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Titre :  Étude numérique des fondations caisson dans du sable sous chargements 

monotones combinés pour des éoliennes en mer 

 

Mots clés :  Enveloppe de rupture; diagramme de capacité portante; sable; caisson; élément finis; état 
critique; macro-élément 

Résumé : Cette thèse de doctorat porte sur la 
réponse des fondations caisson dans du sable pour 
les éoliennes en mer soumises à des chargements 
monotones et cycliques combinés. Le processus de 
défaillance et l’enveloppe de rupture (diagramme de 
capacité portante) d’une fondation en caisson dans 
du sable soumise à des chargements monotones 
combinés sont premièrement étudiés à l’aide du 
modèle constitutif de Mohr-Coulomb. La méthode 
Lagrangian-Smoothed Particle Hydrodynamics 
Combinée (CLSPH) est adoptée pour prendre en 
compte les grandes déformations et les limites de 
l'approche sont mises en évidence. Une loi 
constitutive basée sur la notion de l’état critique pour 
le sable récemment mis au point (SIMSAND) est 
ensuite introduite et utilisée avec la méthode CLSPH. 
Des tests d’effondrement du sol dans un canal 
rectangulaire et d’une colonne granulaire en prenant 
en compte différentes géométries sont simulés afin 
de valider l’approche en termes de morphologie de 
dépôt final, des profils d’écoulement et de zones non 
perturbées. 
 

La méthode CLSPH et le modèle SIMSAND sont 
ensuite utilisés pour étudier le diagramme de 
capacité portante des fondations caisson dans du 
sable. Différents paramètres ayant une incidence 
sur la forme et la taille de l'enveloppe de rupture 
sont pris en compte, tels que la densité et la rigidité 
du sol, la résistance au frottement, la rupture des 
grains, la géométrie et les dimensions de la 
fondation. Une formule analytique est introduite 
pour décrire la surface de rupture 3D capable à 
reproduire les résultats numériques. Sur la base de 
la formule analytique proposée, un macro-élément 
pour des fondations caisson dans du sable 
soumises à des chargements monotones et 
cycliques est finalement développé dans le cadre de 
l'hypoplasticité. L’outil numérique proposé est validé 
avec des résultats expérimentaux. 
 

 

Title :  Numerical investigation of caisson foundations in sand under combined 
monotonic loadings for offshore wind turbines 

Keywords :  Failure envelope; capacity diagram; sand; caisson; finite elements; critical state; macro-
element 

Abstract :  This PhD thesis deals with the response 
of caisson foundations in sand for offshore wind 
turbines submitted to combined monotonic and cyclic 
loadings. First, the failure process and failure 
envelope (or bearing capacity diagram) of a caisson 
foundation in sand under combined monotonic 
loadings is investigated using the conventional Mohr-
Coulomb constitutive model. A Combined 
Lagrangian-Smoothed Particle Hydrodynamics 
(CLSPH) method is adopted to consider large 
deformations and the limitations of the approach are 
highlighted. A recently developed critical state model 
for sand (SIMSAND) is then introduced and 
combined with the CLSPH method. Rectangular 
channel soil collapse tests and granular column 
collapse tests considering different aspect ratios are 
simulated to validate the approach in terms of final 
deposit morphologies, flow profiles and undisturbed 
areas. 
 

The CLSPH method and the SIMSAND model are 
then used to investigate the bearing capacity 
diagram of the caisson foundation in sand. Different 
parameters affecting the shape and size of the 
failure envelope are considered, as soil density and 
stiffness, friction strength, grain breakage, geometry 
and aspect ratio of the foundation. An analytical 
formula is introduced to describe the 3D failure 
surface reproducing the numerical results. Based on 
the proposed analytical formula, a macro-element 
for the caisson foundation in sand submitted to 
monotonic and cyclic loadings is finally developed 
within the framework of hypoplasticity. Validation is 
provided through comparison with experimental 
results. 
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Abstract 

This PhD thesis deals with the response of caisson foundations in sand for offshore wind 

turbines submitted to combined monotonic and cyclic loadings. First, the failure process and failure 

envelope (or bearing capacity diagram) of a caisson foundation in sand under combined monotonic 

loadings is investigated using the conventional Mohr-Coulomb constitutive model. A Combined 

