑃 𝐼 is anti-symmetric. Having introduced the LC-GTO framework we can rewrite Eq. 4 with the help of matrix and bracket notations.

  allows the construction of the KS potential at 𝑡 𝑛 + ∆𝑡 2 ⁄ (third step). In the corrector phase, the KS potential at 𝑡 𝑛 + ∆𝑡 2 ⁄ is used to propagate 𝑃(𝑡 𝑛 + ∆𝑡 2 ⁄ ) to obtain 𝑃(𝑡 𝑛 ). The potentials at times 𝑡 𝑛-1 + ∆𝑡 2 ⁄ and 𝑡 𝑛 + ∆𝑡 2 ⁄ are saved in preparation for the subsequent propagation step.

2. The overall propagation 𝑃(𝑡 𝑛 ) 𝑡𝑜 𝑃(𝑡 𝑛 + ∆𝑡) is split into two phases: a prediction phase with a time step ∆𝑡 4 ⁄ , followed by a correction step with ∆𝑡 2 ⁄ . In the first step one builds a guess for 𝐻(𝑡 𝑛 + ∆𝑡 4 ⁄ ) by extrapolation from 𝐻(𝑡 𝑛-1 + ∆𝑡 2 ⁄ ) and 𝐻(𝑡 𝑛-2 + ∆𝑡 2 ⁄ ). Then one operates a SOMP step on 𝑃(𝑡 𝑛 ) to obtain 𝑃(𝑡 𝑛 + ∆𝑡 2 ⁄ ) using 𝐻(𝑡 𝑛 + ∆𝑡 4 ⁄ ). The knowledge of 𝑃(𝑡 𝑛 + ∆𝑡 2 ⁄ )

Table 1 . Computational performances of the iterative (IT) and PC propagation algorithms. The reported wall-clock timings (in s) refer to a 200 as RT-TDDFT ED simulation on a coumarin molecule. The number in brackets are deviations from ideal scaling (see text for details).

 1 

	Time step (as)	1		2		3		10	
		IT	PC	IT	PC	IT	PC	IT	PC
	AO<->MO	18.4	12.2	9.4	6.2	6.2	4.1	1.9	1.2
				(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)
	SOMP	121.1	72.5	77.0	45.6	59.4	33.2	31.5	17.1
				(0.8)	(0.8)	(0.7)	(0.7)	(0.4)	(0.4)
	KS potential	624.9	219.7	310.6	106.9	196.3	68.1	60.1	19.8
				(1.0)	(1.0)	(1.1)	(1.1)	(1.0)	(1.1)
	Population	16.6	16.7	8.2	8.3	5.5	5.5	1.6	1.6
	analysis			(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)
	Total time	774.5	322.8	402.5	168.4	265.8	112.1	95.4	40.8
				(1.0)	(1.0)	(1.0)	(1.0)	(0.8)	(0.8)
	cost for 1 step	3.9	1.6	4.0	1.7	4.0	1.7	4.8	2.0
	cost for 1 fs	3872.5	1613.9	2012.6	842.1	1322.3	557.9	476.9	204.2

Table 2 . Computational performances of the iterative and PC propagation algorithms. The reported wall-clock timings (in s) refer to a 200 as RT-TDDFT ED simulation on a heme complex.

 2 

	Time step (as)	1		2		3	
		IT	PC	IT	PC	IT	PC
	AO<->MO	586.8	3,967	293	197	195	132
				(1.0)	(1.0)	(1.0)	(1.0)
	SOMP	11,826.4	6,764	9,149	5,004	8,073	4,409
				(0.6)	(0.7)	(0.5)	(0.5)
	KS potential	15,319.6	5,085	7,502	2,550	5,076	1,700
				(1.0)	(1.0)	(1.0)	(1.0)
	Population	431.0	435	215	214	143	143
	analysis			(1.0)	(1.0)	(1.0)	(1.0)
	Total time	27,325.4	12,455	16,747	7,863	13,218	6,320
				(0.8)	(0.8)	(0.7)	(0.7)
	cost for 1 step	136.6	62.3	168	79	197	94
	cost for 1 fs	136,626.9	31,136.6	167,473	39,314	65,761	31,446

Table 3 . Computational performances of the iterative (IT) and PC propagation algorithms. The reported wall-clock timings (in s) refer to a 200 as RT-TDDFT ED simulation with a Gaussian pulse on a heme.

