
HAL Id: tel-02094795
https://theses.hal.science/tel-02094795v1

Submitted on 10 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution to the Development of Advanced
Approaches for Electron and Molecular Dynamics

Simulations in Extended Biomolecules
Xiaojing Wu

To cite this version:
Xiaojing Wu. Contribution to the Development of Advanced Approaches for Electron and Molecular
Dynamics Simulations in Extended Biomolecules. Theoretical and/or physical chemistry. Université
Paris Saclay (COmUE), 2018. English. �NNT : 2018SACLS252�. �tel-02094795�

https://theses.hal.science/tel-02094795v1
https://hal.archives-ouvertes.fr


  

 
 
 

Contribution to the Development of 

Advanced Approaches for Electron 
    and Molecular Dynamics Simulations 

in Extended Biomolecules 

 

 
 

Thèse de doctorat de l'Université Paris-Saclay 
préparée à Université Paris-Sud 

 
École doctorale n°571 : sciences chimiques : molécules, matériaux, 

instrumentation et biosystèmes (2MIB) 
Spécialité de doctorat: Chimie 

 
 

Thèse présentée et soutenue à Orsay, le 11 septembre 2018, par 

 

Mme Xiaojing WU  
 
 
 
 
 
Composition du Jury : 
 
M. Dennis R. SALAHUB  
Professeur, Université de Calgary (Canada)                                                            Président 

Mme Tzonka MINEVA    
Directrice de Recherche, CNRS-Institut Charles Gerhardt (UMR 5253)               Rapportrice 

Mme Isabelle NAVIZET 
Professeur, CNRS-Université Paris-Est (UMR 8208)                                            Rapportrice 

M. Gilles FRISON  
Chargé de Recherche, CNRS-Ecole Polytechnique (UMR 9168)                        Examinateur 

Mme Valerie BRENNER 
Directrice de Recherche, CEA  (UMR 9222)                                                        Examinatrice 

M. Yi ZHAO 
Professeur, Université de Xiamen (China)                                                            Examinateur 

M. Daniel BORGIS 
Directeur de Recherche, CNRS-Ecole Normale Supérieure (UMR 8640)            Examinateur             

M. Aurélien de la LANDE   
Chargé de Recherche, CNRS-Université Paris-Sud (UMR 8000)               Directeur de thèse 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                            

 

 

 

 

 

                                                                                                                                    



  

 

 

 

 

 

 

 致我最亲爱的家 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

        “On ne voit bien qu’avec le coeur.  

L’essentiel est invisible pour les yeux.” 

                                                                                             Antoine de Saint-Exupéry 

 

 

“Dans la vie, rien n’est à craindre,  

tout est à compredre.” 

                                                                                               Marie Skłodowska-Curie 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Acknowledgments 

 

I am not very good at expressing myself. Words of gratitude are too thin to express my sincere 
thanks for your kindness help and support. Your name carved in my heart. I will never forget. 
But I will use my action to express.                    
                             
 

Top name list in Xiaojing’s heart: 

 

Aurélien de La Lande, Carine Clavaguéra, Fabien Cailliez, 

Jean-Marie Teuler, Dennis R. Salahub, Rodolphe Vuilleumier, Laura Baciou, David Lauvergnat, 

Isabelle Demachy, Federica Agostini, Ridard Jacqueline, Bernard Lévy, Pascal Pernot, Karim 

Hasnaoui, Louis Lagardère, Jean-Philip Piquemal, Bernard Rousseau, Michèle Desouter-Lecomte,  

Tzonka Mineva, Isabelle Navizet, Daniel Borgis, Valerie Brenner, Gilles Frison. 

  

Aurelio Alvarez-Ibarra, Florent Amiot, Angela Parise, Rémi Fauve, Pierre Lehujeur, Danielle Molina, 

Cecia Cioletta,   

 

 

吴文义, 吴淑芳, 吴礼宣, 陈乌尼, 吴有理, 张玉美 ,吴博雅, 吴鸿博,  

邱金红, 原世豪, 张露, 王芙蓉, 张向阳, 赵仪,梁万珍, 邹海峰, 梁畅 

 

 

 

 大恩不言谢 
 

 

 

http://www.lcp.u-psud.fr/spip.php?page=fiche_identite&prenom=Bernard&nom=Rousseau
http://www.lcp.u-psud.fr/spip.php?page=fiche_identite&prenom=Mich%C3%A8le&nom=Desouter-Lecomte


 

 

 

 

 

 

 

 

 

 

 

 

 



 

Résumé 
 

 

 

Les transferts d'électrons sont des processus physico-chimiques fondamentaux qui ont lieu au cœur des 

biosystèmes (photosynthèse, respiration cellulaire, catalyse enzymatique, mécanismes de protections et 

de réparations de dommages photo-induits ou radio-induits). Comprendre les mécanismes par lesquels 

les systèmes naturels parviennent à générer des transferts efficaces dans les protéines permettrait le 

développement de catalyseurs biomimétiques. Ces processus impliquent des déplacements d'électrons 

sur des échelles de temps très courtes (de 10-5 au 10-18 s). La simulation numérique est un moyen puissant 

d’étudier ces mécanismes au niveau microscopique. Mon travail de doctorat vise à augmenter la précision 

des méthodes de simulation moléculaire pour décrire les transferts d'électrons dans les systèmes 

biologiques. Il s’articule autour de deux projets.  

 

Dans la premièr projet nous cherchons à comprendre les transferts d'électrons dans les proteines qui sont 

dominés par le mouvement nucléaire. De nombreux travaux expérimentaux et théoriques ont cherché à 

élucider les propriétés d’oxydo-réduction associées à ces transferts d’électrons. La simulation en biologie 

est un domaine en plein développement. Mais il reste encore beaucoup de progrès à faire notamment 

pour améliorer les précisions afin de prédire les mécanismes enzymatiques. La complexité des protéines 

nécessite des méthodologies de calcul avancées. La simulation existante est insuffisamment précise par 

rapport aux résultats des expériences. En conséquence, ce travail vise à mettre en place une nouvelle 

approche qui améliore significativement la précision pour simuler des propriétés redox des protéines, et 

plus particulièrement des hémoprotéines. 

 

Une étape importante a été de construire de champ de force reposant sur une description multipolaire 

des interactions électrostatiques (AMOEBA) pour estimer les potentiels redox des hémoprotéines. Nous 

avons dérivé des paramètres pour AMOEBA afin de décrire précisément les interactions électrostatiques 

avec l'hème. Une amélioration très encourageante est obtenue par rapport aux champs de forces 

standards. Maintenant, ils ont utilisés pour le calcul des potentiels d’oxydo-réduction sur une série 

d’hémoprotéines pour lesquelles des données expérimentales sont disponibles. En raison de 

l'omniprésence des protéines contenant un hème en biologie, ces travaux ouvriraient alors vers de très 

larges applications. Par exemple, simuler les mécanismes de transport d’oxygène et réactions 

enzymatiques au sein du métabolisme.  

 



 

Le second projet de cette thèse consiste à explorer le domaine fascinant de la dynamique des électrons à 

l’échelle de l’attoseconde (10-18 s) dans des molécules complexes. Du côté numérique, beaucoup d'efforts 

ont été consacrés à la conception d'algorithmes de simulation. Mais la plupart des implémentations ont 

été conçues pour étudier des systèmes moléculaires en phase gazeuse ou dans un environnement 

homogène.  J’ai développé des nouvelles méthodes pour étudier la dynamique des électrons dans des 

biomolécules à l'échelle attoseconde en incluant les effets d'environnement hétèrogène. Nous avons 

conçu un couplage original entre la théorie de la fonctionnelle de la en temps réel densité dépendant du 

temps (RT-TDDFT) et un modèle de mécanique moléculaire polarisable (MMpol). Une implémentation 

efficace et robuste de cette méthode a été réalisée dans le logiciel deMon2k. L'utilisation de techniques 

d'ajustements de densités électroniques auxiliaires permet de réduire drastiquement le coût de calcul des 

propagations RT-TDDFT/MMpol. La méthode est appliquée à l'analyse de la dissipation d'énergie dans 

l'environement d'un peptide excité par une impulsion laser. Les simulations ont montré que cette méthode 

est suffisamment efficace pour envisager de simuler la dynamique des électrons dans de grands systèmes 

moléculaires. De plus, ces développements ont permis d'ouvrir une nouvelle ligne de recherche sur les 

effets des rayonnements ionisants sur les biomolécules. 
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GENERAL INTRODUCTION 

Electron transfers (ET) are basic chemical processes, with prominent importance in chemistry, physics, 

biology, life science, materials and microelectronics disciplines. In biology, ET are involved in numerous 

processes like light harvesting, cellular respiratory chains, enzymatic reactions or defense against oxidative 

stress. Unravealing the mechanisms by which natural systems manage to control the directionality, speed 

and efficiency of ET within proteins is commonly expected to feed reflection to design innovative catalytic 

processes for industrial applications, or to inspire innovative medicinal projects, for example, for the 

development of selective enzymatic inhibitors or of new antibiotics. In this context, numerical approaches 

offer powerful means to understand ET mechanisms at the microscopic level. Simulations can even provide 

mechanistic insights that are not accessible by experiments. 

A fascinating characteristic of biological ET is the temporal scales associated with these phenomena. They 

cover several orders of magnitude, ranging from a few microseconds in long-range ET down to tens of 

attoseconds in charge migration. For theoretical physical-chemists, understanding how such a wide range 

of rates is possible requires advanced computational methodologies, both for molecular dynamics (MD) 

and for electron dynamics (ED) simulations. The objective of this PhD thesis is to contribute to the 

development of advanced approaches for simulating these phenomena. This manuscript contains two 

distinct, though connected parts.   

In Part I, we are interested in redox potentials of heme cofactors when inserted within proteins.  Redox 

potentials are a central quantity of redox theories as they are related to the free energies of redox reactions, 

hence their thermodynamical feasibilities, and also to the reaction rates, for example in the Marcus Theory. 

The accuracy of numerical simulations to predict redox potentials of cofactors encapsulated in protein 

matrices is far from reaching the experimental ones. My PhD project aims at improving the reliability of 

computational approaches dedicated to the simulation of redox potentials.  

The computational machineries for the evaluation of redox potentials based on the linear response 

approximation are now well established. They often involve combinations of quantum mechanical 

calculations and classical molecular dynamics simulations. The computed redox potentials depend not only 

on the structure of the heme cofactors but also on the interactions between hemes and their environments 

(protein, solvent, counter-ions).  The accuracy of simulations to evaluate the latter is highly dependent on 

the functional form of mechanical Force Fields (FF). It has been shown by several research groups that 

electrostatic induction (polarization) is essential and must be taken into account. On the other hand 



 

4 
 

electrostatic interactions among permanent charge densities are also important. Our objective is to make 

significant progress in the evaluation of redox potential by using advanced FF. In Chapter 1 we will describe 

the computational methodology for redox potentials evaluation in proteins based on the Linear Response 

Approximation. In Chapter 2 we will report an important step toward equivalent simulations with the 

sophisticated AMOEBA force field, namely the development of dedicated parameters describing multipolar 

electrostatic interactions of heme in ferric and ferrous forms. 

In Part II, we are interested in ultrafast electron transfers taking place at the sub-femtosecond time scales. 

These ET are driven by electronic correlation. They take place when tunneling is involved between donor 

and acceptor, or more generally when a molecule is subjected to a perturbation (electric fields, components 

of electromagnetic waves or collisions with charged particles). 

Real-Time Time-Dependent Density Functional Theory (RT-TDDFT) is a powerful method to simulate ED with 

excellent computational cost/accuracy ratio. With the development of efficient algorithms, a current 

challenge is to simulate ED in complex biological systems, where environment effects are possibly 

important. The developments described in Part II are intended to developing an original methodology 

coupling RT-TDDFT and polarizable force fields. Toward this end we report in Chapter 3 a new 

implementation of RT-TDDFT in the software deMon2k. The implementation relies on variationally fitted 

electron densities to improve computational performance. In Chapter 4 the coupling scheme between the 

two methods is justified and we report analyses of energy dissipation from the out-of-equilibrium electron 

density of a peptide toward its polarizable environment.  
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Toward a More Accurate Evaluation of Redox Potentials 

of Hemoproteins 

 

Redox potentials are reference values to characterize the propensity of molecules to accept or release 

electrons in a medium. In the Marcus theory of electron transfer, the redox potentials enter into the 

determination of the rates via the so-called driving force (−∆𝐺°). In biology common redox cofactors found 

in oxidoreductases are either of organic nature (flavins, nicotinamides or quinones) or inorganic complexes 

(iron, nickel, copper, vanadium or manganese). In the latter case we talk about metalloproteins. More than 

one third of all currently known proteins involve redox reactions which serve as significant catalysts for 

numerous biological processes. Figure 1 illustrates the remarkable diversity of redox potentials of these 

cofactors when they are embedded inside proteins.   

 

Figure 1. Reduction potential range of redox centers in electron transfer processes (Figure 1 in ref 1) 

We are interested in heme proteins. They are abundant in biomolecules, and exist in the ferrous FeII or 

ferric FeIII oxidation states. They participate in several biological functions: electron-transfer reactions, 

oxygen transport and storage, oxygen reduction to hydrogen peroxide or water, oxygenation of organic 

substrates, and the reduction of peroxides. This versatility in functions is made possible by a combination 

of differences in both the heme cofactor and the protein matrix of the various hemoproteins.  
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heme cofactor consists of a prosthetic group and different ligands. The prosthetic group contains an iron 

cation chelated by the four nitrogen atoms of a porphyrin ligand. According to the different structures of 

porphyrin rings, prosthetic groups are classified as different types of heme shown in Figure 2. 

 

Figure 2. Different type of heme found in cytochromes. (Figure 3 from ref 1) 

The iron coordination sphere also incorporates other ligands in axial positions, i.e. below and above the 

porphyrin ring.  In Figure 3, some common axial ligands found in cytochromes are shown. Histidine or 

methionine side chains commonly act as axial ligands but other types of ligands can be found in some 

enzymes (the structure C on the Figure 3, for instance). 

 

Figure 3. Commonly found heme axial ligands in various cytochromes. (A) Class I cyts c. (B) Cyts b. (C) cyt f. (D) c-type 

cytochromes. (Figure 4 from ref 1.) 
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Theoretical chemistry presents an alternative to experimental methods to evaluate redox potentials of 

hemes incorporated into protein matrices. The Marcus theory of electron transfer initially developed for 

electron transfer in solutions and at electrodes was found by various groups to be adaptable for protein 

redox properties. Research is still on-going worldwide to identify situations where the underlying 

hypotheses of the theory fail. This includes for example ultrafast processes for which the characteristic time 

scales of the redox process are much shorter than the relaxation times of protein matrices. This also 

includes processes involving large conformational rearrangements of the solvation states of the cofactors, 

or strong polarization of the redox cofactors. Another road to be explored is the improvement of 

computational approaches for more accurate predictions of calculated redox potentials and electron 

transfer rates. This is the guiding line of Part I of this PhD thesis.  

Toward this aim, a series of small heme proteins with known experimental redox potentials are considered. 

The theory and the computational set up are described in Chapter 1 with the simulation results of non-

polarizable force fields. The second Chapter is to achieve MD simulations with an advanced force field, 

namely AMOEBA. This force field describes electrostatic interactions among molecules beyond the 

monopolar approximation, and for that reason we expect significant improvement of computed redox 

potentials. A first essential step is to derive force fields parameters. This is the topic of Chapter 2.  

 

1. Liu, J.; Chakraborty, S.; Hosseinzadeh, P.; Yu, Y.; Tian, S.; Petrik, I.; Bhagi, A.; Lu, Y., Metalloproteins 

Containing Cytochrome, Iron–Sulfur, or Copper Redox Centers. Chem. Rev. 2014, 114 (8), 4366. 
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Numerical Simulations of Redox Potentials under the Linear 

Response Approximation 

 

The modern description of the Marcus theory from first principles considerations emerged in the 

1980's from the works of Warshel1, Tachiya2 and Hynes3, to name but a few key researchers of this 

research field. These authors developed the conceptual framework to relate the phenomenological 

theory developed by Marcus in the 1950’s to microscopic description of matter. Importantly they also 

introduced algorithms for testing the theory by numerical simulations. These  algorithms include 

classical continuum electrostatics4, Multi-Conformation Continuum Electrostatics (MCCE)5, Protein-

Dipole Langevin-Dipoles (PDLD)6, semi-microscopic PDLD analysis7, free energy perturbation and 

microscopic Linear Response Approximation (LRA)8, Molecular Dynamics (MD)9, QM and QM/MM 

(Quantum Mechanics/Molecular Mechanics) methods10.  

As explained in the Introduction the objective of this PhD thesis is to contribute to the improvement 

of redox potentials of proteins, and more particularly of heme proteins. Toward this end our approach 

will be to use advanced force fields (FF). This will be the object of Chapters 2.  

Heme proteins, at least the simplest ones, can be understood with concepts from the Marcus Theory, 

which is equivalent for microscopic simulation in relying on the Linear Response Approximation. In this 

Chapter we therefore introduce the conceptual framework of the LRA, showing how to estimate redox 

free energies and the important reorganization energy. In the second section of the Chapter we 

illustrate how one uses this formalism taking a series of six small heme proteins as example with simple 

force fields.   

 

I COMPUTATIONAL APPROACHES FOR REDOX PROPERTIES 

In Section I we introduce the theoretical framework commonly used in the literature to rationalize the 

redox properties of proteins from numerical simulations based on the Linear Response Approximation. 

We start by describing how thermodynamic properties can be computed from microscopic simulations 

based on the LRA. Formulation within the context of hybrid QM/MM methods is given and we discuss 

the different FF one can use for carrying out this type of simulation. This allows us to highlight the 

current methodological limitations.  
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I.1 The Linear Response Approximation 

I.1.a The Marcus theory at the microscopic level 

We are interested in Part I in the free energies associated with the reduction of a redox cofactor (C) 

encapsulated within a protein (P). The protein itself may be solvated in water (globular proteins) or 

inserted in a membrane: 

C@P + 1e-  C-@P  

The starting point is to consider the existence of two electronic states corresponding to the reactants 

and products. The initial and final states have potential energies 𝐸1  and 𝐸2  respectively. A redox 

reaction is different from more standard chemical reactions involving the transfer of atoms, or groups 

of atoms, from two molecular fragments, in the sense that the reduction of C introduces a change of 

electric charge on C that in turn, induces adjustment of the internal structure of C (inner-sphere 

contribution) and a different polarization of the environment (outer-sphere contribution). For 

biological systems the environment encompasses protein residues and solvent (water). By polarization 

we mean new orientations and translations of atoms or molecules and polarization of the electron 

cloud (electrostatic induction). The more polar the environment the larger the reorganization to 

stabilize the new redox form of the cofactor. This specificity of redox processes means that hundreds 

of thousands of atoms participate in the reaction coordinate. 

 

I.1.b The vertical energy gap as reaction coordinate   

A breakthrough came from the work of Warshel1 who proposed to consider the vertical energy gap 

Δ𝐸12 = 𝐸2 − 𝐸1 as the reaction coordinate. The choice Δ𝐸12 as reaction coordinate is justified by the 

fact that Δ𝐸12 collects all the nuclear motions contributing to the progress of the reaction due to their 

distinct polarization in the two redox states. The free energy for state 𝑥(= 1 or 2) is expressed by the 

Landau formula: 

𝐺𝑥(ε) = −𝛽𝑙𝑛(𝑝𝑥(ε)) + 𝐺𝑥
0 (1) 

with 𝛽 = 1 𝑘𝐵𝑇⁄ and 𝑝𝑖(ε)  the probability of having ε = Δ𝐸12  energy gap when the system is on 

electronic state 𝑥.  𝐺𝑥
0 is the “full” free energy of the state 𝑥. It is given by: 

𝐺𝑥
0 = −𝑘𝐵𝑇𝑙𝑛 [∫ exp (−𝛽𝐸𝑥)d𝛤] 

(2) 

where the integration is done over the entire phase space 𝛤 accessible to the system in state 𝑥. The 

probability function 𝑝𝑥(ε) is given by Eq. 3. 
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𝑝𝑥(𝜀) =
∫ exp(−𝛽𝐸𝑥) 𝛿(Δ𝐸 − 𝜀)𝑑Γ

∫ exp(−𝛽𝐸𝑥)𝑑Γ
=

∫ exp(−𝛽𝐸𝑥) 𝛿(Δ𝐸 − 𝜀)𝑑Γ

𝑍𝑥
 

(3) 

From the definition of 𝑝𝑥(𝜀) in Eq. 3, if the system is ergodic we have: 

𝐺2(𝜀) − 𝐺1(𝜀) = −𝛽𝑙𝑛(𝑝2(ε) 𝑝1(ε)⁄ ) = ε (4) 

If we assume that 𝑝𝑖(ε) follows a Gaussian statistics, we can write: 

𝑝𝑥(ε) =
1

𝜎𝑥√2𝜋
exp (−

(ε − 〈Δ𝐸〉𝑥)2

2𝜎𝑥
2 ) 

(5) 

where 〈Δ𝐸〉𝑥 is the average vertical energy gap when the system is in state 𝑥 and 𝜎𝑥 is the standard 

deviation of the distribution. By inserting Eq. 5 into Eq. 1 we have,  

𝐺𝑥(ε) = 𝐺𝑥
0 +

(ε − 〈Δ𝐸〉𝑥)2

4𝜆𝑥
𝑣𝑎𝑟 +

𝑘𝐵𝑇

2
ln(4𝜋𝑘𝐵𝑇𝜆𝑥

𝑣𝑎𝑟) 
(6) 

In this equation we have introduced a so-called reorganization energ 𝜆𝑥
𝑣𝑎𝑟 = 𝛽𝜎𝑥

2 2⁄ =

𝛽〈𝛿𝛥𝐸. 𝛿𝛥𝐸〉𝑥 2⁄ , with 𝛿𝛥𝐸 = 𝛥𝐸 − 〈𝛥𝐸〉𝑥. As it is defined from the variance of the energy gap we 

will refer to it as the "variance reorganization energy".  

To fulfill Eq. 4 for all values of 𝜀 the distributions 𝑝1 and 𝑝2 should have the same standard deviations, 

therefore leading to the same variance reorganization energies: 𝜆1
𝑣𝑎𝑟 = 𝜆2

𝑣𝑎𝑟. Applying Eq. 6 for 𝜀 =

〈Δ𝐸〉1 and 𝜀 = 〈Δ𝐸〉2 further leads to the two following relations: 

Δ𝐺0 = 𝐺2
0 − 𝐺1

0 =
〈Δ𝐸〉1 + 〈Δ𝐸〉2

2
 (7) 

𝜆 =
〈Δ𝐸〉1 − 〈Δ𝐸〉2

2
= 𝜆𝑆𝑡 (8) 

which give an alternative definition of the reorganization energy often referred to as the Stokes 

reorganization energy 𝜆𝑆𝑡 . The “Marcus” reorganization free energies 𝜆𝑥
𝑟  are also defined by the 

reversible work necessary to bring the system from its optimum configuration in state 𝑥 (𝑥 being 1 or 

2) to the optimum configuration of the other state involved in the reduction of the cofactor (resp. 2 or 

1). Using this definition, one gets: 

𝜆1
𝑟 = 𝐺1(〈Δ𝐸〉2) − 𝐺1(〈Δ𝐸〉1) =

(〈Δ𝐸〉2 − 〈ΔE〉1)2

4𝜆
= 𝜆 (9) 

and a similar result for 𝜆2
𝑟 . As a consequence, the LRA leads to the equality between all the possible 

definitions of the reorganization energy: 𝜆 = 𝜆1
𝑣𝑎𝑟 = 𝜆2

𝑣𝑎𝑟 = 𝜆1
𝑟 = 𝜆2

𝑟 = 𝜆𝑆𝑡. 
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Figure 1 depicts a visual representation of the Marcus free energy parabolas. 

 

Figure 1. Free energy profile in the Marcus Theory where the collective reaction coordinate is taken to be the diabatic 
energy gap (Figure extracted from ref 11) 

 

I.2 Potential energy functions 

I.2.a Hybrid QM/MM methods 

In I.1 we saw the central role of the vertical energy gap in the calculation of the free energies of 

reduction by numerical simulations. In practice one needs a methodology for calculating the potential 

energies in the two redox states. Various reviews have been published in the literature. We focus our 

attention on methodologies based on hybrid QM/MM approaches12. 

i) Electrostatic embedding 

A QM electronic structure theory is mandatory to account for the intrinsic electron affinity of the 

cofactor. Effectively the added electron on the redox cofactor interacts with the bath of electrons of 

the cofactor, creating geometrical relaxation of the nuclei. The longer-range interactions between the 

electrons of the cofactor and the atoms belonging to the protein and to the solvent can probably be 

captured by molecular mechanics FF. The QM/MM partition is straightforward. The QM region 

describes the cofactor and the MM region encompasses all other atoms. We will use the terms QM 

atoms and MM atoms to refer to the atoms belonging to the QM and MM regions respectively. We 

assume that Density Functional Theory (DFT)13, in its Kohn-Sham formulation14, is used for the QM 

region. For the MM region we use the same FF parameters in the two redox states. Two flavors of 

DFT/MM are possible depending on the treatment of the interaction between the QM and MM atoms, 

namely the mechanical and electrostatic embedding schemes. The latter is the most satisfactory. In 

that case the potential energy of state 𝑥 reads: 
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𝐸𝑥
𝐷𝐹𝑇/𝑀𝑀𝑒𝑒[𝜌𝑥] = 𝑇𝑠[𝜌𝑥] + 𝑉𝑛𝑢𝑐[𝜌𝑥] + 𝐽[𝜌𝑥] + 𝐸𝑥𝑐[𝜌𝑥] + 𝑉𝑒𝑚𝑏𝑒𝑑[𝜌𝑥]

+ ∑ ∑ 𝑍𝐴𝑣𝑒𝑚𝑏𝑒𝑑

𝐾∈𝑀𝑀𝐴𝜖𝑄𝑀

+ 𝐸𝑥
𝑀𝑀 

(10) 

𝐸𝑥
𝐷𝐹𝑇/𝑀𝑀𝑒𝑒[𝜌𝑥] = 𝐸𝑥

𝐷𝐹𝑇𝑒𝑒[𝜌𝑥] + 𝐸𝑥
𝑒𝑚𝑏𝑒𝑑[𝜌𝑥] + 𝐸𝑥

𝑀𝑀 (11) 

 

𝜌𝑥 is the electron density of the QM region in state 𝑥. The first four terms on the r.h.s. of Eq. 10 are 

the kinetic energy of the electrons of the reference Kohn-Sham system (𝑇𝑠), the interaction energy of 

the electron density with the nuclei of the QM region (𝑉𝑒𝑛), the classical Coulomb interaction among 

electrons (𝐽) and the exchange-correlation energy (𝐸𝑥𝑐). The sum of these terms defines 𝐸𝑥
𝐷𝐹𝑇 in Eq. 

11.  𝑉𝑒𝑚𝑏𝑒𝑑  is the embedding energy, that is, the electrostatic interaction energies between the 

electron density and the MM atoms. With the interaction energy of the QM nuclei and the MM atoms, 

these terms define 𝐸𝑥
𝑒𝑚𝑏𝑒𝑑. Finally 𝐸𝑥

𝑀𝑀 is the MM energy. In the electrostatic embedding scheme, 

the electron density is optimized so as to minimize the energy functional 𝐸𝑥
𝐷𝐹𝑇/𝑀𝑀𝑒𝑒

 energy. The 

electron cloud of the QM region is polarized by the MM atoms thanks to the inclusion of the 

embedding Hamiltonian. The latter is defined as the derivative of 𝑉𝑒𝑚𝑏𝑒𝑑 with respect to the density 

𝜌𝑥.  

After solving the Kohn-Sham equations for a given configuration of the atom nuclei the two redox 

states the vertical energy gap is obtained as: 

Δ𝐸12
𝐷𝐹𝑇/𝑀𝑀𝑒𝑒

= Δ𝐸12
𝐷𝐹𝑇𝑒𝑒 + Δ𝐸12

𝑒𝑚𝑏𝑒𝑑 + Δ𝐸12
𝑀𝑀 (12) 

After sampling of Δ𝐸12
𝐷𝐹𝑇/𝑀𝑀𝑒𝑒

 for the two potential energy surfaces the free energy of the reaction 

can be calculated by Eq. 7. The variance reorganization energy  

Δ𝐺
𝐷𝐹𝑇/𝑀𝑀𝑒𝑒

= Δ𝐺12
𝐷𝐹𝑇𝑒𝑒 + Δ𝐺12

𝑒𝑚𝑏𝑒𝑑 + Δ𝐺12
𝑀𝑀 (13) 

 

 

                                        ii) Non-polarizable - monopolar force fields 

The specific form of the last two terms of Eq. 13 depends on the FF used for the MM part. Since we 

are interested in calculating vertical energy gaps, i.e. at constant nuclear/atomic positions, and that 

the same FF parameters are used for the two redox states, Δ𝐸12
𝑀𝑀 will always involve only non-bonded 

terms (electrostatic and van der Waals). The bonded terms (bonds, angles, dihedrals, torsions…) cancel 

out when taking the difference between the two redox states.  The main point is to evaluate the 

electrostatic interactions involving QM and/or MM atoms. A first distinction has to be made depending 

on whether the FF incorporates electronic induction (polarizable force fields MMpol) or not. A second 
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distinction has to be made regarding the treatment of electrostatics arising from MM atoms, using 

only permanent charges or higher electrostatic multipoles.   

For the sake of illustration we assume a simple FF which ignores electronic induction and relies on 

point charges 𝑞𝐾  to describe the electrostatic potential generated by the MM atoms. In that case 

Δ𝐸12
𝑀𝑀 vanishes to zero and Eq. 13 reduces to: 

Δ𝐸12
𝐷𝐹𝑇/𝑀𝑀𝑒𝑒

= Δ𝐸12
𝐷𝐹𝑇𝑒𝑒 + ∑ ∫

(𝜌2(𝑟) − 𝜌1(𝑟))𝑞𝐾

|𝑟 − 𝑅𝐾|
𝑑𝑟

𝐾∈𝑀𝑀

 
(14) 

𝑅𝐾 is the position of MM atom K. The application of the LRA (Eq. 7) leads to: 

Δ𝐺0 = Δ𝐺𝑖𝑛𝑛𝑒𝑟−𝑠𝑝ℎ𝑒𝑟𝑒
0 + Δ𝐺𝑜𝑢𝑡𝑒𝑟−𝑠𝑝ℎ𝑒𝑟𝑒

0  (15) 

Δ𝐺𝑖𝑛𝑛𝑒𝑟−𝑠𝑝ℎ𝑒𝑟𝑒
0 =

〈Δ𝐸12
𝐷𝐹𝑇𝑒𝑒〉1 + 〈Δ𝐸12

𝐷𝐹𝑇𝑒𝑒〉2

2
 

(16) 

Δ𝐺𝑜𝑢𝑡𝑒𝑟−𝑠𝑝ℎ𝑒𝑟𝑒
0 =

〈Δ𝐸12
𝑒𝑚𝑏𝑒𝑑〉1 + 〈Δ𝐸12

𝑒𝑚𝑏𝑒𝑑〉2

2
 

(17) 

When using a non-polarizable FF, the free energy of the reaction (and also the Stokes reorganization 

energy) can thus be written as a sum of an inner-sphere and an outer-sphere contribution. The former 

being computed at the hybrid DFT/MM level with electrostatic embedding includes polarization of the 

redox cofactor by the environment. For the modelling of the redox properties of highly polarizable 

redox cofactors like the special pair within the photo-reactive center, it is important to retain this 

feature of the QM/MM methodology15. 

iii) Energy evaluation accuracy vs. conformational sampling 

To apply Eq. 7-8 from the Marcus theory/LRA, the QM/MM energy gap (Eq.12 or 13) must be sampled 

for the entire phase space accessible to the systems in the two redox states (see Eq. 2). This is usually 

done by MD simulations. In general MD has to be run for several tens or hundreds of nanoseconds to 

reach proper conformational sampling. These timescales are currently inaccessible for plain DFT/MM 

MD simulations. One possible strategy is to rely on classical MD simulations to conduct molecular 

sampling in the two redox states, and then post-process the trajectories to evaluate the energy gap at 

the DFT/MM level16. This strategy is however delicate to follow. First because FF parameters must be 

available for the cofactor in the two redox states. Second because the ensemble of configurations 

sampled from the FF PES will not match exactly the ensemble of configurations that would have been 

obtained from exploration of the DFT/MM PES. This can introduce artefacts in the evaluation of Eq. 

14-16. It should be also remarked that the DFT/MM PES can become extremely computationally 

consuming. In general the vertical energy gap fluctuates on the sub-picosecond time scale. Therefore 
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a post-treatment of a 100 ns classical MD simulation every picosecond leads to 105 DFT/MM 

evaluations! In summary we see the nature of the central dilemma faced with the numerical simulation 

of redox properties of proteins: finding an optimum balance between extensiveness of conformational 

sampling and accuracy of the potential energy functions.  

 

I.2.b The simplified QM+MM scheme 

i) Decoupling hypothesis  

Among the various alternative strategies that can be followed to reduce the computational cost is the 

so-called QM+MM approach16b. It is based on the assumption that reorganization of the inner-sphere 

upon redox change is largely caused by local electronic and nuclear relaxation and that it is decoupled 

from the reorganization of the environment. Alternatively said, we ignore mechanical and electrostatic 

coupling between the cofactor and its environment. This hypothesis has been tested in various redox 

enzymes such as heme proteins or cryptochromes by comparison with MD simulations based on hybrid 

QM/MM PES17. It may not be true for other proteins like the photoreactive center where the redox 

cofactors can be extremely polarizable. Adopting the QM+MM approach to simulate redox properties 

is a choice that requires precautions. The mechanical embedding formulation of the DFT/MM energy 

provides a good starting point to reach the QM+MM formalism. The energy reads, for a non-polarizable 

FF: 

𝐸𝑥
𝐷𝐹𝑇/𝑀𝑀𝑚𝑒

= 𝑇𝑠[𝜌𝑥] + 𝑉𝑛𝑢𝑐[𝜌𝑥] + 𝐽[𝜌𝑥] + 𝐸𝑥𝑐[𝜌𝑥] + 𝐸𝑥
𝑐𝑙 + 𝐸𝑥

𝑀𝑀 (18) 

𝐸𝑥
𝑐𝑙 = ∑ ∑ 𝑉𝐴−𝐾

𝐾∈𝑀𝑀𝐴𝜖𝑄𝑀

 (19) 

𝐸𝑥
𝐷𝐹𝑇/𝑀𝑀𝑚𝑒

= 𝐸𝑥
𝐷𝐹𝑇𝑔𝑝

+ 𝐸𝑥
𝑐𝑙 + 𝐸𝑥

𝑀𝑀 (20) 

The main difference with Eq. 10 is that the interaction term (𝐸𝑥
𝑐𝑙) between the QM and MM regions is 

calculated not from the electron density but by classical electrostatics. With a FF relying on monopolar 

approximations (charges) the 𝑉𝐴−𝐾 interaction term between QM atom A and MM atom K is calculated 

by Coulomb’s law. But with more advanced force fields relying on permanent multipoles 𝑉𝐴−𝐾 takes 

more complex forms. Consequently the Kohn-Sham Hamiltonian doesn't include embedding by the 

environment. The electron density is not polarized by the MM region. This is a "gas phase calculation" 

leading to energy 𝐸𝑥
𝐷𝐹𝑇𝑔𝑝

. Importantly the QM+MM approach can be made compatible with 

polarizable FF as long as the cofactor itself remains non-polarizable. Otherwise the decoupling 

assumption underlying the QM+MM idea breaks down. 
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ii)Inner-sphere contribution 

Thanks to this decoupling hypothesis the inner sphere contribution (Δ𝐸𝑖𝑛) can be estimated from the 

energies of the isolated cofactor in the gas phase.  

𝐼𝑃 = 𝐸2(𝑅1) − 𝐸1(𝑅1) (21) 

𝐸𝐴 = 𝐸2(𝑅2) − 𝐸1(𝑅2) (22) 

𝜆𝑖𝑛𝑛𝑒𝑟,1 = 𝐸1(𝑅2) − 𝐸1(𝑅1) (23) 

𝜆𝑖𝑛𝑛𝑒𝑟,2 = 𝐸2(𝑅1) − 𝐸2(𝑅2) (24) 

Δ𝐸𝑖𝑛 = 𝐼𝑃 − 𝜆2 = 𝐸2(𝑅2) − 𝐸1(𝑅1) (25) 

In these equations  𝐸𝑥(𝑅𝑦) denotes the gas phase DFT energy for the cofactor in state 𝑥 for parametric 

nuclear coordinates corresponding to the minimum of the potential energy surface of state 𝑦. 

iii) Outer-sphere contribution 

The outer sphere contribution is more involved since the environment has many more atoms and a 

larger number of degrees of freedom. On the other hand, it involves only classical terms that can be 

evaluated by classical MD simulations, eventually polarizable. Thus by assuming a decoupling between 

the inner- and outer-spheres the major issue to finding the optimum balance has been partially lifted 

because the computationally time consuming quantum mechanical part is separated from the 

sampling of the environment by MD simulations. If the QM+MM approximation is valid, the main task 

for improving reliability of redox calculations is to improve the evaluation of electrostatic interactions 

for the outer-sphere. This largely relies on the quality of the force fields that are used.  This important 

aspect will be surveyed now. 

 

I.3 Force fields for redox property simulations 

I.3.a. First generation force fields 

Classical Molecular dynamics simulate the time evolution of energy of a system as a function of its 

atomic coordinates. The accuracy of such simulations relies on the set of potential energy functions 

and parameters referred to as a force field. First generation FF incorporate a relatively simple potential 

energy functions as shown in Eq 26. The first three terms correspond to covalent (bonded) interactions, 

i.e. bonds, angles and torsions, while the last terms are describing non-bonded interactions. 

Electrostatic energy is described with Coulomb interactions between point charges 𝑞𝐾 on each atom. 

Van der Waals (vdW) interactions are often represented by a Lennard-Jones 6-12 potential.  
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𝑉(𝑟) = ∑ 𝑘𝑏(𝑏 − 𝑏0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝑘𝜙[𝑐𝑜𝑠(𝑛𝜙 + 𝛿) + 1]

𝑡𝑜𝑟𝑠𝑖𝑜𝑛

+ ∑ [
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
+ 

𝐴𝑖𝑗

𝑟𝑖𝑗
12 −

𝐶𝑖𝑗

𝑟𝑖𝑗
6 ]

𝑛𝑜𝑛𝑏𝑜𝑛𝑑
𝑝𝑎𝑟𝑖𝑠

 

 (26) 

First molecular dynamics simulations of proteins were carried out in 197718.  Over the past 30 years, a 

large number of FFs have been developed, including AMBER19, CHARMM20, GROMOS21, OPLS22 and 

many others. They can be used with massively optimized codes for production runs23. These force fields 

share similar functional forms of Eq. 26. This generation of FF is also referred as additive FF and some 

developments are still ongoing24. They have been widely used in the study of proteins25. However, as 

many simulations have shown their limitations, advanced FF for proteins using more accurate potential 

energy functions are needed especially to get a better accuracy in the calculations of electrostatic 

effects26. 

 

I.3.b. On the importance of electrostatic induction 

It is well known that taking into account electronic polarization effects is crucial when modeling the 

redox free energy16b, 27. Polarization refers to the fact that the electron clouds of the environment 

molecules are deformed by the change of the redox state of the cofactor. There are three well-known 

theoretical models to include polarization effects in FF: fluctuating charges model, Drude oscillator 

model and induced dipole model. We introduce here their theoretical models in detail including their 

history, the mathematical formulas to include polarization, the corresponding energy term and some 

examples of the existing force fields. Then we mention their pros and cons in the case of modeling 

redox potentials of proteins.  

i) Fluctuating charge model  

The fluctuating charge (FQ) model28 also known as charge equilibration or electronegativity 

equalization model28e, uses the same partial charge description as traditional non-polarizable force 

fields. The difference is that these partial charges on each atom are allowed to change in order to adapt 

to different electrostatic environments during the simulation. The set of partial charges is calculated 

by minimizing the electrostatic energy of the given structure. The charge conservation is ensured by 

applying the principle of electronegativity equalization. The charge-dependent energy for a system of 

𝑀 molecules containing 𝑁𝑖  atoms per molecule is expressed as 
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𝐸(𝑄, 𝑅) = ∑ ∑ 𝜒𝑖𝛼𝑄𝑖𝛼

𝑁

𝛼=1

𝑀

𝑖=1

+
1

2
∑ ∑ ∑ ∑ 𝐽𝑖𝛼𝑖𝛽𝑄𝑖𝛼𝑄𝑗𝛽

𝑁𝑖

𝛽=1

𝑁𝑖

𝛼=1

𝑀

𝑗=1

𝑀

𝑖=1

+
1

2
∑ ∑

𝑄𝑖𝑄𝑗

4𝜋𝜀0𝑟𝑖𝑗
+ ∑ 𝜆𝑖 (∑ 𝑄𝑖𝑗 − 𝑄𝑗

𝑡𝑜𝑡𝑎𝑙

𝑁

𝑖=1

)

𝑀

𝑗=1

𝑀𝑁′

𝑗=1

𝑀𝑁′

𝑖=1

 

(27) 

where 𝜒 is the atomic electronegativity that controls the direction of electron flow, 𝐽 is the atomic 

hardness that represents the resistance to deformation of electron flow, 𝑄𝑖  is the partial charge on 

atomic site 𝑖, 𝜆𝑖 is the Lagrange multiplier which ensures the conservation of the total charge. These 

parameters are optimized to reproduce the molecular dipole moments and the associated molecular 

polarization response. Either extended Lagrangian or self-consistent iteration can be used to compute 

the fluctuating charges in the MD simulations. The first version of this model was developed for water 

in the year of 198529. Later on, it has been developed by Patel, Brooks and coworkers within the 

CHARMM program named CHARMM-FQ30 and has been applied to simulations of biomolecules31.  

ii) Drude oscillator model 

In the Drude oscillator model32, electronic polarization is based on the presence of a Drude particle 

attached to its parent atom via a harmonic spring with a defined force constant. This force is associated 

with the electric field felt by the Drude particle  

The Drude oscillator, named after Paul Drude in 190233, also is also known in the literature as the Shell 

model32a or the Charge-On-Spring model34. Originally, it was designed to study ionic materials in the 

solid state. In this model, electronic polarization is accounted for by the presence of an auxiliary 

particle, called the Drude particle, which is attached to its parent atom via a harmonic spring, the force 

constant of which is  𝑘𝐷. The Drude particle carries a charge 𝑞𝐷, and the charge of the parent atom A 

is replaced by  𝑞𝐴 = 𝑞 − 𝑞𝐷 to preserve the net charge of the atom–Drude (A-D) pair (𝑞). 𝑞𝐷 is defined 

according to the isotropic atomic polarizability of the parent atom 𝛼 =
𝑞𝐷 

2

𝑘𝐷
. In the presence of an 

electric field 𝑭, the Drude particle oscillates around a displaced position 𝑑 =
𝑞𝐷 𝐸

𝑘𝐷
. The induced atomic 

dipole is 

 𝝁 = 𝑞𝐷𝑑 =  
𝑞𝐷

2𝑭

𝑘𝐷
 . 

After adding Drude particles, the functional form of the force field becomes that of a polarizable FF. 

The energy terms for intramolecular energy (bond lengths, angles, and dihedrals) and the vdW 
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interactions (Lennard-Jones ‘‘12–6’’ nonpolar contribution) remain the same as an additive FF. Only 

the electrostatic interactions are changed. Except the electrostatic interactions between atom-

atom(𝑉𝐴𝐴), the electrostatic energies between atom-Drude particle (𝑉𝐴𝐷), and Drude-Drude particles 

(𝑉𝐷𝐷), have to be computed. One last term must to be added is the harmonic self-energy of the Drude 

oscillators, which represents the polarization energy (𝑉𝑝𝑜𝑙). 

𝐸𝑒𝑙𝑒 = 𝑉𝐴𝐴 + 𝑉𝐴𝐷 + 𝑉𝐷𝐷 + 𝑉𝑝𝑜𝑙 (28) 

𝐸𝑒𝑙𝑒 = ∑
𝑞𝐴(𝑖)𝑞𝐴(𝑗)

|𝑟𝐴(𝑖) − 𝑟𝐴(𝑗)|

𝑁

𝑖<𝑗

+ ∑
𝑞𝐷(𝑖)𝑞𝐴(𝑗)

|𝑟𝐷(𝑖) − 𝑟𝐴(𝑗)|
+

𝑁,𝑁𝐷

𝑖<𝑗

∑
𝑞𝐷(𝑖)𝑞𝐷(𝑗)

|𝑟𝐷(𝑖) − 𝑟𝐷(𝑗)|
+

𝑁𝐷

𝑖<𝑗

1

2
∑ 𝑘𝐷(𝑟𝐷(𝑖)

𝑁𝐷

𝑖

− 𝑟𝐴(𝑖))2 

(29) 

 
One version of polarizable FF based on the Drude oscillator model is named “Drude-2013”. It was built 

on its origins in the CHARMM additive FF.  Its development and applications have recently been 

reviewed35. In the Drude-2013 polarizable FF36, the Drude particles are only associated to non-

hydrogen atoms for the sake of computational efficiency. The restoring force constant 𝑘𝐷 is assumed 

to be the same for all atoms with a fixed value of 1000 kcal/mol/Å2, such that the charge 𝑞𝐷  is the 

parameter that governs the magnitude of α for a given atom. In addition, the model includes virtual 

particles representative of lone pairs, typically located on hydrogen bond-acceptor atoms. The 

anisotropic molecular polarization can be achieved by using a matrix form of the force constant 𝑘𝐷 

and decomposing the displacement distance in three dimensions37.  The combination of lone pairs and 

anisotropic polarization leads to an improved description of hydrogen bonding in polar compounds 

and interactions with ions as a function of orientation37. The interactions between induced dipoles (but 

not charge-dipole interactions) are explicitly included for 1−2 and 1−3 atom pairs with short-range 

Thole damping to avoid a polarization catastrophe38.  

iii) Induced dipole model   

The third method presented here for including polarization effects into force fields is the induced 

dipole model. The theory of atom point dipoles was first introduced by Silberstein39 and then applied 

by Applequist40. In this model, a classical point dipole moment is induced at each polarizable atom site 

according to the electric field felt by that site. The induced dipole at each atomic site is computed as 

𝝁𝒊 = 𝛼𝑖𝑭𝒊, where 𝛼𝑖 represents the atomic polarizability. 𝛼𝑖 can be generally treated as an isotropic 

quantity or an anisotropic tensor. 𝑭𝑖 is the total electric field at atom 𝑖 and consists of the electric field 

created by the other permanent multipoles (𝑭𝒊
𝟎) plus the field of the other induced dipoles in the 

systems (𝑭𝑖
𝑖𝑛𝑑).  
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In the case of point charge model (for example AMBERff0241), 

𝑀𝑗 = 𝑞𝑗,  𝑇𝛼
𝑖𝑗

=
1

𝑟𝑖𝑗
  and    𝑇𝛼𝛽

𝑖𝑗
=

1

𝑟𝑖𝑗
3 𝑰 −

3

𝑟𝑖𝑗
5 [

𝑥2 𝑥𝑦 𝑥𝑧

𝑦𝑥 𝑦2 𝑦𝑧

𝑧𝑥 𝑧𝑦 𝑧2

] 

(30) 

where 𝑀𝑗 is the charge on atom center j. 𝑇 is the interaction tensor between sites 𝑖 and j. In other FFs, 

𝑀𝑗 may be developed till higher orders of multipoles. This combination of polarization and multipolar 

electrostatics will be described in section III. 

Since the induced dipoles alter the field at each site, the procedure must be iterated to generate a self-

consistent set of “mutual” induced dipoles arising from the mutual polarization until the induced 

dipoles at each site reach convergence.  This is computationally demanding and is typically a limiting 

factor in efficiency of such simulations. A number of approaches has been contemplated to overcome 

the limitations of the SCF procedure42.  

This model reproduces well the average polarizabilities, but the polarization becomes infinite when 

the induced dipoles interaction distance is too small. To correct this ‘polarization catastrophe’ 

phenomenon, Thole proposes to use a damping factor38.  

iv)  Pros and cons 

The advantage of the Fluctuating Charge model is that the polarization is obtained without introducing 

new interactions. Thus no additional term has to be computed compared to non-polarizable FFs. 

However it needs a much smaller time step. The major disadvantage is that the charge-flow is limited 

by the chemical connectivity. It cannot represent polarization that does not occur in the direction of 

bonds. Thus it cannot capture the out of plane polarization (such as benzene, bifurcated hydrogen 

bonding). As these types of interactions are important in protein interactions, we have considered that 

this is not a relevant choice for the simulation of redox potentials of heme proteins. 

The computational cost of the Drude model originates in the large increase in the number of particles 

and lone pairs in the simulated system. Compared to the classical induced dipole method, the Drude 

model based FF involves less complex numerical algorithms since a point charge framework is retained. 

With the implementation in the NAMD package, the computational cost is about 1.2 to 1.8 times that 

of fixed-charge models23. The Drude-2013 FF has been applied to many systems including biomolecules, 

yielding quantitative improvements over additive force fields thanks to the inclusion of cooperative 

effects. In the case of simulated redox potentials, the Drude FF was applied to evaluate the 

reorganization free energy for electron self-exchange in aqueous RuII to RuIII. The reorganization free 

energy was reduced by 22% in comparison to a non-polarizable water model27a.  
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In the induced dipole model43,  since the induced dipoles alter the field at each site, the procedure 

must be iterated until the induced dipoles at each site reach convergence. This is computationally 

demanding and is typically a limiting factor in the efficiency of such MD simulations. At the same time, 

with the iterative scheme one better reproduces anisotropy and non-additivity of the molecular 

polarization response across many different compounds. This is the major advantage over the Drude 

model for instance. The conformational dependence of electrostatics can be significant. One well 

known FF of this model is a point charge model named AMBERff0241. It has been applied to simulate 

redox properties in several papers26b, 44. Thus we would like to test this model too.  

 

I.3.c. Electrostatic Multipole based force fields  

In most FF, electrostatics between molecules are approximated by Coulomb’s law between point 

charges (and eventually as we just saw by induction). Yet, it has been shown that the error on the 

computation of the molecular electrostatic potential can be reduced by orders of magnitude upon 

complementing atomic monopole interactions by interactions involving permanent dipole and 

quadrupole moments45. One may anticipate that FF going beyond the point charge approximation may 

significantly improve the accuracy of the computed redox potentials. Several FFs have multipole 

moment descriptions such as AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular 

Applications)46, SIBFA (Sum of Interactions Between Fragments Ab Initio Computed)47 or NEMO (Non-

Empirical Molecular Orbital)48.  Among them, AMOEBA is the most widely used FF because of its 

reasonable computational cost. A first decisive step toward the use of AMOEBA to the evaluation of 

redox properties of heme proteins, namely the parameterization of AMOEBA for the heme cofactor, 

will be reported in Chapter 2.  

In summary, in Section I we have detailed the formalism for simulating redox potentials of cofactors 

embedded in protein matrices from microscopic considerations. We highlighted current weaknesses 

of the force fields which limit the predictability of these approaches to real systems. The bet of this 

PhD thesis is that significant progress toward more accurate calculations will be achieved along with a 

significant improvement of electrostatic interactions between the cofactors and the environment. 

Chapter 2 will report contributions toward that objective, by employing to AMOEBA simulations. For 

the moment we report in Section II application of the LRA formalism for a series of heme proteins. This 

will enable the reader to understand how this formalism actually works in practice. For simplicity we 

have chosen a non-polarizable force field.  
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II. THE LRA MACHINERY IN ACTION  

In Section II we illustrate the Marcus Theory/Linear Response Approximation on actual hemeproteins. 

These results will allow us to understand how the LRA can be validated from microscopic simulations 

and what kind of information can be extracted from them at the atomic level. For the sake of simplicity 

the simulations are carried out with non-polarizable FF. The QM+MM strategy has been tested in the 

case of heme proteins and was found to be adequate17a.  

