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Introduction

Uncovering patterns in complex and disordered systems has always been a
major challenge for humanity. Such activity can be seen as mere whim and
curiosity, related to our constant internal questioning about all that surrounds
us. However, the adequate study of complexity, and its potential underlying
organisation/structure, is also a necessity for humans as individuals, and for
society. The fact that it is not always possible to understand what happens
in our environment, leads to focus on the study of all what we cannot con-
trol. Since then, we see ourselves as explorers in search of an explanation for
everything that merges in our circumstance. Such understanding gives us the
freedom to manage our lives within an environment that we now could at least
partly predict.

central 
sulcus

frontal
lobe

optic
chasm

pons

skull

cerebellum
sylvian
fissure

spinal
cord

Figure 0.1: An illustrative picture of a section of the Sistine Chapel’s Ceiling
painted by Michelangelo, which apparently hiddes the structure of a brain in
the god’s cloud. The brain was found to be associated to intelligence, and
intelligence creates the universe through the hand of god. At this point in
creation, the hand of god touches the hand of the man, transmitting then his
cognitive capabilities to humans.

Due to our aspirations to model and predict everything, we also include
elements that make up our body in the path of knowledge. Among these
elements, we highlight the brain as one of the most fascinating organic machine
in our body composition, see Fig. 0.1. The human brain contains around 100
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Introduction 2

billion neurons, which interact with each other to analyse data coming from
external stimulus. Its 100 trillion set of synaptic interconnections makes the
processing of large amounts of information a task that turns out to be fast
and well performed [1]. Therefore, it is natural that at some point we try to
construct artificial models that can mimic the brain’s capabilities to process
data. Nowadays, artificial neural networks do not consist solely of schemes
that attempt to reconstruct the anatomy of the brain, they are also used to
solve highly complex tasks which often cannot be solved in other known ways
(such as digital computing machine). Such tasks can be of different kinds, but
the most common and challenging are features classification and prediction of
events.

Despite all the sophisticated research about brains (not only human) that
has been done, its global functioning remains an enigma for the scientific com-
munity. This has led to the creation of many different theoretical models
of networks, which solve different problems as the brain is suspected to do.
The most important branches containing these models are feedforward and
recurrent artificial neural networks [2, 3]. As for their biological counterparts,
artificial networks might be trained if we intent to use them to help solving
problems. Generally, networks are trained by adjusting their synaptic connec-
tions according to a learning rule that can be either supervised by a teacher,
or unsupervised. In literature, there exist several methods to train networks
depending on their architecture, such as gradient descent, backpropagation,
etc [2].

Some recurrent models can be compared with nervous systems’ networks of
advanced biological species [4]. In fact, recurrent networks can be thought as
models where information is recycled, transformed and reused. That is to say,
the recurrent property of the network yields circulation of information, which
causes the generation of internal dynamics. Consequently, recurrent neural
networks are dynamical systems, and they can be studied under the principles
of dynamical systems theory [2]. Within this framework, we begin with a de-
scription of the tools that are typically used in the study of dynamical systems
in general. The first question to ask ourselves is how we can mathematically
model a neural network, if it can either be described with iterative maps or
differential equations. Then we have to find out if we can find an analytical
solution to these equations. If not, we must introduce qualitative methods
to analyse their properties, and understand what behavior they may posses
according to their architecture.

In our work, we analyse the properties of recurrent networks framed in the
concept of Reservoir Computing. This concept first appeared in the early 2000s
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with the independent works of H. Jaeger [5] and W. Maass [6], providing an
universal framework to achieve high performance computing by using recurrent
neural networks with a novel training paradigm. The exciting aspects about
this innovative scheme is that it can be easily experimentally implemented in
analog hardware, without the need of an excessive amount of resources [7, 8].
This situation places us in the advantage of being able to create replicas of
certain brain functions in physical systems, which up to now essentially existed
based on numerical algorithms executed on conventional digital computers.

Thesis plan

This PhD thesis is divided into four chapters, involving all work performed
within the Optics Department of the FEMTO-ST Institute.

Chapter one provides most of the content related to dynamical systems the-
ory, necessary for the understanding of the manuscript. We develop a concep-
tual toolbox to analyse all required types of dynamical systems, with a special
focus on the analysis of nonlinear phenomena. We introduce chaos theory and
show the most representative examples that characterize it. Afterwards, a set
of complexity indices and qualitative methods are listed in order to investi-
gate hidden properties of nonlinear systems without analytic solutions. As the
final part, artificial neural network theory is introduced. Here, we can find de-
scription of biological and artificial neurons, types of artificial networks in the
literature, and the introduction of recurrent networks involved in the Reservoir
Computing paradigm, which have been exploited in our work from the rather
unusual viewpoint of nonlinear dynamics.

In Chapter two, we investigate the procedure that random recurrent neural
networks utilize to predict chaotic time series. We describe how networks in
steady state employ a version of classical state-space reconstruction techniques
well known for chaotic signals. We use the knowledge provided by prediction
theory to explain how recurrent networks harness state-space reconstruction
to solve prediction. The use of the concept of nearest neighbours proofs to be
critical for the understanding and realizability of long-term prediction. This is
followed by an explanation of the learning role on the output weights, which
actually appears to exploit state-space reconstruction capability in the net-
work. This capability allows the network to extract at the output the most
accurate prediction from selected internal network states. Finally, inspired by
this finding, we present a modified version of the classical random recurrent
neural network, in order to build a predictor capable to realize the sufficient
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dimensions to fully reconstruct state-spaces of chaotic systems. As a plus, an
application of this last scheme is implemented as a control system to stabilize
the noisy firing behavior in the FitzHugh-Nagumo neuronal model.

Chapter three contains a study of dynamical complexity in neural networks
beyond their fixed point. That is to say, in the previous chapter we were con-
sidering networks in steady state. Now, instead of this, let us imagine that
our networks can generate periodic, or even multi-periodic dynamics as well.
Then, the main aim in this chapter is to investigate how prediction can be
solved with this variety of dynamics used as background. The dynamical com-
plexity is measured by means of the spatial synchronization between neurons,
memory capacity and maximal Lyapunov exponent of the network.

Chapter four introduces the requirements to implement a recurrent network
in an real world analog experimental setup. This network differs from the
previous ones in its architecture. We use a recurrent delay network for predic-
tion, inspired by a well-known delay system consisting on a nonlinear optical
ring cavity. The proposed experimental system is studied in a nonlinear dy-
namics framework. Next, we use this delay dynamical system in steady state
to implement a neuromorphic processor dedicated to prediction task. Finally,
we analytically illustrate how the delay system can be compared to a spatial
neural network for prediction.

This manuscript finally provides conclusions and perspectives on the pre-
sented research. Our findings will be summarized to suggest new orientations
in the analysis of neural networks based on dynamical systems theory, as well
as new generation of photonic neuromorphic components.



Chapter 1

Fundamental concepts

1.1 Dynamical Systems

Dynamical systems theory comprises the study and analysis of systems with
temporal evolution. The formal study of dynamical models starts with math-
ematical methods also found in Newtonian mechanics, such as maps and dif-
ferential equations. Such methods form a toolbox to model the behavior,
interaction and changes of the systems under study. As an illustrative ex-
ample, let us introduce the event of a ball moving on a surface with some
friction. If we know all variables involved in this movement (gravitational ac-
celeration, friction coefficient, mass, etc), it is possible to completely describe
their trajectories and estimate the final location of the ball. It seems that we
can predict what could happen to the ball, depending on our knowledge of
its variables. Such cases, where we know all variables and their interaction
rules that determine the trajectory, are known as deterministic models. This
determinism is characterized by the possibility to determine future states of
a given trajectory from the exact knowledge of the present state, through a
prescribed causal rule.

However, dynamical systems theory is not exclusively developed to model
classical physical systems, such as the example of the ball. It also includes the
study of populations dynamics, where the constitution of populations can be
investigated through the evolution of density and age. Such populations can be
seen as dynamical variables since they change in time. The temporal evolution
of many of these models can be defined in a discrete-time representation, where
their dynamical variables change at discrete instances [9, 10, 11].

1.1.1 Discrete and continuous time systems

A discrete-time dynamical system is defined mathematically with difference
equations or iterative maps, in which the temporal variable n takes values
from the set of natural numbers, n ∈ N,

xn+1 = M(xn). (1.1)

5
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The variable xn provides information about the present state of the system,
xn+1 represents the future state to be determined through the causal rule M.

As previously commented, a discrete-time representation allows us to de-
scribe different phenomena that can be similar to population dynamics. In
this example, the temporal evolution of the population density is described
in generations, and the changes between past and present generations should
be represented by the discrete variables xn−1 and xn, respectively. Hence, the
growth of the population under study could be assumed to always increase in
time. Then the function M is a constant value in Eq. (1.1). However, the
population density growth could also perform a more complex evolution path
than just monotonous increments. One of the ways to mathematically describe
non-monotonous density growth phenomena is via the logistic map [9],

xn+1 = rxn(1− xn), (1.2)

where r defines de population growth rate. In this case, M is a polynomial
function which provides a hypothetical variant feature in the population growth
model.

As population growth can be investigated as well via a continuous repro-
duction activity in some species, continuous changes in the population density
may be expected. The logistic equation therefore can be generalized into a
continuous-time representation,

dx

dt
= rx(1− x). (1.3)

This representation serves to model the evolution of variables which have in-
finitesimal changes in time. Then, the temporal variable t takes values from
the set of real numbers, t ∈ R. In general, continuous-time dynamical systems
are described by differential equations,

dx

dt
= F(x), (1.4)

where F has the role of the function M in Eq. (1.1).

In both cases, all dynamical variables can interact with each other through
constant or polynomial causal rules M and F. These prescriptions are parts
of more general classes of functions defined as linear and nonlinear functions.
The presence of linear or nonlinear components categorize all dynamical models
into linear or nonlinear systems.
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Figure 1.1: Bifurcation diagram of the logistic map.

1.1.2 Linear and nonlinear systems

Let us at first define a generic function f as the equivalent of M in discrete-
time and F in continuous-time representations. If we define linear systems as
the ones which satisfy a superposition principle with respect to the operation
of addition, then they can be characterized as linear superponable systems [12].
Hence, given a function f in a system of equations, the additivity property has
to be fulfilled:

f(x+ y) = f(x) + f(y).

Thus, linear systems are defined by equations where there are not multiplica-
tion between variables, i.e. their dynamical variables appear to the first power
only [10]. On the other hand, nonlinear systems can be composed by variables
which appear to a power different to one. Multiplication between different
variables can also be expected.

The presence of nonlinear components in a dynamical system can lead to
the existence of multiple classes of solutions for maps or differential equations.
For example, in the logistic map, Eq. (1.2), those different classes of solutions
can be found under the variation of parameter r.
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Figure 1.2: Solutions of the logistic map for (a) r = 0.5, (b) r = 1, (c) r = 2.5,
and (d) r = 4. One can also notice two temporal windows, at least in (a),
(b), and (c): a transient part during which the trajectory evolves from an
initial condition, and an asymptotic part where such a transient is not visible
anymore, since the system has reached some asymptotic stable state (steady,
periodic, or chaotic).

1.1.3 Bifurcation diagram

Qualitative changes in dynamical systems which are the consequence of the
variation of parameters on which they depend on, are defined as bifurcations.
Then, in our population growth example Eq. (1.2), the graphical representation
of all solutions xn as functions of r is known as bifurcation diagram. Figure 1.1
shows the bifurcation diagram of the logistic map, where one can find fixed
point, periodic and chaotic solutions of its difference equation. Each solution
is described in the following:

Stationary solutions consist in time series that do not evolve in time.
These trajectories converge asymptotically to a fixed point after an initial
transient generated by the introduction of initial conditions in dissipative sys-
tems, see Fig. 1.2(a). These kind of solutions maintain such state until they
are perturbed by an external force, or they are modified.

Periodic solutions correspond to sequences which converge to a set of
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values that repeats cyclically, see Fig. 1.2(b). As an important remark, if
solutions come from a dissipative dynamical model, they are known as limit
cycles. In such models, the non-linearity appears in the dissipation coefficient
of the equation, which is essential to maintain the amplitude of the periodic
solution [13]. Additionally, we can also find periodic solutions with twice the
period of the previous solutions, see Fig. 1.2(c). These kind of bifurcations
can be found in discrete and continuous-time dynamical systems, and they are
known as period doubling bifurcations [9, 10].

Chaotic solutions are aperiodic and a-priori unpredictable solutions, where
the unpredictability is related with the impossibility to determine the system’s
development for all future. An essential property of chaotic systems is the sen-
sitivity to initial conditions, that is related to the exponentially divergent evo-
lution of two trajectories infinitesimally close to each other at the beginning.
Therefore, if the system is chaotic, any arbitrarily small separation between
initial conditions is going to exponentially increase in time. In Fig. 1.2(d), two
chaotic solutions of the same logistic map are shown for two infinitesimally
different initial conditions. As it can be seen, initially both signals maintain
the same evolution, but then at some point they start diverging exponentially.

Despite the fact that chaotic solutions appear in 1-dimensional discrete-time
dynamical system, such as the logistic map, additional conditions are required
for continuous-time systems. In the last case, a minimum of 3 dimensions are
required in a continuous-time nonlinear system to generate chaotic solutions.

1.2 Continuous-time chaotic systems

1.2.1 Lorenz and Rössler chaotic attractors

The Lorenz system (1963) generated the first numerically observed continuous-
time chaotic solutions observed in the history of dynamical systems theory [14,
11]. It emerged from the field of atmospheric sciences, as a 3-dimensional model
of climate fluctuations. The system of equations is the following,

ẋ = a1(y − x),
ẏ = b1x− y − xz,
ż = xy − c1z;

(1.5)

where a1 is the Prandtl number related with the fluid viscosity, b1 is the
Rayleigh number related with the difference of temperature between two sur-
faces, and c1 is a scaling factor. The nonlinearity comes from the multiplication
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Figure 1.3: (a) Lorenz and (b) Rössler chaotic attractors.

between two different variables {xz, xy}. In fact, the solutions to this nonlinear
system were possible to be numerically obtained at a time when the available
computational power was just enough to numerically solve a system of 3 non-
linear differential equations. This was achieved by increasing the number of
bits from 3 to 6 in the numerical simulation, consequently the accuracy of
calculations was increased, and the chaotic solutions appeared. In general, as
continuous-time chaotic oscillators have no analytical solutions, a numerical
approximation is always required to obtain an approximate solution to their
system of equations.

Figure 1.3(a) shows the solutions of two dynamical variables {z, x} from
the Lorenz system, solved by using a Runge-Kutta method of 4th order. The
space where these variables are represented is defined as the phase space. The
phase space (also state space) is the geometric space where the evolution
of the system’s state trajectory is represented, i.e. with all the necessary
dimensions or degree of freedom of the original dynamical system. Each state
is constructed by the contribution of allN independent variables {x(i)}N , which
describe the dynamics of a N -dimensional system. The trajectory (or orbit) in
phase space is in reality a sequence of states {x1,x2, . . . ,xn}, that shows the

dynamics of the system until time step n, with xj = (x
(1)
j , x

(2)
j , . . . , x

(N)
j ). In

the current example, the independent variables are x(1) = x;x(2) = y;x(3) = z,
then the phase space is 3-dimensional, and consequently each state of the
Lorenz attractor is defined by 3 components.

The double-scroll object shown by Fig. 1.3(a) is a 2-dimensional projection of
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a 3-dimensional geometrical object, defined as an attractor. Chaotic attrac-
tors are trajectories formed by states which are being attracted to a specific
region of the phase space where they remain confined to. In other cases, tra-
jectories can also escape from one region of the phase space, indicating the
presence of a repellor [9].

Thirteen years after the disovery of the double-scroll chaotic attractor by
E. Lorenz, Otto Rössler showed that a set of simple mathematical relations
was capable to generate another trajectory also exhibiting a chaotic signature.
This system’s purpose was to model a chemical process, which consists in the
coupling between a linear chemical oscillator and a system exhibiting chemical
hysteresis,

ẋ = −(y + z),
ẏ = x+ a2y,

ż = b2 + xz − c2z;
(1.6)

the variables describing concentration of chemical substances x and y come
from the linear oscillator and z from the hysteretic one. The constants a2, b2,
c2 are effective reaction rates [15, 16]. This new attractor found by Rössler con-
tains just a nonlinear component made from the multiplication of two variables
xz, and it consists in one single-scroll, see Fig. 1.3(b).

Until this point, we have introduced Lorenz and Rössler oscillators as rep-
resentative examples of three dimensional continuous-time chaotic attractors.
However, there are other ways to obtain continuous-time chaotic solutions,
coming from models consisting of one nonlinear ordinary differential equation
(ODE). One of those ways includes the introduction of an explicit temporal
variable to the ODE, such as a time delay with respect to the main tempo-
ral variable t. We define these models as delay differential equations (DDEs),
where a DDE is in fact equivalent to an infinite-dimensional system of differen-
tial equations [17]. The number of solutions to a DDE are in theory infinite due
to the infinite amount of initial conditions in the continuous rank required to
solve the equation. Each initial condition initializes an ODE from the infinite-
dimensional system of equations. Consequently, the introduction of a time
delay in an ODE, resulting in a DDE, thus provides sufficient dimensionality
to allow for the existence of chaotic solutions.

1.2.2 Mackey-Glass system

As an historical remark, DDEs were considerer as simple nonlinear mathemat-
ical models to describe a large class of human diseases and pathologies. For
example, DDEs reproduce the phenomena generated by an abnormal respi-
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Figure 1.4: Mackey-Glass chaotic time series (set around 0 by substracting 1
to the original amplitude) for time delay τm: (a) 8, (b) 17, and (c) 34.

ration process, where the increase of the time delay is associated with high
amplitude oscillations leading to apnea (temporary cessation of breathing).
Such abnormal respiration process can turn chaotic, corresponding to a patho-
logical condition in humans. Another example of DDEs used in physiology
is the Mackey-Glass (MG) system, which attempts to model the density of a
homogeneous population of mature circulating cells. The delay term is associ-
ated to the time-gap between the initiation of blood cell formation in the bone
marrow and the release of mature cells.

The MG system is a first order nonlinear DDE, described as follows [18],

dy

dt
(t) = ϑ

y(t− τm)

1 + [y(t− τm)]ν
− ψy(t), (1.7)

where parameters ϑ, ν, ψ are real numbers, and τm is the time delay. The
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time-discrete version of the MG system is the following [111]:

yn+1 = yn + δ

(
ϑyτm

1 + (yτm)ν
− ψyn

)
, (1.8)

where yτm = y(n − τm/δ), τm = 17, and δ = 1/10 is the stepsize indicating
that the time series is subsampled by 10. Where one increment of the resul-
tant time series correspond to 10 time units of the Mackey-Glass equation.
The other parameters are typically set to ϑ = 0.2, ν = 10, ψ = 0.1. If τm is
increased the system bifurcates, allowing the existence of stable periodic solu-
tions and chaotic behavior. In Fig. 1.4(a,b,c), the increase of the time delay
τm = {8, 17, 34} in Eq. (1.7) results in dynamics evolving from periodic to
chaotic behavior. Chaotic responses are related to high values of time delay
(τm > 15), which can be interpreted as indicators of that the structure under
study is out of control. In our physiological example, this large delay could
lead to problems in the release of mature cells on time, relevant for the case
when they would have to replace defect cells.

Under such circumstances, chaotic solutions seem to describe complex and
irregular behavior in natural oscillators. But, what about some other kind
of oscillators designed by humans? Therefore, we introduce an additional 1-
dimensional system with time delay, belonging to the optics field. Such a
model, introduced in the following section, is capable of generating dynamics
at least as complex as the MG system, i.e. chaotic solutions.

1.2.3 Ikeda system

input

laser
light

nonlinear 
medium

0 l

L

output1

4

2

3

c

Figure 1.5: Scheme of a ring resonator model.

The Ikeda system describes the dynamics of a ring cavity resonator contain-
ing a nonlinear dielectric medium. A continuous-wave beam, coming from a
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laser located at the input, enters at the partially transmitting mirror 1 (with
reflectivity R) and propagates through a nonlinear dielectric medium of length
lc. This medium has a nonlinear refractive index η and absorption coefficient
%. The lightpulses inside this medium have wave number kw. After the di-
electric medium, the light propagates to mirror 2 (with reflectivity R), then it
completes a lossless round-trip in the cavity of length L through reflections on
mirrors 3 and 4 (with 100% reflectivity), see Fig. 1.5.

