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ABSTRACT

Ancestral reconstruction and investigations of genomics
recombination on chloroplasts genomes

Bashar Talib Hameed Al-Nuaimi
Université de Bourgogne Franche-Comté, 2017

Supervisor : Jean-François Couchot

The evolution theory underpins on modern Biology. All new species emerge from an
existing species. This results in different species are sharing a common ancestry, as
represented in phylogenetic classification. The common ancestry can explain the similari-
ties between all living organisms, such as general chemistry, cell structure, DNA as the
genetic material and genetic code. The individuals of a species share the same genes
but (ordinarily) different sequence of alleles of these genes. An individual inherits alleles
from their ancestry or parents. The purpose of phylogenetic studies is to analyze the
changes that occur in different organisms during the evolution by identifying the relation-
ships between genomic sequences and determining the ancestral sequences and their
descendants. A phylogeny study can also estimate time of divergence between groups
of organisms that share a common ancestor. Phylogenetic trees are useful in fields of
biology, such as bioinformatics, for a systematic and comparative phylogenetic. Evolutio-
nary tree or phylogenetic tree is a branching exhibit the evolutionary relationships among
various biological organisms or other existence based upon differences and similarities
in their genetic characteristics. Phylogenetic trees are built from molecular data like DNA
sequences and protein sequences. In a phylogenetic tree, nodes represent genomic
sequences and are called taxonomic units. Each branch connects any two adjacent nodes.
Every similar sequence will be a neighbor on the outer branches, and a common internal
branch will connect them to a common ancestor. Internal branches are called hypothetical
taxonomic units. Thus the taxonomic units joined together in the tree are implied to have
descended from a common ancestor. Our research performed in this dissertation focuses
on improving appropriate evolutionary prototypes and robust algorithms for solving the
phylogenetic and ancestral inference problems applying on gene order and DNA data
under the whole-genome evolution, along with their applications.

Ancestral genome reconstruction can be described as a phylogenetic study of species
of interest to extra details than what is provided by a standard phylogenetic tree. It may
include information on ancestor species such as their gene content, the configuration of
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6 Abstract

these genes in the genome, the nucleotide sequence itself. Such information can help to
understand the history of evolutionary a set of organisms better and through shed light on
the genomic basis of phenotypes.

In this thesis, we are interested in both theoretical and practical problems in phylogenetic
tree reconstruction and genome rearrangements. We propose a heuristic approach to
ancestral genome reconstruction, and we implement one of the practical tools applicable
to the analysis of real datasets spanning a complex phylogeny and accommodating
a variety of genome architectures. We demonstrate the efficiency of our approach on
the well-studied data set of chloroplast genomes and apply it to the reconstruction of
rearrangement histories of complete, and really accurate reconstruction of some specific
bacteria lineages such as Mycobacterium Genus. The reconstructing ancestral genomes
problem of in a given phylogenetic tree stands in different comparative genomics domains.
In this work, we focus on reconstructing ancestral genomes by the gene order, accessibility
to reconstruction a whole genome DNA sequences. Ancestral genome reconstruction in
this sense and for chloroplastic genomes and specific bacteria strains is the topic of this
thesis.

KEY WORDS : Ancestral reconstruction, nucleotide sequence, taxonomic units,
phylogenetic tree, Mycobacterium Genus, Chloroplastic genomes
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1
GENERAL PRESENTATION

1.1/ INTRODUCTION

Why to reconstruct ancestral genomes ? From a fundamental point of view, studies of
contemporary biological systems using, for example, approaches related to anatomy,
biochemistry, physiology, and molecular biology are seriously limited by the absence of a
mechanism of evolution description that would explain their establishment, organization,
and functioning. The long-term aim of possessing ancestral genomes is thus to establish a
broad framework for studying evolution despite the cruel lack of historical data. To achieve
this goal, many algorithmic developments are necessary to efficiently and systematically
process the large volumes of available data following a rigorous methodology.

Genomics studies are a typical case of very large volume data investigations : they are of
very high resolution (until nucleotide level) and very reliable (many genome sequences
contain less than one error every 10,000 bases), very abundant (100 sequenced euka-
ryotic genomes for instance, and more than 1,000 prokaryotes), and centralized in public
databases. Genomes also provide fundamental entry points to the functional properties
of organisms, such as the presence or absence of genes, the expansion or regression
of gene families, the topology of the cis-regulatory elements. In other words, it informs
about the likelihood of certain metabolic or developmental pathways that may exist in
an organism, and the importance of functions specific to each species. Genomes thus
represent the foundation on which many advances can be achieved, and accessing such
information in an ancestral genome provides a broad spectrum of these properties.

From a more practical point of view, given the astronomical amount of genomic data
supplied to the community, the pace of which is likely to accelerate further in the coming
years, it is critical to maintain a substantial degree of organization for distribution and
presentation of data. Ancestral genome reconstructions will allow the sequences and
annotations of modern species to be linked naturally with those of ancestral species in
the direction of Evolution, following the phylogeny of species. The ancestral genomes will
serve as single reference points for comparing descending genomes, which will greatly
facilitate the identification of ancestral genomics properties, and therefore specific lineage
gains or losses. Conversely, the results that will continue to be obtained with different
organization models will enrich them in return. To sum up, ancestral genomes are part of
the foundations that will help us decipher the different molecular components contributing
to the evolution of species, and that have led to such a variety of species and biological
systems we can currently observe.
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The aim of this thesis is to participate to the development of tools able to reconstruct
the successive ancestors in several given lineages, thus providing a dynamic view of the
evolution of genomes

1.2/ PRESENTATION OF THE PROBLEMS

Recently, many approaches have been developed to solve the ancestral reconstruction
problem [2, 3, 4, 5, 6], but either they are limited to the evolution of one given character
(for instance, a particular nucleotide), or conversely they theoretically focus on large-scale
nuclear genomes (several billions of nucleotides) facing multiple recombination events.
Large-scale genomic evolution problem can’t be tackled with same approaches than
one-character methods : when considering the set of all possible recombinations on
large genomes, the problem is indeed NP-hard. As far as we know, there is no directly
applicable solution solving the evolution of large DNA sequences. Conversely, in this thesis,
we focus on genomes that have a reasonable size and who faced a rational number of
recombination like in the chloroplast case. Even if the problem becomes a priori tractable
for such cases, it however requires the design of ad hoc solutions, and various difficulties
remain to circumvent when dealing with such a specificity. For illustration purpose, the
solutions will be applied on mid-scale genomes of chloroplasts first, and then of bacteria,
growing so bit by bit the complexity of the problem we consider.

Let us recall the importance of understanding well the evolution of such mid-scale genomes.
Chloroplasts are one of the main organelles in the plant cell. They are considered to have
originated from cyanobacteria through endosymbiosis when an eukaryotic cell engulfed
a photosynthesizing cyanobacterium, which further remained and became a permanent
resident in the cell 1. The term of chloroplast comes from the combination of chloro and
plastid : it is an organelle (found in plant cells) that contain the chlorophyll. Chloroplast has
indeed the ability to convert water, light energy, and carbon dioxide in chemical energy by
using carbon-fixation cycle [7]. As this conversion releases oxygen, chloroplasts originated
the breathable air and represent a mid to long-term carbon storage medium. Consequently,
exploring the evolutionary history of chloroplasts is thus of great interest and we propose
to investigate it by the mean of ancestral genomes reconstruction.

This reconstruction will be realized with the desire to explain how molecules have evolved
over time, and to validate (or not) that this way can present evidence of their cyanobacteria
origin. This long-term objective necessitates numerous intermediate advanced methods.
For instance, it requires the ability to apply the ancestral reconstruction on a well-supported
phylogenetic tree of a representative collection of chloroplastic genomes. Moreover, it
necessitates the ability to detect content evolution (modification of genomes like gene
loss and gain) along this accurate tree. These two prerequisites (gene content evolution,
accurate phylogeny inference) have already been investigated in the literature, as reported
briefly in the next section.

1. cf. Wikipedia
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1.3/ STATE OF THE ART : A GENERAL OVERVIEW

There exist two main computational methods to handle gene order and to propose an-
cestral genome architectures : rearrangement-based and homology-based methods. The
rearrangement-based methods typically search for the set of ancestral gene orders that mi-
nimizes the sum of rearrangement distances over all branches of the given phylogeny [3, 4].
Homology-based methods are used to solve the small phylogeny problem that consists
of the ancestral gene orders reconstruction of a species tree at the internal nodes from
extant genomes. This process takes gene adjacency into account and handles them as
binary characters with present and absence states. In this way, by observing the gene
order as a set of adjacency genes, the aim is to discover which adjacency is contained in
the ancestral genomes [2, 8]. These methods offer a better understanding of the genome
evolution history and can further improve our knowledge of the mechanisms linking organic
sequences to their functions. Despite this, ancestral genetic sequence reconstruction
suffers from several limits such as those involved in the regulation of genes (insertion,
deletion, duplication). Along with the examination of molecular evolution, it relies on the
validity of models and their fundamental hypothesis [9].

Accordingly, a critical component of ancestral reconstruction of genomes is the unders-
tanding of the phylogenetic tree relations between the species being examined [10]. It is
crucial to identify the most suitable tree topology by using for instance bootstrap estima-
tions in a maximum likelihood approach [11, 12]. Moreover, calculating the lengths of its
branches is essential for a perfect reconstruction, as well as for evaluating the exactness
of that reconstruction through simulations [13]. The lengths are related to the number of
recombination and mutations that are likely to occur between an ancestor and its child
nodes. This is why any error in the inferred phylogenetic relation will have obvious dramatic
effects on the reconstructed ancestors.

So ancestral genome reconstruction (AGRC) can be described as an extension of phylo-
genetic study of species of interest : it provides extra details than what is usually obtained
by a classical phylogenetic tree [11]. It may include information about ancestor species
such as their gene content, the organized of these genes in the genome, the nucleotide
sequence itself, and so on [14]. Such information can help to understand better the evo-
lutionary history of a set of organisms and through shed light on the genomic basis of
phenotypes [15]. The observation of species is described by the peak or last nodes of the
tree (leaves) that are gradually correlated by branches to their common ancestor [16], while
nodes are represented by the branching points of the tree, which are usually designated
to as inner nodes or the ancestors [17].

The ancestral reconstruction problem is as old as the field of molecular evolution. For
instance, over past decades, many methods were proposed to reconstruct phylogenies
from gene-order data. The prior algorithm has been established by Fitch [18] : Fitch’s
parsimony algorithm first assumes a binary alphabet and is based on maximum parsimony
(MP) patterns : it finds the labels to the internal nodes of a tree that reduce the number
of changes or modification along tree edges. The most modern methods for phylogeny
reconstruction from genome rearrangements include GRAPPA [3] and MGR [4]. However,
these approaches are limited to cases where gene content are similar or when only a few
deletions are expected [5]. Among the most recent methods which are based on gene
adjacency, InferCARsPro is comparatively faster, but often produces an excessive number
of chromosomes [2]. This problem is tackled by newer methods such as GapAdj [8], but it
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is achieved by sacrificing a significant part of accuracy. Recently was proposed a faster
and more accurate method called PMAG [5], which is a probabilistic framework method to
infer ancestral gene order, and which involves gene insertions and deletions in addition to
rearrangements. PMAG not only accurately infers ancestral genomes but also does an
excellent job in assembling adjacencies into logical gene order [6]. All the aforementioned
approaches, if we except PMAC, only deal with gene permutations, and they discard for
instance the possibility of gene duplication or deletion. There is so an obvious lack of tools
that concretely deal with ancestral reconstruction of mid-scale genomes, which consider
all possible recombination – and we propose to fill this gap.

1.4/ ORGANIZATION OF THE THESIS MANUSCRIPT

This current chapter is devoted to a general introduction of the thesis, providing the
problematics and a brief description of both thesis subject and objectives. The introduction
aims to place the work presented here in a more general context and provides essential
data necessary for nonspecialists to understand the scope and development of the analysis
presented here. The second part proposes a brief state-of-the-art about phylogenetic
reconstruction, with existing methods that are related to this work.

Chapter 2 introduces some notions of biology that are essential for understanding the
various problems addressed during this thesis. It gives a brief overview on how a phyloge-
netic tree can be generated from a set of DNA sequences, and some concepts regarding
phylogenetic analysis and algorithms used for phylogenetic reconstruction. The concepts
of local and global alignments and the most common implementations are detailed in this
chapter too. Multiple alignment algorithms are additionally given. It is moreover explained
why small divergences in given sequences may lead to a hard alignment problem. To
analyze aligned sequences, we describe various phylogenetic concepts and terminologies.
Methods for constructing phylogenetic trees are finally summarized (such as distance and
character based methods), together with bootstrap analysis.

Chapter 3 illustrates essential resources jointly introduced in an artificial intelligence
algorithm for phylogenetic tree reconstruction. In this chapter, we study first the relevance
of the Simulated Annealing (SA) algorithm to fulfill the optimization task. Then, various
metaheuristics have been executed in a distributed manner using supercomputing facilities.
Our proposal is based on genetic algorithm and a particle swarm optimization approach
that are developed in both linear and parallel fashions, in order to reconstruct a well
supported phylogenetic tree while removing genes that blur the phylogenetic signal. An
improved simulated annealing method is finally added, and a comparison of 3 given
metaheuristics on a large number of new groups of species is proposed.

Chapter 4 discusses other methods that are used in our ad-hoc algorithm to generate
ancestral genomes. Investigations of genomic recombination on campanulides chloro-
plasts are further detailed, depending on all provided information obtained with previously
presented tools in Chapter 3. Then, in Chapter 5, we describe the relations that can
be found between the phylogeny of a large set of 845 complete chloroplast genomes,
and the evolution of gene content inside these sequences. Core and pan genomes have
been computed on de novo annotations of these genomes, the former being used for
producing well-supported phylogenetic trees while the latter provides information regarding
the evolution of gene contents over time, and illustrates the specificity of some branches
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of the trees.

In Chapter 6, we propose to reconstruct all ancestors of all complete available genomes
of Mycobacterium tuberculosis and M. canettii. Doing so allows us to consider complete
genomes that are more complex than the chloroplasts. The study starts by investigating
the single nucleotide polymorphism level, while insertions-deletions (indels) and large
scale recombinations are regarded in a second stage. By mixing automatic reconstruction
of obvious situations with human interventions on signaled problematic cases, we prove
that it is possible to achieve a concrete, complete, and really accurate reconstruction of
lineages of the Mycobacterium tuberculosis complex.

Finally, the conclusion of the manuscript provides a summary of researches that have
been realized during this thesis. A discussion about possible future work in this area is
proposed too, to open the debate and introduce putative further investigations.

1.5/ PUBLICATIONS

All the objectives of this thesis have been investigated, even though a lot of work still remain
to be realized. These investigations have been validated by the following publications.

1.5.1/ PUBLICATIONS IN INTERNATIONAL CONFERENCES AND JOURNALS

1. CIBB 2015 Bassam Alkindy, Bashar Al-Nuaimi, Christophe Guyeux, Jean-François
Couchot, Michel Salomon, Reem Alsrraj, and Laurent Philippe. "Binary Particle
Swarm Optimization Versus Hybrid Genetic Algorithm for Inferring Well Supported
Phylogenetic Trees". In Computational Intelligence Methods for Bioinformatics and
Biostatistics : 12th International Meeting, CIBB 2015, Naples, Italy, September 10-12,
2015, pp. 165-179, Springer International Publishing, 2015.

2. IJBBB 2017 Al-Nuaimi Bashar, Christophe Guyeux, Bassam AlKindy, Jean-François
Couchot, and Michel Salomon. "Relation between Gene Content and Taxonomy in
Chloroplasts". in International Journal of Bioscience, Biochemistry and Bioinformatics
(IJBBB) 2017 Vol.7(1) : 41-50 ISSN : 2010-3638.

3. IWBBIO 2017 Christophe Guyeux, Bashar Al-Nuaimi, Bassam Alkindy, Jean-
François Couchot and Michel Salomon. "On the Ability to Reconstruct Ancestral
Genomes from Mycobacterium Genus”. In International Conference on Bioinforma-
tics and Biomedical Engineering (IWBBIO 2017) pp. 642-658. Springer International
Publishing, Granada, Spain, April 26-28,2017.

4. JIB 2017 Bashar Al-Nuaimi, Roxane Mallouhi, Bassam AlKindy, Christophe Guyeux,
Michel Salomon, and Jean-François Couchot. "Ancestral reconstruction and in-
vestigations of genomic recombination on Campanulids chloroplasts". Integrative
Bioinformatics (JIB). Date of submission : 7th of November, 2016.

5. BMC 2017 Régis Garnier, Christophe Guyeux, Jean-François Couchot, Michel Sa-
lomon, Bashar Al-Nuaimi and Bassam AlKindy. "Comparison of Metaheuristics to
Measure Gene Effects on Phylogenetic Supports and Topologies". Submitted to
Special Issue on BMC Bioinformatics Supplement. Date of submission : 23th of May,
2017.
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6. BMC 2017 Christophe Guyeux, Bashar Al-Nuaimi, Bassam Alkindy, Jean-François
Couchot and Michel Salomon. "Investigating the ancestral reconstruction of bacterial
genomes”. Submitted to Special Issue on BMC Bioinformatics Supplement. Date of
submission : 22th of July, 2017.

1.5.2/ PUBLICATIONS IN NATIONAL SEMINARS AND WORKSHOPS

1. SeqBio’2015 Bashar Al-Nuaimi, Roxane Mallouhi, Bassam AlKindy, Christophe
Guyeux, Michel Salomon, and Jean-François Couchot. "Ancestral reconstruction and
investigations of genomic recombination on Campanulides chloroplasts". Workshop
of SeqBio 2015, Orsay, November 2015.

2. Femto-st’2015 Bassam Alkindy, Bashar Al-Nuaimi, Huda Al’Nayyef, Panisa Tree-
pong, Christophe Guyeux, Jean-François Couchot, Michel Salomon, and Jacques
Bahi. "Bioinformatics Approaches on Genomic Evolution in Femto-ST (Core Genome,
Phylogenetic Analysis, Transposable Elements, and Ancestral Reconstruction)".
Workshop of Femto-ST, June 2015, Besancon, France. Note : Poster.

3. Femto-st’2016 Bashar Al-Nuaimi, Bassam Alkindy, Christophe Guyeux, Jean-
François Couchot, and Michel Salomon. "Ancestral reconstruction and investigations
of genomic recombination on Campanulids chloroplasts and Mycobacterium Genus".
Workshop of Femto-ST, August 2016, Besancon, France.
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2
SCIENTIFIC BACKGROUND

In this chapter, we introduce some notions of biology which are sufficient for the unders-
tanding of problems addressed in this thesis. Indeed, the challenges of reconstructing

chromosomal rearrangements and ancestral genomes requires to know the structure of
genomes. Obviously, phylogenetic tree reconstruction is a first step in the understanding of
the ancestral relationship among a set of biological sequences. It includes the construction
of a tree, where the nodes indicate separate evolutionary paths, and the branch lengths
give an approximation of how distant the sequences represented by those branches are.
Additionally, in this chapter, we will present various sequence alignment algorithms, which
are a fundamental step in molecular phylogenetics to explain the evolution of speciation,
quantification of substitution patterns and gene duplication events, but also a useful tool for
identifying mutations leading to genetic diseases. This chapter covers the pairwise global
and local alignments by dynamic programming with various scoring schemes, multiple
sequence alignments that are reduced to pair-wise alignment, and profile alignment by
using a guide tree. This chapter presents also a brief information on how a phylogenetic
tree can be constructed from a set of DNA sequences, and how to evaluate the generated
tree. Finally, some concepts concerning phylogenetic analysis and algorithms used for
phylogenetic reconstruction will be reported. Note that the state-of-the-art part related to
multiple sequence alignment and their use for phylogenetic analysis has been studied in
common with my colleague Panisa Treepong, and written "four hands" as our investigations
in this field have been performed together, in team.

2.1/ CHROMOSOMES AND GENOMES

2.1.1/ A SHORT OVERVIEW

Genomes contain the complete genetic material of an individual or a species, encoded in
its DNA, except certain viruses whose genome is carried by RNA molecules. From one
organism to another, the genome organization may differ. It can be composed of one or
more DNA molecules, which will have a significant impact on the complexity of the problem
of reconstructing chromosomal rearrangements and ancestral genomes. In prokaryotes
(bacteria and archaea), the genome is located in the cytoplasm of the cells, which is
usually contained in a circular DNA molecule. However, there are many exceptions : some
species may have several circular chromosomes, or a single linear chromosome, or a
linear chromosome and a circular one [19]. There may also be an extra-chromosomal
component contained in plasmids and episomes.
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In eukaryotes, we can distinguish the following :

1. Nuclear DNA composed of several linear chromosomes, contained in the nucleus of
the cells (an element which indeed characterizes eukaryotic cells).

2. Non-nuclear DNA, contained in organelles, i.e., the chloroplastic chromosome contai-
ned in the chloroplasts of photosynthetic organisms (algae and plants), or the
mitochondrial chromosome contained in mitochondria of all the other eukaryotes.

In eukaryotes, linear chromosomes are characterized by a centromere and two telomeres
in most organisms. The centromere shares the chromosome in two arms (left and right)
and is essential for the smooth unfolding of the cell divisions. The telomeres are the two
ends of a chromosome [20]. The number of chromosomes contained in the cell of an
organism varies according to the considered species 1. The size of the genome is mainly
measured according to its number of nucleotides, or bases (in bp for base pair, since
the majority of the genomes is made up of double strands of DNA). Multiples are also
used, like kb for kilobase or Mb (megabase), which are respectively equal to 1,000 and
1,000,000 bases. Note that the size of a genome may vary from a few kb in viruses to
several hundreds of thousands of Mb in some eukaryotes, as shown in Table 2.1.

The quantity of DNA is not proportional to the complexity of an organism. Some ferns, for
example, have genomes more than ten times larger than the human one [21, 7, 22].

TABLE 2.1 – Some examples of genome varieties

Species Kingdom Genomes size Number of genes
Mycobacterium tuberculosis Bacteria 4.41Mb 4,008

Brucella abortus(chromosome 2)
Brucella abortus(chromosome 1) Bacteria

2,12 Mb
1,16 Mb

2200
1156

Actinidia chinensis Plantae 616.1 Mb 39,040
Takifugu rubripes Animalia 390 Mb 22–29,000

Plasmodium falciparum Alveolata 22.9 Mb 5,268
Drosophila melanogaster Animalia 122.6 Mb 17,000

Homo sapiens Animalia 3.2 Gb 18,826

2.1.2/ GENOME AND DNA MUTATIONS

The cell is the ‘building block’ of life. It mainly performs functions for maintaining daily life
and passing the genetic instructions to the next generation. The former function is particu-
larly facilitated by proteins whereas the latter is mainly achieved through Deoxyribonucleic
acids (DNA).

DNA is a polymer, where its monomer units are nucleotides. Each nucleotide in a DNA
has three parts : a pentose sugar (desoxyribose), a phosphate, and one “base”. Indeed,
nucleotides can be classified into four types corresponding to their distinct bases : Adenine
(A), Cytosine (C), Guanine (G), and Thymine (T). A and G are called purines, having
a two-ring structure, while C and T are called pyrimidines and they conversely have a

1. For example, man has 23 pairs of linear chromosomes whereas Escherichia coli, an intestinal bacterium,
has only one circular chromosome.
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one-ring structure (see Figure 2.1). For the sake of concision, DNA is simply represented
as a sequence over the alphabet (A, C, G, T).

During organism evolution, its DNA is replicated and passed on to its offspring. And through
DNA replication, changes can occur in the sequence, which is referred as mutation. These
variations in the DNA sequences occur at the base level, as depicted in Figure 2.2. These
modifications change the characteristics of the generations and eventually, may lead
to the production of new species. This evolutionary manner of DNA mutations can be
represented, in a certain way, by a phylogenetic tree, introduced later in this chapter.

                 DNA Double Helix 

Fig. 2.1 – DNA has a double-helix shape. Bases are found in pairs inside the double
helix. The bases in DNA are named A, T, G, and C. Pyrimidine T ( resp. C) forms pairs
with purine A (resp. G), and vice versa, https://www.slideshare.net/AmyHollingsworth/
lab5dnaextractionfromstrawberriesandliverfall2014.

Fig. 2.2 – A mutation occurs when a DNA sequence is damaged or changed, which may
for instance alter the genetic message carried by a gene.

These genomic mutations are now easily accessible via modern sequencing technologies,
making it possible to discover single nucleotide polymorphisms 2, short insertions and
deletions (INDELs) as well as other genomic mutations like duplication and inversions.

2.1.3/ MODEL OF NUCLEOTIDE SUBSTITUTION

As previously stated, over time, nucleotide sequences can “evolve” through substitution.
This process can cause a nucleotide (A, C, T or G) to change into another nucleotide,
and this is one of the most central driving force behind evolution. This modification in a
DNA sequence may lead to an inactivation of a gene or to a mutation in the protein that

2. Let us recall that a single nucleotide polymorphism, usually abbreviated to SNP, is a mutation in a
single nucleotide (A, T, C, or G) that occurs at a particular position in the genome, as shown in Figure 2.3.
Each mutation is present to some appreciable degree within a population. Each organism has several single
nucleotide polymorphisms that together create a unique DNA pattern for that.
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Fig. 2.3 – Single Nucleotide Polymorphism (SNP).

the sequence codes. As proteins are the building blocks of organic life, this may cause
significant variations in an organism’s characteristics. Alternatively, this modification may
have no effect at all, being silent.

Commonly, this type of mutation can take place once or twice each million years on a
given sequence location. Estimating the evolution of organisms over hundreds of millions
of years, models of nucleotide evolution are helpful in speculating how one sequence
of nucleotides may have evolved from another. These models can be inferred by either
assuming that two given sequences had shared a common DNA ancestor or by assuming
that one sequence evolved into the other.

At the simplest level, the proportion can be used for defining such a matrix P of nucleotide
substitution :

Pd =
nd

n
(2.1)

where n indicates the total number of nucleotides in the sequence, and nd is the number
of base d, d = {A,C,G,T }. Other richer probabilistic models have been proposed in the
literature, to provide a more accurate estimation of the mutation matrix P, like Jukes and
Cantor [23], Kimura [24], and Tamura and Nei [25].

2.2/ SEQUENCE ALIGNMENT

One of the principal problems in computational molecular biology is sequence alignment.
A sequence alignment is a process of aligning blocks of provided sequences (of DNA,
RNA, or protein) to recognize similar regions – that may be a consequence of functional
or evolutionary relationships between the sequences. Aligned sequences of amino acids
or nucleotides are reproduced as rows within a matrix. Gaps are inserted between the
deposits so that residues with identical or similar sequences are arranged in successive
columns.

Let us for instance consider two sequences which are homogeneous except that the
first sequence contains one other residue (e.g., a given nucleotide). When we view the
alignment of these two sequences, the other residue will be matched to a gap. This
corresponds to an insertion event in the first sequence or a deletion event in the second.
On the other hand, if we note that an insertion event has occurred in the first sequence
(concerning the second) then we know how to match that residue to a gap in the second.
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Thus one way to build a sequence alignment is to find a series of insertions, deletions,
or replacements collectively called mutation events, which will transform one sequence
into the other. The number of mutation events needed to transform one sequence into the
other is called the edit distance.