 

II.1 Model systems of heme proteins 

II.1.a selection of heme proteins  

The main line for Chapter 1-2 is to seek for alternative FF that would enable more reliable estimates 

of protein redox cofactors. The accuracy of calculated redox potentials depends on many factors, not 

only on the FF. To attempt separating errors from FF potential functions from other factors 

(extensiveness of computational sampling, limit of validity of the LRA, polarization of the cofactors…), 

we have chosen a series of six proteins bearing in mind the following points. First it has been 

demonstrated by others that in general the QM+MM strategy applies well to hemeproteins16b. This 

simplifies the modelling and will put emphasis on MM FF electrostatic evaluation. Second the chosen 

proteins are small. Therefore we hope to alleviate as much as possible the problem of extensive 

conformational sampling†. Third the redox potential for these proteins are known from experiments. 

Finally the redox potentials are scattered over more that 500 mV, from -210 mV to +350 mV. Figure 2 

depicts the crystal or NMR structures obtained from the Protein Data Bank (PDB)49. 

Table 1 lists some characteristics of the cytochromes. In particular the entry "ligands" indicates the 

amino acid residues linked in axial positions to the heme.  The experimental redox potential measured 

with respect to the Standard Hydrogen Electrode (SHE) are reported. The six cytochromes can be 

classified into two types. As shown in Figure 2(a) and (b) are folded within a globin motif and belong 

to type of cytochrome.c (Cyt.c), while Figure 2 (c) to (f) are formed of alpha helices and beta sheets 

(αβ) and belong to type of cytochrome.b (Cyt.b). Their cofactor prosthetic group and ligands are 

different too. Cyt.c (label a,b) consist of a heme and two ligands, histidine and methionine residues 

connected to the iron cation, with two cysteine residues covalently connected through thioether 

linkages to heme. On the other hand Cyt. b (label c,d,e,f) consist of heme ligated by the side chains of 

two histidine residues. 

                                                           
† Indeed, some complex redox proteins, involving multiple domains may necessitate hundreds of nanoseconds 
of MD simulations to converge redox potentials.  
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Figure 2. Cytochromes selected to illustrate the LRA/QM+MM machinary. (a) Globin (R. capsulatus C2), (b) Globin (P. 

aeruginosa, C551), (c) αβ (B. Taurus), (d) αβ (Rattus N. V451/V61I), (e) αβ (Rattus N.), (f) αβ (E. vacuolata) 

Three cytochrome b5 (label c,d,f) with similar redox potential (difference of around 50 mV) are studied 

to investigate how modest our method in reproducing the accuracy of electrochemistry. The 

experimental values are measured relative to the standard hydrogen electrode (𝐸𝑒𝑥𝑝
𝑆𝐻𝐸). The oxidation 

free energies for SHE are shifted by 4.44 V in the experimental data. The last column in Table 1 (𝐸𝑒𝑥𝑝
0 ) 

are values to be compared with simulation results. 

Table 1. Information of selected models for six Cytochromes.  

Label type  Organism PDB #RES ligands 𝑬𝒆𝒙𝒑
𝑺𝑯𝑬(mV) 𝑬𝒆𝒙𝒑

𝟎  (V) 

a c2 R. capsulatus 1c2r 116 His-Met 350 4.790 
b c551 P. aeruginosa 351c 82 His-Met 270 4.710 
c b5 B. Taurus 1cyo 93 His-His -10 4.430 
d b5 Rattus n.. V451/V61I 1eue 94 His-His -63 4.377 
e b5 Rattus n. 1b5a 86 His-His -102 4.338 
f b558 E. vacuolata 1cxy 90 His-His -210 4.230 

Labels: identifiers for Figure1,5 and 6. PDB: Protein Data Band code. #RES: number of residues in the protein structure. 𝐸𝑒𝑥𝑝
𝑆𝐻𝐸: 

the experimental redox potential relative to a reference electrode (SHE)50. The uncertainty is around±30𝑚𝑉. 𝐸𝑒𝑥𝑝
0 : The 

experimental relative result plus the potential of SHE=4.44 V. 

 

II.1.b Structure preparation  

The structures have been obtained from the Protein Data bank (PDB entry codes in Table 1). All X-ray 

structures had been obtained with high resolution (around 2 Å). The X-ray structure of 1c2r is a dimer, 

although the protein is monomeric in solution. Only the first chain (A) was simulated. The PDB 

structure of 1cyo misses the last five residues and the structure 1cxy misses the first four residues and 

the last five residues. This situation is likely to be related to the flexibility of these terminal loops that 
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prevents structural identification. However since the sequence is known for these proteins, the missing 

residues were added with the CHARMM package51 (version 35). The other structures have a complete 

structure. The structure of 1B5A was obtained from NMR measurements which had the position of 

hydrogen atoms, the other X-ray structures were hydrogenated with the HBUILD module of the 

CHARMM package and solvated in a water box. Three different water box sizes were tested: 90, 100 

and 110 Å3 (with TIP352 water molecules).  All crystallographic water molecules were retained. The pKa 

values of ionizable amino-acid side chains were determined using the Propka server53. It was found 

that all amino acid side chains adopt standard protonation states at neutral pH. Therefore glutamic 

acid and aspartic acid side chains were deprotonated and all lysine side chains were protonated. We 

added Na+ and Cl- counter ions to ensure electrical neutrality and to reach an ionic strength of 0.015 

mol/L. The CHARMM22 FF54 with CMAP correction (to improve backbone torsions) was chosen for the 

classical MD simulations together with the TIP3P FF for water. The FF parameters for the heme with 

deprotonated propionate and for the axial ligands were taken from all22_prot_heme55. The energies 

of the whole systems were minimized for 2500 steps with CHARMM.   

 

II.2 Inner sphere energy:  QM calculations in gas phase 

Within the QM+MM methodology the inner-sphere is modelled from gas phase calculations of the 

redox cofactor. The structures of the heme prosthetic group treated with QM calculations are depicted 

in Figure 3. For these six models, we have two different types of inner spheres.  Figure 3(a) is the inner-

sphere of Cyt.c. The amino acid backbone atoms of histidine, methionine and cysteine have been 

truncated as methyl-imidazole (ImMe), ethyl-methyl-sulfide (EMS) and two methyl-methyl-sulfide 

(MMS) respectively. Figure 3(b) is the inner sphere of Cyt.b modeled as iron porphyrin (PFe) with two 

ImMe axial ligands. We have protonated the two propionate groups of heme. This is mandatory to 

control the electronic structure of the iron cation in the complex. Indeed in the gas phase, contrary to 

protein or solvent media, the molecular orbitals of the carboxylate groups are not stabilized and are 

of similar energies to the iron 3d orbitals. Therefore the self-consistent-field iterations involved in DFT 

calculations for the ferric state tend to oxidize the carboxylate functions leading to the Fe(II)COO• 

electronic structure instead of the expected Fe(III)COO- electronic structure. This problem is not 

present with full QM/MM where the negative carboxylate functions are stabilized by counter-ions or 

hydrogen bond donors.  Protonation avoids this inconvenience of the QM+MM framework.  
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Figure 3. Inner sphere structure optimized by DFT. (a) Inner sphere of Cyt.c: PFe-ImMe-EMS-MMS2 (b) Inner sphere of Cyt. 
b: PFe-ImMe2. 

The structures have been optimized with deMon2k56 with the OPTX-PBE functional57. This functional 

was shown to perform well for transition metal cations58. The DZVP-GGA59 basis set is used for all atoms. 

The auxiliary basis sets GEN-A2 (for C, H and O) and GEN-A2* (for Fe, N and S, the star denotes the 

inclusion of f and g auxiliary functions) have been employed to expand the auxiliary electronic densities 

as employed in the so-called auxiliary DFT framework. An adaptive DFT grid of fine accuracy has been 

used for the numerical evaluations of the XC energy and potential and a multipolar expansion scheme 

has been employed to evaluate the long-range Coulomb integrals. The relative energy to the singlet 

states are summarized in Table 2. The singlet and doublet states are the most stable for the ferrous 

and ferric states respectively. This is true for both complexes, in agreement with experimental values. 

The energies of the inner sphere are calculated as FeII the initial state (1) and FeIII the final state (2) (Eq. 

25). We obtained the Δ𝐸𝑖𝑛 for PFe-ImMe2 of 4.827 eV and PFe-ImMe-EMS-MMS2 of 5.304 eV. 

Table 2. Relative minimum energies of two different type of cofactors in oxidized and reduced forms calculated with DFT. 
Energy of each spin state are shown in eV. The results of singlet state are taken as reference. 

Oxidized form doublet quadruplet sextet 

PFeIII-ImMe2 4.827 5.136 5.436 
PFeIII-ImMe-EMS-MMS2 5.304 5.352 5.869 

Reduced form  singlet triplet quintuplet 

PFeII-ImMe2 0.000 0.680 0.799 
PFeII-ImMe-EMS-MMS2 0.000 0.413 0.696 
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II.3 Outer sphere energy: sampling from MD simulations 

II.3.a Computational setup 

i) Equilibration 

The outer sphere contributions are obtained from MD simulations of the solvated proteins. Since the 

protein structures are different for each protein, MD simulations for the six proteins, each in the two 

states have been carried out. The CHARMM22 FF  with CMAP corrections have been used54. The point 

charges of heme cofactor were modified for the two different redox states: FeII and FeIII. Atom charges 

were obtained from population analysis of the DFT electronic densities of optimized structures with 

the iterative Hirshfeld scheme60. The optimized structures were computed with two propionates 

protonated. However, in the MD simulations, the cofactor is not protonated. The charges of COO- of 

the two propionates were included in the outer-sphere using the parameters from CHARMM FF 

(atomic charges of 0.62 for C and -0.76 for O). The extra charges were added to the CH2 connected to 

COO- to ensure a total charge of -2 and -1 for FeII and FeIII states, respectively. The point charges used 

for cofactors PFe-ImMe2 and PFe-ImMe-EMS-MMS2 are summarized in Tables I and II of Annex I.  

MD simulations have been carried out with the NAMD software61 (version 2.0). Equilibration phase has 

been carried out in the isothermal–isobaric ensemble (NPT) under periodic boundary conditions. The 

velocity Verlet integrator has been used with a 2 fs time step. Langevin barostat was applied with a 

target pressure of 1 bar. The solvated protein was initially minimized for 10,000 steps and subsequently 

equilibrated with all protein atoms kept frozen. The temperature was increased slowly from 25 K to 

298 K with increase of 50 K each step during 20 ps MD. The temperature was then fixed to 298 K with 

a Langevin thermostat. The protein was then slowly released by applying harmonic restraints around 

the initial positions with force constants of 10.0, 5.0 and 1.0 kcal mol-1Å-2. The duration of each of these 

runs was 100 ps. Eventually, all position restraints were dropped and the protein was equilibrated for 

500 ps. After this equilibration, the volume was held with the same temperature. The particle-mesh 

Ewald (PME) method62 was employed for the calculation of electrostatic interactions to avoid 

truncation of these long-range forces. Nonbonding interactions were treated using a cutoff of 12.0 Å. 

Production runs in the canonical ensemble (NVT) were then carried out for each state. Geometries 

were saved every ps during each simulation. Thus geometries for each state were collected form each 

trajectory trj(FeII) and trj(FeIII).  

ii) Numerical uncertainties 

The vertical energy gap of each trajectory was then calculated. The uncertainty on the energy gap is 

calculated as: 
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𝑢 =
𝜎

√𝑁𝑒𝑓𝑓

 (31) 

𝑈 =
𝑢1 + 𝑢2

2
 

(32) 

where 𝜎 is the standard deviation of the energy gap. 𝑁𝑒𝑓𝑓 is the effective statistical sample. It has been 

calculated with the program R63 and the CODA package64. The uncertainty 𝑈  of ∆𝐺𝑜𝑢𝑡
0  and 𝜆𝑠𝑡  can be 

calculated as the average of the uncertainty of the energy gap of each state (𝑢1, 𝑢2).  

II.3.b Box sizes, simulation lengths, starting structures 

Several simulation parameters need to be tested.  For example the size of the water box, the effect of 

the initial structure or the length of simulations are likely to influence the computed redox potentials 

or the reorganization energies.  

                i) Simulation box size 

The choice of the size of water solvation boxes complies to various rules. Of course one should choose 

large enough water boxes to solvate the system entirely, while trying to minimize its size to reduce the 

computational cost. One should also ensure that distances between periodic images are larger than 

the cutoff used for non-bonding interactions. This means that the minimal distance between the solute 

protein and the wall should be bigger than half the cutoff used. If not, we get duplicate force 

evaluations from the images. When using an NPT ensemble, the box dimension will fluctuate due to 

the pressure and thus it is better to have an even bigger size than the minimal one. 

 Cyt. c551 (PDB: 351c) was chosen as an example. The cell size of Cyt.c551 is 30*50*50 Å. We decided 

to test with a cube box since we will used it for other proteins. Three different water boxe sizes were 

chosen: (90 Å)3 , (100 Å)3 and (110 Å)3. For each of them we run 30 ns MD in each state. The first 4 ns 

were discarded to evaluate the energy gaps. Outer-sphere free energies ∆𝐺𝑜𝑢𝑡𝑒𝑟−𝑠𝑝ℎ𝑒𝑟𝑒
0  and 

reorganization energies 𝜆𝑠𝑡  were obtained as described before and the results are summarized in 

Table 3.  These tests have been carried out with a preliminary set of FF parameters for the heme, that 

we finally refined for the production runs (see below). 

As shown in Table 3, the uncertainties are quite small, around 0.006 eV. This indicates that we have 

enough vertical gap values to have a good statistical knowledge on the average energy gaps, therefore 

on ∆𝐺𝑜𝑢𝑡
0  and 𝜆𝑠𝑡. The value of 𝐺𝑜𝑢𝑡

0  are very similar in each case, with a difference of around 0.01 eV. 

However, we are not sure if the ∆𝐺𝑜𝑢𝑡
0  is converged during 30 ns. 
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Table 3. Free energies and reorganization energies obtained with 
 different sizes of water box with Cyt. c551 in eV. 

Water box edge 
(Å) 

∆𝐺𝑜𝑢𝑡
0  𝜆𝑠𝑡 U 

90 0.223 0.243 0.004 

100 0.234 0.208 0.006 
110 0.238 0.237 0.007 

 

For this, the variation of ∆𝐺𝑜𝑢𝑡
0  were calculated for each 

case. As mentioned before, the energy gap of the first 4 

ns was dropped. The free energy obtained from all 

dynamics is used as reference (𝐺𝑟𝑒𝑓
0 ). Free energy obtain 

with simulation time of t (∆𝐺𝑡
0) is calculated during the 

trajectories. The difference of them gives the 

fluctuation of  ∆𝐺𝑜𝑢𝑡
0 . Results are shown in Figure 4. 

ii) Simulation length 

As the beginning we ran 30 ns for each MD. The 

variation in the case of the water box with (90 Å)3 is 

around 0.01 eV. Thus we decided to continue the 

dynamics until 80 ns. We observed that the fluctuation 

converges at the end of 80 ns. However, this could be a too 

expensive simulation time. In the case of (100 Å)3  and (110 

Å)3 , the fluctuation converges within 30 ns with a value within 0.005 eV. Thus we decided to choose a 

water box of (100 Å)3  which has the same accuracy as (110 Å)3  but which is less expensive. With this 

water box, we have around 32,100 TIP352 water molecules. The distance between the protein and the 

wall is at least around 25 Å which is c.a. twice bigger than the cutoff of 12 Å. One thing to be mentioned 

is that these results were obtained out a wrong version of inner sphere charge. However the total 

charge of the two states was correct. Since it is quite expensive to redo all these tests, we assumed 

that with the new version of charge distribution, the result will be similar. All other simulations were 

then carried out with a water box of (110 Å)3  and with the right version of charge distribution.  

 

II.3.c Stabilities of MD simulations 

We now report results for the six proteins depicted in Figure 2. We run 30 ns dynamics for each redox 

state. The root-mean-square deviation (RMSD) of protein backbone during the dynamics is shown in 

Figure 5. The PDB structures after energy minimization (section II.1.b) are taken as reference. The 

Figure 4. Fluctuation of free energy during 
dynamics with different sizes of water box. 
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RMSD of the ferrous state is in black while that for the ferric state is in red. Labels (a-f) for six 

cytochromes are the same as in Table 1.  

 

Figure 5. Root-mean-square deviation (RMSD) of six cytochromes protein backbone during 30ns molecular dynamics. The 
label is the same as in Table 1. Black and green is for dynamics in FeII form. Red and blue is dynamics in FeIII form. Black and 
red is RMSD of whole proteins backbond while Green and Blue is RMSD of protein excluding flexible residues at the two 
end of proteins sequence. (c) we cut last five residues which were not resolved in PDB. (e) we cut the last seven residues. 
(f) we cut the first four and last five residues which was no resolute in PDB. 

RMSD for proteins (a), (b) and (d) are within 2 Å, which means that the dynamics are rather stable. For 

proteins (c) (e) and (f), the RMSD are much higher. For Protein(c) and (f) we added residue coordinates 

that were misssing in the PDB structure, while protein (e) had been obtained by Nuclear Magnetic 

Resonance. We recomputed the RMSD exlucding the terminal residues (green and blue curves). These 

curves fluctuate around 2 Å like for the other proteins. This indicates that the large RMSD were due to 
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these terminal residues which adopt very flexible conformations. This is consistent with the fact thah 

the position of these atoms could not be obtianed in X-ray sturctures. 

In conclusion, apart from the inherent flexibility of the terminal loop for some proteins, the RMSD of 

all these dynamics are less than 2.5 Å. This indicated that MD simulations produced stable structures 

for protein backbone atoms.  

 

II.3.d Marcus parameters 

i) On the validity of the Linear Response Approximation 

As a first step, we wish to check whether the hypothesis of Gaussian distributions for the energy gap 

is correct for the proteins considered here. This is equivalent to the hypothesis of parabolic shapes of 

the free energy functions. We show on Figure 6 the free energy curves. For each graph and each 

diabatic state, two curves are plotted. The dashed-dotted curves correspond to parabolas obtained 

from the fitting of the probability distribution of 𝑝𝑥  (see Eq 3). The linear regression coefficients 

reported in Table 4 are all close to 1.00. This indicates that the Gaussian approximation for 𝑝𝑥  is 

justified (Eq. 5) for all the proteins in all redox states considered here. Note that most of the fitting 

points are located close to the energy minima of the parabolas (circles on the graphs).  

Table 4: Linear regression coefficients associated to the linear fitting of the probability distributions (𝒑𝒙 for 𝒙 = 𝟏 𝐨𝐫 𝟐) to 
Gaussian functions (Eq. 3).  

Label 𝑹(𝟏)
𝟐  𝑹(𝟐)

𝟐  

a 0.998 0.997 

b 0.998 0.997 

c 0.997 0.998 

d 0.997 0.996 

e 0.997 0.995 

f 0.996 0.998 

 

Having recognized the Gaussian approximation, if the systems are truly ergodic we should have the 

same curvatures for both the initial and final states (equivalently having  𝜆1
𝑣𝑎𝑟 = 𝜆2

𝑣𝑎𝑟 see section I.1). 

Eq. 4 translates this by stating that the difference between the two free energy curves equals the value 

of the free potential energy gap (the reaction coordinate), for any value of the reaction coordinate. 

The triangles on the graphs are obtained thus from application of Eq. 4. For example, for a given graph, 

all the points directly obtained from the simulations that generate the 𝐺1(∆𝐸12) curve are shifted by 

(∆𝐸12) to generate new points for the 𝐺2(∆𝐸12) curve, by virtue of Eq. 4. Therefore the plain curves 

which are obtained by a linear regression fitting on both the circles and triangles are expected to match 

the dashed-dotted curves if the system is effectively ergodic. This is true for many systems (for example 
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proteins a, c, e), but can be somehow different for other proteins (b). This is in line with the small 

differences between 𝜆1
𝑣𝑎𝑟 and 𝜆2

𝑣𝑎𝑟 (Table 5) for proteins c, d, f, and more pronounced differences for 

proteins b for instance. Does this mean this reduction is taking place beyond the ergodic approximation? 

It must be remarked that it is difficult to test if the system is ergodic or not because it strongly depends 

on the capability of the MD methodology we have used to fully explore the conformation space. 

Apparent lack or ergodicity may simply be due to a lack of conformational sampling. It is hard to claim 

a non-ergodic system here. Instead these results illustrate the difficulties to reach complete sampling 

of the conformational space when running this kind of simulations.  

Table 5. Outer sphere energies and reorganization energy of six heme proteins in eV. 𝚫𝑮𝒐𝒖𝒕
𝟎  calculated from Eq. 7. 𝝀𝒔𝒕 and 

𝝀𝒓 are calculated from Eq.8 and 9 respectively. 

Label PDB ligand 𝚫𝑮𝒐𝒖𝒕
𝟎  𝝀𝒔𝒕 𝝀𝟏

𝒗𝒂𝒓 𝝀𝟐
𝒗𝒂𝒓 𝝀𝒓 𝐔 

a 1c2r His-Met 0.581 0.763 0.721 0.842 0.766 0.006 

b 351c His-Met 0.570 0.826 0.667 0.882 0.828 0.005 

c 1cyo His-His 0.216 0.838 0.839 0.879 0.832 0.004 

d 1eue His-His 0.179 0.833 0.838 0.891 0.838 0.006 

e 1b5a His-His 0.199 0.828 0.863 1.048 0.828 0.005 

f 1cxy His-His -0.077 0.822 0.889 0.808 0.825 0.005 

 

ii) Stokes and Marcus reorganization energies 

Assuming the lack of convergence between 𝜆1
𝑣𝑎𝑟 and 𝜆2

𝑣𝑎𝑟 is due to insufficient sampling and that the 

LRA approximation holds here, we may estimate ∆𝐺𝑜𝑢𝑡
0   and 𝜆𝑠𝑡 and 𝜆𝑀 by equations 7, 8 and 9. (Table 

5). The statistical uncertainties for ∆𝐺𝑜𝑢𝑡
0   and 𝜆𝑠𝑡 are listed in the last column of Table 5. There are 

quiet small at around 0.005 eV. We observed that the ∆𝐺𝑜𝑢𝑡
0  of Cyt.c are around 0.3 eV higher than the 

other four Cyt.b. The reorganization energies 𝜆𝑠𝑡  are almost the same at around 0.8 eV, except for the 

first Cyt.c with a lower reorganization energy at 0.763 eV. In most of the case 𝜆1
𝑣𝑎𝑟 = 𝜆2

𝑣𝑎𝑟 = 𝜆𝑠𝑡 = 𝜆𝑀 ; 

for example in the case of c, d and f. In the case of a, b and e the differences are bigger at around 0.1 

to 0.2 eV. This could come from not enough sampling of the potential energy surface.   

We see clearly that the ∆𝐺𝑜𝑢𝑡
0  of protein a and b are bigger than the others. The value of protein f is 

the smallest one and the energy is negative. 
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Figure 6. Diabatic free energy curves of Eq.3 for initial (purple) and final (red) states obtained from the energy gap 
calculation during 30 ns. The circles correspond to the points obtained directly from MD simulations. The triangles are 
obtained from the circles by application of Eq. 4, that is enforcing the ergodic hypothesis. The dashed-dotted curves 
correspond to linear fitting of a parabolic free energy curve on circles. The plain curves correspond to linear fitting of a 
parabolic free energy curves on the circles and triangles (i.e. enforcing ergodic hypothesis). 
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II.4 Analyses of computed Marcus theory parameters 

II.4.a Comparison to experimental values 

The result of simulated inner sphere energies (∆𝐸𝑖𝑛), outer sphere energies(∆𝐺𝑜𝑢𝑡
0 ) and theoretical 

redox potential (𝐸𝑡ℎ
0 ) are summarized in Table 6. The theoretical redox potential is calculated as  𝐸𝑡ℎ

0 =

(∆𝐸𝑖𝑛 + ∆𝐺𝑜𝑢𝑡
0 )/𝐹 .These results are compared with experimental results ( 𝐸𝑒𝑥𝑝

0 ), the difference 

between simulations and experiment are calculated (diff). 

Table 6. Summary of inner sphere and outer sphere energies of six heme proteins as well as the theoretical and 
experimental redox potential. 

Label PDB ligand ∆𝑬𝒊𝒏 (eV) ∆𝑮𝒐𝒖𝒕
𝟎  (eV) 𝑬𝒕𝒉

𝟎 (V) 𝑬𝒆𝒙𝒑
𝟎 (V) diff(V) 

a 1c2r His-Met 5.304 0.581 5.886 4.790 1.096 

b 351c His-Met 5.304 0.570 5.874 4.710 1.164 

c 1cyo His-His 4.827 0.216 5.043 4.430 0.613 

d 1eue His-His 4.827 0.179 5.006 4.377 0.629 

e 1b5a His-His 4.827 0.199 5.026 4.338 0.688 

f 1cxy His-His 4.827 -0.077 4.750 4.230 0.520 

 
Instead of obtaining the exact absolute values, we consider the relative differences of the potentials. 

The comparison curve between experimental and computed redox potential is plotted in Figure 7. The 

blue curve is the ideal result where simulation results equal to experimental results (y=x), while the 

read curve is the result we obtained. Overall, theoretical results reproduce well the trend of 

experimental results. However there is a large difference between Cyt.c (label a,b) and Cyt.b (label 

c,d,e and f) of around 0.5 V. This difference comes from both inner and outer sphere, especially from 

the inner part (0.46 eV). Restricting our attention to the Cyt. b. (the ones with the four lowest redox 

potentials) a linear regression factor R2=0.8377 is obtained. The tendency is correct except the result 

of the second point. The differences with the experimental result of these two points (d and e) are 

quite small (39mV), a value which is just slightly higher than the uncertainty (±30mV).  

 

Figure 7. Comparison of experimental and computed redox potentials. The dashed line is the ideal result(𝒚 = 𝐱). The red 

line is the plot with 𝑬𝒆𝒙𝒑
𝟎  against 𝑬𝒕𝒉

𝟎 . 
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The presented method gives an overall agreement with experimental results. However, it is not 

accurate enough to distinguish a difference of 0.05 V. The difference between Cyt.c and Cyt.b may also 

be a problem of FF. Since in the inner sphere of Cyt.c there is a sulfur atom of the MET ligand, which is 

a highly polarizable atom, with a non-polarizable FF, one may miss important information.  

 
 

II.4.b Energy decompositions at the level of amino acids 

i) Free energies of reduction 

In order to better understand why there is a big difference between redox potential of Cyt.c and Cyt b, 

we chose one cytochrome from each group, Cyt. c551 (PDB code: 351c) and Cyt. b5 (PDB code: 1b5a) 

to analyze the contribution of redox free energy ∆𝐺𝑜𝑢𝑡
0  and reorganization energy   

𝜆𝑠𝑡  of each amino acid. The method is the same as we described in section I.3.b. Each energy is 

calculated as below: 

∆𝐸12 = 𝐸𝑎𝑎−𝐹𝑒𝐼𝐼𝐼 − 𝐸𝑎𝑎−𝐹𝑒𝐼𝐼  (33) 

∆𝐺𝑎𝑎−𝐹𝑒
0 =

1

2
(〈∆𝐸12〉1 + 〈Δ𝐸12〉2) 

(34) 

∆𝜆𝑎−𝐹𝑒
𝑆𝑡 =

1

2
(〈∆𝐸12〉1 − 〈Δ𝐸12〉2) 

(35) 

where 𝑎𝑎 − 𝐹𝑒𝐼𝐼𝐼/𝐼𝐼  indicates the interaction of each amino acid (aa) with the heme cofactor in 

different redox states. Results of free energy and reorganization energy are shown in Figure 8 and 

Figure 9 respectively.  

In Figure8, the color corresponds to their contribution to ∆𝐺𝑜𝑢𝑡
0 .  Blue is positive and red is negative. If 

the value is negative (red), it means that 𝐸𝑎𝑎−𝐹𝑒𝐼𝐼𝐼 < 𝐸𝑎𝑎−𝐹𝑒𝐼𝐼. It favors the 𝐹𝑒𝐼𝐼𝐼 state and vice versa. 

In both 1b5a and 351c, the amino acids in blue are arginine (ARG) and lysine(LYS) which have positive 

charge, while in red are aspartic acid (ASP) and glutamic acid (GLU) which are negatively charged. This 

is reasonable because the negative charge stabilized more the 𝐹𝑒𝐼𝐼𝐼  state than the 𝐹𝑒𝐼𝐼  state. The 

neutral amino acids do not have a big influence on ∆𝐺𝑎𝑎−𝐹𝑒
0 . 
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Figure 8. Structure of Cyt.c (351c) and Cyt.b (1b5a). The amino acids are colored according to their contribution to outer 
sphere energy. 

The exact value of the ten most positive and negative free energy residues are summarized in Table 7. 

In the case of 1b5a, the highest contribution comes from ARG68 (0.895 eV), the lowest comes from 

GLU59 (-0.845 eV). For 351c, the highest comes from LYS33 (0.778 eV) and the lowest comes from GLU 

70 (-0.592 eV). They are very close to the heme cofactor. 

Table 7. Ranking of protein residues according to their contribution to free energy of 1b5a and 351c in eV. 

Cytochromes 1b5a 351c 

Positive Ranking Residue ∆𝑮𝒐𝒖𝒕
𝟎  Residue ∆𝑮𝒐𝒖𝒕

𝟎  

1 ARG68 0.895 LYS33 0.778 
2 ARG47 0.551 ARG44 0.739 
3 LYS72 0.499 LYS21 0.670 

4 LYS34 0.408 LYS10 0.595 

5 LYS89 0.389 LYS49 0.473 
6 LYS16 0.373 LYS8 0.430 
7 LYS28 0.360 LYS28 0.427 

8 ARG19 0.208 LYS76 0.360 
9 ARG84 0.202 GLY24 0.163 

10 LYS2 0.196 GLY51 0.123 

Negative Ranking     
-1 GLU59 -0.846 GLU70 -0.592 
-2 GLU38 -0.731 GLU43 -0.557 
-3 ASP60 -0.719 ASP29 -0.549 
-4 ASP66 -0.694 GLU4 -0.497 

-5 GLU43 -0.632 ASP68 -0.476 
-6 GLU44 -0.603 GLU41 -0.442 

-7 ASP31 -0.567 ASP19 -0.440 
-8 GLU48 -0.549 ASP69 -0.376 
-9 ASP53 -0.542 ASP29 -0.337 

-10 GLU56 -0.522 PRO62 -0.134 
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∆𝐸12 = ∑ ∑
𝑞𝑖(𝑞𝑗

𝐹𝑒𝐼𝐼𝐼
− 𝑞𝑗

𝐹𝑒𝐼𝐼
)

𝑟𝑖𝑗

ℎ𝑒𝑚𝑒

𝑗

𝑎𝑎

𝑖

 
(36) 

As shown in Eq. 36, the energy is coming from Coulomb interaction between charges on atoms of each 

aa (𝑞𝑖) and charges on atoms of heme cofactor of different states ( 𝑞𝑗). As the distance between the 

charges of amino acid and heme increases, the contribution decreases.  Thus the closer the amino acid 

is to the heme center, the stronger its contribution. Therefore, free energy contributions coming from 

interactions between protein and heme cofactors depend on how many charged amino acids in the 

protein and their distance to the heme center. As shown in Figure 2, protein of 1b5a forms αβ, while 

351c contains only α‡. They have very different shapes. In addition, the heme cofactor of 1b5a is more 

accessible to water molecules while for 351c, the heme cofactor is buried in the protein center. The 

free energy comes from interaction of water and the heme cofactor could be a source of this difference 

too.  We see that the accuracy of this interaction is highly dependent on the accuracy of the evaluation 

of Coulomb interactions between proteins and Heme cofactors.   

                                            ii) Stokes reorganization energies 

The same analyzes have been done for the reorganization energy. This time the color bar is 10 time 

smaller than for the free energy. This is obtained from the difference of the energy gap of each amino 

acide (Eq. 31). 

 

Figure 9.  Structure of Cyt. c and Cyt, b. The amino acids are colored according to their contribution to reorganization 
energy. 

The residues giving the ten most positive and negative reorganization energies are listed in Table 8. 

For the 1b5a contribution, the highest value comes from LEU94 (0.059 eV) which is the last amino acid 

at the end of the protein. The lowest comes from LYS16 (-0.037 eV). For 351c, the highest comes from 

                                                           
‡ α means helices, while β means β sheets. 
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TYR27 (0.061) and the lowest comes from LYS28 (-0.016eV). This is different than in the case of the 

redox free energy, although most of the important contributions of the reorganization energy are 

coming from charged residues, but there are some neutral aa which give important contributions too. 

For example, LEU94 which is a neutral amino acid gives the highest contribution. This could be due to 

the great flexibility of these residues and we haven’t sampled all possible conformations. As shown in 

Figure 5(e), the RMSD of these residues are quite large especially for the FeIII state (5 Å). More 

simulations are needed. This could also explain the result in Table 5 for which 𝜆2
𝑣𝑎𝑟 of 1b5a is larger by 

c.a. 0.2 eV than 𝜆1
𝑣𝑎𝑟.  

Table 8. Ranking of protein residues according to their contribution to reorganization energy of 1b5a and 351c in eV 

Cytochromes 1b5a 351c 

Positive Ranking Residue 𝝀𝒔𝒕 Residue 𝝀𝒔𝒕 
1 LEU94 0.059 TYR27 0.061 
2 SER71 0.048 LYS21 0.041 
3 GLU92 0.040 LYS82 0.028 

4 ASP53 0.037 GLU4 0.022 
5 LYS34 0.022 CYS12 0.017 

6 LYS89 0.020 CYS15 0.016 
7 GLN49 0.018 GLU70 0.013 
8 ASP3 0.017 ASP29 0.013 

9 LYS14 0.011 ASN64 0.012 
10 LYS72 0.011 HIS16 0.012 

Negative Ranking     
-1 LYS16 -0.037 LYS28 -0.016 

-2 ASP17 -0.022 LYS8 -0.016 

-3 GLU48 -0.021 LYS33 -0.013 

-4 ASP31 -0.014 LYS49 -0.011 
-5 ASP17 -0.011 ASP69 -0.010 
-6 GLU44 -0.011 LYS10 -0.007 

-7 HIS26 -0.010 LYS76 -0.007 
-8 GLU38 -0.009 ASP2 -0.002 

-9 GLU11 -0.009 GLY54 -0.001 
-10 LYS86 -0.006 GLN37 -0.001 

 
 
In order to analyze the differences coming from the ligands which are linked with iron, their 

contributions to free energy and organization energy are summarized in Table 9. 

 

We observe that their contributions are not that high, out of the first-ten ranking. The two HIS in the 

case of 1b5a give very similar contribution to ∆𝐺𝑜𝑢𝑡
0   which is 0.1 eV bigger than the HIS contribution 

in 351c. The two CYS connected to heme cofactors give negative contributions to the free energy, 

which means that they help to stabilize the FeIII state. A recent publication has shown that the insertion 

of cysteine linkages accelerates electron flow through tetra-heme protein17b. The contribution of 
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reorganization energy of two HIS in 351c is quite small, less than 0.1 eV. They are quite rigid due to the 

fact that they are linked to the heme center.   

Table 9. Ranking of ligands of 1b5a and 351c according to their contribution to free energy and reorganization energy in 
eV 

1b5a 351c 

Ranking ligands ∆𝑮𝒐𝒖𝒕
𝟎  Ranking ligands ∆𝑮𝒐𝒖𝒕

𝟎  
15 HIS39 0.134 16 HIS16 0.019 
14 HIS36 0.134 61 MET61 0.111 

   12 CYS12 -0.064 

   15 CYS15 -0.004 

Ranking ligands 𝝀𝒔𝒕 Ranking ligands 𝝀𝒔𝒕 
37 HIS39 0.002 33 HIS16 0.012 
13 HIS36 0.007 11 MET61 0.002 

   66 CYS12 0.017 

   43 CYS15 0.016 

 

CONCLUSION  

In this Chapter, we have introduced theory and computational set up for simulating redox potentials 

of heme proteins within the Linear Response Approximation. Six cytochromes with experimental redox 

potential were chosen as model systems. We simulated the redox free energy in the framework of 

Marcus theory. The QM+MM method was applied to evaluate the inner sphere and outer sphere 

contributions. DFT computations were performed and we observed a large difference of around 0.5 

eV for two different inner sphere energies for Cyt.c and Cyt.b. Outer sphere energies were obtained 

by sampling 30 ns MD simulations of different states performed with a non-polarizable FF. Diabatic 

free energy curves were plotted and we showed that the LRA is valid in most cases. There are some 

differences in certain cases which may be due to lack of conformational sampling.  

Compared to experimental results, our simulations reproduce the global trends. However, the energy 

shifts between Cyt.c and Cyt.b are quite different (by around 0.5 V). This difference could come from 

the difference in the inner sphere structures which are quite different. It could also come from the 

outer-sphere in which there is a highly polarizable sulfur atom in the inner sphere. However, with the 

non-polarizable point charge model, one cannot describe the electrostatic interaction correctly. The 

four Cyt.b reproduce well experimental results with a quite good correlation. However, a difference of 

around 50 mV is out of reach of the accuracy of the presented method.  

With this QM+MM method, we are able to analyze the contributions of the redox free energy by each 

amino acid. It is shown that the main contributions come from charged amino acids which are close to 

the heme cofactor. The accuracy of these simulations is highly dependent on the electrostatic 

interaction description between heme and environment. The next step will be to test more 
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sophisticated polarizable FFs and we expect to be able to improve the reliability of this simulation 

method.  
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Beyond the Point Charge Description 

 AMOEBA Polarizable Force Field 

 

Much effort has been focused on including the response of the molecular environment by an explicit 

representation of polarization. The quality of the description of the permanent moment distribution is 

also very important to reproduce the global electrostatic interactions. This approach is inherently 

limited because point charges are intrinsically isotropic while real atoms are anisotropic in the electron 

distribution due to the presence of lone pairs, 𝜋 clouds, and 𝜎 holes. In some FFs extra point charges 

are added at different positions than atom nuclei. This allow the simulation of lone pairs1 or centers of 

bonds2. An alternative is to compute the electrostatic potential created by a molecule from multipole 

distributions including not only monopoles (point charges) but also dipoles, quadrupoles or even 

higher-order terms. With these multipole moments, the non-spherical components of atomic charge 

density are better described and the anisotropy of the system is naturally captured. This can describe 

more accurately the flexibility of the interactions which is crucial especially around polar molecules. 

Several FFs have multipole moment descriptions such as AMOEBA (Atomic Multipole Optimized 

Energetics for Biomolecular Applications)3, SIBFA (Sum of Interactions Between Fragments Ab Initio 

Computed)2, 4 or NEMO (Non-Empirical Molecular Orbital)5.     

Among them, AMOEBA is the most widely used FF because of its reasonable computational cost. It has 

been historically developed by Ponder, Ren and co-workers3, 6. AMOEBA was first implemented in the 

TINKER modeling package7. Recently, a parallelized version was implemented in OpenMM8 using Open 

Multi-Processing (openMP) and recently updated to Graphics Processing Unit (GPU) using the CUDA 

programming language. Another highly parallelized version named TINKER-HP9 using Message Passing 

Interface (MPI) was developed very recently by the group of J. -P. Piquemal (Sorbonne University Paris). 

These algorithmic developments open the door toward the application of AMOEBA to the simulation 

of large biomolecular systems, in particular in the context of the present PhD thesis, to the simulation 

of redox properties of proteins. 

In the past decade, AMOEBA parameters of many molecules have been developed including water3b, 

10, ions11, small molecules12, biomolecules (peptides13, protein14, lipid15, nucleic acids16). Many 

applications of these parameters have been reported such as the computation of ion hydration free 

energy11a, 11d, e, 16-17,   the structures and the thermodynamics of organic molecules18, and protein-ligand 

binding19. These applications have demonstrated that AMOEBA is able to perform well both in gas and 

solution phases for various chemical properties. Based on these relevant results, we considered that 
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AMOEBA could be a good potential choice to simulate redox potentials of heme proteins. Toward this 

objective an unavoidable step is to have access to force field parameters for the heme. However, to 

the best of our knowledge such parameters were not available in the literature at the beginning of this 

PhD work. Therefore a key step of this PhD work was to create a reliable set of parameters for the 

heme cofactor in both its ferrous and ferric forms.   

In Section I, we introduce the formalism of AMOEBA. We then describe in Section II the standard 

parametrization procedure of AMOEBA that we followed for the heme cofactor. Finally in Section III, a 

published article in the Journal of Chemical Theory and Computation20 describing the parameterization 

work is reproduced. 

 

I. AMOEBA FORMALISM 

The AMOEBA force field has the following general functional form for the interactions among atoms. 
 

𝑈 = 𝑈𝑏𝑜𝑛𝑑 + 𝑈𝑎𝑛𝑔𝑙𝑒 + 𝑈𝑏𝜃 + 𝑈𝑜𝑝𝑝 + 𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 + 𝑈𝑣𝑑𝑊 + 𝑈𝑒𝑙𝑒
𝑝𝑒𝑟

+ 𝑈𝑒𝑙𝑒
𝑖𝑛𝑑 (1) 

 

The first five terms describe the short-range valence interactions bond stretching (𝑈𝑏𝑜𝑛𝑑 ), angle 

bending (𝑈𝑎𝑛𝑔𝑙𝑒) bond-angle cross term (𝑈𝑏𝜃), out-of-plane bending (𝑈𝑜𝑝𝑝), and torsional rotation 

(𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 ) while the last three terms are respectively the non-bonded van der Waals (𝑈𝑣𝑑𝑊 ) and 

electrostatic contributions including interaction among permanent multipoles (𝑈𝑒𝑙𝑒
𝑝𝑒𝑟

) and electronic 

induction (𝑈𝑒𝑙𝑒
𝑖𝑛𝑑). 

 

 

I.1 Short-range valence interactions 

The AMOEBA potential includes full intramolecular flexibility, which is important to explore different 

conformations of large and flexible molecules. The functional forms for bond stretching and angle 

bending were adapted from the MM3 force field21 and include anharmonicity through the use of 

higher-order deviations from ideal bond lengths and angles.  

The potential for bond stretching takes the form of Taylor serial development at 4th order of the Morse 

potential, with 𝐾𝑏 being the bond force constant, b the both length and 𝑏0 the reference value. 

𝑈𝑏𝑜𝑛𝑑 = 𝐾𝑏(𝑏 + 𝑏0)
2  [1 − 2.55(𝑏 − 𝑏0) + (

7

12
)2.55(𝑏 − 𝑏0)

2] (2) 

This potential function mimics the anharmonic shape of a bond stretching. According to the authors of 

MM3, the constant of order 3 is sufficient in the vast majority of cases to bring in the effect 
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anharmonicity, the term of order 4 being justified only as a safeguard to avoid problematic situations 

of dissociative states when the structure encountered is far from standard distances.   

The potential for angle bending is described by a potential at 6th order, with 𝜽 this angle and 𝜃0  its 

reference value. 

𝑈𝑎𝑛𝑔𝑙𝑒 = 𝐾𝜃(𝜃 + 𝜃0)
2 [1 − 0.014(𝜃 − 𝜃0) + 5.6 × 10−5(𝜃 − 𝜃0)

2 − 7.

× 10−7(𝜃 − 𝜃0)
3 + 2.2 × 10−8(𝜃 − 𝜃0)

4] 

(3) 

 
The coupling between bond and angle deformation takes the form: 
 

𝑈𝑏𝜃 = 𝐾𝑏𝜃 [(𝑏 − 𝑏0) + (𝑏′ − 𝑏0′)](𝜃 − 𝜃0) (4) 
 

with 𝐾𝑏𝜃  the force constant, (𝜃 − 𝜃0)  the angle deformation, (𝑏 − 𝑏0)  and (𝑏′ − 𝑏0′)  the bond 

stretching of the two bonds forming the angle considered. 

 
A Wilson-Decius-Cross function22 is used at sp2-hybridized trigonal centers to restrain the out-of-plane 

bending, where χ  is the dihedral angle formed by the four sequentially bonded atoms. 

𝑈𝑜𝑜𝑝 = 𝐾𝑥  𝑥
2 (5) 

 

The torsion energy is described by a traditional Fourier expansion (a 1-fold through 6-fold 

trigonometric form) torsional functional. It is used to aid in merging the short-range “valence” terms 

with the long-range “non-bonded” interactions. 

𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = ∑𝐾𝑛𝜙

𝑛

[1 + 𝑐𝑜𝑠(𝑛𝜙 ± 𝛿)] (6) 

𝜙 is the dihedral angle computed from the p-orbital directions at the two trigonal centers, rather than 

from the usual bond vectors. It allows appropriately to increase the flexibility of atoms bonded to 

trigonal centers (e.g., aromatic hydrogen atoms). The torsional parameters may be refined after the 

determination of the non-bonded parameters with the hope that the improved AMOEBA 

intramolecular electrostatic model will lead to a more physical balance between the local and long-

range interactions in the potential energy. 

 

I.2 Long-range nonbonded interactions 

The pairwise additive van der Waals interaction in AMOEBA adopts the buffered 14-7 functional form 

proposed by Halgren23. 

𝑈𝑣𝑑𝑊 = 𝜀𝑖𝑗 (
1.07

𝜌𝑖𝑗 + 0.07
)

7

(
1.12

𝜌𝑖𝑗
7 + 0.12

− 2) 
(7) 
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The potential is a function of the separation distance 𝑅𝑖𝑗   between the atoms 𝑖 and 𝑗 through the term  

𝜌𝑖𝑗 =
𝑅𝑖𝑗

𝑅𝑖𝑗
0  

(8) 

𝑅𝑖𝑗
0  is the minimum energy distance. For heterogeneous atom pairs, 𝑅𝑖𝑗

0 =
(𝑅𝑖𝑖

0)
3
+(𝑅𝑗𝑗

0 )
3

(𝑅𝑖𝑖
0)

2
+(𝑅𝑗𝑗

0 )
2 , the well-

depth is given by 𝜀𝑖𝑗 =
4𝜀𝑖𝑖𝜀𝑗𝑗

( 𝜀𝑖𝑖
1/2

+𝜀𝑗𝑗
1/2

)
2. 

The 14-7 potential was shown to be more effective than the 12-6 Lennard-Jones (LJ) potential to 

reproduce interaction energies of rare gases23. By comparison with quantum chemical calculations, 

Halgren showed that the repulsive part in r-12 of the LJ leads to a repulsive potential that is too soft. It 

can be improved by the shape in r-14 of the buffered 14-7. The AMOEBA van der Waals parameters are 

usually derived by comparison with quantum mechanical interaction energies in gas phase and they 

are often refined using condensed phase simulations. Each atom in AMOEBA possesses a vdW site. For 

non-hydrogen atoms, the site is located at the position of the atomic nucleus. For a hydrogen atom 

connected to an atom X, the vdW site is shifted from the hydrogen center to atom X according to the 

percentage of the full bond length24. It was found to simultaneously improve the fit to accurate QM 

water dimer structures and energies for several configurations21.  

The electrostatic energy is calculated using derived multipoles composed of charge 𝑞𝑖,, dipoles 𝜇𝑖𝛼, and 

quadrupoles 𝑄𝑖𝛽𝛾 . 

𝑀𝑖 = [𝑞𝑖, 𝜇𝑖,𝑥, 𝜇𝑖,𝑦 , 𝜇𝑖,𝑧 , 𝑄𝑖𝑥𝑥 , 𝑄𝑖𝑥𝑦 , 𝑄𝑖𝑥𝑧, , 𝑄𝑖𝑦𝑥 , 𝑄𝑖𝑦𝑦 , 𝑄𝑖𝑦𝑧,𝑄𝑖𝑧𝑥 , 𝑄𝑖𝑧𝑦 , 𝑄𝑖𝑧𝑧, ]
𝑡
 (9) 

 
There are typically five independent quadrupole components due to symmetry (𝑄𝛼𝛽 = 𝑄𝛽𝛼). Usually, 

the FF uses traceless quadrupoles (∑𝑄𝛼𝛼 = 0). Furthermore, the 𝜇𝑦, 𝑄𝑥𝑦 and 𝑄𝑦𝑧 components are zero 

except for chiral atoms such as the backbone C in amino acids. Therefore, most non-chiral atoms 𝑀𝑖
𝑛𝑐 

carry six unique, permanent electrostatic multipole parameters: 

𝑀𝑖
𝑛𝑐 = [𝑞𝑖, 𝜇𝑖,𝑥 , 𝜇𝑖,𝑧, 𝑄𝑖𝑥𝑥 , 𝑄𝑖𝑦𝑦, 𝑄𝑖𝑧𝑥 , 𝑄𝑖𝑧𝑧, ]

𝑡
 (10) 

The interaction energy named 𝑈𝑒𝑙𝑒
𝑝𝑒𝑟  between two multipole sites 𝑖 and 𝑗 is written as: 
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𝑈𝑒𝑙𝑒
𝑝𝑒𝑟

=

[
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⋮ ]
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Electronic induction describes the polarization of electron density due to an external field. The induced 

dipole model is used by AMOEBA at atomic centers to describe many-body effects. The induced dipole 

at each atomic site is computed as 𝜇𝑖,𝑎 = 𝛼𝑖𝐹𝑖,𝑎, where 𝛼𝑖 is the atomic isotropic polarizability of atom 

𝑖 . 𝑎  denotes the three Cartesian components. 𝑭𝒊  is the electric field experienced by atom 𝑖 . The 

iterative model is used, thus the induced dipole on each atom will further polarize all other atoms both 

within and outside the molecule such that F becomes the sum of the fields generated by both 

permanent multipoles and induced dipoles at sites other than atom 𝑖. 

 𝜇𝑖,𝑎 = 𝛼𝑖(∑ 𝑇𝑎
𝑖𝑗
𝑀𝑗 + ∑ 𝑇𝑎𝑏

𝑖𝑗′
𝜇𝑗′,𝑏

𝑖𝑛𝑑
{𝑗′}{𝑗} )            for 𝑎, 𝑏 = {𝑥, 𝑦, 𝑧}  (12) 

where 𝑀𝑗 = [𝑞𝑗, 𝜇𝑗,𝑥 , 𝜇𝑗,𝑦, 𝜇𝑗,𝑧, 𝑄𝑗,𝑥𝑥, 𝑄𝑗,𝑥𝑦, 𝑄𝑗,𝑥𝑧,⋯, 𝑄𝑗,𝑧𝑧 ]
𝑡

 is the multipole distribution already 

described on atom center 𝑗. 𝑇𝑎
𝑖𝑗

= [𝑇𝑎, 𝑇𝑎𝑥 , 𝑇𝑎𝑦, 𝑇𝑎𝑧, …  ] is the interaction tensor between sites 𝑖 and 

𝑗. 

The polarizability 𝛼𝑖  for carbon, hydrogen, nitrogen and oxygen in AMOEBA are adopted from the 

Thole model25. The others such as aromatic carbon and hydrogen atoms and ions are usually computed 

from QM.  

The above equations have to be solved iteratively for all atomic sites of the system at the same time. 

The damped induction approach initially developed by Thole is adopted in order to avoid the 

divergence of the polarization energy at short distances25. The damping is effectively achieved by 

smearing the atomic multipole moments in each pair of interaction sites. The smearing function for 

charges adopted by AMOEBA has the following functional form: 

𝜌 =
3𝛼

4𝜋
𝑒𝑥𝑝(−𝑎𝜇3) 

(13) 

where 𝜇 =
𝑅𝑖𝑗

(𝛼𝑖𝛼𝑗)
1
6

  is the effective distance as a function of linear separation 𝑅𝑖𝑗  and 𝛼𝑖,𝛼𝑗 are atomic 

polarizabilities of sites 𝑖  and 𝑗. The factor “a” is a dimensionless width parameter of the smeared 

charge distribution, and effectively controls the damping strength. In the original model of Thole, “a” 
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was chosen to be 0.572 for all atoms. In the first version of the AMOEBA water parameters, “a” was 

chosen to be 0.39 after fitting the interaction energies of a series of small water clusters.  This value is 

used in AMOEBA for all atoms except for multiply-charged cations11b-e, 17a.  In these cases, it is necessary 

to use stronger damping (a < 0.39) to better represent the electric field around the ions. Corresponding 

damping functions for charge, dipole, and quadrupole interactions were derived through their chain 

rule relationships3b.  