 3 

	Time step (as)	1		2		3	
		IT	PC	IT	PC	IT	PC
	AO<->MO	714	461	350	238	263	159
				(1.0)	(1.0)	(0.9)	(1.0)
	SOMP	14,857	8,103	11,172	6,294	11,061	5,507
				(0.7)	(0.6)	(0.4)	(0.5)
	KS potential	21,318	7,174	10,437	3,490	7,911	2,395
				(1.0)	(1.0)	(0.9)	(1.0)
	Population analysis	465	467	233	234	156	156
				(1.0)	(1.0)	(1.0)	(1.0)
	Total time	36,437	15,965	21,742	10,153	19,063	8,161
				(0.8)	(0.8)	(0.6)	(0.7)
	cost for 1 step	182	80	217.4	102	285	121
	cost for 1 fs a	182,183	79,826	108,709	50,764	94,839	40,604
	a: value extrapolated from an ED simulation run for 200 as				

Table 4 . Computational timings (in s) using different algorithms for evaluating the matrix exponential entering the SOMP.

 4 

Table 4

 4 collects the timings for the five systems with different exponentiation matrix methods. The total time is decomposed into three main tasks, namely "Kohn-Sham potential", SOMP and "AO<->MO" transformation (secondary tasks that contribute slightly to the total time are not collected in the Table). The "AO<->MO" transformations are not computationally time consuming. As expected

		KS potential SOMP AO<->MO Total
	Diagonalization				
	S1	57	316	277	687
	S2	207	1,878	419	2,589
	S3	681	16,408	852	18,270
	S4 2,632 195,781 3,644 206,860
	S5 3,797 398,520 6,656 730,796
	BCH				
	S1	59	1,472	148	1717
	S2	214	2,612	268	3174
	S3	795	8,787	955	10,929
	S4 2,601	31,335 3,686 39,308
	S5 6,364	70,295 7,642 96,962
	Taylor				
	S1	60	1,725	145	1,966
	S2	199	3,511	325	4,110
	S3	706	8,681	861	10,571
	S4 2,270	31,083 3,116 39,044
	S5 5,646	69,446 6,888 84,566
	Chebyshev				
	S1	59	2,164	141	2,398
	S2	194	4,043	289	4,604
	S3	701	11,598	868	13,482
	S4 2,432	45,028 3,482 52,594
	S5 5,612	92,781 6,948 107,853

the time taken for basis transformations is independent on the exponentiation method for a given cluster size. The small differences we see for different simulations (for example 6,656 4,642, 6,888 and

  1/|r 1r 2 |). As evident in eq 4, no four-centers ERIS are needed but only twoand three-centers ERIS. H στ are the matrix elements of the core Hamiltonian, encompassing the kinetic energy and the electron-nuclei attraction. The Kohn-Sham potential matrix elements for an isolated molecule are obtained by differentiating the total energy with respect to the density matrix elements:

	στ H isol	≡	∂ ∂ E στ P	=	στ H	+	∑ στ ⟨ k	⟩ kx t k ( )	+	ρ στ P ∂ E ∂ [ ] xc

  70,74 Propagation with the Magnus scheme requires the knowledge of the KS matrix at a later time ′ + is first extrapolated from the knowledge of H′ at earlier times. P′ is then propagated from t to t + Δt by the Magnus propagator, and the resulting density matrix is used to build the KS potential at t + Δt. A new KS potential at time + is interpolated from the potential at t and t + Δt. The propagation of P′ is repeated with this new KS potential.

		Δ ( ) H t t 2 , which is unknown.
	Two methods have been implemented. In the iterative
	algorithm 70 ′ + ( ) Δ t H t 2
	t	Δ t 2

Table 1 .