The optical field at the output is the following [19, 20],

E(t) = A+BE(t− tR)ej[|E(t−tR)|2−φ0], (1.9)

where A = {(1 − R)kwl|η2|(1 − e−%lc)/%}1/2EI is a parameter proportional to
the incident field amplitude, η2 is the quadratic coefficient of the nonlinear
refractive index, φ0 constant offset, and EI is the amplitude of the incident
field. B = Re−%lc(< 1) is a parameter that describes the dissipation in the
cavity, with c as the speed of the light in vacuum. The time delay tR =
lc/c is originated from the finite propagation speed of the light in the cavity.
Equation (1.9) can be written as E(t) = Ω(E(t − tR)), whose time evolution
approximately follows the mapping rule: En+1 = Ω(En). Then, after many
iterations of En+1, it is possible to show that the intensity In = |En|2 obeys
the following 1-dimensional map:

In+1 = A2[1 + 2B cos(In − φ0)] ≡ f(A2; In). (1.10)

We furthermore include information about relaxation time of the nonlinear
medium:

φ(t) = γ

∫ t

−∞
e−γ(t−s)|E(s−tR)|2ds, (1.11)

where γ is the relaxation rate. Afterwards, we isolate the nonlinear phase shift
|E(t− tR)|2, and replace it in Eq. (1.9). For the limit where the dissipation in
the cavity is small, B << 1, we obtain a DDE describing the time evolution
of the relaxation process,

γ−1φ̇(t) = −φ(t) + f(A2;φ(t− tR)). (1.12)

Therefore, combining Eqs. (1.10) and (1.12) we obtain the classical Ikeda DDE
[19],

γ−1φ̇(t) = −φ(t) + A2[1 + 2B cos(φ(t− tR)− φ0)]. (1.13)

Due to the presence of the time delay and the condition tR >> γ−1, the Ikeda
system is capable to generate chaotic solutions and multiple stabilities [19, 20].
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Figure 1.6: Block diagram of a ring resonator model composed by a nonlinear
function, time delay, low-pass filter and feedback gain.

From a different point of view, a similar mathematical equation is found by
combining a nonlinear function, time delay and a filtering block in a feedback
close loop, shown by Fig. 1.6. This scheme attempts to generalize the genera-
tion of chaotic solutions in a simple structure constituted by 4 blocks. At first,
we consider a set of values y(t) passing through a nonlinear function FNL(·),
time delayed by τD and amplified by β. The relation which links y(t) to the
output of the blocks of feedback gain, nonlinearity, and time delay is:

x(t) = βFNL[y(t− τD)]. (1.14)

The outcoming information is filtered by a low-pass filter, which attenuates
high frequencies and lets low frequencies unattenuated. The response time
of the filter is given by τ = 1/2πfc, with fc as the cutoff frequency. The
parameter τ indicates the minimum time that the Ikeda system spends in a
transition after a perturbation is applied.

The effect of the filter can be defined as a convolution between the impulse
response h(t) and the input x(t). The output of the filter is therefore:

y(t) = x(t) ∗ h(t), (1.15)
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Figure 1.7: Ikeda chaotic time series for time delay τD: (a) 8, (b) 20, and (c)
50.

where

y(t) =

∫ ∞
−∞

x(t− θ)h(θ)dθ. (1.16)

In the Fourier space, we represent the temporal variables {x(t), y(t), h(t)} as
frequency variables {X(ω), Y (ω), H(ω)}, with transfer function H(ω) of the
low-pass filter written as follows:

H(ω) =
Y (ω)

X(ω)
=

1

1 + jωτ
. (1.17)

The property of the Fourier transform:

jωY (ω) = FT

[
dy(t)

dt

]
, (1.18)

is used in Eq. (1.17) to obtain the equation of the filter in the frequency domain,

Y (ω) + FT

[
dy

dt
(t)

]
τ = X(ω). (1.19)
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which is represented in the temporal domain as a first order differential equa-
tion:

y(t) + τ
dy(t)

dt
= x(t). (1.20)

As shown in Fig. 1.6, the output y(t) of the filter is connected to the blocks
where the feedback gain, nonlinearity and time-delay τD are applied. Thus, if
FNL(·) = cos(·+ φ0), we substitute Eq. (1.14) in Eq. (1.20), and we obtain,

y(t) + τ
dy(t)

dt
= β cos[y(t− τD) + φ0]. (1.21)

This equation is a modified version of the classical Ikeda system, Eq. (1.13).
Some of the dynamics generated by this equation for the parameters τ =
0.7958, feedback gain β = 2.3 and offset φ0 = −π/2 can be seen in Fig. 1.7.
Here, the time delay τD takes the values {8, 20, 50}, and the corresponding
solutions of the Ikeda equation are shown by Fig. 1.7(a,b,c), respectively. The
solutions for each time delay change from periodic (τD = 8) to chaotic ones
(τD = {20, 50}).

1.3 Complexity measure and time series anal-

ysis

As previously mentioned in Sec. 1.2.1, since chaotic systems have no analytic
solutions, we need to search for methods to approximate their solutions. In
all previous cases, we utilized numerical methods to solve systems of nonlinear
equations. However, there are many cases where we do not have access to
the equations which model the oscillator under study, i.e. the source of these
solutions is unavailable. That is to say, when the only information that we
have about the oscillators is their solutions, we have to search for methods with
which to obtain additional information about their sources. In this section,
we introduce a set of qualitative and quantitative methods to analyse the
dimensionality and complexity of time series coming from nonlinear hidden
sources.

1.3.1 Attractor reconstruction

In practice, it is not always feasible to collect information of all state space
dimensions. For example, in the MG and Ikeda oscillators, one just has access
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to a time series from a single accessible variable, while all others remain hid-
den. Nevertheless, hidden variables are participating in the development of the
global dynamics as well as the accessible variables. In order to approximate
a full state-space representation of the oscillators, we have to embed the 1-
dimensional sequence into a high dimensional space. The condition to embed
in such space is at first to identify the number of dimensions of the original
oscillator, with which we ensure that the embedded time series has the same
dimensionality of the source. One of the most practised methods to embed
1-dimensional information is given by the Takens embedding theorem [21].

Takens embedding theorem

Theorem 1. The time delayed version of one time series suffices to reveal the
structure of an attractor. Let us represent the data in M-dimensional space
by the vector y = [yn, yn−τ0 , . . . , yn−(M−1)τ0 ]

†. Where (·)† stands for matrix
transposition. The pair dimension-delay for the embedding (M, τ0) contributes
to reconstruct the right object in the state space.

The Takens scheme introduces time delay τ0 to the original sequence in order
to create delay coordinates, that span the dimensionality M of the original
oscillator. The time delay is estimated with an autocorrelation analysis (AC)
to the input, where τ0 is the first minimum in the AC function [22],

Ryy(l) = lim
g→∞

1

g

g−1∑
n=0

yny
∗
n−l, (1.22)

with l as the time lag, and g the length of the dataset. The estimation of
the first minimum in the AC function maximizes the possibility to obtain
linearly independent observations from the system, which are related with the
inference of the degrees of freedom behavior of the chaotic original oscillator
[21, 23, 24]. In order to obtain full-spatial representations of the MG and
Ikeda attractors, we reconstruct the state space according to Takens scheme
by finding at first the value of τ0. Figure 1.8(a,b) shows that the absolute
value of the autocorrelation functions for a set of 10000 values from the MG
(τm = 17 in Eq. (1.7)) and 6000 values from the Ikeda (τD = 20 in Eq. (1.20))
systems have their first minima at lags l = ±12 and l = ±11, respectively.

After having identified the embedding delay for each model, the question
about how many embedding dimensions are required to fully reconstruct the
attractor still remains open. The minimum amount of coordinates that are re-
quired to embed the system under study can be estimated by the false nearest
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Figure 1.8: Absolute value of the autocorrelation functions for (a) MG and (b)
Ikeda. False nearest neighbors analysis for (c) MG and (d) Ikeda.

neighbors (FNN) method. This method consists in reconstructing the attrac-
tor’s state space using different dimensionalities, e.g. M1 and (M1 + 1) [25].
If the embedding dimensions, M1 and (M1 + 1), are not sufficient to describe
the full dynamical system’s dimensionality, the projection of any state present
in the M1-space is not going to fall in the neighborhood of its twin in the
(M1 + 1)-space. Then, the state with dimension M1 is a false neighbor of its
pair in the (M1 + 1)-state space. Consequently, it is required to discretely
change M1 until we detect the minimal dimension of the system, where there
are no more false neighbors. One popular method to estimate the dimension-
ality is by the reconstruction of two state-spaces with different dimensions as
it was described above. One then creates grids which define the neighborhood
of each point in the state-space, and compare them according to

Ryn =
‖yn+1 − y′n+1‖
‖yn − y′n‖

, (1.23)

where states yn and y′n, are in M1 and (M1 + 1)-spaces, respectively.
In practice, we increase M1 from one up to the value where no more false
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Figure 1.9: Three dimensional Takens embedding of (a) MG for τm = 17 and
(b) Ikeda for τD = 20 attractors.

neighbors are found. Then, for each pair of (M, τ0), the data yn is embed-
ded and we determine the nearest neighbor to each state. If the ratio of next
‖yn+1 − y′n+1‖ and current ‖yn − y′n‖ states is greater than Ryn , then they
are false neighbors. In the simulation we set Ryn = 5, and then we estimated
the percentage of FNN found per each dimension. The results are shown by
Fig. 1.8(c,d) for 10000 values from the MG (τm = 17 in Eq. (1.7)) and 6000 val-
ues from the Ikeda (τD = 20 in Eq. (1.20)) systems. The minimal dimensions
of these systems are M = 4 and M = 7, respectively. Therefore, we can recon-
struct the attractors by building coordinates with lags l = {±36,±24,±12, 0}
for MG system, and l = {±66,±55, ±44,±33,±22,±11, 0} for Ikeda system.
In Fig. 1.9 we show the 3D projections of the embedded MG and Ikeda attrac-
tors in panel (a) and (b), respectively.

The here presented chaotic attractors are defined in limited regions of their
state spaces, forming well-defined geometrical objects with distinctive shapes.
Nevertheless, if we choose two points from neighbor trajectories in the attrac-
tors, it can be demonstrated that this set of points are going to take very
different paths after some time. Such divergence between points in neighbor
trajectories is quantified through the Lyapunov exponent.

1.3.2 Lyapunov exponent

The Lyapunov exponent λ of a dynamical system quantifies the averaged rate
of exponential divergence (or convergence) between neighbor trajectories. If
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Figure 1.10: Ilustrative example of the divergent evolution of two trajectories
from the same chaotic system in phase space, that were initially infinitesimally
closer to each other.

the system under study is chaotic, then the initial distance dl(0) between
two trajectories {yl,yl′} at time n = 0 will have an exponentially divergent
evolution with final distance dl(k) between the two trajectories {yl+k,yl′+k} at
time n = k, see Fig. 1.10. In fact, there are as many Lyapunov exponents as
dimensions have the system under study. In a chaotic system at time n = 0,
if we define our initial distance dl(0) in a sphere where we can find all initial
states, then at time n = k that distance will belong to an ellipsoid, and it will
be defined by dl(k). So the diameter of this ellipsoid is defined by the most
positive Lyapunov exponent, which is the largest λ.

The value of the largest Lyapunov exponent λmax is estimated by the follow-
ing approach [26, 27]: we reconstruct the state space via Takens embedding
theorem [21], where a reconstructed trajectory will be represented by a set
of S states in total. The next step consists in find the nearest neighbor yl′
for each point yl on the trajectory. It can be done by searching for the point
that minimizes the distance ‖yl − yl′‖ at time n = 0. The largest Lyapunov
exponent estimates the distances between these two points at time n = k,
according to [27]

λmax(k) =
1

k∆n(S − k)

S−k∑
l=1

dl(k)

dl(0)
. (1.24)

Here dl(0) = minyl′
‖yl − yl′‖ is the initial distance between point yl to its

neighbor yl′ , dl(k) = minyl′+k
‖yl+k−yl′+k‖ is the distance from the point yl+k
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to its neighbor point yl′+k after k discrete time steps n. From this analysis,
we can characterize dynamical evolutions by λmax. In table I.I, we give a list
of the dynamics that we can relate to λmax values, starting from fixed point
solutions until noise-like (hyper-chaotic) states.

Table I.I: Largest Lyapunov exponent

Dynamics largest Lyapunov exponent
Fixed point λmax < 0
Limit cycle λmax = 0
Chaos 0 < λmax <∞
Noise λmax →∞

For the MG and Ikeda systems, we estimate λmax for a set of 10000 values
from the MG (τm = 17 in Eq. (1.7)) and 6000 values from the Ikeda (τD = 20
in Eq. (1.20)) systems with (M = 4, τ0 = ±12) and (M = 7, τ0 = ±11),
respectively. The MG system has λmax = 0.0036 and Ikeda λmax = 0.0465.

1.3.3 Mutual information

Mutual information (MI) is a measure of dependency between time series gen-
erated by nonlinear dynamical systems. It quantifies the amount of information
shared by two random variables x, y [28]. It is defined as

MI =
∑
x,y

Ψ(x, y) log
Ψ(x, y)

Ψ(x)Ψ(y)
, (1.25)

where Ψ(x, y) is the joint probability density function of x and y, while Ψ(x),
Ψ(y) are probability density functions of x and y, respectively. In the case
where MI = 0, the random variables x and y are independent, no information
is shared between x and y. If MI >> 0, the random variables x and y
share information between each other, and it is possible to extract information
corresponding to variable x from variable y. In practice, the probability density
functions Ψ are estimated with histograms.

1.4 Neural networks

Up to now, we were studying autonomous dynamical systems without external
variables. Typically, autonomous systems evolve according to their own pre-
scribed causal rule. On the other hand, non-autonomous (or driven) systems
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are coupled to any external variables perturbing their spontaneous activity.
In this work, we introduce the framework of driven systems, which includes
multiple classes of complex structures such as neural networks.

In the early 1940s, the first artificial neural network model appears as an
attempt to model the processes in the brain [29]. Those attempts are mainly
related to the brain capabilities to solve multiple complex tasks and general
purpose information processing. In the cases where such models of the brain
are based on recurrent neural networks, they can be studied under the prin-
ciples of dynamical systems theory [2]. Then, we could think the brain as an
autonomous dynamical system that is continuously being perturbed by infor-
mation to be processed by it. Consequently, the brain structure in this case
can be interpreted as a part of the driven systems framework.

Before we go deep into neural networks within the driven systems framework,
let us introduce a summary of how biological and artificial neural networks are
designed in general.

1.4.1 Biological and artificial Neurons

A biological neuron is a cell composed by dendrites, body, axon and synaptic
terminals, see the schematic illustration in Fig. 1.11(a). The dendrites carry
input signals into the cell body, where this incoming information is summed to
produce a single reaction. In most cases, the transmission of signals between
neurons are represented by action potentials at the axon of the cell, which are
changes of polarization potential of the cell membrane. The anatomic structure
where the neurons communicate with each other is known as synapse [30].
The cell membrane has a polarization potential of −70 mV at resting state,
produced by an imbalanced concentration inside and outside of its charged
molecules. This change of the polarization happens when several pulses arrive
almost simultaneously at the cell. Then, the potential increases from −70 mV
to approximately +40 mV. Some time after the perturbation, the membrane
potential becomes negative again but it falls to ≈ −80 mV [2, 3]. The cell
recovers gradually, and at some point the cell membrane returns to its initial
potential (−70 mV), as schematically illustrated in Fig. 1.11(b).

An artificial neuron is shown in its general model by Fig. 1.11(c). The
output y of the neuron represents the signals coming from the axon, and it is
mathematically described by

y = f(W · x +W offb). (1.26)

The xi inputs transmit the information to the neuron through the weights
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Figure 1.11: (a) Diagram of a biological neuron. (b) Plot of a typical action
potential of a neuron. (c) Scheme of the mathematical model of a neuron.

Wi, which correspond to the strength of the synapses. The summation of
all weighted inputs, and their transformation via activation function f , are
associated with the physiological role of the cell body. The activation function
can be linear or nonlinear. The bias b represents an extra variable that remains
in the system even if the rest of the inputs are absent. The weight of the bias,
W off , is usually constant. The bias can also be seen as an offset for varying
the operating point of the activation function.

1.4.2 Artificial neural networks

Among many other categorization, artificial neural networks (ANNs) can be
categorized in the following two main branches:

Feedforward neural networks

A simple model of an ANN is presented in Fig. 1.12(a) [3]. It is constituted by
a network of m neurons with p inputs. The information is distributed along
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Figure 1.12: (a) Scheme of a single layer of m neuron models, where each neu-
ron has p different input links. (b) Illustrative block diagram of the blackbox
interpretation of ANNs.

the neurons through internal weights Wi,j. As introduced, the role of ANNs
is to mimic the information processing capabilities of the brain. However,
it still remains unknown how the brain works, causing it to be seen as a
blackbox that solve complex problems. That is to say, we provide information
to the brain through its inputs and we get a desired output [31]. Feedforward
ANNs imitate these capabilities by building a model F , performing smooth
function fits to input information. In this sense, the network’s functionality
can be interpreted as a static function F : Rp → Rm, mapping the information
xi ∈ Rp into yj ∈ Rm, see Fig. 1.12(b). This process can also be thought as a
kind of linear/nonlinear regression [2].

In many cases, feedforward ANNs are designed with more than one layer of
neurons, see Fig. 1.13(a). Here, we present a model with s layers which at-
tempts to solve highly complex problems previously deemed unsolvable, such
as pattern recognition, classification, and prediction [32, 33, 34]. The use
of several layers allows the network to have a rich ensemble of representa-
tions of data internal features [35]. Despite the fact that feedforward ANNs
are powerful tools for information processing, they usually take long time to
find solutions of complex tasks. For example, its optimization process is typi-
cally performed by modifying the ANN’s topology [36], where often optimizing
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via input-output links; (b) recurrent neural network.

global performances is time consuming [37, 38].

Feedforward ANNs have a unidirectional flow of information inside the net-
work, without any feedback. They behave like finite impulse response (FIR)
digital filters, which compensate this “finiteness” usually with a very high
numbers of layers and neurons. This architecture is known as “deep learning”,
which has gained popularity and recognition due to its amazing performances
[39]. However, at the cost of extreme computational power (in memory size)
and processor speed.
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Recurrent neural networks

On the other hand, recurrent neural networks (RNNs) are representing a con-
ceptually very different configuration, involving internal feedback in the net-
work, and thus complex internal dynamics even with a low number of neurons
[35]. To repeat the analogy with digital filters, one would have to deal with
infinite impulse response filters (IIR), which are not unconditionally stable,
unlike FIR. Figure 1.13(b) shows a scheme of a RNN, that has the same con-
figuration of a feedforward ANN, but with feedback connections. Feedback
elements allow the information to be recycled, transformed and reused. This
implies memorization with which it is possible to generate internal dynam-
ics [2]. They therefore have an explicit temporal variable on addition to the
spatial variables in their mathematical models.

In fact, if the activation functions are nonlinear, networks have to be seen as
nonlinear dynamical systems. Consequently, the stability of the system might
play a fundamental role for information processing. The input is mapped into
the high dimensional state-space of the dynamical system, then the solutions
are associated to a particular state of it. The information is usually injected
when there is a stable equilibrium point, or even near criticality [40, 41].

The typical applications of RNNs are: associative memories [42] and time
series prediction [5]. The associative memories are used for recognition of
trained input patterns, where an exemplary noisy pattern can be associated to
a stored pattern in the network. In time series prediction, it is possible to use
RNNs to mimic the a-priori unpredictable behavior of some feedback systems,
such as chaotic oscillators. One of the main limitations of these models is that
some RNNs require convergence to a stable state after the injection of the
input signal, i.e. they require a process of convergence at some point. If this
stable state is not reached, the network can store highly distorted patterns,
then it could not solve the tasks based on what it has memorized.

1.4.3 Training

The design of a network for a particular task is accompanied by the adaptation
of the network’s elements. Weights and biases have to be adjusted in order
to solve a specific task. This procedure is known as training (or learning) the
network. The adaptation of the network’s parameters to the problem usually
follows a learning rule. In this context, this means that weights and biases
are changed in a controlled manner according to some learning rule. One
can identify three kind of learning methods: supervised, reinforcement and
unsupervised [35].
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• Supervised: The network is trained by using a teacher/target, which
is used to adjust the weights to generate an output similar to the target.
This learning rule minimizes the difference between teacher and output. The
training performance is measured by comparing the teacher with the output,
and the correct outputs referred to as the teacher.

• Reinforcement: This learning rule is similar to the supervised rule, with
the exception that there is no a restriction to find only one correct output.
Here, the performance is measured in a more qualitative manner, by assign-
ing scores (or grades) which provide answers about how good or bad is the
approximation of the network’s output with respect to the teacher.

• Unsupervised: In this case there is no any teacher/target externally
provided. Weights of the network are modified via self-organization as a re-
sponse to the perturbation with the input information. The self-organization
feature corresponds to the network’s propensity to cluster input patterns. This
clustering-like training allows the categorization of inputs of the same nature
into a specific unique cluster.

Training methods

Some of the most common learning rules are listed in the following:

• Gradient descent: As it was described previously, the weights of a
network should be adapted to solve a particular task. Consequently, the error
function of the network Ξ, which characterize the network’s task performance,
has to be minimized. The error function is a function of the weights, i.e.
Ξ = Ξ(W1,W2, . . . ,Wp). One way to minimize Ξ is at first by estimating the
gradient of Ξ [2],

∇Ξ =

(
∂Ξ

∂W1

,
∂Ξ

∂W2

, · · · , ∂Ξ

∂Wp

)
. (1.27)

Then, the weights are updated with the increment of

∆Wi = −α ∂Ξ

∂Wi

, (1.28)

for i = 1, . . . , p. The learning constant is defined by α. Thus, if ∆Wi increases,
then ∂Ξ/∂Wi decreases, consequently the error is approaching to zero. The
minimum of the error function is found when ∇Ξ = 0 [37].