Many-body effects consist of both polarization and charge transfer (CT). SIBFA2, 4 for instance accounts 

for CT terms, but CT is not explicitly taken into account in advanced FF. Usually, researchers consider 

CT to be a secondary effect that can be indirectly included in vdW and electrostatics parameters. But 

sometimes the lack of CT may be problematic, especially for transition-metal systems. In these cases, 

special care must be taken in the parameterization and the validation procedure. Another way to 

include full many-body effects is to use a model in which both charges and dipoles are fluctuating such 

as in the work of Friesner and Berne26. Furthermore when two atoms are close enough, their charge 

densities can overlap. As a consequence, the screening of the charge of a nucleus by its own electronic 

density decreases. This interaction is called 'electrostatic penetration' or 'charge penetration'. 

Different strategies have been proposed to include this effect in molecular modeling27. An optimized 

model has been added into the AMOEBA force field28. 

 

II. STANDARD PARAMETRIZATION STRATEGY  

One of the challenges of advanced force fields is the development of parameter sets which is made 

complicated with AMOEBA owing to the complicated mathematical form of the potential energy 

function. In this Section, we describe the standard parameterization of the AMOEBA force field.  

 

II.1 Define atom types and classes 

In AMOEBA, parameters are classified by using different atom types and atom classes. Atoms with the 

same atom class will share parameters for short-range valence interactions (bond, angle, torsions ...) 

and the same vdW parameters. Within an atom class, atoms are further classified by types according 

to their chemical environment and consequently may have different parameters for multipole 

distribution and atomic polarizability. In the parameter set called AMOEBApro1329, there are 42 atom 

classes and 258 atom types. The first step to create parameters of a new molecule is to define the 

atom type and class of each atom of the new fragment we want to add to the FF. Usually they are 

derived from a similar structure whose parameters exist already. However in some cases, one should 
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modify the parameters, for example to adjust the torsion parameters according to QM results30. 

Moreover, new atom types are sometimes necessary to describe diverse electrostatic interactions.  A 

key step is to obtain an accurate multipole distribution of the molecule. 

 

II.2 Extraction of atomic multipoles 

Electrostatic multipoles are located on atomic centers and defined in the local frame for each site 

(atom or lone pair)3b, constructed from neighboring atoms (Figure 1). While the molecule vibrates, 

turns or diffuses during the simulation, the atomic multipoles remain constant within the defined local 

context shown in Figure 1. 

 

 

Figure 1. Local coordinated frame definitions for atomic multipole sites (a) The Z-then-X convention (b) The bisector 

convention (c) The convention Z-then-bisector  (figure 1 in ref 12b)  

The z-then-x convention in Figure 1 (a) is used for most sites for asymmetric triplets of atoms. By adding 

the orthogonal axis Y, chiral centers can be treated. The bisector convention (Figure 1 (b)) is used when 

the Z axis can be defined by the angle bisector formed with the two neighbors.  It is typically used in 

the case of C2V symmetry, such as water or a carboxylate group. The convention Z-bisector (Figure 1 

(c)) is used for sites such as the sulfur atom of dimethylsulfoxide, which has a distinct primary Z axis 

and symmetry or pseudo-symmetry along a secondary direction. In each case, the positive Y axis is 

defined to create a cubic right-handed coordinate system. In the AMOEBA parameter set, we use a 

negative sign (-) to signal a multipole orientation in this bisector convention. 

 

The distributed multipole analysis (DMA)31 method is used to obtain the multipole distribution. This 

method was implemented in the GDMA software developed by Stone32. It evaluates the exact 

representations of charge density on Gaussian basis sets and approximates each of them by a multipole 

expansion on atomic nuclei sites and possible additional sites. However, the method is strongly basis-
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set dependent. When the procedure is used with diffuse basis sets, the distribution of the multipoles 

leads frequently to non-physical values33. A new version of DMA was developed to solve this problem 

by using numerical quadrature for the diffuse functions, while retaining the original method for the 

more compact ones33. Furthermore, DMA multipoles truncated at quadrupoles is an approximation 

and could lead to errors in comparison with the electrostatic energy surface.34 Ren and Ponder have 

proposed a method based on a fit of the electrostatic potential. They optimized the multipoles 

extracted in DMA on an electrostatic potential surface computed at a quantum chemistry level, usually 

MP2, associated to a large basis set if the size of the system allows it. This fitting optimizes only the 

dipole and quadrupole moments while the monopoles are kept fixed. The convergence criterion should 

not be set too tight to avoid over fitting. Ponder et al. have shown some examples of properties 

computed using both DMA and fitted multipoles. In some cases, free energy results have shown an 

improvement,  but other results have not demonstrated an obvious difference12c. 

After parameters of the system are created, validation steps need to be carried out by comparing with 

ab initio simulations or experimental results. One can adjust the original parameters to enforce 

agreement with the reference results35.  

 

III. PARAMETERS OF THE HEME COFACTOR IN ITS FERROUS AND 

FERRIC FORMS  

Our first objective toward simulation of heme proteins with AMOEBA has been the derivation of 

parameters for heme. This work has been described in an article published in 2018 in the Journal of 

Chemical Theory and Computation20. It is reproduced in the following pages.  

Abstract 

"We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the ferric and 

ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a histidine 

and a methionine side chains as ligands.  We have derived permanent multipoles from second-order Møller-Plesset 

perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction 

energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT) calculations. 

In a second validation step we consider interaction energies with large aggregates comprising around 80 H2O molecules. These 

calculations are repeated for thirty structures extracted from semi-empirical PM7 MD simulations. Very encouraging 

agreement is found between DFT and AMOEBA force field which results from an accurate treatment of electrostatic 

interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA testing both the 

2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High Performance) 

program. In conclusion, owing to their ubiquity in biology we think the present work opens a wide array of applications of the 

polarizable AMOEBA force field on hemeproteins." 
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ABSTRACT: We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the
ferric and ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a
histidine and a methionine side chain as ligands. We have derived permanent multipoles from second-order Møller−Plesset
perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction
energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT)
calculations. In a second validation step, we consider interaction energies with large aggregates comprising around 80 H2O
molecules. These calculations are repeated for 30 structures extracted from semiempirical PM7 DM simulations. Very
encouraging agreement is found between DFT and the AMOEBA force field, which results from an accurate treatment of
electrostatic interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA
testing both the 2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High
Performance) program. In conclusion, owing to their ubiquity in biology, we think the present work opens a wide array of
applications of the polarizable AMOEBA force field on hemeproteins.

I. INTRODUCTION

Hemeproteins play important roles in diverse biological
functions including transportation or storage of dioxygen
(e.g., hemoglobin, myoglobin, neuroglobin), electron transport
(e.g., cytochromes), or in enzymatic reactions (e.g., cyto-
chromes P450). This remarkable diversity of functions results
from the specific chemical structure of the heme motif, which
consists of an iron cation chelated by the four nitrogen atoms of
a deprotonated porphyrin ligand. The iron cation arranges in an
almost planar geometry with one or two ligands completing the
coordination sphere in axial position. The axial ligand may
either be amino acid residues, typically histidine or methionine
side chains, or exogenous ligands (O2, NO, H2O...). Both the

ferrous and ferric forms of the iron cation can be stabilized by
the complex. This ensemble of structural and redox properties
confers distinct biological functions to hemeproteins. Intensive
research in both experiments1−4 and theoretical simulations5−14

have been done to unravel the molecular mechanisms
associated with the biological functions of hemeproteins.
Focusing on the modeling of the redox properties of

hemeproteins, much progress has been realized over the past
two decades.7,8,10,15,16 Computational modeling is essential in
this research field to help understand the variability of redox
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properties of different hemeproteins. For example, one can
rationalize variations of redox potentials or of reorganization
energies of hemeproteins from the secondary structure of the
protein. Indeed, the presence of charged or polar chemical
groups is important in determining the free energies of
oxidation of hemes. It is now well documented that the
redox properties of hemeproteins depend not only on the
structure of the heme cofactor but also on the structure and on
the dynamics of the protein matrix and on the hydration level
of the proteins.17 When interested in evaluating redox
potentials or electron transfer rates, a particularly powerful
approach consists of combining quantum mechanical (QM)
methodologies to molecular dynamics (MD) simulations with
molecular mechanics (MM) methodologies (i.e., classical force
fields). We refer the reader to recent review papers detailing the
different strategies employed so far in the literature to evaluate
redox properties of proteins.15,18,19 There are several
parameters that impact the accuracy of computed redox
properties: (i) the choice of the QM method to evaluate the
intrinsic propensity of heme to lose an electron (ionization
potential), (ii) the accuracy of the force field (FF) to describe
the environment and its interaction with the heme, and (iii) the
extensiveness of the conformational sampling of the proteins in
the different redox states. Even though much progress has been
realized in past decades in terms of the accuracy of redox
property computations, numerical approaches are still far from
reaching experimental precision. For instance, uncertainties of a
few millivolts on the redox potentials which are reachable by
electrochemical means correspond to an accuracy of less than 1
kcal/mol on free energies of oxidation. A key challenge is to
accurately describe electrostatic interactions between the heme
cofactor and its environment (protein, water, counterions...).
Indeed the change from the +II to +III (or vice versa) induces
significant conformational rearrangements of the environment.
Previous studies showed that inclusion of electrostatic
induction in classical FFs is mandatory to capture reorganiza-
tion of surrounding atoms.17,20−22 Indeed, the associated
reorganization energy is related to the optical dielectric
constant of the medium and can only be reproduced by
polarizable FFs.8,15,18 Another fundamental limitation of
standard FFs is the monopolar representation of the permanent
electron cloud of molecules.
Force field parameters for heme have been proposed for

various nonpolarizable FFs.23−30 In this work, we are interested
in the Atomic Multipole Optimized Energetics for Biomolec-
ular Applications (AMOEBA) force field implemented in the
Tinker program package (version 7.1.2).31 AMOEBA stands as
a highly accurate FF for water32,33 and for ion hydration34−38

and to reproduce the structures and thermodynamics of organic
molecules and biomolecules.39−43 The AMOEBA water model
was also compared to the Drude polarizable force field44 to
evaluate reorganization free energy for electron self-exchange in
aqueous Ru(II)−Ru(III).45 Electrostatic interactions between
permanent charge distributions are accounted for by sets of
permanent monopolar, dipolar, and quadrupolar moments
centered on atoms. Moreover, AMOEBA implements an
induction model which allows reproduction of the anisotropy
and the nonadditivity of the molecular polarization response.
Furthermore, recent developments have introduced short-range
penetration corrections between molecules.46−48 We are not
aware of any MD simulation of hemeproteins carried out with
AMOEBA, a situation undoubtedly related on one hand to the
lack of parameters for the heme cofactor and on the other hand

to the computational cost of such simulations with common
computer codes. Indeed, as one can expect, such a sophisticated
FF is far more expensive than standard force fields developed to
study biomolecules. In that regard, noticeable algorithmic
developments in the Tinker-HP (High-Performance) soft-
ware49 have been carried out by some of us which enable long
(>100 ns) MD simulations on biological systems with
AMOEBA.50,51 The development of AMOEBA FF parameters
of heme is therefore timely. We report here to the best of our
knowledge the first sets of AMOEBA parameters for the heme
cofactor in both the ferric and ferrous states.
The details of the parametrization procedure will be given in

section II. The sets of parameters will be validated against
quantum chemistry calculations in section III. The results show
a clear improvement of interaction energies between heme and
surrounding molecules compared to point-charge FF. Finally,
we will report in section IV, to the best of our knowledge, the
first nanosecond MD simulations of a cytochrome with
AMOEBA as implemented in TINKER-HP.49

II. METHODOLOGY
II.A. The Amoeba Potential Energy Model. The

functional form of the potential energy computed by AMOEBA
is given by eq 1:

= + + + + +

+ +

U U U U U U U

U U

bond angle cross opp torsion vdW

ele
perm

ele
ind

(1)

The first five terms are the valence interactions including
bonds, angles, bond-angle cross coupling terms, out-of-plane
deformations, and torsional rotations. AMOEBA uses mathe-
matically flexible expressions that go beyond the harmonic
approximation for the intramolecular terms. These terms have
the same functional forms as those used by the MM3 force
field.52 Analytical expressions for each of these terms can be
found in ref 39. The last three terms of eq 1 gather
intermolecular interactions. Uvdw refers to van der Waals
interactions and is calculated with Halgren’s buffered 14−7
function. This function yields a repulsive region softer than the
Lennard-Jones 6−12 function but steeper than typical
Buckingham exp-6 formulations. Uele

perm collects the electrostatic
interactions between permanent multipoles. Monopoles, dipole
vectors, and quadrupole tensors are positioned on each atom
site in order to reproduce the molecular electrostatic potentials
accurately. These permanent atomic multipoles are defined
with respect to local frame and maintain a constant orientation
during simulations. Finally, Uele

ind refers to interactions between
permanent charges and induced dipoles. Atomic polarizabilities
are included to determine induced dipole moments on each
polarizable site. Electronic induction is achieved via an
interactive atomic dipole induction scheme.51 The induced
dipole at site i further polarizes all other sites until the induced
dipoles at each site reach convergence. The simulations use a
preconditioned conjugate gradient solver coupled to Kolafa’s
Always Stable Predictor-Corrector (ASPC) algorithm.53 To
avoid the polarization catastrophe phenomenon, AMOEBA
employs Thole’s short-range damping method.54 In the present
work, we do not include short-range penetration correc-
tions.46,48

II.B. Parametrization Strategy. We have followed the
standardized parametrization protocol of AMOEBA FF.55 As
recalled in the Introduction, the coordination sphere of Fe in
heme can encompass various chemical groups depending on
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the protein of interest. For example, the Fe cation can be
coordinated by one or two histidine residues (e.g., cytochrome
P450 or cytochrome b5), by one histidine and one methionine
residue (cytochrome c551), or by histidine and small ligands
(like O2, NO...). These different coordination spheres would
necessitate distinct sets of parameters. In this work, we are
primarily interested in six-coordinated hemes with either two
histidines or one histidine and one methionine axial ligand.
Such coordination patterns are, for instance, frequently
encountered in cytochromes or globins. In our first para-
metrization attempts, we considered the full six-coordinated
complexes; however, we experienced difficulties in obtaining
reliable multipoles, and we therefore decided to adopt another
strategy. Our approach consists of parametrizing the four-
coordinated iron porphyrin (PFeII/III), on one hand, and the
axial ligands separately. This approach is justified when the axial
ligands are either histidine or methionine residues by the fact
that charge transfer from the iron cation toward the ligand is
rather small. Indeed, charge transfer from the axial ligands to
the iron-porphyrin complex amounts to 0.05 e− and 0.15 e− in
the ferrous and ferric states respectively, based on Density
Functional Theory (DFT) calculations combined with the
iterative Hirshfeld56 electronic population scheme (Table S1).
We expect the multipolar description of the FF to describe
sufficiently well the interaction between PFe and the axial
ligands. The chemical structure of the PFe group used during
the parametrization protocol is depicted in Figure 1. This PFe
group has been further truncated into three fragments as shown
in the figure. The amino acid backbone atoms of histidine and
methionine have been modeled as methyl-imidazole (ImMe)
and ethyl-methyl-sulfide (EMS), respectively. Note that this
strategy also assumes that no spin density is transferred from
the iron porphyrin core to the axial ligands (see Table S1).
Figure 1 depicts the atom types for all atoms. For the

intramolecular terms, the atom types and classes of PFe atoms
and the two ligands have been defined by analogy with
parameters from the AMOEBA-2013 FF for proteins.43 For
example, the AMOEBA classes and types of atoms CD2, CE2,
and NE1 within the porphyrin ligand were transposed from the

analogous atoms of the five-membered ring of the tryptophan
residue. NE1 is nitrogen atoms pertaining to the azole ring,
CE2 is sp2’s of the azole cycle linked to NE1 and to one sp3

carbon and one sp2 carbon. Finally, CD2 is sp2’s of the azole
cycle linked to two other sp2 carbon atoms. The valence
parameters (bond stretching, angle bending, torsions, van der
Waals, and polarizabilities) were taken from the set without
modification. The van der Waals and atomic polarizability for
Fe were taken from the work of Semrouni et al. for the ferrous
state.34 The same van der Waals parameters are here for both
the ferrous and ferric state. This has been common practice for
simulations of hemeproteins using more standard force
fields.18,27 We actually think that for iron cations nested at
the heart of the porphyrin ligand in well-defined coordination
spheres, the differences of nonbonding interactions between
the two redox states can be captured by adequately tuned sets
of multipoles on the metal ion and its coordination sphere. This
methodological strategy will be validated extensively in sections
II and III.
A central aspect of the parametrization procedure is the

fitting of multipoles for PFe. The sets of multipoles have to be
different in the ferrous and ferric redox states. To that end, we
have optimized the geometry of the [PFe-ImMe-EMS] complex
by DFT calculations with the OPTX-PBE functional57,58 and
the DZVP-GGA basis set.59 These calculations have been
carried out with deMon2k.60 To avoid spurious electronic
delocalization between the iron cation and the carboxylate
functions, the latter have been protonated during geometry
optimizations. The OPTX-PBE functional has been chosen for
its good performance to reproduce the electronic energies of
different spin states in transition metal complexes.61,62

deMon2k relies on auxiliary fitted densities to calculate the
Coulomb and exchange correlation energies and potentials.63

The auxiliary basis sets are automatically generated by the
program.59 We chose the GEN-A2 for H and C, and the more
flexible, therefore more accurate, GEN-A2* for Fe, N, and S.
Geometry optimizations have been conducted in the singlet,
triplet, and quintet spin states for the ferrous state and in the
doublet, quartet, and sextet spin states for the ferric state. We

Figure 1. Heme structure, ligand models, and atom definitions for the parametrization procedure.
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have found the singlet and doublet spin states to be the most
stable for ferrous and ferric redox states, respectively, by 0.72
and 0.57 eV. We have restricted our parametrization procedure
to these two spin states.
After geometry optimization, the structures have been

fragmented according to the partition of Figure 1. Hydrogen
atoms have been added at the cutting positions between the
porphyrin ring and the propionate groups, and we have

reoptimized the hydrogen atom positions. Following the
AMOEBA parametrization procedure, single point calculations
of each fragment have been performed at the MP2/cc-pVDZ
level of theory with Gaussian 09.64 The ground states of four-
coordinated iron-porphyrins are of intermediate spin. MP2
calculations on the fragments have been carried out in the
lowest spin state to be consistent with the lowest spin state of
the six-coordinated iron-porphyrin. The Distributed Multipole

Figure 2. Geometries of heme interacting with molecules used in the validation of the AMOEBA FF parameters. Picture made with VMD.78
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Analysis (DMA) has been carried out from the MP2 electron
density using the GDMA program (version 2.2.11) and the
original DMA algorithm.65−68 The default relative atomic radii
used in the DMA algorithm have been chosen except for
hydrogen, for which a value of 0.31 has been chosen. This value
was previously shown to be appropriate to avoid erroneous
charges during the DMA procedure.69

The POLEDIT program available in Tinker31 has been
subsequently run on the GDMA outputs with the suggested
polarizability values. All atoms are placed into a single
polarization group by default. This resulting version of
multipoles is obtained directly from the DMA procedure.
This set of parameters will be referred to as “AMOEBA DMA.”
Another approach to derive atomic multipoles involves an
optimization against the QM electrostatic potential around the
system. The AMOEBA DMA multipole values have been used
as starting values to the fitting against the MP2/cc-pVDZ
electrostatic potential. The DMA partial charges are held fixed
during the potential fitting process, while dipoles and
quadrupoles are readjusted. The final gradient convergence
value has been set to 0.5 kcal mol−1 electron−2 to avoid
overfitting. Indeed, a tighter convergence criterion can lead to
multipoles that depend strongly on the geometry used for the
extraction, and therefore that are less transferable. We will refer
to this second set of parameters as “AMOEBA FIT.” Finally,
according to the defined atom types, the multipole values have
been averaged over the equivalent atoms. The procedure was
carried out for each fragment. Two versions of each multipole
set have been created for both ferrous and ferric states. At the
end, all the fragments have been combined by removing excess
hydrogens, and the global charge has been adjusted to be −2
and −1 for ferrous and ferric states, respectively. In summary,
four parameter sets have been generated and named FeII

AMOEBA DMA, FeII AMOEBA FIT, FeIII AMOEBA DMA,
and FeIII AMOEBA FIT. They will be now tested against
quantum mechanical calculations. The parameters are available
in the SI.

III. VALIDATION AND SIMULATIONS
In section III, we validate the different AMOEBA parameter
sets on the calculation of interaction energies between the
heme and its environment. We start by gas phase interaction
energies (IE) between the [PFe-ImMe-EMS] complex and
different molecules relevant to biological systems. We continue
by calculating IE with large clusters of water molecules. We also
address the transferability of our parameters for the [PFe-
(ImMe)2] complex. We finally conclude the section by the
adjustment of the internal bond and valence angle terms to
tune the geometry of the iron first coordination shell.
III.A. Computational Details. As a first test of the sets of

AMOEBA parameters, we here report interaction energies
between the [PFe-ImMe-EMS] and various molecules in the
gas phase. The IE between the iron complex and a molecule
(M) is defined as

Δ = − −E E E E([PFe, M]) ([PFe]) (M)int (2)

where E([PFe,M]) is the energy of the supramolecular complex
and E([PFe]) and E(M) are the energies of the two fragments.
For each supramolecular system, the geometry has been
constructed by associating the [PFeII−ImMe−EMS] complex,
geometrically optimized in the absence of the partner M, with
the geometry of the fragment. A restrained geometry
optimization of the supramolecular ensemble has been carried

out at the DFT level, freezing the geometry of the heme
partner, and optimizing only the internal geometry of partner
M. In these restrained optimizations, we have eventually further
imposed the distances between the two partners to a given
value. Basis set superposition error corrections have not been
computed. The list of molecules includes H2O, CH3CH2NH3

+

(a model of lysine side chain), CH3COO
− (a model of

aspartate and glutamate side chains), phenol (a model of
tyrosine side chain), and the chlorine and sodium ions. This is a
list of representative types of interactions one can find in
hemeproteins between the heme cofactors and its environment.
In particular, charged or polar residues are known to play a
special role in determining redox properties. For example, in
flavohemoglobin, a lysine residue is hydrogen bonded to one
propionate group of the heme,70,71 and a glutamate residue
interacts with axial histidine residues.70 Tyrosine residues have
also been found to interact with heme propionates, for instance,
in cytochrome c oxidase.72 It is therefore important to assess
whether the parameters developed in this work are able to
accurately reproduce the associated interaction energies. The
various supramolecular complexes are depicted in Figure 2.
Two types of QM calculations have been carried out, relying

either on DFT (B3LYP73) or on MP2. Note that we have
tested B3LYP-D3 calculations for some complexes and found
negligible effects of dispersion on the computed interaction
energies. We mention that convergence of Hartree−Fock or
the DFT self-consistent field of deprotonated heme is tedious
in the gas phase, especially for the ferric state. Indeed, the
terminal propionate groups tend to be oxidized instead of the
iron cation, eventually causing severe self-consistent field
(SCF) convergence issues and unexpected electronic structures.
It was therefore not always possible to obtain QM results for
some geometries. MP2 single-point calculations have been
performed within the Resolution of the Identity (RI) approach
using the TZVP basis set for all atoms with the Turbomole 7.1
program.74 DFT single-point energies have been calculated
with deMon2k at the B3LYP/TZVP level (DZVP-GGA for Fe)
and with the auxiliary function set GEN-A2* for all atoms. An
adaptive grid of accuracy 10−8 Ha was defined to integrate the
exchange correlation energy and potential.75 Exact exchange
was computed via a variational fitting of the Fock potential.76

For the FF calculations, the interaction energies with
AMOEBA have been computed with the ANALYZE program
from the TINKER package. The parameters of the small
molecules and ions are taken from the AMOEBA-2013
parameter set for proteins. For H2O, two versions of the
AMOEBA water model, water0332 and water14,33 are tested.
For CH3CH2NH3

+ and CH3COO
−, sets of multipoles have

been determined with the previously described procedure for
the heme. The energies entering eq 2 were calculated with eq 1
(AMOEBA). The AMOEBA interaction energies therefore
include energy differences from the van der Waals, permanent
electrostatic, and induction contributions to the energy. We
have also tested a nonpolarizable FF based on the permanent
point charge model. For this FF, the reported interaction
energies include van der Waals contributions calculated with a
12−6 Lennard-Jones potential and a charge−charge Coulomb
interaction. The parameters of vdW are taken from the
CHARMM for ferrous heme.27 The punctual charges have been
derived by an iterative Hirshfeld (IH) population analysis56 as
implemented in deMon2k.77 For water, the IH charges are
close to those given by the TIP3P water model. All the
computed interaction energies can be found in Table S2.
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III.B. Interaction between Heme and Single Mole-
cules. Heme−Water. We start our discussion with results on
IE between heme and a water molecule (see Figure 2a−d).
Geometries a correspond to a water molecule engaged in
hydrogen bonding with one propionate side chain with
different lengths (1.8 Å for A, 3.0 Å for B, 6.0 Å for C, 8.0 Å
for D). Geometry b,E corresponds to a hydrogen-bond
interaction from the NH group of ImMe toward the oxygen
atom of water. The equilibrium distance resulting from
geometry optimization with DFT amounts to 2.4 Å. Geometry
c,F corresponds to a weak OH−π interaction between one C
C double bond of heme and one hydrogen atom of water, with
an interaction distance of 3.0 Å. Finally, geometry d,G involves
a double hydrogen-bond interaction with the water bridging the
two propionate side chains with the O−H distances amounting
to 2.1 and 2.9 Å. Results are plotted in Figure 3. For geometries
A to D, all the methods give the same trend. As expected, the
interaction becomes less favorable as the distance increases.
The interaction energy differences for each method with

respect to MP2 are provided in Table 1. For geometries C and
D, in which the hydrogen bond is weak (>3 Å), all the methods

give an IE within 0.3 kcal/mol to that given by MP2. For such
long-distance interactions, a monopolar description of the
electron density is likely to be valid and therefore accounts for
the convergence of nonpolarizable and AMOEBA FF results.
For geometries A and B, the differences are more significant
between the methods. Among them, the IH results are the
closest to MP2 with an error of less than 1.0 kcal/mol. For
AMOEBA calculations on geometry B, all parameter sets give
similar results. For geometry A, a larger error is found with the
water03 model. A plausible explanation for this discrepancy
may be the lack of correction for penetration effects.46 These
effects are not taken into account by the version of the
AMOEBA FF used in this work. On the other hand, the
water14 model is able to significantly reduce the error with
respect to MP2 due to the reparameterization of the
electrostatic term.
For geometry E, the results for IH and AMOEBA are almost

similar. The differences of IE with respect to MP2 are ca. 2
kcal/mol for the ferrous state, while they are only ca. 0.7 kcal/
mol for the ferric state. The results with the different FFS for
geometry F are similar for the ferrous state with a difference at

Figure 3. Heme−water interaction energies (kcal/mol) of the different geometries represented in Figure 2. Left, results of ferrous state; right, results
of ferric state.

Table 1. Interaction Energy Differences in kcal/mol Obtained at the Various Computational Levels with Respect to the MP2/
TZVP Reference

geometry B3LYP IH AMOEBA DMA + water14 AMOEB FIT + water14 AMOEBA DMA + water03 AMOEBA FIT + water03

HEME(FeII) − H2O
A 0.03 0.61 1.86 1.28 4.72 4.18
B 0.11 0.85 1.13 1.02 1.10 1.03
C 0.19 0.00 0.30 0.28 0.26 0.25
D 0.14 0.01 0.20 0.19 0.17 0.16
E 1.03 1.14 1.67 2.13 1.61 2.10
F 0.49 2.02 1.99 2.04 2.03 2.04
G 1.48 0.42 3.62 3.80 4.92 4.83

HEME(FeIII) − H2O
A n.c.b 0.07 1.28 0.95 3.83 3.48
B n.c. 0.60 0.70 0.69 0.65 0.64
C n.c. 0.06 0.14 0.15 0.13 0.14
Da n.c. 0.00 0.12 0.12 0.11 0.11
E n.c. 0.86 0.74 0.34 0.69 0.30
F n.c. 2.85 2.19 2.16 2.30 2.26
G n.c. 0.00 3.36 3.73 3.81 4.10

aNeither MP2 nor B3LYP calculations converged for geometry D in the ferric state. For this series, IH is taken arbitrarily as a reference. bThe B3LYP
SCF could not converge.
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ca. 1.6 kcal/mol. However, regarding the ferric state, AMOEBA
gives a difference of 2.1 kcal/mol, while IH has a difference of
2.9 kcal/mol. For geometry G, the error for both states is ca. 3.5
and 5 kcal/mol for the water14 and water03 parameters,
respectively. As for geometry A, we find that the water14 model
seems to perform better, and the nonpolarizable model gives as
accurate results.
Heme−Atomic Ions. Five geometries were created to test

the accuracy of the interaction with the sodium cation. As
shown in Figure 2e, we have investigated interactions with
either the propionates groups (A, B, C, or D) or the sulfur atom
of the EMS ligand (E). The results obtained with the different
computational methods are plotted in Figure 4 for the ferrous
and ferric states (panels a and b, respectively). For the A, B, C,
and D series, the interaction becomes less favorable with
increasing the distance, while the difference between the
various methods decreases. This is similar to what was found
for the interaction with H2O. For geometries C and D in the
ferrous state, all methods are within 4 kcal/mol of the MP2
values. The energy differences are larger (ca.7 kcal/mol) for the
ferric state. For geometries A and B, IH gives good results with
errors lower than 5 kcal/mol. With the AMOEBA FF, we
obtain differences around 19 and 9 kcal/mol for geometries A
and B, respectively. For geometry E, AMOEBA gives a
difference of 14 and 7 kcal/mol with respect to MP2 for the
ferrous and ferric states, respectively. For this type of
interaction involving a large and polarizable group (thioether),
AMOEBA represents a clear improvement over nonpolarizable
FF for which differences larger than 55 kcal/mol are found.

We now turn to interaction with chlorine (Figure 2).
Geometries A, B, and C correspond to interaction with the
ImMe, while geometry D corresponds to a weak dispersive
interaction between Cl− and one CC bond or the porphyrin
ring. Results are shown in Figure 4 (panels c and d). We remark
that as a consequence of the overall −2 or −1 charge of the
heme complex in the ferrous and ferric states, the interaction
energies with the chlorine anion are almost always positive.
Nevertheless, in actual biosystems, other interactions with
positively charged residues may counterbalance the repulsive
interaction with heme so that anions may still approach them. It
is therefore important to test the capability of the AMOEBA
parameters to correctly describe the electrostatic interactions
between heme and anions. For geometries A, B, and C,
AMOEBA reproduces the increase of IE with the distance
between heme and Cl−. The difference between AMOEBA and
MP2 amounts to 2 kcal/mol in the ferrous states and is a little
bit larger in the ferric state. The IH curves exhibit, on the other
hand, opposite trends, failing to reproduce even qualitatively
the evolution of IE provided by QM methods. We could trace
back this discrepancy in the unbalanced treatment of
electrostatic and Lennard-Jones interactions. AMOEBA pro-
vides a better description of the noncovalent interaction
between atomic anions and heme. For geometry D also,
AMOEBA gives better results for the ferrous state than IH by
ca. 21 kcal/mol. This large difference can be mainly due to the
interaction with the CC bond. Here again, we see the
advantage of using a polarizable force field.

Heme−CH3CH2NH3
+. As shown in Figure 2, geometries (i)

A, B, C, and D represent hydrogen-bonded interactions

Figure 4. Heme−ions (Na+ and Cl−) interaction energies (kcal/mol) of the different geometries represented in Figure 2. Left: results for the ferrous
state. Right: results for the ferric state. B3LYP calculations for the ferric states are not reported because of self-consistent-field convergence issues.
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between the propionate side chain of heme and CH3CH2NH3
+

with increasing length. Geometry D involves an interaction
with the thioether. The values of the interaction energies are
plotted in Figure 5a for the ferrous state and 5b for the ferric
state. Overall, we find that AMOEBA gives a satisfactory
treatment of the interaction between this cationic organic
species and the heme. IH also gives good results for geometries
A, B, and C; however, it fails for geometry D with a difference
ca. 50 kcal/mol with MP2. This finding is reminiscent of the
difficulty of treating the interaction between Na+ and the
thioether ligand, illustrating again the advantage of FF relying
on a balanced treatment of electrostatic interactions involving
permanent multipoles and induced dipoles. That said, like for
geometry D, it is probably not likely to be encountered often in
the course of MD simulations owing to the short distance
between the two interacting partners.

Heme−CH3COO
−. Geometries A, B, C, and D involve a

hydrogen bond between ImMe and CH3COO
− with increasing

length (Figure 2k). The values of the interaction energies are
plotted in Figure 5. At long distances, all the FF results are very
close to the QM based method (<0.1 kcal/mol), for both redox
states. When decreasing the hydrogen bond length, the
interaction between the two anionic partners becomes less
unfavorable. AMOEBA as well as IH adequately reproduce the
trend provided by MP2 or B3LYP. One noticeable exception is
geometry A, which is overstabilized with a simple point-charge
model (IH).

Heme-Phenol. As shown in Figure 2l, geometries A, B, and
C represent the hydrogen-bond interaction between the phenol
and the propionate side chain of heme. Interaction energies are
given in Figure 5. We first remark on a systematic difference of
6.5 kcal/mol between MP2 and B3LYP for the ferrous state,
which is difficult to interpret. The IH results are close to the

Figure 5. Heme−molecule interaction energies (kcal/mol) of the different geometries represented in Figure 2. Left: results for the ferrous state.
Right: results for the ferric state. Missing points for quantum mechanical methods (MP2 and/or B3LYP) are due to self-consistent-field convergence
issues.
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B3LYP ones, while the AMOEBA results lie in between the
B3LYP and MP2. For the ferric state, we could not converge
either MP2 or DFT calculations of the heme cofactor. A similar
trend than the ferrous state is obtained with the three FFs.
Summary. In summary, AMOEBA is globally in good

agreement with QM methods (MP2 and DFT). This is
especially true for interaction with highly polarizable groups
such as S, CC double bonds, or anions like Cl−. Finally, no
large difference has been observed between the two sets of
multipoles (DMA or FIT). We can observe that the FIT
version gives slightly better results than the DMA one by ca. 1
kcal/mol. For short distances, larger deviations between
AMOEBA and QM have been found.
III.C. Heme within Droplets of Water. In the previous

section, we validated our AMOEBA parameters looking at
interaction energies between the [PFeII/III−ImMe−EMS]
complex and various molecules. We now address collective
effects by computing interaction energies between the
[PFeII/III−ImMe−EMS−(H2O)6] complexes and a large
ensemble of water molecules. Note that we have included six
water molecules around the propionate moieties of the heme to
avoid spurious oxidation by the FeIII cation. We also address in
this section the transferability of the parameters to the
description of the [PFeII−(ImMe)2−(H2O)6] complex.
In a preliminary step, MD simulations have been carried out

with the PM7 semiempirical method and the CUBY4
environment.79 Details of the PM7MD simulations can be
found in the SI. The heme complexes ([PFeII−ImMe−EMS]
and [PFeII−(ImMe)2]) are embedded in droplets of water
comprising around 1850 water molecules. After geometry
optimization, MD simulations have been carried out for 80 ps.
Interaction energies have been computed according to eq 2
with energies calculated using deMon2k (DFT) or Tinker
(AMOEBA). The normalized autocorrelation functions of the
IE obtained with AMOEBA approach zero in periods of a few
hundreds of femtoseconds to a few picoseconds (Figure S1).
Consequently, we have extracted snapshots for subsequent
interaction energy calculations every 2 ps during the last 60 ps,
leading to a total of 30 geometries for each complex that can be
considered as uncorrelated. To make the DFT level tractable,
the geometries have been pruned to retain only the water
molecules within less than 8 Å from the iron cation. The
pruned geometries typically comprise 75 to 80 H2O (for a total
of 330 atoms on average). To carry out these computationally
very intensive calculations, the Coulomb, local exchange-
correlation, and nonlocal exact exchange contribution to the
Kohan−Sham potential have been computed with auxiliary
fitted quantities.63,76 We have used the DZVP-GGA/GEN-A2*
combination of atomic orbital and auxiliary basis sets. The grid
accuracy to integrate the exchange correlation energy and
potential has been set to 10−8 Ha. Calculations have been
carried out with B3LYP,73 PBE,58 and PBE0.80 For complexes
in the ferrous states, SCF convergence has been reached with a
tolerance of 10−7 Ha on the SCF energy and 10−6 on density
fitting coefficients. For the ferric state, SCF convergence is
much more difficult to obtain on all the complexes, and
tolerance thresholds have been set to 10−4 Ha and 4.10−4 for
some of them. However, we have verified on nine geometries
for which tight convergence could be reached up to 10−7 Ha
and 10−6 respectively, that the computed interaction energies
are within 0.05 kcal/mol of those obtained with the looser 10−4

Ha and 4.10−4 convergence thresholds (Table S3).

Results are summarized in Table 2 for PBE0 and in Table S4
for PBE and B3LYP. The full list of IE is given in Table S5. For

each complex, we report the average difference between the
DFT and force field interaction energies (⟨ΔIE⟩) over the
series and the associated standard deviation (σ(ΔIE)). We also
report the Root-Mean-Square Error (RMSE) and the linear
correlation coefficient between DFT results and FF results
(R2). We start by remarking noticeable differences among DFT
methods for the [PFeII−ImMe−EMS−(H2O)6] complex. On
one hand, PBE and PBE0 give similar IEs, with an average
difference of ca. 3 kcal/mol. On the other hand, interaction
energies calculated with B3LYP are shifted by 30 kcal/mol with
respect to both PBE and PBE0 (Table S4). This discrepancy
among various DFT XC functionals is large and illustrates the
difficulty of obtaining reference values for validating our FF
parameters. Recent benchmark calculations of relative energies
of large water clusters against CCSD(T)/CBS (Complete Basis
Set Limit) showed the sensitivity of such computations with
XC functionals.81 The authors recommended the use of range-
separated hybrids (ωB97XD82 or LC-ωPBE-D383,84) or meta-
GGA global hybrids (M05-2X85) for this type of calculation.
These classes of DFT functionals are not currently available in
the version of deMon2k we are using. PBE0 was ranked before
PBE and B3LYP in this study, and we will mainly base our
discussion on the PBE0 results.
We start our discussion with the [PFeII/III−ImMe−EMS−

(H2O)6] complex. The interaction energies computed with the
nonpolarizable FF (using IH charges) lead to an average shift
larger than 23 kcal/mol with respect to the PBE0 results. The
scattering of the computed data is also large. As can be seen in
Figure 6 (top, black points) the agreement with DFT is poor.
This is reflected by a correlation coefficient of only 0.7. IEs
obtained with AMOEBA are much more satisfactory, as seen
from the figure and from the values of R2. The agreement
between AMOEBA and DFT (either PBE or PBE0) is
especially good when we use the 2014 AMOEBA water
model with R2 approaching 0.9. The RMSE drops from 30 to
8.2 kcal/mol between the nonpolarizable FF and AMOEBA.
These are very satisfactory results, indicating that moving from

Table 2. Average Interaction Energy (kcal/mol), Standard
Deviation, RMSE, and Linear Correlation Coefficient
between DFT (PBE0) Results and Force Field Results

AMOEBA

DMA FIT DMA FIT

IH water14 water14 water03 water 03

[PFeIIImMe−EMS−(H2O)6]
⟨ΔIE⟩ −26.36 0.95 2.27 1.91 3.29
σ(ΔIE) 14.72 8.35 8.06 11.82 11.55
RMSE 30.07 8.26 8.25 11.77 11.83
R2 0.70 0.86 0.87 0.73 0.74

[PFeIIIImMe−EMS−(H2O)6]
⟨ΔIE⟩ −25.84 −3.74 −2.46 −4.37 −2.93
σ(ΔIE) 13.26 7.82 7.57 10.02 10.06
RMSE 28.91 8.52 7.80 10.73 10.26
R2 0.71 0.87 0.88 0.78 0.78

[PFeII−(ImMe)2−(H2O)6]
⟨ΔIE⟩ 39.27 13.04 14.84 14.02 15.91
σ(ΔIE) 17.68 7.18 7.22 8.41 8.57
RMSE 42.94 14.82 16.44 16.27 18.00
R2 0.62 0.94 0.94 0.93 0.93
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a monopolar to a multipolar and polarizable description of the
electrostatic potential created by the heme is beneficial for the
accuracy of the force field. With the 2003 AMOEBA water
model, the agreement is a little bit less satisfactory, with some
points of the series departing more from the DFT results, but
results are similar in nature and the set of investigated points

limited. We emphasize that the same heme parameters are used
in both series and that only the water model is changed. For the
energies of present interest, the accuracy of the 2014 water
model is superior. We note small differences between results
obtained with either DMA or FIT sets of multipoles. Very
similar conclusions can be drawn for the [PFeIII−ImMe−
EMS−(H2O)6] complex with a better agreement of computed
interaction energies with AMOEBA using the 2014 water
model. Finally, for the [PFeII−(ImMe)2−(H2O)6] complex, we
find that correlation between AMOEBA and DFT is much
better than with nonpolarizable FF (R2 = 0.94 vs 0.62). In
summary, these calculations validate our parametrization
approach for the heme complex. The computed interaction
energies clearly indicate that the sets of multipoles are able to
accurately reproduce the electrostatic potential created by the
heme complex in both ferrous and ferric states.

III.D. Heme Coordination Patterns. Before moving in
section IV to the simulation of hemeproteins with AMOEBA,
we focus here on the inner-sphere coordination of the iron
cation. We observed that in AMOEBA MD simulations of the
[PFeII/III−ImMe−EMS] complex in water, the (bi)squared
pyramidal geometry around Fe is lost. This means that the sole
presence of electrostatic multipoles on the heme atoms is not
sufficient to define a proper coordination pattern for iron. This
is somehow not surprising because the Fe−N or Fe−S bonds
are more complex than resulting from a mere electrostatic
interaction. We thus introduce supplementary terms in the
potential energy between the iron atom and the two
coordinating atoms in axial positions. To avoid the introduction
of new atom classes in TINKER or TINKER-HP that would
multiply the number of parameters, we have introduced the
bonding and angle terms with the “Restrain” option of the
program. A restraint term takes the form of a flat-welled
harmonic potential. When we use the restrain option, we
provide a force constant in kcal/Å2 and two distances to define
a distance range. If the distance between the two atoms under
consideration is in this range, the energy from the restraint
potential is zero. Outside the distance bounds, a standard
harmonic term is used using the force constant and the
interatomic distance. We have determined the parameters for
the restraints by trial and error. We finally decided to restrain
bonds between Fe and the coordinating atoms of the axial
ligands (NE2 for histidine and SD for methionine) as well as
the angles NE1−Fe−NE2 and NE1−Fe−SD where NE1 and
NE2 are the porphyrin nitrogen atoms. The restraint
parameters are given in Table S6.
Polarizable MD simulations have been performed with

TINKER-HP (version 1.0).49 The [PFe−ImMe−EMS] com-
plex is immersed into a water box of edge length 24.875 Å. The
Particle Mesh Ewald (PME) summation technique has been
applied to treat electrostatic interactions, including polarization,
with a real-space cutoff distance of 7.0 Å, a grid of 64 × 64 ×
64, and fifth-order B-splines. A cutoff with a switching window
at 10 Å has been applied to the van der Waals interactions.
Induced dipoles have been iterated to convergence, until the
Root-Mean-Square (RMS) change between interactions fell
below 10−5 D per atom using the ASPC approach.53 The
trajectories have been propagated using a velocity form of
Bernie Brook’s “Better Beeman” integration algorithm with a
1.0 fs time step. The system temperature has been controlled
with a Berendsen thermostat at 300 K.86

The average values and standard deviations of a few
geometrical parameters of iron coordination are gathered in

Figure 6. Interaction energies (kcal/mol) of the [PFeII−ImMe−
EMS−(H2O)6] (top), [PFeIII−ImMe−EMS−(H2O)6] (middle), and
[PFeII−(ImMe)2−(H2O)6] (bottom) complexes with droplets of
water molecules. For each complex, a collection of 30 geometries is
considered.
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Table 3. The upper part of the table refers to the bond
distances and angles that were specifically restrained to a target
value, while the lower part refers to other relevant parameters.
Data for both redox states are provided. For comparison, we
also provide similar values from an X-ray structure of
cytochrome c551. The coordination around heme in this
protein is representative and agrees well with the mean value of
seven high resolution X-ray structures of other cytochromes
containing the same heme group.27 We also provide values
extracted from the DFT optimized structure on which we fitted
the sets of multipoles (Table 3) and average values obtained
from MD simulations with PM7 (see previous subsection and
SI).
The Fe−Nhis, Fe−Npor, and Fe−Smet average bond lengths

obtained with AMOEBA DMA amount to 2.07, 2.10, and 2.39
Å, respectively, in the ferrous state. Similar values are obtained
in the ferric state. These values are slightly larger than those
obtained from PM7MD simulations or DFT geometry
optimizations but within the experimental uncertainty of X-
ray structures. The fluctuations of bond length are found to be
on the order of 0.03 Å, in close agreement with PM7
simulations and on the order of the expected values for this
type of chemical bonding. It could be possible to further
increase the restraint force constants to further reduce the gap
with DFT values, but we found that very strong force constants
were needed to achieve this goal, probably because of repulsion
between the axial ligand and the heme fragment originating
from the van der Waals and permanent multipoles. It is still also
possible that the distances are too long due to the lack of charge
transfer between the metal and the porphyrin in the AMOEBA
potential. Moreover, increasing the force constants would
reduce too much the amplitude of the bond length fluctuations.
We therefore decided to retain the set of restraints given in
Table S6. The angles around the iron cation are also well
reproduced by the AMOEBA simulations when comparing to
the experimental and theoretical references. We find few
differences for all these parameters when using either the
AMOEBA DMA or AMOEBA FIT sets of multipoles.
Regarding the C2−Fe−C2 angle (Figure 1) and the out-of-

plane deformation of Fe (doming), we find slight displacement
of the cation from the average plane of the porphyrin nitrogen
atoms. We investigated also the energy profile corresponding to
the rotation of the Chis−Nhis−Fe−Npor dihedral angle (Figure
S2). The global minimum of the profile is located at 0° both at
DFT and at AMOEBA levels of theory. The secondary minima
are at the same positions with AMOEBA and PBE. The global
potential well depth is more pronounced with AMOEBA than
in DFT. However, we expect the dihedral distribution during a
MD simulation to have similar behavior in AMOEBA and in
DFT, centered around 0°, but slightly broader in DFT. Finally,
we have inspected an extensive list of complementary
geometrical parameters and found excellent agreement between
AMOEBA and DFT or X-ray data (Tables S7).

IV. APPLICATION TO MD SIMULATIONS OF
CYTOCHROME

In the last section of this article, we report simulations of
cytochromes in the ferrous and ferric states with the newly
developed AMOEBA FF parameters using the Tinker-HP
program.49 The FIT parameter sets are used. We consider
cytochrome b5 of Rattus norvegicus (PDB code: 1B5A87). The
prosthetic group of cytochrome b5 consists of a heme core with
the two axial ligands being histidine residue side chains (His39
and His63). The initial structure has been extracted from NMR
data and has been solvated in a cubic water box (edge length of
100 Å) using the CHARMM package.88 The simulated system
is comprised of 97 858 atoms. The protonation state of the
residues has been evaluated with the PROPKa server. Aspartate
and glutamate residues are deprotonated, while all histidine
residues are protonated on δ positions. The system has been
neutralized by adding 10 sodium cations. We have subsequently
added nine (Na+,Cl−) ion pairs to reach a salt concentration of
0.15 M. The NMR structure has been preliminarily prepared
using the nonpolarizable c31 CHARMM.88 To this end, we
have first carried out 10 000 steps of energy minimization with
NAMD.89 Equilibration has then been reached running
successive 20 ps MD with a progressive increase of the
temperature from 50 to 298 K by steps of 25 K. During the

Table 3. Bond Lengths (in Å), Angles (in degree), and Doming Effect Dihedrals for the reduced and oxidized (Italic) eme
Structurea

parameters 451C/351Cb mean X-rayc DFT PM7d AMOEBA DMA AMOEBA FIT

Fe−Nhis 1.97 2.03 ± 0.15 1.97 1.97 (0.04) 2.07 (0.03) 2.06 (0.03)
1.99 1.99 2.05 (0.03) 2.03 (0.03)

Fe−Smet 2.35 2.31 ± 0.18 2.28 2.33 (0.05) 2.39 (0.03) 2.39 (0.03)
2.36 2.31 2.38 (0.03) 2.38 (0.03)

Fe−Npor 2.03 2.00 ± 0.05 2.00 1.95 (0.04) 2.10 (0.03) 2.10 (0.03)
2.03 1.99 2.10 (0.03) 2.10 (0.03)

Nhis−Fe−Npor 91.19 90 ± 2 89.89 89.88 (3.23) 90.10 (2.60) 90.10 (2.61)
90.89 90.24 89.72 (2.61) 89.88 (2.57)

Smet−Fe−Npor 88.80 90 ± 2 90.10 90.12 (3.78) 89.99 (2.76) 89.87 (2.79)
89.08 89.75 90.39 (2.81) 90.12 (2.85)

C2−Fe−C2 174.58 174 ± 3 174.71 177.81 (2.99) 177.65 (2.21) 176.26 (2.17)
174.76 167.20 176.09 (2.29) 176.17 (2.16)

doming 0.04 0.04 ± 0.02e 0.01 0.051 (0.025) 0.04 (0.03) 0.04 (0.03)
0.03 0.00 0.04 (0.03) 0.04 (0.03)

aFor the PM7 and AMOEBA MD simulations, we provide average values and standard deviations (in parentheses). bAnalysis of cyt C551 in both
oxidized form (PDB 351) and reduced form (PDB 451C) were performed with VMD program. cAverage variation observed in seven high resolution
X-ray structures from ref FELIX (PDB: 5cyt, 1qn2, 3c2c, lio3, 1hro, 1c2r, 1cxc). dMD simulations showed that the coordination between Fe and the
apical ligand is unphysical with the PM7 method in the ferric state. We thus do not report PM7 data for this redox state. Average variation observed
in seven high resolution X-ray structures from 27. eAnalysis using the seven structures used in ref 27.
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heating, the protein heavy atoms have been kept fixed by
adding harmonic restraints on their positions with force
constants of 10 kcal/mol/Å2. Subsequently, four successive
MD simulations in the NPT ensemble have been conducted
over 3 × 100 and 500 ps with restraint force constants of 10, 5,
1, and 0 kcal/mol/Å2, respectively. A time step of 2 fs has been
used. The final equilibrated structure is used as the starting
geometry for AMOEBA polarizable simulations.
Simulations have been conducted in the two redox states and

with either the water03 or water14 models. The same
parameters as in the previous section are used, except that a
RESPA integration algorithm allowing a 2.0 fs time step is used
here. The temperature has been controlled by a Bussi
thermostat.90 The Particle Mesh Ewald (PME) summation
technique has been applied to treat electrostatic interactions,
including polarization, with a real-space cutoff distance of 7.0 Å,
a grid of 64 × 64 × 64, and fifth-order B-splines. A cutoff with a
switching window at 10 Å has been applied to the van der
Waals interactions. Induced dipoles have been iterated to
convergence, until the Root-Mean-Square (RMS) change
between interactions fell below 10−5 D per atom and
simulations used the ASPC approach. With the equilibrated
structure obtained with the nonpolarizable FF, we have

performed another equilibration procedure with AMOEBA
parameters. For this, we have first fixed the hemeprotein, and
have done energy minimization with a convergence value of 0.5
kcal mol−1 Å−1. Equilibration has been obtained running
successive 50 ps NVT MD with a progressive increase of the
temperature from 50 to 300 K by steps of 50 K keeping
hemeprotein fixed. Then, we have carried out another
equilibration with the hemeprotein atom free to move. Finally,
we have conducted an 80 ps NPT simulation at 300 K and 1
atm to obtain a stable density of the system (higher than 1 gr/
cm3). A 10 ns MD simulation in the NVT ensemble has been
accumulated for analysis. Restraints on angles and bonds
involving the iron cation have been set as explained in the
previous section. For comparisons, we also carried out MD
simulations with a nonpolarizable force field (CHARMM)
using the NAMD program.89

The RMSDs of the protein backbone (focusing on residues 1
to 87) during MD simulation dynamics are shown in Figure 7.
For each simulation, the RMSD value is below 3 Å. When
focusing on amino acid residues pertaining to structured alpha
helices, the RMSDs are, as expected, smaller. We have not
noticed any unfolding of tertiary secondary structures during
the simulations. Compared to simulations with nonpolarizable

Figure 7. Upper panel, RMSD of protein backbone atoms. Lower panel, RMSD of protein backbone atoms belonging to alpha helices only. In all
cases, the last seven residues that belong to a flexible loop were not included in the RMSD calculation.