 1 Static Polarizability Tensors (bohr 3 ) Computed with RT-TDDFT and with a Finite Field Method

Table 2 .

 2 Induction Energies and Timings of Stationary QM/MMpol Calculations

		QM/MMpol (FBASIS)		QM/MMpol (FAUXIS)	
		GEN-A2	GEN-A2*	GEN-A2	GEN-A2*	GEN-A3*
	induction energies (kcal/mol) a					
	RMSD(E μ-qMM ind )	0.03	0.00	0.04	0.02	0.02
	RMSD(E μ-ZQM ind )	2.74	0.00	26.94	1.49	1.56
	RMSD(E μ-ρ ind )	6.35	0.00	55.61	2.97	3.06
	RMSD(E tot ind )	3.64	0.00	28.70	1.46	1.50
	timings (s)					
	QM electric field	1060 (61%)	657 (43%)	3 (≈0%)	3 (≈0%)	5 (≈0%)
	MM dipole iterations	236 (14%)	196 (13%)	246 (36%)	163 (18%)	154 (13%)
	dipole embedding	167 (10%)	133 (8.8%)	169 (25%)	106 (12%)	121 (10%)
	total induction	1463 (85%)	986 (65%)	418 (61%)	272 (30%)	280 (23%)
	SCF (s/cycle) b	20.9	29.6	8.4	16.1	20.0

a We report the RMSDs over five conformers of the peptide taking the FBASIS/GEN-A2* as the reference method. b Total time spent in SCF divided by the number of SCF cycles to reach convergence. For the timing, the numbers within brackets represent the percentage of the total time spent to compute the given contribution. Calculations have been performed with Intel Xeon E5649 (2.53 GHz) 6 core CPUs with 24 GB RAM per core. Jobs were run in parallel with 48 processors.

Table I . DFT derived charge set for Cyt. b type Heme (PFe-ImMe2) in both oxidized and reduced states in CHARMM format.

 I 

		HAC	0.0977	0.1119
		CBC	-0.3642	-0.3098
		HBC1	0.1286	0.1452
		HBC2	0.1399	0.1477
		CMD	-0.4719	-0.495
		HMD1	0.1398	0.1538
	Cyt.b5 HSD	Atom HMD2 CB HMD3 HB1 CAD HB2 HAD1 ND1 HAD2 HD1 CBD CG HBD1 CE1 HBD2 HE1 CGD NE2 O1D CD2 O2D	PFe II -ImMe2 0.137 -0.5329 0.154 0.1719 -0.2415 0.1503 0.1263 -0.4409 0.1153 0.353 -0.28 0.274 0.157 -0.0843 0.1613 0.1294 0.62 -0.5227 -0.76 0.2721 -0.76	0.1515 PFe III -ImMe2 0.1723 -0.5551 -0.2146 0.1832 0.1425 0.168 0.1244 -0.4294 -0.28 0.37 0.1691 0.3044 0.1602 -0.0836 0.62 0.1358 -0.76 -0.5315 0.292 -0.76
		HD2	0.0968	0.1057
		CB	-0.5332	-0.5554
		HB1	0.1498	0.1679
		HB2	0.1721	0.1835
		ND1	-0.4412	-0.4299
		HD1	0.3528	0.3702
	HSD	CG	0.2752	0.3065
		CE1	0.2711	0.2911
		HE1	0.0979	0.1083
		NE2	-0.5216	-0.5305
		CD2	-0.0852	-0.0854
		HD2	0.1316	0.1395
		FE	1.6873	1.7946
		NA	-0.6092	-0.625
		NB	-0.6062	-0.6202
		NC	-0.628	-0.6444
		ND	-0.6341	-0.65
		C1A	0.3146	0.3184
	HEME	C2A	-0.0872	-0.0439
		C3A	-0.0117	0.0084
		C4A	0.2937	0.3122
		C1B	0.2845	0.3049
		C2B	0.031	0.0418
		C3B	-0.138	-0.0902
		C4B	0.3283	0.3284
		C1C	0.292	0.2981
		C2C	0.0436	0.0703
		C3C	-0.1547	-0.1232
		C4C	0.3232	0.3361
		C1D	0.292	0.309
		C2D	-0.004	0.0179
		C3D	-0.0945	-0.0544
		C4D	0.3198	0.3242
		CHA	-0.4064	-0.3912
		HA	0.1458	0.1626
		CHB	-0.4036	-0.3975
		HB	0.1427	0.1609
		CHC	-0.3891	-0.3741
		HC	0.1401	0.1568
		CHD	-0.4277	-0.4201
		HD	0.147	0.1643
		CMA	-0.4525	-0.4751
		HMA1	0.1438	0.1624
		HMA2	0.1388	0.1576
		HMA3	0.1376	0.1491
		CAA	-0.2352	-0.2118
		HAA1	0.1115	0.1208
		HAA2	0.1212	0.1374
		CBA	-0.28	-0.28
		HBA1	0.1621	0.1641
		HBA2	0.1598	0.156
		CGA	0.62	0.62
		O1A	-0.76	-0.76
		O2A	-0.76	-0.76
		CMB	-0.4664	-0.487
		HMB1	0.1386	0.1548
		HMB2	0.1352	0.148
		HMB3	0.1521	0.1682
		CAB	-0.0362	-0.0725
		HAB	0.1013	0.116
		CBB	-0.3583	-0.2999
		HBB1	0.13	0.1454
		HBB2	0.1419	0.1484
		CMC	-0.4672	-0.4929
		HMC1	0.143	0.159
		HMC2	0.1379	0.1507
		HMC3	0.15	0.1688
		CAC	-0.0355	-0.0667

