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 Summarized by WANG Guowei (1877-1927) in book of Renjian Cihua 人间词话 (Poetic Remarks in the 

HumanWorld).Translated by 1, 2 Ching-I Tu; 3 Yuanchong Xu, Ming Xu  

 

 

 

 

 

 

“昨夜西风凋碧树，独上高楼，望尽天涯路”。 

——晏殊（北宋 991—1055）《蝶恋花》 

“Last night the west wind withered the green trees; 

climbing the tower alone, I gaze at the road stretching to the horizon”. 1 

——YAN Shu (Northern Song Dynasty 991—1055)《Butterflies in Love with Flowers》 

 

 

“衣带渐宽终不悔，为伊消得人憔悴”。 

——柳永（北宋 984—1053）《蝶恋花》 

“I have no regrets as my girdle grows too spacious for my waist; 

with everlasting love for you I pine”. 2 

——LIU Yong (Northern Song Dynasty 984—1053)《Butterflies in Love with Flowers》 

 

 

“众里寻他千百度，蓦然回首，那人却在，灯火阑珊处”。 

——辛弃疾（南宋 1140—1207）《青玉案·元夕》 

“But in the crowd once and again; 

I look for her in vain; 

when all at once I turn my head; 

I find her there where lantern light is dimly shed”.3 

——XIN Qiji (Southern Song Dynasty 1140—1207)《The Lantern Festival Night - to the tune of 

Green Jade Tabl
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Abstract 

As a natural laboratory, the huge amounts of Mesozoic granite distributing in 

South China provided a unique opportunity to unravel the Mesozoic crust formation 

and evolution in southern China as well as for guiding mining exploration efforts in this 

area. The studies of mineralogy, petrology, geochemistry and geochronology had been 

carried out in South China for many decades, however, the conditions for the formation 

of these Mesozoic granites remain controversial. In this thesis, based on the 

systematically study of whole-rock geochemistry, geochronology, petrography, 

mineralogy, we use internally heated pressure vessel to explore the phase equilibrium 

of the granite from South China and successfully set up the phase diagrams. In terms 

of experimental petrology, our experimental results provided the first quantitative 

framework for the understanding of the petrogenesis of Mesozoic granites in South 

China. 

With 520 km2 out crop area, the Qitianling pluton is representative metaluminous 

(amphibole-bearing) Mesozoic granites in the central part of the Nanling Range in SE 

China, which is associated with world-class tin mineralization. It consisted of three 

main phases: phase-1, porphyritic, medium- to coarse-grained amphibole-biotite-rich 

monzonitic granite; phase-2, medium-grained biotite±amphibole-bearing granite; 

phase-3, fine-grained, biotite-bearing granite. The geochemical data show that 

Qitianling pluton is metaluminous, and belongs to aluminous A-type granites (A2 post- 

orogenic subtype) with high Ga/Al ratio and high contents of HFSE (Zr, Nb, Ce, Y) and 

REE. Harker and REE spider diagrams show that the Qitianling pluton display well 

organised fractionation trends. Radiometric data show that the emplacement of 

Qitianling pluton occurred during Jurassic times. We have found crystallization ages 

(Zircon U-Pb age) for Qitianling pluton ranging between 149.5±4.8 Ma to 162±2 Ma 

being coincident with previous constraints (146±5 Ma to 163±3 Ma). The Ar-Ar dating 

of Qitianling granite shows that the amphibole and biotite record ages ranging from 151 
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Ma to 155 Ma which represent the cooling age of Qitianling. Located in the central part 

of the pluton, sample SC-52 acquired the ages from zircon (U-Pb system at 157.5±1.4 

Ma), amphibole (Ar-Ar system at 153.4±0.4 Ma) and biotite (Ar-Ar system at 

152.6±0.8 Ma) which give a cooling rate of 80°C / Ma for the cooling process of 

Qitianling pluton. 

We have experimentally established the phase relationships for the Qitianling 

granite. Three representative amphibole-bearing, metaluminous granitic samples were 

chosen for constraining crystallization conditions of the Qitianling pluton. 

Crystallization experiments were performed at 100-700 MPa, albeit mainly at 200 MPa 

or 300 MPa, at an fO2 of ~NNO-1.3 (1.3 log unit below the Ni-NiO buffer) or 

~NNO+2.4, at 660°C to 900°C, and at variable melt water contents (~3-8 wt%). 

Amphibole stability field and barometry both show that the pressure of magma 

emplacement was around 300-350 MPa. Amphibole and biotite Fe/Mg ratios further 

suggest that magmatic fO2 was around NNO-1±0.5 near solidus, while Fe-Ti oxides 

record an fO2 increase up to NNO+1 below solidus. Amphibole crystallization is 

restricted to near H2O-saturation conditions, requiring at least 5.5 wt% H2Omelt at 200 

MPa, or 6-8 wt % at ≥ 300 MPa. Amphibole occurrence in K2O-rich metaluminous 

silicic magmas thus indicates water contents significantly higher than the canonical 

value of 4 wt%. The experimental liquid line of descent obtained at 200-300 MPa mimic 

the geochemical trend expressed by the pluton suggesting that fractionation in the upper 

crustal reservoir could happen.  

Based on the phase equilibria of intermediate-acid igneous rocks, combining the 

composition of rock forming minerals (Amp and Bt) and bulk rock composition, we 

proposed an empirical oxygen barometer. The database of our oxygen fugacity 

modeling including Qitianling granite, Santa Maria dacite, Pinatubo dacite, Jamon 

granite, Lyngdal granodiorite which cover a SiO2 content of bulk rock ranging from 60 

wt% to 71 wt%. All the required parameters are temperature, pressure, whole rock 

composition: 
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△NNO= －0.00254×T(°C) －13.9602×Fe#Amp ＋0.00143×P(MPa) ＋6.2809

×Fe#Amp×Fe#w＋0.2803×wTiO2-2.1×w(Al2O3/SiO2) ＋0.2768×w(Na2O/K2O) 

＋5.9663                                                          (1) 

 

△NNO=－0.0004×T(°C) －0.0004×Fe#Bt＋8.3772×Fe#Bt×Fe#w＋0.0027×

P(MPa) ＋2.4082                                                   (2) 

These equations allow to calculate magmatic fO2 to within 1 log unit: the retrieved 

values most likely correspond to conditions during the late crystallization stage of the 

magma, owing to the easiness of re-equilibration of the used minerals. Application of 

our oxygen barometer to three Jurassic plutons (Jiuyishan, Huashan and Guposhan 

pluton) in South China demonstrates that the oxygen fugacity of those three plutons 

suggest a relative reduced redox environment, similar to that inferred for Qitianling 

granite. 

Besides, a highly evolved, composite ongonite-topazite with Nb-Ta- and Sn-

bearing ore minerals dike was also involved into our study. The crystallization of Nb-

Ta- and Sn-bearing ore minerals was strongly controlled by the separation of the 

aluminosilicate and hydrosaline melt phases, which both are rich in F. Exsolution of the 

two melt phases and their efficient segregation into core and rim zones of the dike may 

have been driven by dike propagation/widening subsequent to the initial dike 

emplacement. The different content of F and other volatile components in two different 

melts may cause the early Nb-Ta mineralization in ongonite and later Sn mineralization 

in topazite. 

The experimental constraints on the emplacement conditions of Jurassic Qitainling 

granite gave several clues for better understanding the tin mineralization. The 

experiment of solubility of SnO2 suggested that low oxygen fugacity can be a 

significant constrain on the Sn incorporation in a granitic melt. Qitianling magma was 

emplaced at relative low oxygen fugacities (NNO-1±0.5), hence providing a beneficial 

environment for incorporating the Sn in the melt, at least during the early stages of its 
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production/crystallisation. Besides, High liquidus temperature of magma plays an 

important role on extracting ore elements, especially in thoes anatectic melts, thus also 

allows high concentration of tin being reached in the silicate melt during the different 

geological process. Lastly, water rich magmas dissolve other volatiles such as chlorine, 

fluorine, boron and phosphorus which will be also helpful in capturing and transiting 

the ore elements such as Sn. Based on the low oxygen fugacity, high temperature and 

rich in melt water content, we deduced that Qitianling magma system is beneficial for 

the tin mineralization. What is more, high melt content in the Qitianling magma system 

may raise the question: Where is the water come from? Assume that there was no excess 

and extraneous water from the source or the country rocks, then the hydrous minerals 

such as amphibole and biotite bearing rocks could be a possibility of source rock of 

Qitianling pluton which can produce high content of water after the dehydration melting. 

 

 

Key words: South China; Jurassic granite; experimental petrology; phase equilibrium; 

emplacement conditions; temperature; pressure; oxygen fugacity; melt water content; 

cooling rate; amphibole; biotite; oxybarometer; Sn-Nb-Ta mineralization.  
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Chapter 1 Introduction 

1.1 Research background  

1.1.1 The research advance of the petrogenesis of Mesozoic granitoids in South 

China 

In the southeastern part of China, the wide distribution and long duration of the 

late Mesozoic magmatism presents a unique opportunity in the world, offering a natural 

laboratory to study the magma genesis, their emplacement mechanisms, the 

geodynamic role on magma emplacement and related lithospheric evolution, and the 

relationships between magmatism and mineralization. Among these hot debated 

scientific questions, numerous Chinese and international research teams are working 

on the petrogenesis of Mesozoic granitoids and related volcanic rocks in South China 

for many years (Xu et. al., 1963; Jahn et al., 1976; Wang et. al., 1984; Mo, 1985; Zhou 

and Li, 2000; Sun and Zhou, 2002; Wang, 2004; Zhou et. al., 2006; Hsieh et. al., 2008; 

Gao et. al., 2017). Different scientists hold different opinions on the petrogenesis of 

Mesozoic granitoids in South China. Zhou et al., (2006) summarized the current 

accepted views: (1) lithosphere extension and asthenosphere upwelling; (2) mantle 

plume activities; (3) rifts in coastal areas of east China; (4) Rifting and lithosphere 

delamination in east Asia; (5) Paleo-Pacific Plate subduction beneath East Asia; (6) 

Extension-induced deep crustal melting and underplating of mantle-derived basaltic 

melts (Li, 2000; Li et al., 2001; Xie et al., 1996; Xie et al., 2001;Gilder et al., 1991; Zhu 

et al., 1997; Cai et al., 2002; Jahn et al., 1976, 1990; Guo et al., 1980; Charvet et al., 

1994; Lapierre et al., 1997; Zhou and Li, 2000; Niu, 2005. However, in order to find 

out the consensus on the petrogenesis of Mesozoic granitoids in South China, the study 

on the emplacement conditions of Mesozoic granites is a key likely to give important 
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information and detailed evidence.  

1.1.2 Emplacement conditions of Mesozoic granites in South China 

Starting in the 1990’s, geoscientists have made important efforts and obtained 

remarkable scientific achievements in both geochemistry and geochronology fields of 

Mesozoic granites in South China. As for the emplacement conditions, generally, most 

of the studies of emplacement condition of granite from south China are based on the 

different thermometers, barometers and oxygen barometers. For example, Zhao et al. 

(2005) used different thermometers and barometers to calculate the temperature and 

pressure of the representative Mesozoic metallogenetic A-type granite – Qitianling 

ganite and concluded that the forming temperature and pressure should be 750-820℃ 

and 3.6±0.9 kbar, respectively. Similar conclusion also came from Zr-in-titanite 

thermometer from Xie et al. (2010), which indicated a range in temperature of 721-

780℃.As for the redox condition, information from biotite suggests that the oxygen 

fugacity of the Qitianling granite is between the Ni-NiO (NNO) and the Fe2O3- Fe3O4 

(MH) buffers (Zhao et al., 2005). This redox state is consistent with the biotite 

calculated results that inferred for other Mesozoic metallogenetic granites in South 

China such as Huashan and Guposhan (Wang et al., 2013).  

1.1.3 The experimental petrology for granite 

Although the different thermometers, barometers and oxygen barometers can give 

some indirectly indications of the crystallization conditions, some of the estimation of 

the temperature, pressure or redox state may be overestimated or underestimated due to 

the accuracy of the method or the re-equilibrium of the minerals which can’t record the 

crystallization composition. Therefore, the experimental petrology method of the phase 

equilibrium will provide more direct and accurate constrain on the magma system. In 

the early stage of the development of experimental petrology, many phase equilibrium 
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studies were carried out using the synthetic materials or simple binary and ternary 

systems (Tuttle and Bowen, 1958; Whitney, 1972, 1975; Luth, 1976). Along with the 

development of the technique, such as the application of internally heated pressure 

vessels technique that took traditional petrology one step further. Based on this 

technique, phase equilibria studies were widely developed in the felsic magma system. 

i.e. Scaillet, (1995) successfully set up the phase diagrams of the leucogranite of 

Himalayan at 4 kbar, under moderately reducing conditions (FMQ -0.5), for varying 

melt water content, and in the temperature range of 663-803°C. Besides, the phase 

equilibria in the peralkline rhyolite system were also constrained by the same 

experimental petrology method (Scaillet and Macdonald, 2001; 2003). The phase 

diagrams of A-type granite were first established by Clemens et al. (1986) for the 

metaluminous Watergums granite from southeastern Australia. The experimental works 

of Dall’Agnol et al. (1999), Bogaerts et al. (2003) and Klimm et al. (2003, 2008) have 

subsequently constrained emplacement conditions for other metaluminous A-type 

granites. These studies have shown that the precursor magmas of such granites have 

relatively high temperatures during emplacement in upper crust (>800°C) with melt 

water contents up to 6.5 wt% (Dall’Agnol et al., 1999), and variable redox conditions 

(from NNO to NNO+1). In addition, the phase equilibrium experiments of Klimm et al. 

(2003, 2008) also explored the relationships between different compositions of 

Wangrah Suite A-type granites. Their results show that crystal fractionation can explain 

the geochemical trends expressed by the Wangrah pluton. What is more, the 

experimental petrology can also be applied into exploring the ore-forming processes in 

granitic magma system. i.e. Linnen et al. (1995, 1996) also explored the SnO2 solubility 

in haplogranitic melt under broadly similar experimental conditions, finding that tin 

diffusivity was dependent on both fO2 and melt composition. Hence, according to the 

previous experimental studies, we believe that using the experimental petrology method 

can help us better understanding the petrogenesis of Mesozoic granitoids and their 

associated mineralization in South China. 
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1.2 Key problems  

What are the temperature-pressure conditions of magma emplacement in upper 

crust, and what are the relationships among tectonics (geodynamics) - magmatism - 

mineralization? These are still the most hotly debated questions among the geologists 

in the world. However, various fundamental questions remain unanswered and the 

better understanding of emplacement condition of Mesozoic granites still remains an 

important task. In this thesis, besides the traditional petrology, mineralogy, 

geochemistry, geochronology, the experimental petrology technique (e.g. internally 

heated pressure vessels) will be applied for the study of the Mesozoic metallogenetic 

granites in Southern China which has never been utilized for this area before, in order 

to simulate and constrain the emplacement conditions and evolution of magma 

(pressure, temperature, volatile contents, redox state). Meanwhile, the information from 

the experimental petrology simulations can help us have a better understanding on the 

relationship existing between magmatism and mineralization.  

The main objectives of this research are to determine the emplacement conditions 

(P, T, fO2, H2O in melt) of representative Mesozoic granites using the experimental 

petrology approach. Building up the phase equilibria diagram of representative granites 

in South China will supplement more basic knowledge of Mesozoic magmatic events. 

Economically significant W, Sn, U, Nb-Ta, and REE mineralizations are genetically 

associated with these granites in South China. Therefore, we also aim to explore the 

relationship between emplacement conditions and mineralization. Here in this thesis, 

using the same experimental approach we mentioned above, we chose the Jurassic 

metallogenetic Qitianling granite in southern China for our case study. We set up the 

phase diagram of Qitianling granite, and find out its possible emplacement conditions 

which provide some more clues for understanding the later mineralization. 
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1.3 Workload of the study  

All the study was supervised by both professors from Nanjing University and 

University of Orleans. The main workload which is consists of the work in the field and 

laboratory is listed in Table 1. 

Table 1 Workroad of this study. 

After the literature investigation on the Mesozoic metallogenetic granites in South 

China, we recognized the significance to conduct detailed fieldwork in Hunan, 

Guangdong, Guangxi, Jiangxi and Fujian provinces. Field observations and sample 

collection is the first step. The observation of the contact between the granites body and 

their country rock can give a rough reference for the choice of the conditions in later 

work type work content  number unit 

Field work 
Field observation 

 

105 day 

42 pluton 

5 profile 

Sample collection 188 sample 

Sample 

preparing 

Starting materials 3 sample 

Thin section 230 piece 

Au capsule 200 piece 

Epoxy mount 18 piece 

Zircon selection 18 sample 

Biotite selection 12 sample 

Amphibole selection 3 sample 

Experiments 

and analysis 

Crystallization and melting experiment 20/ >8600 run/ hour 

Thin section observation 230 piece 

Bulk rock major element analysis  46 sample 

Bulk rock trace element analysis  46 sample 

Minerals phases EMP analysis >5000 analysis 

CL image of zircon  190 photo 

BSD image of natrural and experimental 

minerals >1000 photo 

U-Pb zircon dating 18 sample 

40Ar-39Ar biotite and Ampibole dating  15 sample 
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experimental petrology experiments.  

Laboratory studies include samples preparing (thin sections making; rock sample 

crushing; rock sample powder grinding; mineral separating and picking; samples 

mounting), crystallization experiments using internally heated pressure vessel (IHPV), 

major element determination by wet-chemical analyses, trace element measurement by 

Inductively Coupled Plasma Mass Spectroscopy (ICP-MS), major composition 

analyzing of natural and experimental mineral phases by electron microprobe (EMP), 

trace element (including U-Pb isotope) analyzing of mineral by Laser ablation 

inductively coupled plasma mass spectrometry (La-ICP-MS), 40Ar-39Ar isotope 

determination by Noble Gas Mass Spectrometry, zircon cathodoluminescence (CL) and 

mineral phases imaging by Scanning Electron Microscopy (SEM). All these methods 

are described in details in Chapter 3. 

1.4 Main achievements and innovations  

Based on the systematically experiments of our study, the following findings can 

be concluded: 

The Ar-Ar dating of Bt and Amp of Qitianling granite gave the age ranging from 

151 Ma- 155 Ma which is consistent with the U-Pb zircon age (150 Ma- 162 Ma) 

representing the slowly cooling history of Qitianling pluton. 

Located in the central part of the pluton, sample SC-52 acquired the ages from 

zircon (U-Pb system at 157.5±1.4 Ma), amphibole (Ar-Ar system at 153.4±0.4 Ma) and 

biotite (Ar-Ar system at 152.6±0.8 Ma) which give a cooling rate of 80°C / Ma for the 

cooling process of Qitianling pluton. 

We built up the phase diagrams of representative Jurassic A-type metaluminous 

potassium rich Qitianling granite. The high content of potassium has an effect on the 



Chapter 1  

7 

 

stability of biotite which indirectly influences the stability of amphibole. 

The Qitianling granite have a relatively high liquids temperature (>900 ℃). 

The A-type Qitianling granite was cooling down in a water rich (>5.5 wt% or even 

up to ~7 wt%) environment. 

Phase equilibrium relationships and compositions of minerals such as amphibole 

suggest a pressure of crystallization at 300MPa-350MPa. 

Fe/(Fe+Mg) ratio of experimental amphibole and biotite suggest the oxygen 

fugacity of Qitianling granite is relatively reduced (~NNO-1±0.5), which is beneficially 

for concentrating Ore elements such as tin.  

Using the Fe/(Fe+Mg) ratio of amphibole and biotite and the bulk rock 

composition, we set up two empirical oxygen barometers. 

The application of our empirical oxygen barometers showed that the adjacent 

Jurassic plutons (Jiuyishan, Huashan, Guposhan) have a relatively reduced (<NNO) 

redox state. 
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Chapter 2 General geological background of the South China 

Block 

2.1 General tectonic background in South China  

The current South China Block (SCB) is surrounded by four major tectonic units, 

i.e. the North China Craton in the north, Tibet plateau in the west, the Indo-China Block 

in the southwest and the Pacific plate in the east-southeast part (Fig. 2.1a; Zheng et al., 

2013. Faure et al., 2017; Li et al., 2017). These units were gradually collided with the 

South China Block since Paleozoic epoch to late Cretaceous. However, previous 

geochronological studies on the sutures, which separate the South China Block from 

the surrounding units (Fig. 2.1a), show that these sutures are mainly closed at the 

Triassic time and some of them re-activated by subsequent tectonic events (Mattauer et 

al. 1985; Faure et al.,1999, 2014; Hacker et al., 2004; Lepvrier et al.,2004; Yan et al., 

2011) 

The South China block is amalgamated by the Yangtze block in the north and the 

Cathaysia block in the south during Neoproterozoic epoch. These two blocks are 

separated by a > 100km wide and ~1500km long Jiangnan orogen, which cross Guangxi, 

Guizhou, Hunan, Jiangxi, Anhui and Zhejiang provinces (Fig. 2.1b; Wang et al., 2004; 

Shu et al., 2012). Within the Jiangnan orogen region, previous geochronological studies 

on the syn-collisional granitoids and the detrial zircon dating of the conglomerate show 

that the time of collision is between 1.0 Ga to 0.8 Ga (Shu et al., 1996; Li et al., 1994, 

2007b, 2009; Wang et al., 2006, 2007b; Ye et al., 2007). In the eastern part of the 

Jiangnan orogen region, the discovering of Neoproterozoic ophiolite along the 

Shaoxing–Jiangshan–Pingxiang fault has demonstrated the boundary between the 

Yangtze and the Cathaysia block (Shu et al., 1994, 2006, 2011; Li et al., 2009). While 

for the western part, the boundary remains uncertain due to the lack of reliable 
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evidences. Therefore, different opinions were proposed by geologists: 1) Anhua-

Luocheng fault; 2) Chenzhou-linwu fault; 3) Hangzhou-Zhuguangshan- Huashan 

(Qinhang belt) (Charvet,1996; Hong et al., 1998; Wang et al., 2007b; Zhao and Guo, 

2012; Charvet et al., 2013).  

 

Fig. 2.1 (a) Sketch map showing major tectonic units in China. Abbreviations:  CAOB: Central 

Asia Orogenic Belt; HO: Himalaya Orogen; KQO: Kunlun Qiangtang Orogen; QDO: Qinling-Dabie 

Orogen; SL: Sulu belt. (b) Geological map showing distribution of Precambrian rocks (including 

metamorphosed volcanic- sedimentary basement and granites) in the South China Block and the 

possible boundry of Yangtze and Cathaysia blocks (Modified after Dong et al., 1986; Li et al., 2003; 

Yu et al., 2009; Faure et al., 2009; Shu, 2012). 
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The Yangtze Block possess the Archean TTGs series as it basement and 

characterized by the Neoproterozoic magmatism around the margin of the block (Fig. 

2.1b; Qiu et al., 2000; Gao et al., 2011). However, the Cathaysia Block is considered as 

an accreted block with Paleoproterozoic basement, which supported by the 

Paleoproterozoic gneissic granitoids (~1830- ~1890 Ma) or amphibolite (1766 Ma) 

developed in southwestern Zhejiang Province and northwestern Fujiang Province 

(southeastern China) (Li, 1997; Yu et al., 2009; Li and Li, 2007b). Moreover, the 

Precambrian strata are randomly and widely developed inside of the Cathaysia Block 

and previous detrital zircon dating and isotope studies show different affinity (Xu et al., 

2005; Yu et al., 2007, 2009, 2010, 2012). 

2.2 General magmatism in south China 

2.2.1 Neoproterozoic magmatism series  

In Southern China, the distribution of Neoproterozoic magmatism is less (Fig. 2.1b; 

Fig. 2.2). Since the uniform South China Block was formed at the Neoproterozoic 

epoch, the following rifting related Neoproterozoic granitoids and volcanic rocks 

revealed by previous displayed the major magmatism events in Precambrian. 

Consequently, the widely distributed volcanic sediments in the Jiangnan orogeny and 

late Neoproterozoic granitoids (~770 Ma), which intruded in the syn-collisional early 

Neoproterozoic peraluminous granitoids (Xu and Zhou, 1992; Wang et al., 2013) were 

revealed. Moreover, the rifting related Neoproterozoic volcanic rocks also reported 

inside of the Cathaysia Block (Li et al., 2002; Wang et al., 2008). 
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2.2.2 Paleozoic magmatism series 

The distribution of Paleozoic granitoids (mainly between 360 Ma and 540 Ma) in 

the South China Block has an outcrop area around 22000 km2 (Sun, 2006). Those early 

Paleozoic granites are distributed near the boundary of the Hunan, Jiangxi, Guangxi 

 

Fig. 2.2 Geological sketch map of the South China. ①: Shaoxing-Pingxiang boundary fault zone 

between Yangtze and Cathaysia Blocks; ② : Zhenghe-Dapu boundary fault zone between the 

Cathaysia basement and the SE-China Coastal Complex; ③ : Northeast Jiangxi Neoproterozoic 

ophiolitic zone; ④: Jiujiang-Shitai buried fault zone of the northern boundary of the Jiangnan Belt; 

and ⑤: Tanlu sinistral strike-slip fault zone (cited from Shu et al., 2015).  
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and Guangdong provinces, being dominantly concentrated in the Yunkai and Wuyi 

areas. Representative plutons with age peaks between 400 Ma and 460 Ma are 

Miaoershan-Yuechengling, Ninghua, WeiPu, Guangping, Shidong, Haiyangshan, 

Penggongmiao–Wanyangshan–Zhuguangshan plutons etc. (Fig. 2.2). Most of them are 

granite and granodiorite or minor tonalite with gneissic structure. More than half of 

those granitoids are classified as S-type granite containing sillimanite, cordierite, 

muscovite, garnet or tourmaline (Wang et al., 2007b), but contemporaneous minor I-

type and A-type granite are also present (Feng et al., 2014; Guan et al., 2013; Huang et 

al., 2013; Cai et al., 2016). This sugggests that early Paleozoic granitoids are related to 

an intracontinental orogenesis (Charvet et al., 1996; Shu et al., 2006; Chen et al., 2010; 

Li et al., 2010). Based on geochemistry and Sr-Nd-Hf isotopic results, the proterozoic 

metapelite and meta-igneous rocks are interpreted as the source of these early Paleozoic 

S-type granites (Li et al., 2010; Zhang et al., 2011; Peng et al., 2015; Zhong et al., 2016). 

 

 

Fig. 2.3 Distribution of early Paleozoic granitoid rocks of the eastern South China Block. (Cited from 

Huang et al., 2013) 
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Fig. 2.4 Distribution of major Mesozoic magmatism in South China (a)(cited from Gan et al., 2017).; 

(b) isotopic age histogram of Mesozoic granites-volcanic rocks in South China (cited from Zhou, 

2006). 

(a) 

(b) 
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2.2.3 Mesozoic magmatism 

Mesozoic (~66-251 Ma) granitic rocks (sensu lato) make up a large proportion 

(~60 %) of the exposed crust in south China, with an overall exposure of ~135,000 km2 

(Fig. 2.4. e.g. Zhou et al., 2006).  

Triassic (~201-252 Ma) granitoids have ~14300 km2 outcrop area in South China 

while the Late Triassic (~205-234 Ma) plutonic rocks representing up to more than 90 

vol % proportion (Zhou et al., 2006). The Triassic granitoids are mainly distributed in 

Hunan, Guangdong, Guangxi, Jiangxi, Fujian and Hainan provinces. Representative 

plutons include Baimashang, Dayishan, Yuechengling, Miaoershan, Guidong, 

Darongshan, Longyuanba etc. Those granitoids are biotite-granite, monzonitic granite 

and granodiorite (Wang et al., 2013 and references therein). Geochemical data show 

that more than 60 vol % of these granitoids have ACNK values >1.1 hence are defined 

as peraluminous granites with muscovite, garnet and tourmaline phases (Sun et al., 

2003). In contrast, calc-alkalic magmatism is volumetrically minor and only found 

locally (Sun et al., 2011). Gneissic or mylonitic structures can be observed in the early 

Triassic granitoids which suggests that the magmas were broadly syn-collisional. The 

collision between Indochina Block and South China Block occurred between 258 Ma 

to 243 Ma which is older than the age of dominant Late Triassic plutonic rocks (Carter 

et al., 2001). Subsequent to the crust thickening, high pressure caused the partial 

melting of the lower crust via the dehydration melting of hydrous minerals e.g. 

amphibole and mica in lower crust. In contrast, Sun et al, (2003) suggested that the 

Triassic magmatism results from decompression melting during late to post collision to 

extension. 

Early Jurassic (~200-180 Ma) granitoids are rarely observed in South China which 

is considered as a magmatic lull. However, starting from ~180Ma, magmatic events 

became active. The exposed area of Jurassic (~142-180 Ma) granitoids is as large as 
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62700 km2 and comprises ~50% of the exposed Mesozoic intrusions in south China. 

They are found throughout Guangxi, Guangdong, Hunan, Jiangxi and Fujian provinces 

and parallel to the coastline (Fig. 2.4). In contrast to Triassic granites, many Jurassic 

granitoids (cluster at ~155 Ma) are metaluminous with ACNK<1.1, which is more than 

coeval prealuminous granitoids in south China. They dominant variety is characterised 

by a biotite±amphibole mineralogy, many A-type and I-type granites being defined. In 

addition, coeval volcanic rocks (~170-180 Ma) including basalts and rhyolites in 

bimodal packages, are also found (Chen et al., 2002; He et al., 2010). Those volcanic 

rocks are spatially associated to plutonic rocks and are commonly explained as being 

related to a rift mechanism during the Tethyan tectonic phase. 

Cretaceous magmatism (67-142 Ma) is famous for the voluminous granitoids and 

volcanic rocks with an overall outcrop area of ~139920 km2 (Zhou et al., 2006). They 

are mainly distributed near the coast (Guangdong, Fujian, Zhejing, Anhui provinces) in 

south China and the exposed area of volcanic rocks is twice as much as that of coeveal 

granitoids (Fig. 2.4) (Zhou et al. 2006). Cretaceous granitoids are mostly high-K I-type 

and A-type granites which were emplaced at 136 -146 Ma, 122-129 Ma, 101-109 Ma 

and 87-97 Ma, respectively, or four main episodes (Li, 2000). The volcanic rocks were 

erupted mainly during the time intervals of 124-135 Ma and 88-97 Ma. Most of them 

are rhyolites, dacites, andesites and basalts (Li, 2000; Chen and Jahn, 1998). The age 

of Cretaceous granitoids and associated volcanic rocks becomes younger coastward. 

Combining with the geochemical investigations, the Cretaceous magmatism is 

explained as the result of the subduction of Paleo-Pacific plate below the South China 

Block with an episodic slab rollback (Zhou and Li, 2000; Li and Li, 2007). 

2.3 Metallogeny associated with Mesozoic magmatism in south China  

South China block is not only famous for its huge amount of magmatism but also 

for its various and large associated ore-deposits which makes it an ideal natural 
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laboratory for exploring the formation and the evolution of continental lithosphere and 

related resources. The main mineralizations in South China include W, Sn, Nb, Ta, Ag, 

Au, Mo, Cu, Pb, Zn and U deposits. Most of them are associated with Jurassic and 

Cretaceous magmatism (80Ma-180 Ma). (Fig. 2.5; Mao et al., 2004, 2011). Four 

metallogenic regions have been identified according to their distribution and deposit 

types (Fig. 2.5; Mao et al., 2013).  

 

   

Fig. 2.5 Distribution of major Mesozoic ore deposits in South China (a), (b) and the comparison of 

age between ganites(c) and related ore deposits(d). (Cited from Mao et al., 2013) 

1) Qin-Hang belt (Fig. 2.5a). It is located betweenthe Yangtze and Cathaysia 

Blocks and the Qinzhou-Hangzhou Neoproterozoic suture. Qin-Hang belt is famous for 

its Cu-Mo-Pb-Zn-Ag deposits, including porphyry (Cu) and hydrothermal vein-types 

Age of 

granite 

Age of 

Ore deposits 

c d 
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(Pb-Zn-Ag). Within this belt, the main mineralization age is between 165 and 175 Ma. 

Representative ore deposit are: Dexing porphyry (Cu-Au-Mo), Linghou hydrothermal 

vein (Cu), Shuikoushan hydrothermal (Pb-Zn), Tongshanling porphyry-skarn (Cu) etc 

(Lu et al., 2005; Tang et al., 2015; Huang et al., 2017). 

2) Nanling belt and adjacent area (Fig. 2.5a). This region is on the east side of Qin-

Hang belt and overlaps with the middle part of Qin-Hang belt. It hosts large amounts 

of W-Sn-Nb-Ta-Mo-Bi-Be deposits which are associated with the contemporaneous 

metaluminous granites: deposits include granite related type, skarn type, quartz±

chlorite vein type and greisen type. Differing from the Qin-Hang belt, the 

mineralization age of Nanling belt is younger, ranging from 150 to 160 Ma. 

Representative ore deposits are: Qianlishan-Shizhuyuan (W-Sn-Mo-Bi), Huangshaping 

(Pb-Zn-Sn-Mo), Qitianling-Furong (Sn) and Xintianling (W), Xianghualing (Sn-Nb-

Ta-Be), Yaogangxian (W), Piaotang (W) and Dajishan (W) (Mao et al. 1996; Lu et al. 

2003; Zhao et al. 2005; Wang et al., 2007; Yao et al. 2007; Zhang et al., 2007; Bai et al., 

2013; Huang et al., 2015; Zhang et al. 20015; Huang et al. 2017). 

3) Northwestern Nanling belt (Fig. 2.5a). This metallogenic area is predominantly 

located in the Southern part of Jiangnan Orogen. The mineralization age is between 130 

and 155 Ma, which is younger than the Nanling belt. Mainly, Sb deposits within this 

region genetically belongs to epithermal (lower temperature hydrothermal fluid) type. 

Representative ore deposits are: Xikuangshan (Sb), Banxi (Sb), Longshan (Sb) and 

Woxi (Sb-Au) (Peng et al., 2001; Peng et al., 2004; Pang et al., 2011). 

4) Coast marginal belt (Fig. 2.5a). Spatially, this metallogenic belt stretches from 

the coast of northeast part of Fujian province to the southwest part of Guangxi province. 

The ore-forming types includes porphyry hydrothermal Cu-Au-Ag deposits, 

polymetallic Sn deposits and hydrothermal U deposits. Their mineralization ages varied 

from ~80 Ma to 120 Ma. Representative ore deposits are: Luoboling porphyry (Cu-Mo), 

Zijinshan (Cu-Au), Xiazhuang (U), Xiangshan (U), Dulong (Sn-Zn) polymetallic, Gejiu 
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polymetallic (Sn) (So et al., 1998; Deng et al., 2003; Liu et al., 2007; Hu et al., 2009; 

Zhong et al., 2014). 

2.4 Representative Jurassic plutons in Nanling area, South China 

Nanling Range area is located in south of South China block covering a geographic 

area of ~200,000 km2 (110.0–116.5°E, 23.5–26.5°N, Fig. 2.6). It is popularly known as 

the constitution of five mountains, i.e. Yuechengling, Doupangling, Mengzhuling, 

Qitianling, Dayuling, which cross Hunan, Guangxi, Guangdong, Jiangxi and Fujian 

provinces. The Nanling Range includes various granites and sedimentary basins which 

have experienced a complex geological evolution. Many of which are Jurassic granites 

and they are host to various W, Sn, Nb, Ta and U mineralizations. Here we introduce 

several representative Jurassic plutons in Nanling Range (Fig. 2.6). 

 

Fig. 2.6 Geologic map of the Nanling Range showing the distribution of granites and associated 

tungsten/tin deposits (cited from Yuan et al., 2018). Note: Late Yanshanian (140-66 Ma)≈Cretaceous; 

Early Yanshanian (180-142 Ma)≈Jurassic; Indosinian (251-205 Ma)≈ Triassic ; Caledonian (600-

405 Ma)≈ Cambrian-Ordovician-Silurian-early Devoniain (Zhou et al., 2006). 
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2.4.1 Qitianling pluton 

The Jurassic (~147-162 Ma) Qitianling granite, South Hunan province in China, 

is representative of metaluminous (amphibole-bearing) Mesozoic A-type granites 

outcropping in the central part of the Nanling Range in SE China (Fig. 1a, b; Zhu et al., 

2009). The Qitianling pluton crops out over ~520 km2, being intruded within 

Carboniferous to Triassic carbonates and sandstones, lying close to the NNE–SSW- 

 

Fig. 2.7 Geologic map of Qitianling pluton.  represent the Sn(-W) ore deposit district. 
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trending Chenzhou–Linwu crustal fault (Fig. 2.1; Wang et al., 2003). Exposed contacts 

between the Qitianling granite and its country rocks are sharp with narrow metamorphic 

aureoles (typically <30 metres wide), whose lithology varies from biotite-muscovite 

hornfels (in the east), to garnet-bearing skarns (in the northeast), to marbles (in the 

southwest). 

 Three main rock types (phases) have been distinguished for the Qitianling pluton 

(Zhu et al., 2009): (1) a discontinuous outer boarder of porphyritic, medium- to coarse-

grained amphibole-biotite-rich monzonitic granite (phase-1, ~45% of the exposure) 

where the mafic black enclaves were also often observed; (2) a medium-grained 

biotite±amphibole-bearing granite (phase-2), which mostly forms the central part and 

the southern margin of the pluton (~40% of the exposure); and (3) a fine-grained, 

biotite-bearing granite (phase-3), which is locally exposed in the central and southern 

parts of the pluton (~15% of the exposure) (Fig. 2.7).  

The granite hosts the world-class Furong Sn deposit with the estimation of Tin 

reserve up to 600,000 tons (Huang et al., 2001; Li et al., 2007a) and is therefore of 

particular interest in assessing the influence of the granite-ores magmatism on the 

mineralization relationships. The Furong Sn deposit district is located in the southwest 

of Qitianling pluton and the ore body occurs as veins and lenses along NE-SW-trending 

fault zone and crush zone in the phase-2 granite. Three main tin-belts were discovered 

in the district from west to east: 1) Bailashui–Anyuan tin belt; 2) Heishanli–Maziping 

tin belt; 3) Shanmenkou–Goutouling tin belt (Huang et al., 2001; Mao et al., 2004). The 

main metallogenic types in Furong Sn deposits are skarn-type (representative No.19 

and No.52 ore veins), greisen-type (representative No.3 and No.54 ore veins) and 

chloritization alteration granite-type (representative No.10 ore vien). Among 

approximately 50 orebodies within the Furong district, No.19 vein is the largest one 

with Sn reserve up to ~270,000 tons and it has thus attracted many economy geologists. 

Recently, Yuan et al. (2011) used in-situ LA–MC–ICP–MS and ID-TIMS U–Pb dating 
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on cassiterite from No.19 vein and acquired tin mineralization ages at 159.9±1.9 Ma 

and 158.2±0.4 Ma, respectively. These mineralization ages are very close to the granite 

age which demonstrates the close relationship between the magmatism and the tin 

mineralization (Fig. 2.8). 

2.4.2 Jiuyishan pluton 

Jiuyishan pluton is located near the boundary of Hunan and Guangdong provinces, 

southwest of Qitianling pluton (Fig. 2.9). The total outcrop area of Jiuyishan pluton 

complex is ~1,200 km2 and it is composed of Xuehuading pluton, Jinjiling pluton 

(including Pangxiemu pluton), Shaziling pluton and Xishang volcanic-intrusive 

complex. The plutons intruded into the country rocks include Sinian silicalite sandstone 

and slate, Cambrian sandstone and shale, Devonian sandstone and carbonatite with 

 

Fig. 2.8 Geological map of the Furong tin deposit and distribution of orebodies (cited from Yuan et 

al., 2011).  
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local thermal metamorphism (Fig. 2.9; Fu, 2004).  

 From west to east of Jiuyishan pluton complex is made of: 1) the Xuehuading 

pluton. It has an outcrop area of 130 km2 with a dominant medium- to fine-grained 

amphibole-biotite-rich monzonitic granite. SHRIMP Zircon U-Pb dating has given an 

age of 432±21 Ma; 2) the Jinjiling pluton (390 km2) is mainly a medium- to coarse-

grained biotite monzonitic granite with a Zircon U-Pb age of 156 ±2 Ma. Pangxiemu 

pluton is intruded within the Jinjiling pluton and consists of medium- to fine-grained 

two-micas or biotite monzonitic granite. Da’ao W-Sn deposit district is located in the 

western part of the Jinjiling pluton and near the Panxiemu pluton which contains 

greisen-type and quartz vein -type Sn deposit; 3) the Shaziling pluton (65 km2) has a 

SHRIMP Zircon U-Pb age of 157±1 Ma. The lithologies are medium- grained 

amphibole-biotite monzonitic granite and minor granodiorite; 4) the Xishang volcanic-

intrusive complex (705 km2) consists mainly of porphyritic fine-grained biotite 

monzonitic granite, microfine-grained porphyritic subvocanic rocks and porphyritic 

 

Fig. 2.9  Geological map of the Jiuyishan pluton.  represent the Sn(-W) ore deposit district. (cited 

from Guo et al., 2016) 

 
Jiuyishan 
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dacite or rhyolite. It is worth noting that fayalite and ferrosilite were observed in those 

subvolcanic rocks. Zircon U-Pb dating gives an age for the Xishang volcanic-intrusive 

complex of 156 ±2 Ma (Fu et al., 2004; Huang et al., 2011).  

2.4.3 Huashan pluton and Guposhan pluton 

The Huashan and Guposhan plutons are about 50km southweast of the Jiuyishan 

pluton (lat. 24º30’ to 24º46’ N; long. 110º56’ to 111º47’ E; Fig. 2.10; Wang et al., 2013). 

They intrude into the Devonian limestones and sandy shales, Carboniferous limestones 

and Cambrian-Ordovician low-grade metamorphic rocks, all with sharp intrusive 

contacts. In the contact zone, marble or hornfels can be observed locally. Huashan 

pluton is on the west of Guposhan pluton. Its exposed area is approximately 500 km2. 

The dominant lithologies are medium- to coarse-grained amphibole-biotite monzonitic 

granite and medium- to coarse-grained biotite granite which constitute the major phases 

of the batholith. Minor fine-grained granite occurs in the central part. Tong’an quartz 

monzonite and Niumiao diorite are in the west and southeast part of the main pluton 

body, respectively. The U-Pb zircon ages of the coarse-grained biotite granite, diorite 

and monzonite are 162±1, 163±4 and 160±4 Ma, respectively (Zhu et al. 2006). 

Accessory minerals of Huashan granite are zircon, apatite, magnetite, ilmenite and 

titanite. The tin mineralization types associated with the biotite granite and fine-grained 

granite near the central part are placers, greisens, and quartz veins (Wang et al.,2012).  

 Guposhan pluton occurs east of Huashan pluton with an approximately 700 km2 

exposed area. Four principle lithology associations are identified: 1) Medium- to 

coarse-grained amphibole-biotite monzonitic Lisong granite unit (phase-1), is located 

in the center part of the pluton with locally some mafic enclaves exposed. The Lisong 

granite is surrounded by the 2) medium- to coarse-grained biotite granite (phase-2) 

while in its outer parts are 3) medium- to fine-grained biotite granite (phase-3) and 4) 

fine-grained granite (phase-4). U–Pb zircon ages of those three types of rocks are 162±3 
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Ma, 163±4 Ma, Ma,151±6 Ma, respectively (Zhu et al., 2006). The tin deposits type in 

Guposhan pluton are mainly located near the boundary between the country rocks and 

granite with the ore districts: Xinlu (in the south), Lantoushan (in the southwest) and 

Keda (in the west) Sn deposits.  

 

 

 

 

 

 

Fig. 2.10 Geologic map of Huashan and Guposhan pluton.   represent the Sn(-W) ore deposit 

district (cited from Wang et al., 2013).  
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Chapter 3 Experimental procedure and analytical method 

3.1 Material pretreatment 

About 130 fresh rock samples were chosen for our study. All samples were first 

cleaned by water and crushed into small fragments by hammer. Those rock fragments 

(around 5cm×3cm×3cm) were selected for preparing the thin sections and other rock 

fragments were collected for preparing the bulk rock powder and minerals separation. 

Small fragments of rock samples were further ground until to around 3~5mm and 

cleaned by water or ethanol again. Those rock fragments were separated into two parts. 

One is for whole rock chemistry studies and the other part is for amphibole, biotite and 

zircon selection. An agate ball mill was used for grinding the first part of rocks 

fragments into 200 mesh grain size for whole rock chemistry analysis. While the second 

part of rocks fragments were grinded into 60 mesh. Amphibole and biotite were 

extracted using gravity separation and firstly handpicked under a binocular 

stereomicroscope. All selected amphibole and biotite grains were washed in an 

ultrasonic bath and then cleaned by deionized water for several times. The residual 

materials were collected for magnetic and gravity separation. After then zircon was 

separated by handpick under the binocular stereomicroscope. Zircon grains were 

mounted in the epoxy disk and polished for further analysis. 

3.2 Whole rock chemistry studies 

3.2.1 Major elements 

Whole-rock major-element compositions of the samples were measured using wet-

chemical analysis at the Analysis Center of the No. 230 Research Institute of the China 

National Nuclear Corporation (CNNC), Changsha, China. The following procedures 
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were employed for determining various oxide contents: polyethylene oxide gravimetric 

methods for SiO2; ethylene diamine tetra-acetic acid titration for Al2O3; the potassium 

dichromate volumetric method for Fe2O3; ethylene glycol tetra-acetic acid 

complexometric titration for CaO and MgO; hydrogen peroxide solution 

spectrophotometry for TiO2; phosphomolybdenum blue spectrophotometry for P2O5; 

flame atomic absorption spectrophotometry for MnO2; flame photometry for K2O and 

Na2O; and the potassium dichromate volumetric method for FeO. The ion selective 

electrode technique was used for determining F. The procedures are described in the 

Chinese National standard protocol GB/T 14506 (3-14) -2010. All errors are less than 

5%. 

3.2.2 Trace elements 

The analyses of trace and rare-earth elements were conducted with a Thermo X7 

ICP-MS at the State Key Laboratory of Ore Deposit Geochemistry, Institute of 

Geochemistry, Chinese Academy of Science, Guiyang, China. For detailed information 

on the methods, see Qi et al. (2000). Standards include OU-6, AMH-1 and GBPG-1. 

Precisions for most elements were typically better than 10 % RSD (relative standard 

deviation). 

3.3 Mineral chemistry studies 

3.3.1 Scanning electron microscope (BSE) 

Imaging backscattered electron (BSE) images and phase characterization were 

performed using two scanning electron microscopes: a Zeiss SUPRA 55 Field Emission 

scanning electron microscope (FE-SEM) at the State Key Laboratory for Mineral 

Deposits Research of Nanjing University, China, and a Zeiss Merlin Compact scanning 

electron microscope at the ISTO (Institute des Sciences de la Terre d’Orléans), France. 
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Working distance were 8.7mm and 10 mm, respectively, with an acceleration voltage 

at 15kv. 

3.3.2 Electron microprobe (EMP) 

Quantitative analyses of the minerals and glasses were obtained by two electron 

microprobes. The analyses were carried out on polished thin sections and epoxy resin 

disk using a JEOL JXA-8100M electron microprobe (EMP) at the State Key Laboratory 

for Mineral Deposits Research of Nanjing University, China and a CAMECA SX-Five 

electron microprobe (EMP) at the Institute des Sciences de la Terre d’Orléans, France. 

The analyses of the natural mineral assemblages and all experimental run products were 

performed at a 15 kV accelerating voltage, at either 20 nA (China) or 6 nA (France) 

beam currents, and at a nominal beam diameter of 1 μm for minerals and a 10 μm beam 

diameter for glasses. Natural minerals (albite, andradite, fayalite, orthoclase, apatite, 

hornblende, topaz, scheelite and vanadite), synthetic metals (Nb, Ta and Sc metals) and 

compounds (UO2, SnO2, MnTiO3, MgO, Fe2O3 and Al2O3) were used as standards. For 

silicates and glasses, peak counting times were 10 s for all major elements except Sn 

and W (30 s). As for oxides, peak counting times were 10 s for Sn, 30 s for Ta and Nb, 

and 20 s for all other major elements. Repeat analyses were performed on selected run 

products and natural minerals to ensure that the microprobe analyses on the two 

instruments yielded equivalent results within accepted uncertainties of the method. 

For our experimental run products, four hydrous rhyolite glass standards (Scaillet 

and Evans 1999) were also analysed in each session to correct for alkali migration under 

the electron beam and to calculate the glass H2O content of the unknowns (using the 

corrected by-difference method, following Scaillet and Evans 1999). In addition to the 

glass (melt) H2O contents calculated on the basis of the EMP analyses, nominal melt 

H2O contents were also calculated using VolatileCalc (Newman and Lowenstern 2002), 

using a rhyolite composition, and the XH2O values of the individual charges. Melt H2O 
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contents calculated with both methods generally agree within ±1 wt % (see detail in 

Chapter 5), but values calculated on the basis of EMP analyses are scattered owing to 

analytical errors (in particular in crystal-rich charges). For consistency, we therefore 

refer to the values calculated using VolatileCalc in text and figures.  

The results of our experimental run products showed that most crystals were large 

enough for analysis, but crystals in some low-temperature, low-H2O charges were too 

small for uncontaminated EMP analyses (e.g. biotite and oxides). Possible 

contamination of mineral analyses by matrix glass and/or neighbouring minerals was 

evaluated on the basis of analytical totals (sum of wt % oxides) and on the basis of the 

calculated stochiometry. For some charges no uncontaminated compositions could be 

determined, despite considerable effort (e.g. charges 01, 02, and 03). Phase proportions 

were calculated by mass balance, whenever possible, and they are summarized in 

Chapter 5. We note that for most of the run products, the residuals of the mass balance 

calculations (∑r2) are low (<0.1). For these charges, we estimate that the calculated 

phase abundances have uncertainties of ±3 wt%. In cases with higher residuals, which 

reflect some analytical problems, we consider uncertainties of ±5-10 wt %. 

3.3.3 Zircon and amphibole trace elememt and Zircon U-Pb geochronology 

Mounted zircon grains were firstly photographed under the microscope for the 

transmission light and reflected light images to acquire the inclusion information. After 

that, zircon grains were imaged using cathodoluminescence (CL) under Zeiss SUPRA 

55 Field Emission scanning electron microscope (FE-SEM) to determine their internal 

crystallization structures. 

Zircon U-Pb dating and trace elements were analyzed using an Agilent 7500a ICP–

MS instrument equipped with a New Wave UP-213nm laser-ablation system at the State 

Key Laboratory for Mineral Deposits Research of Nanjing University, China. Zircon 

standard GEMOC GJ-1(608.5±1.5Ma Jackson et al. 2004), Mud Tank (732±5 Ma Black 
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and Gulson, 1978) and glass standard NIST- SRM 610 (Pearce et a1., 1997) were 

chosen for the analysis as the external standards and quality control. Element setting 

included 29Si, 31P, 49Ti, 88Sr, 89Y, 90Zr, 93Nb, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 

157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb, 175Lu, 178Hf, 181Ta, 206 Pb, 207 Pb, 208Pb, 

232Th, 238U which 29Si was used as an internal standard for zircon. The analyses were 

performed using a 5 Hz repetition rate and a 35 μm diameter beam size. Each run 

included 12 sample analyses following by 2 GJ-1 analyses, 2 NIST- SRM 610 analyses 

and 1 Mud Tank analyse. Raw data reduction were calculated using GLITTER (ver 4.0) 

(Griffin et al., 2008). Microsoft Excel program ComPbCorr#3_15G (Andersen, 2002) 

was used for the common Pb correction at the end. 

In situ analyses of amphibole trace elements were accomplished using an Agilent 

Technologies 7700x ICP-MS instrument equipped with a eledyne Cetac Technologies 

Analyte Excite laser-ablation system at Nanjing FocuMS Contract Testing Co. Ltd. 

Element setting included 7Li, 9Be, 11B, 23Na, 24Mg 27Al 29Si, 31P, 39K, 42Ca, 45Sc, 47Ti, 

51V, 53Cr, 55Mn, 57Fe,59Co, 60Ni, 65Cu, 66Zn, 69Ga, 72Ge, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 95Mo, 

107Ag, 111Cd, 115In, 118Sn, 121Sb, 133Cs, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 

157Gd, 159Tb, 163Dy, 165Ho,166Er, 169Tm, 172Yb, 175Lu, 178Hf, 181Ta, 182W, 205Tl, 208Pb, 

209Bi, 232Th, 238U, which 29Si was used as an internal standard for amphibole. The 

analyses were performed using a 7 Hz repetition rate and a 20-40 μm diameter beam 

size. Other analytical procedures in details see Gao et al., 2013. Standard glass NIST- 

SRM 610 and GSE-1G (Pearce et a1., 1997) and USGS-Basalt standard BIR-1G, 

BHVO-2G, BCR-2G (Gladney et al., 1988) were chosen for the analysis as the external 

standards and Chinese Geological Standard Glasses CGSG-1 standard were treated as 

quality control (Hu et al., 2011). Each run included 10 sample analyses following by 1 

NIST- SRM 610 analyse. Raw data reduction were performed off-line by 

ICPMSDataCal software using 100%-normalization strategy without applying internal 

standard (Liu et al, 2008). 
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3.3.4 Amphibole and biotite 40Ar-39Ar geochronology 

Amphibole and biotite grains were extracted by gently crushing the samples and 

hand-picking the coarsest fraction produced. They were firstly imaged using a high-

resolution (×20 to ×60) binocular microscope to screen out suspect(altered or broken) 

specimens. All grain sizes were between 0.25-1.00 mm. After weighing using a high-

precision (± 0.001 mg) micro-balance, the individual samples were wrapped in 

aluminium foil and coaxially stacked in an irradiation package about 2.5 cm long along 

with sanidine standard FCS (28.02 ± 0.28 Ma, Renne et al., 1998) interleaved every 4 

to 5 level position. The batch was irradiated for 10 h in CLICIT (Corvallis irradiation 

center, OSU, USA). 

40Ar/39Ar geochronology of amphibole and biotite was conducted by Helix SFT™ 

Split Flight Tube Noble Gas Mass Spectrometry combining continuous-wave CO2 (10.6 

µm) lasers with very-low background extraction systems at the 40Ar/39Ar Lab housed 

at ISTO, Orléans, France. After about 100 days of post-irradiation cooling, the single 

grains of amphibole and biotite were loaded into a differentially-pumped sample holder 

connected to the ultra-high vacuum extraction and purification system and baked out at 

200 °C for 48 h. The amphibole and biotite grains were individually step-heated with a 

nominal step increase of 0.5 % of the total output laser power until total fusion (single-

grain analysis). Each measurement included one blank every consecutive sample 

extraction step. Purification prior to expansion into the MS consisted in 6 min static 

exposure to a cold trap (-127 °C) and two hot (250 °C) GP-50 St-101 SAES getters, 

followed by static MS peak-hopping of the five argon isotopes plus 35Cl (blank: 5 peak-

hopping cycles; unknown: 10 cycles). Raw blanks for each isotope were fitted using a 

3rd to 4th-order polynomial across the daily session, and each assigned a respective error 

corresponding to the empirical mean average deviation from the best fit trend. Typical 

blank values were 510-1, 710-3, 210-3, 210-2, 710-3 fA at m/e = 40, 39, 38, 37, 36, 

respectively. Corrections applied include (1) static blanks, (2) mass-bias and isobaric 
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interferences, (3) post-irradiation 39Ar, 37Ar, and 36Cl decay, (4) neutron-flux gradient 

and monitoring, and (5) K, Ca, and Cl isotopic interferences following Scaillet (2000). 

Ages were calculated using isotopic constants listed in McDougall and Harrison (1999). 

TGA refers to total-gas ages calculated by summing all volumes of gaz (i.e., Ar beam 

intensity) extracted for each isotope till fusion with an error derived by quadratic error 

propagation of all individual error terms involved in the age calculation. This 

corresponds to a formal K-Ar age. WMA are weighted-mean ages calculated by pooling 

and inverse-variance weighing the 40Ar*/39Ar ratios included in the mean, with a final 

error corresponding to the maximum-likelihood estimate (MLE) of the error of the 

mean (40Ar* = radiogenic 40Ar). WMA errors basically differ from TGA errors by the 

effect of the 1/N error-reduction rule typical of pooled MLE. PA are plateau ages 

calculated as the WMA, but for which the empirical MSWD score (MSWD = Mean 

Square Weighted Deviation) fall in the fiducial interval for the corresponding degrees 

of freedom according to CHI-2 statistics. 

3.4 Experimental petrology: Phase equilibrium experiments 

3.4.1 Starting materials preparation 

Three representative samples of the two main Qitianling rock types (one phase-1 

and two phase-2 samples), were chosen as raw starting materials. To prepare the dry 

glass starting materials, powders of the bulk rocks were individually melted twice for 

three hours in air at atmospheric pressure (with grinding in between) in a Pt crucible at 

1400°C and then quenched in water (Fig. 3.1a). The resulting dry glasses were ground 

to <20 μm, which we used as the experimental starting material (Fig. 3.1b). Analyses 

of several glass chips by electron microprobe (EMP) showed them to be homogeneous, 

with compositions similar to whole rock analyses indicating that elemental loss during 

fusion was negligible (see Chapter 5, Appendix table 8 ). 
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3.4.2 Capsules preparation 

To prepare the experimental charges, deionized water was first loaded into Au 

capsules (2.5/2.9 mm inner/outer diameter, ~1.5 cm long). To vary XH2O [mol% 

H2O/(H2O+CO2)], silver oxalate (Ag2C2O4) was then added in various amounts 

(keeping H2O+CO2 at ~3 mg), followed by loading of ~30 mg of the dry starting glass 

powders for crystallization experiments or the bulk rock powder for melting 

experiments (Fig. 3.2). All the Au capsules were then welded shut and checked for leaks 

by weighing. The capsules were put into an oven at 120 °C for several (>2) hours to 

ensure homogeneous fluid distribution and they were then weighed again to check for 

capsule integrity. 

       
Fig. 3.2 (a) Water saturated capsule with only H2O as valotile; (b) water under saturated capsule with 

H2O and CO2 as valotiles;(c) the sensor.  

 

Fig. 3.1 (a) Experimental starting material: dry glasses; (b) the powder of dry glass 

(a) (b) (c) 
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According to Boldyrev (2002), silver oxalate can decompose at around 140°C and 

yield metallic silver and carbon dioxide: 

Ag2C2O4 (s) = 2Ag (s)+ 2CO2 (g) 

To monitor fO2 during the experiments, solid Co-Pd-O and Ni-Pd-O sensors were 

prepared following the technique of Taylor et al. (1992) and Pownceby and O’Neill 

(1994), except for our most oxidized series of experiments, which were buffered at the 

intrinsic fH2 of the pressure vessel (i.e. at ~NNO+3; cf. Dall’Agnol et al. 1999). Similar 

capsules parepation as before, pure water (~45mg) was firstly loaded into the gold 

capsule. Then ZrO2 powder was using for separating two alloy-oxide mixture of pellets 

with the gold capsule in order to avoid the reaction between the pellets and the gold 

capsule. Take the solid Co-Pd-O sensor as an example: two pellets consist of different 

proportion of alloy and oxide mixtures of Co0.5-Pd0.5-CoO and Co0.15-Pd0.85-CoO (Fig. 

3.2c). During the experiments, the two different compositions of the CoPd 

[XCo=Co/(Co+Pd) in mole)] alloy at certain redox state condition will reach to a 

similar composition. The calibration expression of the solid Co-Pd-O is: 

logfO2(Co,Pd)= -2logXCo-1/(2.3025RT) <(491649 - 508.527T + 122.6909T -

0.0251872T2) + {2(1- XCo )
2- [9.76T + 16445(4XCo - 1)]}>                (1) 

Where the XCo value can be mearsured by microprobe, which help to calculate the 

fO2 of the sensor. 

In the closed experimental system, the hydrogen fugacity of all the charges of 

samples and sensor at one run are equal. Therefore, we have: 

  fH2
(sample)=fH2

(sensor)                             (2) 

The determination of fH2
(sensor) was according to the following equations: 

H2+ 1/2O2   H2O                             (3) 
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Kw= 
fH2O

fH2*(fO2)1/2                              (4) 

logfH2= logfH2O-logKw - 1/2logfO2               (5) 

The Kw is the equilibrium constant of pure water which also is the function of the 

temperature. The fH2O of pure water were acquired from the tables of the experiments 

of Burnham et al. (1969). Since the hydrogen fugacity of the sensor can be acquired 

from equation (3), (4) and (5), according to the same equations, we can calculate the 

oxygen fugacity of each charge of our samples. 

3.4.3 Internally heated pressure vessel 

All 19 experiments were performed in internally heated pressure vessels (IHPV) 

using a Kanthal furnace. Up to 23 capsules, including the sensor, were loaded at once. 

Experiments at reducing conditions (~NNO-1.3) were pressurized by a mixture of Ar-

H2 gas (Scaillet et al., 1992). Oxidizing runs were performed using pure Ar gas as the 

pressure medium. Temperature was then increased and final pressure reached. 

Temperature was monitored with two S-type thermocouples bracketing the sample 

holder, with an error of ±5°C; pressure was monitored with a transducer calibrated 

against a Heise Bourdon gauge, with an overall uncertainty of ±0.2 MPa. All 

experiments were terminated by switching off the power supply, which decreased 

temperature to <100 °C within ≤5 minutes. After the experiments, all capsules were 

checked for weight changes. Fragments of the run products recovered from each charge 

were embedded in epoxy and polished for backscattered electron imaging and electron 

microprobe analysis. 
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Fig. 3.3 (a) Internally heated pressure vessel monitors; (b) Internally heated pressure vessel (Gros 

vert); (c) Schematic cross section of the IHPV modified after Berndt et al., 2002. 
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Chapter 4 Petrology, geochemistry and geochronology of 

Jurassic Qitianling granite 

4.1 Petrography and mineralogy  

Three main rock-types have been distinguished in Qitianling pluton. 

 (1) A porphyritic, medium- to coarse-grained amphibole-biotite-rich monzonitic 

granite (phase-1) (Fig. 4.1a). It contains plagioclase (~30%), K-feldspar (~30%), quartz 

(~25%), amphibole (~5%), biotite (~8%), and accessory minerals including magnetite, 

ilmenite, apatite, zircon, and titanite. The main phenocrysts are the K-feldspar, followed 

by plagioclase, most of which are zoned (Fig. 4.1g, h). Tabular phenocrysts of K-

feldspar can reach up to 5 cm in length, some of them having small inclusions of biotite 

and amphibole in a ring-like display. Matrix minerals include amphibole, biotite, 

plagioclase, K-feldspar and quartz. Basically, amphibole and biotite are euhedral to 

subhedral, and have sharp contacts with each other, although biotite is occasionally 

included in amphibole. This suggests that amphibole and biotite co-crystallized. Both 

minerals contain magnetite, ilmenite, apatite and zircon inclusions, biotite having more 

inclusions than amphibole (Fig. 4.1b, c, d, e, f).  

(2) A medium-grained biotite±amphibole-bearing granite (phase-2) (Fig. 4.2a); it 

has plagioclase (~30%), K-feldspar (~35%), quartz (~25%), biotite (~7%), locally with 

amphibole (<3%), and contains the same accessory minerals than phase-1. Mafic 

minerals are euhedral to subhedral, having slightly smaller sizes compared to those in 

Phase-1(Fig. 4.2 b, c, d).  

(3) A fine-grained, biotite-bearing granite (phase-3) (Fig. 4.2e). Normally, it is 

light pink or light grey. Dark-coloured minerals occur in lesser amounts compared to  
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Fig. 4.1 Photographs and thin section photomicrographs of phase-1 from Qitianling pluton. (a) Hand 

specimen of Phase-1, Porphyritic, medium- to coarse-grained amphibole-biotite-rich monzonitic 

granite. (b) to (c) Sharp contact between amphibole and biotite. (d) to (f) Different inclusions in 

euhedral to subhedral amphibole and biotite. (g) and (h) Zoning plagioclase. Abbreviations: Amp, 

amphibole; Bt, biotite; Pl, plagioclase; Oxi, oxides; Kfs, K-feldspar; Qtz, quartz; Apt, apatite. 
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Fig. 4.2 Photographs and thin section photomicrographs of phase-2 and phase-3 from Qitianling 

pluton. Phase-2, medium-grained biotite±amphibole bearing granite (3) Phase-3, fine-grained, 

biotite-bearing granite. Abbreviations: Amp, amphibole; Bt, biotite; Pl, plagioclase; Oxi, oxides; Kfs, 

K-feldspar; Qtz, quartz; Apt, apatite. 
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other phases. It contains plagioclase (~30%), K-feldspar (~35%), quartz (~30%), <5% 

biotite, with lower contents of magnetite, ilmenite, apatite, zircon, and titanite relative 

to phases 1 and 2 (Fig. 4.2 f, g, h). 

Along the margins of the pluton, black mafic enclaves were observed in phase-1 

(samples 38, 42A and 21). The enclaves have elliptic shapes with sizes ranging from 

several centimeters to almost 1 meter. K-feldspar or plagioclase phenocrysts (1-3 

centimeters in length) similar to those in phase-1 are often observed in the enclaves 

(Fig. 4.3 a, b). Some of those phenocrysts may even cut across enclave and host granite 

 

 

Fig. 4.3 Photographs and thin section photomicrographs of Qitianling mafic enclave. (a) and (b) 

Mafic enclave in the outcrop within the Phase-1 granite. (c) to (f) Mineral assemblages and textures 

of mafic enclaves. Abbreviations: Amp, amphibole; Bt, biotite; Oxi, oxides; Apt, apatite. 
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interface. Enclaves in phase-1 display a magmatic-equant texture. They contain 

amphibole, biotite, plagioclase, K-feldspar and quartz: the proportion of mafic minerals 

reaches up to 30 vol %. Most of the mafic minerals in enclaves have a rounded shape 

or display resorption textures (Fig. 4.3 c, d, e, f). 

From the observed inclusion relationships, the crystallization order of the phase I 

amphibole-bearing granite is as follows: Magnetite and ilmenite crystallized first 

followed by apatite and then biotite, amphibole, and plagioclase, the last phases to 

crystallise being K-feldspar and quartz. 

4.2 Whole rock geochemistry 

4.2.1 Major elements 

 The bulk rock major and trace elements compositions of Qitianling granite and 

associated enclaves are listed in Appendix Table 1. Qitianling granite has a rather wide 

range of SiO2 content, from ~65 to ~77 wt.%, with an alkali content (Na2O + K2O) 

between 6.9 and 9.6 wt%. In the SiO2 vs. (Na2O + K2O) diagram, Qitianling granites 

plot in the field of Quartz Monzonite, Granodiorite and Granite, while mafic enclaves 

plot mostly in the Monzonite field (Fig. 4.4 (a)). Both mafic enclaves and Qitianling 

granites have a rather low alumina saturation index (A/CNK value is 1 on average for 

Qitianling granite and 0.84 for mafic enclave) which indicates that Qitianling pluton is 

metaluminous (Fig. 4.4 (b)).  

Apart from the mafic enclaves, phase-1 is the most mafic granite phase in 

Qitianling pluton. Representative bulk rock compositions from phase-1 show that SiO2 

ranges mostly between ~65 and ~68 wt.%, while other oxides vary as follows: 

Al2O3:13.4-14.6 wt.%; FeOtot :4.5-5.7 wt.%; MgO : 0.8-1.4 wt.%; CaO : 1.7-3.3 wt.%; 

Na2O : 2.9-3.3 wt.%; K2O : 3.9-4.8 wt.%; TiO2: 0.7-1 wt.%. The A/CNK value is on  
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average 0.95. Fine-grained granites collected in areas where coarse grained phase-1 

predominates tend to be more felsic with higher content of SiO2 (up to ~78 wt.%). For 

phase-2, the bulk rock composition is slightly more evolved with higher content of SiO2  

 

 

Fig. 4.4 (a) SiO2 vs. (K2O+Na2O) (after Le Bas et al., 1986; Le Maitre, 1989) and (b) A/NK [molar 

ratio Al2O3/ (Na2O+K2O)] vs.A/CNK [molar ratio Al2O3/ (CaO + Na2O+K2O)] diagram of Qitianling 

granite and mafic enclaves. Solid circles stand for the major phases of Qitianling pluton; Blue circles 

stand for phase-1; Red circles stand for phase-2; Green circles stand for phase-3; Unfilled blue circles 

are the fined-grained samples collected from phase-1; Unfilled red circles are the fined-grained 

samples from phase-2; Unfilled dark circles are stand for the mafic enclave; Unfilled grey diamonds 

are bulk rock composition of Qitianling granite from the literature (Zhao et al., 2012;  Zhu et al., 

2005; Li et al., 2005; Zhu et al., 2008; Deng et al., 2005; Bai et al., 2005; Li et al., 2010; Zhu et al., 

2003; Xie et al., 2010; Liu et al., 2003; Wang et al., 2004; Fu et al., 2006; Hu et al., 2004). 
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 (~68- ~76 wt.%), K2O (4.9-5.6 wt.%) and lower Al2O3 (12.0-14.4 wt.%), FeOtot (1.3-

 

Fig. 4.5 Harker diagram of Qitianling granite and mafic enclaves. The Symbols in fig.4.5 are as in 

Fig. 4.4. 
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4.0 wt.%), MgO (0.1-0.9 wt.%), CaO (1.0-2.5 wt.%) and TiO2 (0.2-0.7 wt.%) contents. 

A/CNK value is on average 0.99. Phase-3 has the most felsic composition with SiO2 

content up to 77 wt.% and the lowest contents of Al2O3 (11.9-12.8 wt.%), FeOtot (0.8-

1.3 wt.%), MgO (0.03-0.1 wt.%), CaO (0.6-0.8 wt.%) and TiO2 (0.06-0.10 wt.%). 

A/CNK value of phase-3 is on average 1.03. Compared to granites, mafic enclaves have 

obviously a lower SiO2 content spanning a range from ~56 up to ~64 wt.% (Zhao et al., 

2012; Zhu et al., 2003). The contents of oxides are: Al2O3: 12.0-17.6 wt.%; FeOtot : 4.6-

10.0 wt.%; MgO : 1.2-2.3 wt.%; CaO : 3.0-4.7 wt.%; Na2O : 2.7-5.1 wt.%; K2O : 2.0-

6.1 wt.%; TiO2: 0.6-2.0 wt.%, with a rather low A/CNK value (on average 0.82). 

 The representative compositions from each phase, including the mafic enclaves, 

define a continuous evolution trend in Harker plots (Fig. 4.5). Generally, from mafic 

enclaves to phase-3, as SiO2 content increases, K2O increases while Al2O3, FeOtot, MgO, 

CaO, TiO2, P2O5 decrease systematically. The FeOtot - MgO and TiO2 - MgO diagrams 

(Fig. 4.6) also show strong linear trends. From the most felsic phase to mafic enclaves, 

FeOtot and TiO2 increase as MgO increases. The compositions of the fine-grained 

granites collected inside phase-1 or phase-2 predominant zones are shown as unfilled 

colored circles, broadly falling on the general trend defined by the main phases.  

 

Fig. 4.6 Bulk rock MgO vs FeOt and MgO vs TiO2 diagram of Qitianling granites and mafic enclaves. 

Symbols are as in Fig. 4.4. 
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4.2.2 Trace elements 

The analyses results show that Rb, Th, Zr, and Y trace elements are enriched in the 

Qitianling granite, while Sr, Ba, P, and Ti are relatively depleted. Temperatures 

estimated by zircon saturation thermometry (Watson and Harrison, 1984) yield values 

around 800°C for all terms (~ 796°C for mafic enclaves, and ~830°C, ~808°C and 

~785°C, on average, for phase-1,2,3, respectively). The contents of Sr, Sc, Co decrease 

systematically as SiO2 content increases. The Nb/Ta and Zr/Hf ratios of the granite also 

decrease from phase-1 to phase-3 (Fig. 4.7). 

 

Fig. 4.7 Bulk rock compositions plot in SiO2 vs Sr, Eu, Sc, Co, Nb/Ta, Zr/Hf diagrams of Qitianling 

granites and mafic enclaves.  
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Qitianling pluton is rich in rare earth elements with a ∑REE value of ~305 ppm 

on average. In chondrite-normalized REE variation diagrams, Qitianling granites and 

mafic enclaves show strong Eu negative anomalies (δEu = 2EuN/(SmN + GdN)) and an 

enrichment in Light Rare Earth Element (LREE) relative to Heavy Rare Earth Element 

(HREE) resulting in high values of (La/Yb)N ratios (21.3 on average), the variation 

patterns of HREE being flatter than those of LREE (Fig. 4.8). The 10000*(Ga/Al)N 

ratios (3.2 on average) are also relatively high. From mafic to felsic compositions, δEu 

increases significantly which indicates that the degree of plagioclase fractionation 

increases: the δEu ranges of mafic enclaves and Qitianling granites (phases-1,2,3) are 

0.25-0.67, 0.31-0.57, 0.22-0.57 and 0.03-0.2, respectively.  

 

 

 

Fig. 4.8 Bulk rock chondrite-normalized REE diagrams of Qitianling granites (b, phase-1; c, phase-

2; d, phase-3) and mafic enclaves (a). The sample QTL-10 is not shown in this diagram because of 

its low content of REE. 
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4.3 Mineral chemistry  

4.3.1 Amphibole 

Representative amphibole compositions and structural formulae are shown in 

Appendix table 2. Amphiboles from phase-1, phase-2 and mafic enclaves are all similar, 

with CaO (on average) 10.8 wt.%, 10.6 wt.% and 10.9 wt.%; Na2O: 1.9 wt.%, 1.9 wt.% 

and 1.86 wt.%; K2O: 1.2 wt.%, 1.3 wt.% and 1.2 wt.%, respectively. Structural formulae 

calculated on the basis of 23 oxygens indicate that all amphiboles have (Ca＋Na)B>1.00, 

(Ca)B>1.50 (Na+K)A>0.5 being thus calcic amphiboles (Leake et al., 1997). 

Amphiboles are relatively rich in Fe, with FeO contents of phase-1, phase-2 and mafic 

enclaves of, 20.9-25.9 wt.%, 20.8-28.5 wt.% and 22.5-24.6 wt.%, respectively. The 

Mg/(Mg+Fe2+) ratios are all lower than 0.5. Therefore, most of the amphibole from 

Qitiangling pluton are ferro-edenite some being close to ferro-pargasite or hastingsite. 

Fe/(Mg+Fe) are 0.56-0.76 for phase-1, 0.59-0.80 for phase-2 and 0.63-0.69 for mafic 

 

Fig. 4.9 Composition of amphiboles from the Qitianling granites and enclaves (after Leake et al., 

1997). The data of amphibole in enclaves are from Zhao et al., 2012. 
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enclaves (Fig. 4.9).      

Trace element concentrations of amphibole from phase-1 show they are rich in Sc 

(116 ppm on average), V (275 ppm on average), Y (372 ppm on average), Zr (92 ppm 

on average), Nb (75 ppm on average) and HREE (La 162 ppm, Ce 550 ppm, Pr 83 ppm, 

Nd 381 ppm, Sm 95 ppm, Gd 83 ppm on average, respectively). In the primitive mantle 

normalized trace element diagram, amphiboles display negative anomalies in Ba and 

Sr (Fig. 4.10a). As for chondrite normalized REE patterns of amphibole from phase-1, 

they have distinct depletion in Eu. Normalised HREE contents are higher than LREE, 

with concave patterns (Fig. 4.10b).    

 

Fig. 4.10 Primitive mantle-normalized trace element diagram (a) and Chondrite-normalized REE 

diagrams of amphibole from Qitianling granite (Phase-1) (b). 
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4.3.2 Plagioclase 

Representative plagioclase compositions are listed in Appendix table 3. 

Plagioclases from Qitianling pluton have An values ranging from ~2 to ~48. Zoned 

plagioclases are common in phase-1 and phase-2. In the feldspar classification diagram, 

most plagioclase are oligoclase or andesine while minor albite can be observed in 

phase-2 (Fig. 4.11). 

 4.3.3 Biotite 

 Representative biotite compositions are listed in Appendix table 4. As for 

amphibole, biotites are rich in Fe. In phase-1 and phase-2, FeO contents are 26.4-27.4 

wt.% and 26.3-30.9wt.%, while MgO varies from 7.1-7.9 wt% to 5.6-7.6 wt.%, 

respectively. In phase-3, the FeO and MgO contents are 27.4-29.2 wt.% and 5.6-7.6 

wt.%. The Fe/(Fe+Mg) ratio increases from phase-1 to phase-3 (0.67, 0.70, 0.85). The 

TiO2 content of biotite from phase-1 and phase-2 are similar, varying from ~3.5 to ~4.7 

 

Fig. 4.11 Composition of plagioclases from the Qitianling granites. A: Orthoclase; B: Sanidine; C: 

Anorthoclase; D: Albite; E: Oligioclase ; F: Andesite; G: Labradorite; H: Bytownite; I: Anorthite. 
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while biotite from phase-3 has lower TiO2, ~2.7 wt.% (Fig. 4.12). 

 4.3.4 Titanite 

 Titanite in Qitianling pluton is a common accessory mineral. Usually, it occurs 

interstitially as euhedral to subhedral crystals.It is rich in Fe (Fe2O3 2.3 wt.% on average) 

and Al (Al2O3 3.4 wt.% on average). Structural formulas, calculated on a 3 cations basis, 

show that Ti and Al+ Fe3+ display a substitution relationship (Fig. 4.13a). In a Al vs Fe3+ 

(apfu) diagram (Fig. 4.13b), titanite plots between the Al= Fe3+and Al= 3Fe3+ trends 

which suggests that most of the studied titanites are close to the magmatic field 

consistent with the results of Aleinikoff et al. (2012). (See in Appendix table 5) 

 

Fig. 4.12 Composition of biotite from the Qitianling granites.  

.  

Fig. 4.13 Plot of Al vs Fe3+ (apfu) and Al+Fe3+ vs Ti (apfu) of titanite from the Qitianling granites.  
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4.4 Zircon U-Pb and Amphibole-biotite 40Ar-39Ar geochronology 

4.4.1 Geochronology of Zircon 

4.4.1.1 Zircon U-Pb geochronology  

Zircon (ZrSiO4) is a very common accessory mineral in igneous rocks especially 

in granitoids. It belongs to the tetragonal mineral group (I41/amd space group). The 

crystal structure of zircon can be explained as a combination of SiO4 tetrahedra and 

ZrO8 dodecahedra. Parallel to the c axis, ZrO8 dodecahedra share edge with SiO4 

tetrahedra. Along the direction of the b axis, ZrO8 dodecahedra share edge with each 

other as a zigzag chain. ZrO8 dodecahedra can be regarded as two ZrO4 tetrahedras with 

different bond length, 0.227nm (shared edge with SiO4 tetrahedra) and 0.213nm (shared 

corners with SiO4 tetrahedra) (Nyman et al. 1984; Finch and Hanchar, 2003). This 

special structure plays an important role in favouring the incorporation of elements such 

as P, Hf, U, Th, Y and REEs which make zircon a potent geochronometer (Robinson et 

al., 1971; Hoskin and Schaltegger, 2003).  