Lagrangian-Smoothed Particle Hydrodynamics (CLSPH) method is adopted to consider large 

deformations and the limitations of the approach are highlighted. A recently developed critical state 

model for sand (SIMSAND) is then introduced and combined with the CLSPH method. Rectangular 

channel soil collapse tests and granular column collapse tests considering different aspect ratios are 

simulated to validate the approach in terms of final deposit morphologies, flow profiles and 

undisturbed areas. The CLSPH method and the SIMSAND model are then used to investigate the 

bearing capacity diagram of the caisson foundation in sand. Different parameters affecting the shape 

and size of the failure envelope are considered, as soil density and stiffness, friction strength, grain 

breakage, geometry and aspect ratio of the foundation. An analytical formula is introduced to 

describe the 3D failure surface reproducing the numerical results. Based on the proposed analytical 

formula, a macro-element for the caisson foundation in sand submitted to monotonic and cyclic 

loadings is finally developed within the framework of hypoplasticity. Validation is provided through 

comparison with experimental results. 

Keywords: Failure envelope; capacity diagram; sand; caisson; finite elements; critical state; 

macro-element 
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Résumé 

Cette thèse de doctorat porte sur la réponse des fondations caisson dans du sable pour les 

éoliennes en mer soumises à des chargements monotones et cycliquescombinés. Le processus de 

défaillance et l’enveloppe de rupture (diagramme de capacité portante) d’une fondation en caisson 

dans du sable soumise à des chargements monotones combinés sont premièrement étudiés à l’aide du 

modèle constitutif de Mohr-Coulomb. La méthode Lagrangian-Smoothed Particle Hydrodynamics 

Combinée (CLSPH) est adoptée pour prendre en compte les grandes déformations et les limites de 

l'approche sont mises en évidence. Une loi constitutive basée sur la notion de l’état critique pour le 

sable récemment mis au point (SIMSAND) est ensuite introduite et utilisée avec la méthode CLSPH. 

Des tests d’effondrement du sol dans un canal rectangulaire et d’une colonne granulaire en prenant 

en compte différentes géométries sont simulés afin de valider l’approche en termes de morphologie 

de dépôt final, des profils d’écoulement et de zones non perturbées. La méthode CLSPH et le modèle 

SIMSAND sont ensuite utilisés pour étudier le diagramme de capacité portante des fondations 

caisson dans du sable. Différents paramètres ayant une incidence sur la forme et la taille de 

l'enveloppe de rupture sont pris en compte, tels que la densité et la rigidité du sol, la résistance au 

frottement, la rupture des grains, la géométrie et les dimensions de la fondation. Une formule 

analytique est introduite pour décrire la surface de rupture 3D capable à reproduire les résultats 

numériques. Sur la base de la formule analytique proposée, un macro-élément pour des fondations 

caisson dans du sable soumises à des chargements monotones et cycliques est finalement développé 

dans le cadre de l'hypoplasticité. L’outil numérique proposé est validé avec des résultats 

expérimentaux. 

Mots-clés : Enveloppe de rupture; diagramme de capacité portante; sable; caisson; élément finis; état 

critique; macro-élément 
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General introduction 

A caisson is a closed-top steel tube, which lowered to the seafloor allows bottom sediments to 

penetrate under its own weight. When pushed to full depth with suction force produced by pumping 

water out of its interior, the caisson foundation is also called suction bucket foundation. The main 

advantages of caissons are the convenient method of installation, their repeatedly use and the fact 

that they may mobilize a significant amount of passive suction during uplift. Recently, caissons have 

been widely used for different types of constructions, such as gravity platform jackets, jack-ups, 

offshore wind turbines, subsea systems and seabed protection structures. For an optimum design, 

understanding the nonlinear behavior of caisson foundations and developing specific fast and robust 

numerical tools is therefore necessary. The thesis is divided into six chapters outlined as follows: 

Chapter 1 contains a literature review. Existing experimental and numerical studies on the 

behaviour of caisson foundations subjected to complex loadings are presented. Although the bearing 

capacity characteristics have been numerically extensively studied, several limitations however still 

remain. It is important to use a numerical method that accurately reproduces large deformations 

during extreme loading conditions (such as during the caisson installation phase). Furthermore, 

advanced constitutive models are necessary to obtain reliable responses under combined loadings.  