Table II . DFT derived charge set for Cyt. c type Heme (PFe-ImMe-EMS-MMS2) in both oxidized and reduced states in CHARMM format.

 II 

		HAA1	0.1166	0.1241
		HAA2	0.1175	0.1367
		CBA	-0.28	-0.28
		HBA1	0.1591	0.1598
		HBA2	0.1662	0.1536
		CGA	0.62	0.62
		O1A	-0.76	-0.76
		O2A	-0.76	-0.76
		CMB	-0.4688	-0.4896
		HMB1	0.136	0.1604
		HMB2	0.1415	0.1533
		HMB3	0.1392	0.1629
		CAB1	0.02	-0.0129
		HAB1	0.0883	0.1142
		CBB1	-0.4763	-0.4772
		HBB11	0.1347	0.1518
		HBB21	0.1432	0.1437
		HBB31	0.143	0.1478
		CMC	-0.4599	-0.4825
	Cyt. c551 CYS HSD MET	Atom HMC1 HMC2 CB HMC3 HB1 CAC1 HB2 HAC1 SG CBC1 CB HBC11 HB1 HBC21 HB2 HBC31 SG CMD CB HMD1 HB1 HMD2 HB2 HMD3 ND1 CAD HD1 HAD1 CG HAD2 CE1 CBD HE1 HBD1 NE2 HBD2 CD2 CGD HD2 O1D HB1 CB O2D	PFe II -ImMe-EMS-MMS2 0.145 0.1342 -0.4042 0.1434 0.1526 0.0191 0.1354 0.1021 0.0349 -0.4752 -0.3965 0.1346 0.1547 0.1384 0.1362 0.1401 0.0147 -0.463 -0.5272 0.1418 0.1496 0.1452 0.1691 0.1501 -0.4337 -0.1767 0.3557 0.1235 0.2698 0.1081 0.2633 -0.28 0.099 0.1377 -0.4779 0.1635 -0.0957 0.62 0.1365 -0.76 0.1239 -0.4124 -0.76	0.1595 PFe III -ImMe-EMS-0.1509 MMS2 0.1601 -0.3668 0.0036 0.1706 0.1056 0.1478 -0.4796 0.0552 0.1487 -0.361 0.147 0.1671 0.1437 0.1442 -0.4798 0.0429 0.1543 -0.5461 0.1617 0.1657 0.1574 0.1794 -0.2105 -0.4236 0.1342 0.3707 0.1354 0.3003 -0.28 0.2676 0.1562 0.1097 0.133 -0.4801 0.62 -0.1038 -0.76 0.1481 0.1422 -0.4285 -0.76
		HB2	0.1386	0.1397
		CG	-0.2239	-0.2242
		HG1	0.1344	0.1382
		HG2	0.1115	0.1321
		SD	0.0954	0.1359
		CE	-0.523	-0.5299
		HE1	0.1551	0.1752
		HE2	0.1606	0.1718
		HE3	0.1721	0.184
		FE	1.5964	1.7165
		NA	-0.642	-0.6649
		NB	-0.6252	-0.6494
		NC	-0.6307	-0.6536
		ND	-0.6446	-0.6672
		C1A	0.2939	0.3108
		C2A	-0.0937	-0.0495
		C3A	-0.0049	0.0043
		C4A	0.2909	0.3146
		C1B	0.2849	0.3083
		C2B	0.025	0.0472
		C3B	-0.1516	-0.101
		C4B	0.3063	0.3156
		C1C	0.2805	0.2998
		C2C	0.0249	0.0476
		C3C	-0.1566	-0.1407
	HEME	C4C C1D	0.3194 0.2939	0.3373 0.3127
		C2D	0.0009	0.0216
		C3D	-0.0863	-0.039
		C4D	0.3048	0.2989
		CHA	-0.4144	-0.3941
		HA	0.1459	0.1664
		CHB	-0.3838	-0.3804
		HB	0.1513	0.167
		CHC	-0.3893	-0.3867
		HC	0.1354	0.153
		CHD	-0.3913	-0.3854
		HD	0.1468	0.1623
		CMA	-0.4545	-0.4745
		HMA1	0.1388	0.1607
		HMA2	0.1409	0.1534
		HMA3	0.1409	0.1526
		CAA	-0.1737	-0.2005