Eighteen samples were chosen for U-Pb dating for Qitianling pluton. The sample 

locations are shown in Fig. 2.7 and Appendix table 6. According to the geological map, 

we collected 6 samples (QTL-10, QTL-21B, SC14-42A, SC14-74, SC14-75 and SC14-

141) in phase-1. Sample QTL-10 is a fine grained biotite granite, and was collected in 

the northern part of Qitianling, close to the Xintianling tungsten mine. Samples QTL-

21B and SC14-42A are located in the western and southwestern margin parts of the 

pluton, where mafic enclaves can be observed. The rock types are coarse-medium 

grained biotite granite and coarse-medium grained amphibole-biotite granite. Samples 

SC14-74, SC14-75 and SC14-141 were collected in the southeastern part of Qitianling 

pluton. Sample SC14-141 is a medium-fine grained biotite granite collected near the 
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boundary of phase-1 and phase-3. Samples SC14-74 and SC14-75 are medium-fine 

grained biotite granite and coarse grained biotite granite, respectively. 

10 samples were collected from phase-2 (QTL-25, SC14-45, SC14-47, SC14-52, 

SC14-58, SC14-61, SC14-62, SC14-77, SC14-79, SC14-139). Among those samples, 

QTL-25(in the south, a medium grained biotite-bearing granite), SC14-52(in the center, 

a coarse-medium grained amphibole-biotite granite), are close to the boundary of 

phase-1 and phase-3 whereas SC14-58 (in the north, a coarse-medium grained 

amphibole biotite granite) and SC14-77 (in the southeast, a coarse-medium grained 

biotite granite) are close to the boundary between phase-1 and phase-2. Sample SC14-

45, a medium-fine grained biotite granite and SC14-47, a medium grained biotite 

granite, are from the northwestern part of the pluton whereas sample SC14-61, a 

medium-fine grained biotite granite and SC14-62, a coarse-medium grained amphibole 

biotite granite, are from the central part of the pluton. Sample SC14-79, a fine grained 

biotite granite, and SC14-139, a medium-fine grained biotite granite, are collected from 

the margin of the southeastern part of the pluton. 

In phase-3, only 2 samples were collected (QTL-04, SC14-142). Sample QTL-04 

is a fine-grained biotite granite which was collected in the eastern part of the pluton. 

Sample SC14-142 is close to the central part and is a medium-fine grained biotite 

granite. The detail of sample location is given in the Appendix table 6. 
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Most of the zircon crystals have an euhedral crystal morphology with tetragonal 

prism shape, a length >100 μm and a length-width ratio varying from 1:2 to 1:4. Almost 

all zircons are transparent to colourless or slightly light brown. Some of them contain 

apatite, and Fe-Ti oxides as inclusions. The cathodoluminescence (CL) images show 

clear oscillatory zoning which demonstrates that those zircons are magmatic (Fig. 4.14). 

A few inherited zircon cores were observed in this study. The zircons which are free of 

inclusions were chosen for the analyses meanwhile the cracks were also avoided during 

the analysis. The zircon U-Pb age results are shown in Appendix table 6. 

(1) QTL04: Fine grained biotite granite (25°32'36''N; 112°55'22''E) 

16 analyses were acquired from sample QTL04. Th/U ratios vary from 0.46-0.83. 

The 206Pb/238U age is between 153±3 and 159±4 with a Concordia average age of 

155.9±1.6 Ma (MSWD =0.17). 

(2) QTL10: Fine grained biotite granite (25°39'49''N; 112°54'46''E) 

14 analyses were acquired from sample QTL10. Th/U ratio ratios vary from 0.24-

0.74. The 206Pb/238U age is between 145±4 and 158±4 with a Concordia average age 

.  

Fig. 4.14 The cathodoluminescence (CL) images of zircons extracted from Qitianling pluton.   
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of 152.9±2.6 Ma (MSWD =1.2). 

(3) QTL21B: Coarse-medium grained biotite granite (25°27'09'N; 112°47'59''E) 

14 analyses were acquired from sample QTL21B. Th/U ratios vary from 0.39-0.69. 

The 206Pb/238U age is between 152±4 and 158±4 with a Concordia average age of 156

±2.1 Ma (MSWD =0.16). 

 

Fig. 4.15 Zircon U-Pb Concordia diagrams showing the geochronological results for the Qitianling 

granites. Concordia ages are shown on the bottom right.  
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(4) QTL25: Medium grained biotite granite (25°27'27''N; 112°51'20''E) 

15 analyses were acquired from sample QTL25. Th/U ratios vary from 0.39-0.68. 

The 206Pb/238U age is between 153±3 and 159±4 with a Concordia average age of 154

±2 Ma (MSWD =0.48). 

(5) SC1442A: Coarse-medium grained amphibole biotite granite (25°34'46"N; 

112°46'33"E) 

17 analyses were acquired from sample SC1442. Th/U ratios vary from 0.49-0.82. 

The 206Pb/238U age is between 147±4 and 163±4 with a Concordia average age of 155

±1.9 Ma (MSWD =0.74). 

(6) SC1445: Medium-fine grained biotite granite (25°34'36"N; 112°47'38"E) 

18 analyses were acquired from sample SC1445. Th/U ratios vary from 0.46-0.83. 

The 206Pb/238U age is between 147±3 and 160±5 with a Concordia average age of 

155.7±1.9 Ma (MSWD =0.37) 

(7) SC1447: Medium grained biotite granite (25°33'31"N; 112°49'02"E) 

20 analyses were acquired from sample SC1447. Th/U ratios vary from 0.46-0.83. 

The 206Pb/238U age is between 153±3 and 157±3 with a Concordia average age of 

154.5±1.3 Ma (MSWD =0.14). 

(8) SC1452: Coarse-medium grained amphibole biotite granite (25°31'46"N; 

112°50'39"E) 

19 analyses were acquired from sample SC1452. Th/U ratios vary from 0.46-0.83. 

The 206Pb/238U age is between 153±3 and 161±3 with a Concordia average age of 

157.4±1.4 Ma (MSWD =0.46) 

(9) SC1458: Coarse-medium grained amphibole biotite granite (25°34'59"N; 

112°50'14"E) 

18 analyses were acquired from sample SC1458. Th/U ratios vary from 0.46-0.83. 

The 206Pb/238U age is between 152±3 and 164±4 with a Concordia average age of 
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157.2±1.4 Ma (MSWD =1.05) 

(10) SC1461: Medium-fine grained biotite granite (25°30'30"N; 112°50'42"E) 

12 analyses were acquired from sample SC1461. Th/U ratios vary from 0.46-0.83. 

The 206Pb/238U age is between 141±2 and 159±3 with a Concordia average age of 

159.5±4.8 Ma (MSWD =8.9). 

 

Fig. 4.15 Zircon U-Pb Concordia diagrams showing the geochronological results for the Qitianling 

granites. Concordia ages are shown on the bottom right.  
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(11) SC1462: Coarse-medium grained amphibole biotite granite (25°29'55"N; 

112°51'21"E) 

17 analyses were acquired from sample SC1462. Th/U ratios vary from 0.46-0.83. 

The 206Pb/238U age is between 153±3 and 162±3 with a Concordia average age of 

158.3±1.4 Ma (MSWD =0.53). 

(12) SC1474: Medium-fine grained biotite granite (25°29'54"N; 112°55'15"E) 

14 analyses were acquired from sample SC1474. Th/U ratios vary from 0.46-0.83. 

The 206Pb/238U age is between 150±4 and 161±3 with a Concordia average age of 

157.9±1.7 Ma (MSWD =0.77). 

(13) SC1475: Coarse grained biotite granite (25°29'17"N; 112°55'12"E) 

16 analyses were acquired from sample SC1475. Th/U ratios vary from 0.46-0.83. 

The 206Pb/238U age is between 146±4 and 158±5 with a Concordia average age of 154

±2 Ma (MSWD =0.71). 

(14) SC1477: Coarse-medium grained biotite granite (25°28'11"N; 112°55'48"E) 

22 analyses were acquired from sample SC1477. Th/U ratios vary from 0.46-0.83. 

The 206Pb/238U age is between 147±4 and 160±4 with a Concordia average age of 

154.7±1.7 Ma (MSWD =0.64). 

(15) SC1479: Fine grained biotite granite (25°27'12"N; 112°56'31"E) 

17 analyses were acquired from sample SC1479. Th/U ratios vary from 0.46-0.83. 

The 206Pb/238U age is between 153±4 and 158±4 with a Concordia average age of 156

±2 Ma (MSWD =0.15). 

(16) SC14139: Medium-fine grained biotite granite (25°26'57"N; 112°56'35"E) 

21 analyses were acquired from sample SC14139. Th/U ratios vary from 0.46-0.83. 

The 206Pb/238U age is between 150±4 and 162±4 with a Concordia average age of 

156.4±1.8 Ma (MSWD =0.62). 
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(17) SC14141: Medium-fine grained biotite granite (25°29'54"N; 112°54'26"E) 

20 analyses were acquired from sample SC14141. Th/U ratios vary from 0.46-0.83. 

The 206Pb/238U age is between 152±4 and 163±5 with a Concordia average age of 

159.2±1.9 Ma (MSWD =0.46). 

 

Fig. 4.15 Zircon U-Pb Concordia diagrams showing the geochronological results for the Qitianling 

granites. Concordia ages are shown on the bottom right.  
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(18) SC14142: Medium-fine grained biotite granite (25°29'54"N; 112°53'58"E) 

21 analyses were acquired from sample SC14142. Th/U ratios vary from 0.46-0.83. 

The 206Pb/238U age is between 158±4 and 169±5 with a Concordia average age of 162

±2 Ma (MSWD =0.35). 

4.4.1.2 Trace elements geochemistry of zircon  

Zircons from Qitianling are rich in Th (238 ppm on average) and U (712 ppm on 

average) with a Th/U ratio 0.37 on average. Zr/Hf ratios vary between ~35 and ~41. As 

the Zr/Hf ratio increases, the Th/U ratio seems also to increase (Fig. 4.16). As expected, 

HREE contents are higher than LREE. The highest LREE element is Ce, which is up to 

 

Fig. 4.16 Plot of Th/U vs Zr/ Hf (a); and Th vs U (ppm) (b); Ce/Nd vs Zr/ Hf and Lu/Hf vs Th (ppm) 

of zircons from the Qitianling granites.  
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~17 ppm while for HREE elements Yb can be up to ~365 ppm. 

Like other typical magmatic zircons, in the chondrite normalized REE diagram 

(Fig. 4.17), all zircons from Qitianling pluton are rich in HREE relative to the LREE 

with a steeply-rising slope pattern and a LaN/ YbN ratio as 0.0014, on average. Besides, 

zircon displays both positive Ce-anomaly (δCe=18) and negative Eu-anomaly 

(δEu=0.08). The chondrite normalized REE patterns from the different Qitianling 

phases (as distinguished in the map) are similar. 

4.4.2 Geochronology of Amphibole and Biotite 

Twelve samples were selected from U-Pb dating samples for 40Ar-39Ar dating. 

They are QTL04, QTL10, QTL25, SC1442A, SC1445, SC1452, SC1458, SC1462, 

SC1474, SC1475, SC1477, SC1479. The locations and the lithology characters of them 

are given above (4.4.1.1). Both amphibole and biotite were picked out from 3 samples 

(SC1452, SC1458, SC1462), while for the rest of 9 samples, only biotite was picked 

out for 40Ar-39Ar dating.   

.  

Fig. 4.17 Chondrite-normalized REE diagram of zircons from Qitianling granite.  
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The selected amphibole grains were fresh and euhedral. The have a prismatic 

shape with dark green and black colors. The size of the amphibole grains ranges from 

500 μm to 1000 μm in length. The selected biotite grains are sheetlike and are mainly 

between 500 μm and 1000 μm in length. They are brown to black depending on the 

thickness of the crystal under the microscope. A highly perfect basal cleavage can be 

observed often for the biotite. (Fig. 4.18). 

Analytical methods of 40Ar-39Ar dating are described in Chapter 3 and analytical 

results of Qitianling granite in detail are shown in Appendix Appendix table 7. All the 

40Ar-39Ar isotopic analyses of amphibole from 3 samples gave ages between 151 to 153 

Ma while biotite from 12 samples gave age between 151 to 155 Ma. More detailed 

information of each sample are given below (Fig. 4.19):  

(1) SC1452 : 40Ar-39Ar dating of amphibole (N84) yielded a plateau age of 153.4±0.4 

Ma. As for biotite, two grains (N88 and N89) were analyzed and gave a plateau age 

of 151.9 ± 0.5 Ma and 154.0 ± 1.2 Ma, respectively. The final pooled high-

temperature age (PHTA) of N88 and N89 is 152.6±0.8 Ma which represents the 

biotite age of this sample (Fig. 4.19 a-d).  

(2) SC1458 : Two grains of amphibole (N82 and N83) were measured and gave 40Ar-
39Ar ages at 151.0 ± 0.5 Ma and 152.2 ± 0.7 Ma, respectively. The combined ages 

of both amphiboles gave the age at 151.5±0.5 Ma. While the three biotite grains 

yielded the ages of 153.0±0.6 Ma, 151.8 ± 1.1 Ma and 152.4±0.5 Ma, respectively. 

The final PHTA is 152.6±0.4 Ma for biotite (Fig. 4.19e-k). 

 

Fig. 4.18 Selected representative biotite and amphibole grains of Qitianling granite.  
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Fig. 4.19 The 40 Ar/ 39Ar age spectrum diagrams for selected biotite and amphibole grains of 

Qitianling granite. (continue) 

(3) SC1462 : One amphibole grain (N86) and one biotite grain (N97) were analyzed 

and gave a plateau age at 151.6 ± 0.3 Ma and 155.2 ± 0.2, respectively (Fig. 4.19i 

and j). 

(4) SC1442A : One biotite grain was analyzed and gave a 40Ar-39Ar plateau age at 

155.1± 0.5 Ma (Fig. 4.19n). 

(5) SC1445 : Two biotite grains (N91 and N94.MS1) were analyzed and gave a 40Ar-
39Ar plateau age of 153.8±0.9 Ma and 154.8±0.4, respectively. The final PHTA is 

154.7±0.4 Ma for biotite (Fig. 4.19o-q). 

(6) SC1474 : One biotite grain (N94.MS3) was analyzed and gave a 40Ar-39Ar plateau 

age of 154.3± 0.4 Ma (Fig. 4.19r). 

(7) SC1475 : Two biotite grains (N93 and N104) were analyzed and the 40Ar-39Ar 

plateau ages are 152.2± 0.6 Ma and 151.7± 1.1 Ma which gave a final PHTA at 

152.1±0.5 Ma for biotite (Fig. 4.19s-u). 

(8) SC1477 : One biotite grain (N95) gave a 40Ar-39Ar plateau age at 154.1± 0.2 Ma(Fig. 

4.19v). 
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(9) SC1479 : One biotite grain (N96) gave a 40Ar-39Ar plateau age at 153.5± 0.3 Ma 

(Fig. 4.19w). 

(10) QTL04 : One biotite grain (N99) gave a 40Ar-39Ar plateau age at 153.0± 0.3 Ma 

(Fig. 4.19x). 

(11) QTL10 : One biotite grain (N98) gave a 40Ar-39Ar plateau age at 151.3± 0.3 Ma 

(Fig. 4.19y). 

(12) QTL25 : One biotite grain (N100) gave a 40Ar-39Ar plateau age at 152.3± 0.3 Ma 

(Fig. 4.19z). 

 

Fig. 4.19  The 40 Ar/ 39Ar age spectrum diagrams for selected biotite and amphibole grains of 

Qitianling granite. 
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The different ages of Qitianling granite are summarized in table 4.1. The 

significance of these ages dates is discussed later in this chapter. 

Sample Phase Lab# 
Preferred age (Ma)                     

(Ma ± 1 σ) 

Final/Pooled age         

(Ma ± 1 σ) 

U/Pb age                

(Ma ± 1 σ) 

SC52 

Amp N84.MS3 PA 153.4±0.4 153.4±0.4 

157.4±1.4 Bt1 N88.MS3 HTPA 154.0±1.2 
152.6±0.8 

Bt2 N89.MS3 HTPA 151.5±1.1 

SC58 

Amp1 N82.MS3 IA 151.0±0.6 
151.5±0.5 

157.2±1.4 

Amp2 N83.MS3 SA 152.2±0.7 

Bt1 N87.MS3 SA 153.0±0.6 

152.6±0.4 Bt2 N101.MS3 SA 151.8±1.1 

Bt3 N103.MS3 PA 152.4±0.5 

SC62 
Amp N86.MS3 PA 151.6±0.3 151.6±0.3 

158.3±1.4 
Bt N97.MS3 HTPA 153.9±0.4 153.9±0.4 

SC42A Bt N102.MS3 HTPA 154.4±0.5 154.4±0.5 155.0±1.9 

SC45 
Bt1 N91.MS3 HTPA 153.8±0.9 

154.6±0.4 154.7±1.9 
Bt2 N94.MS1 HTPA 154.8±0.4 

SC74 Bt N94.MS3 HTPA 154.3±0.4 154.3±0.4 157.9±1.7 

SC75 
Bt1 N93.MS3 HTPA 152.2±0.6 

152.1±0.5 154.0±2.0 
Bt2 N104.MS3 HTPA 151.7±1.1 

SC77 Bt N95.MS3 HTPA 154.1±0.2 154.1±0.2 154.7±1.7 

SC79 Bt N96.MS3 HTPA 153.5±0.3 153.5±0.3 156.0±2.0 

QTL04 Bt N99.MS3 HTPA 153.0±0.3 153.0±0.3 155.9±1.6 

QTL10 Bt N98.MS3 HTPA 151.3±0.3 151.3±0.3 152.9±2.6 

QTL25 Bt N100.MS3 HTPA 152.3±0.3 152.3±0.3 154.0±2.0 
 

Table 4.1 Summary of 40Ar-39Ar ages of amphibole and biotite from 12 Qitianling granite samples 

comparing with the zircon U-Pb ages. PA = plateau age; IA = integrated age; SA = single-step age; PHTA 

= pooled high-temperature age. 

 

4.5 Discussion  

4.5.1 Classification of Qitianling granites: A-type 

In 1974, Chappell and White first proposed that granites fall into two main types, 

depending on their source protoliths: I-types have igneous protoliths while S-types have 
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sedimentary protoliths. Subsequently, one more granite type, M-type, was defined to 

quote granites derived directly from mantle magmas or subducted oceanic crust. The 

definition of A-type granites was then proposed first by Loiselle and Wones in 1979. 

The criteria of A-type granites include the tectonic setting and the geochemical 

characteristics, i.e. they are not directly related to the protolith: “anorogenic”, “alkaline” 

and “anhydrous” are the key terms typifying A-type granites. On the basis of trace 

elements (Rb, Ce, Y, Nb, Sc, Zr, Hf, Ta, Ga), Eby (1990, 1992) further subdivided A-

type granites into the A1 subtype (with trace elements similar to oceanic-island basalts) 

and the A2 subtype (A1,Y/Nb<1.2 and A2,Y/Nb>1.2), with trace elements similar to 

continental crust or island-arc basalts. Generally, A1 subtypes are emplaced in 

continental rift environments or associated with mantle plumes or hot spots and mainly 

derive from a mantle source with limited crustal contribution: while A2 subtype granites 

are mainly emplaced in post-collisional or post-orogenic environments and derive from 

continental crust with minor mantle contamination. The consensus now is that A-type 

granites are not only peralkaline but also metaluminous and sometimes even 

peraluminous (King et al., 1997). Peralkaline A-type granites are characterized by alkali 

mafic minerals including riebeckite, arfvedsonite and sodic pyroxene. Aluminous A-

type granites often contain annite and Fe-rich calcic- or sodic-calcic amphibole (Wu et 

al., 2002). The geochemistry of A-type granites is also characterized by high 

FeOT/MgO ratios, high halogen (F, Cl) and HFSE (Zr, Nb, Y) contents (Bonin, 1978, 

2007; Collins et al., 1982; Whalen et al., 1987; Rajesh, 2000; Martin, 2006). Available 

experimental works indicate that A-type granites can be also relatively rich in H2O (> 

2 wt. %) (e.g. Clemens et al., 1986; Dall’Agnol et al., 1999; Klimm et al., 2003; 

Bogaerts et al., 2006). 

As mentioned before, Qitianling granites are mainly metaluminous (A/CNK =1 on 

average) with high contents of alkalis (Na2O + K2O=7.3 on average) being rather rich 

in LILE (Rb=478 ppm, Sr=107 ppm, Ba=301ppm on average) and HFSE (Zr=215 ppm, 

Nb=33 ppm, Ce=134 ppm, Y=44 ppm on average). The total REE is up to 665 ppm and 
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Ga is 22.43 ppm on average. In the diagram (Na2O + K2O) vs 10000Ga/Al and 

Zr+Nb+Ce+Y -10000Ga/Al (Fig. 4.20), almost all data, including the mafic enclaves, 

plot in the field of A-type granites (Whalen et al., 1987). 

 According to the subdivision criteria of A-type granite by Eby 1992, most of the 

compositions of Qitianling granites and mafic enclaves belong to the A2 subtype granite 

though some mafic enclaves and two fine-grained granites from phase-1 plot within the 

field of A1 subtype (Fig. 4.21). One of these fine-grained granite, from the northern 

part of Qitianling pluton and near to Xintianling tungsten ore deposit, has a very low 

content of Nb and REE. The A2 subtype field indicates that Qitianling granite has a 

mostly a continental crust source with a small mantle contribution.  

 

Fig. 4.20 Plot of (Na2O + K2O) vs 10000Ga/Al and Zr+Nb+Ce+Y vs 10000Ga/Al of the Qitianling 

granites and mafic enclave after Whalen et al., 1987. A: A-type granite, I: I- type granite; S: S-type 

granite. 

.  

Fig. 4.21 Plot of Qitianling granite and mafic enclave in (a) Ce-Nb-Y and (b) 3*Ga-Nb-Y diagrams of 

Eby (1992) for subdivision of A1-type and A2-type granites. 
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As for the tectonic environment during their production, trace element 

discrimination diagrams proposed by Pearce et al., 1984, show that Qitianling granites 

and associated enclaves fall mostly in the field of the “within plate granites” (WPG) 

area and only a few samples plot within the syn-collision (syn-COLG) and volcanic arc 

(VAG) fields (Fig. 4.22).  

4.5.2 Temperature, pressure, oxygen fugacity condition constraints from natural 

mineral compositions  

4.5.2.1 Temperature conditions 

Temperature is an essential factor controlling magma emplacement. Watson and 

Harrison (1983) have experimentally calibrated the zirconium concentration in silicate 

melts saturated in zircon. They found that the temperature of zircon saturation varies 

with the melt composition and derived the following empirical equation:  

ln Dzr
zircon/melt = {- 3.80 - [0.85(M - 1)]} + 12900/T,  

with M= cation ratio (Na + K + 2Ca)/ (Al- Si) (see Hanchar and Watson, 2003). We 

.  

Fig. 4.22 Plot of Nb vs Y (a) and Ta vs Yb (b) discriminant diagrams for syn-collision granites (syn-

COLG), volcanic arc granites (VAG), within plate granites (WPG) and ocean ridge granites (ORG) for 

Qitianling granites and mafic enclave. The dashed line represents the upper compositional boundary 

for ORG from anomalous ridge segments (after Pearce et al., 1984). 
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used this method to provide a first estimate of the temperature of Qitianling granites 

(Appendix table 1). The zircon-saturation temperature of Qitianling varyies from 636°C 

to 877°C with an average value of 796°C. In detail, phase-1, phase-2 and phase-3 

granites yield 830°C, 809 °C and 785 °C on average, respectively. In addition, even 

though mafic enclaves contain much more mafic minerals compared to granites, and 

have higher zirconium content than granites, their calculated zircon-saturation 

temperatures vary from 741°C to 826 °C, with an average of 796 °C, which is 

essentially identical to that of the host granites. This reflects the strong compositional 

control on zircon saturation as expressed by the M parameter in the equation above 

(M=2.15 on average for mafic enclaves and 1.46 for granites). 

What is more, amphibole is often observed in some intermediate-acid granites of 

Qitianling pluton. On the basis of mineral intergrowth association and textural 

observations, amphibole is usually inferred to be a rather early crystallized mineral. A 

first direct evidence was provided by the crystallization experiment conducted by 

Bowen (1956), later confirmed by, for instance, Dall'Agnol et al (1999). Therefore, the 

crystallization temperature of magmatic amphibole can be regarded as a proxy of the 

emplacement temperature for amphibole-bearing granites. Accordingly, two amphibole 

thermometers were used for the Qitianling pluton in this study. The first is the 

amphibole-plagioclase thermometer proposed by Holland and Blundy (1994): we used 

the reaction: edenite + albite = richterite + anorthite, to calculate temperatures of 

amphibole-bearing granites. Representative amphiboles from phase-1 yield a 

temperature range between 742 °C and 828°C whereas for phase-2, the temperature is 

between 655 °C and 739°C.  

The second amphibole thermometer has been proposed by Putirka (2016), with the 

following equation:  

T(°C) = 1781– 132.74[SiAmp] + 116.6[TiAmp]-69.41[Fet
Amp] + 101.62[NaAmp] 
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The temperature range of phase-1 varies from 725 °C to 782°C with an average 

value of 759 °C, while for phase-2 retrieved temperatures are a bit lower varying from 

720 °C to 779°C with an average temperature of 743°C. 

That zircon has a higher temperature (830 °C on average for phase-1) compared 

to amphibole (780 °C on average for phase-1), may simply reflect that zircon crystallize 

earlier (zircon often occurs as inclusions in rock-forming minerals). The above 

evidence led us to conclude that the Qitianling magma experienced a temperature of at 

least 800 °C during its crystallization. 

4.5.2.2 Pressure of emplacement 

Amphibole is also a mineral which is sensitive to pressure. Different amphibole 

barometers have been proposed relating the Altot of amphibole to pressure. The results 

for Qitianling pluton are shown on Fig. 4.23 and listed in table 4.2. 

 

 Altot ranges from 1.2 to 1.7 for phase-1 and from 1.3 to 1.8 for phase-2 while for 

the mafic enclaves, the range is narrower (Altot 1.5-1.6). Of the different barometers 

(Fig. 4.23), that of Johnson and Rutherford, 1989 gives a lowest pressure (2.7 kbar on 

 

Fig. 4.23 Plot of calculated average pressure results of amphiboles from the Qitianling granites and 

enclave by different geobarometers. The amphibole compositional data of enclaves are from Zhao et 

al., 2012. The information on different barometers is given in Table 4.3. 
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average for phase-1; 2.5 kbar on average for phase-2; 3 kbar on average for mafic 

enclave) while that from Schmidt, 1992 gives the highest pressure: phase-1: 3.9 kbar, 

phase-2: 3.6 kbar and mafic enclave: 4.3 kbar.  

Altogether, the calculations above suggest that the emplacement pressure of 

Qitianling pluton was around 3.2±1 kbar. 

 

 

 

Barometer Phase-1   Phase-2   
E 

(in kbar) QTL-38C SC14-42  QTL-14A QTL-13  

Hammarstrom & Zen 86 
3.5  

(2.7-4.7) 

3.1  

(2.2-3.7) 

 3.2  

(2.5-4.3) 

3.0  

(2.5-3.8) 

 3.8  

(3.6-4.1) 

Hollister et al. 87 
3.6  

(2.7-4.6) 

3.1  

(2.1-3.8) 

 
3.2  

(2.5-4.5) 

3.0  

(2.4-3.9) 

 
3.9  

(3.7-4.2) 

Johnson & Rutherford 89 
2.8  

(2.1-3.8) 

2.5  

(1.7-3.0) 

 
2.5  

(2.0-3.5) 

2.4  

(1.9-3.1) 

 
3.0  

(2.9-3.2) 

Schmidt 92 
4.0  

(3.2-5.1) 

3.7  

(2.8-4.2) 

 
3.7  

(3.1-4.8) 

3.5  

(3.1-4.3) 

 
4.3  

(4.1-4.5) 

Mutch et al. 2016 
3.2  

(2.7-4.0) 

2.9  

(2.4-3.3) 
  

3.0  

(2.6-3.7) 

2.9  

(2.5-3.4) 
  

3.4  

(3.2-3.5) 

Average 3.4 3.1  3.1 3.0  3.7 

Table. 4.2 Pressure calculation results using the amphiboles from the Qitianling granites and enclaves 

and different geobarometers. 

Hammarstrom and Zen, 1986 : P= -3.92+5.03*Altot; 

Hollister et al., 1987:  P= -4.76+5.64* Altot ; 

Johnson and Rutherford, 1989 : P= -3.46+4.23* Altot ;   

Schmidt, 1992: P= -3.01+4.76* Altot ; 

Mutch et al., 2016: P= 0.5+0.3318* Altot +0.9954*( Altot )2; 

The amphibole compositional data of enclaves are from Zhao et al., 2012. 

4.5.2.3 Redox state  

The redox state is also a parameter of utmost importance (e.g., Dall'Agnol et al., 

1999), in particular whenever ore processes associated to granite magmas are concerned. 
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Different redox states may have a huge influence on mineralization processes. As we 

know, a large-scale tin deposit (Furong) is located inside the Qitianling pluton. 

Constraining the oxygen fugacity condition prevailing during Qitianling magma 

crystallisation can help us to better understand the tin-deposits associated to this pluton.  

Fe–Ti oxides (magnetite and ilmenite) can be divided into magnetite (Fe3O4) -

ulvospinel (Fe2TiO4) series and hematite (Fe2TiO4)-ilmenite (FeTiO3) series solid 

solutions also termed for short spinel and rhombohedral series, respectively. The phase-

equilibrium studies in the system FeO-Fe2O3-TiO2 investigated by Buddington and 

Lindsley, (1964) have shown that the composition of Fe–Ti oxides pair in 

equilibriumwith each other is a function of both temperature and oxygen fugacity.  

 The Fe–Ti oxides of Qitianling pluton are mainly ilmenite and magnetite. Usually 

ilmenite and magnetite have an intergrowth relationship and occur as inclusions in  

 

Fig. 4.24 BSE (back-scattered electron) images of magnetite and ilmenite from Phase-1(a, b) and 

Phase-2 (c, d). Abbreviations: Mag, magnetite; Ilm, ilmenite. 
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biotite. Occasionally, they can occur interstitially along with other rock forming 

minerals. Ilmenite trellis lamellae exsolution is often observed in magnetite for 

Qitianling pluton, which is typically regarded as a secondary texture (Dall'Agnol et al. 

1997). To explore the redox state of Qitianling pluton, both homogeneous intergrowth 

ilmenite and magnetite pair and exsolution ilmenite and magnetite pair from phase-1 

and phase-2 were chosen for the calculations (Fig. 4.24). We used the program ILMAT: 

 

 

Table. 4.3 Temperature and oxygen fugacity calculation results of ilmenite and magnetite from the 

Qitianling granites by different geothermobarometer.  

Different calculation methods of X'Usp & X'Ilm: Carmichael, 1967; Anderson, 1968; Lindsley & 

Spencer, 1982; Stormer, 1983. 

Different geothermobarometer: 

Method1 by Powell & Powell, 1977;  

Method2 by Spencer & Lindsley, 1981; 

Method3 by Andersen & Lindsley, 1985;   
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A Magnetite-Ilmenite Geothermobarometry Program (version 1.20)) of magnetite and 

ilmenite for estimating the temperature and oxygen fugacity condition (Lepage 2003). 

The composition of ilmenite and magnetite corresponding to the BSD images (Fig. 4.24) 

are listed in Table 4.3. The mole proportions of ulvospinel and ilmenite were calculated 

by different methods from Carmichael, 1967; Anderson, 1968; Lindsley & Spencer, 

1982; Stormer, 1983. Using the geothermobarometer of Powell & Powell, 1977; 

Spencer & Lindsley, 1981; Andersen & Lindsley, 1985, the Fe-Ti oxides temperature 

of phase-1 is 560 °C on average, whereas for phase-2 it is 582 °C. The corresponding 

oxygen fugacities fall above the Ni-NiO oxygen buffer which indicates relatively 

oxidizing conditions. It is worth pointing out that the calculated temperatures are 

significantly below the solidus temperature of the granite magma system, and it is not 

known whether these oxygen fugacities still represent the magma redox state (Fig. 4.25). 

 

Fig. 4.25 Log oxygen fugacity vs Temperature diagram showing the redox state of Qitianling pluton 

reflected by Ti-Fe oxides. (Modified after Frost, 1991). 
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 Besides Fe–Ti oxides, zircon has been shown to be a potential proxy for inferring 

magma oxidation state (Ballard et al., 2002; Trail et al., 2011, 2012; Smythe and Brenan,  

 

Table. 4.4 Zircon and whole-rock trace-element data with calculated Ce4+/Ce3+ ratios in zircon. 
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 2016). As an accessory mineral, zircon is relatively stable and durable, with high 

contents of REE (usually is HREE) in particular Ce. Usually, Ce is present in zircon as 

either Ce4+ or Ce3+, Ce4+ being more compatible when compared to Ce3+ because its 

ionic radii (0.97 Å) is similar to that of Zr4+ (0.84 Å) (Shannon, 1976; Hoskin and 

Schaltegger, 2003). Therefore, the Ce4+/Ce3+ ratio in zircon may mirror the redox state 

of the coexisting melt (Ballard et al., 2002; Trail et al., 2011, 2012).  

 We used the method of Ballard et al., 2002 on zircons from Qitianling to estimate 

the Ce4+/Ce3+ ratio (for details on the calculation procedure see Ballard et al., 2002). 

The results are shown in the Table 4.4. Sample QTL-21b from phase-1 has a Ce4+/Ce3+ 

ratio at 65 on average (SD=29), while for sample QTL-25 from phase-2 and sample 

QTL-04 from phase-3 are 54 (SD=38) and 49 (SD=23), respectively. Those ratios are 

relatively low when compared to those of zircons of intrusions associated to porphyry 

copper deposits in northern Chile: these display a Ce4+/Ce3+ ratio >300 (Ballard et al., 

2002). The low value of Ce4+/Ce3+ ratio in zircon of Qitianling pluton hence suggests 

that the magma system of Qitianling may have a rather reduced oxygen fugacity. 

 

Fig. 4.26 Plot of Ce/Nd vs Zr/10000 of zircons from the Qitianling granites and Chile. Reference 

data are from porphyry copper deposits of northern Chile (Ballard et al., 2002). 
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 Similar evidence come when using the works of Trail et al (2011) and Chelle- 

Michou et al (2014). Trail et al (2011) experimentally confirmed that the Ce anomaly 

((Ce/Ce*)N= CeN / (LaN* PrN) 1/2) is indeed a function of oxygen fugacity. Because the 

La and Pr contents in zircon are very low, Chelle-Michou et al (2014) suggested that 

Ce/Nd ratio can be used as a proxy for the zircon Ce anomaly. On Fig 4.23, we compare 

the data from porphyry copper deposits of northern Chile (arc setting) and Qitianling: 

except for one sample which has a Ce/Nd ratio around 17, all Chilean samples have 

Ce/Nd ratio higher than 25 and the highest is up to ~45. In contrast the Ce/Nd ratios 

from Qitianling are all below 12 which suggest that the oxygen fugacity of Qitianling 

magma was rather reduced when compared to those from Chile (Fig. 4.26). 

4.5.3 Geochronological constraints on Qitianling pluton 

4.5.3.1 Emplacement age 

 Zhu et al (2009) carried out a systematic age study on Qitianling pluton. Using 

the analyses of 32 samples and available literature data (Li et al., 2006; Zhu et al., 2003; 

Zhu et al., 2005; Fu et al., 2004; Li et al., 2005; Zhao et al., 2006), they concluded that 

 

Fig. 4.27 Histogram of Zircon U-Pb ages for Qitianling pluton (Zhu et al., 2009).  

 



Chapter 4  

77 

 

Qitianling is a multi-stage composite pluton. Three main emplacement stages were 

defined: 163-160 Ma, 157-153 Ma and 150-146 Ma (Fig. 4.27), broadly corresponding 

to three rock types: hornblende-biotite monzonitic granites for the first stage; 

biotite±amphibole granites for the second stage and fine-grained (locally porphyritic) 

biotite granites for the third stage. 

 For this study, we have selected 18 samples to further explore the emplacement 

age of Qitianling pluton, in order to confirm whether the pluton was constructed during 

three major pulses. The distribution of all 18 samples is shown on Fig. 4.28. Among 

those samples, 6 samples from phase-1 (including 2 fined- grain samples) have ages 

varying between 159 Ma and 152 Ma with an average age of 156 Ma. The 10 samples 

 

Fig. 4.28 Zircon U-Pb ages distribute in different Phases.  
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from phase 2, including 4 fined- grain samples, have ages between 158 Ma and 150 Ma 

with an average age 155 Ma. The 2 samples from phase-3 yield an age of 162 Ma and 

156 Ma.  

 Fig. 4.29 a shows the age distribution obtained for each phase. Clearly our new 

data indicate that there is considerable time overlap between phases 1, 2 and 3, most of 

the ages falling in the time interval 150-160 Ma with an average age at 156 Ma (Fig. 

4.29 b). Hence, our data do not confirm the proposal made by Zhu et al (2009). In  

 

 

 

Fig. 4.29 Zircon Concordia U-Pb ages (a) and weighted mean ages (b) from different Phases. The 

Symbols in (a) are as in Fig. 4.26. 

(a) 

(b) 
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Fig. 4.30 Histogram of Zircon U-Pb ages of Qitianling pluton. (a) 18 samples from this study; (b)each 

zircon from the 18 samples of this study; (c) 18 samples from this study and 32 samples from Zhu et 

al., 2009.  

(a) 

(b) 

(c) 
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particular, one of the oldest age obtained corresponds to phase 3. Our 18 samples show 

a symmetric unimodal distribution curve, in lieu of the trimodal one obtained previously, 

with a peak distribution centered at around 156 Ma (Fig. 4.30 a). The age of each zircon 

also displays a similar unimodal distribution curve (Fig. 4.30 b). When our data are 

lumped together with those of Zhu et al. (2009), a broad unimodal distribution curve 

emerges with two small peaks at ~148 Ma and ~161 Ma (Fig. 4.29 c). This therefore 

suggests that Qitianling pluton was constructed via a broadly continuous inflow of 

magma in the upper crust, which started at around 160 Ma, progressively increased till 

peaking at 156 Ma, and subsequently decreased at the same rate, till full cessation at 

around 147 Ma. Such a continuous magma inflow is also supported by the SHRIMP U-

Pb chronological work conducted by Zhao et al. (2006). In their more spatially resolved 

analyses of single zircons, one zircon grain shows a rather wide crystallization age 

range (core: 159.1 ± 0.9 and rim: 151.9 ± 2.2; Fig. 4.31a). From the 

cathodoluminescence image of Zhao et al. (2006), it is apparent that the core and the 

rim parts of the crystal have the same type of oscillatory zoning. Moreover, the core 

part has clearly an angular shape which is different form the rounded shape of the 

inherited zircon core shown in Fig. 4.31b. We thus suggest that the zircon from Fig. 

4.31a provides evidence for the continuous inflow of magma during the construction of 

Qitianling pluton which spanned several millions years (at least 7 Ma according to this 

single zircon). 

 The difference between the main peak around 156 Ma and two small peaks (~148 

Ma and ~161 Ma) possibly reflects that the rate of continuous inflow of magma varied 

during intrusion in the upper crust. There are two possibilities to explain the peak of 

inflow at around 156 Ma: one is that a single huge magma injection occurred at that 

time, and the other is that thousands of small batches were delivered during a short 

period. The first scenario is inconsistent with field observations that indicate that there 

is no strong deformation at the margin of the pluton and its country rock. As for the 

second explanation, the anisotropy of magnetic susceptibility (AMS) measurements of  
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Liu et al., 2018 show that the magnetic foliations are horizontal while magnetic 

lineations are scattered which indicate that the inflow of magma was mostly horizontal 

(at the present level of observation) during the final stages of consolidation. The lack 

of deformation, as well as the limited extent of thermal aureole surrounding the pluton, 

both suggest that the inflow of magma at Qitianling occurred continuously via addition 

of small amounts of batches. The contact between phase-1 and phase-2 is not well 

exposed, so no information can be acquired from field observations on the intrusive 

relationships between these two phases. In contrast, the contact between fine grained 

granite and coarse to medium-grained granites has been observed in the field. One 

example is from the southwest part of the pluton, where Xie et al., 2013 reported a tin-

mineralized topaz rhyolite dike with granitic enclaves. Geochronology results give 

crystallisation ages of 147.15±0.45 Ma (handpicked grains) and 150.0 ±2.0 Ma  

 

Fig. 4.31 The cathodoluminescence (CL) images of Zircon and the in situ SHRIMP U-Pb ages of 

zircon grain from Qitianling granite. Image and data are from Zhao et al., 2006 
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Fig. 4.32 Contact relationships between fine grained and coarse grained granites of Qitianling pluton. 

Image (a) is cited from Xie et al., 2013; granitic enclave age is in green colour with a mean U-Pb age 

in 154.2±2.7 Ma; rhyolite is in red colour with a mean U-Pb age in 147.15±0.45 Ma. Photo (b) is 

using the coin (golden) as the scale; Photo (c) shows the chilled margin between a coarse grained 

(sample QTL-21B dated at 156±2.1 Ma) and a fine grained granite. 
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(polished section) for the topaz rhyolite dike and of 154.2±2.7 Ma for the granitic 

enclave (Fig. 4.32a). Two other examples are from near the eastern and southwestern 

borders. For the former, angular shaped coarse grained granite fragments are included 

in a fine grained granite (Fig. 4.32b) whereas in the latter, a fine grained granite intrudes 

a coarse grained granite (sample QTL-21B with an age at 156.0 ±2.1 Ma) with a 

chilled margin (Fig. 4.32c). These observations demonstrate that when the fine grained 

granite magma was emplaced, the coarse grained variety was already solid and even 

cold. However, an important information that should be kept in mind is that fine grained 

granites are not necessarily equal to a late emplacement. Among our 18 samples, fine 

grained or medium/fine grained granites have ages varying from 149.5±4.8 Ma to 162

±2 Ma which show that the fine grained magma variety was produced during the entire 

period of pluton emplacement. Our results coincide with those of Zhu et al. (2009), who 

showed that the fine grained granite has an age range varying from 147±1 Ma to 163

±3 Ma. It is worth noting that, besides source processes (Fig. 4.32), another possibility 

to generate fine grained evolved granites is by in situ fractionation: such a mechanism 

would imply however that evolved magmas are predominantly produced during the 

latest stages of magma crystallization, which is at variance from geochronological 

constraints. 

Therefore, based on our data as well as on previous findings, we suggest that the 

magma emplacement of Qitianling pluton was broadly continuous, starting at around 

160 Ma with many small amounts of magma batches, whose intrusion rate 

progressively increased until around 156 Ma and then slowed down by about ~150 Ma: 

thereafter the main mass of magma body started to cool down while small increments 

of magma were added till ~ 147 Ma. Overall the data thus suggest that the thermal 

anomaly responsible for the melting of the lower crust at the origin of Qitianling pluton 

lasted at least 10 Ma, and was perhaps twice as long. 



Chapter 4  

84 

 

4.5.3.2 Cooling age 

Many minerals incorporating various radio-isotopic systems were exploited as 

dating techniques. The isotopic geochemical analyses of these different minerals can 

provide thermal history information using the widely different closure temperature 

ranges, which greatly helped develop the geochronology and thermochronology 

(Reiners et al., 2005; Braun et al., 2006). The minerals chosen as chronometers mainly 

rely on the hypothesis that as the system cools down, the daughter products of decay of 

radiogenic isotopes and the parent existing element stop diffusing when below their 

closure temperature (Dodson, 1973). Most common chronometers include U-Pb dating 

of apatite, zircon, monazite and titanite, K-Ar and Ar-Ar dating of amphibole, biotite, 

muscovite and K-feldspars, (U–Th)/He dating of apatite, fluorite and zircon. Among 

them the popular with relatively high closure temperature is zircon U-Pb system whose 

closure temperature is in excess of 900 °C (Cherniak and Watson, 2001). Another 

thermochronometer widely used for dating metamorphic/magmatic processes is Ar-Ar 

system of amphibole and biotite, which have the closure temperature range around at 

400-600°C and 350-400 °C, respectively (Harrison and McDougall, 1982; McDougall 

and Harrison, 1999; Scaillet, 2000; Meert et al., 2001). The ranges of closure 

temperature of different minerals are summarized in Fig. 4.33. More recently, the U-Pb 

dating of some ore-forming minerals (cassiterite and columbite-group-minerals) has 

been widely used by economic geologists (Che et al., 2015; Zhang et al., 2017).  

 

Fig. 4.33 The closure temperature of different minerals used in thermochronologic systems.  
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The results of Ar-Ar dating of amphibole and biotite in our study suggest that the 

age recorded by these minerals are mainly between 151 Ma and 155 Ma which is 

consistent with previous Ar-Ar dating studies: Mao et al. (2004) and Bai et al. (2005) 

demonstrated that the biotite from the coarse-medium grained amphibole-biotite granite 

of Qitianling pluton gave an Ar-Ar age of 157.5± 0.3 Ma and 155.1 ±1.8 Ma, 

respectively. Compared with the result of the zircon U-Pb age (see Fig. 4.34), the Ar-

Ar ages of each sample are close (within 5 Ma) but younger than U-Pb ages, which 

indicate that these Ar-Ar ages represent the cooling age or crystallization age 

(approximate) of amphibole and biotite. This result is consistent with the facts that: 1) 

no conspicuous foliation or lineation has been observed from the Qitianling granite; 2) 

the contact between the granite and the country rocks is sharp, undeformed and with 

small thermal aureoles which prove that the deformation is relatively weak along the 

boundary. This indicates that after the main magma emplacement, the Qitianling pluton 

cooled down slowly and didn’t experienced any other tectono-thermal events that could 

have reset the chronometers until to nowadays.   

Three samples of Qitianling granite were chosen for all zircon U-Pb dating, 

 

Fig. 4.34 The zircon U-Pb age and amphibole-biotite Ar-Ar age of Qitianling granite.  
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amphibole and biotite Ar-Ar dating (Fig. 4.34). Sample SC52 is located in the central 

part of the pluton, and the age acquired from zircon, amphibole and biotite of this 

sample are 157.5±1.4 Ma, 153.4±0.4 Ma and 152.6±0.8 Ma, respectively. Sample 

SC58 was collected from the northwest part of the pluton, the three types of dating of 

this sample gave age at 157.2±1.4 Ma, 151.5±0.4 Ma and 152.6±0.4 Ma, respectively. 

As for the sample SC62 which is in southwest, the zircon U-Pb, amphibole and biotite 

Ar-Ar age are 158.3±1.4 Ma, 151.6±0.3 Ma and 153.9±0.4 Ma, respectively. As we 

mentioned above, the range of closure temperature for zircon (U-Pb), amphibole (Ar-

Ar) and biotite (Ar-Ar) are around 750-900°C, 400-600°C and 350-400 °C. When 

compared with other two samples, sample SC52 displays an ideal progressive cooling 

trend (ie biotite ages are younger than those of amphibole) thus was used as the cooling 

rate modeling (Fig. 4.35). From this sample, assuming that 5 Ma is the maximum gap 

between zircon age and biotite age and taking the lower limit value of the closure 

temperature of zircon (750°C), amphibole (400°C) and biotite (350°C), we can simply 

acquire the cooling curve. The slope of linear fitting equation of Sample SC52 is around 

80, therefore suggesting that the cooling rate was 80°C/Ma (in this temperature interval).  

For the other nine samples only the zircon U-Pb age and biotite Ar-Ar age were 

 

Fig. 4.35 Modeling of the cooling history deduced from geochronological data of the Qitianling 

granite.  
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acquired (Fig. 4.33, 4.34). If we exclude ages affected by large error bars, the difference 

between the two ages of each sample varies from 0.1 to 3.6 Ma (Fig. 4.35; 4.36). 

Interestingly, the samples with a small age difference such as SC42A (0.6 Ma), SC45 

(0.1 Ma) and SC77 (0.6 Ma), appear to be located near the margin of the pluton while 

those with relative high age gap value e.g. SC74 (3.6 Ma) and QTL04 (2.9 Ma) tend to 

occur in the central part of the pluton, in particular for the three samples (SC52, SC58 

and SC62) which give the highest age gap value (4.8 Ma) among all samples. In an 

ideal situation, this can be explained by the fact that from the central part to the marginal 

part of the pluton, heat loss increased rapidly such that the closure temperature of the 

Ar-Ar isotopic system of biotites from the periphery of the pluton was rapidly reached 

after emplacement (Fig. 4.36). That the central part of the pluton remained hotter for 

longer period suggests also that the magma main feeding zone was relatively focused 

in the core of the pluton. 

The geochronological results gained on Qitianling pluton can be compared with 

thermal simulations of a cooling magma body in the crust. For instance, the simulations 

of Nabelek et al. (2012) show that a 2 km thick granite magma body intruded at 6 km 

depth, with an emplacement temperature of 900°C (initial host rock temperature at 

about 300°C) reaches a temperature of 400°C (ie the closure temperature of amphibole) 

in its core only after 100 kyr. This shows that emplacement of Qitianling through a 

single major pulse of magma is highly unlikely on thermal and geochronological 

grounds. Annen et al (2006) have modelled the thermal evolution of the Manaslu granite, 

a 5 km thick leucogranite body emplaced at 10-12 km depth (ie similar to Qitianling) 

in the Himalayan orogen. Their model shows that in order to maintain temperatures 

hotter that 350-400°C inside the main magma body for several Ma after the onset of 

emplacement, a slow intrusion rate (about 1 mm/year) during a protracted time interval 

(several Ma) is required (see their Figure 14). Altogether, field and laboratory data thus 

suggest that the Qitianling granite was slowly built via the addition of small magma 

batches. An indication about the size (thickness) of individual intrusions is given by the 
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limited extend of the thermal aureole surrounding the pluton (typically <30 m). Here 

also, thermal modelling shows that the thermal aureole is broadly proportional to the 

thickness of intrusion (see Annen et al., 2006), hence, intruded magma batches probably 

had thicknesses of about 30-100 m. For comparison, the simulations of Nabelek et al 

(2012) give an aureole size thicker than 2 km (for an instantaneously emplaced 2 km 

granite lense). Future, dedicated, thermal simulations will allow to further refine the 

thermal evolution of the Qitianling granite and its relationships with the regional 

geological evolution. 

 

 

Fig. 4.36 The age distribution of Qitianling pluton. Red plots are the position where the sample were 

collected. The ages within the pluton in dark are the zircon U-Pb age (Ma). Under the zircon age, the 

number in the parentheses are the number of samples. Amphibole Ar-Ar ages (Ma) are in green while 

biotite Ar-Ar ages (Ma) are in red. The blue numbers in the parentheses are the difference between the 

zircon U-Pb age and biotite Ar-Ar age. F: fined-grain granite; M: medium-grain granite; C: coarse-grain 

granite. The number behind the lithology is the altitude of the samples. 
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4.6 Summary 

Qitianling pluton consisted of three main phases: phase-1, porphyritic, medium- 

to coarse-grained amphibole-biotite-rich monzonitic granite; phase-2, medium-grained 

biotite±amphibole-bearing granite; phase-3, fine-grained, biotite-bearing granite. The 

geochemical data show that Qitianling pluton is metaluminous, and belongs to 

aluminous A-type granites (A2 post- orogenic subtype) with high Ga/Al ratio and high 

contents of HFSE (Zr, Nb, Ce, Y) and REE. Harker and REE spider diagrams show that 

the Qitianling pluton display well organised fractionation trends. 

The emplacement conditions of Qitianling pluton have been constrained using 

different mineral thermobarometers. Zircon-saturation temperature and amphibole-

plagioclase thermometry suggest that the early emplacement temperature condition of 

Qitianling was at least of 800°C. Amphibole barometry suggests in turn that pressure 

was around 3.2±1 kbar. As for the redox state, restored Ti-Fe oxides compositions 

suggest an fO2 slightly above the NNO oxygen buffer, but the corresponding 

temperatures are largely below solidus. In contrast, based on the Ce content and 

Ce4+/Ce3+ ratio in zircon, the redox state for Qitianling pluton is inferred to have been 

relatively reduced (when compared to that of arc-magmas). These two last observations 

suggest that the Qitianling pluton may have experienced an oxidation event during its 

evolution, perhaps at the subsolidus hydrothermal stage. 

Radiometric data show that the emplacement of Qitianling pluton occurred during 

Jurassic times. We have found crystallization ages (Zircon U-Pb age) for Qitianling 

pluton ranging between 149.5±4.8 Ma to 162±2 Ma being coincident with previous 

constraints (146±5 Ma to 163±3 Ma). As shown in the frequency distribution 

histogram, most of our samples are distributed between 154 Ma and 158 Ma, which 

suggests that the main emplacement period was around 156 Ma. When combined with 

the results of previous studies, two small peaks (~148 Ma and ~161 Ma) appear, which 
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could correspond to slightly enhanced magma production rates during these periods. 

Combining these constraints with field observations, we suggest that the emplacement 

of Qitianling pluton occurred via incremental addition of small magma batches in a 

broadly continuous manner, but the rate of intrusion during pluton building varied, 

increasing till around 156 Ma, and then slowing down to around 148 Ma which is the 

youngest dated intrusion. The Ar-Ar dating of Qitianling granite shows that the 

amphibole and biotite record ages ranging from 151 Ma to 155 Ma which represent the 

cooling age of Qitianling. Located in the central part of the pluton, sample SC-52 

acquired the ages from zircon (U-Pb system at 157.5±1.4 Ma), amphibole (Ar-Ar 

system at 153.4±0.4 Ma) and biotite (Ar-Ar system at 152.6±0.8 Ma) which give a 

cooling rate of 80°C / Ma for the cooling process of Qitianling pluton. The difference 

between zircon U-Pb age and biotite Ar-Ar age from each sample demonstrates that the 

ages gap value is positively associated with the distance from contact of the pluton.  
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Chapter 5 Phase equilibria of Qitianling Granite and 

emplacement condition constraint  

5.1 Introduction  

In Southern China, Mesozoic (~66-251 Ma) granitic rocks (sensu lato) make up a 

large proportion (~60 %) of the exposed crust, with an overall exposure of ~135,000 

km2 (e.g. Zhou et al., 2006). Jurassic plutons (~142-180 Ma) comprise ~50% of the 

exposed intrusions, many of which are associated with rare metal (W, Sn, Nb, Ta, Zr, 

U, REE) deposits of economic significance (Chen et al., 2013; Wang et al., 2017; Zhu 

et al., 2008; Jiang et al., 2008; Shu et al., 2013). Among them, many intrusions are 

metaluminous to slightly peraluminous A-type granites compositions which are 

characterized, interalia, by high Ga/Al and FeOt/MgO ratios, high contents of Zr, Nb, 

Y, Ce, and Fe-rich minerals (Chappell and White, 1974, 2001; White and Chappell, 

1977; Bonin, 2007; Collins et al., 1982; Whalen et al., 1987; Rajesh, 2000; Martin, 

2006; Li et al., 2007; Fu et al., 2004). Knowledge of intensive system parameters 

prevailing during the crystallization of such huge amount of granites is important to 

unravel Mesozoic crust formation and evolution in southern China as well as for 

guiding mining exploration efforts in this area. In particular, constraints on system/melt 

H2O content and oxygen fugacity are of fundamental importance for qualitatively and 

quantitatively assessing ore element concentration, solubility, and transport paths. 

The conventional method for constraining the emplacement conditions of granites 

has been to use experimentally- or empirically calibrated geothermometers and 

geobarometers (e.g. Hammarstrom and Zen 1986; Anderson, 1996; Anderson et al., 

2008; Mutch et al., 2016; Putirka and Keith, 2016). Such an approach does not, however, 

constrain accurately melt water content or oxygen fugacity, while estimates on 

crystallization pressure and temperature bear variable and often significant 
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uncertainties. Previous work has shown that such constraints may be gained from phase 

equilibrium experiments performed on representative compositions (e.g. Clemens et al., 

1981, 1986; Scaillet et al., 1995; Dall'Agnol et al., 1999; Klimm et al., 2003). 

Our choice of experimental conditions was based on P-T estimates gathered from 

previous studies and our own data. Calculated zircon saturation temperatures are 

between ~715 and 875 °C, (Appendix table 1 and Zhao et al. 2005), which is in the 

range typical for alkali-rich granitic magmas (e.g. cf. Collins et al. 2016). Hornblende-

plagioclase and hornblende thermobarometry (Holland and Blundy, 1994; 

Hammarstrom and Zen, 1986; Hollister et al., 1987; Johnson and Rutherford, 1989; 

Schmidt, 1992; Anderson and Smith, 1995) yield calculated crystallization 

temperatures of ~750-820°C and pressures of ~360±90 MPa (Zhao et al. 2005). Zr-in-

titanite thermometry of rare, euhedral, titanite crystal cores records crystallization 

temperatures of ~720-780°C (Xie et al. 2010). The common presence of magnetite and 

the composition of biotite (Fe-rich) have been used to infer magmatic crystallization 

over a wide range of oxygen fugacity, between the NNO and the MH (Fe2O3-Fe3O4) 

buffers (Zhao et al., 2005; Wang et al., 2017). The restored compositions of spatially 

associated magnetite and ilmenite (using a broad beam during electron probe analyses 

of exsolved oxides) suggest last equilibration below the solidus at ~580°C at an oxygen 

fugacity around NNO+1 (Table 4.3). The melt H2O content of the Qitianling magmas 

remains unconstrained, but the presence of amphibole suggests that melt H2O contents 

were ≥4 wt% (e.g. cf. Naney 1983; Dall’Agnol et al. 1999). 

Accordingly, temperature was varied between 660 and 900 °C and pressure 

between ~100 and ~700 MPa. Most experiments were carried out at ~200-300 MPa, 

but some additional experiments were performed at ~100, ~400 and ~700 MPa. Oxygen 

fugacity was varied between ~NNO+2.4 and ~NNO-1.3, most experiments being 

performed between ~NNO+2.4 and ~NNO-1.3. Melt H2O content was varied between 

~3.0 and ~8.6 wt % by varying pressure and fluid composition (XH2O) (see below). 
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Three representative samples of the two main Qitianling rock types (one phase-1 and 

two phase-2 samples), were chosen as raw starting materials. The phase-3 biotite 

granite was not selected because all exposed rocks are significantly altered. The 

selected starting material samples have SiO2 contents of ~65.7 wt % (phase-1 granite, 

sample QTL38C), ~68.1 wt % (phase-2 granite, sample QTL14A), and ~70.9 wt % 

(phase-2 granite, sample QTL13) (Appendix table 8). The details of starting materials 

preparation see in Chapter 3. Nineteen experiments were performed with a total of 166 

individual charges. Experiments performed above 800 °C lasted ~140-350 hours (~6-

15 days), while those performed below 800 °C lasted ~470-1350 hours (~20-56 days) 

(Appendix table 9). 

5.2 Experimental results 

5.2.1 Phase relations 

(1) Phase-1 amphibole-biotite granite 

At 200 MPa and ~NNO-1.5, Lpx, Cpx, Pl, Amp, Kfs, Qtz, Ilm, Mt, and Gl (0-90%) 

crystallized from phase-1 composition (Appendix table 9; Fig. 5.1a) (sample QTL-38C, 

~65 wt% SiO2). Ilm, Lpx, and Cpx are the near-liquidus phases (Fig. 5.1a). Lpx stability 

is limited to ≥750-800°C, while Cpx is present in all charges except for one Amp-rich 

charge crystallized at 800°C and H2O-saturation. Amp appears at <900°C and for a melt 

H2O content (H2Omelt) >5.5 wt %, but its appearance is limited to >700-750°C, Amp 

being not a stable solidus or near-solidus phase at 200 MPa. The Amp stability field is 

limited to H2Omelt > 5.5 wt % at 850°C and >6 wt % at 800°C, having thus a remarkably  
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Fig. 5.1 Isobaric phase diagram at 200 MPa and 300 MPa of three compositions (QTL38C; QTL14A; 

QTL13) as a function of temperature and melt H2O content. The number above each charge is the 

XH2O= [H2O/ (H2O+CO2)] in mole. Solidus curves are based on the observation in our charges and 

Johannes and Holtz (1990). Minerals abbreviations: Ilm: ilmenite; Mag: magnetite; Cpx: 

clinopyroxene; Opx: orthopyroxene (low- Ca pyroxene); Amp: amphibole; Bt: biotite; Pl: 

plagioclase; Kfs: K-feldspar; Qtz: quartz. 
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narrow stability field (Fig. 5.1a). Bt appears below 900°C and is stable over the entire 

range of explored H2Omelt (i.e. ~3-6.4 wt %). Pl crystallizes below 900°C at low H2Omelt 

(<4 wt %) and below 825°C at H2O saturation. The Qtz and Kfs saturation curves are 

subparallel to the Pl saturation and the inferred solidus curves. Ilm is present in all 

charges. Mag has been observed at 800°C and 850°C in H2O-rich charges, where it 

coexists with Ilm.  

Crystallization at 300 MPa produces phase relations similar to those determined 

at 200 MPa (Fig. 5.1b versus 5.1a). Cpx formed in all but four charges (at 800 and 

750 °C and H2Omelt >~7 wt %). Lpx stability is limited to >800 °C at H2O saturation 

and to >~750 °C at H2Omelt <5 wt %. Amp and Bt are likely stable at >800 °C according 

to the experiments at 200 MPa, but their maximum stability field was not determined. 

When compared with the stability at 200 MPa, Amp stability is still restricted to high 

melt H2O, i.e. H2Omelt >~6 wt %, but extends to a significantly lower temperature, ie at 

least ~675 °C (instead of ~750 °C). Amphibole is thus stable at near-solidus conditions, 

but it appears to be absent from our 660 °C, H2O-saturated charge. As at 200 MPa, Pl 

crystallization at H2O saturation occurs after Amp (at <800 °C). Qtz and Kfs are the last 

tectosilicate phases to appear as temperature decreases. Kfs crystallises before Qtz at 

low H2Omelt, unlike at 200 MPa where Qtz always crystallises first relative to Kfs. Ttn 

was detected in some charges at ~700°C and at ~800°C crystallized at oxidizing 

conditions, while charges crystallized at reducing conditions showed no Ttn. 

(2) Intermediate phase-2 biotite-amphibole granite 

At 200 MPa, amphibole did not crystallize from the phase-2 composition (Fig. 

5.1c) (sample QTL-14A, ~68 wt% SiO2). Ilm and Lpx are the liquidus phases, while 

Mag was not observed. Cpx appears at 900°C and at H2Omelt >5 wt %. Bt crystallises at 

<900°C displaying a stability field similar to that in phase-1 (Fig. 5.1c versus 5.1a). 

Compared to phase-1, the Pl stability field is depressed to slightly lower temperature, 

i.e. occurring at ~850 °C at ~4 wt % H2Omelt and below 800 °C at H2O saturation. The 
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stability fields of Kfs and Qtz are slightly larger than those determined for the phase-1 

composition. Crystallization at 300 MPa yields results similar to those at 200 MPa, with 

one key exception: Amp crystallizes at ~750°C at H2O-saturation (Fig. 5.1d). Ttn was 

observed in oxidizing experiments at 700°C and 800°C and in some reducing 

experiments at 660°C and 700°C (Appendix table 9). 

(3) Evolved phase-2 biotite±amphibole granite 

At 200 MPa, the evolved phase-2 biotite±amphibole granite (sample QTL13, ~71 

wt % SiO2), crystallizes essentially the same mineral assemblage as the intermediate 

phase-2 composition, ie Ilm, Lpx, Cpx, Pl, Kfs, Qtz, Ttn, only lacking Mag. The phase 

relationships closely compare to those determined for the intermediate phase 2 

composition (Fig. 5.1e and 5.1c), except that the stability fields for Lpx and Bt differ. 

Lpx is no longer a near-liquidus phase, it crystallizes below 900°C and at H2Omelt of <5 

wt %. Bt stability becomes sensitive to melt water content. At H2Omelt of ~2-3 wt %, it 

crystallizes at <800°C, while it appears below 850°C at H2O saturation. Ttn is also 

present at 660 °C and 700 °C (300 and 400 MPa), which is similar to intermediate 

phase-2. The phase relations determined at 300 MPa do not significantly differ from 

those at 200 MPa (Fig. 5.1f). 

Phase relations summary 

Apart from Bt, which displays similar stability fields for all three compositions, 

the variation in saturation curves summarized above shows that even relatively minor 

compositional variations critically affect phase relationships (e.g. as previously 

observed for other compositions, for example, by Cadoux et al., 2014 or Scaillet et al. 

2016). The most notable variation is observed for Amp and Lpx. For both phases, the 

stability fields progressively shrink with evolving bulk-rock composition. Another 

notable feature is the peritectic relationship between Cpx and Amp, i.e. Cpx is absent 

in low-temperature and H2O-saturated charges whenever Amp is stable. Our results 



Chapter 5  

97 

 

show also that increasing pressure enlarges the stability field of Amp towards lower 

temperature, a reflection of the increase in H2O melt solubility. Yet, the low-temperature 

limb of the Amp field does not straddle the solidus at 300 MPa, while it is close to it. 

We attribute this to a redox effect, i.e. we posit that our fO2 was slightly too oxidizing 

compared to conditions at which Amp crystallizes at the solidus. Indeed, Dall'Agnol et 

al. (1999) have shown that low fO2 displaces the stability field of Amp downward in a 

T-H2Omelt projection, where Amp replaces Cpx at near solidus and H2O-rich conditions. 

The scarce occurrence of Amp in evolved phase-2 rocks suggests that the stability field 

of this phase for this composition probably lies at near-solidus and H2O-saturated 

conditions, as tentatively shown in Fig. 5.1f. 

5.2.2 Phase compositions 

5.2.2.1 Plagioclase   

 The maximum Pl An content decreases from the most mafic to the most felsic 

composition, i.e. from ~An54-23 to ~An51-20 to ~An45-12 %, respectively. For each 

composition, the An content of Pl increases systematically with temperature and 

H2Omelt (and therefore with pressure as pressure increases H2O melt solubility) as 

observed in previous studies (e.g. Dall’agnol et al., 1999; Scaillet and Evans, 1999; 

Klimm et al., 2003; Bogaerts et al., 2006; Klimm et al., 2008) (Fig 5.2). The Or content 

of Pl, in contrast, increases when both temperature and H2Omelt decrease (Appendix 

table 10). The An content of Pl formed at oxidizing conditions is higher compared to Pl 

crystallized at reducing conditions (e.g. with a maximum difference of ~An15 in our 

experiments) (Appendix table 10). A similar finding was reported by Dall’Agnol et al. 

(1999). 
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Fig. 5.2 An content of experimental plagioclase at 200MPa and 300MPa plotted as a function of melt 

H2O content in different temperature (see in different colors) conditions with compositions of natural 

plagioclases (shaded area in grey color) from 3 samples. The bold black line is the average An value 

of Natural plagioclase. The number above each spot is the XH2O from each charge.  
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5.2.2.2 Pyroxenes 

Both Lpx and Cpx are observed in our crystallization experiments at most 

conditions, including the near-solidus experiments, yet they are absent from the natural 

samples. Cpx has <8.7 wt % Al2O3 and <2.7 wt % Na2O. Diopside formed at 850 °C 

and 800°C, at H2O saturation and either reducing conditions (~NNO-1.3) or oxidizing 

conditions (~NNO+2.4). Hedenbergite crystallized in experiments at <800 °C and at 

reducing conditions (~NNO-1.3). At 900°C-800°C and at H2O-undersaturated 

conditions, Cpx has augite composition. Its Wo content increases with increasing XH2O, 

while its Fs content increases with decreasing temperature.  

Lpx is mostly pigeonite, except for crystals in two charges (900°C, XH2O=0.9; 

850°C, XH2O=1), which are clinoenstatite and clinoferrosilite. Lpx has <7 wt % Al2O3 

and <1 wt % Na2O. Its Wo content increases with decreasing XH2O (contrary to Cpx), 

while its Fs content increases with decreasing temperature (Fig 5.3; Appendix table 11). 

 

Fig. 5.3 Compositions of experimental pyroxene from the 3 samples at different temperatures in 

classification diagram. Solids symbol are the pyroxenes from reducing (~NNO-1.3) condition.● 

represent composition QTL38C; ▲ represent composition QTL14A; ■ represent composition 

QTL13. Those unfilled symbols represent the pyroxenes from oxidizing (~NNO+2.4) condition of 3 

compositions. 
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5.2.2.3 Amphibole 

Amp produced in our experiments is always calcic (>1.5 apfu (Ca, Na); Na< 0.5 

apfu). According to Leake et al. (1997, 2003), it classifies as hornblende, pargasite, 

magnesiohastingsite, ferropargasite, ferroedenite, or edenite. Its TiO2 content ranges 

from ~0.8 wt % to ~2.3 wt %. Altot shows a broad positive correlation with pressure, 

though there is not a simple linear relationship. For instance, at ~NNO+2.4 and 800°C, 

the Altot of Amp crystallized from the phase-1 composition at 200 MPa, 360 MPa and 

700 MPa, is 1.48, 1.70 and 1.65 apfu, respectively. The XFe [Fe/(Fe+Mg)] content 

increases with temperature and decreases with oxygen fugacity. XFe also increases 

slightly with decreasing H2Omelt (Fig 5.4). It does not vary obviously, however, with 

 

Fig. 5.4 Compositions of experimental amphiboles at water saturation (▲ ) and below water 

saturation (△) plotted as a function of temperature with compositions of natural amphibole (shaded 

area). Triangles represent the experimental amphibole crystallized from composition QTL-38 while 

the solid star represents those from composition 14A. The grey area are the range of Fe/(Mg+Fe) of 

natural amphiboles from 3 samples whereas the bold black lines are the average Fe/(Mg+Fe) value. 

The horizonal bar is the maximum uncertainty of temperature; the vertical bar is the maximum 

uncertainty of Fe/(Mg+Fe). 
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pressure: at ~NNO+2.5 and 800°C, the XFe [Fe/(Fe+Mg)] at 200, 300 and 700 MPa, is 

0.21, 0.21, and 0.18, respectively. Amp produced in phase-1 and phase-2 compositions 

have similar compositions, notably in terms of XFe: for instance, at 300 MPa, 750°C 

and ~NNO-1.3, XFe of Amp is 0.65 in both phase-1 and phase-2 experiments. 

Therefore, pressure and bulk compositional effects on Amp XFe are very small 

(Appendix table 12).  

5.2.2.4 Biotite  

   Bt grain size is small in all charges (<10 m) which, together with its high aspect 

ratio, made glass contamination unavoidable during EMP analysis. Bt analyses with 

high degrees of glass contamination (i.e. with K2O<6 wt % and >10% contamination) 

were not considered. All other data are original, i.e. uncorrected compositions. Bt 

contains ~1-5 wt % TiO2. The crystals have XFe values in the range of 0.42-0.75 

(Appendix table 13), which increase with decreasing temperature and H2Omelt, the trend 

being similar to that of Amp. Similarly to Amp, Bt crystallized in all three compositions 

(which have different Fetot content) at the same P-T-fO2 conditions have comparable 

XFe (Fig 5.5).  

5.2.2.5 Fe-Ti oxides 

   Due to their small grain size, good quality analyses of Fe-Ti oxide minerals were 

difficult to obtain. At reducing conditions, Ilm has relatively high FeO and low Fe2O3 

contents (calculated at ~30-44 wt % and ~1-10 wt %, respectively), with ilmenite 

contents of 86-99 mol %. Ilmenite content increases with temperature and decreases 

with H2Omelt. The MnO content of all experimental Ilm is <2.2 wt %, increasing when 

temperature decreases, while the MgO content increases with temperature, up to a 

maximum of ~3.8 wt %. Mag formed at ~NNO+2.4 has ulvöspinel (Usp) contents in 

the range of 21-37 mol%. At 800 °C, water saturation, and NNO-1.5, Mag in phase-1  
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Fig. 5.5 Compositions of experimental biotite at water saturation (■) and below water saturation 

(□) plotted as a function of temperature and compositions of the natural biotites (shaded areas in 

grey color). The grey area are the range of Fe/(Mg+Fe) of natural biotites from 3 samples whereas 

the bold black lines are the average Fe/(Mg+Fe) values. The horizonal bar is the maximum 

uncertainty of temperature; the vertical bar is the maximum uncertainty of Fe/(Mg+Fe). 
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run products has a higher Usp content (41 mol%) compared to run products formed at 

oxidizing conditions (37 mol%). The bulk rock composition also affects Mag 

composition. For instance, at 200 MPa, 800 °C, water saturation and ~NNO+2.4, the 

Usp content decreases from the phase 1 to phase 3 compositions from 37 to 24 mol% 

(Appendix table 14). 

5.2.2.6 Titanite 

Ttn was observed in all three compositions but only at water-saturated conditions. 

At oxidizing conditions, Ttn crystallized at 800 °C (700 MPa) and 700°C (200 MPa) in 

phase-1 and intermediate phase-2 compositions. At reducing conditions, Ttn 

crystallized only at ≤700 °C, but ≥300MPa. Ttn has ~1.7-5 Al2O3, ~27-32 wt % TiO2, 

and ~22-26 wt % CaO. With increasing crystallization pressure, Ttn Al2O3 content 

appears to decrease, while TiO2 and CaO contents appear to increase. 

5.2.2.7 Glass 

Except for some crystal-rich charges at low H2Omelt, the compositions of residual 

glasses were successfully analyzed by EMP. All glasses analyzed are homogeneous 

within the error of the method (see details in Appendix table 15). The residual glasses 

from our three series of experiments show closely comparable and coherent 

compositional trends, though they differ in absolute values. Glasses become more 

evolved as temperature and H2Omelt decrease, being predominantly metaluminous. The 

composition of residual glasses produced at 200-300 MPa and reducing (~NNO-1.3) 

conditions are shown in Harker diagrams (Fig 5.6). Glass Al2O3 content significantly 

varies as a function of Pl abundance. In Pl-free charges at 200 MPa, Al2O3 shows minor 

variation (~14.8-15.5 wt % for phase-1 composition (QTL-38); ~14-15 wt % for 

intermediate phase-2 composition (QTL-14); ~13.8-14.3 wt % for evolved phase-2 

composition (QTL-13), while it decreases significantly once Pl crystallizes. At 

temperatures higher than 700°C, the fact that the K2O content increases with decreasing  
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Fig. 5.6 Variation of residual glass compositions (on average) of samples QTL38C, QTL14A, 

QTL13 at different pressure, temperature, oxygen fugacity and melt H2O content conditions. Solid 

symbols and empty symbols represent those glass from reducing (~NNO-1.3) and oxidizing 

(~NNO+2.4) charges, respectively. The numbers attached to the symbols are the XH2O values from 

each charge. 
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H2Omelt reflects that at low H2Omelt Bt crystallizes in relatively low proportion. Similarly, 

CaO and FeO (and TiO2, not shown) contents continuously decrease with increasing 

degrees of crystallization, reflecting increasing precipitation of ferro-magnesian phases. 

 

5.3 Discussion 

5.3.1 Attainment of equilibrium 

This study has used a standard procedure of crystallization which has been shown 

to allow attainment of equilibrium conditions in granitic systems (e.g. Clemens et al., 

1981; 1986; Scaillet et al., 1995; Klimm et al., 2003; Pichavant, 1987; Pichavant et al., 

2007). The textures and compositional attributes of our run products do not depart from 

those reported in previous studies on similar starting materials. The main features are 

that (1) the phases are homogeneously distributed, (2) the composition of minerals and 

glass in single charges is also homogeneous within the uncertainty of the method, (3) 

phase assemblages and compositions vary systematically with experimental parameters, 

and (4) mineral textures are also homogeneous, including those in highly crystallized 

charges. As outlined below, the experimental results reproduce the main petrological 

characteristics of the rocks selected for the experiments, showing that the investigated 

P-T-H2Omelt-fO2 space has captured the natural framework of magma evolution in the 

upper crust. 

5.3.2 Comparison with previous phase-equilibrium studies 

Several experimental studies have previously explored phase-equilibrium 

relations for metaluminous silicic rocks at conditions broadly comparable to those 

examined here (Appendix table 8). The study of Bogaerts et al. (2006) was carried out 

on a granodiorite composition (sample 98N06 from the Lyngdal massif in Norway) that 



Chapter 5  

106 

 

closely compares to our phase-1 granite composition except for its slightly higher Al2O3, 

CaO, Na2O and K2O contents. The Pinatubo dacite is also similar in composition to the 

Qitianling phase-1 granite except for its higher Al2O3, CaO, Na2O and lower FeO and 

K2O content. The phase-2 Qitianling granites compare to the Jamon (Dall’Agnol et al., 

1999), Wangrah (Klimm et al., 2003), and Watergums (Clemens et al., 1986) granites. 

The Jamon and the AB412-Wangrah compositions are similar to the intermediate phase-

2 composition (sample QTL14A), having higher contents of SiO2 (by ~2 wt %) and 

Na2O (by ~0.5 wt %) and lower contents of Al2O3 (by ~1 wt %) and K2O (by ~1 wt %). 

The AB422-Wangrah and Watergums granites are similar to the evolved phase-2 

composition (sample QTL-13), with higher contents of SiO2 (by 1-2 wt %), slightly 

lower contents of Al2O3 (by ~1 wt %) and K2O (by 0.5-1 wt %). 

Both Qitianling phase-1 (QTL-38C) and the 98N06-Lyngdal granite (Bogaerts et 

al., 2006), show similar Bt and Amp upper thermal stability (around 875°C). The 

minimum H2Omelt for Amp crystallization is also close to 5.5-6 wt % in both cases. The 

Pl in-curve at ~8 wt % H2Omelt is equally near 750°C in both experimental series. The 

stability field of Mag, however, is smaller in our experiments compared to the Lyngdal 

granite experiments, which likely reflects the lower oxygen fugacity of our experiments 

(NNO-1.3 versus NNO-0.4 to NNO+0.8) and not bulk compositional effects. In contrast, 

the phase relationships of the Pinatubo dacite (at 220 MPa, NNO to NNO+2.7; Scaillet 

and Evans, 1999) differ from those determined for our phase-1 composition in that Cpx 

does not crystallize from the Pinatubo composition (at 220 MPa), that Amp thermal 

stability is higher (extending to over 900 °C), and that the thermal stability of biotite is 

≤750°C. These differences can be ascribed to higher CaO and lower K2O contents of 

the Pinatubo as compared to our phase-1 Qitianling starting material. 