In chapter 2, the failure process and failure mode of a caisson foundation in sand are 

investigated by numerical modelling using the Mohr-Coulomb constitutive law. As the evolving 

failure happens under large deformations, a Combined Lagrangian - Smoothed Particle 

Hydrodynamics method (CLSPH) is adopted. The method is first calibrated and validated by 

simulating a sand cone penetration test (CPT). Then, an experimental campaign of a caisson in the 

same sand is used to validate the numerical model. Caisson foundations with different dimensions 

submitted to representative combined loading paths are then simulated and the influence of their 

dimensions to the failure process and failure mode is investigated. 

In chapter 3, a critical state constitutive law (SIMSAND) accounting for soil density effects is 

adopted and implemented combined with the CLSPH method. Rectangular channel soil collapse and 

granular column collapse tests with different aspect ratios are simulated to validate the numerical 

tool in terms of final deposit morphologies, flowing profiles and undisturbed areas. Additional 

simulations for different void ratios are conducted to investigate the effect of soil density on the final 

deposit morphology and to further validate the CLSPH – SIMSAND model.  
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In chapter 4, the validated CLSPH – SIMSAND model is used to model the failure envelope 

(the bearing capacity diagram) of a caisson foundation in sand. The soil parameters of the SIMSAND 

model are calibrated using a series of triaxial tests on Baskarp sand. Validation is provided with 

Baskarp sand cone penetration tests. A series of model tests of a caisson foundation in Baskarp sand 

and field tests are also simulated. An important number of finite element numerical calculations are 

then performed to reproduce the behavior of a caisson foundation subjected to complex loading 

combinations. In order to investigate the failure envelope in the H-M-V space (i.e. horizontal force H, 

bending moment M, vertical force V), the radial displacement method is chosen. Several factors are 

considered affecting the shape and size of the failure envelope as soil density, friction strength, soil 

stiffness, grain breakage effect, geometry size and aspect ratio. The coupling relationship among 

geometry size, aspect ratio and characteristic parameters of the failure envelope is considered and 

quantified with an equation. Finally, an analytical formula presenting good consistency with the 

numerical results is introduced to describe the 3D failure surface of a caisson foundation in sand 

submitted to combined loadings. 

Chapter 5 proposes a novel macroelement to reproduce the response of a caisson foundation in 

sand under complex monotonic and cyclic loadings. Developed in the framework of continuum 

hypoplasticity, the macroelement simulates the cyclic response using a displacement-like vector 

internal variable. The calibration procedure is detailed and finally a series of monotonic and cyclic 

tests show the performance of this novel numerical tool. 

Chapter 6 presents the general conclusions and perspectives of this work.  
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Introduction générale 

Un caisson est un tube en acier à sommet fermé qui, descendu jusqu'au fond de la mer, permet 

aux sédiments du fond de pénétrer sous son propre poids. Lorsque poussée à fond avec la force 

d'aspiration produite par le pompage de l'eau, la fondation de caisson est également appelée caisson à 

succion. Les principaux avantages des caissons sont leur méthode d'installation pratique, leur 

utilisation répétée et le fait qu'ils peuvent mobiliser une quantité importante d'aspiration passive 

pendant le soulèvement. Récemment, les caissons ont été largement utilisés pour différents types de 

construction, tels que les fondations gravitaires, les ponts élévateurs, les éoliennes offshore, les 

systèmes sous-marins et les structures de protection des fonds marins. Pour une conception optimale, 

il est donc nécessaire de comprendre le comportement non linéaire des fondations de caissons et de 

développer des outils numériques spécifiques rapides et robustes. La thèse est divisée en six 

chapitres décrits comme suit : 

Le chapitre 1 contient une revue de la littérature. Des études expérimentales et numériques 

existantes sur le comportement de fondations en caisson soumises à des chargements complexes sont 

présentées. Bien que les caractéristiques de capacité portante aient été étudiées numériquement de 

manière approfondie, il subsiste néanmoins plusieurs limitations. Il est important d'utiliser une 

méthode numérique qui reproduit avec précision les grandes déformations lors de conditions de 

chargement extrêmes (comme lors de la phase d'installation du caisson). De plus, des modèles 

constitutifs avancés sont nécessaires pour obtenir des réponses fiables sous des chargements 

combinés. 