• Backpropagation: This is a learning method to train both, feedforward
multi-layer ANNs and RNNs. Backpropagation uses gradient descent search
to minimize the error function of the network. Next, the output error serves as
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Figure 1.14: (a) Example of a network used for spoken digit recognition task,
where the inputs are 500 patterns to be classified, with a network of N nodes
and 10 outputs corresponding to the readable digits {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
(b) Signal from the MG system to be used for chaotic time series prediction.
The first block in gray groups the past values used to train the ANN, the
second block in blue contains the values to be predicted by the network.

input to the network via internal weights. The output errors are then backprop-
agated from the output to the internal layer. In RNNs, the backpropagation
algorithm is applied considering that these networks are equivalent to feedfor-
ward ANNs with several layers, where each layer corresponds to a temporal
iteration of the RNN [2, 3].

1.4.4 Benchmark tasks

As it was described already, ANNs are designed to solve some highly complex
problems, that could not be solved previously in any other way. Some of the
typical tasks that are addressed in the scientific literature are:
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• Classification: The classification problem corresponds to the categoriza-
tion of input data. The uncategorised input information is injected into the
network, then the network has to separate and assign input subsets to different
classes, that are the output units. As an example of a standard classification,
the spoken digit recognition task uses a network to transcript the spoken lan-
guage into readable digits, see Fig. 1.14(a).

• Prediction: This task corresponds to the estimation of future develop-
ments of a particular system, based on the knowledge of its past history. For
example, in time series prediction the task corresponds to the estimation of
value yn+T (where n is the current time and T the prediction horizon) based
on the knowledge of a past values set {y1, y2, y3, . . . yn}. In Fig. 1.14(b) we
show a signal from the MG system, Eq. (1.7) with τm = 17, divided in two
parts: a set of past values in gray, and a set of future values in blue. The task
is to use a large set of past values to train the network, in order to obtain the
future values in the blue section.

For prediction, neural networks exploit regularities within the training data
for their learning procedures [43, 44]. Predictors from the connectionism frame-
work include dynamic neural fields [45], ARMA-like model using Artificial
Neural Network (ANN-ARMA) [46], feedforward [47], deep [48], and random
neural networks [49, 50]. All receive information via injection through their
input links. The manner to process information is different for each neural net-
work, but in general the networks are capable to identify and mimic important
regularities within the input information [43]. These regularities are repeating
patterns present in the input information, and the networks are trained to
identify and use them to solve prediction.

1.4.5 Reservoir computing

Reservoir computing is a field which includes the study of ANNs with a sim-
plified design, where just the output layers are trained within a supervised
learning rule. This trend started with echo state networks (ESNs) [5] and Liq-
uid State Machines (LSMs) [6]. These two network architectures come from
the fields of machine learning and computational neuroscience, respectively.
More recently, a delay echo state network appeared as a novel computational
machine. Such advantageous concept is found to be simple and implementable
in hardware [7, 8]. Both approaches are introduced in the following.
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1.4.6 Reservoir computing in spatio-temporal networks

A Random recurrent neural network (rRNN) is a popular model for investigat-
ing basic principles of information processing inside the human brain. In this
model the synaptic neural links are Gaussian distributed [51, 52, 53, 54]. Al-
though the brain’s connectivity cannot be assumed to be fully random [55, 56],
there is experimental evidence supporting the assumption that some parts of
the brain are described by stochastic architectures. For example, in insects’
olfactory systems the odour recognition process is performed by olfactory re-
ceptor neurons with structureless (random) synaptic connections [57, 58].

These networks consist of reservoirs of m neurons in state xn, internally con-
nected in this case through a uniformly randomly distributed internal weights
that are defined in a matrix W of dimensionality m ×m. The resulting ran-
domly connected network is injected with input data {b, yTn+1} according to
random offset and teacher/input weights W off and W fb, respectively. The
teacher/input weights W fb have the label of feedback fb because, at a later
stage, they will act as additional feedback. We normalize the largest eigenvalue
of W to one. The time-discrete equation that governs the network is [5]

xn+1 = fNL(W · xn +W off · b+W fb · yTn+1), (1.29)

youtn+1 = W out · xn+1 (1.30)

where fNL(·) is a nonlinear sigmoid-like activation function, b a constant value
which has the role of an offset. The network is trained via a supervised learning
rule, where we estimate the output weights W out through which we obtain the
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network’s output yout. After training, the teacher signal yT is replaced by the
predicted output yout, as already mentioned through the additional feedback
involved with W fb. The reservoir thus runs on its own to predict future values
of the input signal, without any influence at that stage from any teacher (or
input) signal yT .

1.4.7 Delay reservoir computing

An often used mathematical description of the delay differential equation
(DDE) for information processing is based on the Ikeda equation Eq. (1.20),
that we re-write as follows [8, 59]

τ ẋ(t) = −x(t) + fNL[x(t− τD) + φ0]. (1.31)

It is also possible to re-formulate the Eq. (1.31) in a way where we can realize
the spatio-temporal construction of the delay based reservoir [60, 61, 62]. For
that, we write the integral convolution involving the impulse response h(t) [63].
The definition of impulse response convolution of the filter h and the nonlinear
function fNL is

x(t) = (h ∗ fNL)(t) ,
∫ t

−∞
h(t− ξ)fNL[x(ξ − τD)]dξ, (1.32)

where h(σ) is the linear impulse response of the delay oscillator described by

h(t) =

{
e−t/τ/τ ; t ≥ 0

0; t < 0
(1.33)

In order to obtain the equivalent discrete-time system, we define the temporal
variable as follows: t = nτD+σk. The temporal position of each node is defined
as σk = (k − 1)δτ for k ∈ [1,m], n ∈ N; with m as the total number of nodes
that are filling one time delay interval: τD = mδτ . The variable of the system
can then be written in a spatio-temporal form x(t) → xkn. The integration
variable of Eq. (1.32) can be defined in its discrete time (n) and continuous
space (σ) form as follows: ξ = nτD + σ. Here, σ ∈ [0, τD] corresponds to the
short time scale of the dynamics, representing the spatial variable in the DDE.
Now, we use the property of additivity of integration on intervals to write the
time evolution of the system in Eq. (1.32)

xkn =

∫ σ(1)

−∞
h[(n− 1)τD + σk − ξ]fNL[xξ−τD ]dξ + (1.34)∫ σ(2)

σ(1)

h[(n− 1)τD + σk − ξ]fNL[xξ−τD ]dξ, (1.35)
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σ

n

Figure 1.16: Spatio-temporal patterns in the (σ − n) plane from Eq. (1.38)
with α = 0 [60].

where σ(1) = −τD+σk and σ(2) = σk describe the evolution in a delay roundtrip
(where in the continuous-time version t ∈ [−τD, 0]). From this, in the second
integral of last equation we substitute the new discrete-time variables, obtain-
ing

xkn =

∫ σk−τD

−∞
h[(n− 1)τD + σk − ξ]fNL[xξ−τD ]dξ + (1.36)∫ σk

σk−τD
h(σk − σ)[x(n−1)τD+σ]dσ. (1.37)

By substituting Eq. (1.32)

xkn = xkn−1 +

∫ σk

σk−τD
h(σ − σk)fNL[xσn−1 + φ0]dσ, (1.38)

where xσn = xnτD+σ.
The scheme of a reservoir based on delay dynamical system is illustrated in

Fig. 1.15(b). It consists of a ring-shaped neural network composed by virtual
nodes separated by a distance δτ , and distributed along the delay line. In
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order to feed the reservoir through the input signal yTn , we use the technique
of time division multiplexing

uin = [W in · yT ] pδτ , (1.39)

where W in is the input weights vector composed by random numbers, and
pδτ = 1 is a rectangular temporal windows with a width δτ , which performs
the temporal spacing between neighbours nodes, and n is the discrete-time
variable of the reservoir. The input signal uin multiplied by a constant α
is added in the argument of fNL in Eq. (1.38). The network is trained via
regression, belonging to a supervised learning rule, where we estimate the
output weights W out through which we obtain the network’s output yout.

From the structure of Eq. (1.38), we can notice that it has a spatio-temporal
representation of the reservoir, see Fig. 1.16. In comparison with the Strogatz-
Kuramoto model [64] which has the same form as Eq. (1.38), here we find
that h(σ) is defining the number of neighbouring nodes (or oscillators) that
are coupled, fNL characterizes the type of nonlinear function involved in the
coupling, and xσn is the dynamical variable.

1.4.8 Regression

In this work, we use regression to estimate the output weights W out:

Regression with singular value decomposition

The equation which relates a target yTn with a matrix containing all node
responses of the network xn, is the following

yTn = W out · xn, (1.40)

where W out is the vector whose coefficients are needed to extract the computed
output yTn of the reservoir from a linear combination of vector network state
components of xn. To determine W out it is necessary to minimizing the norm,

W out
op = min

W out
|W out · xn − yTn | (1.41)

If xn 6= 0, and it is an asymmetric matrix, we can obtain its symmetric ver-
sion by Λ = x†nxn, which is more convenient in order to determine the rank
of a symmetric matrix, where rank(Λ)=rank(xn). Then the Singular Value
Decomposition (S.V.D.) of Λ is written as follows: Λ = UΣV †, with

Λ+ = V Σ−1U † (1.42)
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as the Moore-Penrose inverse of Λ, where (·)† is the transpose of a matrix [65].
This definition is commonly used in solution of inverse problems, allowing to
find the minimum of Eq. (1.41) for all possible W out, by the decomposition
of Λ into the product of three matrices. At this point, we want to construct
a suitable basis for the information in Λ through linear mapping. For that,
we define V as an orthogonal basis for the domain of this mapping, and U
is an orthonormal bases for the co-domain. U is a transformation defined
as U → ΛV . Σ is a diagonal matrix which describes the scalar relationship
between the vectors in V and in U . Then, the inverse of diagonal scaling Σ
gives the correct relation between vectors in V and in U .

Ridge regression

The ridge regression is excecuted according to

W out
op = MyT ·M †

x(Mx ·M †
x − λIm)−1, (1.43)

where MyT and Mx are matrices containing information about target and node
responses, respectively. λ is the regression parameter.

With the purpose to compare target yTn with the network’s output values
yout = W out

op · xn, we introduce the normalize mean squared error (NMSE),

NMSE =
1

M

∑M
t=1(y

out
n − yTn )2

δ2(yTn )
. (1.44)

where δ is the standard deviation.

1.5 Conclusion

In this chapter, we have exposed some of the main concepts and fundamental
properties about dynamical systems theory. At first we focused on autonomous
nonlinear dynamical systems which lead to chaotic solutions. These oscillators
were also characterized by bifurcation phenomena as route to chaos, showing
a variety of solutions such as fixed points and periodic trajectories. Also,
we introduced some of the fields that dynamical systems theory can cover.
As examples, we have shown systems from physiology, optics, chemistry and
atmospheric sciences. Due to the impossibility of obtaining analytical solutions
for chaotic systems, we also have reported several methods that help in the
understanding and characterization of the dynamical complexity exhibited by
such systems. Finally, we introduced neural networks, as models for driven
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nonlinear dynamical systems. Their description allowed us to bring part of
the theory of information processing in neural network into the context of
dynamical systems. The aim of this manuscript, to be developed in the next
chapters, is to exploit dynamical system analysis methods to possibly better
explain the way how neural networks solve complex tasks.



Chapter 2

State-space prediction in Random
Recurrent Neural Networks

In this chapter we address the question of how prediction of chaotic signals
is solved by random neural networks, previously introduced in Sec. 1.4.4. In
order to build a predictor for chaotic systems, most common techniques can be
divided into the following groups: (i) linear and nonlinear regression models
such as Moving-Average (MA), Autoregressive (AR), Autoregressive-Moving-
Average (ARMA) [43], Multi Adaptative Regression Spline (MARS) [66], Sup-
port Vector Machine (SVM) [67], Last Square Estimation (LSE) [68], Non-
linear Autoregressive with Exogenous inputs (NARX) [69], Wiener [70] and
Volterra series [71]; (ii) state-space reconstruction-based techniques, which
utilize interactions between internal degrees of freedom to infer the future
[25, 43, 72, 73, 74], and (iii) connectionism framework, which uses neural net-
works.

In classical prediction theory, state-space reconstruction-based techniques
allow to approximate the future if sufficient information about the system’s
previous states is available [25, 43, 72, 73]. However, in practice it is not
always feasible to collect information of all state space dimensions of the chaotic
system. In order to obtain a full state-space representation of the system
to be predicted, most methods used by classical prediction theory are based
on Whitney and Takens embedding theorems [21, 75]. Additionally, state-
space reconstruction-based techniques for prediction require the exploration
of the reconstructed attractor’s neighborhood in state space, which attempts
to complete missing information of the system’s state history [25, 72, 73].
Such missing information is related to the practical impossibility to have a
continuous-time state space representation of the data. Then, it is required
to artificially increase the data resolution as much as possible if one wants to
minimize the divergence between predicting model and actual chaotic system.

In the scientific literature about connectionism framework, there exist in-
dications of possible embedding features in neural networks [76, 77]. How-
ever, the presence of this mechanism has so far been heuristically implied
only. In the present chapter, we will demonstrate that classical state-space
reconstruction-based models for prediction are indeed conceptually present in

37
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random neural networks. Prediction in rRNNs therefore relies on similar prin-
ciples. We demonstrate autonomous state-space reconstructions inside the
high dimensional and complex neural networks’ space, which allows these sys-
tems to employ a version of state-space reconstruction techniques. The random
structure and high dimensionality of rRNNs open the possibility to use random
projection theory to study such information embedding [78, 79].

2.1 State space reconstruction of chaotic sys-

tems

Inspired by random projections theory, we will identify task specific proper-
ties of random networks, analysing their suitability to embed one dimensional
information in their high dimensional spaces. Since input information is mul-
tiplied by a randomly distributed weight matrix, the input signal is randomly
projected onto a subspace of the network’s high dimensional space. Conse-
quently, there exists some spatial representation of the input time series. In
the following, such spatial representation will be evaluated by using two ex-
emplary input models: the Mackey-Glass (MG) and Ikeda systems.

2.1.1 Random projections theory

Random projections (RPs) theory is often employed as a dimensionality reduc-
tion tool for high dimensional datasets. Thus, an object defined in a particular
space is embedded in fewer dimensions (projected) into a different space. Such
embedding is carried out with a minimum structural damage to the original
object. In the linear theory of RPs, RP preserves all interpoint distances with
a relative error of ε > 0 with high probability, where ε is a small constant,
[80, 78, 79, 81]. The Johnson-Lindenstrauss lemma describes the structural
preservation [80, 82],

Lemma 2. For any ε > 0, as a small constant. Let k be a positive integer such
that k = O(ε−2 logS). Then for any set V of S points {y(1),y(2), . . . ,y(S)} ∈
Rd, where d is large and d >> k, there is a linear map P : Rd → Rk such that
for all y(i),y(j) ∈ V ,

(1− ε)‖y(i) − y(j)‖2 ≤ ‖P(y(i))− P(y(j))‖2 ≤ (1 + ε)‖y(i) − y(j)‖2. (2.1)

This lemma states that the distance between two consecutive points (inter-
point distances) of the projected object does not lie out of the range [(1 −
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ε), (1 + ε)]. Here, {y(i),y(j)} are two consecutive spatial points which come
from the original object, and {P(y(i)),P(y(j))} are two consecutive spatial
points that come from the embedded object. Generally, P(y) is a projection
that we obtain from the product between a k × d random matrix R with the
incoming information y, thus P(y) = Ry. Each spatial point y and P(y),
can be decomposed in terms of their components, y = (y1, y2, . . . , yd) and
P(y) = (P1(y),P2(y), . . . ,Pk(y)). We measure the distance based on the
euclidean norm between two consecutive points

‖y(i) − y(j)‖ =

√
[y

(i)
1 − y

(j)
1 ]2 + [y

(i)
2 − y

(j)
2 ]2 + · · ·+ [y

(i)
d − y

(j)
d ]2; (2.2)

and in the RP object

‖P(y(i))− P(y(j))‖ =
√

[P1(y(i))− P1(y(j))]2 + [P2(y(i))− P2(y(j))]2 + · · ·

+[Pk(y(i))− Pk(y(j))]2. (2.3)

Here, we employ an extension of RPs theory to be used in the analysis of
nonlinear systems, such as random neural networks. In such a situation the
distortions of interpoint distances are not necessarily bounded to the interval
[(1− ε), (1 + ε)]. This is due to the fact that Eq. (2.1) requires the projection
to be linear, i.e. P(y(i)) − P(y(j)) = P(y(i) − y(j)). As a consequence, after
a nonlinear random projection, interpoint distances are not restricted to the
symmetric interval defined by ε. However, {ε1, ε2} are proposed as constant
values which define an asymmetric interval within which interpoint distances
are bounded by [(1− ε1), (1 + ε2)] [83]. Consequently, let us introduce a more
suitable estimate of the interpoint distances in the nonlinear approach,

Proposition 3. For any positive constant values ε1, ε2. Let V be a collection
of S points {y(1),y(2), . . . ,y(S)} ∈ Rq, with distances computed under L2 norm.
There is a map ϕ : Rq → Rh, such that for all y(i),y(j) ∈ V ,

(1− ε1)‖y(i) − y(j)‖ ≤ ‖ϕ(y(i))− ϕ(y(j))‖ ≤ (1 + ε2)‖y(i) − y(j)‖. (2.4)

This proposition states that after random nonlinear projections, the inter-
point distances are bound to the range [(1 − ε1), (1 + ε2)], where {ε1, ε2} are
arbitrary positive constant values that can be used to characterize random
nonlinear projections. A modified version of RPs theory could be used as a
potentially powerful tool to characterize possible attractor reconstruction in a
random network. This theory may help to find out if distances between con-
secutive spatial datapoints are approximately preserved in the reconstructed
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Figure 2.1: Explicit illustration of the rRNN diagram.

object [78, 79]. At this point, we wonder if RPs theory could provide us with
the understanding of how the networks infer the behavior of the degrees of free-
dom associated to input dynamics. The random structure in rRNNs grants the
use of RPs theory as basement to conceive a theory through which to analyse
their possible attractor reconstruction capabilities.

2.1.2 Random Neural Networks

The classical rRNN layout from Sec. 1.4.6 is given in further detail in Fig. 2.1,
which shows the explicit scheme illustrating the temporal flow of information
received by each node. Nodes are represented by

⊕
. Here, the task of each

node is the addition of all the inputs {xin, b, yTn+1} according to random weights

{wi,j, woffi , wfbi }, and a nonlinear activation function. One of the effects of the
nonlinear function is that it restricts the node responses to a defined region of
the system’s state space. The reservoir contains a collection of different nodes,
where each node match with the simplified mathematical model of a neuron,
see Sec. 1.4.1.

As introduced in Chapter 1 (Sec. 1.4.6), the time-discrete equation that
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Figure 2.2: (a) Bifurcation diagram of the rRNN’s first node, under au-
tonomous operation, with an increased feedback weight of the internal connec-
tivity (equivalent to an increase of the so-called spectral radius of a network).
(b,c) |CC(xj, y

T )|max vs lag, between all node responses {xin}i and the original
data yT , increasing µ for (b) MG and (c) Ikeda.

governs the network is now defined in more detail as follows [5]

xn+1 = tanh(µW · xn +W off · b+W fb · yTn+1), (2.5)

youtn+1 = W out · xn+1; (2.6)

where µ is a bifurcation parameter, also spectral radius. The uniformly random
nature of the network’s structure allows the elements of the weights matrix W
to serve as a basis where the data is going to be represented. However, since
we cannot expect to have exclusively orthogonal directions as basis of the
network’s state space from the random matrix, the exact dimensionality of the
network is unknown. From here, we assume that the vectors defined in W are
sufficiently close to orthogonal, hence they should be a good approximation
of a basis [84]. The non-orthogonality of vectors in W might cause strong
distortions in the dataset [85]. About the input sequence, the first value of
yTn+1 serves as initial condition in the first iteration, n = 0. This 1D input
information yTn+1 is at first mapped to the reservoir’s high dimensional space
via W fb. After an initial transient, the data is randomly projected onto a
subspace of the reservoir state space, where it acquires its high-dimensional
representation. Finally, the processed information xn is accumulated due to
the recurrent nature of the network.

In practice, we construct a network with 1000× 1000 random coefficients as
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the reservoir layer, using the MATLAB routine random. Connection weights
wi,j are distributed around zero. Hence 1000 neurons have 1000 synaptic con-
nections to the rest of the network. We use 1000 nonzero connections, setting
the connectivity of the random matrix equal to one. In the absence of input
information (α = 0), the autonomous dynamics of the network are scanned
through the variation of the bifurcation parameter µ ∈ [0, 3]. In Fig. 2.2(a),
the bifurcation diagram of the rRNN shows the evolution of node 1 from steady
state to chaotic dynamic. It is possible to observe two kinds of autonomous
states of the rRNN: fixed point and chaos. The network changes suddenly to
chaos for µ = 1.5, from initial fixed point for (0 ≤ µ ≤ 1.4).

Attractor embedding in rRNNs

We now consider the non-autonomous case of the network by injecting the
input dataset yTn+1 to it, which comes from the MG (τm = 17) or Ikeda (τD =
20) systems, see Secs. 1.2.2 and 1.2.3, respectively. Additionally, both time
series have been shifted to oscillate around zero. The amplitude of injection is
α = 0.8 for MG and α = 0.1 for Ikeda. Then, due to the fact that the input
information is being randomly mapped in the network, we search for evidence
of possible attractor reconstruction operation on it.