Table 4. Bond Distance (Å) and Angle (degree) Values for Heme Structurea

AMOEBA

parameters 1B5A DFT FeII Water14 FeIII Water14 FeII Water03 FeIII Water03

Fe−Nhis 2.00 1.97 2.07 (0.03) 2.05 (0.03) 2.07 (0.03) 2.05 (0.03)
Fe−Npor 2.00 2.01 2.10 (0.03) 2.11 (0.03) 2.10 (0.03) 2.11 (0.03)
Nhis−Fe-Npor 90.03 90.00 90.00 (2.51) 89.99 (2.51) 90.00 (2.50) 89.86 (2.50)

aRMN structure. DFT optimized geometry and averaged over the trajectories of different MD simulations with the standard deviations (within
parentheses).
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FF, the RMSDs show more slight fluctuations but remain on
the same order. In regard to the heme coordination sphere,
AMOEBA gives good agreement for bond lengths and angles
with NMR and DFT data (Table 4, Table S8). The force
constants adjusted to define the iron cation inner-sphere
coordination are transferable to the heme embedded into the
protein matrix. Overall, these data indicate stable dynamics with
the here developed parameters in both ferrous and ferric forms.
The atom RMSDs for amino acid residues localized within 10 Å
are shown in Figure S3. They are examined by types of residues
(polar, charged, apolar...). Again, we have not found any
conformational changes of theses residues that would be
suspicious. However, conformation fluctuations are often more
pronounced for the AMOEBA force field, probably because of
the more flexible form of the underlying potential energy
function. Future works will have to consider much longer
simulations to assess the stability of hemoproteins and to
investigate whether the herein developed AMOEBA force field
for heme leads to more accurate redox properties than standard
force fields.
These MD simulations have been run using 1440 2.6-GHz

processors connected via infinite band technology (IB 4x
FDR). The total wall clock time was approximately 12 h/ns of
simulation on the Occigen machine at CINES (Montpellier,
France). We mention that recent algorithmic developments of
Tinker-HP should further improve efficiency. MD simulation of
hemeproteins with AMOEBA is now computationally feasible
in reasonable times.

V. CONCLUSION
In this article, we have reported to our knowledge the first
parameters of heme for the polarizable AMOEBA force field.
They have been derived both for the ferrous and ferric forms.
Extensive validation has been obtained from calculations of
interaction energies with series of small molecules of biological
interest and on large water aggregates comprising around 80
water molecules. We have found that the description of the
electrostatic interaction with the heme is greatly improved with
AMOEBA. This is especially noticeable regarding interaction
energies with water aggregates for which the correlation with
DFT results outperforms that of a nonpolarizable model. That
said, we have also found the model for water to have strong
influence on the accuracy of the computed interaction energies.
The 2014 water model has been found to be in better
agreement with the reported DFT reference calculations,
although results obtained with the 2003 potential are similar
in nature. We have finally reported MD simulation of a
cytochrome using the AMOEBA force field.
The availability of parameters for heme combined with the

advent of highly efficient implementation of AMOEBA in the
TINKER-HP software opens the door to wide applications of
MD simulations of hemeproteins with AMOEBA. The herein
devised parameters are freely available in the SI or upon request
to the authors.
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Schnieders, M.; Ren, P.; Maday, Y.; Piquemal, J.-P. Scalable Evaluation
of Polarization Energy and Associated Forces in Polarizable Molecular
Dynamics: II. Toward Massively Parallel Computations Using Smooth
Particle Mesh Ewald. J. Chem. Theory Comput. 2015, 11 (6), 2589−
2599.
(52) Allinger, N. L.; Yuh, Y. H.; Lii, J. H. Molecular mechanics. The
MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 1989, 111
(23), 8551−8566.
(53) Kolafa, J. Time-reversible always stable predictor−corrector
method for molecular dynamics of polarizable molecules. J. Comput.
Chem. 2004, 25 (3), 335−342.
(54) Thole, B. T. Molecular polarizabilities calculated with a modified
dipole interaction. Chem. Phys. 1981, 59 (3), 341−350.
(55) Wu, J. C.; Chattree, G.; Ren, P. Automation of AMOEBA
polarizable force field parameterization for small molecules. Theor.
Chem. Acc. 2012, 131 (3), 1138.
(56) Bultinck, P.; Van Alsenoy, C.; Ayers, P. W.; Carbo-́Dorca, R.
Critical analysis and extension of the Hirshfeld atoms in molecules. J.
Chem. Phys. 2007, 126 (14), 144111.
(57) Hoe, W.-M.; Cohen, A. J.; Handy, N. C. Assessment of a new
local exchange functional OPTX. Chem. Phys. Lett. 2001, 341 (3),
319−328.
(58) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865−
3868.
(59) Calaminici, P.; Janetzko, F.; Köster, A. M.; Mejia-Olvera, R.;
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Table S1: Iterative Hirshfeld charges summed over fragments for the [PFeII/III-ImMe-EMS] and [PFeII/III-ImMe2] complexes 
(OPTX functionam) 

 

[PFeII/III-ImMe-EMS] ferrous ferric  

Porphyrin -1.72  -1.05   
Fe 1.60 1.71  
EMS 0.07 0.14  
ImMe 0.05 0.20  
[PFeII/III-ImMe2] 

  
 

Porphyrin -1.73  -1.05   
Fe 1.69 1.79  
ImMe 0.02 0.13  
ImMe 0.02 0.13  

 

 

  

Table S2: Interaction energy of heme and single molecules in kcal/mol obtained at the various computational levels. 

 IH AMOEBA MP2 B3LYP 
  DMA FIT DMA FIT   
  Water 14 Water 14 Water 03 Water 03   

HEME(FeII) – H2O 
A -15.36 -14.11 -14.69 -11.26 -11.80 -15.98 -16.01 
B -6.82 -6.53 -6.64 -6.56 -6.63 -7.66 -7.55 
C -2.06 -1.76 -1.78 -1.80 -1.81 -2.06 -1.87 
D -1.27 -1.08 -1.09 -1.11 -1.11 -1.28 -1.14 
E -6.66 -6.13 -5.68 -6.20 -5.70 -7.80 -6.77 
F -3.13 -3.16 -3.11 -3.12 -3.12 -5.15 -4.67 
G -20.39 -17.19 -17.00 -15.89 -15.98 -20.81 -19.33 

HEME(FeIII) – H2O   

A -13.73 -12.52 -12.85 -9.97 -10.32 -13.80 nc.a 
B -5.70 -5.60 -5.61 -5.65 -5.66 -6.30 nc. 
C -1.46 -1.26 -1.25 -1.27 -1.26 -1.40 nc. 
D -0.84 -0.70 -0.70 -0.71 -0.71 nc. nc. 
E -6.06 -5.94 -5.54 -5.89 -5.50 -5.20 nc. 
F -0.95 -1.61 -1.64 -1.50 -1.54 -3.80 nc. 
G -21.00 -17.64 -17.27 -17.19 -16.90 -21.00 nc. 

HEME(FeII) – Na+    

A -168.54 -146.98 -148.28 - - -166.15 nc. 
B -135.29 -124.56 -125.33 - - -134.42 nc. 
C -79.85 -73.92 -74.24 - - -75.61 nc. 
D -63.69 -59.49 -59.72 - - -63.25 nc. 
E -63.88 -107.79 -106.87 - - -121.70 nc. 

HEME(FeIII) – Na+     

A -131.89 -114.89 -114.83 - - -126.70 nc. 
B -101.79 -94.60 -94.31 - - -97.50 nc. 
C -54.04 -49.80 -49.61 - - -46.60 nc. 
D -41.24 -38.22 -38.09 - - -32.00 nc. 
E -0.39 -48.93 -49.47 - - -56.00 nc. 

HEME(FeII) – Cl-    

A 58.84 34.67 35.13 - - 36.60 40.30 
B 44.44 39.99 40.41 - - 39.20 38.89 
C 45.33 45.15 45.19 - - 45.20 44.93 
D 80.40 59.53 59.67 - - 49.38 54.00 

HEME(FeIII) – Cl-    

A 13.29 -5.83 -4.87 - - -12.31 nc. 
B 5.68 2.26 3.07 - - -1.19 nc. 
C 16.42 16.99 17.23 - - 16.05 nc. 
D 41.26 14.99 14.46 - - 8.33 nc. 

HEME(FeII) – CH3CH2NH3
+   



A -140.64 -132.66 -131.89 - - -141.70 -140.45 
B -106.48 -97.32 -97.30 - - -103.30 -101.58 
C -69.31 -63.48 -63.58 - - -65.50 -72.90 
D -42.11 -89.48 -83.82 - - -94.20 nc. 

HEME(FeIII) – CH3CH2NH3
+   

A -106.75 -101.82 -99.90 - - -103.90 nc. 
B -76.40 -69.89 -69.10 - - -69.70 nc. 
C -45.54 -41.29 -41.00 - - -38.70 nc. 
D 18.82 -30.12 -27.06 - - -28.10 nc. 

HEME(FeII) – CH3COO-    

A -140.64 -132.66 -131.89 - - -141.70 -140.45 
B -106.48 -97.32 -97.30 - - -103.30 -101.58 
C -69.31 -63.48 -63.58 - - -65.50 -72.90 
D -42.11 -89.48 -83.82 - - -94.20 nc. 

HEME(FeIII) – CH3COO-    

A -106.75 -101.82 -99.90 - - -103.90 nc. 
B -76.40 -69.89 -69.10 - - -69.70 nc. 
C -45.54 -41.29 -41.00 - - -38.70 nc. 
D 18.82 -30.12 -27.06 - - -28.10 nc. 

HEME(FeII) – Phenol    

A -17.11 -12.28 -12.59 - - -13.01 -19.32 
B -10.64 -7.41 -7.51 - - -4.50 -11.04 
C -3.58 -1.98 -1.99 - - 3.90 -2.73 

HEME(FeIII) – Phenol    

A -15.64 -10.85 -10.98 - - nc. nc. 
B -9.44 -6.43 -6.43 - - nc. nc. 
C -2.89 -1.54 -1.53 - - nc. nc. 

a: not computed (SCF convergence issues or obviously unreliable values) 

 

 

 

 

 

 

 

 

 

Table S3: Average interaction energies (kcal/mol) for the [PFeIIIImMe-EMS-(H2O)6] complex with two convergence criteria. 

 IH AMOEBA 

[PFeIIIImMe-EMS-

(H2O)6] 
 

DMA 

Water14 

FIT 

Water14 

DMA 

Water03 

FIT 

Water 03 

SCF converge 10-4 Ha     

〈∆𝐼𝐸〉 -22.84 -6.91 -5.44 -5.93 -4.25 

SCF converge 10-6 Ha     

〈∆𝐼𝐸〉 -22.80 -6.88 -5.40 -5.89 -4.21 

difference     

〈∆𝐼𝐸〉 -0.04 -0.04 -0.04 -0.04 -0.04 

 

Table S4: Average interaction energies (kcal/mol), standard deviations, RMSE and linear correlation coefficient between DFT 
(PBE and B3LYP) results and force field results. 

 IH AMOEBA 

[PFeIIImMe-EMS-(H2O)6] 
DMA 

Water14 

FIT 

Water14 

DMA 

Water03 

FIT 

Water 03 

PBE 
    

〈∆𝐼𝐸〉 -23.65 3.66 4.98 4.61 6.00 

𝜎(∆𝐼𝐸) 15.03 8.20 7.92 11.68 11.41 

RMSE 27.89 8.86 9.25 12.38 12.72 

R2 0.69 0.87 0.88 0.73 0.75 

B3LYP      

〈∆𝐼𝐸〉 -55.38 -28.46 -27.09 -27.55 -26.11 

𝜎(∆𝐼𝐸) 17.04 9.24 8.93 11.26 10.99 

RMSE 57.85 29.87 28.47 29.68 28.26 

R2 0.61 0.84 0.85 0.77 0.79 



Table S5: Interaction energy of [PFeII/III-ImMe-EMS] and [PFeII/III-ImMe2] complexes with water molecules in kcal/mol. 

PFeII-ImMe-EMS-(H2O)6] 

 IH AMOEBA PBE0 

  
DMA 

Water 14 
FIT 

Water 14 
DMA 

Water 03 
     FIT 
Water 03  

1 -77.07 -79.34 -76.19 -87.46 -84.33 -86.91 
2 -79.13 -61.12 -58.90 -74.35 -71.69 -66.69 
3 -76.70 -72.51 -71.59 -79.42 -78.80 -73.09 
4 -124.92 -98.02 -95.99 -96.95 -95.27 -102.31 
5 -146.95 -89.59 -87.53 -82.13 -80.40 -106.39 
6 -150.24 -128.25 -124.45 -125.41 -121.97 -123.20 
7 -140.61 -107.17 -107.98 -99.04 -100.23 -107.09 
8 -146.38 -118.36 -115.27 -110.05 -106.72 -125.44 
9 -119.50 -96.12 -95.61 -95.40 -94.66 -104.85 

10 -102.98 -65.79 -64.32 -61.36 -59.55 -66.00 
11 -98.35 -76.94 -74.49 -80.26 -77.74 -70.12 
12 -124.12 -96.23 -92.53 -98.23 -94.16 -95.39 
13 -116.94 -71.70 -69.64 -69.76 -67.41 -75.77 
14 -103.89 -79.86 -80.23 -90.44 -90.90 -79.24 
15 -110.90 -91.71 -91.30 -84.54 -83.91 -88.10 
16 -103.29 -99.77 -95.77 -97.33 -92.83 -77.96 
17 -105.41 -69.34 -67.05 -65.02 -62.35 -66.33 
18 -133.86 -86.95 -86.83 -90.73 -90.30 -82.19 
19 -117.55 -95.86 -96.02 -101.28 -101.38 -95.92 
20 -143.39 -98.09 -99.28 -91.68 -92.74 -115.52 
21 -110.94 -85.67 -85.82 -91.35 -91.29 -84.97 
22 -75.46 -42.14 -41.10 -50.78 -49.63 -41.95 
23 -143.59 -103.40 -102.84 -88.68 -88.05 -111.22 
24 -115.27 -87.33 -86.69 -73.19 -73.03 -98.38 
25 -82.88 -64.08 -61.25 -58.76 -55.99 -59.14 
26 -85.89 -64.95 -63.31 -67.12 -65.74 -75.66 
27 -59.03 -57.83 -56.28 -63.42 -61.77 -50.58 
28 -161.13 -103.24 -101.67 -89.36 -87.56 -99.10 
29 -108.48 -70.01 -69.29 -65.62 -64.78 -55.72 
30 -78.03 -41.42 -43.87 -44.90 -47.24 -46.02 

PFeIII-ImMe-EMS-(H2O)6] 

 IH AMOEBA PBE0 

  
DMA 

Water 14 
FIT 

Water 14 
DMA 

Water 03 
      FIT 
Water 03  

1 -60.11 -68.51 -66.40 -76.16 -74.20 -71.25 
2 -63.87 -47.70 -47.93 -61.11 -61.01 -50.16 
3 -53.62 -52.89 -52.89 -59.84 -60.12 -- 
4 -106.11 -81.40 -79.36 -80.66 -78.67 -83.00 
5 -115.77 -65.99 -64.22 -59.32 -57.55 -75.05 

6 -118.45 -108.38 -104.19 -105.15 -101.05 -95.55 
7 -120.09 -90.83 -90.54 -82.46 -82.20 -84.74 
8 -121.09 -101.31 -98.88 -92.88 -89.94 -101.77 
9 -90.10 -73.74 -73.71 -72.87 -72.45 -- 

10 -86.63 -53.69 -53.46 -49.57 -48.76 -49.30 
11 -79.11 -65.82 -65.10 -68.21 -67.49 -55.40 
12 -103.32 -79.62 -77.15 -81.59 -78.78 -74.95 
13 -92.77 -55.11 -52.69 -53.04 -50.32 -51.75 
14 -81.32 -63.48 -64.25 -73.57 -74.40 -59.70 
15 -100.04 -86.22 -85.39 -78.71 -77.65 -77.79 
16 -90.11 -89.70 -86.70 -87.28 -83.66 -63.97 
17 -87.09 -53.48 -51.26 -49.24 -46.66 -47.19 
18 -118.29 -74.36 -74.35 -77.86 -77.87 -65.88 
19 -100.60 -82.10 -83.01 -87.19 -88.10 -81.78 
20 -119.12 -81.21 -81.89 -74.40 -74.82 -92.00 
21 -99.86 -78.18 -76.72 -83.74 -81.98 -71.46 
22 -61.31 -31.10 -30.92 -39.38 -39.03 -26.32 
23 -125.45 -93.52 -92.30 -79.03 -77.37 -- 
24 -87.20 -68.32 -67.68 -54.35 -53.68 -- 
25 -69.89 -56.00 -53.07 -50.61 -47.59 -- 
26 -69.92 -53.43 -49.28 -55.67 -51.89 -58.76 
27 -36.72 -39.98 -37.23 -45.57 -42.71 -28.39 
28 -138.66 -87.73 -83.97 -74.11 -70.02 -- 
29 -75.31 -44.03 -43.99 -39.39 -39.03 -- 
30 -51.33 -23.18 -24.36 -26.38 -27.39 -22.49 

PFeII-ImMe2-(H2O)6 
 IH AMOEBA PBE0 

  
DMA 

Water 14 
FIT 

Water 14 
DMA 

Water 03 
      FIT  
Water 03  

1 -54.44 -75.75 -71.95 -69.96 -65.81 -85.24 
2 -98.38 -135.02 -132.64 -117.42 -114.79 -142.56 
3 -43.58 -93.56 -91.81 -90.84 -88.97 -112.67 
4 -45.66 -63.11 -62.77 -62.07 -62.30 -75.15 
5 -38.71 -72.14 -72.17 -84.06 -83.77 -84.96 
6 -63.92 -115.03 -112.68 -119.04 -116.32 -123.53 
7 -71.76 -79.35 -79.84 -76.20 -76.67 -87.51 
8 -70.14 -65.60 -63.60 -74.99 -72.99 -- 
9 -67.74 -78.46 -79.39 -81.43 -82.32 -- 

10 -32.93 -38.80 -35.10 -45.73 -41.81 -49.13 
11 -76.79 -84.16 -83.70 -91.31 -90.73 -101.24 
12 -43.87 -62.14 -60.47 -62.31 -60.97 -65.81 
13 -70.15 -68.01 -66.99 -67.16 -65.99 -66.73 
14 -63.08 -83.62 -80.38 -83.71 -80.62 -93.83 
15 -85.21 -116.92 -115.17 -113.29 -111.62 -124.09 



16 -70.40 -92.93 -90.05 -91.89 -88.96 -105.17 
17 -63.63 -78.67 -77.69 -79.27 -78.59 -85.22 
18 -82.56 -116.32 -114.61 -108.61 -107.11 -125.43 
19 -95.34 -120.49 -119.99 -115.41 -115.18 -150.94 
20 -88.27 -122.03 -120.61 -119.13 -117.59 -145.23 
21 -43.38 -90.46 -87.57 -88.86 -85.92 -110.66 
22 -68.26 -74.19 -72.94 -74.77 -73.45 -95.06 
23 -113.48 -146.78 -144.53 -139.42 -136.95 -159.57 
24 -67.39 -109.87 -107.42 -117.12 -114.66 -130.94 
25 -65.98 -89.41 -87.14 -94.88 -92.42 -113.78 
26 -92.50 -122.78 -120.94 -121.51 -119.18 -130.84 
27 -63.72 -92.49 -89.84 -101.95 -99.28 -- 
28 -117.19 -135.92 -132.68 -127.76 -124.32 -147.19 
29 -72.38 -110.06 -108.93 -106.74 -105.19 -118.26 
30 -69.69 -109.74 -107.79 -112.33 -109.74 -128.54 

PFeII-ImMe-EMS-(H2O)6] 

 PBE0 B3LYP     
1 -86.91 -56.70     
2 -66.69 -36.58     
3 -73.09 -48.78     
4 -102.31 -71.45     
5 -106.39 -72.58     
6 -123.20 -99.94     
7 -107.09 -78.62     
8 -125.44 -95.71     
9 -104.85 -75.35     

10 -66.00 -35.69     
11 -70.12 --     
12 -95.39 -66.98     
13 -75.77 -47.35     
14 -79.24 -49.59     
15 -88.10 -59.04     
16 -77.96 -48.39     
17 -66.33 -35.56     
18 -82.19 -50.63     
19 -95.92 -71.27     
20 -115.52 --     
21 -84.97 -73.87     
22 -41.95 -12.88     
23 -111.22 -79.02     
24 -98.38 -73.00     
25 -59.14 -21.96     
26 -75.66 -42.32     
27 -50.58 -20.91     

28 -99.10 -63.10     
29 -55.72 -22.86     
30 -46.02 -20.67     

 

 

Tableau S6:  Restrain parameters with force constants in kcal/Å2 for distances and kcal/degree2 for angles.  

restrain-distance Fe Nhis 250.0 1.9 2.0  
restrain-distance Fe Smet 250.0 1.9 2.0  
restrain-distance Fe Npor1 250.0 1.9 2.0  
restrain-distance Fe Npor2 250.0 1.9 2.0  
restrain-distance Fe Npor3 250.0 1.9 2.0  
restrain-distance Fe Npor4 250.0 1.9 2.0  
restrain-angle Nhis Fe Npor1 10.0 85.0 95.0 
restrain-angle Nhis Fe Npor2 10.0 85.0 95.0 
restrain-angle Nhis Fe Npor3 10.0 85.0 95.0 
restrain-angle Nhis Fe Npor4 10.0 85.0 95.0 
restrain-angle Smet Fe Npor1 10.0 85.0 95.0 
restrain-angle Smet Fe Npor2 10.0 85.0 95.0 
restrain-angle Smet Fe Npor3 10.0 85.0 95.0 
restrain-angle Smet Fe Npor4 10.0 85.0 95.0 
 

 

Tableau S7:  Bond lengths (in Å) and valence angles (in degree) for the reduced heme structure (similar values are obtained for 
the ferric states for these parameters). MD simulations with the Standard deviations (in brackets).  

Parameters 351Ca DFTb PM7 AMOEBA 
NE1-CE2 1.36 1.37 1.40 (0.02) 1.37 (0.03) 
CE2-CD2 1.39 1.45 1.45 (0.02) 1.40 (0.03) 
CD2-CD2 1.38 1.38 0.37 (0.02) 1.40 (0.03) 
CE2-C2 1.38 1.40 1.38 (0.02) 1.40 (0.03) 
NE2-CD2 1.36 1.38 1.40 (0.03) 1.34 (0.03) 
CD2-CG 1.38 1.38 1.40 (0.03) 1.35 (0.02) 
ND1-CG 1.36 1.38 1.40 (0.04) 1.37 (0.02) 
ND1-CE1 1.36 1.36 1.38 (0.04) 1.38 (0.03) 
CE1-NE2 1.36 1.33 1.37 (0.04) 1.38 (0.03) 
SD-CE 1.80 1.80 1.81 (0.03) 1.81 (0.04) 
CE2-C2-CE2 125 125 123 (2.6) 126 (0.3) 
NE1-FE-NE1(1) 90 90 90 (2.0) 90 (0.3) 
NE1-FE-NE1(2) 178 179 176 (2.0) 177 (1.8) 
CD2-NE2-CE1 108 107 107 (2.3) 107 (2.5) 
CG-CD2-NE2 107 105 108 (2.7) 111 (2.6) 
ND1-CE1-NE2 109 109 109 (2.0) 109 (2.4) 
CE-S-CG 105 104 102 (3.9) 100 (2.6) 

a: geometrical data extracted from the X-ray structure contained in PDB file 351C. b: geometrical data obtained on a gas phase 
optimized geometry of the [PFeII-ImMe-EMS] complex. c: Data obtained from classical MD simulation with the standard 
CHARMM force field.  

 



Tableau S8:  Bond lengths (in Å) and valence angles (in degree) for the reduced heme structure (similar values are obtained for 
the ferric states for these parameters). MD simulations with the Standard deviations (in brackets).  

Parameters 1B5Aa DFTb CHARMMc AMOEBA-FIT 
NE1-CE2 1.37 1.37 1.35 (0.02) 1.37 (0.02) 
CE2-CD2 1.45 1.45 1.46 (0.03) 1.40 (0.03) 
CD2-CD2 1.35 1.38 1.35 (0.03) 1.40 (0.03) 
CE2-C2 1.36 1.4 1.35 (0.03) 1.40 (0.03) 
NE2-CD2 1.33 1.38 1.38 (0.03) 1.38 (0.02) 
CD2-CG 1.36 1.38 1.36 (0.03) 1.38 (0.03) 
ND1-CG 1.38 1.38 1.37 (0.02) 1.37 (0.02) 
ND1-CE1 1.33 1.35 1.37 (0.02) 1.35 (0.02) 
CE1-NE2 1.36 1.33 1.32 (0.02) 1.34 (0.02) 
CE2-C2-CE2 126 125 126 (2.3) 126 (2.8) 
NE1-FE-NE1(1) 90 90 90  (1.8) 90 (2.8) 
NE1-FE-NE1(2) 179 179 176 (2.2) 177 (1.7) 
CD2-NE2-CE1 109 107 105 (1.8) 104 (2.3) 
CG-CD2-NE2 108 109 112 (1.9) 112 (2.4) 
ND1-CE1-NE2 108 109 106 (1.8) 111 (2.4) 

a: geometrical data extracted from the X-ray structure contained in PDB file 1B5A. b: geometrical data obtained on a gas phase 
optimized geometry of the [PFeII-ImMe2] complex. c: Data obtained from classical MD simulation with the standard CHARMM 
force field.  

  

 

 

 

 

Figure S1: Normalized autocorrelation functions of the AMOEBA interaction energy of heme in the ferrous 
and ferric states with water aggregates (using the water03 (a) and water14 (b) water models). See section 
II.3 for details. 

 

 



 

Figure S2: Energy profile associated to the rotation around the Nhis-Fe bond. The angle is one of the Chis-Nhis-Fe-Nheme dihedral. 
The geometries corresponding to each extremum is schematized by a square holding four nitrogen atoms to symbolize the 
porphyrin ligand and by a pink three-branch fork representing the methyl-imidazole ligand. DFT calculations with PBE and OPTX-
PBE functionals have been computed with deMon2k. 

 

 

 

Figure S3: RMSD of aminoacid residues located within 10Å of the heme group using the AMOEBA or 
CHARMM (no_pol) force field.  

 

 

 



MD simulation of heme cofactors embedded in water droplets with the PM7 methods 

 

In a first step classical MD simulations were carried out with the CHARMM force field and the CHARMM 

c35b3 version. For each of the [PFeII-ImMe-EMS] and [PFeII-ImMe2] complexes the heme was 

solvated in a box of TIP3P molecules the edge of which was set to 45 Å. After geometry 

optimization the systems was equilibrated by MD simulations at 300 K during 2 ns using periodic 

boundary condition and the Particle Mesh Ewald summation. The time step was set to 1 fs and 

the temperature was controlled with a Langevin algorithm. After equilibration we extracted 

aggregates comprised of the heme complexes and all the water molecules situated within a 12 Å 

radius sphere centered on the iron cation. The water droplets contained 231 and 205 water 

molecules for the [PFeII-ImMe-EMS] and [PFeII-ImMe2] complexes respectively. The aggregates 

were then used in PM7 simulations. 

We used the CUBY4 framework1 which is interfaced to MOPAC20162 to carry out geometry 

optimization and MD simulations. We first carried 200 steps of geometry optimizations at the 

PM7 semi-empirical method3. Tests with PM64 were not conclusive since the iron coordination in 

the optimized geometry was not meaningful. Also simulations for the ferric state frequently failed 

to converge. We therefore restricted our simulation to the ferrous state. MD simulations were 

launched for 80 ps with a time step of 2 fs. Temperature was controlled with a Nose-Hoover 

thermostat (coupling frequency of 0.1 ps-1). The shape of the water droplet was controlled with 

the confinement algorithm developed by Belgov and Roux et al. as implemented in CUBY45.  

  

AMOEBA Force Field parameters 

The parameters created for heme cofactor in its ferrous and ferric forms will be available on the 
TINKER-HP website soon. 
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CONCLUSION 

In this chapter, we reported efforts toward the use of sophisticated force fields going beyond the point 

charge description of electrostatics. The objective underlying these efforts is to reach significantly 

more accurate evaluation of redox potentials of biological redox cofactors nested within proteins. 

AMOEBA FF was chosen as a workhorse. We have developed sets of electrostatic multipoles for heme 

in both ferrous and ferric states. Extensive validations have been carried out against DFT and MP2 

calculations. In the case of interaction between heme and small molecules, AMOEBA parameters give 

better results especially for highly polarizable groups. The interaction energies calculated with 

AMOEBA have an excellent correlation with DFT results outperforming non-polarizable models. The 

water model was found to be important, the 2014-water model giving better results than the 2003-

water model. Thanks to recent and decisive algorithmic developments in Tinker-HP software, we 

carried out MD simulations of heme proteins on the nanosecond time scale with the newly developed 

parameters.   

The perspective of the development reported in this Chapter are wide. The next step would be to use 

the AMOEBA parameters to evaluate redox potentials in the series of heme proteins introduced in 

Chapter 1. The heme parameters for AMOEBA will also be useful for other research groups interested 

in hemoproteins. According the specific aim, these parameters may also be adapted for other chemical 

variants of the heme cofactors. 
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PART II 

Real-Time Propagation of the Electronic 
Density in polarizable environment  
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Real-Time Propagation of the Electronic Density in polarizable 
environment  

 

Electron transport (ET) is a fundamental process taking place in biological systems. For example light 

harvesting, the cellular respiratory chains, enzymatic reactions or defenses against oxidative stress all rely 

on transport of electrons over nanometers1. The temporal scales associated with these phenomena cover 

several orders of magnitude ranging from a few microseconds (e.g. long-range ET in cytochromes in the 

respiratory chain) down to tens of atto-seconds (e.g. charge migration within molecules). Understanding 

the molecular mechanism governing these fascinating processes is extremely motivating. The conceptual 

frameworks commonly used to rationalize electron transfers between molecules can be classified into two 

categories.   

The first class covers ET limited by nuclear motion and can be understood using the Marcus theory. The 

theory considers two electronic diabatic states corresponding to the transferred electron either of the 

electron donor or on the electron acceptor. In order to 

preserve energy, ET can only take place for nuclear 

configurations corresponding to degeneracy of the two 

diabatic states. Therefore nuclear motion gate the 

electron tunneling for biological ET, because proteins 

exhibit multiscale dynamics (femto- to microseconds), 

so it can be the overall rate of electron transfer. In the 

regions of the conformational space associated with 

degeneracy of the diabatic states, tunneling of electron 

from the donor to the acceptor over the intervening 

medium takes place on the atto- to femtosecond time 

scale depending on the strength of the quantum 

mechanical coupling between the diabats. A great deal of 

effort has been deployed over the last decade to unravel 

the microscopic mechanisms governing protein-mediated 

tunneling. Semi-empirical models such as the pathway 

model were developed in the mid-1980s by Hopfied, 

Figure 1. Tunneling currents involved in one 

of the inter iron-sulfur clusters electron 

transfer in the Respiratory complex 1. 

Interatomic distances are given in Å. The full 

and dashed arrows represent primary and 

secondary interatomic fluxes. The stronger 

the density flux through an atom, the darker 

its color. (Figure 2 from ref 3) 
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Beratan and Onuchic to map the ET pathway2. Some researchers sought the rationale of tunneling 

pathways based on the calculation by modern electronic structure theory programs, of tunneling density 

currents. In particular Stuchebruhkov thoroughly investigated how the electron flows from the donor to 

the acceptor3 highlighting the protein residues that are the most important for efficient tunneling (Figure 

1). 

Another kind of electron transfer is the class of those governed by electron correlations as described by 

Cederbaum. They are called charge migration and proceed without any rearrangement of the nuclei.  They 

also take place on attosecond time scales. 

The theoretical model to simulate real-time time-dependent electronic structure response to external 

perturbations is the time-dependent Schrödinger equation. As for stationary calculations, approximations 

are required to simulate the time-dependent Schrödinger equation. Two families of methods can be 

distinguished. One on hand the wave function approaches such as the TD-HF (Time-dependent-

Hartree−Fock), TD-CI (Time-dependent-configuration interaction), or the TD-MCSCF (Time-dependent 

multi configurational self-consistent field); on the other hand the Real-Time time-dependent density 

functional theory (RT-TDDFT). The latter has been gaining strong momentum in the last years due to the 

advantage ratio of accuracy toefficiency.  

During the first years of the development, much effort was placed on devising efficient and robust 

algorithms. With these developments, we can now apply RT-TDDFT to molecular systems comprised of 

hundreds of atoms4.  The current challenges are two-fold. On one hand, it is needed to continue developing 

highly efficient algorithms to simulate larger system and on the other hand, to account for environment 

effects, especially for heterogeneous environments. The objective of the present Part II is to contribute to 

the development of an original and highly effective RT-TDDFT methodology to deal with ED in large and 

heterogeneous environment.  

In Chapter 4, we introduce the RT-TDDFT methodology. In Chapter 5, we report an original coupling 

between RT-TDDFT and a polarizable force field to take into account the heterogeneous environment.   

 

1. (a) Moser, C. C.; Keske, J. M.; Warncke, K.; Farid, R. S.; Dutton, P. L., Nature of biological electron 
transfer. Nature. 1992, 355, 796; (b) Page, C. C.; Moser, C. C.; Chen, X.; Dutton, P. L., Natural engineering 
principles of electron tunnelling in biological oxidation–reduction. Nature. 1999, 402, 47; (c) Gray, H. B.; 
Winkler, J. R., Electron tunneling through proteins. Q. Rev. Biophysics. 2003, 36 (3), 341. 
2. (a) Beratan, D. N.; Onuchic, J. N.; Hopfield, J. J., Electron tunneling through covalent and 
noncovalent pathways in proteins. J. Chem. Phys. 1987, 86 (8), 4488; (b) Beratan, D. N.; Onuchic, J. N., 
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Electron tunneling pathways in proteins: influences on the transfer rate. Photosynth. Res. 1989, 22 (3), 
173; (c) Beratan, D. N.; Onuchic, J. N.; Betts, J. N.; Bowler, B. E.; Gray, H. B., Electron tunneling pathways 
in ruthenated proteins. J. Am. Chem. Soc. 1990, 112 (22), 7915. 
3. Hayashi, T.; Stuchebrukhov, A. A., Electron tunneling in respiratory complex I. Proc. Natl. Acad.  Sci. 
2010, 107 (45), 19157. 
4. Provorse. R. M.; Isborn. M. C., Electron dynamics with real-time time-dependent density functional 
theory. Int. J. Quantum Chem. 2016, 116 (10), 739-749. 
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Efficient and Robust Implementation of RT-TDDFT in deMon2k 

The theory of Time-Dependent Density Functional Theory (TDDFT) was developed in the 1980’s by 

Runge and Gross1. They proved that the evolution of the electron density of a molecular system is 

uniquely defined by the time dependent external potential acting on the electrons (within an arbitrary 

constant). This theory opens the door toward the understanding of the response of a molecular system 

subjected to external perturbations like the electric field component of an electromagnetic wave. The 

TDDFT equations can be solved by application of the Linear Response theory giving rise to the so-called 

Linear-Response TDDFT (LR-TDDFT)2 method. This formalism is adapted for weak perturbations. LR-

TDDFT has found many applications in theoretical chemistry to calculate electronic excitation energies 

and oscillator strengths, making possible the simulation of absorption spectra of molecules3. LR-TDDFT 

has also been used in combination with molecular dynamics to simulate non-adiabatic chemical 

reactivity4. The acronym RT-(Real Time)-TDDFT on the other hand, refers to methodologies that 

attempt to propagate the equations-of-motion for the electron density (𝜌) explicitly by numerical 

integration. RT-TDDFT simulations date back to the works of Theilhaber2b,  Calvayrac, Reinhard, and 

Suraud5,  and of Bertsch and Yabana6. The explicit propagation of the Runge and Gross equations has 

multiple advantages. First, the perturbations applied in RT-TDDFT are not necessarily weak as in LR-

TDDFT which opens the possibility to simulate non-linear optical phenomena, for example the 

generation of High Harmonics7 (HHG) or the ionization of molecules under strong electric fields8. 

Second, RT-TDDFT gives access to the realm of attosecond electron dynamics, the understanding of 

which is essential in the description of various physical-chemical processes such as the response of a 

molecule to irradiation by photons or massive particles (protons, electrons …). Finally the algorithms 

of simulating the evolution of the density look formally straightforward. 

While RT-TDDFT has emerged in the physics community already in the 1990’s, it has gained strong 

momentum in theoretical chemistry more recently. Implementations of RT-TDDFT for molecular 

systems have been reported in Octopus9, GAUSSIAN10, SIESTA11, NWCHEM12, QBOX13, CPMD14, and Q-

chem15 . The range of applications includes the simulation of spectroscopic observables (UV−visible 

spectra16, core-level near-edge X-ray absorption spectra17, photoelectron emission spectra18), the 

investigation of coherence and ultrafast charge-transfer dynamics in small molecules19, the study of 

molecular conductance in polymers20, or the simulation of non-adiabatic electron-nuclear dynamics14. 

A current challenge for RT-TDDFT approaches is to achieve efficient and robust implementations in 

order to address large molecular systems comprised of hundreds of atoms. The simulation of electron 

dynamics (ED) by RT-TDDFT requires a huge number of Kohn-Sham potential calculations, which can 

limit the accessible simulation lengths or the size of the simulated systems. In the context of stationary 
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DFT, algorithmic developments such as the Resolution of the Identity21 (RI) or variational Density 

Fittings22 (DF) have been decisive to reach high computational efficiency. RT-TDDFT methods could 

potentially benefit from such algorithms. This is the objective of the work described in this Chapter, 

namely to carry out a new implementation of RT-TDDFT within the deMon2k23 software that provides 

this kind of advanced algorithms. In section I, we will detail the formalism employed in RT-TDDFT 

equations. We will cover the mathematical expressions for carrying out ED simulations, details on the 

auxiliary DFT framework used in deMon2k, the types of available perturbations to trigger electron 

dynamics and finally the tools implemented to analyze the time dependent electron density. In Section 

II, we will report various ED simulations results aimed at testing the computational performance of the 

implementation. We will occasionally refer to the article published in the Journal of Chemical Theory 

and Computation describing our implementation. This manuscript is reproduced at the end of Part II.  

 

I. REAL-TIME AUXILIARY TDDFT  

I.1 Electronic Equations-of-Motion 

I.1.a Linear Combination of Atomic Orbitals formalism 

Runge and Gross developed the many body wave function TD Schrödinger equation into the single-

particle TD density functional theory24. They showed that there is a one-to-one correspondence 

between the time-dependent density 𝜌(𝒓, 𝑡)  and the time-dependent potential 𝑣𝑒𝑥𝑡(𝐫, t) for a given 

set of initial conditions. The most attractive way to calculate approximate densities is provided by the 

TD Kohn-Sham (TDKS)25 framework that refers to a fictitious system of non-interacting electrons having 

the same ground-state density as the real system of interacting electrons. Each TDKS single particle 

wave function 𝜓𝑖 obeys a time-dependent Schrödinger equation that reads, in atomic units: 

𝑖
𝜕𝜓𝑖(𝒓, 𝑡)

𝜕𝑡
= �̂�[𝜌(𝐫, 𝑡)]𝜓𝑖(𝒓, 𝑡) 

(1) 

The non-relativistic TDKS operator �̂� is a functional of the density which is comprised of four terms.  

�̂�(𝒓, 𝑡) = 𝑣𝑒𝑥𝑡(𝒓, 𝑡) −
1

2
∇2 + ∫

𝜌(𝒓′, 𝑡)

|𝒓 − 𝒓′|
𝑑𝑟′ + 𝑣𝑋𝐶[𝜌(𝒓, 𝑡)] 

(2) 

The first term on the r.h.s is the external potential 𝑣𝑒𝑥𝑡  felt by the electrons. It includes the potential 

created by the nuclei. It can be supplemented by other terms describing, for example the interaction 

with an external electric field or a charged projectile. In the context of hybrid QM/MM simulations the 

external potential is supplemented by the potential created by charged or polarized MM atoms (cf. 

Chapter 4). The last three terms are the kinetic energy operator, the classical Coulomb potential and 
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the exchange correlation (XC) potential. 𝑣𝑋𝐶  is a functional of the density that is in principle non local 

in space and time. In many implementations though the dependence in time of 𝑣𝑋𝐶  is neglected. This 

is called the adiabatic approximation26. Under this hypothesis, the approximate XC functionals 

developed for stationary DFT calculations can be re-used in RT-TDDFT without special reprogramming. 

Although the adiabatic approximation is valid for many applications27, it introduces a supplementary 

approximation in the propagation besides the unknown nature of the exact XC functional. Attempts 

are currently underway to go beyond the adiabatic approximation28, but we will not consider them in 

this Chapter. 

The density 𝜌 of the non-interacting reference system is obtained from the manifold of KS orbitals, the 

electronic occupations of which are denoted  𝑛𝑖.  

𝜌(𝒓, 𝑡) = ∑ 𝑛𝑖𝜓𝑖
∗(𝒓, 𝑡)𝜓𝑖(𝒓, 𝑡)

𝑎𝑙𝑙

𝑖

 
(3) 

The energy of the molecular systems 𝐸[𝜌(𝒓, 𝑡)] reads, 

𝐸[𝜌(𝒓, 𝑡)] = ∫ 𝑣𝑒𝑥𝑡(𝐫, t)𝜌(𝒓, 𝑡)𝑑𝑟 + ∑ ∫ 𝑛𝑖𝜓𝑖
∗(𝒓, 𝑡) (−

1

2
∇2) 𝜓𝑖(𝒓, 𝑡)

𝑎𝑙𝑙

𝑖

𝑑𝑟

+
1

2
∫ ∫

𝜌(𝐫, 𝑡)𝜌(𝒓′, 𝑡)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′ + 𝐸𝑥𝑐[𝜌(𝒓, 𝑡)] 

(4) 

In practice, in order to code the above equation it is necessary to choose a methodology to represent 

the KS molecular orbitals (MOs).  A common strategy is to define a basis set and to expand the KS MO 

as linear combinations of the basis set elements29. Localized atomic orbitals (e.g. Gaussian functions) 

or plane waves have been proposed in RT-TDDFT. The former choice is well suited for confined 

molecular systems ("cluster approach"). This is the choice made in NWChem30, Gaussian31, Qchem32 or 

deMon2k23. The latter is more adapted for periodic systems (e.g. CPMD). An alternative which is more 

frequently encountered in codes developed by physicists is to represent KS MOs on discretized grids 

in real space (see for instance the Octopus33 or TELEMAN34 codes).  

In deMon2k, the KS molecular orbitals are expanded as Linear Combinations of Gaussian-Type Orbitals 

(LCGTO). We use Greek letters 𝜇 , 𝜈 to denote AO.  For simplicity the same notations are used to index 

them. The KS MOs read: 

𝜓𝑖(𝒓, 𝑡) = ∑ 𝑐𝜇𝑖(𝑡)𝜇(𝒓)

𝑁𝐴𝑂

𝜇=1

 

(5) 
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where 𝑁𝐴𝑂 is the number of atomic orbitals (AO). The MO coefficients 𝑐𝜇𝑖  hold the dependence in time. 

It has to be noticed that because of the occurrence of the imaginary unit in the time-dependent 

Schrödinger equations, the MO coefficients are complex numbers in RT-TDDFT simulations (𝑐𝜇𝑖 =

𝑐𝜇𝑖
𝑅 + 𝑖𝑐𝜇𝑖

𝐼 , 𝑐𝜇𝑖
∗  denoting the complex conjugate of 𝑐𝜇𝑖). The electron density can be written from the 

density matrix 𝑃, the elements of which are given by Eq. 7. 

𝜌(𝑡, 𝒓) = ∑ 𝑃𝜇𝜐(𝑡)𝜇(𝒓)𝜈(𝐫)

𝑁𝐴𝑂

𝜇,𝜈

 (6) 

𝑃𝜇𝜈(𝑡) = 2 ∑ 𝑐𝜇𝑖
∗ (𝑡)𝑐𝜈𝑖(𝑡)

𝑁𝑀𝑂 2⁄

𝑖

 (7a) 

𝑃𝜇𝜈(𝑡) = 2 ∑ (𝑐𝜇𝑖
R (𝑡)𝑐𝑣𝑖

R (𝑡) + 𝑐𝜇𝑖
I (𝑡)𝑐𝑣𝑖

I (𝑡) + 𝑖 (𝑐𝜇𝑖
I (𝑡)𝑐𝑣𝑖

R (𝑡) − 𝑐𝜇𝑖
R (𝑡)𝑐𝑣𝑖

I (𝑡)))

𝑁𝑀𝑂/2

𝑖

 (7b) 

𝑃𝜇𝜈(𝑡) = 2 ∑ (𝑃𝜇𝑣
R (𝑡) + 𝑖𝑃𝜇𝑣

I (𝑡))

𝑁𝑀𝑂/2

𝑖

 (7c) 

where 𝑁𝑀𝑂 is the number of occupied MO. We have defined the matrices 𝑃𝑅 and 𝑃𝐼 that collect the 

real and imaginary elements of the full density matrix. One can show that 𝑃𝑅is symmetric while 𝑃𝐼 is 

anti-symmetric. Having introduced the LC-GTO framework we can rewrite Eq. 4 with the help of matrix 

and bracket notations.  

𝐸[𝜌(𝒓, 𝑡)] = ∑ 𝑃𝜇𝜈𝐻𝜇𝜈
𝑒𝑥𝑡

𝜇,𝑣

+ ∑ 𝑃𝜇𝜈 ⟨𝜇|−
1
2

∇2|𝑣⟩

𝜇,𝑣

+ ∑ ∑ 𝑃𝜇𝜈(𝑡)𝑃𝜎𝜏(𝑡)⟨𝜇𝜈‖𝜎𝜏⟩ +  𝐸𝑥𝑐[𝜌(𝒓, 𝑡)]

𝜎,𝜏𝜇,𝜈

 

(8) 

𝐻𝜇𝜈
𝑒𝑥𝑡  and 𝐻𝜇𝜈

𝑘𝑖𝑛 = ⟨𝜇|−
1

2
∇2|𝑣⟩ are matrix elements of the external and kinetic operators. Together 

they form the core Hamiltonian. The symbol ∥ stands for the coulomb operator (1/|𝒓 − 𝒓′|). The Kohn-

Sham potential is defined by differentiating the energy with respect to the electron density. In matrix 

notations the matrix elements of the KS potential are readily obtained by differentiation with respect 

to the elements of the density matrix.   

𝐻𝜇𝑣 ≡
𝜕𝐸

𝜕𝑃𝜇𝑣
= 𝐻𝜇𝜈

𝑒𝑥𝑡 + ⟨𝜇|−
1
2 ∇2|𝑣⟩ + ∑ 𝑃𝜎𝜏(𝑡)⟨𝜇𝜈‖𝜎𝜏⟩

𝜎,𝜏

+  
𝜕𝐸𝑥𝑐[𝜌(𝒓, 𝑡)]

𝜕𝑃𝜇𝑣
 

(9) 
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I.1.b Numerical approaches to the Liouville-von Neuman equation 

i) Generalities on propagators 

Eq. 2 can be recast using the density matrix 𝑃 into a Liouville-von Neumann type equation35. 

𝑖
𝜕𝑃′(𝑡)

𝜕𝑡
= [𝐻′(𝑡), 𝑃′(𝑡)]  

 (10)  

This expression assumes that the electronic wave functions are expressed on an orthogonal basis (as 

emphasized by the use of primes). Yet, in general the sets of atomic orbitals for polyatomic molecules 

are not orthogonal. To use Eq. 10 a transformation to an orthogonal basis set is needed. This procedure 

is similar to that employed in stationary DFT calculations where a transformation to an orthogonal 

basis is operated to facilitate the resolution of the Roothaan-Hall equations29. We use the Löwdin 

orthogonalization scheme relying on 𝑆−1 2⁄  , 𝑆 being the overlap matrix (𝑆𝜇𝑣 = ⟨𝜇|𝜈⟩). We provide in 

Annex II of the Chapter the working equations to transform the density matrix or the KS matrix into 

the AO or MO basis.   

A formal solution of Eq. 10 is given by Eq. 11, where 𝑈 is the evolution operator. 

𝑃′(𝑡) = 𝑈(𝑡, 𝑡0)𝑃′(𝑡0)𝑈†(𝑡, 𝑡0) (11) 

Eq. 11 provides the electron density at time 𝑡 from the density at time 𝑡0. It is however not useful by 

itself. A powerful alternative is to seek for numerical simulations of this equation. The starting point is 

to discretize the time 𝑡  into a series of successive steps of length ∆𝑡 (Eq. 12). The evolution operator 

for each discretized step is given by Eq. 13.  𝒯 is the time-ordering operator, ensuring that operators 

associated with later times always appear to the left of those associated with earlier times. 

𝑈(𝑡, 𝑡0) = ∏ 𝑈(𝑡𝑖 + ∆𝑡, 𝑡𝑖)

𝑛−1

𝑖

 (12) 

𝑈(𝑡𝑖 + ∆𝑡, 𝑡𝑖) = 𝒯𝑒𝑥𝑝 {−𝑖 ∫ 𝐻′(𝜏)𝑑𝜏
𝑡𝑖+Δ𝑡

𝑡𝑖

} (13) 

Several different algorithms (propagators) have been proposed to construct 𝑈 in discretized time36. 

Propagators differ by their respective performances and stabilities. On one hand the term 

performance is related to the wall-clock time required to propagate the density over a certain amount 

of time. This can be a time consuming task due to the calculation of integrals involved in electron-

electron Coulomb interactions and in exchange correlation terms (see Eq. 9). In addition certain 

algorithms involve iterative procedures that require more than one calculation of the KS potential at 

each propagation step (details will be given later). Therefore a common strategy to many algorithms 
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is to minimize the number of propagation steps by taking the largest time step (∆𝑡). It has to be kept 

in mind that there is a physical limit to the maximum size of ∆𝑡𝑚𝑎𝑥 depending on the physical process 

of interest. If 𝜔𝑚𝑎𝑥 is the maximum frequency to be time resolved in the simulation, Δ𝑡𝑚𝑎𝑥 should not 

be larger than ca. 1/𝜔𝑚𝑎𝑥. In most of our applications ∆𝑡 is set to 1 or 2 as. On the other hand the 

term stability refers to the quality of the propagated solution after a certain simulation length. The 

propagator should be unitary to ensure that the density matrix satisfies the following important 

properties: 𝑃′2 = 𝑃′  (idempotent) , 𝑃′† = 𝑃′  (self-adjoint) and 𝑇𝑟(𝑃′) = 𝑁 , 𝑁  being the number of 

electrons (conservation of the total number of electrons). Clearly, in many cases stability can be 

enhanced by decreasing the time-step but the numerical performance will be decreased. One should 

find a propagator that allows the best trade-off between performance and stability.  

The TDKS equations fall into the category of systems of initial-value first-order ordinary differential 

equations (ODEs). However not all numerical methods to solve the ODEs are suitable to solve the TDKS 

equations. The literature contains several studies investigating the optimum propagation for RT-TDDFT 

such as the implicit midpoint rule (Euler, Runge-Kutta, Crank-Nicolson), the exponential midpoint rule, 

the time-reversal symmetry based propagator, splitting techniques or Magnus propagators, etc.36a, 37 

38  Recently, Castro and coworker tested several multi-step based propagators including exponential 

Runge-Kutta, and the commutator free Magnus schemes39. It turns out to be that the commutator free 

Magnus integrator is the most robust, simple and efficient propagator for the application reported by 

the authors. In fact, most studies conclude that the choice depends on the internal characteristics of 

the system investigated, on the frequency and intensity of the perturbation and on the subsequent 

response of the electron cloud. Consequently it is desirable to have various alternatives in a code for 

production runs.  