DOI: 10.1021/acs.jctc.7b01128 J. Chem. Theory Comput. 2018, 14, 2705-2720

‡ Note that no water molecules are actually included in the RT-TDDFT simulations. We simply probe the electric field at the positions where these molecules could be positioned in a polarizable RT-TDDFT/MMpol simulation.
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PART II

Real-Time Propagation of the Electronic Density in polarizable environment

developed by various scientific groups since then, essentially in the CINVESTAV center (Prof. A. M.

Köster group). deMon2k contains around 250,000 lines and 1,929 routines. It is programmed in Fortran 77 and parallelized using the Message Passing Interface (MPI) protocol. The implementation of a complete new functionality like RT-TDDFT in such a complex code is not a trivial task. It is mandatory to think thoroughly in advance about the implementation strategy which supposes a good knowledge of the structure of the code. This is an important step to avoid creating interferences ("bugs") with other parts of the code -which would make the implementation useless at the end -and to optimize efficiency.

We started to implement a basic serial version of RT-TDDFT for closed-shell molecules with the Euler propagator. This first work involved i) the introduction of new keywords into the code, the modification of existing options, ii) the coding of the density propagation engine, iii) the routines for performing back-and-forth transformations between the AO and MO representations, iv) the inclusion of time dependent electric fields. The structure of the RT-TDDFT has been decided at this stage. Our strategy was to borrow as much as possible the already existing subroutines. Effectively the strength of deMon2k is that it is equipped with particularly efficient algorithms to evaluate molecular integrals in the framework of DF. Toward this end the structure of the RT-TDDFT engine was devised following the same algorithmic structure as the SCF module. In this way, it has been possible to branch entry point subroutines for calculation of the KS potential (bldksmat.f) or for performing density fitting (getcdj.f or getcdc.f and subroutines therein). The basic implementation was carefully tested by comparison of results produced by deMon2k and by another code (NWchem 12 ). Among the simplest diagnostics for testing the stability of the propagations are the conservation of electronic energy or total electron number. The polarizabilities and the absorption spectra of molecules obtained from RT-TDDFT were compared with results obtained by finite difference or perturbative approaches. We also carefully tested under which conditions auxiliary densities could be used in RT-TDDFT. We found that auxiliary basis sets containing polarization functions -the GEN-An* sets, to take the deMon2k syntax -were sufficient to achieve accurate simulations. We refer to the article reproduced at the end of Part II for details on all the validation tests.