Indeed, in sequence alignment, there are two broad categories, namely the local and the
global one. A local alignment returns the best matching subsequence, while in a global
alignment, we obtain the best match of both sequences in their totality. Local sequence
alignments intend to reveal similar regions in a given pair of sequences. In other words,
they find an optimal local alignment by searching for two segments with maximum similarity
score by discarding weak initial and terminal fragments, see. Figure 2.4 for an illustrative
example.

Many algorithms have been developed for these two kinds of alignments, some of the most
popular ones being summarized in the next subsections.

Fig. 2.4 – Global alignments are applied for comparing homologous genes whereas local
alignment can be used to locate homologous regions in otherwise non-homologous genes.

2.2.1/ BLAST

Basic Local Alignment Search Tool (BLAST) is a database sequence search engine pro-
posed by the National Center for Biotechnology Information (NCBI). The first version of
BLAST was published in 1990 and it supported only ungapped searches. The second
version, releazed in 1997 [26], has been designed to determine high-scoring local ali-
gnments between sequences, without discrediting the speed of such searches. BLAST
addresses thus an essential problem in bioinformatics research. It uses a heuristic process
that attempts local as crossed to global alignments and, therefore, it is suitable to identify
relationships between sequences (amino-acid sequences of proteins or the nucleotides of
DNA sequences) which share only isolated regions of similarity [27].

Table 2.2 displays the different BLAST programs available on the NCBI web server.

2.2.2/ LOCAL SEQUENCE ALIGNMENT : SMITH–WATERMAN ALGORITHM

The Smith-Waterman algorithm was developed by Temple F. Smith and Michael S. Wa-
terman in 1981 [28]. Using a dynamic programming approach, it is able to provide the
optimal local alignment between two strings. The algorithm estimates the alignment that
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TABLE 2.2 – BLAST programs. http://www.ncbi.nlm.nih.gov/BLAST/

Program Comparison Application

BLASTN
DNA vs. DNA. Compares a nucleotide
query sequence against a nucleotide
sequence database.

Find DNA sequences
that match the query

BLASTP
Protein vs. Protein. Compares
an amino acid query sequence
against a protein sequence database.

Find identical (homologous)
proteins

BLASTX
DNA vs. Protein. Compares a nucleotide
query sequence translated in all reading
frames against a protein sequence database.

Find protein databases using
a translated nucleotide query

TBLASTN
Protein vs. DNA. Compares a protein query
sequence against a nucleotide sequence database
dynamically translated inall reading frames.

Find genes in unknown
DNA sequences

TBLASTX

DNA vs. DNA. Compares the six-frame
translations of a nucleotide query sequence
against the six-frame translations of
a nucleotide sequence database.

Find degree of homology
between the coding region of the query
sequence and known genes in the database.

minimizes the costs provided by a certain distance function. It is used to produce conser-
ved regions between the two sequences, and one can align two partially overlapping
sequences. Also, it is able to align the subsequence of the sequence to itself. This powerful
dynamic programming approach was designed to discover the highly preserved fragments
by discarding poorly conserved initial and terminal segments.

In this algorithm, a two-dimensional scoring matrix D of size (m + 1) × (n + 1) is formed
from the two provided nucleotide, RNA, or protein sequences A and B of lengths n and
m respectively. One extra column and one row containing zeros are added to the matrix,
for score computation. The score in each cell is computed based on the scoring function
presented in Equation 2.2,

D(i, j) = max


D(i − 1, j − 1) + S (Ai, B j),
D(i, j − 1) − gap penalty,
D(i − 1, j) − gap penalty,
0.

(2.2)

where D(i, j) is the value at line i and column j of the scoring matrix of Ai and B j. The value
S (Ai, B j) is provided by a standard substitution matrix, like those detailed in Section 2.1.3.

To sum up, the main algorithm steps are thus (the second step will consume the most
significant part of the total calculation time) :

1. Initialize the matrix.

2. Being at position i in the first sequence A and at position j in the second one B,
calculates the mutation score, and fill the matrix with the appropriate optimal value in
D(i, j).

3. Once the matrix is filled, trace back the optimal path within this matrix, to find the
proper alignment.

Smith-Waterman is a tad more useful for tasks such as locating the difference between
DNA sequences, because usually, a researcher is more interested in the change in the
sequence of the gene, allowing them to determine the variation over time. For more details
on the Smith-Waterman algorithm, see [28], or [29] for an improved version.

2.2.3/ GLOBAL SEQUENCE ALIGNMENT : THE NEEDLEMAN WUNSCH EXAMPLE

In global alignments, the alignment is carried out from the beginning until the end of
the sequence to find out the best potential solution, which is more appropriate with
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closely related sequences that have approximately the same length. S.A.Needleman and
C.D.Wunsch [30] have developed the first method of this category, naturally called the
Needleman-Wunsch algorithm. The objective of this latter is to maximize the number of
matches between the sequences along the entire length of the sequences. The original
Needleman-Wunsch algorithm computes the minimal edit distance of two sequences under
a very general scoring scheme, taking O(n3) time and O(n2) space.

This algorithm is constituted by the following steps, similar to the Smith-Waterman ones :

— Initialization : A two-dimensional matrix D must be firstly initialized. The row vector
represents the first sequence A, while the column one corresponds to the second
sequence B.

— Matrix scoring : We fill the matrix D in the same manner than in Smith-Waterman.
D(i, j) is computed recursively according to a dynamic programming approach. If
S (i, j) is the substitution score for residues Ai and B j and g is the gap penalty, then
we have :

D(i, j) = max


D(i − 1, j − 1) + S (Ai, B j) match Ai with B j

D(i − 1, j) − g(insertion in A)
D(i, j − 1) − g(insertion in B)

(2.3)

— Traceback and alignment : Tracing back process starts from the lowest right
position in the scoring matrix. We then follow the maximum scores until reaching the
upper left position. The path drawn in this matrix is considered to correspond to the
most optimal global alignment for the two given sequences.

The main differences between Needleman-Wunsch and Smith-Waterman algorithms are :

— The zero condition : in Smith-Waterman, we insert a 0 in the cell i, j if Di, j is negative,
which is not the case in the Needleman-Wunsch case.

— Sequences in scoring matrix are ordered in an opposite direction.

2.2.4/ MULTIPLE SEQUENCE ALIGNMENT (MSA)

Multiple sequence alignment is an expansion of pairwise alignment to combine more than
two sequences at a time. They are implemented to identify conserved regions among a
set of sequences, evaluating by doing so if they are evolutionarily related. Alignments are
also used to help in building evolutionary relationships on phylogenetic trees construction,
as described in the next section.

The goal of MSA is to align all of the sequences in a given set if possible. A MSA is thus a
collection of three or more nucleotide or amino acid sequences that are aligned partially
or entirely. Identical residues are aligned in columns across the length of the sequences.
These aligned residues are homologous in a fundamental sense or even in an evolutionary
sense : they are probably derived from a common ancestor.

Figure 2.5 is an example of the result of MSA applied on Apiales order. However, as soon
as the sequences exhibit some divergence, the problem of multiple alignments becomes
extraordinarily difficult to solve. And if exact approaches produce optimal alignments, they
are not feasible in time or space for more than a few sequences. Let us finally notice that
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the alignment accuracy can be hard to estimate and their actual biological significance
can be ambiguous.

In practice, a very popular progressive sequence alignment tool is the Clustal family [31],
in particular the weighted variant ClustalW that is incorporated in many web tools like
GenomeNet 3 or EBI 4. Another important progressive alignment approach is called T-
Coffee [32], which operates as a post processing on various MSAs of the same set of
sequences that are provided by other existing methods like Clustal. Due to its principle
of conception, T-Coffee is slower than Clustal and its derivatives but, in general, it yields
more accurate alignments for distantly related sequence sets.

Fig. 2.5 – Multiple sequence alignment of various sequences of Apiales order.

2.3/ ABOUT PHYLOGENETIC TREES

An evolutionary or phylogenetic tree is an acyclic graph (or branching diagram, see
Figure 2.6) that is used to emphasize evolutionary relationships among groups of biological
species, that is, their phylogeny based upon similarities and variations in their genetic
or physical characteristics. The nodes are connected in the tree by branches. The latter
highlight the relationship between taxonomic units (TU) at the leaves of the tree and
their ancestors, corresponding to the internal nodes of the graph. Each branch has a
length that represents, for example, the number of expected mutations per site (in amino-
acids or nucleotide sequences) that have probably happened in these branches, in a
sequence based phylogeny. Thus, branch lengths provide the time of variation between
two organisms and their common ancestor. There are basically two kinds of phylogenetic
trees :

— The unrooted Phylogenetic Trees : evaluate the relationships between all the
given TUs. However, they usually do not provide sufficient information to deduce the
evolution from the last common ancestors.

— The rooted Phylogenetic Trees : embed a root node that represents the last
common ancestor of all TUs in the tree. The main way to root a tree is to specify an
outgroup, which is a TU known to be outside the group of TUs under consideration.
This latter can be a species known to have diverged before the divergence of the
considered TUs.
It can be noticed that the time of evolution of a rooted species represented by
a rooted phylogenetic tree can be computed from each sub-ancestor to the last
common one when either the date of divergence or the divergence rate are known.
Until now, however, this question is still an intensive subject of research.

3. http://align.genome.jp/
4. http://www.ebi.ac.uk/clustalw

Page 36

http://align.genome.jp/
http://www.ebi.ac.uk/clustalw


Scientific Background Chapter 2

Fig. 2.6 – Example of a phylogenetic tree structure.

2.4/ PHYLOGENY CONSTRUCTION METHODS

The most known and commonly used methods of tree construction can be classified into
two central divisions : distance-based and character-based methods.

Distance-based methods begin by transforming the original data into a matrix of pairwise
distance values. The next stage is to infer a tree either by sequential joining approaches,
or by estimating a set of candidate trees and applying a type of optimality criterion
technique to select the best one. Under the minimum evolution criterion, the tree that
has a minimum sum of branch lengths is selected as the best estimate. Distance-based
algorithms encompass UPGMA and Neighbor-Joining, this latter being explained in the
next subsection.

Character-based methods can depend on a divergence of phylogenetic characters such
as genetic and molecular attributes to construct phylogenetic trees. As long as that there
is divergence among taxa in the characteristic and that the characteristic is heritable,
it could probably be accepted as a phylogenetic character. In this context, molecular
phylogenetics, attempt to estimate the modification rates and patterns occurring in the
sequences (protein, DNA, or RNA) and to reconstruct the evolutionary history of organisms
using such characters.

Algorithms used to create phylogenetic trees using characters are more complicated than
distance-based methods [33]. The algorithms are based on an optimization criterion such
as Maximum Likelihood, Maximum Parsimony, or Bayesian methods in order to find the
best tree according to the considered characters. For the sake of illustrations, we will detail
such methods at the end of this chapter.

2.4.1/ NEIGHBOR-JOINING ALGORITHM

As previously said, the neighbor-joining algorithm constructs unrooted phylogenetic trees
using distance methods. Both topology and branch lengths are computed by iteratively
specifying (based on a distance matrix) a neighbor as a pair of TUs that are joined in a
single internal node X in an unrooted tree, depending on the previously computed distance
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matrix. An iteration of the neighbor-joining algorithm consists of the following steps :

1. Construct an unresolved tree with all TUs in a starlike structure with no hierarchy.

2. Construct a distance matrix by pairwise comparison and calculate the value of branch
lengths, to identify the two most related sequences (TUs) : NJ seeks to build a tree
which minimizes the sum of all branch lengths.

3. Determine which TUs are connected to an internal node X. They are treated now as
one TU.

4. Join the closest neighbors (TUs with similar characters), the base pair that has the
smallest sum-of-branch-lengths.

5. The algorithm is repeated until the topology of the tree is obtained.

The neighbor-joining method produces an unrooted tree. The sum of the branch lengths
of N TUs in the tree is calculated as follows. Let us define Di j and LAB as the distance
between TUs i and j and the branch length between nodes a and b respectively. The sum
of branch lengths of the tree is defined based on the following formula :

S =

N∑
i=1

LiX =
1

N − 1

∑
i< j

Di j/

The distance between nodes X and Y is calculated as follows :

LXY =
1

2(N − 2)

 N∑
k=3

(D1k + D2k) − (N − 2)(L1X + L2X) − 2
N∑

i=3

LiY


The term inside the brackets is the sum of all distances including LXY , and the outer term

1
2(N−2) is to eliminate unrelated branch lengths.

Neighbor-joining [34] is a method which is especially suited for datasets comprising
lineages with broadly varying rates of evolution. It can be used in combination with
techniques that allow correction for superimposed substitutions.

2.4.2/ MAXIMUM PARSIMONY

The Maximum parsimony method [35] aims at minimizing branch lengths by reducing
the number of mutations. This approach predicts the evolutionary tree that minimizes
the number of actions needed to generate the marked variation in the sequences from
common ancestral sequences. In a maximum parsimony phylogenetic study, the best
tree is specified as the tree with the lowest branch lengths. More precisely, for given
sequences, a MSA algorithm is used to align the sequences, and to identify the informative
positions, that is, columns in the multiple sequence alignment with no gap and at least two
characters.

The next step is to count the number of changes and assign this cost to each generated
phylogenetic tree. The method then computes the total length L for each tree, which is
calculated according to the following formula :

L =

C∑
j=1

w jl j
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where l j is the cost for character j, C is the total number of characters, and wi is the
assigned weight for each character, which is set to 1 in most cases. The tree that maximizes
this L value is finally selected.

2.4.3/ BAYESIAN METHODS

For the sake of completeness, we evoke here the well-known and frequently used Bayesian
methods [36], which estimate the phylogeny by calculating the conditional probability given
the model, based on the following formula :

Pr[Tree|Data] =
Pr[Data|Tree] × Pr[Tree]

Pr[Data]

where Pr[Tree|Data] is called a posterior probability distribution 5.

Bayesian methods can thus apply a model of sequence evolution and are ideal for building
a phylogeny using sequence data.

2.4.4/ MAXIMUM LIKELIHOOD

The Maximum Likelihood (ML) criteria requires a probabilistic model for the evolutionary
process and finds the most likely tree, given the probabilistic model and the known
sequences at the leaves. In other words, ML techniques are used to determine the
topology and branch lengths that have the largest likelihood to produce the aligned data,
providing the substitution model and the tree. The likelihood value is computed after the
alignment stage and by considering some DNA or amino acids substitution models.

In ML method, the searching space is fulfill using a quartet program. This latter finds all
possible sequence combinations for tree reconstruction, while the Maximum Parsimony
criteria prefers solutions that minimize the number of mutations along the tree edges [37].
Bayesian methods and Maximum likelihood can apply a model of sequence evolution and
are ideal to construct a phylogeny using data sequences. The main drawback of these
methods is that they are computationally expensive. However, with today’s computers, this
is not too much a problem.

One of the most common tests used to evaluate the reliability of a deduced tree is the so-
called Felsenstein’s bootstrap test [38], which is usually estimated using Efron’s bootstrap
resampling technique [39]. It is accomplished in practice by sampling the input data [40]
and measuring the proportion of deduced trees that support each branch of the best tree
previously obtained. As a global rule, if the bootstrap value for a given internal branch is
95% or higher, the topology will be considered "valid" at that branch 6.

2.4.5/ ANCESTRAL GENOME RECONSTRUCTION

Ancestral reconstruction may focus at sequence level or at gene order level, the former
being quite resolved [41, 8, 42, 43, 6, 13, 10, 44, 45], at least if we do not consider

5. A posterior probability is the probability that the tree is considered to be correct, if it has the maximum
probability.

6. In Bayesian approaches, this is the posterior probability itself that gives an evaluation of robustness :
the support of a branch increases with its probability.
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indels and mutation neighborhood, while the latter is more difficult in general, due to its
combinatorial complexity. More precisely, given an alignment of DNA sequences and a
tree, ancestral nucleotides of extant species can be obtained by modeling the evolution
of a trait through time as a stochastic process (Markov chain). Using it as the basis for
statistical inference, both maximum likelihood or Bayesian inference approaches can be
applied to estimate ancestral configuration.

Well known software like RAxML [46], BEAST2 [47], or PAML [48] can be used for such
reconstructions. However, most of the time, like in the R package [49], indels are not
considered in such ancestral state reconstruction, even if researches have recently been
realized via the so-called “Poisson Indel Process” [50]. Such process is a significant
improvement, if we compare it with the parsimony approach that can be found in PHAST
software, or with the Thorne-Kishino-Felsenstein model of indel evolution. Large scale
modifications, for its part, is most of the time regarded in a combinatorial framework
by modeling genomes as permutations of genes or homologous regions. Indeed, this
genome rearrangement problem [51] is usually formulated as follows : “given two genomes
(permutations) and a set of allowable operations (like inversion, deletion, or transposition),
what is the shortest sequence of operations that will transform one genome into the other ?”.
As stated previously, even in the case of three genomes, such a problem is NP-hard [52],
although it has received much attention in mathematics and computer science [53].
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3
COMPARISON OF METAHEURISTICS TO

MEASURE GENE EFFECTS ON
PHYLOGENETIC SUPPORTS AND

TOPOLOGIES

A huge and continuous increase in the number of completely sequenced chloroplast
genomes, available for evolutionary and functional studies in plants, has been observed

during the past years. Consequently, it appears possible to build large-scale phylogenetic
trees of plant species. However, building such a tree that is well-supported can be a
difficult task, even when a subset of close plant species is considered. Usually, the difficulty
raises from a few core genes disturbing the phylogenetic information, due for example to
homoplasy problems. Fortunately, a reliable phylogenetic tree can be obtained once these
problematic genes are identified and removed from the analysis. Therefore, in this chapter
we address the problem of finding the largest subset of core genomes which allows to
build the best supported tree. As an exhaustive study of all core genes combination is
redhibitory, since the combinatorics of the situation made it computationally infeasible,
we investigate three well-known metaheuristics to solve this optimization problem. More
precisely, we design and compare distributed approaches using genetic algorithm, particle
swarm optimization, and simulated annealing. The last approach is a new contribution and
therefore described in details, whereas the two former ones have been already studied
in a previous PhD/thesis. They have been designed de novo in a new platform, and new
experiments have been achieved on a larger set of chloroplasts, to compare together
these three metaheuristics. Finally, the ways genes affect both tree topology and supports
are assessed using statistical tools like Lasso or dummy logistic regression, in an hybrid
approach of the genetic algorithm. This chapter is the concatenation of a previous work
published in 2015 [54] with Bassam Al Kindy, a former PhD student at the University of
Franche-Comté.

3.1/ INTRODUCTION

These last years, the investigation of the evolutionary relationship between different plants
has benefited from the multiplication of newly available chloroplast sequences. Indeed,
thanks to the tools presented in the previous chapter of this thesis, it is possible to process
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these sequences in order to build a phylogenetic tree that accurately characterizes the
evolutionary lineages among the chloroplasts. Efficient coding sequence prediction and
annotation tools have been developed to deal specifically with chloroplasts, for example
DOGMA [55], and as can already been explained, there is also a great choice for the
alignment of sequences. Moreover, given a set of sequences or characters, many well-
established bioinformatics programs based on Bayesian inference or maximum likelihood,
like BEAST or RAxML [46], can be used to reconstruct a phylogenetic tree. The objective is
to obtain the most reliable and robust phylogeny, for instance in order to perform ancestral
analysis with a high confidence level. As stated previously, several methods can be used
to estimate the robustness of the produced tree, the most widely used are the bootstrap
and the decay (or Bremer) analyses.

Obviously, a first condition to be able to build a phylogenetic tree for a given set of close
plant species is to identify as precisely as possible the corresponding core genome (the
set of genes in common). However, even if the core genome is large and accurate, the
resulting phylogeny is not necessarily well-supported. In fact, the core genome genes
are not constrained through evolution in a similar way. On the one hand some evolve
under strong evolutionary constraints and thus reflect the story of the species while, on
the other hand, other genes evolve more freely due to a lower role in the survival and
adaptability of a species. The latter tell their own history and thus disturb the phylogenetic
information. Furthermore, the way the robustness and accuracy of the obtained phyloge-
netic tree are altered by the amount of used data for the reconstruction process is not
completed understood. Nevertheless, if we consider a set of species reduced to lists of
gene sequences, an obvious dependence between the chosen subset of sequences and
the obtained tree (topology, branch length, and/or robustness) can be observed. This
dependence is usually regarded by the mean of gene trees merged in a phylogenetic
network. In fact, phylogenetic networks are necessary to represent events like horizontal
gene transfers, but statistical methods to infer such networks are still limited and under
development.

In this chapter, we consider the situation from a dual point of view, that consists in
starting with the complete core genome and then to remove the genes responsible for
inconsistent phylogenetic signal. In other words, the objective is to find the largest part of
the core genome that produces a phylogenetic tree as supported as possible, and which
therefore gives the fairest view of the relationships between most of the sequences under
consideration. Searching the problematic genes by exhaustively testing the combinations
of core genome genes is nonsense due their huge number. Therefore, to speed up the
finding of a satisfactory combination we rather consider metaheuristics. The first one,
introduced in a previous work [1], is an ad hoc Genetic Algorithm (GA) which in some
cases is not able to converge towards a suitable solution. Next, a Binary Particle Swarm
Optimization (PSO) approach has been published in the the CIBB proceedings book [56].
Finally, in this chapter, which extends and improves the two former ones, we study the
relevance of the Simulated Annealing (SA) algorithm to fulfill the optimization task. Also
notice that the different metaheuristics have been executed in a distributed manner using
supercomputing facilities. To sum up, the contribution of this chapter is threefold : first, it
proposes a new simulated annealing approach, second a new version of the PSO, and
third a comparison of the three metaheuristics on a large number of new groups of species.
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3.2/ PRESENTATION OF THE PROBLEM

Let us introduce the problem of determining a phylogeny (evolution tree) for a given set
of species by considering a set of chloroplast genomes that have been annotated using
DOGMA [55] (the approach we applied is detailed in Section 3.6). To start we need to
pick one or several genes on which the phylogeny will be based. Therefore we use the
restricted core genome [57, 58], which consists of conserved genes present everywhere,
whose size is larger than one hundred genes when the species are close enough. Then
multiple sequence alignments are performed using muscle [59] and finally a phylogenetic
tree is inferred thanks to the maximum-likelihood tree builder RAxML [46].

The relevance of the obtained tree is then assessed by its bootstrap values : if these ones
are all above 95 the tree is well-supported. In this case we can reasonably estimate that
the phylogeny of these species is solved. Bootstrapping is a random sampling technique
commonly used to estimate the significance of branches of a phylogenetic tree. It consists
to randomly select columns in the aligned DNA core sequences to be neglected during
the tree building process and to check whether the same nodes are recovered. A large
number of bootstrap repetitions, usually between 50 and 1000, are used to assess the
tree reliability. As an illustration, a node which appears 95 times out of 100 by dropping a
column means that the node is well-supported. Conversely, a low support value claims
that a reduced part of the alignment supports the node, since by removing columns the
node is reconstructed in different ways.

When such a well-supported tree is not built, but rather a tree having some branches
exhibiting low supports, some genes of the core genome can be responsible of this lack of
support. The objective is then to identify the most supported tree using the largest subset
of core genes, a typical optimization problem. Obviously, the optimization problem we face
cannot be solved by a brute force approach checking all possible combination of genes,
due to the resulting combinatorial explosion. Indeed, for a core genome of n genes there
would be 2n trees to infer and that is clearly intractable in practice. To overcome such a
combinatorial situation, a typical choice is to use a metaheuristic method.

In [1], we have first investigated the mixing of a genetic algorithm with Lasso tests to find
problematic genes. Unfortunately, thorough and careful experimental investigations have
led to results, recalled in Table 3.1, showing that this proposal is not able to predict the
phylogeny of some particular plant orders. As can be seen, the lowest bootstrap value (or
bootstrap score) obtained for 15 group of species is below 95 (column b in the table). The
relevance of binary particle swarm optimization to find the largest subset of core genes has
been studied in [56], producing slightly better bootstrap scores than GA with Lasso tests.
In this chapter we introduce a third well-known metaheuristic method, namely simulated
annealing, and we compare the three approaches considering new sets of species. Like
the two former ones, the computations with SA algorithm will be done in a distributed
manner. Multiple algorithm instances will be launched using a same cooling schedule and
at the end of each Markov chain, for a same temperature, a centralized communication
scheme will take place.

To sum up, Figure 3.1 gives an overview of the proposed pipeline to obtain the ancestral
history of a set of species.
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GA SABPSO

Fig. 3.1 – Overview of the proposed pipeline.

TABLE 3.1 – Results of genetic algorithm approach on various families.

Group occ c # taxa b Terminus Likelihood Outgroup

Gossypium_group_0 85 84 12 26 1 -84187.03 Theo_cacao
Ericales 674 84 9 67 3 -86819.86 Dauc_carota
Eucalyptus_group_1 83 82 12 48 1 -62898.18 Cory_gummifera
Caryophyllales 75 74 10 52 1 -145296.95 Goss_capitis-viridis
Brassicaceae_group_0 78 77 13 64 1 -101056.76 Cari_papaya
Orobanchaceae 26 25 7 69 1 -19365.69 Olea_maroccana
Eucalyptus_group_2 87 86 11 71 1 -72840.23 Stoc_quadrifida
Malpighiales 422 78 10 96 3 -91014.86 Mill_pinnata
Pinaceae_group_0 76 75 6 80 1 -76813.22 Juni_virginiana
Pinus 80 79 11 80 1 -69688.94 Pice_sitchensis
Bambusoideae 83 81 11 80 3 -60431.89 Oryz_nivara
Chlorophyta_group_0 231 24 8 81 3 -22983.83 Olea_europaea
Marchantiophyta 65 64 5 82 1 -117881.12 Pice_abies
Lamiales_group_0 78 77 8 83 1 -109528.47 Caps_annuum
Rosales 81 80 10 88 1 -108449.4 Glyc_soja
Eucalyptus_group_0 2254 85 11 90 3 -57607.06 Allo_ternata
Prasinophyceae 39 43 4 97 1 -66458.26 Oltm_viridis
Asparagales 32 73 11 98 1 -88067.37 Acor_americanus
Magnoliidae_group_0 326 79 4 98 3 -85319.31 Sacc_SP80-3280
Gossypium_group_1 66 83 11 98 1 -81027.85 Theo_cacao
Triticeae 40 80 10 98 1 -72822.71 Loli_perenne
Corymbia 90 85 5 98 2 -65712.51 Euca_salmonophloia
Moniliformopses 60 59 13 100 1 -187044.23 Prax_clematidea
Magnoliophyta_group_0 31 81 7 100 1 -136306.99 Taxu_mairei
Liliopsida_group_0 31 73 7 100 1 -119953.04 Drim_granadensis
basal_Magnoliophyta 31 83 5 100 1 -117094.87 Ascl_nivea
Araucariales 31 89 5 100 1 -112285.58 Taxu_mairei
Araceae 31 75 6 100 1 -110245.74 Arun_gigantea
Embryophyta_group_0 31 77 4 100 1 -106803.89 Stau_punctulatum
Cupressales 87 78 11 100 2 -101871.03 Podo_totara
Ranunculales 31 71 5 100 1 -100882.34 Cruc_wallichii
Saxifragales 31 84 4 100 1 -100376.12 Aral_undulata
Spermatophyta_group_0 31 79 4 100 1 -94718.95 Mars_crenata
Proteales 31 85 4 100 1 -92357.77 Trig_doichangensis
Poaceae_group_0 31 74 5 100 1 -89665.65 Typh_latifolia
Oleaceae 36 82 6 100 1 -84357.82 Boea_hygrometrica
Arecaceae 31 79 4 100 1 -81649.52 Aegi_geniculata
PACMAD_clade 31 79 9 100 1 -80549.79 Bamb_emeiensis
eudicotyledons_group_0 31 73 4 100 1 -80237.7 Eryc_pusilla
Poeae 31 80 4 100 1 -78164.34 Trit_aestivum
Trebouxiophyceae 31 41 7 100 1 -77826.4 Ostr_tauri
Myrtaceae_group_0 31 80 5 100 1 -76080.59 Oeno_glazioviana
Onagraceae 31 81 5 100 1 -75131.08 Euca_cloeziana
Geraniales 31 33 6 100 1 -73472.77 Ango_floribunda
Ehrhartoideae 31 81 5 100 1 -72192.88 Phyl_henonis
Picea 31 85 4 100 1 -68947.4 Pinu_massoniana
Streptophyta_group_0 31 35 7 100 1 -68373.57 Oedo_cardiacum
Gnetidae 31 53 5 100 1 -61403.83 Cusc_exaltata
Euglenozoa 29 26 4 100 3 -8889.56 Lath_sativus
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3.3/ PHYLOGENETIC PREDICTIONS USING METAHEURISTICS

3.3.1/ BINARY PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) [60] is a stochastic optimization technique which
has been successfully applied on various problems like function optimization, artificial
neural network training,. . . . In this method, each particle has to learn from the success
of neighboring individuals. An emergent behavior enables individual swarm members,
particles, to learn from the discoveries, or from previous experiences, of the other particles
that have obtained the most accurate solutions.