Au chapitre 2, le processus de rupture et le mode de rupture d'une fondation en caisson en sable 

sont étudiés par modélisation numérique à l'aide de la loi de comportement de Mohr-Coulomb. 

Comme la rupture évolutive se produit sous de grandes déformations, la méthode Lagrangian - 

Smoothed Particle Hydrodynamics method (CLSPH) est adoptée. La méthode est d'abord calibrée et 

validée en simulant un test de pénétration au cône de sable (CPT). Ensuite, une campagne 

expérimentale d'un caisson dans le même sable est utilisée pour valider le modèle numérique. Des 

fondations de caissons de différentes dimensions soumises à des chemins de chargement combinés 

représentatifs sont ensuite simulées et l’influence de leurs dimensions sur le processus et le mode de 

rupture est étudiée. 

Au chapitre 3, une loi constitutive basée sur la notion de l’état critique (SIMSAND) prenant en 

compte les effets de la densité du sol, est adoptée et mis en œuvre avec méthode CLSPH. Des tests 
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d’effondrement des canaux rectangulaires et de colonnes granulaires avec différentes dimensions 

sont simulés pour valider l’outil numérique en termes de morphologie de dépôt finale, de 

l’écoulement et de zones non perturbées. Des simulations supplémentaires pour différents taux de 

vide sont réalisées afin d'étudier l'effet de la densité du sol sur la morphologie du dépôt final et de 

valider davantage le modèle CLSPH-SIMSAND. 

Au chapitre 4, le modèle CLSPH - SIMSAND validé est utilisé pour modéliser l'enveloppe de 

rupture (le diagramme de capacité portante) d'une fondation en caisson dans du sable. Les paramètres 

de sol du modèle SIMSAND sont calibrés à l'aide d'une série d'essais triaxiaux sur le sable de 

Baskarp. La validation est fournie avec des tests de pénétration au cône de sable Baskarp. Une série 

d'essais sur modèle d'une fondation de caisson dans du sable de Baskarp et des essais sur le terrain 

sont également simulés. Un nombre important de calculs numériques par éléments finis est ensuite 

effectué pour reproduire le comportement d’une fondation en caisson soumise à des combinaisons de 

chargement complexes. Pour étudier l'enveloppe de rupture dans l'espace H-M-V (c'est-à-dire la 

force horizontale H, le moment de flexion M, la force verticale V), la méthode du déplacement radial 

est choisie. Plusieurs facteurs sont considérés comme ayant une incidence sur la forme et la taille de 

l'enveloppe de rupture, tels que la densité du sol, la résistance au frottement, la rigidité du sol, la 

rupture des grains, la géométrie et le rapport des dimensions. Le couplage entre la géométrie, le 

rapport des dimensions et les paramètres caractéristiques de l’enveloppe de rupture est considéré et 

quantifié à l’aide d’une équation. Enfin, une formule analytique présentant une bonne cohérence 

avec les résultats numériques est introduite pour décrire la surface de rupture 3D d'une fondation en 

caisson dans du sable soumis à des chargements combinés. 

Le chapitre 5 propose un nouvel macroélément permettant de reproduire la réponse d’une 

fondation à caisson dans du sable soumis à des chargements complexes monotones et cycliques. 

Développé dans le cadre de l'hypoplasticité, le macroélément simule la réponse cyclique à l'aide 

d'une variable interne vectorielle de type déplacement. La procédure de calibration est détaillée et 

enfin une série de tests monotones et cycliques montrent les performances de ce nouvel outil 

numérique. 