The comparison between the intermediate phase-2 Qitianling granite and the 

Jamon granite provides a further illustration of K2O compositional control, in particular 

on the stability field of Amp. In the Jamon granite composition (K2O~3.4 wt%), at ~300 
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MPa and NNO-1.5, Amp is stable up to 820°C and at H2Omelt >4 wt%, while at similar 

P and fO2 Amp was only found in one charge in our experiments on the intermediate 

phase-2 composition (K2O~5.3 wt%), ie at 750°C, H2Omelt ~8 wt % and NNO-1.3. The 

K2O-rich character of Qitianling granites (compared to Jamon) (~5.3 versus 3.4 wt%), 

likely favours Bt over Amp, especially at high H2Omelt. The experiments on the Jamon 

granite further show that increasing fO2 (from ~NNO-1.5 to NNO+2.5) displaces the 

stability of Amp toward higher temperatures, so that Amp is no more present at the 

solidus under high fO2 (see also Naney, 1983). Our experiments were, on average, 

slightly more oxidizing than those of Dall’Agnol et al (1999) (~NNO-1.3 versus 

~NNO-1.5 for the reducing experimental series) and the small Amp stability fields 

determined for the Qitianling compositions is both related to an fO2 effect and to the 

high K2O content of the whole rock. 

Our evolved phase-2 starting material (QTL-13) has the highest K2O content (5.4 

wt %) of all previously studied A-type granites, most closely approaching that of the 

AB422-Wangrah granite (4.9 wt % K2O; Klimm et al., 2003). Both the evolved phase-

2 and the AB422-Wangrah experimental series did not crystallize Amp and display 

similar Bt stability fields. The Watergums granite experiments (Clemens et al., 1986) 

also did not produce Amp but Bt, even though the Bt stability field is small (limited 

to >4 wt % H2Omelt and ≤ 750°C) when compared to our results. This may be due to the 

low pressure (100 MPa for Watergums) and to the slightly lower K2O content (~4.2 

wt %) of the Watergums compared to the evolved phase-2 Qitianling granite.  

Overall, the above comparison shows that high CaO and Al2O3 concentrations in 

metaluminous silicic to intermediate magmas increase the Pl stability field (at the 

expense of Cpx), while elevated K2O enlarges that of Bt at the expense of Amp, 

shrinking the Amp field towards high H2Omelt. Available experimental data indicate that 

amphibole crystallization is inhibited in SiO2-rich (>70 wt%) and K2O-rich (>4.5 wt%) 

magmas stored in shallow crust (≤ 300 MPa). 



Chapter 5  

108 

 

5.3.3 Crystallization conditions of the Qitianling granite (P-T -H2Omelt-fO2) 

5.3.3.1 Pressure 

At 200 MPa, only the phase-1 composition produced Amp, but not the phase-2 

composition, which is in contrast with the occurrence of Amp in phase-2 rocks. Amp is 

moreover not a near solidus phase in the 200 MPa experiments (it only crystallized 

at >700 °C), yet it is inferred to have been a stable solidus phase in the natural system 

as Amp crystals are largely unzoned and as they do not show evidence for breakdown 

to either Bt or Ttn. At 300 MPa, in contrast, Amp is stable in the experiments using the 

phase-1 and the intermediate phase-2 composition (QTL14A), with a stability field 

extending to within <50 °C of the solidus. Amp is still absent from the crystallization 

products of the evolved phase-2 composition though, further suggesting that the 

crystallization conditions of the natural system were closely approached but not 

perfectly matched for all rocks. The average Altot content of the natural Amp in phase-

1 and phase-2 granites is ~1.4-1.5, i.e. slightly higher than the Al content of the 

experimental Amp produced at 700°C and 300 MPa (Altot =1.43), yet significantly 

lower than the Al content of Amp produced at 700°C and 400 MPa (Altot=1.77). In our 

reducing experiments, Ttn was also observed only at ≥300 MPa, which is also in 

agreement with crystallization at moderately high pressure. In combination, we take the 

natural and the experimental phase relations and the amphibole compositions to 

conclude that the Qitianling magmas crystallized at ≥300 and <350 MPa.  

This pressure range is in agreement with that retrieved using the natural amphibole 

compositions and various amphibole and amphibole-plagioclase barometers (360±90 

MPa, Zhao et al., 2005; Appendix table 12). In combination they point to an 

emplacement depth of ~12-13 km, if we assume an average crustal density of 2600 

kg/m3. Gravimetry data indicate that the exposed rocks of the pluton represent the near-

roof zone of a ~5 km thick intrusion (Liu et al. in revision), thus constraining pluton 
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emplacement at a mid-crustal depth of ~12-13 to ~17-18 km and at pressures of >300 

to ~450 MPa. The inferred emplacement pressure and depth are higher than those 

typical for evolved magmatic reservoirs in arcs or anorogenic settings (typically ≤100-

250 MPa, e.g. Scaillet et al., 1998; Mahood, 1984; Scaillet and Macdonald, 2001), but 

they compare to those of crustally-derived magmas emplaced within thick crust 

(typically at <400-500 MPa) (e.g. cf. Chaussard and Amelung 2014; Scaillet et al., 1995; 

Scaillet et al., 2016).  

5.3.3.2 Temperature 

Ilm or Ilm+Cpx are already present at 900 °C, the maximum temperature that we 

have explored in our experiments. This suggests that the Qitianling magmas formed at 

~≥900 °C. The zircon saturation temperatures of the Qitianling granites are 

significantly lower (~715-875 °C, ~815°C on average), implying that zircon saturated 

late and that little to no zircon was inherited from the source, which is consistent with 

the magmatic zoning patterns and the scarcity of old, inherited zircon cores (e.g. Zhu 

et al., 2009). Pl of the natural samples has ~An43 to ~An02 composition. For 

crystallization under H2O-rich conditions (as implied by amphibole occurrence), and at 

a pressure ≥300 MPa, the An range of Pl records crystallization at ≤700-750 °C (cf. 

Fig.5.2). Compositional plateau zones with ~An32, ~An32 and ~An25 of natural Pl in 

our phase-1, intermediate phase-2, and evolved phase-2 samples are matched by 

experimentally produced Pl crystallized at≤700 and 660 °C and at H2O saturation.  

That natural Amp in phase-1 and phase-2 granites has an XFe of ~0.6-0.8 which 

indicates that all crystals equilibrated at ≤800 °C. That the largest proportion of Amp 

has an XFe of ~0.7 highlights that they crystallized at near-solidus conditions at ≤660 °C 

if crystallization took place at H2O saturation and at ~NNO-1±0.5 (as discussed further 

below). The Si content of the natural Amp crystals is, however, slightly lower than that 

of the crystals formed in our 300 MPa near-solidus experiments (~6.6 versus ~6.9 apfu), 

which we interpret to reflect the slightly higher crystallization pressure of the natural 
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crystals (at >300 and <350 MPa). Bt in the natural granites commonly includes Ti-Fe 

oxides and it is locally included in Amp (as euhedral-subhedral crystals), consistent 

with the interpretation that it commenced crystallization at high-temperature (but below 

850 °C; cf. Fig. 5.1). At ~NNO-1±0.5, the Bt XFe of ~0.7 records crystallization (and/or 

re-equilibration) at ~650°C (Figs. 5.4, 5.5), ie similar to the compositional record of 

both Amp and Pl. 

The comparison of Amp, Bt, and Pl compositions in the natural samples with our 

experimental run products highlights that the main mass of the Qitianling minerals 

record near solidus conditions at ≤660-700 °C. This is in contrast to the amphibole and 

amphibole-plagioclase crystallization temperatures estimated using the natural mineral 

compositions and the calibrations of Anderson and Smith (1995) and Putirka and Keith 

(2016), which both yield calculated crystallization temperatures of ~750-800 °C. The 

reason for the high calculated temperatures is that the Qitianling Amp has relatively 

low Si contents (~6.4-6.7 apfu), which reflects its crystallization at fairly reducing 

conditions(<NNO to ~NNO-1.3; Appendix table 12), where residual melts have 

relatively lower-SiO2 contents compared to melts produced under more oxidizing 

conditions (Fig. 5.6). Anderson and Smith (1995) caution that their calibration should 

not be applied to Amp crystallized at <NNO. Putirka and Keith (2016) does not suggest 

any such restriction for the application of their Amp thermometers (equations 5 and 6). 

Our results show that for the compositions and crystallization conditions considered 

here, temperatures are significantly overestimated (1) for amphibole crystallized at 

oxidizing conditions and (2) for amphibole crystallized at low temperatures (at 

<750 °C). We therefore conclude that redox conditions should be defined prior to 

carrying out thermometric calculations based on amphibole chemistry. 

5.3.3.3 Melt H2O content 

Amp is characteristic for the phase-1 and phase-2 Qitianling granites. The 

minimum H2Omelt at which Amp stabilized in our crystallization experiments is ~5.5-
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6.0 wt % at 850-800 °C and 200 MPa, highlighting that the natural magmas must have 

been H2O-rich. At 300 MPa, Amp crystallization requires even higher H2Omelt, i.e. ~6.5 

wt % for phase-1 and ~8 wt % for intermediate phase-2, and thus H2Omelt at or very 

near saturation. The rim compositions of the natural Pl crystals (~An20 for phase-1 and 

intermediate phase-2 and ~An2 for the evolved phase-2) are consistent with 

crystallization at or below 660 °C near H2O-saturation. For an inferred crystallization 

pressure of ≥300 MPa, we thus construe that the Qitianling magmas crystallized at 

H2Omelt ≥7.5-8.0 wt %. The low-Fe Amp and high-An Pl compositions (Fig. 5.4) in 

some of the natural crystal cores further indicate that H2Omelt ≥7.5-8.0 wt % was already 

achieved at ~750-800 °C at relatively low crystallinities of ~15-30 wt% (Appendix 

table 9). This in turn suggests that liquidus H2Omelt was >5-6 wt%, and thus significantly 

higher than that typical for A-type granites (i.e. ≤2.5-4.5 wt% H2O; e.g. Clemens et al., 

1986; Bonin, 2007). The high melt H2O contents may relate to dehydration partial 

melting of hydrous source minerals such as amphibole and biotite, which may yield 

initial H2Omelt of up to 8.8 wt% (cf. Beard and Lofgren, 1991). An alternative 

explanation is that fluids were derived from mantle-derived magmas underplated in the 

lower crust (inferred to have provided most of the heat for generating the crustal melts 

and Jurassic granites in SE China and to be volumetrically important in the lower crust; 

e.g. Zhao et al. 2012) and fluxed the granitic source(s), although it is not certain that 

such fluids would have been H2O-rich (to comply with our inferred XH2O of ~1, Fig. 

5.1).  

5.3.3.4 Oxygen fugacity  

In our ~NNO+2.4 experiments, Mag is the only oxide, while Mag and Ilm coexist 

in the natural samples, ruling out such oxidizing conditions. In our reducing 

experiments at ~NNO-1.3, both Ilm and Mag coexist at ≤850 °C. The compositions of 

amphibole and biotite, in particular their Fe/(Fe+Mg) ratios, are also well reproduced 

in our reduced runs at near solidus temperatures (Fig. 5.4, 5.5), suggesting similarly 
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low fO2. While Ttn has been found in evolved magmas crystallized at oxidizing 

conditions (~NNO+2.5; e.g. Dall’Agnol et al. 1999), it is, however, also present in our 

experiments performed at reducing conditions (~NNO-1.3) at 300 and 400 MPa, at ≤

700°C, and at H2O saturation (see also Xirouchakis and Lindsley, 1998). Taken together, 

our results thus suggest that the Qitianling magma(s) evolved at redox conditions 

around NNO-1±0.5. This range is lower than that inferred by Zhao et al. (2005) based 

on calculated biotite Fe2+/Fe3+ composition: the estimated fO2 with this method ranges 

between the NNO and the MH buffers. We note, however, that the granitic samples 

studied by Zhao et al. (2005) are spatially associated with the Furong tin deposit, and 

thus that these samples may have crystallized at, or evolved to, a different oxygen 

fugacity than the main intrusion, which we have characterized in our study. We also 

note that redox conditions may have increased during subsolidus cooling, i.e. during 

hydrothermal alteration that produced the tin deposit. In support of this are the Fe-Ti 

oxides whose restored compositions yield fO2 around NNO+1 (for temperatures around 

580°C). This subsolidus oxidation event may have increased the Fe3+/Fe2+ ratio of 

biotites. 

5.3.4 Geochemical evolution of the Qitianling pluton 

The phase-1 to phase-3 granites of the Qitianling pluton could (1) be related by 

fractionation or (2) represent source partial melts with variably evolved composition. 

The uncertainties associated when using plutonic rocks as proxies of liquid composition  
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Fig. 5.7a The whole rock composition of natural samples (◇) (normalized to 100 wt %) compared 

to the residual glass compositions from phase 1 composition (QTL38C). 
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Fig. 5.7b The whole rock composition of natural samples (◇) (normalized to 100 wt %) compared 

to the residual glasses from intermediate phase 2 composition (QTL14A). 
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Fig. 5.7c The whole rock composition of natural samples (◇) (normalized to 100 wt %) compared to 

the residual glasses from evolved phase 2 composition (QTL13).   
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 (e.g. see Pitcher (1997) for a detailed discussion), makes difficult to interpret in detail 

the compositional variations displayed by the whole suite (Fig. 5.7a-c). Yet, the 

following observations can be made. Firstly, liquids obtained from the crystallization 

of our most mafic starting material, (the phase-1 composition, QTL-38C), match the 

composition of the phase-2 granites at temperatures of ~900°C to 850°C and the 

composition of the most evolved, phase-3, granites at temperatures of ≤750°C (Fig. 

5.7.a). Residual liquids from phase-2 magma at ≤700 °C equally match the most 

evolved whole-rock compositions of the pluton. This indicates that the more evolved 

rocks of the pluton (i.e. phase-2 and/or phase-3 granites) may represent low-

temperature differentiates of magma equivalent to the phase-2 and/or phase-1 whole-

rock compositions. Secondly, if compositions with <~72 wt% SiO2 were not reproduced 

is due to the fact that we did not explore temperatures higher than 900°C, which would 

have produced crystal-poorer run products with lower-SiO2 glass compositions. 

Experiments at 950°C would presumably extend the experimental trend toward more 

mafic compositions, approaching the bulk composition of our starting materials, hence 

reproducing the entire natural compositional field. Thirdly, the effect of variable 

pressure and H2Omelt on experimental liquids is subtle, but nevertheless significant for 

the range explored. In particular, at 200 MPa, liquid CaO contents are notably lower 

and the liquid Na2O and K2O contents are notably higher than for liquids produced at 

≥300 MPa (Fig. 5.6; Appendix table 15).  

If such a shallow fractionation took place, then mafic cumulates should be present 

somewhere in the system. Granitoid rocks more mafic than those exposed in the 

Qitianling pluton exist in the Jurassic Huashan pluton, which crops out ~200 km 

southwest of the Qitianling pluton. The Huashan pluton is compositionally and 

mineralogically similar to Qitianling (Feng et al., 2012), save for the occurrence of 

more mafic varieties (the Niumiao unit with ~58-60 wt% SiO2, ~14 wt% Al2O3, ~7 wt% 

FeO, ~5-6 wt% CaO, ~3 wt% Na2O and ~4 wt% K2O), which extend the Qitianling 

whole-rock compositional trends towards more mafic compositions. These mafic rocks 
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could represent the cumulated counterpart magmas, which at Qitianling would be 

present at a level below exposure.  

Overall, that the experimentally-determined liquid lines of descent at 300 MPa and 

~NNO-1±0.5 closely compare to those of the whole-rock compositional trends is thus 

taken to suggest that some fractionation of a relatively homogeneous bulk (source-

derived) magma took place at or close to the emplacement level. Interestingly, taken at 

face value, the geochemical trends preserved within the pluton correspond to a 

temperature range of 900-660°C (Fig. 5.7). 

5.4 Summary 

Our experimental study on three different compositions of the Qitianling granite 

in Southern China shows that the magmas were both hot and water-rich, emplaced in 

the mid crust (10-12 km), and that their redox state was below NNO (at ~NNO-1±0.5) 

during crystallization. Our experimental results, and their comparison with previous 

experimental studies reveal clearly that amphibole stability in potassium-rich granites 

is limited to water-rich conditions. The usual minimum H2Omelt content necessary for 

calcic amphibole crystallization in metaluminous silicate melts is widely quoted at 

around 4 wt %. Our results show this minimum is close to 6 wt % for K2O-rich silicic 

magmas. The data also show that the geochemical trends displayed by the pluton can 

partly result from shallow level crystallization, yet they do not rule out source 

inheritance as a controlling factor. 
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Chapter 6 Experimental study on Fe/(Fe+Mg) in amphibole 

and biotite, an oxygen barometer for intermediate or acid-

intermediate (granitoids) magma system 

6.1 Introduction  

Oxygen fugacity is a significant parameter in either volcanic or plutonic systems 

(Scaillet et al., 1998; Scaillet and Gaillard, 2011; Ishihara, 1977). The redox state of a 

magma has a huge effect on its crystallization order, or on the proportion and 

composition of minerals during the cooling period (Grove and Baker, 1984; Dall’Agnol 

et al., 1999; Berndt et al., 2005). What is more, this effect is also seen in partition 

coefficients of many elements in the magma, which may have a strong control on its 

metallogenic behavior during the magmatic or post-magmatic (hydrothermal) stage 

(Bindeman et al., 1998; Ballard et al., 2002; Belvin, 2004; Aigner-Torres et al., 2007). 

Since evaluating the oxygen fugacity of magma system allows us to better understand 

rock forming and ore forming processes, several oxybarometers and redox proxies have 

been developed over the years.  

Based on the correlation between oxygen fugacity and multivalent elements in 

minerals and melts, the quantitative evaluation of the redox state in magma and fluid 

becomes possible. For instance, using the "ternary" biotite solid solutions and the 

stoichiometric calculations of Fe3+ and Fe2+ in biotite, Wones and Eugster (1965) 

proposed a biotite-oxybarometer. Ti-Fe oxides, e.g. magnetite and ilmenite, are also 

widely used as a redox state sensor (Powell and Powell, 1977; Spencer and Lindsley, 

1981; Andersen and Lindsley, 1985). Similarly, on the basis of reaction 2Fe2O3 (in 

ilmenite) + 4TiO2 (rutile) = 4FeTiO3 (in ilmenite) + O2, Zhao et al. (l999) proposed a 

rutile–ilmenite oxybarometer. Ottonello et al. (2001) and Moretti (2005) used a 

thermodynamic model to calculated Fe in silicate melts and glass depending on the 
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redox state, so that the iron redox ratio of glasses can be used as an oxybarometer (e.g., 

Kress and Carmichael, 1991). France et al. (2010) used the partition coefficients of Fe3+ 

and Fe2+ in plagioclase and clinopyroxene, to provide a plagioclase-clinopyroxene 

oxybarometer. More recently, accessory minerals, e.g. zircon and apatite, have been 

also used as new redox proxies, based on the behaviour of Mn, Ce and Eu (Burnham 

and Berry, 2012; Trail et al., 2012; Miles et al., 2014; Smythe and Brenan, 2016).  

Below, using our phase equilibrium experiments presented in Chapter 5, 

complemented by a few more experiments, we develop a model aimed at setting up an 

oxybarometer which can be used in intermediate or acid-intermediate magma 

compositions, ie for granitic rocks sensu lato, in which either amphibole or biotite, or 

both, are present. 

6.2 Starting materials of oxygen fugacity experiments 

In addition to the ~NNO+3 and ~NNO-1.3 crystallization experiments already 

presented, two experiments at an oxygen fugacity of ~NNO and ~NNO+1 (at 300MPa 

and 800 °C) were carried out to explore in greater detail the oxygen fugacity effect on 

the composition of amphibole and biotite. The running times of those two runs were 

188 hours and 284 hours, respectively. To test the effect of whole rock composition, in 

addition to our 3 Qitianling samples (QTL-38C, QTL-14A and QTL-13), we used 3 

other compositions: e.g. Santa Maria dacite (with 65.4 wt% of SiO2 and Fe#w= 

FeOtot/(FeOtot+MgO) 0.79, Rose, 1987), Pinatubo dacite (with 65.5 wt% of SiO2 and 

Fe# = 0.68, Scaillet and Evans, 1999) and Jamon hornblende biotite monzogranite (with 

70.62 wt% of SiO2 and Fe#= 0.86, Dall’Agnol et al., 1999). For the Qitianling, Pinatubo 

and Santa Maria compositions, we carried out crystallization experiments using the dry 

glass as the starting material while for Jamon and one sample from Qitianling (QTL-

38C) we carried out melting experiments using the bulk rock powder as the starting 

material. The compositions of different starting materials are shown in Appendix table 
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16. All charges were water-saturated, with about 10 to 15 wt% added water, depending 

on pressure. 

All crystallization and melting experiments were conducted using internally heated 

pressure vessels. The different oxygen fugacity conditions were controlled by adding 

different amounts of H2. The preparation of capsules for melting experiments is similar 

to crystallization experiments, except that the material loaded into the capsules for 

melting experiments is the bulk rock powder in lieu of the dry glass powder. The details 

of capsules preparation for crystallization experiments are described in Chapter 3. 

6.3 Experimental results 

6.3.1 Crystallization experiments 

The results of crystallization experiments of Qitianling granite which were 

conducted under reducing conditions (~NNO-1.3) are discussed in Chapter 5. Here, we 

focus on the run products of other compositions (Santa Maria dacite; Pinatubo dacite 

and Jamon granite) and on those from Qitianling granite obtained at oxidizing 

(~NNO+2.3) or relatively oxidizing conditions (~NNO and ~NNO+1). All 

experimental results are listed in Appendix table 17.  

For the 3 compositions of Qitianling granite, magnetite (Mag), ilmenite (Ilm), 

clinopyroxene (Cpx), amphibole (Amp), biotite (Bt), plagioclase (Pl), titanite (Ttn) and 

glass (Gl) were produced in the crystallization experiments at 800°C, 200 MPa- 

670MPa, ~NNO- ~NNO+2.4 and H2O-saturation conditions. At NNO~+2.4, 200 MPa, 

in the charges of composition QTL-38, Cpx, Amp, Bt, Mag and Pl crystallized. As 

pressure increases from 360 MPa to 670 MPa, Pl disappears and at 670 MPa, Ttn is 

present. At 670 MPa, in the charges with 15 wt% added water, Amp was not observed. 

In all these oxidized charges, Mag is the only Ti-Fe oxide. For the compositions of 

QTL-14A and QTL-13, at NNO~+2.4, the same mineral phases crystallised, except 

Amp and Pl. At around NNO+1, with Bt and Mag, Ilm crystallize in all 3 Qitianling 
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compositions. Like the experiments at NNO~+2.4, Amp crystallised only in 

composition QTL-38 while Cpx was observed in compositions QTL-14A and QTL-13. 

Pl was only observed in composition QTL-13. 

 

Fig. 6.1 Back-scattered electron (BSE) images of experimental run products (crystallization experiment) 

of Qitianling granite at ~NNO-1.3, 800°C, 200 MPa and water saturation (a,c,e), and at ~NNO, 800°C, 

300MPa and water saturation(b,d,f). a,b are run products of QTL-38; c,d are run products of QTL-14; e,f 

are run products of QTL-13. Abbreviations: Ilm: ilmenite; Mag: magnetite; Cpx: clinopyroxene; Amp: 

amphibole; Bt: biotite; Pl: plagioclase; Gl: glass. 
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At NNO, the phase assemblages are the same than those at NNO+1 for the three 

compositions, except that Pl is not stable. Representative back-scattered electron (BSE) 

images of run products of Qitianling granite are shown in Fig 6.1 

Representative back-scattered electron (BSE) images of run products of Santa 

Maria and Pinatubo dacites are shown in Fig 6.2. At ~NNO-1.3, from 700°C to 800°C 

and between 200 MPa and 400 MPa, Amp, Ilm, Pl are present in all the experiments of 

Santa Maria composition (Fig 6.2 a,c). Because the crystallized phases at 660°C are too 

small to be identified, these results were not included in our discussion. When oxygen 

fugacity increases to ~NNO, at 300 MPa and 800°C, Amp and Pl still crystallize while 

magnetite becomes the dominant oxide (Fig 6.2 b, d). Similar phase assemblages can 

be observed at ~NNO+1, 300 MPa and 800°C.  

 

Fig. 6.2 Back-scattered electron (BSE) images of experimental run products (crystallization experiment) 

of Santa Maria (a,b) and Pinatubo (c,d) dacites at ~NNO-1.3, 800°C, 300MPa and water saturation(a,c); 

and at ~NNO+1, 800°C, 300MPa and water saturation(b,d). Abbreviations are the same as Fig.6.1. 
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For the Pinatubo composition, at ~NNO-1.3, from 700°C to 800°C and 200 MPa 

and 400 MPa, Amp, Ilm and Pl crystallized, Qtz being present as well at 700°C and 200 

MPa. At ~NNO and ~NNO+1, 800°C and 300 MPa, in addition to Amp, Ilm, Pl, Mag 

also crystallized. 

6.3.2 Melting experiments  

 Representative back-scattered electron (BSE) images of run products are shown 

in Fig 6.3. At 660 °C, 200 MPa and ~NNO-1.3, the bulk rock powder of Jamon 

hornblende biotite monzogranite and Qitianling amphibole-biotite granite (QTL-38C) 

do not display glass, being therefore below solidus at this pressure. Amp, Ilm, Mag, Bt, 

 

Fig. 6.3 Back-scattered electron (BSE) images of experimental run products (melting experiments) of 

Jamon (a,b) and Qitianling QTL-38 (c,d) granites at ~NNO-1.3, 700°C, 400 MPa and water 

saturation(a,c); and at ~NNO, 800°C, 300 MPa and water saturation(b,d). Abbreviations are the same as 

Fig.6.1. 
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Pl, Kfs and Qtz were well preserved in the charges. As temperature increased to 700°C, 

glass was observed in the charge of Qitianling composition. Qtz, Kfs and Pl were 

partially melted with a round shape and reaction rims can be observed in Amp and Bt. 

However, for the Jamon composition, glass pockets were difficult to found. At 700°C 

and 400 MPa, Qtz, Kfs and Pl are absent in the Jamon granite while for Qitianling 

granite only Kfs and Qtz disappeared. Mag and Ilm start to melt. Amp and Bt have re-

equilibrated rims, some small isolated euhedral Amp crystals being also present (Fig. 

6.3 a versus c). At 750°C, 300 MPa, the Qitianling composition has the same phase 

assemblages with a slightly higher melting degree when compared to the charge at 

700°C, 400MPa.  

At 800 °C, 300 MPa and ~NNO, the melting degree increased further as anticipated. 

In both compositions, Pl melted out totally. Mag and Ilm partially melted having a 

typical round shape, some small recrystallized angular oxides being present as well. 

Amp also partially melted having re-equilibrated angular rims. Bt was no longer 

observed in the melting experiment of Jamon composition, while some large Bt still 

persists in Qitianling with a re-equilibrated texture (Fig. 6.3 b versus d). At 800 °C, 

300MPa and ~NNO+1, the phase assemblages are similar to those at ~NNO for both 

compositions. 

6.3.3 Phase chemistry 

6.3.3.1 Amphibole  

Amp data were collated from 22 charges of different starting materials including 

13 crystallization and 9 melting experiments (Appendix table 17). Besides, Amp data 

from 12 charges of Qitianling compositions at reducing condition (11 charges of QTL-

38 and 1 charge of QTL-14) are also included (Appendix table 12 in chapter 5). All 

representative compositions of Amp are given in Appendix table 18. Microprobe 

analyses show that all the experimental Amp from different starting materials belong to 
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the calcic group Amp (Leake et al., 1997, 2003). For Qitianling compositions, at 800 °C, 

from 200 MPa to 670 MPa, at ~NNO+2.4, ~NNO+1 and ~NNO and water-saturated 

conditions, only QTL-38 composition successfully crystallized Amp. Altot of those Amp 

ranges between 1.48 and 1.70 a.p.f.u. Fe#= molar Fetot/(Fetot+Mg) ranges from 0.18 to 

0.48. At reducing condition (~NNO-1.3) and 800°C, Fe# rises up to 0.58. At a fixed 

temperature, as pressure increase (from 200 MPa to 670 MPa), Fe# slightly changes: 

e.g. at 800°C and ~NNO+2.4, Fe# = 0.21, 0.21, 0.18 at 200MPa, 360MPa and 670MPa, 

respectively. Similar results are obtained at reducing conditions. At 800°C  

 

Fig. 6.4 Fe#= Fetot/(Fetot+Mg) of experimental amphiboles plotted as a function of pressure. 38 stands 

for Qitianling granite (QTL-38C); M38 stands for melting experiment of QTL-38C; *P are the data of 

experimental Amp compositions of Pinatubo dacite from Scaillet and Evans, 1999. Vertical error bar 

gives the standard deviation of Fe#, and the horizontal bar gives the uncertainty on pressure. 

and ~NNO-1.3, Fe# = 0.58, 0.57 and 0.59 at 200 MPa, 300 MPa and 360 MPa, 

respectively. Melting experiments at different pressures also show a similar Fe# 

behaviour. These results indicate that the effect of pressure on the Fe# of Amp in the 

investigated range (from 200 MPa to 700 MPa) is marginal. At a constant temperature 

and similar oxygen fugacity condition, Amp from the Pinatubo experiments (Scaillet 

and Evans (1999)) shows a slight increase of its Fe# from 220 MPa to 390 MPa, which 
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remains moderate however. (Fig. 6.4).   

As for the Santa Maria dacite composition, Amp crystallized at 200 MPa to 400 

MPa has a Altot which ranges between 1.4 and 1.7. At 700°C, ~NNO-1.4 and 400 MPa, 

Amp has the highest Fe# value (= 0.53). At the same oxygen fugacity condition and 

800°C, Fe# decreases to 0.47. When fO2 increases from NNO to NNO+1, Fe# 

decreases from 0.45 to 0.37. Similar results are obtained with the Pinatubo composition: 

Altot varies from 1.0 to 1.7 from 200 MPa to 400 MPa. At ~NNO-1.4, Amp at 700°C 

 

Fig. 6.5 Fe#= Fetot/(Fetot+Mg) of experimental amphiboles plotted as a function of pressure. Different 

symbols represent different starting materials: 38 stands for Qitianling granite (QTL-38C); M38 stands 

for melting experiment of QTL-38C; 14 stands for Qitianling granite (QTL-14A); M-J stands for 

melting experiment of Jamon granite; SM stands for Santa Maria dacite and P stands for Pinatubo 

dacite; *L are experimental Amp of Lyngdal granodiorite from Bogaerts et al., 2006. All solid symbols 

are at water saturation condition (XH2O=1) while empty symbols are from water under saturation 

conditions (XH2O<1). The vertical error bar is the standard deviation of Fe#, and the horizontal bar is 

the uncertainty of temperature. 
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and 400 MPa has an Fe# = 0.45 while at 800°C Fe# = 0.39. As oxygen fugacity 

increases, Fe# = 0.40 and 0.31, at ~NNO and ~NNO+1, respectively (Fig. 6.4).  

In the melting experiments of Jamon and Qitianling (QTL-38) granites, most large 

relict Amp crystals display core and rim texture (Fig. 6.3). Amp rim compositions are 

similar to small euhedral Amp. The Amp rim in Jamon granite composition has an Altot 

ranging from 1.0 to 1.5 while the Altot core varies from 1.0 to 1.3 which is close to the 

natural Amp composition (Altot is 1.2-1.4, Dall’Agnol et al., 1999). The highest Fe# of 

the Amp rim is 0.72 at 700°C, ~NNO-1.4. At 800°C and more oxidizing conditions 

(~NNO and ~NNO+1), Fe# = 0.42 and 0.3, respectively. For the composition of 

Qitianling granite QTL-38, Amp rims have an Altot varying from 1.36 to 1.81 when the 

melting conditions are 700°C-800°C, 200 MPa - 400 MPa, ~NNO-1.3- ~NNO+1. At 

reducing conditions (~NNO-1.3) and 700 °C, Fe# = 0.67 and 0.68 at 200 MPa and 400 

MPa, respectively. At 750 °C, Fe# = 0.65. At 800°C, Fe# = 0.46 and 0.36 at ~NNO and 

 

Fig. 6.6 Fe#= Fetot/(Fetot+Mg) of experimental amphiboles (XH2O=1) plotted as a function of oxygen 

fugacity (△ NNO=logfO2exp-logfO2NNO). *P are the data of experimental Amp composition cited 

form Scaillet and Evans, 1999. Vertical error is the maximum standard deviation of Fe#, and the 

horizontal bar is the maximum uncertainty of oxygen fugacity (△NNO). 
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~NNO+1, respectively. For the composition QTL-38, at the same experimental 

conditions (T, P, fO2 and H2O content), the composition of the rim of the Amp in the 

melting experiments is close to the composition of the Amp from the crystallization 

experiment (e.g. at 700 °C, 400MPa, ~NNO-1 and water saturation, the Fe# of the Amp 

rim from the melting experiment is 0.66 and that from the crystallization experiment is 

0.68). 

In a summary, the oxygen fugacity effect on Amp depends on the composition of 

the starting material (Fig. 6.6). At 800°C, 1) at ~NNO+2.4, Fe# of Amp from Qitianling 

is around 0.20, while for those from Pinatubo (Scaillet and Evans, (1999)) Fe# is around 

0.31 (at 781°C). Note that in addition to the composition, this difference may be also 

caused by the temperature, since the temperature gap is up to 20°C. 2) At ~NNO+1 and 

~NNO, Amp crystallized from different starting materials have similar Fe#: e.g. at 

~NNO+1, Fe# of Amp is 0.30 for M-J (Jamon melting experiment), 0.36 for M-

38(QTL38 melting experiment), 0.35 for Qitianling QTL38, 0.37 for Santa Maria dacite 

and 0.31 for Pinatubo dacite; at ~NNO, Fe# of Amp is 0.42 for M-J (Jamon melting 

experiment), 0.46 for M-38 (QTL38 melting experiment), 0.48 for Qitianling QTL38, 

0.45 for Santa Maria dacite and 0.40 for Pinatubo dacite. 3) In contrast, at ~NNO-1, the 

Fe# of Amp displays obvious differences depending on different starting materials. For 

Qitianling granite, Santa Maria and Pinatubo dacites, the Fe# of Amp is ~0.58, 0.47 and 

0.39, respectively. The difference of Fe# of Amp among different starting materials 

reflects the FeOt/ (FeOt+MgO) of bulk rock compositions: from Qitianling (QTL-38C), 

to Santa Maria and Pinatubo dacites, the bulk rock FeOt/ ( FeOt+MgO) decreases from 

0.81, to 0.79 to 0.68, respectively. 

6.3.3.2 Biotite 

Experimental Bt was only observed in Qitianling run products (QTL-38, QTL-14 

and QTL-13) while in Santa Maria and Pinatubo compositions, Bt is not stable at the  
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Fig. 6.7 Fe#= Fetot/(Fetot+Mg) of experimental biotite plotted as a function of pressure. 
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experimental conditions of this study (Appendix table 17). The Bt composition (the 

recrystallized rim) from the melting experiment of Jamon granite is difficult to 

determine because of the contamination and the difficulty of distinguish with the Bt 

core and recrystallized Bt rim (Fig. 6.3). Therefore, Bt with K2O lower than 6% and 

higher than 10% were excluded in this study. Representative compositions of Bt are 

given in Appendix table 19. 

Experimental Bt from reducing conditions is close to annite while that from 

oxidizing condition is close to phlogopite. Bt has an Si (a.p.f.u) mostly between 5.0 and 

6.5 and Altot (a.p.f.u) ranges from 1.9-2.6. The Fe# varies from 0.15 to 0.70. As for Amp, 

pressure effect on Fe# is negligible when compared to other experimental parameters 

(e.g. T and fO2,). At 800 °C and water saturation, as pressure changes from 200 MPa to 

670 MPa, the Fe# of Bt from the 3 Qitianling compositions is 0.12-0.19 at ~NNO+2.4 

and 0.41-0.48 ~NNO-1. From mafic (QTL-38) to felsic (QTL-13) compositions, the 

pressure influence on Fe# becomes slightly larger (Fig. 6.7 a, b and c). As for the 

temperature effect, when temperature decrease, the Fe# of Bt increases systematically 

for all 3 compositions (Fig. 6.8): at around NNO-1 and water saturation conditions, the 

Fe# of Bt from QTL-38 are 0.48 (at 850°C), 0.53-0.58 (at 800°C), 0.62 (at 750°C), 0.68 

(at 700°C) and 0.70 (at 660°C). Similar trends can be seen for the Bt of the 2 other more 

felsic compositions. Everything else being equal, the highest Fe# of experimental Bt 

(up to 0.74) is from the most felsic composition. (Fig. 6.8). Oxygen fugacity effect on 

Fe# of Bt is also similar to that of Amp, ie, as oxygen fugacity increases, Fe# decreases. 

For instance, at 800°C and water saturation, the Fe# of experimental Bt crystallized 

from the most mafic composition (QTL-38) at ~NNO-1, ~NNO, ~NNO+1 and 

~NNO+2.5 are 0.53-0.58, 0.48, 0.34 and 0.14-0.19, respectively (Fig. 6.8a). This trend 

is also observed for Bt crystallized from the two other compositions. Similarly to the 

temperature effect, at a fixed oxygen fugacity, Bt from the most felsic composition 

tends to have the highest Fe# (e.g. at 800°C and ~NNO+1, Fe# of QTL38C, QTL14A 

and QTL13 are 0.34, 0.36 and 0.40, respectively). 
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Fig. 6.8 Fe#= Fetot/(Fetot+Mg) of experimental biotite plotted as a function of temperature. 
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At the same experiment condition including temperature(T), pressure(P), oxygen 

fugacity(fO2) and water content (XH2O), the Fe# of Amp is close to the Fe# of Bt, the 

Fe# of Amp being slightly higher than the Fe# of Bt (<0.04). In addition to the most 

mafic composition (QTL-38C, with bulk rock FeOt/( FeOt+MgO)=0.81), one charge of 

the intermediate felsic composition (QTL-14A, with bulk rock FeOt/( FeOt+MgO) = 

0.82) also crystallized Amp and Bt which have the similar Fe# when compared with the 

most mafic composition at the same experimental conditions.(Fig. 6.9). 

 

.  

Fig. 6.9 Comparison of Fe#= Fetot/(Fetot+Mg) between experimental Amp (Blue) and 

Bt (Red) at the same experimental conditions. The label of each charge represents 

T(°C)/fO2(NNO)/P(MPa)/XH2O. The two charges marked in grey are from the same 

run which were at the same experimental conditions. 
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6.4 Oxygen fugacity barometer  

6.4.1 Oxygen fugacity dataset  

 In order to extend the range of bulk composition for our oxygen fugacity 

barometer, in addition to our experimental results, part of the data from Dall’Agnol et 

al. (1999); Bogaerts et al. (2003); Klimm et al. (2003); Scaillet and Evans, (1999) and 

Prouteau and Scaillet, (2003); Scaillet, (1995); Scaillet and Macdonald, (2003) were 

considered in our modeling (Fig. 6.10；Appendix table 20&21). We first derive the 

oxygen barometer based on Amp composition, and then use the same approach for Bt. 

 

Fig. 6.10 Fe#= Fetot/(Fetot+Mg) of experimental Amp plotted as a function of oxygen 

fugacity. Ref* are the data (in grey colour) of experimental Amp composition of 

Jamon granite from Dall’Agnol et al., 1999; Wangrah granite from Klimm et al., 2003; 

Lyngdal granodiorite from Bogaerts et al., 2006 and Bogaerts, 2003 and Pinatubo 

dacite from Scaillet and Evans, 1999; Prouteau and Scaillet, 2003. The vertical error 

is the standard deviation of Fe#, and the horizontal bar is the uncertainty of oxygen 

fugacity (△NNO). 
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6.4.2 Oxygen fugacity calibration modeling 

6.4.2.1 Amphibole calibration 

From Fig. 6.5 and Fig. 6.10, we can see that the composition of starting materials, 

oxygen fugacity, temperature and to some extent water in melt (via its role on fO2) affect 

the Fe# of Amp. Therefore, combining Amp from other experimental starting materials 

(Jamon granite; Wangrah granite; Lyngdal granodiorite and Pinatubo dacite) with our 

experimental Amp, the following simple empirical oxygen barometer was derived: 

 

△NNO= －0.00254×T(°C) －13.9602×Fe#Amp ＋0.00143×P(MPa) ＋6.2809

×Fe#Amp×Fe#w＋0.2803×wTiO2-2.1×w(Al2O3/SiO2) ＋0.2768×w(Na2O/K2O) 

＋5.9663                                                           (1) 

 where T is temperature in °C, Fe#Amp is Fetot/(Fetot+Mg) of Amp in apfu, Fe#W is 

FeOtot/(FeOtot+MgO) of whole rock composition, P is pressure in MPa, wTiO2 is the 

 

Fig. 6.11 Oxygen fugacity (NNO value) calculated using our modeling based on equation (1) vs. NNO 

value of experiments (a). Fe#= Fetot/(Fetot+Mg) of Amp calculated vs. Fe#= Fetot/(Fetot+Mg) of Amp 

measured in the experiments (b). Some Amp data are from Dall’Agnol et al., 1999; Bogaerts et al., 

2006 and the studies of Bogaerts, 2003; Scaillet and Evans, 1999 and Prouteau and Scaillet, 2003. 
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composition of whole rock, w(Al2O3/SiO2) and w(Na2O/K2O) are the ratios of whole 

rock composition.  

The comparison between calculated and measured fO2 is shown in Fig. 6.11a. 

showing that equation (1) reproduces reasonably well the experimental data (R2=0.8157) 

over 6 log units of fO2 variation. Similar results also come when using the Fe# of Amp 

(Fig. 6.11b), equation (2): 

Fe#Amp= －0.0004418×T(°C)－0.07625×△NNO + 0.3272×Fe#w + 0.0000967

×P (MPa) + 0.5646                                                   (2)  

6.4.2.2 Bt calibration 

Just like for Amp, the Fe# value of Bt varies also with the oxygen fugacity, 

 

Fig. 6.12 Fe#= Fetot/(Fetot+Mg) of experimental Bt plotted as a function of oxygen fugacity. Solid 

symbols represent water-saturated data while empty triangles stand for the data below H2O saturation. 

Ref* are the data (in grey colour) of experimental Bt of Jamon granite from Dall’Agnol et al., (1999) 

Lyngdal granodiorite from Bogaerts et al. (2006) and Bogaerts (2003) and Pinatubo dacite from Scaillet 

and Evans (1999). The vertical error is the standard deviation of Fe#, while the horizontal bar is the 

uncertainty of oxygen fugacity (△NNO). 
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temperature or water content in melt (Fig. 6.12). Therefore, we developed a Bt oxygen 

barometer with similar input parameters: 

△NNO=－0.0004×T(°C) －0.0004×Fe#Bt＋8.3772×Fe#Bt×Fe#w＋0.0027×

P(MPa) ＋ 2.4082         (3) 

where T is temperature in °C, Fe#Bt is Fetot/(Fetot+Mg) of Bt in apfu, Fe#W is 

FeOtot/(FeOtot+MgO) of whole rock composition, and P is pressure in MPa. 

   Similarly, a model to calculate Fe#Bt of Bt is given by the following equation: 

Fe#Bt=－0.00034×T(°C) －0.11339×△NNO＋ 0.8056×Fe#w＋ 0.000324×

P(MPa)  (4) 

Based on the equation (3) and (4), the calculated oxygen fugacity (in NNO) and 

Fe#Bt values from Bt are generally close to the experimental values (Fig. 6.13), though 

a significant dispersion is observed at high fO2.  

 

 

Fig. 6.13 Fe#= molar Fetot/(Fetot+Mg) of Bt calculated use the equation (2) vs. Fe#= molar 

Fetot/(Fetot+Mg) of Bt measured in experiments(a). Oxygen fugacity (NNO value) calculated using our 

modeling (based on Fe# of Bt), equation (2) vs. NNO value of experiments(b). Some Bt data are from 

Dall’Agnol et al., 1999; Bogaerts et al., 2006 and Bogaerts, 2003. 
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6.4.3 Oxygen fugacity modeling test and application 

6.4.3.1 Modeling testing  

 In order to evaluate and test our oxygen fugacity models, the data of Fe# of bulk 

rock, Amp and Bt, temperature and pressure were collected from studies which used 

experimental petrology to infer magma emplacement conditions (Mutch et al., 2016; 

Pietranik et al., 2009; Holtz et al., 2005; Chesner, 1998; Whitney and Stormer,1985). 

 

Fig. 6.14  Oxygen fugacity (NNO value) calculated using our model (based on (a): equation (1), (b): 

equation (3) vs. NNO value of literatures which are from Whitney and Stormer, 1985; Chesner, 1998; 

Holtz et al., 2005; Pietranik et al., 2009 and Mutch et al., 2016. 
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We only used experimental results providing the Fe# of bulk rock, Amp, Bt, the 

temperature, pressure and oxygen fugacity obtained on a single sample. Using our 

equations (1) and (3) based on the Fe# of both Amp, Bt and the whole rock composition, 

the pressure and the temperature data collected from the literatures above, we calculated 

the oxygen fugacity of those from Lluta Batholith tonalite, Gęsiniec quartz diorite, 

Unzen dacite, Toba Tuff and Fish Canyon Tuff and then compare these values against 

the oxygen fugacity constrained from other oxygen barometers in the literature. The 

results are summarized in Fig. 6.14. From Fig. 6.14 we can see that most of the 

calculated results using equations (1) and (3) are within ± 1 log unit range, and along 

with the 1:1 line (calculated oxygen fugacity vs. experimental oxygen fugacity) which 

demonstrate that our oxygen barometer modeling can retrieve reliable estimates on the 

oxygen fugacity of the magma system.  

6.4.3.1 Application  

Three Jurassic plutons in South China were chosen for estimating the oxygen 

fugacity condition using our oxygen fugacity modeling equations (1) and (3). These 

plutons are Jiuyishan, Huashan and Guposhan granites which are located on the 

southwest of Qitianling pluton, having a similar mineralogy, such as coarse-grained 

amphibole bearing biotite granite and coarse-medium grained biotite granite. The 

detailed description of these three plutons is given in Chapter 2. Five coarse-grained 

amphibole bearing biotite granite samples from three plutons were selected for the 

oxygen fugacity calculations. These are JYS-SC162A from Jiuyishan pluton, HS-

SC172B and HS-SC176A from Huashan pluton, GPS-SC182 and GPS-SC183 from 

Guposhan pluton. 

All the whole rocks, Amp and Bt compositional data of five samples are from this 

study expect the bulk rock compositions of Guposhan pluton which are from Wang et 

al., 2014. Since Wang et al. (2014) provided three compositions of coarse-grained 

amphibole bearing biotite granite, we use the average value to calculate the Fe# of 
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whole rock composition (Fe#w=0.82) in this study for GPS-SC182 and GPS-SC183 

two samples. The Fe#w of the other three samples are: 1.00 for JYS-SC162A, 0.68 for 

HS-SC172B and 0.84 for HS-SC176A. The average Fe#Amp of five samples varies 

from 0.45-0.78 with a maximum standard deviation as ±0.02 (Fig. 6.15 a; c; e) and 

most of them are higher than 0.65 except sample HS-SC172B (Fe#Amp=0.45), which 

also has the lowest Fe#w value (Fe#w=0.68). This sample is located near the Niumiao 

diorite (Fe#w=0.65, Zhu et al., 2006) in the southeastern part of the Hushan pluton. The 

average Fe#Bt of five samples are between 0.51-0.73 with a maximum standard 

deviation of ±0.01 (Fig. 6.15 b; d; f). Not surprisingly, except sample HS-SC172B, 

the Fe#Bt of other four samples are higher than 0.66. For each single sample, the 

Fe#Amp is close to the Fe#Bt with a maximum difference of 0.06 (e.g. Fig. 6.15a and 

b). For each samples, temperature parameters were acquired using the Amp 

thermometer from Putirka, (2016):  T(°C) = 1781 – 132.74[Si Amp] + 116.6[Ti 

Amp]–69.41[Fet Amp] + 101.62[Na Amp]. Pressures were obtained from the revised 

Al‑in‑hornblende geobarometer proposed by Mutch et al., (2016): P (kbar) = 0.5 + 

0.331(8) × Al tot + 0.995(4) × (Al tot)
2.  
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The calculated oxygen fugacity results using our equation (1) and (3) are shown in 

Fig. 6.15；Appendix table 22. Equation (1) gave an oxygen fugacity range from ~NNO 

-2.3 to ~NNO for five samples while with equations (3), the values range from ~NNO-

1.5 to ~NNO. If we ignore the error (NNO±1) of the estimates, the oxygen fugacity 

conditions of Jiuyishan, Hushan, Guposhan three plutons are all below NNO which 

suggests a relative reduced environment during magma crystallization. 

6.5 Summary 

Our oxygen fugacity modeling is based on the phase equilibria of intermediate-

 

Fig. 6.15 Calculated oxygen fugacity results using equations (1) and (3) vs. the 

Fe#Amp and the Fe#Bt of Jiuyishan, Huashang and Guposhan granites. The error of 

oxygen fugacity estimation is ±1. 
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acid igneous rocks including Qitianling granite, Santa Maria dacite, Pinatubo dacite, 

Jamon granite, Lyngdal granodiorite which cover a SiO2 content of bulk rock ranging 

from 60 wt% to 71 wt%. Combining the composition of rock forming minerals such as 

Amp and Bt we propose an empirical oxygen barometer. All the required parameters 

are temperature, pressure, whole rock composition, e.g. Fe#w (FeOtot/ (FeOtot+MgO) 

of whole rock composition), Fe#Amp (Fetot/(Fetot+Mg) of Amp) or Fe#Bt 

(Fetot/( Fetot+Mg) of Bt). These equations allow to calculate magmatic fO2 to within 1 

log unit error: the retrieved values most likely correspond to conditions during the late 

crystallization stage of the magma, owing to the easiness of re-equilibration of the used 

minerals. Application of our oxygen barometer to three Jurassic plutons (Jiuyishan, 

Huashan and Guposhan pluton) in South China demonstrates that the oxygen fugacity 

of those three plutons suggest a relative reduced redox environment, similar to that 

inferred for Qitianling granite. 
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Chapter 7 Differentiated Sn-Nb-Ta mineralization of rare-

elemental granite：A case study in dyke 431 in South China  

7.1 Introduction  

Ongonite and topazite, described frequently in 1970s (Kovalenko et al., 1971; 

1975; Eadington and Nashar, 1978), are two unusual types of felsic rock that are rich 

in rare elements. They are characterized by volcanic to shallow-intrusive textures, and 

abundant volatile-rich minerals (mainly topaz). Ongonite is defined as the phenocrystic 

subvolcanic analogue of granite that is rich in the rare elements Li and F (Kovalenko 

and Kovalenko, l976). Topazite has been used in reference to felsic dikes that consist 

mainly of quartz and topaz, for which mineralogical, textural, and field relationships 

suggest a magmatic origin (Eadington and Nashar, 1978). Mineralization associated 

with these two particular rock types has been described from many localities worldwide. 

Examples include W deposits associated with F-rich rhyolites (ongonites) from Ongon 

Khairkhan, Mongolia (Štemprok, 1991), the type locality of topaz rhyolite with W, Nb, 

Ta, and Sn mineralization (Burt, 1992), similar to topaz-albite granite, e.g., Limu in 

South China (Zhu et al., 2001), the French Massif Central (Cuney et al., 1992), Southern 

New Brunswick (Taylor, 1992), and the Eastern Desert, Egypt (Helba et al., 1997). The 

mineralization associated with topazite in South China is complex but dominated by Sn, 

such as deposits at Shicheng, Xunwu, Huichang, Yanbei and Taishun (Liu et al., 1996). 

Although both ongonite and topazite are F-rich peraluminous rocks, their 

coexistence is not common. Kortemeier and Burt (1988) reported the first example of 

ongonite and topazite dikes occurring together in the Flying W Ranch area, Arizona, 

and they considered the rocks to be dominantly magmatic with fluorine-controlled 

transitions for both the ongonite and topazite, according to field, textural, mineralogical, 

and geochemical criteria. However, the ongonite and topazite in that area are not 



Chapter 7  

143 

 

strongly mineralized.  

The No. 431 dike in the Xianghualing tin district of southern China contains both 

ongonite and topazite in spatial association (Chen, 1984; Du and Huang, 1984; Zhu and 

Liu, 1990; Zhu et al., 1993), and the typical mineralization involves Nb, Ta, and Sn. 

The coexistence of both ongonite and topazite in such a small-scale dike provides a 

unique opportunity to compare the rare-element mineralization in the two rock types. 

Our objective was to determine if the two rock types represent co-magmatic melts, and 

if so by which mechanisms they formed? Most interestingly, how can we explain the 

mineralization of these two different types of rock? We report comprehensive major 

and trace element whole-rock data, as well as detailed petrograpic observations and 

mineral compositional data determined using electron microprobe analysis (EMPA). 

We evaluate the genetic relationship between ongonite and topazite exposed in a narrow 

dike, and discuss differentiation trends, and particularly the coupled fractionation of F 

with Nb-Ta-Sn and the role of liquid immiscibility in their distribution between 

ongonite and topazite. We explore the potential role of oxides as an efficient container 

of rare metals and as a monitor of changes in fluid composition in mineralized highly-

evolved silica systems. We believe that a detailed study of this kind provides an 

excellent framework for future investigations using advanced and new, evolving 

analytical techniques, particularly those targeting melt inclusions of the various mineral 

populations.  

7.2 Geological setting and sampling of the Xianghualing No. 431 dike  

The Xianghualing metallogenic district is located in the northern part of Linwu 

county, South Hunan province, which is in the center of the Nanling Range in South 

China. In terms of its tectonic setting, the Xianghualing district is situated where the 

middle part of the E-W-trending Nanling tectonic belt converges with the N-S-trending 

Leiyang-Linwu tectonic belt (Yuan et al., 2007). The Xianghualing district itself 
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consists of a tectono-magmatic anticlinal dome that is composed mainly of Paleozoic 

strata with minor Mesozoic and Cenozoic strata. The main part of the lower Paleozoic  

consists of Cambrian arenaceous, argillaceous, and siliceous rocks together with minor 

carbonates. The upper Paleozoic strata lie unconformably on the lower Paleozoic, and 

are dominated by Middle Devonian conglomerates, sandstones, and shales of the 

Tiaomajian Formation (D2t); Middle Devonian limestones and dolomites of the 

Qiziqiao Formation (D2q); Upper Devonian dolomitic limestones and sandstones of the 

Shetianqiao Formation (D3s); and Carboniferous carbonates and clastic rocks (Yuan et 

al., 2008). 

Jurassic red beds and Cretaceous continental clastic rocks are found scattered in 

small basins in the north and east of the district. Three early Yanshanian granite stocks 

have been identified in the area, and from south to north they are the Jianfengling 

granite (K-Ar age of 167 Ma; Mo et al., 1980), the Tongtianmiao granite, and the 

 

Fig. 7.1 Simplified geological map of the No. 431 dike, Hunan Province, South China (modified after 

Zhu et al., 2011). (a) Location of Hunan Province in China; (b) the No. 431 dike in close spatial 

association to the ~154-155 Ma Laiziling granite; and (c) the No. 431 dike is sharply intrudes into 

carbonate-dominated strata. 
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Laiziling granite (154–155 Ma, zircon U-Pb dating; Zhu et al., 2011). The 

mineralization associated with these granites includes W, Sn, Nb, Ta, Be, F, Pb, and Zn. 

This is also the type locality of hsianghualite, the first new mineral named by a Chinese 

mineralogist in China (Huang et al., 1958).  

The No. 431 dike is located ~ 70 m northeast of the Laiziling granite (E112° 34′ 

06″; N25° 27′ 26″) (Fig. 7.1). It is ~ 1770 m long and 1.8 to 18.0 m wide. The dike dips 

to the south at 42°–78°. The dike intrudes Devonian carbonates along a sharp contact, 

and the dike margins are characterized by flow structures, chilled margins, and 

xenoliths of Devonian limestone (Zhu and Liu, 1990). There is no direct evidence that 

the dike connects with the Laiziling granite body. However, vertical drilling has proved 

that the intrusive contact of the granite is inclined beneath the dike at an angle of 40°, 

and it thus seems possible that granite and the No. 431 dike are connected at depth. 

Ground (or near-surface) trenches and subsurface drillings were carried out in the 

early 1970s in order to investigate the dike. Earlier work had described the dike as 

 

Fig. 7.2 Cross-section of the No. 840 vertical drill hole and the No. 5 trench across the No. 431 dike. 

Abbreviations: OI: ongonite I; OII: ongonite II; T: topazite. 
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heterogeneous, and it was classified as a topaz-bearing felsophyre and aplite (Du and 

Huang, 1984), but the later work of Zhu and Liu (1990) showed that the dike contains 

at least two major rock types, ongonite and topazite.  

The samples we describe in this paper were collected from the No. 431 dike at two 

different locations. They capture the apparent petrographic variations both vertically 

and horizontally (Fig. 7.2). On the unexposed western side of the dike, the No. 840 drill 

revealed ongonite (the samples collected here are called ongonite I) between depths of 

–87.4 m and –96.3 m. The samples acquired from the eastern side of the dike are 

exposed in the No. 5 exploratory trench. They contain spatially associated ongonite 

(labeled ongonite II) and topazite. Ongonite II is from the central zone of the dike, 

whereas the topazite comes from the marginal zones (Huang et al., 1988). 

7.3 Petrology and geochemistry of the No. 431 dike  

The No. 431 dike is composed of ongonite and mica-bearing topazite. All the 

ongonite specimen are white and they have a porphyritic texture (0.1–1.0 mm) with a 

fine-grained groundmass. Ongonite I shows gradational zoning from a phenocryst-rich 

core zone to a phenocryst-poor topaz-bearing rim zone. Ongonite II appears unzoned, 

while topazite shows fine-scale layers subparallel to the dike margin. The phenocrysts 

in the ongonites are mainly K-feldspar, quartz, albite, zinnwaldite, and rarely topaz. 

Their sizes may reach 1.5 mm; the groundmass consists mainly of albite, quartz, topaz, 

and minor zinnwaldite (Fig. 7.3a, b). Nevertheless, some differences exist between the 

ongonites. First, small amounts of anhedral fluorite have been found in the matrix of 

ongonite I, while fluorite is very rare in ongonite II. Second, although topaz appears in 

all the ongonites, it is short and prismatic in ongonite I, and long and prismatic or 

needle-like in ongonite II (Fig. 7.3c, d). The topazite, locally present at ground level, is 

composed mostly of topaz, quartz, and zinnwaldite that delineate a flow structure (Fig. 

7.3e). The acicular topaz generally occurs in the interstices of anhedral quartz, and it is 
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occasionally included in the quartz grains (Fig. 7.3f, g). 

 

Fig. 7.3 Photographs, photomicrographs, and BSE (back-scattered electron) images of ongonite and 

topazite. (a) Fine-grained ongonite II with quartz phenocryst (gray); (b) quartz phenocryst in 

ongonite containing tabular albite crystals, under crossed polarized light; (c) short prismatic or 

columnar topaz in a groundmass of ongonite I (BSE); (d) needle-like topaz in a groundmass of 

ongonite II (BSE); (e) flow structure in fine-grained topazite; (f) anhedral quartz and zinnwaldite in 

topazite, under crossed polarized light; (g) abundant acicular and high-relief topaz in topazite, under 

plane polarized light; and (h) needle-like topaz in topazite (BSE). Minerals abbreviations: Qtz: 

quartz; Ab: albite; Kfs: K-feldspar; Znw: zinnwaldite; Tpz: topaz. 
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Details of the whole-rock major and trace-element compositions of the No. 431 

dike are given in Appendix table 23. The data show that ongonite I and II have similar 

compositions characterized by relatively high contents of SiO2 (on average, 68.59 wt.%) 

and Al2O3 (on average, 18.47 wt.%), where SiO2 contents decrease and Al2O3 contents  

increase from ongonite I to ongonite II. The rocks have a strongly peraluminous 

character with an average ACNK value of 1.5 [Al2O3/ (Na2O + K2O + CaO) in molars], 

and high F contents (on average, 1.7 wt.%). These characteristics are typical of 

ongonites elsewhere (Kovalenko and Kovalenko, 1976; Štemprok, 1991). We further 

note that the marginal zone of ongonite I (against the country rocks) is enriched in F 

and Li relative to the ongonite I core zone (i.e., samples 10-11-20 versus samples 12-

14; Appendix table 23. Moreover, two slight differences in the major element contents 

of the two sub-types of ongonites should not be ignored. Compared with ongonite II, 

ongonite I has higher contents of FeOt and CaO (up to 3.03 and 1.00 wt.%, respectively), 

possibly corresponding to the higher mica and fluorite abundances. Relative to the 

 

Fig. 7.4 The distribution of phenorysts and matrix minerals in ongonite I, ongonite II and topazite 

from the No. 431 dike. Minerals abbreviations: CGM: columbite-group minerals. Solid line signifies 

abundant presence of minerals. Dashed line signifies rare occurrence of minerals. 
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ongonites, the topazite has a lower SiO2 content, ranging from 56.57 to 63.08 wt.%, 

and higher Al2O3 content (up to 27.77 wt.%, average of 25.14 wt.%) and significantly 

higher F contents (up to 6.22 wt.%, average of 5.44 wt.%). The whole-rock SiO2 content 

and FeOt/MnO decrease from ongonite I to ongonite II and topazite in the No. 431 dike, 

while Al2O3 increases (Appendix table 23). Compared to the ongonite rocks, the Na2O 

content of the topazite is extremely low (<0.08 wt.% versus 3.80–6.88 wt.% for 

ongonites) while K2O contents are relatively high, but variable (3.56–5.57 wt.% versus 

1.05–4.59 wt.% for ongonites). 

 

Fig. 7.5  Chondrite-normalized REE patterns for the No. 431 dike (chondrite REE values from 

Anders and Grevesse, 1989). 

The samples from the No. 431 dike are enriched in Li, Rb, Cs, Nb, Ta, Be, Sn, W, 

and Hf, and depleted in Sr, Ba, P, and Ti, with significantly low Zr/Hf (on average 6.04 

for ongonites and 4.23 for topazite) and Nb/Ta ratios (on average 1.55 for ongonites 

and 1.06 for topazite) (Appendix table 24; Fig. 3). The contents of the ore-forming 

elements Nb, Ta, Sn, and W are high, up to 248, 175, 62.6, and 68.5 ppm for the 

ongonites, and 223, 207, 802, and 771 ppm for the topazite, respectively. The contents 

of rare-earth elements (REE) in the ongonite and topazite samples are markedly low, 

and the normalized REE pattern is similar to the M tetrad effect of Takahashi (2002) 
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(Fig. 7.5). There are slight negative Eu anomalies; the δEu value for the ongonites and 

topazite average 0.22 and 0.47, and the (La/Yb)N ratio varies from 1.00 to 2.89 and 1.80 

to 5.50, respectively. 

7.4 Mineral chemistry 

7.4.1 Feldspars 

Feldspars, including K-feldspar and albite, are common in the ongonites but absent 

in the topazite. In the ongonites, K-feldspar exists mainly as subhedral phenocrysts up 

to 1 mm long, and locally it encloses albite. All K-feldspar has low Ab contents of 1.8–

3.2 mol.%. Albite occurs mostly as euhedral to subhedral tabular phenocrysts, but may 

also be included within K-feldspar or quartz to form a snowball texture which is usually 

observed in granites rich in rare-elements (Pollard, 1989; Huang et al., 2002). 

Compositionally, the feldspars in the ongonites are nearly pure end members (K-

feldspar has 1.79–3.18 mol.% Ab, and albite has 97.00–99.1 mol.% Ab) (Appendix 

table 24). 

7.4.2 Mica 

In the ongonites, mica occurs as phenocrysts about 0.1 to 1.5 mm in size, and is 

also present in the groundmass, but it is not as abundant as in the topazite, and it is only 

locally found as one of main rock-forming minerals. According to electron-microprobe 

analyses, the micas in the ongonites and topazite mostly classify as zinnwaldite, 

together with minor lepidolite and rare lithian muscovite (following the classification 

of Foster, 1960a, b). The FeO content in zinnwaldite from ongonite I may be up to 16.88 

wt.%, while that in ongonite II is 6.62 wt.%, close to the composition of lepidolite. In 

contrast, the MnO content is highest in ongonite II (up to 2.78 wt.% MnO), but very 

low in ongonite I (only up to 0.95 wt.% MnO). Zinnwaldite from the topazite has FeO 
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and MnO contents of about 10 wt.% and 1.9 wt.%, respectively, and the composition is 

similar to the micas in the coexisting ongonite II. The F content of the zinnwaldite is 

on average 5.71 wt.% in ongonite I, while in ongonite II and the topazite the values are 

higher, with averages of 8.89 wt.% and 8.17 wt.%, respectively (Appendix table 25). 

7.4.3 Topaz 

Topaz is only observed as an accessory mineral in the ongonites, but it is one of the 

main rock-forming minerals in topazite, where it can reach approximately 30 vol.%. 

Two kinds of topaz crystal are found in the ongonites: short prisms in ongonite I and 

fine acicular crystals in ongonite II. They usually coexist with other rock-forming 

minerals in the groundmass. In the topazite, topaz occurs dominantly as small grains in 

the groundmass, rarely as phenocrysts, but it also forms aggregates with cassiterite (see 

below). Radial arrays of needle-like topaz characterize the groundmass, of which some 

are included in quartz phenocrysts. In addition, EMPA results indicate that the topaz is 

fluorine-dominated with F contents of 18.88 to 21.67 wt.% (Appendix table 24).  

7.4.4 Niobium-tantalum oxides 

Nb-Ta oxide minerals in the No. 431 dike include the columbite-group minerals 

which are always present, and the rarely observed tapiolite and microlite. The 

columbite-group minerals are present in all the ongonites and topazite to different 

degrees. Only a small amount of tapiolite is observed in ongonite I, while microlite 

occurs in the ongonites as well as the topazite. Most of the Nb-Ta oxides are present in 

association with rock-forming minerals such as quartz, albite, and mica. Approximately 

400 electron-microprobe analyses were obtained from about 80 Nb-Ta oxide grains in 

the studied ongonites and topazite, and representative results are presented in Appendix 

table 26. 
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7.4.4.1 Niobium-tantalum oxides in ongonite I 

 

Fig. 7.6  BSE images and compositional classification of the columbite-group minerals and tapiolite 

from ongonite I. (a) Progressive zoning of columbite-(Mn) core with a rim of tantalite-(Fe); (b) 

columbite-(Mn) core and columbite-(Fe) rim with topaz and quartz inclusions; (c) microgranular 

aggregate of columbite-group minerals, tapiolite, and microlite; (d) X-ray scanning map showing the 

Ca distribution of (c); and (e) compositions of the columbite-group minerals and tapiolite in ongonite 

I, plotted on the Mn/(Fe + Mn) versus Ta/(Nb + Ta) quadrilateral diagram. Minerals abbreviations: 

Clf: columbite-(Fe); Clm: columbite-(Mn); Tnf: tantalite-(Fe); Tap: tapiolite-(Fe); Mic: microlite; 

Urn: uraninite; Fl: fluorite. 
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Columbite-group minerals appear in ongonite I mostly as fine grains less than 300 

μm in size, which are commonly interstitial to the rock-forming minerals. Sometimes 

the columbite contains inclusions of quartz and topaz, indicating its simultaneous 

crystallization with those rock-forming minerals. Progressive zoning is occasionally 

observed in some crystals, characterized by increasing brightness in BSE images (Fig. 

7.6a). In particular, the grains commonly display <20 μm wide, very bright rims (Fig. 

7.6a, b). Electron-microprobe results indicate that the columbite-group minerals can be 

divided into two groups on the basis of their compositions. The dominant part in some 

zoned crystals displays variations in Mn/(Fe + Mn) (shortened hereafter as Mn#) from 

0.46 to 0.70, and in Ta/(Nb + Ta) (shortened to Ta#) from 0.04 to 0.38. Overall, most of 

them fall into the field of columbite-(Mn) (Appendix table 26; Fig. 7.6e). The brightest 

outermost parts of the grains are tantalite-(Fe) or Ta-rich columbite-(Fe). They have 

moderate Ta# of 0.30–0.58 and a variable Mn# of 0.17–0.62. 

Microgranular aggregates in the upper part of ongonite I make up the second-most 

important occurrence of Nb-Ta oxide minerals. Back-scattered electron images 

demonstrate that tantalite-(Fe) and tapiolite are the main minerals in the centers of the 

aggregates, and these are surrounded by many irregular microlite grains (Fig. 7.6c, d). 

Uraninite and fluorite may also be found in this complex association. The results of the 

analyses of tantalite-(Fe) show a restricted Ta# ranging from 0.52 to 0.58 and a Mn# 

ranging from 0.20 to 0.42. They plot precisely near the bottom boundary of the 

miscibility gap between tantalite and tapiolite (Černý et al., 1992). Tapiolite, a kind of 

highly Fe-dominated Ta-enriched oxide, has extremely high values of Ta# and low 

values of Mn#, ranging from 0.76 to 0.91 and 0.03 to 0.04, respectively. Its composition 

plots close to the top boundary of the miscibility gap (Fig. 7.6e). The third main mineral 

in the aggregates is microlite, containing 8.69 wt.% Na2O, 5.54 wt.% CaO, and 6.23 

wt.% UO2 on average (Appendix table 27). In addition, the fluorine content of the 

microlite in ongonite I is up to 4.23 wt.%, the highest of all the microlites from the 

different rocks of this dike. 
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In summary, the Nb-Ta oxides in ongonite I display an overall Ta dominance 

towards the marginal zones of ongonite I, especially for the structurally highest level, 

characterized first by the appearance of Ta-dominated minerals such as tapiolite and 

microlite, and second by the overall increasing Ta# value in the columbite, as revealed 

in Fig. 7.7. 

7.4.4.2 Niobium-tantalum oxides in ongonite II 

In comparison with ongonite I, the columbite-group minerals in ongonite II are 

compositionally simpler. Intergranular subhedral tabular crystals up to 100 μm long 

(Fig. 7.8a) that contain low Ta# values of 0.09 to 0.11 and Mn# values of 0.55 to 0.60  

classify as columbite-(Mn) (Appendix table 26). Moreover, abundant subhedral to 

anhedral fine-grained crystals occur interstitially in ongonite II, and they have moderate  

 

Fig. 7.7 Chemical variations of the columbite-group minerals and tapiolite from ongonite I (at depth 

from the drill hole), ongonite II and topazite. 
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Ta# values of 0.21 to 0.41 and high Mn# values of 0.86 to 0.96. This type of columbite 

also classifies as columbite-(Mn). The columbite-(Mn) is characteristically enriched in 

tungsten with a maximum of 18.86 wt.% WO3 and an average of 4.54 wt.%. The third 

type of columbite grains is part of a mineral association that includes microlite (Fig. 

7.8b) and/or rutile + zircon, and these grains are commonly 10–50 μm in size. They 

have distinctively high values of Ta# and Mn#, ranging from 0.32 to 0.37 and 0.91 to 

0.94, respectively. All the columbite group minerals found in ongonite II are columbite-

(Mn), and the latter two kinds of Nb-Ta oxide minerals share close positions in the 

 
Fig. 7.8 BSE images and compositional classification of the columbite-group minerals. (a) Euhedral 

tabular columbite-(Mn) is interstitial to the rock-forming minerals, (b) columbite-(Mn) intergrowth 

with U-rich microlite, and (c) compositions of the columbite-group minerals from ongonite II, plotted 

on the Mn/(Fe + Mn) versus Ta/(Nb + Ta) quadrilateral diagram. Minerals abbreviations: U-Mic: 

uranomicrolite. 
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columbite-tantalite quadrilateral diagram (Fig. 7.8c). The associated microlite is 

characterized by high UO2 contents up to 15.36 wt.% but low Na2O and CaO levels. It 

could therefore be classified as uranomicrolite according to the classification suggested 

by Hogarth (1977) and Černý (1989). 

Tantalian rutiles are only found in ongonite II as euhedral-subhedral crystals in 

aggregates of Nb-Ta oxide minerals, and they contain up to 21.92 wt.% Ta2O5 and trace 

amounts of Fe, Mn, Sn, and W. 

7.4.4.3 Niobium-tantalum oxides in topazite 

 

Fig. 7.9 BSE images and compositional classification of the columbite-group minerals from topazite. 

(a) Fine-grained columbite-(Mn) intergrown with U-rich microlite, interstitial to the rock-forming 

minerals; (b) subhedral columbite-(Mn) intergrown with hubnerite; and (c) compositions of the 

columbite-group minerals from topazite, plotted on the Mn/(Fe + Mn) versus Ta/(Nb + Ta) 

quadrilateral diagram. 
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In the topazite, columbite-group minerals are fewer and smaller in size (10–15  

10–30 μm), and they commonly occur as subhedral crystals associated with microlite 

or hubnerite (Fig. 7.9a, b). Chemical analyses show that the columbite-group minerals 

also correspond to columbite-(Mn) in the classification diagram (Fig. 7.9c). Overall the 

Ta# and Mn# values of columbite-(Mn) in topazite overlap those in ongonite II. 

Subhedral to anhedral microlite is present along with the columbite-(Mn), and it is rich 

in uranium with up to 17.46 wt.% UO2, which means it can be classified as an 

uranomicrolite. The association of columbite and microlite is consistent with the 

assemblage observed in the spatially associated ongonite II. 

7.4.5 Cassiterite 

Cassiterite is almost absent in ongonite I and scarce in ongonite II. It occurs as 

anhedral crystals or fine veinlets along zinnwaldite cleavages. In contrast, in the 

topazite, cassiterite is abundant as an accessory mineral. According to the textural 

evidence and mineral compositions, two main types of cassiterite may be distinguished 

in the topazite: disseminated cassiterite (cassiterite I) and aggregated cassiterite 

(cassiterite II), and they are considered below (Fig. 7.10; Appendix table 28). 

(1) Cassiterite I occurs as independent euhedral to subhedral granular crystals (10–

20 μm across), either in the interstices between topaz and quartz, or in a mineral 

association with zircon, columbite-(Mn), hubnerite, and/or microlite (Fig. 9a). The 

composition of cassiterite I is similar to that of magmatic cassiterite in pegmatites rich 

in rare metals (Černý, 1989; Neiva, 1996), and it is characterized by significant amounts 

of Ta (up to 7.77 wt.% Ta2O5), Nb (up to 4.01 wt.% Nb2O5), and W (up to 5.13 wt.% 

WO3), together with minor Mn (up to 1.34 wt.% MnO) and Fe (up to 3.89 wt.% FeO). 

In the Nb + Ta vs. Fe + Mn diagram, cassiterite I is mostly dispersed along the 2:1 line, 

corresponding to the general substitution of columbite solid-solution in cassiterite: 

3Sn4+ ⇔ 2 (Nb, Ta)5+ + (Fe, Mn)2+, similar to that described by Černý and Ercit (1989) 

and Tindle and Breaks (1998). 
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(2) Cassiterite II is typically present as micron-sized crystals in aggregates with 

needle-like topaz (Fig. 7.10b-d). Cassiterite II has low levels of trace elements (less 

 

Fig. 7.10 BSE images and covariation diagram of (Nb + Ta) vs. (Fe + Mn) in cassiterite from ongonite 

II and topazite (after Tindle and Breaks, 1998). (a) Disseminated cassiterite (Cst I) intergrown with 

hubnerite and zircon; (b) aggregates of cassiterite (Cst II) intergrown with abundant topaz; (c) 

enlargement of part of (b) showing aggregates of cassiterite (Cst II) intergrown with abundant topaz; 

(d) X-ray scanning map showing the distribution of F of (b); and (e) covariation diagram of (Nb + 

Ta) vs. (Fe + Mn) for cassiterite from ongonite II and topazite (after Tindle and Breaks, 1998). 

Minerals abbreviations: Cst: cassiterite; Hbr: hubnerite; Zrn: zircon. 
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than 1 wt.%) (Fig. 7.10e). Moreover, minor amount of galena are locally found included 

in cassiterite II aggregates, suggesting their crystallization was part of a later 

hydrothermal process. 

7.4.6 Varlamoffite 

Varlamoffite is a hydrous Sn mineral only found in the topazite. It usually occurs 

in cavities, and occasionally it is associated with cassiterite. It contains 44.55 wt.% 

SnO2 and 23.18 wt.% FeO, on average, and probably about 30 wt.% H2O. 

7.5 Discussion 

7.5.1 Co-magmatic relationships between ongonite and topazite in the 

Xianghualing No. 431 dike 

Although both ongonite and topazite have equivalents among granitic rocks that 

are rich in rare elements, their coexistence was only described in 1988 from the Flying 

W Ranch of Arizona (Kortemeier and Burt, 1988). In addition, Johnston and Chappell 

(1992) also described co-magmatic, topaz-bearing aplite (very similar to ongonite) and 

topazite. They suggested their co-magmatic origin on the basis of petrographic 

investigations, in spite of their presence in different dikes. The Xianghualing No. 431 

dike exposes coexisting ongonite and topazite in a very small scale dike (less than 18 

m wide). The two ongonite sub-types and the topazite of the No. 431 dike have highly 

evolved compositions with ~ 1.1–6.2 wt.% F, ~ 750 –6,250 ppm Li, and an ACNK 

index of > 1.1 to ~ 6.9, where the degree of differentiation increases from ongonite I 

over ongonite II to topazite. Additionally, both Nb/Ta and Zr/Hf ratios decrease from 

ongonite I to topazite. Compositionally, the ongonite and topazite rocks are very similar 

to F-rich, peraluminous, highly evolved, and volatile-rich eruptive rocks such as the 

Macusani glass in SE Peru (Pichavant et al., 1987) and topaz rhyolites (Raimbault and 
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Burnol, 1998; Breiter, 2012; Xie et al., 2013; Gioncada et al., 2014). Other topazites 

(Songling, Hailuoling, Tongkengzhang, Fenghuangdong and Yangbin) besides the 

Xianghualing No. 431 dike in southern China also share similar petrological and 

geochemical characteristics (Liu et al., 1996). Most of them contain quartz and topaz 

as the rock-forming minerals and occasionally have fine-grained zinnwaldite. They are 

generally relatively rich in SiO2, strongly peraluminous and have a high content of F 

(up to 6.55 wt.%) (Liu et al., 1996). Trace elements of topazites are rich in HFSE (Nb, 

Ta, Sn, W, Zr and Hf) with high values of Rb/Sr and low values of Zr/Hf and Nb/Ta. 