In the case of the standard binary PSO model [61], the particle position is a vector of N
binary parameters. Next, a score (real number) is associated to each vector according to
the optimization problem. The approach defines then how to move the particles in the N
dimensional binary search space so that the produced optimal binary vector with respect
to the highest score.

In more details, each particle i is represented by a binary vector Xi whose length N is
the dimension of the search space. A 1 in coordinate j of this vector means that the
associated j-th parameter is selected. A swarm of n particles is then a list of n vectors of
positions (X1, X2, . . . , Xn) together with their associated velocities V = (V1,V2, ...,Vn), which
are N-dimensional vectors of values in [0, 1] and which are initially randomly set. At each
iteration, the velocity vector is updated as follows :

Vi(t + 1) = wVi(t) + φ1
(
Pbest

i − Xi
)

+ φ2
(
Pbest

g − Xi
)

(3.1)

where w, φ1, and φ2 are weighted parameters setting the level of each three trends for the
particle, which are respectively to continue in its adventurous direction, to move in the
direction of its own best position Pbest

i , or to follow the gregarious instinct to the global best
known solution Pbest

g . Both Pbest
i and Pbest

g are computed according to the scoring function.

The position of the particle is then updated as follows :

Xi j(t + 1) =

1 if ri j ≤ Sig(Vi j(t + 1)),
0 otherwise,

(3.2)

where ri j is a threshold that depends on both the particle i and the parameter j, while the
Sig function is the sigmoid one [61], that is :

Sig(Vi j(t + 1)) =
1

1 + e−Vi j(t+1) (3.3)

Let us now recall how the BPSO approach has been used to solve our optimization problem
related to phylogeny [56].

3.3.1.1/ BPSO APPLIED TO PHYLOGENY

The Rosales order, which has already been analyzed in [1] using a hybrid genetic algorithm
and Lasso test approach has been retained here also. The Rosales order is constituted by
9 ingroup species and 1 outgroup (Mollissima), as described in Table 3.2. They have been
annotated using DOGMA and their core genome has been computed according to the
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method described in [57, 58]. Its size is equal to 82 genes. Unfortunately, the phylogeny
cannot be resolved directly neither by considering all these core genes nor by considering
any of the 82 combinations of 81 core genes.

TABLE 3.2 – Genomes information of Rosales species under consideration

Species Accession Seq.length Family Genus
Chiloensis NC_019601 155603 bp Rosaceae Fragaria
Bracteata NC_018766 129788 bp Rosaceae Fragaria
Vesca NC_015206 155691 bp Rosaceae Fragaria
Virginiana NC_019602 155621 bp Rosaceae Fragaria
Kansuensis NC_023956 157736 bp Rosaceae Prunus
Persica NC_014697 157790 bp Rosaceae Prunus
Pyrifolia NC_015996 159922 bp Rosaceae Pyrus
Rupicola NC_016921 156612 bp Rosaceae Pentactina
Indica NC_008359 158484 bp Moraceae Morus
Mollissima NC_014674 160799 bp Fagaceae Castanea

As some branches are not well supported, we can wonder whether a few genes can
be incriminated in this lack of support, for a large variety of reasons encompassing
homoplasy, stochastic errors, undetected paralogy, incomplete lineage sorting, horizontal
gene transfers, or even hybridization. If so, we face the optimization problem presented
previously : find the most supported tree using the largest subset of core genes.

Genes of the core genome are now supposed to be lexicographically ordered. Each subset
S of the core genome is thus associated with a unique binary word w of length n : for
each i, 1 ≤ i ≤ n, wi is 1 if the i-th core gene is in S and 0 otherwise. Any n-length binary
word w can be associated with its percentage p of 1’s and the lowest bootstrap b of the
phylogenetic tree we obtain when considering the subset of genes associated to w. Each
word w is thus associated with a fitness score value F =

b+p
2 .

In the BPSO context the search space is then {0, 1}N , where N = 82 in Rosales. Each node
of this N-cube is associated with the set of following data : its subset of core genes, the
deduced phylogenetic tree, its lowest bootstrap b and the percentage p of considered core
genes, and, finally, the score b+p

2 . Notice that two close nodes of the N-cube have two close
percentages of core genes. We thus have to construct two phylogenies based on close
sequences, leading with a high probability to the same topology with close bootstraps. In
other words, the score remains essentially unchanged when moving from a node to one of
its neighbors. It allows to find optimal solutions using approaches like BPSO.

During swarm initialization, the L particles (set to 10 in our experiments) of a swarm are
randomly distributed among all the vertices (binary words) of the N-cube that have a large
percentage of 1’s. The objective is then to move these particles in the cube so that they
will converge to an optimal node.

At each iteration, the particle velocity is updated by taking into account its own best position
and the best one considering the whole particle swarm (both identified according to the
fitness value). It is influenced by constant weight factors as expressed in Equation (3.1). In
this one, we have set φ1 = c1 · r1 and φ2 = c2 · r2 where c1 = 1 and c2 = 1, while r1, r2 are
random numbers belonging to [0.1,0.5], and w is the inertia weight that is computed based
on the following formula :

w = wmax −
wmax − wmin

Imax
× I′cur (3.4)
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Fig. 3.2 – The distributed structure of BPSO algorithm.

where Imax represents the maximum number of iterations (or time step) and I′cur is the
current iteration. This equation determines the contribution rate of a particle’s previous
velocity and is determined as in [62].

To increase the number of included components in a particle, we reduce the interval of
Equation (3.1) to [0.1, 0.5]. For instance, if the velocity Vi j of an element is equal to 0.51
and ri j = 0.83, then Sig(0.51) = 0.62. So ri j > Sig(Vi j) and this leads to 0 in the vector
element j of the particle i. By minimizing the interval, we increase the probability of having
ri j < Sig(Vi j) and consequently the number of 1s, which means more included elements in
the particle (a larger number of core genes).

Note that a large inertia weight facilitates a global search, while a small inertia weight
tends more to a local investigation [63]. In other words, a larger value of w facilitates a
complete exploration, whereas small values promote exploitation of areas. This is why
Eberhart and Shi [64] suggested to decrease w over time, typically from 0.9 to 0.4, thereby
gradually changing from exploration to exploitation. Finally, each particle position is updated
according to Equation (3.2).

3.3.1.2/ DISTRIBUTED BPSO WITH MPI

Traditional PSO algorithms are time consuming in sequential mode. The distributed version
shown in Figure 3.2 has thus been proposed to minimize the execution time as much
as possible. The general idea of the proposed algorithm is simple : a processor core is
employed for each particle in order to compute its fitness value, while a last core called the
master centralizes the obtained results. In other words, if we have a swarm of ten particles,
we use ten cores as workers and one core as master (or supervisor).

More precisely, the master initializes the particles of the swarm and distributes them to the
workers. When one worker finishes its job, it sends a “terminate” signal with the fitness
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value to the master. This latter waits until all the workers have finished their jobs. Then, it
determines the position of the particle that has the best fitness value as the global best
position and sends this information to the workers that update their respective particle
velocity and position. This mechanism is repeated until a particle achieves a fitness value
larger than or equal to 95 with a large set of included genes. In the following, two distributed
versions of the BPSO described previously are considered : in version I the equation used
to update the velocity is slightly changed as shown below, and in version II we use the
equations of Section 3.3.1.

3.3.1.3/ DISTRIBUTED BPSO ALGORITHM : VERSION I

In this version Equation (3.1), which is used to update the velocity vector, is replaced by :

Vi(t + 1) = x · [Vi(t) + C1(Pbest
i − Xi) + C2(Pbest

g − Xi)] (3.5)

where x, C1, and C2 are weighted parameters setting the level of each three trends
for the particle.The default values of these parameters are C1 = c1 · r1 = 2.05, C2 =

c2 · r2 = 2.05, while x which represents the constriction coefficient is computed according
to formula [65, 66] :

x =
2 × k

|2 −C − (
√

C × (C − 4))|
, (3.6)

where k is a random value between [0,1] and C = C1 + C2, where C ≥ 4. According to
Clerc [66], using a constriction coefficient results in particle convergence over time.

3.3.1.4/ DISTRIBUTED BPSO ALGORITHM : VERSION II

This version is a distributed approach of the sequential PSO algorithm presented previously
in Section 3.3.1.

3.4/ GENETIC ALGORITHM

A genetic algorithm (GA) is a well-known metaheuristic algorithm which has been described
by a rich body of literature since its introduction [67, 68]. In the following, we will only
discuss the choices we made regarding operators and parameters. For further information
and applications regarding the genetic algorithm, see for example [69, 70, 71, 72].

3.4.1/ GENOTYPE AND FITNESS VALUE

Genes of the core genome are supposed again to be lexicographically ordered. At each
subset s′ of the core genome corresponds thus a unique binary word w of length n : for
each i lower or equal to n (i ∈ {1, . . . , n}), wi is 1 if the i-th core gene is in s′, else wi is
equal to 0. At each binary word w of length n, we can associate its percentage p of 1’s and
the lowest bootstrap b of the phylogenetic tree we obtain when considering the subset of
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genes associated to w. At each word w we can thus associate the score b + p as fitness
value, which must be as large as possible.

3.4.2/ GENETIC PROCESS

Until now, binary words (genotypes) of length n that have been investigated are :

1. the word having only 1’s (systematic mode) ;

2. all words having exactly one 0 (systematic mode) ;

3. at least 200 1 words having between 2 and 10 (ten) 0’s randomly located (random
mode).

To each of these words is attached its score b + p. This latter is used to select the 50 best
words, or fittest individuals, in order to build the initial population (see the upper part of
Figure 3.3). After that, the genetic algorithm loops during 200 iterations or until discovering
a word such that its score is larger than 190 (corresponding approximately to a case where
at least 95% of core genes are used, which produces a tree whose bootstraps are larger
than 95).

During an iteration the algorithm applies the following steps to produce a new population
P′ given a population P (see Figure 3.4) :

Fig. 3.3 – Random pair selections from given population.

— Repeat five times a random pickup of a couple of words and mix them using a
crossover approach. The obtained words are added to the population P, as described
in Section 3.4.3, resulting in population Pc.

— Mutate 5 words of the population Pc, the mutated words being added too to Pc, as
detailed in Section 3.4.4, leading to population Pm.

— Add 5 new random binary words having less than 10% of 0’s (see Section 3.4.5) to
Pm producing population Pr.

— Select the 50 best words in population Pr to form the new population P′.

Let us now explain with more details each step of this genetic algorithm.

1. 200 is a parameter that has been specified according to our experiments : it seems to offer the best
trade-off between computation time and quality of the initial population.
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Fig. 3.4 – Outline of the genetic algorithm.

3.4.3/ CROSSOVER STEP

Given two words w1 and w2, the idea of the crossover operation is to mix them, hoping by
doing so to generate a new word w having a better score (see Figure 3.5(a)). For instance,
if we consider a one-point crossover located at the middle of the words, for i < n

2 , wi = w1
i ,

while for i > n
2 , wi = w2

i : in that case, for the first core genes, the choice (to take them or not
for phylogenetic construction) in w is the same than in w1, while the subset of considered
genes in w corresponds to the one of w2 for the last 50% of core genes.

More precisely, at each crossover step, we first pick randomly an integer Ncrossover = k where
k < n

2 , and randomly again k different integers i1, . . . ik such that 1 < i1 < i2 < . . . < ik < n.
Then w1 and w2 are randomly selected from the population P, and a new word w is
computed as follows :

— wi = w1
i for i = 1, ..., i1,

— wi = w2
i for i = i1 + 1, ..., i2,

— wi = w3
i for i = i2 + 1, ..., i3,

— etc.

Then the phylogenetic tree based on the subset of core genes labeled by w is computed,
the score S of w is deduced, and w is added to the population with the fitness value of S
attached to it. Note that, as a parametric option, one word instead of two is generated from
this step.

3.4.4/ MUTATION STEP

In this step, we ask how small changes in a given subset of genes (removing and/or adding
few genes) may by chance improve the support of the associated tree. Similarly speaking,
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(a) Crossover operation. (b) Mutation operation.

Fig. 3.5 – (a) Two individuals were selected from given population. The first portion from
determined crossover position in the first individual is switched with the first portion of
the second individual. The number of crossover positions is determined by Ncrossover. (b)
Random mutations are applied depending on the value of Nmutation, changing randomly
gene state from 1 to 0 or vice versa.

we try here to improve the score of a given word by replacing a few 0’s by 1 and/or a few
1’s by 0 as shown in Figure 3.5(b).

In practice, an integer Nmutation = k where k 6 n
4 corresponding to the number of changes,

or “mutations”, is randomly picked. Then k different integers i1, . . . , ik lower or equal to n
are randomly chosen and a word w is randomly extracted from the current population. A
new word w′ is then constructed as follows : for each i = 1, ..., n,

— if i in {i1, . . . , ik}, then w′i = (wi + 1) mod 2 (the gene is mutated),

— else w′i = wi (no modification).

Again, the phylogenetic tree corresponding to the subset of core genes associated with w′

is computed, and w′ is added to the population together with its score.

3.4.5/ RANDOM STEP

In this step, new words having a large amount of 1’s are added to the population. Each
new word is obtained by starting from the word having n 1s, followed by k random selection
of 1s which are changed to 0, where k is an integer randomly chosen between 1 and
10. The new word is added to the population after having computed its score thanks to a
phylogenetic tree inference.

3.4.6/ GENETIC ALGORITHM EVALUATION ON A LARGE GROUP OF PLANT SPECIES

The proposed pipeline has been tested with the genetic algorithm on various sets of close
plant species. 50 subgroups, including on average from 12 to 15 chloroplasts species,
encompassing 356 plant species, and already presented in this chapter (c.f. Table 3.1) have
been used with our formerly published genetic algorithm. Obtained results with details are
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contained too in Table 3.1. Column Occ represents the amount of generated phylogenetic
trees from the corresponding search space for each group. The column c represents
the number of core genes included within each group. The # taxa column is the amount
of species corresponding to the considered group. b is the lowest value from bootstrap
analysis. The Terminus column contains the termination stage for each subgroup, namely :
the systematic (1), random (2), or optimization (3) stage using genetic algorithm and/or
Lasso test. These stages, which have been proposed in [1], correspond to the systematic
deletion of 0 or 1 gene (N + 1 computations for N core genes), random suppression of core
genes (ranging from 2 to 5 genes), and the so-called genetic algorithm on binary word
populations improved by the use of a statistical test. Finally, the Likelihood column stores
the likelihood value of the best phylogenetic tree (i.e., according to the lowest bootstrap
value b). A large occurrence value in this table means that the associated p-value and/or
subgroup has its computation terminated in either penultimate or last pipeline stage. An
occurrence of 31 is frequent due to the fact that 32 MPI threads (one master plus 31
slaves) have been launched on our supercomputing facility.

Notice that the groups in Table 3.1 can be divided in four parts :

— Groups of species stopped in systematic stage with weak bootstrap values. This is
due to the fact that an upper time limit has been set for each group and/or subgroups,
while each computed tree in these remarkable groups needed a lot of times for
computations.

— Subgroups terminated during systematic stage with desired bootstrap value.

— Groups or subgroups terminated in random stage with desired bootstrap value.

— Finally, groups or subgroups terminated with optimization stages.

A majority of subgroups has its phylogeny satisfactorily resolved, as can be seen on
all obtained trees which can be downloadable at http://meso.univ-fcomte.fr/peg/phylo.
However, some problematic subgroups still remain to be investigated, which explains why
the distributed BPSO is considered in the next section.

3.4.7/ FIRST EXPERIMENTS ON Rosales ORDER

In a first collection of experiments, we have implemented the proposed BPSO algorithm on
a supercomputing facility. Investigated species are the ones listed in Table 3.2. 10 swarms
having a variable number of particles have been launched 10 times, with c1 = 1, c2 = 1,
and w linearly decreasing from 0.9 to 0.4. Obtained results are summarized in Table 3.3
that contains, for each 10 runs of each 10 swarms : the number of removed genes and
the minimum bootstrap of the best tree. Remark that some bootstraps are not so far from
the intended ones (larger than 95), whereas the number of removed genes are in average
larger than what is desired.

Seven topologies have been obtained after either convergence or maxIter iterations. Only
3 of them have occurred a representative number of times, namely the Topologies 0, 2,
and 4, which are depicted in Figures 3.7, 3.8 and 3.9 (see details in Table 3.4).

These three topologies are almost well supported, except in a few branches. We can notice
that the differences in these topologies are based on the sister relationship of two species
named Fragaria vesca and Fragaria bracteata, and of the relation between Pentactina
rupicola and Pyrus pyrifolia. Due to its larger score and number of occurrences, we tend to
select Topology 0 as the best representative of the Rosale phylogeny.
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Fig. 3.6 – Average fitness of Rosales order

TABLE 3.3 – Best tree in each swarm

Removed
Swarm genes F b

1 4 75.5 73
2 6 75.5 76
3 20 75 88
4 52 59.5 89
5 3 75.5 72
6 19 77.5 92
7 47 63.5 92
8 9 73.5 74
9 10 72.5 73
10 13 76.5 84

TABLE 3.4 – Best topologies obtained from the generated trees, b is the lowest bootstrap of
the best tree having this topology, p is the number of considered genes to obtain this tree.

Topology Swarms b p F Occurrences
0 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 92 63 77.5 568
1 1, 2, 3, 4, 5, 6, 10 63 45 54 11
2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 76 67 71.5 55
3 8, 1, 2, 3, 4 56 41 48.5 5
4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 89 30 59.5 65
5 1, 3, 4, 5, 6, 9 71 33 52 9
6 5, 6 25 45 35 2

To further validate this choice, CONSEL [73] software has been used on per site likelihoods
of each best tree obtained using the RAxML [46]. The CONSEL computes the p-values of
various well-known statistical tests, like the so-called approximately unbiased (au), Kishino-
Hasegawa (kh), Shimodaira-Hasegawa (sh), and Weighted Shimodaira-Hasegawa (wsh)
tests. Obtained results are provided in Table 3.5, they confirm the selection of Topology 0
as the tree reflecting the best the Rosales phylogeny.

After having verified that BPSO can be used to resolve phylogenetic issues thanks to the
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Fig. 3.7 – The best obtained topologies for Rosales order,Topology0

Fig. 3.8 – The best obtained topologies for Rosales order,Topology0

Fig. 3.9 – The best obtained topologies for Rosales order,Topology0

Rosales order, we now intend to deeply compare the genetic algorithm versus the swarm
particle optimization. In order to do so, a large collection of group of plant species have
been selected, on which we have successively launched the genetic algorithm and the
BPSO one in distributed mode.
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TABLE 3.5 – The CONSEL results regarding best trees

Rank item obs au np bp pp kh sh wkh wsh
1 0 -1.4 0.774 0.436 0.433 0.768 0.728 0.89 0.672 0.907
2 4 1.4 0.267 0.255 0.249 0.194 0.272 0.525 0.272 0.439
3 2 3 0.364 0.312 0.317 0.037 0.328 0.389 0.328 0.383

3.5/ A SIMULATED ANNEALING APPROACH

3.5.1/ GENERAL PRESENTATION

The original Simulated Annealing (SA) method is a local search based threshold class
algorithm. Basically, a threshold algorithm is a loop in which a move is either done or
not, according to a given criterion and until reaching a freeze [74]. Specifically, after an
initialization step, this loop is composed by (a) a move in the neighborhood of the current
solution, (b) an evaluation of this new position by a real-valued scoring function, then (c)
a test, given a well chosen criterion, to store this position as the new best one. Various
criteria can be considered. For instance, if a position is evaluated as a better solution
than the best existing one, it becomes the reference solution for next iterations when
the acceptation criterion is “only if best cost (score)” algorithm, which is a variant of a
classical greedy local search [75]. The “all is accepted” algorithm produces, for its part,
a random walk. Finally, between these two extremal situations, an acceptation criterion
allows to store sometimes too positions with poorer scores than the best solution, which
is an upward move via a stochastic component to avoid local minima. Such a stochastic
approach facilitates theoretical analysis of asymptotic convergence. As such algorithms
can be successfully used for a broad range of optimization problems, SA has been largely
covered in the literature during the last decades [76, 75], for both empirical [77, 78] –
typically on NP-hard problems – and theoretical perspectives [79, 75].

In simulated annealing, the criterion is inspired by the Metropolis-Hastings statistical
(Markov chain Monte Carlo) thermodynamics algorithm [75]. SA simulates the cooling
of a material in a heat bath until a steady (frozen or thermodynamic equilibrium) state.
When the solid material is heated over its melting point, its solidification rate induces
its structural properties. Two major antagonistic strategies are commonly used. On the
one hand, after a fast cooling (quenching), the steady state is constituted by different
thermodynamic free level areas. This corresponds to a local minimum for a local search,
when considering energy as a score. On the other hand, after a slow cooling (annealing),
almost one sole thermostatic level is expected, which corresponds to a global minimum.
As feasible solutions of SA are system states, the structural proximity of the latter leads to
the concept of solution neighborhood.

Thermodynamic laws show that at temperature t, the probability to increase in energy of
the value δE is given by p(δE) = exp(−δE/kt) with k equal to the Boltzmann’s constant. Me-
tropolis simulations [80] consist in the generation of a state perturbation, in the evaluation
of energy modification, and finally in the decision to reject or not the new state according
to the probability p(δE). That is, the probability to keep a better (lower) level of energy is 1,
while the one to keep an infinitely worst level of energy is equal to 0. Or, in other words,
the likelihood to save a given state decreases as the energy level increases. A best global
solution is reached by searching series of equilibria. Each equilibrium is obtained by series
of Metropolis thresholds. The stop condition is typically an arbitrary duration or a number
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of loop iterations. Then the temperature is decreased and the last obtained equilibrium
becomes the starting state for a new series of thresholds. The final stop is triggered if no
improvement has been found since an arbitrary number of equilibria.

Let us finally notice that, as a large set of temperature cooling schedules (decreasing
function [81, 82]), of moving functions, of criteria, of strategies regarding initial values, of
improvements on score function, of stop criteria, and even of theoretical modeling [83, 84,
75, 85] have been proposed in the literature [86, 84, 87], simulated annealing should be
regarded more as a large family of algorithms than as a single one. Some members of the
family including Basin Hopping [88] are themselves described as frameworks for ad-hoc
global optimization algorithms.

A general overview of our proposal can be found in Figure 3.10, while algorithm details
are provided hereafter.

(a) Generic threshold class algorithm (b) Metropolis algorithm

(c) Simulated annealing algorithm

Fig. 3.10 – Simulated annealing as a threshold class algorithm.

3.5.2/ DESIGNING SA FOR PHYLOGENETIC STUDIES

The objective is now to apply the simulated annealing method to find the largest subset of
core genes that leads to the most supported phylogenetic tree. Intermediate computations
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of subsets will help to understand, using regressions, the effects of given genes on both to-
pology and supports. However, SA is complex to set up in practice, and finding new optima
in finite time cannot be guaranteed, as related by Aarts, Korst, and van Laarhoven [74].
To enlarge the probability of success, we targeted the following requirements during our
experiments :

— a concise representation for the problem under consideration ;

— a cooling schedule fitting with complexity, time, convergence, and precision conside-
rations ;

— a moving function adapted to the state (solution) space ;

— and, similarly, an acceptation function adapted to the state space.

These four requirements are discussed hereafter.

Temperature scheduling. A criterion to increase the probability to reach convergence
is the so-called logarithmic fading of control parameter (i.e., temperature). The most simple
choice is tn+1 = C · tn, where C ∈ [0, 1] is a constant. However, according to our experiments,
such a solution is not able to produce relevant results in the phylogenetic problem under
consideration. This is why the control parameter has been updated following a tiered
approach, leading to an inhomogeneous Markov model : the temperature decreases only
after the end of its associated Markov chain. Additionally, near an equilibrium, the Markov
chain length must increase when the control parameter decreases. But, as above, at low
temperature the computation time may become prohibitive without any synchronisation
between the control parameter and the Markov chain characteristics. To solve such an
issue, various schedule solutions proposed in the literature link these two parameters. After
having tested classical benchmarking functions like the well known three-hump camel,
Levi [89], and Booth, we finally have chosen :

tn+1 =

 t f

t
1

nm−1
i

 × tn

where t is the control parameter, ti and t f are respectively the maximum (initial) and
minimum (final) of allowed control parameter values for the SA computation, while nm is
the maximal number of Markov chains (equal to the temperature steps) allowed during
computation.

About a relevant configuration of SA according to the state space. As in the other
methods, the state space is constituted by Boolean vectors Xi of the form (Xi1, . . . , Xin),
where n is the number of core genes. Xi j is equal to 1 if and only if gene number j in
alphabetic order is in the alignment provided to the phylogenetic tool. We thus navigate
again on the n-cube on which each node (that is, each state) corresponds to a subset of
core genes and has additionally a labeled value provided by the subset scoring function
– which is again the average between the lowest bootstrap and the number of selected
core genes. We can easily define a distance between two points inside this cube, like an
Hamming distance between Boolean vectors, and the node score can be considered as
the altitude of the current position.