Le chapitre 6 présente les conclusions générales et les perspectives de ce travail. 
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Chapter 1 Literature review 

 

1.1 Introduction 

Energy crises, air pollution and the greenhouse effect have increasingly become noteworthy 

environmental issues. To solve these problems, offshore wind energy, among other possibilities such 

as solar and tidal energy, is attracting ever more attention. Moreover, wind energy has been the first 

commercial renewable energy to be developed in a major way. In general, a large-diameter monopile 

and gravity-based foundation act as foundations for offshore wind turbines (Sørensen and Sørensen 

2010). Gravity-based foundations are preferable only if the depth of seabed is within 5m, while pile 

foundations are typically used in a water depth of less than 20m. Moreover, the two types of 

foundations cannot be removed easily when they reach the end of their service lives. Suction caisson 

foundations, however, can solve these problems effectively.  

A caisson is a closed-top steel tube, which is first lowered to the seafloor, allowing bottom 

sediments to penetrate under its own weight, and then pushed to full depth with suction force 

produced by pumping water out of its interior. The main advantages of caissons include suitability in 

various seabed depths, convenient method of installation, repeated use and the fact that they may 

mobilize a significant amount of passive suction during uplift (Zhang et al. 2013). Caisson 

foundations are usually subjected to vertical loading with long-period horizontal loading or cyclic 

loading components including horizontal loadings and moments. The vertical loading V, the 

horizontal loading H and the moment M can be transferred to the foundation through the footing 

beneath the building. Such a loading mode is defined as a combined loading mode as shown in 

Figure 1.1.  

For an optimum design, understanding the performance of caisson foundations is necessary. At 

the present time, much literature has been published regarding the investigation of the response of 

foundations subjected to general combined monotonic/cyclic loadings. In this chapter, existing 

experimental and numerical studies for investigating the bearing capacity characteristics of caisson 

foundations are reviewed. It is noteworthy that the literature survey mainly focuses on the 

investigation of caisson foundations in sand, the research topic of this dissertation. 
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Figure 1.1 Schematic plot of a caisson foundation for offshore wind turbines 

1.2 Experimental studies on caisson foundations 

In this section, a short literature review is presented to discuss experimental studies on caisson 

foundations in sand. The contents are divided into three groups: field tests (or in-situ tests), 

conventional laboratory tests and centrifuge tests. 

1.2.1 Prototype and reduced-scale field tests 

Several studies have published data from large-scale and reduced scale field tests of caisson 

foundations (Hogervorst 1980; Tjelta et al. 1986; Tjelta 1994; Houlsby et al. 2006; Kelly et al. 2006). 

Table 1.1 presents an outline of the related field tests. The main research purpose was to obtain a 

good understanding of the site conditions.  

Table 1.1 Historical sequence of recorded scale field testing of caisson foundations in sand 

Site Soil 
Caisson size 

Reference 
Diameter (m) Depth (m) 

The North sea Sand over clay 3.8 5-10 Hogervorst (1980) 

The North sea Layers of sand and clay 6.5 22 Tjelta et al. (1986) 

The North sea Sand 12 6 Tjelta (1994) 

Frederikshavn Sand 2 2 Houlsby et al. (2005) 

Luce Bay Sand 
3 1.5 

Houlsby et al. (2006) 
1.5 1 
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Hogervorst (1980) carried out a field test in the North Sea considering the suction pile (see 

Figure 1.2(a)) at different inshore locations, two with sandy soils and one with hard clay (see Figure 

1.2(b)). Piles of 3.8m diameter and between 5 and 10m length were tested in order to determine their 

installation characteristics, lateral and axial load capacities. After comparative studies, it was 

concluded that in shallow water, a suction pile was competitive even with embedment anchors. The 

suction anchor pile can thus be expected to offer distinct advantages over conventionally driven-in or 

drilled-in piles. 