How the evolved magma emplaced in the No. 431 dike crystallized and how the 

ongonite types and topazite are related to each other is discussed in the following 

sections, using the compositional variation and the distribution of mineral assemblages, 

their textures, and composition. The main features we seek to explain are: (i) the strong 

increase in F, LiO2, Sn, and W and the decrease in Na2O from ongonite II to topazite; 

(ii) the highly porphyritic texture of ongonite I and II; (iii) the euhedral-subhedral 

phenocrysts in the ongonite I core zone and ongonite II, and the subrounded 

phenocrysts in the ongonite I rim zone and the topazite; and (iv) the highly contrasting 

abundance and mineral textures of topaz, Nb-Ta oxide minerals, and cassiterite in the 

two main rock types (Fig. 7.4). 

Studies of natural examples and experimental results have demonstrated that liquid 

immiscibility may play an important role in the evolution volatile-rich magmatic 

system and particularly in the evolution of Li-F-rich granitic magmas (e.g., Roedder 

and Coombs, 1967; Roedder, 1992; Veksler, 2004; Peretyazhko et al., 2007; 

Kamenetsky and Kamenetsky, 2010; Veksler et al., 2012; Shchekina et al., 2013). High 

concentrations of alkali and earth alkali metals favor liquid immiscibility and high 

concentrations of non-silicate anions (e.g., F-, CO3
2-) permit their efficient separation. 

Low-pressure (72-100 MPa), high-temperature (650-1100 °C) experiments performed 

by Veksler et al. (2012) have revealed that in immiscible silicate-fluoride systems, the 

fluoride melt strongly partitions F, Li2O, MgO, and CaO and moderately partitions 
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Al2O3, Na2O, and K2O. Trace elements that most strongly partition into the fluoride 

melt are W, Th, and the REEs. Additionally, in carbonate-silicate systems, the carbonate 

liquid strongly partitions Na2O and CaO and moderately partitions K2O, Mo, and W.  

The strong and abrupt increase in the concentrations of F and LiO2 from ongonite 

I and II to topazite and the increase in MgO from ongonite II to topazite in the No. 431 

dike is thus consistent with unmixing of silicate and fluorite melts. The very low Na2O 

content and the variable K2O content of the topazite samples in the margin of the dike 

is not only suggested by the experimental silicate-fluoride partition coefficients, but 

could reflect the unmixing of carbonate species, as the dike wall rocks are dominated 

by carbonate strata. Trace-element partitioning could have also been governed by 

carbonate and fluorine species, as they seem to most strongly partition the ore minerals 

Nb, Ta, Sn, and W that are strongly enriched in the topazite of the No. 431 dike. 

The presence of the phenocryst of K-feldspar, quartz, albite, zinnwaldite, minor 

topaz and columbite-(Mn) – in the structurally lower part (ongonite I; Fig.7.11a, b) and 

the near-surface part of the dike – suggest that early crystallization enriched the melt 

phase in elements including the network-modifiers Li and F and ore elements Sn and 

W (Time 1, ongonite II, Fig. 7.11c, d). The large size of the phenocrysts in ongonite 

indicates that crystal nucleation was slow relative to crystal growth (e.g., Hersum and 

Marsh, 2007; Pietro, 2008). Such crystallization is consistent with the presence of large 

amounts of volatiles and other network-modifiers and/or extended crystallization time 

(Swanson, 1977; Fenn, 1977). 

In contrast, the strongly porphyritic texture of ongonite I and ongonite II with 

abundant fine-grained quartz and albite along with K-feldspar, zinnwaldite, topaz, and 

ore minerals is consistent with subsequent rapid crystallization (e.g., Fig. 7.3b). Such 

rapid crystallization is typically invoked to be triggered by supercooling as a function 

of decreasing temperature and/or the exsolution of volatile components from an  
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originally homogeneous melt phase (e.g., Cobbing et al., 1986; Breiter et al., 2005; 

Štemprok et al., 2008; London and Morgan, 2012). Crystallization as a result of abrupt 

 

Fig. 7.11 The proposed magmatic evolution of the No. 431 dike now exposed at subsurface and near-

surface locations. Crystallization of an initially homogeneous, highly differentiated magma was 

followed by unmixing of silicate- and fluoride-dominated melt phases that crystallized to ongonite 

and topazite, respectively 
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cooling alone is inconsistent with the occurrence of the most fractionated rocks, the 

topazite, along the margins of the No. 431 dike. Consistent with the compositional 

variation between ongonite and topazite rocks, we suggest that the fine-grained  

assemblage started to form when the granitic magma separated into aluminosilicate and 

hydrosaline melt phases that later crystallized ongonite and topazite lithologies, 

respectively (Time 2, Fig. 7.11 e-h).  

Once the two melt phases had unmixed (Time 3), the low-viscosity hydrosaline 

melts appear to have segregated from the more viscous aluminosilicate melt towards 

the margin of the dike (Fig. 7.11 i-l). Possible driving forces for this segregation are 

discussed in the following section. Rare, subrounded silicate phenocrysts in the rim 

zone of ongonite II and topazite were likely entrained from the assemblage that  

crystallized from the originally homogeneous silicate melt phase. They were then 

partially resorbed while hosted by the hydrosaline melt phase (e.g., Fig. 7.11 f, h). At 

this stage, abundant quartz, topaz, zinnwaldite and ore minerals crystallized. Notably, 

most of the Sn that was originally present in the magma was carried in the hydrosaline 

melt to the margin of the dike, where cassiterite precipitated. 

 

7.5.2 Comparison of ore mineral assemblages in the ongonites and topazite 

The common accessory minerals in the No. 431 dike are columbite-tantalite, 

tapiolite, microlite, uraninite, rutile, hubnerite-ferberite, and zircon. Details of the 

distribution of the main ore minerals in the different rock types are provided in 

Appendix table 29. 

As shown by the mineralogical descriptions, the ongonites and topazite in the No. 

431 dike display distinct Nb-Ta-Sn oxide mineral associations. In the subsurface 

ongonite I, rare-metal elements are dominated by columbite-tantalite, together with  

tapiolite and microlite, but are free of cassiterite. Commonly, the subhedral Ta-poor 

columbite-(Mn) crystals are intergrown with rock-forming minerals, and they may 
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indicate early magmatic crystallization. The progressive zoning in columbite-(Mn), 

comprising an increase in the Ta content from core to rim, can be attributed to the 

gradual differentiation of the magma. The experimental work of Linnen and Keppler 

(1997) and Linnen (1998, 2004) suggests that the solubility of the Ta-rich end-member 

is higher than that of the Nb-rich member of columbite in peraluminous granites or 

pegmatite melts, similar to the relationship between the Fe-rich members relative to the 

Mn-rich members. Therefore, the coexisting tapiolite and tantalite-(Fe) represent the 

products of late-stage magmatic or possibly deuteric hydrothermal crystallization. 

Tapiolite is commonly found in pegmatites and granites that have undergone a highly 

evolved magmatic process (Černý et al., 1989a, b; Wang et al., 1997; Novák et al., 2003; 

Zhang et al., 2004; Beurlen et al., 2008; Chudik et al., 2008; Rao et al., 2009), and the 

fact that the tapiolite-tantalite pair plot at the appropriate boundary of the miscibility 

gap can probably be attributed to exsolution from an unstable homogeneous precursor 

(Černý et al., 1989a, b). Fluorite is usually present in the mineral assemblage of tapiolite, 

tantalite, and microlite, suggesting crystallization from an F-rich liquid. Overall, the 

variations in the composition of columbite-tantalite and tapiolite reflect a highly 

differentiated and relatively Fe-richer magma system. 

In the near-surface ongonite (ongonite II), columbite-(Mn) also occurs, and it is 

associated with a small amount of cassiterite. In the topazite that coexists with 

ongonite II, Nb-Ta oxide minerals become less abundant, but their composition are 

similar to those in the ongonite II. Interestingly, there is an abundance of Nb-Ta oxide 

minerals in the ongonite, but a large amount of cassiterite only appears in the topazite. 

In particular, the cassiterite occurs as two distinct types. First, subhedral grains of 

cassiterite are associated with zircon and hubnerite (Fig. 7.9a), which may have 

crystallized from a melt phase; second, abundant, highly anhedral cassiterites with 

very fine-grained inclusion of topaz and varlamoffite in cavities may have crystallized 

at a later stage from an epigenetic hydrothermal fluid. 
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7.5.3 Differentiated Nb-Ta-Sn mineralization in the ongonites and topazite of the 

No. 431 dike 

Granitic rocks rich in the rare elements are generally strongly enriched in F, and 

they are characterized by the crystallization of Nb-Ta-Sn ores, which may be directly 

linked to magmatic processes. Typical examples are found in the Beauvoir granite of 

the French Massif Central (Cuney et al., 1992; Wang et al., 1992), in the Yichun granite 

of Southern China (Belkasmi et al., 2000; Huang et al., 2002), and in the Czeck Podlesí 

granite (Breiter et al., 2007). It is particularly noted that Nb-Ta-Sn ores may be 

deposited at various stages of differentiation as coexisting columbite-tantalite and 

cassiterite are commonly disseminated in various facies of these granites. However, 

cassiterite may also be deposited in hydrothermal quartz veins, whereas columbite-

tantalite is never found in such veins. In this study of the Xianghualing No. 431 dike, it 

was noted that the dike has two distinct types of rare-mental mineralization: Nb-Ta 

mineralization in the ongonites and Sn mineralization in the topazite. This apparently 

contrasting feature of Nb-Ta versus Sn mineralization differs from what is found in 

granites that are similarly enriched in rare-elements, and the difference may possibly 

be linked specifically to the highly F-enriched, high-level or near-surface emplacement 

of the Xianghualing Nb-Ta-Sn-enriched melt that permitted the efficient segregation of 

aluminosilicate and hydrosaline melts. As mentioned above, the ongonites of No. 431 

dike are thought to be the product of extreme fractional crystallization of an F-rich 

granitic magma and unmixing of a silicate and fluoride-rich melt phases. The ore 

elements were likely present in the melt as complexes of TaF8
3–, NbF7

2–, and SnF6
2–. 

The solubility of Nb, Ta, and Sn in the high-F fluids was maintained for a long time. At 

600 °C, 120–490 ppm Nb is required for columbite saturation in a melt with 2 wt.% F 

(Linnen and Keppler, 1997; Linnen, 1998). Simultaneously, the Nb- and Ta-complexes 

are sensitive to the Li-content in the melt. Breiter et al. (2007) confirmed that columbite 

often crystallized immediately after Li-mica (zinnwaldite), while the the Li-contents 
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decreased rapidly. As a result of both factors, the complexes of Nb and Ta were 

depolymerized easily, and the Nb-Ta minerals began to precipitate early from the 

ongonite melt. However, Bhalla et al. (2005) observed an increase in cassiterite 

solubility with increasing F in peraluminous melts. Obviously, the crystallization of 

abundant topaz in the ongonites and topazite would have rapidly caused a decrease in 

the activity of F in the melt. As a result, the cassiterite could crystallize during the post-

magmatic and hydrothermal stages, and even varlamoffite could form in the cavities. 

Therefore, the increase in the F content of the melt that produced the No. 431 dike 

would inevitably have led to tin mineralization in the strongly F-enriched topazitic 

melts. 

 

Fig. 7.12 Fractionation trends of the columbite-group minerals and tapiolite from the No. 431 dike. 

Arrows indicate direction of compositional fractionation. Abbreviations: OI: ongonite I; OII: 

ongonite II; T: topazite. 

The observed trends of increasing Fe in columbite group minerals in ongonite I as 

compared to increasing Mn in columbite group minerals in ongonite II and topazite (Fig. 
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7.12; Appendix table 26) reflect a decrease of whole-rock FeOt/MnO value from 

subsurface to near-surface (Appendix table 23). The compositional trends of the 

columbite minerals also concur with Mn-poor zinnwaldite in ongonite I and Mn-

bearing zinnwaldite in ongonite II and topazite (Appendix table 25). We therefore 

interpret the two different compositional trends shown in Figure 7.12 to reflect the 

overall increase of differentiation from ongonite I to ongonite II and topazite. 

7.5.4 A possible mechanism for the segregation of aluminosilicate and 

hydrosaline melts in the No. 431 dike 

Aluminosilicate-dominated and hydrosaline melt phases as those inferred to have 

crystallized ongonite and topazite of the No. 431 dike differ in density and viscosity. 

Hydrosaline melts have low densities and low viscosities compared to aluminosilicate-

dominated melts (Veksler and Thomas, 2002; Badanina et al., 2004; Veksler, 2004; 

Peretyazhko, 2010), and the density contrast of the two melt phases could thus have 

caused segregation of the hydrosaline melt into structurally higher positions. However, 

the zoning of both ongonite I from core to margin (as revealed in drill core) as well as 

ongonite II to topazite (as exposed in the exploratory trench) suggests that the  

hydrosaline melt separated towards both – the upper and the lower – dike margins, 

which cannot be explained by simple density-driven segregation. Temperature 

gradients between dike interior and country rocks could have also affected the 

segregation of the two melt phases. However, if temperature was the main driving force 

for segregation we would expect that the least evolved ongonite rocks would have 

crystallized along the colder dike margins and the more evolved ongonite rocks and 

topazite would have crystallized in the dike interior. 

Another possible explanation – and our preferred interpretation – is that continued 

dike propagation/widening caused the partial (in ongonite I) to significant (from 

ongonite II to topazite) segregation of hydrosaline from aluminosilicate melt. Elastic 

propagation rates for fractures exceed viscous flow rates of silicate magmas (e.g., Rubin, 
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1993; Clarke et al., 1998), and dike propagation/widening will therefore create a 

pressure gradient and may shortly create a vacuum. The least viscous material of the 

dike – the hydrosaline melt – will have been instantly drawn into the low-pressure zone, 

and thereby largely separated from the aluminosilicate melt. The greater width of the 

dike as exposed in the exploratory trench relative to the drill core could reflect that the 

dike opened further at this structurally higher position, which caused a more advanced 

segregation of the two melt phases into ongonite II and topazite than at the structurally 

lower position with zoned ongonite I. 

We believe that there might be records in the rocks such as melt inclusions of two 

immiscible melts, which may be present in minerals from both types of rocks and can 

be good for further studies. A detailed investigation of melt inclusions from the 

different mineral types and crystal populations will be ideally suited to test – and to 

refine – our proposed model. However, the detailed compositional and textural study 

presented here is an important guide for the sensible collection and interpretation of 

such data. 

7.6 Summary 

The Xianghualing No. 431 dike is composed of ongonite and topazite which are 

predominantly mineralized by Nb- and Ta-bearing and Sn-bearing ore minerals, 

respectively. Using the results of a combined petrological, mineralogical, and 

geochemical study of the small-scale dike, we have come to the following conclusions. 

Ongonite crystallized from an aluminosilicate magma that reached saturation in F and 

other volatile components. Upon exsolution of a hydrosaline melt phase (or phases), 

the aluminosilicate melt rapidly crystallized to a quartz-, K-feldspar-, and albite-

dominated assemblage with Nb-Ta ore minerals of the columbite-tantalite, tapiolite and 

microlite as characteristic accessories. Topazite formed from the hydrosaline melt that 

segregated towards the margin of the small-scale dike, crystallizing a topaz-, 
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zinnwaldite-, and quartz-dominated assemblage. Exsolution of the two melt phases and 

their efficient segregation into core and rim zones of the dike may have been driven by 

dike propagation/widening subsequent to the initial dike emplacement. Melt inclusions 

should provide a detailed record of the proposed evolution and further provide 

compositional details on the fractionating liquids. 
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Chapter 8 Insights from experimental petrology for the 

understanding the mineralization and origin of Jurassic granites in 

South China  

8.1 The relationship between emplacement conditions and tin mineralization 

Phase equilibrium studies have shown that the Qitianling granite has a relatively 

high liquidus temperature (>900°C), it emplaced in the mid crust (~10-12 km), with a 

melt water content rich (≥5.5 wt.%) and at relatively reduced (oxygen fugacity around 

at NNO-1±0.5) environment. Since the cassiterite U-Pb ages (159.9±1.9 Ma and 

158.2±0.4 Ma) of Furong tin district (Yuan et al., 2011) are very close to the zircon U-

Pb ages (range from 149.5±4.8 Ma to 162±2 Ma) of Qitianling granite, the 

emplacement condition should have influenced the tin mineralization. In the following, 

we discuss three main influence factors based on our experimental work. 

The first controlling factor is oxygen fugacity. The solubility of SnO2 study in a 

synthetic granite system under variable oxygen fugacity condition was firstly carried 

out by Ryabchikov et al. (1978). The experiments in the haplogranite-SnO2-FeO-H2O 

system indicate that at 750°C, 150 MPa, and oxygen fugacity between HM to NNO 

conditions, the solubility of Sn ranges from 1000 ppm to 2000 ppm, while at more 

reduced condition (MW), the solubility of Sn increased twice, demonstrating that low 

oxygen fugacity may enhance the solubility of Sn in the granite melt. This conclusion 

is also in agreement with the experiments conducted by Taylor and Wall, 1992. In their 

experiment, the haplogranite composition Or(11)-Ab(19)-Qtz(70) and SnO2 crystals 

were chosen as the starting materials. Experiments were conducted at 750 °C, 200 MPa 

and different oxygen fugacities (e.g. run 1052 at ~logfO2-14.18 and run 1050 at 

~logfO2-16.56). The results show that the solubility of Sn in run 1052 is 845 ppm ±

178, while in more reducing condition, the solubility of Sn in run 1050 is up to 2233 
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ppm±963. Using the diffusion profile method to avoid the loss of Sn to the noble-

element capsule walls, Linnen et al. (1995) also investigated the cassiterite solubility at 

relatively high temperature (850°C) and 2 kbar in a haplogranitic melt system with 5.6 

wt% of H2O. Their result illustrated that at FMQ-0.84, the cassiterite solubility can be 

up to 28000 ppm while at FMQ+3.12, it just around ~800 ppm. All those experiments 

suggest therefore that low oxygen fugacity can be a significant constrain on the Sn 

incorporation in a granitic melt. Qitianling magma was emplaced at relative low oxygen 

fugacities (NNO-1±0.5), hence providing a beneficial environment for incorporating 

the Sn in the melt, at least during the early stages of its production/crystallisation. W-

Sn related with reduced magma is also supported by other studies (e.g. Ishihara 1981; 

Lehmann 1990; Blevin and Chappell, 1992, 1995). Conversely, cassiterite precipitation 

will be favored by an increase in redox conditions. The increase in fO2 we document 

between the magmatic stage (as inferred from our phase equilibrium experiments) and 

subsolidus conditions or magmatic-hydrothermal transition (as inferred from FeTi 

oxides of the pluton) may be one reason of ore production. The reason for such an 

increase in fO2 still demands to be defined however, but has been documented to occur 

on other plutonic systems (e.g., Pichavant et al., 2017). 

The second controlling factor is temperature. During the partial melting of the 

lower crust and magma ascent or even with assimilation and magma mixing processes, 

high temperature plays an important role on extracting ore elements, especially in thoes 

anatectic melts. Stemprok (1990) summarized and compared the dry and hydrothermal 

experimental work about the solubility of tin in felsic magma. Based on the data from 

Stemprok and Voldfin (1978), Stemprok (1982), Barsukov et al. (1983), Nekrasov 

(1984) and Ryabchikov et al. (1978a, b), Stemprok (1990) proposed an equation 

(1ogCSnO2= 2.4-2.94*1000/T, where T is in K and C is in mass.%), which demonstrates 

the relationship between the solubility of SnO2(C) and temperature. In this equation, as 

temperature increases, the solubility of SnO2 increases. High liquidus temperature of 

Qitianling magma also allows high concentration of tin being reached in the silicate 
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melt during the different geological process. 

The third controlling factor is melt water content. Firstly, a widely demonstrated 

effect is that water plays a significant role in decreasing the solidus temperature and 

increasing the melt proportion. This also conduces to concentrate the ore element in the 

melt during the melting process. Secondly, the participation of water in the magma will 

decreased the viscosity of the melt which improved element diffusivities, the mobility 

of the magma and meanwhile the transportation of ore elements become faster and more 

flexible. Thirdly, water rich magmas also dissolve other volatiles such as chlorine, 

fluorine, boron and phosphorus which will be also helpful in capturing and transiting 

the ore elements such as Sn (Wolf and London, 1994; Webster et al., 1996; Webster, 

1997; Xiong et al. 1998; Bhalla et al., 2005; Zimmer et al. 2010; Duc-Tin et al., 2007). 

The volatiles, such as F, have significant effect on concentrating Sn. The discussion on 

detail can also see in chapter 7, highly evolved 431 dyke study. The lowest melt water 

content of Qitianling magma was constrained as >5.5 wt% and the average of melt 

water content is around 6.5 wt %, which is relative rich when compared with other 

magma systems. After the emplacement of magma, as the batholith slowly cooled down, 

along with crystallization, exsolution of aqueous fluids generally occurred till the 

magmatic-hydrothermal transition. Zhao et al. (2011) investigated the fluid–rock 

interaction of Qitianling granite using boron and oxygen isotopes of bulk rock and 

found that exsolution of voluminous aqueous fluids from the Qitianling magma 

occurred at temperature >450°C, pointing out the contribution of magmatic fluids in 

ore generation. This result is consistent with the study of fluid inclusion of Qitianling 

Furong deposit by Shuang et al. (2009). Their homogenization temperature 

measurements show that the highest temperature is from the skarn-type ore with 400°C-

450°C, while these from greisen and altered granite are 250°C-350°C. Besides, the H-

O isotopes of quartz of greisen indicate that the H2O equilibrium with quartz has a δ18O 

ranging from -5.7‰ to 7.6‰ close to the magmatic fluid. This result is once again 

interpreted as reflecting the magmatic origin of ore-forming fluids. 
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8.2 A possible source of the Jurassic Qitianling granite in South China  

Geochemical studies have shown that the Qitianling granites were originated from 

the partial melting of lower crustal rocks with a limited contribution (~10-20%) of 

mantle-derived melt (Zhao et al., 2012). The role of mantle-derived magmas has 

therefore been restricted to that of heating the lower crust (e.g. Zhu et al., 2009). Our 

results do not shed light on the source of the water, e.g. whether there was an excess 

fluid phase rich in water or if water came only from dehydration melting of hydrous 

minerals such as amphibole and biotite. In the following we take the second scenario 

as a working hypothesis since it is the most commonly invoked for lower crustal 

melting (e.g. Clemens and Watkins, 2001). We evaluate (1) possible source rock 

compositions, and (2) the conditions that may have produced the H2O-rich Qitianling 

magmas with ≥5-6 wt % H2Omelt initial and with a liquidus temperature of > 900°C. We 

first consider the REE compositions of the Qitianling whole rocks to infer the nature of 

residual phases in the source. The Qitianling rocks have high REE concentrations. The 

LREE concentrations and patterns of most Qitianling granites compare to those of 

amphibolite but more closely resemble those of garnet-biotite gneiss xenoliths in south 

China, which are interpreted as fragments of the lower crust (Li et al., 2001; Guo et al., 

1997; Li, 1997). The HREE concentrations of the Qitianling granites also closely 

compare to those of the amphibolite and garnet-biotite gneiss xenoliths, except for some 

of the phase-3 rocks. The moderately steep to steep LREE patterns are interpreted to 

result from the segregation of pyroxene in the source (Rollinson, 1993). The 

pronounced Eu anomaly of the Qitianling granites similarly suggests that either (1) 

plagioclase was residual in the source rocks, or (2) that it was removed from the 

magmas at some stage in their evolution. The latter mechanism is suggested by the 

increase of the Eu anomaly from Phase-1 to Phase-3 (Fig 8.1). However and importantly, 

the overall relatively flat HREE patterns indicate that garnet was not a significant source 

constituent (e.g. Drummond and Defant, 1990), and thus that source partial melting 
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took place at ≤800-900 MPa (e.g. cf. Rapp and Watson, 1995), i.e. at depths of ≤24-27 

km for a common crust density. This suggests that the garnet bearing xenolith gneisses 

of Southern China, if representative of one of the lower crustal lithologies that melted 

for the production of the Qitianling magmas, reflects the deeper crustal levels of the 

main melting zone. 

The garnet-bearing biotite gneiss xenoliths that could represent source rocks, have 

~64-74 wt % SiO2, ~11-15 wt % Al2O3, ~2-6 wt% FeO, ~1-2 wt% CaO, ~1-2 wt% 

Na2O, and ~2-5 wt % K2O) (Li et al., 2001; Guo et al., 1997). The amphibolites have 

~49 wt % SiO2, ~16-17 wt % Al2O3, ~11-12 wt % FeO, ~5 wt % CaO, ~3-4 wt % Na2O, 

and ~1 wt % K2O (Li, 1997). 

Dehydration-melting experiments using a Bt gneiss (with 37 wt % Bt and ~63 wt % 

SiO2) and a Qtz amphibolite (with 54 wt % Amp and ~60 wt % SiO2) at 500-1000 MPa 

and 875-1000 °C produce melts with ~1.7-7.2 wt % H2O for melt fractions of <30 wt % 

(Patino Douce and Beard ,1995). However, the SiO2 content of the liquids produced by 

both Bt gneiss (SiO2 ~70-76 wt %) and Qtz amphibolite (SiO2 ~70-76 wt %) partial 

 

Fig. 8.1 Geological map of the Furong tin deposit and distribution of orebodies (cited from Yuan et 

al., 2011).  
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melting is significantly higher than the SiO2 content of the phase-1 Qitianling granite 

(~67 wt % SiO2), while it closely compares to that of the intermediate phase-2 rocks. 

This however partly reflects the higher SiO2 content of Qtz amphibolite used in the 

melting experiments of Patino Douce and Beard (1995) compared to that of the 

amphibolite in South China (60 wt % versus 49 wt %).  

Amphibolite and greenschist rocks used in partial melting experiments by Beard 

and Lofgren (1991) have ~49-57 wt % SiO2, (with ~34-50 wt% Amp) i.e. they are closer 

in composition to the amphibolites known in Southern China. Their results (in particular 

with their composition 478) show that at 690 MPa and 850-1000 °C, amphibolite 

dehydration melting produces liquids with ~3.8-6.3 wt % of H2Omelt and low SiO2 

content (~66 wt %), i.e. close to the composition of the phase-1 Qitianling granites. The 

dehydration melting experiments conducted by Wolf and Wyllie (1994) at 1 GPa, 850-

1000°C, and with starting materials similar to those of Beard and Lofgren (1991) (i.e 

with ~48 wt % SiO2), yield liquids with ~52-66 wt % SiO2.  

However, all liquids produced by amphibolite partial melting have K2O contents 

usually < 2 wt %, i.e. lower than phase 1 of Qitianling. We suggest that the elevated 

K2O content reflects the contribution of biotite-bearing gneisses. A composite source 

made of amphibolite and biotite gneisses may be one of the interpretations for 

Qitianling granite source.  

Altogether, the above comparison shows that it is possible to produce liquids with 

compositions akin to those of the most mafic variety cropping out in the Qitianling 

intrusion by partially melting lithologies similar to lower crustal xenoliths found in SE 

China. We therefore infer that a source made of amphibolite and biotite bearing rocks 

partially melted at pressure depths of around 800-900 MPa, and temperatures as high 

as 950°C, producing liquids with about 5-6 wt % H2Omelt, can produce the most mafic 

liquids recorded at Qitianling. Under such conditions, experiments show that the melt 

fraction in the source remains relatively modest, ie lower than 30 wt % (Patino Douce 

and Beard, 1995). As our results show, such liquids may have subsequently fractionated 
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to produce the more evolved facies, such as phase-2 and phase-3 compositions. Such a 

fractionation may have occurred in a shallow reservoir, but fractionation at deeper 

levels, including at the source, cannot be excluded. 
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Appendix table 1 Major and trace elements of bulk rock samples from 

Qitianling, Jiuyishan, Guposhan and Huashan plutons 

Pluton Qitianling 

N 25°34'44'' 25°32'58'' 25°31'45'' 25°32'58'' 25°31'45'' 25°27'09'' 25°27'53'' 25°34'12'' 

E 112°46'40'' 112°59'12'' 112°50'39'' 112°59'12'' 112°50'39'' 112°47'59'' 112°48'41'' 112°48'17'' 

Sample 13-QTL- 

17 

QT- 

38C 

13-QTL- 

14B 

QT- 

38 

13-QTL- 

14A 

13-QTL- 

21B 

13-QTL- 

20 

13-QTL- 

16 

Lithology CHBG CHBG M-FHBG CHBG MHBG C-MBG MHBG MBG 

(wt %) 

        

SiO2 65.40 65.72 65.73 66.69 68.07 68.35 70.01 70.76 

TiO2 0.87 1.04 0.71 0.87 0.73 0.70 0.47 0.50 

Al2O3 14.61 13.58 14.79 13.64 14.35 13.42 13.79 13.21 

Fe2O3 1.20 1.68 1.54 2.86 1.12 0.75 0.99 0.87 

FeO 3.68 4.22 2.51 2.52 2.98 3.86 1.90 2.20 

MnO 0.09 0.10 0.05 0.12 0.07 0.05 0.05 0.06 

MgO 0.95 1.37 0.68 1.13 0.89 0.79 0.49 0.58 

CaO 3.05 3.27 1.90 2.97 2.46 1.70 1.82 1.61 

Na2O 3.30 2.95 3.14 2.93 3.00 2.89 2.98 2.84 

K2O 4.76 3.91 6.44 4.38 5.17 4.13 5.33 5.01 

P2O5 0.28 0.33 0.22 0.28 0.24 0.22 0.14 0.16 

LOI 1.01 0.91 1.75 1.12 1.29 2.47 1.13 1.34 

Total 99.20 99.08 99.46 99.51 100.35 99.33 99.11 99.13 

FeOt 4.76 5.74 3.90 5.10 3.99 4.54 2.79 2.98 

F 0.15 0.20 0.45 0.15 0.19 0.34 0.15 0.17 

Na2O+K2O 8.07 6.86 9.58 7.30 8.17 7.02 8.31 7.86 

K2O/Na2O 1.44 1.33 2.05 1.50 1.72 1.43 1.79 1.76 

A/CNK 0.91 0.90 0.95 0.91 0.96 1.09 0.99 1.01 

A/NK 1.38 1.50 1.22 1.43 1.36 1.45 1.29 1.31 

FeOt/MgO 4.99 4.18 5.71 4.51 4.50 5.74 5.65 5.16 

FeOt# 0.83 0.81 0.85 0.82 0.82 0.85 0.85 0.84 

(ppm) 

        

Li 65.6 107 64.3 87 69.5 166 58.5 32 

Be 8.18 6.07 9.58 4.17 9.25 8.31 9.77 11.5 

Sc 12.8 15.1 10.6 12.9 10.9 9.7 8.1 11.3 

V 58.8 85.3 29.4 70 51.7 40.6 28.5 29.9 

Cr 12.4 19.8 7.13 17.2 13.8 13.6 11.2 9.97 

Co 10.2 13.9 5.45 11.1 7.7 8.29 4.89 5.34 

Ni 6.1 10.2 4.0 9.5 7.0 5.7 5.0 4.4 

Cu 7.7 12.9 79.4 15.7 18.3 8.5 54.3 5.6 
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Zn 146 174 105 147 146 145 106 122 

Ga 23.7 23.1 22 22.9 21.4 24.3 21.3 20.5 

Rb 266 249 363 250 296 362 369 319 

Sr 334 223 177 214 211 101 175 149 

Y 46.6 52.5 46.2 54.3 41.2 45.4 39.9 41 

Zr 295 318 424 313 321 360 201 315 

Nb 31.8 35.2 30.8 30.9 27.3 35.6 27 27.8 

Sb 0.593 0.594 0.873 0.543 0.903 0.51 0.888 0.489 

Cs 12.2 16.4 43.2 14.8 24.3 21.2 22.6 14.2 

Ba 821.2 502.3 862.9 554.2 887.2 359.1 631.9 425.2 

La 73.4 56.5 40.8 159 65.8 92 65.5 71.1 

Ce 140 121 90.8 279 132 162 120 134 

Pr 15 13.9 10.4 28.4 14.2 15.9 12.5 14 

Nd 53.2 53.5 39.7 91.6 52.3 52.1 43 48.9 

Sm 9.78 10.2 7.68 13.4 9.71 8.88 7.63 8.91 

Eu 1.78 1.50 1.43 1.44 1.57 0.89 1.23 1.06 

Gd 8.98 9.84 7.32 12.37 8.52 8.31 7.23 8.08 

Tb 1.31 1.45 1.08 1.65 1.22 1.17 0.974 1.15 

Dy 7.32 7.93 6.48 8.63 6.71 6.64 5.9 6.51 

Ho 1.33 1.51 1.3 1.61 1.27 1.29 1.13 1.33 

Er 3.9 4.62 3.95 4.78 3.85 3.84 3.32 3.9 

Tm 0.561 0.645 0.608 0.74 0.517 0.573 0.514 0.576 

Yb 3.55 4.21 4.21 4.36 3.63 3.82 3.3 3.84 

Lu 0.5 0.62 0.645 0.637 0.514 0.538 0.503 0.571 

Hf 6.82 7.67 9.78 8.25 8.43 8.75 5.52 9.31 

Ta 2.52 3.07 4.13 3.02 3.71 2.95 2.95 3.86 

W 3.66 2.69 3.91 4.76 2.89 14.1 7.06 7.11 

Tl 1.17 1.13 2.67 1.15 1.86 1.82 2 2.32 

Pb 40.5 30.6 48 34.6 44.1 37.5 46.8 55.6 

Bi 0.525 0.327 21.6 0.41 2.33 0.872 2.42 3.03 

Th 24.9 22.6 28.7 47.9 41.1 59.7 51 53.5 

U 13.7 5.62 17 6.85 11 11.1 13.6 15.2 

Sn 21.4 12 25.3 6.73 22.8 6.67 12.8 13.7 

∑REE 321 287 216 608 302 358 273 304 

Rb/Sr 0.79 1.12 2.05 1.17 1.40 3.59 2.11 2.14 

Zr/Hf 43.26 41.46 43.35 37.94 38.08 41.14 36.41 33.83 

Nb/Ta 12.62 11.47 7.46 10.23 7.36 12.07 9.15 7.20 

Th/U 1.82 4.02 1.69 6.99 3.74 5.38 3.75 3.52 

Zr+Nb+Ce+Y 513.40 526.70 591.80 677.20 521.50 603.00 387.90 517.80 

10000*Ga/Al 3.07 3.21 2.81 3.17 2.82 3.42 2.92 2.93 
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Tzr(°C) 812 821 854 822 832 863 797 844 

Pluton Qitianling 

N 25°29'52'' 25°32'41'' 25°34'45'' 25°27'36'' 25°26'37'' 25°26'31'' 25°27'27'' 25°27'27'' 

E 112°51'24" 112°58'01'' 112°46'17'' 112°48'40'' 112°51'13'' 112°47'30'' 112°51'20'' 112°51'20'' 

Sample 13-QTL- 

13 

13-QTL- 

01 

13-QTL- 

19 

13-QTL- 

24 

13-QTL- 

26B 

13-QTL- 

22 

13-QTL- 

25A 

13-QTL- 

25B 

Lithology FHBG FG M-FBG MBG FBG FBG M-FBG M-FBG 

(wt %) 

        

SiO2 70.92 72.82 73.26 73.31 74.05 74.12 74.33 74.36 

TiO2 0.38 0.20 0.42 0.36 0.09 0.33 0.20 0.24 

Al2O3 13.79 13.90 12.51 13.03 12.82 12.65 12.75 12.23 

Fe2O3 0.60 0.53 0.67 0.55 0.39 0.22 0.36 0.50 

FeO 1.97 0.91 1.76 1.73 0.99 0.54 1.21 1.28 

MnO 0.04 0.03 0.03 0.03 0.02 0.01 0.03 0.03 

MgO 0.42 0.36 0.63 0.40 0.07 0.34 0.17 0.21 

CaO 1.82 0.61 1.33 1.85 0.66 2.56 1.07 1.01 

Na2O 3.06 2.69 3.39 2.92 3.08 2.88 3.08 2.94 

K2O 5.38 5.47 4.38 4.92 5.61 5.38 5.35 5.08 

P2O5 0.12 0.23 0.12 0.11 0.02 0.09 0.05 0.06 

LOI 1.17 1.73 1.42 1.34 1.41 1.28 1.09 1.28 

Total 99.68 99.49 99.92 100.54 99.20 100.41 99.67 99.21 

FeOt 2.51 1.39 2.36 2.23 1.34 0.74 1.53 1.73 

F 0.15 0.08 0.08 0.22 0.56 0.18 0.17 0.22 

Na2O+K2O 8.44 8.16 7.77 7.84 8.69 8.26 8.43 8.02 

K2O/Na2O 1.76 2.03 1.29 1.69 1.82 1.87 1.74 1.73 

A/CNK 0.97 1.21 0.98 0.97 1.04 0.83 1.00 1.01 

A/NK 1.27 1.34 1.21 1.29 1.15 1.20 1.17 1.18 

FeOt/MgO 5.92 3.87 3.77 5.64 18.33 2.19 9.18 8.41 

FeOt# 0.86 0.79 0.79 0.85 0.95 0.69 0.90 0.89 

(ppm) 

        

Li 109 125 63.6 51.6 294 18 128 71.9 

Be 12.3 13.3 7.49 6.13 39.7 11.8 8.37 20.8 

Sc 8.1 8.9 5.0 7.1 6.2 7.3 5.7 5.4 

V 25.2 20.1 1.26 22 3.63 21.2 8.93 10.5 

Cr 14.9 14.2 9.81 28.3 9.73 8.12 7.16 7.11 

Co 3.91 2.71 2.18 5.23 0.64 1.34 1.82 2.02 

Ni 8.3 5.5 23.9 17.6 6.0 3.6 4.0 2.8 

Cu 26.3 4.8 6075 14.4 2.5 3.4 2.0 3.4 

Zn 137 88.9 1270 60.5 70.1 67.8 55.2 60.7 

Ga 20.9 20.1 36 20.3 25.5 18.4 19.1 19.9 
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Rb 387 383 1148 343 750 368 452 446 

Sr 142 82.2 70.7 136 18.5 128 51.3 76.6 

Y 38.1 22.6 17.8 28.5 98.6 30.3 31.3 43.3 

Zr 218 116 71.3 152 140 222 175 174 

Nb 21 23.5 4.35 18.8 66.6 20.1 23.6 23.7 

Sb 3.75 0.683 44.5 2.8 0.92 0.8 0.636 0.598 

Cs 24.9 21.2 16.1 31.2 50 10.9 35.5 20.3 

Ba 519.7 295.4 117.7 332.2 72.5 207.6 104.5 124.7 

La 92.3 32.8 51.2 51.8 107 24.1 69.7 69.6 

Ce 166 67.6 119 94.8 211 63 122 125 

Pr 16.3 7.34 11.8 9.91 23.6 7.56 12 12.4 

Nd 54.3 26.5 30.6 33.5 77.6 28.4 36.2 39.6 

Sm 8.79 5.77 5.38 6.03 16.5 5.23 5.57 6.8 

Eu 1.15 0.55 0.02 1.02 0.18 0.68 0.47 0.49 

Gd 8.02 5.19 4.08 5.44 15.59 4.54 4.85 6.27 

Tb 1.05 0.748 0.634 0.757 2.53 0.687 0.696 0.982 

Dy 5.8 3.64 3.62 4.07 16.2 4.38 4.21 5.66 

Ho 1.17 0.658 0.705 0.825 3.16 0.843 0.839 1.16 

Er 3.53 1.78 2.27 2.38 9.8 2.66 2.75 3.82 

Tm 0.51 0.261 0.428 0.342 1.49 0.415 0.42 0.599 

Yb 3.56 1.52 3.23 2.43 10.6 2.78 2.93 4.3 

Lu 0.52 0.223 0.475 0.337 1.48 0.404 0.414 0.646 

Hf 6.65 3.19 6.94 4.22 6.51 6.15 5.55 5.87 

Ta 2.39 1.58 2.39 2.28 4.37 1.97 2.48 3.03 

W 0.901 14.2 2.25 4.77 10.1 1.11 3.42 5.37 

Tl 2 1.92 6.38 2.18 4.18 1.43 2.14 2.37 

Pb 83.3 56.6 478 41.5 73.1 42.4 46.4 51.3 

Bi 0.99 0.0792 28.3 0.963 0.439 0.362 0.37 0.611 

Th 56.2 21.6 33.4 44.1 66.9 77.9 66.8 74.1 

U 18.9 7.81 34.3 12 23 15.7 23.4 25.5 

Sn 18.2 27 113 11.4 23 25 14.6 18 

∑REE 363 155 233 214 497 146 263 277 

Rb/Sr 2.73 4.66 16.23 2.52 40.54 2.87 8.82 5.82 

Zr/Hf 32.78 36.36 10.27 36.02 21.51 36.10 31.53 29.64 

Nb/Ta 8.79 14.87 1.82 8.25 15.24 10.20 9.52 7.82 

Th/U 2.97 2.77 0.97 3.68 2.91 4.96 2.85 2.91 

Zr+Nb+Ce+Y 443.10 229.70 212.45 294.10 516.20 335.40 351.90 366.00 

10000*Ga/Al 2.86 2.73 5.43 2.94 3.76 2.75 2.83 3.07 

Tzr(°C) 803 774 716 774 777 790 791 793 

Pluton Qitianling 
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N 25°39'49'' 25°32'36'' 25°28'13'' 25°34'27'' 25°32'24'' 25°26'37'' 25°32'04'' 25°27'09'' 

E 112°54'46'' 112°55'22'' 112°53'08'' 112°47'33'' 112°53'35'' 112°51'13'' 112°50'47'' 112°47'59'' 

Sample 13-QTL- 

10 

13-QTL- 

04 

QT- 

105 

QT- 

122 

13-QTL- 

03 

13-QTL- 

26A 

QT- 

123 

13-QTL- 

21A 

Lithology FBG FBG FG FG FG FBG FG FBG 

(wt %) 

        

SiO2 74.85 75.83 75.93 76.08 76.21 76.40 77.03 77.03 

TiO2 0.20 0.13 0.07 0.15 0.13 0.06 0.10 0.29 

Al2O3 12.64 11.88 12.49 12.02 12.18 12.60 12.34 10.96 

Fe2O3 0.63 0.22 0.26 0.50 0.21 0.31 0.67 0.53 

FeO 1.09 1.06 0.92 0.83 0.80 0.51 0.29 1.52 

MnO 0.03 0.02 0.03 0.02 0.02 0.01 0.01 0.03 

MgO 0.17 0.11 0.03 0.11 0.10 0.04 0.04 0.35 

CaO 0.90 0.72 0.77 0.62 0.54 0.59 0.60 0.67 

Na2O 3.08 2.83 3.42 2.84 2.76 2.70 2.87 2.14 

K2O 5.15 5.33 4.78 5.56 5.85 6.26 5.63 5.11 

P2O5 0.05 0.02 0.01 0.03 0.03 0.02 0.01 0.08 

LOI 0.94 0.86 1.13 0.93 0.96 1.22 0.70 1.18 

Total 99.73 99.02 99.82 99.69 99.79 100.72 100.28 99.89 

FeOt 1.66 1.26 1.15 1.29 0.99 0.79 0.90 2.00 

F 0.15 0.30 0.44 0.06 0.18 0.56 0.06 0.11 

Na2O+K2O 8.23 8.16 8.19 8.41 8.61 8.96 8.50 7.25 

K2O/Na2O 1.67 1.88 1.40 1.96 2.12 2.32 1.96 2.39 

A/CNK 1.03 1.01 1.03 1.02 1.03 1.03 1.04 1.07 

A/NK 1.19 1.14 1.16 1.12 1.12 1.12 1.14 1.21 

FeOt/MgO 9.82 11.07 42.63 12.25 9.84 18.44 25.63 5.73 

FeOt# 0.91 0.92 0.98 0.92 0.91 0.95 0.96 0.85 

(ppm) 

        

Li 461 90.9 248 33.3 30 170 23.5 63.1 

Be 6.5 18.7 6.98 21.7 15.8 7.2 6.6 2.01 

Sc 6.7 6.1 4.5 4.9 5.4 6.1 4.7 5.3 

V 1.31 4.52 1.96 4.34 4.26 2.09 1.34 14.8 

Cr 5.95 5.22 7.18 5.5 5.41 3.27 13.3 6.99 

Co 1.18 1.15 1.03 1.22 1.13 0.362 0.766 3.74 

Ni 36.3 1.8 1.6 2.5 2.2 1.7 5.7 4.0 

Cu 9540 2.0 3.4 10.4 4.9 2.1 2.0 4.3 

Zn 1640 104 34.2 79.3 54.9 37.3 53.8 85.7 

Ga 48.3 20 18.8 18.9 17.1 21.1 15.5 19.2 

Rb 1110 500 674 478 485 740 398 335 

Sr 53.1 29.2 14 34.7 34.3 16.2 25.5 68.7 
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Y 0.398 46.9 56.7 36.3 33 160 20.2 24.9 

Zr 21.1 195 135 165 154 144 157 377 

Nb 139 27.6 42.9 22.1 17.4 62.9 10.1 17 

Sb 45.3 0.28 0.215 0.407 0.633 0.605 0.467 0.466 

Cs 29.1 21.3 44.7 26.8 17.5 31.6 11.8 10.1 

Ba 80.4 29.0 14.9 53.5 41.3 46.3 14.8 134.0 

La 0.694 80.8 29.3 93.1 84.8 64.1 87.1 200 

Ce 3.189 145 67.8 162 148 123 95.3 326 

Pr 0.427 13.8 7.32 15.3 13.9 14.8 13 29.9 

Nd 0.819 43.3 25.6 45.6 40.4 54.4 37.7 80.8 

Sm 0.270 7.26 6.36 6.91 5.73 14.4 5.14 9.21 

Eu 0.004 0.26 0.12 0.30 0.28 0.17 0.33 0.58 

Gd 0.109 7.03 6.39 6.49 5.67 16.02 4.60 8.69 

Tb 0.045 1.06 1.2 0.918 0.733 3.24 0.579 0.813 

Dy 0.302 6.23 7.8 5.03 4.15 22.7 3.05 3.64 

Ho 0.051 1.34 1.64 1.05 0.874 4.78 0.582 0.652 

Er 0.212 4.06 5.24 3.27 2.8 15.1 1.74 2.22 

Tm 0.063 0.691 0.867 0.575 0.459 2.42 0.272 0.293 

Yb 0.865 5.31 5.9 3.78 3.34 16.1 1.81 2.17 

Lu 0.121 0.691 0.859 0.568 0.435 2.31 0.274 0.333 

Hf 4.6 6.51 6.97 5.81 5.22 8.77 5.1 9.98 

Ta 115 4.07 7.17 4.02 0.834 8.12 1.42 1.11 

W 12.7 13.1 14.9 12.1 2.63 14.1 2.1 3.02 

Tl 4.58 2.53 3.79 1.97 2.86 4.11 1.9 1.64 

Pb 606 64.2 52.8 51.2 46.9 66.2 46.4 44.5 

Bi 10.8 1.66 1.35 1.32 30.4 1.29 0.276 1.11 

Th 5.13 78.6 53.5 87.5 80.5 53.5 87.4 149 

U 11.8 25.9 39.5 24.4 20 29.8 14 23 

Sn 162 25.9 39.5 9.56 29.9 29.8 14 12.7 

∑REE 7 317 166 345 312 354 251 665 

Rb/Sr 20.90 17.13 48.11 13.77 14.13 45.69 15.62 4.87 

Zr/Hf 4.59 29.95 19.37 28.40 29.50 16.42 30.78 37.78 

Nb/Ta 1.21 6.78 5.98 5.50 20.86 7.75 7.11 15.32 

Th/U 0.43 3.03 1.35 3.59 4.03 1.80 6.24 6.48 

Zr+Nb+Ce+Y 163.69 414.50 302.40 385.40 352.40 489.90 282.60 744.90 

10000*Ga/Al 7.22 3.18 2.84 2.97 2.65 3.16 2.37 3.31 

Tzr(°C) 636 806 774 791 786 779 789 877 
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Pluton Jiuyishan   Guposhan   Huashan 

Sample 
SC14- 

160A 

SC14- 

160B 

SC14- 

162-A 

SC14- 

162-B 

 SC14- 

169 

SC14- 

181 

 SC14- 

171A 

SC14- 

172B 

SC14- 

176A 

SC14- 

177B 

Lithology C-MBG FBG CBG E   FBG CBG   D CHBG CHBG CBG 

(wt %)             

SiO2 75.07  74.47  75.88  67.44   73.28  73.41   57.69  62.22  66.20  73.15  

TiO2 0.17  0.26  0.06  0.60   0.22  0.18   1.57  1.24  0.65  0.68  

Al2O3 13.24  12.58  13.36  14.68   13.63  14.22   14.55  14.25  14.91  12.61  

Fe2O3 0.84  0.76  0.74  1.34   0.86  0.82   2.46  2.25  1.74  0.91  

FeO 0.79  1.60  0.47  3.06   1.01  0.91   4.68  3.91  3.21  2.98  

MnO 0.04  0.03  0.02  0.06   0.02  0.03   0.12  0.11  0.08  0.08  

MgO 0.16  0.15  0.00  0.55   0.15  0.15   3.77  2.75  0.88  0.78  

CaO 0.72  1.19  0.55  1.60   0.82  0.70   5.81  4.57  2.09  0.92  

Na2O 3.25  2.86  3.83  3.19   2.70  3.44   3.03  2.96  3.36  2.12  

K2O 5.08  5.01  4.71  5.79   6.20  5.57   3.62  3.88  5.27  4.79  

P2O5 0.03  0.04  0.00  0.17   0.04  0.03   0.35  0.29  0.18  0.05  

LOI 0.88  0.64  0.84  0.86   0.57  0.82   1.43  0.71  0.69  0.98  

Total 100.27  99.58  100.46  99.35   99.50  100.29   99.08  99.14  99.25  100.05  

FeOt 1.54  2.28  1.14  4.27   1.78  1.65   6.89  5.93  4.78  3.79  

F 0.19 0.21 0.25 0.23  0.10 0.20  0.12 0.11 0.25 0.11 

Na2O+K2O 8.33 7.87 8.54 8.98  8.90 9.01  6.65 6.84 8.63 6.92 

K2O/Na2O 1.56 1.75 1.23 1.82  2.30 1.62  1.20 1.31 1.57 2.26 

A/CNK 1.09 1.02 1.08 1.02  1.08 1.10  0.75 0.82 0.99 1.22 

A/NK 1.22 1.24 1.17 1.27  1.22 1.22  1.63 1.57 1.33 1.45 

FeOt/MgO 9.82 15.57 1093.44 7.78  12.00 11.08  1.83 2.16 5.45 4.88 

FeOt# 0.91 0.94 1.00 0.89  0.92 0.92  0.65 0.68 0.85 0.83 

(ppm)             

Li 51.9 46.8 75.3 64.8  62 64.3  31.8 39.6 71.8 49.4 

Be 7.2 4.8 6.99 7.42  2.75 6.88  3.07 3.69 5.92 3.09 

Sc 9.9 11.2 8.29 13.5  10.9 10.1  16.5 15.4 14.4 11.5 

V 9.58 7.61 1.54 23.3  7.44 6.9  156 133 35.1 52.8 

Cr 3.53 1.83 1.62 2.06  2.04 2.34  96.3 44.3 3.87 32.3 

Co 1.06 1.61 0.19 5.02  1.49 1.29  26.4 18.7 5.79 9.41 

Ni 0.75 0.14 -0.09 0.67  1.47 1.46  42.3 19.5 2.71 15 

Cu 1.92 1.74 0.15 5.24  2.24 1.75  29.1 19 5.46 9.83 

Zn 152 116 37.1 206  96.8 139  125 106 111 161 

Ga 19.1 19.5 22.8 21.6  19 21.1  20.3 20.3 24 17.6 

Rb 370 279 490 348  309 415  187 212 353 239 

Sr 41.1 42.5 4.18 90.7  64.8 61.6  527 438 183 147 

Y 48.9 55.7 72.7 38.6  40.8 38.2  27.4 30.7 52 31.5 
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Zr 138 269 130 524  197 179  186 234 433 343 

Nb 33.6 25.6 34.7 26.5  18.2 22.6  37.6 39.5 47.1 25.3 

Sb 0.65 0.26 0.64 0.18  0.37 0.49  1.15 1.23 0.66 0.77 

Cs 18.5 9.88 20.2 14.7  8.68 13.4  19.6 13.9 19.7 12 

Ba 120 323 5.7 1040  775 323  678 718 574 548 

La 35.2 67.6 12.2 47.6  60.5 45.4  50.5 55.5 82.8 69 

Ce 71.5 141 31.7 91.2  127 86.9  101 118 175 150 

Pr 8.72 16.8 4.14 10.8  14.5 10.4  11.5 13.3 19.6 16.2 

Nd 32.7 61.5 17.1 40.8  53.3 36.8  41.6 47.6 69.6 57.3 

Sm 7.34 11.8 5.97 7.96  10.1 7.23  7.52 8.64 13 9.88 

Eu 0.39  0.75  0.05  1.38   1.02  0.55   1.93  1.91  1.45  1.46  

Gd 7.22  10.76  7.28  7.49   8.82  6.26   6.91  7.45  12.01  8.14  

Tb 1.31 1.77 1.55 1.16  1.31 0.99  0.95 1.09 1.8 1.13 

Dy 7.91 9.51 10.7 6.33  7.04 5.76  5.19 5.54 9.58 5.87 

Ho 1.6 1.89 2.32 1.29  1.35 1.16  0.93 1 1.82 1.19 

Er 4.82 5.54 6.85 3.78  4.01 3.72  2.55 2.78 5.2 2.92 

Tm 0.76 0.79 1.02 0.53  0.54 0.56  0.33 0.38 0.68 0.38 

Yb 5.02 4.97 6.78 3.57  3.47 3.81  2.25 2.66 4.25 2.4 

Lu 0.7 0.7 0.99 0.54  0.5 0.58  0.33 0.38 0.6 0.35 

Hf 5.21 7.8 6.29 11.8  5.78 6.06  4.87 6.17 10.9 8.98 

Ta 4.82 2.17 4.41 1.81  1.39 2.15  3.06 3.42 3.48 1.51 

W 8.62 1.29 2.78 23.8  2.9 2.96  3.05 4.43 1.83 1.78 

Tl 1.58 1.33 2.57 1.77  1.36 1.63  0.71 0.9 1.53 1.01 

Pb 32.6 34.7 54.4 43.8  35.9 31.8  23 25.5 31.4 32.8 

Bi 0.079 0.16 0.173 0.067  0.193 0.046  0.364 0.484 0.275 0.087 

Th 45.8 40.7 41.9 22.8  29.2 42  21.1 25.2 65.2 38.7 

U 12.30  8.40  14.84  5.64   5.95  10.15   8.02  9.00  19.93  5.26  

Sn 3.04 3.51 16.5 3.44  3.01 8.88  3.81 4.85 9.51 4.62 

∑REE 185 335 109 224  293 210  233 266 397 326 

Rb/Sr 9.00 6.56 117.22 3.84  4.77 6.74  0.35 0.48 1.93 1.63 

Zr/Hf 26.49 34.49 20.67 44.41  34.08 29.54  38.19 37.93 39.72 38.20 

Nb/Ta 6.97 11.80 7.87 14.64  13.09 10.51  12.29 11.55 13.53 16.75 

Th/U 3.72 4.85 2.82 4.04  4.91 4.14  2.63 2.80 3.27 7.36 

Zr+Nb+Ce+Y 292.00 491.30 269.10 680.30  383.00 326.70  352.00 422.20 707.10 549.80 

10000*Ga/Al 2.72 2.93 3.22 2.78  2.63 2.80  2.64 2.69 3.04 2.64 

Tzr(°C) 780 834 774 888   808 801   728 771 862 876 

Note: Abbreviations of lithology: C: coarse grained; M: medium grained; F: fine grained; H: 

hornblende; B: biotite; G: granite; E: enclave; D: diorite; A/CNK= [Al2O3 /(CaO+K2O+ Na2O)]in 

mole; FeOt= (FeO + Fe2O3 × 0.8998); FeOt#= FeOt /( FeOt+MgO); 

Tzr is calculated after Waston and Harrison, 1983.   
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Appendix table 2 Representative composition of amphibole from 

Qitianling, Jiuyishan, Guposhan and Huashan plutons 

  Qitianling 

Sample 38C 38C 38C 38C 38C 
 

14A 14A 14A 14A 14A 

SiO2 43.58 43.15 43.51 43.21 43.31 
 

40.73 43.46 43.49 43.94 42.52 

TiO2 1.85 2.03 1.81 2.00 1.97 
 

0.67 1.78 1.96 1.87 1.60 

Al2O3 7.44 7.18 7.35 7.43 7.40 
 

8.59 7.53 7.34 7.11 7.84 

FeO 24.52 23.99 24.55 25.14 24.94 
 

28.47 23.67 23.09 22.42 25.85 

MnO 0.25 0.21 0.24 0.18 0.26  0.23 0.24 0.17 0.18 0.30 

MgO 6.53 6.82 6.57 6.51 6.41 
 

4.27 7.42 7.74 8.30 5.89 

CaO 10.88 10.64 10.84 11.09 10.77 
 

11.10 10.72 10.47 10.55 10.64 

Na2O 1.99 1.81 1.92 1.77 1.86 
 

1.75 2.04 2.05 1.84 1.99 

K2O 1.23 1.26 1.22 1.17 1.21 
 

1.60 1.15 1.15 1.18 1.28 

F 0.34 0.35 0.35 0.31 0.35 
 

0.40 0.57 0.63 0.57 0.47 

Cl 0.19 0.17 0.18 0.17 0.17  1.44 0.27 0.20 0.16 0.40 

Total 98.80 97.59 98.53 98.97 98.65 
 

99.25 98.86 98.30 98.13 98.78 

O=F,Cl 0.19 0.19 0.19 0.17 0.19 
 

0.49 0.30 0.31 0.28 0.29 

Total 98.61 97.40 98.35 98.80 98.47 
 

98.75 98.56 97.98 97.85 98.50 

Based on 23 Oxygen 

Si 6.729 6.714 6.728 6.660 6.691 
 

6.479 6.668 6.682 6.720 6.610 

Al iv 1.271 1.286 1.272 1.340 1.309  1.521 1.332 1.318 1.280 1.390 

Al vi 0.084 0.030 0.067 0.009 0.038 
 

0.089 0.029 0.012 0.001 0.047 

Ti 0.214 0.237 0.211 0.232 0.228 
 

0.080 0.206 0.226 0.216 0.188 

Fe3+ 0.321 0.439 0.378 0.449 0.455 
 

0.624 0.533 0.570 0.617 0.569 

Fe2+ 2.845 2.683 2.797 2.792 2.767 
 

3.164 2.504 2.398 2.250 2.792 

Mn 0.033 0.027 0.032 0.024 0.034 
 

0.031 0.032 0.022 0.024 0.039 

Mg 1.503 1.582 1.515 1.496 1.477  1.012 1.696 1.773 1.892 1.366 

Ca 1.800 1.773 1.795 1.831 1.782 
 

1.892 1.763 1.723 1.728 1.773 

Na 0.595 0.545 0.575 0.528 0.557 
 

0.538 0.607 0.611 0.545 0.599 

K 0.242 0.250 0.241 0.229 0.239 
 

0.324 0.226 0.226 0.231 0.255 

Total 15.64 15.57 15.61 15.59 15.58 
 

15.75 15.60 15.56 15.50 15.63 

Mg# 0.35 0.37 0.35 0.35 0.35 
 

0.24 0.40 0.43 0.46 0.33 

Fe# 0.68 0.66 0.67 0.68 0.68  0.79 0.64 0.62 0.60 0.71 

Al 1.35  1.32  1.34  1.35  1.35    1.61  1.36  1.33  1.28  1.44  

  Qitianling 

Sample 13 13 13 13 13 
 

SC14

52 

SC14

52 

SC14

52 

SC14

52 

SC14

52 

SiO2 42.55 41.69 42.15 42.54 42.61 
 

41.46 42.12 43.29 42.83 42.49 

TiO2 1.36 1.86 1.28 1.67 1.51 
 

0.84 2.02 2.00 1.81 1.87 

Al2O3 6.79 7.53 7.09 6.90 7.01 
 

8.34 7.68 7.72 7.89 7.90 

FeO 27.19 25.47 26.34 26.76 24.32 
 

25.94 23.39 20.77 21.02 21.75 
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MnO 0.31 0.38 0.40 0.32 0.34 
 

0.50 0.77 0.38 0.41 0.48 

MgO 4.44 5.13 5.00 4.78 6.46 
 

5.41 6.18 8.19 7.76 7.55 

CaO 10.62 10.67 10.62 10.37 10.48  10.79 10.59 10.79 10.67 10.66 

Na2O 2.02 2.39 2.16 2.10 2.26 
 

1.99 2.00 2.11 1.99 2.09 

K2O 1.18 1.14 1.21 1.18 1.23 
 

1.42 1.26 1.37 1.30 1.31 

F 0.78 0.86 0.88 0.81 1.06 
 

1.71 1.79 1.65 2.41 2.27 

Cl 0.36 0.22 0.30 0.20 0.14 
      

Total 97.60 97.34 97.43 97.64 97.40 
 

98.40 97.79 98.27 98.08 98.36 

O=F,Cl 0.41 0.41 0.44 0.39 0.48  0.72 0.76 0.69 1.01 0.96 

Total 97.19 96.93 96.99 97.25 96.93 
 

97.68 97.04 97.58 97.06 97.40 

Based on 23 Oxygen 

Si 6.813 6.672 6.741 6.768 6.734 
 

6.564 6.668 6.715 6.709 6.651 

Al iv 1.187 1.328 1.259 1.232 1.266 
 

1.436 1.332 1.285 1.291 1.349 

Al vi 0.093 0.092 0.077 0.063 0.039 
 

0.121 0.102 0.127 0.167 0.109 

Ti 0.164 0.224 0.154 0.200 0.179  0.100 0.240 0.234 0.213 0.220 

Fe3+ 0.255 0.154 0.319 0.347 0.377 
 

0.557 0.288 0.196 0.252 0.330 

Fe2+ 3.386 3.253 3.204 3.213 2.838 
 

2.878 2.809 2.498 2.503 2.517 

Mn 0.042 0.051 0.055 0.043 0.045 
 

0.067 0.103 0.050 0.054 0.064 

Mg 1.060 1.224 1.192 1.134 1.522 
 

1.278 1.458 1.895 1.811 1.761 

Ca 1.822 1.829 1.820 1.768 1.775 
 

1.830 1.797 1.794 1.791 1.788 

Na 0.626 0.742 0.668 0.648 0.693  0.610 0.614 0.634 0.604 0.634 

K 0.242 0.233 0.247 0.238 0.247 
 

0.287 0.254 0.272 0.260 0.261 

Total 15.69 15.80 15.74 15.65 15.72 
 

15.73 15.66 15.70 15.66 15.68 

Mg# 0.24 0.27 0.27 0.26 0.35 
 

0.31 0.34 0.43 0.42 0.41 

Fe# 0.77 0.73 0.75 0.76 0.68 
 

0.73 0.68 0.59 0.60 0.62 

Al 1.28  1.42  1.34  1.29  1.30    1.56  1.43  1.41  1.46  1.46  

  Qitianling 

Sample 

SC14

42 

SC14

42 

SC14

42 

SC14

42 

SC14

42 
 

SC14

62 

SC14

62 

SC14

62 

SC14

62 

SC14

62 

SiO2 42.25 42.62 42.02 42.82 42.56  43.01 43.26 43.22 42.48 43.44 

TiO2 1.78 1.82 2.08 1.85 1.85 
 

1.04 0.72 1.17 1.88 1.11 

Al2O3 8.18 7.46 7.50 7.77 7.65 
 

7.28 6.84 7.67 7.81 7.51 

FeO 23.44 23.94 23.46 22.30 22.79 
 

23.81 24.94 22.75 22.31 22.79 

MnO 0.44 0.50 0.56 0.47 0.42 
 

0.78 0.67 0.77 0.63 0.45 

MgO 6.23 6.81 6.60 7.28 7.31 
 

6.28 6.36 7.26 7.04 6.55 

CaO 10.47 10.67 10.44 10.64 10.74  10.84 10.89 10.80 10.77 10.87 

Na2O 2.02 1.85 1.88 1.80 1.88 
 

1.88 1.79 1.88 1.96 1.87 

K2O 1.29 1.10 1.31 1.28 1.14 
 

1.19 1.19 1.33 1.37 1.23 

F 1.54 0.99 1.42 1.43 1.25 
 

2.26 1.36 2.08 2.05 1.88 

Cl 
           

Total 97.63 97.74 97.28 97.63 97.60 
 

98.37 98.03 98.93 98.32 97.71 

O=F,Cl 0.65 0.42 0.60 0.60 0.53  0.95 0.57 0.88 0.86 0.79 
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Total 96.98 97.32 96.68 97.03 97.07 
 

97.41 97.45 98.05 97.45 96.91 

Based on 23 Oxygen 

Si 6.658 6.645 6.633 6.685 6.643  6.793 6.794 6.718 6.671 6.858 

Al iv 1.342 1.355 1.367 1.315 1.357 
 

1.207 1.206 1.282 1.329 1.142 

Al vi 0.178 0.017 0.028 0.115 0.051 
 

0.148 0.061 0.124 0.115 0.256 

Ti 0.211 0.214 0.247 0.218 0.217 
 

0.124 0.085 0.136 0.222 0.132 

Fe3+ 0.331 0.569 0.473 0.405 0.483 
 

0.329 0.523 0.458 0.273 0.125 

Fe2+ 2.758 2.553 2.623 2.507 2.491 
 

2.816 2.752 2.499 2.657 2.884 

Mn 0.059 0.066 0.075 0.061 0.056  0.104 0.089 0.101 0.084 0.060 

Mg 1.463 1.582 1.554 1.693 1.702 
 

1.479 1.490 1.682 1.649 1.542 

Ca 1.768 1.782 1.766 1.779 1.797 
 

1.834 1.833 1.798 1.812 1.838 

Na 0.617 0.558 0.577 0.545 0.569 
 

0.575 0.546 0.567 0.598 0.573 

K 0.259 0.219 0.264 0.255 0.227 
 

0.241 0.239 0.265 0.275 0.248 

Total 15.64 15.56 15.61 15.58 15.59 
 

15.65 15.62 15.63 15.68 15.66 

Mg# 0.35 0.38 0.37 0.40 0.41  0.34 0.35 0.40 0.38 0.35 

Fe# 0.68 0.66 0.66 0.63 0.63 
 

0.68 0.68 0.63 0.64 0.66 

Al 1.52  1.37  1.40  1.43  1.41    1.36  1.27  1.41  1.44  1.40  

  Jiuyishan   Huashan 

Sample 162 162 162 162 162 
 

176A 176A 176A 176A 176A 

SiO2 40.94 40.72 40.74 41.71 41.96 
 

40.15 40.00 40.48 40.17 40.02 

TiO2 1.53 1.22 1.53 1.61 1.49 
 

1.08 1.14 1.43 1.11 0.87 

Al2O3 8.22 8.19 8.25 7.72 7.61 
 

9.65 9.58 8.71 9.52 9.41 

FeO 24.49 25.21 24.94 24.56 24.16 
 

26.78 27.37 27.27 27.15 27.09 

MnO 0.79 0.66 0.63 0.59 0.75  0.71 0.70 0.71 0.65 0.67 

MgO 6.28 6.42 6.42 6.30 6.74 
 

4.44 4.08 4.41 4.50 4.38 

CaO 11.18 10.81 10.87 10.83 10.84 
 

11.47 11.59 11.37 11.39 11.70 

Na2O 1.89 1.80 1.89 1.88 1.89 
 

2.14 1.75 2.06 2.10 1.94 

K2O 0.98 0.97 1.10 0.99 0.84 
 

1.37 1.22 1.16 1.36 1.33 

F 1.15 1.12 0.96 0.78 1.06 
 

0.79 0.32 0.61 0.75 0.37 

Cl 0.19 0.20 0.13 0.18 0.14  0.15 0.18 0.36 0.16 0.16 

Total 97.63 97.32 97.44 97.16 97.47 
 

98.73 97.91 98.56 98.85 97.93 

O=F,Cl 0.53 0.52 0.43 0.37 0.48 
 

0.37 0.17 0.34 0.35 0.19 

Total 97.10 96.80 97.01 96.79 97.00 
 

98.37 97.74 98.22 98.50 97.74 

Based on 23 Oxygen 

Si 6.467 6.416 6.414 6.576 6.576 
 

6.370 6.365 6.432 6.353 6.382 

Al iv 1.531 1.521 1.530 1.424 1.406  1.630 1.635 1.568 1.647 1.618 

Al vi 0.000 0.000 0.000 0.010 0.000 
 

0.175 0.162 0.064 0.128 0.151 

Ti 0.181 0.145 0.182 0.191 0.176 
 

0.129 0.136 0.171 0.132 0.104 

Fe3+ 0.614 0.964 0.816 0.597 0.706 
 

0.361 0.465 0.422 0.476 0.389 

Fe2+ 2.621 2.359 2.469 2.642 2.460 
 

3.192 3.176 3.202 3.115 3.225 

Mn 0.106 0.088 0.084 0.079 0.100 
 

0.095 0.094 0.096 0.087 0.090 

Mg 1.479 1.508 1.506 1.481 1.575  1.049 0.967 1.045 1.062 1.041 
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Ca 1.892 1.824 1.833 1.830 1.821 
 

1.950 1.975 1.936 1.930 1.999 

Na 0.577 0.550 0.576 0.575 0.574 
 

0.659 0.539 0.634 0.644 0.601 

K 0.197 0.196 0.221 0.200 0.168  0.278 0.247 0.235 0.273 0.271 

Total 15.67 15.57 15.63 15.60 15.56 
 

15.89 15.76 15.80 15.85 15.87 

Mg# 0.36 0.39 0.38 0.36 0.39 
 

0.25 0.23 0.25 0.25 0.24 

Fe# 0.69 0.69 0.69 0.69 0.67 
 

0.77 0.79 0.78 0.77 0.78 

Al 1.53  1.52  1.53  1.43  1.41    1.80  1.80  1.63  1.77  1.77  

  Guposhan 

Sample 182 182 182 182 182 
 

183 183 183 183 183 

SiO2 42.21 42.96 42.32 41.73 41.52 
 

41.06 42.38 41.78 42.52 42.84 

TiO2 1.67 1.52 1.48 1.67 1.69 
 

1.61 1.55 1.63 1.50 1.62 

Al2O3 8.50 7.73 7.84 8.85 8.18  8.18 7.77 8.01 7.17 7.48 

FeO 24.75 24.43 24.13 24.45 24.58 
 

24.93 25.46 24.92 24.76 24.67 

MnO 0.85 0.80 0.79 0.81 0.80 
 

0.84 0.89 0.87 0.88 0.92 

MgO 6.19 6.46 6.43 5.92 6.28 
 

5.66 5.88 5.81 6.30 6.27 

CaO 11.10 11.38 11.52 10.82 11.04 
 

10.77 10.44 10.21 10.27 10.29 

Na2O 2.05 1.95 2.00 1.95 2.03 
 

2.13 1.93 1.99 2.00 2.04 

K2O 0.98 0.96 0.96 1.08 1.02  1.06 1.02 0.97 0.85 0.91 

F 0.52 0.44 0.37 0.29 0.39 
 

0.32 0.42 0.40 0.50 0.54 

Cl 0.35 0.25 0.25 0.28 0.33 
 

0.27 0.28 0.29 0.24 0.23 

Total 99.17 98.89 98.08 97.84 97.84 
 

96.82 98.03 96.89 96.97 97.79 

O=F,Cl 0.30 0.24 0.21 0.18 0.24 
 

0.19 0.24 0.23 0.27 0.28 

Total 98.87 98.65 97.87 97.65 97.61 
 

96.62 97.79 96.66 96.71 97.51 

Based on 23 Oxygen 

Si 6.523 6.652 6.621 6.507 6.502 
 

6.518 6.597 6.568 6.665 6.660 

Al iv 1.477 1.348 1.379 1.493 1.498 
 

1.482 1.403 1.432 1.324 1.340 

Al vi 0.071 0.063 0.066 0.134 0.011 
 

0.048 0.023 0.052 0.000 0.030 

Ti 0.194 0.177 0.174 0.196 0.199 
 

0.192 0.181 0.193 0.177 0.189 

Fe3+ 0.534 0.377 0.307 0.551 0.566 
 

0.517 0.749 0.752 0.767 0.710 

Fe2+ 2.664 2.785 2.850 2.637 2.653  2.793 2.565 2.525 2.479 2.498 

Mn 0.111 0.105 0.105 0.107 0.106 
 

0.112 0.117 0.116 0.117 0.120 

Mg 1.426 1.492 1.499 1.376 1.467 
 

1.338 1.365 1.363 1.472 1.452 

Ca 1.838 1.888 1.930 1.808 1.852 
 

1.831 1.741 1.720 1.725 1.714 

Na 0.614 0.586 0.607 0.588 0.617 
 

0.656 0.583 0.607 0.607 0.614 

K 0.194 0.190 0.192 0.214 0.204 
 

0.214 0.203 0.195 0.169 0.179 

Total 15.65 15.66 15.73 15.61 15.67  15.70 15.53 15.52 15.50 15.51 

Mg# 0.35 0.35 0.34 0.34 0.36 
 

0.32 0.35 0.35 0.37 0.37 

Fe# 0.69 0.68 0.68 0.70 0.69 
 

0.71 0.71 0.71 0.69 0.69 

Al 1.55  1.41  1.44  1.63  1.51    1.53  1.43  1.48  1.32  1.37  

Mg#=Mg/(Mg+Fe2+); Fe#=Fetot/(Fetot+Mg); Altot= Al iv+ Al vi 
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Appendix table 3 Representative composition of feldspars from Qitianling pluton 

 38C 38C 38C 38C 38C 38C 38C 38C 38C 38C 
 Pl Pl Pl Pl Pl Pl Pl Pl Pl Pl 

SiO2 61.15 62.58 61.31 61.50 60.41 60.43 60.27 64.10 59.14 58.37 

Al2O3 24.91 23.98 25.13 24.86 25.61 25.41 25.65 23.91 26.31 26.87 

FeO 0.16 0.10 0.15 0.16 0.19 0.24 0.17 0.17 0.25 0.16 

MnO 0.01 0.00 0.00 0.02 0.00 0.01 0.00 0.03 0.01 0.03 

MgO 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.01 

CaO 6.08 5.25 6.10 5.57 6.89 6.73 6.86 4.42 7.87 8.42 

Na2O 8.10 8.61 8.02 8.11 7.52 7.70 7.73 8.68 6.89 6.82 

K2O 0.38 0.51 0.33 0.27 0.44 0.43 0.39 0.37 0.45 0.27 

Total 100.78 101.02 101.04 100.48 101.08 100.95 101.08 101.71 100.92 100.96 

Cations per 16 oxygens 

Si 5.403 5.503 5.399 5.434 5.334 5.343 5.324 5.574 5.245 5.183 

Al 2.595 2.486 2.608 2.589 2.665 2.649 2.671 2.451 2.750 2.812 

Fe 0.012 0.007 0.011 0.012 0.014 0.018 0.013 0.012 0.018 0.012 

Ca 0.575 0.494 0.576 0.527 0.652 0.637 0.649 0.412 0.747 0.801 

Na 1.387 1.468 1.370 1.390 1.288 1.321 1.325 1.464 1.185 1.175 

K 0.042 0.057 0.037 0.031 0.050 0.049 0.043 0.041 0.051 0.030 

Total 10.014 10.016 10.000 9.982 10.003 10.017 10.025 9.954 9.997 10.013 

Ca+Na+K 2.005 2.019 1.983 1.948 1.990 2.007 2.017 1.917 1.983 2.006 
           

Ab 69 73 69 71 65 66 66 76 60 59 

An 29 24 29 27 33 32 32 21 38 40 
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Or 2 3 2 2 3 2 2 2 3 2 

 14 14 14 14 14 14 14 14 14 14 
 Pl Pl Pl Pl Pl Kfs Kfs Kfs Kfs Kfs 

SiO2 60.36 59.27 59.25 59.25 62.40 66.59 65.44 63.70 64.41 66.77 

Al2O3 24.40 24.49 24.86 24.86 22.79 18.16 19.14 18.36 18.69 18.68 

FeO 0.34 0.18 0.05 0.05 0.04 0.34 0.52 2.96 0.78 0.26 

MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 

MgO 0.01 0.03 0.02 0.02 0.01 0.17 0.13 0.06 0.02 0.00 

CaO 7.11 6.76 7.03 7.03 4.98 0.69 0.90 0.57 0.55 0.14 

Na2O 7.37 7.77 7.58 7.58 8.64 1.76 1.71 1.52 1.53 1.68 

K2O 0.31 0.26 0.31 0.31 0.43 12.65 13.41 13.15 12.99 14.75 

Total           

Cations per 16 oxygens 

Si 5.392 5.360 5.338 5.338 5.574 6.051 5.938 5.898 5.961 6.003 

Al 2.570 2.610 2.641 2.641 2.400 1.945 2.047 2.004 2.039 1.980 

Fe 0.026 0.013 0.004 0.004 0.003 0.026 0.039 0.229 0.060 0.019 

Ca 0.681 0.655 0.679 0.679 0.477 0.067 0.087 0.056 0.054 0.013 

Na 1.276 1.362 1.323 1.323 1.496 0.309 0.302 0.273 0.274 0.292 

K 0.035 0.030 0.035 0.035 0.049 1.466 1.552 1.553 1.534 1.692 

Total 9.979 10.031 10.021 10.021 9.999 9.864 9.965 10.013 9.923 9.999 

Ca+Na+K 1.992 2.047 2.038 2.038 2.022 1.843 1.941 1.882 1.862 1.998 
           

Ab 64 67 65 65 55 17 16 15 15 15 

An 34 32 33 33 43 4 4 3 3 1 

Or 2 1 2 2 2 80 80 82 82 85 

 13 13 13 13 13 13 13 13 13 13 
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 Pl Pl Pl Pl Pl Pl Pl Pl Kfs Kfs 