To sum up, there is a topology on the state space, with neighborhood notion between
two states, while the altitude (the score of a subset of genes, which is related to the SA
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energy) is varying between two locations. Both the density and the form of energy peaks
are varying through the landscape. Neighborhoods and moves, acceptation probability,
temperature scheduling functions, and their related initial values are dependant on the
characteristics, or the topology, of this state space. Obviously, there is no general way to
set up the parameters of the simulated annealing in this situation, as usually with such
heuristics. Even choosing close configurations of closely related problems like similar
chloroplasts is not a guarantee of success.

Having these considerations in mind, we have stated some hypotheses at the basis of the
neighboring notion. First of all, we assume that a solution is better if it is closer to the whole
core genome, so improving the number of 1’s in the Boolean vector is a desired trend.
Secondly, we assume no correlation between genes, and so removing (or adding) one
gene cannot modify so much the scoring function. As a consequence, the next investigated
state should be near the previous one, in terms of Hamming distance, and most likely with
a similar or larger number of active genes. In particular, moves in the state space cannot
be randomized as what occurs in the original SA algorithm. Furthermore, the starting state
must be the Boolean vector constituted by 1’s (that is, the whole core genome), while the
scoring function must preferably tend to add genes in the considered subset (if possible).
With such requirements, the neighborhood function has been designed as follows :

— A number between 1 and move_distancemax (a parameter to set) is randomly chosen,
following a Gaussian law. It corresponds to the number of coordinates that may
possibly change.

— A subset of distinct coordinates are chosen accordingly, defining this move.

— For each Boolean coordinate, if the associated gene is inactive (0), it is activated (1).
Otherwise, the gene is inactivated with a probability equal to nz

nc × α, where nz is the
number of inactivated genes in the best current solution, nc is the total number of
core genes in the problem, and α is a user-defined parameter.

Proposed SA optimization. Scores in this proposal are obtained using RAxML [90].
As an inference of a bootstrapped and rooted phylogenetic tree may take times, and as
we need to compute several trees, each calculated state is tagged so that it is never
recomputed without an explicit user demand. Associated and detailed results are buffered
on disk. Then a simple, reliable, and not really space-characteristics dependent solution
is the synchronization of some SAs after the end of a Markov chain [91]. In order to do
so, a batch of SAs is launched with the same configuration. After a chain, each running
SA shares its own best known solution to a server. Then, it demands to this server if a
better state has been found before starting the next chain. Finally, each SA halts after n
local non optimizing chains. So a stopped SA is not restarted, even if a better solution is
found elsewhere (i.e., the proposed SA stops as soon as possible).

Acceptance function is also selected to take advantage of previous moves, to allow
some (not too large) jumps. This is an adaptation of the so-called Tsallis acceptance
probabilities [86] with a control parameter normalization :(

1 −
(1 − q) ∗ ∆

∆̄ ∗ t

) 1
1−q

,

where ∆ is the score difference between the previous and current states, ∆̄ their mean, t is
a control parameter, and q is a user-defined factor.

Page 60



Comparison of Metaheuristics to Measure Gene Effects on Phylogenetic Supports and
Topologies Chapter 3

How to stop the SA. To fix a predefined control (temperature) value needs to know
some state space characteristics, so we choose an end criterion related to the absence of
progression in scores. In other words, the proposed simulated annealing algorithm stops
after t consecutive Markov chains without any score improvement. As SA is very slow on
low temperatures, the choice has been to choose a small value for t. Then, a greedy local
search can be launched on SA best states.

3.6/ COMPARISON OF THE METAHEURISTICS

3.6.1/ DATA GENERATION

3.6.1.1/ GENOMES RECOVERY AND ANNOTATIONS

At this stage, 780 complete genomes of chloroplasts have been downloaded from the
NCBI, constituting the set of all available complete chloroplastic genomes at the date of the
beginning of our study [56]. Various gene prediction methods have been previously tested,
in order to translate these complete genomes in lists of annotated coding sequences.
These methods encompass the single use of NCBI annotated genomes, the use of
automatic annotation tools specific to organelles like DOGMA [55], and the mix of both.

Indeed, annotations from NCBI website are of very variable quality : humanly well-curated
genomes go together with genomes having a lot of annotation errors, concerning either the
gene names (classification or spelling errors) or DNA sequences (start and stop position,
length). As the number of well annotated genomes was not enough to constitute a testing
set for our experiments, we are then left to find an acceptable way to annotate the whole
780 complete genomes. As stated above, we tested various ways to annotate the genomes,
and we evaluated them by checking their ability to recover the annotations (sequence
positions and gene names) of the subset of humanly, well-curated genomes.

According to our experiments, there was no way to improve enough the quality of NCBI
annotations [57]. Neither by cross-validating them using automatic annotation tools, nor by
trying to correct errors in gene names and positions with these tools and some edit dis-
tances [58, 12]. Furthermore, to cluster the whole NCBI DNA sequences fail in separating
well annotated genes in well separated clusters, due to junk DNA in the NCBI sequences.
The large number of obvious errors in the NCBI annotated complete chloroplastic genomes
can be explained by the large variety of annotation tools used during sequence submission,
most of them being not specific to this kind of genomes (unlike DOGMA), to a misuse
of these tools, or due to errors in manual annotations. The absence of a clear norm in
the gene naming process adds difficulties, so that the sole method to provide accurate
annotations to these 780 complete genomes was to constitute a basis of knowledge, with
a subset of well curated genomes that represent well the plant diversity. And, to blast each
genome against the basis, which is indeed what is done by DOGMA.

We finally have written a script that automatically send requests to the DOGMA web
service, and recovers the annotated genomes. Due to this automatic process, the gene
name spelling issue is resolved, and we can recover the clusters of homologous coding
sequences by simply considering gene names. By applying the same tool for coding se-
quence prediction and naming process, we have resolved the problem of quality variability
in annotations. And as DOGMA has been specifically designed for chloroplasts, errors in

Page 61



Comparison of Metaheuristics to Measure Gene Effects on Phylogenetic Supports and
Topologies Chapter 3

sequence positions have been reduced as possible. At this stage, and using our script
on DOGMA web service, we have then a collection of 780 complete and “well” annotated
chloroplastic genomes, from which gene names can be used to recover core and pan
genomes of any subset of genomes.

3.6.1.2/ EXTRACTING SUBSETS OF GENOMES FOR SIMULATIONS

To test the ability, for the three proposed metaheuristics methods, to find the largest subset
of core genes that leads to the most supported trees, we needed to extract, from the set of
annotated genomes, various distinct subsets that are such that :

— Using the whole core genome in the alignment, we cannot obtain a well supported
tree.

— The time to compute this tree is reasonable, as we want to compute a lot of trees
using a lot of subsets of core genes. For a given subset of core genes, this computa-
tion time encompasses :

1. the multi-alignment of each core gene using Muscle [59],

2. the concatenation of each aligned sequence to reconstruct the “sub” genome of
each considered species (i.e., the part corresponding to the considered subset
of core genes),

3. the computation of the best phylogenetic tree corresponding to this alignment
(with RAxML [90]),

4. the addition of bootstrap supports to this best tree using RAxML again,

5. and finally the verification that one of these supports is lower than 95 at least. If
so, this tree is considered as not well supported.

Given a subset of genomes, the multi-alignment of each core gene can be computed only
once, prior to the research of the best subset of core genes leading to the most supported
tree. So we do not have to consider the alignment stage when searching subsets of
genomes with : (a) problematic phylogenies and (b) a time to infer their tree as low as
possible. We stopped the process above before Stage 4 and we randomly pick another
subset of species if the time to find their best phylogenetic trees using their whole core
genome (i.e., Stage 3) exceeds 10 seconds. If this computation time is below this threshold,
we then compute 50 bootstraps and we check if the best bootstrapped tree has a problem
of supports. If so, we have found a convenient subset of annotated genomes, on which we
can test the three metaheuristics.

3.6.1.3/ A SIMPLE COMPARISON IN SMALL DIMENSIONS

After having executed the three metaheuristics previously described, we have validated
them on test examples. We have first performed a 1D/2D comparison of the three propo-
sals, to obtain an easy-to-understand representation of the convergence of the optimization
algorithms. Obtained results are depicted in Figure 3.11, circles denote successive po-
sitions given by SA, points are for GA, while PSO corresponds to triangles. Figure 3.12
represents the output evolution of the simulated annealing, with the consecutive ends
of the Markov chains and the evolution of acceptation density. From the results, we can
deduce that the desired convergence behavior is well obtained, and that the comparison
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seems fair : no algorithm seems to underperform the other ones, and the general evolution
of the energy seems to be comparable for the three algorithms. Such results allow us to
further investigate simulated annealing, particle swarm optimization, and genetic algorithm
for their ability to find the largest subset of core genes that leads to the most supported
tree.

Fig. 3.11 – Successive positions given by the three metaheuristics : circles, points, and
triangles are respectively for SA, GA, and PSO.

Fig. 3.12 – Illustration of output provided by simulated annealing approach : three-hump
camel function, one instance of parallelled SA with final greedy local descent.
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TABLE 3.6 – Family number 1 (Pelargonium cotyledonis as outgroup).

Accession Nb Name Nb. of genes Length (nuc.)
NC_024082.1 Cylindrotheca closterium 257 165,809
NC_014808.1 Thalassiosira oceanica CCMP1005 138 141,790
NC_025313.1 Cerataulina daemon 195 120,144
NC_028052.1 Pelargonium cotyledonis 271 166,111
NC_015403.1 Fistulifera solaris 192 134,918
NC_024084.1 Leptocylindrus danicus 155 125,213

3.6.2/ EXPERIMENTING THE HEURISTICS ON SMALL COLLECTIONS OF GENOMES

We first focus on small sets of species with unresolved phylogenies, for computational
reasons and because small trees are easier to compare. Even in such small sets, as the
core genome contains more than 100 genes, the number of combinations to test is far
from what is tractable using a brute force approach. We will see that it is easy to obtain
various opposed but very well supported trees using large subsets of core genes, leading
to the necessity to optimize both parameters.

3.6.2.1/ A FIRST FAMILY OF ALGAE

We have first considered the family listed in Table 3.6. The detailed taxonomy information
is provided hereafter.

— Cylindrotheca closterium. Stramenopiles ; Bacillariophyta ; Bacillariophyceae ; Ba-
cillariophycidae ; Bacillariales ; Bacillariaceae.

— Thalassiosira oceanica CCMP1005. Stramenopiles ; Bacillariophyta ; Coscinodis-
cophyceae ; Thalassiosirophycidae ; Thalassiosirales ; Thalassiosiraceae.

— Cerataulina daemon. Stramenopiles ; Bacillariophyta ; Mediophyceae ; Biddulphio-
phycidae ; Hemiaulales ; Hemiaulaceae.

— Pelargonium cotyledonis. Viridiplantae ; Streptophyta ; Embryophyta ; Tracheo-
phyta ; Spermatophyta ; Magnoliophyta ; Eudicotyledons ; Gunneridae ; Pentapetalae ;
Rosids ; Malvids ; Geraniales ; Geraniaceae.

— Fistulifera solaris. Stramenopiles ; Bacillariophyta ; Bacillariophyceae ; Bacillario-
phycidae ; Naviculales ; Naviculaceae.

— Leptocylindrus danicus. Stramenopiles ; Bacillariophyta ; Coscinodiscophyceae ;
Chaetocerotophycidae ; Leptocylindrales ; Leptocylindraceae.

This family is constituted by 6 genomes, of length ranging from 120,144 to 166,111
nucleotides. The number of detected genes, for its part, ranges from 138 to 271, with a
core genome of 122. The phylogeny with the alignment of these core genes leads to a
small weakness in one branch (bootstrap of 94), as depicted in Figure 3.13. Indeed, inside
this bacillariophyta phylum (eukaryotic algae), C.closterium, and F.solaris are naturally in
the same clade, being both in the same class of bacillariophyceae, while the three other
species are in three different classes inside this phylum.

To wonder whether some genes may be responsible of such weak uncertainty, we have
firstly launched the genetic algorithm : its systematic mode (in population initialization
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Fig. 3.13 – Phylogeny of family Number 1 with the whole core genome.

stage) indeed first tries to remove each core gene separately. This GA has stopped after
29 iterations, in systematic mode, leading to 2 topologies :

— Topology 0, depicted in Fig. 3.14(a), has occurred 27 times. The best obtained tree
has a lowest bootstrap of 96, while in average the lowest bootstrap is equal to 86.

— Topology 1, for its part (see Figure 3.14(b)), has occurred twice, with a non supported
branch of 64 in its best tree.

As during these experiments, we have not leaved the initialization phase, it is useless
to detail here the parameters set to configure the GA. The PSO, for its part, has been
configured as follows : 3 particles, a fitness lower than 0.05 to freeze the runs, and all
constants that define the velocity equal to 1. This heuristics has rapidly found a first well
supported phylogenetic tree in a third different topology, and with all supports equal to
100, see Figure 3.14(c). However, the PSO has used only 47.5% of the core genes to
reach such a tree. According to our stop criterion, this tree has not been returned by the
algorithm. Indeed, this example illustrates the ability of the particle swarm optimization
algorithm to more globally visit the whole space at the beginning, in order to discover
regions of interest.

If we compare for instance the behavior of the PSO during the same time than the one
required to finish the GA (29 iterations), we discovered 5 topologies, two of them having all
their supports equal to 100 (Topologies 0 and 2 in Figure 3.14, occurring respectively 17
and 7 times). They however used only between 44.26% and 48.36% at this starting point
in the PSO. Bit by bit, over iterations, the percentage of core genes is enlarging, and the
swarms tend to prefer the Topology 0. Finally, after 350 computed trees (which was the
stopping condition), this topology has been obtained in 53.42% of the cases, and its best
tree has a lowest bootstrap of 100 using 66.39% of core genes. The number of occurrences
of the other topologies has growth more slowly and, even if all the bootstraps of their
best representatives exceed the value of 98, the latter fails in the attempt to significantly
increase the number of considered core genes in these representatives (always lower than
55.8%).

The simulated annealing, for its part, raised 3 topologies, exactly the ones depicted in
Figure 3.14. It has been launched with an initial temperature equal to 100, a final one
of 1e-10, and an optimal exponential temperature function. Acceptation function was the
Tsallis normalized one, with a q factor of 0.25, and initial (resp. final) acceptance of 0.7
(resp. 1e-05). A remarkable element is that these 3 topologies have the whole bootstraps
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TABLE 3.7 – Family number 2 (Chromera velia as outgroup).

Accession Nb Name Nb. of genes Length (nuc.)
NC_024082.1 Cylindrotheca closterium 257 165,809
NC_014808.1 Thalassiosira oceanica CCMP1005 138 141,790
NC_027721.1 Pseudo-nitzschia multiseries 267 111,539
NC_024084.1 Leptocylindrus danicus 155 125,213
NC_014340.2 Chromera velia 265 120,426

equal to 100. Furthermore, Topology 2 appears as the best one according to the produced
result (it was Topology 0 according to the GA, while PSO has not succeeded in separating
these two topologies). With details, the SA has stopped after 364 computed trees, with
6 occurrences of Topology 0, 43 of Topo. 1, and 315 for the Topology 2. Similarly, the
percentage of core genes leading to the best representative in each topology is respectively
of 56.56% (Topo. 0), 74.59% (Topo. 1), and 94.98% (Topo. 2), which thus outperforms the
other ones according to these simulations.

Obviously, both PSO and SA have converged to local minima that are not global ones if we
consider that both minimum bootstraps and proportion of core genes must be maximized.
Launching them again with other initial values and parameters may select other optimal
positions in the cube. The genetic algorithm with this family is emblematic, as during
its initial population generation it has returned Topology 0 that is totally supported with
99.18% of the core genome. This topology seems to be an acceptable representation of
the phylogenetic relationship between these chloroplasts. But it is remarkable that, using
the same large proportion of core gene, we can break in the sister relationship between
L.danicus and C.daemon. Indeed, this behavior has been obtained frequently with various
collections of data, which will be illustrated below.

Up to now, we only have considered one problematic bootstrap, which may be easy to
resolve when removing genes. New difficulties are added when there are at least two
problems in the list of bootstraps, as improving the first one may lead to a decrease in the
second value. We have investigated this point in the second tested family.

3.6.2.2/ A SECOND FAMILY WITH TWO PROBLEMATIC BOOTSTRAPS

The second small set of genomes is constituted by 4 Bacillariophyta plus an Alveolata
as outgroup, as listed in Table 3.7. Taxonomic details are provided hereafter, while the
phylogenetic tree based on the alignment of the core genome is provided in Figure 3.15(a).

— Cylindrotheca closterium. Stramenopiles ; Bacillariophyta ; Bacillariophyceae ; Ba-
cillariophycidae ; Bacillariales ; Bacillariaceae.

— Thalassiosira oceanica CCMP1005. Stramenopiles ; Bacillariophyta ; Coscinodis-
cophyceae ; Thalassiosirophycidae ; Thalassiosirales ; Thalassiosiraceae.

— Pseudo-nitzschia multiseries. Stramenopiles ; Bacillariophyta ; Bacillariophyceae ;
Bacillariophycidae ; Bacillariales ; Bacillariaceae.

— Leptocylindrus danicus. Stramenopiles ; Bacillariophyta ; Coscinodiscophyceae ;
Chaetocerotophycidae ; Leptocylindrales ; Leptocylindraceae.

— Chromera velia. Alveolata ; Chromerida
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The phylogenetic tree is not well-supported, having two bootstrap values of 86. Further-
more, T.oceanica and L.danicus are not sisters in this tree, while they belong in the
Coscinodiscophyceae class of diatom. More seriously, the two other species belong to
the Bacillariaceae family, which is in contradiction with this tree. It is not a necessity to
recover exactly the known taxonomy, as we focus on chloroplasts, but this tree is at least
suspicious if we consider both supports and taxonomy. This example illustrates the fact
that to use the largest common subset of sequences is not sufficient enough to guarantee
a well conducted phylogenetic study. Conversely, and obviously, to have good supports
is not enough, as all best trees in the different topologies of the previous family are well
supported in the SA case : the largest number of core genes must be thus coupled with
the research of the best supports.

Once again, the genetic algorithm has stopped rapidly, in the systematic mode. The 22
first genes have been tested (i.e., removed) before finding Topology 0 of Figure 3.15(a)
with a lowest bootstrap equal to 96 (and 99.18% of the genes), thus stopping the GA, while
a new topology (Topology 1, see Fig. 3.15(b)) has occurred three times (best tree having
twice 94 as bootstraps). Compared with the first family, the genetic algorithm stops here
before succeeding to reinforce the confidence put in Topology 0, which justifies to test the
two other approaches.

PSO heuristics produces the same two topologies after 1,165 computed trees, with all
supports equal to 100, and approximately the same number of trees (632 for Topo. 0 and
533 for Topo. 2) and of genes (70.49% versus 74.59%). We stopped the swarm manually,
as these two scores have not been improved during the last 500 iterations. Obviously,
the 3 particles have been blocked in two local extrema, and the way we configured their
velocity (0.9 and 0.8 for φ1 and φ2) does not allow them to leave these optima. So we still
cannot choose definitively the topology number 0.

Finally, the simulated annealing has produced 400 trees before convergence. They all
belong to the two topologies detailed above. However, produced results show that Topology
number 1 must be preferred, according to the SA, and this latter is neither the one obtained
with the whole core genome, nor the best one according to GA. Indeed, after convergence,
all bootstraps here are equal to 100 in the best tree found inside each topology. But
topology of Figure 3.15(b) has been obtained in 88.5% of the cases. More significantly,
best tree in Topology 1 is obtained using 96.72% of the core genome, while for Topology 0,
the best tree uses 90.98% of it. Remark that using the nine-tenths of the core genome,
you can obtain a first topology with all supports equal to 100, while using more than 96%
you can find a different topology with again all supports equal to 100. And, if we consider
the average between the lowest bootstrap and the proportion of core genes as a score, the
best topology according to GA has a score of 97.59/100, while it is of 98.36 for Topology 1
found by the SA.

We will now further investigate the simulated annealing convergence process, before
studying more deeply the two other algorithms in a next section.

3.6.3/ EARLY ANALYSIS ON SA COMPUTED PROBLEM : AN ILLUSTRATION

An example of a SA batch run (three clients on the first family described previously) is
depicted in Figure 3.16. For easy understanding, only some outputs have been reported in
the figure.
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(a) Topology 0 (b) Topology 1

(c) Topology 2

Fig. 3.14 – Obtained topologies with the first family.

(a) Topology 0 with the whole core genome (b) Topology 1 obtained by GA

Fig. 3.15 – Obtained topologies with the second family.
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Fig. 3.16 – Illustration of clade analysis with a 3-parallelized SA.
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On the lower part, all moves of the simulated annealing are reported with their nature :
synchronized move in yellow (i.e., copy, from a shared memory, of the best known solution
found in the three SAs), move with an accepted status in orange, and rejected moves in
black. Active genes are filled squares and not selected ones are white squares. Other
important data for analysis are reported, such as : temperature, accepted score of other
SAs (green and purple), and Hamming distance between two consecutive positions
(moving behavior indicator).

On the upper part, a graph of accepted scores from the three SAs is provided, with the
temperature variations due to move iterations (a lower score is a better one). As we
represented the first run on a new collection of genomes, no previous configurations were
available to set up the parameters. Consequently, a broad range of temperatures has been
considered. The Markov chains are short, in order to reduce the computation time. From
this beginning of an experiment, it can be deduced that :

— the temperature ranges well, allowing further experiments on the same set of data ;

— even with a poor configuration, SAs have found a score “not so bad”, which is
associated to a topology that other heuristics have considered as a good one.

Another SA evolution is provided in Figure 3.17, in which the three main curves do not
represent moves, but “moves of locally selected moves”, which are stabilized over time.

3.6.4/ A FURTHER COMPARISON OF THE DISTRIBUTED VERSIONS OF GA AND
BPSO PERFORMANCE

During the experiments of the previous section, it was impossible to evaluate in practice the
behavior of the genetic algorithm, as this latter found an optimum during the initialization
stage. Similarly, BPSO has underperformed the two other algorithms, while SA always
produced interesting results. This is why we decided, after having studied the SA evolution
on the first family, to further investigate both BPSO (with its two velocity versions) and
GA in large collections of experiments, distributed in a supercomputer facilities. To do so,
12 groups of plant genomes have been extracted from our set of annotated genomes.
They have been applied on our two swarm versions, and results have been compared to
the genetic algorithm ones.

Comparisons are provided in Tables 3.8 and 3.9. In these tables, Topo. column stands for
the number of topologies, NbTrees is the total number of obtained trees using 10 swarms,
b is the minimum bootstrap value of selected w, 100 − p is the number of missing genes in
w and Occ. is the number of occurrences of the best obtained topology from 10 swarms.
As can be seen in these tables, the two versions of BPSO did not provide the same kind of
results :

— In the case of Chlorophyta, Pinus, and Bambusoideae, the second version of the
BPSO has outperformed the first one, as the minimum bootstrap b of the best tree is
finally larger for at least one swarm.

— In the Ericales case, the first version has produced the best result.

We can also remark that Malpighiales has better b in GA than the two versions of BPSO.
Pinus data set has got maximum bootstrap b larger than what has been obtained using
the genetic algorithm, while Picea and Trebouxiophyceae have got the same values of b
than with genetic algorithm. Further comparison results between GA and both versions of
BPSOs are provided in Figure 3.18.
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Fig. 3.17 – Illustration of convergence on 3-parallelized SA.

(a) BPSO with 15 particles vs. GA (b) BPSO with 10 particles vs. GA

Fig. 3.18 – BPSO with 10 and 15 particles vs. GA.

According to this figure, we can conclude that the two approaches lead to quite equivalent
bootstrap values in most data sets, while on particular subgroups obtained results are
complementary. In particular, BPSO often produces better bootstraps than GA (see
Magnoliidae or Bambusoideae), but with a larger number of removed genes. Finally, using
15 particles instead of 10 does not improve so much the obtained results (see Figure 3.18
and Table 3.10).
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TABLE 3.8 – Groups from BPSO version I.

Group Topo. NbTrees b |c| 100 − p′ Occ. Swarms Particles
Pinus 3 508 98 79 32 462 1,2,3,4,5,6,7,8,9,10 10
Pinus 3 530 94 79 11 129 1,2,3,4,5,6,7,8,9,10 15
Picea 1 100 100 85 42 100 1,2,3,4,5,6,7,8,9,10 10
Picea 1 428 100 85 13 428 1,2,3,4,5,6,7,8,9,10 15

Magnoliidae 3 750 100 79 20 613 1,2,3,4,5,6,7,8,9,10 10
Magnoliidae 3 845 100 79 19 707 1,2,3,4,5,6,7,8,9,10 15

Ericales 30 344 53 84 26 185 1,2,3,4,5,6,7,8,9,10 10
Ericales 34 555 54 84 5 363 1,2,3,4,5,6,7,8,9,10 15

Bambusoideae 8 496 72 94 37 456 1,2,3,4,5,6,7,8,9,10 10
Bambusoideae 11 694 69 94 18 621 1,2,3,4,5,6,7,8,9,10 15

Eucalyptus 16 828 86 83 7 632 1,2,3,4,5,6,7,8,9,10 10
Eucalyptus 20 1073 86 80 4 845 1,2,3,4,5,6,7,8,9,10 15

Malpighiales 34 327 65 78 35 233 1,2,3,4,5,6,7,8,9,10 10
Malpighiales 38 483 69 78 40 326 1,2,3,4,5,6,7,8,9,10 15
Chlorophyta 25 191 70 24 11 109 1,2,3,4,5,6,7,8,9,10 10
Chlorophyta 29 94 68 24 11 1 1,2,3,4,5,6,7,8,9,10 15
Euglenozoa 3 450 100 26 7 292 1,2,3,4,5,6,7,8,9,10 10
Euglenozoa 3 520 100 26 4 491 1,2,3,4,5,6,7,8,9,10 15

Ehrhartoideae 2 23 100 81 0 23 1,2,3,4,5,6,7,8,9,10 10
Ehrhartoideae 3 455 100 81 0 451 1,2,3,4,5,6,7,8,9,10 15

Trebouxiophyceae 3 409 100 41 2 405 1,2,3,4,5,6,7,8,9,10 10
Trebouxiophyceae 3 415 100 41 8 354 1,2,3,4,5,6,7,8,9,10 15

Poeae 1 971 100 80 9 971 1,2,3,4,5,6,7,8,9,10 10
Poeae 1 1399 100 80 20 1399 1,2,3,4,5,6,7,8,9,10 15

TABLE 3.9 – Groups from PSO version II.