Once validated, the basic implementation was continuously improved to add more functionalities. The list of functionalities now available are listed below. I coded myself most of the subroutines required to have these new options, some being coded or improved by other members of the group.

-Both open-shell and closed-shell systems are amenable to RT-TDDFT simulations -Magnus propagator in both iterative and PC versions (described in I.1.b).

6,948 for S5) can be attributed to differences in machines and speed on the internode connection at the moment of the simulations. The SOMP is by far the most time consuming task in all the simulations. This is a consequence of the decrease of the grid accuracy for the XC contribution. This result shows that our implementation of RT-TDDFT takes full advantage of the algorithmic machinery available in deMon2k to evaluate molecular integrals (Density fitting, mixed ERIS scheme, XC numerical integration…). It therefore places the bottleneck of RT-TDDFT simulation in the SOMP steps. To better analyze this point we depict in Figure 8 these timings as a function of the number of atomic orbitals (𝑁 𝐴𝑂 ). The diagonalization method which formally scales as 𝑁 𝐴𝑂 3 becomes uncompetitive after around 700 atomic orbitals. It is on the other hand far more efficient for small systems (<50 atoms) than the expansion methods. The Chebyshev, Taylor and BCH expansions show similar scaling with a slight advantage for the Taylor scheme. It should be stressed though that the comparison of the three methods is dependent on the choice of the tolerance threshold. In Figure 9 we represent the dipole moment evolution for the largest S5 system during 100 as. It is clearly similar for the three types of propagation.

We depict in Figure 8 a graphical representation of the total and SOMP timings. The expansion methods are more advantageous to simulate large molecular systems. Nevertheless the scaling of the implementation is not fully satisfactory. Indeed for the S5 cluster that contains 1256 electrons and 3145 𝑁 𝐴𝑂 , it takes 23 h to run 100 as on 96 processors with the Taylor expansion. This seems to set-up a limit to the maximum size to the molecular systems that can be investigated with deMon2k.

Reduction of the computational cost of the SOMP step is therefore highly desirable to perform ED simulations on larger systems comprising for instance 1,000 atoms. Actually the analysis of our first implementation of the expansion method indicates that it is not optimum. For simplicity we borrowed the already existing subroutines available in the code to perform the matrix multiplications needed in Eqs. 21-25 (subroutine mpmumat.f 69 ). This subroutine is adequate to perform one single matrix multiplication using the MPI protocol. It is used for instance in the SCF driver. However in the context of many successive matrix multiplications as required for the Taylor, Chebyshev or BCH expansion, it becomes unproductive; for example because the mpmulmat starts by distributing the rows of the matrix to the slave nodes. When applying this subroutine successively, the rows of the initial matrix are repeatedly sent to the slaves, which is not necessary. This is probably a main source of loss of computational efficiency as communications among processors are slow processes. An alternative would be to resort to dedicated subroutines (e.g. SCALAPACK) that optimize the workload among processors or to use different types of architectures like GPUs (Graphical Processor Units). 

II.1. Dynamics of the response of the environment

To analyze the response of the environment we consider the same system as in I.2.c, namely a methionine enkephalin peptide solvated in a box of POL3 water molecules. After tight SCF convergence, the peptide is perturbed by a Gaussian shaped electric pulse centered at 20 as with 3 as width. The field strengths are set to either 0.001, 0.01 or 0.1 a. u. The simulations have been conducted for 3 fs with a time step of 3 as using the predictor-corrector-Magnus/BCH propagator. We report the variation of the induced dipoles on MM atoms with respect to the initial time (∆𝜇(𝑡) = 𝜇(𝑡) -𝜇(0)) and their normalized auto-correlation functions (𝐶(𝑡), ACF). Both quantities are averaged by hydration layers as indicated by the angular brackets 〈… 〉.