SiO2 61.16 59.96 60.15 62.81 62.49 60.31 63.78 60.85 67.08 65.70 

Al2O3 24.35 24.15 24.36 22.84 22.56 24.46 21.72 24.07 18.61 19.44 

FeO 0.14 0.19 0.03 0.24 0.18 0.36 0.04 0.00 0.43 0.40 

MnO 0.06 0.21 0.00 0.00 0.00 0.01 0.02 0.06 0.00 0.00 

MgO 0.01 0.00 0.00 0.04 0.00 0.00 0.00 0.01 0.00 0.01 

CaO 6.53 7.06 6.86 5.42 5.32 6.67 4.50 6.77 0.30 1.27 

Na2O 7.58 7.10 7.32 7.80 8.09 7.48 9.00 7.22 1.93 2.23 

K2O 0.37 0.41 0.31 0.42 0.54 0.24 0.58 0.41 13.44 11.67 

Total           

Cations per 16 oxygens 

Si 5.434 5.406 5.406 5.588 5.589 5.399 5.672 5.446 6.024 5.936 

Al 2.550 2.566 2.580 2.395 2.378 2.581 2.277 2.539 1.970 2.070 

Fe 0.010 0.014 0.002 0.018 0.014 0.027 0.003 0.000 0.032 0.031 

Ca 0.622 0.682 0.661 0.517 0.510 0.639 0.429 0.649 0.029 0.123 

Na 1.306 1.241 1.276 1.345 1.403 1.299 1.553 1.254 0.336 0.390 

K 0.042 0.047 0.035 0.047 0.061 0.027 0.066 0.047 1.540 1.345 

Total 9.965 9.955 9.960 9.910 9.954 9.973 9.999 9.935 9.929 9.896 

Ca+Na+K 1.970 1.969 1.972 1.909 1.974 1.966 2.047 1.950 1.904 1.859 
           

Ab 66 63 65 70 71 66 76 64 18 21 

An 32 35 34 27 26 33 21 33 2 7 

Or 2 2 2 2 3 1 3 2 81 72 
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Appendix table 4 Representative composition of biotite from Qitianling, 

Jiuyishan, Guposhan and Huashan plutons 

 

 
Qitianling 

Sample 38C 38C 38C 38C 38C 
 

14A 14A 14A 14A 14A 

SiO2 36.67 36.05 36.48 36.48 36.37 
 

36.49 36.20 37.59 36.79 36.42 

TiO2 4.57 4.16 4.21 4.52 3.60 
 

4.51 4.50 4.45 4.41 4.94 

Al2O3 11.36 11.46 11.61 11.47 11.72 
 

11.24 10.79 11.28 11.25 11.35 

FeO 26.79 26.37 27.23 26.92 27.43  27.05 26.62 26.65 26.99 27.81 

MnO 0.11 0.14 0.11 0.13 0.13 
 

0.12 0.17 0.13 0.13 0.11 

MgO 7.54 7.75 7.40 7.63 7.94 
 

7.21 7.34 7.55 7.19 6.39 

CaO 0.00 0.00 0.00 0.00 0.00 
 

0.00 0.04 0.00 0.00 0.02 

Na2O 0.17 0.15 0.14 0.16 0.10 
 

0.15 0.12 0.11 0.07 0.13 

K2O 9.21 9.28 9.09 9.38 9.43 
 

9.06 8.88 8.85 8.75 8.69 

F 0.21 0.20 0.19 0.19 0.19  0.45 0.45 0.41 0.39 0.52 

Cl 0.61 0.59 0.44 0.57 0.28 
 

0.62 0.57 0.54 0.47 0.27 

O=F,Cl 0.22 0.22 0.18 0.21 0.14 
 

0.33 0.32 0.29 0.27 0.28 

Total 97.00 95.91 96.72 97.23 97.04 
 

96.57 95.37 97.27 96.17 96.35 

Based on 22 Oxygen 

Si 5.712 5.615 5.682 5.682 5.666 
 

5.684 5.639 5.856 5.731 5.673 

Al iv 2.086 2.129 2.140 2.105 2.159  2.067 2.008 2.046 2.071 2.090 

Al vi 0.000 0.000 0.000 0.000 0.000 
 

0.000 0.000 0.000 0.000 0.000 

Ti 0.535 0.493 0.495 0.529 0.423 
 

0.529 0.535 0.515 0.518 0.581 

Fe2+ 3.490 3.477 3.563 3.507 3.586 
 

3.530 3.514 3.429 3.526 3.635 

Mn 0.015 0.018 0.015 0.018 0.017 
 

0.016 0.023 0.017 0.017 0.014 

Mg 1.751 1.822 1.725 1.771 1.850 
 

1.678 1.727 1.732 1.675 1.488 

Ca 0.000 0.000 0.000 0.000 0.001  0.000 0.007 0.000 0.000 0.003 

Na 0.050 0.045 0.044 0.047 0.030 
 

0.045 0.038 0.033 0.022 0.038 

K 1.830 1.866 1.815 1.865 1.880 
 

1.803 1.789 1.737 1.745 1.733 

Cl 0.160 0.158 0.116 0.150 0.073 
 

0.165 0.152 0.140 0.125 0.071 

F 0.102 0.100 0.093 0.094 0.094 
 

0.223 0.227 0.200 0.194 0.256 

Total 15.47 15.47 15.48 15.52 15.61 
 

15.35 15.28 15.37 15.31 15.26 

Fe# 0.67 0.66 0.67 0.66 0.66   0.68 0.67 0.66 0.68 0.71 

 
Qitianling 

Sample 13 13 13 13 13 
 

4 4 4 4 4 

SiO2 36.72 36.71 36.21 36.01 36.17  35.34 35.87 35.13 36.15 35.57 

TiO2 4.26 4.06 3.94 3.77 3.77 
 

2.70 2.91 3.13 2.94 2.98 

Al2O3 13.23 13.08 13.24 13.08 13.34 
 

15.13 14.84 15.12 15.17 14.84 

FeO 28.22 27.64 27.09 27.25 27.20 
 

28.98 28.50 27.38 28.14 29.17 

MnO 0.12 0.13 0.17 0.13 0.15 
 

0.48 0.47 0.46 0.52 0.57 
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MgO 5.75 5.78 6.25 5.88 6.05 
 

2.61 2.82 2.77 2.71 2.73 

CaO 0.00 0.00 0.00 0.00 0.00 
 

0.00 0.02 0.00 0.00 0.04 

Na2O 0.10 0.10 0.12 0.13 0.14  0.16 0.11 0.13 0.10 0.15 

K2O 8.81 8.89 8.89 8.84 8.68 
 

8.89 9.32 9.44 9.06 8.70 

F 0.46 0.52 0.43 0.46 0.37 
 

0.84 0.99 1.20 0.66 0.68 

Cl 0.80 0.74 1.31 1.10 1.17 
 

0.31 0.36 0.35 0.30 0.30 

O=F,Cl 0.37 0.39 0.47 0.44 0.42 
 

0.42 0.50 0.58 0.34 0.35 

Total 98.09 97.27 97.17 96.21 96.62 
 

95.00 95.72 94.52 95.39 95.36 

Based on 22 Oxygen 

Si 5.719 5.719 5.641 5.610 5.634 
 

5.504 5.588 5.473 5.632 5.540 

Al iv 2.281 2.281 2.359 2.390 2.366 
 

2.496 2.412 2.527 2.368 2.460 

Al vi 0.112 0.098 0.057 0.021 0.081 
 

0.331 0.329 0.286 0.446 0.309 

Ti 0.492 0.471 0.459 0.444 0.442 
 

0.322 0.343 0.372 0.348 0.355 

Fe2+ 3.622 3.568 3.506 3.565 3.541 
 

3.843 3.737 3.614 3.705 3.863 

Mn 0.016 0.017 0.022 0.017 0.019  0.064 0.062 0.061 0.069 0.077 

Mg 1.316 1.329 1.442 1.372 1.404 
 

0.617 0.660 0.652 0.635 0.644 

Ca 0.000 0.000 0.000 0.001 0.000 
 

0.000 0.004 0.000 0.000 0.006 

Na 0.031 0.031 0.035 0.040 0.043 
 

0.049 0.034 0.039 0.031 0.046 

K 1.725 1.751 1.756 1.764 1.723 
 

1.798 1.865 1.901 1.818 1.758 

Cl 0.208 0.192 0.343 0.291 0.309 
 

0.095 0.113 0.115 0.100 0.105 

F 0.221 0.255 0.208 0.225 0.183  0.479 0.582 0.735 0.418 0.450 

Total 15.31 15.27 15.28 15.22 15.25 
 

15.02 15.03 14.92 15.05 15.06 

Fe# 0.73 0.73 0.71 0.72 0.72   0.86 0.85 0.85 0.85 0.86 

 
Jiuyishan 

 
Huashan 

Sample 162 162 162 162 162 
 

176A 176A 176A 176A 176A 

SiO2 35.85 35.33 35.54 34.96 35.27 
 

35.70 35.64 35.64 35.61 35.07 

TiO2 3.78 4.23 4.40 4.23 4.36 
 

2.89 3.39 3.53 3.74 3.80 

Al2O3 12.02 12.07 11.82 11.91 11.82 
 

13.58 13.16 13.89 13.47 13.49 

FeO 26.76 27.27 26.48 26.47 27.20 
 

28.80 28.57 27.95 29.00 29.12 

MnO 0.43 0.70 0.58 0.79 0.59  0.38 0.40 0.35 0.39 0.44 

MgO 7.71 7.35 7.31 7.36 7.45 
 

6.37 6.24 6.08 5.93 5.71 

CaO 0.02 0.00 0.00 0.00 0.01 
 

0.07 0.06 0.07 0.03 0.00 

Na2O 0.18 0.15 0.17 0.20 0.20 
 

0.17 0.22 0.25 0.29 0.10 

K2O 7.68 7.58 7.69 7.73 7.39 
 

8.79 8.73 8.79 8.64 8.99 

F 1.30 1.04 1.34 0.81 1.06 
 

0.55 0.73 0.51 0.87 0.86 

Cl 0.12 0.09 0.07 0.10 0.13  0.17 0.16 0.18 0.22 0.19 

O=F,Cl 0.58 0.46 0.58 0.37 0.48 
 

0.27 0.34 0.26 0.42 0.41 

Total 95.29 95.35 94.81 94.20 95.00 
 

96.93 96.61 96.73 97.36 96.97 

Based on 22 Oxygen 

Si 5.097 5.023 5.052 4.970 5.015 
 

5.075 5.067 5.068 5.063 4.986 

Al iv 2.192 2.219 2.165 2.223 2.177 
 

2.490 2.412 2.544 2.445 2.469 

Al vi 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 
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Ti 0.440 0.496 0.514 0.504 0.513 
 

0.338 0.396 0.412 0.433 0.444 

Fe2+ 3.462 3.556 3.443 3.506 3.556 
 

3.748 3.715 3.632 3.734 3.781 

Mn 0.056 0.092 0.076 0.106 0.078  0.050 0.052 0.046 0.050 0.058 

Mg 1.777 1.708 1.694 1.739 1.735 
 

1.478 1.446 1.408 1.362 1.322 

Ca 0.003 0.000 0.000 0.000 0.001 
 

0.012 0.011 0.011 0.005 0.000 

Na 0.055 0.044 0.052 0.063 0.059 
 

0.051 0.066 0.075 0.086 0.031 

K 1.515 1.508 1.525 1.562 1.474 
 

1.745 1.732 1.743 1.698 1.782 

Cl 0.031 0.024 0.019 0.028 0.035 
 

0.044 0.042 0.048 0.057 0.049 

F 0.638 0.514 0.661 0.408 0.525  0.270 0.361 0.252 0.425 0.424 

Total 14.60 14.65 14.52 14.67 14.61 
 

14.99 14.90 14.94 14.88 14.87 

Fe# 0.66 0.68 0.67 0.67 0.67   0.72 0.72 0.72 0.73 0.74 

 
Guposhan 

Sample 182 182 182 182 182 
 

183 183 183 183 183 

SiO2 35.59 36.43 35.68 35.80 35.52 
 

35.51 36.06 35.55 35.86 35.76 

TiO2 3.85 3.46 4.32 4.50 4.05 
 

3.73 3.69 3.64 3.69 4.06 

Al2O3 13.39 13.36 13.43 13.90 13.59 
 

12.67 12.75 12.70 12.82 12.71 

FeO 26.57 26.28 26.65 26.07 25.91 
 

27.45 26.99 26.44 26.82 26.99 

MnO 0.34 0.36 0.46 0.45 0.41  0.46 0.48 0.48 0.48 0.49 

MgO 7.54 7.35 6.94 6.95 6.91 
 

6.83 7.29 6.87 7.05 6.85 

CaO 0.00 0.00 0.03 0.04 0.05 
 

0.01 0.00 0.00 0.00 0.00 

Na2O 0.06 0.05 0.17 0.13 0.13 
 

0.10 0.14 0.09 0.07 0.07 

K2O 9.07 8.70 8.45 8.35 8.49 
 

9.02 9.23 9.05 9.12 9.05 

F 0.64 0.59 0.66 0.51 0.51 
 

0.48 0.56 0.42 0.43 0.54 

Cl 0.17 0.15 0.17 0.14 0.13  0.12 0.13 0.13 0.11 0.14 

O=F,Cl 0.31 0.28 0.31 0.25 0.24 
 

0.23 0.26 0.20 0.21 0.26 

Total 96.59 96.17 96.33 96.33 95.20 
 

95.90 96.77 94.96 96.03 96.13 

Based on 22 Oxygen 

Si 5.060 5.180 5.073 5.090 5.050 
 

5.048 5.127 5.054 5.098 5.084 

Al iv 2.438 2.430 2.444 2.525 2.502 
 

2.345 2.329 2.367 2.363 2.337 

Al vi 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 

Ti 0.447 0.401 0.501 0.521 0.476 
 

0.440 0.430 0.433 0.434 0.477 

Fe2+ 3.433 3.392 3.442 3.362 3.386 
 

3.607 3.498 3.498 3.510 3.523 

Mn 0.044 0.048 0.061 0.059 0.054 
 

0.061 0.062 0.064 0.064 0.064 

Mg 1.736 1.692 1.599 1.597 1.609 
 

1.600 1.683 1.620 1.643 1.594 

Ca 0.000 0.000 0.005 0.006 0.008 
 

0.001 0.000 0.001 0.000 0.000 

Na 0.019 0.016 0.051 0.038 0.040  0.030 0.041 0.029 0.022 0.020 

K 1.787 1.714 1.665 1.643 1.692 
 

1.807 1.825 1.825 1.821 1.802 

Cl 0.045 0.040 0.044 0.038 0.033 
 

0.032 0.033 0.034 0.029 0.036 

F 0.310 0.288 0.320 0.246 0.252 
 

0.239 0.273 0.208 0.212 0.268 

Total 14.96 14.87 14.84 14.84 14.82 
 

14.94 15.00 14.89 14.95 14.90 

Fe# 0.66 0.67 0.68 0.68 0.68   0.69 0.68 0.68 0.68 0.69 

Fe#=Fetot/(Fetot+Mg) 
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Appendix table 5 Representative composition of titanite from Qitianling pluton 

  Phase-1   Phase-2   Phase-3   

n=29 

  

n=25 

  

n=14 

(wt.%)   Average SD Range     Average SD Range     Average SD Range 

SiO2 29.77 29.88 0.68 28.84-31.70 

 

30.38 30.25 0.60 29.06-32.49 

 

29.96 30.07 0.29 29.54-30.64 

TiO2 33.28 32.49 2.47 28.92-38.07 

 

30.33 30.61 0.78 28.82-31.9 

 

31.35 30.89 0.84 29.29-32.32 

Al2O3 2.39 3.33 1.16 2.16-7.75 

 

3.89 3.44 0.35 2.87-4.40 

 

2.86 3.41 0.39 2.86-4.34 

Fe2O3 2.06 2.12 0.67 0.68-3.18 

 

1.52 2.39 0.35 1.52-2.98 

 

2.21 2.41 0.52 1.81-3.38 

MnO 0.02 0.12 0.09 0.00-0.31 

 

0.00 0.08 0.09 0.00-0.28 

 

0.00 0.06 0.06 0.00-0.16 

MgO 0.02 0.03 0.03 0.00-0.11 

 

0.18 0.13 0.05 0.07-0.25 

 

0.09 0.10 0.03 0.04-0.15 

CaO 26.64 27.44 1.38 25.52-30.33 

 

27.05 27.26 0.32 26.49-27.8 

 

26.92 27.29 0.31 26.7-27.86 

Na2O 0.02 0.03 0.03 0.00-0.10 

 

0.04 0.05 0.03 0.00-0.12 

 

0.07 0.04 0.03 0.00-0.09 

K2O 0.00 0.01 0.02 0.00-0.09 

 

0.00 0.03 0.03 0.00-0.12 

 

0.00 0.02 0.03 0.00-0.11 

F 0.01 0.01 0.01 0.00-0.04 

 

0.00 0.01 0.01 0.00-0.03 

 

0.00 0.01 0.01 0.00-0.02 

Cl 1.47 0.83 0.80 0.41-2.92 

 

2.34 2.23 0.50 1.08-3.06 

 

1.75 1.82 0.46 1.30-2.89 

O=F,Cl 0.33 0.19 

   

0.53 0.51 

   

0.40 0.41 

  

Total 95.34 96.11       95.21 95.97       94.82 95.69     

Structural formula calculated based on Σ cations=3 

Si(apfu) 0.983 0.965 

   

0.994 0.983 

   

0.989 0.978 

  

Ti 0.827 0.789 

   

0.746 0.748 

   

0.779 0.756 

  

Al 0.093 0.126 

   

0.150 0.132 

   

0.111 0.131 

  

Fe3+ 0.051 0.052 

   

0.037 0.059 

   

0.055 0.059 

  

Mn 0.000 0.003 

   

0.000 0.002 

   

0.000 0.002 

  

Mg 0.001 0.001 

   

0.006 0.005 

   

0.003 0.003 

  

Ca 0.943 0.949 

   

0.948 0.950 

   

0.953 0.951 

  

Na 0.001 0.002 

   

0.002 0.003 

   

0.004 0.002 

  

K 0.000 0.001 

   

0.000 0.001 

   

0.000 0.001 

  

F 0.000 0.000 

   

0.000 0.000 

   

0.000 0.000 

  

Cl 0.041 0.023       0.066 0.063       0.049 0.051     
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Appendix table 6 LA-ICP-MS U-Pb data for zircon from Qitianling pluton 

 

No. 

  Compositions   Atomic rations     

Th(ppm) U(ppm) Th/U 
207Pb 

1σ 
206Pb 

1σ 
  t207/235 

1σ 
t206/238 

1σ 
235U 238U   (Ma) (Ma) 

QTL04: Fine grained biotite granite (25°32'36''N; 112°55'22''E) 

qtl04-01 278 598 0.46 0.16594 0.00753 0.0244 0.00046 
 

156 7 155 3 

qtl04-02 341 573 0.60 0.16545 0.00582 0.02462 0.00041 
 

155 5 157 3 

qtl04-03 270 524 0.51 0.16819 0.01217 0.02463 0.00064 
 

158 11 157 4 

qtl04-04 266 442 0.60 0.17072 0.01211 0.02471 0.00064 
 

160 11 157 4 

qtl04-05 275 444 0.62 0.16655 0.00787 0.02408 0.00046 
 

156 7 153 3 

qtl04-06 311 549 0.57 0.16748 0.00808 0.02442 0.00049 
 

157 7 156 3 

qtl04-07 219 363 0.60 0.16673 0.01335 0.02459 0.0007 
 

157 12 157 4 

qtl04-08 355 637 0.56 0.16656 0.00542 0.02426 0.00039 
 

156 5 155 2 

qtl04-09 282 491 0.57 0.17104 0.00911 0.02483 0.00071 
 

160 8 158 4 

qtl04-10 263 442 0.60 0.16608 0.00694 0.02469 0.00066 
 

156 6 157 4 

qtl04-11 554 667 0.83 0.16506 0.00747 0.02495 0.00068 
 

155 7 159 4 

qtl04-12 386 659 0.59 0.16124 0.00644 0.02436 0.00065 
 

152 6 155 4 

qtl04-13 382 631 0.60 0.16323 0.00705 0.0244 0.00066 
 

154 6 155 4 

qtl04-14 194 288 0.67 0.16627 0.00825 0.02447 0.00069 
 

156 7 156 4 

qtl04-15 319 550 0.58 0.15979 0.0068 0.02447 0.00066 
 

151 6 156 4 

qtl04-16 359 705 0.51 0.16018 0.00687 0.02441 0.00066 
 

151 6 155 4 

QTL10: Fine grained biotite granite (25°39'49''N; 112°54'46''E) 

qtl10-01 379 679 0.56 0.16635 0.00691 0.02465 0.00067 
 

156 6 157 4 

qtl10-02 303 607 0.50 0.15439 0.00918 0.02357 0.0007 
 

146 8 150 4 

qtl10-03 466 1921 0.24 0.17024 0.00846 0.02461 0.0007 
 

160 7 157 4 
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qtl10-04 314 692 0.45 0.16697 0.00779 0.02297 0.00064 
 

157 7 146 4 

qtl10-05 300 533 0.56 0.16838 0.00714 0.02443 0.00066 
 

158 6 156 4 

qtl10-06 309 867 0.36 0.16454 0.00778 0.02419 0.00067 
 

155 7 154 4 

qtl10-07 264 419 0.63 0.16082 0.00913 0.02382 0.00069 
 

151 8 152 4 

qtl10-08 179 342 0.52 0.16736 0.01066 0.02407 0.00073 
 

157 9 153 5 

qtl10-09 332 616 0.54 0.1628 0.00638 0.02444 0.00064 
 

153 6 156 4 

qtl10-10 264 501 0.53 0.16781 0.00685 0.0248 0.00065 
 

158 6 158 4 

qtl10-11 294 400 0.74 0.16943 0.00936 0.02436 0.00071 
 

159 8 155 4 

qtl10-12 281 845 0.33 0.15388 0.00616 0.0229 0.00061 
 

145 5 146 4 

qtl10-13 227 390 0.58 0.16556 0.00778 0.02434 0.00067 
 

156 7 155 4 

qtl10-14 323 791 0.41 0.16015 0.00654 0.02279 0.00061   151 6 145 4 

QTL21B: Coarse-medium grained biotite granite (25°27'09'N; 112°47'59''E) 

qtl-21b-01 364 573 0.64 0.16616 0.00604 0.02474 0.00065 
 

156 5 158 4 

qtl-21b-02 358 607 0.59 0.17168 0.00641 0.02459 0.00065 
 

161 6 157 4 

qtl-21b-03 349 598 0.58 0.167 0.0063 0.02458 0.00065 
 

157 5 157 4 

qtl-21b-04 342 526 0.65 0.1649 0.00693 0.02471 0.00067 
 

155 6 157 4 

qtl-21b-05 281 722 0.39 0.16913 0.00591 0.02444 0.00064 
 

159 5 156 4 

qtl-21b-06 368 593 0.62 0.16731 0.00654 0.02441 0.00066 
 

157 6 155 4 

qtl-21b-07 330 541 0.61 0.17028 0.00661 0.02443 0.00066 
 

160 6 156 4 

qtl-21b-08 256 381 0.67 0.16463 0.007 0.02476 0.00067 
 

155 6 158 4 

qtl-21b-09 207 300 0.69 0.16705 0.00818 0.02464 0.00069 
 

157 7 157 4 

qtl-21b-10 359 537 0.67 0.16092 0.00925 0.02418 0.00071 
 

152 8 154 4 

qtl-21b-11 167 254 0.66 0.15935 0.01033 0.02432 0.00074 
 

150 9 155 5 

qtl-21b-12 217 509 0.43 0.15908 0.00657 0.02448 0.00065 
 

150 6 156 4 

qtl-21b-13 311 498 0.62 0.16717 0.00724 0.02393 0.00064 
 

157 6 152 4 

qtl-21b-14 259 413 0.63 0.15984 0.00757 0.02444 0.00067   151 7 156 4 

QTL25: Medium grained biotite granite (25°27'27''N; 112°51'20''E) 

qtl-25-01 237 420 0.57 0.02419 0.00063 0.00799 0.00083 
 

153 6 154 4 

qtl-25-02 299 495 0.61 0.0242 0.00064 0.00748 0.0008 
 

153 6 154 4 
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qtl-25-03 314 525 0.60 0.02347 0.00062 0.00773 0.00084 
 

152 6 150 4 

qtl-25-04 147 218 0.67 0.02435 0.00067 0.00761 0.00086 
 

159 8 155 4 

qtl-25-05 415 670 0.62 0.02458 0.00064 0.00754 0.00097 
 

156 6 157 4 

qtl-25-06 275 457 0.60 0.02403 0.00066 0.00785 0.00106 
 

159 7 153 4 

qtl-25-07 350 567 0.62 0.02356 0.00063 0.00738 0.00102 
 

156 7 150 4 

qtl-25-08 317 572 0.55 0.02462 0.00064 0.00748 0.00077 
 

161 6 157 4 

qtl-25-09 246 429 0.57 0.02458 0.00069 0.00757 0.00084 
 

160 8 157 4 

qtl-25-10 189 359 0.52 0.02462 0.00068 0.0079 0.00088 
 

158 7 157 4 

qtl-25-11 317 505 0.63 0.02339 0.00062 0.00679 0.00076 
 

150 6 149 4 

qtl-25-12 203 323 0.63 0.02467 0.00072 0.00697 0.00086 
 

158 8 157 5 

qtl-25-13 212 551 0.39 0.02449 0.00065 0.00788 0.00099 
 

159 6 156 4 

qtl-25-14 330 534 0.62 0.02449 0.00065 0.00717 0.00095 
 

160 6 156 4 

qtl-25-15 222 327 0.68 0.02439 0.0007 0.00678 0.00095 
 

157 8 155 4 

SC1442: Coarse-medium grained amphibole biotite granite (25°34'46"N; 112°46'33"E) 

sc42-01 237 401 0.59 0.17104 0.00708 0.02467 0.00065 
 

160 6 157 4 

sc42-02 258 432 0.60 0.16147 0.00698 0.02436 0.00065 
 

152 6 155 4 

sc42-03 205 315 0.65 0.15867 0.00722 0.02311 0.00062 
 

150 6 147 4 

sc42-04 483 643 0.75 0.15615 0.00628 0.02416 0.00064 
 

147 6 154 4 

sc42-05 352 492 0.72 0.15426 0.00745 0.02447 0.00067 
 

146 7 156 4 

sc42-06 261 461 0.57 0.16598 0.00696 0.02422 0.00065 
 

156 6 154 4 

sc42-07 349 575 0.61 0.16984 0.00686 0.02423 0.00064 
 

159 6 154 4 

sc42-08 364 586 0.62 0.16194 0.00666 0.02392 0.00064 
 

152 6 152 4 

sc42-09 321 536 0.60 0.17061 0.00683 0.02398 0.00064 
 

160 6 153 4 

sc42-10 312 516 0.60 0.16847 0.0069 0.02394 0.00064 
 

158 6 153 4 

sc42-11 239 487 0.49 0.1742 0.00661 0.02562 0.00068 
 

163 6 163 4 

sc42-12 347 566 0.61 0.163 0.00646 0.02388 0.00064 
 

153 6 152 4 

sc42-13 246 486 0.51 0.16212 0.00655 0.02454 0.00066 
 

153 6 156 4 

sc42-14 399 672 0.59 0.1691 0.0069 0.02452 0.00067 
 

159 6 156 4 

sc42-15 147 179 0.82 0.15981 0.00899 0.02448 0.00071 
 

151 8 156 4 
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sc42-16 306 496 0.62 0.16773 0.00676 0.02495 0.00068 
 

157 6 159 4 

sc42-17 317 523 0.61 0.16506 0.00685 0.0248 0.00068 
 

155 6 158 4 

SC1445: Medium-fine grained biotite granite (25°34'36"N; 112°47'38"E) 

sc45-01 372 649 0.57 0.16016 0.00591 0.02426 0.00065 
 

151 5 155 4 

sc45-02 220 345 0.64 0.15844 0.00749 0.02434 0.00068 
 

149 7 155 4 

sc45-03 83 1178 0.07 0.16808 0.00654 0.02396 0.00065 
 

158 6 153 4 

sc45-04 304 478 0.64 0.16991 0.0087 0.02452 0.00071 
 

159 8 156 4 

sc45-05 381 618 0.62 0.16792 0.00643 0.02416 0.00065 
 

158 6 154 4 

sc45-06 269 437 0.62 0.16562 0.0069 0.02419 0.00066 
 

156 6 154 4 

sc45-07 249 418 0.60 0.17312 0.00707 0.02464 0.00067 
 

162 6 157 4 

sc45-08 194 361 0.54 0.1597 0.01121 0.02507 0.0008 
 

150 10 160 5 

sc45-09 568 572 0.99 0.15508 0.00742 0.02306 0.00065 
 

146 7 147 4 

sc45-10 209 489 0.43 0.16312 0.00649 0.02439 0.00065 
 

153 6 155 4 

sc45-11 334 476 0.70 0.16421 0.00664 0.02454 0.00066 
 

154 6 156 4 

sc45-12 248 420 0.59 0.1683 0.00702 0.02419 0.00066 
 

158 6 154 4 

sc45-13 411 714 0.58 0.15851 0.00678 0.02446 0.00066 
 

149 6 156 4 

sc45-14 290 540 0.54 0.16045 0.00638 0.02431 0.00065 
 

151 6 155 4 

sc45-15 294 508 0.58 0.16468 0.00779 0.02423 0.00068 
 

155 7 154 4 

sc45-16 171 344 0.50 0.15615 0.01377 0.02459 0.00068 
 

147 12 157 4 

sc45-17 358 549 0.65 0.15738 0.00793 0.02405 0.00068 
 

148 7 153 4 

sc45-18 305 479 0.64 0.17048 0.00698 0.02426 0.00066 
 

160 6 155 4 

SC1447: Medium grained biotite granite (25°33'31"N; 112°49'02"E) 

sc47-01 310 523 0.59 0.16609 0.00662 0.02461 0.00043 
 

156 6 157 3 

sc47-02 267 457 0.58 0.16631 0.00826 0.02398 0.00047 
 

156 7 153 3 

sc47-03 149 367 0.41 0.1687 0.00606 0.02451 0.0004 
 

158 5 156 3 

sc47-04 305 588 0.52 0.1676 0.00547 0.02401 0.00039 
 

157 5 153 2 

sc47-05 313 552 0.57 0.1667 0.0058 0.02432 0.0004 
 

157 5 155 3 

sc47-06 308 493 0.62 0.17049 0.00576 0.0242 0.0004 
 

160 5 154 3 

sc47-07 315 550 0.57 0.16675 0.00577 0.02434 0.0004 
 

157 5 155 3 



Appendix tables  

200 

 

sc47-08 303 604 0.50 0.16749 0.00588 0.02433 0.00041 
 

157 5 155 3 

sc47-09 377 671 0.56 0.16736 0.00789 0.02433 0.00048 
 

157 7 155 3 

sc47-10 309 513 0.60 0.16703 0.00597 0.02425 0.00041 
 

157 5 154 3 

sc47-11 278 486 0.57 0.16741 0.00826 0.02412 0.00049 
 

157 7 154 3 

sc47-12 265 503 0.53 0.16758 0.00707 0.02435 0.00045 
 

157 6 155 3 

sc47-13 223 439 0.51 0.16049 0.00603 0.02435 0.00042 
 

151 5 155 3 

sc47-14 403 608 0.66 0.16302 0.00687 0.02412 0.00045 
 

153 6 154 3 

sc47-15 401 1296 0.31 0.16131 0.00536 0.02432 0.00041 
 

152 5 155 3 

sc47-16 296 476 0.62 0.16141 0.00761 0.02435 0.00048 
 

152 7 155 3 

sc47-17 504 697 0.72 0.16406 0.00884 0.0241 0.00052 
 

154 8 154 3 

sc47-18 295 530 0.56 0.16375 0.00664 0.02419 0.00044 
 

154 6 154 3 

sc47-19 184 402 0.46 0.1628 0.00687 0.02442 0.00045 
 

153 6 156 3 

sc47-20 284 484 0.59 0.1636 0.00718 0.02409 0.00046 
 

154 6 153 3 

SC1452: Coarse-medium grained amphibole biotite granite (25°31'46"N; 112°50'39"E) 

sc52-01 234 388 0.60 0.16438 0.00581 0.02471 0.00042 
 

155 5 157 3 

sc52-02 231 403 0.57 0.16576 0.00927 0.02514 0.00054 
 

156 8 160 3 

sc52-03 295 498 0.59 0.1676 0.00574 0.02451 0.00041 
 

157 5 156 3 

sc52-04 405 596 0.68 0.17284 0.00634 0.02472 0.00043 
 

162 5 157 3 

sc52-05 152 296 0.51 0.1686 0.00849 0.02502 0.0005 
 

158 7 159 3 

sc52-06 253 472 0.54 0.16888 0.0067 0.02501 0.00044 
 

158 6 159 3 

sc52-07 330 502 0.66 0.16821 0.00575 0.02492 0.00042 
 

158 5 159 3 

sc52-08 221 387 0.57 0.16991 0.00668 0.02481 0.00044 
 

159 6 158 3 

sc52-09 223 409 0.55 0.16762 0.00752 0.02522 0.00047 
 

157 7 161 3 

sc52-10 120 224 0.54 0.16922 0.0087 0.02458 0.0005 
 

159 8 157 3 

sc52-11 314 545 0.58 0.16844 0.00581 0.02475 0.00042 
 

158 5 158 3 

sc52-12 279 454 0.62 0.16735 0.00568 0.02422 0.0004 
 

157 5 154 3 

sc52-13 288 467 0.62 0.1678 0.00693 0.0248 0.00045 
 

158 6 158 3 

sc52-14 369 481 0.77 0.16685 0.01078 0.02457 0.0006 
 

157 9 156 4 

sc52-15 253 458 0.55 0.16616 0.00578 0.024 0.0004 
 

156 5 153 3 
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sc52-16 270 510 0.53 0.16611 0.00636 0.02419 0.00042 
 

156 6 154 3 

sc52-17 228 467 0.49 0.16698 0.00664 0.02482 0.00044 
 

157 6 158 3 

sc52-18 344 706 0.49 0.16625 0.00585 0.02487 0.00042 
 

156 5 158 3 

sc52-19 226 375 0.60 0.16591 0.00966 0.02465 0.00056 
 

156 8 157 4 

SC1458: Coarse-medium grained amphibole biotite granite (25°34'59"N; 112°50'14"E) 

sc58-01 290 552 0.53 0.16823 0.00618 0.02522 0.00046 
 

158 5 161 3 

sc58-02 257 441 0.58 0.16961 0.012 0.02572 0.00069 
 

159 10 164 4 

sc58-03 302 544 0.55 0.16654 0.00991 0.02492 0.00059 
 

156 9 159 4 

sc58-04 127 184 0.69 0.16627 0.00908 0.02484 0.00051 
 

156 8 158 3 

sc58-05 257 448 0.57 0.16561 0.00851 0.02481 0.00052 
 

156 7 158 3 

sc58-06 230 432 0.53 0.16527 0.00733 0.02408 0.00047 
 

155 6 153 3 

sc58-07 299 527 0.57 0.16788 0.0059 0.02547 0.00044 
 

158 5 162 3 

sc58-08 324 543 0.60 0.17002 0.00553 0.02519 0.00043 
 

159 5 160 3 

sc58-09 265 474 0.56 0.1674 0.0054 0.02455 0.00042 
 

157 5 156 3 

sc58-10 290 575 0.50 0.1677 0.00691 0.02466 0.00046 
 

157 6 157 3 

sc58-11 294 559 0.53 0.1738 0.00593 0.02495 0.00042 
 

163 5 159 3 

sc58-12 321 518 0.62 0.17242 0.01053 0.02503 0.00058 
 

162 9 159 4 

sc58-13 219 384 0.57 0.17038 0.00702 0.02454 0.00045 
 

160 6 156 3 

sc58-14 189 363 0.52 0.17225 0.00612 0.02395 0.00041 
 

161 5 153 3 

sc58-15 283 548 0.52 0.17103 0.00635 0.02421 0.00042 
 

160 6 154 3 

sc58-16 222 384 0.58 0.17047 0.00636 0.02441 0.00043 
 

160 6 155 3 

sc58-17 271 483 0.56 0.16216 0.0058 0.02393 0.00041 
 

153 5 152 3 

sc58-18 272 472 0.57 0.17246 0.00483 0.02474 0.0004 
 

162 4 158 3 

SC1461: Medium-fine grained biotite granite (25°30'30"N; 112°50'42"E) 

sc61-01 190 270 0.70 0.17063 0.00817 0.02468 0.00049 
 

160 7 157 3 

sc61-02 301 543 0.55 0.17081 0.00529 0.02499 0.00041 
 

160 5 159 3 

sc61-03 491 804 0.61 0.15408 0.00396 0.02214 0.00034 
 

146 3 141 2 

sc61-04 386 871 0.44 0.15418 0.00399 0.02209 0.00034 
 

146 4 141 2 

sc61-05 294 475 0.62 0.17238 0.00707 0.02469 0.00045 
 

161 6 157 3 
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sc61-06 272 630 0.43 0.17237 0.00672 0.02563 0.00048 
 

161 6 163 3 

sc61-07 189 395 0.48 0.16801 0.00806 0.02419 0.0005 
 

158 7 154 3 

sc61-08 220 326 0.67 0.17823 0.00699 0.02469 0.00044 
 

167 6 157 3 

sc61-09 295 492 0.60 0.1651 0.00948 0.02402 0.00053 
 

155 8 153 3 

sc61-10 115 167 0.69 0.1617 0.0098 0.02405 0.00051 
 

152 9 153 3 

sc61-11 675 1663 0.41 0.1667 0.00322 0.02279 0.00033 
 

157 3 145 2 

sc61-12 300 598 0.50 0.15841 0.00485 0.02295 0.00037 
 

149 4 146 2 

SC1462: Coarse-medium grained amphibole biotite granite (25°29'55"N; 112°51'21"E) 

sc62-01 438 813 0.54 0.16688 0.0046 0.02475 0.00039 
 

157 4 158 2 

sc62-02 267 571 0.47 0.1666 0.00567 0.02407 0.00041 
 

156 5 153 3 

sc62-03 226 412 0.55 0.17008 0.00544 0.02477 0.00042 
 

159 5 158 3 

sc62-04 321 571 0.56 0.16971 0.00743 0.02493 0.0005 
 

159 6 159 3 

sc62-05 309 559 0.55 0.17202 0.00809 0.02503 0.00052 
 

161 7 159 3 

sc62-06 217 485 0.45 0.1714 0.00592 0.02487 0.00043 
 

161 5 158 3 

sc62-07 374 692 0.54 0.17026 0.00838 0.02438 0.00052 
 

160 7 155 3 

sc62-08 325 542 0.60 0.17059 0.00741 0.02486 0.00049 
 

160 6 158 3 

sc62-09 283 539 0.53 0.16882 0.00842 0.02492 0.00052 
 

158 7 159 3 

sc62-10 360 600 0.60 0.16766 0.00503 0.02482 0.0004 
 

157 4 158 3 

sc62-11 277 448 0.62 0.1741 0.0064 0.025 0.00044 
 

163 6 159 3 

sc62-12 269 470 0.57 0.16763 0.00496 0.02457 0.0004 
 

157 4 156 3 

sc62-13 153 508 0.30 0.17208 0.01089 0.02511 0.00062 
 

161 9 160 4 

sc62-14 233 382 0.61 0.17432 0.00695 0.02524 0.00046 
 

163 6 161 3 

sc62-15 238 412 0.58 0.17821 0.00818 0.02533 0.0005 
 

167 7 161 3 

sc62-16 294 476 0.62 0.17642 0.00524 0.02542 0.00041 
 

165 5 162 3 

sc62-17 165 315 0.52 0.17162 0.0071 0.02488 0.00046 
 

161 6 158 3 

SC1474: Medium-fine grained biotite granite (25°29'54"N; 112°55'15"E) 

sc74-01 199 308 0.65 0.16695 0.00626 0.02491 0.00044 
 

157 5 159 3 

sc74-02 483 843 0.57 0.16847 0.00406 0.02492 0.00038 
 

158 4 159 2 

sc74-03 392 661 0.59 0.16943 0.00586 0.02534 0.00043 
 

159 5 161 3 
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sc74-04 295 496 0.59 0.16724 0.00575 0.0251 0.00042 
 

157 5 160 3 

sc74-05 231 377 0.61 0.1682 0.00739 0.02513 0.00048 
 

158 6 160 3 

sc74-06 256 423 0.60 0.16748 0.0066 0.02519 0.00046 
 

157 6 160 3 

sc74-07 234 477 0.49 0.16561 0.00667 0.02459 0.00069 
 

156 6 157 4 

sc74-08 170 256 0.66 0.17352 0.0069 0.0247 0.00069 
 

162 6 157 4 

sc74-09 309 491 0.63 0.16332 0.0069 0.02352 0.0007 
 

154 6 150 4 

sc74-10 389 715 0.54 0.16537 0.00468 0.02469 0.00065 
 

155 4 157 4 

sc74-11 296 496 0.60 0.16717 0.00526 0.02426 0.00064 
 

157 5 155 4 

sc74-12 410 549 0.75 0.16436 0.01026 0.02417 0.00083 
 

155 9 154 5 

sc74-13 361 503 0.72 0.1662 0.00738 0.02419 0.0007 
 

156 6 154 4 

sc74-14 320 548 0.58 0.16637 0.00564 0.02418 0.00065 
 

156 5 154 4 

SC1475: Coarse grained biotite granite (25°29'17"N; 112°55'12"E) 

sc75-01 399 715 0.56 0.16772 0.00598 0.02429 0.00067 
 

157 5 155 4 

sc75-02 324 562 0.58 0.16824 0.00788 0.02421 0.00068 
 

158 7 154 4 

sc75-03 478 725 0.66 0.15602 0.00572 0.02296 0.00061 
 

147 5 146 4 

sc75-04 250 448 0.56 0.16713 0.0083 0.02489 0.00075 
 

157 7 158 5 

sc75-05 268 433 0.62 0.16773 0.00868 0.02429 0.00071 
 

157 8 155 4 

sc75-06 314 478 0.66 0.16697 0.00614 0.02462 0.00067 
 

157 5 157 4 

sc75-07 249 437 0.57 0.16847 0.00643 0.02475 0.00068 
 

158 6 158 4 

sc75-08 309 514 0.60 0.16818 0.01001 0.02474 0.00074 
 

158 9 158 5 

sc75-09 402 570 0.71 0.1615 0.00616 0.0237 0.00063 
 

152 5 151 4 

sc75-10 332 833 0.40 0.16816 0.00722 0.0241 0.00068 
 

158 6 154 4 

sc75-11 704 724 0.97 0.16305 0.00712 0.02331 0.00064 
 

153 6 149 4 

sc75-12 218 381 0.57 0.16545 0.00735 0.0242 0.00066 
 

155 6 154 4 

sc75-13 258 430 0.60 0.1666 0.00643 0.02463 0.00066 
 

156 6 157 4 

sc75-14 242 404 0.60 0.16282 0.00723 0.02387 0.00066 
 

153 6 152 4 

sc75-15 262 428 0.61 0.16435 0.00776 0.02366 0.00066 
 

155 7 151 4 

sc75-16 157 266 0.59 0.16422 0.01221 0.02369 0.00078 
 

154 11 151 5 

SC1477: Coarse-medium grained biotite granite (25°28'11"N; 112°55'48"E) 
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sc77-01 239 398 0.60 0.1751 0.00814 0.02478 0.00068 
 

164 7 158 4 

sc77-02 303 528 0.57 0.17338 0.00687 0.02508 0.00066 
 

162 6 160 4 

sc77-03 356 544 0.66 0.17879 0.00801 0.02436 0.00067 
 

167 7 155 4 

sc77-04 290 499 0.58 0.17577 0.00904 0.02406 0.00069 
 

164 8 153 4 

sc77-05 266 440 0.60 0.1688 0.00777 0.02485 0.00068 
 

158 7 158 4 

sc77-06 198 364 0.55 0.16615 0.00697 0.02424 0.00065 
 

156 6 154 4 

sc77-07 291 488 0.60 0.16673 0.00706 0.02448 0.00066 
 

157 6 156 4 

sc77-08 388 563 0.69 0.17178 0.00675 0.02484 0.00066 
 

161 6 158 4 

sc77-09 307 398 0.77 0.16359 0.00868 0.02381 0.00068 
 

154 8 152 4 

sc77-10 230 419 0.55 0.17382 0.00718 0.02486 0.00067 
 

163 6 158 4 

sc77-11 292 622 0.47 0.16588 0.00653 0.02449 0.00065 
 

156 6 156 4 

sc77-12 195 371 0.52 0.1659 0.00846 0.02427 0.00071 
 

156 7 155 4 

sc77-13 295 474 0.62 0.16642 0.00736 0.02465 0.00067 
 

156 6 157 4 

sc77-14 163 326 0.50 0.16811 0.00772 0.02452 0.00069 
 

158 7 156 4 

sc77-15 378 765 0.49 0.15903 0.00615 0.02316 0.00063 
 

150 5 148 4 

sc77-16 408 736 0.55 0.16783 0.00731 0.02424 0.0007 
 

158 6 154 4 

sc77-17 352 597 0.59 0.16738 0.00817 0.02398 0.00067 
 

157 7 153 4 

sc77-18 282 492 0.57 0.16653 0.0082 0.02451 0.00068 
 

156 7 156 4 

sc77-19 309 512 0.60 0.16839 0.00924 0.02364 0.00069 
 

158 8 151 4 

sc77-20 234 393 0.60 0.16803 0.00832 0.02417 0.00068 
 

158 7 154 4 

sc77-21 262 398 0.66 0.16838 0.00738 0.02427 0.00067 
 

158 6 155 4 

sc77-22 305 501 0.61 0.16637 0.00679 0.02313 0.00062 
 

156 6 147 4 

SC1479: Fine grained biotite granite (25°27'12"N; 112°56'31"E) 

sc79-01 296 547 0.54 0.16987 0.00886 0.02462 0.00075 
 

159 8 157 5 

sc79-02 323 341 0.95 0.17163 0.00969 0.02473 0.00073 
 

161 8 157 5 

sc79-03 337 517 0.65 0.16878 0.00779 0.02434 0.00067 
 

158 7 155 4 

sc79-04 347 671 0.52 0.17133 0.00682 0.0246 0.00066 
 

161 6 157 4 

sc79-05 386 662 0.58 0.17292 0.00685 0.02481 0.00065 
 

162 6 158 4 

sc79-06 232 411 0.57 0.17582 0.00744 0.02439 0.00066 
 

164 6 155 4 
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sc79-07 388 670 0.58 0.16679 0.00596 0.02448 0.00065 
 

157 5 156 4 

sc79-08 434 764 0.57 0.17716 0.00689 0.02447 0.00064 
 

166 6 156 4 

sc79-09 374 566 0.66 0.16913 0.00884 0.02489 0.00074 
 

159 8 158 5 

sc79-10 357 599 0.60 0.16351 0.00629 0.02394 0.00063 
 

154 5 153 4 

sc79-11 295 515 0.57 0.16774 0.0084 0.02459 0.00071 
 

157 7 157 4 

sc79-12 320 555 0.58 0.16397 0.00682 0.02427 0.00065 
 

154 6 155 4 

sc79-13 441 824 0.54 0.16302 0.00571 0.02421 0.00063 
 

153 5 154 4 

sc79-14 252 449 0.56 0.16457 0.00854 0.02425 0.00069 
 

155 7 154 4 

sc79-15 334 548 0.61 0.16518 0.00795 0.02422 0.00067 
 

155 7 154 4 

sc79-16 378 613 0.62 0.16695 0.00691 0.02429 0.00065 
 

157 6 155 4 

sc79-17 321 547 0.59 0.16736 0.00637 0.0248 0.00066 
 

157 6 158 4 

SC14139: Medium-fine grained biotite granite (25°26'57"N; 112°56'35"E) 

sc139-01 348 455 0.77 0.17037 0.0081 0.02504 0.0007 
 

160 7 159 4 

sc139-02 323 534 0.60 0.16919 0.00723 0.02443 0.00068 
 

159 6 156 4 

sc139-03 280 461 0.61 0.1709 0.00711 0.02445 0.00067 
 

160 6 156 4 

sc139-04 297 498 0.60 0.16949 0.00693 0.02437 0.00066 
 

159 6 155 4 

sc139-05 265 449 0.59 0.16411 0.00821 0.02397 0.00068 
 

154 7 153 4 

sc139-06 502 1100 0.46 0.16761 0.00614 0.02412 0.00064 
 

157 5 154 4 

sc139-07 599 721 0.83 0.15945 0.00924 0.02353 0.0007 
 

150 8 150 4 

sc139-08 456 697 0.65 0.16779 0.00636 0.02406 0.00065 
 

157 6 153 4 

sc139-09 350 422 0.83 0.16764 0.00787 0.02451 0.0007 
 

157 7 156 4 

sc139-10 385 613 0.63 0.16242 0.00723 0.02453 0.00067 
 

153 6 156 4 

sc139-11 415 523 0.79 0.16855 0.00676 0.02443 0.00068 
 

158 6 156 4 

sc139-12 438 664 0.66 0.17059 0.0062 0.02521 0.00068 
 

160 5 160 4 

sc139-13 245 430 0.57 0.17042 0.00817 0.02497 0.0007 
 

160 7 159 4 

sc139-14 238 383 0.62 0.17026 0.00724 0.0247 0.00068 
 

160 6 157 4 

sc139-15 268 469 0.57 0.17368 0.00689 0.02539 0.00069 
 

163 6 162 4 

sc139-16 375 516 0.73 0.17092 0.00706 0.02465 0.00067 
 

160 6 157 4 

sc139-17 180 270 0.67 0.16839 0.01047 0.02491 0.00078 
 

158 9 159 5 
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sc139-18 309 456 0.68 0.17412 0.00688 0.02495 0.00068 
 

163 6 159 4 

sc139-19 294 517 0.57 0.16564 0.00971 0.02379 0.00077 
 

156 8 152 5 

sc139-20 253 429 0.59 0.17338 0.00827 0.02543 0.00071 
 

162 7 162 4 

sc139-21 496 880 0.56 0.16479 0.01167 0.02381 0.0008 
 

155 10 152 5 

SC14141: Medium-fine grained biotite granite (25°29'54"N; 112°54'26"E) 

sc141-01 335 568 0.59 0.17277 0.0068 0.02542 0.00069 
 

162 6 162 4 

sc141-02 393 683 0.58 0.16302 0.00731 0.0239 0.00068 
 

153 6 152 4 

sc141-03 294 410 0.72 0.17486 0.00868 0.02522 0.00071 
 

164 8 161 4 

sc141-04 228 411 0.55 0.17578 0.00772 0.02541 0.00071 
 

164 7 162 4 

sc141-05 271 451 0.60 0.1761 0.00764 0.02503 0.00069 
 

165 7 159 4 

sc141-06 331 533 0.62 0.17196 0.00814 0.02515 0.00071 
 

161 7 160 4 

sc141-07 207 347 0.60 0.16184 0.00824 0.02412 0.00069 
 

152 7 154 4 

sc141-08 341 548 0.62 0.173 0.00718 0.02524 0.00072 
 

162 6 161 5 

sc141-09 266 456 0.58 0.17206 0.00796 0.02549 0.00074 
 

161 7 162 5 

sc141-10 198 300 0.66 0.17288 0.00848 0.02565 0.00074 
 

162 7 163 5 

sc141-11 381 575 0.66 0.16895 0.00783 0.0247 0.00073 
 

159 7 157 5 

sc141-12 291 512 0.57 0.16958 0.00891 0.02515 0.00077 
 

159 8 160 5 

sc141-13 337 537 0.63 0.17256 0.00754 0.02525 0.00073 
 

162 7 161 5 

sc141-14 237 394 0.60 0.17468 0.01006 0.02555 0.00076 
 

163 9 163 5 

sc141-15 342 561 0.61 0.16939 0.00666 0.02491 0.00069 
 

159 6 159 4 

sc141-16 349 600 0.58 0.16817 0.00708 0.02465 0.00068 
 

158 6 157 4 

sc141-17 148 223 0.67 0.17061 0.01192 0.02496 0.00079 
 

160 10 159 5 

sc141-18 217 380 0.57 0.16765 0.00804 0.02468 0.0007 
 

157 7 157 4 

sc141-19 317 497 0.64 0.17441 0.00738 0.02519 0.00068 
 

163 6 160 4 

sc141-20 175 315 0.55 0.16757 0.00819 0.02511 0.00071 
 

157 7 160 4 

SC14142: Medium-fine grained biotite granite (25°29'54"N; 112°53'58"E) 

sc142-01 184 250 0.73 0.17143 0.00836 0.02489 0.00075 
 

161 7 158 5 

sc142-02 265 451 0.59 0.17168 0.00754 0.02514 0.00074 
 

161 7 160 5 

sc142-03 325 537 0.61 0.17152 0.00679 0.02529 0.0007 
 

161 6 161 4 
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sc142-04 193 322 0.60 0.17056 0.00885 0.02515 0.00078 
 

160 8 160 5 

sc142-05 338 613 0.55 0.17147 0.01222 0.02509 0.00089 
 

161 11 160 6 

sc142-06 333 583 0.57 0.17081 0.00523 0.02478 0.00068 
 

160 5 158 4 

sc142-07 257 429 0.60 0.17198 0.00725 0.0253 0.00075 
 

161 6 161 5 

sc142-08 256 441 0.58 0.17088 0.00562 0.02492 0.00069 
 

160 5 159 4 

sc142-09 153 141 1.08 0.16993 0.01178 0.02524 0.00082 
 

159 10 161 5 

sc142-10 290 496 0.59 0.16917 0.0099 0.02493 0.00082 
 

159 9 159 5 

sc142-11 275 471 0.58 0.17933 0.00641 0.02599 0.00072 
 

167 6 165 5 

sc142-12 196 350 0.56 0.17811 0.00698 0.02564 0.00074 
 

166 6 163 5 

sc142-13 312 563 0.55 0.17129 0.00564 0.0261 0.00074 
 

161 5 166 5 

sc142-14 227 372 0.61 0.17644 0.00627 0.02659 0.00075 
 

165 5 169 5 

sc142-15 200 294 0.68 0.17971 0.00843 0.02592 0.00078 
 

168 7 165 5 

sc142-16 272 429 0.63 0.17654 0.00628 0.02548 0.00072 
 

165 5 162 5 

sc142-17 110 181 0.61 0.17 0.00908 0.02534 0.00076 
 

159 8 161 5 

sc142-18 147 220 0.67 0.17603 0.00809 0.02597 0.00077 
 

165 7 165 5 

sc142-19 258 416 0.62 0.16996 0.00736 0.02565 0.00073 
 

159 6 163 5 

sc142-20 235 413 0.57 0.1693 0.00618 0.02537 0.0007 
 

159 5 162 4 

sc142-21 510 925 0.55 0.17161 0.00499 0.02568 0.00069   161 4 163 4 
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Appendix table 7 The Ar-Ar dating data of amphibole and biotite from Qitianling pluton 

 39ArK 36Aratm/39ArK 37ArCa/39ArK 38ArCl/39ArK %40Ar* 40Ar*/39ArK  

Age (Ma) Step # (V) (± 1)  

(± 1) 

 

(± 1) 

  (± 1)   

(± 1) N82.MS3  J = .2740E-02 ± .2407E-04              

# 1  6.70E-07 1.51E+01 ± 1.48E+00 8.71E+00 ± 2.27E+01 -1.27E-01 ± 6.72E-02 -1.3 -55.27 ± 35.91 -296.3 ± 209.2 

# 2  9.39E-08 6.02E-01 ± 5.59E-01 5.36E-01 ± 1.64E+02 -6.07E-01 ± 5.12E-01 29.7 75.30 ± 131.70 338.4 ± 539.6 

# 3  1.09E-06 1.25E-01 ± 3.59E-02 -1.39E-01 ± 1.33E+01 -2.84E-02 ± 3.11E-02 32.1 17.43 ± 10.90 84.2 ± 51.4 

# 4  9.81E-07 3.51E-02 ± 3.81E-02 -4.62E+00 ± 1.57E+01 -2.41E-02 ± 3.04E-02 65.5 19.70 ± 11.90 94.9 ± 55.8 

# 5  1.02E-06 -6.23E-02 ± 3.88E-02 -5.38E+00 ± 1.50E+01 -4.21E-02 ± 3.07E-02 210.3 35.10 ± 12.22 165.7 ± 55.1 

# 6  9.33E-07 1.37E-02 ± 4.10E-02 1.06E+01 ± 1.62E+01 -2.01E-02 ± 3.24E-02 80.8 17.06 ± 12.81 82.4 ± 60.5 

# 7  1.79E-06 8.50E-02 ± 2.18E-02 -4.27E+00 ± 8.93E+00 3.64E-03 ± 1.92E-02 57.1 33.45 ± 6.83 158.2 ± 30.9 

# 8  4.41E-06 1.92E-02 ± 8.76E-03 5.81E+00 ± 4.04E+00 8.36E-03 ± 7.74E-03 81.4 24.83 ± 2.83 118.8 ± 13.1 

# 9  3.61E-06 9.99E-03 ± 1.07E-02 8.63E+00 ± 4.81E+00 2.40E-02 ± 8.80E-03 90.4 27.69 ± 3.45 131.9 ± 15.9 

# 10  1.06E-04 3.55E-03 ± 3.69E-04 4.31E+00 ± 1.69E-01 1.79E-02 ± 6.06E-04 96.8 32.05 ± 0.19 151.9 ± 0.9 

# 11  1.06E-05 1.01E-02 ± 3.70E-03 3.40E+00 ± 1.59E+00 1.94E-02 ± 3.65E-03 90.8 29.32 ± 1.21 139.4 ± 5.5 

# 12  6.21E-05 5.86E-03 ± 6.46E-04 3.68E+00 ± 2.86E-01 1.55E-02 ± 9.91E-04 94.8 31.79 ± 0.22 150.7 ± 1.0 

# 13  1.74E-05 6.79E-03 ± 2.20E-03 3.82E+00 ± 9.43E-01 1.70E-02 ± 2.20E-03 93.8 30.08 ± 0.75 142.9 ± 3.4 

# 14  5.64E-05 2.13E-03 ± 6.51E-04 3.24E+00 ± 3.22E-01 1.34E-02 ± 7.87E-04 98.1 31.94 ± 0.25 151.4 ± 1.1 

# 15  1.86E-05 9.09E-03 ± 2.10E-03 3.20E+00 ± 8.26E-01 1.18E-02 ± 2.15E-03 91.8 29.99 ± 0.70 142.5 ± 3.2 

# 16  8.36E-06 2.29E-02 ± 5.08E-03 5.65E+00 ± 1.92E+00 1.72E-02 ± 4.46E-03 80.6 28.05 ± 1.63 133.6 ± 7.5 

# 17  1.12E-04 1.01E-02 ± 3.71E-04 3.24E+00 ± 1.74E-01 1.25E-02 ± 4.42E-04 90.8 29.33 ± 0.17 139.5 ± 0.8 

# 18  3.97E-06 1.50E-01 ± 1.06E-02 5.77E+00 ± 3.77E+00 7.51E-03 ± 8.25E-03 30.6 19.56 ± 3.19 94.2 ± 15.0 

# 19  1.04E-05 1.02E-02 ± 3.73E-03 3.24E+00 ± 1.53E+00 9.67E-03 ± 3.55E-03 87.7 21.50 ± 1.19 103.3 ± 5.6 

 Total 4.20E-04 3.30E-02 ± 4.40E-04 3.69E+00 ± 1.70E-01 1.40E-02 ± 4.18E-04 75.6 30.24 ± 0.15 143.6 ± 1.4 

                                    

N83.MS3  J = .2740E-02 ± .2407E-04              

# 1  2.13E-06 1.66E+01 ± 8.88E-01 1.07E+01 ± 6.90E+00 1.28E-03 ± 5.57E-02 -1.8 -87.45 ± 21.58 -494.3 ± 140.3 
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# 2  1.12E-07 3.40E+01 ± 2.61E+01 9.69E+01 ± 1.58E+02 -6.40E-01 ± 7.03E-01 0.4 40.41 ± 197.50 189.5 ± 879.0 

# 3  2.82E-07 2.06E+00 ± 6.58E-01 -2.33E+01 ± 5.64E+01 -2.24E-01 ± 1.65E-01 7.1 46.37 ± 73.60 215.8 ± 322.8 

# 4  2.06E-06 1.42E+00 ± 8.11E-02 1.44E+01 ± 8.35E+00 -5.43E-02 ± 2.30E-02 -0.8 -3.41 ± 10.46 -17.0 ± 52.2 

# 5  1.22E-06 4.10E-01 ± 5.87E-02 1.30E+01 ± 1.34E+01 -2.53E-02 ± 3.75E-02 1.5 1.79 ± 16.78 8.8 ± 82.6 

# 6  1.07E-06 3.78E-01 ± 6.54E-02 -9.48E+00 ± 1.44E+01 -5.31E-02 ± 4.05E-02 -6.3 -6.58 ± 18.95 -32.9 ± 95.4 

# 7  1.93E-06 3.47E-01 ± 3.64E-02 7.57E+00 ± 8.04E+00 1.54E-02 ± 2.30E-02 13.5 15.96 ± 10.62 77.2 ± 50.3 

# 8  7.40E-06 1.02E-01 ± 8.73E-03 6.56E+00 ± 2.15E+00 2.22E-02 ± 6.98E-03 50.4 30.48 ± 2.86 144.7 ± 13.0 

# 9  1.45E-05 4.24E-02 ± 4.28E-03 6.88E+00 ± 1.06E+00 2.93E-02 ± 3.12E-03 70.6 29.98 ± 1.45 142.4 ± 6.6 

# 10  4.66E-05 3.10E-02 ± 1.37E-03 4.68E+00 ± 4.02E-01 3.10E-02 ± 1.80E-03 77.2 30.98 ± 0.49 147.0 ± 2.2 

# 11  2.44E-04 6.17E-03 ± 2.66E-04 4.03E+00 ± 9.05E-02 2.39E-02 ± 5.61E-04 94.6 32.12 ± 0.15 152.2 ± 0.7 

# 12  4.98E-05 1.53E-02 ± 1.28E-03 4.43E+00 ± 3.14E-01 1.73E-02 ± 1.08E-03 87.2 30.77 ± 0.44 146.1 ± 2.0 

# 13  1.70E-05 1.81E-02 ± 3.58E-03 4.67E+00 ± 9.47E-01 1.75E-02 ± 3.79E-03 83.7 27.43 ± 1.21 130.8 ± 5.5 

# 14  3.05E-05 3.04E-02 ± 2.12E-03 6.80E+00 ± 5.20E-01 2.36E-02 ± 1.73E-03 75.1 27.02 ± 0.71 128.9 ± 3.3 

# 15  2.17E-05 2.22E-02 ± 2.84E-03 5.85E+00 ± 7.89E-01 2.18E-02 ± 2.87E-03 79.1 24.81 ± 0.95 118.7 ± 4.4 

# 16  1.81E-05 3.80E-01 ± 4.02E-03 5.02E+00 ± 9.64E-01 1.45E-02 ± 2.28E-03 16.8 22.59 ± 0.85 108.4 ± 4.0 

# 17  1.25E-05 1.08E-01 ± 2.68E-03 4.86E+00 ± 1.38E+00 1.71E-02 ± 3.15E-03 42.8 23.88 ± 0.85 114.3 ± 4.0 

# 18  3.36E-05 1.80E-02 ± 9.45E-04 5.59E+00 ± 5.79E-01 2.33E-02 ± 2.19E-03 85.0 30.08 ± 0.36 142.9 ± 1.7 

# 19  4.15E-05 1.34E-02 ± 7.69E-04 6.34E+00 ± 4.98E-01 1.69E-02 ± 1.19E-03 88.5 30.47 ± 2.60 144.7 ± 11.9 

# 20  6.43E-05 1.61E-02 ± 4.54E-04 7.89E+00 ± 2.80E-01 2.02E-02 ± 6.45E-04 85.5 28.04 ± 0.21 133.5 ± 1.0 

# 21  1.86E-05 4.53E-02 ± 2.13E-03 4.64E+00 ± 8.40E-01 1.29E-02 ± 1.90E-03 32.8 6.53 ± 0.68 32.0 ± 3.3 

# 22  1.85E-05 6.91E-02 ± 1.78E-03 2.30E+00 ± 8.41E-01 4.22E-03 ± 2.09E-03 20.4 5.22 ± 0.57 25.6 ± 2.8 

# 23  4.68E-07 1.59E-01 ± 6.63E-02 3.49E-01 ± 3.30E+01 -5.21E-02 ± 6.62E-02 14.8 8.17 ± 20.81 40.0 ± 100.6 

 Total 6.48E-04 9.80E-02 ± 4.77E-04 5.09E+00 ± 1.25E-01 2.08E-02 ± 4.57E-04 49.2 28.03 ± 0.23 133.5 ± 1.5 

                                    

N84.MS3  J = .2741E-02 ± .2408E-04              

# 1  3.24E-06 2.03E+00 ± 1.82E-01 -1.03E+00 ± 2.81E+00 -1.17E-02 ± 1.48E-02 -1.4 -8.48 ± 7.59 -42.4 ± 38.4 

# 2  4.30E-06 3.31E-01 ± 2.60E-02 3.80E-01 ± 2.51E+00 1.51E-02 ± 1.30E-02 -7.1 -6.53 ± 5.02 -32.6 ± 25.3 

# 3  7.29E-06 9.11E-02 ± 9.31E-03 2.91E-01 ± 1.27E+00 9.33E-03 ± 5.21E-03 40.6 18.37 ± 3.07 88.6 ± 14.4 

# 4  2.87E-06 5.84E-03 ± 2.20E-02 1.71E+00 ± 3.64E+00 2.19E-02 ± 1.46E-02 96.6 48.40 ± 9.13 224.7 ± 39.9 
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# 5  2.60E-06 2.71E-02 ± 2.37E-02 2.61E+00 ± 3.26E+00 2.24E-02 ± 1.60E-02 83.6 40.88 ± 9.34 191.6 ± 41.5 

# 6  5.16E-06 7.99E-03 ± 1.22E-02 3.60E+00 ± 1.83E+00 2.34E-02 ± 7.24E-03 95.1 46.18 ± 4.96 215.0 ± 21.8 

# 7  1.60E-05 1.62E-02 ± 4.10E-03 4.10E+00 ± 9.01E-01 2.85E-02 ± 3.03E-03 88.2 35.71 ± 1.39 168.5 ± 6.3 

# 8  3.90E-05 7.95E-03 ± 1.74E-03 5.22E+00 ± 4.15E-01 3.11E-02 ± 1.84E-03 93.4 33.31 ± 0.59 157.6 ± 2.7 

# 9  1.07E-04 6.10E-03 ± 6.25E-04 4.61E+00 ± 2.30E-01 3.00E-02 ± 8.02E-04 94.7 32.45 ± 0.23 153.7 ± 1.0 

# 10  3.53E-04 3.50E-03 ± 2.05E-04 4.50E+00 ± 7.02E-02 3.01E-02 ± 3.15E-04 96.9 32.34 ± 0.13 153.2 ± 0.6 

# 11  6.47E-05 2.98E-03 ± 1.02E-03 4.55E+00 ± 2.70E-01 2.90E-02 ± 1.05E-03 97.3 31.76 ± 0.39 150.6 ± 1.8 

# 12  2.40E-05 9.80E-05 ± 2.73E-03 4.44E+00 ± 6.65E-01 2.87E-02 ± 3.24E-03 99.9 32.52 ± 0.93 154.1 ± 4.2 

# 13  9.29E-06 3.74E-04 ± 7.00E-03 1.42E+00 ± 1.72E+00 3.77E-02 ± 5.69E-03 99.7 32.22 ± 2.31 152.7 ± 10.5 

# 14  7.75E-05 6.82E-04 ± 6.30E-04 5.20E+00 ± 2.85E-01 2.90E-02 ± 6.47E-04 99.4 32.48 ± 0.28 153.8 ± 1.3 

# 15  1.22E-05 -8.32E-04 ± 4.01E-03 5.61E+00 ± 1.43E+00 2.64E-02 ± 3.48E-03 100.8 32.80 ± 1.58 155.3 ± 7.2 

# 16  6.17E-06 -1.24E-04 ± 7.97E-03 9.62E+00 ± 3.05E+00 2.53E-02 ± 5.84E-03 100.1 34.95 ± 3.07 165.0 ± 13.9 

# 17  3.25E-06 9.14E-03 ± 1.52E-02 1.52E+00 ± 5.62E+00 1.59E-02 ± 1.13E-02 91.7 29.73 ± 5.78 141.3 ± 26.4 

# 18  1.16E-06 -2.09E-02 ± 4.33E-02 -8.62E-01 ± 1.55E+01 5.00E-03 ± 2.99E-02 130.2 26.60 ± 16.26 127.0 ± 75.0 

# 19  4.97E-07 4.08E-02 ± 1.03E-01 -4.27E+00 ± 3.64E+01 -2.42E-02 ± 6.54E-02 -199.1 -8.03 ± 38.17 -40.1 ± 193.0 

# 20  3.11E-05 1.11E-02 ± 1.57E-03 5.41E+00 ± 5.66E-01 2.93E-02 ± 1.31E-03 89.6 28.17 ± 0.64 134.2 ± 2.9 

# 21  1.41E-05 1.88E-02 ± 3.74E-03 1.08E+00 ± 1.30E+00 1.40E-03 ± 2.78E-03 54.3 6.59 ± 1.37 32.3 ± 6.7 

# 22  9.00E-07 3.15E-02 ± 5.40E-02 1.74E+01 ± 1.94E+01 3.22E-02 ± 3.66E-02 81.1 39.87 ± 20.82 187.1 ± 92.8 

 Total 7.85E-04 1.55E-02 ± 3.58E-04 4.49E+00 ± 9.98E-02 2.86E-02 ± 3.27E-04 87.3 31.48 ± 0.14 149.3 ± 1.4 

                                    

N85.MS3  J = .2740E-02 ± .2406E-04              

# 1  2.22E-06 8.61E-01 ± 7.20E-02 2.42E+01 ± 6.93E+00 4.27E-03 ± 4.01E-02 -7.1 -16.77 ± 28.23 -84.9 ± 146.3 

# 2  7.28E-07 7.42E+00 ± 6.54E-01 1.47E+01 ± 1.99E+01 -2.53E-05 ± 1.39E-01 -4.6 -96.51 ± 85.74 -554.1 ± 576.2 

# 3  1.08E-06 7.49E+00 ± 5.13E-01 1.97E+01 ± 1.26E+01 -8.41E-02 ± 9.17E-02 -4.1 -86.92 ± 58.64 -490.7 ± 380.5 

# 4  1.20E-06 3.60E+00 ± 2.15E-01 2.50E+01 ± 1.21E+01 -1.05E-01 ± 7.83E-02 -3.3 -34.17 ± 52.35 -177.3 ± 285.5 

# 5  6.99E-07 3.02E+00 ± 3.19E-01 1.39E+01 ± 2.03E+01 1.06E-01 ± 1.33E-01 -0.6 -4.96 ± 89.01 -24.7 ± 446.0 

# 6  9.97E-07 1.04E+01 ± 7.30E-01 5.72E+01 ± 1.58E+01 -3.56E-02 ± 1.04E-01 -5.9 ##### ± 65.99 ##### ± 614.3 

# 7  3.32E-06 1.90E+00 ± 7.04E-02 2.35E+02 ± 8.62E+00 5.12E-04 ± 2.85E-02 -29.0 ##### ± 19.72 -765.3 ± 149.0 

# 8  2.76E-06 1.21E+00 ± 4.99E-02 1.42E+02 ± 7.30E+00 -4.90E-02 ± 2.22E-02 -1.6 -5.60 ± 7.50 -27.9 ± 37.6 
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# 9  2.47E-06 5.22E-01 ± 3.24E-02 4.50E+01 ± 5.28E+00 -3.23E-02 ± 2.11E-02 2.8 4.50 ± 8.37 22.1 ± 40.9 

# 10  2.41E-06 3.81E-01 ± 3.18E-02 3.89E+01 ± 6.41E+00 4.52E-03 ± 2.39E-02 7.8 9.45 ± 8.35 46.1 ± 40.2 

# 11  7.36E-07 2.84E-01 ± 9.64E-02 3.45E+01 ± 1.65E+01 -1.41E-02 ± 8.33E-02 -22.0 -15.13 ± 27.30 -76.4 ± 140.8 

# 12  1.23E-06 2.21E-01 ± 5.91E-02 -2.05E+00 ± 9.76E+00 -1.46E-02 ± 4.37E-02 -6.4 -3.94 ± 17.04 -19.6 ± 85.2 

# 13  1.76E-06 2.09E-01 ± 3.99E-02 1.30E+01 ± 7.52E+00 -1.01E-02 ± 3.37E-02 15.4 11.20 ± 11.68 54.5 ± 56.0 

# 14  1.94E-06 1.09E-01 ± 3.43E-02 4.34E-01 ± 6.60E+00 -3.97E-04 ± 2.78E-02 32.3 15.40 ± 10.31 74.5 ± 48.9 

# 15  2.94E-06 1.44E-01 ± 2.35E-02 4.70E-01 ± 4.12E+00 -8.11E-04 ± 1.85E-02 32.2 20.24 ± 6.95 97.4 ± 32.5 

# 16  8.39E-06 3.46E-01 ± 9.86E-03 3.85E+00 ± 1.53E+00 6.87E-03 ± 7.94E-03 14.1 16.77 ± 2.46 81.0 ± 11.6 

# 17  1.36E-05 2.25E-01 ± 5.74E-03 1.72E+00 ± 9.58E-01 9.58E-03 ± 4.76E-03 14.3 11.05 ± 1.58 53.8 ± 7.6 

# 18  1.84E-05 1.42E+00 ± 1.57E-02 3.45E+00 ± 6.63E-01 -3.18E-03 ± 4.99E-03 1.4 5.94 ± 2.17 29.1 ± 10.6 

# 19  2.62E-05 4.36E-01 ± 4.12E-03 8.75E-01 ± 4.54E-01 4.51E-03 ± 2.76E-03 5.2 7.07 ± 0.94 34.6 ± 4.6 

# 20  8.71E-07 1.31E-02 ± 7.68E-02 1.97E+01 ± 1.40E+01 5.57E-02 ± 6.46E-02 87.7 27.61 ± 23.32 131.6 ± 107.2 

 Total 9.39E-05 9.47E-01 ± 6.91E-03 1.88E+01 ± 6.59E-01 -1.33E-03 ± 3.63E-03 -0.4 -1.22 ± 1.99 -6.0 ± 9.8 

                                    

N86.MS3  J = .2740E-02 ± .2406E-04              

# 1  4.30E-06 4.87E+00 ± 1.28E-01 -3.22E-01 ± 3.10E+00 1.20E-02 ± 1.83E-02 -0.3 -3.60 ± 7.15 -17.9 ± 35.7 

# 2  1.60E-06 2.95E-01 ± 3.54E-02 -7.99E+00 ± 9.33E+00 -1.12E-02 ± 3.18E-02 28.8 35.12 ± 10.66 165.7 ± 48.1 

# 3  4.58E-06 2.06E-01 ± 1.07E-02 2.41E+00 ± 2.99E+00 2.18E-02 ± 1.03E-02 23.2 18.42 ± 3.54 88.8 ± 16.7 

# 4  5.28E-06 7.42E-01 ± 1.79E-02 5.74E+00 ± 3.43E+00 8.05E-04 ± 1.12E-02 8.3 19.84 ± 3.09 95.5 ± 14.5 

# 5  1.09E-05 2.39E-01 ± 5.18E-03 2.73E+00 ± 1.33E+00 1.37E-02 ± 5.34E-03 26.6 25.62 ± 1.60 122.4 ± 7.4 

# 6  7.39E-05 2.31E-02 ± 5.50E-04 4.34E+00 ± 2.35E-01 2.42E-02 ± 1.22E-03 82.4 31.93 ± 0.25 151.3 ± 1.1 

# 7  1.95E-04 9.17E-03 ± 1.73E-04 3.78E+00 ± 9.85E-02 2.05E-02 ± 4.04E-04 92.1 31.66 ± 0.14 150.1 ± 0.6 

# 8  3.67E-04 3.60E-03 ± 1.05E-04 3.56E+00 ± 6.52E-02 2.04E-02 ± 3.60E-04 96.8 32.16 ± 0.08 152.3 ± 0.4 

# 9  9.92E-05 6.81E-03 ± 4.51E-04 3.86E+00 ± 1.74E-01 1.99E-02 ± 6.85E-04 94.1 31.78 ± 0.21 150.6 ± 0.9 

# 10  1.83E-05 3.72E-02 ± 2.78E-03 2.54E+00 ± 7.14E-01 1.38E-02 ± 3.12E-03 72.7 29.21 ± 1.05 138.9 ± 4.8 

# 11  5.54E-05 1.97E-02 ± 7.96E-04 3.28E+00 ± 2.67E-01 1.29E-02 ± 1.10E-03 83.9 30.39 ± 0.34 144.3 ± 1.5 

# 12  2.76E-05 4.66E-02 ± 1.65E-03 4.49E+00 ± 5.92E-01 1.62E-02 ± 2.17E-03 67.4 28.38 ± 0.64 135.1 ± 2.9 

# 13  8.47E-06 3.60E-01 ± 8.37E-03 1.01E-01 ± 1.63E+00 1.15E-02 ± 6.25E-03 15.8 20.00 ± 2.24 96.3 ± 10.5 

# 14  2.01E-05 6.09E-02 ± 2.56E-03 6.49E+00 ± 7.86E-01 1.68E-02 ± 2.71E-03 58.2 25.05 ± 0.95 119.7 ± 4.4 
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# 15  2.64E-05 6.00E-02 ± 1.90E-03 3.85E+00 ± 5.75E-01 1.05E-02 ± 2.65E-03 58.8 25.33 ± 0.72 121.1 ± 3.3 

# 16  2.04E-05 6.61E-02 ± 2.67E-03 1.61E+00 ± 8.11E-01 5.72E-03 ± 2.53E-03 56.7 25.61 ± 0.98 122.3 ± 4.5 

# 17  3.43E-07 -3.99E-01 ± 1.77E-01 -9.52E+01 ± 5.23E+01 -1.27E-01 ± 1.46E-01 431.9 153.50 ± 69.15 633.5 ± 240.6 

 Total 9.39E-04 4.74E-02 ± 2.19E-04 3.61E+00 ± 7.12E-02 1.89E-02 ± 3.02E-04 68.7 30.80 ± 0.09 146.2 ± 1.3 