Group Topo. NbTrees b |c| 100 − p′ Occ. Swarms Particles
Pinus 3 615 98 79 14 275 1,2,3,4,5,6,7,8,9,10 10
Pinus 3 628 100 79 12 558 1,2,3,4,5,6,7,8,9,10 15
Picea 1 635 100 85 14 635 1,2,3,4,5,6,7,8,9,10 10
Picea 1 821 100 85 15 821 1,2,3,4,5,6,7,8,9,10 15

Magnoliidae 3 494 100 79 16 73 1,2,3,4,5,6,7,8,9,10 10
Magnoliidae 3 535 100 79 42 384 1,2,3,4,5,6,7,8,9,10 10

Bambusoideae 6 952 84 81 23 94 1,2,3,4,5,6,7,8,9,10 10
Bambusoideae 9 1450 82 81 18 113 1,2,3,4,5,6,7,8,9,10 15

Eucalyptus 17 972 88 80 18 618 1,2,3,4,5,6,7,8,9,10 10
Eucalyptus 23 1439 92 80 10 843 1,2,3,4,5,6,7,8,9,10 15
Chlorophyta 25 529 71 24 6 397 1,2,3,4,5,6,7,8,9,10 10
Chlorophyta 46 1500 82 24 11 397 1,2,3,4,5,6,7,8,9,10 10

Ericales 30 97 51 84 11 56 1,2,3,4,5,6,7,8,9,10 10
Ericales 34 1257 52 84 7 800 1,2,3,4,5,6,7,8,9,10 15

Malpighiales 35 725 72 79 25 445 1,2,3,4,5,6,7,8,9,10 10
Malpighiales 86 1464 84 79 45 359 1,2,3,4,5,6,7,8,9,10 15
Euglenozoa 3 197 100 26 1 165 1,2,3,4,5,6,7,8,9,10 10
Euglenozoa 3 450 100 26 10 393 1,2,3,4,5,6,7,8,9,10 15

Ehrhartoideae 1 24 100 81 10 24 1,2,3,4,5,6,7,8,9,10 10
Ehrhartoideae 1 20 100 81 9 20 1,2,3,4,5,6,7,8,9,10 15

Trebouxiophyceae 3 319 100 41 1 313 1,2,3,4,5,6,7,8,9,10 10
Trebouxiophyceae 3 818 100 41 2 81 1,2,3,4,5,6,7,8,9,10 15

Poeae 1 991 100 80 22 991 1,2,3,4,5,6,7,8,9,10 15
Poeae 1 1490 100 80 26 1490 1,2,3,4,5,6,7,8,9,10 15

TABLE 3.10 – PSO vs GA.

BPSO ver.I BPSO ver.II
Group 10 15 10 15 GA
Ericales 53 54 51 52 67
Bambusoideae 72 69 84 82 80
Pinus 98 94 98 100 80
Chlorophyta 70 68 71 82 81
Eucalyptus 86 86 88 92 90
Malpighiales 65 69 72 84 96
Magnoliidae 100 100 100 100 98
Ehrhartoideae 100 100 100 100 100
Euglenozoa 100 100 100 100 100
Picea 94 100 100 100 100
Poeae 80 80 100 100 100
Trebouxiophyceae 100 100 100 100 100
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3.7/ CONCLUSION

This chapter has presented three metaheuristics to produce a well supported phylogenetic
tree based on the largest possible subset of core genes. These methods are, namely,
genetic algorithm, binary particle swarm optimization, and simulated annealing. They have
been evaluated on various sets of chloroplast species and deployed on a supercomputer
facilities. At this level, two main issues can be signaled when considering the objective to
reconstruct the ancestral genomes of all existing chloroplasts.

On the one hand, given the average between the percentage of core genes and the lowest
bootstrap as scoring function, we have shown on simple examples that, given a set of
species, various global optima with contradictory topologies can be reached. These first
experiments emphasize that sometimes the phylogeny of chloroplasts cannot perfectly be
resolved using a tree : a phylogenetic network may be more close to the reality, branches
within this network being as strong as the associated tree topology is frequent. In the
first instance, this difficulty has not been considered : our current objective is to design
algorithms making it possible to reconstruct ancestors through a tree. In case of success,
we will then try to improve our pipeline, to become compatible with network topologies.

On the other hand, given a set of annotated genomes, we have proposed some methods
to find the most supported tree based on the largest subset of core genes. In case
where the considered species are close enough, their core genome is close to each
genome alone : the intersection of sets that share a large amount of genes is large. In this
situation, and in case of convergence of our method, the obtained well supported tree is
based on a large part of each genome, and it can be considered as well representative :
ancestral reconstruction can be reasonably applied on it. Conversely, when considering
the chloroplasts of all possible plants, there is concern about the representativeness of the
core genome, as the latter may be very small. This concerns passes from the phylogenetic
tree to the ancestors reconstructed on it. To investigate this risk and the means to remove
it, the evolution of core genome within the chloroplast taxonomy will be investigated in the
next chapter.

Page 73





4
RELATION BETWEEN GENE CONTENT

AND TAXONOMY IN CHLOROPLASTS

The aim of this chapter is to investigate the evolution of the core genome of chloroplasts
when enlarging the set of considered species. Core and pan genomes have been

computed here on de novo annotation of the 845 genomes available at the time of this
study. We take the opportunity to investigate the specificity of some branches of the
tree, when specificity is obtained on accessory genes. After having detailed the material
and methods, we emphasize some remarkable relation between well-known events of
the chloroplast history, like endosymbiosis, and the evolution of gene contents over the
phylogenetic tree.

This study shows that taking simply the core genome of the whole 845 chloroplasts at the
beginning of the pipeline presented in the previous chapter is not satisfactory, as this core
genome is too small and not really representative. Enriching our method is thus a necessity
to automatically obtain a well supported phylogenetic tree of the whole chloroplasts, on
which the ancestral reconstruction process can operate. The content of this chapter has
been presented in the ICBSB 2016 [92] conference and published in IJBBB journal [93].

TABLE 4.1 – Information on chloroplast sizes at highest taxonomic level

Taxonomy nb. of min length max average standart
genomes length length deviation

Alveolata 4 85535 140426 115714.2 19648.3
Cryptophyta 2 121524 135854 128689.0 7165.0
Euglenozoa 7 80147 143171 98548.7 19784.5
Haptophyceae 3 95281 107461 102683.6 5307.6
Rhodophyta 9 149987 217694 183755.5 18092.2
Stramenopiles 35 89599 165809 124895.1 15138.0
Viridiplantae 775 80211 289394 150194.9 20376.8
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4.1/ MATERIALS AND METHODS

4.1.1/ DATA ACQUISITION

A set of 845 chloroplastic genomes (green algae, red algae, gymnosperms, and so on)
has been downloaded from the NCBI website, representing all the available complete
genomes at the date of March, 2016 (see Table 4.1). An example of such sequences,
taken from the Streptophyta clade (a Viridiplantae), is provided in Table 4.2. Note that
this set does not really constitute a very balanced representation of the diversity of plants,
as plants of particular and immediate interest to us like Viridiplantae are first sequenced.
We must however deal with such bias, as genomic data acquisition is most of the time
human-centred. This set of sequences presents too a certain variability in terms of length,
as detailed in Table 4.1.

Each genome has been annotated with DOGMA [55], an online automatic and accurate
annotation tool of organellar genomes, following a same approach than in [57]. To apply
it on our large scale database, a script that automatic send requests to the website has
been used. By doing such annotations, the same gene prediction and naming process
has been applied with the same average quality of annotation. In particular, when a gene
appears twice in the considered set of genomes, it receives twice the same name (no
spelling error). At this level, each genome is then described by an ordered list of gene
names, with possible duplicates (other approaches for the annotation stage are possible,
as explained in the previous chapter [57]). This description will allow us to investigate, later
in this chapter, the evolution of gene content among the species tree, leading to the study
of core and pan genomes described below.

4.1.2/ CORE AND PAN GENOME

Given a collection of genomes, it is possible to define their core genes as the common
genes that are shared among all the species, while the pan genome is the union of all the
genes that are in at least one genome (all the species have each core gene, while a pan
gene is in at least one genome). Shared genes are evidences of evolution from a common
ancestor and of the relatedness of chloroplast organisms.

TABLE 4.2 – Example of genomes information of Streptophyta clade

Organism name Accession Sequence Nb of
number length CDS

Epimedium sagittatum NC_029428.1 158273 85
Berberis bealei NC_022457.1 164792 267
Torreya fargesii NC_029398.1 137075 100
Lepidozamia peroffskyana NC_027513.1 165939 93
Actinidia chinensis NC_026690.1 156346 271
Quercus aliena NC_026790.1 160921 259
Quercus aquifolioides NC_026913.1 160415 176
Sedum sarmentosum NC_023085.1 150448 99
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TABLE 4.3 – Summarized properties of the pan genomes at the highest taxonomic level.

Taxonomy Nb. Min N.b Max N.b Average Nb.
genomes of pan genes of pan genes of pan genes

Alveolata 4 253 266 262.25
Cryptophyta 2 258 259 258.5
Euglenozoa 7 193 267 253.428

Haptophyceae 3 251 266 258.333
Rhodophyta 9 156 267 246.222

Stramenopiles 35 73 271 238.971
Viridiplantae 775 85 271 229.827

To distinguish and determine the core genes may be of importance either to identify
the specificity and the shared functionality of a given set of species, or to evaluate their
phylogeny using the largest set of shared coding sequences (see the previous chapter).
In the case of chloroplasts, an important category of genome modification is indeed the
loss of functional genes, either because they become ineffective or due to transfer to the
nucleus. Thereby, a small number of gene loss among species may indicate that these
species are close to each other and belong to a similar lineage, while a significant loss
means distant lineages. So core genome is obviously of importance when inferring the
phylogenetic relationship, while accessory genes of pan genome explain in some extend
each species specificity.

Three approaches have formerly been proposed (by members of the DISC department,
FEMTO-ST) for eliciting core genomes. The first one uses correlations computed on
predicted coding sequences [57], while the second one uses gene names provided
during an annotation stage (e.g., names found in NCBI database or automatically set by
DOGMA [58]). The third method tries to take the advantages from the first two approaches,
by considering gene information and DNA sequences, in order to find the targeted core
genome [12]. Indeed, the naming process of genes is not standardized, and spelling
errors may occur, while conversely start and stop positions of coding sequences are
sometimes erroneous, which handicaps the two first approaches. This explains the reason
to be of the last approach, that tries to take the best of the two other noisy approaches
dealing with sequences or names. At this stage, we have definitively chosen the second
approach described above, on names provided by DOGMA. Indeed, when checking all the
possibilities on a few set of accurately annotated genomes, we have recovered at best the
annotations on complete sequences by using this approach. Obtained results regarding
gene content are discussed in the next section.
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Fig. 4.1 – Taxonomy backbone tree
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4.2/ OBTAINED RESULTS

4.2.1/ GENE CONTENT

Genes are rearranged in the genome by evolutionary events like insertion, deletion, transpo-
sition, and inversion, which are called genome rearrangements [94]. Such rearrangements
can be studied by putting sets of genes at the leaves of the taxonomy tree downloaded on
the NCBI website, which is partially reproduced in Figure 4.1.

It is true that this taxonomy tree is not fully accurate, as it is a general overview of plant
species relationship based on dated information related to their geography, morphology,
and so on. Nucleus DNA phylogeny has been used partially to recently update the taxo-
nomy, but we have no information of support. And the nucleus evolution is not necessarily
the same than the chloroplast one. However, such a taxonomic tree can be considered
to have a rough, general overview of gene content evolution through various families of
plants.

Fig. 4.2 – The distributions of chloroplast genomes depending on the genomes size.

A summary of obtained results, in terms of contents evolution at the top taxonomy level, is
provided in Table 4.3. It is further detailed for the next taxonomic levels in Table 4.4. The
core genome is constituted by 36 coding sequences, namely : ATPA, ATPB, ATPH, ATPI,
PETB, PETG, PSAA, PSAB, PSAC, PSAJ, PSBA, PSBC, PSBD, PSBE, PSBF, PSBH,
PSBI, PSBJ, PSBL, PSBN, PSBT, PSI_PSBT, RBCL, RPL14, RPL16, RPL2, RPL20,
RPL36, RPS11, RPS12, RPS12_3END, RPS14, RPS19, RPS2, RPS7, and RRN16. The
pan genome of the whole considered species, for its part, contains 268 genes. The core
genome has thus 36 of the whole chloroplast genes, and it is too small to hope to infer a
representative chloroplast phylogeny by using a subset of these 36 core genes.

To raise this issue, we decided to consider that :

1. The taxonomy tree can be considered as trustworthy at the uppers classification
levels (e.g., class and order) as for instance brown algae are obviously separated
from land plants.

2. Errors may appear when going deeper in the taxonomy tree, for instance when
considering family or genus levels. But, at this stage, the core genome is large enough
to accurately apply the method of the previous chapter for inferring a supported tree.
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TABLE 4.4 – Taxonomy in the second level

Taxonomy Nb. Min N.b Max N.b Avg N.b
genomes of pan genes of pan genes of pan genes

Alveolata Chromerida 2 253 265 259.0
Dinophyceae 2 265 266 265.5

Cryptophyta Pyrenomonadales 2 258 259 258.5
Euglenozoa Euglenida 7 193 267 253.428
Haptophyceae Phaeocystales 1 266 266 266.0

Isochrysidales 1 251 251 251.0
Pavlovales 1 258 258 258.0

Rhodophyta Bangiophyceae 6 156 266 240.166
Florideophyceae 3 251 267 258.333

Stramenopiles Px_clade 6 251 271 261.166
Bacillariophyta 20 138 271 231.35
Eustigmatophyceae 6 253 267 262.16
Raphidophyceae 1 258 258 258.0
Pelagophyceae 2 73 266 169.5

Viridiplantae Chlorophyta 58 156 271 244.517
Streptophyta 717 85 271 228.638

We then have proposed to construct our accurate phylogeny by using the taxonomy tree
from NCBI as backbone structure, after removing all branches after the family level. Then,
for each family, process of the previous chapter can be applied on our supercomputer
facilities, providing so well supported trees based on large core sequences of each
considered family. Such a procedure is justified if we can find a taxonomy level, like the
family one, such that almost all core genomes are significantly bigger than the 36 coding
sequences found everywhere in the 845 chloroplasts. To have it confirmed, we thus further
examined the relations between gene contents and taxonomy.

4.2.2/ RELATIONS BETWEEN GENE CONTENT AND TAXONOMY

We have further investigated the distribution of number of genes according to the group
of species. Obtained results are reproduced in Figures 4.2 and 4.3. Four groups have
appeared among the 845 genomes, which are taxonomically coherent. As shown in
Fig. 4.3, the cluster of largest genomes has a number of genes ranging from 229 to 271,
while in the group of smallest genomes, the lowest number of genes is for the Viridiplantae
case. In particular, among the genomes having less than 120 genes, we found accession
number NC_012903.1 (Eukaryota, Stramenopiles, Pelagophyceae, Pelagomonadales,
Aureoumbra lagunensis), and 63 Spermatophyta species : 3 Pinidae, 58 Magnoliophyta,
one Cycadidae, and finally one Gnetidae. We finally obtain chloroplast genomes varying
from 73 to 271 genes.

We can further note that (1) most of the organisms in green lineage (green algae and land
plants) have a lower number of genes in their chloroplasts compared to the red algae. (2)
Most land plants have genome sizes ranging between 120 and 160 kb [95]. (3) Most of the
differences in genome size are due to the number of paralogous genes. (4) According to
our computation, no gene was specific to a given clade (that is, present in only one clade).

When regarding more deeply the ordered list of genes to investigate the reasons of such
differences of size, it appears to us that the gene content evolution can mostly be explained

Page 80



Relation between Gene Content and Taxonomy in Chloroplasts Chapter 4

Fig. 4.3 – Classification of chloroplast genomes according to numbers of pan genes.

by repetitions of some genes and the loss of other ones : no large scale recombination is
responsible of such variations. Usual case is as in Figure 4.4 for ACCA pan gene 1, on
which single vulnerable genes are lost, possibly in various independent branches, due to
delete mutations. Such results have been obtained by comparing, for each couple of close
genomes, all gene names and positions, by practicing a naked eye investigation using
homemade scripts. Some mutation and indel events are provided too in Table 4.5, for the
sake of illustration.

TABLE 4.5 – Example of comparison between pairwise genomes from various species, to
investigate the changes that occurred within branches of the tree.

Index Clade Sub-kingdom Order/ Family Genome
name

N.b of
pan genes

Deletion/
Insertion

Matching
ratio

Camelina 921 Viridiplantae Embryophyta Camelineae Barbarea 267 173/0 48.46

Aquilaria 1012 Viridiplantae Embryophyta Camelineae Hibiscus 267 164/0 28.26

Acer 923 Viridiplantae Embryophyta Sapindales Azadirachta 267 173/0 49.02

Lepidozamia 924 Viridiplantae Embryophyta Zamiaceae Zamia 267 172/0 51.66

Lavanduleae 925 Viridiplantae Embryophyta Lamiaceae Perman 267 173/0 49.91

Aureoumbra 736 Stramenopiles Pelagophyceae Pelagomonadales Aureococcus 267 193/0 27.13

Epimedium 857 Viridiplantae Eudicotyledons Berberidoideae berberis 267 180/0 33.52

NC_026690_1 928 Viridiplantae Eudicotyledons Actinidia NC_026691_1 271 174/0 48.63

1. http ://www.uniprot.org
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Fig. 4.4 – ACCA gene loss in various branches of the tree
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4.3/ THROUGH A WELL SUPPORTED TREE OF CHLOROPLASTS

4.3.1/ HOW WE COMPUTED OUR PHYLOGENETIC TREE, AND WHY

The next step to realize when trying to reconstruct the evolution of gene content over
time is to deeply investigate the phylogeny of these chloroplasts, in order to obtain a tree
as supported as possible. As stated previously, a branching error in the tree may lead
to an erroneous transmission of an ancestral state, which is dramatically perpetuated
until reaching the last universal common ancestor. However, as we considered all existing
plant taxa, we faced chloroplastic sequences that have diverged a lot since two billion of
years, so the core genome of these 845 sequences is very small when compared with
sequence length of each representative, and inferring a tree on such a partial information
will probably lead to numerous errors.

After investigations of the previous section, the approach finally chosen has been to group
plant families per close packets (same family in the taxonomy). Such a grouping enlarges
the number of shared gene sequences (core genes of the considered family) on which a
more representative phylogeny can be computed [1]. After having aligned the core genes
of each family using MUSCLE [59] on our supercomputer facilities, we then have inferred
a phylogenetic tree per family. To obtain such a tree, the RAxML [46, 96] program has
been employed to compute the phylogenetic maximum-likelihood (ML) function with the
setup described hereafter. General Time Reversible model of nucleotide substitution, with
Γ model of rate heterogeneity and hill-climbing optimization method. The outgroup, for its
part, has been randomly picked from a close but different family of chloroplasts.

After such a computing, if all bootstrap values are larger than 95%, then we have conside-
red that the phylogeny is resolved, as the largest possible number of genes has led to a
very well supported tree. In case where some branches are not supported, we can wonder
whether a few genes can be incriminated. Such problem has been resolved by finding the
largest subset of core genes leading to the most supported tree, by the heuristic approach
detailed in the previous chapter and published in [56, 1]. Obtained trees are then merged
on a well-supported and representative supertree.

4.3.2/ PHYLOGENETIC INVESTIGATIONS

The approach detailed in the previous section has led to a well supported phylogenetic
tree of the whole available chloroplasts, with the ordered list of genes at each leaf of the
tree. An overview of the latter is provided in Figure 4.1. Obtained tree, available on our
website, is in general coherent with the NCBI taxonomy, except in some specific locations.

By going into the details of the obtained tree, it is well known that the first plants en-
dosymbiosis ended in a great diversification of lineages comprising Red Algae, Green
Algae, and Land Plants (terrestrial). The interesting point in the production of our results
is that the organisms resulting from the first endosymbiosis are distributed in each of the
lineages found in the chloroplast genome structure evolution as outlined in Figure 4.1. More
precisely, all Red Algae chloroplasts are grouped together in one lineage, while Green
Algae and Land Plant chloroplasts are all in a second lineage. Furthermore, organisms
resulting from the secondary endosymbioses, as listed in Table 4.4, are well localized in
the tree : both the chloroplasts of Brown Algae and Dinoflagellates representatives are
found exclusively in the lineage also comprising the Red Algae chloroplasts from which
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they evolved, while the Euglens is related to Green Algae from which they evolved. This
latter makes sense regarding biology, history of lineages, and theories of chloroplasts
origins (and so photosynthetic ability) in different Eucaryotic lineages [97].

4.4/ CONCLUSION

In this chapter, we made significant progress in the study of chloroplastic sequence evolu-
tion, by providing material and methods required in the quest of the ancestral genome of
the chloroplasts. A large set of complete chloroplast genomes has been studied de novo
regarding both core and pan genomes, phylogenetic relationship, and gene content modifi-
cations. We then started to study the produced data, by emphasizing some remarkable
relations between well-known events of the chloroplast history and the evolution of gene
contents over the phylogenetic tree.

Our intention is now to investigate more systematically such relations between remarkable
ancestral nodes in the tree, endosymbiosis events, and evolution of gene content. We will
wonder whether some branches of the trees are statistically remarkable when considering
gene content (for instance, do we have a correlation between the presence or absence of a
subset of genes, and a particular taxonomy). To do so, we must investigate, in the following
chapters, how gene ordering and content of each ancestral node can be computed using
ad hoc algorithms, how ancestral DNA sequences can be inferred, and finally how ancestral
intergenic regions can be deduced. By producing such ancestral genomes, it will then
be possible to investigate hypotheses formulated by biologists, regarding the origin of
chloroplasts, their recombination events, and the transfer of some material to the nucleus.
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5
ANCESTRAL RECONSTRUCTION AND

INVESTIGATIONS OF GENOMIC
RECOMBINATION ON CAMPANULIDES

CHLOROPLASTS

In this chapter, we propose a semi-automated method to rebuild genome ancestors of
chloroplasts by taking into account gene duplicate. Two methods have been used in order
to achieve this work : a naked eye investigation using homemade scripts, whose results
are considered as a basis of knowledge, and a dynamic programming based approach
similar to Needleman-Wunsch. The latter fundamentally uses the gestalt pattern matching
method of sequence matcher to evaluate the occurrences probability of each gene in the
last common ancestor of two given genomes.

The two approaches have been applied on sets of sequences of reasonable sizes, making
it possible to apply a manual inspection for cross validation. The chosen chloroplastic
genomes are from Apiales, Asterales, and Fabids orders, the latter having inversions too.
These closely related group of families have been chosen because Apiales species do
not undergo insertions or deletions, while they slightly occur in the Asterales and Fabids
orders. We then carried out a series of experiments to extensively verify and compare
the obtained ancestral reconstruction results with the latest released approach called
MLGO (Maximum Likelihood for Gene-Order analysis). The first part of this chapter has
been presented in the 2015 SeqBio workshop [98] and is currently submitted to Journal of
Integrative Bioinformatics (JIB).

5.1/ INTRODUCTION

This chapter starts with proposing a way to reconstruct the Last Universal Common Ances-
tor (LUCA) of the whole set of all available chloroplastic genomes. It aims at investigating
scientific and technical obstacles that may appear when trying to answer this difficult
question. The proposed ancestral reconstruction is twofold. Firstly, a few number of fami-
lies is selected as running example, from the large collection of complete chloroplastic
genomes presented in the previous chapter. Their coding sequences have been further
extracted and automatically annotated them following the approach detailed in the previous
chapter, and in [56, 57, 58]. Using the commonly genes by these species, a well-supported
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phylogenetic tree has been obtained. However, as signaled previously, the core genome of
the whole specie is too small to produce an accurate tree. We then have decided to apply
the strategy of the two previous chapters to obtain a well supported tree of the chloroplasts
we considered here, that are composed by combinations of a few number of close families.

This first step being achieved, the second stage is now to design algorithms that study the
evolution of gene content and ordering among the tree, and the latter must be validated
with naked eye on these small combinations of plant families. Our proposal in this chapter
focuses on this second stage, and illustrates which kind of results can be obtained on three
small groups of Campanulides species. It will be completed in further work, by obtaining
ancestral nucleotide sequence of each gene, and by filling intergenic regions using either
state-of-the-art or novel algorithms.

As previously stated, ancestral genome reconstruction has already been investigated
in the literature [13, 10]. Usually, state of the art algorithms deal with permutations of
integers. Our problem applied to chloroplasts may appear as more difficult, as we relax
the permutation hypothesis. However, in the classical Multiple Genome Rearrangement
Problem [45], targeted genomes are bacterial or nucleus ones, which have much more
genes than a chloroplast. Furthermore, gene order and content do not evolve so much
when considering related plant species. Such observations explain why state-of-the-art
algorithms cannot be applied to our particular problem even if this latter should be solvable.

5.2/ PRESENTATION OF THE PROBLEM

Let us consider a set of complete chloroplastic genomes for close plant species, like
the Apiales order as shown in Table 5.1.

Taken into consideration results from the previous chapter, we assume first that :

1. Each genome has been annotated with Dogma [55]. By doing so, the same gene
prediction and naming process has been thus applied with the same quality of
annotation. At this level, each genome is described by an ordered list of gene names,
with possible duplicates.

2. The sequences inside the core genome have been multialigned, and a well supported
phylogenetic tree has been obtained based on this alignment as shown in Figure 5.1
for Apiales order. This stage may necessitate to remove a few core genes in each
family, by using methods detailed in the previous chapters and in [56, 1, 99].

Our objective is then to reconstruct ancestral genomes at each node of the phylogenetic
tree until the root node.Such a reconstruction is threefold : it requires first to find the

TABLE 5.1 – Genomes information of Apiales order.

Organism name Accession Genome Id Sequence length Number of genes Lineage

Daucus carota NC_008325.1 114107112 155,911 bp 138 Apiaceae
Anthriscus cerefolium NC_015113.1 323149061 154,719 bp 132 Apiaceae
Panax ginseng NC_006290.1 52220789 156,318 bp 132 Araliaceae
Eleutherococcus senticosus NC_016430.1 359422122 156,768 bp 134 Araliaceae
Aralia undulata NC_022810.1 563940258 156,333 bp 135 Araliaceae
Brassaiopsis hainla NC_022811.1 558602891 156,459 bp 134 Araliaceae
Metapanax delavayi NC_022812.1 558602979 156,343 bp 134 Araliaceae
Schefflera delavayi NC_022813.1 558603067 156,341 bp 134 Araliaceae
Kalopanax septemlobus NC_022814.1 563940364 156,413 bp 134 Araliaceae
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Fig. 5.1 – Most supported phylogenetic tree obtained from Apiales order.

ordered list of genes of each ancestor, then the DNA sequence of each ancestral gene,
and finally to fill in intergenic regions.

For all three steps of reconstruction, the authorized operations are :

• insertion, deletion, duplicate, or inversion of one or a block of genes, at gene lists
level ;

• operations which are commonly considered in the Needleman-Wunsch edit dis-
tance [30] (insertion, modification, or deletion of a nucleotide, together with opening
and enlarging a gap), at DNA sequence levels.

The operations listed above allow to reduce the number of leaf nodes. Notice that the global
optimum over the whole tree may be obtained with a few local solutions (one ancestor of
two genomes) that are not optimal.