We start by considering the upper graphs that correspond to perturbing field strength of 0.001 a.u.. As expected the longer the distance between the water molecules and the peptide, the smaller the impact on the induced dipoles. The first hydration layer is the one that experiences the highest variations of induced dipoles. As evident from the black curve in Figure 8, Top-Left, the average induced dipoles undergo damped oscillations. These are caused by energy dissipation in the MM environment, which is possible thanks to the use of a polarizable FF. Dissipation is very pronounced for the first hydration layer but it is also seen for the outer hydration layers. The induced dipoles for molecules pertaining to the inner hydration layer completely lose correlation within a few tens of as, while beyond 15 Å, the average ACF remains close to 0.8 at 200 as. The characteristic response time is distance dependent. This characteristic time increases for each successive hydration shells. Some of the averaged ACF become negative which is to be related to the oscillatory nature of the variations of 〈∆𝜇〉. We finally remark that the response of MM induced dipoles is not fully instantaneous but also exhibits relaxation components over hundreds of attoseconds.

When the strength of the initial perturbing field is increased to 0.01 a.u. (Figure 8 middle) the amplitude of oscillation of the average induced dipoles is larger by a factor of ten. This is true for each hydration shell.

When the field strength is further increased to 0.1 a.u., a further increase of response amplitudes is observed for 〈∆𝜇〉. The ACFs exhibit more complex evolutions with the increase of perturbing field strength.

For the weakest perturbing field strength (0.001a.u.) we already mentioned that the response was distance dependent (Top-Right). For a perturbing field strength of 0.01 a.u. the response of induced dipoles is not distance dependent within the first 50as, apart for water molecules situated beyond 15 Å (Middle-Right). Only after this time a scattering of the average ACFs becomes apparent. Finally, for a perturbing field strength of 0.1 a.u. all the average ACFs but one (again for water molecules situated conclusions which are grounded on the realization of hybrid RT-TDDFT/MMpol simulations also hold for other hybrid schemes like those combining RT-TDDFT with implicit polarizable continuum models 4a, 22 . 

CONCLUSION

In this chapter, we have devised a method to simulate electron dynamics in heterogeneous environments.

A hybrid QM/MMpol approach was implemented in deMon2k where the region-of-special-interest is simulated with RT-TDDFT and the environment is approximated with polarizable MM. We carefully justified the model for electronic induction.

The coupling between RT-TDDFT and MMpol is realized with a mixed stationary-non-stationary scheme.

This choice assumes that the MM dipoles completely relax at each RT-TDDFT step. Our tests show that it is a valid approximation for sufficiently small time steps.

Response mechanisms of a polarizable environment of a solute peptide submitted to an external perturbation were investigated. The dissipation of energy between the QM region and the environment is caught. The complexity of response mechanisms of the environment was revealed. The same analyses were carried out with retardation effect. Results shown that retardation effects can be safely neglected.

This is due to the fact that electric fields generated by the molecule or its environment do not fluctuate sufficiently rapidly to create noticeable retardation effects.

With this implementation, electron dynamics in complex molecular systems like those encountered in biology are now accessible. One possibility is to reduce the cost of induction by implementing more efficient algorithms to compute the potential created by the induced dipoles. The sudden instability of electrodynamics when using a slightly large time step with QM/MMpol schemes should be studied in more detail. GPU could be very good choice to accelerate the calculation of induce dipole of each atom side.

More advanced polarizable force fields like AMOEBA could be used to describe the MMpol part.
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SUPPLEMENTARY INFORMATION

GENERAL CONCLUSION

In this PhD thesis, we have reported progress along two lines. In the first project, the objective was to improve the reliability of computational approaches dedicated to the simulation of redox potentials of heme proteins. Redox potentials can be evaluated with the linear response approximation, which is the equivalent of the Marcus framework at the microscopic level. A QM+MM method was chosen to compute the vertical energy gap between diabatic states thereby leading to redox free energies of reduction. We focused on improving the electrostatic description of the MM part in two directions. One was to take into account polarization effects by induction. The other was to go beyond the point charge description by using multipolar descriptions associated with explicit polarization.