As described in Sec. 1.3.1, the inference of attractor dimensions is associ-
ated with independent observations that can be found using 1D datasets. The
attractor reconstruction method based on Takens scheme, uses the autocor-
relation function to reconstruct such coordinates, from the observation of a
scalar variable from the dynamical system. Next, we now search for a possi-
bility to identify the same independent observations inside our network’s state
space. For that, we make a similar analysis based on the maximum absolute
value of the Cross-Correlation Analysis (CCA), |CC(xj, y

T )|max, between all
node responses {xin}i and the original input data yT . For this purpose, we
calculate the cross-correlation [86],

Rxy(l) =

{ ∑N−l−1
n=0 xi(n+l)y

T∗
n , l ≥ 0

R∗yx(−l), l < 0;
(2.7)

where l is the time lag, and N is the size of the dataset. This analysis was
carried out using the Matlab routine crosscorr, and it will help to reveal if the
network could infer independent observations in yT , separating them by time
lags. Each CCA is normalized to the |CC(xi, yT )|max when µ = 1.3, which is
the largest cross-correlation value of the whole analysis for all µ ∈ [0.2, 1.3].
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mum CC value vertically, and at its corresponding time lag for this maximum
CC value horizontally. (c,d): Examples of 2D projections of embedded MG
and Ikeda with nodes x126n and x19n , respectively.

Figure 2.2(b,c) shows the full CCA respect to µ for MG and Ikeda time
series as the network’s input, respectively. These analyses show that for small
µ (typically µ < 0.8) all |CC(xi, yT )|max values are located at lags within a few
narrow temporal windows. It means that all nodes are time lagged at some
few specific values. The increment of µ ≥ 0.8 corresponds to a redistribution
of the location of nodes along many other lags. At µ = 1.3, the distribution
of nodes takes the widest range of lags among all µ. Such range is defined
in Fig. 2.2(b,c) as {lMG

min, l
MG
max} = {−40, 40} and {lIKmin, lIKmax} = {−50, 50} for

MG and Ikeda, respectively. Our CCA stops at µ = 1.3, due to the network
bifurcates to a chaotic regime for higher values, see Fig. 2.2(a).

From the CCA, let us now focus on specific nodes whose |CC(xi, yT )|max are
associated to time-lags revealed by the Takens embedding theorem applied to
the input signals in Sec. 1.3.1. For τMG

0 = 12 (MG), and τ IK0 = 11 (Ikeda),
any node of the reservoir revealing strong cross-correlation amplitudes at the



CHAPTER 2. STATE-SPACE PREDICTION IN RANDOM RECURRENT
NEURAL NETWORKS 44

time lags {−3τMG
0 ,−2τMG

0 , −τMG
0 , 0} and {−6τ IK0 , −5τ IK0 , −4τ IK0 , −3τ IK0 ,

−2τ IK0 , 0}, can approximate any of the missing dimensions required to have a
complete representation of the original state space of the complex input signal.

We analyse the case of µ = 1.3, where the interval [lmin, lmax] has the largest
lmin, lmax lag limits in our study. Figure 2.3(a,b) shows |CC(xi, yT )|max as func-
tion of time-lag for MG and Ikeda, respectively. Here, the columns of values
concentrated on lags {±36,±24,±12, 0} for the MG system, and {±33,±22,
±11, 0} for Ikeda, correspond to most (or all) of the embedding delays required
for Takens embedding the MG and Ikeda attractors. Therefore, these nodes
approximate such an embedding, with which state-space like representations of
the input sequences can be obtained. The rest of delay-coordinates are related
to some embedding uncertainty which may belong to the lack of orthogonal
directions in W , that usually cause strong distortions in the embedding pro-
cedure.

In Fig. 2.3(c,d) we show node responses x198n and x19n that are found to be
good candidates for the embedding delay dimensions lagged at l = τ0 = −12
and −11, for MG and Ikeda attractors respectively. These nodes were chosen
due to the fact that they have the largest |CC(xi, yT )|max for the clusters of
nodes lagged at l = −12 and l = −11. As it can be seen, the attractor
reconstructions performed by random networks approximate 2D projections of
the attractors shown by Fig. 1.9 of MG and Ikeda. This therefore illustrates
that the missing coordinates of the input signal can be reconstructed by the
rRNN.

2.2 Nearest neighbours

The chaotic systems used as input data for the random neural network are
mathematically described by continuous-time differential equations. In the
numerical simulation of any continuous-time system, one has to employ a time-
discrete approximation such as e.g. Runge-Kutta method of 4th order or Euler
method. However, such a discrete approximation always has some arbitrary
resolution, which determines the accuracy of a numerical integration method.
The higher the sampling resolution, the more accurate is the approximation of
both, signal amplitude and temporal spacing distance. The distance between
two consecutive points is therefore contaminated with an uncertainty of the
order of the sampling resolution. As an illustration of a discrete representation,
let us introduce a trajectory in state space generated by the discrete-time
model, where each state is labelled with big black dots in Fig. 2.4(a), while
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Figure 2.4: (a) Schematic illustration of the attractor’s original trajectory.
(b) Attractor’s original trajectory (curve with big black dots), possible NN
ensembles (curve with small gray dots), the region where the nearest neighbors
can be found (blue circumference with radius σ) for an example of any state
in the original trajectory [73].

the lines would correspond to the continuous-time trajectory of the original
system.

If we want to enhance our current approximation of the continuous-time sys-
tem, we may artificially increase the sampling resolution of the given trajectory
in the state space. After such procedure, we get a new sampling resolution
σ, see Fig. 2.4(b), which contains a set of new states within the trajectory’s
neighborhood. If we consider an arbitrary state yTn+1, then all states within
a neighborhood of radius σ centered in yTn+1 have to be considered a-priori
equally good samples [25]. Then, the number of states around yTn+1 are all
nearest neighbors (NN) to this state. The set of neighbors to state yTn+1 are
illustrated with small gray dots forming a sampling cloud with radius σ. Such
additional data points forming the sampling neighborhood are here created
with a yet unspecified method.

One of the problem of predicting a chaotic time series originates from the
fact that there is not any given mathematical model to describe the system we
want to predict. The useful information available from a state space trajectory
is therefore limited. Hence, it is not possible to deduce a-priori which route
the system’s trajectory will follow in the state space region where it is defined.
The causal link between states of a given trajectory is missing. However, it is
possible to approximate this causal relationship from features of the attractor.
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three columns in both cases show the embedding found inside rRNN space for
µ = 1.3.

The nearest neighbors approach provides a way to artificially increase the
sampling resolution related with the location of all states. The increase of
resolution allows to scan the vicinity of the attractor, with which one can
construct more accurate approximations of pathways that the trajectory may
follow in time.

2.2.1 Nearest neighbours from a rRNN

In the literature, numerous approaches to the generation of neighbors for time
series prediction have been reported [43, 25, 72, 73, 74, 87, 88]. We will show
that our random networks do create them as well. As discussed previously,
RPs are capable to create several versions of the same geometrical object with
small distortions. These distortions can be defined as modifications to the
original attractor after their nonlinear projections in the network’s space. They
possibly can behave as neighbors sets to be used in our predictor of chaotic
time series.

According to Fig. 2.3, 1D information is possibly reconstructed in the net-
work’s high dimensional space. In Fig. 2.5, we show evidence of how the
rRNN’s random subspace creates numerous modified versions of the origi-
nal object. The first panels of Fig. 2.5 show the result from the 2D pro-
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Figure 2.6: Maximum and minimum boundaries (ε1, ε1) of (a) MG and (b)
Ikeda prediction. Sampling created by the rRNN is bound by these limits.
The original attractor shape is preserved for µ < 1.2, above which nonlinear
projection looses validity. Prediction error (NMSE) of MG and Ikeda are show
in (c) and (d), respectively. Embedding by the rRNN requires sampling to
span a phase space volume until the future value, corresponding to ε1 > 1.
At ε2 & 1, we therefore find a strong transition. Below prediction diverges,
beyond the rRNN approximates the target attractor.

jections from the Takens scheme, reconstructed by using delay-reconstruction
{−24,−18,−12,−6} for the MG, and {−22,−17,−11,−5} for the Ikeda sys-
tem. The attractors reconstructed by network nodes with maximum cross-
correlation values at lags {−18,−6} for MG and {−17,−5} for Ikeda, do not
belong to the set of original Takens delay-coordinates. However, such addi-
tional delay-coordinates allowed us to geometrically visualize the large variety
of nodes lagged at other values in the network’s space.

We can now define the conditions to apply Proposition 3, in order to un-
derstand how the neighbors are created inside the rRNN’s state space. The
first step is to define two arbitrary consecutive points {y(i),y(j)} in the Takens
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space of the input sequence. For that, we write points {y(i),y(j)} as states
{yTn ,yTn+1} ∈ Rq, where q = M = 4 for MG and q = M = 7 for Ikeda. Each
state in Takens space is described by q delay-coordinates,

yTn = (yTn , y
T
n+τ0

, . . . , yTn+(M−1)τ0), (2.8)

yTn+1 = (yTn+1, y
T
(n+1)+τ0

, . . . , yT(n+1)+(M−1)τ0). (2.9)

The second step is to define the corresponding two arbitrary consecutive points
{ϕ(y(i)), ϕ(y(j))} in the rRNN state space. For that we write points {ϕ(y(i)),
ϕ(y(j))} as states {ϕ(yTn ), ϕ(yTn+1)} ∈ Rh, where h depends on µ. The value of
h is determine from the CCA, where we approximately assign the mapped ob-
jects dimensionality to the number of elements found in the interval [lmin, lmax]
for each µ, see Fig. 2.2(b,c). In order to construct those points, we use all the
delay-coordinates provided by the network, i.e. the full range [lmin, lmax] for
each value of µ, as follows

ϕ(yTn ) = [ϕl1(y
T
n ), ϕl2(y

T
n ), . . . , ϕlh(yTn )], (2.10)

ϕ(yTn+1) = [ϕl1(y
T
n+1), ϕl2(y

T
n+1), . . . , ϕlh(yTn+1)]; (2.11)

where {ϕl1(yTn ), ϕl2(y
T
n ), . . .} are node responses lagged at [lmin, lmax]. The

size of the interval [lmin, lmax] depends on the value of µ, as it was shown by
Fig. 2.2(b,c), where we find a broader distribution of delay-coordinates for
higher values of µ.

The interpoint distances ‖y(i) − y(j)‖ and ‖ϕ(y(i)) − ϕ(y(j))‖, here corre-
sponding to the interstate distances ‖yTn+1−yTn‖ and ‖ϕ(yTn+1)−ϕ(yTn )‖, have
to be bounded in the interval [(1− ε1), (1 + ε2)] according to

‖ϕ(yTn+1)− ϕ(yTn )‖
‖yTn+1 − yTn‖

∈ [(1− ε1), (1 + ε2)]. (2.12)

Under these conditions, we can claim that the transformation by the rRNN
agrees with a nonlinear RP. Estimating limits {ε1, ε2} requires to find the
inferior εmin and superior εmax interstate distance limits:

‖ϕ(yTn+1)− ϕ(yTn )‖min
‖yTn+1 − yTn‖

= εmin;
‖ϕ(yTn+1)− ϕ(yTn )‖max

‖yTn+1 − yTn‖
= εmax, (2.13)

where ε1 and ε2 are calculated by isolating these constants from εmin = (1−ε1),
and εmax = (1+ ε2). These limits contain information about the minimum and
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maximum distortions that we can find in order to get the best neighbors in
the rRNN. ‖ϕ(yTn+1)−ϕ(yTn )‖min and ‖ϕ(yTn+1)−ϕ(yTn )‖max are calculated by
using Euclidean distance under minimum and maximum norms,

‖ϕ(yTn+1)− ϕ(yTn )‖min =

 lmax∑
lg=lmin

[ϕlg(yTn+1)− ϕlg(yTn )]2min

1/2

, (2.14)

‖ϕ(yTn+1)− ϕ(yTn )‖max =

 lmax∑
lg=lmin

[ϕlg(yTn+1)− ϕlg(yTn )]2max

1/2

, (2.15)

where ϕlg(yTn ) are node responses lagged at lg ∈ [lmin, lmax], ∀g = 1, 2, . . . , h.
Here, we therefore identify the smallest and largest distances [ϕlg(yTn+1) −

ϕlg(yTn )]min,max along each delay coordinate. Finally, we determine ‖yTn+1−yTn‖
via

‖yTn+1 − yTn‖ =
√

(yTn+1 − yTn )2 + · · ·+ (yT(n+1)+(M−1)τ0 − y
T
n+(M−1)τ0)

2. (2.16)

Based on Eq. (2.13), Eq. (2.14), Eq. (2.15) and Eq. (2.16) we can now obtain
limits ε1 and ε2. We repeat this procedure for each µ ∈ {0.1, 0.2, . . . , 1.3}.
Figure 2.6(a,b) shows the estimation of {ε1(µ), ε2(µ)} for the rRNN at different
µ for 100 different realizations of random matrix W , where the lines correspond
to the average of the statistical distribution. For each realization, we train the
network via regression (supervised learning) according to procedure described
in Sec. 1.4.8, using the MATLAB routine pinv, and determining W out for
each value of µ. Once trained, the input signal is replaced by the network’s
own output yTn+1 = youtn+1 [5]. Next, we let the rRNN run freely for prediction
horizons where the network needs to fully embed the input system in order to
perform long-term predictions. These horizons correspond to 150 time steps
in MG (∼ 9 delays of the MG equation) and in Ikeda (∼ 7 delays of the Ikeda
equation) systems. When we evaluate the prediction performances via the
estimation of the normalised mean squared error (NMSE), Eq. (1.44), we see
in Fig. 2.6(c,d) that ε2(µ) begins to be greater than one at the point where
the rRNN can perform long-term predictions. At this transition, found at
µ ≤ 0.4 for MG and Ikeda prediction, some realizations of W result in divergent
results (NMSE & 109), and some others in good long-term predictions (NMSE
. 10−4). This transition is caused by the network when it starts exploring the
projected object’s neighborhood.

The increase of interpoint distances limits {ε1(µ), ε2(µ)} with µ can be ex-
plained in an intuitive way through the graphic representation of the limits
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Figure 2.7: Illustrative scheme of the evolution of {ε1, ε2} as function of µ,
and an example of how are the NN distributed when the long term prediction
starts.

shown by Fig. 2.6(a,b). In Fig. 2.7 we illustrate three general cases (I,II,III),
based on the region created between the balls whose diameter are defined by
smallest (1 − ε1)do and largest (1 + ε2)do distances, found in the network’s
space. Here, do defines the interpoint distances in the original state space of
the trajectory to be predicted. The first case (I) corresponds to neighbors
which form a dense cloud of samples distributed around the original trajectory
when ε1 . 1 and ε2 < 1. In the scheme on the right panel, we then introduce a
more explicit schematic interpretation of the distribution of neighbors: Let us
represent a given dynamical system’s state space by a trajectory composed by a
curve connecting the big black dots, which are the acquired data points. Gray
dots are network’s neighbors states to the original trajectory. The neighbor
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samples that the network created insufficiently scan the neighborhood of state
yTn+1. Since such example is extensible to all other states, then the network
cannot predict.

The next case (II) includes the values of µ where ε2 ≥ 1, and long term
prediction starts to be executed (iff the dimensionality property is fulfilled).
At this point, the neighbours contribute to start long term prediction when
ε2 ≥ 1. Then, the maximum interpoint distance possible inside the rRNN’s
space is twice the interpoint distance of the original trajectory. It means
that the neighbors of exemplary state yTn+1 provide information of the region
where the future state is. So as it can be seen on the right side, there is a
sufficient scanning of the attractor’s vicinity, so the random network can use
the projected objects to solve prediction.

As µ is increasing, the area of this intermediate region is decreasing until
it becomes very small. This last case (III) appears for µ > 1.3, where all
distances are much larger than the original one do. Then there is absence of
attractor’s neighborhood scanning. This feature corresponds to the stretching
action of the rRNN onto the injected information. The information is folded in
a limited region of the network’s state space due to the limits of the nonlinear
function. The projected object is stretched in a shape preserving way until
the network reaches chaotic behavior. In fact, according to the bifurcation
diagram in Fig. 2.2(a), the trajectory inside the reservoir’s space might be
completely distorted by the autonomous rRNN dynamics typically found for
µ & 1.4, which are chaotic in this regime. Consequently, the network’s folding
property distorts the data in such a way that the projected interstate distances
‖ϕ(yTn+1)−ϕ(yTn )‖ cannot be mapped back onto their original distance, ‖yTn+1−
yTn‖. Therefore, ε1 becomes undefined, meaning that specific information about
the structure of the embedded trajectory is lost. A confirmation of these
interpretations is directly provided from results reported in Fig. 2.6(c,d).

2.3 Takens-inspired rRNN

In this section, we present a modified version of the classical random neural
network for time series prediction. As it was described previously, the delay-
coordinates in rRNNs potentially coincide with the coordinates from Takens
Embedding Theorem for µ > 0.4, although with some embedding uncertainly.
Under such conditions, we can find a broad spectrum of delay-coordinates
where not all of them can be related with the Takens scheme. In order to
build a network capable to specifically generate Takens-delay-coordinates, we
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Figure 2.8: (a) Schematic illustration of an TrRNN. Information enters the
system via the input, a recurrently connected network forms a neural network.
Based on our theory, we propose a simplistic extension to the system via
an external first-in first-out (FIFO) memory. (b) Explicit illustration of the
TrRNN diagram. The network has an internal connectivity W , a τ0 delay
layer is added to the scheme. A readout state yout is created via the readout
weight matrix W out. Switch S either connects the network to teacher signal
yT (S1 training), or to yout (S2 testing). In both cases the driving signals are
connected to the network via input connectivity W fb.
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Figure 2.9: yTn and yout sequences for (a) rRNN and (c) TrRNN to predict 1000
steps with µ = 0.2. CCA showing the delay-like dimensions available in the
system for (b) rRNN and (d) TrRNN. In (a,c) the red dashed line highlight
the points where prediction starts diverging from the target.

include an additional delayed term in the classical rRNN equation,

xn+1 = fNL(µW · xn +W off · b+W fb · yTn+1), (2.17)

youtn+1 = W out · (xn+1,xn+1−τ0) (2.18)

where xn+1−τ0 is the delay term in the output layer. In Fig. 2.8, the delay term
is schematically represented by a nonvolatile external memory. All elements
of the node responses layer have been time shifted by Takens embedding delay
to (n+ 1− τ0). W out weights have been assigned as well to the Takens shifted
node-states in the training step, and the time shifted layer contribute to the
rRNN’s internal state via the external feedback (S2 testing).

Afterwards, we evaluate our Takens rRNN (TrRNN) for prediction of 1500
steps into the future of the MG system. In Fig. 2.9(a) we present the predicted
time series by using a rRNN with µ = 0.2. As it can be seen, youtn (dashed
curve) does not match with the original sequence yTn (solid curve) for long-
term prediction. In fact, rRNN’s output and target strongly diverge, which
also resulted in the large prediction error shown in Fig. 2.6.

The CCA in Fig. 2.9(b) shows that this bad prediction performance is related
to the non-existence of the required temporal embedding dimensions. Only just
a couple of delay-coordinates were found (l = 0 and l = 2τ0) if τ0 = −12, and
therefore the standard rRNN cannot embed the full MG attractor. Once the
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τ0 delay term is incorporated in the output layer, we find that the TrRNN is
capable to perform long-term predictions for µ = 0.2, see Fig. 2.9(c). Here,
the dimensions needed to embed the MG attractor are present in the TrRNN
as revealed by the additional dimensions within the CCA analysis located
at l = {0, τ0, 2τ0, 3τ0} for τ0 = −12, Fig. 2.9(d). This confirms our postulates
about Takens-like embedding and random recurrent networks. Our new scheme
efficiently uses the rRNN as it reorganizes all the neighbours only to Takens
dimensions.

2.4 Application: control an arrhythmic

neuronal model

In the following, we study the stabilization of a system which models the firing
behavior of a noise-driven neuron. It consists in the FitzHugh-Nagumo (FHN)
neuronal model [89, 90],

εfhn
dv(t)

dt
= v(t)[v(t)− gfhn][1− v(t)]− w + I + ξ(t), (2.19)

dw(t)

dt
= v(t)−Dfhnw(t)− hfhn, (2.20)

where v(t) and w(t) are voltage and recovery variables. I = 0.3 is a tonic
activation signal, ξ is Gaussian white noise with zero mean and standard de-
viation ∼ 0.02, εfhn = 0.005, gfhn = 0.5, Dfhn = 1.0, and hfhn = 0.15. These
equations have been solved by the Euler-Maruyama algorithm for stochastic
differential equation’s integration, see Fig. 2.10(a). In its resting state, the
neuron’s membrane potential is nearly negative. Once the membrane voltage
v(t) is sufficiently depolarized through an external stimuli, the neuron spikes
due to the rise of action potentials. In the case of a large system of neurons,
the spiking activity can be considered a random event, due to the fact that
perturbations from the other neurons arrive at random [91, 92]. The time
between consecutive spikes are defined as interspike intervals (ISIs). These
random ISIs are shown by Fig. 2.10(b), where no clear pattern in the ISIs’
behavior is apparent.