                                    

N87.MS3  J = .2740E-02 ± .2407E-04              

# 1  3.94E-05 3.12E-01 ± 3.85E-03 5.38E-02 ± 6.33E-01 5.25E-03 ± 2.58E-03 9.1 9.24 ± 0.90 45.1 ± 4.3 

# 2  9.46E-05 5.40E-02 ± 1.39E-03 4.59E-01 ± 2.61E-01 7.94E-03 ± 9.88E-04 41.0 11.10 ± 0.41 54.1 ± 2.0 

# 3  2.54E-04 1.61E-03 ± 3.88E-04 1.72E-01 ± 9.88E-02 6.68E-03 ± 4.68E-04 98.6 32.93 ± 0.20 155.9 ± 0.9 

# 4  2.47E-04 6.64E-05 ± 3.99E-04 -8.00E-02 ± 9.80E-02 5.47E-03 ± 4.77E-04 99.9 33.22 ± 0.16 157.2 ± 0.7 

# 5  3.37E-04 -2.13E-04 ± 2.87E-04 9.58E-02 ± 7.90E-02 4.78E-03 ± 4.30E-04 100.2 33.24 ± 0.11 157.3 ± 0.5 

# 6  2.27E-04 -1.88E-04 ± 4.28E-04 -4.13E-02 ± 1.07E-01 5.05E-03 ± 5.81E-04 100.2 33.64 ± 0.18 159.1 ± 0.8 

# 7  2.94E-04 8.27E-04 ± 3.29E-04 -1.13E-02 ± 8.16E-02 4.63E-03 ± 3.62E-04 99.3 33.52 ± 0.16 158.6 ± 0.7 

# 8  1.93E-04 3.67E-04 ± 5.06E-04 1.63E-01 ± 1.32E-01 4.35E-03 ± 6.08E-04 99.7 33.59 ± 0.20 158.9 ± 0.9 

# 9  1.37E-04 1.03E-03 ± 7.03E-04 6.48E-02 ± 1.76E-01 4.40E-03 ± 6.81E-04 99.1 32.98 ± 0.25 156.1 ± 1.1 

# 10  2.25E-04 2.86E-04 ± 4.35E-04 3.00E-01 ± 1.09E-01 4.96E-03 ± 5.29E-04 99.8 33.28 ± 0.15 157.5 ± 0.7 

# 11  9.39E-05 3.34E-04 ± 1.03E-03 3.49E-01 ± 2.58E-01 4.45E-03 ± 1.13E-03 99.7 33.25 ± 0.34 157.3 ± 1.5 

# 12  1.01E-04 7.81E-04 ± 9.53E-04 1.17E-01 ± 2.40E-01 4.66E-03 ± 1.01E-03 99.3 32.59 ± 0.30 154.3 ± 1.4 

# 13  9.32E-05 1.05E-03 ± 1.03E-03 -6.20E-02 ± 2.61E-01 4.11E-03 ± 9.75E-04 99.1 32.23 ± 0.32 152.7 ± 1.5 

# 14  1.71E-04 1.23E-03 ± 5.58E-04 1.53E-01 ± 1.44E-01 5.70E-03 ± 5.59E-04 98.9 32.25 ± 0.22 152.8 ± 1.0 

# 15  2.67E-04 1.28E-04 ± 3.56E-04 1.94E-01 ± 9.27E-02 5.35E-03 ± 4.57E-04 99.9 33.26 ± 0.17 157.4 ± 0.8 

# 16  2.48E-04 6.51E-04 ± 1.64E-04 2.60E-01 ± 6.44E-02 4.63E-03 ± 4.15E-04 99.4 32.31 ± 0.14 153.0 ± 0.6 

# 17  2.05E-05 1.47E-03 ± 1.94E-03 -8.43E-02 ± 7.86E-01 1.46E-04 ± 2.95E-03 98.6 30.31 ± 0.62 144.0 ± 2.8 

# 18  3.89E-05 1.04E-02 ± 1.08E-03 4.81E-01 ± 4.42E-01 3.33E-03 ± 1.78E-03 88.7 24.10 ± 0.36 115.4 ± 1.7 

# 19  2.66E-05 1.14E-02 ± 1.48E-03 1.89E-01 ± 6.24E-01 1.00E-03 ± 2.00E-03 86.1 20.81 ± 0.49 100.0 ± 2.3 

# 20  1.51E-05 3.44E-02 ± 2.63E-03 1.10E+00 ± 1.13E+00 5.25E-03 ± 3.65E-03 60.2 15.38 ± 0.82 74.5 ± 3.9 

# 21  1.19E-05 7.21E-03 ± 3.74E-03 -8.39E-01 ± 1.45E+00 5.90E-03 ± 4.47E-03 92.4 25.75 ± 1.20 123.0 ± 5.5 

 Total 3.14E-03 6.44E-03 ± 1.29E-04 1.30E-01 ± 3.32E-02 5.04E-03 ± 1.48E-04 94.4 31.78 ± 0.05 150.7 ± 1.3 
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N88.MS3  J = .2741E-02 ± .2408E-04              

# 1  1.45E-07 4.56E+00 ± 2.39E+00 -3.40E+01 ± 1.12E+02 5.98E-01 ± 4.27E-01 -9.5 ##### ± 112.50 -694.1 ± 817.2 

# 2  2.92E-08 2.89E+00 ± 7.80E+00 4.18E+02 ± 1.24E+03 -6.55E-01 ± 2.18E+00 -42.5 ##### ± 810.50 ##### ± ##### 

# 3  5.19E-07 1.58E-01 ± 8.43E-02 -3.63E+01 ± 3.12E+01 -1.48E-03 ± 7.32E-02 30.0 19.97 ± 25.26 96.1 ± 118.4 

# 4  1.06E-06 3.62E-03 ± 3.89E-02 2.07E+01 ± 1.80E+01 -3.57E-03 ± 3.67E-02 97.6 44.15 ± 12.69 206.1 ± 56.0 

# 5  4.16E-06 1.56E-02 ± 1.06E-02 -2.15E+00 ± 3.68E+00 2.55E-02 ± 8.84E-03 88.2 34.30 ± 3.34 162.1 ± 15.1 

# 6  3.19E-04 6.52E-03 ± 1.75E-04 3.74E+00 ± 6.67E-02 1.48E-02 ± 4.64E-04 94.3 31.99 ± 0.11 151.6 ± 0.5 

# 7  9.28E-06 -4.46E-03 ± 4.51E-03 2.10E+00 ± 1.90E+00 1.83E-02 ± 4.61E-03 104.1 33.85 ± 1.46 160.1 ± 6.6 

# 8  2.15E-05 -6.36E-04 ± 2.05E-03 2.89E+00 ± 8.49E-01 1.59E-02 ± 2.11E-03 100.6 32.79 ± 0.69 155.2 ± 3.1 

# 9  9.71E-06 3.18E-03 ± 4.46E-03 4.19E+00 ± 1.75E+00 1.90E-02 ± 4.60E-03 97.1 31.75 ± 1.50 150.5 ± 6.8 

# 10  4.64E-05 1.14E-03 ± 9.03E-04 4.29E+00 ± 4.73E-01 1.78E-02 ± 1.04E-03 99.0 32.43 ± 0.30 153.6 ± 1.4 

# 11  9.31E-06 1.93E-02 ± 4.46E-03 1.49E+00 ± 1.76E+00 1.57E-02 ± 4.98E-03 83.1 28.02 ± 1.43 133.5 ± 6.5 

# 12  5.20E-06 3.58E-02 ± 7.89E-03 4.90E+00 ± 3.15E+00 8.72E-05 ± 7.67E-03 66.5 20.99 ± 2.47 100.9 ± 11.6 

# 13  8.97E-06 3.27E-02 ± 4.62E-03 2.49E-01 ± 1.76E+00 5.80E-03 ± 4.26E-03 36.8 5.63 ± 1.43 27.6 ± 7.0 

# 14  1.50E-07 3.08E-02 ± 2.73E-01 -1.41E+02 ± 1.25E+02 3.66E-01 ± 3.13E-01 64.2 16.31 ± 85.30 78.9 ± 403.7 

 Total 4.36E-04 8.42E-03 ± 3.73E-04 3.53E+00 ± 1.50E-01 1.53E-02 ± 4.84E-04 92.6 31.32 ± 0.14 148.6 ± 1.4 

                                    

N89.MS3  J = .2741E-02 ± .2408E-04              

# 1  3.57E-05 8.89E-02 ± 4.48E-03 1.02E+00 ± 5.36E-01 6.34E-03 ± 2.60E-03 22.4 7.58 ± 1.35 37.1 ± 6.5 

# 2  5.82E-05 2.33E-02 ± 2.71E-03 2.11E-01 ± 3.27E-01 4.56E-03 ± 1.58E-03 71.7 17.49 ± 0.83 84.5 ± 3.9 

# 3  1.12E-04 -1.43E-04 ± 1.39E-03 -6.71E-02 ± 1.77E-01 4.76E-03 ± 7.81E-04 100.1 30.95 ± 0.44 146.9 ± 2.0 

# 4  1.51E-04 1.46E-03 ± 1.04E-03 6.54E-02 ± 1.27E-01 5.23E-03 ± 6.43E-04 98.7 32.22 ± 0.34 152.7 ± 1.5 

# 5  2.27E-04 3.97E-04 ± 6.89E-04 3.86E-02 ± 9.22E-02 5.66E-03 ± 5.54E-04 99.7 33.27 ± 0.23 157.4 ± 1.0 

# 6  1.81E-04 5.70E-04 ± 8.72E-04 -4.05E-02 ± 1.07E-01 4.85E-03 ± 5.96E-04 99.5 33.32 ± 0.28 157.7 ± 1.3 

# 7  2.25E-04 1.30E-03 ± 7.00E-04 4.29E-03 ± 7.94E-02 6.74E-03 ± 5.40E-04 98.9 33.93 ± 0.24 160.4 ± 1.1 

# 8  7.26E-05 -5.02E-04 ± 1.32E-03 2.45E-01 ± 2.63E-01 2.92E-03 ± 1.19E-03 100.4 33.59 ± 0.46 158.9 ± 2.1 

# 9  4.25E-05 1.89E-03 ± 2.29E-03 1.07E-01 ± 4.42E-01 3.20E-03 ± 1.81E-03 98.4 33.18 ± 0.75 157.0 ± 3.4 

# 10  1.09E-04 8.25E-04 ± 8.96E-04 9.81E-02 ± 1.74E-01 4.55E-03 ± 7.22E-04 99.3 33.75 ± 0.30 159.6 ± 1.4 

# 11  1.20E-04 3.53E-03 ± 8.20E-04 1.16E-01 ± 1.61E-01 6.30E-03 ± 7.43E-04 97.0 33.60 ± 0.33 158.9 ± 1.5 
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# 12  5.34E-05 1.38E-02 ± 1.86E-03 4.15E-01 ± 3.65E-01 6.12E-03 ± 1.62E-03 88.2 30.62 ± 0.61 145.4 ± 2.8 

# 13  5.84E-05 3.36E-02 ± 1.69E-03 3.09E-01 ± 3.48E-01 5.16E-03 ± 1.34E-03 74.6 29.13 ± 0.55 138.6 ± 2.5 

# 16  1.48E-04 4.48E-03 ± 6.66E-04 -6.05E-02 ± 1.35E-01 5.00E-03 ± 7.28E-04 96.0 32.04 ± 0.24 151.8 ± 1.1 

# 17  1.54E-05 1.69E-02 ± 6.30E-03 1.52E-01 ± 1.21E+00 6.87E-03 ± 5.34E-03 85.7 29.95 ± 2.02 142.3 ± 9.2 

# 18  4.27E-05 1.45E-02 ± 2.36E-03 2.02E-01 ± 4.55E-01 3.77E-03 ± 1.98E-03 88.1 31.63 ± 0.75 150.0 ± 3.4 

# 19  1.40E-06 -4.30E-02 ± 7.09E-02 1.98E+00 ± 1.38E+01 3.14E-02 ± 5.47E-02 176.1 29.38 ± 22.41 139.7 ± 102.5 

 Total 1.65E-03 6.03E-03 ± 3.14E-04 8.79E-02 ± 4.82E-02 5.30E-03 ± 2.33E-04 94.7 31.65 ± 0.10 150.1 ± 1.3 

                                    

N90.MS3  J = .2739E-02 ± .2405E-04              

# 1  7.15E-06 1.44E-01 ± 2.16E-02 -4.85E-02 ± 2.36E+00 -4.82E-03 ± 1.40E-02 31.6 19.66 ± 6.28 94.6 ± 29.5 

# 2  3.80E-05 1.02E-01 ± 3.96E-03 1.67E-01 ± 4.80E-01 6.50E-03 ± 2.78E-03 39.5 19.66 ± 1.17 94.6 ± 5.5 

# 3  8.68E-05 9.21E-03 ± 2.07E-03 1.05E-01 ± 2.03E-01 8.00E-03 ± 1.24E-03 91.6 29.62 ± 0.64 140.7 ± 2.9 

# 4  1.32E-04 2.52E-03 ± 9.31E-04 -5.50E-02 ± 1.33E-01 7.11E-03 ± 8.22E-04 97.7 32.03 ± 0.32 151.7 ± 1.5 

# 5  2.01E-04 -1.34E-04 ± 2.57E-04 -2.30E-02 ± 9.27E-02 4.44E-03 ± 5.89E-04 100.1 32.87 ± 0.14 155.5 ± 0.6 

# 6  1.25E-04 6.58E-05 ± 3.99E-04 1.14E-01 ± 1.47E-01 3.70E-03 ± 8.13E-04 99.9 32.98 ± 0.20 156.1 ± 0.9 

# 7  3.45E-04 3.13E-04 ± 1.40E-04 4.71E-02 ± 5.38E-02 4.32E-03 ± 3.65E-04 99.7 34.59 ± 0.10 163.3 ± 0.4 

# 8  1.62E-04 1.33E-03 ± 3.18E-04 2.48E-01 ± 1.11E-01 3.63E-03 ± 6.50E-04 98.8 32.77 ± 0.21 155.1 ± 1.0 

# 9  1.20E-04 1.68E-03 ± 4.06E-04 1.51E-01 ± 1.66E-01 4.53E-03 ± 9.50E-04 98.5 32.59 ± 0.19 154.3 ± 0.8 

# 10  7.52E-05 2.07E-04 ± 6.35E-04 1.75E-01 ± 2.38E-01 5.27E-03 ± 1.40E-03 99.8 33.49 ± 0.29 158.4 ± 1.3 

# 11  1.27E-04 1.36E-03 ± 3.88E-04 -1.46E-02 ± 1.40E-01 4.26E-03 ± 9.18E-04 98.8 33.64 ± 0.19 159.0 ± 0.9 

# 12  1.41E-04 2.38E-03 ± 3.51E-04 2.17E-02 ± 1.25E-01 4.95E-03 ± 8.08E-04 98.0 33.72 ± 0.16 159.4 ± 0.7 

# 13  1.34E-04 1.66E-03 ± 3.67E-04 7.16E-02 ± 1.37E-01 4.88E-03 ± 8.52E-04 98.6 33.84 ± 0.17 159.9 ± 0.8 

# 14  1.55E-04 7.79E-04 ± 3.08E-04 -9.93E-02 ± 1.15E-01 5.01E-03 ± 7.19E-04 99.3 33.35 ± 0.15 157.7 ± 0.7 

# 15  1.81E-04 1.43E-03 ± 2.83E-04 -5.66E-03 ± 9.68E-02 4.88E-03 ± 5.89E-04 98.7 33.19 ± 0.16 157.0 ± 0.7 

# 16  1.45E-04 7.99E-04 ± 3.31E-04 -2.84E-02 ± 1.25E-01 4.66E-03 ± 8.07E-04 99.3 32.86 ± 0.14 155.5 ± 0.6 

# 17  1.25E-04 4.93E-04 ± 3.96E-04 -3.07E-01 ± 1.43E-01 4.44E-03 ± 8.05E-04 99.6 32.96 ± 0.21 156.0 ± 0.9 

# 18  7.00E-05 -1.06E-03 ± 6.90E-04 -2.82E-01 ± 2.58E-01 4.69E-03 ± 1.43E-03 101.0 33.20 ± 0.34 157.0 ± 1.5 

# 19  2.50E-04 3.06E-06 ± 1.99E-04 3.33E-02 ± 7.39E-02 4.87E-03 ± 4.35E-04 100.0 33.87 ± 0.13 160.0 ± 0.6 

# 20  4.20E-04 3.89E-04 ± 1.12E-04 6.67E-02 ± 4.59E-02 4.19E-03 ± 3.21E-04 99.7 34.53 ± 0.12 163.1 ± 0.5 
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# 21  1.33E-04 -5.92E-04 ± 3.70E-04 3.19E-01 ± 1.52E-01 3.95E-03 ± 7.90E-04 100.5 32.95 ± 0.18 155.9 ± 0.8 

# 22  4.55E-06 1.08E-03 ± 1.14E-02 5.82E+00 ± 3.95E+00 4.18E-03 ± 2.15E-02 98.9 28.09 ± 4.22 133.8 ± 19.4 

# 23  4.97E-06 -8.31E-03 ± 2.81E-02 3.04E+00 ± 3.59E+00 4.72E-03 ± 1.98E-02 108.5 31.19 ± 8.65 147.9 ± 39.4 

 Total 3.18E-03 2.45E-03 ± 1.23E-04 4.95E-02 ± 2.74E-02 4.67E-03 ± 1.66E-04 97.9 33.20 ± 0.05 157.0 ± 1.3 

                                    

N91.MS3  J = .2741E-02 ± .2408E-04              

# 1  4.54E-06 1.23E-01 ± 8.56E-03 -1.15E+00 ± 4.50E+00 -1.75E-02 ± 1.22E-02 22.6 10.59 ± 2.49 51.6 ± 12.0 

# 2  1.04E-06 2.31E-02 ± 3.24E-02 7.44E+00 ± 2.15E+01 -6.13E-02 ± 5.10E-02 75.2 20.69 ± 10.04 99.5 ± 47.0 

# 3  4.17E-06 1.14E-02 ± 8.02E-03 3.21E+00 ± 5.19E+00 -1.90E-03 ± 1.32E-02 91.3 35.58 ± 2.58 167.9 ± 11.6 

# 4  4.22E-06 2.73E-03 ± 9.21E-03 3.98E+00 ± 5.63E+00 9.71E-03 ± 1.33E-02 97.7 33.95 ± 2.94 160.5 ± 13.3 

# 5  4.19E-05 1.19E-02 ± 9.23E-04 -1.05E-01 ± 5.25E-01 5.89E-03 ± 1.58E-03 90.1 32.15 ± 0.34 152.4 ± 1.5 

# 6  4.74E-05 5.99E-03 ± 7.33E-04 2.09E-01 ± 4.56E-01 8.73E-03 ± 1.42E-03 94.8 32.40 ± 0.26 153.5 ± 1.2 

# 7  4.67E-05 3.50E-03 ± 7.20E-04 -3.56E-02 ± 4.47E-01 6.18E-03 ± 1.36E-03 96.9 32.13 ± 0.29 152.3 ± 1.3 

# 8  5.42E-05 3.96E-03 ± 6.77E-04 1.05E-01 ± 3.98E-01 6.91E-03 ± 1.53E-03 96.5 32.59 ± 0.25 154.4 ± 1.1 

# 9  2.88E-05 2.59E-03 ± 1.20E-03 -1.62E-01 ± 7.39E-01 6.82E-03 ± 2.28E-03 97.8 33.23 ± 0.42 157.3 ± 1.9 

# 10  3.71E-05 2.13E-03 ± 1.02E-03 2.38E-01 ± 5.86E-01 6.81E-03 ± 1.59E-03 98.1 32.49 ± 0.41 153.9 ± 1.9 

# 11  4.90E-05 3.59E-03 ± 8.18E-04 4.57E-01 ± 4.42E-01 8.44E-03 ± 1.24E-03 96.9 32.58 ± 0.32 154.3 ± 1.5 

# 12  4.89E-05 -1.20E-04 ± 6.84E-04 2.17E-01 ± 4.40E-01 6.58E-03 ± 1.27E-03 100.1 32.09 ± 0.29 152.1 ± 1.3 

# 13  2.59E-05 5.27E-03 ± 1.38E-03 5.93E-01 ± 8.58E-01 5.84E-03 ± 2.29E-03 94.9 29.02 ± 0.47 138.1 ± 2.1 

# 14  2.40E-05 8.66E-03 ± 1.43E-03 -1.68E+00 ± 9.24E-01 5.52E-03 ± 2.36E-03 91.5 27.44 ± 0.49 130.8 ± 2.3 

# 15  2.24E-05 -6.27E-04 ± 1.21E-03 -9.15E-01 ± 7.91E-01 7.53E-03 ± 1.83E-03 100.6 32.39 ± 0.46 153.5 ± 2.1 

# 16  2.52E-05 1.45E-01 ± 1.78E-03 -9.06E-01 ± 7.00E-01 6.57E-03 ± 2.16E-03 43.3 32.74 ± 0.52 155.1 ± 2.4 

# 17  4.40E-05 4.67E-05 ± 6.67E-04 -8.57E-01 ± 4.09E-01 5.89E-03 ± 9.92E-04 100.0 32.39 ± 0.26 153.5 ± 1.2 

# 18  3.15E-06 5.72E-04 ± 7.70E-03 4.25E+00 ± 5.31E+00 -5.85E-03 ± 1.14E-02 99.5 35.40 ± 3.05 167.1 ± 13.8 

# 19  4.46E-06 5.69E-03 ± 6.27E-03 -1.78E+00 ± 3.78E+00 1.17E-02 ± 1.00E-02 95.1 32.64 ± 2.40 154.6 ± 10.9 

# 20  6.51E-06 -5.18E-04 ± 4.51E-03 1.35E+00 ± 3.01E+00 8.47E-03 ± 6.08E-03 100.5 32.78 ± 1.64 155.2 ± 7.4 

# 21  2.04E-05 1.52E-03 ± 1.26E-03 -7.51E-02 ± 9.08E-01 4.65E-03 ± 1.83E-03 98.7 34.04 ± 0.60 160.9 ± 2.7 

 Total 5.44E-04 1.13E-02 ± 2.84E-04 -2.54E-02 ± 1.73E-01 6.36E-03 ± 4.75E-04 90.5 31.97 ± 0.10 151.5 ± 1.4 
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N92.MS3  J = .2741E-02 ± .2408E-04              

# 1  2.56E-05 1.31E-01 ± 1.30E-01 -2.89E-01 ± 1.63E+00 7.03E-03 ± 4.66E-02 1.7 0.68 ± 38.07 3.4 ± 187.9 

# 2  1.69E-04 1.01E-02 ± 1.95E-02 1.69E-01 ± 2.48E-01 5.26E-03 ± 7.07E-03 84.5 16.25 ± 5.77 78.6 ± 27.3 

# 3  2.59E-04 -2.50E-04 ± 1.28E-02 1.20E-01 ± 1.63E-01 5.53E-03 ± 4.62E-03 100.2 30.81 ± 3.79 146.3 ± 17.3 

# 4  1.19E-04 -1.01E-02 ± 2.77E-02 -2.52E-01 ± 3.50E-01 4.38E-03 ± 1.00E-02 108.9 36.59 ± 8.24 172.5 ± 37.0 

# 5  2.29E-04 -1.22E-02 ± 1.44E-02 -1.28E-01 ± 1.86E-01 3.63E-03 ± 5.24E-03 110.6 37.85 ± 4.30 178.1 ± 19.3 

# 6  2.07E-04 -1.52E-02 ± 1.60E-02 -8.56E-02 ± 2.04E-01 4.06E-03 ± 5.77E-03 113.1 38.69 ± 4.76 181.8 ± 21.3 

# 7  1.85E-04 6.12E-02 ± 1.83E-02 4.74E-01 ± 2.34E-01 1.11E-02 ± 6.68E-03 42.4 13.32 ± 5.39 64.7 ± 25.7 

# 8  1.40E-04 -1.51E-02 ± 2.36E-02 -1.86E-03 ± 3.00E-01 5.67E-03 ± 8.56E-03 113.1 38.59 ± 7.05 181.4 ± 31.5 

# 9  2.64E-04 -5.76E-04 ± 1.25E-02 -1.81E-01 ± 1.62E-01 5.86E-03 ± 4.54E-03 100.5 35.34 ± 3.73 166.8 ± 16.8 

# 10  2.74E-04 7.91E-04 ± 1.50E-04 -2.35E-02 ± 7.47E-02 5.59E-03 ± 3.79E-04 99.3 33.88 ± 0.12 160.2 ± 0.5 

# 11  1.22E-04 7.73E-04 ± 3.23E-04 5.37E-02 ± 1.59E-01 5.11E-03 ± 6.06E-04 99.3 33.41 ± 0.17 158.1 ± 0.8 

# 12  1.72E-04 5.07E-04 ± 2.48E-04 -9.85E-02 ± 1.14E-01 4.74E-03 ± 4.10E-04 99.6 33.87 ± 0.15 160.2 ± 0.7 

# 13  9.02E-05 -5.14E-05 ± 4.61E-04 -5.71E-02 ± 2.16E-01 5.18E-03 ± 6.53E-04 100.0 37.48 ± 4.00 176.4 ± 18.0 

# 14  1.91E-04 2.73E-04 ± 2.10E-04 6.29E-02 ± 1.04E-01 5.15E-03 ± 4.90E-04 99.8 34.07 ± 0.15 161.1 ± 0.7 

# 15  2.33E-04 6.54E-04 ± 1.76E-04 8.17E-02 ± 8.57E-02 5.87E-03 ± 4.66E-04 99.4 34.10 ± 0.11 161.2 ± 0.5 

# 16  1.07E-04 8.98E-04 ± 3.59E-04 1.60E-01 ± 1.90E-01 4.86E-03 ± 5.99E-04 99.2 34.44 ± 0.16 162.8 ± 0.7 

# 17  2.76E-05 6.93E-04 ± 1.44E-03 -2.74E-01 ± 6.90E-01 3.03E-03 ± 2.39E-03 99.4 33.92 ± 0.59 160.4 ± 2.6 

# 18  1.84E-04 2.01E-04 ± 2.18E-04 -1.84E-02 ± 1.12E-01 5.73E-03 ± 6.72E-04 99.8 34.26 ± 0.13 162.0 ± 0.6 

# 19  1.62E-04 1.81E-04 ± 2.55E-04 2.28E-01 ± 1.35E-01 5.45E-03 ± 5.98E-04 99.8 34.40 ± 0.13 162.6 ± 0.6 

# 20  2.34E-04 2.76E-04 ± 1.83E-04 5.85E-02 ± 8.76E-02 6.17E-03 ± 4.88E-04 99.8 33.80 ± 0.13 159.8 ± 0.6 

# 21  1.72E-04 2.60E-05 ± 2.41E-04 2.29E-01 ± 1.22E-01 4.49E-03 ± 5.15E-04 100.0 33.53 ± 0.13 158.6 ± 0.6 

# 22  1.46E-04 9.74E-04 ± 2.75E-04 1.12E-01 ± 1.33E-01 5.38E-03 ± 6.12E-04 99.1 33.09 ± 0.13 156.6 ± 0.6 

# 23  5.32E-05 2.24E-03 ± 7.72E-04 3.89E-01 ± 4.30E-01 5.18E-03 ± 1.10E-03 98.0 32.57 ± 0.35 154.3 ± 1.6 

# 24  4.63E-05 -4.75E-04 ± 9.26E-04 -1.70E-01 ± 4.12E-01 2.36E-03 ± 1.36E-03 100.4 32.97 ± 0.40 156.1 ± 1.8 

# 25  1.27E-04 -3.62E-04 ± 3.31E-04 -1.27E-01 ± 1.71E-01 6.11E-03 ± 8.10E-04 100.3 33.47 ± 0.15 158.4 ± 0.7 

# 27  3.38E-05 9.34E-04 ± 6.60E-04 7.24E-01 ± 8.77E-01 4.18E-03 ± 1.78E-03 99.2 32.57 ± 0.37 154.3 ± 1.7 

# 28  1.14E-05 -1.31E-03 ± 1.77E-03 -1.68E+00 ± 2.53E+00 7.28E-03 ± 4.37E-03 101.2 33.51 ± 0.79 158.6 ± 3.6 

# 29  5.95E-06 -1.53E-03 ± 3.29E-03 -2.45E+00 ± 4.92E+00 5.19E-03 ± 8.51E-03 101.4 33.03 ± 1.47 156.4 ± 6.7 
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# 30  6.93E-05 2.19E-04 ± 3.67E-04 -3.66E-03 ± 4.18E-01 4.49E-03 ± 8.02E-04 99.8 33.23 ± 0.17 157.3 ± 0.8 

# 31  4.29E-05 6.96E-04 ± 5.39E-04 -5.76E-02 ± 6.79E-01 1.87E-03 ± 1.32E-03 99.4 33.03 ± 0.26 156.4 ± 1.2 

# 32  1.15E-05 8.69E-04 ± 2.06E-03 1.97E+00 ± 2.49E+00 -1.59E-03 ± 4.61E-03 99.2 33.60 ± 0.83 158.9 ± 3.8 

# 33  1.30E-05 -7.19E-03 ± 2.24E-03 -3.80E+00 ± 2.22E+00 2.59E-02 ± 3.68E-03 106.3 35.57 ± 0.98 167.8 ± 4.4 

 Total 4.13E-03 1.92E-03 ± 2.41E-03 2.29E-02 ± 4.10E-02 5.46E-03 ± 8.78E-04 98.3 32.65 ± 0.72 154.6 ± 3.5 

                                    

N93.MS3  J = .2739E-02 ± .2404E-04              

# 1  1.84E-05 1.15E-02 ± 1.81E-03 7.37E-01 ± 1.04E+00 8.20E-03 ± 3.90E-03 90.7 33.07 ± 0.62 156.4 ± 2.8 

# 2  4.92E-05 4.54E-03 ± 5.48E-04 1.11E-01 ± 3.62E-01 3.65E-03 ± 1.56E-03 95.9 31.69 ± 0.28 150.2 ± 1.3 

# 3  1.12E-04 1.57E-04 ± 2.56E-04 -2.15E-01 ± 1.76E-01 3.45E-03 ± 7.78E-04 99.9 33.05 ± 0.14 156.4 ± 0.6 

# 4  1.25E-04 6.59E-04 ± 2.39E-04 -5.28E-03 ± 1.53E-01 3.36E-03 ± 7.00E-04 99.4 33.15 ± 0.11 156.8 ± 0.5 

# 5  1.28E-04 4.89E-04 ± 2.42E-04 1.34E-02 ± 1.39E-01 4.42E-03 ± 7.66E-04 99.6 33.03 ± 0.20 156.3 ± 0.9 

# 6  1.27E-04 3.60E-04 ± 2.24E-04 4.66E-02 ± 1.56E-01 5.34E-03 ± 7.55E-04 99.7 32.96 ± 0.14 155.9 ± 0.6 

# 7  1.65E-04 3.18E-04 ± 1.80E-04 1.73E-01 ± 1.04E-01 4.77E-03 ± 5.04E-04 99.7 33.79 ± 0.16 159.7 ± 0.7 

# 8  1.03E-04 -4.02E-05 ± 2.66E-04 3.29E-01 ± 1.98E-01 4.00E-03 ± 8.81E-04 100.0 33.86 ± 0.26 160.0 ± 1.2 

# 9  1.25E-04 7.04E-04 ± 2.42E-04 1.63E-01 ± 1.41E-01 5.29E-03 ± 6.87E-04 99.4 33.58 ± 0.12 158.7 ± 0.6 

# 10  2.39E-04 6.57E-04 ± 1.34E-04 4.80E-02 ± 7.18E-02 3.95E-03 ± 3.72E-04 99.4 32.97 ± 0.10 156.0 ± 0.5 

# 11  1.03E-04 -4.73E-05 ± 3.56E-04 1.03E-01 ± 1.82E-01 3.85E-03 ± 8.80E-04 100.0 32.58 ± 0.17 154.2 ± 0.8 

# 12  8.08E-05 -2.74E-04 ± 4.60E-04 1.88E-01 ± 2.23E-01 4.55E-03 ± 1.05E-03 100.2 33.13 ± 0.21 156.7 ± 0.9 

# 13  1.09E-04 5.59E-04 ± 3.46E-04 -2.93E-01 ± 1.65E-01 3.33E-03 ± 7.48E-04 99.5 32.39 ± 0.17 153.3 ± 0.8 

# 14  9.43E-05 3.03E-04 ± 3.98E-04 1.80E-01 ± 1.92E-01 3.29E-03 ± 9.02E-04 99.7 32.91 ± 0.19 155.7 ± 0.9 

# 15  7.20E-05 -2.82E-04 ± 5.72E-04 -9.34E-02 ± 2.67E-01 3.16E-03 ± 1.08E-03 100.3 32.48 ± 0.24 153.7 ± 1.1 

# 16  4.60E-05 5.08E-04 ± 7.61E-04 -3.46E-01 ± 4.52E-01 4.65E-03 ± 1.59E-03 99.5 31.52 ± 0.32 149.4 ± 1.5 

# 17  1.01E-04 6.70E-04 ± 3.90E-04 2.45E-01 ± 1.92E-01 3.95E-03 ± 1.06E-03 99.4 32.20 ± 0.17 152.5 ± 0.8 

# 18  2.28E-05 3.93E-03 ± 1.72E-03 4.57E-01 ± 8.22E-01 -7.10E-04 ± 3.17E-03 96.4 31.38 ± 0.58 148.8 ± 2.7 

 Total 1.82E-03 6.37E-04 ± 7.85E-05 6.57E-02 ± 4.37E-02 4.09E-03 ± 2.00E-04 99.4 32.95 ± 0.04 155.9 ± 1.3 

                                    

N94.MS3  J = .2739E-02 ± .2404E-04              

# 1  1.01E-05 9.78E-03 ± 4.88E-03 2.77E+00 ± 1.70E+00 1.94E-03 ± 3.59E-03 91.2 29.75 ± 1.52 141.3 ± 6.9 



Appendix tables  

218 

 

# 2  2.20E-05 4.20E-03 ± 2.19E-03 -1.51E-01 ± 8.74E-01 3.86E-03 ± 2.12E-03 96.2 31.36 ± 0.70 148.6 ± 3.2 

# 3  5.80E-05 2.40E-03 ± 8.56E-04 -1.05E-01 ± 3.23E-01 3.94E-03 ± 1.20E-03 97.9 32.38 ± 0.28 153.3 ± 1.3 

# 4  1.44E-04 2.32E-04 ± 3.10E-04 1.83E-02 ± 1.25E-01 3.73E-03 ± 4.05E-04 99.8 32.79 ± 0.12 155.2 ± 0.5 

# 5  1.19E-04 5.75E-04 ± 4.09E-04 -1.29E-01 ± 1.47E-01 5.13E-03 ± 4.68E-04 99.5 32.41 ± 0.16 153.4 ± 0.7 

# 6  1.29E-04 4.48E-04 ± 3.56E-04 -1.04E-01 ± 1.40E-01 3.92E-03 ± 5.32E-04 99.6 32.55 ± 0.15 154.1 ± 0.7 

# 7  6.93E-05 6.64E-04 ± 7.05E-04 1.15E-02 ± 2.72E-01 4.71E-03 ± 7.96E-04 99.4 32.17 ± 0.26 152.3 ± 1.2 

# 8  7.18E-05 5.73E-04 ± 6.41E-04 5.27E-02 ± 2.47E-01 4.49E-03 ± 6.72E-04 99.5 33.15 ± 0.27 156.8 ± 1.2 

# 9  9.33E-05 1.51E-03 ± 5.05E-04 8.29E-02 ± 2.00E-01 3.29E-03 ± 6.42E-04 98.7 32.59 ± 0.19 154.3 ± 0.8 

# 10  7.09E-05 1.83E-03 ± 6.97E-04 5.80E-01 ± 2.86E-01 3.38E-03 ± 9.47E-04 98.3 31.96 ± 0.25 151.4 ± 1.1 

# 11  1.07E-04 -1.64E-04 ± 4.43E-04 -1.79E-02 ± 1.90E-01 4.50E-03 ± 6.59E-04 100.1 32.72 ± 0.16 154.8 ± 0.7 

# 12  1.10E-04 1.68E-04 ± 4.15E-04 -1.12E-01 ± 1.89E-01 3.43E-03 ± 5.46E-04 99.9 32.58 ± 0.18 154.2 ± 0.8 

# 13  2.96E-05 7.97E-05 ± 1.64E-03 -4.21E-01 ± 6.12E-01 2.52E-03 ± 1.48E-03 99.9 32.14 ± 0.61 152.2 ± 2.8 

# 14  1.24E-04 -1.09E-05 ± 3.81E-04 7.05E-02 ± 1.50E-01 5.29E-03 ± 4.68E-04 100.0 32.56 ± 0.16 154.1 ± 0.7 

# 15  1.31E-05 2.92E-03 ± 3.58E-03 -1.48E+00 ± 1.64E+00 4.32E-03 ± 3.64E-03 97.2 30.15 ± 1.16 143.1 ± 5.3 

# 16  2.28E-05 -1.26E-03 ± 2.12E-03 -8.86E-01 ± 8.70E-01 5.85E-03 ± 2.10E-03 101.2 32.31 ± 0.73 153.0 ± 3.3 

 Total 1.19E-03 7.20E-04 ± 1.60E-04 -9.77E-03 ± 6.37E-02 4.15E-03 ± 1.90E-04 99.4 32.47 ± 0.06 153.7 ± 1.3 

                                    

N95.MS3  J = .2738E-02 ± .2403E-04              

# 1  1.02E-05 4.78E-02 ± 4.75E-03 1.85E+00 ± 2.50E+00 2.08E-03 ± 5.40E-03 66.7 28.23 ± 1.46 134.4 ± 6.7 

# 2  4.08E-05 1.02E-02 ± 9.41E-04 -6.49E-02 ± 6.40E-01 3.96E-03 ± 1.60E-03 91.5 32.61 ± 0.34 154.3 ± 1.5 

# 3  1.16E-04 7.35E-04 ± 3.18E-04 3.75E-02 ± 2.28E-01 4.98E-03 ± 7.97E-04 99.3 32.88 ± 0.20 155.5 ± 0.9 

# 4  1.17E-04 -8.87E-05 ± 3.75E-04 -1.82E-01 ± 2.33E-01 4.43E-03 ± 6.75E-04 100.1 33.17 ± 0.17 156.8 ± 0.8 

# 5  1.76E-04 -1.76E-04 ± 2.16E-04 3.82E-02 ± 1.47E-01 3.93E-03 ± 3.81E-04 100.2 32.74 ± 0.13 154.9 ± 0.6 

# 6  1.86E-04 4.00E-05 ± 2.09E-04 -8.81E-02 ± 1.33E-01 3.12E-03 ± 4.74E-04 100.0 33.03 ± 0.17 156.2 ± 0.8 

# 7  1.32E-04 4.46E-04 ± 2.89E-04 -4.58E-02 ± 1.97E-01 4.53E-03 ± 6.06E-04 99.6 32.99 ± 0.19 156.0 ± 0.8 

# 8  1.49E-04 8.80E-04 ± 2.72E-04 1.57E-01 ± 1.76E-01 5.00E-03 ± 5.53E-04 99.2 33.09 ± 0.16 156.5 ± 0.7 

# 9  1.22E-04 1.36E-04 ± 3.14E-04 2.58E-01 ± 2.28E-01 3.39E-03 ± 5.24E-04 99.9 32.94 ± 0.16 155.8 ± 0.7 

# 10  1.62E-04 -2.63E-04 ± 2.29E-04 8.06E-02 ± 1.62E-01 3.25E-03 ± 5.01E-04 100.2 32.95 ± 0.13 155.8 ± 0.6 

# 11  1.75E-04 3.13E-05 ± 2.05E-04 -5.20E-02 ± 1.52E-01 4.36E-03 ± 4.12E-04 100.0 32.67 ± 0.11 154.6 ± 0.5 
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# 12  1.68E-04 6.24E-05 ± 2.00E-04 -1.80E-01 ± 1.69E-01 3.36E-03 ± 5.51E-04 99.9 32.53 ± 0.09 153.9 ± 0.4 

# 13  1.55E-04 2.79E-04 ± 2.25E-04 -1.13E-01 ± 1.75E-01 4.06E-03 ± 4.73E-04 99.8 32.60 ± 0.11 154.3 ± 0.5 

# 14  7.35E-05 -1.05E-04 ± 4.77E-04 1.40E-01 ± 3.83E-01 3.76E-03 ± 7.81E-04 100.1 32.10 ± 0.19 152.0 ± 0.9 

# 15  1.88E-04 -1.29E-04 ± 1.91E-04 -1.37E-01 ± 1.45E-01 4.28E-03 ± 4.27E-04 100.1 32.58 ± 0.10 154.2 ± 0.4 

# 16  2.74E-05 -2.53E-03 ± 1.22E-03 -4.10E-01 ± 9.96E-01 1.59E-03 ± 1.98E-03 102.3 33.21 ± 0.41 157.0 ± 1.9 

# 17  6.68E-05 -1.24E-03 ± 5.36E-04 5.11E-01 ± 4.09E-01 7.90E-04 ± 7.73E-04 101.1 33.19 ± 0.20 156.9 ± 0.9 

 Total 2.06E-03 4.82E-04 ± 7.58E-05 1.14E-03 ± 5.34E-02 3.86E-03 ± 1.47E-04 99.6 32.79 ± 0.04 155.1 ± 1.3 

                                    

N96.MS3  J = .2738E-02 ± .2403E-04              

# 1  3.63E-05 2.03E-02 ± 1.04E-03 -1.09E-01 ± 4.92E-01 2.78E-03 ± 1.56E-03 78.2 21.47 ± 0.33 103.1 ± 1.5 

# 2  2.14E-05 1.96E-03 ± 1.59E-03 -1.25E+00 ± 8.10E-01 4.10E-03 ± 2.87E-03 98.2 32.22 ± 0.55 152.6 ± 2.5 

# 3  1.08E-04 1.10E-03 ± 3.06E-04 1.25E-01 ± 1.79E-01 3.20E-03 ± 5.87E-04 99.0 32.77 ± 0.17 155.0 ± 0.8 

# 4  1.25E-04 6.79E-04 ± 2.74E-04 1.08E-01 ± 1.37E-01 3.51E-03 ± 5.52E-04 99.4 32.42 ± 0.12 153.4 ± 0.6 

# 5  1.15E-04 2.84E-04 ± 3.00E-04 7.64E-02 ± 1.60E-01 3.73E-03 ± 6.94E-04 99.7 32.53 ± 0.14 154.0 ± 0.6 

# 6  1.18E-04 3.77E-04 ± 2.95E-04 5.46E-02 ± 1.47E-01 4.53E-03 ± 4.78E-04 99.7 32.39 ± 0.14 153.3 ± 0.6 

# 7  1.52E-04 6.23E-04 ± 2.38E-04 -3.47E-02 ± 1.15E-01 3.63E-03 ± 6.27E-04 99.4 32.85 ± 0.13 155.4 ± 0.6 

# 8  6.34E-05 9.82E-04 ± 5.97E-04 2.39E-01 ± 2.84E-01 3.42E-03 ± 1.10E-03 99.1 32.87 ± 0.23 155.5 ± 1.1 

# 9  6.78E-05 1.24E-03 ± 5.23E-04 -1.64E-01 ± 2.40E-01 2.91E-03 ± 9.92E-04 98.9 33.03 ± 0.24 156.2 ± 1.1 

# 10  2.63E-04 4.80E-04 ± 1.36E-04 1.97E-02 ± 6.90E-02 3.64E-03 ± 2.63E-04 99.6 32.88 ± 0.11 155.5 ± 0.5 

# 11  1.23E-04 1.61E-03 ± 2.76E-04 -5.73E-02 ± 1.50E-01 3.30E-03 ± 4.63E-04 98.5 32.11 ± 0.15 152.0 ± 0.7 

# 12  1.41E-04 3.07E-04 ± 2.83E-04 -2.70E-02 ± 1.26E-01 3.25E-03 ± 4.78E-04 99.7 32.37 ± 0.17 153.2 ± 0.8 

# 13  6.46E-05 -1.74E-04 ± 4.17E-04 1.38E-01 ± 2.88E-01 1.65E-03 ± 8.97E-04 100.2 32.51 ± 0.18 153.9 ± 0.8 

# 14  2.96E-05 1.09E-04 ± 7.63E-04 -7.56E-02 ± 6.15E-01 3.99E-03 ± 1.66E-03 99.9 32.33 ± 0.31 153.0 ± 1.4 

# 15  2.93E-04 6.89E-05 ± 9.79E-05 -2.06E-02 ± 6.65E-02 3.26E-03 ± 2.88E-04 99.9 32.53 ± 0.11 153.9 ± 0.5 

# 16  1.25E-04 -1.31E-05 ± 1.84E-04 7.81E-02 ± 1.43E-01 3.15E-03 ± 5.62E-04 100.0 32.51 ± 0.13 153.9 ± 0.6 

# 17  1.51E-06 -2.36E-02 ± 1.76E-02 1.79E+01 ± 1.24E+01 -1.49E-03 ± 3.27E-02 120.4 41.19 ± 6.03 192.8 ± 26.8 

# 18  6.98E-06 -6.24E-03 ± 3.90E-03 9.41E+00 ± 2.54E+00 -1.88E-03 ± 7.34E-03 105.7 34.26 ± 1.42 161.8 ± 6.4 

 Total 1.85E-03 8.62E-04 ± 7.48E-05 5.80E-02 ± 4.12E-02 3.39E-03 ± 1.52E-04 99.2 32.38 ± 0.04 153.3 ± 1.3 
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N97.MS3  J = .2739E-02 ± .2405E-04              

# 1  1.48E-05 8.50E-02 ± 3.52E-03 -3.83E+00 ± 5.16E+00 6.97E-03 ± 2.81E-03 29.2 10.36 ± 1.18 50.5 ± 5.7 

# 2  1.12E-05 1.94E-02 ± 3.77E-03 -2.53E+00 ± 4.59E+00 4.50E-03 ± 2.29E-03 79.8 22.63 ± 1.17 108.5 ± 5.4 

# 3  1.54E-05 5.96E-03 ± 2.44E-03 -1.59E+00 ± 3.23E+00 7.06E-03 ± 2.48E-03 94.5 29.98 ± 0.77 142.4 ± 3.5 

# 4  4.90E-05 3.92E-03 ± 7.43E-04 -2.44E-01 ± 9.65E-01 7.82E-03 ± 8.80E-04 96.5 31.71 ± 0.28 150.3 ± 1.3 

# 5  1.70E-04 3.88E-04 ± 2.15E-04 2.64E-01 ± 2.86E-01 5.84E-03 ± 3.18E-04 99.7 32.97 ± 0.11 156.0 ± 0.5 

# 6  2.30E-04 6.16E-05 ± 1.63E-04 -1.03E-01 ± 2.07E-01 6.73E-03 ± 2.64E-04 99.9 32.95 ± 0.08 155.9 ± 0.4 

# 7  1.64E-04 1.18E-04 ± 2.51E-04 -6.96E-02 ± 2.86E-01 7.46E-03 ± 4.23E-04 99.9 32.77 ± 0.14 155.1 ± 0.6 

# 8  1.58E-04 7.17E-04 ± 2.25E-04 2.83E-01 ± 3.00E-01 6.90E-03 ± 3.34E-04 99.4 32.83 ± 0.14 155.4 ± 0.6 

# 9  1.68E-04 4.99E-04 ± 2.32E-04 1.03E-01 ± 2.95E-01 5.69E-03 ± 4.33E-04 99.6 33.37 ± 0.16 157.8 ± 0.7 

# 10  9.26E-05 1.69E-03 ± 3.93E-04 -1.55E-01 ± 4.98E-01 5.42E-03 ± 4.14E-04 98.5 33.00 ± 0.16 156.1 ± 0.7 

# 11  1.05E-04 2.22E-03 ± 3.40E-04 -1.90E-01 ± 4.53E-01 6.38E-03 ± 5.02E-04 98.0 32.81 ± 0.16 155.3 ± 0.7 

# 12  3.22E-04 1.49E-03 ± 1.26E-04 -3.06E-02 ± 1.50E-01 5.76E-03 ± 2.42E-04 98.7 32.82 ± 0.10 155.3 ± 0.4 

# 13  7.60E-05 2.51E-04 ± 5.73E-04 3.25E-01 ± 4.68E-01 4.80E-03 ± 4.45E-04 99.8 32.78 ± 0.23 155.2 ± 1.1 

# 14  1.28E-04 5.10E-04 ± 3.21E-04 -1.50E-01 ± 2.66E-01 6.30E-03 ± 6.67E-04 99.5 32.64 ± 0.15 154.5 ± 0.7 

# 15  1.02E-04 1.21E-02 ± 4.10E-04 1.25E-01 ± 3.46E-01 5.95E-03 ± 7.04E-04 90.1 32.49 ± 0.16 153.8 ± 0.7 

# 16  6.71E-05 1.33E-02 ± 6.25E-04 -4.57E-01 ± 4.92E-01 5.56E-03 ± 6.39E-04 89.2 32.44 ± 0.24 153.6 ± 1.1 

# 17  2.18E-04 3.54E-03 ± 1.98E-04 -7.08E-02 ± 1.47E-01 6.48E-03 ± 3.48E-04 96.9 32.60 ± 0.12 154.3 ± 0.6 

# 18  5.96E-05 1.89E-02 ± 7.52E-04 4.44E-01 ± 6.26E-01 6.78E-03 ± 8.23E-04 85.3 32.58 ± 0.30 154.2 ± 1.3 

# 19  5.42E-05 5.15E-02 ± 8.90E-04 -4.14E-01 ± 6.13E-01 2.88E-03 ± 9.58E-04 67.7 31.91 ± 0.32 151.2 ± 1.4 

# 20  2.20E-05 1.49E-02 ± 2.11E-03 8.71E-01 ± 1.72E+00 8.25E-04 ± 1.40E-03 88.1 32.42 ± 0.72 153.5 ± 3.3 

# 21  4.64E-06 2.84E-02 ± 8.65E-03 9.61E-01 ± 7.09E+00 -7.06E-03 ± 6.99E-03 79.4 32.23 ± 2.76 152.6 ± 12.6 

# 22  2.14E-07 -9.17E-02 ± 2.02E-01 4.78E+02 ± 3.11E+02 -1.08E-01 ± 1.28E-01 131.4 113.30 ± 84.12 487.7 ± 317.2 

 Total 2.23E-03 4.60E-03 ± 8.63E-05 3.70E-03 ± 9.38E-02 6.08E-03 ± 1.14E-04 96.0 32.56 ± 0.04 154.1 ± 1.3 

                                    

N98.MS3  J = .2737E-02 ± .2401E-04              

# 1  5.81E-06 1.82E-01 ± 7.05E-03 2.28E+00 ± 5.13E+00 -7.81E-03 ± 5.27E-03 16.5 10.65 ± 1.89 51.8 ± 9.1 

# 2  2.12E-06 2.36E-02 ± 1.76E-02 9.37E+00 ± 1.53E+01 -1.11E-02 ± 1.41E-02 78.7 25.69 ± 5.38 122.6 ± 24.8 

# 3  3.01E-05 7.88E-03 ± 1.27E-03 1.88E-01 ± 1.10E+00 5.58E-03 ± 1.30E-03 93.1 31.33 ± 0.44 148.4 ± 2.0 
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# 4  3.94E-05 6.23E-03 ± 9.45E-04 -1.48E-01 ± 8.12E-01 4.46E-03 ± 1.07E-03 94.8 33.55 ± 0.35 158.5 ± 1.6 

# 5  4.75E-05 1.40E-01 ± 1.23E-03 5.29E-01 ± 6.37E-01 8.00E-03 ± 1.18E-03 44.2 32.79 ± 0.36 155.0 ± 1.6 

# 6  9.04E-05 3.11E-03 ± 4.53E-04 4.12E-01 ± 3.71E-01 7.61E-03 ± 4.22E-04 97.3 32.45 ± 0.17 153.5 ± 0.8 

# 7  9.22E-05 1.26E-03 ± 4.24E-04 2.85E-01 ± 3.39E-01 7.64E-03 ± 5.06E-04 98.9 32.40 ± 0.22 153.3 ± 1.0 

# 8  8.28E-05 1.32E-03 ± 4.63E-04 -4.63E-01 ± 3.74E-01 6.36E-03 ± 5.76E-04 98.9 33.65 ± 0.28 158.9 ± 1.3 

# 9  9.81E-05 8.61E-03 ± 4.53E-04 2.58E-03 ± 3.25E-01 8.21E-03 ± 5.95E-04 92.7 32.27 ± 0.20 152.7 ± 0.9 

# 10  6.55E-05 1.58E-03 ± 5.82E-04 5.03E-01 ± 5.67E-01 6.83E-03 ± 5.86E-04 98.6 32.45 ± 0.21 153.5 ± 0.9 

# 11  4.24E-05 5.33E-03 ± 8.98E-04 -2.12E-01 ± 8.93E-01 7.31E-03 ± 1.13E-03 95.4 32.34 ± 0.28 153.0 ± 1.3 

# 12  1.38E-04 2.10E-03 ± 2.91E-04 -2.36E-01 ± 2.28E-01 7.61E-03 ± 4.91E-04 98.1 32.08 ± 0.14 151.8 ± 0.6 

# 13  1.52E-04 1.78E-03 ± 2.66E-04 9.24E-02 ± 2.21E-01 5.48E-03 ± 5.56E-04 98.4 31.95 ± 0.12 151.2 ± 0.6 

# 14  8.65E-05 2.17E-03 ± 4.42E-04 -3.94E-01 ± 4.07E-01 5.62E-03 ± 6.32E-04 98.0 31.60 ± 0.20 149.7 ± 0.9 

# 15  9.27E-05 1.34E-03 ± 4.13E-04 1.76E-02 ± 3.61E-01 6.04E-03 ± 3.68E-04 98.8 31.89 ± 0.15 151.0 ± 0.7 

# 16  2.15E-05 1.26E-03 ± 1.79E-03 -2.96E-01 ± 1.61E+00 6.30E-03 ± 1.78E-03 98.8 31.19 ± 0.62 147.8 ± 2.8 

# 17  8.67E-05 1.37E-04 ± 4.60E-04 5.19E-01 ± 3.66E-01 5.65E-03 ± 5.34E-04 99.9 32.65 ± 0.21 154.4 ± 0.9 

 Total 1.17E-03 9.24E-03 ± 1.40E-04 8.12E-02 ± 1.16E-01 6.55E-03 ± 1.72E-04 92.2 32.19 ± 0.06 152.3 ± 1.3 

                                    

N99.MS3  J = .2737E-02 ± .2402E-04              

# 1  1.35E-05 5.70E-02 ± 3.38E-03 -5.53E-01 ± 3.44E+00 1.86E-02 ± 3.82E-03 50.6 17.25 ± 1.02 83.3 ± 4.8 

# 2  7.63E-06 6.75E-03 ± 5.79E-03 8.82E+00 ± 5.75E+00 1.37E-02 ± 3.85E-03 94.3 32.77 ± 1.80 155.0 ± 8.1 

# 3  8.51E-05 1.66E-03 ± 5.29E-04 -2.85E-01 ± 5.34E-01 5.54E-03 ± 6.47E-04 98.5 32.44 ± 0.19 153.5 ± 0.9 

# 4  1.75E-04 1.09E-03 ± 2.52E-04 -4.29E-02 ± 2.74E-01 5.09E-03 ± 4.12E-04 99.0 32.56 ± 0.12 154.0 ± 0.5 

# 5  1.12E-04 3.49E-04 ± 4.07E-04 -3.58E-02 ± 4.09E-01 3.61E-03 ± 4.49E-04 99.7 32.38 ± 0.14 153.2 ± 0.6 

# 6  1.69E-04 1.37E-03 ± 2.66E-04 -3.59E-02 ± 2.83E-01 5.19E-03 ± 4.19E-04 98.8 32.67 ± 0.14 154.5 ± 0.6 

# 7  6.82E-05 4.51E-03 ± 6.83E-04 -3.98E-01 ± 6.53E-01 2.47E-03 ± 6.60E-04 96.0 32.32 ± 0.23 152.9 ± 1.1 

# 8  9.69E-05 6.35E-03 ± 4.90E-04 -2.16E-01 ± 4.89E-01 3.56E-03 ± 6.88E-04 94.6 32.84 ± 0.17 155.3 ± 0.8 

# 9  1.18E-04 3.20E-03 ± 3.82E-04 -2.41E-02 ± 3.88E-01 4.78E-03 ± 4.10E-04 97.2 32.26 ± 0.17 152.7 ± 0.8 

# 10  1.08E-04 1.08E-03 ± 4.26E-04 -4.95E-02 ± 4.38E-01 4.57E-03 ± 4.97E-04 99.0 32.04 ± 0.15 151.7 ± 0.7 

# 11  8.05E-05 1.58E-03 ± 5.60E-04 -5.34E-01 ± 5.72E-01 4.80E-03 ± 5.90E-04 98.6 32.19 ± 0.19 152.3 ± 0.9 

# 12  2.56E-04 4.78E-04 ± 1.75E-04 -9.56E-02 ± 1.74E-01 5.01E-03 ± 2.45E-04 99.6 32.41 ± 0.13 153.4 ± 0.6 
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# 13  1.03E-04 4.48E-04 ± 4.34E-04 -2.63E-01 ± 4.45E-01 4.22E-03 ± 6.06E-04 99.6 32.25 ± 0.17 152.6 ± 0.8 

# 14  8.16E-05 2.25E-03 ± 5.50E-04 2.86E-01 ± 5.97E-01 4.55E-03 ± 5.49E-04 98.0 32.60 ± 0.22 154.2 ± 1.0 

# 15  1.35E-05 5.79E-03 ± 3.49E-03 1.82E+00 ± 3.45E+00 3.49E-03 ± 2.20E-03 95.0 32.26 ± 1.09 152.7 ± 4.9 

# 16  1.21E-04 2.11E-03 ± 3.69E-04 4.29E-01 ± 3.69E-01 4.13E-03 ± 4.13E-04 98.1 32.62 ± 0.17 154.3 ± 0.8 

# 17  2.14E-06 -2.33E-03 ± 2.08E-02 7.89E-01 ± 2.08E+01 -1.69E-02 ± 1.36E-02 102.0 34.44 ± 6.36 162.5 ± 28.7 

 Total 1.61E-03 2.26E-03 ± 1.16E-04 -1.96E-02 ± 1.18E-01 4.69E-03 ± 1.35E-04 98.0 32.32 ± 0.05 152.9 ± 1.3 

                                    

N100.MS3  J = .2736E-02 ± .2400E-04              

# 1  6.70E-06 1.19E-01 ± 5.22E-03 5.01E+00 ± 5.57E+00 1.24E-03 ± 5.76E-03 30.6 15.49 ± 1.54 74.9 ± 7.3 

# 2  3.87E-06 4.10E-02 ± 8.87E-03 4.46E+00 ± 1.01E+01 5.96E-03 ± 9.79E-03 68.3 26.07 ± 2.77 124.3 ± 12.8 

# 3  8.61E-05 2.26E-02 ± 6.26E-04 4.27E-01 ± 4.57E-01 4.78E-03 ± 8.38E-04 81.3 29.07 ± 0.23 138.1 ± 1.1 

# 4  3.58E-05 3.83E-03 ± 1.04E-03 1.25E+00 ± 1.18E+00 4.45E-03 ± 1.22E-03 96.6 31.65 ± 0.36 149.9 ± 1.6 

# 5  1.03E-04 3.26E-03 ± 3.55E-04 3.29E-01 ± 4.08E-01 6.06E-03 ± 7.85E-04 97.1 32.48 ± 0.15 153.6 ± 0.7 

# 6  2.01E-04 4.70E-04 ± 1.70E-04 -8.78E-02 ± 1.96E-01 5.66E-03 ± 3.61E-04 99.6 32.90 ± 0.10 155.5 ± 0.5 

# 7  1.08E-04 2.50E-03 ± 3.15E-04 1.44E-02 ± 4.07E-01 6.00E-03 ± 4.86E-04 97.8 32.83 ± 0.17 155.2 ± 0.8 

# 8  8.90E-05 5.85E-03 ± 4.25E-04 -2.08E-01 ± 4.45E-01 6.15E-03 ± 7.56E-04 95.0 32.49 ± 0.20 153.6 ± 0.9 

# 9  9.64E-05 6.67E-03 ± 3.77E-04 3.99E-02 ± 4.11E-01 6.90E-03 ± 7.23E-04 94.4 32.95 ± 0.20 155.7 ± 0.9 

# 10  7.38E-05 3.89E-03 ± 4.86E-04 2.00E-01 ± 5.63E-01 6.38E-03 ± 7.92E-04 96.6 33.08 ± 0.19 156.3 ± 0.9 

# 11  1.56E-04 4.34E-03 ± 2.27E-04 1.21E-01 ± 2.89E-01 6.90E-03 ± 4.64E-04 96.2 32.80 ± 0.16 155.1 ± 0.7 

# 12  1.03E-04 1.30E-02 ± 4.38E-04 -3.81E-01 ± 3.82E-01 5.65E-03 ± 5.10E-04 89.4 32.38 ± 0.18 153.2 ± 0.8 

# 13  1.14E-04 1.54E-03 ± 3.17E-04 -9.29E-02 ± 3.71E-01 6.65E-03 ± 4.64E-04 98.6 32.24 ± 0.15 152.5 ± 0.7 

# 14  1.14E-04 2.38E-03 ± 3.09E-04 2.27E-01 ± 3.50E-01 5.30E-03 ± 5.20E-04 97.9 32.16 ± 0.20 152.1 ± 0.9 

# 15  7.03E-05 2.44E-03 ± 5.48E-04 -9.00E-02 ± 6.07E-01 4.62E-03 ± 7.82E-04 97.8 32.01 ± 0.21 151.5 ± 1.0 

# 16  1.28E-04 3.65E-03 ± 2.92E-04 2.60E-01 ± 3.05E-01 6.35E-03 ± 5.33E-04 96.8 32.20 ± 0.12 152.4 ± 0.5 

# 17  4.38E-05 5.05E-03 ± 8.59E-04 5.79E-01 ± 9.83E-01 7.30E-03 ± 1.23E-03 95.5 31.67 ± 0.32 149.9 ± 1.4 

# 18  2.66E-05 1.99E-02 ± 1.44E-03 2.27E+00 ± 1.49E+00 3.03E-03 ± 1.51E-03 83.5 29.69 ± 0.48 140.9 ± 2.2 

# 19  4.85E-05 7.75E-03 ± 7.15E-04 6.78E-02 ± 7.74E-01 3.63E-03 ± 8.72E-04 93.2 31.50 ± 0.25 149.2 ± 1.1 

# 20  3.09E-06 -9.02E-03 ± 1.11E-02 -9.55E+00 ± 1.30E+01 -1.44E-02 ± 1.25E-02 109.0 32.44 ± 3.59 153.4 ± 16.3 

 Total 1.61E-03 5.83E-03 ± 1.04E-04 1.43E-01 ± 1.13E-01 5.83E-03 ± 1.61E-04 94.9 32.17 ± 0.05 152.2 ± 1.3 
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N101.MS3  J = .2740E-02 ± .2407E-04              

# 1  1.46E-05 1.19E-02 ± 2.50E-03 1.96E+00 ± 2.90E+00 2.98E-03 ± 2.96E-03 65.7 6.71 ± 0.76 32.9 ± 3.7 

# 2  3.95E-05 1.15E-02 ± 9.34E-04 1.15E-01 ± 1.03E+00 1.07E-03 ± 1.31E-03 73.0 9.21 ± 0.29 45.0 ± 1.4 

# 3  4.73E-05 1.01E-03 ± 7.19E-04 -2.03E-01 ± 7.45E-01 2.09E-04 ± 8.84E-04 97.8 13.20 ± 0.22 64.1 ± 1.1 

# 4  2.80E-05 8.01E-04 ± 1.14E-03 -1.04E+00 ± 1.33E+00 -4.80E-04 ± 1.60E-03 98.7 17.38 ± 0.39 84.0 ± 1.8 

# 5  2.25E-05 1.97E-03 ± 1.59E-03 1.35E+00 ± 1.61E+00 1.93E-03 ± 1.93E-03 97.3 20.60 ± 0.50 99.1 ± 2.3 

# 6  3.96E-05 -8.50E-04 ± 8.59E-04 6.51E-02 ± 8.45E-01 4.30E-03 ± 1.06E-03 100.9 27.79 ± 0.28 132.4 ± 1.3 

# 7  2.17E-05 -2.04E-03 ± 1.45E-03 -2.52E-01 ± 1.53E+00 5.05E-03 ± 2.21E-03 102.1 29.62 ± 0.50 140.8 ± 2.3 

# 8  2.41E-05 1.98E-04 ± 1.37E-03 -2.53E-01 ± 1.52E+00 5.75E-03 ± 1.73E-03 99.8 30.99 ± 0.46 147.1 ± 2.1 

# 9  2.14E-05 3.43E-03 ± 1.53E-03 4.69E-01 ± 1.62E+00 1.89E-03 ± 1.89E-03 96.8 30.99 ± 0.50 147.1 ± 2.3 

# 10  5.25E-05 3.11E-03 ± 6.36E-04 -5.13E-01 ± 6.28E-01 3.68E-03 ± 1.10E-03 97.2 32.03 ± 0.24 151.8 ± 1.1 

# 11  4.62E-06 7.60E-02 ± 7.20E-03 -1.13E+01 ± 7.62E+00 -2.46E-05 ± 8.87E-03 50.0 22.42 ± 2.19 107.6 ± 10.2 

# 12  1.10E-05 5.22E-03 ± 3.12E-03 -7.54E+00 ± 3.14E+00 4.29E-03 ± 3.75E-03 91.7 17.05 ± 0.96 82.4 ± 4.5 

 Total 3.27E-04 4.02E-03 ± 3.60E-04 -4.16E-01 ± 3.83E-01 2.52E-03 ± 4.77E-04 94.9 21.92 ± 0.12 105.2 ± 1.0 

                                    

N102.MS3  J = .2740E-02 ± .2407E-04              

# 1  4.59E-06 8.25E-02 ± 1.03E-02 1.03E+01 ± 1.24E+01 -1.38E-02 ± 8.24E-03 52.6 27.09 ± 3.20 129.2 ± 14.7 

# 2  7.17E-06 1.25E-02 ± 6.23E-03 -2.14E-02 ± 7.58E+00 -1.94E-03 ± 4.93E-03 89.9 32.88 ± 2.05 155.6 ± 9.3 

# 3  1.55E-05 8.97E-03 ± 2.91E-03 -5.03E+00 ± 3.49E+00 -2.00E-03 ± 2.26E-03 92.6 33.00 ± 0.96 156.2 ± 4.4 

# 4  1.83E-05 -2.39E-03 ± 2.48E-03 -3.91E-01 ± 3.31E+00 5.16E-03 ± 2.41E-03 102.1 33.81 ± 0.84 159.9 ± 3.8 

# 5  1.58E-05 7.97E-04 ± 2.98E-03 5.10E-01 ± 3.61E+00 3.31E-03 ± 2.37E-03 99.3 33.06 ± 0.99 156.5 ± 4.5 

# 6  3.05E-05 4.35E-04 ± 1.47E-03 -1.15E+00 ± 1.82E+00 3.92E-03 ± 1.35E-03 99.6 32.41 ± 0.50 153.5 ± 2.3 

# 7  3.55E-05 6.40E-04 ± 1.31E-03 -7.00E-01 ± 1.63E+00 3.81E-03 ± 1.22E-03 99.4 33.22 ± 0.45 157.2 ± 2.0 

# 8  2.28E-05 6.24E-04 ± 2.02E-03 1.48E+00 ± 2.49E+00 2.11E-03 ± 1.74E-03 99.5 34.13 ± 0.65 161.3 ± 3.0 

# 9  3.59E-05 3.70E-04 ± 1.27E-03 8.77E-01 ± 1.71E+00 5.75E-03 ± 1.22E-03 99.7 34.28 ± 0.48 162.0 ± 2.2 

# 10  1.04E-04 3.55E-04 ± 4.33E-04 4.21E-01 ± 5.28E-01 2.22E-03 ± 5.63E-04 99.7 32.76 ± 0.17 155.1 ± 0.8 

# 11  4.81E-05 6.37E-04 ± 9.45E-04 -2.48E-01 ± 1.17E+00 4.32E-03 ± 9.45E-04 99.4 32.50 ± 0.37 153.9 ± 1.7 

# 12  7.83E-05 -7.38E-05 ± 6.22E-04 1.24E+00 ± 8.11E-01 2.70E-03 ± 9.05E-04 100.1 32.67 ± 0.23 154.7 ± 1.1 
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# 13  4.78E-05 4.88E-07 ± 9.59E-04 3.01E-01 ± 1.21E+00 5.24E-03 ± 8.94E-04 100.0 32.26 ± 0.32 152.8 ± 1.4 

# 14  3.95E-06 2.90E-03 ± 1.17E-02 1.14E+00 ± 1.38E+01 -6.61E-03 ± 8.86E-03 97.3 30.40 ± 3.70 144.3 ± 16.9 

# 15  2.54E-05 1.54E-03 ± 1.75E-03 8.15E-01 ± 2.16E+00 3.51E-03 ± 1.68E-03 98.6 31.70 ± 0.59 150.3 ± 2.7 

 Total 4.94E-04 1.52E-03 ± 3.60E-04 2.92E-01 ± 4.48E-01 3.06E-03 ± 3.49E-04 98.7 32.79 ± 0.12 155.2 ± 1.4 

                                    

N103.MS3  J = .2740E-02 ± .2407E-04              

# 1  1.33E-05 3.46E+00 ± 3.72E-02 2.58E+00 ± 2.96E+00 -4.96E-03 ± 5.59E-03 5.4 58.59 ± 4.23 268.6 ± 18.0 

# 2  1.02E-06 4.94E-02 ± 4.71E-02 -5.36E+01 ± 4.15E+01 1.96E-02 ± 5.54E-02 21.3 3.95 ± 14.12 19.4 ± 69.1 

# 3  2.30E-06 2.20E-02 ± 2.12E-02 -1.89E+01 ± 1.82E+01 -6.46E-03 ± 2.44E-02 63.7 11.41 ± 6.38 55.6 ± 30.6 

# 4  4.47E-06 3.71E-02 ± 1.05E-02 -1.21E+01 ± 1.01E+01 -6.66E-03 ± 1.22E-02 61.6 17.57 ± 3.18 84.8 ± 15.0 

# 5  4.95E-05 6.20E-03 ± 9.72E-04 -6.56E-01 ± 9.55E-01 1.25E-03 ± 1.37E-03 93.9 28.21 ± 0.31 134.3 ± 1.4 

# 6  5.19E-05 2.68E-03 ± 9.57E-04 -5.04E-01 ± 8.24E-01 4.61E-03 ± 1.12E-03 97.6 32.36 ± 0.34 153.3 ± 1.5 

# 7  7.07E-05 1.34E-03 ± 6.67E-04 -3.45E-01 ± 6.02E-01 4.38E-03 ± 9.41E-04 98.8 32.86 ± 0.24 155.5 ± 1.1 

# 8  7.04E-05 1.39E-03 ± 6.92E-04 -4.52E-02 ± 5.96E-01 5.79E-03 ± 1.00E-03 98.8 33.04 ± 0.22 156.3 ± 1.0 

# 9  1.69E-04 1.96E-03 ± 2.97E-04 2.19E-01 ± 2.81E-01 6.01E-03 ± 5.51E-04 98.3 33.51 ± 0.14 158.5 ± 0.6 

# 10  7.73E-05 2.00E-03 ± 6.15E-04 3.68E-01 ± 5.35E-01 4.54E-03 ± 8.10E-04 98.3 33.50 ± 0.23 158.4 ± 1.0 

# 11  7.04E-05 5.14E-03 ± 6.70E-04 -3.89E-01 ± 5.73E-01 3.12E-03 ± 9.83E-04 95.6 32.76 ± 0.26 155.1 ± 1.2 

# 12  9.37E-05 7.66E-03 ± 5.56E-04 7.34E-01 ± 4.53E-01 4.85E-03 ± 9.22E-04 93.7 33.70 ± 0.20 159.4 ± 0.9 

# 13  4.64E-05 9.90E-03 ± 1.03E-03 -8.49E-01 ± 9.28E-01 6.28E-03 ± 1.42E-03 92.7 37.18 ± 0.39 175.0 ± 1.8 

# 14  5.45E-05 7.33E-03 ± 9.15E-04 1.48E-01 ± 8.00E-01 4.59E-03 ± 1.23E-03 94.0 33.82 ± 0.32 159.9 ± 1.5 

# 15  8.80E-05 6.17E-03 ± 5.59E-04 -3.69E-01 ± 4.69E-01 5.37E-03 ± 1.04E-03 94.9 33.54 ± 0.21 158.6 ± 0.9 

# 16  7.95E-05 7.71E-03 ± 6.22E-04 1.71E-01 ± 5.52E-01 5.69E-03 ± 9.60E-04 93.4 32.46 ± 0.24 153.7 ± 1.1 

# 17  6.88E-05 8.75E-03 ± 6.96E-04 1.68E-01 ± 6.97E-01 4.68E-03 ± 1.09E-03 92.4 31.61 ± 0.25 149.9 ± 1.1 

# 18  1.08E-04 1.14E-03 ± 4.39E-04 -1.25E-01 ± 4.28E-01 4.96E-03 ± 7.39E-04 99.0 31.99 ± 0.23 151.6 ± 1.1 

# 19  1.35E-04 1.05E-03 ± 3.61E-04 1.32E-01 ± 3.51E-01 4.04E-03 ± 5.49E-04 99.1 32.60 ± 0.20 154.4 ± 0.9 

# 20  4.62E-05 3.22E-03 ± 1.02E-03 -5.31E-01 ± 9.51E-01 2.95E-03 ± 1.25E-03 97.1 31.70 ± 0.49 150.3 ± 2.2 

# 21 1.27E-04 2.66E-03 ± 3.79E-04 -3.20E-01 ± 3.24E-01 5.40E-03 ± 5.21E-04 97.6 32.13 ± 0.21 152.2 ± 0.9 

 Total 1.43E-03 3.64E-02 ± 1.94E-04 -1.38E-01 ± 1.40E-01 4.67E-03 ± 2.28E-04 75.4 32.93 ± 0.07 155.9 ± 1.4 
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N104.MS3  J = .2739E-02 ± .2404E-04              

# 1  5.84E-06 3.93E-01 ± 1.13E-02 -1.16E+01 ± 8.96E+00 -1.35E-03 ± 8.01E-03 5.6 6.91 ± 2.62 33.8 ± 12.7 

# 2  2.01E-06 2.76E-03 ± 1.84E-02 -2.17E+01 ± 2.63E+01 -3.42E-03 ± 1.96E-02 97.4 30.42 ± 6.05 144.4 ± 27.6 

# 3  7.18E-06 -4.57E-03 ± 5.22E-03 1.73E+00 ± 7.69E+00 -6.49E-03 ± 5.75E-03 104.7 29.96 ± 1.71 142.3 ± 7.8 

# 4  1.01E-05 -4.26E-03 ± 3.71E-03 4.37E+00 ± 5.32E+00 1.32E-03 ± 4.00E-03 104.0 33.00 ± 1.24 156.1 ± 5.6 

# 5  4.46E-05 5.59E-05 ± 8.22E-04 3.44E-01 ± 1.23E+00 2.50E-03 ± 1.25E-03 100.0 32.78 ± 0.29 155.1 ± 1.3 

# 6  5.07E-05 -7.70E-05 ± 7.26E-04 3.44E-01 ± 1.13E+00 2.56E-03 ± 8.57E-04 100.1 32.84 ± 0.30 155.4 ± 1.4 

# 7  4.43E-05 9.24E-04 ± 8.35E-04 -8.49E-01 ± 1.17E+00 2.48E-03 ± 1.11E-03 99.2 33.20 ± 0.36 157.0 ± 1.6 

# 8  2.99E-05 -1.19E-03 ± 1.25E-03 -6.00E-01 ± 1.83E+00 3.45E-03 ± 1.35E-03 101.1 33.72 ± 0.50 159.4 ± 2.3 

# 9  6.79E-05 -5.84E-04 ± 5.43E-04 -1.59E-01 ± 7.69E-01 4.87E-03 ± 7.85E-04 100.5 33.06 ± 0.25 156.4 ± 1.1 

# 10  2.81E-05 -6.86E-04 ± 1.30E-03 1.08E+00 ± 2.03E+00 4.05E-03 ± 1.62E-03 100.6 33.29 ± 0.50 157.4 ± 2.3 

# 11  2.04E-05 3.48E-03 ± 1.84E-03 -2.39E+00 ± 2.56E+00 3.82E-03 ± 2.49E-03 96.8 31.28 ± 0.63 148.3 ± 2.9 

# 12  1.17E-05 2.68E-04 ± 3.23E-03 5.39E-01 ± 4.54E+00 4.06E-03 ± 4.04E-03 99.8 31.41 ± 1.12 148.9 ± 5.1 

# 13  7.41E-06 -1.53E-03 ± 4.86E-03 2.79E+00 ± 7.23E+00 5.09E-03 ± 6.16E-03 101.4 33.59 ± 1.65 158.8 ± 7.5 

# 14  4.98E-05 9.86E-04 ± 7.21E-04 -1.20E-01 ± 1.07E+00 4.77E-03 ± 9.84E-04 99.1 32.16 ± 0.27 152.3 ± 1.2 

 Total 3.80E-04 6.01E-03 ± 3.74E-04 -2.27E-01 ± 5.31E-01 3.29E-03 ± 4.58E-04 94.8 32.35 ± 0.14 153.2 ± 1.4 
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Appendix table 8 Composition of the Qitianling granite and other plutonic and volcanic rocks 

Samples 

Qitianling 
 

Watergums  Jamon   Wangrah   Lyngdal  Pinatubo 

QTL38C  QTL14A  QTL13  GIG-I  HBMzG  AB412 AB422  98N06  Dry glass 

Granite Glass(20)   Granite Glass(20)   Granite Glass(20)  Granite   Granite   Granite Granite   Granodiorite   Dacite 