5.3/ ANCESTRAL ANALYSIS METHODS

Two methods have been applied on our set of data : an automatic gestalt pattern based
gene features matching process and a naked eye manual cross-validation. Let us begin by
introducing the manual approach. This was completed first to determine which ancestor
genomes our automatic algorithm should produce.

5.3.1/ METHOD I : NAKED EYE INVESTIGATION

As stated above, this method was not an algorithm that automatically builds the ancestors
of the provided genomes, but it was a method applied by hand, as follows. We have
produced ad hoc software to represent each triplet constituted by two sister species
and their closest cousin as three parallel lines, as described in Figure 5.2. On each line
are located numerous equidistant vertices, one per coding sequence in the associated
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genome, and all sequences having the same gene name according to Dogma are linked
by an edge.

Fig. 5.2 – Simulation of ancestral reconstruction process between two genomes

We then have manually deduced the ancestral genome of each couple of sister species
by a consensus approach. Each part shared in common in their genomes is put in the
ancestor. In case of a difference, the two sister genomes are compared locally with their
closest cousin. If the latter agrees with one of the two sisters, the agreement (sequence
of genes) is put on the ancestor and this part of the lines is considered as resolved. If
the closest cousin cannot help to resolve the situation, because it locally presents a third
pattern different from the two sisters, then one or more new close cousins are considered,
and the solution that minimizes the number of rearrangement operations is finally chosen,
leading to the local ancestor gene list (parsimonious approach).

By doing so and verifying our results three times (by matching the gene contents of
each genome with three cousin genomes in the same clade), we obtained a trustworthy
ancestral list of genes at each internal node. Our next objective was then to automatically
recover these ancestors.

5.3.2/ METHOD II : ANCESTOR PREDICTION BASED ON GENE CONTENTS

This method is fivefold :

— Step 1. In this stage, all the nodes are named following an alphabetical order. Each
letter in an internal node represents an ancestor genome.

An example of the result of this stage can be seen in Figure 5.3 when applied on a
Apiales and Asterales species tree.
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Fig. 5.3 – Apiales and Asterales species tree. The numbers shown at each branch are
bootstrap values computed by RAxML [1]. A letter has also been associated to each
internal node as defined in Step 1.

— Step 2. This stage automatically selects the two closest sister species according to
the Needleman-Wunsch distance applied to lists of genes. The other species are
then ordered according to their distance in the tree (number of nodes between it and
one of the two sister species, and Needleman-Wunsch distance to solve ex-aequo
cases), yielding to what is further denoted as an ordered list of cousins.

— Step 3 In the simplest situation, all the gene couples between the two sister species
completely match. In this case, the ancestor is directly deduced as being the same
as its children. In any other situation (i.e., there is at least one deleted, duplicated, or
inserted gene. . . ), then a deeper investigation is initiated using one or more cousin
genome(s).
In this case, we iterate all genes in the two sister genomes U1 and U2. If gene gi in
U1 matches properly in name, position, and orientation with g′i in U2, then we add
it in the ancestor genome γ at position i. Otherwise, consider the gene g′′i at the
same location in the first cousin genome : if gi or g′i is equal to g′′i then add the most
frequent gene to the ancestor genome γ in position i, else this gene is considered as
an insertion.
Figure 5.4 gives a simulation example of the considered procedure. We suppose that
the leaves A, B, C, D, and E are genes, and the objective is to predict the ancestor α1.
Note that genes A, B, and D match in positions. Concerning the problematic C gene
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between these two genomes, we need a cousin to determine whether it is present in
the α1 ancestor genome or not. One or both genomes in α2 subtree are considered
to be cousin(s) to treat the problem of gene C. The two cousin genomes have one
copy of gene C in their gene lists. According to our voting system, gene C will be
in α1 ancestor and one delete operation is recorded (AB_D). An insert state is also
marked in α2 subtree, where gene E did not appear in either cousin genomes of α1
tree, nor in its sister. Such a deletion is illustrated in Figures 5.5.

Fig. 5.4 – Simulation of gene investigation step between two genomes.

The conflict resolution presented above has been refined by considering the gestalt
pattern matching method [100] based on dynamic programming like in Needleman-
Wunsch.

— Step 4. After applying the previous step to all genes of the sister species, their
ancestor is then reconstructed. The subtree of the two sister genomes is then
replaced by the list of genes of their ancestor.

— Step 5. Repeat from Step 2 until the final root ancestor is constructed.

5.4/ DISCUSSION

We performed the whole process of ancestral gene order reconstruction on two data
sets, namely : Apiales and Asterales. The starting point is the phylogenetic tree already
presented in Figure 5.3.

5.4.1/ THE Apiales ORDER

Let us first consider the Apiales order. We then apply the manual and the automatic
approaches to infer ancestral states at each internal node of the tree. The results were
convergent and they lead to the following conclusions regarding the evolution of gene
content among the tree.
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We first focused on the evolution of duplicates summarized in Table 5.2. For each duplicate,
the number of copies is specified too. Let us now enter into details regarding the leaves of
the phylogenetic tree shown in Figure 5.3.

TABLE 5.2 – Gene duplicate for each genome in Apiales order.

Genome name
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ACCD 0 0 0 0 0 2 2 0 0
RPS12 2 2 2 2 2 2 2 2 2
NDHA 2 2 2 2 2 2 2 2 2
NDHK 2 2 2 2 2 0 0 2 2
RP12 4 4 4 4 4 4 4 4 4
RPS7 2 2 2 2 2 2 2 2 2

RPOC1 2 2 2 2 2 2 2 2 2
YCF2 4 4 4 4 4 4 4 4 4
YCF3 3 3 3 3 3 3 3 3 3
RPL23 2 2 2 2 2 2 2 2 2
YCF1 3 2 2 2 2 2 2 3 2
CLPP 3 3 3 3 3 3 3 3 3
ATPF 2 2 2 2 2 2 2 2 2

ORF56 4 4 4 4 4 2 4 4 4
RRN23 2 2 2 2 2 2 2 2 2
YCF68 4 6 6 6 6 2 0 6 6
RRN5 2 2 2 2 2 2 2 2 2

RRN4.5 2 2 2 2 2 2 2 2 2
YCF15 2 2 2 2 2 4 4 2 2
RRN16 2 2 2 2 2 2 2 2 2
ORF42 2 2 2 2 2 0 2 2 2
RPS19 0 0 0 0 0 2 2 0 0

TRNV-GAC 2 2 2 2 2 2 2 2 2
TRNL-UAA 2 2 2 2 2 2 2 2 2
TRNL-CAA 2 2 2 2 2 2 2 2 2
TRNV-UAC 2 2 2 2 2 2 2 2 2
TRNR-ACG 2 2 2 2 2 2 2 2 2
TRNN-GUU 2 2 2 2 2 2 2 2 2
TRNA-UGC 4 4 4 4 4 4 4 4 4
TRNI-GAU 4 4 4 4 4 4 4 4 4
TRNI-CAU 2 2 2 2 2 2 2 2 2

RPS12_3END 2 2 2 2 2 2 2 2 2

• Sister species E. senticosus and B. hainla have been considered first, with K.
septemlobus playing the role of the cousin. After manual and automatic comparisons,
we found that the gene YCF1 is present twice in E. senticosus, while it is in three
copies in B. hainla. As the cousin has only two sequences of YCF1, we suggest that
the latter is present twice in the ancestor : one gene has been inserted in B. hainla.
Similarly, YCF68 is in 4 copies in B. hainla and in 6 copies in the sister species. As
the cousin presents 6 copies too, we can deduce that the common ancestor of E.
senticosus and B. hainla contains 6 copies of this gene. In other words, two copies
of YCF68 have been removed in B. hainla. All the other genes are similar in both
names and locations, and so we are able to deduce the ancestral genome (I).

• The sister genomes A. undulata and P. ginseng have exactly the same ordered list
of genes, which is thus assigned to their last common ancestor (E).

• Similarly, all couples of sister species A. undulata and P. ginseng, M. delavayi
and K.septemlobus, S.delavayi and M. delavayi, and finally K. septemlobus and E.
sentucosus match perfectly when considering each couple of sister genomes. In
other words, they have not deviated from their respective last common ancestors,
which presents the same sequence as their children species. Selected genomes
are aligned graphically as shown in Figure 5.5. We then identify, by using naked
eyes investigation and human thinking, the most parsimonious scenario applied on a
deduced ancestor, which can lead to these two children using the lowest number
of edit operations (such as inserted and deleted genes). Figure 5.6 shows this
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matching process applied on Meta_Delavayi and kalo_septemlobus, which have a
core genome of 169 genes (only the 23 first genes are depicted). Note that, in this
example, Meta_Delavayi (L) and kalo_septemlobus (M) match completely, so the
ancestor H is very easy to obtain (H = L ∩ M has 169 genes).

Fig. 5.5 – Graphical presentation of genes alignment between pairs of genomes (Bras_-
hainla, Kalo_septemlobus) and (Bras_hainla, Meta_delavayi)

• Let us finally compare A. cerefolium and D. carota. YCF68 gene exists in 2 copies in
A. cerefolium while it is missing in D. carota, as shown in Figure 5.7. The cousin, for
its part, also contains the gene YCF68 (in 6 copies), and so our algorithm concludes
to the presence of this gene (in 2 copies) in the ancestor of A. cerefolium and D.
carota. Additionally, D. carota contains 4 copies of ORF56, while this gene is only
represented twice in its sister. As the cousin genome has 4 representatives of ORF56,
we can reasonably deduce that this is the case too in the ancestor of these two sister
species : two copies of the gene ORF56 have been deleted from the genome A.
cerefolium. Such decisions are depicted in Figure 5.7 (B), which shows a specific
region of the ancestor genome (C). This region has been generated by our algorithm,
which has been applied on A. cerefolium and D. carota, and it has been cross
manually validated.

The process detailed above continues with the obtained ancestors and is repeated until
reaching the root of the tree : the Last Universal Common Ancestor (LUCA) of Apiales.
By operating this reconstruction stage, we found that chloroplasts of this order have not
faced so much deletion or insertion in their genomes. Indeed, in most of the cases, the
disparity comes from the variation in numbers of gene copies. The obtained results are
summarized in Figure 5.8.

5.4.2/ THE Asterales ORDER

We have then examined the Asterales order, which is close to the Apiales one. Table 5.3
contains what has been deduced from our experiments on this order. As can be seen, As-
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Fig. 5.6 – Graphical presentation of genes alignment between genomes Kalo_septemlobus
and Meta_delavayi

Fig. 5.7 – (A) : Example of gene correspondances in sister genomes D. carota and A.
cerefolium. For instance YCF68 is found in position 111 in A. cerefolium while it is missing
from D. carota. Additionally, ORF56 is in 2 copies, positions 114 and 115, in D. carota,
while this gene is only represented once at position 115 in its sister. (B) Comparison
between two sisters. The result is the ancestor genome (C). We can reasonably deduce
that two copies of ORF56 have been deleted from genome A. cerefolium. The ancestor,
for this part, contains too the gene YCF68, which has been deleted from the genome D.
carota

terales genomes have faced much more modifications compared to the Apiales ones. This
difference between the two orders lead to a larger variation in the lengths of Asterales
genomes.

For the sake of illustration, let us consider for instance the chloroplast of H. annuus.
It only contains 161 coding sequences while its sister species, namely P. argentatum,
has 183 genes. The matching process previously described has led in this case to an
ancestor of size 162. More precisely, 23 genes have been inserted and two other ones
have been deleted in P. argentatum, while only one gene has been removed in H. annuus,
as described in Figure 5.9.

In this second order and in most cases, genes are comparable in both names and locations,
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Fig. 5.8 – Insertion and deletion events found during ancestor reconstruction on Apiales
order. Letters in red refer to ancestor genomes (their lengths are provided too).

having the same positions if we do not consider duplicates. Indeed, almost all differences in
this set of chloroplastic genomes come from a variation in the number of copies, which has
been inferred well by our automatic tool. Let us now investigate a third order, to compare it
with Apiales (only a few variations of genomes) and Asterales (large variety in duplicates).

5.4.3/ THE Fabids ORDER

It was easy to deal with Apiales order, while Asterales improved the complexity of the
ancestral reconstruction, due to duplicates. However, in both cases the proposed algorithm
was able to recover results that have been inferred manually (naked eye investigation). We
now consider a larger and more complicated order, namely the Fabids, to evaluate the
performances of our proposal when facing a complex collection of genomes.

Indeed, the main problem with this new order is that it contains large scale inversions in
some branches, while it was not the case with the two other orders previously studied.
In this case, a single inversion detection algorithm has been able to highlight helpful
information regarding such regions, like the beginning and the end (insertion or deletion)
of reversals. However, the most difficult case where insertions or deletions are inside the
inversion zone is difficult to handle.

In this situation, we proposed to select one of the two sisters to operate as a reference. We
then search for the best cousin within the same clade, and we compare the status of each
gene in this region (matching, or need insertion or deletion). Most of the reversal regions
we considered match at the genes names level, but with reverse positions. Figure 5.10
presents our finding on Fabids order, with information about the length of each node. We
provide also various rearrangement information like the number of insertion, deletion, and
inversion.
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Fig. 5.9 – Summary of the complete ancestral genomes reconstruction of the Asterales
order. Insertion and deletion events are provided, with names and length of each internal
node.

5.4.4/ COMPARISON WITH MLGO

For the sake of comparison, we have examined the ancestral genome contents of
both Apiales and Asterales species with MLGO tool, which stands for Maximum Like-
lihood for Gene Order Analysis 1. This latter is, to the best of our knowledge, the first
web tool for phylogeny and ancestral genomes reconstruction compatible with genome
rearrangements [6].

On the one hand, the ancestors in the Apiales order, provided either by our approach or
with MLGO, are very similar in terms of gene contents. However our method outperforms
MLGO when investigating the specific location of genes and their number of duplicates.
On the other hand, results are very different for some nodes in the Asterales case, as
summarized in Table 5.4. For instance, when gene YCF1 in internal node d has 2 copies in
both of its two children and their closest cousin has 2 occurrences of this gene too. In this
case, our algorithm proposes to set the number of YCF1 in d to 2, while MLGO produced
only one copy. Similar consequences can be outlined in the most difficult case, namely
the Fabids order, as highlighted by Table 5.5. At each time, our algorithm outperforms
the MLGO results by producing what is the most likely ancestral state (numbers of genes
and their positions) in each situation. For instance, considering the ancestral node M, we
found that gene INFA is missing in the first child while it is present in the second one. We
also found it in the two closest cousins, with one copy at each time. The most reasonable
scenario is to consider that the ancestral node under consideration also has a single copy
of INFA. This result is produced by our algorithm, while MLGO considers that M must
not have INFA in its genome. Other divergent results can be reported, as in the ordinary
case of node E : gene ATPF is present once in each of the two children. So our algorithm
considers that it is present once in E, while with MLGO, we found that this node must
contain two copies of ATPF. Other nodes are problematic in the MLGO case, for example,

1. http://www.geneorder.org

Page 95

http://www.geneorder.org


Ancestral Reconstruction and Investigations of Genomic Recombination on Campanulides
Chloroplasts Chapter 5

Fig. 5.10 – A phylogenetic tree in the reconstruction of the Fabids ancestor and the
unambiguous reconstruction accuracy of our algorithms on this tree. Alphabetic characters
represent the ancestors. L stands for the length of each node (number of genes), [D, I]
describes the number of deletions and insertion, while inversions are indicated too.

{a, b, c, d} as can be seen in Table 5.5. Each time, our algorithm produces results in
agreement with the one that have been deduced manually, while in some cases MLGO
has yielded surprising results.

Page 96



Ancestral Reconstruction and Investigations of Genomic Recombination on Campanulides
Chloroplasts Chapter 5

TABLE 5.3 – Gene duplicate for each genome in Asterales order.
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ACCD 0 0 0 0 0 0 2 0 0 0
NDHB 4 4 4 4 4 4 4 4 4 4
RPS12 2 2 2 2 2 2 3 3 3 2
NDHA 0 0 2 2 0 0 0 0 0 0
NDHK 2 2 2 2 2 2 2 2 2 0
NDHF 0 0 0 0 0 0 0 0 0 2
RPL2 4 4 4 2 2 2 2 2 4 6
RPS7 2 2 2 2 3 3 3 3 2 4
YCF2 2 2 2 2 2 2 7 2 2 6
YCF3 3 3 3 3 3 3 3 3 3 3
RPL23 2 2 2 2 2 2 4 4 2 2
YCF1 0 0 0 0 2 2 4 3 0 4
CLPP 3 3 3 3 3 3 3 3 3 3
ATPF 2 2 2 2 2 2 3 2 2 2

ORF56 4 4 4 4 4 4 4 4 4 4
RRN23 2 2 2 2 2 2 2 2 2 2
YCF68 2 6 2 2 4 4 5 4 2 2
RRN5 2 0 2 2 2 2 2 2 2 0

RRN4.5 2 2 2 2 2 2 2 2 2 0
YCF15 2 4 2 2 2 2 2 2 2 0
RRN16 2 2 2 2 2 2 2 2 2 0
ORF42 2 2 2 2 2 2 0 2 2 0
RPS19 2 0 0 0 0 0 3 3 2 2
RPL14 0 0 0 0 0 0 2 2 0 0
RPS3 0 0 0 0 0 0 0 0 0 2

ORF188 0 0 0 0 0 0 0 0 0 0
CCSA 0 0 0 0 0 0 0 0 0 0
RPOB 0 0 0 0 0 0 0 0 0 3
RPOA 0 0 0 0 0 0 0 0 0 2
PSBD 0 0 0 0 0 0 0 0 0 3

TRNA-UGC 4 4 4 5 5 5 4 4 4 2
TRNI-GAU 4 4 4 4 4 4 4 4 4 4
TRNI-CAU 0 2 0 0 0 0 0 0 2 2
TRNI-ACG 2 0 2 2 2 2 2 2 0 0
TRNR-ACG 2 2 2 2 2 2 2 2 2 2
TRNN-GUU 2 2 2 2 2 2 2 2 2 2
TRNV-GAC 2 2 2 2 2 2 2 2 2 0
TRNL-UAA 2 2 2 2 2 2 2 2 2 0
TRNL-CAA 2 2 2 2 2 2 4 4 2 0
TRNV-UAC 2 0 2 2 2 2 2 2 2 0
TRNF-GAA 2 0 0 0 0 0 2 2 0 0
TRNT-GGU 0 0 0 2 2 2 0 0 0 0
TRAN-GCA 0 0 0 0 0 0 2 2 0 0
TRNS-GCU 0 0 0 0 0 0 2 3 2 2
TRNR-UCU 0 0 0 0 0 0 0 0 0 2

RPS12_3END 2 2 2 2 2 2 2 2 2 2

TABLE 5.4 – The variation in comparison results of ancestral genomes nodes on Asterales
order with MLGO.

Species genome Ancestor results
Ancestor

node
Gene
name

Genome 1
(Nb of genes)

Genome 2
(Nb of genes)

Cousin genome 1
(Nb of genes)

Cousin genome 2
(Nb of genes) Ancestor MLGO

j RPOA 1 2 3 2 2 1
g RPOA 2 2 1 1 2 1
g TRNF-GGA 2 1 2 2 2 1
e TRNF-GGA 2 2 1 1 2 1
d YCF1 2 2 2 1 2 1
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TABLE 5.5 – The variation in ancestral genomes nodes which were achieved by comparing
our method results with MLGO tool on Fabids order.

Species genome Ancestor results
Ancestor

node
Gene
name

Genome 1
(Nb of genes)

Genome 2
(Nb of genes)

Cousin genome 1
(Nb of genes)

Cousin genome 2
(Nb of genes) Ancestor MLGO

M INFA — 1 1 1 1 —
N ACCD 2 2 2 1 2 1
T ACCD 1 2 2 2 2 1
Q YCF1 1 2 1 1 1 2
E NDHK 2 2 1 1 2 1
E INFA 2 1 — — 1 —
E ATPF 1 1 2 2 1 2
d RPS16 2 — 1 1 1 2
c RPS19 2 1 2 2 2 1
b RPS19 2 2 1 2 2 1
a PSBG 1 — — — — 1
a TRNK-UUU 2 1 2 — 2 1
a NDHK 1 2 2 — 2 1

Fig. 5.11 – Example of comparison with MLGO on Apiales order. We show similarity
in gene contents between our results, ancestor node (C), and ancestor node (A1) from
MLGO.
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Fig. 5.12 – Apiales order tree produced by MLGO.
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5.5/ CONCLUSION

This chapter has presented a first ancestral reconstruction of gene content and order and
its application to Apiales, Astrales, and Fabids orders. The approach can be considered as
a recursive tree reduction. Experiments have shown that this approach is more accurate
than MLGO which is considered as the state of the art tool for genomes reconstruction.
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6
ON THE ABILITY TO RECONSTRUCT

ANCESTRAL GENOMES FROM
Mycobacterium GENUS

In this thesis, we state that, even if the ancestral reconstruction problem is NP-hard in
theory, its exact resolution is feasible in various situations. The previous chapter focused

on organelles that contain various genomic changes caused by rearrangements, like gene
duplication and loss. However, we claimed that the small size of these genomes make it
possible to deal in practice with the ancestral reconstruction problem. In this chapter, we
enlarge the size of genomes by considering particular bacteria, namely some clonal ones.
In the latter, the increase of the genome size is balanced by the decrease of recombination
events, when compared with chloroplasts. This is the reason why we claim that the
ancestral reconstruction problem is tractable too for such genomes, even if tools and
algorithms introduced in the previous chapter must be adapted to the bacterial reign. Such
accurate reconstruction, which identifies too some highly homoplasic mutations will be
applied in this chapter, to two Mycobacterium pathogenetic bacterias. By mixing automatic
reconstruction of obvious situations with human interventions on signaled problematic
cases, we will indicate that it should be possible again to achieve a concrete, complete,
and really accurate reconstruction of lineages of the Mycobacterium tuberculosis complex.
Thus, it is possible to investigate how these genomes have evolved from their last common
ancestors. Let us finally note that the content of this chapter has been presented in the
IWBBIO conference, 2017 edition [101].

6.1/ INTRODUCTION

Mycobacterium tuberculosis is presently still one of the principal causes of death world-
wide. Approximately one-third of the world population is infected by the Mycobacterium
tuberculosis complex (MTBC), with about 9 million event cases annually, leading to es-
timated a million deaths each year. Due to their different host tropism and phenotypes,
members of MTB complex display various pathogenicities ranging from particularly human
(M. tuberculosis, M. africanum, and M. canetti) or rodent pathogens (M. microti) to Myco-
bacteria with a broad host spectrum (like M. bovis, see [102, 103, 104]). Mycobacterium
tuberculosis has been in the human population for thousands of years, as fragments of the
spinal column of Egyptian mummies from 2300 BCE show definite pathological signs of
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tubercular decay. Since then, Robert Koch identified the bacterium responsible for causing
consumption in 1882.

The MTB complex belongs to the slow-growing sublineage of Mycobacteria. Based on
topographical characteristics, MTBC can be categorized into six clusters, including species
such as M. tuberculosis, M. africanum, M. bovis, M. microti, and M. canettii. Members
in MTBC share 99.95% of their genomic sequences and a rigorously clonal population
structure [105]. Compared to more ancient species (e.g., M. marinum), MTBC has shorter
but more virulent chromosomes [106, 107]. Considering that they all are derived from a
common ancestor, it is interesting that some are human or rodent pathogens, whereas
others have a wide host spectrum [108]. The genome of M. tuberculosis was studied
using the strain M. tuberculosis H37Rv. It has a circular chromosome of about 4,200,000
nucleotides long, while containing about 4,000 genes [109]. The different species of the
Mycobacterium tuberculosis complex show a 95−100% DNA relatedness based on studies
of DNA homology, and the sequences of the 16S rRNA gene are the same for all the
species.

MTBC genomes have been modified during the evolution by mutation, insertion-deletion
of nucleotides, by large-scale changes (inversion, duplication or deletion of large DNA
strands), or by other modifications specific to repetition (insertion sequences, etc.). Being
able to predict either its past or its future evolution may have multiple applications, e.g.,
to reconstruct the past history and the ancestors of bacteria, to better understand their
mechanism of virulence and resistance acquisition, or to predict outbreaks. The relatively
short timescale (tuberculosis disease is relatively recent, as its most recent common
ancestor evolved ≈ 40,000 years ago [110]), the relatively reasonable sizes of considered
genomes, the relative rarity of recombination events, and the recent possibility to have
access to old and present bacterial DNA sequences, may lead to the possibility to model
the evolution of these genomes, in order to reconstruct and to understand their ancient
history and to predict their future evolution.

To do so, new algorithms of detection and of evolution regarding genomic modifications
must be written. They may be adapted from the chloroplast case, even if these two kinds of
genomes have very different characteristics (length, percentage of shared genes between
lineages, etc.). Indeed, researches on this subject mainly focus on predicting the evolution
of nucleotide mutations, and by assuming specific forms for matrix mutations which seem
incompatible with recent experimental measures [111]. These models for evolution must be
differently designed, in order to better reflect the reality. Additionally, the serious impact of
other modifications operating on the genomes (as insertions and deletions of nucleotides,
inter and intra chromosomic recombinations, or modifications specific to repetition, see
Fig. 6.1), must be taken into account more deeply, while a concrete ancestral reconstruction
of bacterial lineage must be finally achieved.

The objective of this chapter is to prove that, given a set of close bacterial genomes, it
is possible to reconstruct in practice their recent sequence evolution history, by mixing
state-of-the-art tools with a pragmatic manual completion and cross-validation. We will
illustrate that, in practice, it should be possible to reconstruct ancestral genomes for some
lineages of the Mycobacterium genus, using all available complete genomes of such a
lineage (for instance, 65 complete genomes of the MTB complex are currently available,
and we have more than 1,000 archives of reads).

An important remark, motivating our proposal, is that the NP-hard character of this problem
only appears if we consider a very large number of operations in very large sequences.
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Fig. 6.1 – Various genome rearrangement events.

On our side and with the chosen bacteria, we will consider quite small sequences and a
relatively small number of large scale recombinations. So we face tractable problems in
various real situations, on which simple and pragmatic approaches may work.

6.2/ A CONCRETE SEMI-AUTOMATIC ANCESTRAL RECONSTRUC-
TION

Fig. 6.2 – Representation of a multiple sequence alignment.

The complete sequences of the 65 Mycobacterium genomes available on the NCBI 1 have
been downloaded. Listed according to their species, 42 genomes of tuberculosis, 15 bovis,
2 africanum, 5 canettii, and 1 microti have been recovered. Table 6.1 shows information
about some of these Mycobacterium genomes. Among this MTBC, we particularly focused
on tuberculosis and on canettii because the virulent tuberculosis species is supposed
to have emerged from canettii forty thousand years ago. To verify such an evolutionary
hypothesis, the first task of our approach, proposed to achieve an ancestral reconstruction
of close genomes, is to perform a multiple sequence alignment of the sequences. This
task is described in the next section.

1. ftp ://ftp.ncbi.nih.gov/genomes
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TABLE 6.1 – Information about some Mycobacterium genomes.