We now focus more specifically on the propagators that we implemented in deMon2k. The first one is 

the Euler propagator. It is based on Lagrange's mean value theorem:  

𝑃′(𝑡𝑖 + ∆𝑡) = 𝑃′(𝑡𝑖) − 𝑖[𝐻′(𝑡𝑖), 𝑃′(𝑡𝑖)] ∗ ∆𝑡 (14)  

The propagation of the density matrix requires only the value of the density matrix and of the Kohn-

Sham matrix at the current time. This propagation scheme doesn't guarantee preservation of the norm 

of the KS wave-function. This can lead to divergence of the electronic propagation even with very small 

time steps. It is therefore not recommended to use it in production runs. 

The Magnus propagator expresses the time-unordered exponential by a series of nested commutator 

integrals Ω𝑖  40:   

https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiI3u7A_97NAhVsI8AKHZ3TCekQFggsMAE&url=https%3A%2F%2Fwww.artofproblemsolving.com%2Fwiki%2Findex.php%3Ftitle%3DLagrange%27s_Mean_Value_Theorem&usg=AFQjCNF9nzo-WXyRdHJmf9Ztl7ujwVl9Vw&sig2=fp4DjPgyH46sxD7fcxW7qQ


100 

 

𝒯𝑒𝑥𝑝 {−𝑖 ∫ 𝐻′(𝜏)𝑑𝜏
𝑡+∆𝑡

𝑡

} = 𝑒𝑊 = 𝑒Ω1+Ω2+Ω3… (15) 

Ω1(𝑡 + Δ𝑡, 𝑡) = −𝑖 ∫ 𝐻′(𝜏)𝑑𝜏
𝑡+Δ𝑡

𝑡

       
                                                                                                        

(16) 

Ω2(𝑡 + Δ𝑡, 𝑡) = −𝑖 ∫ 𝑑𝜏1 ∫ 𝑑𝜏2[𝐻′(𝜏1), 𝐻′(𝜏2)]
𝜏1

𝑡

𝑡+Δ𝑡

𝑡

 (17) 

In practice, the series is truncated at the nth order. The integrals are approximated by a quadrature 

formula36a. 

Ω1(𝑡 + Δ𝑡, 𝑡) ≃ −𝑖𝐻′ (𝑡 +
Δ𝑡

2
) . Δ𝑡 

(18) 

Ω2(𝑡 + Δ𝑡, 𝑡) ≃ −𝑖
∆𝑡

2
[𝐻′(𝑡1) + 𝐻′(𝑡2)] −

√3

12
∆𝑡2[𝐻′(𝑡2), 𝐻′(𝑡1)] 

(19) 

where 𝑡1,2 = 𝑡 + [(1/2) ∓ √3/6]. ∆𝑡  are Gauss quadrature sampling points. Stopping at second 

order, 𝑊 ≈ 𝛺1, we will refer to it as the second-order Magnus propagator (SOMP). It is similar to the 

exponential midpoint rule. The SOMP requires the knowledge of only one KS potential (at time 𝑡 +

Δ𝑡 2⁄ ). Stopping at fourth order, 𝑊 ≈ Ω1 +  Ω2, the fourth-order Magnus propagator (FOMP) requires 

the knowledge of the KS potential at 𝑡 + Δ𝑡 2⁄  (for evaluating Ω1), at 𝑡 + [(1 2⁄ ) − √3/6]∆𝑡 and at 

𝑡 + [(1 2⁄ ) + √3/6]∆𝑡 (for evaluating Ω2). One immediately sees that carrying out one FOMP step 

requires three times the computational effort needed to perform a SOMP step. That said, FOMP 

generally permits longer time steps Δ𝑡 for the same stability. Rubio and coll. reported comparisons of 

propagators for Na8 clusters submitted to a laser36a. They arrived at the conclusion that the FOMP 

becomes more advantageous over the SOMP if ∆𝑡 could be 1.5 times larger. However, one should still 

be cautious in using too large time steps since the error accumulates due to finite truncation of the 

Magnus expansion. For processes involving high frequencies, FOMP or even higher order truncated 

Magnus expansions become mandatory. Similar conclusions were reached by Cheng et al. on methane 

subjected to an electric field20. They also concluded that SOMP offered a well-balanced propagator 

between stability and performance. In view of the conclusions of earlier studies we decided to base 

our implementation on the SOMP.  

ii) Iterative and Propagator-Corrector versions of SOMP 

To apply the Magnus propagator to the electron density at time 𝑡, the values of the KS matrix at later 

time 𝐻(𝑡 + Δ𝑡 2⁄ ) should be used, which is unknown. To overcome this difficulty two methods have 

been implemented, namely an iterative method and a predictor-corrector (PC) method. The algorithm 
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of the iterative method is depicted in Figure 1. In the first step one builds a guess for 𝐻0(𝑡𝑛 + Δ𝑡 2⁄ ) 

by extrapolation from 𝐻(𝑡𝑛) and 𝐻(𝑡𝑛−1). Then one operates an SOMP step on 𝑃0(𝑡𝑛) to obtain 

𝑃0(𝑡𝑛 + Δ𝑡) using 𝐻0(𝑡𝑛 + Δ𝑡 2⁄ ). The knowledge of 𝑃0(𝑡𝑛 + Δ𝑡) allows the construction of the KS 

potential at 𝑡𝑛 + Δ𝑡 (third step) and a new KS potential at 𝑡𝑛 + Δ𝑡 2⁄  is constructed by interpolation 

from the potentials at 𝑡𝑛 and 𝑡𝑛 + Δ𝑡 (fourth step). It is denoted by 𝐻𝑖(𝑡𝑛 + Δ𝑡 2⁄ ) in Figure 1. With 

this improved potential at 𝑡𝑛 + Δ𝑡 2⁄ , one loops back at step 2 and proceeds to another iteration. The 

process is repeated until convergence of the density or of the potential. In deMon2k we define a 

convergence threshold based on the variation of the auxiliary fitted density as it will be explained in 

I.2. This is similar to the criteria employed in the self-consistent-field approach to obtain stationary 

densities41. At convergence the potentials at times 𝑡𝑛  and 𝑡𝑛 + Δ𝑡 are saved in preparation for the 

subsequent propagation step. The electron density at 𝑡𝑛 + Δ𝑡 is analyzed to provide insights in to the 

electron dynamics.  

 

Figure 1. Iterative SOMP scheme for the propagation of the density from time 𝒕𝒏 to time 𝒕𝒏+𝟏.  

 

The iterative method implies several calculations i) of the KS potential and ii) of the SOMP exponential 

𝑒−𝑖𝐻′(𝑡+Δ𝑡 2⁄ )Δ𝑡 both being potentially time consuming. To alleviate the computational effort of the 

propagation Van Voorhis and co-workers proposed a PC method20. The algorithm is illustrated in Figure 

2. The overall propagation 𝑃(𝑡𝑛) 𝑡𝑜 𝑃(𝑡𝑛 + ∆𝑡) is split into two phases: a prediction phase with a time 

step ∆𝑡 4⁄ , followed by a correction step with ∆𝑡 2⁄ . In the first step one builds a guess for 

𝐻(𝑡𝑛 + ∆𝑡 4⁄ )  by extrapolation from 𝐻(𝑡𝑛−1 + ∆𝑡 2⁄ )  and 𝐻(𝑡𝑛−2 + ∆𝑡 2⁄ ) . Then one operates a 

SOMP step on 𝑃(𝑡𝑛) to obtain 𝑃(𝑡𝑛 + ∆𝑡 2⁄ ) using 𝐻(𝑡𝑛 + ∆𝑡 4⁄ ). The knowledge of 𝑃(𝑡𝑛 + ∆𝑡 2⁄ ) 
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allows the construction of the KS potential at 𝑡𝑛 + ∆𝑡 2⁄  (third step). In the corrector phase, the KS 

potential at 𝑡𝑛 + ∆𝑡 2⁄   is used to propagate 𝑃(𝑡𝑛 + ∆𝑡 2⁄ ) to obtain 𝑃(𝑡𝑛). The potentials at times 

𝑡𝑛−1 + ∆𝑡 2⁄  and 𝑡𝑛 + ∆𝑡 2⁄  are saved in preparation for the subsequent propagation step.  

In many cases the PC method combined with the SOMP is efficient and stable, but as usual cautious 

tests need to be carried out, for instance in case of strong perturbations. Tests with deMon2k will be 

reported in Section II.  

 

Figure 2. Predictor-Corrector SOMP scheme for the propagation of the density from time 𝒕𝒏 to time 𝒕𝒏+𝟏. 

 

I.1.c  The exponential of an operator  

The application of the SOMP requires the evaluation of 𝑒−𝑖𝐻′Δ𝑡. This is not a trivial task because of the 

complex nature of the argument of the exponential. The evaluation of the matrix exponential is 

another time consuming step besides the calculation of the KS potential. Several elegant solutions have 

been devised over the years to evaluate matrix exponentials36b, 37, 42. The most common methods are 

the diagonalization or the polynomial expansions (e.g. Taylor, Chebychev). More sophisticated 

methods are the Krylov subspace projection (Lanczos algorithm), the splitting techniques (Suzuki-

Trotter) or the Leja and Pade interpolations. Each method has its pros and cons. The method employed 

to compute the exponential of the matrix has impact on the performance and on the stability of the 

propagation. This is still a very active research area. We focus here on the four methods we 

implemented in deMon2k. 
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i) Diagonalization 

The first one proceeds via the diagonalization of the complex matrix 𝑊 (Eq. 17). The diagonalization is 

performed using optimized external libraries (Lapack). This is usually a robust approach. It turns to be 

cumbersome for large matrices (i.e. large basis sets) since the cost grows as 𝑁𝐴𝑂
3 . Moreover parallelized 

versions of these libraries are not efficient. Therefore the diagonalization is well suited for serial 

calculations only. 

𝑒𝑊 = 𝑈𝑒𝑤𝑈†, with 𝑊𝑈 = 𝑤𝑈  (20) 

             ii) Taylor expansion 

To overcome the scaling problem, the methods based on expansions are more advantageous.  One 

way is to use a Taylor expansion for the exponential: 

𝑒𝑊 = ∑
1

𝑛!
 𝑊𝑛

∞

𝑛=0

 
(21) 

in practice the number of terms introduced in the expansions is of course not infinite but limited to a 

finite number of terms (𝑘).  𝑘 has to be large enough to achieve convergence of the Taylor series. 

Depending on the systems and the physical processes investigated, the number of terms to be included 

in the series can be rather large. Numerical difficulties can also arise due to the fact that the method 

involves the multiplication of potentially very large floating point numbers by very small numbers 

(1 𝑛!⁄ ) 

iii) Chebychev expansion 

An alternative is to use Chebychev expansions36a, 43. The Chebychev polynomials are only defined in 

the range [-1,1]. The Hamiltonian matrix has to be scaled by a factor 𝛾 beforehand so that its spectrum 

lies within this range. We therefore define a scaled matrix  �̃� in the form of – 𝑖𝐻�̃�, with �̃� = 𝛾Δ𝑡 The 

Chebyshev expansion reads: 

𝑒𝑊 = 𝒩 ∑(−𝑖)𝑛𝑐𝑛(�̃�)𝑇𝑛(�̃�)

∞

𝑛=0

 
(22) 

where 𝒩 is a normalization constant. 𝑐𝑛 = (2 − 𝛿𝑛0)𝐽𝑛(�̃�) with 𝐽𝑛 being the Bessel functions of the 

first kind (𝐽𝑛 = ∑
(−1)𝑚

𝑚!(𝑚+𝑛)!
(

𝑥

2
)

2𝑚+𝑛
∞
𝑚=0 ). 𝑇𝑛  are the Chebychev polynomials of order n. They are 

defined by recurrence relationships. 

𝑇0(�̃�) = 𝐼 (23a) 
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𝑇1(�̃�) = �̃� (23b) 

𝑇𝑛(�̃�) = 2�̃�𝑇𝑛−1(�̃�) − 𝑇𝑛−2(�̃�) (23c) 

The scaling factor (𝛾) is system dependent and has to be chosen carefully. One possibility is to scale 

with the upper 𝜀𝑚𝑎𝑥  and lower 𝜀𝑚𝑖𝑛  bounds of the eigenspectrum of 𝐻. 𝛾 = (𝜀𝑚𝑎𝑥 − 𝜀𝑚𝑖𝑛) 2⁄  or as 

suggested by Williams-Young et al.43a 𝛾 = 3. (𝜀𝑚𝑎𝑥 − 𝜀𝑚𝑖𝑛) 2⁄ . This defines 𝒩 = 𝑒−2𝑖(𝛾+𝜀𝑚𝑖𝑛)Δ𝑡. 

iv) Baker-Campbell-Haussdorff expansion 

The last method is based on the Baker-Campbell-Haussdorff (BCH) scheme16b, 44. It gives the 

exponential 𝑒𝑊  and the propagation 𝑃′(𝑡 + ∆𝑡) =  𝑒𝑊𝑃′(𝑡) 𝑒−𝑊  at the same time. The KS matrix 

should be Hermitian to apply the BCH, which limits its applications.  

𝑃′(𝑡 + ∆𝑡) = 𝑃′(𝑡) +
1

1
[𝑊, 𝑃′(𝑡)] +

1

2
[𝑊, [𝑊, 𝑃′(t)]] +

1

3!
[𝑊, [𝑊, [𝑊, 𝑃′(𝑡)]]]

+ ⋯        

((24) 

𝑃′(𝑡 + ∆𝑡) = 𝐶0 + ∑
1

𝑛!
[𝑊, 𝐶𝑛−1]

∞

𝑛=1

 
(25) 

with 𝐶0 = 𝑃′(𝑡). The three methods relying on expansions are in principle exact but in practice the 

accuracy is highly dependent on the choice of 𝑘. Two possibilities are available in deMon2k. Either one 

specifies the number of terms 𝑘 to use throughout the ED simulation, or a tolerance threshold is given 

and, each time a matrix exponential has to be computed, a specific number of terms 𝑘 is determined 

to reach a certain accuracy. In practice for each new matrix added to the series, we calculate the 

modules of the diagonal elements and take the sum of them. If the sum is below the threshold then 

the convergence of the expansion is considered to be obtained. We typically use thresholds of 1.0E-

30. 

 

I.1.d External perturbations 

In general a simulation starts by a stationary SCF calculation to determine the ground state electron 

density of the systems of interest. Then ED simulations are carried out with the introduction of the 

perturbation. This is done through the addition of terms to the external potential 𝑣𝑒𝑥𝑡 term which 

enters Eq. 3. One possibility is to simulate the interaction of the electron cloud with the electric field 

of an electromagnetic wave. We make the assumption of the dipole interaction and express the 

interaction energy as:  



105 

 

𝐸𝑒𝑓𝑖𝑒𝑙𝑑 = −𝝁(𝑡) ∙ 𝑭(𝑡) (26) 

where 𝝁 is the molecular dipole: 𝝁(𝑡) = ∑ 𝑍𝐴𝑹𝐴𝐴 − ∫ 𝜌(𝒓, 𝑡)𝒓𝑑𝒓 = ∑ 𝑍𝐴𝑹𝐴𝐴 − ∑ 𝑃𝜇𝜈𝑫𝜇𝜈𝜇,𝜈 , with the 

elements of the dipole operator defined as 𝑫𝜇𝜈 = ⟨𝜇|𝒓|𝜈⟩. The external potential to be included in the 

KS potential during the propagation is obtained by differentiation of the interaction energy with 

respect to the electron density. In matrix notation it reads: 

𝜕𝐸𝑒𝑓𝑖𝑒𝑙𝑑

𝜕𝑃𝜇𝜈
= 𝑭(𝑡)𝑫𝜇𝜈  

(27) 

The general expression for the field is 𝑭(𝑡) = 𝐹𝑚𝑎𝑥 𝛸(t)cos 𝜔𝑡 𝒅, where 𝐹𝑚𝑎𝑥 is the maximum field 

strength, 𝛸 is the envelop of the pulse, 𝒅 is the direction vector of the pulse and 𝜔 is the frequency of 

the light. All these parameters can be set by the user. We have implemented four different shapes of 

electric fields 𝑭 as represented in Figure 3. These are the Gaussian pulses, squared sinusoidal pulse, 

Dirac (infinitely narrow pulse or "kick”) and linear ramp.  

 

Figure 3. Examples of electric fields applicable in ED simulations with deMon2k with an arbitrary maximum field strength 

𝐅𝐦𝐚𝐱 equal to 1. Top-left: Gaussian pulse, the center is 𝐭𝟎 = 𝟗. 𝟓 𝐟𝐬, its width 𝛍𝐅 = 𝟏. 𝟓 𝐟𝐬.The orange line corresponds to 
a white light (𝛚=0 a.u.)  and the blue line a monochromatic pulse (𝛚=0.156 a.u). Top-right: same as Top-left but with a 
squared sinusoidal envelop and centered at 3.5 fs. Bottom-left infinitely narrow pulse centered at 𝟗. 𝟓 𝐟𝐬. Bottom-right: 
linear ramp with the maximum field achieved for 𝟗. 𝟓 𝐟𝐬. The orange line corresponds to white light (𝛚=0 a.u.)  and the 
green line a monochromatic pulse (0.156 a.u). 
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Another type of perturbation available in deMon2k is the collision with a charged classical particle45.  

This allows the to simulation of inelastic collisions (i.e. collisions not affecting the projectile's 

trajectory)46. The interaction energy between the molecule and the projectile is given by Eq. 28.   

𝐸𝑝𝑟𝑜𝑗 = − ∫𝜌(𝒓, 𝑡). 𝜙𝑝𝑟𝑜𝑗(𝒓, 𝑡). 𝒅𝒓 + ∑ 𝑍𝐴𝑹𝐴. 𝜙𝑝𝑟𝑜𝑗(𝒓, 𝑡)

𝐴

 
(28) 

𝜙𝑝𝑟𝑜𝑗 is the potential created by the projectile with charge 𝑞𝑝𝑟𝑜𝑗. For slow projectiles compared to the 

speed of light (𝑐) the potential is calculated by a Coulomb law. For projectiles approaching the speed 

of light (for example alpha particles with kinetic energies above 1 MeV), a Liénard-Wiechert potential 

is appropriate47: 

𝜙𝑝𝑟𝑜𝑗(𝒓) =
𝑞𝑝𝑟𝑜𝑗

𝑹 [1 −
𝑣𝑝𝑟𝑜𝑗

2 𝑠𝑖𝑛2𝜃

𝑐2 ]

1 2⁄
=

𝛾. 𝑞𝑝𝑟𝑜𝑗

𝑹
 (29) 

where 𝑞𝑝𝑟𝑜𝑗  and 𝑣𝑝𝑟𝑜𝑗 , are the charge and velocity of the projectile, 𝜃  is the angle between the 

propagation direction and the distance vector between an electron and the particle (𝑹 = 𝒓 − 𝒓𝑝𝑟𝑜𝑗). 

𝛾 = (1 − 𝑣𝑝𝑟𝑜𝑗
2 𝑠𝑖𝑛2𝜃 𝑐2⁄ )

−1 2⁄
 is the angle-dependent Lorentz factor. For particles travelling at speeds 

much lower than the speed of light (𝑣𝑝𝑟𝑜𝑗
2 ≪ 𝑐2) 𝛾 ≈ 1 and Eq. 29 reduces to a standard Coulomb 

potential. On the other hand, when 𝑣𝑝𝑟𝑜𝑗
2 → 𝑐2,  𝛾 → 1 if 𝜃 → 0 (i.e. for electrons positioned on the 

particle trajectory) and 𝛾 → +∞  if 𝜃 → 𝜋 2⁄  (i.e. for electrons positioned perpendicular to the particle 

trajectory). The corresponding potential term 𝐻𝑝𝑟𝑜𝑗 is added to the KS matrix. 

 

I.1.e Complex Absorbing Potentials 

An appealing application of RT-TDDFT is the simulation of ionization of molecules by application of 

strong electric fields or upon collisions with charged particles18b. Upon such perturbation a large 

amount of energy is deposited into the electron cloud which promotes electronic excitations. A 

fraction of electron density may escape the attraction potential created by the nuclei. Simulating these 

phenomena at the DFT level is however a challenging objective especially for computer codes relying 

on localized atomic basis sets like deMon2k. Indeed for describing the emission of electrons having 

non zero kinetic energy the basis set should span a large spatial area around the ionized molecules. 

The basis sets customarily used in quantum chemistry calculations haven't been designed for such 

applications. On the contrary they have been optimized to describe bound electrons in the vicinity of 

atomic nuclei.  
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To simulate ionization with RT-TDDFT we first use very diffuse basis sets, as developed by Schlegel and 

co-workers48. They are built on the aug-cc-pVTZ basis set with addition of several diffuse functions 

going up to f second quantum number. The lowest Gaussian exponents go down to 0.0064 for s 

functions. This is however not sufficient because the localized basis sets have physical boundaries 

whatever their diffuseness. We therefore add a Complex Absorbing Potential (CAP) to the Hamiltonian 

to absorb the emitted electrons when they are far from the molecule of interest. To better understand 

how CAP work in RT-TDDFT simulations let us calculate the norm of the electronic wave function: 

𝑑

𝑑𝑡
⟨𝜓|𝜓⟩ = [

𝑑

𝑑𝑡
⟨𝜓|] |𝜓⟩ + ⟨𝜓| [

𝑑

𝑑𝑡
|𝜓⟩] 

(30) 

The time dependent Schrodinger equation gives 
𝑑

𝑑𝑡
|𝜓⟩ =

1

𝑖
𝐻|𝜓⟩ and 

𝑑

𝑑𝑡
⟨𝜓| =

−1

𝑖
⟨𝜓|𝐻†, where 𝐻† is 

the adjoint of 𝐻. The matrix elements of the Hamiltonian are 𝐻𝑖𝑗 = ⟨𝑖|𝐻|𝑗⟩. If the Hamiltonian matrix 

elements are real, 𝐻𝑖𝑗
† = ⟨𝑖|𝐻†|𝑗⟩ = ⟨𝑗|𝐻|𝑖⟩∗ = ⟨𝑗|𝐻|𝑖⟩ = 𝐻𝑖𝑗. Therefore Eq. 30 becomes 

𝑑

𝑑𝑡
⟨𝜓|𝜓⟩ =

−1

𝑖
⟨𝜓|𝐻†(= 𝐻)|𝜓⟩ +

1

𝑖
⟨𝜓|𝐻|𝜓⟩ = 0 

(31) 

For a Hermitian operator the norm of the electronic wave function is conserved. Now in presence of a 

CAP (𝑉𝑎𝑏𝑠), 𝐻 = 𝐻𝑅 + 𝑖𝑉𝑎𝑏𝑠, 𝐻𝑖𝑗
† = ⟨𝑖|(𝐻𝑅 + 𝑖𝑉𝑎𝑏𝑠)

†
|𝑗⟩ = ⟨𝑗|𝐻𝑅 + 𝑖𝑉𝑎𝑏𝑠|𝑖⟩

∗
= ⟨𝑗|𝐻𝑅 − 𝑖𝑉𝑎𝑏𝑠|𝑖⟩ ≠

𝐻𝑖𝑗 . We have now 
𝑑

𝑑𝑡
|𝜓⟩ =

1

𝑖
𝐻𝑅|𝜓⟩ + 𝑉𝑎𝑏𝑠|𝜓⟩  and 

𝑑

𝑑𝑡
⟨𝜓| =

−1

𝑖
⟨𝜓|𝐻† + ⟨𝜓|𝑉𝑎𝑏𝑠 . Inserting these 

equalities in Eq. 3 we have: 

𝑑

𝑑𝑡
⟨𝜓|𝜓⟩ = 2⟨𝜓|𝑉𝑎𝑏𝑠|𝜓⟩ (32) 

When the Hamiltonian is not Hermitian the norm of the wave function is not conserved. The idea of 

introducing a CAP in RT-TDDFT simulations is therefore to allow for the injection or removal of electron 

density during ED simulations. This is an ad hoc methodology that must be used with care to avoid 

artefacts in the propagation. Ideally the CAP should affect only unbound electrons. Some authors 

suggested to define CAPs based on the energies of the KS MOs49. We have decided to implement in 

deMon2k a real space based definition of CAP50. The CAP function is written as a superposition of atom-

centered spherical 𝑉𝑎𝑏𝑠
𝑎. 

𝑉𝑎𝑏𝑠(𝑅) = min
𝑎

𝑉𝑎𝑏𝑠
𝑎 (𝑅) (33) 
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𝑉𝑎𝑏𝑠
𝑎(𝑅) = {

0 

𝑉𝑚𝑎𝑥 sin2 (
𝜋

2𝑊
(𝑅 − 𝑅°))

𝑉𝑚𝑎𝑥

 
𝑓𝑜𝑟 𝑅 < 𝑅°

𝑓𝑜𝑟    𝑅° + 𝑊 < 𝑅 < 𝑅°
𝑅 > 𝑅° + 𝑊

 

(34) 

where 𝑉𝑚𝑎𝑥 is the maximum value of the absorbing potential, 𝑊 is the width of increase of the atomic 

CAP and 𝑅° is the distance threshold at which the atomic CAP starts. 

 

I.2 Auxiliary Density Functional Theory  

Having described the algorithms to propagate the electron density at the TDDFT level, we will now be 

more specific about the implementation of these algorithms in deMon2k. Indeed a major advantage 

of deMon2k for stationary DFT based methods is its reliant on density fitting (DF) and other algorithmic 

tricks to accelerate the calculations51. Since our objective is to achieve an efficient implementation of 

RT-TDDFT building on the already optimized Auxiliary DFT (ADFT) framework we will describe it first in 

this section. The variational density fitting was originally introduced by Dunlap52 to avoid the 

calculation of four-centers electron repulsion integrals (ERIS) entering the KS energy and potential (Eq. 

8-9). Besides the Kohn-Sham density 𝜌 which is built on the KS MOs (Eq. 6), an auxiliary density �̃� is 

expressed as a linear combination of auxiliary functions 𝑘(𝒓): �̃�(𝒓, 𝑡) = ∑ 𝑥𝑘(𝑡)𝑘(𝒓)𝑘 . The 𝑥𝑘 are the 

density fitting coefficients. The DF formalism was proposed originally for stationary densities. Here we 

introduce the dependence on time of the auxiliary coefficients for future use in RT-TDDFT. For 

computational efficiency we use in deMon2k primitive Hermite Gaussian functions at atom K with the 

exponent 𝜁𝑘 having the form given by Eq 3553.   

𝑘(𝒓) = (
𝜕

𝜕𝐾𝑥
)

𝑘𝑥

(
𝜕

𝜕𝐾𝑦
)

𝑘𝑦

(
𝜕

𝜕𝐾𝑧
)

𝑘𝑧

𝑒−𝜁𝑘(𝒓−𝐾)2
 

(35) 

The fitting coefficients  are obtained by minimization of a self-interacting error function52: 

𝜀 =
1

2
〈𝜌 − �̃�‖𝜌 − �̃�〉 =

1

2
〈𝜌‖𝜌〉 − 〈𝜌‖�̃�〉 +

1

2
〈�̃�‖�̃�〉 

(36) 

In matrix notation this gives:  

𝜀 =
1

2
∑ ∑ 𝑃𝜇𝜈(𝑡)⟨𝜇𝜈‖𝜎𝜏⟩ −

𝜎,𝜏𝜇,𝜈

∑ ∑ 𝑃𝜇𝜈(𝑡)⟨𝜇𝜈‖𝑘⟩𝑥𝑘(t) −
1

2
∑ 𝑥𝑘(𝑡)𝑥𝑙(𝑡)⟨𝑘‖𝑙⟩

𝑘,𝑙𝑘𝜇,𝜈

 
(37) 

The function 𝜀 is minimized with respect to all the coefficients  𝑥𝑘: 
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(
𝜕𝜀

𝜕𝑥𝑘
)

𝑃

= − ∑ 𝑃𝜇𝑣〈𝜇𝑣‖𝑘〉

𝜇,𝑣

+ ∑ 𝑥𝑙

𝑙

〈𝑙‖𝑘〉 = 0 ∀ 𝑘 
(38) 

(
𝜕2𝜀

𝜕𝑥𝑙𝜕𝑥𝑘
)

𝑃

= 〈𝑙‖𝑘〉 ≡ 𝐺𝑘𝑙 
(39) 

Because the auxiliary function Coulomb matrix 𝐺  is always positive definite the above variation is 

indeed a minimization of the fitting error 𝜀. As a result, the following solution for the auxiliary function 

fitting coefficients is obtained: 

𝑥(𝑡) = 𝐺−1𝐽(𝑡) (40) 

with the so-called Coulomb vector 𝐽 being defined as: 

𝐽𝑘(𝑡) = ∑ 𝑃𝜇,𝑣(𝑡)〈𝜇𝑣‖𝑘〉

𝜇,𝑣

 (41) 

This set of coupled equations can be solved either by analytical or by iterative approaches54. In principle 

the minimization should be carried out under the constraint that the fitted density integrates to the 

total number of electrons52. This can be done with a Lagrange multiplier method. In practice however, 

experience from the deMon2k developers showed that the fitted density naturally integrates to the 

desired value without explicit introduction of such a constraint†. The latter is now dropped out from 

the set of fitting equations in deMon2k. Because of the positive nature of the function 𝜀, we have 

1

2
〈𝜌‖𝜌〉 ≥ 〈𝜌‖�̃�〉 −

1

2
〈�̃�‖�̃�〉 

(42) 

This inequality permits a variational substitution of the classical Coulomb repulsion in the total energy 

(Eq. 8).                                                                                                                                                                                            

𝐸(𝑡) = ∑ 𝑃𝜇𝜈(𝑡)𝐻𝜇𝜈
𝑒𝑥𝑡

𝜇,𝑣

+ ∑ 𝑃𝜇𝜈(𝑡) ⟨𝜇|−
1
2 ∇2|𝜈⟩

𝜇,𝑣

+ ∑ ∑ 𝑃𝜇𝜈(𝑡)⟨𝜇𝜈‖𝑘⟩𝑥𝑘(t) −
1

2
∑ 𝑥𝑘(𝑡)𝑥𝑙(𝑡)⟨𝑘‖𝑙⟩

𝑘,𝑙

+  𝐸𝑥𝑐[𝜌]

𝑘𝜇,𝜈

 

(43) 

The elements of the Kohn-Sham potential are given by Eq. 44.  

𝐻𝜇,𝑣 ≡
𝜕𝐸

𝜕𝑃𝜇𝑣
= 𝐻𝜇𝜈

𝑒𝑥𝑡 + ⟨𝜇|−
1
2 ∇2|𝑣⟩ + ∑⟨𝜇𝜈‖𝑘⟩

𝑘

+  
𝜕𝐸𝑥𝑐[𝜌(𝒓, 𝑡)]

𝜕𝑃𝜇𝑣
 

(44) 

                                                           
† A. M. Köster, private communication.  
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Compared to Eq. 8-9, there are no four-centers ERIS but only two- and three- centers ERIS entering the 

energy or the potential. This approximation reduces the formal scaling of the Coulomb integral 

calculation from 𝑁𝐴𝑂
4  to 𝑁𝐴𝑂

2 . 𝑀𝐴𝐹  with 𝑁𝐴𝑂  and 𝑀𝐴𝐹  denoting the number of atomic orbitals and 

auxiliary basis functions respectively. The number  M is typically three to five times the number of basis 

functions, but this is much less than the number of products of AO. 

Once the fitted coefficients obtained for a given Kohn-Sham density, they can be used for the 

calculation of the exchange-correlation (XC) energy and potential too55. 𝐸𝑥𝑐[𝜌] is replaced by 𝐸𝑥𝑐[�̃�] 

in Eq. 43. In that case the matrix elements of the Kohn-Sham potential are given by55: 

𝐻𝜇𝜈 ≡
𝜕𝐸

𝜕𝑃𝜇𝜈
= 𝐻𝜇𝜈

𝑒𝑥𝑡 + ⟨𝜇|−
1
2 ∇2|𝑣⟩ + ∑⟨𝜇𝜈‖𝑘⟩(𝑥𝑘(𝑡)

�̅�

+ 𝑧𝑘(t)) 
(45) 

with 

𝑧𝑘(t) = ∑⟨𝑘‖𝑙⟩−1⟨𝑙|𝑉𝑥𝑐⌈�̃�(𝑡)⌉⟩

𝑙

 (46) 

The combination of density fitting with RT-TDDFT is in principle straightforward. Returning back to 

Figure 1 and Figure 2 describing the iterative and PC methods of the SOMP, each time a new Kohn-

Sham electron density 𝜌 (or equivalently 𝑃) is formed by the SOMP, the fitting equations (Eqs. 40-41) 

are used to determine an auxiliary density. The fitted density is then used to calculate the next Kohn-

Sham potential. Now it must be remembered that DF provides an approximate solution to the Kohn-

Sham equations that depends for the most part on the choice of the auxiliary basis set. Although ADFT 

can be regarded as well tested now for stationary DFT calculations51a or Linear-Response TDDFT56 it is 

not yet clear whether ADFT can be safely used in the context of RT-TDDFT. For example the electron 

dynamics per se might not be well reproduced in DF based ED simulations. Actually our tests, reported 

in the article reproduced at the end of Part II57, showed that provided sufficiently flexible auxiliary basis 

sets are chosen, one can rely on density fitting techniques to reduce the computational cost of the RT-

TDDFT propagations without altering the stability or the accuracy of the propagations. In section II we 

will report computational performance tests showing that the implementation of RT-TDDFT in 

deMon2k fully takes advantage of DF techniques of the code.  

 

I.3 Analyzing tools for Electron Dynamics simulations 

The formalism described above provides a prescription to simulate attosecond electron dynamics at 

the DFT level. It is also very important to devise dedicated methodologies to analyze the fluctuating 

electron density in the course of the simulations. Some physical observables can be obtained by 
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considering the associated quantum mechanical operator, for example the electronic energy (Eq. 43) 

or the multipole moments of the system. Other descriptive tools are also valuable and will be described 

in the following subsections.  

 

I.3.a Molecular multipoles 

The total number of electrons 𝑁(𝑡) and higher multipole moments such as the dipole moment 𝝁(𝑡) 

and quadrupole tensor are given by Eqs. 47-49. The total spin charge (𝑆) defined as the integrated 

difference between densities of alpha and beta electrons can also be calculated. It is of course only of 

interest for open-shell systems. 

𝑁(𝑡) = ∫ 𝜌(𝒓, 𝑡) 𝑑𝒓 
(47) 

𝝁(𝑡) = ∑ 𝑍𝐴𝑹𝐴

𝐴

− ∫ 𝜌(𝒓, 𝑡)𝒓. 𝑑𝒓 
(48) 

𝚯𝜶,𝜷
𝑨 (𝑡) = − ∫ 𝜌(𝒓, 𝑡)(𝑟𝑖,𝛼 − 𝑟𝐴,𝛼)(𝑟𝑖,𝛽 − 𝑟𝐴,𝛽). 𝑑𝒓 

(49) 

𝑆(𝑡) = ∫ (𝜌𝛼(𝒓, 𝑡) − 𝜌𝛽(𝒓, 𝑡)) 𝑑𝒓 
(50) 

For isolated QM systems, the evolution of the total number of electrons is a good indicator of the 

stability of the ED simulation since this should remain constant. Variation of the number of electrons 

is a sign that the propagation is not unitary, i.e. that the simulation parameters are not well tuned for 

the system under investigation. When simulating collisions with charged particles one expected 

outcome is ionization of the molecule and emission of unbound electrons. A way to capture this 

phenomenon with a code working with localized atomic orbitals is to add a complex absorbing 

potential (CAP) in the imaginary part of the KS potential50. The CAP only acts on electron density 

typically beyond 10 Å of the molecule by removing these electrons from the pool. In this particular 

type of simulations 𝑁  doesn't have to be conserved. On the contrary it describes ionization of the 

molecule since the CAP collects (in ideal situations) the density of unbound electrons.  

The dipole moment is a key quantity to describe the deformation of the electron cloud upon 

application of a perturbation. It gives access to the polarizability tensor which is a basic quantity to 

simulate absorption spectra16b, 58.  
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I.3.b Intrinsic multipoles on atoms or fragments 

As for stationary DFT calculation the total density can be projected onto atoms. Therefore one can 

define atomic charges and so-called intrinsic atomic dipoles and quadrupoles provided a prescription 

for defining the atoms within the molecules are specified. In deMon2k Hirshfeld59, Becke60 and Voronoi 

deformation density61 are for example available and have been made compatible with the use of RT-

TDDFT62. Atomic charges are useful to describe charge transfers among atoms during ED simulations. 

Charge migrations63 for example can be highlighted with this tool. On the other hand fluctuations of 

the intrinsic atomic dipoles provides information on the internal polarization of each atom.  

Finally, the level of coarse graining of population analyses can be adapted to the level of fragments.  

I.3.c Occupation of Kohn-Sham molecular orbitals 

One way to analyze the ED is to define a set of KS MOs (𝑪𝑘) as reference and to follow their occupation 

numbers (𝑛𝑘) during the simulation. The set of MOs obtained at convergence of the SCF procedure is 

used for example. The occupation numbers are obtained as 𝑛𝑘(𝑡) = 𝑪𝑘†𝑷′(𝑡)𝑪𝑘 where the 𝑪𝑘 are the 

eigenvectors of the Kohn-Sham potential obtained from a SCF calculation and 𝑷′ is the time dependent 

density matrix in the MO basis. Such analyses identify which MOs are associated with an electronic 

transition or ionization. It should be remembered that since any unitary transformation of the set of 

reference KS MOs is equally valid to determine the electron density and the electronic energy, this 

type of analysis is somehow arbitrary.  

 

I.3.d Kinetic energy of electrons 

To help understand electronic relaxation following perturbation one can evaluate the electron kinetic 

energy. Following Bader and Preston64 the total kinetic density on each point in space (𝐾(𝒓)) is 

determined by the Laplacian of the total density (𝐿(𝒓)) and by the gradient of its components (𝐺(𝒓)).  

𝐾(𝒓) = 𝐿(𝒓) + 𝐺(𝒓) (51) 

𝐿(𝒓) ≡ −
1

4
∇2𝜌(𝒓) 

(52) 

𝐺(𝒓) ≡
1

8
∑

∇𝜌𝑖(𝒓). ∇𝜌𝑖(𝒓)

𝜌𝑖(𝒓)
𝑖

 
(53) 

Integration of 𝐾 over the entire space leads to the total electron kinetic energies while 𝐿, which can 

locally take positive or negative values, globally integrates to zero64. When the Laplacian contribution 

is integrated over atoms, or over molecular fragments we found that ∫ 𝐿𝑑𝑟 is already close to zero 

(typically 10-2 Ha). The investigation of the kinetic energy per fragment provides a very insightful tool 
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to analyze sub-femtosecond relaxation processes. This tool has been used for example by the TheoSim 

group recently to investigate ionization following collision of the guanine DNA base by charged 

particles45.   

 

I.3.e Graphical representation of molecular fields 

Electron Dynamics simulations are particularly amenable to pictorial representations. It is for example 

instructive to calculate the electron density (𝜌(𝒓, 𝑡)), the deformation density (𝜌(𝒓, 𝑡) − 𝜌(𝒓, 𝑡0)) or 

other fields such as the Time-Dependent Electron Localization Function65 on grids of points and later 

to visualize them with appropriate software (e.g. VMD66). For illustrative purpose we depict in Figure 

4 the negative and positive isosurfaces of the deformation density for a benzene molecule subjected 

to an external electric field. The energy of the light corresponds to the first excitation energy of 

benzene. A recurrence of 0.6 fs is observed.  

 

 

Figure 4. Isosurfaces of the deformation density (0.01 bohr-3) of benzene subjected to a Gaussian monochromatic pulse 
corresponding to the transition from the ground to the first excited state. The field was oriented along the top-botton 
direction defined by the page. Yellow and violet surfaces correspond to region of accumulation and depletion of electron 
density. The orange rectangles illustrate the periodicity in the electron flows.  

 

I.4 Implementation in deMon2k 

deMon stands for “density of Montréal”. It refers to a computer code based on DFT that was created 

in the 1980's in the group of Prof. Salahub67. deMon2k is a new version of the program that emerged 

in the early 2000's from the fusion of the deMon and ALLCHEM programs. deMon2k has been 
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developed by various scientific groups since then, essentially in the CINVESTAV center (Prof. A. M. 

Köster group). deMon2k contains around 250,000 lines and 1,929 routines. It is programmed in Fortran 

77 and parallelized using the Message Passing Interface (MPI) protocol. The implementation of a 

complete new functionality like RT-TDDFT in such a complex code is not a trivial task. It is mandatory 

to think thoroughly in advance about the implementation strategy which supposes a good knowledge 

of the structure of the code. This is an important step to avoid creating interferences ("bugs") with 

other parts of the code - which would make the implementation useless at the end - and to optimize 

efficiency.  

We started to implement a basic serial version of RT-TDDFT for closed-shell molecules with the Euler 

propagator. This first work involved i) the introduction of new keywords into the code, the modification 

of existing options, ii) the coding of the density propagation engine, iii) the routines for performing 

back-and-forth transformations between the AO and MO representations, iv) the inclusion of time 

dependent electric fields. The structure of the RT-TDDFT has been decided at this stage. Our strategy 

was to borrow as much as possible the already existing subroutines. Effectively the strength of 

deMon2k is that it is equipped with particularly efficient algorithms to evaluate molecular integrals in 

the framework of DF. Toward this end the structure of the RT-TDDFT engine was devised following the 

same algorithmic structure as the SCF module. In this way, it has been possible to branch entry point 

subroutines for calculation of the KS potential (bldksmat.f) or for performing density fitting (getcdj.f or 

getcdc.f and subroutines therein). The basic implementation was carefully tested by comparison of 

results produced by deMon2k and by another code (NWchem12).  Among the simplest diagnostics for 

testing the stability of the propagations are the conservation of electronic energy or total electron 

number. The polarizabilities and the absorption spectra of molecules obtained from RT-TDDFT were 

compared with results obtained by finite difference or perturbative approaches. We also carefully 

tested under which conditions auxiliary densities could be used in RT-TDDFT. We found that auxiliary 

basis sets containing polarization functions - the GEN-An* sets, to take the deMon2k syntax - were 

sufficient to achieve accurate simulations. We refer to the article reproduced at the end of Part II for 

details on all the validation tests.  

Once validated, the basic implementation was continuously improved to add more functionalities. The 

list of functionalities now available are listed below. I coded myself most of the subroutines required 

to have these new options, some being coded or improved by other members of the group. 

- Both open-shell and closed-shell systems are amenable to RT-TDDFT simulations 

- Magnus propagator in both iterative and PC versions (described in I.1.b). 
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- Taylor, Chebyshev and BCH expansions for evaluating the exponential of complex matrices (described 

in I.1.c). 

- Analysis tools during ED simulations (described in I.3). 

- Combination with the CONVENTIONAL, DIRECT or MIXED schemes. These are options available in 

deMon2k to handle the calculation and storage of ERIS.  

- Restart calculations. 

- Parallelization of the code using the pre-existing MPI architecture in deMon2k.  

- Complex absorbing potentials. 

 

II. COMPUTATIONAL PERFORMANCE AND VALIDATION 

Various validation tests of the RT-TDDFT module have been reported in the article reproduced at the 

end of Part II. These tests involved the calculation of static polarizabilities or of absorption spectra. In 

Section II we report complementary tests calculations and more in-depth analyses of the efficiency of 

the implementation. We will start by comparing the iterative and PC version of the SOMP (II.1). Then 

we report comparison of the different methods available in deMon2k for calculating the exponential 

of a matrix (II.2).  

 

II.1 On the efficiency of the Propagator-Corrector scheme  

In the methodology section we introduced two propagation methods for the SOMP, namely the 

iterative and Predictor-Corrector (PC) algorithms. Both have their own pro and cons. The objective of 

this section is to compare the relative efficiency of the two approaches, and to analyze the 

computational performance of our implementation in deMon2k.  

 

II.1.a Computational details 

We consider two molecules. One is coumarin which is a seventeen-atom organic molecule. The other 

one is an Fe(II) inorganic complex (heme) containing ninety-nine atoms. Both molecules have been 

geometrically optimized at the DFT level (Figure 5). 

For the ED simulations we have used the PBE functional and the DZVP-GGA/GEN-A2* combination of 

atomic and auxiliary basis sets. This choice leads to a total of 84/1155 and 466/6130 atomic/auxiliary 

functions for coumarin and heme respectively. The initial electron density of the ground state was 
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obtained by a stationary DFT energy minimization through an SCF procedure. To collect computational 

performance data the simulations have been propagated during 200 as. We used the BCH expansion 

to perform the propagation steps. We have added as many terms as necessary in the BCH expansion 

to arrive at a convergence threshold of 10-30 bohr-3. The intrinsic atomic multipoles (charge, dipole, and 

quadrupoles) have been calculated on-the-fly at every time step by numerical integration of fitted 

densities with a grid of medium accuracy62. To integrate the exchange-correlation potential and energy 

we have used fitted densities and a very fine grid of points associated to an accuracy of 10-8 Ha on 

diagonal elements of the XC matrix. The Electron Repulsion Integrals (ERIS) are handled with a mixed 

scheme to optimize computational efficiency of the Coulomb repulsion terms. Table 1 and Table 2 

gather the timings for the two molecules. All the simulations have been run on twelve 2.67GHz Intel® 

Xeon® X5650 processors with the MPI protocol.  

 

 

Figure 5. Optimized structure of coumarin and heme in gas phase. White: hydrogen, red: oxygen, blue: nitrogen, pink: iron, 
cyan: carbon. 

 

II.1.b Stability and performance for weak perturbations 

We start to investigate weak perturbations by an infinitely narrow electric pulse. In the first step of RT-

TDDFT propagation an electric kick is applied to the electron cloud. This creates a perturbation in the 

electron density that, in turn, starts to fluctuate. The perturbing electric field vector is aligned on the 

x-axis and its strength is set to 0.0001 a.u. (0.05 V/nm, which corresponds to an intensity of 7.03x108 

W∙cm-2). Four mutually exclusive entries are reported in Table 1. The entry “AO<->MO ” refers to the 

total time spent in switching from the AO to the MO basis (and vice versa). The entry “SOMP” refers 

to the calculation of 𝑈(𝑡, 𝑡0)𝑃′(𝑡0)𝑈†(𝑡, 𝑡0), excluding the time taken to calculate the potential itself. 

The SOMP time is essentially the time taken to evaluate the exponential of the matrix with the BCH 
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expansion. The KS potential refers to the time spent in calculating the KS potential. This timing includes 

all the operations related to density fitting. Finally the entry “population analyses” refers to the atomic 

multipole calculations.  

Table 1. Computational performances of the iterative (IT) and PC propagation algorithms. The reported wall-clock timings 
(in s) refer to a 200 as RT-TDDFT ED simulation on a coumarin molecule. The number in brackets are deviations from ideal 
scaling (see text for details). 

Time step (as) 1 2 3 10  
IT PC IT PC IT PC IT PC 

AO<->MO  18.4 
 

12.2 
 

9.4 
(1.0) 

6.2 
(1.0) 

6.2 
(1.0) 

4.1 
(1.0) 

1.9 
(1.0) 

1.2 
(1.0) 

SOMP  121.1 
 

72.5 
 

77.0 
(0.8) 

45.6 
(0.8) 

59.4 
(0.7) 

33.2 
(0.7) 

31.5 
(0.4) 

17.1 
(0.4) 

KS potential 624.9 
 

219.7 
 

310.6 
(1.0) 

106.9 
(1.0) 

196.3 
(1.1) 

68.1 
(1.1) 

60.1 
(1.0) 

19.8 
(1.1) 

Population 
analysis 

16.6 
 

16.7 
 

8.2 
(1.0) 

8.3 
(1.0) 

5.5 
(1.0) 

5.5 
(1.0) 

1.6 
(1.0) 

1.6 
(1.0) 

Total time 
 

774.5 
 

322.8 
 

402.5 
(1.0) 

168.4 
(1.0) 

265.8 
(1.0) 

112.1 
(1.0) 

95.4 
(0.8) 

40.8 
(0.8) 

cost for 1 step 3.9 1.6 4.0 1.7 4.0 1.7 4.8 2.0 
cost for 1 fs 3872.5 1613.9 2012.6 842.1 1322.3 557.9 476.9 204.2 

  

Starting with coumarin we note that the PC algorithm is average 2.44 times faster than the iterative 

algorithm whatever the value of ∆𝑡. This is explained by the higher number of KS potential calculations 

and of Magnus propagation steps required in the iterative scheme. On average three iterations are 

needed for each propagation step, leading to three KS potential calculations and three SOMP steps. 

With the PC scheme, only one KS potential calculation and two SOMP steps are needed for each 

propagation step. The evaluation of the KS potential is the most time consuming, followed by the 

SOMP step. Transformation between the atomic orbitals and molecular orbitals as well as population 

analysis are much less computationally demanding. 

To analyze the computational time more in depth, we report in Figure 6 a pie chart illustrating the 

proportion of the different tasks. For space reasons, we consider only simulations with 1 as time steps. 

Matrix multiplications are needed in atomic orbital to molecular-orbital basis transformations and in 

Magnus propagation. Together they represent 18% of the total time. In fact basis transformation is a 

minor task representing only 2.3%. The time for KS potential evaluation encompasses three main 

contributions, the calculation of the XC potential, the calculation of electron Coulomb repulsion terms 

in which we include both ERIS calculations and density fitting steps, and finally, the calculation of the 

core Hamiltonian. The XC contribution represents 76 % of the overall cost. We remark that a very 

accurate grid has been chosen, inducing a significant computational cost. Calculation of the Coulomb 

contribution is almost negligible (2%). This remarkable performance is achieved thanks to the mixed 

scheme implemented in deMon2k to store short-range ERIS in RAM and to compute long-range ERIS 
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by double asymptotic expansions68. The calculation of core integrals is less than 1% only. In fact 

because the core Hamiltonian is independent on the density it only needs to be calculated once at the 

beginning of the propagation. The repeated analysis of the time-dependent electron density induces 

only a small supplementary cost to the calculation (<1%). 

 

Figure 6. Computational timing for 200 as of RT-TDDFT ED simulations of coumarin and heme. The time step was set to 1 

as and the iterative SOMP was chosen. A grid of high accuracy was employed to evaluate the XC contribution to the 

potential. 

We now look at the influence of the time step size on the computational performance. The evolution 

of overall simulation time follows the size of ∆t. For example it takes 332.85 s to perform 200 as of 

simulation with a time step of 1 as (PC), but only 112.1 s with a Δ𝑡 of 3 as, that is a reduction by factor 

3. To quantify the scaling we provide in Table 1 numbers quantifying the deviation from an “ideal 

scaling” (numbers in brackets). For each entry this indicator is calculated from the ratio of timings using 

the 1as time step ED and multiplied by the ratio of integration time step. Therefore a value of 1 

indicates the computational effort for this entry is strictly proportional to Δ𝑡. This is the case for 

instance of population analyses that are obtained by numerical integration on a grid of points. This is 

an operation which is totally disconnected from the choice of propagation algorithm. Therefore the 

total time for population analysis depends only on the number of propagation steps and not on the 

length of the time step. Most indicators are close to one. This indicates that increasing the time step 

doesn’t induce an increase of computational cost of each step. The only deviation from unity we 

observe is for the “Magnus propagation” entry which amounts to 0.7 and even 0.4 for a 3 as and 10 as 

time steps respectively. This is due to the higher number of nested commutators that are included in 

the BCH expansion to ensure stability of the propagation.  
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Alternatively said, the computational time saving obtained by choosing a larger time step is partially 

lost by the fact that more terms are needed in the evaluation of the BCH expansion to ensure stability. 

Nevertheless one can increase the integration time length without affecting propagation stability and 

still gain a proportional advantage in terms of computer time. This is the case both for the iterative 

and the propagator-corrector methods.  