Exp-T(°C) 660-900  660-900  660-900  725-1000  700-900  700-900  775-1000  750-900 
Exp-P (MPa) 100,200,300,360,400,700  100,200,300,360,400,700  100,200,300,360,400,700  100  300  200  200,400  220 

Exp-fo2 ~NNO-1.3, ~NNO+3  ~NNO-1.3, ~NNO+3  ~NNO-1.3, ~NNO+2.5  QFM+0.3  NNO-1.5, 

NNO+2.5 
 ~NNO  NNO-0.4 

~NNO+0.8 
 >NNO 

<NNO+2.7 
wt.%                   

SiO2 65.72 64.78  68.07 68.17  70.92 71.11  73.60  70.62  70.45 72.53  65.20  64.60 

TiO2 1.04 1.06  0.73 0.67  0.38 0.33  0.34  0.68  0.54 0.37  1.11  0.53 
Al2O3 13.58 13.91  14.35 14.35  13.79 13.92  12.44  12.92  13.26 13.08  14.40  16.50 

Fe2O3 1.68   1.12   0.60   1.42  2.00        

FeO 4.22   2.98   1.97   1.49  2.37        

FeOT 5.74 5.51  3.99 3.96  2.51 2.46    4.17  4.06 2.50  5.80  4.37 

MnO 0.10 0.11  0.07 0.07  0.04 0.06  0.08  0.07  0.08 0.05  0.10   

MgO 1.37 1.38  0.89 0.89  0.42 0.43  0.27  0.69  0.61 0.48  1.39  2.39 
CaO 3.27 3.30  2.46 2.46  1.82 1.83  1.24  2.47  1.93 1.31  3.51  5.23 

Na2O 2.95 3.11  3.00 2.79  3.06 2.99  3.53  3.54  3.39 3.32  3.28  4.49 

K2O 3.91 4.21  5.17 5.31  5.38 5.58  4.23  3.52  3.98 4.88  4.32  1.54 
P2O5 0.33 0.35  0.24 0.21  0.12 0.10  0.07  0.30  0.18 0.12  0.39  0.01 

H2O            0.57        

LOI 0.91   1.29   1.17     0.34  0.23 0.17     

F 0.20   0.19   0.15  
 0.12  0.12   0.10     

Total 98.91   100.24   99.62     99.32  98.71 98.81  99.50  99.66 

A/CNK 0.90   0.96   0.97     0.91  0.99 1.00  0.87  0.89 
XFe 0.81 0.80   0.82 0.82   0.86 0.85   0.91   0.86   0.87 0.84   0.81   0.65 

        

Numbers in parentheses indicate the number of analyses; bulk rock or starting materials cited from: Watergums (Clemens et al.,1986),  

Jamon (Dall’Agnol et al.,1999), Wangrah ( Klimm et al., 2008), Lyngdal (Bogaerts et al.,2003), Pinatubo (Prouteau and Scaillet, 2003) 
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Appendix table 9 Experimental results of 3 compositions (QTL-38C, QTL-14A and QTL-13) 

Charge XH2O
in 1H2Omeltwt% 2H2Omeltwt% △NNO3 △NNO4 Phase assemblage and phase proportions (wt%) ∑r2 

T: 660°C; P: 206MPa; run duration: 1337h     

38-01 1.00 6.45 — -1.36 -1.36 Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

38-02 0.91 6.02 — -1.44  Cpx, Bt, Ilm, Pl, Kfs, Qtz — 
38-03 0.80 5.44 — -1.55  Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

T: 700°C; P: 202MPa; run duration: 689h   
 

 

38-04 1.00 6.39 6.91 -1.15 -1.15 Gl(59.9), Cpx(5.6), Bt(14.2), Ilm(0.1), Pl(19.9), Qtz(0.4) 0.32 
38-05 0.87 5.87 — -1.28  Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

38-06 0.76 5.20 — -1.40  Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

T: 750°C; P: 194MPa; run duration: 471h   
 

 

38-07 0.93 5.80 6.84 -1.21 -1.27 Gl(62.1), Cpx(6.6), [Amp(0.5)], Bt(13.7), Ilm(0.7), Pl(16.5) 1.09 

38-08 0.78 5.07 6.48 -1.36 -1.55 Gl(55.2), Cpx(8.7), Bt(12.1), Ilm(1.1), Pl(20.5), Kfs(<0.1), Qtz(2.5) 0.88 

38-09 0.71 4.74 4.09 -1.44 -1.94 Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 
38-10 0.61 4.27 — -1.57  (Gl), Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

T:800°C; P: 203MPa; run duration: 351h   
 

 

38-11 1.00 6.26 7.84 -1.34 -1.34 Gl(74.8), Amp(7.6), Bt(10.1), Mag(-0.5), Ilm(1.2), Pl(6.9) 0.72 
38-12 0.91 5.71 7.16 -1.42 -1.53 Gl(66.6), Lpx(-0.6), Cpx(7.0), Bt(12.4), Ilm(0.7), Pl(13.9) 0.08 

38-13 0.78 5.07 6.00 -1.56 -1.78 Gl(61.4), Lpx(2.6), Cpx(5.3), Bt(9.1), Ilm(0.9), Pl(20.7) 0.06 

38-14 0.71 4.75 5.58 -1.64 -1.96 Gl(56.7), Lpx(3.8), Cpx(6.0), Bt(8.2), Ilm(1.2), Pl(24.2) 0.02 

38-15 0.61 4.27 — -1.77  Gl, Lpx, Bt, Ilm, Pl, Qtz — 

38-16 0.51 3.78 — -1.93  Gl, Lpx, Bt, Ilm, Pl, Kfs, Qtz — 

T: 850°C; P: 199MPa; run duration: 181h   
 

 

38-17 1.00 5.90 6.78 -0.96 -0.96 Gl(86.7), Lpx(-2.0), Cpx(2.9), Amp(4.1), Bt(5.9), Mag(2.1), Ilm(0.4) 0.23 

38-18 0.90 5.47 7.12 -1.05 -1.20 Gl(83.5), Lpx(1.0), Cpx(trace), Amp(14.6), Bt(0), Ilm(1.3), Pl(-0.5) 1.34 

38-19 0.79 4.95 4.67 -1.17 -1.40 Gl(74.2), Lpx(5.8), Cpx(4.5), Bt(2), Ilm(1.6), Pl(11.9) 0.22 
38-20 0.69 4.50 5.23 -1.28 -1.74 Gl(69.9), Lpx(6.5), Cpx(4.4), Bt(1.6), Ilm(1.7), Pl(15.8) 0.22 

38-21 0.61 4.13 4.85 -1.39 -2.21 Gl(70.6), Lpx(8.1), Cpx(2.7), Bt(1.9), Ilm(1.8), Pl(15.0) 0.34 

38-22 0.53 3.76 4.10 -1.51  Gl(90.0), Lpx(6.1), Cpx(2.9), Bt(4.3), Ilm(1.1), Pl(-4.4) 0.63 
38-23 0.38 3.02 3.14 -1.80  Gl(75.7), Lpx(8.9), Cpx(1.1), Bt(1.2), Ilm(0.9), Pl(12.1) 0.16 

T: 900°C; P: 195MPa; run duration: 138h   
 

 

38-24 1.00 5.66 6.29 -0.91 -0.91 Gl(92.0), Lpx(3.9), Cpx(1.3), Bt(7.1), Ilm(0.2) 0.74 
38-25 0.90 5.25 5.55 -1.00 -1.13 Gl(91.9), Lpx(4.2), Cpx(2.7), Ilm(1.2) 2.71 

38-26 0.80 4.79 4.72 -1.10 -1.42 Gl(93.0), Lpx(5.7), Ilm(1.2) 1.82 

38-27 0.71 4.36 5.41 -1.21 -2.00 Gl(91.4), Lpx(1.4), Cpx(4.59), Ilm(1.4) 0.41 
38-28 0.62 3.93 3.98 -1.32 -2.34 Gl(85.6), Cpx(5.1), Lpx(2.6), Ilm(1.1) 0.56 

38-29 0.53 3.47 3.70 -1.46 -2.63 Gl(79.9), Cpx(4.2), Lpx(4.2), Ilm(1.4) 0.71 

38-30 0.38 3.00 — -1.75  Gl(70.1), Cpx(-4.5), Lpx(15.4), Ilm(0.9) 0.48 
T: 660°C; P: 298MPa; run duration: 1267h   

 
 

38-31 1.00 8.39 — -1.39  Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

38-31a 1.00 8.39 —   Cpx, Bt, Ilm, Pl, Kfs, Qtz, Amp, Ttn  — 
T: 700°C; P: 316MPa; run duration: 570h   
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38-32 1.00 8.63 10.87   Gl(66.1), Cpx(5.2), Amp(-1.1), Bt(16.4), Ilm(0.7), Pl(12.7) 0.78 
T: 750°C; P: 300MPa; run duration: 571h   

 
 

38-33 1.00 8.20 9.17 -0.96 -0.96 Gl(72.9), Amp(9.4), Bt(9.6), Ilm(1.0), Pl(7.2), Mag(<0.1) 0.24 

38-34 0.90 7.37 8.85 -1.05 -1.21 Gl(62.5), Amp(9.4), Bt(12.5), Ilm(0.8), Pl(16.2), Mag(-1.3) 0.2 
38-35 0.80 6.76 7.67 -1.15 -1.55 Gl(60.2), Cpx(5.7), Amp(<0.1), Bt(14.5), Ilm(0.7), Pl(18.9) 0.04 

38-37 0.60 5.44 — -1.40  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

T: 800°C; P: 299MPa; run duration: 356h   
 

 

38-38 1.00 8.04 8.64 -0.90 -0.90 Gl(83.2), Amp(8.4), Bt(7.3), Ilm(1.1) 0.92 

38-39 0.90 7.38 8.03 -0.99 -1.24 Gl(78.8), Amp(8.5), Ilm(0.9), Pl(5.2), Bt(6.5), Mag(0.2) 0.07 

38-40 0.80 6.73 7.47 -1.10 -1.60 Gl(70.7), Amp(6.4), Lpx(2.5), Ilm(0.7), Pl(11.3), Bt(8.4) 0.2 
38-41 0.70 6.03 6.29 -1.21 -2.05 Gl(67.4), Cpx(3.9), Lpx(4.0), Ilm(0.6), Pl(16.1), Bt(7.9) 0.13 

38-42 0.60 5.41 5.95 -1.35 -1.96 Gl(50.7), Cpx(3.7), Lpx(5.9), Ilm(1.3), Pl(21.4), Bt(7.1) 0.58 

T: 660°C; P: 362MPa; run duration: 648h   
 

 

38-43 1.00 9.66 9.72 -1.05  Gl(63.4), Cpx(6.6), Bt(16.9), Ilm(0.6), Pl(12.2), Qtz(<0.1), Ttn(0.2) 0.39 

T: 700°C; P: 412MPa; run duration: 648h   
 

 

38-44 1.00 10.62 9.40 -1.38 -1.38 Gl(71.5), Cpx(6.4), Amp(-2.3), Bt(16.9), Ilm(0.8), Pl(6.7) 0.22 
38-45 0.90 9.68 — -1.48  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

38-46 0.80 8.82 — -1.58  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

38-47 0.70 7.85 — -1.69  Gl, Cpx, Amp, Bt, Ilm — 
T: 800°C; P: 360MPa; run duration: 263h   

 
 

38-48 1.00 9.33 9.74     Gl(81.2), Cpx(0.4), Amp(6.3), Bt(11.4), Mag(-0.1), Ilm(0.9) 2.49 
        

Charge P(Mpa) H2Omeltwt% H2O
meltwt% △NNO  Phase assemblage and phase proportions (wt%) ∑r2 

T: 700°C; XH2Oin=1; run duration: 501h   
 

 

38-49 206 6.47 — 3.00  Gl, Cpx, Bt, Mag, Pl — 
T: 800°C; XH2Oin=1; run duration: 332h, 312h, 281h, 277h  

 
 

38-50 91 3.82 — 3.00  Gl, Cpx, Bt, Mag, Pl — 

38-51 205 6.17 — 3.00  Gl, Cpx, Amp, Bt, Mag, Pl — 
38-52 363 9.40 — 3.00  Gl, Cpx, Amp, Bt, Mag — 

38-53 673 — — 3.00  Gl, Bt, Mag, Ttn — 

38-54 673 — — 3.00   Gl, Cpx, Amp, Bt, Mag, Ttn — 

 

Charge XH2O
in 1H2Omeltwt% 2H2O

meltwt% △NNO3 △NNO4 Phase assemblage and proportions (wt%) ∑r2 

T: 660°C; P: 200MPa; run duration: 1337h     

14-01 1.00 6.45 6.57 -1.36 -1.36 Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 
14-02 0.90 5.97 — -1.45  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

14-03 0.80 5.44 — -1.55  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

T: 700°C; P: 200MPa; run duration: 689h     

14-04 1.00 6.39 6.59 -1.15 -1.15 Gl(61.4), Cpx(2.8), Bt(10.4), Ilm(0.1), Pl(15.9), Kfs(9.4), Qtz(<0.1) 0.08 

14-05 0.90 5.92 — -1.25  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

14-06 0.76 5.20 — -1.39  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 
T: 750°C; P: 200MPa; run duration: 471h     

14-07 0.90 5.66 7.18 -1.23 -1.34 Gl(70.1), Cpx(2.3), Bt(13.9), Ilm(<0.1), Pl(13.8), Qtz(<0.1) 0.42 

14-08 0.79 5.11 5.76 -1.35 -1.54 Gl(58.3), Cpx(4.3), Bt(9.0), Ilm(<0.1), Pl(17.4), Kfs(9.5), Qtz(1.5) 0.06 
14-09 0.71 4.74 5.85 -1.44 -1.63 Gl(43.4), Cpx(3.8), Bt(9.9), Ilm(0.1), Pl(20.4), Kfs(13.5), Qtz(8.9) 0.06 

14-10 0.61 4.27 — -1.57  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

14-11 0.50 3.73 — -1.75  Lpx, Bt, Ilm, Pl, Kfs, Qtz — 
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T:800°C; P: 200MPa; run duration: 351h     

14-12 1.00 6.26 7.44 -1.34 -1.34 Gl(90.3), Cpx(<0.1), Bt(10.3), Ilm(<0.1) 1.51 

14-13 0.93 5.80 5.56 -1.42 -1.54 Gl(80.4), Cpx(3.2), Bt(9.4), Ilm(<0.1), Pl(7.1) 1.47 

14-14 0.78 5.07 5.77 -1.56 -1.89 Gl(76.4), Cpx(2.7), Bt(10.4), Ilm(<0.1), Pl(10.6) 0.55 
14-15 0.69 4.65 5.15 -1.65 -2.15 Gl(71.2), Cpx(3.0), Lpx(0.5), Bt(9.0), Ilm(<0.1), Pl(14.6), Kfs(1.8) 0.3 

14-16 0.61 4.27 — -1.77  Gl, Lpx, Bt, Ilm, Pl, Kfs, Qtz — 

14-17 0.50 3.73 — -1.94  Gl, Lpx, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 
14-18 0.43 3.37 — -2.08  Gl, Lpx, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

T: 850°C; P: 200MPa; run duration: 181h     

14-19 1.00 5.90 7.16 -0.96 -0.96 Gl(92), Cpx(0.4), Bt(7.3), Ilm(0.2) 0.61 
14-20 0.89 5.43 5.84 -1.06 -1.22 Gl(92.1), Cpx(0.9), Bt(7.0), Ilm(0.1) 0.64 

14-21 0.80 4.99 5.10 -1.16 -1.48 Gl(86.2), Lpx(<0.1), Cpx(3.1), Bt(7.2), Ilm(0.2), Pl(3.9) 0.49 

14-22 0.71 4.59 4.22 -1.26 -1.72 Gl(79.5), Lpx(1.3), Cpx(3.2), Bt(4.8), Ilm(0.5), Pl(10.8) 0.13 
14-23 0.61 4.13 3.93 -1.40 -2.14 Gl(75.4), Lpx(3.5), Cpx(1.6), Bt(3.7), Ilm(0.5), Pl(15.3) 0.05 

14-24 0.49 3.56 3.50 -1.58 -2.65 Gl(70.0), Lpx(8.1), Bt(<0.1), Ilm(0.9), Pl(17.5), Kfs(3.2) 0.03 

14-25 0.41 3.17 2.88 -1.74 -2.72 Gl(66.0), Lpx(7.2), Bt(<0.1), Ilm(0.9), Pl(21.3), Kfs(5.4) 0.3 
T: 900°C; P: 200MPa; run duration: 138h     

14-26 1.00 5.66 5.80 -0.91 -0.91 Gl(>99), Ilm, (Lpx, Cpx) — 

14-27 0.91 5.29 4.93 -1.00 -1.12 Gl(99.6), Lpx(0.2), Ilm(0.2) 1.16 
14-28 0.79 4.75 4.07 -1.12 -1.45 Gl(98.2), Lpx(1.4), Ilm(0.3) 0.32 

14-29 0.70 4.36 3.73 -1.21 -1.88 Gl(97), Lpx(2.1), Cpx(0.4), Ilm(0.5) 0.65 

14-30 0.62 4.01 3.45 -1.32 -2.66 Gl(96.8), Lpx(2.5), Cpx(0.4), Ilm(0.3) 0.5 
14-31 0.49 3.43 2.89 -1.52 -3.41 Gl(89.1), Lpx(4.7), Cpx(<0.1), Ilm(0.5), Pl(5.7) 0.55 

14-32 0.38 2.91 2.93 -1.75  Gl(86), Lpx(5.1), Cpx(<0.1), Ilm(0.6), Pl(8.3) 0.98 

T: 660°C; P: 300MPa; run duration: 1267h     

14-33 1.00 8.39 6.83 -1.39 -1.39 Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz, Ttn — 

T: 700°C; P: 300MPa; run duration: 570h     

14-34 1.00 8.63 9.67   Gl(80.2), Cpx(0.1), Bt(12.9), Ilm(<0.1), Pl(6.8) 0.35 

T: 750°C; P: 300MPa; run duration: 571h     

14-35 1.00 8.20 9.67 -0.96 -0.96 Gl(87), Cpx(1.2), Amp(-1.1), Bt(13), Ilm(-0.1) 0.31 
14-36 0.90 7.57 7.46 -1.04 -1.21 Gl(77), Cpx(0.9), Bt(12), Ilm(<0.1), Pl(10.1) 0.14 

14-37 0.80 6.76 7.57 -1.16 -1.25 Gl(30.2), Cpx(2.7), Bt(11.1), Ilm(<0.1), Pl(25.4), Kfs(16.7), Qtz(13.8) 0.05 

14-38 0.70 6.27 5.59 -1.25 -1.48 Gl(46.4), Cpx(2.6), Bt(10.2), Ilm(<0.1), Pl(19.6), Kfs(13.1), Qtz(8.2) 0.09 
14-39 0.60 5.54 7.48 -1.39  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

T: 800°C; P: 300MPa; run duration: 356h     

14-42 0.80 6.63 6.83 -1.11 -2.34 Gl(80.4), Cpx(1.1), Bt(10.7), Ilm(-0.2), Pl(8) 0.18 
14-43 0.70 6.06 5.75 -1.21  Gl(75.6), Cpx(1.7), Lpx(0.2), Bt(8.8), Ilm(-0.2), Pl(13.9) 0.19 

14-44 0.62 5.51 — -1.32  Gl, Cpx, Lpx, Bt, Ilm, Pl — 

14-45 0.50 4.71 — -1.51  Gl, Cpx, Lpx, Bt, Ilm, Pl, Kfs, Qtz — 
T: 660°C; P: 362MPa; run duration: 648h     

14-46 1.00 9.66 9.30 -1.05 -1.05 Gl(65.7), Cpx(3.6), Bt(10.4), Ilm(0.6), Pl(10.5), Qtz(<0.1), Ttn(<0.1) 0.14 

T: 700°C; P: 400MPa; run duration: 648h     

14-47 1.00 10.62 9.90 -1.38 -1.38 Gl, Cpx, Bt, Ilm, Ttn, Pl — 

14-48 0.89 9.59 — -1.49  Gl, Cpx, Bt, Ilm, Pl, Kfs — 

14-49 0.77 8.55 — -1.62  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 
14-50 0.69 7.77 — -1.71  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

T: 800°C; P: 360MPa; run duration: 263h     

14-51 1.00 9.33 9.61     Gl(89.7), Cpx(-1.2), Bt(11.5), Ilm(0) 1.92         
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Charge P(Mpa) H2Omeltwt% H2O
meltwt% △NNO  Phase assemblage and phase proportions (wt%) ∑r2 

T: 700°C; XH2Oin=1; run duration: 501h     

14-52 200 6.47 — 3.00  Gl, Cpx, Bt, Mag, Ttn, Pl, Kfs — 
T: 800°C; XH2Oin=1; run duration: 332h, 312h, 281h, 277h     

14-53 90 3.82 — 3.00  Gl, Cpx, Bt, Mag, Pl — 

14-54 200 6.17 — 3.00  Gl, Cpx, Bt, Mag — 
14-55 360 9.40 — 3.00  Gl, Cpx, Bt, Mag — 

14-56 673 — — 3.00   Gl, Bt, Mag, Ttn — 

 

Charge XH2O
in 1H2Omeltwt% 2H2O

meltwt% △NNO3 △NNO4 Phase assemblage and phase proportions (wt%) ∑r2 

T: 660°C; P: 200MPa; run duration: 1137h     

13-01 1.00 6.45 6.49 -1.36 -1.36 Gl(27), Cpx(2.4), Bt(5.9), Ilm(0.2), Pl(18.8), Kfs(28.4), Qtz(17.3) 0.17 

13-02 0.89 5.92 — -1.46  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 
13-03 0.76 5.24 — -1.57  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

T: 700°C; P: 200MPa; run duration: 689h     

13-04 1.00 6.39 6.7 -1.15 -1.15 Gl(68.4), Cpx(2.5), Bt(3.9), Ilm(0.3), Pl(10.4), Kfs(14.4), Qtz(<0.1) 0.35 
13-05 0.89 5.87 — -1.25  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

13-06 0.78 5.29 — -1.37  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

T: 750°C; P: 200MPa; run duration: 471h     

13-08 0.80 5.16 5.34 -1.34 -1.45 Gl(46.7), Cpx(2.5), Bt(5.2), Ilm(0.2), Pl(17.3), Kfs(17.5), Qtz(<0.1) 0.3 

13-09 0.70 4.69 5.03 -1.45 -1.86 Gl(68.8), Lpx(3.1), Cpx(2.4), Bt(-3.8), Ilm(0.7), Pl(14.1), Kfs(14.8), Qtz(<0.1) 0.37 

13-10 0.58 4.12 — -1.57  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 
13-11 0.51 3.78 — -1.73  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

T:800°C; P: 200MPa; run duration: 351h     

13-12 1.00 6.26 4.06 -1.34 -1.34 Gl(85.3), Cpx(0.2), Bt(4.8), Ilm(0.1), Pl(9.6) * 
13-13 0.93 5.8 6.03 -1.41 -1.56 Gl(93.6), Cpx(1.0), Bt(2.5), Ilm(0.3), Pl(2.6) 0.4 

13-14 0.81 5.21 5.04 -1.53 -1.88 Gl(86.1), Cpx(2.8), Bt(0.82), Ilm(0.5), Pl(6.6), Kfs(3.2) 1.87 

13-15 0.70 4.7 4.12 -1.65 -2.02 Gl(69.1), Lpx(5.5), Cpx(3), Bt(-8), Ilm(1.3), Pl(11.4), Kfs(17.8), Qtz(<0.1) 1.07 
13-16 0.62 4.32 4.16 -1.76 -2.38 Gl(67.9), Lpx(1.9), Cpx(5.4), Bt(-5.6), Ilm(0.9), Pl(9.2), Kfs(20.3), Qtz(<0.1) 0.45 

13-17 0.51 3.78 — -1.93  Gl, Lpx, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

13-18 0.38 3.11 — -2.18  Gl, Lpx, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 
T: 850°C; P: 200MPa; run duration: 181h     

13-19 1.00 5.9 6.86 -0.96 -0.96 Gl(99.9), Cpx(0.1), Bt(-0.3), Ilm(0.3) 1.96 

13-20 0.91 5.52 6.73 -1.05 -1.27 Gl(98.6), Cpx(-0.2), Bt(1.4), Ilm(0.2) 1.42 
13-21 0.80 4.99 5.3 -1.16 -1.69 Gl(99.6), Cpx(0.8), Bt(-0.2), Ilm(0.3), Pl(-0.4) 1.31 

13-22 0.70 4.54 5.02 -1.27 -2.38 Gl(92.7), Cpx(2.2), Bt(0.1), Ilm(0.4), Pl(4.5) 1.39 

13-23 0.61 4.13 4.04 -1.39 -2.47 Gl(84.5), Lpx(6.8), Cpx(-2.7), Bt(-0.9), Ilm(0.5), Pl(11.8), Qtz(<0.1) 0.51 
13-24 0.51 3.66 3.38 -1.55 -4.03 Gl(82.5), Lpx(5.3), Cpx(-2.1), Ilm(0.4), Pl(14.9), Kfs(-0.7), Qtz(<0.1) 0.25 

13-25 0.41 3.17 3.22 -1.74 -4.45 Gl(70.4), Lpx(11.4), Cpx(0.4), Bt(-6.4), Ilm(0.9), Pl(12.5), Kfs(10.9), Qtz(<0.1) 0.1 

T: 900°C; P: 200MPa; run duration: 138h     

13-26 1.00 5.66 5.26 -0.91 -0.91 Gl(>99), Ilm — 

13-27 0.89 5.21 4.93 -1.01 -1.15 Gl(>99), Ilm — 

13-28 0.79 4.75 4.3 -1.12 -1.49 Gl(>99), Ilm — 
13-29 0.61 3.97 3.45 -1.33 -3.05 Gl(99.8), Cpx(<0.1), Ilm(0.2) 0.46 

13-30 0.51 3.52 — -1.50  Gl, Cpx, Ilm, Pl — 

13-31 0.40 3 — -1.70  Gl, Cpx, Ilm, Pl — 
13-32 0.33 2.66 — -1.88  Gl, Cpx, Ilm, Pl, Qtz — 
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T: 660°C; P: 300MPa; run duration: 1267h     

13-33 1.00 8.39 7.85 -1.39 -1.39 Gl(13.6), Cpx(0.9), Bt(4.9), Ilm(0.2), Pl(23.3), Kfs(32.7), Qtz(24.5) 0.09 

T: 700°C; P: 300MPa; run duration: 570h     

13-34 1.00 8.63 8.47   Gl(93.8), Cpx(-0.1), Bt(5.9), Ilm(0.1), Pl(0.3) 1.13 
T: 750°C; P: 300MPa; run duration: 571h     

13-35 1.00 8.2 9.43 -0.96 -0.96 Gl(94.7), Cpx(0), Bt(5.2), Ilm(0.1) 0.5 

13-36 0.90 7.5 7.81 -1.05 -1.54 Gl(85), Cpx(1.3), Bt(4.4), Ilm(0.2), Pl(5.1), Kfs(3.9) 0.24 
13-37 0.80 6.7 6.23 -1.17 -1.56 Gl(67.5), Cpx(1.6), Bt(4.4), Ilm(0.1), Pl(14.5), Kfs(10.2), Qtz(1.7) 0.45 

13-38 0.70 6.21 — -1.26  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

13-39 0.60 5.44 — -1.41  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 
T: 800°C; P: 300MPa; run duration: 356h     

13-40 1.00 8.04 8.6 -0.90 -0.90 Gl(97.7), Cpx(-0.7), Bt(2.9), Ilm(0.2) 1.36 

13-41 0.90 7.35 7.67 -1.00 -1.71 Gl(97.6), Cpx(0.2), Bt(1.9), Ilm(0.3) 0.87 
13-42 0.80 6.63 6 -1.11 -2.24 Gl(92.4), Cpx(1.2), Bt(2.1), Ilm(0.3), Pl(4.0) 0.8 

13-43 0.70 6.09 5.53 -1.21  Gl(87.7), Cpx(1.2), Bt(1.7), Ilm(0.4), Pl(9.0) 0.81 

13-44 0.60 5.44 — -1.34  Gl, (Lpx), Cpx, Bt, Ilm, Pl, Kfs, Qtz — 
13-45 0.50 4.74 — -1.50  Gl, Lpx, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

T: 660°C; P: 362MPa; run duration: 648h     

14-46 1.00 9.66 9.61 -1.05 -1.05 Gl(58.2), Cpx(2.2), Bt(4.4), Ilm(0.3), Pl(8.2), Qtz(7.2), Ttn(<0.1) 0.14 
T: 700°C; P: 400MPa; run duration: 648h     

13-47 1.00 10.62 8.16 -1.38 -1.38 Gl, Gl, Cpx, Bt, Ilm, Ttn — 

13-48 0.90 9.68 — -1.48  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 
13-49 0.80 8.82 — -1.58  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

13-50 0.70 7.85 — -1.69  Gl, Cpx, Bt, Ilm, Pl, Kfs, Qtz — 

T: 800°C; P: 360MPa; run duration: 263h     

13-51 1.00 9.33 8.88     Gl(96.2), Bt(3.8), Ilm(0) 3.96 
        
Charge P(Mpa) H2Omeltwt% H2O

meltwt% △NNO  Phase assemblage and phase proportions (wt%) ∑r2 

T: 700°C; XH2Oin=1; run duration: 501h     

13-52 200 6.47 — 3.00  Gl, Cpx, Bt, Mag, Ttn, Pl, Kfs — 
T: 800°C; XH2Oin=1; run duration: 332h, 312h, 281h, 277h    

13-53 90 3.82 — 3.00  Gl, Cpx, Bt, Mag, Pl — 

13-54 200 6.17 — 3.00  Gl, Cpx, Bt, Mag — 
13-55 360 9.4 — 3.00  Gl, Bt, Mag — 

13-56 700 — — 3.00   Gl, Bt, Mag — 

 
XH2Oin : initial H2O/(H2O/CO2) loaded in each capsule (in moles) 

H2Omeltwt% : water content in the melt; 1: determined by calculation of VolatileCalc; 2: determined by by-difference method following Scaillet & Evans 1999 

△NNO: logfO2(experiment)-logfO2(NNO; Chou, 1987); 3: for H2O- undersaturated charges, maximum fO2 were estimated as 

logfO2=logfO2(XH2O=1)+2*logXH2Oin; 4: fO2 were calculated according to XH2Ofin 
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Appendix table 10 The representative compositions of natural and experimental plagioclase 

Sample 

/Charge 

Natural    Experimental 

QTL-38C Range  QTL-14A  Range  QTL-13 Range  38-01(1)1 14-01(1) 13-01(1) 
n:2 48   27    28   4 7 3 

T/fO2/P
3                  700°C/+3/200 

SiO2 60.01(1.6)4 57.45–64.56  59.91(1.7)  56.98–63.44  63.29(2.6) 59.96–69.77  60.71(1.8) 60.67(1.3) 62.57(1.1) 

Al2O3 24.33(1.1) 21.71–26.87  24.22(9)  22.63–25.90  22.75(1.5) 19.54–24.94  23.00(1.8) 23.55(1.1) 23.84(3) 
FeO 0.21(9) 0.00–0.47  0.18(1)  0.00–0.34  0.13(1) 0.00–0.36  1.59(1.1) 1.01(6) 0.88(4) 

CaO 6.70(1.1) 3.96–8.48  6.83(1.2)  4.66–9.03  5.01(1.9) 0.39–7.28  7.45(6) 7.37(8) 6.92(2) 

Na2O 7.69(6) 6.77–9.52  7.57(6)  6.35–8.70  8.09(1.1) 7.01–10.93  5.67(1.1) 5.81(2) 5.58(3) 

K2O 0.44(1) 0.23–0.99  0.41(1)  0.26–0.60  0.4(2) 0.00–0.62  1.15(2) 1.62 1.73(2) 

Total 99.39   99.13    99.67   99.58 100.03 101.52 

Ab 65.83 57.86–79.23  65.19  54.88–74.91  72.80 61.91–97.56  53.25 52.88 52.95 
An 31.64 18.23–39.94  32.49  22.18–42.92  24.84 1.89–35.64  39.32 37.31 36.28 

Or 2.49 1.27–5.61   2.33   1.46–3.32   2.36 0.00–3.73   7.43 9.80 10.77 

Sample 

/Charge 

Experimental                       

38-28(0.6) 14-31(0.5)   13-30(0.5)  38-12(0.9)   14-13(0.8) 13-13(0.8)   38-12(0.9) 14-13(0.9) 13-13(0.9) 
n: 5 4  5  3  11 6  3 2 6 

T/fO2/P 900/-1.3/200  850/-1.3/200  800/-1.3/200 

SiO2 56.06(2.0) 56.78(1.8)  58.73(7)  58.4(1.8)  57.79(1.5) 58.22(1.6)  58.93(1.0) 58.79(1.5) 58.37(7) 

Al2O3 26.91(1.1) 27.86(7)  26.78(5)  27.04(7)  27.47(1.0) 26.89(7)  24.88(5) 24.56(1) 26.79(7) 
FeO 0.67(4) 0.45(1)  0.38(2)  0.90(2)  0.57(1) 0.55(1)  0.85(2) 1.10(9) 0.35(1) 

CaO 10.78(8) 10.05(9)  8.61(2)  8.92(1.1)  9.59(6) 9.07(4)  8.13(4) 7.90(1) 8.30(5) 

Na2O 4.54(1) 4.75(2)  5.19(2)  4.87(2)  5.43(3) 5.63(4)  6.18(4) 6.08(2) 6.58(3) 
K2O 0.81(3) 0.96(2)  1.11(1)  0.85(1)  0.91(2) 1.08(2)  0.72(1) 1.04(1) 0.85(1) 

Total 99.78 100.84  100.80  100.99  101.75 101.44  99.70 99.47 101.24 

Ab 41.19 43.47  48.58  46.94  47.93 49.58  55.41 54.62 56.09 
An 53.94 50.72  44.57  47.66  46.77 44.16  40.32 39.24 39.12 

Or 4.88 5.82   6.86   5.41   5.30 6.27   4.27 6.14 4.79 

Sample 

/Charge 

Experimental                       

38-39(0.9) 14-42(0.8)   13-42(0.8)  38-01(1)   14-01(1) 13-01(1)   38-12(1) 14-13(1) 13-13(1) 

n: 5 9  9  4  7 3  3 2 6 
T/fO2/P 800/-1.3/300  700/-1.3/200  700/-1.3/300 

SiO2 57.88(7) 58.72(7)  58.43(9)  59.65(8)  62.13(1.2) 63.37(7)  59.07(1.1) 58.97(8) 60.29(8) 

Al2O3 25.23(9) 24.04(9)  23.99(6)  22.67(1)  22.64(5) 22.71(6)  23.77(6) 24.53(4) 24.32(3) 

FeO 1.21(5) 0.59(3)  0.82(1.2)  0.6(1)  0.53(4) 0.30(1)  1.24(9) 0.24(0) 0.30(1) 
CaO 9.27(5) 7.93(5)  7.57(7)  5.45(3)  5.92(4) 5.62(5)  8.02(6) 7.87(5) 8.06(4) 

Na2O 5.23(2) 5.28(2)  5.84(3)  7.75(3)  6.51(5) 6.50(5)  6.20(3) 6.69(2) 6.62(4) 
K2O 0.73(2) 1.10(2)  1.15(1)  0.96(1)  1.52(3) 2.0(9)  0.55(1) 0.69(1) 0.60(1) 

Total 99.55 97.66  97.81  97.08  99.25 100.50  98.84 99.00 100.19 

Ab 48.26 50.81  54.18  68.02  60.33 59.49  56.40 58.20 57.65 
An 47.27 42.19  38.78  26.41  30.38 28.49  40.30 37.82 38.89 

Or 4.48 7.00   7.04   5.57   9.29 12.02   3.30 3.98 3.46 

Sample 

/Charge 

Experimental                       

38-01(1) 14-01(1)   13-01(1)  38-12(1)   14-13(1) 13-13(1)   38-01(1) 14-01(1) 13-01(1) 
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n: 4 7  3  3  2 6  4 7 3 
T/fO2/P 660/-1.3/200  660/-1.3/300  660/-1.3/360 

SiO2 61.84(1.4) 60.78(8)  60.46(5)  61.50(4)  59.88(6) 60.74(9)  59.66(9) 61.36(5) 62.03(8) 

Al2O3 22.71(4) 23.42(6)  23.10(4)  22.82(4)  23.43(5) 22.59(5)  23.60(8) 23.30(5) 23.41(5) 

FeO 0.71(8) 0.11(1)  0.24(1)  0.24(1)  0.66(6) 0.22(2)  0.88(1.1) 0.25(1) 0.29(1) 
CaO 5.22(6) 5.65(5)  5.24(5)  5.19(4)  5.92(4) 4.72(5)  6.37(6) 5.20(5) 5.25(5) 

Na2O 7.11(6) 7.42(2)  7.34(5)  7.82(3)  7.73(2) 7.48(4)  7.15(4) 7.23(3) 7.42(3) 

K2O 1.05(1) 1.06(3)  1.50(9)  0.99(1)  0.97(2) 2.06(1.4)  0.91(2) 1.84(1.1) 1.59(8) 
Total 98.64 98.45  97.88  98.56  98.58 97.81  98.57 99.18 99.99 

Ab 66.50 66.03  65.35  68.97  66.40 65.43  63.46 63.97 65.30 

An 27.03 27.75  25.79  25.30  28.08 22.87  31.20 25.44 25.53 
Or 6.47 6.22   8.86   5.73   5.52 11.70   5.34 10.60 9.17 

 

1 The numbers in parentheses following in charge name indicate the XH2O 
2 Number of analyses 
3 Temperature(°C)/△NNO/pressure(MPa) 
4 Numbers in parentheses indicate 1 s.d.in terms of the last one units cited 
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Appendix table 11 The representative compositions of experimental pyroxene 

Charge 38-50(1)1 14-53(1) 13-54(1)   38-49(1) 14-52(1) 13-52(1)   38-24(1) 14-27(0.9) 13-29(0.6) 
n:2 7 5 3  7 12 8  12 5 6 

T/fO2/P
3 800/+3/200  700/+3/200  900/-1.3/200 

SiO2 48.22(2.4)4 49.16(6) 49.9(9)  49.62(3.7) 46.37(1.9) 48.38(7)  52.1(8) 51.48(8) 50.87(9) 

TiO2 1.23(3) 0.76(1) 0.48(2)  1.35(7) 1.14(3) 0.85(2)  0.26(1) 0.26(1) 0.28(0) 
Al2O3 5.69(1.3) 3.54(6) 1.95(4)  6.64(6) 5.14(1.1) 4.17(6)  0.83(5) 0.8(3) 0.91(4) 

FeO 10.54(9) 9.14(7) 7.74(1.3)  11.1(2.3) 12.51(1.4) 9.98(1.6)  23.25(1.2) 22.87(1.5) 14.38(3.7) 

MnO 0.48(1) 0.54(0) 0.49(0)  0.64(1) 0.7(1) 0.72(1)  0.56(1) 0.62(1) 0.54(1) 
MgO 10.91(1.3) 12.84(6) 13.9(8)  8.34(4) 9.47(1.3) 11.4(9)  20.15(1.1) 20.84(2.0) 13.64(8) 

CaO 22.27(2.7) 23.23(2) 25.31(5)  22.29(2.0) 24.62(5) 24.76(4)  1.85(1.4) 1.5(1.4) 17.78(2.6) 

Na2O 0.49(0) 0.54(0) 0.6(1)  0.63(1) 0.64(1) 0.76(1)  0.04(1) 0.03(0) 0.17(0) 
K2O 0.31(2) 0.09(0) 0.11(1)  0.45(1) 0.2(1) 0.19(1)  0.04(1) 0.04(0) 0.11(1) 

Total 100.15 99.84 100.48  101.07 100.78 101.23  99.07 98.42 98.68 

En 33 37 38  27 28 33  58 60 40 
Fs 18 15 12  20 21 16  38 37 23 

Wo 49 48 50   52 52 51   4 3 37 

Charge 38-17(1) 14-19(1) 13-19(1)  38-12(0.9) 14-12(1) 13-12(1)  38-12(0.9) 14-15(0.7) 13-18(0.4) 

n: 5 17 5  10 6 7  5 5 2 
T/fO2/P 850/-1.3/200  800/-1.3/200  800/-1.3/200 

SiO2 46.57(6) 50.51(1.7) 51.52(2)  48.92(2.4) 49.68(9) 50.56(9)  50.18(1.6) 50.51(2.0) 49.79(5) 

TiO2 1.22(2) 0.59(3) 0.32(1)  1.12(8) 0.76(3) 0.35(0)  0.44(4) 0.18(1) 0.14(0) 

Al2O3 5.22(5) 2(1.2) 0.74(3)  4.07(1.4) 2.44(9) 1.13(3)  1.77(1.0) 1.35(1.0) 1.7(3) 

FeO 11.74(5) 15.78(2.5) 17.6(7)  18.37(4.1) 16.26(2.4) 24.3(2.7)  32.69(2.0) 32.32(3.1) 36.79(0) 

MnO 0.53(0) 0.54(1) 0.55(0)  0.59(1) 0.54(1) 0.87(2)  0.98(1) 1.13(2) 1.5(0) 

MgO 10.76(8) 10.7(1.2) 10.69(2)  8.4(9) 9.25(1.0) 7.65(3)  8.65(3) 8.33(7) 6.61(3) 
CaO 21.41(5) 19.14(1.8) 19.07(8)  16.59(3.3) 21.58(1.2) 14.68(3.3)  4.59(1.9) 4.86(2.3) 4.02(2) 

Na2O 0.38(0) 0.31(1) 0.24(1)  0.35(1) 0.29(1) 0.21(1)  0.2(2) 0.14(1) 0.3(1) 

K2O 0.17(0) 0.18(2) 0.11(0)  0.29(2) 0.06(0) 0.22(1)  0.25(2) 0.4(4) 0.47(3) 
Total 98.01 99.75 100.85  98.69 100.85 99.97  99.75 99.23 101.34 

En 33 32 31  27 27 24  29 28 22 

Fs 20 27 29  34 27 43  61 61 68 
Wo 47 41 40   39 46 33   11 12 10 

Charge 38-07(0.9) 14-07(0.9) 13-08(0.8) 38-35(0.8) 14-35(1) 13-36(0.9) 38-04(1) 14-04(1) 13-06(0.8) 

n: 9 5 6  6 6 6  8 17 17 

T/fO2/P 750/-1.3/200  750/-1.3/300  700/-1.3/200 

SiO2 46.34(1.7) 48.66(1.4) 50.27(1.7)  51.13(2.5) 47.36(4) 49.28(1.4)  45.86(1.7) 47.88(1.8) 48.19(1.3) 

TiO2 1.12(6) 1.15(2) 0.77(2)  0.99(3) 1.25(2) 0.89(1)  1.18(9) 0.99(2) 1.06(7) 

Al2O3 5.42(2.0) 6.02(6) 5.62(1.0)  5.95(1.1) 3.96(3) 3.51(7)  3.97(2.0) 4.39(1.0) 3.53(8) 
FeO 18.77(2.8) 18.77(6) 19.29(5)  16.91(1.5) 18.62(4) 19.61(4)  20.47(1.0) 19.32(7) 20.59(9) 

MnO 0.72(2) 0.55(0) 0.63(1)  0.63(2) 0.54(1) 0.53(1)  0.76(1) 0.86(2) 0.92(2) 

MgO 6.39(4) 5.35(3) 4.21(7)  5.9(1.1) 6.01(3) 5.39(5)  5.1(1.0) 4.8(5) 4.3(4) 
CaO 19.74(2.4) 20.71(1.2) 19.23(1.5)  16.96(2.0) 21.09(3) 20.07(7)  20.43(8) 21.02(6) 20.68(5) 

Na2O 0.43(2) 0.6(2) 0.6(1)  0.5(2) 0.32(1) 0.31(1)  0.33(1) 0.36(0) 0.41(1) 

K2O 0.22(1) 0.34(3) 0.69(2)  0.7(4) 0.09(0) 0.31(1)  0.16(1) 0.16(1) 0.16(1) 
Total 99.15 102.15 101.31  99.68 99.25 99.90  98.26 99.77 99.85 
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En 21 17 15  21 19 17  16 16 14 
Fs 34 34 38  35 33 36  37 35 38 

Wo 46 48 48   44 48 47   47 49 48 

Charge 38-32(1) 14-34(1) 13-34(1)  38-01(1) 14-01(1) 13-01(1)  38-31(1) 14-33(1) 13-33(1) 

n: 12 10 13  12 6 1  32 6 5 
T/fO2/P 700/-1.3/300  660/-1.3/200  660/-1.3/300 

SiO2 51.51(1.7) 49.33(1.3) 49.2(1.3)  46.12(2.6) 46.15(9) 48.98(1)  47.76(2.3) 46.32(9) 47.39(1.4) 

TiO2 0.93(4) 0.99(3) 0.91(7)  0.73(6) 1.47(5) 0.9(3)  1.04(7) 1.01(3) 0.86(3) 

Al2O3 4.1(1.0) 3.52(9) 3.21(8)  4.45(1.5) 4.12(8) 3.3(8)  5.57(1.8) 4.98(1.1) 3.65(5) 
FeO 15.24(1.6) 18.44(2.4) 19.18(9)  21.34(1.2) 20.33(8) 19.33(2.3)  18.78(2.9) 19.69(6) 21.12(9) 

MnO 0.92(1) 0.7(1) 0.85(2)  0.56(2) 0.8(2) 0.83(1)  0.68(2) 0.71(1) 0.83(1) 

MgO 7.71(8) 5.88(1.6) 5.56(4)  4.11(4) 3.97(7) 5.46(1.4)  4.91(9) 4.05(3) 3.77(4) 

CaO 19.62(1.3) 20.98(3) 20.96(5)  20.97(1.3) 21.19(3) 20.96(3)  20.3(3.0) 20.89(5) 20.14(1.0) 

Na2O 0.39(1) 0.46(1) 0.44(1)  0.44(1) 0.32(0) 0.44(1)  0.7(4) 0.45(1) 0.45(0) 

K2O 0.27(1) 0.09(0) 0.11(1)  0.19(8) 0.28(2) 0.12(0)  0.6(8) 0.25(2) 0.27(2) 
Total 100.70 100.38 100.43  98.91 98.62 100.32  100.33 98.34 98.49 

En 25 19 18  13 13 17  16 13 13 

Fs 28 33 34  38 37 35  35 37 39 
Wo 46 48 48   48 50 48   49 50 48 

 

1 The numbers in parentheses following in charge name indicate the XH2O 
2 Number of analyses 
3 Temperature(°C)/△NNO/pressure(MPa) 
4 Numbers in parentheses indicate 1 s.d.in terms of the last one units cited 
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Appendix table 12 The representative compositions of natural and experimental amphibole 

Sample 

/Charge 

Natural      Experimental 

QTL-38C  Range  QTL-14A Range  QTL-13 Range  38-51(1)1  38-52(1) 38-54(1) 38-17(1) 38-18(0.9) 

n:2 84    14   12   5  7 6 10 6 

T/fO2/P
3                  800/+3/200   800/+3/360 800/+3/700 850/-1.3/200 850/-1.3/200 

SiO2 42.50(6)4  41.11–44.11  42.64(9) 40.73–43.94  41.85(8) 40.51-42.99  46.67(8)  45.31(4) 46.53(4) 42.64(6) 41.98(2) 
TiO2 1.82(3)  0.75-2.21  1.65(4) 0.67-1.98  1.43(3) 1.11-1.95  0.92(1)  1.05(1) 1.04(1) 1.93(1) 2.27(1) 

Al2O3 8.14(5)  7.18–9.41  7.76(5) 7.11-8.93  7.30(5) 6.78-8.27  8.78(7)  10.03(3) 9.85(1) 9.62(3) 10.42(3) 

FeO 23.78(1.0)  20.97–25.60  24.42(1.7) 22.42-28.47  26.34(1.4) 23.46-28.13  8.2(5)  8.18(3) 7.10(4) 18.24(3) 18.95(3) 

MnO 0.51(1)  0.18-0.72  0.45(2) 0.17-0.81  0.40(2) 0.28-1.00  0.37(2)  0.35(1) 0.36(1) 0.29(0) 0.26(0) 

MgO 6.67(6)  4.78-8.80  6.68(1.0) 4.27-8.30  4.92(8) 3.91-6.46  17.36(4)  17.08(2) 17.77(0) 10.58(3) 9.73(2) 

CaO 10.87(3)  9.94-11.59  10.60(2) 10.28-11.10  10.52(1) 10.36-10.67  12.17(2)  12.20(1) 12.76(4) 10.74(5) 10.73(1) 
Na2O 1.86(1)  1.58-2.09  1.92(1) 1.75-2.07  2.14(1) 2.02-2.39  1.44(1)  1.49(1) 1.47(0) 1.81(1) 1.94(1) 

K2O 1.24(1)  1.01-1.36  1.24(1) 1.09-1.60  1.25(1) 1.07-1.42  0.74(1)  0.89(1) 1.20(1) 0.80(1) 0.98(1) 

F 0.32(2)  0.09-1.46  0.26(3) 0-0.63  0.89(4) 0.36-1.91  0.49(2)  0.34(1) — 0.17(1) 0.21(0) 
Cl 0.13(2)  0-0.80  0.35(4) 0.13-1.44  0.30(1) 0.14-0.51  —8  0.01(0) — 0.01(0) 0.01(0) 

Total 97.83    97.98   97.35   97.15  96.94 98.08 96.84 97.49 

Altot 1.49    1.42   1.38   1.48  1.70 1.65 1.70 1.84 
XFe5 0.66  0.58–0.74  0.67 0.60-0.79  0.75 0.68-0.80  0.21  0.21 0.18 0.49 0.52 

PCal
6 3.30    3.00   2.90         

Tcal
7 776.00       768.00     737.00                 

Sample 

/Charge 

Experimental 

38-11(1)  38-38(1)  38-39(0.9) 38-40(0.8)  38-33(1) 38-34(0.9)  38-35(0.8)  14-35(1) 38-32(1) 38-44(1) 38-40a(1) 
n: 8  11  11 6  15 11  4  3 12 10 4 

T/fO2/P 

800/-

1.3/200  800/-1.3/300  750/-1.3/300  750/-1.3/300 700/-1.3/300 700/-1.3/400 660/-1.3/300 

SiO2 43.66(7)  43.21(5)  43.18(9) 44.02(7)  42.20(4) 43.00(6)  44.19(1.1)  42.37(1.4) 44.99(6) 42.36(8) 43.65(6) 
TiO2 1.67(1)  1.75(2)  1.84(1) 2.16(2)  1.57(2) 1.63(4)  1.64(1)  2.16(2) 1.27(2) 1.52(2) 1.46(1) 

Al2O3 9.06(7)  9.21(4)  9.46(6) 9.48(2)  9.61(4) 8.29(5)  8.04(2)  10.80(6) 8.00(5) 9.73(8) 8.01(4) 
FeO 21.56(6)  21.08(7)  21.68(6) 20.87(7)  22.69(7) 23.61(5)  22.95(4)  21.68(6) 24.11(3) 22.80(5) 25.54(3) 

MnO 0.36(2)  0.32(1)  0.35(1) 0.21(1)  0.37(1) 0.44(1)  0.39(0)  0.29(1) 0.66(0) 0.34(1) 0.39(0) 

MgO 8.77(3)  8.84(1)  8.46(4) 8.34(2)  6.78(2) 7.09(2)  7.28(1)  6.61(3) 6.54(3) 6.57(4) 4.97(1) 
CaO 11.08(9)  10.48(2)  10.05(2) 10.28(3)  10.65(6) 10.14(3)  9.93(1)  11.11(3) 10.45(4) 11.01(2) 11.68(3) 

Na2O 1.58(1)  1.56(1)  1.62(1) 1.66(1)  1.49(1) 1.37(1)  1.35(0)  1.49(1) 1.35(1) 1.44(1) 1.12(2) 

K2O 0.73(1)  0.83(1)  0.76(1) 0.97(1)  0.90(1) 0.80(1)  0.97(1)  1.43(1) 0.76(1) 0.96(1) 1.18(2) 
F —  0.39(2)  0.43(2) 0.45(1)  0.29(2) 0.51(2)  0.53(2)  0.47(2) 0.02(0) 0.02(0) 0.43(1) 

Cl —  0.00(0)  0.01(0) 0.01(0)  0.01(0) 0.01(0)  0.02(0)  0.02(0) 0.01(0) — 0.01(0) 

Total 98.46  97.68  97.86 98.46  96.57 96.88  97.29  98.43 98.15 96.75 98.45 
Altot 1.60  1.63  1.67 1.67  1.75 1.50  1.44  1.95 1.43 1.77 1.47 

XFe 0.58   0.56   0.58 0.58   0.65 0.65   0.63   0.65 0.67 0.66 0.74 

1 The numbers in parentheses following in charge name indicate the XH2O; 2 Number of analyses; 3 Temperature(°C)/△NNO/pressure(MPa); 
4 Numbers in parentheses indicate 1 s.d.in terms of the last one units cited; 5 XFe= Fe/(Fe+Mg) cationic ratio; 
6 Pressure calculation result are the average value following Hammarstrom and Zen, 1986; Hollister et al., 1987; Johnson and Rutherford, 1989; 

 Schmidt, 1992; Anderson and Smith, 1995 (Temperature are using the Tcal) and Mutch 2016; 
7 Temperature calculation result are following Putirka and Keith, 2016; 8 Below detection limits. 
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Appendix table 13 The representative compositions of natural and experimental biotite 

Sample 

/Charge 

Natural    Experimental   

QTL-38C Range 
 

QTL-14A 
 

Range 
 

QTL-13 Range 
 

38-51(1)1 14-54(1) 13-54(1) 

n:2 15 
  

15 
   

13 
  

2 11 15 

T/fO2/P
3     

 
      

 
    

 
800/+3/200 

SiO2 36.38(3)4 35.76–36.92 
 

36.73(4) 
 

36.03-37.59 
 

36.29(5) 35.43-37.01 
 

41.55(4) 40.78(8) 43.77(1.7) 

TiO2 4.31(3) 3.60-4.72 
 

4.48(2) 
 

3.86-4.94 
 

3.90(3) 3.22-4.66 
 

2.20(0) 2.16(1) 1.52(2) 

Al2O3 11.54(2) 11.27-11.85 
 

11.19(2) 
 

10.79-11.41 
 

12.26(1.0) 10.89-13.34 
 

14.04(3) 14.99(4) 14.14(5) 

FeO 26.96(3) 26.37–27.43 
 

26.94(4) 
 

26.27-27.81 
 

28.26(1.1) 27.07-30.94 
 

7.63(0) 8.31(4) 7.24(8) 

MnO 0.13(0) 0.08-0.19 
 

0.13(0) 
 

0.09-0.17 
 

0.16(0) 0.12-0.24 
 

0.23(1) 0.16(1) 0.11(1) 

MgO 7.43(3) 7.07-7.94 
 

7.21(3) 
 

6.39-7.58 
 

5.88(2) 5.59-6.25 
 

20.14(9) 20.03(4) 20.17(1.1) 

CaO 0.003(0) 0.00-0.03 
 

0.02(0) 
 

0.00-0.08 
 

0.03(1) 0.00-0.14 
 

0.27(1) 0.2(1) 0.20(2) 

Na2O 0.14(0) 0.10-0.19 
 

0.15(1) 
 

0.07-0.25 
 

0.14(0) 0.10-0.21 
 

0.60(9) 0.39(0) 0.43(1) 

K2O 9.20(2) 8.87–9.43 
 

8.96(2) 
 

8.69-9.21 
 

8.68(5) 7.44-9.19 
 

8.40(3) 8.76(4) 8.22(6) 

F 0.19(0) 0.18-0.21 
 

0.42(1) 
 

0.34-0.60 
 

0.41(1) 0.31-0.52 
 

0.01(0) 0.01(0) 0.01(0) 

Cl 0.53(1) 0.28-0.72 
 

0.50(1) 
 

0.27-0.73 
 

0.81(3) 0.44-1.31 
 

0.68(2) 0.83(1) 0.91(2) 

Total 96.81 
  

96.73 
   

96.82 
  

95.65 96.28 96.57 

XFe5 0.67 0.66-0.68   0.68   0.66–0.71   0.73 0.71–0.74   0.18 0.19 0.17 

Sample 

/Charge 

Experimental                       

38-53(1) 14-56(1) 
 

13-56(1) 
 

38-17(1) 
 

14-19(1) 13-19(1) 
 

38-11(1) 14-12(1) 13-12(1) 

n: 5 4 
 

5 
 

6 
 

11 5 
 

6 1 5 

T/fO2/P 800/+3/700 
 

850/-1.3/200 
 

800/-1.3/200 

SiO2 37.40(1.3) 37.21(5) 
 

40.97(1.9) 
 

37.40(1.3) 
 

37.21(5) 40.97(1.9) 
 

37.46(1.3) 37.29 40.38(1.9) 

TiO2 4.13(1) 4.61(1) 
 

4.28(3) 
 

4.13(1) 
 

4.61(1) 4.28(3) 
 

3.87(2) 4.40 5.87(2) 
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Al2O3 15.02(2) 14.86(2) 
 

14.54(2) 
 

15.02(2) 
 

14.86(2) 14.54(2) 
 

13.83(2) 13.86 14.83(2) 

FeO 19.10(2) 17.69(6) 
 

16.27(7) 
 

19.10(2) 
 

17.69(6) 16.27(7) 
 

22.68(8) 21.42 20.66(1.2) 

MnO 0.10(0) 0.12(0) 
 

0.11(0) 
 

0.10(0) 
 

0.12(0) 0.11(0) 
 

0.19(1) 0.00 0.18(0) 

MgO 11.47(4) 12.63(4) 
 

12.89(9) 
 

11.47(4) 
 

12.63(4) 12.89(9) 
 

9.04(6) 9.33 8.07(4) 

CaO 0.02(0) 0.04(0) 
 

0.13(1) 
 

0.02(0) 
 

0.04(0) 0.13(1) 
 

0.19(1) 0.18 0.14(1) 

Na2O 0.67(1) 0.56(0) 
 

0.61(0) 
 

0.67(1) 
 

0.56(0) 0.61(0) 
 

0.52(1) 0.46 0.60(1) 

K2O 8.73(1) 8.90(1) 
 

8.53(5) 
 

8.73(1) 
 

8.90(1) 8.53(5) 
 

8.51(2) 8.39 9.50(4) 

F 0.01(0) 0.02(0) 
 

0.01(0) 
 

0.01(0) 
 

0.02(0) 0.01(0) 
 

0.02(0) —6 — 

Cl 0.34(0) 0.42(0) 
 

0.54(0) 
 

0.34(0) 
 

0.42(0) 0.54(0) 
 

0.05(0) — 0.10(0) 

Total 96.85 96.87 
 

98.65 
 

96.85 
 

96.87 98.65 
 

96.30 95.32 100.29 

XFe 0.48 0.44   0.41   0.48   0.44 0.41   0.58 0.56 0.59 

Sample 

/Charge 

Experimental                       

38-38(1) 14-42(0.8) 
 

13-42(1) 
 

38-48(1) 
 

14-51(1) 13-51(1) 
 

38-33(1) 14-35(1) 13-35(1) 

n: 17 1 
 

8 
 

4 
 

6 3 
 

6 2 6 

T/fO2/P 800/-1.3/300 
 

800/-1.3/360 
 

750/-1.3/300 

SiO2 36.92(9) 39.26 
 

37.68(9) 
 

37.12(2.4) 
 

36.62(6) 40.71(1.8) 
 

38.20(1.1) 35.81(8) 38.92(1.8) 

TiO2 4.01(2) 5.24 
 

4.38(2) 
 

3.39(4) 
 

4.06(1) 3.82(4) 
 

4.13(2) 4.49(3) 4.26(4) 

Al2O3 13.81(3) 14.11 
 

13.29(3) 
 

13.60(4) 
 

13.52(2) 13.56(5) 
 

14.62(4) 14.22(2) 13.65(5) 

FeO 20.84(8) 20.81 
 

18.47(4) 
 

21.65(1.1) 
 

21.01(9) 18.24(1.4) 
 

22.16(1.3) 23.36(9) 22.05(1.7) 

MnO 0.14(1) 0.20 
 

0.08(1) 
 

0.19(1) 
 

0.11(1) 0.12(0) 
 

0.19(0) 0.18(1) 0.13(1) 

MgO 10.19(3) 8.13 
 

11.36(5) 
 

9.63(9) 
 

10.12(3) 10.48(8) 
 

7.69(3) 7.62(3) 6.99(5) 

CaO 0.16(1) 0.29 
 

0.08(0) 
 

0.15(1) 
 

0.04(1) 0.24(3) 
 

0.33(2) 0.27(3) 0.23(1) 

Na2O 0.48(0) 0.59 
 

0.38(0) 
 

0.47(0) 
 

0.37(1) 0.43(0) 
 

0.56(2) 0.37(0) 0.38(1) 

K2O 8.54(5) 8.19 
 

8.86(3) 
 

8.43(5) 
 

8.80(2) 8.46(3) 
 

8.53(3) 8.79(3) 8.30(6) 

F 0.02(0) 0.02 
 

0.01(0) 
 

—  — — 
 

0.02(0) 0.01(0) 0.02(0) 
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Cl 0.55(3) 0.74 
 

0.85(4) 
 

—  — — 
 

0.50(2) 0.46(3) 0.54(2) 

Total 95.65 97.57 
 

95.43 
 

94.64 
 

94.65 96.06 
 

96.94 95.58 95.46 

XFe 0.53 0.59   0.48   0.56   0.54 0.49   0.62 0.63 0.64 

Sample 

/Charge 

Experimental                       

38-32(1) 14-34(1) 
 

13-34(1) 
 

38-44(1) 
 

14-33(1) 13-33(1) 
 

38-43(1) 14-46(1) 13-46(1) 

n: 8 14 
 

7 
 

3 
 

2 6 
 

5 9 9 

T/fO2/P 700/-1.3/300 
 

700/-1.3/400 
 

660/-1.3/300 
 

660/-1.3/360 

SiO2 42.15(1.0) 39.23(1.3) 
 

37.51(1.1) 
 

41.27(1.1) 
 

42.74(5) 38.11(1.5) 
 

42.52(6) 40.35(2.6) 39.40(2.0) 

TiO2 3.78(2) 4.47(2) 
 

4.98(1) 
 

3.71(3) 
 

4.02(3) 4.08(1) 
 

3.52(4) 3.89(3) 3.85(4) 

Al2O3 12.83(3) 12.77(2) 
 

12.96(2) 
 

14.46(3) 
 

13.96(4) 13.68(4) 
 

13.65(4) 13.88(5) 13.75(4) 

FeO 24.03(6) 24.27(5) 
 

25.36(4) 
 

23.12(2) 
 

23.16(1.0) 27.47(7) 
 

21.62(4) 23.47(2.1) 25.19(1.7) 

MnO 0.28(0) 0.32(0) 
 

0.30(0) 
 

0.18(0) 
 

0.37(1) 0.44(0) 
 

0.26(0) 0.20(1) 0.23(1) 

MgO 6.30(5) 6.47(2) 
 

6.35(3) 
 

6.34(4) 
 

5.07(1) 4.67(2) 
 

5.10(1) 5.56(5) 5.01(5) 

CaO 0.38(1) 0.27(2) 
 

0.11(2) 
 

0.40(1) 
 

0.48(0) 0.28(1) 
 

0.61(0) 0.48(2) 0.33(1) 

Na2O 0.49(1) 0.39(1) 
 

0.38(0) 
 

0.52(1) 
 

0.87(1) 0.57(1) 
 

0.34(1) 0.38(1) 0.44(1) 

K2O 8.10(2) 8.60(2) 
 

8.59(2) 
 

8.37(4) 
 

7.95(1) 8.46(2) 
 

7.48(4) 8.11(5) 8.26(4) 

F 0.01(0) 0.01(0) 
 

0.01(0) 
 

—  0.03(0) 0.02(0) 
 

0.02(0) 0.01(0) 0.01(0) 

Cl 0.10(0) 0.07(0) 
 

0.12(0) 
 

0.02(0) 
 

0.64(1) 0.63(4) 
 

0.54(0) 0.60(2) 0.51(3) 

Total 98.41 96.85 
 

96.63 
 

98.41 
 

99.29 98.41 
 

95.65 96.94 96.99 

XFe 0.68 0.68   0.69   0.67   0.72 0.77   0.70 0.70 0.74 

1 The numbers in parentheses following in charge name indicate the XH2O; 

2 Number of analyses; 

3 Temperature(°C)/△NNO/pressure(MPa); 

4 Numbers in parentheses indicate 1 s.d.in terms of the last one units cited; 

5 XFe= Fe/(Fe+Mg) cationic ratio; 6 Below detection limits. 
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Appendix table 14 The representative compositions of natural and experimental Fe–Ti oxides 

Sample 

/Charge 

Natural                      
 

Experimental   

QTL-38C 
 

QTL-14A 
 

QTL-13 
 

38-51(1)1 
 

14-54(1) 13-54(1) 

n:2 9 
 

19 
 

5 
 

18 
 

5 
 

8 
 

10 
 

10 15 

T/fO2/P
3 

            
800/+3/200 

TiO2 0.89(3)4 
 

49.8(4) 
 

2.53(2.0) 
 

50.56(8) 
 

1.6(5) 
 

50.6(7) 
 

12.7(8) 
 

9.38(1.5) 8.12(2.7) 

Al2O3 0.17(1) 
 

0.01(0) 
 

0.09(1) 
 

0.01(0) 
 

0.08(1) 
 

0.01(0) 
 

0.69(0) 
 

0.71(1) 0.67(2) 

Fe2O3 66.42(8) 
 

6.2(7) 
 

62.66(4.0) 
 

4.23(1.1) 
 

65.08(1.0) 
 

3.96(1.2) 
 

42.02(1.1) 49.57(3.2) 51.36(6.1) 

FeO 31.58(3) 
 

41.71(6) 
 

32.52(1.6) 
 

41.64(1.1) 
 

32.12(5) 
 

40.9(9) 
 

39.86(7) 
 

38.03(1.1) 36.72(2.0) 

MnO 0.03(0) 
 

2.99(4) 
 

0.26(2) 
 

3.76(7) 
 

0.09(0) 
 

4.52(4) 
 

0.25(0) 
 

0.19(0) 0.16(0) 

MgO 0(0) 
 

0.03(0) 
 

0.01(0) 
 

0.02(0) 
 

0.01(0) 
 

0.02(0) 
 

1.11(1) 
 

0.82(1) 0.71(1) 

Total 99.09 
 

100.74 
 

98.07 
 

100.21 
 

98.98 
 

100.01 
 

96.63 
 

98.7 97.74 

XIlm5 
  

0.94 
   

0.96 
   

0.96 
     

Xusp6 0.03       0.07       0.05       0.37   0.27 0.24 

Sample 

/Charge 

Experimental                       

38-49(1) 
 

14-52(1) 
 

13-52(1) 
 

38-24(1) 
 

14-26(0.8) 
 

38-17(1) 
 

14-19(1) 13-19(1) 

n: 8 
 

7 
 

3 
 

4 
   

5 
 

8 
 

12 3 

T/fO2/P 700/+3/200 
 

900/-1.3/200 
 

850/-1.3/200 

TiO2 9.44(3.8) 
 

10.28(2.5) 
 

7.09(7) 
 

47.91(3) 
 

48.92 
 

46.78(7) 
 

17.31(3) 
 

46.82(9) 47.16(1.4) 

Al2O3 0.39(1) 
 

0.42(1) 
 

0.41(1) 
 

0.22(1) 
 

0.18 
 

0.47(4) 
 

2.64(1) 
 

0.48(3) 0.72(3) 

Fe2O3 48.18(7.1) 
 

46.37(5.0) 
 

52.43(1.5) 
 

5.42(1.7) 
 

5.91 
 

7.19(8) 
 

30.26(4) 
 

8.52(1.1) 7.78(8) 

FeO 37.43(3.2) 
 

37.96(2.1) 
 

35.35(6) 
 

36.23(3) 
 

36.98 
 

38.76(6) 
 

44.2(6) 
 

37.68(8) 37.68(1.2) 
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MnO 0.37(1) 
 

0.42(1) 
 

0.32(0) 
 

0.54(2) 
 

0.57 
 

0.57(0) 
 

0.51(0) 
 

0.71(0) 0.76(0) 

MgO 0.55(2) 
 

0.66(1) 
 

0.53(1) 
 

3.38(0) 
 

3.54 
 

1.47(1) 
 

1.06(1) 
 

2(2) 2.12(1) 

Total 96.37 
 

96.11 
 

96.13 
 

93.7 
 

96.1 
 

95.25 
 

95.98 
 

96.21 96.22 

XIlm 
      

0.94 
 

0.94 
 

0.93 
   

0.91 0.92 

Xusp 0.28   0.3   0.21               0.55       

Sample 

/Charge 

Experimental                       

38-11(1) 
 

14-12(0.6) 
 

13-12(1) 
 

38-48(1) 
 

14-51(1) 
 

13-51(1) 
 

38-04(1) 14-04(1) 

n: 5 
 

  
 

3 
 

5 
 

5 
 

3 
 

2 
 

4 
 

T/fO2/P 800/-1.3/200 
 

800/-1.3/360 
 

700/-1.3/200 

TiO2 45(1.3) 
 

13.42 
 

48.57(5) 
 

50.13(6) 
 

46.69(7) 
 

46.88(1.2) 
 

46(1.6) 
 

37.29(1.7) 46.89 

Al2O3 0.44(4) 
 

3.51 
 

0.19(2) 
 

0.32(3) 
 

0.78(5) 
 

0.24(1) 
 

0.49(4) 
 

2.19(6) 0.98 

Fe2O3 9.95(4) 
 

36.6 
 

4.7(1) 
 

1(4) 
 

9.68(2) 
 

6.87(1.9) 
 

6.61(3) 
 

8.66(3) 7.08 

FeO 37.46(1.3) 
 

35.61 
 

41.09(5) 
 

41.44(4) 
 

38.91(6) 
 

38.92(1.2) 
 

37.44(8) 
 

31.14(1.7) 39.21 

MnO 0.8(1) 
 

0.74 
 

0.65(1) 
 

1.16(1) 
 

0.8(0) 
 

0.83(2) 
 

0.89(4) 
 

1.09(2) 1.44 

MgO 1.03(0) 
 

2.7 
 

1.03(0) 
 

1.35(1) 
 

1.11(1) 
 

1.17(1) 
 

1.56(1) 
 

0.37(0) 0.75 

Total 94.68 
 

92.58 
 

96.24 
 

95.41 
 

97.98 
 

94.9 
 

92.98 
 

80.74 96.35 

XIlm 0.9 
   

0.95 
 

0.99 
 

0.9 
 

0.93 
 

0.93 
 

0.89 0.93 

Xusp     0.41                           

1 The numbers in parentheses following in charge name indicate the XH2O 

2 Number of analyses 

3 Temperature(°C)/△NNO/pressure(MPa) 

4 Numbers in parentheses indicate 1 s.d.in terms of the last one units cited 

5% Ilmenite in rhombohedralhemoilmenite calculated following Stormer(1983) 

6% ulvospinel in titanomagnetite calculated following Stormer(1983) 
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Appendix table 15 The representative compositions of experimental residual glass normalized to 100% 

Sample-XH2O(n) Charge SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Total Original total A/CNK XH2O n 

T: 900°C; P: 195MPa; fO2: NNO-1.3; run duration: 138h 

QTL38C-1.0(5) 38-24 70.61 0.65 14.97 2.74 0.08 0.20 3.24 3.31 4.20 100 91.83 0.94 1 5 

sd 
 

0.84 0.04 0.30 0.50 0.09 0.15 0.42 0.11 0.12 
 

 

   

QTL38C-0.9(5) 38-25 69.87 0.61 15.13 3.17 0.07 0.35 3.09 3.46 4.25 100 92.69 0.95 0.9 5 

sd 
 

0.66 0.12 0.15 0.48 0.06 0.14 0.34 0.15 0.19 
 

 

   

QTL38C-0.8(5) 38-26 69.36 0.55 15.16 3.53 0.09 0.55 2.69 3.30 4.77 100 93.66 0.98 0.8 5 

sd 
 

0.34 0.08 0.08 0.26 0.08 0.07 0.15 0.05 0.23 
 

 

   

QTL38C-0.7(4) 38-27 69.30 0.47 15.26 3.54 0.03 0.44 2.74 3.46 4.77 100 92.85 0.96 0.7 4 

sd 
 

0.35 0.12 0.07 0.20 0.03 0.03 0.10 0.10 0.21 
 

 

   

QTL38C-0.6(5) 38-28 70.01 0.69 14.70 3.44 0.04 0.43 2.48 3.34 4.86 100 94.51 0.96 0.6 5 

sd 
 

0.45 0.24 0.18 0.28 0.03 0.06 0.10 0.05 0.16 
 

 

   

QTL38C-0.5(5) 38-29 70.83 0.51 14.36 3.10 0.06 0.46 2.12 3.41 5.16 100 94.84 0.95 0.5 5 

sd 
 

0.22 0.10 0.17 0.28 0.08 0.04 0.03 0.12 0.07 
 

 

   

QTL38C-0.4(5) 38-30 72.46 0.74 13.62 2.33 0.04 0.35 1.91 2.96 5.59 100 95.09 0.95 0.4 5 

sd 
 

0.55 0.31 0.18 0.20 0.03 0.07 0.11 0.38 0.20 
 

 

   

QTL14A-1.0(7) 14-26 69.40 0.68 14.41 3.43 0.04 0.81 2.47 3.64 5.13 100 93.35 0.90 1 7 

sd  0.41 0.11 0.16 0.38 0.03 0.06 0.05 0.32 0.11 
 

 

   

QTL14A-0.9(7) 14-27 69.27 0.65 14.22 3.54 0.08 0.83 2.39 3.84 5.19 100 93.67 0.87 0.9 7 

sd  0.45 0.08 0.23 0.27 0.05 0.10 0.07 0.36 0.17 
 

 

   

QTL14A-0.8(6) 14-28 69.26 0.57 14.54 3.30 0.10 0.67 2.34 3.78 5.43 100 95.07 0.89 0.8 6 

sd  0.28 0.09 0.18 0.16 0.09 0.07 0.12 0.14 0.15 
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QTL14A-0.7(6) 14-29 69.80 0.50 14.62 2.84 0.04 0.63 2.29 3.73 5.56 100 95.41 0.90 0.7 6 

sd  0.20 0.11 0.14 0.19 0.03 0.14 0.15 0.23 0.13 
 

 

   

QTL14A-0.6(6) 14-30 69.51 0.64 14.85 2.76 0.03 0.62 2.28 3.87 5.44 100 95.68 0.91 0.6 6 

sd  0.20 0.09 0.22 0.21 0.05 0.04 0.10 0.13 0.14 
 

 

   

QTL14A-0.5(6) 14-31 71.09 0.54 14.24 2.37 0.07 0.39 1.91 3.51 5.89 100 96.26 0.91 0.5 6 

sd  0.20 0.09 0.23 0.20 0.06 0.03 0.04 0.18 0.17 
 

 

   

QTL14A-0.4(10) 14-32 72.27 0.54 13.75 1.93 0.06 0.36 1.51 3.45 6.13 100 96.32 0.91 0.4 10 

sd 
 

0.53 0.09 0.21 0.28 0.06 0.12 0.19 0.20 0.27 
 

 

   

QTL13-1.0(7) 13-26 72.04 0.37 14.00 2.24 0.08 0.45 1.80 3.46 5.57 100 93.88 0.93 1 7 

sd  0.41 0.07 0.21 0.16 0.07 0.07 0.05 0.28 0.25 
 

 

   

QTL13-0.9(6) 13-27 72.05 0.36 14.12 2.07 0.03 0.43 1.79 3.52 5.63 100 94.52 0.93 0.9 6 

sd  0.28 0.07 0.20 0.24 0.05 0.02 0.07 0.18 0.12 
 

 

   

QTL13-0.8(6) 13-28 71.99 0.38 13.96 2.09 0.08 0.45 1.89 3.58 5.58 100 94.83 0.91 0.8 6 

sd  0.27 0.04 0.10 0.20 0.11 0.05 0.12 0.19 0.07 
 

 

   

QTL13-0.6(6) 13-29 72.10 0.31 14.12 2.07 0.06 0.39 1.74 3.60 5.61 100 95.85 0.93 0.6 6 

sd 
 

0.26 0.06 0.23 0.12 0.05 0.04 0.07 0.20 0.07 
 

 

   

T: 850°C; P: 199MPa; fO2: NNO-1.3; run duration: 181h 

QTL38C-1.0(4) 38-17 72.52 0.14 14.97 2.16 0.13 0.10 2.83 3.01 4.13 100 91.26 1.03 1 4 

sd 
 

0.60 0.08 0.02 0.59 0.02 0.05 0.10 0.14 0.25 
 

 

   

QTL38C-0.9(5) 38-18 71.88 0.32 14.92 2.73 0.04 0.19 2.34 3.00 4.58 100 90.86 1.05 0.9 5 

sd 
 

0.65 0.23 0.13 0.17 0.03 0.05 0.12 0.43 0.21 
 

 

   

QTL38C-0.8(5) 38-19 72.98 0.22 14.15 2.29 0.01 0.24 1.68 3.04 5.40 100 93.71 1.02 0.8 5 

sd 
 

0.30 0.08 0.16 0.13 0.01 0.04 0.03 0.20 0.13 
 

 

   

QTL38C-0.7(5) 38-20 73.53 0.20 13.99 1.96 0.02 0.20 1.52 2.94 5.64 100 93.06 1.02 0.7 5 

sd 
 

0.24 0.07 0.36 0.15 0.03 0.05 0.09 0.27 0.14 
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QTL38C-0.6(6) 38-21 74.35 0.19 13.45 1.86 0.05 0.15 1.44 2.75 5.77 100 93.27 1.00 0.6 6 

sd 
 

0.54 0.12 0.26 0.18 0.05 0.02 0.17 0.21 0.17 
 

 

   

QTL38C-0.5(2) 38-22 72.78 0.47 13.76 2.60 0.02 0.38 1.93 2.95 5.12 100 92.93 0.99 0.5 2 

sd 
 

0.35 0.25 1.49 0.98 0.00 0.30 0.23 0.35 0.19 
 

 

   

QTL38C-0.4(5) 38-23 70.24 0.82 14.98 2.40 0.05 0.42 2.81 3.25 5.03 100 95.50 0.94 0.4 5 

sd 
 

0.40 0.25 0.77 1.17 0.08 0.28 0.11 0.33 0.03 
 

 

   