Organism name Accession Sequence length Number of genes
Mycobacterium tuberculosis W-148 NZ_CP012090.1 4,418,548 bp 4,133
Mycobacterium tuberculosis H37Rv NC_018143.2 4,411,709 bp 4,132
Mycobacterium africanum GM041182 NC_015758.1 4,389,314 bp 4,089
Mycobacterium africanum strain 25 CP010334.1 4,386,422 bp 4,798
Mycobacterium microti strain 12 CP010333.1 4,370,115 bp 4,321
Mycobacterium canettii CIPT 140010059 NC_015848.1 4,482,059 bp 4,137
Mycobacterium canettii CIPT 140070008 NC_019965.1 4,420,197 bp 4,103
Mycobacterium bovis strain ATCC BAA-935 NZ_CP009449.1 4,358,088 bp 4,095
Mycobacterium bovis BCG str. Tokyo 172 NZ_CP014566.1 4,371,707 bp 4,076

6.2.1/ MULTIPLE SEQUENCE ALIGNMENT

The first problem of this alignment stage, is to identify a common starting point in these
complete circular genomes. In order to do so, we searched for a reference sequence of
200 nucleotides from M. tuberculosis H37Rv, and we found it or its transconjugate in each
genome using a local blast. Then, a circular rotation (together with a transconjugate opera-
tion if needed) has been performed on each complete genome, so that each sequence
starts with the same 200 nucleotides, if we except SNPs. Once these sequences have
been operated to share the same orientation and starting location, the overall alignment of
each chromosome has been performed.

Alignment of large sets of sequences is a common task during biological investigations
and has a wide variety of applications incorporating homology detection [112], finding
evolutionarily relevant sites, and phylogenetics. A multiple sequence alignment, as depicted
in Figure 6.2, may explain many aspects about a gene : which regions are constrained,
which sites undergo positive selection [113], and potentially the structure of its gene
product [114]. Furthermore, aligning sequences can help to detect events of mutations or
recombination in couples of close genomes.

To achieve such an alignment, we thus have considered the AlignSeqs function from
Decipher R package [115]. Indeed, after various tests on well known alignment tools that
can perform a large MSA on several to tens of thousands of sequences, like MAFFT [116],
we found that package was the only one that achieved to align complete bacterial genomes
with a good accuracy. AlignSeqs performs group-to-group alignment [117, 118], and aligns
a sequence established by merging groups along a guide tree until all the input sequences
are aligned, as shown in Figure 6.2.

This AlignSeqs function takes as input two aligned sets of DNA sequences and returns a
merged alignment. It can be used to achieve multiple sequence alignment on sequences of
the same kind. Indeed, multiple alignments are accomplished by aligning two sequences,
merging with another sequence, combining with another set of sequences, and so on
until all the sequences are aligned [119, 117]. We thus obtained a first representation of
synteny of the whole 65 Mycobacterium genomes, which is depicted in Figure 6.3. It can be
observed that these 65 genomes have a high sequence similarity with low recombination
events.
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6.2.2/ PHYLOGENETIC STUDY

This first representation of synteny blocks, obtained thanks to the multiple sequence
alignment of the whole Mycobacterium genus, has allowed us to detect the location of
a few large scale inversions. We thus have been able to manually invert again these
inversions, so that the multiple alignment became quite perfect, if we except small indels
and SNPs. It is then possible to use all the 65 complete genomes in the next stage, namely
the phylogenetic study.

Indeed, the evolutionary history of our population of genomes can be represented as
a phylogenetic tree using the multiple sequence alignment combined with manual local
inversions previously obtained. As previously recalled, various methods are well establi-
shed in the literature to investigate the best phylogenetic tree for a given set of aligned
sequences. On our side, we decided to consider the use of RAxML as a default phyloge-
netic tree reconstruction toolkit, a well known and reputed software based on maximum
likelihood [1, 46].

As we reversed the inversions, our phylogenetic investigations are based on the whole
genome. This leads to well supported and trustworthy trees of strains, on which we can
reliably consider to reconstruct ancestral states. As an illustrative example, we represent
the phylogenetic trees of M. canettii species with the M. tuberculosis outgroup in Figure 6.4.
This very well supported tree has been obtained using RAxML with GTR Gamma model as
advised by JModelTest 2.0. The M. tuberculosis phylogeny, for its part, leads to bootstrap
supports larger than 98%, as shown in Figure 6.5.

Note that, with these bacteria, we have not to find the largest subset of core sequences
that leads to the most supported tree, as aligning the whole complete genomes leads to
a well supported tree : it is not possible to improve the results, which is nice as the core
genome is many times greater than in the chloroplast case. Indeed, let us recall that M.
tuberculosis species have 42 genomes with size 4Mb and 4000 genes, while in the case
study on the chloroplasts, the genome has around 271 pan genes in maximum. So, it
is not sure that the heuristic approach to find the core gene of the previous chapter can
succeed to find the well-supported phylogenies).

Having an accurate representation of the general evolution of MTBC strains due to this
phylogenetic study, we are then left to reconstruct the ancestral states of the alignment
at each internal node of the tree. This final ancestral reconstruction will be applied in two
stages, considering first the variants of length 1 in the alignment (namely, single nucleotide
polymorphism and indels of 1 nucleotide), and then larger variants that mainly consist of
insertion or deletion of a subsequence at a location in the tree.

6.2.3/ ANCESTRAL RECONSTRUCTION : MONONUCLEOTIDIC VARIANTS

Focusing on mononucleotidic variants, we separated the treatment of single nucleotide
polymorphisms (SNPs) versus insertion-deletions (indels). For the former, the situation
seems quite simple, the only problem being to prevent confusion between a “true” SNP
and a SNP induced by a recombination of the indel kind. For the latter, future challenges
encompass to determine which indels are related to tandem repeats, which are associated
with mobile elements, or which are due to repeated sequences. Let us detail each case
hereafter.
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Regarding SNPs, the ancestral reconstruction is achieved as follows. The marginal proba-
bility distributions for bases at ancestral nodes in the phylogenetic tree are first calculated.
These distributions are obtained using the sum-product message passing algorithm [120],
assuming independence of sites. The ancestral reconstruction is done by using PHAST
software [121], which reconstructs indels too by parsimony, also assuming site indepen-
dence. Obtained results on mononucleotidic variants are then carefully visually checked,
as the number of such variants is not excessive, see Tables 6.2 and 6.3.

At the end, 2,956 SNPs and 166 indels have been found in the alignment of the clade
constituted by the 5 strains of M. canettii, as shown in Figure 6.6. The Figure 6.7, for its
part, represents the location of the 394 SNPs and of the 25 indels that have been found in
the alignment of the clade constituted by 8 genomes of M. tuberculosis.

6.2.4/ ANCESTRAL RECONSTRUCTION OF LARGER VARIANTS

Mycobacterium species considered in this chapter are highly conserved, with really similar
regions and without rearrangement. As previously evoked, we found only a few signifi-
cant inversions, like the one at the last common ancestor of strains CIPT 140010059,
140070010, 140060008, 140070017, and 140070008, as shown in Figure 6.9. The Fi-
gure 6.10, for its part, is a dotplot representing these homologous regions, as identified
by the FindSynteny function in R. All the Synteny blocks of the 42 M. tuberculosis are
finally depicted in Figure 6.8, where we have obtained 99% of DNA sequence identity. To
sum up, if we except a large scale inversion, we can only report some small indels at this
recombination level.

Ad hoc algorithms have then been designed to deal with mid size variants. More specifically,
we have written first a string algorithm that detects small and noisy inversions, but the
latter, distributed on our supercomputer facilities, was only able to detect artifacts. So
either the MTBC genomes have not faced inversion events during its recent history, or
this recombination case still needs further investigations. Authors tend to prefer the first
possibility, as Mycobacterium genomes evolve in a clonal manner (which is not the case,
for instance, with Yersinia genus, in which a large amount of mobile elements has led to
a large number of reported inversions [122]). Duplication, for its part, has not yet been
investigated but, as for inversions, the analysis of synteny blocks tends to show that such
events are rare, at least if we consider the large scale ones.

Both indels of midsize and SNPs have been deeply studied, using PHAST software as
detection tool. From obtained results, we can conclude the following points. (1) Such
events are quite rare in some lineages of the MTB complex like tuberculosis, as described
in Table 6.4. (2) Most of the times, the situation is very easy to manually understand,
leading either to an insertion or to a deletion at an obvious internal node of the tree,
as illustrated in Figure 6.11 and 6.12. (3) Most of the times, the inserted motif has not
faced mutations during evolution : leaves that contain the motif have no mutation in it,
thereby contributing to an easy to resolve situation. (4) Surprisingly, ancestral states
recovered by PHAST and its parsimony approach leads to disappointing results. Similarly,
obviously wrong results have been obtained with state-of-the-art competitor software. To
sum up, a manual reconstruction of mid size indels is possible, due to the low number of
these recombinations that are mainly very easy to resolve, while automatic tools from the
literature are not currently able to do it.

All these steps are summarized in Figure 6.15. In this one, gray boxes correspond to
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TABLE 6.2 – Number of alignment columns with polymorphism, by pair of strains, on M.
canettii genomes. Note that, when a large string is deleted at some location in the tree, all
the characters of this deletion are counted here.

canettii0 canettii1 canettii2 canettii3 canettii4 tuberculosis1
canettii0 0 3524 27256 60957 4833 3354
canettii1 3524 0 27260 61233 7971 1150
canettii2 27256 27260 0 62717 27468 27437
canettii3 60957 61233 62717 0 60987 61346
canettii4 4833 7971 27468 60987 0 7510

tuberculosis1 3354 1150 27437 61346 7510 0

TABLE 6.3 – Variations in the alignment of M. tuberculosis

tuberculosis4 tuberculosis19 tuberculosis17 tuberculosis16 tuberculosis27 tuberculosis28 tuberculosis24 tuberculosis10
tuberculosis4 0 199770 214401 219205 216387 217235 216919 217186

tuberculosis19 199770 0 212403 219039 216908 216672 216726 216953
tuberculosis17 214401 212403 0 216808 216534 217011 216786 216882
tuberculosis16 219205 219039 216808 0 216669 216916 216251 216678
tuberculosis27 216387 216908 216534 216669 0 142974 189148 199505
tuberculosis28 217235 216672 217011 216916 142974 0 189460 199412
tuberculosis24 216919 216726 216786 216251 189148 189460 0 194315
tuberculosis10 217186 216953 216882 216678 199505 199412 194315 0

M. canettii SNPs
Fathers Children No. of SNPs

100.2 canettii2 1041
canettii3 12398

100 canettii0 1
canettii1 9

100.3 100 28
100.2 735

100.X 100.3 111
canettii4 438

M. tuberculosis SNPs
Fathers Children No. of SNPs

100 tuberculosis19 5
tuberculosis17 14

100.2 tuberculosis24 1
tuberculosis10 0

100.3 tuberculosis27 0
tuberculosis28 0

98 100.2 1
100.3 0

100.4 98 0
tuberculosis16 1

100.X 100 5
100.4 1

TABLE 6.4 – Number of SNPs in the considered species (100.X refers to an ancestral node,
as in the tree)

manual steps whereas all the other ones are automatically executed. Indeed, obtained
results on mononucleotidic variants have been carefully checked by naked eye, as the
number of such variants is not excessive, while ad hoc algorithms were designed to deal
with variants of larger size, see Figures 6.13 and 6.14.
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Fig. 6.3 – A synteny representation of all available Mycobacterium strains
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Fig. 6.4 – Well-supported phylogenies on M. canettii species using a M. tuberculosis as
outgroup
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Fig. 6.5 – Well-supported phylogenies of M. tuberculosis species with M. africanum as
outgroup. Phylogenetic trees have been calculated on the entire genomes with RAxML
and GTR Gamma model
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Fig. 6.6 – SNPs location of mononucleotidic variants of M. canettii.

Fig. 6.7 – SNPs location of mononucleotidic variants of M. turberculosis.
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Fig. 6.8 – A representation of M. tuberculosis genomes species tends to show more than
95% nucleotide similarity with little recombination events.

Fig. 6.9 – Synteny blocks in M. canettii. Each genome is colored according to the position
of the corresponding region in the first genome (gray if a region is unshared).
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Fig. 6.10 – Dot plots provide an alternative representation of the synteny map of M. canettii.
Black diagonal lines show syntenic regions sharing the same orientation, whereas red
anti-diagonal ones represent blocks of synteny between opposite strands. The description
of all of these species tends to show a high sequence similarity with little recombination
events.
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Fig. 6.11 – The insertions and deletions of nucleotides (indels) on the internal node of
the tree (a) represent the nucleotides contain the ancestor nodes and their children on M.
canettii species
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Fig. 6.12 – Example of an ancestral reconstruction of one problematic column in the
alignment
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Fig. 6.13 – Ancestral reconstruction examples on M. canettii species
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Fig. 6.14 – Ancestral reconstruction examples on M. tuberculosis species
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Fig. 6.15 – Flowchart of the proposed approach.
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6.3/ DISCUSSION

The obtained ancestors have not yet been studied in this chapter. They will be investigated
with updated and improved algorithms, encompassing mobile elements and gene content
evolution analyzes. In order to do so, we will consider the phylogenetic tree whose leaves
will contain sets of genes, and we will compute core and pan genomes at each internal
node of the tree. Having this core and pan tree, we will design an algorithm to investigate
more deeply the evolution of these pan and core genomes over the tree, to see if some
branches can be related to hot spots of evolution. We thus intend to determine at which
rate such loss or gain occurs, and which kinds of functionality are concerned. We will
finally compute how much mutations fall inside a coding sequence, by studying which
kind of genes has evolved on the phylogenetic tree, by wondering if the mutation rate
has changed over time, and if such mutability can be related to environmental events. In
other words, we will wonder which variations have been potentially significant among the
numerous events that have been found when aligning these sequences.

With such a pipeline, we intend to investigate the following questions. Are some recombina-
tions at the origin of severe tuberculosis epidemics ? Are transposases responsible of such
recombinations like inversions [123, 124] ? Are transposases in general more present in
M. tuberculosis (affecting humans) than in M. africanum, M. bovis, or M. bovis BCG ? Are
they related to the virulence of the strain ? How core and pan genomes have evolved over
time in this complex ? Finally, we will compare the last common ancestor of this complex
to a M. canettii, to see if the canettii ancestor hypothesis can be verified by the ancestral
reconstruction way.

At this point, our partial conclusion is that the reconstruction of ancestral sequences is
possible, at least in the case of close and clonal bacterias. Furthermore, elements being
part of this reconstruction have already been designed, at least in their first revision (for
instance to detect and deal with mononucleotidic variants). However, the MTB complex
seems to be a little too complicated for a first deep investigation of semi-automatic recons-
truction of ancestral sequences of bacteria, and a genus like Brucella may be more easy
to deal with in a first concrete investigation of this problem.

6.4/ CONCLUSION

In this chapter, we have firstly emphasized that, even if various algorithms and software al-
ready exist to face the NP-hard character of the ancestral genome reconstruction problem,
they do not work perfectly, in particular when SNPs or indels fall into repeated sequences.
We have then argued that, when regarding the relatively low number of mutation and
recombination events in such Mycobacterium, a pragmatic approach is possible. We have
proposed to reconstruct all ancestors of all complete available genomes of Mycobacterium
tuberculosis and of M. canettii. The study has started by investigating single nucleotide
polymorphism level, while indels and large scale recombination are regarded in a second
stage. Our conclusion is that, by mixing automatic reconstruction of obvious situations
with human interventions on signaled problematic cases, it may be possible to achieve
a concrete, complete, and really accurate reconstruction of some specific bacteria li-
neages. We can thus investigate how these genomes have evolved from their last common
ancestors.
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7
CONCLUSION AND PERSPECTIVES

7.1/ CONCLUSION

In this thesis work, we made significant progress in the quest of the ancestral genome of
chloroplasts and of MTBC. A large set of complete chloroplast genomes has first been
studied de novo regarding both core and pan genomes, phylogenetic relationship, and
gene content modifications. We then started to explore the produced data, by emphasizing
some remarkable relations between well-known events of chloroplast history and the
evolution of gene contents over the phylogenetic tree.

Three metaheuristics have then been used (genetic algorithm, binary particle swarm
optimization, and simulated annealing) to produce a well supported phylogenetic tree
based on the largest possible subset of core genes. They have been evaluated on various
sets of chloroplast species and deployed on a supercomputer facilities. Given the average
between the percentage of core genes and the lowest bootstrap as scoring function,
we have shown on simple examples that, given a set of species, various global optima
with contradictory topologies can be reached. These first experiments emphasize that
sometimes the phylogeny of chloroplasts cannot perfectly be resolved using a tree : a
phylogenetic network may be more close to the reality, branches within this network being
as strong as the associated tree topology is frequent.

We have first investigated the gene order problem and DNA ancestral coding sequence
reconstruction in the case of organelles. We applied our designed methods to the case of
chloroplasts, which is more complex than mitochondria due to the size of the genomes,
gene prediction issues, and because two chloroplasts do not share the same genes. At
each time, we have considered all currently available complete genomes, and we have
applied ancestral state reconstruction algorithms coupled with careful human curation.

After having investigated our ability to reconstruct all ancestors of all complete available
genomes of Campanulids chloroplasts, we then considered larger genomes by focusing
on the ancestral reconstruction of Mycobacterium pathogenetic bacterias. The study
started by investigating manually large scale recombination and then focusing on both
single nucleotide polymorphism and indels using PHAST and human operations. Indeed,
by mixing automatic reconstruction of obvious situations with human interventions on
signaled problematic cases, we have shown that a concrete, complete, and really accurate
reconstruction of the lineage ancestors can be achieved.
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7.2/ FUTURE WORK

Genomes of chloroplasts have notably lost functional genes, either because they become
ineffective or due to transfer to the nucleus. We thus first plan to determine more precisely
the rate of such loss, whether this is indeed related to a nucleus transfer, and which kind
of functionality is practically concerned. Indeed, this thesis is an ongoing work regarding
investigating more systematically such relations between remarkable ancestral nodes in
the tree, endosymbiosis events, and evolution of gene content. We will wonder whether
some branches of the trees are statistically remarkable when considering gene content
(for instance, do we have a correlation between the presence or absence of a subset of
genes, and a particular taxonomy). Then, the gene ordering and content of each ancestral
node will be computed using ad hoc algorithms. Ancestral DNA sequence reconstruction,
which has been initiated here, will be totally inferred, and ancestral intergenic regions
will be deduced, in order to have all ancestral genomes with confidence indications like
probabilities.

We will then wonder if evidence of the Cyanobacteria origin of chloroplasts can be stated
using our approach. In particular, the last universal common ancestor of all chloroplasts
will be compared to available cyanobacterial genomes, regarding gene contents and DNA
sequences, to see if a cyanobacterial origin of chloroplasts can be assessed by the mean
of ancestral reconstruction. At this stage, it may be interesting to compare both ancestors
(of chloroplasts on the one hand, and of Cyanobacteria on the other hand).

Concerning our heuristic approaches for detecting blurring genes in phylogenetic studies,
we note that networks can be obtained by merging gene trees. In future work, we will
propose a way to obtain such networks with large subsets of random core genes, and will
show that such ways reinforce the stability and the confidence of the network. We intend
to provide too criteria for deciding if either a tree or a network is preferable for a given
set of DNA sequences. We will measure the impact of this choice and of the coexistence
of different well-supported topologies on works like ancestral genome reconstruction.
Finally, the various ways to set up the metaheuristics proposed here will be systematically
investigated, to find the best manner to configure these ones when targeting the largest
subset of core genes leading to the most supported tree or network.

Practically speaking, we intend to reconstruct all ancestors of all complete available
genomes of specific bacteria strains. We plan to start to reconstruct the ancestors of the
Brucella abortus lineage, in which the low number of indels, mutations, and inversions
allow a human validation of the complete reconstruction. This first study will be enlarged
to the whole Brucella genus, using all available complete genomes. More complex but still
clonal genomes will then be investigated, to go deeper in the study and understanding
of genomic recombinations. Targeted bacterias will be the Yersinia pestis on the one
hand, and Pseudomonas aeruginosa on the other hand. Moreover, we intend to compare
them with ancient DNA when available (like for Y. pestis). In parallel, original mathematical
description of some recombination mechanisms will be proposed, encompassing branching
process and partial differential equation approaches for modeling mobile elements. We will
then study which kinds of genes (in terms of functionality) have mutated over time, if the
mutation rate has evolved among branches of the phylogenetic tree, and if such mutability
can be related to environmental events.

We want to correlate the evolutionary history of microorganisms to epidemiological data :
events of genomic recombination may be related to epidemic outbreaks. Moreover, such
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putative correlations may be learned by deep learning algorithms, leading to a new way
to predict epidemic risks. Finally, we intend to develop and test new bioinformatic tools :
Dummy logit regression and LASSO test to evaluate effects of genes on phylogeny ;
automated core and pan genomes extraction ; Laplacian eigenmaps with Gaussian mixture
model for sequence clustering ; deep learning algorithms to detect insertion sequences,
virulent factors, and other sequences of interest... Finally, all the knowledge gained and
tools developed regarding the evolution of genomes will be applied to cancer diseases, by
comparing the evolution of genomes between healthy and tumorous cells.
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8
APPENDIX

Listing 8.1 – This code is to download genbank or unannotated fasta files.

from Bio import Entrez,SeqIO
from tabulate import tabulate
from sys import argv
from numpy import array,savetxt
import os
import xlsxwriter

Entrez.email = ’bbgak2002@yahoo.com’
gbk=’Genomes_gb/’ # the folder to store gbk files
fasta=’Genomes_fasta/’ # the folder to store fasta files
def saveGenome(genomeName ,typ): # fetch the files from genbank

if typ==’gb’:
if not os.path.exists(gbk):

os.mkdir(gbk)
handle=Entrez.efetch(db=’nucleotide’,id=genomeName ,rettype=typ) # Accession id works, returns genbank format, looks in the ’nucleotide’ database
#store locally
local_file=open(gbk+genomeName ,’w’)
local_file.write(handle.read())
handle.close()
local_file.close()

else:
if not os.path.exists(’Genomes_fasta’):

os.mkdir(’Genomes_fasta’)
handle=Entrez.efetch(db=’nucleotide’,id=genomeName ,rettype=typ) # Accession id works, returns genbank format, looks in the ’nucleotide’ database
#store locally
local_file=open(fasta+genomeName ,’w’)
local_file.write(handle.read())
handle.close()
local_file.close()

def getGenomes(listName,typ): # input: give the list of genomes names to fetch them from genbank. typ: gb or fasta.
id_list=open(listName).read().split(’\n’)
if not os.path.exists(’Genomes_gb’):

os.mkdir(’Genomes_gb’)
act_Gen=os.listdir(gbk)
if not os.path.exists(’Genomes_fasta’):

os.mkdir(’Genomes_fasta’)
fasta_Gen=os.listdir(fasta)
for i in range(len(id_list)-1):

print ’Try to fetch %s from genBank...’%id_list[i],
act_Gen=os.listdir(gbk)
fasta_Gen=os.listdir(fasta)
if id_list[i] not in act_Gen and typ==’gb’:

#print ’Try to fetch %s from genBank...’%id_list[i],
saveGenome(id_list[i],typ)
print ’done!’

elif id_list[i] not in fasta_Gen and typ==’fasta’:
#print ’Try to fetch %s from genBank...’%id_list[i],
saveGenome(id_list[i],typ)
print ’done!’

else: print ’Exist!’

def GeneCount(typ,mapp=[1,1,1,1,1,1,1,1,1,1,1,1,1]):
# extract information from each genome in the folder.

if typ==’gb’:
i=1
Data=[]
v=os.listdir(gbk)
print v
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for GID in os.listdir(gbk):
gb_file=gbk+GID
gene=0
trna=0
rrna=0
orf=0
print ’working with: ’,gb_file,’...’,
gb_record=SeqIO.read(open(gb_file,"r"), "genbank")
for v in gb_record.features:

if v.type==’gene’: # count the number of genes
gene+=1

elif v.type==’tRNA’: # count the number of tRNA
trna+=1

elif v.type==’rRNA’: # count the number of rRNA
rrna+=1

elif ’orf’ in v.type.lower():
orf+=1

Organism=gb_record.features[0].qualifiers[’organism’][0]
try:

if ’plastid:’ in gb_record.features[0].qualifiers[’organelle’][0]:
Plastid=gb_record.features[0].qualifiers[’organelle’][0].split(’plastid:’)[1]

else: Plastid=gb_record.features[0].qualifiers[’organelle’][0]
except IOError, KeyError:

print ’Error with plast ID..Passed’
pass

Accession=gb_record.id
GenomeID=gb_record.annotations[’gi’]
Seq_Version=gb_record.annotations[’sequence_version’]
SeqLength=str(len(gb_record.seq))+’ bp’
Date=gb_record.annotations[’date’]
Taxonomy=’ <-- ’.join(x for x in gb_record.annotations[’taxonomy’])
Data.append([str(i),Organism,Plastid,Accession ,GenomeID,Seq_Version ,SeqLength ,str(gene),str(trna),str(rrna),str(orf),Date,Taxonomy])
print ’done!’
i+=1

f=open(’genomes_info_test.dat’,’w’) # store the data in list format, each row for one genome.
f.write(str(Data))
f.close()
head=[’No’,’Name’,’Plastid’,’Accession’,’GenomeId’,’Seq.Ver.’,’Seq. length’,’Nb.Genes’,’Nb.tRNA’,’Nb.rRNA’,’Nb.ORF’,’Last Update’,’Taxonomy’]
head1=[head[idx] for idx in range(len(mapp)) if mapp[idx]==1]

#print tabulate(Data,head1,tablefmt="grid") # print table
Data.insert(0,head)
# Create a workbook and add a worksheet.
workbook = xlsxwriter.Workbook(argv[1].split(’.’)[0]+’_info.xlsx’)
worksheet = workbook.add_worksheet()
# Start from the first cell. Rows and columns are zero indexed.
row = 0
col = 0
# Iterate over the data and write it out row by row.
#f1=open(’text_genomes.txt’,’w’)
for rec in Data:

col=0
for item in rec:

if mapp[rec.index(item)]==1:
if rec.index(item)==len(rec)-1:

if ’<--’ in item[-1]:
fam=item.split(’ <-- ’)
worksheet.write(row, col, fam[fam.index(argv[1].split(’.’)[0])+1])

else: worksheet.write(row, col,item)
else: worksheet.write(row, col,item)
col+=1

row+=1
#f1.write(’%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n’%(no,name,pid,access,gid,sv,sl,ng,ntrna,nrrna,norf,lupd,tax)) #store as text file.
#f1.close()
print head1

if argv[2].lower()==’gb’ or argv[2].lower()==’gbk’:
getGenomes(argv[1],argv[2])

# argv[1]: list of genomes names, argv[2]: retreive format [gb or fasta]
GeneCount(argv[2],mapp=eval(argv[3]))

# extract information from each genome.
elif argv[2].lower()==’fasta’:

getGenomes(argv[1],argv[2])
GeneCount(argv[2],mapp=eval(argv[3]))