Most of these conclusions are relevant for ED simulations on the larger heme complex (Table 2). The 

PC algorithm is average 2.11 times faster than the iterative one. A main difference is, as expected, the 

higher overall computational cost which is due to the much larger number of basis functions in heme 

compared to coumarin. Matrix multiplication (42%) and XC potential calculations (48%) are now almost 

equally time consuming (Figure 6). Therefore for a larger system like heme, the scaling for linear 

algebra is less favorable than for the numerical integration of the XC contributions on grids of points.  

Table 2. Computational performances of the iterative and PC propagation algorithms. The reported wall-clock timings (in 
s) refer to a 200 as RT-TDDFT ED simulation on a heme complex. 

Time step (as) 1 2 3 

 IT PC IT PC IT PC 

AO<->MO  586.8 
 

3,967 
 

293 
(1.0) 

197 
(1.0) 

195 
(1.0) 

132 
(1.0) 

SOMP  11,826.4 
 

6,764 
 

9,149 
(0.6) 

5,004 
(0.7) 

8,073 
(0.5) 

4,409 
(0.5) 

KS potential 
 

15,319.6 
 

5,085 
 

7,502  
(1.0) 

2,550 
(1.0) 

5,076 
(1.0) 

1,700 
(1.0) 

Population 
analysis 

431.0 
 

435 
 

215 
(1.0) 

214 
(1.0) 

143 
(1.0) 

143 
(1.0) 

Total time 
 

27,325.4 
 

12,455 
 

16,747 
(0.8) 

7,863 
(0.8) 

13,218 
(0.7) 

6,320 
(0.7) 

cost for 1 step 136.6 62.3 168 79 197 94 

cost for 1 fs 136,626.9 31,136.6 167,473 39,314 65,761 31,446 
 

Stable simulations for heme turned out to be more difficult to achieve. For instance no stable 

simulation could be obtained with a 4 as integration time step‡. It also becomes less and less efficient 

to increase the time step as more and more terms are needed to converge the BCH expansion, which 

results in an increase of the computational cost of each time step. For example, a single PC propagation 

step takes 1.04 min vs. 1.57 min with 1 as or 3 as time step lengths respectively. This is probably due 

to the more complex electronic structure of heme compared to coumarin (e.g. presence of d orbitals 

on the iron cation). A recent study also suggested that core electrons are those animated by the fastest 

motion thereby setting a lighter limit to the integration time length. The deep iron core electrons might 

therefore also contribute to making RT-TDDFT ED simulations of heme difficult. Satisfactorily though, 

                                                           
‡ When using the more robust diagonalization of the propagator the simulation remained stable with a 10 as 
integration time step suggesting that the instability was due to numerical error accumulation in the BCH routines.  
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we find that the iterative as well as the PC algorithms implemented in deMon2k permit to carry out 

such simulations in reasonable times.  

II.1.c Stability and performance for strong perturbations 

The PC scheme has a clear advantage in computational time compared to the iterative one. However 

in the previous tests, a weak perturbation was applied – an infinitely narrow electric kick of strength 

0.0001 a.u (0.1 V/nm). We now analyze similar simulations with a stronger electric field over a longer 

period of time. The mathematical expression of the external electric field is given by: 

𝑭(𝑡) = 𝐹𝑚𝑎𝑥𝑒𝑥𝑝[(−(𝑡 − 𝑡0)2/2𝑢𝐹
2]cos (𝜔𝑡)𝒅 (54) 

where 𝐹𝑚𝑎𝑥  is the maximum field strength, 𝑡0 and 𝑢𝐹  are respectively the center and width of the 

Gaussian envelope and 𝜔 is the frequency of the electric field. These parameters were set to 0.005 a.u. 

(5 V/nm), 0.1 fs, 0.015 fs and 0.114 a.u, respectively. The value for 𝜔 is the excitation energy of 3.10 

eV (400 nm), which corresponds to typical Soret band of heme systems. Therefore application of this 

electric pulse should trigger transition of the ground state density to the Soret band. Results are shown 

in Table 3. 

We find again a computational advantage of the PC over the iterative scheme. In fact most of the 

conclusions drawn for the weak kick are also transferrable to the case of a Gaussian pulse.  

Table 3. Computational performances of the iterative (IT) and PC propagation algorithms. The reported wall-clock timings 
(in s) refer to a 200 as RT-TDDFT ED simulation with a Gaussian pulse on a heme.  

Time step (as) 1 2 3  
IT PC IT PC IT PC 

AO<->MO  
 

714 
 

461 
 

350  
(1.0) 

238 
(1.0) 

263 
(0.9) 

159 
(1.0) 

SOMP  14,857 
 

8,103 
 

11,172 
(0.7) 

6,294 
(0.6) 

11,061 
(0.4) 

5,507 
(0.5) 

KS potential 
 

21,318 
 

7,174 
 

10,437 
(1.0) 

3,490 
(1.0) 

7,911 
(0.9) 

2,395 
(1.0) 

Population analysis 
 

465 
 

467 
 

233 
(1.0) 

234 
(1.0) 

156 
(1.0) 

156 
(1.0) 

Total time 
 

36,437 
 

15,965 
 

21,742 
(0.8) 

10,153 
(0.8) 

19,063 
(0.6) 

8,161 
(0.7) 

cost for 1 step 182 80 217.4 102 285 121 
cost for 1 fsa 182,183 79,826 108,709 50,764 94,839 40,604 

a: value extrapolated from an ED simulation run for 200 as 
 
 
 

II.2 On the efficiency of the exponential of an operator 

As introduced in section I, the methods available in deMon2k to evaluate the exponential of the matrix 

entering the SOMP are i) the diagonalization of the 𝑒𝑊  (diago), ii) the Baker–Campbell–Hausdorff 

formula (BCH), iii) the Taylor expansion (Taylor) of the 𝑒𝑊 and for iv) the series expansion of 𝑒𝑊 using 
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Chebyshev polynomials (Chebyshev). The numerical performances of each type of method depend on 

the nature of linear algebra operations, and for this reason are system dependent. Methods ii, iii and 

iv depend on a user defined convergence criterion. According to this criterion, different expansion 

terms (k) will be used (Eqs. 21-25). We have considered five molecular systems consisting of a coumarin 

molecule solvated by droplets of water molecules of different sizes (Figure 7). Systems S1, S2, S3, S4 

and S6 respectively encompass 76, 196, 436, 916 and 1256 electrons and 195, 495, 1095, 2295 and 

3145 atomic orbitals (DZVP-GGA/GEN-A2* combination of atomic orbitals and auxiliary basis sets). The 

geometries have been extracted from a classical MD simulation of coumarin solvated in a box of 

solvent using periodic boundary conditions.  

 

 

Figure 7. Five molecular systems used for testing different methods to perform the SOMP. 

We report in Table 4 the wall-clock timings corresponding to a propagation of the electron density for 

400 steps. The SOMP/PC scheme has been used to simulate the response of the ground state electron 

cloud to an electric field kick of strength 0.001 a.u. applied along the x-direction. We switched for this 

series of tests from the highly accurate (10-8 Ha) numerical grid§ as used in the previous section to a 

grid of accuracy 10-7 Ha. The latter grid permits a noticeable decrease of computational cost of the XC 

contribution to the Kohn-Sham potential while still retaining high accuracy. It is also more 

                                                           
§ deMon2k uses Lebedev grids centered on atoms to integrate XC contributions. The number of angular points 
for each radial shell is optimized for the molecular structure with an accuracy criterion applying on the diagonal 
elements of the XC potential matrix. This is the criteria we are referring to in the main text.  
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representative of the computational set-ups now commonly used in the group to carry out RT-TDDFT 

simulations with deMon2k. For the BCH, Taylor and Chebyshev, iterations over the number of terms 

introduced in the series were pursued with a tolerance criterion of 10-30. All the simulations have been 

carried out on the Cedar supercomputer hosted by ComputeCanada (Intel Broadwell® CPUs at 2.1Ghz, 

model E5-2683 v4). Three 96 tasks distributed over 3 nodes have been used. The available RAM 

memory enabled the use of the MIXED ERIS option of deMon2k even for the largest system, thereby 

avoiding recalculation of Coulomb integrals in the course of the ED simulations.  

 

Table 4. Computational timings (in s) using different algorithms for  
evaluating the matrix exponential entering the SOMP.  

 

 

Table 4 collects the timings for the five systems with different exponentiation matrix methods. The 

total time is decomposed into three main tasks, namely "Kohn-Sham potential", SOMP and 

"AO<->MO" transformation (secondary tasks that contribute slightly to the total time are not collected 

in the Table). The "AO<->MO" transformations are not computationally time consuming. As expected 

the time taken for basis transformations is independent on the exponentiation method for a given 

cluster size. The small differences we see for different simulations (for example 6,656 4,642, 6,888 and 

 KS potential SOMP AO<->MO Total 

Diagonalization     
S1 57 316 277 687 
S2 207 1,878 419 2,589 
S3 681 16,408 852 18,270 
S4 2,632 195,781 3,644 206,860 
S5 3,797 398,520 6,656 730,796 

BCH     
S1 59 1,472 148 1717 
S2 214 2,612 268 3174 
S3 795 8,787 955 10,929 
S4 2,601 31,335 3,686 39,308 
S5 6,364 70,295 7,642 96,962 

Taylor     
S1 60 1,725 145 1,966 
S2 199 3,511 325 4,110 
S3 706 8,681 861 10,571 
S4 2,270 31,083 3,116 39,044 
S5 5,646 69,446 6,888 84,566 

Chebyshev     
S1 59 2,164 141 2,398 
S2 194 4,043 289 4,604 
S3 701 11,598 868 13,482 
S4 2,432 45,028 3,482 52,594 
S5 5,612 92,781 6,948 107,853 

Figure 8. Computational timings for 
propagating RT-TDDFT simulations on coumarin 
with different matrix exponentiation methods. 
Top: Total time of the computation. Bottom: 
timing of the SOMP step 
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6,948 for S5) can be attributed to differences in machines and speed on the internode connection at 

the moment of the simulations.  The SOMP is by far the most time consuming task in all the simulations. 

This is a consequence of the decrease of the grid accuracy for the XC contribution. This result shows 

that our implementation of RT-TDDFT takes full advantage of the algorithmic machinery available in 

deMon2k to evaluate molecular integrals (Density fitting, mixed ERIS scheme, XC numerical 

integration…). It therefore places the bottleneck of RT-TDDFT simulation in the SOMP steps. To better 

analyze this point we depict in Figure 8 these timings as a function of the number of atomic orbitals 

(𝑁𝐴𝑂). The diagonalization method which formally scales as 𝑁𝐴𝑂
3  becomes uncompetitive after around 

700 atomic orbitals. It is on the other hand far more efficient for small systems (<50 atoms) than the 

expansion methods. The Chebyshev, Taylor and BCH expansions show similar scaling with a slight 

advantage for the Taylor scheme. It should be stressed though that the comparison of the three 

methods is dependent on the choice of the tolerance threshold. In Figure 9 we represent the dipole 

moment evolution for the largest S5 system during 100 as. It is clearly similar for the three types of 

propagation.  

We depict in Figure 8 a graphical representation of the total and SOMP timings. The expansion 

methods are more advantageous to simulate large molecular systems. Nevertheless the scaling of the 

implementation is not fully satisfactory. Indeed for the S5 cluster that contains 1256 electrons and 

3145 𝑁𝐴𝑂, it takes 23 h to run 100 as on 96 processors with the Taylor expansion. This seems to set-up 

a limit to the maximum size to the molecular systems that can be investigated with deMon2k. 

Reduction of the computational cost of the SOMP step is therefore highly desirable to perform ED 

simulations on larger systems comprising for instance 1,000 atoms. Actually the analysis of our first 

implementation of the expansion method indicates that it is not optimum. For simplicity we borrowed 

the already existing subroutines available in the code to perform the matrix multiplications needed in 

Eqs. 21-25 (subroutine mpmumat.f69). This subroutine is adequate to perform one single matrix 

multiplication using the MPI protocol. It is used for instance in the SCF driver. However in the context 

of many successive matrix multiplications as required for the Taylor, Chebyshev or BCH expansion, it 

becomes unproductive; for example because the mpmulmat starts by distributing the rows of the 

matrix to the slave nodes. When applying this subroutine successively, the rows of the initial matrix 

are repeatedly sent to the slaves, which is not necessary. This is probably a main source of loss of 

computational efficiency as communications among processors are slow processes. An alternative 

would be to resort to dedicated subroutines (e.g. SCALAPACK) that optimize the workload among 

processors or to use different types of architectures like GPUs (Graphical Processor Units).  
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Figure 9. Dipole moment for the S5 systems during 100 as using three different exponentiation methods. 

 

CONCLUSION  

In this chapter, we have introduced the theory of RT-TDDFT to simulate ultrafast electron dynamics. 

An efficient and robust implementation of this method has been realized in deMon2k. With this 

implementation, real-time electron density response to different external perturbations in large 

molecular systems are possible. For propagating the electron density, we have chosen the second-

order Magnus propagator (SOMP) which is a well-balanced propagator between stability and 

performance. Various alternative algorithms to achieve this propagation have been implemented to 

different systems and perturbations. For the external perturbation, simulate different types of electric 

fields and inelastic collisions with a charged particle may be simulated. Several tools are available to 

analyze the real time fluctuating electron density including molecular multipoles, intrinsic multipoles, 

occupation of molecular orbitals, kinetic energy of electrons and graphical representation of molecular 

fields.  

Thanks to the use of the density fitting formalism, our implementation is very efficient. Tests of 

auxiliary densities with RT-TDDFT show that using auxiliary basis sets containing polarization functions 

(GEN-An*) is sufficient to achieve accurate simulations. Moreover, during the implementation, we took 

full advantage of the highly optimized algorithmic machinery in deMon2k such as the mixed ERIS 

scheme and XC numerical integration. We validated our implementation by comparing polarizabilities 

and the absorption spectra of molecules with results obtained by finite difference or perturbative 

approaches.  
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Performance tests of different algorithms and depth analyses of efficiency of the implementation have 

been carried out. In the test of two different versions of SOMP, we found that a computational 

advantage of the Predictor-Corrector over the iterative scheme in both weak and strong perturbations. 

The speed up depends both on the systems and the time step. Roughly speaking, PC is around 2.2 

times faster than iterative schemes. With the tests of different methods for calculating the exponential 

of a matrix, we conclude that diagonalization is efficient for small systems containing less than 500 

atomic orbitals, while expansion methods (Chebyshev, Taylor and BCH) should be used for systems of 

larger sizes. A molecular system that contains around 3000 atomic orbitals can be carried out with our 

implementation. This is achievable thanks to the use of fitting density and efficient algorithms in 

deMon2k which reduce considerably the computational time of the KS potential. 

The bottleneck of RT-TDDFT simulation is in the SOMP steps. Future efforts will be pursued to increase 

the efficiency and stability of this propagation. The efficiency can be improved by optimizing the 

workload among processors of MPI or to use different types of architectures like GPUs (Graphical 

Processor Units). Other propagators and algorithms could be tested to increase the stability such as  

higher order truncated Magnus expansion, commutator free Magnus schemes39. We would like to 

update the code to be compatible with hybrid functionals which will introduce a complex KS matrix. 

special functional should be implemented to go beyond the adiabatic approximation of the exchange-

correlation part.  
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Electron Dynamics in Contact with Polarizable Environments 

 

In Chapter 3 we introduced a Real-Time Time-Dependent Density Functional Theory (RT-TDDFT) 

methodology to simulate electron dynamics in isolated molecular systems. Thanks to the involvement of 

auxiliary fitted density, the implementation allows the treatment of with large molecular systems 

comprised of tens of atoms, and possibly several hundreds of atoms once linear algebra operations are 

optimized. Although encouraging this computational set-up will face hurdles when attempts will be made 

to simulate molecular systems comprised of thousands or hundreds of thousands of atoms such as those 

encountered in biology (e.g. proteins, DNA, lipid layers…). One easily foresees the incredible complexity of 

simulating the electronic response of very large molecular systems subjected to a widely spread 

perturbation. At the present time plain RT-TDDFT simulations on nanometer scales seems intractable. On 

the other hand one may be interested in simulating electron dynamics explicitly only within a restricted 

area of space. The space beyond that specific region would be considered as its environment. This point-

of-view recalls the strategy of continuum polarizable models1 or of hybrid QM/MM (Quantum 

Mechanics/Molecular Mechanics) approaches2. In fact certain classes of perturbations can be localized, as 

for example the initial collision of a molecular fragment by a fast moving particle. It seems natural to seek 

for coupled schemes between RT-TDDFT and approximate representations of environments. The simplest 

option is to embed the region-of-special-interest (RSI) by a static environment3. In hybrid QM/MM, for 

example this can be achieved by adding the electrostatic potential created by the atomic charges of the 

MM atoms into the quantum Hamiltonian. This solution doesn't seem sufficient though because of the 

intuitive need to account for the subtle interplay between the electron dynamics which is treated explicitly 

within the region of special interest, and the electron density in the environment.  

If the environment can be regarded as homogeneous the combination of RT-TDDFT with implicit 

polarizable continuum models (PCM) is a possible option. This kind of implementation has been recently 

reported by a few groups4. RT-TDDFT/PCM ED simulations lose atomic resolution of the environment. For 

highly inhomogeneous environment or/and if the coupling between the RSI and it environment is subtle, 

polarizable hybrid QM/MM approaches are good alternative candidates. To the best of our knowledge the 

only hybrid RT-TDDFT/MMpol implementation reported at the beginning of this work was due to Dinh et 
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al..5† These authors combined a grid based implementation of RT-TDDFT to a molecular mechanics force 

field to describe the MgO (001) solid surface. They were interested in the optical response properties of 

sodium clusters adsorbed on magnesium oxides. Electronic induction was introduced by distinguishing 

core from valence electrons on the oxygen atoms (O2-). The average position of the core electrons + 

nucleus and the average position of valence electrons had the possibility to be different depending on the 

electrical environment, thereby creating induced dipoles. Although interesting, a generalization of this 

approach to polarizable FF for biomolecular simulation doesn't seem straightforward without complete 

parametrization of a dedicated FF. Methodologies adapted to simulate ED in biomolecules need to be 

devised. This is the objective of the work reported in this Chapter.  

In the first section we introduce the methodology we chose to couple RT-TDDFT to polarizable force field.   

A particular focus will be put on the choice of induction model for the types of physical processes of 

interest with RT-TDDFT, as well on the introduction of retardation effects. With this new methodology in 

hand we analyze in section II the dynamics of the response of the environment of a peptide subjected to 

a strong perturbation. It will be shown how the introduction of a polarizable force field permits to 

introduced a new kind of dissipation mechanism into the algorithm.  

 

I. METHODOLOGY 

I.1 The charge point dipole mode for attosecond electron dynamics? 

I.1.a. Stationary vs. dynamical description of induction 

As seen in Part I there are various ways to include electronic induction in polarizable FF, hence in 

QM/MMpol methodologies, namely the fluctuating charge model7, the Drude particle model8 and the 

charge point dipole model2. These approaches have been validated for stationary calculations although 

coupled to molecular dynamics simulations. The stationary solutions are achieved by iterative procedures 

or approximated by propagating a fictitious dynamics of the "induction degrees of freedoms"9. In this 

Chapter we are interested in different dynamical regimes, namely the sub-femtosecond time domain. We 

wish to simulate the as-fs dynamical responses of the QM region's electron cloud after application of a 

                                                           
† In the course of the PhD, another implementation of a RT-TDDFT/MMpol scheme sharing important similarities 
with our approach appeared in the literature6. Donati, G.; Wildman, A.; Caprasecca, S.; Lingerfelt, D. B.; 
Lipparini, F.; Mennucci, B.; Li, X., Coupling Real-Time Time-Dependent Density Functional Theory with Polarizable 
Force Field. The journal of physical chemistry letters 2017, 8 (21), 5283-5289. (a few weeks after publication of our 
own work).   
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perturbation. The choice of an induction model in the context of RT-TDDFT/MMpol simulations has to be 

done carefully. Can the well-tested QM/MMpol approaches developed for electronic stationary states be 

safely adapted in the context of as ED?  A first obvious difference is that we don't look for stationary states 

of the electron density and the polarization state but we wish to describe their coupled dynamics. Second, 

for the typical applications we envision, the interaction of matter with strong laser fields or collisions with 

charged particles, it is not guaranteed not to push the standard induction models beyond their limits of 

validity. For example the strength of the electric fields applying on MM atoms may become large or may 

fluctuate rapidly on the as time scale. Finally it should be recalled that light travels at finite speed 

(approximately 3Å/as in vacuum) and that the question of retardation in the propagation of electric fields, 

which underlies all induction models, has to be posed in the context of as RT-TDDFT/MMpol simulations. 

In this subsection we justify our model for induction that we plan to couple to RT-TDDFT. 

I.1.b. Expressions of atomic induced dipoles 

We decided to rely on the description of induction by means of point dipole moments on atoms. The 

general expression for the induced point dipole (𝝁) on an atom subjected to electric field 𝑭  can be 

expressed as a series expansion: 

𝝁𝑖(𝐹) = ∑ 𝛼𝑖𝑗(𝜔)

𝑗

𝐹𝑗 +
1

2
∑ 𝛽𝑖𝑗𝑘(𝜔)𝐹𝑗𝐹𝑘

𝑗,𝑘

+
1

6
∑ 𝛾𝑖𝑗𝑘𝑙(𝜔)𝐹𝑗𝐹𝑘𝐹𝑙

𝑗,𝑘,𝑙

+ ⋯ 
(1) 

where 𝑖, 𝑗, 𝑘, 𝑙 = {𝑥, 𝑦, 𝑧} are the Cartesian components of vectors or tensors. 𝛼𝑖𝑗 , 𝛽𝑖𝑗𝑘 and 𝛾𝑖𝑗𝑘𝑙  are the 

components of the polarizability, first hyperpolarizability and second hyperpolarizability tensors 

respectively. These tensors depend in principle on the frequency of the electric field applied on the MM 

atom K. In the context of RT-TDDFT simulations, if the electron density on the RSI generates a fast 

fluctuating electric field on the as time scale, this could be accounted for by the dynamical character of 

the polarizability. On the other hand the first and second hyperpolarizabilities go beyond the linear regime 

in case the fields generated by the RSI would be very strong. Building a polarizable FF based on Eq. 1 can 

be cumbersome and it might not be necessary to reach such a high level of sophistication. To decide which 

simplifications can be made we therefore need to know within which ranges of strength and of frequency 

the electric fields generated by the RSI are susceptible to fall in actual ED (Electron Dynamics) simulations. 

 

I.1.c. Field strength and frequency in typical ED simulations 

To investigate this point we simulate the dynamics of the electron cloud of a coumarin molecule in the gas 

phase after application of a perturbation. During the ED simulation we probe the value of the electric field 
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created by the electrons and by the nuclei at various distances. Four types of perturbation are tested. The 

first type of perturbation is the application of an electric field kick of strength 0.01 a.u (5 V/nm), which is 

a high, although transient value. The field has been applied perpendicular to the aromatic plane. For the 

second perturbation a Gaussian electric pulse of strength 0.001 a.u. (500mV/nm) is applied along the z-

axis direction (in the molecular plane). The full-width at half-maximum of the envelop pulse is 1.65 fs and 

it is centered at 5 fs. The envelop is multiplied by a cosine function the frequency of which corresponds to 

an energy of 0.1528 Ha (close to the first excitation energy of coumarine). The two aforementioned 

perturbations are expected to bring the electron density in low lying excited states. The next two 

perturbations are designed to cause ionization of coumarin. They are consequently much stronger. 

The third type of perturbation named “linear ramp” corresponds to application of a strong ionizing laser 

field aligned along the x-axis (perpendicular to the aromatic plane). The applied field increases linearly 

from 0 to 5 fs where it reaches a constant value of 0.1 u.a. To deal with this kind of process a complex 

absorbing potential has been placed 10 Å away from the coumarin to absorb emitted electrons (see 

Chapter 3 for details)10. In addition very diffuse atomic basis sets are used on H atoms to expand the MOs 

of electrons localized a few Angstroms away from the nuclei10a. The last type of perturbation named 

“radiation” is a collision with a 0.1 MeV proton travelling along the x-axis. Such a collision puts the electron 

cloud in high lying excited states with a fraction of electron becoming unbound11. This results in the 

emission of so-called secondary electrons that are absorbed by the CAP.  We probe the electric field 

generated by the electron cloud along each ED simulation at several points. The points have been chosen 

taking the geometry of the microsolvated coumarin investigated in Chapter 3 (Figure 7, aggregate S5).  The 

electric field is calculated at the positions of water molecule oxygen atoms‡. We have defined four ranges 

of distances from the coumarine: 0-3 Å; 3-4 Å, 4-6 Å and 6-7 Å. We report in Figure 1 the evolution of the 

maximum and minimum field strength for each layer and each type of perturbation.  

                                                           
‡ Note that no water molecules are actually included in the RT-TDDFT simulations. We simply probe the electric field 
at the positions where these molecules could be positioned in a polarizable RT-TDDFT/MMpol simulation. 
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Figure 1. Variation of electric field on oxygen of water molecule in different shells after four different kind of perturbation on 
coumarin. The electric fields encompass both the electron and nucleus contributions. Color code: 0-3 Å in black,3-4 Å in red, 4-
6 Å in green, 6-7 Å in blue. The plain and dashed curves correspond to the highest and the lowest electric fields for each layer. 
PBE/DZVP-GGA/GEN-A2* ED simulations relying on second order Magnus propagator with a time step of 2 as. For the ionizing 
radiations (bottom) a complex absorbing potential was placed 10 Å away from the coumarin to absorb emitted electrons. Very 
diffuse atomic basis sets were used on H atoms to expand the MOs of unbound electrons. Almost 3 e- were emitted in the 
strong laser field ionization and 0.3 e- upon proton collision (at 10 fs).  

Roughly, the longer the distance from coumarin the weaker the electric field. This is an expected trend. 

For the first two kinds of perturbations (upper panel) the electric field generated by the coumarin is weak 

(<0.005 u.a.) except for the closest probing points (0.01 u.a.). For these two simulations the initial 

perturbation is not strong essentially putting the electron cloud in low lying excited states. The amplitude 

of the fluctuations of the fields generated by the electron density are very small (already <0.00001 u.a. for 

the closest probing point). We are clearly in a weakly perturbation regime. If we were conducting RT-

TDDFT/MMpol simulations, the induced dipoles on the oxygen atoms would be proportional to the electric 

field ( 𝜇𝑖(𝐹) ≅ ∑ 𝛼𝑖𝑗(𝜔)𝑗 𝐹𝑗 ). The introduction of first and second hyperpolarizability would not be 

necessary. 
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We also see that the fluctuations of the electric field at the closest probing point are slow compared to 

the ED taking place on the as time scale. For an eventual MM atom positioned near the coumarin the 

variation of electric field would be uncoupled from its own polarization. Therefore we could safely drop 

out the frequency dependence of the polarizability tensor and consider static polarizabilities:  𝜇𝑖(𝐹) ≅

∑ 𝛼𝑖𝑗𝑗 𝐹𝑗.  

In the case of strong field ionization (bottom-left) the electric field generated by the electron cloud is much 

more important (> 0.01 a.u. even at 7 Å). This is because the electron density is largely displaced by the 

applied field. In this simulation almost 3e- have been absorbed by the complex absorbing potential. The 

question arises: whether such high fields would put the description of electronics beyond the linear regime? 

Figure 2 brings a negative answer to this question. It shows the DFT based induced dipole (z-component) 

produced water, cysteine and phenol upon application of a constant external field. Even for highly 

polarizable molecules such as a cysteine (an amino acid encompassing a thiol function) or a phenol, we 

find a linear relationship between the applied electric field and the induced dipole moment on the [0, 0.05] 

range, in atomic units. We do not see electric field fluctuations on the sub-femtosecond time scale for this 

type of strong perturbation.  

 

Figure 2. z-component of the induced dipole moment computed at the DFT level as a function of applied electric field (along 
the Oz axis). The dashed lines correspond to linear regression fit of the DFT points.   

Finally, considering the case of collision of coumarin by fast protons, we find an intermediate situation. 

The electric field increases moderately around the coumarin, making the linear response probably valid. 
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On the other hand the amplitudes of the fluctuations are rather pronounced (e.g. 0.005 considering 

distances from the molecule of around 4Å). Yet these fluctuations are not fast enough compared to the 

attosecond dynamics of the electrons. The inclusion of dynamical polarizabilities is therefore not needed.  

In summary the ED simulation reported in Figure 1 tends to indicate that for typical applications of RT-

TDDFT, a model of induction in which the induced dipoles on MM atoms is proportional to the electric 

field, neglecting hyperpolarizabilities and dynamic polarizabilities, is perfectly adapted. Instead of Eq. 1 an 

adequate FF to be coupled to RT-TDDFT could be based on 𝜇𝑖(𝐹) ≅ ∑ 𝛼𝑖𝑗𝑗 𝐹𝑗 . We can make a further 

simplification by assuming that the atom polarizabilities are isotropic 𝝁𝐾 = 𝛼𝐾𝑭𝐾. This set of hypotheses 

defines a model of induction for the MMpol force field. From this, supplementary approximations can be 

made. The polarizability could be made dependent on the type of atom7, for example an oxygen atom 

within an water molecule may have different intrinsic polarizability than an oxygen atom within a peptide 

bond.  

 

I.2 Electron dynamics in contact with a polarizable environment 

I.2.a. Determination of point dipoles  

Having defined the induction model we now describe the mathematical expressions that are necessary to 

proceed to implementation in deMon2k. From now the indices 𝑖, 𝐴, 𝐾 respectively refer to electrons, 

atom nuclei from the QM region and from MM atoms. Each MM site K is characterized i) by a permanent 

charge (𝑞𝐾) and a static polarizability 𝛼𝐾 which is taken to be isotropic. The latter permits to determine an 

induced dipole 𝝁𝐾 from the electric field felt by atom K (𝑭𝐾).  𝑭𝐾 includes the electric field created by 

other MM atoms that arises both from other permanent multipoles 𝑭𝐾
(0)

 and from other induced dipoles 

𝑭𝐾
𝑖𝑛𝑑. For simplicity we will assume that only permanent charges are present in the FF (i.e. no permanent 

dipoles, quadrupoles, like in AMOEBA). 𝑭𝐾 also includes the electric field created by the QM region, that 

is from the QM nuclei 𝑭𝐾
𝑍𝑄𝑀 and from the electron density (𝜌) 𝑭𝐾

𝜌
. In principle we could also include the 

field created by an external perturbation but we will not consider this possibility here for simplicity.  

𝝁𝐾 = 𝛼𝐾𝑭𝐾 = 𝛼𝐾 (𝑭𝐾
(0)

+ 𝑭𝐾
𝑍𝑄𝑀 + 𝑭𝐾

𝜌
+ 𝑭𝐾

𝑖𝑛𝑑) (2) 

The mathematical expressions to compute the electric fields are given below: 
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𝑭𝐾
𝑍𝑄𝑀

= ∑
𝑍𝐴

𝑟𝐾𝐴
3

𝒓𝐾𝐴

𝐴∈𝑄𝑀

 (3) 

𝑭𝐾
(0)

= ∑
𝑞𝐿

𝑟𝐾𝐿
3

𝒓𝐾𝐿

𝐿∈𝑀𝑀
𝐿≠𝐾

 
(4) 

𝑭𝐾
𝑖𝑛𝑑 = − ∑ 𝑻𝐾𝐿𝝁𝐿(𝑡)

𝐿∈𝑀𝑀
𝐿≠𝐾

 
(5) 

𝑻𝐾𝐿 =
1

𝑟𝐾𝐿
3 𝑰 −

3

𝑟𝐾𝐿
5 [

𝑥2 𝑥𝑦 𝑥𝑧

𝑦𝑥 𝑦2 𝑦𝑧

𝑧𝑥 𝑧𝑦 𝑧2

] (6) 

𝑭𝐾
𝜌

= − ∫
𝜌(𝒓, 𝑡)

𝑟𝐾
3

𝒓𝐾 𝑑𝒓 (7) 

𝒓𝐾𝐿 is the vector between atoms 𝐾and 𝐿; 𝑻𝐾𝐿 is the dipole-dipole interaction tensor and 𝑰 is the identity 

matrix. 𝑍𝐴 is the nuclear charge of QM nucleus 𝐴. In ED simulations carried out with RT-TDDFT the nuclei 

may either be fixed or displaced by Newton's laws (Ehrenfest molecular dynamics12). In this work we only 

consider the former possibility and carry out ED simulations at fixed nuclear positions. In that case 𝒓𝐾𝐴, 

𝒓𝐾𝐿, hence 𝑭𝐾
𝑍𝑄𝑀

 and 𝑭𝐾
(0)

 are constant in our simulations. The other electric fields are time-dependent. 

 

I.2.b. Energy expression of QM/MMpol with electrostatic embedding  

The total QM/MMpol Hamiltonian reads:  

𝐸
𝑄𝑀/𝑀𝑀𝑝𝑜𝑙[𝜌(𝒓, 𝑡), 𝝁(𝑡)] = 𝐸𝑄𝑀[𝜌(𝒓, 𝑡)] + 𝐸𝑒𝑚𝑏𝑒𝑑[𝜌(𝒓, 𝑡), 𝝁(𝑡)] + 𝐸𝑀𝑀[𝝁(𝑡)] (8) 

 

where 𝐸𝑄𝑀  collects the energy of the QM region. In the Kohn-Sham DFT framework we have 𝐸𝑄𝑀 =

𝑇𝑠[𝜌] + ∫ 𝜌(𝑟)𝑣𝑒𝑥𝑡𝑑𝑟 + 𝐽[𝜌] + 𝐸𝑥𝑐[𝜌] + 𝐸𝑐𝑙𝑎𝑠𝑠
𝑄𝑀  that is, respectively, the sum of kinetic energy of the 

reference electron gas, the interaction energy with the external potential, the classical Coulomb repulsion, 

the exchange-correlation energy and the classical repulsion among QM nuclei (𝐸𝑐𝑙𝑎𝑠𝑠
𝑄𝑀 ). 𝐸𝑒𝑚𝑏𝑒𝑑  is the 

embedding energy. 

𝐸𝑒𝑚𝑏𝑒𝑑 = ∑ ∫
𝜌(𝒓, 𝒕)

|𝒓𝐾 − 𝒓|
𝑞𝐾𝑑𝒓 −

1

2
∑ ∫

𝜌(𝒓, 𝒕)

|𝒓𝐾 − 𝒓|3
𝝁𝐾(𝑡) ∙ (𝒓𝐾 − 𝒓) 𝑑𝒓

𝐾∈𝑀𝑀𝐾∈𝑀𝑀

+ 𝐸𝑐𝑙𝑎𝑠𝑠
𝑒𝑚𝑏𝑒𝑑  (9) 
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For a polarizable FF 𝐸𝑒𝑚𝑏𝑒𝑑  encompasses the interaction with MM charges (𝑞𝐾) and with the induced 

dipoles (𝝁𝐾) (respectively the first two terms on the r.h.s. of Eq. 9) 𝐸𝑐𝑙𝑎𝑠𝑠
𝑒𝑚𝑏𝑒𝑑 is the classical energy of MM 

atoms with the QM nuclei. 𝐸𝑒𝑚𝑏𝑒𝑑 clearly appears as a coupling term between the QM and MM regions 

as it depends both on the electron density (QM region) and on the induced dipoles (MM region).  

Finally 𝐸𝑀𝑀 is the MM energy for the MM region. The MM energy involves bonded terms and non-bonded 

terms. The classical interaction among MM charges and the induction energy within the MM region: 

−
1

2
∑ 𝝁𝐾(𝑡) ∙ 𝑭𝐾

(0)
𝐾∈𝑀𝑀 . 

For convenience we can also define an induction energy according to: 

𝐸𝑖𝑛𝑑 =
1

2
∑ ∫

𝜌(𝒓, 𝒕)

|𝒓𝐾 − 𝒓|3
𝝁𝐾(𝑡) ∙ (𝒓𝐾 − 𝒓) 𝑑𝒓

𝐾∈𝑀𝑀

−
1

2
∑ 𝝁𝐾(𝑡) ∙ 𝑭𝐴

𝑍𝑄𝑀

𝐴∈𝑀𝑀

−
1

2
∑ 𝝁𝐾(𝑡) ∙ 𝑭𝐾

(0)

𝐾∈𝑀𝑀

 (11) 

  

The potential entering the KS potential is obtained by differentiation of the embedding energy with respect 

to the electron density: 𝜕𝐸𝑒𝑚𝑏𝑒𝑑 𝜕𝜌⁄ . Adopting the matrix notations introduced in Chapter 4 we have: 

𝐸𝑒𝑚𝑏𝑒𝑑 = ∑ ∑ 𝑞𝐾𝑃𝜎𝜏 ⟨𝜎|
1

|𝒓𝐾 − 𝒓|
|𝜏⟩

𝜎,𝜏𝐾∈𝑀𝑀

−
1

2
∑ ∑ 𝑃𝜎𝜏 ⟨𝜎|

𝝁𝑖(𝒓𝐾 − 𝒓)
|𝒓𝐾 − 𝒓|3 |𝜏⟩

𝜎,𝜏𝐾∈𝑀𝑀

+ 𝐸𝑐𝑙𝑎𝑠𝑠
𝑒𝑚𝑏𝑒𝑑  

(12) 

𝜕𝐸𝑒𝑚𝑏𝑒𝑑

𝜕𝑃𝜎𝜏

= ∑ 𝑞𝐾 ⟨𝜎|
1

|𝒓𝐾 − 𝒓|
|𝜏⟩

𝐾∈𝑀𝑀

−
1

2
∑ ⟨𝜎|

𝝁𝑖(𝒓𝐾 − 𝒓)
|𝒓𝐾 − 𝒓|3 |𝜏⟩

𝐾∈𝑀𝑀

 
(13) 

 

𝑃𝜎𝜏 are matrix elements of the Kohn-Sham density matrix. These two terms need to be added in the Kohn-

Sham Hamiltonian to polarize the electron density by the MM region.  

 

I.2.c. Coupling between RT-TDDFT MMpol?  

i) Stationary/dynamical solution 

To solve the time-independent KS equations to determine the stationary states of the system of interest, 

a common procedure is to relax the MM induced dipoles at every SCF cycle. The MM dipoles are then 

injected in the next SCF cycle to calculate a new embedding potential. The convergence threshold for 

𝐸𝑐𝑙𝑎𝑠𝑠
𝑒𝑚𝑏𝑒𝑑 = ∑ ∑

𝑍𝐴𝑞𝐾

|𝒓𝐾 − 𝒓𝐴|
𝐴∈𝑄𝑀𝐾∈𝑀𝑀

− ∑
1

2
𝝁𝐾(𝑡) ∙ 𝑭𝐴

𝑍𝑄𝑀

𝐴∈𝑄𝑀

 (10) 
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converging the MM dipole moments is tightened along with the SCF convergence to reach, at global 

convergence, a user-defined value, typically 10-8 to 10-10 D. On the other hand if one is interested in the 

time-dependent solutions of the KS equations more subtle algorithms are needed because of the time 

dependence of each terms of eq. 8. In principle one needs to set up the coupled equations of motion for 

the overall system. This is not a trivial task because of the composite quantum-classical nature of the 

system. One may think of coupling RT-TDDFT for the electron cloud to a fictitious dynamics of the MM 

induced dipoles, in the spirit of what is done for molecular dynamics simulations with MMpol9.  In this PhD 

work we consider a simpler scheme in which we make the assumption that the MM dipoles completely 

relax at each RT-TDFT step. In other words, we look for the stationary polarization state of the environment 

along with the non-stationary propagation of the electron cloud. We call this a RT-TDDFT/MMpol-

stationary scheme. 

ii) Implementation in deMon2k 

The coupling between RT-TDDFT and MMpol has been carried out based on the implementation of RT-

TDDFT described in Chapter 3. The strategy we have followed has been to build on the pre-existing "in-

deMon2k QM/MM" methodology13. Indeed deMon2k includes an internal QM/MM approach meaning 

that both MM and QM (DFT) calculations are carried out by the program without needing program 

interfaces. The in-deMon2k QM/MM is based on the TINKER14 format. It is currently compatible with the 

OPLS15, CHARMM16 or Amber17 force fields. Our strategy has been to upgrade this methodology to 

QM/MMpol, i.e. introduction electronic induction into the code, and the coupling of it to RT-TDDFT. The 

hope was that QM/MMpol calculation which needs several information passing between the DFT and 

MMpol calculations would benefit from fully local implementation.  

An important feature of the QM/MMpol implementation was to use auxiliary fitted densities to evaluate 

the electric field created by the electron density (𝑭𝐾
𝜌

). This field is needed to evaluate the MM induced 

dipoles (Eq. 7). This can be a time consuming task. We showed the substitution of 𝜌  by �̃� decreased 

dramatically the computational cost of evaluating 𝑭𝐾
𝜌

 without affecting accuracy, as long as sufficiently 

flexible (i.e. including polarization functions) auxiliary basis sets are used, namely GEN-An*. These tests 

are described in details in the article reproduced at the end of Part II.   

  iii) Validation of the coupling scheme 

To test the RT-TDDFT/ MMpol-stationary- scheme we consider a peptide (Tyr-Gly-Gly-Phe-Met) treated by 

DFT immersed in a box of 4,030 polarizable POL318 water molecules (Figure 3). The full system was 

previously equilibrated by classical MD simulations. We have used the PBE functional and the DZVP-GGA 
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atomic basis set in combination with the GEN-A2* auxiliary sets. The fitted density has been used to 

calculate both the Coulomb and XC potentials19. A grid of high accuracy is used to integrate the XC 

contributions (10-7 Ha). The induced dipoles have been updated at every SCF cycle by an iterative 

procedure until the Root-Mean-Square between two successive cycles is below 10-9 D. After SCF 

convergence the electronic density of the peptide is perturbed by a Gaussian shaped electric field centered 

at 10 as and with standard deviation 1 as. Three field strengths have been tested: 0.001, 0.01 and 0.1 a.u. 

The simulations have been run for 1 fs with the propagator-corrector Magnus and the Becker-Campbell-

Haussdorff (see Chapter 3). 30 terms have been used in the expansion.  

 

Figure 3. Metenkephalin solvated in a water box. The peptide is described by DFT while the aqueous environment is described 
by polarizable POL3 water model.  

The objective is to evaluate the error due to the RT-TDDFT/ MMpol-stationary- scheme. For short enough 

time steps the decoupling approximation is certainly valid. Indeed we find that the MM induced dipoles 

evolve very smoothly with such short time scales. No more than one iteration is needed to converge the 

induced dipole. The 0.1 as ED simulation will thus serve as reference. We have repeated the simulations 

with longer time steps of 0.25, 0.5, 0.75 and 1 as. Figure 4 depicts the differences of RT-TDDFT/MMpol 

total energy (Eq. 8), of induction energy (Eq. 12), and of embedding energy (Eq. 9) as a function of time 

taking the 0.1 as time-step simulation as reference.  
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Figure 4. Error estimations of the MMpol-stationary-RT-TDDFT scheme. The 0.1as time-step simulation is taken as a reference 
and the data for larger time steps are given with respect to the reference. light brown: 1 as, cyan : 0.75 as, marron: 0.5 as, 

violet: 0.25 as. All the energies are given in kcal/mol scaled by coefficients given on each graph. E is the total QM/MM energy, 

Epol is the total polarization energy and Eembed is the embedding energy (permanent charges and induced dipole). The initial 
field strengths is set to 0.001 (Top), 0.01 (Middle) and 0.1 (Bottom) a.u. 
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We first consider simulations with a weak initial perturbing pulse (Figure 4, Top, 0.001 a.u.). Clearly, the 

larger the time step the larger the difference with the 0.1as ED simulation. For the total energy and for the 

embedding energy the maximum error is of the order of a few thousandths of a kcal/mol with a 1 as time 

step. It is an order of magnitude smaller for the polarization energy. These values are rather small 

compared to the variations of the total energy in these simulations caused by the initial perturbation with 

the external electric field (around 0.06 kcal/mol). Interestingly the energy errors fluctuate around zero. 

This suggests that the simulations with time steps larger than 1as eventually depart from the reference 

trajectory but do not diverge from it. We also find that the peptide dipole as well as the water dipoles of 

the first solvation layer (i.e. those mainly impacted by the electron dynamics taking place on the peptide) 

were within 1.0E-5D from those of the reference trajectory. This is a very small value. In simulations in 

which the initial perturbing electric field strength was increased to 0.01 a.u. (Figure 4, Middle), the same 

trends are obtained albeit with a factor of ten in the amplitudes of the errors. This again seems acceptable 

in view of the overall total energy change (6 kcal/mol). For an even stronger perturbing field (0.1 a.u., 

(Figure 4, Bottom) the errors in total, polarization energy and embedding energies are of the order of a 

kcal/mol, a tenth of a kcal/mol and a hundredth of a kcal/mol, respectively. These values are quite high, 

but again much smaller than the fluctuations of the total energy of the molecule (around 50 kcal/mol).  

Altogether these tests justify the non-stationary/stationary coupling scheme between RT-TDDFT for the 

QM part and stationary MMpol for the environment although one should be careful to adapt the 

propagation time step to the amplitude of the electronic fluctuation that takes place in the QM region. 

The most suitable time step might depend on the particular system of interest. 

In principle though there should be a time step beyond which the decoupling between electrons and MM 

dipoles ceases to be valid. When we increased the time step (2 or 5 as) the electronic propagation was not 

stable anymore and diverged in a few steps. RT-TDDFT propagations are usually very sensitive to 

discontinuities that may arise in the time-dependent KS potential. Hence, a plausible explanation for the 

numerical instabilities observed in RT-TDDFT/MMpol simulations for the largest time steps may stem to 

potential discontinuities caused by significant variations of MM induced dipoles between two propagation 

steps.  Interestingly, sudden instability of electron dynamics propagation may thus well be a sign of the 

breakdown of the decoupling hypothesis between the electron cloud dynamics and induced MM dipoles.  
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I.3 On the introduction of retarded electric fields 

I.3.a. Why consider retardation effects?  

In hybrid QM/MMpol calculations relying on polarizable force fields the mutual interactions between the 

QM and MM regions are mediated by electric fields generated within each region. In a charge point dipole 

model for example, the electric field generated by the quantum nuclei and the electron cloud contributes 

to determine induced dipoles on MM atoms. Conversely the electric field generated by the fixed MM 

charges and by the MM induced dipoles are incorporated into the Kohn-Sham Hamiltonian (assuming one 

uses DFT). Electric fields propagate at the speed of light (𝑐). In vacuum 𝑐 is around 3. 108 𝑚 𝑠⁄ ≈ 137 𝑎. 𝑢. 

(atomic units), that is around 3 Å 𝑎𝑠⁄ . It is less in condensed matter as reflected by the refractive index 

(𝑛). For molecular dynamics simulations relying on stationary DFT/MMpol potential energies, the typical 

time steps employed are of the order of 1 fs. One can safely assume infinite propagation of electric fields 

mediating QM/MMpol interactions.  

The situation is different in the context of RT-TDDFT/MMpol simulations. The typical propagation time 

steps (∆𝑡) are of the order of 1 as. As illustrated in Figure 5, an MM atom K situated for example 12 Å away 

from the RSI would feel fluctuations of electric field generated by the electron cloud with a delay of 4 as 

(4 propagation steps if ∆𝑡 is set to 1 as). Similarly the polarization state of MM atoms would take some 

times to reach other MM atoms or the RSI. The consideration of delays in the propagation of the electric 

fields is a point that has to be addressed and which is specific to RT-TDDFT/MMpol type of methodology 

couplings.  

 
 

Figure 5. Qualitative illustration of the finite speed propagation of electric fields mediating QM/MM interactions on the 
attosecond domain. Left: the electric field created by the fluctuating electron cloud of the RSI (in yellow) takes four propagation 
time steps to reach MM atom K which holds a point dipole 𝝁𝑲. The timings 𝒕𝒊 refers to propagation times in the timeframe of 
ED simulation on the RSI. Right: the electric field created by the induced dipole on MM atom L takes a few propagation time 
steps to reach the RSI or MM atom K. The timings 𝒕𝒊 refers to propagation times in the timeframe of atom L. 
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I.3.b. How to introduce retardation effects? 

  i) Retardation electric fields created by induced dipole 

When building the KS potential at time 𝑡𝑛 + Δ𝑡 during the iterative process one needs to account for the 

fact that the field created by other induced dipoles takes time to reach atom K. Let's first consider 𝑭𝐾
𝑖𝑛𝑑 

and imagine we can ride on atom K. The electric field created by other induced dipoles on MM atoms L 

should not be that arising from the dipoles 𝜇𝐿 at 𝑡𝑛 + Δ𝑡 but, rather, at a time earlier in the past. The 

further MM atoms L, the longer the delay for the electric field from this atom to reach MM atom K. The 

delay is determined by the distance between atoms (𝑑𝐾𝐿) and by the speed of light in the medium of 

interest, i.e. 𝑡𝑑𝑒𝑙𝑎𝑦 = 𝑑𝐾𝐿 𝑛𝑐⁄  with 𝑛  the refractive index of the medium and 𝑐  the speed of light in 

vacuum. As a rule of thumb for 𝑛 = 1, 𝑐 ≈ 137 𝑎. 𝑢 ., approximately 3 Å/as. Introducing the delay is 

straightforward if one knows the history of induced dipoles. Being three-dimensional vectors they can be 

stored easily in RAM (Random Access Memory) or on machine hard disks. When 𝑭𝐾
𝑖𝑛𝑑 on atom K is needed, 

a loop over all other MM atoms (L) is carried out. For each atom L, 𝑑𝐾𝐿 is calculated, which defines 𝑡𝑑𝑒𝑙𝑎𝑦, 

hence 𝜇𝐿(𝑡𝑛+1 − 𝑡𝑑𝑒𝑙𝑎𝑦) using the history of the 𝜇𝐿  induced dipole. Because, in general, 𝑡𝑑𝑒𝑙𝑎𝑦 doesn't 

correspond to an integer multiple of ∆𝑡, we use cubic splines to interpolate 𝜇𝐿(𝑡𝑛+1 − 𝑡𝑑𝑒𝑙𝑎𝑦) 20. The 

number of records, M, is determined from the speed of light and from a cutoff which is used to screen the 

field created by the induced dipoles. 𝑀 = 𝐶(𝑅𝑐𝑢𝑡𝑛𝑐 ∆𝑡⁄ ) where 𝐶(𝑋) is the least integer greater than or 

equal to X. 𝑅𝑐𝑢𝑡 is usually set to around 50 Å.  

ii) Retardation electric field created by the electric density 

Similar considerations apply for the electric field produced by the electron cloud (𝑭𝐾
𝜌

). In such a case it is 

the history of the electron density that must be stored. Some difficulties arise though. First, the memory 

required for the storage of large and numerous density matrices is demanding and would alter 

computational performance. To circumvent this difficulty, we don't use the Kohn-Sham density to evaluate 

𝑭𝐾
𝜌

 but instead an auxiliary density function �̃�.  We recall that �̃� is expressed as a linear combination of 

auxiliary functions 𝑓 : �̃�(𝒓, 𝑡 − 𝑡𝑑𝑒𝑙𝑎𝑦) = ∑ 𝑥𝑓(𝒓, 𝑡 − 𝑡𝑑𝑒𝑙𝑎𝑦)𝑓(𝒓)𝑓  (see Chapter 3). The time-dependent 

auxiliary coefficients 𝑥𝑓  are determined from the KS density by a variational fitting procedure21. The 

number of auxiliary functions is usually three to four times that of atomic orbitals, but storing the history 

of the 𝑥𝑓 coefficients which define �̃� is much less demanding than storing the history of density matrices. 

Furthermore, we showed that �̃� could be used safely in place of 𝜌 for evaluating the electric field created 

by the QM region in stationary or time-dependent DFT/MMpol calculations (that replacing 𝑭𝐾
𝜌

 by 𝑭𝐾
�̃�  

), or 

to evaluate atomic multipoles. A second difficulty is the practical definition of the distance to be used 
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between electrons and atom K. Indeed, electrons are delocalized and one faces the well-known problem 

of defining an atom in a molecule. To solve this problem, we take as distance 𝑑𝐾𝐴 that between MM atom 

K and the QM atom A holding the auxiliary function 𝑓(𝒓).  