We aim to control this random spiking behavior of the FHN neuronal model
by proportional perturbation feedback (PPF) [93] and our networks. PPF
method consists in the application of perturbations to locate the system’s
unstable fixed point onto a stable manifold [93, 94]. This method is used to
fit instabilities in the FHN neuronal model. In our case, the goal of using the
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PPF method is to apply an external stimuli to trigger spiking and reduce the
degree of chaos. The PPF algorithm first estimates the position of the fixed
points according to [95],

τF =
cfhn

1− afhn − bfhn
, (2.21)

where parameters afhn, bfhn, cfhn are calculated from the system:

τk+1 = afhnτk + bfhnτk−1 + cfhn,

τk+2 = afhnτk+1 + bfhnτk,

τk+3 = afhnτk+2 + bfhnτk+1, (2.22)

τk+4 = afhnτk+3 + bfhnτk+2.

The τi’s are a small collection of ISIs. In this analysis cfhn ≡ 1. The system is
near a fixed point at time k if the pair of points (τk, τk+1) and (τk+1, τk+2) form a
pattern that fits a line of shallow slope in [−1, 1]. In Fig. 2.11(a) it can be seen
an illustrative scheme of the dynamics in the fixed point neighborhood. There
are several planes where the dynamic is approximately linear. Each plane
consists in a manifold that corresponds to a set of ISI points {τk, τk+1, τk+2}
including different asymptotic trajectories to the line of shallow slope. The
existence of various planes illustrates the instability of the trajectories near the
fixed point. Following this approach we identify a sequence of τFi

, repeating
this analysis with all ISI points, and selecting sets of 5 ISI points each time.
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corresponding to the stable manifold when control is activated.

Then, we determine the histogram of τFi
, and estimate the location of the

fixed point τF to be the sharpest peak’s position defined as Ch. We collect all
τFi

located in an open ball whose center is Ch and radius ε, i.e. |Ch− τFi
| < ε.

Next, we collect an amount of j ISI values within the ball and estimate afhn
and bfhn.

From this point we start with the design of a control line which specify a
unique plane in Fig. 2.11(a). At first, we use the pair {afhn, bfhn} to calculate:

B1,2 = R

afhn ±
√
a2fhn + 4bfhn

2

 ,

where B1,2 = {B1, B2}. Then, we collect all Bj
1,2 values and determine an

amount of l values within the open ball |afhn − Bj
1,2| > 0. In this step we

estimate the histograms of the sets of l-values found under the previous con-
dition, and determine their maximum values with centers D1 and D2. These
lasts values are the parameters required to build the control equation for our
system,

τmax = Aτk + C, (2.23)

where Cfhn = (1 − Afhn)Ch. If D1 > D2, then Afhn = D1, otherwise Afhn =
D2. By using this control line we can stabilize the fixed point, due to it locates
the fixed point in a stable manifold, i.e. in a single plane in Fig. 2.11(b).
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curve with dots) and a classical rRNN (gray curve with stars). The TrRNN
requires 15 times less nodes, simultaneously achieving superior performance.

Once the control is activated for n = 7465 in our simulation, the control signal
Eq. (2.23) is injected via I through a train of pulses which take discrete values
{0.2, 5.2}. The pulses are injected when the current ISI exceeds τmax.

In our approach, the past information provided by the voltage v(t) is used to
determine two things: (i) the control parameters Afhn, Cfhn, and (ii) training
parameters for rRNN (µ = 1.3) and TrRNN (µ = 0.2, and τ0 = 166 obtained
from the Takens scheme) to predict future values of v(t). The predicted v(t)
is used to calculate the full control signal with which we stabilize the neuron’s
spiking activity. To train the networks, we inject 1× 105 values and we let the
network run free for other 4×106 steps, allowing us to stabilize 5619 ISI points.
We then evaluate the quality of the stabilization for networks of different size
ranging from 11 to 340 nodes.

In Fig. 2.12(a) we show the average and normalized ISI when stabilization
is implemented based on either the TrRNN. As it can be seen, the TrRNN can
control the random ISI from n = 7465. Figure 2.12(b) shows the outcome of
the full analysis using classical rRNN and TrRNN, where the mean value of
ISI is calculated as function of the number of nodes used to build any network.
The TrRNN starts inferring the inner dynamic of the FHN system just with an
architecture consisting in 12 nodes, providing predicted information to build
the control signal required to stabilize ISI. In contrast, the classical rRNN does
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not predict at all until it has a minimum amount of 80 nodes in its architecture,
but performance remains poor in comparison with TrRNN. For 190 nodes the
rRNN starts predicting the dynamic of the FHN system, allowing the control
signal to fully stabilize ISI. Yet, for more than 200 nodes the good performance
still can fluctuate, even significantly dropping again. This is an indicator that
in general the stabilization via the classical rRNN is not robust. Furthermore
with the TrRNN, we can reduce the number of nodes to 15 times less than the
classical rRNN. Our TrRNN has a reduction of all connections by a factor of
224 with respect to the classical rRNN.

2.5 Conclusion

We have introduced a novel methodology, demonstrating how prediction is
achieved by rRNNs. Our theory firmly integrates the field into a nonlinear
dynamical systems treatment. rRNNs and prediction can consequently be de-
scribed via a common methodology. Quantifying measures such as the intro-
duced memory related correlation analysis or the sampling neighborhoods are
therefore interpretable. We significantly extend the toolkit previously available
for Neural Network analysis.

Our scheme has numerous practical implications. The most direct is the
motivation and development of new training strategies addressing temporal
problems in rRNNss in general. Furthermore, we already identify a strategy
of how hybrid-computers can efficiently be exploited for prediction by a priori
defining external memory access rules. Finally, our work partially removes the
black-box property of neural networks for prediction, possibly giving transla-
tional insight into how such tasks can be solved in comparable systems.

The limitation of our approach are related with the fact that the parameters
{ε1, ε2} provide us information about the maximum and minimum possible
boundaries found in the rRNN. However, they do not specify how neighbors
are actually distributed in the network. That is to say, we cannot know if the
neighbors are truly randomly distributed once created, or if they form clusters
around a particular state, etc. Consequently, a more deep investigation about
the distribution and functionality as a whole or in sub-assemblies is expected
for future works.



Chapter 3

Dynamical complexity and com-
putation in neural networks be-
yond their fixed point

Despite the fact that interactions inside rRNNs are governed according to ran-
dom interconnections, these networks can still achieve highly coherent collec-
tive behavior [49, 55, 96, 97]. Under such conditions they can experience phase
synchronized dynamics, which have been identified to play an important role
in biological memory processes [98], neural communication [99, 100, 101] and
plasticity [102, 103, 104, 105]. Phase synchronization therefore plays a crucial
role in biological neural networks for information processing. An example of
several phase synchronized signals with zero lag are shown in Fig. 3.1(a). As for
their biological prototype, regular spatio-temporal patterns of self-organization
can also be found in homogeneous [106] as well as in heterogeneous artificial
neural networks [50, 107]. If all signals are zero lag phase synchronized, then
the spatio-temporal patterns have the structure shown by Fig. 3.1(b). The
here discussed rRNNs are heterogeneous networks which have been employed
for the modelling of biological neural networks. Conveniently, their dynam-
ical state can be tuned via a single parameter, which typically results in a
bifurcation phenomena as a route to chaos [41, 108, 109]. Furthermore, this
transition in their dynamical properties might have a spatio-temporal impact
due to the collective network’s dynamical evolution towards disordered dynam-
ical regimes. One way to analyse such spatio-temporal patterns is through the
measure of the synchronization between nodes.

Besides their function as model systems in biological neuroscience, rRNNs
have been widely studied in the machine learning community due to their
excellent computational properties. In rRNNs, special attention was given to
computation at the transition from a steady state to chaotic dynamics, defined
as the edge of chaos of the dynamical system. Essential for solving complex
tasks, operating a network at the edge of chaos ensures a high susceptibility to
perturbations [40, 41, 108, 109, 110]. Typically, when the network reaches the
regime where it experiences dynamics in the absence of stimulation by external
data, its spontaneous dynamics are considered a nuisance as they disrupt the

59
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Figure 3.1: Illustrative examples of (a) phase synchronized signals with zero
lag and (b) regular spatio-temporal patterns [107].

causality between input and network state. Nevertheless, information process-
ing might not depend on the regularity of individual node dynamics. In other
words: details of an autonomous rRNN’s dynamical state should be of minor
importance, as long as the network as a whole can preserve the content of in-
jected information. Global dynamical properties and their use for computation
therefore deserve a closer inspection.

Here, we study a rRNN predicting a chaotic time series. Motivated by
the impact of spatio-temporal dynamical properties, we particularly focus on
beyond fixed point operation. We employ a variation to classical rRNNs
[5, 41, 108, 109] by using nodes with a sinusoidal activation function, with
feedback parameter outside the argument of the activation function. A broad
range of autonomous dynamics are the consequence, among which we most
importantly find multiple non-fixed point states with surprisingly high compu-
tational performance. We show that for computation based on such non-fixed
point states, phase synchronization and bifurcation point play essential roles
in information processing. The underlying mechanisms are analysed based on
the mutual information between the rRNN and the input time signal, as well
as the rRNN’s maximal Lyapunov exponent. Our choice of system is directly
motivated by its randomness: we can exclude structural modifications induced
by learning being the cause behind phase synchronization.

3.1 Random recurrent neural networks

As for the networks introduced in Chapter 1, our rRNN consists of m nodes
in state xn, internally connected via a random, uniformly-distributed internal
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Figure 3.2: (a) Bifurcation diagram of node 34 (x34n+1) for the classical rRNN
with FNL = tanh(·). (c) Schematic illustration of the rRNN structure with
FNL = sin(·). (c) Bifurcation diagram of node 34 (x34n+1) for a rRNN with
FNL = sin(·), with regions of non-chaotic behavior: R1, R2, R3, R4, and R5.

weight matrix W of dimensionality m × m. The resulting random networks
have a temporal evolution governed by

xn+1 = µFNL(W · xn +W off · b+W fb · αyTn+1), (3.1)

where {W,W off ,W fb} are random weights that have been generated using
the MATLAB routine sprand, b = 0.2 is a constant offset, α · yTn+1 is the
input signal, where α the input scaling and µ is the feedback amplification.
In this first case, the connectivity matrix W is constructed with 500 × 500
random, Gaussian-distributed coefficients in [−0.5, 0.5], from a matrix with
connectivity one. Typically, the nonlinear activation function is FNL = tanh(·)
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Figure 3.3: Nonlinear response of nodes with f(x) = sin(x) (left column), time
series recorded for node x34n+1 (center column), and spatio-temporal evolution
of the rRNN (right column): (a-c) µ = 5, (d-f) µ = 10, and (g-i) µ = 50. All
dynamics obtained for the autonomous system (α = 0).

[5]. However, for µ ≥ 1.4 and the hyperbolic function as FNL, there are no
other steady state windows that can be used for information processing, i.e. the
network’s dynamic falls directly into a chaotic regime. This fact is revealed by
the bifurcation diagram shown by Fig. 3.2(a) where µ in [0, 20], for a randomly
chosen node, i.e. node 34 (x34n+1) of the autonomous system (α = 0).

In order to obtain a neural network experiencing multiple windows of regular
dynamics in its bifurcation diagram, we modify the standard rRNN scheme,
now using a sinusoidal activation function FNL = sin(·). The schematic dia-
gram of the whole network with FNL = sin(·) is shown by Fig. 3.2(b). Nodes
(symbol ⊕) add and nonlinearly transform all inputs {xn, b, yTn+1} according to
random weights {W,W off ,W fb}. Otherwise we use the same number of nodes
and connectivity, however the coefficients of W are now randomly distributed
in [0, 1]. The bifurcation diagram, for node 34 and α = 0 (autonomous opera-
tion) shows a typical evolution from steady state to chaotic dynamic through
periodic oscillations, and even with periodic windows between chaotic regimes,
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see Fig. 3.2(c). Non-chaotic regimes can be found in several regions: R1, R2,
R3, R4, and R5, for µ ∈ [0.1, 2.8], µ ∈ [4.8, 5.4], µ ∈ [8.5, 8.9], µ ∈ [12.4, 12.7],
and µ ∈ [17.6, 18.4], respectively. These regions are part of the multistabil-
ity present in this particular network, consequence of the sinusoidal nonlinear
function.

Autonomous rRNN dynamics are shown by Fig 3.3 for different values of the
bifurcation parameter µ. The left column shows the functional input-output
relationship of Eq. (3.1) with FNL = sin(·) for the randomly selected node 34.
The central column displays time series from the same node, referred to as local
dynamics, while the right column shows the dynamical state of the full rRNN.
For µ = 5 the rRNN’s state is symmetrically concentrated along the nonlinear
function’s extrema, see panel (a) of Fig. 3.3. The resulting dynamics of x34n+1

and the full networks state xn+1 is shown in Fig 3.3(b,c), respectively. Au-
tonomous dynamics of x34n+1 are therefore periodic, and according to Fig 3.3(c)
such local periodic dynamics appear to strongly synchronize across the rRNN.
The result is a constant phase relation within the entire network. When in-
creasing bifurcation parameter µ to 10, dynamics span an increasing number
of the nonlinear function’s periods, see Fig 3.3(d). The consequence is a lo-
cal dynamical state with considerably higher complexity, see Fig 3.3(e). Yet,
synchronization between individual nodes proofs to be robust. According to
Fig 3.3(f) regular spatial patterns are still present and synchronization across
the network is preserved despite the chaotic dynamics of individual nodes.
Finally, for further increasing µ to 50, dynamics spanning up to 14 extrema
(Fig 3.3(g)) result in hyper-chaotic node responses, Fig 3.3(h). As illustrated
in Fig 3.3(i), only for such large bifurcation values the regular spatio-temporal
structures across the network have vanished and synchronization is lost.

3.2 Mitigating autonomous dynamics by learn-

ing

All previously discussed dynamical properties have been exclusively obtained
in the absence of an external stimulus. However, as an information process-
ing system, the rRNN realizes computation on the basis of rich dynamical
responses to external, i.e. sensory input. We therefore activate the rRNN’s
input by setting α 6= 0 and investigate dynamics when fed by a chaotic MG
time series. We add an output layer that provides the computational result
according to

youtn+1 = tanh(W out
op · xn+1). (3.2)
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A divergence of the system for large feedback amplification µ is avoided by ar-
tificially limiting the range of yout through a hyperbolic tangent in the output.
The output weight vector W out receives all node responses x and is calculated
according to a supervised learning rule based on a teacher/target signal αyTn+1.
Here, the training target is equivalent to the input signal, shifted by a single
time step. We use 2000 values from the Mackey-Glass (MG) system (intro-
duced in Sec. 1.2.2 with τm = 17) and α = 0.8. For the system driven by the
teacher signal we estimate the optimal output weight vector W out

op

W out
op = min

W out
‖ tanh(W out · xn+1)− yTn+1‖ (3.3)

via its pseudo-inverse according to singular value decomposition. Equation
(3.3) therefore minimizes the error between output tanh(W out · xn+1) and
teacher yTn+1. As training error measure we use the NMSE between output
youtn+1 and target signal yTn+1.

Once trained, the input signal is replaced by the network’s own output
yTn+1 = youtn+1 in Eq. (3.1), and the system autonomously approximates dynam-
ics learned from the teacher system, here the MG sequence. Computational
performance is determined after a free evolution of 35 time steps, twice the
time-delay of the MG sequence (τm = 17). In Fig 3.4(a) the prediction per-
formance is characterized by NMSE that is shown for 0 < µ ≤ 10. At each
µ we repeated the previously introduced training procedure. The optimal
performance (NMSE=5.5×10−4) is found for a very narrow regime around
µ = 0.9, which comes at no surprise as it corresponds to the well known edge
of chaos condition. However, additionally we identify multiple broad regions
of acceptable performance with a prediction error of roughly NMSE∼ 10−2. A
comparison to the rRNN’s bifurcation diagram of Fig 3.2(b) demonstrates that
these regions of acceptable performance directly correspond to regular regions
R1, R2 and R3. Regimes R4 and R5 are not treated in our analysis, since small
perturbations result in their stabilization, driving the network instantaneously
into the next chaotic regime. In all other regions the error is orders of magni-
tude higher, therefore not corresponding to any prediction ability of the rRNN
operated under such conditions.

As previously introduced, in this self-driven operation mode the rRNN’s out-
put becomes its own input. If not suppressed, perturbation-like autonomous
rRNN dynamics can therefore freely propagate through the system due to
this recurrent rRNN input/output relationship. Furthermore, in a worst case
such architecture could results in resonances between output and response,
with uncertain consequences for prediction. Yet, the deviation between target
and prediction, measured by the NMSE, is up to three orders of magnitude
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Figure 3.4: (a) Average NMSE as a function of µ (blue stars), and the noise-like
standard deviation in rRNN output σα=0 for the autonomous system (black
circles) with error-limits presented by envelops of dotted-curves. (b) Aver-
age synchronization error across the rRNN for the driven (α = 0.8) and au-
tonomous system (α = 0) in blue stars and black circles, respectively. Data
was averaged over 100 different realizations of the rRNN.

smaller than amplitude dynamics of the autonomous rRNN, which according
to Eq. (3.1) are limited to an amplitude of µ. This is particularly astonishing
when keeping in mind that the rRNN approximates a chaotic attractor, and
consequently the emulated self-driven system created from Eqs. (3.1) and (3.2)
is highly sensitive to noise. This raises the question as to how the network can
mitigate internal dynamics so efficiently.

The answer lies within the learning process. We demonstrate this by creating
the rRNN’s output youtn+1 for α = 0, however using the W out previously learned
for approximating yTn+1. From the resulting signal we discard the first 10 data
points to avoid possible transient behavior. From the remaining 25 samples we
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calculate the statistical amplitude variation via the signal’s standard deviation
σ according to

σα=0 =

[
σ(youtn+1)

σ(yTn+1)

]2
. (3.4)

Measure σα=0 evaluates the output weight’s performance for suppressing au-
tonomous dynamics. This corresponds to the crosstalk of autonomous rRNN
dynamics into the system’s readout. The black data in Fig 3.4(a) demon-
strates how intricate both measures are related. Within regions R1, R2 and
R3, learning efficiently separate autonomous dynamics from transients induced
by the sensory input. As revealed by the low values of σα=0, in R1, R2 and R3

the rRNN there can approximate yTn+1 well because the impact of autonomous
rRNN dynamics on yout is strongly reduced. There, both are confined to
specific and well separated time scales. As a consequence the impact of per-
turbations, be it spontaneous dynamics or noise, not present in the training
data can strongly be reduced. This is of significance as sensory information
about a target system is fundamentally contaminated by noise. Noise within
the injected information can therefore cause deviations. However, due to the
rRNN’s capability to dissipate noise, the network limits dynamics to a well
defined range. We argue that this is achieved by minimizing the dissipat-
ing mechanism at the frequencies of the training signal, while timescales not
present in the training signal are strongly attenuated.

The consequence of these mechanisms is that spontaneous internal activity
of each node has an impact on the collective evolution of the network. Ulti-
mately nodes are individual oscillators which influence each other through the
internal weights. As illustrated in the right column of Fig. 3.3, this collective
architecture can cause different levels of organization, that should influence the
propagation of information within the network. The structure of the rRNN
can be quantified by a measure of phase synchronization between the nodes.
The standard deviation of all node responses individually averaged over time
is measured against the rRNN’s mean-field dynamical state:

δn+1 =
1

µ

√√√√ 1

N

N∑
i=1

(xin+1)
2 −

(
1

N

N∑
i=1

xin+1

)2

. (3.5)

Equation (3.5) is a global measure of phase synchronization between nodes
[107]. A normalization by µ allows to associate δn+1 to a synchronization
error in the phase of the nonlinear function in Eq (3.1). As demonstrated
by Fig 3.4(b), the global rRNN synchronization error significantly decreases
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Figure 3.5: Spatio-temporal evolution of the rRNN (left column), time series
recorded for node x31n+1 (center column), and 2D projections of the recon-
structed time series from node 31 (right column): (a-c) µ = 0.8, (d-f) µ = 5,
and (g-i) µ = 8.7. All dynamics obtained for the driven system (α = 0.8).

in regions R1, R2 and R3. Hence, synchronization and regular autonomous
dynamics share the same parameter range. Region R1 can clearly be separated
into two sections. For µ ≤ 1 nodes are not well synchronized; the system
is operating in the linear section of the nonlinear function. For µ > 1 the
operating point moves towards the nonlinear function’s maxima and nodes
start evolving in synchrony. Region R3 is significantly more sensitive to µ
when compared to R1 and R2. This narrow range is due to the proximity to
parameters resulting in chaotic dynamics. Such a sensitive operating point is
less recommendable for example prediction using a noisy hardware or biological
rRNN. In fact, in R3 we find that the nodes are in steady states, however not
as well synchronized as in R1, and R2.