QTL14A-1.0(6) 14-19 71.63 0.31 14.52 2.25 0.10 0.23 2.39 3.61 4.96 100 92.01 0.93 1 6 

sd  0.52 0.07 0.17 0.50 0.09 0.14 0.10 0.20 0.17 
 

 

   

QTL14A-0.9(6) 14-20 71.34 0.31 14.62 2.51 0.05 0.22 2.29 3.73 4.94 100 93.31 0.93 0.9 6 

sd  0.63 0.05 0.22 0.25 0.04 0.07 0.10 0.27 0.25 
 

 

   

QTL14A-0.8(6) 14-21 72.39 0.30 14.21 2.07 0.03 0.20 1.77 3.78 5.24 100 92.69 0.94 0.8 6 

sd  0.72 0.12 0.16 0.22 0.04 0.07 0.15 0.59 0.24 
 

 

   

QTL14A-0.7(5) 14-22 73.43 0.23 13.56 1.80 0.04 0.19 1.31 3.51 5.93 100 95.32 0.93 0.7 5 

sd  0.30 0.11 0.21 0.08 0.04 0.04 0.03 0.14 0.25 
 

 

   

QTL14A-0.6(7) 14-23 73.54 0.27 13.34 1.79 0.02 0.14 1.28 3.32 6.29 100 94.90 0.91 0.6 7 

sd  0.28 0.16 0.18 0.19 0.03 0.03 0.07 0.11 0.21 
 

 

   

QTL14A-0.5(6) 14-24 73.75 0.27 13.32 1.60 0.02 0.13 1.30 3.23 6.37 100 95.68 0.91 0.5 6 

sd  0.57 0.04 0.47 0.25 0.04 0.05 0.30 0.29 0.30 
 

 

   

QTL14A-0.4(8) 14-25 74.97 0.30 12.54 1.60 0.04 0.16 1.10 2.92 6.37 100 96.45 0.92 0.4 8 

sd 
 

0.42 0.26 0.07 0.35 0.07 0.08 0.08 0.14 0.22 
 

 

   

QTL13-1.0(6) 13-19 72.49 0.26 14.19 2.14 0.06 0.30 1.74 3.45 5.38 100 92.29 0.97 1 6 

sd  0.51 0.09 0.14 0.17 0.08 0.05 0.06 0.34 0.23 
 

 

   

QTL13-0.9(6) 13-20 72.88 0.23 14.12 1.92 0.05 0.23 1.67 3.50 5.40 100 92.42 0.97 0.9 6 

sd  0.06 0.06 0.11 0.25 0.06 0.04 0.04 0.22 0.10 
 

 

   

QTL13-0.8(6) 13-21 72.33 0.26 14.24 1.99 0.07 0.23 1.68 3.55 5.64 100 93.84 0.95 0.8 6 
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sd  0.16 0.08 0.16 0.14 0.07 0.03 0.11 0.21 0.18 
 

 

   

QTL13-0.7(6) 13-22 73.89 0.23 13.71 1.39 0.06 0.16 1.21 3.39 5.96 100 93.44 0.96 0.7 6 

sd  0.36 0.06 0.11 0.16 0.05 0.04 0.05 0.31 0.17 
 

 

   

QTL13-0.6(5) 13-23 74.66 0.29 13.28 1.11 0.05 0.16 0.97 3.26 6.21 100 95.11 0.96 0.6 5 

sd  0.50 0.06 0.35 0.09 0.03 0.02 0.25 0.18 0.16 
 

 

   

QTL13-0.5(5) 13-24 74.93 0.21 13.04 1.32 0.02 0.12 0.93 3.00 6.44 100 95.80 0.96 0.5 5 

sd  0.38 0.06 0.17 0.24 0.02 0.01 0.05 0.21 0.12 
 

 

   

QTL13-0.4(7) 13-25 76.10 0.25 12.31 1.15 0.01 0.12 0.81 2.96 6.30 100 95.96 0.94 0.4 7 

sd 
 

0.28 0.08 0.21 0.29 0.03 0.05 0.07 0.10 0.07 
 

 

   

T:800°C; P: 203MPa; fO2: NNO-1.3; run duration: 351h 

QTL38C-1.0(6) 38-11 74.00 0.11 14.49 2.06 0.06 0.13 2.19 2.86 4.10 100 89.74 1.10 1 6 

sd 
 

0.65 0.04 0.18 0.39 0.10 0.04 0.15 0.17 0.11 
 

 

   

QTL38C-0.9(10) 38-12 75.23 0.24 13.01 1.60 0.06 0.09 1.62 3.54 4.62 100 92.05 0.95 0.9 10 

sd 
 

0.77 0.20 0.25 0.23 0.06 0.04 0.22 0.69 0.16 
 

 

   

QTL38C-0.8(5) 38-13 75.96 0.13 12.53 1.53 0.03 0.11 1.24 3.22 5.24 100 93.34 0.95 0.8 5 

sd 
 

0.52 0.04 0.30 0.31 0.04 0.08 0.11 0.39 0.22 
 

 

   

QTL38C-0.7(6) 38-14 76.85 0.14 12.05 1.32 0.07 0.15 1.01 2.78 5.63 100 93.64 0.96 0.7 6 

sd 
 

0.27 0.04 0.15 0.27 0.10 0.07 0.06 0.19 0.22 
 

 

   

QTL14A-1.0(6) 14-12 73.32 0.15 14.13 2.23 0.09 0.16 2.17 3.22 4.54 100 90.71 1.00 1 6 

sd  0.34 0.08 0.06 0.14 0.10 0.05 0.07 0.23 0.21 
 

 

   

QTL14A-0.9(5) 14-13 73.25 0.21 13.91 1.43 0.08 0.14 1.49 4.08 5.41 100 91.36 0.91 0.9 5 

sd  0.53 0.09 0.22 0.35 0.06 0.04 0.05 0.33 0.23 
 

 

   

QTL14A-0.8(4) 14-14 74.76 0.13 13.26 1.46 0.07 0.07 1.29 3.50 5.48 100 91.18 0.95 0.8 4 

sd  0.95 0.10 0.11 0.16 0.08 0.03 0.06 0.67 0.45 
 

 

   

QTL14A-0.7(6) 14-15 75.31 0.26 12.68 1.45 0.09 0.11 1.01 3.15 5.95 100 91.71 0.94 0.7 6 
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sd 
 

0.76 0.12 0.08 0.18 0.05 0.11 0.08 0.37 0.16 
 

 

   

QTL13-1.0(4) 13-12 76.28 0.11 12.54 1.11 0.02 0.09 0.98 2.98 5.89 100 94.29 0.96 1 4 

sd  0.19 0.08 0.17 0.13 0.04 0.01 0.05 0.09 0.07 
 

 

   

QTL13-0.9(5) 13-13 74.52 0.13 13.90 1.45 0.07 0.09 1.43 2.74 5.69 100 92.12 1.05 0.9 5 

sd  0.40 0.08 0.19 0.23 0.07 0.02 0.02 0.26 0.17 
 

 

   

QTL13-0.8(5) 13-14 74.55 0.06 13.30 1.12 0.05 0.07 1.04 3.81 6.00 100 91.80 0.91 0.8 5 

sd  0.66 0.05 0.23 0.18 0.07 0.03 0.09 0.73 0.18 
 

 

   

QTL13-0.7(5) 13-15 75.94 0.08 12.71 1.03 0.04 0.06 0.74 3.56 5.84 100 92.59 0.94 0.7 5 

sd  0.26 0.09 0.09 0.26 0.06 0.02 0.03 0.30 0.10 
 

 

   

QTL13-0.6(5) 13-16 76.32 0.15 12.40 1.34 0.04 0.09 0.86 3.13 5.67 100 92.56 0.96 0.6 5 

sd 
 

0.86 0.08 0.28 0.44 0.07 0.11 0.09 0.71 0.24 
 

 

   

T: 750°C; P: 194MPa; fO2: NNO-1.3; run duration: 471h 

QTL38C-0.9(5) 38-07 77.65 0.14 12.52 1.27 0.05 0.10 1.34 2.29 4.65 100 91.18 1.12 0.9 5 

sd 
 

0.60 0.10 0.29 0.14 0.05 0.07 0.17 0.21 0.21 
 

 

   

QTL38C-0.8(4) 38-08 77.18 0.14 12.44 0.93 0.09 0.06 1.12 2.45 5.59 100 91.61 1.03 0.8 4 

sd 
 

0.71 0.13 0.36 0.10 0.09 0.02 0.31 0.09 0.08 
 

 

   

QTL14A-0.9(5) 14-07 76.72 0.13 12.64 1.04 0.05 0.10 1.10 2.73 5.49 100 92.06 1.02 0.9 5 

sd  0.62 0.13 0.12 0.20 0.08 0.06 0.02 0.41 0.09 
 

 

   

QTL14A-0.8(5) 14-08 77.50 0.20 11.89 1.14 0.07 0.07 1.03 2.78 5.32 100 93.18 0.97 0.8 5 

sd 
 

0.36 0.27 0.18 0.12 0.05 0.04 0.06 0.15 0.12 
 

 

   

QTL13-0.8(6) 13-08 77.43 0.10 12.14 1.04 0.05 0.05 0.90 2.93 5.35 100 93.32 0.99 0.8 6 

sd  0.21 0.08 0.29 0.13 0.04 0.03 0.06 0.19 0.19 
 

 

   

QTL13-0.7 13-09 77.25 0.15 11.93 1.41 0.08 0.07 0.85 2.71 5.56 100 93.34 0.99 0.7 1 
                

T: 700°C; P: 202MPa; fO2: NNO-1.3; run duration: 689h 

QTL38C-1.0(11) 38-04 77.09 0.15 12.33 0.98 0.03 0.08 1.38 3.35 4.60 100 90.37 0.95 1 11 
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sd 
 

0.74 0.10 0.15 0.34 0.03 0.04 0.12 0.50 0.12 
 

 

   

QTL14A-1.0(9) 14-04 77.04 0.17 12.50 0.81 0.06 0.07 1.31 3.10 4.95 100 90.47 0.97 1 9 

sd 
 

0.71 0.20 0.16 0.29 0.07 0.04 0.10 0.50 0.17 
 

 

   

QTL13-1.0(5) 13-04 77.54 0.09 12.80 0.83 0.09 0.04 1.27 2.30 5.05 100 90.62 1.11 1 5 

sd 
 

0.48 0.06 0.22 0.14 0.09 0.03 0.15 0.16 0.22 
 

 

   

T: 660°C; P: 206MPa; fO2: NNO-1.3; run duration: 1337h 

QTL14A-1.0(9) 14-01 77.32 0.12 12.75 0.73 0.06 0.10 1.18 3.17 4.58 100 90.49 1.03 1 9 

sd 
 

0.55 0.04 0.26 0.18 0.05 0.09 0.22 0.09 0.15 
 

 

   

QTL13-1.0(9) 13-01 77.23 0.05 13.04 0.66 0.05 0.02 0.91 3.49 4.57 100 91.51 1.06 1 9 

sd 
 

0.57 0.05 0.14 0.12 0.04 0.02 0.06 0.39 0.20 
     

T: 800°C; P: 299MPa; fO2: NNO-1.3; run duration: 356h 

QTL38C-1(17) 38-38 72.99 0.17 14.57 1.81 0.09 0.10 2.77 3.25 4.24 100 89.58 0.97 1 17 

sd 
 

0.36 0.08 0.18 0.42 0.09 0.07 0.18 0.16 0.15 
     

QTL38C-0.9(23) 38-39 72.89 0.21 14.23 2.10 0.07 0.17 2.30 3.50 4.52 100 90.19 0.96 0.9 23 

sd 
 

0.63 0.11 0.21 0.43 0.07 0.12 0.14 0.20 0.20 
     

QTL38C-0.8(8) 38-40 74.39 0.29 13.60 1.73 0.04 0.14 2.02 3.14 4.65 100 90.75 0.98 0.8 8 

sd 
 

0.55 0.13 0.24 0.24 0.05 0.07 0.15 0.22 0.19 
     

QTL38C-0.7(3) 38-41 74.97 0.68 12.97 1.79 0.09 0.13 1.55 2.77 5.06 100 91.93 1.01 0.7 3 

sd 
 

0.64 0.62 0.23 0.51 0.02 0.02 0.11 0.12 0.01 
     

QTL38C-0.6(1) 38-42 76.28 0.11 12.95 1.57 0.00 0.10 1.26 2.11 5.60 100 92.27 1.09 0.6 1 

sd 
 

0.61 0.13 0.05 0.06 0.00 0.03 0.02 0.66 0.12 
     

QTL14A-0.8(14) 14-42 74.00 0.29 13.62 1.71 0.06 0.16 1.84 2.93 5.38 100 91.4 0.97 0.8 14 

sd  0.29 0.13 0.20 0.16 0.05 0.10 0.17 0.19 0.16 
     

QTL14A-0.7(11) 14-43 74.80 0.29 13.13 1.86 0.04 0.20 1.60 2.58 5.52 100 92.47 1.00 0.7 11 

sd 
 

0.48 0.15 0.20 0.33 0.05 0.10 0.24 0.52 0.23 
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QTL13-1.0(17) 13-40 74.22 0.21 13.99 1.54 0.03 0.13 1.86 2.64 5.38 100 89.62 1.03 1 17 

sd  0.47 0.07 0.14 0.36 0.04 0.07 0.08 0.12 0.17 
     

QTL13-0.9(19) 13-41 73.80 0.19 13.94 1.50 0.05 0.14 1.73 3.06 5.59 100 90.56 0.98 0.9 19 

sd  0.39 0.06 0.15 0.17 0.07 0.03 0.05 0.17 0.17 
     

QTL13-0.8(19) 13-42 74.39 0.23 13.75 1.15 0.04 0.13 1.46 3.05 5.80 100 92.22 0.99 0.8 19 

sd  0.43 0.10 0.14 0.11 0.06 0.03 0.09 0.19 0.17 
     

QTL13-0.7(20) 13-43 74.96 0.16 13.27 1.26 0.08 0.12 1.27 2.90 5.99 100 92.69 0.98 0.7 20 

sd 
 

0.26 0.07 0.11 0.10 0.08 0.03 0.09 0.13 0.11 
     

T: 750°C; P: 300MPa; fO2: NNO-1.3; run duration: 571h 

QTL38C-1(25) 38-33 74.78 0.09 14.15 1.24 0.07 0.08 2.26 2.99 4.33 100 89.06 1.03 1 25 

sd 
 

0.49 0.08 0.17 0.21 0.07 0.03 0.11 0.41 0.26 
     

QTL38C-0.9(16) 38-34 76.79 0.13 12.76 1.20 0.03 0.07 1.65 2.85 4.52 100 89.38 1.01 0.9 16 

sd 
 

0.67 0.10 0.21 0.16 0.04 0.03 0.07 0.63 0.26 
     

QTL38C-0.8(8) 38-35 77.40 0.05 12.38 1.14 0.07 0.06 1.45 2.73 4.73 100 90.56 1.01 0.8 8 

sd 
 

0.37 0.06 0.28 0.13 0.07 0.02 0.12 0.36 0.17 
     

QTL14A-1(30) 14-35 74.27 0.17 14.38 1.05 0.07 0.05 2.45 2.80 4.77 100 88.56 1.01 1 30 

sd  0.56 0.19 0.20 0.21 0.05 0.03 0.19 0.43 0.19 
     

QTL14A-0.9(15) 14-36 75.01 0.19 13.24 1.40 0.09 0.17 1.79 2.73 5.38 100 90.76 0.98 0.9 15 

sd  0.87 0.17 0.16 0.52 0.08 0.17 0.24 0.16 0.18 
     

QTL14A-0.8(7) 14-37 75.84 0.20 12.74 1.30 0.06 0.21 1.55 2.65 5.45 100 90.65 0.97 0.8 7 

sd  0.74 0.11 0.53 0.49 0.04 0.14 0.30 0.35 0.32 
     

QTL14A-0.7(2) 14-38 75.39 0.27 12.77 1.64 0.08 0.26 1.45 2.57 5.59 100 92.63 0.99 0.7 2 

sd 
 

0.62 0.11 0.08 0.01 0.08 0.05 0.35 0.05 0.15 
     

QTL13-1.0(30) 13-35 74.61 0.11 13.94 1.01 0.04 0.07 1.80 2.99 5.43 100 88.79 0.99 1 30 

sd  0.58 0.08 0.19 0.24 0.04 0.04 0.13 0.36 0.21 
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QTL13-0.9(24) 13-36 75.55 0.08 13.45 0.91 0.05 0.05 1.47 2.84 5.59 100 90.41 1.00 0.9 24 

sd  0.36 0.07 0.15 0.14 0.05 0.03 0.23 0.20 0.16 
     

QTL13-0.8(10) 13-37 76.73 0.15 12.50 0.96 0.07 0.08 1.21 2.94 5.35 100 91.99 0.97 0.8 10 

sd 
 

0.46 0.13 0.22 0.25 0.07 0.05 0.28 0.07 0.23 
     

T: 700°C; P: 316MPa; fO2: NNO-1.3; run duration: 570h 

QTL38C-1.0(7) 38-32 77.31 0.12 13.57 1.08 0.07 0.05 2.19 1.85 3.75 100 87.71 1.22 1 7 

sd 
 

0.44 0.12 0.22 0.17 0.06 0.03 0.22 0.59 0.28 
     

QTL14A-1.0(5) 14-34 75.18 0.15 13.89 1.16 0.03 0.07 1.97 2.62 4.93 100 88.84 1.05 1 5 

sd 
 

0.30 0.07 0.19 0.20 0.03 0.02 0.04 0.17 0.15 
     

QTL13-1.0(5) 13-34 75.28 0.09 14.04 0.92 0.05 0.04 1.84 2.65 5.10 100 88.23 1.06 1 5 

sd 
 

0.22 0.07 0.20 0.14 0.06 0.02 0.17 0.23 0.21 
     

T: 660°C; P: 298MPa; fO2: NNO-1.3; run duration: 1267h 

QTL13-1.0(21) 13-33 76.30 0.07 13.20 0.62 0.06 0.04 1.30 3.86 4.54 100 90.95 0.97 1 21 

sd 
 

0.64 0.06 0.23 0.25 0.07 0.05 0.08 0.55 0.24 
     

T: 800°C; P: 200MPa; fO2: NNO+3; run duration: 312h 

QTL38C-1.0(10) 38-51 75.30 0.23 14.07 1.36 0.07 0.42 2.36 2.57 3.62 100 87.59 1.13 1 10 

sd 
 

0.47 0.11 0.15 0.13 0.07 0.20 0.13 0.30 0.12 
     

QTL14A-1.0(10) 14-54 74.52 0.24 14.33 1.10 0.03 0.34 2.54 2.72 4.19 100 87.75 1.05 1 10 

sd 
 

0.45 0.06 0.25 0.13 0.04 0.04 0.18 0.16 0.22 
     

QTL13-1.0(10) 13-54 75.63 0.14 13.74 1.12 0.06 0.31 1.84 2.73 4.43 100 87.68 1.09 1 10 

sd 
 

0.38 0.08 0.12 0.15 0.08 0.02 0.08 0.23 0.17 
     

T: 800°C; P:363MPa; fO2: NNO+3; run duration: 281h 

QTL38C-1.0(5) 38-52 75.44 0.18 14.75 0.92 0.10 0.25 2.76 2.14 3.46 100 87.39 1.20 1 5 

sd 
 

0.27 0.06 0.18 0.07 0.09 0.05 0.09 0.18 0.10 
     

QTL14A-1.0(5) 14-55 74.72 0.20 14.47 1.16 0.06 0.36 2.51 2.23 4.28 100 86.76 1.12 1 5 
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sd 
 

0.30 0.11 0.19 0.18 0.08 0.03 0.07 0.11 0.12 
     

QTL13-1.0(5) 13-55 76.29 0.12 13.79 1.07 0.05 0.31 1.82 2.13 4.43 100 86.82 1.19 1 5 

sd 
 

0.30 0.08 0.18 0.20 0.05 0.02 0.07 0.17 0.18 
     

T: 800°C; P: 673MPa; fO2: NNO+3; run duration: 277h 

QTL38C-1.0(5) 38-53 74.73 0.19 14.82 0.90 0.14 0.21 3.14 2.36 3.51 100 87.09 1.11 1 5 

sd 
 

0.42 0.14 0.13 0.15 0.04 0.10 0.21 0.28 0.18 
     

QTL14A-1.0(5) 14-56 75.01 0.32 14.38 0.70 0.07 0.30 2.55 2.34 4.33 100 86.66 1.09 1 5 

sd 
 

0.47 0.15 0.12 0.12 0.07 0.11 0.18 0.23 0.09 
     

QTL13-1.0(5) 13-56 75.55 0.18 13.80 0.95 0.03 0.29 1.93 2.70 4.57 100 87.63 1.07 1 5 

sd 
 

0.40 0.08 0.20 0.15 0.04 0.08 0.14 0.21 0.15 
     

QTL38C-1.0a(5) 38-54 75.26 0.17 14.77 0.92 0.11 0.21 2.91 2.16 3.49 100 85.22 1.17 1 5 

sd 
 

0.36 0.11 0.20 0.13 0.03 0.05 0.13 0.19 0.11 
     

T: 700°C; P: 206MPa; fO2: NNO+3; run duration: 312h 

QTL38C-1.0(5) 38-49 78.47 0.09 12.45 0.76 0.03 0.22 1.57 2.28 4.13 100 87.8 1.13 1 5 

sd 
 

0.95 0.10 0.19 0.18 0.05 0.26 0.31 0.13 0.11 
     

QTL14A-1.0(6) 14-52 78.43 0.10 12.49 0.66 0.05 0.09 1.38 2.21 4.58 100 85.57 1.12 1 6 

sd 
 

0.37 0.08 0.25 0.18 0.07 0.06 0.15 0.08 0.19 
     

QTL13-1.0(6) 13-52 78.91 0.05 12.66 0.50 0.04 0.08 1.26 2.14 4.36 100 85.41 1.20 1 6 

sd   0.34 0.05 0.17 0.14 0.05 0.02 0.08 0.22 0.16           
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Appendix table 16 Composition of the different starting materials for 

oxygen fugacity experiments 

  Qitianling Santa maria   Pinatubo   Jamon   Qitianling 

 
QT38C  QTL14A  QTL13     HBMzG  QT38C 

Granite   Granite   Granite Dacite*   Dacite   Granite   Granite 

 Glass(20)  Glass(20)  Glass(20) Bulk rock  Glass  Bulk rock  Bulk rock 

wt.%            
 

SiO2 64.78  68.17  71.11 65.41  65.50  70.62  65.72 

TiO2 1.06  0.67  0.33 0.42  0.45  0.68  1.04 

Al2O3 13.91  14.35  13.92 17.67  16.35  12.92  13.58 

Fe2O3 
     4.84    2.00  1.68 

FeO          2.37  4.22 

FeOtot 5.51  3.96  2.46 4.36  4.50  4.17  5.74 

MnO 0.11  0.07  0.06 0.20  0.14  0.07  0.1 

MgO 1.38  0.89  0.43 1.17  2.11  0.69  1.37 

CaO 3.30  2.46  1.83 4.36  4.82  2.47  3.27 

Na2O 3.11  2.79  2.99 4.94  4.45  3.54  2.95 

K2O 4.21  5.31  5.58 1.90  1.67  3.52  3.91 

P2O5 0.35  0.21  0.10 0.15    0.30  0.33 

H2O          0.57   

LOI          0.34  0.91 

F     
 

    0.12  0.2 

Total 97.72  98.88  98.81 100.58  99.99  98.98  98.01 

A/CNK 0.89  0.97  0.97 0.97  0.91  0.91  0.90 

XFe 0.80   0.82   0.85 0.79   0.68   0.86   0.81 

 

Numbers in parentheses indicate the number of analyses; The compositions of bulk rock or glass are 

cited from: Santa maria (Rose,1987), Jamon (Dall’Agnol et al.,1999), Pinatubo (Scaillet and Evans, 

1999); XFe= FeOtot / ( FeOtot + MgO) 
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Appendix table 17 Oxygen fugacity experiments conditions and run product 

results 

Charge T      

(°C) 

P 

(MPa) 

1XH2Oin 2H2Omelt 

(wt%) 

3△NNO Phase assemblage  

 

Duration 

(hours) 

Crystallization experiment (dry glass as starting materials)  

38-51 800 205 1.00 6.17 2.37 Gl, Cpx, 4Amp, Bt, Mag, Pl 312 

38-52 800 363 1.00 9.40 2.37 Gl, Cpx, Amp, Bt, Mag 281 

38-53 800 673 1.00 10.00* 2.37 Gl, Cpx, Amp, Bt, Mag, Ttn 277 

38-54 800 673 1.00 15.00* 2.37 Gl, Bt, Mag, Ttn 277 

38-55 800 320 1.00 8.48 0.15 Gl, Amp, Bt, Ilm, Mag 188 

38-56 800 284 1.00 7.73 1.01 Gl, (Cpx), Amp, Bt, Ilm, Mag 284 

14-54 800 205 1.00 6.17 2.37 Gl, Cpx, Bt, Mag 312 

14-55 800 363 1.00 9.40 2.37 Gl, Cpx, Bt, Mag 281 

14-56 800 673 1.00 15.00* 2.37 Gl, Bt, Mag, Ttn 277 

14-57 800 320 1.00 8.48 0.15 Gl, Cpx, (Amp), Bt, Ilm, Mag 188 

14-58 800 284 1.00 7.73 1.01 Gl, Cpx, Bt, Ilm, Mag 284 

13-54 800 205 1.00 6.17 2.37 Gl, Cpx, Bt, Mag 312 

13-55 800 363 1.00 9.40 2.37 Gl, Bt, Mag 281 

13-56 800 673 1.00 15.00* 2.37 Gl, Bt, Mag 277 

13-57 800 320 1.00 8.48 0.15 Gl, Cpx, (Amp), Bt, Ilm, Mag 188 

13-58 800 284 1.00 7.73 1.01 Gl, Cpx, Bt, Ilm, Mag, Pl 284 

SM-01 660 206 1.00 6.45 -1.36 — (crystals are too small) 1337 

SM-02 700 202 1.00 6.39 -1.15 Gl, Amp, Ilm, (Bt), Pl 689 

SM-03 700 412 1.00 10.62 -1.38 Gl, Amp, Ilm, Pl 648 

SM-04 800 299 1.00 8.04 -0.90 Gl, Amp, Ilm, Pl 356 

SM-05 800 320 1.00 8.48 0.15 Gl, Amp,Mag, Pl 188 

SM-06 800 284 1.00 7.73 1.01 Gl, Amp,Mag, Pl 284 

P-01 660 206 1.00 6.45 -1.36 — (crystals are too small) 1337 

P-02 700 202 1.00 6.39 -1.15 Amp, (Ilm), (Bt), Pl, Qtz 689 

P-03 700 412 1.00 10.62 -1.38 Gl, Amp, Ilm, (Bt), Pl 648 

P-04 800 299 1.00 8.04 -0.90 Gl, Amp, Ilm, Pl 356 

P-05 800 320 1.00 8.48 0.15 Gl, Amp, Ilm, (Mag),  Pl 188 

P-06 800 284 1.00 7.73 1.01 Gl, Amp, Ilm, Mag, Pl 284 

Melting experiment (bulk rock powder as starting materials)  

M-J-01 660 206 1.00 10.00* -1.36 — (powder) 1337 

M-J-02 
700 202 1.00 

10.00* 
-1.15 

(Gl), Amp, Ilm, Mag, Bt, Pl, 

Kfs, Qtz 
689 

M-J-03 700 412 1.00 10.00* -1.38 Gl, Amp, Ilm, Mag, Bt 648 

M-J-05 800 320 1.00 10.00* 0.15 Gl, Amp, Ilm, Mag, (Bt) 188 
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M-J-06 800 284 1.00 10.00* 1.01 Gl, Amp, Ilm, Mag 284 

M-38-01 660 206 1.00 10.00* -1.36 — (powder) 1337 

M-38-02 700 202 1.00 10.00* -1.15 
Gl, Amp, Ilm, Mag, Bt, Pl, 

Kfs, Qtz 
689 

M-38-03 700 412 1.00 10.00* -1.38 
Gl, Amp, Ilm, Mag, Bt, Pl, 

(Kfs) 
648 

M-38-04 750 300 1.00 10.00* -0.96 
Gl, Amp, Ilm, Mag, Bt, Pl, 

(Kfs) 
571 

M-38-05 800 320 1.00 10.00* 0.15 Gl, Amp, Ilm, Mag, Bt 188 

M-38-06 800 284 1.00 10.00* 1.01 Gl, Amp, Ilm, Mag, Bt 284 

1XH2Oin: initial H2O/(H2O+CO2) loaded in each capsule (in moles) 

2H2Omelt wt%: water content in the melt; determined by calculation of VolatileCalc; Those water 

contents with * were loaded in the capsules. 

3△NNO: logfO2(experiment)-logfO2(NNO; Chou, 1987); fO2 were calculated according to XH2Ofin 

4All the phases in bold were successfully analysed by microprobe 

 



Appendix tables  

254 

 

 

Appendix table 18 The composition of amphibole of Oxygen fugacity experiments 

Charge 38-55 SD 38-56 SD P-03 SD P-04 SD P-05 SD 

 n=15 
 

n=15 
 

n=4 
 

n=14 
 

n=21 
 

SiO2 44.22 0.64 43.41 1.23 48.92 1.37 45.73 0.70 44.09 0.73 

TiO2 1.71 0.15 1.64 0.16 0.62 0.14 1.47 0.20 1.62 0.20 

Al2O3 9.47 0.52 9.40 0.67 5.87 1.83 8.89 0.72 9.89 0.59 

FeO 13.09 0.43 17.66 0.76 20.08 2.46 14.95 0.41 15.16 0.48 

MnO 0.33 0.10 0.30 0.12 0.63 0.12 0.32 0.11 0.32 0.10 

MgO 13.51 0.31 10.93 0.29 13.87 1.14 13.23 0.37 12.78 0.35 

CaO 11.90 0.11 11.50 0.59 6.27 2.15 9.91 0.29 10.30 0.28 

Na2O 1.35 0.06 1.51 0.12 1.08 0.23 1.89 0.10 1.96 0.11 

K2O 0.97 0.09 0.95 0.10 0.11 0.05 0.20 0.06 0.27 0.06 

F 0.54  0.38  0.02  0.08  0.09  
Cl 0.01  0.01  0.01  0.01  0.01  
O=F,Cl 0.23  0.16  0.01  0.04  0.04  
Total 96.85  97.53  97.47  96.62  96.46  
           

Si 6.530  6.480  7.094  6.620  6.443  
Al iv 1.470  1.520  0.894  1.376  1.557  
Al vi 0.178  0.135  0.103  0.140  0.147  
Ti 0.190  0.185  0.068  0.160  0.178  
Fe3+ 0.577  0.729  1.069  1.283  1.222  
Fe2+ 1.040  1.476  1.372  0.526  0.630  
Mn 0.041  0.038  0.077  0.039  0.040  
Mg 2.974  2.433  2.999  2.855  2.784  
Ca 1.882  1.839  0.968  1.537  1.613  
Na 0.387  0.437  0.303  0.530  0.557  
K 0.182  0.182  0.019  0.037  0.050  
Altot 1.648  1.654  0.997  1.516  1.704  
Fe# 0.35   0.48   0.45   0.39   0.40   

Charge P-06 SD SM-02 SD SM-03 SD SM-04 SD SM-05 SD 

 n=20  n=2  n=6  n=19  n=18  

SiO2 45.45 0.79 51.63 0.49 48.24 1.90 45.56 1.56 45.08 0.95 

TiO2 1.50 0.15 1.07 0.13 0.91 0.20 1.37 0.23 1.16 0.28 

Al2O3 8.99 0.52 6.41 0.70 8.09 1.13 10.07 0.68 10.08 0.94 

FeO 12.10 0.36 18.22 0.86 21.15 3.44 17.27 1.13 16.45 0.77 

MnO 0.38 0.13 1.31 0.10 0.97 0.15 0.58 0.10 0.57 0.12 

MgO 14.90 0.44 10.28 0.14 10.35 1.12 10.82 0.84 11.40 0.71 

CaO 11.05 0.26 8.07 0.76 7.43 2.02 9.07 0.66 9.73 0.41 
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Na2O 1.52 0.10 1.27 0.14 1.52 0.32 2.08 0.12 2.01 0.15 

K2O 0.27 0.06 0.32 0.05 0.23 0.08 0.26 0.06 0.32 0.10 

F 0.21  0.04  0.04  0.08  0.07  
Cl 0.02  0.01  0.01  0.01  0.01  
O=F,Cl 0.09  0.02  0.02  0.04  0.03  
Total 96.31  98.62  98.92  97.15  96.85  
           

Si 6.577  7.322  6.964  6.615  6.580  
Al iv 1.423  0.678  1.031  1.385  1.420  
Al vi 0.111  0.393  0.344  0.339  0.314  
Ti 0.163  0.114  0.098  0.150  0.127  
Fe3+ 1.083  1.196  1.047  1.287  1.180  
Fe2+ 0.382  0.965  1.511  0.810  0.828  
Mn 0.047  0.158  0.118  0.072  0.071  
Mg 3.215  2.174  2.230  2.342  2.480  
Ca 1.713  1.226  1.147  1.412  1.522  
Na 0.427  0.350  0.427  0.586  0.568  
K 0.050  0.058  0.042  0.049  0.060  
Altot 1.534  1.071  1.375  1.723  1.734  
Fe# 0.31   0.50   0.53   0.47   0.45   

Charge SM-06 SD M-J-02 SD M-J-03 SD M-J-05 SD M-J-06 SD 

 n=10 
 

n=3 
 

n=4 
 

n=11 
 

n=7 
 

SiO2 48.68 1.54 43.48 0.65 44.24 0.47 47.75 1.07 47.53 1.57 

TiO2 1.03 0.15 1.32 0.12 1.15 0.05 0.95 0.19 1.15 0.16 

Al2O3 9.95 0.73 6.31 0.55 8.12 0.18 6.06 0.69 6.73 0.95 

FeO 12.72 0.63 29.43 0.62 26.67 0.95 16.70 0.46 11.73 0.30 

MnO 0.70 0.09 0.72 0.01 0.39 0.02 0.35 0.13 0.37 0.04 

MgO 12.41 0.73 3.88 0.47 5.82 0.60 13.01 0.68 15.40 0.51 

CaO 9.53 0.48 9.65 0.08 10.23 0.21 10.15 0.34 11.49 0.18 

Na2O 1.79 0.24 1.63 0.13 1.48 0.06 1.35 0.11 1.21 0.15 

K2O 0.42 0.12 0.82 0.08 0.63 0.07 0.42 0.12 0.55 0.13 

F 0.06  0.45  0.20  0.56  0.74  
Cl 0.01  0.03  0.01  0.01  0.01  
O=F,Cl 0.03  0.20  0.09  0.24  0.32  
Total 97.27  97.54  98.85  97.07  96.59  
           

Si 6.960  6.816  6.688  6.954  6.91  
Al iv 1.040  1.160  1.312  0.989  1.08  
Al vi 0.637  0.006  0.136  0.052  0.07  
Ti 0.111  0.156  0.131  0.105  0.13  
Fe3+ 0.690  0.987  1.043  1.214  0.75  
Fe2+ 0.831  2.872  2.329  0.820  0.68  
Mn 0.084  0.096  0.050  0.043  0.05  
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Mg 2.647  0.907  1.311  2.823  3.34  
Ca 1.460  1.621  1.658  1.584  1.79  
Na 0.495  0.496  0.434  0.383  0.34  
K 0.076  0.164  0.121  0.077  0.10  
Altot 1.676  1.166  1.447  1.041  1.15  
Fe# 0.37   0.81   0.72   0.42   0.30   

Charge 

M-38-

02 
SD 

M-38-

03 
SD 

M-38-

04 
SD 

M-38-

05 
SD 

M-38-

06 
SD 

 n=10 
 

n=8 
 

n=6 
 

n=24 
 

n= 4 

SiO2 41.97 0.52 42.12 0.52 42.63 0.84 44.11 0.39 44.22 1.01 

TiO2 1.68 0.36 1.82 0.23 1.74 0.12 1.65 0.04 1.61 0.13 

Al2O3 8.09 0.47 8.09 0.29 10.07 0.74 9.32 0.43 9.59 0.58 

FeO 24.27 0.80 24.24 0.85 22.73 1.15 17.47 0.18 13.53 0.49 

MnO 0.64 0.12 0.63 0.12 0.50 0.09 0.37 0.02 0.40 0.10 

MgO 6.63 0.62 6.44 0.51 6.87 0.44 11.76 0.30 13.42 0.49 

CaO 10.56 0.29 10.66 0.19 10.85 0.45 11.27 0.09 11.82 0.22 

Na2O 1.79 0.18 1.78 0.11 1.65 0.17 1.58 0.07 1.43 0.16 

K2O 1.27 0.09 1.33 0.04 1.14 0.08 1.02 0.07 1.13 0.13 

F 0.15  0.15  0.32  0.31  0.63  

Cl 0.00  0.00  0.04  0.01  0.01  

O=F,Cl 0.07  0.06  0.14  0.13  0.27  

Total 96.99  97.21  98.40  98.74  97.54  
       

    

Si 6.54  6.56  6.48  6.46  6.50  

Si 1.44  1.43  1.52  1.54  1.50  

Al iv 0.04  0.05  0.29  0.07  0.16  

Al vi 0.20  0.21  0.20  0.18  0.18  

Ti 0.73  0.60  0.59  0.94  0.63  

Fe3+ 2.43  2.56  2.31  1.20  1.03  

Fe2+ 0.08  0.08  0.06  0.05  0.05  

Mn 1.54  1.50  1.56  2.57  2.94  

Mg 1.76  1.78  1.77  1.77  1.86  

Ca 0.54  0.54  0.49  0.45  0.41  

Na 0.25  0.26  0.22  0.19  0.21  

K 1.48  1.49  1.81  1.61  1.66  
Fe# 0.67   0.68   0.65   0.45   0.36   
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Appendix table 19 The composition of biotite of Oxygen fugacity experiments 

Charge 38-55 SD 38-56 SD 14-58 SD 14-57 SD 13-58 SD 13-57 

 n=6  n=19  n=6  n=2  n=5  1 

SiO2 37.98 0.52 39.41 1.21 39.71 0.76 39.64 1.33 39.51 1.65 37.08 

TiO2 2.97 0.19 3.61 0.21 3.93 0.23 3.46 0.51 4.43 0.23 3.77 

Al2O3 13.52 0.14 14.05 0.34 13.98 0.34 14.01 0.18 13.73 0.55 13.69 

FeO 19.61 0.33 13.68 1.05 14.36 1.03 18.69 0.85 15.50 0.26 19.59 

MnO 0.12 0.09 0.16 0.08 0.18 0.07 0.13 0.00 0.16 0.04 0.14 

MgO 11.74 0.21 14.92 0.34 14.40 0.46 10.59 0.52 13.29 0.38 11.53 

CaO 0.17 0.08 0.22 0.14 0.18 0.05 0.47 0.20 0.24 0.31 0.16 

Na2O 0.51 0.06 0.45 0.06 0.43 0.03 0.41 0.06 0.41 0.06 0.39 

K2O 6.97 0.15 8.78 0.22 8.93 0.35 7.78 0.40 8.63 0.56 8.52 

F 0.70 0.19 0.88 0.25 0.90 0.27 0.28 0.09 1.06 0.45 0.28 

Cl 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 

O=F,Cl 0.30 0.08 0.37 0.10 0.38 0.11 0.12 0.04 0.45 0.19 0.12 

TOTAL 93.36 0.56 95.15 1.08 95.99 1.65 94.70 1.05 95.87 1.63 94.38 

Based on 22 Oxygen 

Si 5.400 0.074 5.603 0.172 5.623 0.107 5.612 0.189 5.474 0.229 5.138 

Al 2.406 0.034 2.327 0.093 2.336 0.071 2.368 0.161 2.301 0.022 2.455 

Al 0.000 0.000 0.070 0.086 0.035 0.056 0.095 0.134 0.034 0.074 0.000 

Ti 0.338 0.019 0.394 0.024 0.426 0.023 0.388 0.057 0.482 0.033 0.432 

Fe(ii) 2.477 0.055 1.657 0.142 1.728 0.111 2.331 0.102 1.872 0.036 2.493 

Mn 0.015 0.012 0.019 0.010 0.022 0.009 0.016 0.001 0.020 0.005 0.018 

Mg 2.644 0.053 3.220 0.082 3.090 0.089 2.355 0.111 2.863 0.143 2.616 

Ca 0.028 0.013 0.034 0.021 0.027 0.008 0.076 0.032 0.037 0.046 0.025 

Na 0.150 0.016 0.125 0.015 0.119 0.009 0.117 0.018 0.115 0.017 0.114 

K 1.343 0.034 1.622 0.030 1.639 0.060 1.480 0.072 1.591 0.130 1.653 

Cl 0.003  0.002  0.410  0.130  0.483  0.134 

F 0.333  0.403  0.003  0.002  0.003  0.000 

TOTAL 14.80  15.07  15.05  14.84  14.79  14.94 

Fe# 0.48  0.34  0.36  0.50  0.40  0.49 
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Appendix table 20 The information of experimental amphibole from literatures 

 
Charge Amp-Fe# T（℃） △NNO W-Fe# P（MPa） 

Jamon 15 0.20 848 3.12 0.858 310 

1 0.30 801 2.37 0.858 313 

7 0.35 707 2.79 0.858 314 

46 0.57 801 -1.15 0.858 304 

23 0.71 706 -1.35 0.858 299 

Wangrah 1 0.43 800 0 0.869 200 

25 0.48 800 -0.09 0.869 200 

7 0.57 800 -0.19 0.869 200 

13 0.50 750 0 0.869 200 

23 0.60 750 -0.19 0.869 200 

15 0.60 700 0 0.869 200 

Pinatubo 8 0.27 785 2.7 0.681 221 

16 0.44 776 -0.01 0.681 224 

18 0.39 776 1.04 0.681 224 

20 0.34 776 1.71 0.681 225 

22 0.31 834 2.01 0.681 230 

23 0.29 834 1.93 0.681 230 

24 0.29 834 1.82 0.681 230 

33 0.35 866 1 0.681 209 

34 0.36 866 0.91 0.681 209 

35 0.37 866 0.81 0.681 209 

42 0.33 899 1.2 0.681 225 

43 0.35 899 1.1 0.681 225 

44 0.36 899 1.01 0.681 225 

51 0.31 781 2.3 0.681 224 

65 0.34 780 2.6 0.681 389 

66 0.33 780 2.5 0.681 389 

67 0.36 780 2.4 0.681 389 

900 0.19 900 4 0.646 400 

900 0.19 900 3.8 0.646 400 

900 0.19 900 3.6 0.646 400 

900 0.17 900 3.4 0.646 400 

950 0.22 950 3.5 0.646 400 

750 0.25 750 4.6 0.646 940 

750 0.19 750 4.7 0.646 940 

750 0.16 750 4.8 0.646 940 

841 0.40 841 2.1 0.646 960 

841 0.24 841 2.3 0.646 960 

841 0.30 841 2.6 0.646 960 

841 0.31 841 2.7 0.646 960 

841 0.25 841 2.9 0.646 960 
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892 0.23 892 2 0.646 830 

892 0.29 892 2.4 0.646 830 

892 0.26 892 2.4 0.646 830 

892 0.20 892 2.6 0.646 830 

892 0.24 892 2.7 0.646 830 

892 0.17 892 3 0.646 830 

943 0.22 943 3 0.646 960 

943 0.19 943 3.4 0.646 960 

Lyngdal 50-9 0.46 850 0.59 0.812 404 

50-10 0.46 850 0.5 0.812 404 

50-25 0.55 830 -0.01 0.812 399 

50-26 0.56 830 -0.11 0.812 399 

06-10 0.51 850 0.5 0.807 404 

06-9 0.51 850 0.58 0.807 404 

06-25 0.55 830 0.01 0.807 399 

50-17 0.38 880 0.41 0.812 404 

50-18 0.42 880 0.29 0.812 404 

50-19 0.48 880 0.17 0.812 404 

50-20 0.45 880 0.03 0.812 404 

50-7 0.43 850 0.79 0.812 404 

50-8 0.43 850 0.69 0.812 404 

50-11 0.49 850 0.34 0.812 404 

50-23 0.48 830 0.2 0.812 399 

50-24 0.51 830 0.05 0.812 399 

50-27 0.62 830 -0.28 0.812 399 

50-13 0.57 800 0.07 0.812 390 

50-14 0.59 800 -0.05 0.812 390 

50-15 0.62 800 -0.15 0.812 390 

50-16 0.62 800 -0.23 0.812 390 

50-29 0.55 775 -0.031 0.812 414 

50-30 0.56 775 -0.094 0.812 414 

50-31 0.58 775 -0.304 0.812 414 

06-20 0.49 880 0.01 0.807 404 

06-21 0.49 880 -0.09 0.807 404 

06-10 0.51 850 0.5 0.807 404 

06-09 0.47 850 0.58 0.807 404 

06-25 0.55 830 0.01 0.807 399 

06-13 0.56 800 0.07 0.807 390 

06-14 0.63 800 -0.05 0.807 390 

06-15 0.65 800 -0.15 0.807 390 

06-29 0.58 775 -0.03 0.807 414 

06-30 0.61 775 -0.13 0.807 414 

Data are from Dall’Agnol et al. (1999); Bogaerts et al. (2003); Klimm et al. (2003); Scaillet and Evans, 

(1999) and Prouteau and Scaillet, (2003)  
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Appendix table 21 The information of experimental biotite from literatures 

Point#   Bt-Fe# T（℃） △NNO W-Fe# P（kbar） 

Jamon RD5 0.38 801 1.64 0.858 313 
 RD8 0.42 707 2.78 0.858 314 

 RD20 0.24 848 2.47 0.858 310 

 RD23 0.72 706 -1.35 0.858 299 

  RD51 0.57 801 -1.75 0.858 304 

Lyngdal 50-11 0.53 850 0.34 0.812 404 
 50-12 0.51 850 0.19 0.812 404 

 50-25 0.58 830 -0.01 0.812 399 

 50-26 0.58 830 -0.01 0.812 399 

 50-27 0.62 830 -0.28 0.812 399 

 50-28 0.62 830 -0.42 0.812 399 

 50-14 0.64 800 -0.05 0.812 390 

 50-15 0.64 800 -0.15 0.812 390 

 50-16 0.63 800 -0.23 0.812 390 

 06-21 0.55 880 -0.09 0.807 404 

 06-20 0.52 880 0.01 0.807 404 

 06-19 0.48 880 0.17 0.807 404 

 06-18 0.44 880 0.28 0.807 404 

 06-17 0.39 880 0.41 0.807 404 

 06-11 0.52 850 0.35 0.807 404 

 06-10 0.49 850 0.50 0.807 404 

 06-09 0.47 850 0.58 0.807 404 

 06-08 0.44 850 0.67 0.807 404 

 06-07 0.40 850 0.79 0.807 404 

 06-23 0.49 830 0.20 0.807 399 

 06-24 0.53 830 0.09 0.807 399 

 06-25 0.56 830 0.01 0.807 399 

 06-26 0.59 830 -0.12 0.807 399 

 06-13 0.56 800 0.07 0.807 390 

 06-14 0.62 800 -0.05 0.807 390 

 06-15 0.66 800 -0.15 0.807 390 

 06-16 0.66 800 -0.23 0.807 390 

 06-29 0.60 775 -0.03 0.807 414 

 06-30 0.62 775 -0.13 0.807 414 

  06-45 0.33 850 1.50 0.807 191 

Kenya 002-33 0.90 693 -1.80 0.963 156 
 575-47 0.97 661 -1.70 0.990 151 

  49-44 0.97 661 -1.70 1.000 151 

Himalayan DK31 0.48 803 -1.27 0.817 407 
 DK15 0.48 749 -0.72 0.817 405 

 DK19* 0.58 720 -1.17 0.817 398 

 DK34* 0.59 682 -1.08 0.817 408 

 DK41* 0.67 682 -1.00 0.817 408 

  DK44" 0.63 663 -1.33 0.817 416 

Data are from Dall’Agnol et al.,1999; Bogaerts et al., 2003; Klimm et al., 2003; Prouteau and Scaillet, 

2003; and Scaillet, 1995; Scaillet and Macdonald, 2003  
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Appendix table 22 The test for our oxybarometer using other data from literatures 

Literature 3 5 5 2 1 1 1 1 4 4 4 

  11 MC1314R10 MC1314RB02 94A5-3 3 48 46 42 MD MD MD 

T（℃） 775 705 700 710 800 800 800 800 800 800 775 

Fe#Bt 0.460 0.480 0.460 0.590 0.390 0.410 0.400 0.390 0.355 0.359 0.363 

Fe#Amp*Fe#w 0.470 0.460 0.430 0.590 0.350 0.370 0.360 0.370 0.348 0.379 0.312 

Fe#w 0.660 0.702 0.702 0.832 0.750 0.800 0.760 0.760 0.710 0.710 0.710 

P（MPa） 300 200 250 260 850 850 850 850 200 200 200 

Fe#Bt*Fe#w 0.30 0.34 0.32 0.49 0.29 0.33 0.30 0.30 0.25 0.26 0.26 

Fe#amp*Fe#w 0.31 0.32 0.30 0.49 0.26 0.30 0.27 0.28 0.25 0.27 0.22 

wTiO2 0.70 1.15 1.15 0.18 0.55 0.55 0.56 0.56 1.54 1.54 1.54 

wAl2O3/SiO2 0.25 0.25 0.25 0.17 0.24 0.24 0.24 0.24 0.24 0.24 0.24 

wNa2O/K2O 1.44 1.29 1.29 0.56 0.99 0.84 0.81 0.83 0.71 0.71 0.71 

Exp-NNO 0.00 0.60 0.70 0.22 1.88 1.88 1.88 1.88 0.00 -0.09 -0.09 

(1)Cal-NNO -0.11 0.23 0.60 -0.77 1.83 1.72 1.71 1.64 1.04 0.74 1.44 

(3)Cal-NNO -0.55 -0.78 -0.50 -0.76 1.74 1.78 1.71 1.78 0.10 0.08 0.06 

Data are from 1Whitney and Stormer, 1985; 2Chesner, 1998; 3Holtz et al., 2005; 4Pietranik et al., 2009 and 5Mutch et al., 2016.
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Appendix table 23. Major elements and trace elements compositions of the Xianghualing No. 431 dike 

Rock type Ongonite I  Ongonite II  Topazite 

Sample No. 
ZK840–  XXL–  XHL–  XXL– 

10* 11* 12* 14* 20*  33 34  310 73  08 10 11 12 

SiO2 (wt. %) 65.83 70.21 69.67 70.76 71.74  67.23 67.51  67.14 67.20  57.77 59.60 63.08 56.57 

TiO2       0.01 0.01  0.01 0.01  0.03 0.03 0.02 0.03 

Al2O3 19.63 16.08 17.11 16.93 17.23  19.91 19.49  19.78 20.05  27.77 23.94 23.08 25.78 

Fe2O3 0.44 0.40 0.29 0.10 0.42  0.17 0.02  0.02 0.02  0.44 1.07 0.36 1.68 

FeO 2.63 2.66 1.73 0.79 0.55  0.14 0.26  0.15 0.22  0.92 2.14 1.15 2.08 

MnO 0.06 0.06 0.04 0.03 0.02  0.03 0.08  0.09 0.08  0.83 0.47 0.36 0.49 

MgO 0.16 0.30 0.14 0.12 0.62  0.01 0.01  0.02 0.01  0.11 0.08 0.04 0.05 

CaO 0.49 0.57 0.71 0.70 1.00  0.03 0.02  0.02 0.05  0.04 0.03 0.01 0.03 

Na2O 4.00 3.80 6.88 5.70 4.52  4.54 4.54  4.80 4.13  0.08 0.07 0.06 0.07 

K2O 4.32 3.80 2.04 3.30 1.05  4.59 4.23  4.26 4.26  3.56 5.57 5.18 3.62 

P2O5 0.00 0.00 0.01 0.00 0.00  0.01 0.03  0.02 0.02  0.01 0.01 0.02 0.01 

Li2O 0.21  0.18 0.13 0.05  0.31 0.45  0.48 0.54  1.47 1.67 1.38 1.49 

H2O 0.85 1.11 1.06 1.16 1.82            

LOI       2.13 2.74  2.49 3.06  5.99 4.73 4.61 7.34 

F 3.30 2.32 1.20 1.16 2.06  1.11 1.19  1.42 1.34  4.99 5.18 5.36 6.22 

Total 100.53 100.34 100.56 100.39 100.21  99.10 99.37  99.26 99.65  99.01 99.41 99.35 99.25 

A/CNK 1.62 1.41 1.15 1.19 1.66  1.59 1.61  1.58 1.74  6.86 3.87 4.03 6.29 

FeOt 3.03 3.02 1.99 0.88 0.93  0.29 0.28  0.17 0.24  1.32 3.10 1.47 3.59 
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FeOt/MnO 50.43 50.33 49.78 29.33 46.40  9.77 3.48  1.87 2.98  1.59 6.60 4.09 7.33 

                 

Li (ppm)  1230  886   765 958  1130 1450  6061 6110 5608 6252 

Be  8.5  7.7   179 30  13 11  249 34 34 30 

Sc  6.5  7.3   8.5 8.7  8.6 8.6  7.1 6.8 5.4 4.9 

V  4.7  2.4   1.3 1.2  0.85 1.5  2.5 2.0 1.4 4.2 

Cr  9.7  7.9   4.2 11  4.2 11  1.6 2.4 3.5 7.4 

Cs  52  39   28 49  60 51  67 74 61 93 

Rb  1418  1073   3880 4310  4670 4780  4918 5087 4440 4640 

Ba  63  51   14 14  19 17  11 12 7.3 5.4 

Th  6.6  6.3   20 11  15 10.0  39 27 30 23 

U  25  15   9.5 4.9  7.4 6.9  18 6.9 20 11 

Nb  149  248   97 99  133 105  223 105 193 163 

Ta  57  175   114 65  97 69  207 100 175 161 

Pb  42  30   140 106  52 40  180 139 193 58 

Sr  59  78   11 14  15 8.2  16 13 32 12 

Zr  71  18   46 30  32 35  77 4.2 86 70 

Hf  16  3.2   7.7 3.9  5.7 5.1  22 0.69 24 19 

Y  1.7  1.4   0.34 0.35  0.30 0.44  0.54 0.18 0.33 0.57 

Ga  59  66   57 55  53 59  25 41 24 33 

Sn  35  13   18 38  63 29  142 438 247 802 

W  4.6  5.5   39 25  69 24  114 60 758 771 

La  1.5  4.5   1.9 2.5  2.5 1.4  2.1 1.0 1.9 1.5 

Ce  5.5  17   5.2 6.9  6.2 4.0  5.2 3.8 5.8 3.9 

Pr  0.73  1.7   0.52 0.70  0.65 0.40  0.70 0.44 0.67 0.53 
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Nd  1.8  3.4   0.97 1.3  1.2 0.85  1.6 0.86 1.1 1.2 

Sm  0.55  0.88   0.26 0.34  0.29 0.31  0.34 0.16 0.19 0.23 

Eu  0.03  0.02   0.02 0.02  0.02 0.02  0.05 0.02 0.01 0.02 

Gd  0.32  0.47   0.12 0.14  0.12 0.16  0.13 0.06 0.09 0.15 

Tb  0.09  0.08   0.04 0.04  0.03 0.05  0.04 0.02 0.02 0.02 

Dy  0.60  0.56   0.27 0.21  0.21 0.34  0.22 0.06 0.10 0.15 

Ho  0.11  0.11   0.05 0.04  0.04 0.06  0.05 0.02 0.02 0.03 

Er  0.36  0.39   0.21 0.15  0.16 0.25  0.12 0.03 0.10 0.09 

Tm  0.08  0.09   0.07 0.05  0.05 0.08  0.05 0.02 0.04 0.04 

Yb  0.95  1.2   0.95 0.59  0.69 0.98  0.58 0.13 0.55 0.59 

Lu  0.14  0.17   0.15 0.09  0.11 0.16  0.09 0.02 0.07 0.06 

Nb/Ta  2.62  1.42   0.85 1.52  1.37 1.53  1.08 1.04 1.10 1.01 

Zr/Hf  4.41  5.73   5.97 7.70  5.64 6.76  3.54 6.12 3.63 3.63 

Rb/Sr  24.11  13.84   352.73 314.60  313.42 585.07  314.42 406.42 137.17 389.96 

Total REE  12.76  30.06   10.72 13.01  12.24 9.07  11.26 6.67 10.68 8.61 

LREE/HREE  3.80  8.90   4.77 8.96  7.66 3.36  7.92 17.38 9.71 6.52 

δEu  0.06  0.03   0.09 0.07  0.08 0.07  0.21 0.16 0.07 0.12 

Note: Major element of the samples with* are cited from Zhu et al., 1993; FeOt = FeO+Fe2O3*0.9 
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Appendix table 24. Representative electron–microprobe results of feldspars and topaz in the Xianghualing No. 431 dike 

Rock type Ongonite    Topazite 

Samples 
K–feldspar  Albite  Topaz (matrix)  Topaz 

Phenocryst Phenocryst  Phenocryst Matrix  Columnar Acicular   Matrix Phenocryst 

SiO2 (wt. %) 62.80 63.55  69.08 68.79  31.47 31.38  32.30 32.40 

TiO2 – –  – –  – –  – 0.01 

Al2O3 18.40 18.38  20.51 20.17  57.76 56.30  55.92 55.50 

MgO 0.02 –  – –  – 0.03  – – 

CaO – 0.00  0.13 0.01       

MnO 0.02 0.04  0.04 –  – 0.02  – 0.02 

FeO – –  0.04 0.03  – 0.11  – 0.03 

Na2O 0.29 0.30  10.72 10.82       

K2O 17.42 16.32  0.16 0.20  – 0.02  0.029 0.04 

F       19.91 20.17  20.42 20.23 

F=O       8.36 8.47  8.58 8.50 

Total 98.94 98.60  100.68 100.01  100.76 99.55  100.07 99.76 

            

Si (apfu)       0.948 0.963  0.987 0.994 

Al       2.052 2.037  2.013 2.006 

F       1.898 1.958  1.973 1.963 

An 0.00 0.01  0.64 0.04       

Or 97.57 97.24  0.99 1.21       

Ab 2.43 2.75  98.37 98.75       

Note: –: Below detection limits; structural formulae of topaz were calculated on the basis of (Al+ Si= 3).  
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Appendix table 25. Representative electron–microprobe results of micas in the Xianghualing No. 431 dike 

Rock type  Ongonite I   Ongonite II   Topazite  

Samples 1 2 3 4 5 6 7 8 9 

SiO2 (wt. %) 42.51 42.76 42.06 52.62 52.83 52.55 52.08 53.35 49.35 

TiO2 0.08 0.12 0.15 0.04 0.01 0.07 – 0.03 – 

Al2O3 21.97 21.81 22.16 22.51 20.59 19.79 19.99 19.54 20.61 

FeO 13.32 14.16 15.66 5.34 5.70 4.34 7.71 7.05 9.19 

MnO 0.68 0.62 0.83 1.10 0.88 2.00 1.69 1.37 1.74 

MgO 0.12 0.05 0.09 – 0.07 0.14 0.09 0.10 0.05 

CaO 0.01 0.01 0.04 – – – – 0.02 0.01 

Na2O 0.32 0.40 0.25 0.27 0.11 0.26 0.15 0.17 0.09 

K2O 10.00 10.09 9.28 10.82 9.22 11.03 10.41 9.67 10.28 

Rb2O 0.91 0.85 0.81 – – 1.42 – – – 

Cs2O 0.04 0.02 0.04 – – 0.04 0.02 – 0.01 

F 6.35 7.85 6.14 8.58 8.36 8.45 8.04 8.28 7.92 

F= O 2.67 3.31 2.58 3.61 3.52 3.56 3.39 3.49 3.33 

Li2O* 2.65 2.72 2.52 2.60 2.53 2.56 2.43 2.50 2.39 

H2O* 1.03 0.35 1.15 0.37 0.36 0.32 0.53 0.43 0.49 

Total 97.30 98.48 98.58 100.63 97.13 99.40 99.75 99.02 98.80 

Si 6.311 6.302 6.211 7.107 7.320 7.288 7.197 7.341 6.967 

Al IV 1.689 1.698 1.789 0.893 0.680 0.712 0.803 0.659 1.033 

Al VI 2.155 2.092 2.068 2.692 2.684 2.524 2.454 2.511 2.396 

Ti 0.009 0.013 0.016 0.004 0.001 0.007 0.000 0.003 0.000 
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Fe 1.654 1.745 1.934 0.604 0.660 0.503 0.891 0.812 1.085 

Mn 0.085 0.077 0.103 0.126 0.103 0.235 0.198 0.159 0.209 

Mg 0.026 0.010 0.020 0.000 0.015 0.029 0.019 0.021 0.009 

Li* 1.581 1.612 1.497 1.410 1.408 1.426 1.350 1.385 1.356 

Sum Oct 5.509 5.549 5.638 4.835 4.871 4.724 4.911 4.891 5.056 

          

Ca 0.002 0.001 0.006 0.000 0.000 0.000 0.000 0.002 0.002 

Na 0.093 0.114 0.071 0.070 0.031 0.070 0.040 0.045 0.025 

K 1.893 1.897 1.747 1.864 1.629 1.951 1.836 1.696 1.852 

Rb 0.087 0.080 0.077 0.000 0.000 0.126 0.000 0.000 0.000 

Cs 0.002 0.001 0.002 0.000 0.000 0.003 0.001 0.000 0.001 

Sum Int 2.078 2.094 1.903 1.934 1.660 2.150 1.877 1.744 1.879 

          

OH* 1.018 0.340 1.135 0.335 0.337 0.292 0.485 0.396 0.466 

F 2.982 3.660 2.865 3.665 3.663 3.708 3.515 3.604 3.534 

          

Al total 3.844 3.790 3.857 3.585 3.364 3.236 3.256 3.170 3.429 

Fe/(Fe+Mg) 0.985 0.994 0.990 1.000 0.978 0.946 0.980 0.975 0.991 

Note: –: Below detection limits. Structural formula calculated based on O= 23. *: LiO2 and H2O calculation of Fe-rich mica (ongonite 

I) and Fe-poor mica (ongonite II and topazite) are after Tindle and Webb (1990) and Monier and Robert (1986), respectively. 
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Appendix table 26. Representative compositions of columbite-group minerals and tapiolite in the Xianghualing No. 431 dike 

Rock type Ongonite I   

Samples 
Columbite–group minerals   Tapiolite  

1 2 Range 3 4 Range 5 6 Range  7 8 Range  

WO3 (wt.%) 0.36 0.48 0.00–2.33 1.58 1.73 1.18–19.83 10.21 3.62 0.70–5.68  0.91 0.80 0.00–1.24 

Nb2O5 62.54 67.64 38.40–74.55 28.59 35.02 20.73–45.93 23.34 25.09 22.83–28.05  5.54 8.42 4.82–12.62 

Ta2O5 16.70 10.51 5.38–39.89 51.04 45.89 32.48–54.14 48.53 51.94 48.53–55.32  79.79 73.65 67.93–79.79 

TiO2 1.74 0.48 0.23–3.34 1.09 0.80 0.32–2.89 1.04 0.48 0.48–2.04  0.74 2.31 0.40–2.32 

SnO2 0.07 0.01 0.00–0.15 0.01 0.01 0.00–0.96 0.16 0.19 0.07–0.20  0.13 0.17 0.05–0.23 

Sc2O3 0.67 0.16 0.12–2.27 0.59 0.09 0.01–0.80 – 0.29 0.00–0.29  – – 0.00–0.20 

MnO 11.13 13.13 8.09–14.55 5.74 4.77 3.01–10.67 3.72 3.99 3.28–7.99  0.51 0.55 0.41–0.59 

FeO 5.80 8.37 6.43–10.87  12.11 12.67 6.57–15.58 13.36 14.83 11.16–14.83  14.02 14.18 13.83–16.48 

Total 99.01 100.78  100.74 100.97  100.36 100.43   101.63 100.08  

W 0.006 0.007  0.029 0.030  0.191 0.067   0.019 0.016  

Nb 1.694 1.781  0.905 1.078  0.760 0.815   0.202 0.300  

Ta 0.272 0.166  0.973 0.850  0.950 1.015   1.746 1.578  

Ti 0.078 0.021  0.057 0.041  0.056 0.026   0.044 0.137  

Sn 0.002 0.000  0.000 0.000  0.005 0.005   0.004 0.005  

Sc 0.035 0.008  0.036 0.006  0.000 0.018   0.000 0.000  

Mn 0.565 0.648  0.341 0.275  0.227 0.242   0.035 0.037  

Fe 0.291 0.408  0.710 0.722  0.804 0.891   0.943 0.934  

              

Mn/(Fe+Mn) 0.66 0.61 0.46–0.70 0.32 0.28 0.17–0.62 0.22 0.21 0.20–0.42  0.04 0.04 0.03–0.04 

Ta/(Nb+Ta) 0.14 0.09 0.04–0.38 0.52 0.44 0.30–0.58 0.56 0.55 0.52–0.58  0.90 0.84 0.76–0.90 



Appendix tables  

269 

 

Appendix table 26. Continued 

Rock type Ongonite II   Topazite 

Samples Columbite-group minerals   Columbite-group minerals 

 9 10 11 12 Range  13 14 15 Range 

WO3 (wt.%) 1.44 0.09 8.82 4.05 0.00–14.34  4.67 2.02 13.07 1.13–17.46 

Nb2O5 65.41 41.93 32.55 47.82 28.20–65.49  37.96 40.38 33.89 33.89–44.83 

Ta2O5 10.19 38.11 35.46 25.32 9.97–38.51  35.68 34.08 31.03 24.22–37.47 

TiO2 1.19 1.56 3.85 3.20 0.51–4.14  3.99 3.13 3.68 1.54–5.09 

SnO2 0.01 0.29 0.67 0.08 0.00–1.24  0.87 0.48 1.32 0.09–11.72 

Sc2O3 0.27 1.24 1.14 0.82 0.22–1.26  0.68 1.26 1.07 0.30–2.56 

MnO 12.00 15.44 16.53 18.02 10.95–18.85  15.97 16.76 14.45 13.23–17.48 

FeO 9.62 1.38 0.96 1.39 0.67–9.62  0.49 1.33 1.93 0.40–6.51 

Total 100.12 100.03 99.97 100.68   100.30 99.43 100.44  

W 0.022 0.001 0.152 0.065   0.079 0.034 0.222  

Nb 1.734 1.239 0.977 1.340   1.116 1.185 1.006  

Ta 0.163 0.677 0.640 0.427   0.631 0.602 0.554  

Ti 0.053 0.077 0.192 0.149   0.195 0.153 0.182  

Sn 0.000 0.008 0.018 0.002   0.023 0.012 0.034  

Sc 0.014 0.071 0.066 0.044   0.038 0.071 0.061  

Mn 0.596 0.855 0.930 0.946   0.879 0.922 0.804  

Fe 0.472 0.075 0.053 0.072   0.027 0.072 0.106  

           

Mn/(Fe+Mn) 0.56 0.92 0.95 0.93 0.55–0.96  0.97 0.93 0.88 0.68–0.98 

Ta/(Nb+Ta) 0.09 0.35 0.40 0.24 0.09–0.41  0.36 0.34 0.36 0.25–0.39 

 

Note: –: Below detection limits. 1, 2 are the representative results of the columbite-

(Mn) core; 3, 4 are the representative results of the columbite-(Fe) or tantalite-(Fe) 

rim; 5, 6 are the representative results of the tantalite-(Fe) associated with tapiolite.  
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Appendix table 27 Representative electron-microprobe results of microlite 

in Xianghualing No. 431 dike 

Rock type  Ongonite I   Ongonite II   Topazite  

Samples 1 2 3 4 5 6 7 8 9 

Nb2O5 (wt.%) 10.41 16.21 3.93 5.64 7.63 7.25 7.38 7.62 13.06 

Ta2O5 62.25 53.14 73.30 66.81 63.23 57.80 60.48 59.34 56.06 

TiO2 0.73 0.61 0.27 1.26 1.33 1.18 1.07 1.62 3.45 

Na2O 7.70 9.22 8.50 0.20 0.28 0.11 7.41 7.62 13.06 

CaO 6.23 5.28 5.62 3.28 2.18 1.54 3.50 3.96 3.22 

MnO – – 0.01 0.20 0.57 0.38 0.18 0.13 0.46 

FeO 0.03 0.09 0.05 0.25 0.38 0.81 0.23 0.41 0.09 

UO2 6.97 6.91 4.26 12.71 13.61 13.22 12.48 12.50 17.46 

PbO 0.39 0.48 0.26 0.33 0.66 6.56 0.39 0.38 0.56 

WO3 – 1.43 0.30 0.75 1.24 1.62 1.09 0.65 0.73 

SnO2 0.26 0.18 0.15 0.32 0.25 0.34 0.33 0.28 0.34 

Sc2O3 1.09 0.96 1.09 1.25 0.91 1.03 1.01 1.06 0.50 

F 3.15 3.35 3.96 2.70 1.81 1.01 2.24 2.40 1.50 

F=O 1.33 1.41 1.67 1.14 0.76 0.42 0.94 1.01 0.63 

Total 97.89 96.43 100.02 94.55 93.31 92.42 96.84 95.26 97.55 

B site          

Nb 0.424 0.648 0.162 0.233 0.314 0.323 0.320 0.329 0.493 

Ta 1.526 1.279 1.813 1.662 1.566 1.548 1.576 1.539 1.274 

W 0.000 0.033 0.007 0.018 0.029 0.041 0.027 0.016 0.016 

Ti 0.050 0.041 0.018 0.087 0.091 0.087 0.077 0.116 0.217 

A site          

Na 1.346 1.581 1.498 0.036 0.049 0.021 1.376 1.409 2.116 

Ca 0.602 0.501 0.547 0.322 0.212 0.163 0.359 0.404 0.288 

U 0.140 0.136 0.086 0.259 0.276 0.290 0.266 0.265 0.325 

Pb 0.010 0.011 0.006 0.008 0.016 0.174 0.010 0.010 0.013 

Mn 0.000 0.000 0.000 0.005 0.015 0.010 0.005 0.003 0.011 

Fe 0.003 0.007 0.004 0.019 0.029 0.067 0.019 0.033 0.007 

Sc 0.086 0.074 0.086 0.099 0.072 0.088 0.084 0.088 0.036 

Sn 0.009 0.006 0.006 0.012 0.009 0.014 0.012 0.011 0.011 

          

F 0.897 0.937 1.140 0.781 0.521 0.314 0.679 0.724 0.395 

Note: –: Below detection limits. Structural formulae based on Nb+Ta+W+Ti=2. 
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Appendix table 28 Representative electron-microprobe results of cassiterites in the Xianghualing No. 431 dike 

Rock type Ongonite II  Topazite 

Samples 

Cassiterite  Cassiterite I  Cassiterite II 

1 2 Average SD  3 4 Average SD  5 6 Average SD 

  n=20     n=41     n=32  

WO3 (wt.%) 0.83 0.11 0.22 0.39  – 1.82 0.88 1.04  0.18 0.04 0.21 0.47 

Nb2O5 0.37 0.04 0.14 0.18  0.20 2.63 1.26 1.08  0.07 0.01 0.11 0.18 

Ta2O5 0.04 – 0.34 0.48  2.33 5.83 3.04 1.75  0.51 0.03 0.17 0.30 

TiO2 0.19 – 0.22 0.36  0.18 0.62 0.31 0.36  0.09 – 0.16 0.28 

SnO2 98.35 99.73 98.32 1.42  97.44 87.37 92.42 4.16  98.12 99.23 98.13 1.24 

Sc2O3 – – 0.01 0.02  – 0.08 0.03 0.04  0.02 – 0.01 0.03 

MnO 0.09 0.01 0.03 0.04  0.04 0.70 0.24 0.29  – – 0.05 0.08 

FeO 0.38 0.08 0.20 0.15  0.18 1.87 1.42 1.01  0.11 0.05 0.22 0.26 

Total 100.24 99.97 99.48   100.38 100.93 99.60   99.09 99.37 99.07  

W 0.005 0.001 0.001   0.000 0.012 0.006   0.001 0.000 0.001  

Nb 0.002 0.000 0.001   0.001 0.015 0.007   0.000 0.000 0.001  

Ta 0.000 0.000 0.001   0.008 0.020 0.011   0.002 0.000 0.001  

Ti 0.004 0.000 0.004   0.003 0.012 0.006   0.002 0.000 0.003  

Sn 0.981 0.998 0.987   0.973 0.877 0.934   0.990 0.999 0.990  

Sc 0.000 0.000 0.000   0.000 0.001 0.000   0.000 0.000 0.000  

Mn 0.002 0.000 0.001   0.001 0.015 0.005   0.000 0.000 0.001  

Fe 0.004 0.001 0.002    0.002 0.017 0.013    0.001 0.000 0.002  

Note: –: Below detection limits. The number of cations is calculated on the basis of 2 atoms of oxygen.   
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Appendix table 29 Summary of distribution of ore minerals in different rock types in the Xianghualing No. 431 dike 

 Sample No. 

Columbite- 

group 

minerals 

Tapiolite Microlite Cassiterite 

Ongonite I 

ZK840–11 + + + + + + + – 

ZK840–12 + + + + + + + – 

ZK840–14 + + – + – 

ZK840–15 + + – – – 

ZK840–16 + + + – – – 

ZK840–20 + + – – – 

      

Ongonite II 

XXL–33 + + – + + + 

XXL–34 + + – – + 

XHL–310 + – – + 

XHL–73 + – – – 

      

Topazite 

XXL–08 + – + + + 

XXL–10 + + – + + + + 

XXL–11 + – – + + + 

XXL–12 + – – + + + 

Note: +++: most frequent; ++: more abundant; +: relatively abundant;–: rare or absent.
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Fangfang HUANG 
 
 

Contribution de la pétrologie expérimentale sur les processus de formation 
de roches et de minéralisation de granites du Jurassique en Chine du Sud 

 

En tant que laboratoire naturel, les énormes quantités de granites mésozoïques du sud de la Chine fournissent une 

occasion unique de comprendre la formation et l'évolution de la croûte mésozoïque et de guider les efforts d'exploration 

minière dans cette région. Quelles sont les conditions de mise en place de ces granites mésozoïques en Chine du Sud ? 

Quelle est la relation entre les conditions de mise en place et la minéralisation associée à ces granites mésozoïques? 

Nous avons établi expérimentalement les relations de phase du granite Jurassique de Qitianling en Chine du Sud. 

Trois échantillons représentatifs de granites métalumineux contenant des amphiboles ont été choisis pour définir les 

conditions de cristallisation de ce pluton. Des expériences de cristallisation ont été réalisées à 100-700 MPa, mais 

principalement à 200 MPa ou 300 MPa, à une fO2 de ~ NNO-1,3 (1,3 log sous le tampon Ni-NiO) ou ~ NNO + 2,4, à 

660 ° C à 900 ° C, et à des teneurs variables en eau (~ 3-8% en poids). Le champ de stabilité des amphiboles et les données 

de barométrie montrent tous deux que la pression de mise en place du magma se situait autour de 300-350 MPa. Les 

rapports Fe / Mg amphiboles et biotites suggèrent en outre que la fO2 magmatique se situait autour de NNO-1 ± 0,5 près 

du solidus, alors que les oxydes de Fe-Ti enregistrent une augmentation de fO2 jusqu’à NNO + 1 en conditions sub-

solidus. La cristallisation de l'amphibole est limitée aux conditions proches de la saturation en H2O, nécessitant au moins 

5,5% en poids de H2O dissout à 200 MPa, ou 6 à 8% en poids à> 300 MPa. La présence d'amphibole dans des magmas 

siliceux métalumineux riches en K2O indique donc des teneurs en eau significativement supérieures à la valeur canonique 

de 4% en poids. Les compositions de liquides expérimentaux obtenus à 200-300 MPa reproduisent la tendance 

géochimique définie par le pluton, ce qui suggère qu'une différenciation dans le réservoir de la croûte supérieure a pu se 

produire. L'ensemble de ces résultats indique que la fugacité relativement faible en oxygène, la température élevée du 

magma lors de sa mise en place et sa richesse en eau constituent un environnement favorable à la concentration d'éléments 

minéralisés au stade magmatique précoce.  

Mots clés: Chine du Sud, granite Jurassique, conditions de mise en place, équilibre de phase, amphibole, oxybaromètre 

Contribution of experimental petrology on the rock-forming  
and mineralization processes of Jurassic granites in South China 

 
As a natural laboratory, the huge amounts of Mesozoic granite distributing in South China provided a unique 

opportunity to unravel the Mesozoic crust formation and evolution in southern China as well as for guiding mining 

exploration efforts in this area. What are the emplacement conditions of those Mesozoic granite in South China? What 

are the relationship between the emplacement conditions and the mineralization among those Mesozoic granites? 

We have experimentally established the phase relationships for the tin-bearing Jurassic Qitianling granite in South 

China. Three representative amphibole-bearing, metaluminous granitic samples were chosen for constraining 

crystallization conditions of the Qitianling pluton. Crystallization experiments were performed at 100-700 MPa, albeit 

mainly at 200 MPa or 300 MPa, at an fO2 of ~NNO-1.3 (1.3 log unit below the Ni-NiO buffer) or ~NNO+2.4, at 660°C 

to 900°C, and at variable melt water contents (~3-8 wt%). Amphibole stability field and barometry both show that the 

pressure of magma emplacement was around 300-350 MPa. Amphibole and biotite Fe/Mg ratios further suggest that 

magmatic fO2 was around NNO-1±0.5 near solidus, while Fe-Ti oxides record an fO2 increase up to NNO+1 below 

solidus. Amphibole crystallization is restricted to near H2O-saturation conditions, requiring at least 5.5 wt% H2Omelt at 

200 MPa, or 6-8 wt % at ≥ 300 MPa. Amphibole occurrence in K2O-rich metaluminous silicic magmas thus indicates 

water contents significantly higher than the canonical value of 4 wt%. The experimental liquid line of descent obtained 

at 200-300 MPa mimic the geochemical trend expressed by the pluton suggesting that fractionation in the upper crustal 

reservoir could happen. We deduced that the relatively low oxygen fugacity, high liquidus temperature and melt water 

rich condition may be an enabling environment for concentrating the ore elements in the early magmatic stage.  

Key words: South China, Jurassic granite, emplacement conditions, phase equilibrium, amphibole, oxybarometer 
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