The above consideration introduce retardation effects in the determination of MM induced dipoles. We 

now turn to the Kohn-Sham potential. The same strategy as before is used to determine the effective 

𝝁𝐾(𝑡𝑛+1 − 𝑡𝑑𝑒𝑙𝑎𝑦) using the history of induced dipoles and cubic spline interpolations20.  

 

I.3.c. Some tests with a simple model 

As a first test we consider a dimer of water molecules  at the QM/MMpol level. One is described by DFT 

and another by the polarizable POL3 model18 (Figure 6). In the latter the oxygen and hydrogen atoms hold 

charges -0.730 and 0.365 and atomic polarizabilities of 0.528 and 0.170 Å3 respectively. The ground state 

density is obtained in an SCF calculation. A Gaussian shaped electric field is applied during the ED 

simulation. It is centered at 𝑡0+ 2as where 𝑡0 is the initial time. The Gaussian pulse has a standard deviation 

of 0.1 as and a maximum strength of 0.9 e/bohr2. It is oriented along the hydrogen bond direction between 

the two molecules.  

 

Figure 6. Water dimer used to validate the implementation of retardation in hybrid RT-TDDFT/MMpol simulations. 

Figure 7 depicts the molecular dipole moment of the QM (Top) and MMpol (Bottom) water molecules for 

three ED simulations differing by the refractive indices defined to determine the retarded times, namely 

10.0 (black, considered as equivalent to infinite speed of light), 1.0 (red) and 0.5 (green). When ignoring 

retardation (black curves), the dipole moment on the MM molecule instantaneously follows the 

perturbation on the QM region caused by the external electric pulse. Note however that while the dipole 

of the QM water varies by 0.07 D that of the MM water varies ten times less (0.007 D). This is a 

consequence of the rapidly decaying electric potential created by the electron density (eq. 22). The MMpol 
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molecule is slightly polarized. With n=1 and 0.5 the MM dipoles respond with delays of around 1.5 and 3 

as respectively, as expected from the distance separating the molecules (ca. 1.8 Å for the H…O distance). 

Then the induction dynamics is clearly different for the three cases. The tight correlation between the QM 

and MM dipoles observed for n=10.0 is weakened. We also note that the back reaction of the MM dipole 

on the electron cloud is negligible as the dipole moment of the QM water follows the same trend for the 

simulation with different refractive indexes.  

 

Figure 7. Dipole moment on the QM (Top) and MMpol (Bottom) water molecules after application of a short electric pulse on 
the QM molecule. Three values of the refractive index are considered, namely 10 (black), 1 (red) and 0.5 (green). Note the 
different scales between the upper and lower graphs. On the upper graph the three curves are superimposed. 

 

II. RESPONSE MECHANISMS WITH HYBRID RT-TDDFT/MMpol 

The methodology used for RT-TDDFT/MMpol with deMon2k has been described in section I. The method 

allows in principle to account for mutual polarization between the QM region where attosecond dynamics 

takes place and the environment. Dissipation of energy between the QM region and the environement are 

also in principle caught up by this computational set-up. In section II we investigate the response 

mechanisms of a peptide immersed in a water box after application of an ultrashort electric pulse. We first 

consider simulations without inclusion of retardation in the propagation of electric fields. These effects 

are analyzed in a second step.  
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II.1. Dynamics of the response of the environment 

To analyze the response of the environment we consider the same system as in I.2.c, namely a methionine 

enkephalin peptide solvated in a box of POL3 water molecules. After tight SCF convergence, the peptide is 

perturbed by a Gaussian shaped electric pulse centered at 20 as with 3 as width. The field strengths are 

set to either 0.001, 0.01 or 0.1 a. u. The simulations have been conducted for 3 fs with a time step of 3 as 

using the predictor-corrector-Magnus/BCH propagator. We report the variation of the induced dipoles on 

MM atoms with respect to the initial time (∆𝜇(𝑡) = 𝜇(𝑡) − 𝜇(0)) and their normalized auto-correlation 

functions (𝐶(𝑡) , ACF). Both quantities are averaged by hydration layers as indicated by the angular 

brackets 〈… 〉.  

We start by considering the upper graphs that correspond to perturbing field strength of 0.001 a.u.. As 

expected the longer the distance between the water molecules and the peptide, the smaller the impact 

on the induced dipoles. The first hydration layer is the one that experiences the highest variations of 

induced dipoles. As evident from the black curve in Figure 8, Top-Left, the average induced dipoles undergo 

damped oscillations. These are caused by energy dissipation in the MM environment, which is possible 

thanks to the use of a polarizable FF. Dissipation is very pronounced for the first hydration layer but it is 

also seen for the outer hydration layers. The induced dipoles for molecules pertaining to the inner 

hydration layer completely lose correlation within a few tens of as, while beyond 15 Å, the average ACF 

remains close to 0.8 at 200 as. The characteristic response time is distance dependent. This characteristic 

time increases for each successive hydration shells. Some of the averaged ACF become negative which is 

to be related to the oscillatory nature of the variations of 〈∆𝜇〉. We finally remark that the response of MM 

induced dipoles is not fully instantaneous but also exhibits relaxation components over hundreds of 

attoseconds. 

When the strength of the initial perturbing field is increased to 0.01 a.u. (Figure 8 middle) the amplitude 

of oscillation of the average induced dipoles is larger by a factor of ten. This is true for each hydration shell. 

When the field strength is further increased to 0.1 a.u., a further increase of response amplitudes is 

observed for 〈∆𝜇〉. The ACFs exhibit more complex evolutions with the increase of perturbing field strength. 

For the weakest perturbing field strength (0.001a.u.) we already mentioned that the response was 

distance dependent (Top-Right). For a perturbing field strength of 0.01 a.u. the response of induced 

dipoles is not distance dependent within the first 50as, apart for water molecules situated beyond 15 Å 

(Middle-Right). Only after this time a scattering of the average ACFs becomes apparent. Finally, for a 

perturbing field strength of 0.1 a.u. all the average ACFs but one (again for water molecules situated 
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beyond 15 Å) are almost superimposed (Bottom-Right).  The response mechanism of MM induced dipoles 

is therefore not distance dependent at all within 15 Å. All these results reflect subtle response mechanisms 

that deserve a detailed analysis. 

 

Figure 8. Left: variations of the average induced dipole moment by hydration layers 〈∆μ(t)〉=〈μ(t)-μ(0)〉. Note the change of 
scales for each graph. Right: normalized auto-correlation function of the water molecule induced dipole moments averaged by 
hydration layers for three values of the electric field affecting the peptide at the beginning of the RT-TDDFT/MMpol simulation. 
Color code: water molecules between 0-3 Å in black, 3-6 Å in red, 6-9 Å in green, 9-12 Å in blue, 12-15 Å in orange and beyond 
15 Å in brown. The uncertainties on the curves are around 0.06. 
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We recall that the induced dipoles are determined by the electric field created by the other MM atoms 

(𝑭𝑖
(0)

+ 𝑭𝑖
𝑖𝑛𝑑) and by the QM region (𝑭𝑖

𝜌
+ 𝑭𝐾

𝑍𝑄𝑀
) (Eqs. 2-7). In the present RT-TDDFT simulations only 

𝑭𝑖
𝑖𝑛𝑑 and 𝑭𝑖

𝜌
 can account for the variations of the MM induced dipoles since the nuclei are fixed. We also 

recall that we employ here a mixed non-stationary/stationary RT-TDDFT/MMpol scheme. Accordingly the 

response of the MM induced dipoles caused by 

variations of 𝑭𝑖
𝑄𝑀𝜌

 are expected to be enhanced in our 

scheme compared to what they would be in fully 

dynamical simulation. Nonetheless the average 

〈∆𝜇(𝑡)〉 and the associated ACF extracted from a 0.1 as 

time-step simulation were found to be very similar to 

the graphs shown on Figure 9, thereby indicating that 

the artificial enhancement of the dipole relaxation due 

to the RT-TDDFT/MMpol coupling scheme is moderate. 

The response of MM dipoles should be less pronounced 

as the distance 𝑟 increases because of the decay of 𝑭𝑖
𝜌

 

with distance. On the other hand, the response caused 

by variation of 𝑭𝑖
𝑖𝑛𝑑 should be associated with a certain 

delay, because it requires the other induced dipoles to 

be affected. For example, the induced dipoles of water 

molecules situated between 6 and 9 Å will be affected 

by induced dipoles of innermost hydration waters only 

when their induced dipoles have varied. The 

prevalence of one mechanism over the other should 

depend on the relative strength of 𝑭𝑖
𝑖𝑛𝑑 and 𝑭𝑖

𝜌
.  

For the inner hydration layer (< 3 Å) 〈𝐶(𝑡)〉 is almost 

identical whatever the initial perturbation field. It 

decays to 0.3 in around 50 as (although the variations 

of induced dipole amplitudes are different for each 

perturbing electric field). For this hydration layer the 

source of variation of MM induced dipoles is 

primarily 𝑭𝑖
𝑄𝑀. It is the time-dependent field created by 

Figure 9. Correlation between the variations of the induced 
dipole moments on water molecules averaged by hydration 
shells 〈∆μ(t)〉=〈μ(t)-μ(0)〉 (upper-part of each graph) and the 
variation of dipole moment of the peptide (Lower-part of 
each graph). The three main graphs correspond to three 
perturbing field strengths of 0.001a.u (Top-Lefts), 0.01 
(Bottom-Left) and 0.1 a.u. (Top-Right). The colors are 
defined in the caption of Figure 8. 
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the electron cloud of the peptide that determines the response of MM induced dipoles. The oscillations 

of the MM induced dipoles essentially follow that of the peptide dipole moment (Figure 9). For the outer 

hydration layers, the response mechanism depends on the relative importance of 𝑭𝑖
𝑖𝑛𝑑 and 𝑭𝑖

𝜌
, the latter 

being itself dependent on the perturbing field strength. For the strongest perturbing field (0.1 a.u.) the 

response mechanism of the MM induced dipoles is completely imposed by 𝑭𝑖
𝜌

 for all hydration shells 

(except for water molecules beyond 15 Å). This explains why the average ACFs are almost superimposed. 

The amplitude of the response decays with distance but the speed at which the induced dipoles vary is the 

same. In this regime 𝑭𝑖
𝜌

≫ 𝑭𝑖
𝑖𝑛𝑑 so that 𝑭𝑖

𝜌
 imposes the response mechanism: the MM induced dipoles 

within 15 Å follow the variations of the peptide dipole moment. For the intermediate perturbing field (0.01 

a. u.) 𝑭𝑖
𝜌

 dominates the response mechanism for the shorter distances (<9Å) and for short times (<50 as). 

At longer distances or after a certain time, 50 as here, 𝑭𝑖
𝑖𝑛𝑑  becomes more important and starts to 

introduce a distance dependence in the response delay of the MM induced dipoles.  

We finally remark that including nuclear motion in the simulation protocol would further make the 

response mechanisms more complex by allowing 𝑭𝑖
(0)

 to be time-dependent. This would enable to 

simulate the reorientation polarization of the environment molecule. We also neglected retardation in the 

propagation of the electric fields mediating the QM/MMpol interations. This will be the topic of the next 

section.  

 

II.2. Response Dynamics with delayed potentials 

In this last section we investigate if the delays taken by the electric fields mediating the interaction 

between the QM and MMpol regions impact the relaxation mechanisms that we outlined in the previous 

section. Toward this end we repeated the simulations using the algorithms described in Section I.3 to 

introduce retarded fields. To avoid artefacts from the RT-TDDFT/stationaryMMpol scheme we use a time 

step of 0.1 as for these simulations. The results are reported on Figure 10.  

The simplest case to start with is the one initiated by the strongest external perturbation (Figure 10, 

bottom). In this case the induced dipole created on the peptide is so large that 𝑭𝐾
𝜌

 dominates over 𝑭𝐾
𝑖𝑛𝑑 

on all MM atoms K within 15 Å. This is seen on the ACF (Figure 10, bottom, right) for all solvation layers (< 

15 Å) that all follow the same trends. The first solvation layer is clearly the most affected.  A maximum 

polarization response is achieved around 80 as after the pulse (which corresponds to the ACF dropping to 

zero). The simulations have been carried out for 𝑐 = 137 𝑎. 𝑢. and 𝑐 = +∞  (which is equivalent to 
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neglecting retardation). The curves reported in Figure 10 are almost exactly superimposable indicating no 

influence of retardation. To account for this result, let us first consider the innermost solvation layer (0 to 

3 Å) . The water molecules in this layer feel the variations of electric field originating from the peptide with 

delays of just a few as since 𝑐 ≈ 3Å/as. Effectively, as seen in the insets of Figure 10 which depict zooms 

on the 0-50 as time window, the plain curves (ED simulations with 𝑐 = 137 𝑎. 𝑢.) are delayed by a few 

attoseconds over the dashed curves (ED simulations with 𝑐 = +∞). This delay is much less than the overall 

response mechanism that takes several tens of as. This means that the speed at which  𝑭𝐾
𝜌

  is fluctuating 

is not fast enough compared to the time at which it propagates to induce clear retardation effects on the 

MM dipoles.  The response dynamics remains imposed by 𝑭𝐾
𝜌

. One might expect that retardation would 

be more pronounced for outer solvation layers because the distance to cover for 𝑭𝐾
𝜌

  to reach remote K 

MM atoms is larger. However, the results shown on Figure 10 don't confirm this expectation. In addition, 

because the electric field created by a dipole decays as 𝑟−3 retardation effects are damped rapidly with 

distance. 

When considering simulations with weaker initial perturbing electric fields, conclusions are essentially the 

same. No retardation effects are highlighted. Now 𝑭𝐾
𝜌

 is weaker because the initial perturbation of the 

electron density is smaller. The reasons outlined in the previous case to account for the absence of visible 

retardation effects in the solvation layers still hold. Regarding 𝑭𝐾
𝑖𝑛𝑑 , that now competes with 𝑭𝐾

𝜌
  to 

determine the induced dipole on atom K, a similar reasoning applies. Indeed, the dipoles that contribute 

the most to 𝑭𝐾
𝑖𝑛𝑑 are those of the closest MM atoms L, say at a few Å. However, to observe retardation 

effects the fluctuations of electric fields created by dipoles 𝝁𝐿 would have to be very pronounced and 

would have to take place on the attosecond timescales. In fact, as seen from the ACF depicted on Figure 

10 the relaxation dynamics of induced dipoles requires tens of attoseconds. 

In summary, we have shown that retardation in the mutual electrostatic interactions between the 

molecule and its environment can be safely neglected. This is due to the fact that electric fields generated 

by the molecule or its environment do not fluctuate sufficiently rapidly to create noticeable retardation 

effects. Our simulations in Section II consisted in optical excitations of the central molecule by a laser field. 

The induced dipole on the molecule was the main source of perturbation of its environment. Because the 

field created by a dipole decays rapidly with the distance (~1/r3), any retardation in the potential is rapidly 

damped. In the eventuality of ionization of the central molecule one might eventually expect different 

conclusions since the overall charge variation might produce a rapidly fluctuating electric field. Our 
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conclusions which are grounded on the realization of hybrid RT-TDDFT/MMpol simulations also hold for 

other hybrid schemes like those combining RT-TDDFT with implicit polarizable continuum models4a, 22. 

 

Figure 10. Left: variations of the average induced dipole moment by hydration layers ⟨Δμ(t)⟩ = ⟨μ(t) − μ(0)⟩ (Inset: zoom on 0-
50 as). Note the change of scales for each graph. Right: normalized autocorrelation function of the water molecule induced 
dipole moments averaged by hydration. The upper, middle and lower graphs correspond to initial perturbing electric field of 
strength 0.001, 0.01 and 0.1 Ha/e.bohr. respectively (atomic units). Color code: 0 to 3 Å (black), 3 to 6 Å (red), 6 to 9 Å (green), 
9 to 12 Å (blue), 12 to 15 Å (orange) and finally beyond 15 Å (brown). The dashed line corresponds to RT-TDDFT/MMpol at 
infinite speed of light (no retardation). 
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CONCLUSION 

In this chapter, we have devised a method to simulate electron dynamics in heterogeneous environments. 

A hybrid QM/MMpol approach was implemented in deMon2k where the region-of-special-interest is 

simulated with RT-TDDFT and the environment is approximated with polarizable MM.  We carefully 

justified the model for electronic induction.   

The coupling between RT-TDDFT and MMpol is realized with a mixed stationary-non-stationary scheme. 

This choice assumes that the MM dipoles completely relax at each RT-TDDFT step. Our tests show that it 

is a valid approximation for sufficiently small time steps.  

Response mechanisms of a polarizable environment of a solute peptide submitted to an external 

perturbation were investigated. The dissipation of energy between the QM region and the environment is 

caught. The complexity of response mechanisms of the environment was revealed. The same analyses 

were carried out with retardation effect. Results shown that retardation effects can be safely neglected. 

This is due to the fact that electric fields generated by the molecule or its environment do not fluctuate 

sufficiently rapidly to create noticeable retardation effects.  

With this implementation, electron dynamics in complex molecular systems like those encountered in 

biology are now accessible. One possibility is to reduce the cost of induction by implementing more 

efficient algorithms to compute the potential created by the induced dipoles. The sudden instability of 

electrodynamics when using a slightly large time step with QM/MMpol schemes should be studied in more 

detail. GPU could be very good choice to accelerate the calculation of induce dipole of each atom side. 

More advanced polarizable force fields like AMOEBA could be used to describe the MMpol part.  
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ABSTRACT: We propose a methodology for simulating
attosecond electron dynamics in large molecular systems.
Our approach is based on the combination of real time time-
dependent-density-functional theory (RT-TDDFT) and polar-
izable Molecular Mechanics (MMpol) with the point-charge-
dipole model of electrostatic induction. We implemented this
methodology in the software deMon2k that relies heavily on
auxiliary fitted densities. In the context of RT-TDDFT/
MMpol simulations, fitted densities allow the cost of the
calculations to be reduced drastically on three fronts: (i) the
Kohn−Sham potential, (ii) the electric field created by the
(fluctuating) electron cloud which is needed in the QM/MM interaction, and (iii) the analysis of the fluctuating electron density
on-the-fly. We determine conditions under which fitted densities can be used without jeopardizing the reliability of the
simulations. Very encouraging results are found both for stationary and time-dependent calculations. We report absorption
spectra of a dye molecule in the gas phase, in nonpolarizable water, and in polarizable water. Finally, we use the method to
analyze the distance-dependent response of the environment of a peptide perturbed by an electric field. Different response
mechanisms are identified. It is shown that the induction on MM sites allows excess energy to dissipate from the QM region to
the environment. In this regard, the first hydration shell plays an essential role in absorbing energy. The methodology presented
herein opens the possibility of simulating radiation-induced electronic phenomena in complex and extended molecular systems.

I. INTRODUCTION

Recent years have seen a growing interest in the electron
dynamics taking place in molecules when they are subjected to
an external perturbation. This interest has been stimulated by
progress in attosecond spectroscopy that now gives access to
details on electron dynamics. The realm of subfemtosecond
electron dynamics involves fascinating processes such as
ultrafast charge migration,1 Auger decays, and Intra Coulomb
Decays.2−5 These are not driven by nuclear dynamics but
instead by electron correlation and energy redistribution.6 This
nascent research field has led to new debated concepts like
attosecond chemistry, a possible promise of which would be the
possibility to control chemical reactions by the control of
electronic motion.7 Electron dynamics is also important in the
description of ultrafast nonadiabatic molecular dynamics. The
relaxation pathways within molecules electronically excited or
ionized by a photon or a high-energy particle are particularly
rich and complex. They involve coupled electron−nuclear
dynamics.8

On the computational side, much effort has been spent to
devise simulation algorithms of electron dynamics. In the family

of wave function approaches the TD-HF (Time-dependent-
Hartree−Fock),9 TD-CI (Time-dependent-configuration inter-
action),10,11 or the TD-MCSCF (Time-dependent multi-
configuational self consistent field)12,13 methods have been
developed. Another popular approach for simulating electron
dynamics relies on time-dependent density functional theory
(TDDFT). This approach is frequently referred to as real-time
TDDFT (RT-TDDFT) to distinguish it from the linear
response (LR-TDDFT) formalism. The latter relies on
perturbation theory to simulate UV−visible absorption
spectra.14 Although not exempt from intrinsic limitations like
the self-interaction-error,15,16 a noticeable advantage of
TDDFT is its excellent computational cost/accuracy ratio.
TDDFT can be applied to molecular systems comprised of
hundreds of atoms. TDDFT finds its root in the seminal work
of Runge and Gross.17 Under the Kohn−Sham framework that
refers to a fictitious reference system of noninteracting
electrons, the coupled time-dependent KS equations describe
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the time evolution of the KS molecular orbitals, hence the
dynamics of the electron density of the real system. RT-
TDDFT has been used to calculate static and dynamic
polarizabilities and hyperpolarizabilities of molecules,18 to
simulate UV−visible spectra of molecules19,20 and of nano-
particles,21 to simulate core-level near-edge X-ray absorption
spectra,22,23 to simulate photoelectron emission spectra,24,25

electron conductance in electronic junctions,26,27 photoinduced
electron transfer,28,29 magnetization dynamics in inorganic
complexes,30 attosecond dynamics following X-ray photo-
ionization of gas molecules,3 or charge migration following
radiolysis of water.5,31 RT-TDDFT has also been coupled to
mean-field (Ehrenfest) nuclear dynamics to simulate non-
adiabatic processes32−34 with many interesting applications, for
example to simulate the ultrafast dynamics of photoexcited
metal complexes or in optimal control of chemical reactions.8

Curiously enough, most implementations have been
designed for molecular systems in the gas phase and not in
contact with environments. If the systems of interest are
periodic, periodic boundary conditions can be used to simulate
infinite systems,35 but in many cases, systems are not periodic
and alternatives must be found. A challenge is to account for
the electronic response of the environment due to the changes
in the electronic structure of the molecule and vice versa. The
environment may be homogeneous (solutions) in which case a
polarizable dielectric continuum (PCM) can be used. The
environment may also be heterogeneous, as for example for
extended biosystems (DNA, proteins, lipid membranes),
nanoclusters, or interfaces. In such cases hybrid QM/MMpol
(i.e., using polarizable force fields)36 constitutes a method of
choice to retain the atomistic details of the environment at
moderate computational cost. In the linear response formalism,
coupling between TDDFT and either PCM or polarizable
QM/MMpol has been devised.37−39 For explicit propagation in
time of the TDDFT equations, a further challenge is to
account, by definition, for the time-dependence of the
environment’s response. Remote atoms should take longer
times to respond than closer ones, for instance. Li and co-
workers developed a combined RT-TDDFT/PCM40,41 meth-
od, with applications to charge transfer dynamics in bulk
heterojunction models.42 In their PCM model the dielectric
constant of the environment was made time-dependent even
though the PCM was made stationary with the evolving
potential created by the QM region. Corni et al.43,44 as well as
Ding et al.45 later described a more general approach of RT-
TDDFT/PCM calculations where both the PCM and QM
region were propagated in time. Regarding hybrid RT-
TDDFT/MMpol approaches Dinh et al. reported a few years
ago a coupling between RT-TDDFT and a polarizable force
field (FF).46 Induction was introduced by distinguishing core
from valence electrons on MM atoms. The average position of
the core electrons + nucleus and the average position of valence
electrons had the possibility to be different depending on the
electrical environment, thereby creating induced dipoles. The
authors reported insightful applications to sodium clusters
deposited on metal surfaces46 with detailed analyses of their
optical properties. In the computational setup of Dinh et al. the
RT-TDDFT engine itself relies on a grid-based implementation
of DFT. This is quite different from the algorithms employed in
the community of quantum chemists that generally rely on local
basis sets (Gaussian or Slater atomic orbitals). There is thus a
clear need to develop hybrid RT-TDDFT/MMpol schemes for

the modeling of electron dynamics with local basis sets in
extended molecular systems.
The structure of the present article is as follows. First, we

report an implementation of polarizable QM/MMpol based on
the charge-induced dipole model36 of electronic induction in
the software deMon2k.47 Second, we describe our implementa-
tion of RT-TDDFT and its coupling with polarizable MM. In
both modules density fitting techniques are used to reduce the
computational cost drastically.48,49 In section III we carefully
test the reliability of substituting the Kohn−Sham density by
the auxiliary density for propagating the electron dynamics or
for calculating the QM/MMpol coupling interactions. Very
encouraging results are obtained. We investigate in section IV
the time-dependent electronic response of molecules in vacuum
and in solution.

II. METHODOLOGY
II.1. Auxiliary Kohn−Sham Density Functional Theory.

We start the Methodology section by recalling the general DFT
framework implemented in deMon2k. This program solves the
Kohn−Sham DFT equations with KS molecular orbitals (MO)
ψi(r) represented as linear combinations of Gaussian-type
atomic orbitals50 (LCGTAO). For simplicity, we will consider
only closed-shell molecules, but we mention that the
methodologies presented in this work have been adapted to
the open-shell case too.

∑ψ σ=
σ

σ
=

r rc t( ) ( ) ( )i i
1 (1)

∑ρ σ τ=
σ τ

στr r rt P t( , ) ( ) ( ) ( )
, (2)

∑= *στ σ τP t c t c t( ) 2 ( ) ( )
i

N

i i

/2MO

(3)

Greek letters are used both as indices and as AO function
names. The MO coefficients (cσi), hence the density matrix
(Pστ) and the electron density (ρ), depend on time. When
solving the stationary KS equations, this dependence would by
definition vanish, but we keep here the more general RT-
TDDFT formulation. Note that the MO coefficients are
complex numbers in real time propagation. deMon2k relies
heavily on the variational density fitting method originally
introduced by Dunlap48 to avoid the calculation of four-center
electron repulsion integrals (ERIS). The fitted densities (ρ̃) are
expressed as linear combinations of auxiliary basis functions k:
ρ̃(r) = ∑kxkk(r). For computational efficiency the auxiliary
basis functions k are Hermite Gaussian polynomials that are
grouped by functions sharing the same exponents.50 With this
auxiliary density, the electronic energy expression for an
isolated molecule reads

∑ ∑ ∑

∑

στ

ρ

= + ⟨ ⟩

− ⟨ ⟩ +

σ τ
στ στ

σ τ
στE t P t H P t k x t

x t x t k l E

( ) ( ) ( ) ( )

1
2

( ) ( ) [ ]

k
k

k l
k l xc

, ,

, (4)

The symbol ∥ stands for the coulomb operator (1/|r1 − r2|). As
evident in eq 4, no four-centers ERIS are needed but only two-
and three-centers ERIS. Hστ are the matrix elements of the core
Hamiltonian, encompassing the kinetic energy and the
electron-nuclei attraction. The Kohn−Sham potential matrix

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00251
J. Chem. Theory Comput. 2017, 13, 3985−4002

3986

http://dx.doi.org/10.1021/acs.jctc.7b00251


elements for an isolated molecule are obtained by differ-
entiating the total energy with respect to the density matrix
elements:

∑ στ
ρ

≡ ∂
∂

= + ⟨ ⟩ +
∂

∂στ
στ

στ
στ

H
E

P
H k x t

E
P

( )
[ ]

k
k

isol xc

(5)

deMon2k offers also the possibility to use the fitted density in
the calculation of the exchange-correlation (XC) energy, in
which case Exc[ρ] is replaced by Exc[ρ̃] in eq 4 and eq 5.51 Now
the KS potential does not depend explicitly on the KS density
but only on the auxiliary density. We refer to this framework as
Auxiliary DFT.52

II.2. Polarizable QM/MM in deMon2k. Model of
Electronic Induction. There are various ways to carry out
DFT/MM calculations with deMon2k, and we refer the
interested reader to a recent review describing these
alternatives.53 In the present work we focus on the so-called
in-deMon2k QM/MM by which both QM, here (TD)DFT,
and MM calculations are carried out by deMon2k, without
using program interfaces.53 We expect advantages in terms of
data passing management between the DFT and MM modules.
The objective of the present work is to upgrade the pre-existing
QM/MM method to QM/MMpol. Electrostatic induction can
be introduced in classical force fields in different ways.36,54−56

We note, for example, that the Drude polarizable force field has
recently shown great promise for ions interacting with protein
models, for which additive fixed-charge force fields come up
short.57,58 We have chosen here to consider the point-charge
dipole model by which induction is simulated by the
introduction of induced dipoles (μi , note that vectors are
written in bold) on every polarizable MM site i.36,37 Each
induced dipole is determined from the electric field Fi at the
MM atom position. Fi stems from the electric field created by
other MM permanent charges (Fi

(0)) and by other MM induced
dipoles (Fi

ind). In QM/MMpol calculations one further adds the
electric field created by the QM region (Fi

QM), that is by the
atomic nuclear charges (Fi

ZQM) and by the electron density
(Fi

ρ). We also introduced the possibility of adding an external
electric field (Fi

ext) to mimic for instance the interaction with
the electric part of an electromagnetic wave. The mathematical
expressions for the various contributions are given by

μ α α= = + + +( )F F F F Fi i i i i i i i
(0) ind QM ext

(6)
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where αi is the polarizability of MM atom i. It is assumed to be
isotropic. qj is the charge of MM atom j; rij is the vector
between atoms i and j; Tij is the dipole−dipole interaction
tensor, and I is the identity matrix. Zk is the nuclear charge of
QM nucleus k. The total induction energy is comprised of three
terms that reflect the interaction between the MM induced
dipoles with (i) the MM permanent charges (Eμ−qMM

ind ), (ii) the
atomic nuclei of the QM atoms (Eμ−ZQM

ind ), and (iii) the electron
cloud (Eμ−ρ

ind ).

= + +μ μ μ ρ− − −E E E EZtot
ind

qMM
ind

QM
ind ind

(11)

Contributions (i) and (ii) are calculated as −1/2∑i∈MM μi·Fi
(0)

and −1/2∑i∈MM μi·Fi
ZQM, respectively. The last term depends

on the electron density and is given by
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QM/MMpol calculations must capture the interdependence
between the electron cloud and the polarizable environment.
For stationary DFT calculations this is done by regularly
updating the induced dipoles that depend on Fi

QM and the
electrostatic potential created by the induced dipoles to be
included in the KS Hamiltonian. We use a similar algorithm for
RT-TDDFT propagation. We will come back to this
methodological point at the end of section II. Note that
besides Eμ−ρ

ind , the interaction between the QM and MM atoms
also includes the electrostatic energy between the electron
cloud and the MM permanent charges (qi).

∫∑ ∑ ∑ρ σ τ=
| − |

· =
| − |ρ

σ τ
στ−

∈ ∈

r
r r

r
r r

E q q P
( )

d
1

i i
i

i
i

i
q
perm

MM MM ,

(13)

Within this electrostatic embedding scheme, the potential
created by permanent charges and induced dipoles on MM sites
are obtained by differentiation of the respective interaction
energies with respect to the electronic density. The calculation

of electrostatic integrals ( σ τ
r
1 ) required in eq 13 was

optimized by Alvarez et al.53,59 To take advantage of these
algorithmic developments we represent each induced dipole μi
by two charges of opposite sign (±δi) separated by 0.5 bohr
and centered around the MM atom positions.60−62 This way
the potential created by the induced dipoles (Hστ

μρ) are included
in the KS potential via a set of point charges, the calculation of
which is performed efficiently in deMon2k.53,59
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As for any QM/MM scheme, a critical point of DFT/MMpol
and RT-TDDFT/MMpol calculations is to set the boundaries
between MM and QM regions. Setting boundaries across polar
groups may deteriorate the efficiency of the hybrid energies and
the derived properties. The choice of QM/MM partitioning is
the responsibility of the user. Our QM/MMpol implementa-
tion does not rely on interfaces between QM and MM software,
and both DFT and MM calculations are done within deMon2k.
This is a critical advantage to reach efficient DFT/MMpol
calculations. Indeed, passing information between the DFT and
MM branches of the same program is rapid compared to I/O
operations. The electric field and the induced dipoles are
vectors that can be stored in random access memory (RAM),
and one can easily restart convergence of induced dipoles at
every new SCF cycle or RT-TDDFT time step from previous
steps. Finally, our in-deMon2k QM/MMpol uses a direct
algorithm similar to the calculation of electron repulsion
integrals (ERIS).50,63 At every SCF cycle or RT-TDDFT step n,
instead of calculating the QM electric field Fi

QM,(n) from the
current density matrix P(n), we increment it from Fi

QM,(n−1) and
the difference density ΔP = P(n) − P(n−1), namely

μ ν= − ∑ Δμ ν μν
−F F Pi

n
i

n r
r

QM,( ) QM,( 1)
, 3 . This procedure

has the advantage that one can screen many terms of the
sum if ΔPμν is below a predefined threshold. This helps to
decrease the computational time in SCF calculations when the
density is close to convergence or in RT-TDDFT simulations
when the density evolves slowly. Direct SCF procedures have
been used by other groups in the context of QM/MMpol
calculations.64,65

Polarization Catastrophe. A well-known pitfall of polar-
izable force fields is the risk of “polarization catastrophe” the
origin of which has been exposed by Thole.56,66,67 This term
defines a divergence of the polarization energy that happens
when adjacent dipoles align on the same line in head-to-tail
configurations. Most polarizable MM implementations avoid
the polarization catastrophe by damping the electric fields at
short distance. For MM atoms bonded in 1-2, 1-3, or 1-4
positions to a given polarizable MM site, the electronic field can
be simply ignored. In deMon2k, choice is given to the user to
set up these parameters. For nonbonded atoms electric
damping is achieved by the modification of the dipole
interaction tensor with two distance-dependent screening
functions ( fe and f t)
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Three alternatives of the screening function have been
implemented in deMon2k following previous proposals
reported in the literature. One is the linear scheme67

υ α α= =r s s a/ with ( )ij i j
1/6

(16)

υ υ
=

>

− <

⎧
⎨⎪
⎩⎪

f
r s

r s

1.0 if

4 3 ife

ij

ij
3 4

(17)

υ
=

>

<

⎧
⎨⎪
⎩⎪

f
r s

r s

1.0 if

ift

ij

ij
4

(18)

another is the exponential scheme
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while the third one is the Tinker-exponential form

α α=u r /( )ij i j
1/6

(22)

= − −f au1 exp( )e
3

(23)

= − + −f au au1 (1 ) exp( )t
3 3
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In these expressions a is a unitless parameter that depends on
the force field. The higher the value of a, the faster the field
damping with distance. In the water model of the AMOEBA
force field a is, for example, set to 0.39.68

On the Use of Fitted Densities. We have tested various
alternatives for estimating Fi

QM,. The most correct way is to
calculate it from the Kohn−Sham density ρ (eqs 2 and 10).
Since Fi

QM, needs to be evaluated on every MM site at every
SCF cycle and at every RT-TDDFT step, this task can become
computationally expensive. A tempting alternative is to replace
ρ by the auxiliary density ρ̃. Because the number of auxiliary
basis functions is typically four to five times lower than the
number of products of atomic basis functions, substituting ρ by
ρ̃ is expected to drastically reduce the cost of calculation of
Fi
QM,. Such a substitution is, however, not guaranteed to yield

reliable results. This is because auxiliary fitted densities are not
designed to reproduce ρ but to provide auxiliary densities from
which approximate electronic repulsion interactions can be
computed with reduced computational cost. That said, we
recently showed that electrostatic multipoles obtained either
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from the KS density or from the fitted density are very similar,
provided sufficiently flexible auxiliary basis sets are used.69 This
is an encouraging result. Indeed, we may expect that if the
intrinsic multipoles on QM atoms extracted from ρ̃ are similar
to those extracted from ρ, so will be the electric fields generated
by ρ̃ and ρ. We will thus test the accuracy of stationary and
time-dependent DFT/MMpol calculations when replacing ρ by
ρ̃.
II.3. Electron Dynamics Equations-of-Motion. We now

move to the description of our RT-TDDFT implementation. It
is largely based on algorithmic developments reported
previously by other groups in the past decade.9,20,26,70 We
thus refer the reader to the original publications. We insist here
on the specificities of the implementation in deMon2k and on
the novel features that we have introduced, notably the
coupling between RT-TDDFT and the QM/MMpol just
described. Runge and Gross developed the many body wave
function TD Schrödinger equation into the single-particle TD
density Kohn−Sham (TDKS) equation with an effective
Hamiltonian H(t) uniquely described by the TD electron
density ρ(t)17

ψ
ρ ψ

∂
∂

=i
t

t
H t t

( )
[ ( )] ( )i

i (25)

where H is the time-dependent Kohn−Sham operator which is
a functional of the charge density. It includes the KS potential
of the isolated molecule, the matrix elements of which are given
by eq 5, and the interaction potentials of the electron cloud
with external electric fields Hext. In QM/MMpol the KS
operator also includes the perturbation from the MM charges
(Hqρ) and MM induced dipoles (Hμρ).

= + + +ρ μρH t H t H H t H t( ) ( ) ( ) ( )qisol ext
(26)

Hisol includes the contribution from the XC potential. We make
the adiabatic approximation and consider only the spatial
dependence of the XC potential, neglecting its temporal
nonlocality. Eq 25 can be recast using the density matrix P(t)
into a Liouville-von Neumann type of equation, which reads in
the case of a nonorthogonal basis set

∂
∂

= −iS
P t

t
S H t P t S SP t H t

( )
( ) ( ) ( ) ( )

(27)

where S is the overlap matrix in the atomic orbital basis set. As
in refs 9 and 20 we transform H and P to the orthogonal MO
basis leading to H′ and P′. Since the MO are orthogonal eq 27
simplifies to

∂ ′
∂
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P t

t
H t P t

( )
[ ( ), ( )]

(28)

We will use primes to denote matrices in the molecular orbital
(MO) basis and no primes to denote matrices in the atomic
orbital (AO) basis. The formal solution of eq 28 can be
expressed as

′ = ′ †P t U t t P t U t t( ) ( , ) ( ) ( , )0 0 0 (29)

where U is the evolution operator, which can be discretized into
small time steps Δt,

∏= + Δ
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i i0
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(30)

∫ τ τ+ Δ = − ′
+Δ

U t t t i H( , ) exp{ ( )d }
t

t t

(31)

and is the time-ordering operator, ensuring that operators
associated with later times always appear to the left of those
associated with earlier times. Many schemes have been
proposed to evaluate the propagator in RT-TDDFT, and we
refer the reader to recent reviews describing the physical
conditions that propagators should fulfill.70,71 We have
implemented in deMon2k the Euler and second-order Magnus
propagators.

Euler Propagation. To solve eq 28 by applying Lagrange’s
Mean Value Theorem we obtain

′ + Δ = ′ − ′ ′ *ΔP t t P t i H t P t t( ) ( ) [ ( ), ( )] (32)

The propagation of the density matrix requires only the value of
the density matrix and the Kohn−Sham matrix at the current
time. These are easy to obtain; however, this propagation
scheme does not guarantee the preservation of the norm of the
KS wave function which can lead to divergence of the electronic
propagation. We found the Euler propagation to be unstable in
most of our applications, and it will not be considered any
further in this article.

Magnus Propagation. A convenient solution to eq 31 is
given by a Magnus expansion72
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where {Ωi} is a series of nested commutator integrals:
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Stopping at second order: W = Ω1, this integral can be
evaluated using a quadrature formula:26

Ω + Δ ≃ − ′ + Δ *Δ⎜ ⎟⎛
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⎠t t t iH t

t
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21
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This is equivalent to the well-known split-operator method.70

Three algorithms have been implemented to calculate the
matrix exponential eW entering eq 33. The first one is based on
the diagonalization of the W matrix

= =†e Ue U WU wUwithW w (37)

another is based on a Taylor expansion of the exponential
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while the third one is based on the Baker-Campbell-Hausdorff
(BCH) scheme.20,73
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Note that the latter scheme assumes the Kohn−Sham matrix is
Hermitian. Other methods based on polynomial Chebychev
expansion or Krylov subspace projections have been considered
by other groups to evaluate the matrix exponents.70,74

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00251
J. Chem. Theory Comput. 2017, 13, 3985−4002

3989

http://dx.doi.org/10.1021/acs.jctc.7b00251


Propagation with the Magnus scheme requires the knowledge

of the KS matrix at a later time ′ + Δ( )H t t
2

, which is unknown.

Two methods have been implemented. In the iterative

algorithm70 ′ + Δ( )H t t
2

is first extrapolated from the knowl-

edge of H′ at earlier times. P′ is then propagated from t to t +
Δt by the Magnus propagator, and the resulting density matrix
is used to build the KS potential at t + Δt. A new KS potential

at time + Δt t
2
is interpolated from the potential at t and t + Δt.

The propagation of P′ is repeated with this new KS potential.
The iterations are continued until convergence. This is a robust
but time-consuming procedure. An alternative is the two-step
predictor-corrector scheme proposed by Van Voorhis and co-
workers.26

Application of an External Electric Field. We continue this
section with the mathematical definitions of the external electric
fields that can be applied in deMon2k. One option is to apply a
Gaussian shaped pulse

ω= · − − ̂F dt F t t u t( ) exp[( ( ) )/2 ] cos( )Fmax 0
2 2

(40)

where t0 is the center of the pulse, uF is the pulse width, ω is the
field pulsation, d̂ = (x ̂,y,̂z)̂ is the polarization vector, and Fmax is
the maximum field strength.
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A drawback of the Gaussian shaped pulse or of the linear ramp
is the possible introduction of spurious static field effects which
arise if the zero pulse area condition (ZPAC, ∫ t=0

tmaxF(t)dt = 0) is
not fulfilled.75,76 Care must be taken to avoid such effects, for
example by setting the center of the Gaussian pulse sufficiently
far from the initial time. In fact Gaussian pulses are not
convenient in practical applications because of the shallow
decay of Gaussian functions which require long simulation
times to ensure the ZPAC. To alleviate this inconvenience
some authors proposed the use of squared sinusoidal
functions.75,77 We implemented the following one in deMon2k

π θ θ ω= · · · − · ̂
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥F dt F

t
T

t T t t( ) sin ( ) ( ) cos( )max
2

pulse
pulse

(42)

where Tpulse is the duration of the pulse, and θ is the Heaviside
function. Finally we also implemented an infinitely narrow kick
in the first step of the RT-TDDFT simulation. As illustrated
below kick perturbations are useful to simulate absorption
spectra.
The applied field excites the molecular system through the

coupling with the electrostatic dipole. The corresponding
potential term is added to the KS matrix.

μ= − ·t F tE t( ) ( ) ( )app
(43)

∑ ∑μ σ τ= − ⟨ | | ⟩
σ τ

στt R rZ P( )
A

A A
, (44)

σ τ≡ ∂
∂

= ⟨ | | ⟩στ
στ

r FH
E
P

ext
ext

(45)

Several analysis tools of the electron dynamics have been
implemented. They will be introduced in the following
applications sections as needed.

On the Coupling between the Electron and the Induced
Dipole Intrinsic Dynamics. The full hybrid QM/MMpol
Hamiltonian is given by eq 46

= + +H t H t H t H t( ) ( ) ( ) ( )QM/MM QM embed MM
(46)

where HQM is given by eq 5, and Hembed collects the coupling
between the QM and MM regions (embedding energy) which
includes the interaction between the electrons and QM nuclei
with the permanent and induced dipoles on MM sites. Finally
HMM(t) is the energy of the MM part computed with molecular
mechanics force field. The latter term also holds a dependence
in time because of the interaction between the time-dependent
MM induced dipoles and the MM permanent charges. If one is
interested in solving the time-independent KS equations to
determine the stationary states of the system of interest, a
common procedure is to relax the MM induced dipoles at every
SCF cycle. The MM dipoles are then injected in the next SCF
cycle to calculate a new embedding potential. The convergence
threshold for converging the MM dipole moments is tightened
along with the SCF convergence to reach, at global
convergence, a user-defined value, typically 10−8 to 10−10 D.
On the other hand, if one is interested in the time-dependent
solutions of the KS equations, more subtle algorithms are
needed because of the time dependence of each term of eq 46.
In principle one needs to set up the coupled equations of
motion for the overall system. This is not a trivial task because
of the composite quantum-classical nature of the system. One
may think of coupling RT-TDDFT for the electron cloud to a
fictitious dynamics of the MM induced dipoles, in the spirit of
what is done for molecular dynamics simulations with
MMpol.78−80 Here we consider a simpler scheme in which
we make the assumption that the MM dipoles completely relax
at each RT-TDDFT step. In other words, we look for the
stationary polarization state of the environment along with the
nonstationary propagation of the electron cloud. For
sufficiently small time steps this mixed stationary-nonstationary
scheme is certainly a valid approximation to the real dynamics.
As shown in the Validation section we found this
approximation to be acceptable for standard electron dynamics
simulations with 1 as time steps or below.

III. PERFORMANCE AND VALIDATION

III.1. RT-TDDFT Propagation with Density Fitting. As
explained in the Methodology section our implementation of
RT-TDDFT relies on the use of fitted densities. In particular,
one has the choice in deMon2k of using either the KS or the
fitted density to calculate the (time-dependent) XC energies
and potentials. These two approaches are referred to as BASIS
and AUXIS, respectively. Using the fitted densities usually
induces a reduction of the computational cost by a factor of 10,
which is clearly advantageous, yet it remains to be tested if ρ̃
can be used safely in RT-TDDFT propagation. As test cases, we
consider two molecules: carbon monoxide and cysteine, a sulfur
containing amino acid taken in the nonzwitterionic form. The
propagation has been run using the Magnus propagator with an
integration time step of 1 as and diagonalization (eq 37). The
simulations have been carried out with the TZVP-FIP281 basis
set and the PBE functional.82 Auxiliary basis sets are generated
by an automatic procedure implemented in deMon2k that
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depends on the atomic orbital basis set. The GEN-An auxiliary
function sets contain groups of auxiliary functions with s and
spd angular momenta. The index n determines the number of
auxiliary function sets, i.e. the number of these sets increases
with increasing n. We have considered the GEN-A2 and GEN-
A3 auxiliary function sets, as well as the GEN-A2* and GEN-
A3* that are supplemented by f and g auxiliary functions. As a
general rule of thumb the larger the auxiliary basis set the more
accurate the DFT-based energies and properties. An adaptive
grid of accuracy 10−7 Ha has been used to integrate the XC
potential and energies.51 In Figure 1 we report the fluctuations
of the x-component of the dipole moment of the two molecules
when subjected to a constant electric field of intensity 0.01 au
along the z-axis. Similar conclusions looking at the y- or z-
components of the induced dipoles can be drawn.
On the left-hand side of Figure 1 we analyze the sensitivity of

the propagation to the electron density used to calculate the
XC potential, using the GEN-A2* auxiliary basis set. During the
10 fs of the propagation we find no important differences
between the BASIS (orange) and AUXIS (blue) approaches.
The simulation corresponding to the graphs on the right-hand
side has been obtained with the AUXIS approach but with
different auxiliary basis sets. For CO2 all the simulations give
similar electronic evolution. The electronic response of CO2 is
well captured by each auxiliary basis set. For cysteine the results
are clearly more contrasted. Taking GEN-A3* as the reference
auxiliary basis set, we find that the simulations with GEN-A2
and GEN-A3 are clearly different. On the other hand, with
GEN-A2* the simulation nicely reproduces the evolution of the
induced dipole moment. This is an encouraging result.
Provided sufficiently flexible auxiliary basis sets are chosen,
one can rely on density fitting techniques to reduce the
computational cost of the RT-TDDFT propagations similar to
what is done in stationary auxiliary DFT or auxiliary

perturbation theory calculations. Our RT-TDDFT implemen-
tation thus takes advantage fully of the optimized density fitting
algorithms already implemented in deMon2k. We will come
back to the code performance at the end of section III.

III.2. RT-TDDFT To Calculate Static Polarizabilities. We
continue the Validation section with the calculation of
polarizabilities of molecules. Static and dynamic polarizabilities,
as well as hyperpolarizabilities, can be calculated with standard
DFT either by finite-field methods,83,84 by the coupled-
perturbed KS approach,85,86 or by the auxiliary density
perturbation theory.87−89 These are actually recommended
approaches for computing these properties at modest computa-
tional cost. Here they are used to test the validity of our RT-
TDDFT module. After converging the stationary ground state
of the molecule in the absence of an external field, an electric
field Fi

ext is applied, and the response of the electron density is
simulated by RT-TDDFT. The resulting induced dipole is
related to the applied electric field vector via the polarizability
tensor. The external electric field may either be constant or
time-dependent, giving access to static or dynamic polar-
izabilities, respectively. Focusing here on the static case, the
polarizability tensor elements are given by83

α μ μ μ μ= ̅ − ̅ − − ̅ − ̅ −F F F F F
2
3

[ ( ) ( )]
1

12
[ (2 ) ( 2 )]ij j i j i j i j i j

(47)

where μ̅i(Fj) denotes the average contribution along i(= x, y, z)
of the induced dipole when an external field Fj has been applied
along j. The uncertainty in the knowledge of μ̅i is given by

μ σ̅ =u NS( ) /i i eff where σi is the standard deviation of the
sample of dipole moments calculated along the RT-TDDFT
propagation. N is the number of terms in the sample, and Seff is
the statistical chain efficiency. The latter has been evaluated
with the Coda package of the R project for statistical

Figure 1. Influence of the accuracy of auxiliary fitted density on electron dynamics for CO2 (top) and cysteine (bottom). The x-component of the
molecular dipole moment is represented. Left: comparison of RT-TDDFT simulations using either the KS density (BASIS), in orange, or the
auxiliary density (AUXIS), in blue, to integrate the XC potential in RT-TDDFT propagations. The GEN-A2* auxiliary basis set is used. Right: the
simulations use the AUXIS approach with GEN-A2 (black), GEN-A3 (green), GEN-A2* (blue), and GEN-A3*(red) auxiliary basis sets.
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computing.90,91 The calculations have been done with the PBE
functional,82 the TZVP-FIP1 basis set,81 which has been
optimized for electric properties calculations, and the GEN-A2*
auxiliary basis set. Fields Fj of 0.01 au have been applied. This
value is also used by default in the finite field method in
deMon2k.84 The RT-TDDFT propagations have been run for
10 fs with an integration time step of 1 as. The propagator-
corrector Magnus scheme with diagonalization has been used.
As can be seen in Table 1 the static polarizability tensors
calculated from simulation of the electron density subjected to
a perturbation by RT-TDDFT match nicely those obtained by
the finite field method. The agreement between both
approaches validates our implementation.
III.3. Absorption Spectra in the Gas Phase. A further

validation of our RT-TDDFT implementation is now sought by
comparing molecular absorption spectra calculated by LR- and
by RT-TDDFT. Indeed, the electronic spectrum of a molecule
is encoded in the evolution of the molecular dipole simulated
by RT-TDDFT after a molecule is perturbed by an infinitely
narrow electric field. The Fourier transform of the dipole signal
gives access to the polarizability tensor in the frequency domain
which in turn yields the dipole strength function (absorption
spectrum). More details about this procedure can be found in
many recent publications.19−21 Coumarin has been chosen here
as a test case because it is a solvatochromic dye, the dipole
moment of which is strongly modified in the excited state
corresponding to the first electronic absorption band.
Calculations have been done with the DZVP/GEN-A2*
combination of atomic and auxiliary basis sets and with the
PBE XC functional. The LR-TDDFT absorption spectrum has
been simulated by assigning a Lorentzian function of width 0.25
eV centered at each excited state energy and with an amplitude
proportional to the oscillator strength of the transition. The
first 493 singlet excited states have been included in the
construction of the spectrum, spanning an energy window 18
eV wide. The LR-TDDFT calculation has been carried out with
deMon2k within the framework of Auxiliary Density
Perturbation Theory (ADPT).92 For the RT-TDDFT spectrum
three 15 fs simulations have been carried out, each with a
different orientation of the initial kicking electric field. The
strength of the field was set to 0.005 au. A time step of 1 as was
used in the propagation (using the PC Magnus propagator and
the diagonalization technique). To construct the spectrum the
molecular dipole was damped by an exponential function (e−t/τ

with τ = 180 au) to broaden the absorption peaks in the RT-
TDDFT spectrum. In both the LR- and RT-TDDFT
approaches fitted densities are employed to evaluate the

Coulomb and the XC integrals. The spectra are depicted in
Figure 2. The lowest energy transition with significant oscillator

strength is found at 4.12 eV (300 nm). This excitation energy is
close to the first band of the absorption spectra of coumarin in
isopentane (310 nm).93 As illustrated in Figure 3, this
electronic excitation mainly corresponds to ππ* transitions
from the HOMO−2 and HOMO toward the LUMO with
coefficients of 0.53 and 0.29, respectively.
The agreement between the LR- and RT-TDDFT spectra is

excellent over the entire range of energies. Both the positions of
the maximum and the relative amplitude obtained match with
the two types of TDDFT implementations. Our results validate
the use of the Auxiliary DFT framework52 for constructing
absorption spectra from RT-TDDFT simulations. As usual
though, the choice of the auxiliary basis is critical and must
include polarization functions (GEN-An*) to reach good
accuracy.