The comparison between panels (a) and (b) of Fig 3.4 highlights the impor-
tance of the phase synchronization capability in autonomous regime, for good
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prediction performance. Periodic dynamics ensures the discussed separation
between timescales, while synchronization minimizes the resources learning
has to dedicate for their suppression. For fully synchronized rRNN periodic
dynamics it would already suffices to split W out into symmetric groups of
positive and negative readout weights, simply relying on statistical averaging
between the two populations to suppress the autonomous dynamics’ influence
on the systems output state. The distribution of W out within both groups
can then be dedicated to the prediction of yTn+1. A reduced synchronization
will consequently increase the resources learning has to assign for suppressing
autonomous dynamics, leaving less freedom for optimizing prediction perfor-
mance. Data shown in Fig 3.4 shows the statistical average obtained from
100 independent realizations of the system, each time defining a new random
internal weight matrix W .

An extended qualitative analysis of the dynamics associated with good pre-
diction performance is shown by Fig 3.5. For µ = 0.8, Fig. 3.5(a) shows the
spatio-temporal plot of all nodes when the input is injected in steady state
regime R1. Column-shaped patterns throughout the entire spatio-temporal
plot confirms phase synchronization between nodes. Indeed, these spatio-
temporal patterns match with the injected signal. One example of how input
information is preserved within the rRNN is revealed by Fig. 3.5(b), where
the randomly chosen node 31 (x31n+1) shows a nonlinearly transformed version
of the input. For a geometrical illustration of the information carried by the
node, we illustrate the system’s dynamic by reconstructing the MG attractor
through Takens embedding Theorem [21]. From this embedding scheme, we
obtain parameters of delay τ0 = 12 and dimensions M = 4 to fully reconstruct
the MG state space. The state space of node x34 is in this example recon-
structed based on the Takens theorem. A 2D projection of the state space is
shown by Fig 3.5(c), which has strong similarities with the structure of MG
chaotic attractor [112].

At µ = 5 (regime R2) we find the previously described periodic oscillations.
The spatio-temporal plot shows once again a constant phase relation across all
nodes, see Fig 3.5(d). However, it is not possible to identify any clear spatio-
termporal features corresponding to the input timetrace. A closer look into the
individual node evolution shows that the internal dynamics are still present,
see Fig 3.5(e). We find that node dynamics consist of two contributions. Large
amplitude oscillations at fast timescales correspond to the autonomous dynam-
ics, while nonlinear transients induced by the input information are encoded
in the slowly varying envelope. In Fig 3.5(f), the state space provides infor-
mation about the geometrical structure of the modulation, where two different
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2D projections of chaotic attractors are located at the extrema of the periodic
oscillations.

Upon increasing the bifurcation parameter to µ = 8.7 (regime R3), the col-
lective dynamics shown by Fig 3.5(g) resembles the spatio-temporal pattern
from panel (a), even showing high phase synchronization. In this case, the
node’s fast periodic oscillation is substituted by irregularly appearing, noise-
like epochs, see Fig 3.5(h). As in R1 the fixed point of R3 is a quasi-steady
state, yet due to the narrow width of R3 the rRNN is forced outside this sta-
bility window by even smaller fluctuations which in turn induce the noise like
epochs. Figure 3.5(i) shows the effect of the noise on the reconstructed at-
tractor. The noise strongly distorts the node responses away from the MG
attractor. As induced by noise-like epochs, these distortions strongly hamper
the determinism in the rRNN’s response to the injected information. As re-
ported in Chapter 2, the impact on spontaneous dynamics onto prediction has
to be interpreted within the framework of the original attractor. It then be-
comes clear that the processed information might preserve some of its original
features.

3.3 Preservation of information features in

destabilized rRNNs

As illustrated by the different attractors of Fig. 3.5, spontaneous dynamics
in the rRNN can cause distortions on the input dataset. These distortions
hamper the neural network’s ability to preserve essential features of original
information. It is important to recall that this input sequence is chaotic, and
by no means random. It is the result of complex, yet causal deterministic
processes which define its complex temporal evolution. Then, predicting such
a signal demands these causal relationships to be preserved within the neural
network’s dynamical state, providing a functional relationship to currently
and previously injected information. For low error prediction it is therefore an
essential condition that the network can serve as carrier and short term storage
of injected information. Phase synchronization is therefore not sufficient to
estimate if a rRNN complies with this condition. In order to quantify the
information content preserved within the rRNN when stimulated by an input,
we calculate the mutual information (MI) between the rRNN and the input
signal for one realisation of W . This provides an estimation of how well the
network is able to maintain the input information content [41], and hence is
capable to capitalize from its own internal causal relationships for computation.
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In this case, mutual information quantifies the amount of information shared
between node responses xin+1 and input signal yTn+1 [28]

MIi =
∑

xin+1,y
T
n+1

Ψ(xin+1, y
T
n+1) log

Ψ(xin+1, y
T
n+1)

Ψ(xin+1)Ψ(yTn+1)
. (3.6)

Mutual information MI therefore depends on the joint probability density
function of xin+1 and yTn+1, Ψ(xin+1, y

T
n+1), as well as Ψ(xin+1), Ψ(yTn+1) which

are the probability density functions of xi and yT , respectively. If MIi >> 0 for
the ith node, it preserves most dynamical properties of input yTn+1. Under these
conditions the rRNN as a whole is capable to preserve the input information
without significant loss of information, hence learning should be possible in
principle. By accumulating all MIi for the entire network (over every node)
through the global measure Cm =

∑
i(MIi), we evaluate the capability of



CHAPTER 3. DYNAMICAL COMPLEXITY AND COMPUTATION IN
NEURAL NETWORKS BEYOND THEIR FIXED POINT 71

the network to preserve and store significant features of the input in spite of
the presence of network’s spontaneous dynamics. Consequently, we define the
measure Cm as the rRNN’s memory capacity [108]. This index is calculated as
a function of the bifurcation parameter and the results are shown in the black
dotted trace in Fig 3.6.

In addition, we go beyond pure information content measures. Complex dy-
namical systems are typically classified using the rate of exponential divergence
between neighbor trajectories, corresponding to their Lyapunov exponent, see
Sec. 1.3.2. In particular, chaotic systems have a positive maximal Lyapunov
exponent λmax [25, 26, 27]. As the rRNN attempts to create a self-consistent
representation of the chaotic target signal, comparing the network’s λmax to
the target signal’s maximal Lyapunov exponent provides a direct evaluation
criteria. This index is calculated for each node i, λimax, then the maximal Lya-
punov exponent of the rRNN is λmax = max(λimax). In Fig 3.6 we show the
rRNN’s λmax as blue data. Sections without λmax values exhibit hyper-chaotic
dynamics with more than one positive Lyapunov exponent.

As during our previous analysis, we find that regimes R1, R2, and R3 have
a strong impact upon these measures. Low-dimensional dynamics cause lim-
ited distortions to the rRNN’s temporal evolution induced by the input signal.
Consequently (i) memory capacity Cm is highest and (ii) the rate of divergence
of rRNN trajectories is smallest. The rRNN is therefore capable to accurately
preserve previous input information. In regime R1 and R3 steady states can
be found, therefore the memory capacity Cm is higher than in R2, where the
rRNN’s spontaneous behavior is periodic in general. Our Lyapunov compo-
nent analysis reveals that λmax is kept small inside R1, R2, and R3 due to their
non-chaotic spontaneous features. In fact, for µ ≤ 1 in R1, λmax of the network
approaches with the one estimated for the input signal (λMG

max ∼ 3.6 × 10−3).
At this parameter, the rRNN is operated predominantly in its linear regime.
Nevertheless, the fully nonlinear system (µ > 1) combines oscillatory, sponta-
neous rRNN’s dynamics with the injected input information. As the internal
dynamics of the rRNN begin to exert influence over dynamics induced by the
MG input, λmax starts increasing accordingly. This behavior agrees well with
the decrease of memory capacity, where the internal rRNN’s dynamics will
modify the probability distribution of the nodes. This demonstrates a strong
correlation between the decline of spatio-temporal synchronization and the re-
duction in the system’s memory capacity to approximate the deterministic,
functional relationship of the prediction task.
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3.4 Conclusion

Unlike neural networks run on a data-center, the human brain is not a spe-
cial purpose computing machine, but parameters will most likely be optimized
according to a compromise between partially competing demands. We there-
fore demonstrated that information preservation and synchronization inside a
random network allow good prediction performance at parameters where learn-
ing in biological neural networks benefits. Based on a rRNN with a periodic
nonlinear function we compare various regions of regular dynamics and high-
light their importance of spatial synchronization upon prediction performance,
mutual information and the stability of the neural network. Synchronization
between nodes plays an essential role, but it is not sufficient to understand
how information processing is successful in a rRNN beyond its fixed point. On
the contrary, when linear regression is used to realize supervised learning, a
causal relation between processed information and target is required.

We describe a rRNN predicting the future time-steps of a chaotic trajec-
tory. Our results illustrate the importance of information flow, divergence
and the suppression of signal components not present in the training data
set. The rRNN’s damped autonomous deviation σα=0, mutual information
MI and maximal Lyapunov exponent can be seen as complexity indicators for
interpreting neural networks based on dynamical systems. Other than for the
oscillatory state, chaotic responses were not capable to maintain important
features of the input dynamic, resulting in a low prediction performance.

Among others, future work could investigate variations of connectivity net-
work size. Their impact on synchronization and complexity indices might not
be trivial, and what is their relationship with the computational capabilities of
the rRNNs. Also, the application of mean-field theory on our network should
be done in order to understand phase transitions as function of the bifurcation
parameter µ.



Chapter 4

Electro-optic oscillator as delay
neural network

Experimental realizations of delay differential equations (DDEs) implemented
in Electro-Optic (EO) systems [113, 114, 115, 116] allowed the development of
high performance broadband chaotic communications [117, 118], ultra-stable
microwave sources [119, 120, 121], and random number generation [122]. The
fundamental properties of such oscillators have also received significant atten-
tion [123, 124, 125, 126, 126]. Another important application of DDEs also
emerged recently related to computer sciences applications. Here, the Ikeda
delay equation (introduced in Sec. 1.2.3) is used as an integral component to
design neuromorphic processors, from where it is possible to perform informa-
tion processing and computing tasks [7, 127, 128]. As described in Sec. 1.2.3,
one of the components used to describe the Ikeda system consists in a lowpass
filter. In our current work we replace it for a highpass filter, resulting in the
addition of an integral term to the original Ikeda equation, Eq. (1.20). As a
consequence, the system is capable to show complex multiple time-scale dy-
namics, that has been investigated using several approaches like stability and
bifurcation analysis [115, 129, 130, 131, 132]. More recently, it was shown that
such hybrid dynamics can be understood through the paradigm of Liénard
systems with attractive-repulsive branches [133]. However, the description of
the waveform evolution requires a more extensive analysis of the structural
properties of the entire system.

It has been also demonstrated that the structural shape of the state space
depends largely on the nonlinear function’s characteristics. In fact, some well
established chaotic systems like Logistic, Tent and Bernoulli maps, Chua’s cir-
cuit [134], Duffing-Holmes attractor [135] and the Ikeda equation are based
on different kind of nonlinear functions. Their contribution in the generation
of complex dynamics can be qualitatively described through the stretching
and folding mechanism [136]. Stretching and folding results in exponential
divergence of close orbits in certain state space regions. Trying to identify the
relationship between nonlinear functions and their resulting dynamics, some
reports show how complexity can be controlled by the nonlinear function ex-
trema [137, 138, 139].

73
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Figure 4.1: (a) Power-Injection curve of the laser, and (b) quartic function of
the MZM, with a half-wave radio-frequency voltage VπRF = 3.8V .

In the first part of this chapter, we propose a framework to characterize an
autonomous delayed-feedback nonlinear optoelectronic oscillator based on the
analysis of its nonlinear function. We analytically explain the integral term’s
impact for the modified Ikeda system. In particular, we characterize the route
to spiral-like chaotic patterns in state space, as a function of feedback strength
and operating point. In the second part, we utilize this setup in a steady state
as an intrinsic component of a predictor for chaotic time series. This delay
setup is used in both versions: lowpass and bandpass. The motivation to build
predictors with two different filter structures is to characterize which of the
Ikeda systems is more suitable for information processing. We investigate the
dynamical properties of two different predictors, output-feedback and direct,
performing short and long-term prediction. Finally, we implement a direct
predictor in an electro-optic circuit, and compare the prediction performance
with numerical simulations.

4.1 Autonomous electro-optical system

4.1.1 Electro-optic oscillator setup and model

The electro-optical system is composed by the following devices: a semicon-
ductor telecom laser, used as a source of input light to the Mach-Zehnder
modulator (MZM). The laser diode has a threshold current of I0 = 17.91 mA,
Fig. 4.1(a), an optical emission power of around 10 − 20 mW, and emission
wavelength of approximately 1550 nm.
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Figure 4.2: Schematic diagram of the electronic circuit, where R1 =
1.2KΩ, R2 = 150Ω, R3 = 1.2KΩ, C1 = 47µF , and C2 = 222pF .

A Mach-Zehnder Modulator (MZM) is connected to the laser by an optical
fiber. The MZM performs the non-linear transformation through its modula-
tion transfer function,

P0(t) = Pin cos2
(
π

2

V (t)

VπRF
+ φ0

)
, (4.1)

where V (t) is the input voltage applied to the radio-frequency (RF)-port,
VπRF = 3.80 V is the RF half-wave voltage, and φ0 = πVDC/2VπDC , VπDC =
6.64 V. The MZM used for this experiment is an AZ−1K1−12−PFA−SFA
electro-optic MZM from EOspace, with a non-linear transmission function that
can span until a polynomial of degree 4, as we can see in the Fig. 4.1(b). The
time delay is performed by a 4 km optical fiber, τD ' 19.472 µs. A semicon-
ductor photodiode detects the light, generating a current proportional to the
intensity of the light absorbed,

Vpd = SPin cos2
[
π

2

V (t− τD)

VπRF
+ φ0

]
, (4.2)

with S as the sensitivity of the photodiode, S = 0.9 mA/mW. (5) The band-
pass filter has cutoff frequencies fl = 22.5 Hz and fh = 0.6 MHz, according to
an electrical scheme presented in the Fig. 4.2. The integro-differential equation
describing the filter is

Vin(t) =

(
1 +

fl
fh

)
V (t) +

1

2πfh

dV (t)

dt
+ 2πfl

∫ t

t0

V (t′)dt′, (4.3)
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Figure 4.3: Schematic diagram of the nonlinear time-delayed EO setup. MZM:
Mach-Zehnder Modulator; PD: Photodiode; DL: Delay-Line; BPF: Bandpass
Filter; Amp: RF amplifier.

where 2πfl = 1/R2C1 and 2πfh = 1/R1C2.

The equation of the full nonlinear feedback system is obtained relating the
input of the filter with the output of the photodiode Vin = GVpd, with gain
G = 3.3, that is combining Eqs. (4.2) and (4.3):

(
1 +

fl
fh

)
V (t)+

1

2πfh

dV (t)

dt
+2πfl

∫ t

t0

V (t′)dt′ = GSPin cos2
[
π

2

V (t− τD)

VπRF
+ φ0

]
.

(4.4)

Assuming that the bandpass filter results from the cascade of first-order
lowpass and high-pass filters with fl � fh, it can be shown that system dy-
namics are described by a normalized integro-differential delay equation, which
is explicitly written as:

x(t) + τ
dx

dt
(t) +

1

θ

∫ t

t0

x(ξ) dξ = β cos2[x(t− τD) + φ0], (4.5)
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where,

x(t) =
πV (t)

2VπRF
; φ0 =

π

2

VDC
VπDC

; β =
πGSPin

2VπRF
; (4.6)

τ =
1

2πfh
; θ =

1

2πfl
. (4.7)

For the dynamical system, the main control parameter β can be tuned through
the laser power Pin. Furthermore, φ0 stands for the bias offset phase of the
MZM. Both, β and φ0, are bifurcation parameters for the oscillator. τ and θ
are the characteristics fast and slow response times of the filter.

For mathematical purposes, it is convenient to rewrite Eq. (4.5) as a set of
two dimensionless coupled first-order DDEs with respect to the dimensionless
time ζ = t/τD, resulting in

ε ẋ(ζ) = −x(ζ)− δ y(ζ) + β cos2[x(ζ − 1) + φ0],

ẏ(ζ) = x(ζ); (4.8)

with ε = τ/τD, and δ = τD/θ.

4.1.2 Dynamics of the autonomous system

In the following, the dynamical characteristics of the time-delayed EO oscilla-
tor are briefly analysed. A first step is the stability analysis of the trivial fixed
point, which can be investigated by deriving an eigenvalue characteristic equa-
tion obtained after assuming perturbations proportional to eλζ in Eq. (4.8):

λ2 + λ[1 + β sin(2φ0)e
−λ] + ε = 0. (4.9)

The analysis of this transcendental equation reveals that the trivial fixed point
is stable when |β sin(2φ0)| < 1; beyond this limit, a Hopf-bifurcation might
arise. In this case, the solution of Eq. (4.9) becomes purely imaginary (λ = iω),
and we obtain the following equations:

ω tanω = δ − εω2,

−β sin(2φ0) = (cosω)−1. (4.10)

The first equation of Eqs. (4.10) defines the eigenmodes of the system, allowing
us to analytically calculate the Hopf angular frequency. The second equation
describes the section of the nonlinear function where the oscillation is possible,
as a function of each angular frequency. For sections of the nonlinear function
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Figure 4.4: Experimental and numerical results normalized gain β set to 1.4
(first row), 1.7 (second row), and 2.2 (third row). Left column: Transmission
function of the MZM when operated at the middle inflection point with positive
slope (φ0 = −π/4). Central column: experimental timetraces; Right column:
numerical timetraces.

with a positive slope, we find that the eigen angular frequency is ω '
√
δ, cor-

responding to a slow oscillation. Panels (a,b,c) of Fig. 4.4 show corresponding
slow oscillations. For operation along the negative slope we obtain ω ' π,
hence the period of oscillation is approximately twice the delay time.

When −β sin(2φ0) > 1, a mixed-mode oscillation appears [133], see panels
(d,e,f) of Fig. 4.4. It results from the superposition of two waveforms: (i) a
slow-scale periodic signal, with 5 ms period which is consistent in magnitude
with the value obtained at the Hopf threshold for the slow eigenfrequency,
ω =

√
δ, leading to a physical period of 2πτD/ω =

√
2πτD/fl ' 2.3 ms.

There, the curves at the top and bottom of the time series correspond to re-
laxation oscillations separated by sudden jumps. (ii) The fast-scale dynamics
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Figure 4.5: (a) MZM transmission function with labels {4,©} for the portions
with negative slope. Zoom at the top (b) and bottom (c) of the time series
showing mixed-mode dynamics (see Fig. 4.4(i)), where β = 2.2 and φ0 ' −π/4.
Both with period TP = 40µs = 2τD.

generated in the extrema’s neighbourhood of the periodic time series. Fi-
nally, dynamics with a strong coexistence of both timescales are shown in
Fig. 4.4(g,h,i). Through a qualitative inspection of the nonlinear function in
Fig. 4.4(a,d,g), one can observe that the sections of the nonlinear function with
a negative slope increase with β. This causes the emergence of fast-scale oscil-
lations with period TP = 40µs = 2τD at the extrema of the slow envelop, see
Fig. 4.4(e,f,h,i). Here, the decay in the temporal envelopes for the fast-scale
oscillations are related to the existence of relaxation epochs. Such epochs are
fast time scale oscillations occurring in the neighborhood of the nonlinear func-
tion extrema and along its negative slopes. This highlights the importance of
the nonlinear function’s shape in the actual dynamical solution. In addition,
one can see that the period of the slow envelop continuously increases with
growing β, from 2.3 ms at the slow envelope Hopf threshold (β ' 1), to 14 ms
in Fig. 4.4(g,h,i), through 5 ms in Fig. 4.4(a,b,c) and 10 ms in Fig. 4.4(d,e,f).
Such a period growth is consistent with the analytical study reported in [132].

By zooming in the extrema’s neighbourhood of the time series when {β =
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Figure 4.6: MZM transmission functions for β = 2.2, if φ0 ' 0 (a) and φ0 '
−π/2 (b). Time series associated to the nonlinear function with φ0 ' 0 (c)
and φ0 ' −π/2 (d). Both with period TP = 40µs = 2τD.

2.2, φ0 = −π/4}, it can be seen that fast-scale oscillations have an obvious cor-
respondence with the dynamics generated by the isolated parts of the nonlinear
function with negative slope, where {β = 2.2, φ0 = −π/2; 0}. Figures 4.5 and
4.6 show time series for φ0 = −π/4 and φ0 = {−π/2; 0}, respectively. In
Fig. 4.5, panels (b) and (c) focus on the top and bottom of the nonlinear func-
tion. In Fig. 4.6, these two extrema are disconnected, with dynamics shown
in panels (c) and (d). Under both conditions, dynamics are qualitatively com-
parable, having the same oscillation period TP ' 2τD ' 40 µs as predicted by
Eqs. (4.10) for the first fast eigenmode, with a very similar theoretical value
compared to standard Ikeda model with double delay periodicity.