In Chapter 1, as workhorses, we considered six cytochromes. Simulations with non-polarizable FF provide globally the correct trend of redox potential values compared to experiments. Nevertheless, for differences of redox potential between proteins of the order of 50 mV, our simulations fail to reach this level of resolution.

In Chapter 2 we made an important step toward by devising the first AMOEBA sets of parameters for the heme cofactor in its ferrous and ferric forms. The results of interaction between heme and water solvent shells were found to be very encouraging. AMOEBA results reach the accuracy of QM results and outperform that of non-polarizable FF results. Combined with the recent implementation of AMOEBA in TINKER-HP program, these parameters open the possibility in a near future for evaluating redox potentials, and more generally, owing to the ubiquity of heme proteins, for addressing other important properties.

Last but not least, all these advanced approaches can be used to simulate electron transfer rate in heme proteins. In all these possible applications the enhanced computational cost of AMOEBA, even in the TINKER-HP program, will likely require to imagine combined schemes between non-polarizable forces fields and AMOEBA. The former to explore faster the conformational spaces of proteins, the latter to obtain better electrostatic interaction.

In the second project, our objective was to develop new methods for investigating ultrafast electron 

ANNEX II Transformation between Atomic orbitals (AO) and Molecular orbital (MO) representation:

AO basis are a set of normalized but not orthogonal functions {𝜇(𝒓)} , 𝑆 is the overlap matrix.

It is always possible to find a transformation matrix such that transformed set of function {𝜇(𝒓) ′ } are orthonormal.

Since 𝑆 is Hermitian, it can be diagonalized by a unitary matrix 𝑈 , where 𝑠 is a diagonal matrix of the eigenvalues of 𝑆.

One can use the symmetric orthogonalization by using the inverse square root of 𝑆 for 𝑋

However, if there is linear dependence or near linear dependence in the basis set, then some of the eigenvalues will approaches zero and will involve dividing by quantities that are nearly zero. Thus we have chosen to use canonical orthogonalization.

𝑋 † 𝑆𝑋 = (𝑈𝑠 -1/2 ) † 𝑆𝑈𝑠 -1/2 (7) We see that 𝑋 is also an orthogonalizing transformation matrix. If any 𝑠 𝑖 approaches to zero (≤10 -4 ), we can truncated and then got matrix 𝑋. If we have N atomic orbitals with m linear dependencies, we eliminated these m columns with too small values. We got an N*(N-m) matrix. Converting the KS matrix from AO basis to MO basis is then straightforward:

𝐻 (AO basis) is an N*N matrix, while 𝐻′ (MO basis) is a smaller (N-m)*(N-m) matrix.

It is slightly more complicated to convert density matrix 𝑃 from AO to MO by the fact that 𝑋 is not square and cannot be easily inverted. Here we use left and right inverses.

We get

Because (𝑋 † 𝑋) -1 = 𝑠 𝑃 ′ = 𝑠𝑋 † 𝑃𝑋𝑠 (12)

In summary, the transformation of KS matrix 𝐻 (AO basis) to 𝐻 ′ (MO basis) can be performed with Eq. 8. The transformation between density matrix 𝑃 to 𝑃 ′ can be performed with Eqs. 12 and 13. The first project aims at significantly improving the accuracy of redox potentials of proteins by numerical simulations. A sophisticated force field relying on a multipolar description of electrostartic interactions (AMOEBA) is used to perform molecular dynamics simulations onheme proteins. We derived parameters for AMOEBA to accurately describe electrostatic interactions with hemein both ferrous and ferric states.Very encouraging improvements are obtained compared to the standard force fields.

The second project aims at developing original approaches for simulating ultrafast electron dynamics in biomolecules in contact to polarizable environments. We devised acombination of Real-time Time-Dependent Density Functional Theory (RT-TDDFT) and polarizable Molecular Mechanics (MMpol). An efficient and robust implementation of this method has been realized in deMon2k software. Density fitting techniques allow to reduce the computational cost of RT-TDDFT/MMpol propagations. The methodology is applied to understand the mechanisms of energy dissipation of a peptide excited by a laser pulse.