# argv[2]: retreive format [gb or fasta], argv[3]: save info. Map format
else: print ’Syntax:\npython S1_fetchgenome.py <list of genomes accessions > <fasta or gb>’

’’’
retreive all genomes in a list of genomes names.
syntax:

getGenomes(<list of genomes names>,<retreiving format: ’gb’ or ’fasta’>)
’’’
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Listing 8.2 – PSO implementation.
#-*-coding:utf8-*-
from __future__ import division
from os import system, listdir,mkdir
from os.path import exists
from sys import argv
from commands import getstatusoutput
from cogent import LoadTree
from random import random, randint
from numpy import array
from numpy import *
#import matplotlib.pyplot as plt
import time
import numpy as np

GENOMES = listdir(’Genomes’)

GENES = sorted([k.split(’]’)[0] for k in open(’Genomes/’+GENOMES[0]).read().split(’gene=’)[1:]])
##GENES.remove(’RRN4.5’)

GENES_OU = {’noyau’:[’elp’,’ef1a’,’rpb2’,’pepck’,’pold’], ’ARN’:[’rrnL’,’rrnS’],’Myto’:GENES}

dst=argv[1]

if not exists(dst):
mkdir(dst)

def bootstraps(arbre):
X = [k.split(’:’)[0] for k in arbre.split(’)’)[1:] if ’:’ in k]
return [eval(x) for x in X if x != ’’]

def faite(texte):
if texte in listdir(dst) and ’arbre’ in listdir(dst+texte):

boots = bootstraps(open(dst+texte+’/arbre’).read())
return (texte, boots)

else:
print texte+’--> not exists’
fait([],[GENES[k] for k in range(len(GENES)) if particule[’position’][k]==0],[k for k in listdir(’Genomes’) if ’outgroup’ in k][0])

def fait(sans_genome = [], sans_gene = [], outgroup = ’E.vogeli’):
if dst not in listdir(’.’):

system(’mkdir %s’%dst)
if ’alignements’ not in listdir(’.’):

system(’mkdir alignements’)
for k in sans_genome:

assert k in GENOMES
for k in sans_gene:

assert k in GENES
assert outgroup not in sans_genome
assert outgroup in GENOMES
sansGenome = sorted(sans_genome)
sansGene = sorted(sans_gene)
texte = ’’
for gene in GENES:

if gene in sansGene:
texte += ’0’

else:
texte += ’1’

if texte in listdir(dst) and ’arbre’ in listdir(dst+texte):
print "   => deja fait"
boots = bootstraps(open(dst+texte+’/arbre’).read())
return (texte, boots)

else:
try:

system(r’\rm -fr %s’%dst+texte)
except:

pass
system(’mkdir %s’%dst+texte)

#############################################
dd = [k for k in listdir(’Genomes’) if ’~’ not in k]
dico = {}
for k in dd:

dico[k.split(’.dogma’)[0]]={}
fic = open(’Genomes/’+k).read().split(’>’)[1:]
for l in fic:

if l.split(’\n’)[0].split(’]’)[0].split(’=’)[1] not in sansGene and l.split(’\n’)[0].split(’]’)[0].split(’=’)[1] in GENES:
dico[k.split(’.dogma’)[0]][l.split(’\n’)[0].split(’]’)[0].split(’=’)[1]]=’’.join(l.split(’\n’)[1:])

for k in dico[dico.keys()[0]].keys():
dd=open(dst+texte+’/gene_’+k+’.fasta’,’w’)
for l in dico.keys():
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dd.write(’>’+l+’\n’)
dd.write(dico[l][k]+’\n’)

dd.close()
#print "Alignements"
################### ALIGNEMENTS ##########################
for k in GENES:

if k not in sans_gene:
if ’gene_’+k+’.fasta_aln’ not in listdir(’alignements/’):

print " * Alignements avec t_coffee de :",k
#print ’t_coffee %s’%dst+texte+’/’+k+’ -mode mcoffee -multi_core 1 -n_core 6 -max_n_proc 6 -output fasta’
#getstatusoutput(’t_coffee %s’%dst+texte+’/gene_’+k+’.fasta -mode mcoffee -multi_core 1 -n_core 6 -max_n_proc 6 -output fasta’)
#getstatusoutput(’t_coffee %s’%dst+texte+’/gene_’+k+’.fasta -mode mcoffee -multi_core 0 -output fasta’)
#getstatusoutput(’mv gene_* alignements/’)
system(’t_coffee %s’%dst+texte+’/gene_’+k+’.fasta -mode mcoffee -multi_core 0 -output fasta’)
system(’mv gene_* alignements/’)

#for k in listdir(texte):
# print " - alignement de",k.split(’gene_ ’)[1].split(’.fasta ’)[0]
# #getstatusoutput(’muscle -in ’+texte+’/’+k+’ -out ’+texte+’/’+k+’_aln’)
for k in GENES:

if k not in sans_gene:
system(’cp alignements/gene_’+k+’.fasta_aln %s’%dst+texte+’/’)

#############################################
dico = {}

dd = [k for k in listdir(’Genomes’) if ’~’ not in k]

for k in dd:
dico[k.split(’.dogma’)[0]]=’’

for cle in GENES_OU.keys():
for k in GENES_OU[cle]:

if ’gene_’+k+’.fasta_aln’ in listdir(dst+texte):
fic = open(dst+texte+’/’+’gene_’+k+’.fasta_aln’).read().split(’>’)[1:]
for fi in fic:

if fi.split(’\n’)[0] in dd:
dico[fi.split(’\n’)[0]]+=’’.join(fi.split(’\n’)[1:])

s=’’
for k in dico.keys():

s += ’>’+k+’\n’
s += dico[k]+’\n’

fic = open(dst+texte+’/alignements.fasta’,’w’)
fic.write(s)
fic.close()

#############################################
ddd=open(dst+texte+’/alignements.fasta’).read()

ss=str(len(dd)-len(sans_genome))+’ ’
ss += str(len(’’.join(ddd.split(’>’)[1].split(’\n’)[1:])))+’\n’
for k in ddd.split(’>’)[1:]:

ss += k.split(’\n’)[0].rstrip(’      ’)+’ ’
ss += ’’.join(k.split(’\n’)[1:])+’\n’

ee=open(dst+texte+’/alignementsRAxML.fasta’,’w’)
ee.write(ss)
ee.close()

#############################################
subs={}
for k in listdir(’alignements’):

if k.endswith(’fasta_aln’):
ee=open(’alignements/’+k).read().split(’>’)[1]
ee=’’.join(ee.split(’\n’)[1:])
subs[k.split(’gene_’)[1].split(’.fasta_aln’)[0]]=len(ee)

modele = open(dst+texte+’/modele.txt’,’w’)
debut,fin = 1,0
for cle in GENES_OU.keys():

for k in GENES_OU[cle]:
if ’gene_’+k+’.fasta_aln’ in listdir(dst+texte):

fin += subs[k]
if fin>debut:

modele.write(’DNA, ’+cle+’ = ’+str(debut)+’-’+str(fin)+’\n’)
debut = fin + 1

modele.close()

#############################################
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# -f D: fast Hill-clambing with RELL Bootstraps from http://www.ncbi.nlm.nih.gov/pubmed/23418397
# -f d: default fast hill... from http://link.springer.com/article/10.1007/s11265 -007-0067-4#page-1
getstatusoutput(’raxmlHPC-SSE3 -d -f o -p 12345 -m GTRGAMMA -q %s’%dst+texte+’/modele.txt -n ’+texte+’1 -o ’+outgroup+’ -s %s’%dst+texte+’/alignementsRAxML.fasta’)

getstatusoutput(’raxmlHPC-SSE3 -d -f o -p 12345 -m GTRGAMMA -q %s’%dst+texte+’/modele.txt -n ’+texte+’2 -o ’+outgroup+r’ -b 0123 -N autoMRE -s %s’%dst+texte+’/alignementsRAxML.fasta’)

getstatusoutput(’raxmlHPC-SSE3 -f o -m GTRGAMMA -q %s’%dst+texte+’/modele.txt -n ’+texte+’3 -o ’+outgroup+’ -f b -t RAxML_bestTree.’+texte+’1 -z RAxML_bootstrap.’+texte+’2’)
’’’
getstatusoutput(’raxmlHPC-PTHREADS-SSE3 -d -T 6 -f o -p 12345 -m GTRGAMMA -q %s’%dst+texte+’/modele.txt -n ’+texte+’1 -o ’+outgroup+’ -s %s’%dst+texte+’/alignementsRAxML.fasta’)

getstatusoutput(’raxmlHPC-PTHREADS-SSE3 -d -T 6 -f o -p 12345 -m GTRGAMMA -q %s’%dst+texte+’/modele.txt -n ’+texte+’2 -o ’+outgroup+r’ -b 0123 -N autoMRE -s %s’%dst+texte+’/alignementsRAxML.fasta’)

getstatusoutput(’raxmlHPC-PTHREADS-SSE3 -f o -T 6 -m GTRGAMMA -q %s’%dst+texte+’/modele.txt -n ’+texte+’3 -o ’+outgroup+’ -f b -t RAxML_bestTree.’+texte+’1 -z RAxML_bootstrap.’+texte+’2’)
#sleep(5)
’’’
system(’mv RAxML_bestTree.’+texte+’1 %s’%dst+texte)
system(’mv RAxML_info.’+texte+’1 %s’%dst+texte)
system(’mv RAxML_log.’+texte+’1 %s’%dst+texte)
system(’mv RAxML_randomTree.’+texte+’1 %s’%dst+texte)
system(’mv RAxML_result.’+texte+’1 %s’%dst+texte)
system(’mv RAxML_bipartitionsBranchLabels.’+texte+’3 %s’%dst+texte)
system(’mv RAxML_info.’+texte+’3 %s’%dst+texte)
system(’cp RAxML_bipartitions.’+texte+’3 %s’%dst+texte)
system(’mv RAxML_bipartitions.’+texte+’3 %s’%dst+texte+’/arbre’)
system(’mv RAxML_bootstrap.’+texte+’2 %s’%dst+texte)
system(’mv RAxML_info.’+texte+’2 %s’%dst+texte)

#system(’rm %s’%dst+texte+’/*fasta’)
system(’rm %s’%dst+texte+’/*_aln’)

boots = bootstraps(open(dst+texte+’/arbre’).read())
return (texte, boots)

def addition(mot1, mot2):
return ’’.join([str((int(mot1[k])+int(mot2[k]))%2) for k in range(len(mot1))])

’’’
def plotxy(x,y):

print "X",x
print "Y",y
coefficients = polyfit(x,y,0.05)
poly = poly1d(coefficients)
xs = arange(min(x)-1, max(x)+1,0.05)
ys = poly(xs)
#plot(xs, ys)
plt.plot(x, y, ’o’)
plt.ylabel(’Iteration’)
plt.xlabel(’Fitness’)
plt.draw()
time.sleep(0.05)

’’’
POPULATION = 10#[k for k in listdir(dst) if ’arbre’ in listdir(dst+k)]
POP = []
fitness = 0
Thresh=95
mx_iter=10
C1 = 2.05
C2 = 2.05
C = C1+C2
# Constriction Coefficient
k1 = random.random()
x1 = 2*k1/abs(2-C-(C*(C-4))**0.5)
print x1
i =0
x=[]
cur_iter=1
minor_results=[]
oldfit=0
oldgbest=[]
# Initiallisation de la population
y=[k for k in listdir(dst) if ’arbre’ in listdir(dst+k)]
dead=[]
y2 = []
x2=[]
start_time= time.time()
y=[k for k in listdir(dst) if ’arbre’ in listdir(dst+k)]
dead=[]
start_time= time.time()
for k in range(POPULATION):

position = array([randint(0,1) for k in range(len(GENES))])
vitesse = array([random.random() for k in range(len(GENES))])
POP.append({’position’:position ,
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’vitesse’:vitesse,
’score’:0,
’best’:position})

while cur_iter <=mx_iter:
Population=[k for k in listdir(dst) if ’arbre’ in listdir(dst+k)]
print "\n* New round %d"%(cur_iter)
#For each particle
# Calculate fitness value
# If the fitness value is better than the best fitness value (pBest) in history
# set current value as the new pBest
#End
for item, particule in enumerate(POP):

particle_starttime=time.time()
print "  - particule %d: %s "%(item,’’.join(str(a) for a in particule[’position’]))
#print " - Vitesse %d: %s "%(item,’, ’.join(str(a) for a in particule[’vitesse ’]))
if ’’.join(str(a) for a in particule[’position’]) not in Population:

Population.append(’’.join(str(a) for a in particule[’position’]))
resultat = fait([],[GENES[k] for k in range(len(GENES)) if particule[’position’][k]==0],[k for k in listdir(’Genomes’) if ’outgroup’ in k][0])

else: resultat =(’’.join(str(a) for a in particule[’position’]),bootstraps(open(dst+’’.join(str(a) for a in particule[’position’])+’/arbre’).read()))
print resultat[1]
Min=min(resultat[1])
if Min>particule[’score’]:

particule[’score’] = Min
particule[’best’] = particule[’position’]
particle_endtime=time.time()-particle_starttime
print"particle_endtime",particle_endtime
print "...... position:%s, score:%d\n"%(’’.join([str(u) for u in particule[’position’]]), particule[’score’])

else: print "...... position:%s, score:%d\n"%(’’.join([str(u) for u in particule[’position’]]), particule[’score’])
#x1.append(particule[’score’])
#y1.append(i)
#plotxy(x1,y1)

#print particule[’score’]
#Choose the particle with the best fitness value of all the particles as the gBest
fitness = max([k[’score’] for k in POP])
gBest = array([k[’position’] for k in POP if k[’score’] == fitness][0])
i= i+1
x2.append(fitness)
y2.append(i)
if cur_iter <=mx_iter:

print ’End Round:%d\n...... Best position: %s\tFitness:%d\n’%(cur_iter ,’’.join(str(a) for a in gBest),fitness)
for particule in POP:

r1=random.uniform(0.1,0.5)
r2=random.uniform(0.1,0.5)
particule[’vitesse’]= x1*particule[’vitesse’]
particule[’vitesse’]+= C*r1*(particule[’best’]-particule[’position’])
particule[’vitesse’]+= C*r2*(gBest-particule[’position’])
# Update particle position according equation (b)
l=[]
for u in particule[’vitesse’]:

#print"U:",u
r=random.uniform(0.1,0.5)
#print "r",r
v=1/(1+math.exp(-u))
#print"expo:",v
if r<v:

l.append(1)
else: l.append(0)

particule[’position’]=array(l)
#particule[’position ’]+= [int(round(u)) for u in list(particule[’vitesse ’])]
#particule[’position ’]%= 2

cur_iter+=1
else:

print ’Iteration:%d\tBest position: %s\tFitness:%d...Done!’%(cur_iter ,’’.join(str(a) for a in gBest),fitness)

f=open(dst+dst.replace(’/’,’’),’w’)
print "--- %s seconds ---",time.time() - start_time
print"x2",x2
print"y2",y2
f.write(’x2=’+str(x2)+’\n’)
f.write(’y2=’+str(y2)+’\n’)
f.close()

Listing 8.3 – Graphical presentation of genes alignment between genomes.
from pickle import load
import PIL.Image as Image
import PIL.ImageDraw as ImageDraw
import PIL.ImageFont as ImageFont
from ALL_ANCESTORS import *
dico = load(open(’Apiales_GenesList.pkl’))# Tree 1
r=3
d=40
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dec=10
for (genome1,genome2,genome3) in [(’Bras_hainla’,’K’,’Eleu_senticosus’),(’Kalo_septemlobus’,’I’,’Meta_delavayi’),(’I’,’G’,’K’),(’G’,’D’,’Sche_delavayi’),(’Pana_ginseng’,’E’,’Aral_undulata’),(’D’,’F’,’E’),(’Dauc_carota’,’C’,’Anth_cerefolium’),(’C’,’B’,’F’)]:

print (genome1,genome2,genome3)
Genome1 = dico[genome1]
Genome2 = dico[genome2]
Genome3 = dico[genome3]
nb_genes=max(len(Genome1),len(Genome2),len(Genome3))

im = Image.new(’RGB’,(d*nb_genes+2*dec, 600),(255,255,255))
draw = ImageDraw.Draw(im)
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",30)

draw.text((10,30),genome1 ,(0,0,0),font=font)
draw.text((10,345),genome2 ,(0,0,0),font=font)
draw.text((10,545),genome3 ,(0,0,0),font=font)

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",8)
for item1, k1 in enumerate(Genome1):

for item2, k2 in enumerate(Genome2):
if k1 == k2:

draw.line((d*item1+dec,100,d*item2+dec,300),(0,255,0))

for item1, k1 in enumerate(Genome2):
for item2, k2 in enumerate(Genome3):

if k1 == k2:
draw.line((d*item1+dec,300,d*item2+dec,500),(0,255,0))

for item1, k1 in enumerate(Genome1):
for item2, k2 in enumerate(Genome1):

if k1 == k2 and item1 != item2:
draw.arc((d*item1+dec,50,d*item2+dec,150),180,0,(255,0,0))

for item1, k1 in enumerate(Genome2):
for item2, k2 in enumerate(Genome2):

if k1 == k2 and item1 != item2:
draw.arc((d*item1+dec,250,d*item2+dec,350),0,180,(255,0,0))

for item1, k1 in enumerate(Genome3):
for item2, k2 in enumerate(Genome3):

if k1 == k2 and item1 != item2:
draw.arc((d*item1+dec,450,d*item2+dec,550),0,180,(255,0,0))

for item, k in enumerate(Genome1):
if Genome1.count(k)>1:

draw.ellipse((d*item-r+dec,100-r,d*item+r+dec,100+r),(255,0,0))
else:

draw.ellipse((d*item-r+dec,100-r,d*item+r+dec,100+r),(0,0,0))
if item%2==0:

draw.text((d*item+dec-10,85),str(item)+’ ’+k,(0,0,255),font=font)
else:

draw.text((d*item+dec-10,115),str(item)+’ ’+k,(0,0,255),font=font)

for item, k in enumerate(Genome2):
if Genome2.count(k)>1:

draw.ellipse((d*item-r+dec,300-r,d*item+r+dec,300+r),(255,0,0))
else:

draw.ellipse((d*item-r+dec,300-r,d*item+r+dec,300+r),(0,0,0))
if item%2==0:

draw.text((d*item+dec-10,285),str(item)+’ ’+k,(0,0,255),font=font)
else:

draw.text((d*item+dec-10,315),str(item)+’ ’+k,(0,0,255),font=font)

for item, k in enumerate(Genome3):
if Genome3.count(k)>1:

draw.ellipse((d*item-r+dec,500-r,d*item+r+dec,500+r),(255,0,0))
else:

draw.ellipse((d*item-r+dec,500-r,d*item+r+dec,500+r),(0,0,0))
if item%2==0:

draw.text((d*item+dec-10,485),str(item)+’ ’+k,(0,0,255),font=font)
else:

draw.text((d*item+dec-10,515),str(item)+’ ’+k,(0,0,255),font=font)

im.save(’drawGenomes/’+genome1+’_’+genome2+’_’+genome3+’.png’)

Listing 8.4 – Python code to alignment and construction the phylogenetic tree for specific
species.
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from os import system
from rpy2.robjects.packages import importr
from cogent import LoadTree
#from pyfaidx import Fasta
from Bio import SeqIO
import os
import sys
from optparse import OptionParser
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord

esp = [(’africanum’,0)]
for k in [0,11,2,12,1,3,13,14,10]:

#for k in range(13):
esp.append((’tuberculosis’,k))

dd=eval(open(’dicoGenomes7.txt’).read())

chaine = ""

for es in esp:
acces = [i for i in dd.keys() if dd[i][’espece’]==es[0]and dd[i][’number’]==es[1]][0]
print acces
chaine += ">"+es[0]+str(es[1])+"\n"
#chaine += open(’Genomes/’+acces+’.fasta’).read().split(’\n’)[1]+’\n’

def chunks(l, n):
"""Yield successive n-sized chunks from l."""
#for i in xrange(1, len(l), n):

yield l[10000:n]
#print len(l)

if __name__ == ’__main__’:
handle = open(’Genomes/’+acces+’.fasta’, ’r’)
records = list(SeqIO.parse(handle, "fasta"))
record = records[0]

for pos, chunk in enumerate(chunks(record.seq.tostring(),3100000)):
chunk_record = SeqRecord(Seq(

chunk, record.seq.alphabet),
id=record.id, name=record.name,
description=record.description)

outfile = ’my_data/’+acces+’.fasta’# % pos

SeqIO.write(chunk_record , open(outfile, ’w’), "fasta")
chaine += ’’.join(open(’my_data/’+acces+’.fasta’).read().split(’\n’)[1:])+’\n’

fic = open(’Data/aligne.fasta’,’w’)
fic.write(chaine)
fic.close()

bio=importr(’Biostrings’)
seqs=bio.readDNAStringSet("Data/aligne.fasta")
dec=importr(’DECIPHER’)
aligned = dec.AlignSeqs(seqs)
bio.writeXStringSet(aligned,file="Data/result.fasta")
exit()

raw_input("C’est bon ?")

system("raxmlHPC-PTHREADS-SSE3 -T 8 -s Data/result.fasta -m GTRGAMMA -n tuberculosis1 -f o -p 123 -o africanum0")
system("raxmlHPC-PTHREADS-SSE3 -T 8 -s Data/result.fasta -m GTRGAMMA -n tuberculosis2 -f o -p 123 -b 0123 -N autoMRE -o africanum0")
system("raxmlHPC-PTHREADS-SSE3 -T 8 -m GTRGAMMA -n tuberculosis3 -f b -t RAxML_bestTree.tuberculosis1 -z RAxML_bootstrap.tuberculosis2 -o africanum0")

# On affiche l’arbre
arbre = LoadTree(treestring=open("RAxML_bipartitions.tuberculosis3").read())
print arbre.asciiArt()

Listing 8.5 – Python code to reconstruct Ancestral Clade by using PHAST

from os import system, listdir
from cogent import LoadTree
arbre = str(LoadTree(treestring=open(’DataAncestor/RAxML_bipartitions.canettii3’).read()))
arbre = arbre.replace(’):’,’)100.X:’)
output = open(’DataAncestor/arbreClade.newick’,’w’)
output.write(arbre)
output.close()
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seq = "DataAncestor/result_canettii.fasta"
system(’rm DataAncestor/*.fa’)
system(’rm DataAncestor/*.probs’)
system("phyloFit --gaps-as-bases --tree DataAncestor/arbreClade.newick --out-root DataAncestor/mytree "+seq)
system("prequel --keep-gaps --no-probs "+seq+" DataAncestor/mytree.mod DataAncestor/anc")
system("prequel --keep-gaps "+seq+" DataAncestor/mytree.mod DataAncestor/anc")

s=open(seq).read()
for k in listdir(’DataAncestor’):

if k.endswith(’.fa’):
s+=’\n’+open(’DataAncestor/’+k).read()

fic = open(’DataAncestor/aligneAvecAncetres.fasta’,’w’)
fic.write(s)
fic.close()

system(’seaview DataAncestor/aligneAvecAncetres.fasta’)
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Résumé :

La théorie de l’évolution repose sur la biologie moderne. Toutes les nouvelles espèces émergent
d’une espèce existante. Il en résulte que différentes espèces partagent une ascendance commune,
telle que représentée dans la classification phylogénétique. L’ascendance commune peut expliquer
les similitudes entre tous les organismes vivants, tels que la chimie générale, la structure cellulaire,
l’ADN comme matériau génétique et le code génétique. Les individus d’une espèce partagent les
mêmes gènes mais (d’ordinaire) différentes séquences d’allèles de ces gènes. Un individu hérite des
allèles de leur ascendance ou de leurs parents. Le but des études phylogénétiques est d’analyser
les changements qui se produisent dans différents organismes pendant l’évolution en identifiant les
relations entre les séquences génomiques et en déterminant les séquences ancestrales et leurs
descendants. Une étude de phylogénie peut également estimer le temps de divergence entre les
groupes d’organismes qui partagent un ancêtre commun. Les arbres phylogénétiques sont utiles
dans les domaines de la biologie, comme la bioinformatique, pour une phylogénétique systématique
et comparative. L’arbre évolutif ou l’arbre phylogénétique est une exposition ramifiée les relations
évolutives entre divers organismes biologiques ou autre existence en fonction des différences et
des similitudes dans leurs caractéristiques génétiques. Les arbres phylogénétiques sont construits à
partir de données moléculaires comme les séquences d’ADN et les séquences de protéines. Dans
un arbre phylogénétique, les noeuds représentent des séquences génomiques et s’appellent des
unités taxonomiques. Chaque branche relie deux noeuds adjacents. Chaque séquence similaire
sera un voisin sur les branches extérieures, et une branche interne commune les reliera à un
ancêtre commun. Les branches internes sont appelées unités taxonomiques hypothétiques. Ainsi, les
unités taxonomiques réunies dans l’arbre impliquent d’être descendues d’un ancêtre commun. Notre
recherche réalisée dans cette dissertation met l’accent sur l’amélioration des prototypes évolutifs
appropriés et des algorithmes robustes pour résoudre les problèmes d’inférence phylogénétiques et
ancestrales sur l’ordre des gènes et les données ADN dans l’évolution du génome complet, ainsi que
leurs applications.
La reconstruction du génome ancestral peut être décrite comme une étude phylogénétique d’espèces
d’intérêt pour des détails supplémentaires que ce qui est fourni par un arbre phylogénétique standard.
Il peut s’agir d’informations sur les espèces ancêtres telles que leur contenu génétique, la configuration
de ces gènes dans le génome, la séquence nucléotidique elle-même. Ces informations peuvent aider
à mieux comprendre l’évolution de l’évolution d’un ensemble d’organismes et à travers la lumière
générique sur les bases génomiques des phénotypes.
Dans cette thèse, nous sommes intéressés par des problèmes théoriques et pratiques dans la
reconstruction des arbres phylogénétiques et les réarrangements du génome. Nous proposons une
approche heuristique de la reconstruction ancestrale du génome et nous mettons en œuvre un des
outils pratiques applicables à l’analyse des ensembles de données réels couvrant une phylogénie
complexe et accueillant une variété d’architectures génomiques. Nous démontrons l’efficacité de notre
approche sur l’ensemble de données bien étudié des génomes de chloroplastes et nous l’appliquons
à la reconstruction des histoires de réarrangement de la reconstruction complète et très précise
de certaines lignées de bactéries spécifiques telles que le genre Mycobacterium. Le problème de
reconstruction des génomes ancestrales dans un arbre phylogénétique donné se situe dans différents
domaines génomiques comparatifs. Dans ce travail, nous nous concentrons sur la reconstruction
des génomes ancestrales par l’ordre des gènes, l’accessibilité à la reconstruction des séquences
d’ADN d’un génome complet. La reconstruction du génome ancestral en ce sens et pour les génomes
chloroplaciques et les souches de bactéries spécifiques est le sujet de cette thèse.

Mots-clés : Reconstruction ancestrale, séquence nucléotidique, unités taxonomiques, arbre phylogénétique,
Mycobacterium Genre, Chloroplastic génomes
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