4.1.3 The Liénard-Ikeda approach

In this section, we analyse the interaction between the two time-scales involved
in the regime of breather oscillations. We therefore focus on the configuration
where φ0 = −π/4, resulting in perfectly symmetric oscillations. One should
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Figure 4.7: (a), (b) Breathers-like dynamics can be generated by changing
periodically the MZM operating point in the Ikeda EO setup, and (c), (d)
zoom at the top of the time series.

notice that the particular case Φ0 = −π/4 is used here for analytical con-
venience only, resulting in the perfect symmetry conditions assumed in the
original Liénard limit cycle theorem. Deviations away from −π/4 however do
not modify qualitatively the observed waveform, essentially changing the duty
cycle of the slow motion. This was already underlined in previous references
such as [133]. In the particular case of Φ0 = −π/4, Eq. (4.8) can be rewritten
as:

ẍ+ ẋ− β cos[2x(ζ − 1)]ẋ(ζ − 1) + εx = 0. (4.11)

In order to recover the textbook equation for Liénard system [140] from the
previous equation of a bandpass EO delay dynamics, one needs to apply a new
change of variable s = ζ

√
δ/ε. Doing this and assuming that the delay can be

neglected compared to the time scales of the Liénard cycle, one indeed obtains:

ẍ+ F ′(x)ẋ+G′(x) = 0, (4.12)

where

F ′(x) =
1√
εδ

[1− β cos(2x)] (4.13)
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Figure 4.8: First-return maps from the time series: (a) β = 1.7 with the
corresponding zoom at the top and bottom extrema, (b) β = 2.2 with the
corresponding zoom at the top and bottom extrema, where φ0 = −π/4.

is an even function scaling the nonlinear damping, while G′(x) = x is an odd
function corresponding to the restoring force. This associated function F (x)
is determined from F ′(x) in Eq. (4.13). The Liénard plane is thus defined as:

ẋ = y − F (x), (4.14)

ẏ = −g(x) , (4.15)

where

F (x) =

∫ x

0

F ′(ξ) dξ =
1√
εδ

[
x− 1

2
β sin(2x)

]
, (4.16)

and g(x) = G′(x) are smooth odd functions. From here it is possible to obtain
the Liénard xy-plane, which provides the exact solutions for the nonlinear
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transformations shown in panels (a,d,g) of Fig. 4.4. According to the theorem
ruling Liénard equation and its possible limit cycle solutions, Eqs.(4.14-4.16)

have stable limit cycles if F (x) has exactly three zeros with F ′(0) = (εδ)−
1
2 [1−

β] < 0 if β > 1, and F (x) → ∞ if x → ∞ [140]. A more detailed analysis of
the Liénard derivation and bandpass Ikeda dynamics, as well as its detailed
discussion in the xy-plane, can be found in [133].

The previous transformation of the bandpass EO delay dynamics into a
Liénard system is helpful to discuss our main finding concerning the regime
depicted in Figs. 4.4 to 4.8. In the EO bandpass delay system with moderate
feedback (β = 1 to ca. 3), fast and slow timescales are in fact nonlinearly cou-
pled, however in an unidirectional way. Fast dynamics obey the standard Ikeda
equation, while slow dynamics follow a Liénard limit-cycle. The slow Liénard
cycle actually drives the operating point Φ0, around which a fast conventional
Ikeda dynamics (i.e. low pass model, without the integral term) develops. To
demonstrate this physically, we have performed a simple experiment in which
the Liénard compound is replaced by an external triangular waveform mod-
ulating the offset phase parameter. The triangular shape of the waveform is
motivated by the fact that the external drive is intended to replace the inte-
gral variable y of the original bandpass delay dynamics. This variable is indeed
the long time scale integral of the variable x which can be approximated, on
average (due to the slow integration time of concern), by a constant, whether
positive or negative. The corresponding integral is then simply a triangular
waveform. Such a system is then modeled by:

ε
dz

dt
(t) = −z(t) + β cos2[z(t) + Φ0 + u(t)] (4.17)

where u(t) is a triangular waveform having an amplitude and a period tuned,
so that its effects emulate the actually observed slow oscillation of the Liénard
limit-cycle. One could notice that the previous Eq. (4.17) can be obtained
from the bandpass Ikeda model in Eq. (4.8), setting z(t) = x(t) + δy(t) and
u(t) = −δy(t), and assuming that the term εδẏ is a negligible derivative in
time compared to εż, due to the smallness of δ. Experimental and numerical
results are shown in Fig. 4.7, where both, the global shape as well as finer
details at fast time scales are in excellent agreement. Experimentally, the
forcing u(t) of the standard Ikeda system was implemented by modulating φ0

through the MZM’s DC input, with amplitude VDC = 5.9 V and frequency
211 Hz. By using these values we approximate the slow periodic envelope of
the bandpass Ikeda with the triangular signal, whose frequency is typically
around 200 Hz. Furthermore, the amplitude of the triangular signal spans
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Figure 4.9: Numerical simulations of distributions of the orbits x(t) for differ-
ent feedback gain values β and φ0 = −π/4.

the full extrema neighbourhood of the nonlinear function, φ0 ∈ {−π/2, . . . , 0},
where the Ikeda-like dynamics are dominant. The timetraces exhibit Ikeda-like
oscillations combined with periodic breathing at the frequency of the external
modulation. Consequently, it can be deduced that the evolution of the system
displays Ikeda-like oscillations close to the extrema neighbourhood, while the
integral part induces slow timescale Liénard-like oscillations.

It is informative to illustrate the system’s dynamics in a 2-dimensional phase
space using an attractor reconstruction technique. This procedure is carried
out by using an additional time delay coordinate x(ζ − 1), which allows to
project the original attractor onto a 2-dimensional phase space. In order to
implement this method, we have recorded an experimental timetrace from the
EO experimental setup, and used it to obtain the coordinates for the time-
delay based 2D-embedding. Figure 4.8 shows 2-dimensional projections of
the reconstructed attractors in the phase space for two types of breathers,
where β ∈ {1.7, 2.2}. The existence of a large limit cycle is revealed by the
slow-scale dynamics corresponding to the Liénard dynamics. The spiral-like
trajectories in the limit cycle represent the fast-scale Ikeda-like solutions in the
2D-projection. This behavior is maintained even when the fast-scale dynamics
has a chaotic nature. The spiral-shaped pattern of the attractor is related
to the relaxation dynamics of the system induced by the slow-scale periodic
oscillation, which yields a decaying in time envelope for the Ikeda-like wave-
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forms. This spiral pattern is therefore the topological signature of a global
interaction of two different dynamics, which are interacting nonlinearly with
different timescales, however unidirectionally from the slow motion (θ) into
the fast ones (τD and τ).

As illustrated in Fig. 4.9, when β is further increased (ca. above 3.3),
stronger time scales interplay results in the vanishing of the Liénard slow limit
cycle and gives rise to fully developed chaos. We anticipate that such fully
developed chaos consists of a more complex and probably bidirectional time
scale nonlinear mixing, as clearly shown by the nicely smoothed probability
density function profile after the vanishing of the Liénard envelope (see Fig.
7).

4.2 Electro-optic oscillator for information

processing

We have studied the dynamical properties of the Ikeda system in the temporal
domain. There, we investigated in detail the coupling between the fast-scale
behavior associated to a characteristic lowpass Ikeda behavior, and slow-scale
dynamics associated to a Liénard limit-cycle bandpass Ikeda, for φ0 = −π/4.
From this study, we conclude that it is possible to approximate characteristic
lowpass Ikeda behavior in the bandpass Ikeda.

In the following, we introduce a second study related to the capabilities of
this system to process information. It starts by describing the spatio-temporal
dynamical features of the Ikeda system, that can lead to a structural compari-
son with spatial networks that process information. From the spatio-temporal
approach it is plausible to understand how many spatial variables we can find
to be used as nodes. Here, we work with two different kind of Ikeda systems,
which are differentiated by the use of lowpass or bandpass filters.

4.2.1 Spatio-temporal approach

Let us introduce the Ikeda systems representated as an infinite system of cou-
pled ordinary differential equations (ODE) [17],

ż0(ι) = f(ι),
ż1(ι) = g(ι),

żi(ι) =
n

R
(zi−1(ι)− zi(ι));

(4.18)
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for i = 2, 3, . . . , n→∞. The bandpass Ikeda is described by f(ι) = −z0(ι)−
ρz1(ι) + β cos2(zn(ι) + φ0), and g(ι) = z1(ι). The lowpass Ikeda system by
z1(ι) = 0, then f(ι) = −z0(ι) + β cos2(zn(ι) +φ0), and g(ι) = 0. With τ as the
fast response time of the filter, we normalize variables by τ , defining ι = t/τ
as the dimensionless time, R = τD/τ the dimensionless time delay, ρ = τ/θ
the dissipative coefficient depending on θ (the slow response time of the filter),
and the coupling term between spatial elements is n/R. This representation
is fulfilled if and only if

zn(ι)→ x(ι), when n→∞, (4.19)

with
lim
n→∞

Rn = R, (4.20)

where, the time delay R has been represented as an interval of n elements.
When these elements are infinite (n → ∞) we can write the DDE as an
infinite system of coupled ODEs. Each ODE models the temporal evolution
of one dynamical variable zi(ι), which therefore corresponds to the ith spatial
variable. Consequently, we have established a transformation into a pseudo
space-time domain (i − ι) of the purely time representation of the Eqs. (4.8)
and (1.21).

In order to solve Eq. (4.18), we use the Euler integration scheme. The
advantage of following this procedure is that it allows us to use the space-time
representation to get the solution of the DDE. Its discrete-time approximation
is given by 

z0(k + 1) = z0(k) + 3hf(k)/2,
z1(k + 1) = z1(k) + 3hg(k)/2,
zs(k + 1) = zs−1(k);

(4.21)

where h = R/(Υ + 1/2), and 2 ≤ s ≤ Υ → ∞. The functions {f, g} are
defined for the bandpass Ikeda as f(k) = −z0(k)−ρz1(k)+β cos2(zM(k)+φ0),
g(k) = z0(k), and for the lowpass Ikeda as f(k) = −z0(k)+β cos2(zM(k)+φ0),
g(k) = 0. Here, space-time (s − k) is defined by spatial variable s, which
indicates the number of spatial variables s needed to describe the entire system,
and k describes the discrete-time evolution. In fact, spatial variable defines
how many initial conditions over the range −R < k < 0 are required in our
approximation of the continuous-time delay oscillator.

We perform the numerical simulation by setting M = 210, R = 63, ρ =
3.67 × 10−5, and φ0 = −0.6π. The spatio-temporal (s − k) patterns for
β = {1.76, 2.3, 3} in the lowpass Ikeda oscillator, and β = {2.6, 3.2, 6} in the
bandpass Ikeda oscillator are shown by Fig. 4.10(a,b,c) and Fig. 4.10(d,e,f),
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Figure 4.10: Spatio-temporal (s − k) patterns for β = {1.76, 2.3, 3} in the
lowpass Ikeda oscillator (a-c), and β = {2.6, 3.2, 6} in the bandpass Ikeda
oscillator (d-f).

respectively. Vertical axes range over one delay, while horizontal axes cover
around 50 delay units. These patterns give insights about the hidden spatio-
temporal dynamics evolving in delay oscillators. The left panel of Fig. 4.10
shows regular spatio-temporal structure of periodic solutions. This spatial reg-
ularity is approximately preserved even if the solutions are chaotic, see central
panel of Fig. 4.10. Finally, the previous shown spatio-temporal patterns have
been attenuated, corresponding to hyper-chaotic solutions, see right panel of
Fig. 4.10. At this point, we highlight that after the transformation of the
delay coupled oscillator into the coupled spatio-temporal system, the result-
ing dynamics share strong similarities with the spatial network introduced in
Chapter 3. The element in common of both dynamical systems is the sinu-
soidal nonlinear function. In these cases, the sinusoidal function allows the
existence of Hopf bifurcation as part of its route to chaos.

As it was shown, spatial representation in the Ikeda systems is identified
through the variable s, where each component in their domain corresponds to
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Figure 4.11: Distribution of the dynamical variables along the (a) s-spatial at
k = 1 and (b) k-temporal at s = 3 variables in the lowpass Ikeda oscillator at
β = 2.44.

a spatial coordinate. However, these spatial coordinates correspond to tem-
poral terms defined differently. For example, in a single delay unit s we have
R elements defined as coordinates, the separation in time between these co-
ordinates is equal to h. Figure 4.11 shows how the spatial coordinates are
distributed along the s-domain in the lowpass Ikeda oscillator. In Fig. 4.11(a),
the positions in amplitude of the R spatial coordinates are shown for β = 2.44
and k = 1, where each of them is identified by a unique amplitude value. In
Fig. 4.11(b) we show the chaotic temporal evolution of one of the coordinates
at s = 3.

Until this point, our study evidences that we can obtain spatio-temporal rep-
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Figure 4.12: Distribution of the dynamical variables along the (a) s-spatial at
k = 1 and (b) k-temporal at s = 3 variables in the lowpass Ikeda oscillator at
β < 1.8.

resentations of the Ikeda systems, where the dynamical variables are separable
and distinguishable. In addition, the whole system of equations is found to be
made of an infinite set of coupled ODEs. The coupling term is defined as dis-
crete interactions between nodes, unlike the approach introduced in Sec. 1.4.7
where the coupling is defined via the linear impulse response of the delay os-
cillator. Hence, we can start pointing out the conditions to use our infinite
system of coupled ODEs as artificial neural networks (ANNs). The network-
like model defined here will be built by considering each spatial individual
place in the space domain as a node.

As introduced in previous chapters, information processing is better per-
formed at resting state of the network. In general, the resting state can be
thought in terms of fixed points, i.e. it does not have time evolution until it is
perturbed by an external stimulus. From our infinite system of coupled ODEs,
we can also have all the dynamical variables in resting state. As an illustration
of this fact, for low values of the gain feedback parameter, β < 1.8 in lowpass
Ikeda, it is plausible to find individual fixed points. The R spatial coordinates
at k = 1 are all organized along a constant amplitude, see Fig. 4.12(a). Fig-
ure 4.12(b) shows an example of the temporal domain of the spatial coordinate
s = 3.

The full set of possible dynamical states are shown by the bifurcation di-
agrams varying β in Fig. 4.13 for the (a) bandpass and (b) lowpass Ikeda
systems. These diagrams show that there are large intervals for the feedback
gain β = (0, 1.8) for the lowpass, and β = (0, 2.7) for the bandpass Ikeda,
where the fixed points are stable. The case of φ0 = −π/4 in the bandpass
representation, studied in the first part of this chapter, shows that the fixed
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Figure 4.13: Bifurcation diagram for the (a) lowpass and (b) bandpass Ikeda
oscillators at φ0 = −0.6π.

point is stable for a shorter interval β = (0, 1). Otherwise, in the operating
point at φ0 = −0.6π, we can expect an extensive stable manifold that can be
further used for information processing.

4.2.2 Delay reservoir computing for prediction of chaotic
time series

The scheme of our delay reservoir computing (DRC) [7, 8, 141, 142] concept
for prediction is shown by Fig. 4.14. It illustrates the Eq. (4.21) with f(k) =
−z0(k)−ρz1(k)+β cos2(zM(k)+αuin+φ0) and f(k) = −z0(k)+β cos2(zM(k)+
αuin + φ0) for bandpass and lowpass Ikeda, respectively. Spacing between
nodes in DRC are defined in this approach by δτ . Thus, our network has R
spatial variables, then the connectivity of our network is given by R/δτ . The
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as one-step time-delayed time series, Mx = {x1(k − 1), x2(k − 2), x3(k −
3), . . . , xm(k −m)}.
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input signal uin = [W in · yTn ]pδτ is composed by the multiplication between
the original sequence yTn and the input weights vector W in, where each value
of yTn will multiply W in. After such operations, each resultant vector is time
multiplexed via pδτ , in order to excite the nodes in the network (see procedure
introduced in Sec. 1.4.7).

In practice, we utilize m = 1000 nodes in total, which are distributed in
sets of R/δτ nodes per delay interval, where δτ = 10. The input layer consists
in a input signal uin amplified by a factor α = 0.8, composed by an input
weights vector W in with m = 1000 randomly distributed elements in [−1, 1]
(generated using the MATLAB routine rand); and yTn comes from the MG
system Eq. (1.7). The multiplexed input sequence uiin, associated to the ith
value of yTn (with i = 1, . . . , n), consists in approximately 158 delay units of our
DRC. Each multiplexed sequence is injected in an independent realization of
the Ikeda equation. It means that, if the training step is performed by using a
set of k = 5000 values of the MG sequence, then we inject independently 5000
values of the MG sequence in 5000 different realizations of the Ikeda equation.
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Figure 4.16: Bandpass Ikeda-based feedback predictor. (a) Prediction error
(NMSE) of 85 MG steps, (b) 150 steps in the future prediction of MG, with
signals yout (blue stars) and target yT (black dots), and (c) the error between
predicted and target signals, (yout − yT ), for β = 0.6.

That is to say, we inject each value of yTn in a multiplexed signal corresponding
to 158 delay untis of our DRC, and we repeat this procedure 5000 times. The
node responses are collected in the matrix Mx = {x1(k − 1), x2(k − 2), x3(k −
3), . . . , xm(k−m)} with dimension m× (k−m), where each xi(j− i) is a time
series.

Next, we utilize all node responses Mx and a teacher signal yTn+1 to train
the network for prediction. The output yout of the entire system is calculated
by yout = W out · Mx, by optimizing W out

op = min |W out · Mx − yTn+1|, using
regression via S.V.D, see Sec. 1.4.8. Until this point, we have investigated just
one model for prediction, which is a feedback predictor, capable to iterate a
single-step prediction several times to get long-term prediction performances.
This iterative model requires to connect the predicted output yout with the
input yT , updating the system recurrently with the last predicted value. Now,
we will consider a second model defined as direct predictor. Such model implies
to set a prediction horizon T in the learning step, time shifting the target
T time steps in the future, yTn+T , respect to the input yTn . In this case we
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Figure 4.17: Lowpass Ikeda-based direct predictor. Prediction error (NMSE)
of MG for prediction horizons PHs= {17, 34, 51, 68, 85}.

optimize W out
op = min |W out · Mx − yTn+T |. Then, the testing step does not

require the output to be feedback into the system as in the feedback predictor.
Consequently, the network is not left running freely for prediction, it just
predict T steps in the future all at once. The advantage of using this second
model is that it can be easily implemented in hardware such as the electro-optic
oscillator introduced in Sec. 1 of this Chapter.

Feedback prediction

The first feedback predictor is build by using the lowpass Ikeda system at
φ0 = −0.6π for feedback long-term prediction of the MG system. To enable
such prediction, we disconnect the teacher after the step n = 5000 and set yout

as input, in order to leave the network running freely 85 steps (five times the
time delay of the MG system). In Fig. 4.15(a), the NMSE shows that the best
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Figure 4.18: Bandpass Ikeda-based direct predictor. Prediction error (NMSE)
of MG for prediction horizons PHs= {17, 34, 51, 68, 85}.

long-term prediction performance is found at β = 0.6 with NMSE ' 4.6×10−5.
Under this condition, we left the lowpass Ikeda running freely until it predicts
300 steps. The outcome of this test is illustrated in Fig. 4.15(b), where signals
yout (blue stars) and target yT (black dots) are directly compared. Figure
4.15(c) shows how the error between predicted and target signals, (yout − yT ),
changes overtime. Here, the smallest errors are found for the first 100 steps
of the prediction, but in general we can still predict until 300 steps in the
future (which is around eighteen times the time delay of the MG system) with
a relative small error (NMSE of 0.04).

The same experiment was repeated for the bandpass Ikeda, with which we
build our second predictor, the results are shown by Fig. 4.16. The best predic-
tion performance is found at β = 0.6 with NMSE ' 8.5× 10−4, corresponding
to 85 steps prediction, see Fig. 4.16(a). A second peak of good performance is
found at β = 1.5 with NMSE ' 1.6× 10−3. For β = 0.6, we left the bandpass
Ikeda running freely for 150 steps, where signals yout (blue stars) and target
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yT (black dots) are directly compared, see Fig. 4.16(b). The error between
predicted and target signals, (yout− yT ), are small for the first 80 steps, but in
general we predict until step 150 in the future with a NMSE of 0.06, see Fig.
4.16(c).

Direct prediction

In our second prediction paradigm, we build direct predictors whose perfor-
mances we can compare with their feedback counterparts. We keep exactly the
same topology, input properties and parameters in the direct system as well.
Here, we only change the training and testing procedures. In the design of
direct predictors, the prediction horizon (PH) has to be defined a-priori in the
learning step. In contrast, feedback predictors a-posteriori define their predic-
tion capabilities in the testing step. As a common element, both predictors
establish their PHs when the output strongly diverge respect to the target.

We investigate both, lowpass and bandpass Ikeda-based direct predictors
with φ0 = −0.6π, by setting various PHs= {17, 34, 51, 68, 85}, and evaluate
the prediction performance for varying β. In Fig. 4.17, the NMSE as function
of β for the lowpass Ikeda system is shown, where lower errors are found
for the range β ∈ (1.5, 2) for PHs= {51, 68, 85}, and β ∈ (1.5, 2.5) for PHs=
{17, 34}. We find similar behaviour in the bandpass Ikeda system, see Fig. 4.18.
However, the lower errors for the bandpass oscillator are all found for the range
β ∈ (1, 2) for all PHs. In general, increasing the PH worsens the performance
of our predictors, i.e. the NMSE is almost monotonously increasing with the
increment of the PH. Good prediction performances have been found for values
of β close to the bifurcation points, which are β ' 2.3 for the lowpass, and
β ' 1.45 bandpass Ikeda systems.