III.4. QM/MMpol Framework in Stationary and Non-
stationary Cases. (DFT+Density Fitting)/MMpol: Stationary
Calculations. We now present the first results of QM/MMpol
calculations with the in-deMon2k QM/MM module. To this
end we consider a peptide (Tyr-Gly-Gly-Phe-Met) treated by
DFT immersed in a box of 4,030 polarizable POL396 water
molecules. The full system was previously equilibrated by
classical MD simulations (data not shown). Five geometries

Table 1. Static Polarizability Tensors (bohr3) Computed with RT-TDDFT and with a Finite Field Method

molecule finite field difference RT-TDDFT

benzene αij X Y Z X Y Z
X 83.5 0.0 0.0 83.6 ± 0.6 0.0 ± 0.0 0.0 ± 0.0
Y 0.0 83.5 0.0 0.0 ± 0.6 83.6 ± 0.6 0.0 ± 0.0
Z 0.0 0.0 44.5 0.0 ± 0.0 0.0 ± 0.6 44.3 ± 0.1

phenol X 97.1 0.0 1.9 98.1 ± 0.4 0.0 ± 0.6 2.3 ± 0.0
Y 0.0 46.8 0.0 0.0 ± 0.0 46.8 ± 0.0 0.0 ± 0.0
Z 2.0 0.0 87.1 2.0 ± 0.1 0.0 ± 0.0 87.2 ± 0.2

cysteine X 78.7 13.3 −8.0 78.6 ± 0.0 13.4 ± 0.0 −8.1 ± 0.0
Y 13.3 72.6 −2.4 13.4 ± 0.0 72.4 ± 0.0 −2.4 ± 0.0
Z −8.0 −2.4 85.2 −8.0 ± 0.0 −2.3 ± 0.0 85.0 ± 0.0

Figure 2. Absorption spectra of coumarin in the gas phase obtained
from Linear-Response (blue) or real-time (red) TDDFT calculations.
The LR-TDDFT excitation energies are indicated by vertical lines the
heights of which are proportional to the oscillator strength of the
transition. The convoluted spectra have been obtained from
Lorentzian functions assigned to each excitation. Both spectra have
been normalized on the absorption value at 4.12 eV.
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extracted from the classical MD simulations have been
calculated at the QM/MMpol level. For the latter we have
used the PBE functional and the DZVP-GGA atomic basis set
in combination with the GEN-A2, GEN-A2*, or GEN-A3*
auxiliary sets. The fitted density has been used to calculate both
the Coulomb and XC potentials.52 A grid of high accuracy is
used to integrate the XC contributions (10−7 Ha). The induced

dipoles have been updated at every SCF cycle by an iterative
procedure until the Root-Mean-Square between two successive
cycles is below 10−9 D. To avoid the polarization catastrophe
we have used the Tinker-exponential forms of field attenuation
(eqs 22−24). For the calculation of the electric field created by
the electron density (eq 10) we consider two options. The first
one is to use the KS density; the other is to use the auxiliary
fitted density, respectively referred to as FBASIS and FAUXIS.
Let us first consider the QM/MMpol-FBASIS scheme. The

timings reported in Table 2 indicate that including induction
significantly increases the cost of the calculation. It represents
65% of the total time spent in the SCF module with GEN-A2*.
This is for the most part the calculation of the electric field
created by the electron density on the MM sites that leads to
this timing. Thirty seconds are needed on average for each SCF
cycle. For comparison, a nonpolarizable DFT/MM calculation
on the same system requires 12 s per SCF cycle. There is
indeed a clear cost to the inclusion of induction. When
switching to the less accurate GEN-A2 auxiliary set, the
computational cost is decreased to 21 s/SCF cycle, but more
SCF cycles are needed to reach convergence so that 85% of the
time is spent in the induction modules. In an attempt to reduce
this supplementary cost, we consider the QM/MMpol-FAUXIS
scheme. With GEN-A2* the cost drops to 16.1 s per SCF cycle,
which is a just a little more than a nonpolarizable DFT/MM
(12 s). This reduction comes from the calculation of the
electric field created by the electron density that has dropped to
almost zero. The remaining time for induction is spent in the
induced dipole iterations and in the calculation of the induced-
dipole electrostatic potential. To assess whether the FAUXIS is
reliable we report in Table 2 the different contributions to the
polarization energy (eq 11). For each contribution, the Root-
Mean-Square-Deviations are calculated taking the FBASIS/
GEN-A2* as reference. At SCF convergence we find that the
RMSD of induction energies (Eμ−ZQM

ind + Eμ−ρ
ind + Eμ−qMM

ind ) differs
by less than 1.5 kcal/mol between the FBASIS and FAUXIS
approaches with GEN-A2*. A similar value is found for
FAUXIS/GEN-A3*. We can thus consider the FAUXIS/GEN-
A2* combination to be an excellent approximation of FBASIS/
GEN-A2*, without further need to go to GEN-A3*. On the
other hand, the comparison is less encouraging with GEN-A2.
In this case, the RMSD of the induction energy between the

Figure 3. Frontier KS molecular orbitals for an isolated coumarin
molecule calculated with the PBE XC functional. The isosurface
corresponds to values of 0.05 bohr−3/2. Picture made with gmolden94

and VMD.95

Table 2. Induction Energies and Timings of Stationary QM/MMpol Calculations

QM/MMpol (FBASIS) QM/MMpol (FAUXIS)

GEN-A2 GEN-A2* GEN-A2 GEN-A2* GEN-A3*

induction energies (kcal/mol)a

RMSD(Eμ−qMM
ind ) 0.03 0.00 0.04 0.02 0.02

RMSD(Eμ−ZQM
ind ) 2.74 0.00 26.94 1.49 1.56

RMSD(Eμ−ρ
ind ) 6.35 0.00 55.61 2.97 3.06

RMSD(Etot
ind) 3.64 0.00 28.70 1.46 1.50

timings (s)
QM electric field 1060 (61%) 657 (43%) 3 (≈0%) 3 (≈0%) 5 (≈0%)
MM dipole iterations 236 (14%) 196 (13%) 246 (36%) 163 (18%) 154 (13%)
dipole embedding 167 (10%) 133 (8.8%) 169 (25%) 106 (12%) 121 (10%)
total induction 1463 (85%) 986 (65%) 418 (61%) 272 (30%) 280 (23%)
SCF (s/cycle)b 20.9 29.6 8.4 16.1 20.0

aWe report the RMSDs over five conformers of the peptide taking the FBASIS/GEN-A2* as the reference method. bTotal time spent in SCF
divided by the number of SCF cycles to reach convergence. For the timing, the numbers within brackets represent the percentage of the total time
spent to compute the given contribution. Calculations have been performed with Intel Xeon E5649 (2.53 GHz) 6 core CPUs with 24 GB RAM per
core. Jobs were run in parallel with 48 processors.
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FAUXIS and FBASIS approaches is 29 kcal/mol. This is a
rather large value: the fitted density can be used safely in lieu of
the KS density in QM/MMpol calculations as long as
sufficiently flexible auxiliary basis sets are used (GEN-A2* or
larger). In such cases the computational advantage of the
FAUXIS approach is significant. We make two final remarks.
First, rather expectedly, the induction terms that are the most
sensitive to the choice of the auxiliary basis are those between
the MM induced dipoles and the QM region. The induction
energy between the dipoles and the MM charges (Eμ−qMM

ind ) is
always the same. Second, we note that the SCF process
converges more rapidly with larger auxiliary basis sets,
somewhat lowering the increase in computational cost due to
the greater number of integrals to compute.
(DFT+Density Fitting)/MMpol: Nonstationary Calcula-

tions. We now examine the sensitivity of the RT-TDDFT/
MMpol simulation to the method chosen to calculate the
electric field generated by the QM region. After SCF
convergence the electronic density of the peptide is perturbed
by a Gaussian shaped electric field centered at 10 as and with
standard deviation 1 as. Three field strengths have been tested:
0.001, 0.01, and 0.1 au. The simulations have been run for 1 fs
with the propagator-corrector Magnus scheme and a time-step
of 1 as. The BCH formula (eq 39) has been used to calculate
the exponential of the complex matrices. Thirty terms have
been used in the expansion of eq 39. We report in Figure 4 the
evolution of the peptide dipole moment (top) and the
difference of polarization energy with respect to their values
at the initial time. Both the FAUXIS and FBASIS schemes are
tested. Each simulation has been carried out with either the
GEN-A2 or GEN-A2* auxiliary basis set. As expected the
stronger the intensity of the electric field perturbing the
electron density at the beginning of the propagation, the larger
the response of the system. This can be seen on the evolution
of the peptide dipole moment, that exhibits larger amplitudes
with the stronger field (0.1 au), and also on the fluctuations of
the polarization energy. With the weakest field the subsequent
variations of the polarization energy are small (of the order of
10−2 kcal/mol). The agreement between the FAUXIS and
FBASIS approaches is always very satisfactory. With the GEN-
A2* auxiliary basis set the results between the FAUXIS and
FBASIS simulations are even indistinguishable whatever the
strength of the electric pulse that perturbs the system.
Coupling between Electron and MM Dipoles in RT-TDDFT/

MMpol Simulations. As explained in the Methodology section
a central aspect of the present RT-TDDFT/MMpol
implementation is the assumption that the MM induced
dipoles respond instantaneously to the electronic motion taking
place in the QM region. Technically, this means that the MM
dipoles are fully converged at every RT-TDDFT step. We
tested the suitability of this strategy by repeating the previous
simulations of the solvated peptide with shorter time steps of
0.75, 0.5, 0.25, and 0.1 as. For short enough time steps the
decoupling approximation is certainly valid. With a time step of
0.1 as we found, indeed, that the MM induced dipoles evolve
very smoothly. Figure 5 depicts the differences of QM/MMpol
total energy, of polarization energy, and of embedding energy
as a function of time taking the 0.1 as time-step simulation as
reference. The initial perturbing field was set to 0.001 au.
Clearly, the larger the time step the larger the difference. For
the total energy and for the embedding energy the maximum
error is of the order of a few thousandths of a kcal/mol with a 1
as time step. It is an order of magnitude smaller for the

polarization energy. These values are rather small compared to
the variations of the total energy in these simulations caused by
the initial perturbation with the external electric field (around
0.06 kcal/mol). Interestingly the energy errors fluctuate around
zero. This suggests that the simulations with time steps larger
than 1 as eventually depart from the reference trajectory but do
not diverge from it. We also found that the peptide dipole as
well as the water dipoles of the first solvation layer (i.e., those
mainly impacted by the electron dynamics taking place on the
peptide) were within 1.0E−5 D from those of the reference
trajectory. This is a very small value. In simulations in which the
initial perturbing electric field strength was increased to 0.01 au
the same trends are obtained albeit with a factor of 10 in the
amplitudes of the errors (Figure S1). This again seems
acceptable in view of the overall total energy change (6 kcal/
mol). For an even stronger perturbing field (0.1 au) the errors
in total, polarization energy, and embedding energies are of the
order of a kcal/mol, a tenth of a kcal/mol, and a hundredth of a
kcal/mol, respectively (Figure S2). These values are quite high
but again much smaller than the fluctuations of the total energy

Figure 4. Evolution of the peptide dipole moment (top) and of the
polarization energy of POL3 water molecules (bottom) after an initial
perturbation of the peptide electron density by a short electric pulse.
Three intensities of the pulse have been applied: 0.001, 0.01, and 0.1
au. Simulations have been run with two types of auxiliary basis sets
(GEN-A2 and GEN-A2*) to calculate the Coulomb and XC
contribution to the KS potential. In addition to calculating the electric
field created by the QM region, that contributes to determine the MM
induced dipoles, we used either the KS density (FBASIS, dashed lines)
or the auxiliary density (FAUXIS, full line). Blue: FBASIS/GEN-A2*,
red: FAUXIS/GEN-A2*, green: FBASIS/GEN-A2, and orange:
FAUXIS/GEN-A2.
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of the molecule (around 50 kcal/mol). We note that such
electric fields are extremely strong and would trigger nonlinear
effects like ionization. Altogether these tests justify the
nonstationary/stationary coupling scheme between RT-
TDDFT for the QM part and stationary MMpol for the
environment although one should be careful to adapt the
propagation time step to the amplitude of the electronic
fluctuations that take place in the QM region. The most
suitable time step might depend on the particular system of
interest.
In principle, though, there should be a time step beyond

which the decoupling between electrons and MM dipoles
ceases to be valid. When we increased the time step (2 or 5 as),
the electronic propagation was not stable anymore and
diverged in a few steps. RT-TDDFT propagations are usually
very sensitive to discontinuities that may arise in the time-
dependent KS potential. Hence, a plausible explanation for the
numerical instabilities observed in RT-TDDFT/MMpol
simulations for the largest time steps may be that they arise
from potential discontinuities caused by significant variations of
MM induced dipoles between two propagation steps.
Interestingly, sudden instability of electron dynamics prop-
agation may thus well be a sign of the breakdown of the
decoupling hypothesis between the electron cloud dynamics
and induced MM dipoles. Further work will be needed to
examine this point in more detail.
III.5. Absorption Spectra from RT-TDDFT/MMpol

Simulations. We report in Figure 6 the absorption spectrum
for the coumarin molecule solvated by a 30 Å radius sphere of
water molecules. The system was equilibrated in a previous step
by a classical MD simulation (data not shown) followed by a
few-steps geometry optimization of the coumarin molecule
before the RT-TDDFT/MMpol simulations. This partial
optimization was intended to avoid too large distortions of
the molecule, which would cause unreasonable displacements
of the electronic absorption bands. We followed a similar
protocol as for the gas phase case (see section III.3) to build the
spectra. In most simulations the QM region encompasses the
coumarin molecule, while the water environment is described
by the force field. However, in order to define a reference
spectrum we have also carried out RT-TDDFT/MMpol

simulations including the first hydration layer of coumarin in
the QM region (12 water molecules).
As seen in Figure 6 the environment has a significant effect

on the spectrum. This is especially noticeable for the band
around 4 eV that corresponds to a transition having charge
transfer character. The center of this band is red-sifted by 0.22
eV when comparing the gas phase and the reference spectra
(see inset). The nonpolarizable TIP3P model leads to a red-
shift of 0.15 eV, while the polarizable RT-TDDFT/MMpol
(POL3) spectrum exhibits a more pronounced red-shift of 0.18
eV, that is closer to the reference. Electrostatic induction thus
permits a slight improvement on the position of the most
displaced absorption bands. We also remark that the absorption
spectra calculated with polarizable water combined with either
the FBASIS or the FAUXIS option (see above) are
indistinguishable. This is a further element showing that as
long as sufficiently flexible auxiliary basis sets are chosen (GEN-
A2* here), density fitting techniques can be safely used in
TDDFT/MMpol calculations.

III.6. Numerical Stability and Performances. We
conclude section III with some notes on the numerical
stabilities of RT-TDDFT simulations and on the computational
performance of the implementation in deMon2k. It is known
that simulating electron dynamics by RT-TDDFT can be
difficult in terms of numerical stability. This numerical stability
is highly system-dependent, and the best propagation scheme
has to be sought for each new molecular system of interest. The
list of parameters impacting the numerical stability encom-
passes not only those directly related to the propagation
schemes (propagator, matrix exponentiation method, size of
time-step, ...) but also other more general DFT parameters: the
quality of atomic basis set, of auxiliary basis set, the grid quality
for XC potential numerical integration, ... In particular, we

Figure 5. Error estimations of the MMpol-stationary-RT-TDDFT
scheme. The 0.1 as time-step simulation is taken as a reference, and
the data for larger time steps are given with respect to the reference:
light brown, 1 as; cyan, 0.75 as; maroon, 0.5 as; violet, 0.25 as. All the
energies are given in kcal/mol scaled by coefficients given in each
graph. ΔE is the total QM/MM energy, ΔEpol is the total polarization
energy, and ΔEembed is the embedding energy (permanent charges and
induced dipole).

Figure 6. Absorption spectra of coumarin in the gas phase (black) and
in the condensed phase (other curves) calculated from RT-TDDFT.
Blue: spectrum obtained with the TIP3P model for water (non-
polarizable), yellow and red: spectra obtained with the polarizable
POL3 water model and within the FAUXIS/GEN-A2* and FBASIS/
GEN-A2* schemes, respectively, green and dashed: reference
spectrum RT-TDDFT/MMpol (POL3) for which both the coumarin
molecule and its first hydration level were treated at the quantum level.
In the latter case we extracted the Hirshfeld intrinsic dipole of
coumarin to remove absorption bands due to the QM water
molecules. Inset: zoom on the 3.28−4.78 eV range.
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found the initial conditions of the electronic propagation to be
extremely important. For instance, in most of our calculations
the preliminary stationary SCF needs to be converged with
tolerance criteria below 10−10 Ha for the total electronic energy
and 10−7 for the charge density error (respectively defined by
the TOL and CDF options of the SCFTYPE keyword in
deMon2k). These convergence thresholds are tight compared
to those customarily used in stationary DFT calculations. We
also found the method for determining the fitted density
coefficients to be important. To solve the sets of inhomoge-
neous systems of linear equations associated with density
fitting, one can either use an analytical97 or numerical
approach.98 The former generally led to more stable RT-
TDDFT simulations and has been used throughout.
In Figure 7 we report the computational timing to carry out a

1.5 fs RT-TDDFT/MMpol electron dynamics simulation on

the solvated peptide just described. Following our previous
conclusions, this simulation has been run with the AUXIS and
FAUXIS approaches with the DZVP-GGA/GEN-A2* combi-
nation of basis sets. We have used the predictor-corrector
Magnus propagator with the BCH expansion (30 terms) and a
time step of 1 as. A grid of accuracy 10−7 Ha has been used for
the XC contributions. The time-dependent auxiliary density
was integrated at every RT-TDDFT step to extract intrinsic
atom multipoles (charges, dipole, quadrupole) according to the

Hirshfeld scheme. With GEN-A2* multipoles extracted from ρ̃
are very close to those extracted from ρ.69 The simulation took
12 h on 48 processors with the message passing interface
protocol.
The most time-consuming part of the simulation corre-

sponds to the matrix multiplications (of which there are almost
400 000). These are needed (i) to transform the density and
KS matrices between the MO and AO representation (ii) in the
BCH approximation that involves nested commutators. In
second position is the cost of including induction stemming
from the embedding of the QM region by induced dipoles
(8%) and by the convergence of MM induced dipoles by the
iterative procedure (18%). This situation could be improved in
the future by adopting more advanced simulation algorithms
that avoid the iterative procedure used here to converge the
MM induced dipoles.99 The XC potential represents 24% of the
overall computational cost, while the calculation of the
Coulomb contribution is almost negligible. This remarkable
performance is possible thanks to the mixed scheme
implemented in deMon2k to store short-range ERIS in RAM
and to compute long-range ERIS by double asymptotic
expansions.100 Finally we note that the repeated analysis of
the time-dependent electron density induced only a small
supplementary cost to the calculation.69 In summary, we think
our RT-TDDFT/MMpol is efficient enough to tackle the
simulation of electron dynamics in large molecular systems.

IV. ELECTRONIC POLARIZATION DYNAMICS

IV.1. Electron Dynamics within an Isolated Molecule.
In this subsection we analyze the electron dynamics taking
place when a coumarin molecule in the gas phase is submitted
to a monochromatic laser field. We choose a wavelength that
corresponds to an excitation energy of 4.1547 eV (see section
III.3). We have propagated the electron density for 25 fs with a
time step of 10 as. A Gaussian shaped electric field centered at
9.5 fs and full-width at half-maximum of 3.53 fs (uF = 1.5 fs)
was applied (eq 40). The electric field orientation was set in the
molecular plane with an intensity of 10−4 au (51 mV/nm). The
frequency ω of the field was set to correspond to an excitation
energy of ΔE = 0.1528 Ha. To follow the evolution of the
electron density we have computed the molecular time-
dependent dipole moment and the time-dependent intrinsic
atomic charges qi and dipole moments (μX). To define the
latter three distinct population schemes have been tested,
namely the Hirshfeld,101 Becke,102 and Voronoi Deformation

Figure 7. Computational timing for 1.5 fs of RT-TDDFT/MMpol
electron simulations. Only the most time-consuming tasks are
indicated. The numbers are the percentages of time spent in each
type of task.

Figure 8. Evolution of dipole moments (x component) during RT-TDDFT propagation with the Hirshfeld scheme. Left: the molecular dipole
moment is shown in black, the atomic-charges-derived dipole is shown in green, and the sum of intrinsic atomic dipole moments is shown in red.
Right: intrinsic atomic dipole moments are shown in red for each coumarin atom.
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Density103 schemes. Only the Hirshfeld results are shown in the
main text, while the others are given in the SI. Because
repetitive population analyses along the RT-TDDFT simu-

lations may become time-consuming, we have extracted atomic
charges and dipoles from the analysis of the auxiliary density
(ρ̃) which is cheaper than from the KS density.69 We have

Figure 9. Time-dependent deformation of the electron density taking the initial time as reference. The isosurface corresponds to values of 10−5

bohr−3 in absolute value. The yellow surfaces correspond to positive values (accumulation of electron density), while the violet ones correspond to
negative values (depletion of electron density). Each line corresponds to one Rabi oscillation period.

Figure 10. Left: variations of the average induced dipole moment by hydration layers ⟨Δμ(t)⟩ = ⟨μ(t) − μ(0)⟩. Note the change of scales for each
graph. Right: normalized autocorrelation function of the water molecule induced dipole moments averaged by hydration layers for three values of the
electric field affecting the peptide at the beginning of the RT-TDDFT/MMpol simulation. Color code: water molecules between 0 and 3 Å in black,
3−6 Å in red, 6−9 Å in green, 9−12 Å in blue, 12−15 Å in orange, and beyond 15 Å in brown. The uncertainties on the curves are around 0.06.
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previously shown this alternative to be reliable as soon as the
GEN-A2* auxiliary basis (or larger) is chosen, as is the case in
this application.
The set of time-dependent atomic charges (qX) permits the

definition of a total charge-derived dipole moment μq =
∑XqXrX. The variations in time of μq provide information on
charge transfer between atoms in the course of the simulation.
On the other hand, the sum of the intrinsic atomic dipoles
μpol = ∑XμX provides information on the internal polarization
of the atoms during the simulation. The sum of μq and μpol

gives rise to the full molecular dipole moment. As seen in
Figure 8 the molecular dipole starts to oscillate at around 7 fs as
a result of the application of the electric field. Regular
oscillations are seen in subsequent times, the period of which
(0.99 fs) corresponds well to the applied electric field energy
(4.1547 eV). The molecular system thus undergoes Rabi
oscillations between the ground and the targeted excited state.
We observe soft beatings on a few fs that correspond to the
Gaussian shaped pulse. Looking at the decomposition of the
dipole moment we find that the oscillations are essentially due
to μq, i.e. they are caused by charge transfers between atoms.
The sum of the internal polarization μX (μpol) fluctuates much
less, as well as each intrinsic dipole moment (Figure 8, right).
Of course, the separation between μq and μpol is arbitrary and
depends on the chosen population scheme. With Voronoi
Deformation Density, we found very similar results as for
Hirshfeld (Figure S3). On the other hand, with the Becke
partitioning scheme a very different separation between
polarization and charge transfer is obtained (Figure S4).
Actually the Becke scheme is not recommended for extracting
electrostatic multipoles because it may produce “nonchemical”
charges in many cases (e.g. hydrogens always have charges
around −0.5e). It should probably be avoided for analyzing
time-dependent electron density. That said, we found
fluctuations of the total dipole moment come from fluctuations
of the charge-derived dipole moments whatever the chosen
partitioning scheme.
The isosurfaces of the deformation electron density shown in

Figure 9 render a pictorial view of ultrafast dynamics over three
Rabi oscillations. For this simple excitation process involving
two electronic states the overall shape of the deformation
density can be rationalized looking at the shape of the MOs
involved in the process. Especially the population of the LUMO
can be identified looking at Figure 9.
IV.2. Dynamics of the Response of the Environment.

In this section, we analyze the electronic response of the
environment of a central molecule after perturbation of the
latter by an external electric field. To this end we take the same
system as in subsection III.4, namely a methionine enkephalin
solvated in a box of POL3 water molecules. After tight SCF
convergence, the central peptide was perturbed by a Gaussian
shaped electric pulse centered at 20 as with 3 as width. The
field strength was set to either 0.001, 0.01, or 0.1 au. Note the
latter corresponds to a very strong intensity. Following our
conclusions from the Validation section we use the AUXIS and
FAUXIS approaches in combination with the GEN-A2*
auxiliary basis. The simulations were conducted for 3 fs with
a time step of 3 as using the predictor-corrector-Magnus/BCH
propagator. We report in Figure 10 the variation of the induced
dipoles on MM atoms with respect to the initial time (Δμ(t) =
μ(t) − μ(0)) and their normalized autocorrelation functions
(C(t), ACF). Both quantities are averaged by hydration layers
as indicated by the angular brackets ⟨...⟩.

We start by considering the upper graphs that correspond to
perturbing field strength of 0.001 au. As expected, the longer
the distance between the water molecules and the peptide, the
smaller the impact on the induced dipoles. The first hydration
layer is the one that experiences the highest variations of
induced dipoles. As evident from the black curve in Figure 10,
top-left, the average induced dipoles undergo damped
oscillations. These are caused by energy dissipation in the
MM environment, which is possible thanks to the use of a
polarizable FF. Dissipation is very pronounced for the first
hydration layer, but it is also seen for the outer hydration layers.
The induced dipoles for molecules pertaining to the inner
hydration layer completely lose correlation within a few tens of
as, while beyond 15 Å, the average ACF remains close to 0.8 at
200 as. The characteristic response time is distance dependent.
This characteristic time increases for each successive hydration
shell. Some of the averaged ACF become negative which is to
be related to the oscillatory nature of the variations of ⟨Δμ⟩.
We finally remark that the response of MM induced dipoles not
only is fully instantaneous but also exhibits relaxation
components over hundreds of attoseconds.
When the strength of the initial perturbing field is increased

to 0.01 au, the amplitude of oscillation of the average induced
dipoles is larger by a factor of 10. This is true for each hydration
shell. When the field strength is further increased to 0.1 au, a
further increase of response amplitudes is observed for ⟨Δμ⟩.
The ACFs exhibit more complex evolutions with the increase of
perturbing field strength. For the weakest perturbing field
strength (0.001 au) we already mentioned that the response
was distance dependent (top-right). For a perturbing field
strength of 0.01 au the response of induced dipoles is not
distance dependent within the first 50 as, apart from water
molecules situated beyond 15 Å (middle-right). Only after this
time a scattering of the average ACFs becomes apparent.
Finally, for a perturbing field strength of 0.1 au all the average
ACFs but one (again for water molecules situated beyond 15
Å) are almost superimposed (bottom-right). The response
mechanism of MM induced dipoles is therefore not distance
dependent at all within 15 Å. All these results reflect subtle
response mechanisms that deserve a more detailed analysis.
We recall that the induced dipoles are determined by the

electric field created by the other MM atoms (Fi
(0) + Fi

ind) and
by the QM region (Fi

QM) (eqs 6−10). In the present RT-
TDDFT simulations only Fi

ind and Fi
QM can account for the

variations of the MM induced dipoles since the nuclei are fixed.
We also recall that we employ here a mixed nonstationary/
stationary RT-TDDFT/MMpol scheme (see section III).
Accordingly the response of the MM induced dipoles caused
by variations of Fi

QM is expected to be enhanced in our scheme
compared to what it would be in fully dynamical simulations.
Nonetheless, the average ⟨Δμ(t)⟩ and the associated ACF
extracted from a 0.1 as time-step simulation were found to be
very similar to the graphs shown in Figure 10, thereby
indicating that the artificial enhancement of the dipole
relaxation due to the RT-TDDFT/MMpol coupling scheme
is moderate. The response of MM dipoles should be less
pronounced as the distance r increases because of the decay of
Fi
QM with distance. On the other hand, the response caused by

variation of Fi
ind should be associated with a certain delay,

because it requires the other induced dipoles to be affected. For
example, the induced dipoles of water molecules situated
between 6 and 9 Å will be affected by induced dipoles of
innermost hydration waters only when their induced dipoles
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have varied. The prevalence of one mechanism over the other
should depend on the relative strength of Fi

ind and Fi
QM.

For the inner hydration layer (<3 Å) C(t) is almost identical
whatever the initial perturbation field. It decays to 0.3 in around
50 as (although the variations of induced dipole amplitudes are
different for each perturbing electric field). For this hydration
layer the source of variation of MM induced dipoles is primarily
Fi
QM. It is the time-dependent field created by the electron

cloud of the peptide that determines the response of MM
induced dipoles. The oscillations of the MM induced dipoles
essentially follow that of the peptide dipole moment (Figure
S5). For the outer hydration layers, the response mechanism
depends on the relative importance of Fi

ind and Fi
QM, the latter

being itself dependent on the perturbing field strength. For the
strongest perturbing field (0.1 au) the response mechanism of
the MM induced dipoles is completely imposed by Fi

QM for all
hydration shells (except for water molecules beyond 15 Å).
This explains why the average ACFs are almost superimposed.
The amplitude of the response decays with distance, but the
speed at which the induced dipoles vary is the same. In this
regime Fi

QM ≫ Fi
ind so that Fi

QM imposes the response
mechanism: the MM induced dipoles within 15 Å follow the
variations of the peptide dipole moment. For the intermediate
perturbing field (0.01 au) Fi

QM dominates the response
mechanism for the shorter distances (<9 Å) and for short
times (<50 as). At longer distances or after a certain time, 50 as
here, Fi

ind becomes more important and starts to introduce a
distance dependence in the response delay of the MM induced
dipoles.
We finally remark that including nuclear motion in the

simulation protocol would further make the response
mechanisms more complex by allowing Fi

(0) to be time-
dependent. This would enable simulating the reorientation
polarization of the environment molecule. We leave this
possibility for future work.

V. CONCLUSION
In this paper, we have reported the implementation in
deMon2k of an original combination of RT-TDDFT and a
polarizable force field based on the point charge-dipole model
of induction. Our implementation is made efficient thanks to
the use of fitted densities. Although we have focused here on
applications combining both methods, RT-TDDFT or QM/
MMpol calculations can of course be run independently.
Electron dynamics in complex molecular systems like those
encountered in biology are now accessible. Applications will be
reported in the future.
Our simulations have revealed the complexity of response

mechanisms of the environment of a solute submitted to an
external perturbation. We have focused on electronic induction,
which corresponds to the optical dielectric constant. Inclusion
of nuclear motion would further complexify even more of these
mechanisms by making Fi

(0) nonconstant. In general cases, the
response mechanisms will probably be strongly system and
process dependent, but we expect the RT-TDDFT/MMpol
scheme introduced in the present work to be capable of
covering wide ranges of processes involving significant electron
dynamics.
The present work may be extended along various lines.

Improvements of the QM/MMpol engine could be sought to
reduce the cost of induction, or we could couple RT-TDDFT
to more advanced polarizable force fields like AMOEBA.
Recent results in the context of linear-response TDDFT

coupled to AMOEBA are promising.104 The RT-TDDFT
propagation itself could be made more efficient, for example by
using adaptive time-steps.105 An obvious extension would be to
couple RT-TDDFT/MMpol to molecular dynamics in the so-
called Ehrenfest scheme to simulate coupled electron−nuclear
dynamics. Simulations based on the exact factorization of the
electronic-nuclear wave function as introduced by Gross and
co-workers may also constitute an interesting road to follow.106

Introducing nuclear dynamics would open new energy
dissipation channels that are not included in the present
schemes. Efforts along the aforementioned lines are underway
in our laboratories.
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(100) Alvarez-Ibarra, A.; Köster, A. M. A new mixed self-consistent
field procedure. Mol. Phys. 2015, 113, 3128−3140.
(101) Hirshfeld, F. L. Bonded-atom fragments for describing
molecular charge densities. Theoret. Chim. Acta 1977, 44, 129−138.
(102) Becke, A. D. A multicenter numerical integration scheme for
polyatomic molecules. J. Chem. Phys. 1988, 88, 2547−2553.
(103) Fonseca Guerra, C.; Handgraaf, J.-W.; Baerends, E. J.;
Bickelhaupt, F. M. Voronoi deformation density (VDD) charges:
Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD
methods for charge analysis. J. Comput. Chem. 2004, 25, 189−210.
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SUPPLEMENTARY INFORMATION 

Figure S1. Error estimations of the MMpol-stationary-RT-TDDFT scheme.  Initial field strength of 0.01 a.u. 

Figure S2. Error estimations of the MMpol-stationary-RT-TDDFT scheme.  Initial field strength of 0.1 a.u. 

Figure S3. Evolution of dipole moments (x component) during RT-TDDFT propagation with the Voronoi 

Deformation Density scheme.  

Figure S4. Evolution of dipole moments (x component) during RT-TDDFT propagation with the Becke 

scheme.  

Figure S5. Correlation between the variations of the induced dipole moments on water molecules 

averaged by hydration shells and the variation of dipole moment of the peptide. 

  

 

Figure S1. Error estimations of the MMpol-stationary-RT-TDDFT scheme. The 0.1as time-step simulation is 

taken as a reference and the data for larger time steps are given with respect to the reference. Light brown: 

1 as, cyan : 0.75 as, marron: 0.5 as, violet: 0.25 as. All the energies are given in kcal/mol scaled by 

coefficients given on each graph. 'E is the total QM/MM energy, 'Epol is the total polarization energy and 

'Eembed is the embedding energy (permanent charges and induced dipole). The peptide is initially 

perturbed by a electric field of strength 0.01a.u. 



 

Figure S2. Error estimations of the MMpol-stationary-RT-TDDFT scheme. The 0.1as time-step simulation is 

taken as a reference and the data for larger time steps are given with respect to the reference. Light brown: 

1 as, cyan : 0.75 as, marron: 0.5 as, violet: 0.25 as. All the energies are given in kcal/mol scaled by 

coefficients given on each graph. 'E is the total QM/MM energy, 'Epol is the total polarization energy and 

'Eembed is the embedding energy (permanent charges and induced dipole). The peptide is initially 

perturbed by a electric field of strength 0.1a.u. 

 

  

Figure S3: Evolution of dipole moments (x component) during RT-TDDFT propagation with the Voronoi 

Deformation Density scheme. Left: the molecular dipole moment is shown in black, the dipole derived 

from atomic charges is shown in green and the sum of intrinsic atomic dipole moments is shown in red. 

Right: intrinsic atomic dipole moments are shown in red for each coumarin atom. 

 

  

Figure S4: Evolution of dipole moments (x component) during RT-TDDFT propagation with the Becke 

scheme. Left: the molecular dipole moment is shown in black, the dipole derived from atomic charges is 

shown in green and the sum of intrinsic atomic dipole moments is shown in red. Right: intrinsic atomic 

dipole moments are shown in red for each coumarin atom. 

 



 

Figure S5. Correlation between the variations of the induced dipole moments on water molecules 

averaged by hydration shells 〈∆μ(t)〉=〈μ(t)-μ(0)〉 (upper-part of each graph) and the variation of dipole 

moment of the peptide (Lower-part of each graph). The three main graphs correspond to three perturbing 

field strengths of 0.001a.u (Top-Lefts), 0.01 (Bottom-Left) and 0.1 a.u. (Top-Right); see main text for details. 
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GENERAL CONCLUSION 

 

In this PhD thesis, we have reported progress along two lines. In the first project, the objective was to 

improve the reliability of computational approaches dedicated to the simulation of redox potentials of 

heme proteins. Redox potentials can be evaluated with the linear response approximation, which is the 

equivalent of the Marcus framework at the microscopic level. A QM+MM method was chosen to compute 

the vertical energy gap between diabatic states thereby leading to redox free energies of reduction.  We 

focused on improving the electrostatic description of the MM part in two directions. One was to take into 

account polarization effects by induction. The other was to go beyond the point charge description by using 

multipolar descriptions associated with explicit polarization.  

In Chapter 1, as workhorses, we considered six cytochromes. Simulations with non-polarizable FF provide 

globally the correct trend of redox potential values compared to experiments. Nevertheless, for differences 

of redox potential between proteins of the order of 50 mV, our simulations fail to reach this level of 

resolution. 

In Chapter 2 we made an important step toward by devising the first AMOEBA sets of parameters for the 

heme cofactor in its ferrous and ferric forms. The results of interaction between heme and water solvent 

shells were found to be very encouraging. AMOEBA results reach the accuracy of QM results and 

outperform that of non-polarizable FF results. Combined with the recent implementation of AMOEBA in 

TINKER-HP program, these parameters open the possibility in a near future for evaluating redox potentials, 

and more generally, owing to the ubiquity of heme proteins, for addressing other important properties. 

Last but not least, all these advanced approaches can be used to simulate electron transfer rate in heme 

proteins. In all these possible applications the enhanced computational cost of AMOEBA, even in the 

TINKER-HP program, will likely require to imagine combined schemes between non-polarizable forces fields 

and AMOEBA. The former to explore faster the conformational spaces of proteins, the latter to obtain 

better electrostatic interaction. 

 

In the second project, our objective was to develop new methods for investigating ultrafast electron 

dynamics in extended biomolecules. In Chapter 3 we reported the first implemented Real-time Time-

Dependent DFT in deMon2k. Thanks to the use of density fitting techniques, one can address electron 

dynamics simulation in systems comprised of hundreds of atoms. A wide range of processes can be tackled 
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such as perturbations by electric fields or inelastic collisions with charged particles. Various propagation 

algorithms and analysis tools were implemented. 

In Chapter 4, we reported an original combination of RT-TDDFT and polarizable MM force field adapted to 

biomolecules. An efficient and robust implementation of this method has been realized in deMon2k 

software. Density fitting techniques allow again to reduce the computational cost in the RT-TDDFT 

propagations and QM/MM coupling. The code is ready to simulate electron dynamics in extended 

biomolecules. This method has been applied to understand the complexity of response mechanisms of 

environment of a solute peptide submitted to an external perturbation.  
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ANNEX I 
 

Table I. DFT derived charge set for Cyt. b type Heme (PFe-ImMe2)  

in both oxidized and reduced states in CHARMM format. 

Cyt.b5 Atom PFeII-ImMe2 PFeIII-ImMe2 

HSD 

CB -0.5329 -0.5551 
HB1 0.1719 0.1832 
HB2 0.1503 0.168 
ND1 -0.4409 -0.4294 
HD1 0.353 0.37 
CG 0.274 0.3044 
CE1 -0.0843 -0.0836 
HE1 0.1294 0.1358 
NE2 -0.5227 -0.5315 
CD2 0.2721 0.292 
HD2 0.0968 0.1057 

HSD 

CB -0.5332 -0.5554 
HB1 0.1498 0.1679 
HB2 0.1721 0.1835 
ND1 -0.4412 -0.4299 
HD1 0.3528 0.3702 
CG 0.2752 0.3065 
CE1 0.2711 0.2911 
HE1 0.0979 0.1083 
NE2 -0.5216 -0.5305 
CD2 -0.0852 -0.0854 
HD2 0.1316 0.1395 

HEME 

FE 1.6873 1.7946 
NA -0.6092 -0.625 
NB -0.6062 -0.6202 
NC -0.628 -0.6444 
ND -0.6341 -0.65 
C1A 0.3146 0.3184 
C2A -0.0872 -0.0439 
C3A -0.0117 0.0084 
C4A 0.2937 0.3122 
C1B 0.2845 0.3049 
C2B 0.031 0.0418 
C3B -0.138 -0.0902 
C4B 0.3283 0.3284 

 
 

 

C1C 0.292 0.2981 
C2C 0.0436 0.0703 
C3C -0.1547 -0.1232 
C4C 0.3232 0.3361 
C1D 0.292 0.309 
C2D -0.004 0.0179 
C3D -0.0945 -0.0544 
C4D 0.3198 0.3242 
CHA -0.4064 -0.3912 
HA 0.1458 0.1626 

CHB -0.4036 -0.3975 
HB 0.1427 0.1609 

CHC -0.3891 -0.3741 
HC 0.1401 0.1568 

CHD -0.4277 -0.4201 
HD 0.147 0.1643 

CMA -0.4525 -0.4751 
HMA1 0.1438 0.1624 
HMA2 0.1388 0.1576 
HMA3 0.1376 0.1491 
CAA -0.2352 -0.2118 

HAA1 0.1115 0.1208 
HAA2 0.1212 0.1374 
CBA -0.28 -0.28 

HBA1 0.1621 0.1641 
HBA2 0.1598 0.156 
CGA 0.62 0.62 
O1A -0.76 -0.76 
O2A -0.76 -0.76 
CMB -0.4664 -0.487 

HMB1 0.1386 0.1548 
HMB2 0.1352 0.148 
HMB3 0.1521 0.1682 
CAB -0.0362 -0.0725 
HAB 0.1013 0.116 
CBB -0.3583 -0.2999 

HBB1 0.13 0.1454 
HBB2 0.1419 0.1484 
CMC -0.4672 -0.4929 

HMC1 0.143 0.159 
HMC2 0.1379 0.1507 
HMC3 0.15 0.1688 
CAC -0.0355 -0.0667 



 
 

 

HAC 0.0977 0.1119 
CBC -0.3642 -0.3098 

HBC1 0.1286 0.1452 
HBC2 0.1399 0.1477 
CMD -0.4719 -0.495 

HMD1 0.1398 0.1538 
HMD2 0.137 0.1515 
HMD3 0.154 0.1723 
CAD -0.2415 -0.2146 

HAD1 0.1263 0.1425 
HAD2 0.1153 0.1244 
CBD -0.28 -0.28 

HBD1 0.157 0.1691 
HBD2 0.1613 0.1602 
CGD 0.62 0.62 
O1D -0.76 -0.76 
O2D -0.76 -0.76 

 
Table II. DFT derived charge set for Cyt. c type Heme (PFe-ImMe-EMS-MMS2)  
in both oxidized and reduced states in CHARMM format. 

Cyt. 
c551 Atom 

PFeII-ImMe-
EMS-MMS2 

PFeIII-ImMe-EMS-
MMS2 

CYS 

CB -0.4042 -0.3668 
HB1 0.1526 0.1706 
HB2 0.1354 0.1478 
SG 0.0349 0.0552 
CB -0.3965 -0.361 

HB1 0.1547 0.1671 
HB2 0.1362 0.1442 
SG 0.0147 0.0429 

HSD 

CB -0.5272 -0.5461 
HB1 0.1496 0.1657 
HB2 0.1691 0.1794 
ND1 -0.4337 -0.4236 
HD1 0.3557 0.3707 
CG 0.2698 0.3003 
CE1 0.2633 0.2676 
HE1 0.099 0.1097 
NE2 -0.4779 -0.4801 
CD2 -0.0957 -0.1038 
HD2 0.1365 0.1481 

MET 
CB -0.4124 -0.4285 

HB1 0.1239 0.1422 

 
 

 

HB2 0.1386 0.1397 
CG -0.2239 -0.2242 

HG1 0.1344 0.1382 
HG2 0.1115 0.1321 
SD 0.0954 0.1359 
CE -0.523 -0.5299 

HE1 0.1551 0.1752 
HE2 0.1606 0.1718 
HE3 0.1721 0.184 

HEME 

FE 1.5964 1.7165 
NA -0.642 -0.6649 
NB -0.6252 -0.6494 
NC -0.6307 -0.6536 
ND -0.6446 -0.6672 
C1A 0.2939 0.3108 
C2A -0.0937 -0.0495 
C3A -0.0049 0.0043 
C4A 0.2909 0.3146 
C1B 0.2849 0.3083 
C2B 0.025 0.0472 
C3B -0.1516 -0.101 
C4B 0.3063 0.3156 
C1C 0.2805 0.2998 
C2C 0.0249 0.0476 
C3C -0.1566 -0.1407 
C4C 0.3194 0.3373 
C1D 0.2939 0.3127 
C2D 0.0009 0.0216 
C3D -0.0863 -0.039 
C4D 0.3048 0.2989 
CHA -0.4144 -0.3941 
HA 0.1459 0.1664 

CHB -0.3838 -0.3804 
HB 0.1513 0.167 

CHC -0.3893 -0.3867 
HC 0.1354 0.153 

CHD -0.3913 -0.3854 
HD 0.1468 0.1623 

CMA -0.4545 -0.4745 
HMA1 0.1388 0.1607 
HMA2 0.1409 0.1534 
HMA3 0.1409 0.1526 
CAA -0.1737 -0.2005 



 
 

 

HAA1 0.1166 0.1241 
HAA2 0.1175 0.1367 
CBA -0.28 -0.28 

HBA1 0.1591 0.1598 
HBA2 0.1662 0.1536 
CGA 0.62 0.62 
O1A -0.76 -0.76 
O2A -0.76 -0.76 
CMB -0.4688 -0.4896 

HMB1 0.136 0.1604 
HMB2 0.1415 0.1533 
HMB3 0.1392 0.1629 
CAB1 0.02 -0.0129 
HAB1 0.0883 0.1142 
CBB1 -0.4763 -0.4772 

HBB11 0.1347 0.1518 
HBB21 0.1432 0.1437 
HBB31 0.143 0.1478 
CMC -0.4599 -0.4825 

HMC1 0.145 0.1595 
HMC2 0.1342 0.1509 
HMC3 0.1434 0.1601 
CAC1 0.0191 0.0036 
HAC1 0.1021 0.1056 
CBC1 -0.4752 -0.4796 

HBC11 0.1346 0.1487 
HBC21 0.1384 0.147 
HBC31 0.1401 0.1437 
CMD -0.463 -0.4798 

HMD1 0.1418 0.1543 
HMD2 0.1452 0.1617 
HMD3 0.1501 0.1574 
CAD -0.1767 -0.2105 

HAD1 0.1235 0.1342 
HAD2 0.1081 0.1354 
CBD -0.28 -0.28 

HBD1 0.1377 0.1562 
HBD2 0.1635 0.133 
CGD 0.62 0.62 
O1D -0.76 -0.76 
O2D -0.76 -0.76 
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ANNEX II 

Transformation between Atomic orbitals (AO) and Molecular orbital (MO) representation: 

AO basis are a set of normalized but not orthogonal functions {𝜇(𝒓)} , 𝑆 is the overlap matrix. 

𝑆𝜇𝑣 = ⟨𝜇|𝑣⟩ (1) 

It is always possible to find a transformation matrix such that transformed set of function {𝜇(𝒓)′}  are 

orthonormal. 

𝜇(𝒓)′ = ∑ 𝑋𝜇𝑣𝑣(𝒓)

𝑣

 (2) 

𝑋†𝑆𝑋 = 1 (3) 

Since 𝑆  is Hermitian, it can be diagonalized by a unitary matrix 𝑈 , where 𝑠  is a diagonal matrix of the 

eigenvalues of 𝑆. 

𝑈†𝑆𝑈 = 𝑠 (4) 

One can use the symmetric orthogonalization by using the inverse square root of 𝑆 for 𝑋 

𝑋 ≡ 𝑆−1/2 = 𝑈𝑠−1/2𝑈† (5) 

However, if there is linear dependence or near linear dependence in the basis set, then some of the 

eigenvalues will approaches zero and will involve dividing by quantities that are nearly zero. Thus we have 

chosen to use canonical orthogonalization.  

𝑋 = 𝑈𝑠−1/2  (6) 

𝑋†𝑆𝑋 =  (𝑈𝑠−1/2)†𝑆𝑈𝑠−1/2  (7) 

We see that 𝑋 is also an orthogonalizing transformation matrix. If any 𝑠𝑖 approaches to zero (≤10-4), we 

can truncated and then got matrix �̃�. If we have N atomic orbitals with m linear dependencies, we 

eliminated these m columns with too small values. We got an N*(N-m) matrix. Converting the KS matrix 

from AO basis to MO basis is then straightforward: 

𝐻′ = 𝑋†𝐻𝑋 (8) 

 

𝐻 (AO basis) is an N*N matrix, while 𝐻′ (MO basis) is a smaller (N-m)*(N-m) matrix.  

It is slightly more complicated to convert density matrix  𝑃 from AO to MO by the fact that 𝑋 is not square 

and cannot be easily inverted. Here we use left and right inverses.  
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𝑋𝐿
−1 = (𝑋†𝑋)−1𝑋† (9) 

(𝑋†)𝑅
−1 = 𝑋(𝑋†𝑋)−1  (10) 

We get  

𝑃′ = (𝑋†𝑋)−1𝑋†𝑃𝑋(𝑋†𝑋)−1  (11) 

Because (𝑋†𝑋)−1 = 𝑠 

𝑃′ = 𝑠𝑋†𝑃𝑋𝑠 (12) 

𝑃 = 𝑋†𝑃′𝑋 (13) 

In summary, the transformation of KS matrix 𝐻 (AO basis) to 𝐻′ (MO basis) can be performed with 

Eq. 8. The transformation between density matrix 𝑃 to 𝑃′ can be performed with Eqs. 12 and 13. 
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Résumé : Cette thèse porte sur deux projets 

visant au développement de nouvelles approches 

pour simuler les dynamiques moléculaire et 

électronique avec application à des biomolécules 

étendues. 

 

Dans la première partie nous cherchons à 

améliorer significativement la précision des 

simulations des propriétés rédox des protéines. 

Dans ce contexte, l'objectif est de recourir à de 

champ de force reposant sur une description 

multipolaire des interactions électrostatiques 

(AMOEBA) pour estimer les potentiels redox  

d'hémoprotéines. Nous avons dérivé des 

paramètres pour AMOEBA afin de décrire 

précisément les interactions électrostatiques avec 

l'hème. Une amélioration très encourageante est 

obtenue par rapport aux champs de forces 

standard. 

Le second projet vise à développer de nouvelles 

méthodes pour étudier la dynamique des 

électrons dans des biomolécules à l'échelle 

attoseconde en incluant les effets 

d'environnement. Nous avons conçu un couplage 

original entre la théorie de la fonctionnelle de la 

en temps réel densité dépendant du temps (RT-

TDDFT) et un modèle de mécanique moléculaire 

polarisable (MMpol). Une implémentation 

efficace et robuste de cette méthode a été réalisée 

dans le logiciel deMon2k. L'utilisation de 

techniques d'ajustements de densités 

électroniques auxiliaires permet de réduire 

drastiquement le coût de calcul des propagations 

RT-TDDFT/MMpol. La méthode est appliquée à 

l'analyse de la dissipation d'énergie dans 

l'environnement d'un peptide excité par un 

impulsion laser. 

 

 

Title : Contribution to the Development of Advanced Approaches for Electron and Molecular 

Dynamics Simulations in Extended Biomolecules 

Keywords : Numerical simulations, redox potential, hemoproteins,  polarizable force fields, 

attosecond electron dynamics 

Abstract : This thesis involves two projects 

devoted to the development of advanced 

approaches for simulating molecular and 

electron dynamics in extended biomolecules. 

 

The first project aims at significantly improving 

the accuracy of redox potentials of proteins by 

numerical simulations. A sophisticated force 

field relying on a multipolar description of 

electrostartic interactions (AMOEBA) is used to 

perform molecular dynamics simulations 

onheme proteins. We derived parameters for 

AMOEBA to accurately describe electrostatic 

interactions with hemein both ferrous and ferric 

states.Very encouraging improvements are 

obtained compared to the standard force fields. 

 

The second project aims at developing original 

approaches for simulating ultrafast electron 

dynamics in biomolecules in contact to 

polarizable environments. We devised 

acombination of Real-time Time-Dependent 

Density Functional Theory (RT-TDDFT) and  

polarizable Molecular Mechanics (MMpol). An 

efficient and robust implementation of this 

method has been realized in deMon2k software. 

Density fitting techniques allow to reduce the 

computational cost of RT-TDDFT/MMpol 

propagations. The methodology is applied to 

understand the mechanisms of energy 

dissipation of a peptide excited by a laser pulse. 

 



 