A comparison between predictors lead us to conclude that feedback predic-
tors perform better long-term predictions than their direct counterparts. This
is related to the fact that direct predictors are not iterative, they cannot gener-
ate internal dynamics as feedback predictors do. As introduced in Chapter 2,
iterative models require a feedback between the predicted output and the in-
put, updating the system recurrently with the last predicted value. There are
causal relationships formed between the predictor’s components, coming from
the autonomous storage-and-update of information. The stored and new in-
formation accumulated in an autonomous feedback loop implies memorization,
with which it is possible to enhance long-term prediction performances [43].
We can therefore expect good long-term prediction performances far from the
edges of bifurcation, as shown by Fig. 4.15(a). Therefore, our non-feedback
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Figure 4.19: First panel to the left, shows the way how to select the node
responses to uncover the embedded attractor. Second panel to the right shows
the reconstrcuted dimensions of the MG attractor. The node responses come
from the perturbed lowpass Ikeda, but similar objects where found for the
bandpass Ikeda.

predictors, unable to generate autonomous internal dynamics, seems to har-
ness the most the high excitability features of the Ikeda systems’ edges of
bifurcation to enable long-term prediction.

Finally, we can look inside our networks to understand if there are evidences
of Takens-like embedding from node responses, as introduced in Chapter 2.
Additionally, we search if different versions of the MG attractor found in the
Ikeda system could provide part of the required structure to build a predictor,
as it was described in Chapter 2. The first set of nodes lagged at the values of
the Takens scheme is {x1(k − 1), x13(k − 13), x25(k − 25), x37(k − 37)}. The
second set of nodes is {x2(k − 2), x14(k − 14), x26(k − 26), x38(k − 38)}. From
the third to the last set, the procedure to obtain sets of nodes lagged at the
values of the Takens scheme follows the same structure. This procedure let
us identify if the delay system is creating modified versions of the originally
injected object as we could find in the rRNNs.

We show some 2D projections of the embedded MG attractor in Fig. 4.19,
where some of them are qualitatively comparable to the reconstructed MG
attractors from the Takens scheme, see Fig. 1.9, and others are topologically
equivalent but look more distorted and folded. In the case of rRNNs, the ran-
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Figure 4.20: Maximum and minimum boundaries {ε1, ε2} for (a) lowpass and
(b) bandpass Ikeda-based predictors.

dom mapping was found to play an important role to create nearest neighbors
for prediction, however the Ikeda system creates these neighbors in a different
way. The neighbors come from distortions on the MG attractor related to the
nonlinear damping of the Ikeda oscillator. Since the nonlinearity appears in
the dissipation coefficient of the equation, the oscillator tries to maintain the
constant amplitude of the stationary state, even if there is an external pertur-
bation. This inertia-like behavior of the Ikeda oscillator distorts the incoming
information, and binds it to its relative basin of attraction. Such boundary
structures perform vicinities from where neighbors merge.

The ensemble of various embedded attractors in the lowpass Ikeda can be
quantitatively investigated through the estimation of the limits {ε1, ε2} of in-
terstate distances in the network. Following Sec. 2.2.1, we determine {ε1, ε2}
for several values of β. Figure 4.20(a) shows that ε1 ≈ 1 remains constant for
all β. Therefore, embedded versions of the MG attractor are found to have
very small minimal interstate distances for all β. The evolution of ε2 shows
that the maximal interstate distance is monotonically increasing with β. In
fact, for β = 0.2 the limit ε2 is already close to one, then long-term prediction
is in fact theoretically possible according to the results presented in Chapter 2.
However, good long-term predictions start at β = 0.4 and β = 0.5 for the low-
pass and bandpass-based feedback predictors, respectively. In these cases, the
limit ε2 ' 10 corresponds to the case where the versions of the MG attractor
allow a proper scan of the MG’s neighborhood. As we conclude in Chapter 2,
currently we are not able to deduce how the neighbors are distributed in the
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Figure 4.21: (a) Schematic diagram of the photonic direct predictor. MZM:
Mach-Zehnder Modulator; PD: Photodiode; DL: Delay-Line; F: lowpass or
Bandpass Filter; Amp: RF amplifier; AWG: arbitrary waveform generator;
OSC: oscilloscope. (b) Picture of the experimental setup, showing the devices
from left to right, consists in the oscilloscope, AWG, and the delay electro-
optic circuit. (c) Zoom on the circuit, showing individual elements of Ikeda
photonic implementation.

network to enable prediction, they could build clusters of neighbors which are
not randomly scattered along the state space region where the attractors are.
Therefore, the information required to complete the chaotic attractor model
under study is limited. Good prediction results (see Fig. 4.15(a)) seems to
stop when ε2 is sufficiently large (ε2 ∼ 1 × 102), then interstate distances of
embedded attractors are considered far out of the nearest neighbourhood.

The same experiment was repeated for the bandpass Ikeda, and the results
are shown by Fig. 4.20(b), where the estimated limits {ε1, ε2} have a compa-
rable evolution as function of β, until β = 1.3. In this point the values of ε2
start decreasing with the increment of β, disrupting therefore the monotonous
increment performed by ε2. The limit ε2 < 1 × 102 is coincidental with good
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Figure 4.22: Illustratition showing a set of 400 points from the MG system,
then a zoom in a subset of it, from where we extract datapoints to be masked
and distributed along all the input trace.

long-term prediction performances in Chapter 2, shown by Fig. 4.16(a).

4.2.3 Photonic reservoir computing for direct predic-
tion

The experimental implementation of the photonic reservoir computing (PRC)
concept is based on the electro-optic oscillator introduced in section 4.1 [7,
8, 141, 142]. Figure 4.21(a) shows the schematic diagram of the full circuit
for prediction. Here, we add a connection to an arbitrary waveform generator
(AWG), through which the information is injected into the electro-optical os-
cillator. Then, after a round-trip the processed information will be recorded
by the oscilloscope. Also, the filter (F) can be set either lowpass or bandpass,
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Figure 4.23: Both panels contain experimental maximum and minimum
boundaries {ε1, ε2} on the top, and experimenatal (blue dots) and numeri-
cal (red stars) prediction error (NMSE) of 6 MG steps on the bottom, for
(a,b) lowpass and (c,d) bandpass Ikeda-based direct predictor.

keeping the same high cutoff frequency. An illustrative picture of our setup is
shown by Fig. 4.21(b), where the devices from left to right consist in the oscil-
loscope, AWG, and the delay electro-optic circuit. A zoom on the circuit can
be seen in Fig. 4.21(c), where we can find the individual elements which model
and solve the Ikeda DDE: photodiode, laser diode, MZM, filter, amplifier and
4 km fiber optic.

Up to this point, we have investigated the operating point which leads to the
best prediction performances in the Ikeda-based feedback and direct predictors.
However, in our experiments we define the operating point at φ0 = −π/2,
allowing us to work at the extreme of the nonlinear function. Such operating
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point is the most suitable to be used under noisy conditions, which are expected
in experiments. In fact, the MZM is a device that experiences several drifts that
can provide additional instabilities leading to bad processing performances.
Consequently, it is important to work with an operating point which can easily
be identified once it is spontaneously changed by the drifts of the MZM.

In the previous approach, we injected each single value of uin in approxi-
mately 158 delay units of our DRC. It means that if uin consists in 5000 values,
we have to repeat 5000 times the injection of those 158 delay units carrying
each single value of the sequence uin. In our current experimental setup, such
task is far time consuming and risky, because we have to repeat injection of a
sequence of 5000 values from the MG system in 5000 independent realisations
of the same experiment. Then, drifts of the MZM can unset the whole experi-
ment in ways that we cannot handle with our current resources. With the aim
to avoid these issues, the training dataset has to be all injected at once in one
single realisation of the experimental Ikeda systems. Yet, this solution leads
us to the problem that we would have to inject a large amount of data in a
single realization of the same experiment. Therefore, our first step is to reduce
the amount of information to be injected.

For that, a new connectivity of the PRC is defined by setting δτ = 5. With
this value defining the space between network nodes, we increase the amount
of coordinates to be used per delay in our reservoir. Also, we use a smaller
amount of nodes, m = 100, and input connections via weights vector W in with
100 randomly distributed elements in [−1, 1]. Then, the multiplexed input
sequence uiin associated to the ith value of yTn , consists in approximately 8
delay units of our DRC. The training step is performed by using a learning set
of k = 1000 MG datapoints.

In the next step, we have to emulate k independent realisations of the Ikeda
systems. Then, between two different values {uiin, ui+1

in } we leave large blank
spaces. By doing this, it is possible to untangle and separate two consecutive
input values as if they were being processed in independent realisations of the
Ikeda equations. Figure 4.22 shows an illustrative example of this procedure.
Here, a set of 400 points from the MG system is chosen, then we zoom into a
subset of this sequence, from where we extract datapoints to be masked and
distributed along all the input trace. By using this procedure, we are capable
to process and record 1000 values from the MG time series, corresponding to
the full length of the training sequence in our experiment. The information is
injected via the AWG and recovered by the oscilloscope both with a sampling
frequency of 25 Ms/s.

The experiment is carried out by the injection of two sets in two different



CHAPTER 4. ELECTRO-OPTIC OSCILLATOR AS DELAY NEURAL
NETWORK 103

experimental steps. The first one is the set for the training, and the second
is for the testing. The testing set is extracted from the same MG system but
100 steps shifted, it means that if the temporal domain of the training signal
is in [1, 1000], then the testing signal’s domain is in [101, 1100]. The prediction
horizon defined for this set of nodes and training values is T = 6. The aim
therefore is to predict points from 1100 to 1105 of the MG signal. The training
step is done offline.

We start the analysis by estimating experimental limits {ε1, ε2} for the low-
pass Ikeda oscillator. Figure 4.23(a) shows the evolution of the limits as β
increases. It can be seen that ε1 remains close to the unity, indicating the
presence of small minimal interstate distances from the embedded MG ver-
sions in the PRC. On the other hand, ε2 exhibits a more complex behav-
ior. In Fig. 4.23(b), we can find two separated sets with small NMSE around
β = {1, 1.7} in the experiment (blue dots) as well as in the numerical simula-
tion (red stars). The best experimental prediction performance was found in
two regions, one around β = 1 where NMSE= 0.03, and the second around
β = 1.7 where NMSE= 0.06.

The same analysis was implemented on the bandpass Ikeda-based predictor.
{ε1, ε2} were estimated as functions of β, see Fig. 4.23(c). The here presented
experimental limits give ε1 ≈ 1 for all β, and ε2 increasing with some irregu-
larities. Contrary to the lowpass case, this predictor contains just one region
associated to good performance, that is around β = 1.4 in the experiment (blue
dots) as well as in the numerical simulation (red stars). The lower NMSE is
0.3, which is by one order of magnitude worst than for the lowpass-based
predictor. Due to the integral component of the bandpass Ikeda system, the
oscillator is integrating along all the time series, causing additional distortions
to the processed data.

4.2.4 Conclusion

We have investigated the autonomous dynamics of a bandpass delayed non-
linear EO system, and their particular slow-fast solutions, when the nonlinear
feedback involves a positive slope between two extrema. Depending on the
strength of the nonlinear delayed feedback weighted by the bifurcation param-
eter β, various solutions are bifurcating. The particular parameter conditions
of concern have been recently investigated in the view of Liénard limit cy-
cle. We have further shown that beyond the Liénard limit cycle solution, the
Liénard-Ikeda solution can be interpreted as the unidirectional coupling of a
conventional (i.e. low pass instead of bandpass) Ikeda dynamics and a Liénard
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limit cycle modulating the phase parameter of the Ikeda dynamics. Our re-
sult is demonstrated experimentally by a lowpass Ikeda dynamics externally
driven by a triangular waveform typically resulting as slow dynamical term
from a Liénard system. Experimental and numerical results are found to be
in excellent agreement, and results are supported by analytics developed on
the original bandpass Ikeda model. Future work will focus on the exploration
of such system dynamics for strong β, when the three timescales θ, τ and τD
are suspected to mutually trigger the chaotic oscillations, thereby inducing a
higher complexity in the timescale interactions.

In the second section, we have studied in theory, numerics and experiments
the properties of two different predictors (feedback and direct) in a delay os-
cillator. The predictors were used to perform short and long-term prediction
of MG chaotic time series. We have shown that feedback predictors are in fact
the best long-term predictors in our framework, by estimating more than 100
steps in the future with low errors. In contrast, direct predictors were found
to be more innacurate for this task, showing relatively high errors for 85 steps
prediction. However, direct predictors can be used as short-term predictors
since they can be trained to estimate less than 34 steps in the future with
small NMSE. As our experimental setup was not suitable to implement feed-
back prediction paradigm, we could use it for short-term direct prediction. For
prediction horizon T = 6, we built Ikeda-based direct predictors by using two
different filters: lowpass and bandpass with the same high cutoff frequency.
The performance of the bandpass predictor was shown to be the less optimum,
since the integral term in the bandpass Ikeda oscillator introduced additional
noise-like distortions to the processed time trace in our approach.



Chapter 5

Conclusion and perspectives

Conclusions

This work starts with the study of spatial rRNNs based on a toolbox from dy-
namical systems theory. We have introduced a novel methodology providing
a long-missing understanding of how prediction is achieved by rRNNs. Pre-
vious approaches typically reduced the required characteristics simply to the
memory capacity or comparable measures. Yet, a chaotic signal is determined
by the structure of its phase space, which is far more complex than a single
parameter. We provide this essential connection and have identified how the
complex and high-dimensional interactions within a rRNN allow such systems
to predict with excellent performance. We have shown that rRNNs are capable
to build a spatial representation of a 1-dimensional chaotic time series. Our
finding partially removes the black-box property of rRNNs for prediction.

The consequences of our novel framework are far-reaching. A systematic un-
derstanding of the intricate linkage between the rRNN space and the chaotic
attractor enables the field of neural networks to pursuit new avenues. It al-
lows for the development and crucially an effective evaluation of new training
methods. Furthermore, our scheme based on random nonlinear mapping and
nearest neighbors identifies the key ingredients for prediction based on high-
dimensional nonlinear systems. This approach also allows us to improve the
design of our neural network in order to reduce the number of nodes and con-
nections required to solve prediction. The practical implications of our scheme
are directly related with the identification of strategies to modify classical
computers for prediction by a priori defining external memory access rules.

The next approach was about the investigation of dynamical complexity
in multistable rRNNs beyond their fixed point. We therefore demonstrated
processes inside a random neural network which allow good prediction per-
formance at parameters where learning in biological neural networks benefits.
Based on a rRNN with a periodic nonlinear function, we compare various
regions of regular dynamics and highlight their importance of spatial synchro-
nization upon prediction performance, mutual information and the stability
of the neural network. Synchronization between nodes plays an essential role,

105
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but it is not sufficient to understand how information processing is successful
in a rRNN beyond its fixed point.

We describe a rRNN predicting the future time-steps of the a chaotic tra-
jectory. Our results illustrate the importance of information flow, divergence
and the suppression of signal components not present in the training data
set. The rRNN’s damped autonomous deviation σα=0, mutual information
MI and maximal Lyapunov exponent can be seen as complexity indicators for
interpreting neural networks based on dynamical systems. Other than for the
oscillatory state, chaotic responses were not capable to maintain important
features of the input dynamic, resulting in low prediction performances.

Finally, we have investigated at first the autonomous dynamics of a delayed
nonlinear electro-optic system capable to exhibit slow-fast hybrid trajectories,
which are associated to different parts of the system’s nonlinear transfer char-
acteristic function. For instance, the neighbourhoods of the function extrema
are related to oscillations typical of Ikeda equation. However, if φ0 = −π/4
we can expect to have two Ikeda-like fast-scale solutions coexisting in different
regions of the phase space and connected to each other by a large amplitude
slow-scale periodic envelop.

In order to generate those solutions, the dynamical system autonomously
harness a cubic polynomial fraction of the quartic polynomial fulfilling the
role of the MZM’s transfer characteristic. This is consequential of the associ-
ated energy-based approach, through the equivalence with the general Liénard
system. Subsequently, the 2D projection of the reconstructed orbits in the
phase space have been found in a finite region of it, due to the limits that
the potential function impose to them. From the attractor reconstruction, we
discovered spiral-shaped Ikeda-like solutions on the extrema of a huge limit
cycle, related to the fact that the high-pass filter in the electro-optic circuit
can be understood as a coupling element between two Ikeda solutions.

In the second section of this last part, we have studied the properties of
feedback and direct predictors in a delay oscillator, for short and long-term
prediction of MG chaotic time series. We have shown that feedback predictors
are better for long-term prediction than direct ones. However, direct predic-
tors can be used for short-term prediction, and then easily implemented in
our experimental setup. For prediction horizon T = 6, we built Ikeda-based
direct predictors by using two different filters: lowpass and bandpass with the
same high cutoff frequency. The performance of the bandpass predictor was
shown to be the less optimum, since the integral term in the bandpass Ikeda
oscillator added additional noisy-like distortions to the processed time trace in
our approach.
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Perspectives

The perspectives for future works can be split into the following two main
perspectives:
• Extend the theory to different tasks such as classification. Classification

task of spoken digits contains hints about embedding as a part of the proce-
dure to classify any elements. Here, we use cochleagram to enable perceptual
separation of sound. The number of frequency channels used depends on the
sampling frequency of the pronounced numbers. For a sampling frequency of
12.5 kHz, we usually use 86 filters. An important characteristic of the cochlea
is that the energy in the acoustic wave is separated by frequency, and each
point in the cochlea will respond best to one frequency. Then, the cochlea
maps the frequency content of the signal into a spatial domain, with a very
good accordance to the underlying dynamic of the original data. It means that
these time-frequency representations of the data are structure preserving, and
the mapping from spoken digits to time-frequency is injective. Therefore, the
object is emnedded before it is processed by the reservoir. That is to say, we
already provide a spatial representation of the problem to the reservoir in this
task. The problem which merge here is that we are still not capable to find
a nearest neighborhood that we can relate to good classification performance,
as in the case of prediction.
• In experiments, we aim to build a full analog electro-optic feedback pre-

dictor. Until now it is shown that we can use the delay photonic reservoir to
solve prediction and classification. In this experiments typically the reservoir
layer is experimental, and the other two (input and output) are performed
by a computer in a digital environment. Then, the full analog experimental
setup has not been performed yet. The next steps will be related to build the
input and output layers experimentally. For the delay electro-optic setup, we
propose to design optical memories with fiber optics and fiber amplifiers in
order to implement the mask and output weights. By doing this, we aim to
physically feedback the input and output layers to have at the end a feedback
predictor with which perform long-term prediction of chaotic time series.
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Abstract:

Artificial neural networks are systems prominently used in computation and investigations of
biological neural systems. They provide state-of-the-art performance in challenging problems like the
prediction of chaotic signals. Yet, the understanding of how neural networks actually solve problems
like prediction remains vague; the black-box analogy is often employed. Merging nonlinear dynamical
systems theory with machine learning, we develop a new concept which describes neural networks
and prediction within the same framework. Taking profit of the obtained insight, we a-priori design a
hybrid computer, which extends a neural network by an external memory. Furthermore, we identify
mechanisms based on spatio-temporal synchronization with which random recurrent neural networks
operated beyond their fixed point could reduce the negative impact of regular spontaneous dynamics
on their computational performance. Finally, we build a recurrent delay network in an electro-optical
setup inspired by the Ikeda system, which at first is investigated in a nonlinear dynamics framework.
We then implement a neuromorphic processor dedicated to a prediction task.

Keywords: nonlinear, photonic, neuromorphic

Résumé :

Les réseaux de neurones artificiels constituent des systèmes alternatifs pour effectuer des calculs
complexes, ainsi que pour contribuer à l’étude des systèmes neuronaux biologiques. Ils sont
capables de résoudre des problèmes complexes, tel que la prédiction de signaux chaotiques, avec
des performances à l’état de l’art. Cependant, la compréhension du fonctionnement des réseaux
de neurones dans la résolution de problèmes comme la prédiction reste vague ; l’analogie avec une
boı̂te-noire est souvent employée. En combinant la théorie des systèmes dynamiques non linéaires
avec celle de l’apprentissage automatique (Machine Learning), nous avons développé un nouveau
concept décrivant à la fois le fonctionnement des réseaux neuronaux ainsi que les mécanismes
à l’œuvre dans leurs capacités de prédiction. Grâce à ce concept, nous avons pu imaginer un
processeur neuronal hybride composé d’un réseaux de neurones et d’une mémoire externe. Nous
avons également identifié les mécanismes basés sur la synchronisation spatio-temporelle avec
lesquels des réseaux neuronaux aléatoires récurrents peuvent effectivement fonctionner, au-delà
de leurs états de point fixe habituellement utilisés. Cette synchronisation a entre autre pour effet de
réduire l’impact de la dynamique régulière spontanée sur la performance du système. Enfin, nous
avons construit physiquement un réseau récurrent à retard dans un montage électro-optique basé
sur le système dynamique d’Ikeda. Celui-ci a dans un premier temps été étudié dans le contexte
de la dynamique non-linéaire afin d’en explorer certaines propriétés, puis nous l’avons utilisé pour
implémenter un processeur neuromorphique dédié à la prédiction de signaux chaotiques.

Mots-clés : nonlinéaire, photonique, neuromorphiques