(a) (b)
 

Figure 1.2 (a) Suction anchor pile (b) Soil profiles of test sites 

Tjelta et al. (1986) conducted field tests in 1985 in the North Sea of a detailed design of the 

Gullfaks C gravity base structure (see Figure 1.3(a)). It was necessary to determine the feasibility of 

using self-weight and suction to install the 22-meter skirt foundation into layered soil (see Figure 1.3 

(b)). Tests were conducted successfully and included checking changes in permeability and 

resistance, the effects of soil organization on installation, several cycle loading tests and a new water 

injection system to reduce tip resistance. Test results confirmed the possibility of installing a large 

skirt structure that provided a 22-meter skirt for the Gullfaks C gravity infrastructure. 
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(a) (b)
 

 

Figure 1.3 (a) General view of the tested structure (b) Summary of soil conditions 

Tjelta (1994) conducted field tests in 1994 for the Europipe 16/11-E riser platform (see Figure 

1.4(a)) in the North Sea. The foundation consisted of a 12m diameter and 6m depth bucket at each of 

the 4 corner legs. The availability of uplift capacity in sand (see Figure 1.4(b)) and the possibility of 

skirt penetrated to a specified depth were considered. The results indicated that the penetration of 

steel skirt in dense sand was feasible with only small weight when using suction. Additionally, 

pull-out capacity was not critical for design. 

 

(a) (b)
 

Figure 1.4 (a) Eurpipe 16/11-E riser platform (b) Summary of soil conditions 
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Houlsby et al. (2005) conducted a large-scale test at Frederikshavn in 2004, which employed loading 

by applying a horizontal load at a fixed height. A steel caisson with an outer diameter of 2m and a 

skirt length of 2m was used (see Figure 1.5(a)). This field test involved the instrumented Vestas V90 

3.0 MW prototype turbine installed in 2002 at Frederikshavn, Denmark (see Figure 1.5(b)). In the 

same year, Houlsby et al. (2006) carried out a series of field trials on suction caisson foundations in 

an artificially prepared sand test bed near Luce Bay. A caisson of diameter 3m and with a skirt 1.5m 

deep was used for moment loading tests; a second caisson of diameter 1.5m and with a 1m skirt was 

used for vertical loading tests. An outline diagram of the test setup is provided in Figure 1.6(a), and 

the testing rig at Luce Bay location is shown in Figure 1.6(b). The investigations involved the suction 

installation of the caissons, cyclic moment loading under both quasi-static and dynamic conditions to 

simulate the behaviour of a monopod foundation and cyclic vertical loading and pullout of caissons 

to simulate one footing in a quadruped foundation. High-frequency, low-amplitude cyclic moment 

tests showed that the response was affected by stiffness as well as inertial and damping effects. 

Cyclic vertical loading tests showed a reduction of stiffness and increase of hysteresis as load 

amplitude increased. The pull-out tests indicated that a sizeable ultimate tensile resistance could be 

generated. 

(a) (b)
 

Figure 1.5 (a) A large scale caisson (2×2m) for field test (b) A prototype caisson foundation (12×6m) at the test site in 

Frederikshavn 
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(a)

(b)
 

Figure 1.6 (a) Outline of field test equipment (dimensions in mm) (b) Test rig at the Luce Bay 

1.2.2 1-g model test on reduced scale 

The considerable cost and time-consuming nature of prototype tests or field trials on reduced 

scales mean that the study of the bearing capacity of actual-size equipment has limited utility. The 

modification of soil parameters is much easier in small-scale tests. In addition, the soil type and the 

caisson geometry can be varied in such cases. Owing to the advantage of model tests, many 1-g 

small-scale model tests have been conducted to study the bearing capacities of caisson foundations in 

dry, dense sands under varying embedment ratios and vertical loadings (Byrne and Houlsby 1999; 

Byrne 2000; Byrne and Houlsby 2003; Villalobos Jara 2006; Villalobos et al. 2009). Table 1.2 shows 

various model tests on a reduced scale for caisson foundations in dry sand and saturated sand.  
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Table 1.2 Historical sequence of 1-g model tests on reduced scale for caisson foundation in sand 

Site Soil 
Caisson size 

Ref. 
D (mm) L (mm) 

Oxford 

University  

Dry sand 100 0, 16, 33, 66 
Byrne and Houlsby (1999) 

Byrne (2000) 

Dry sand 
293 146.5 Villalobos et al. (2005) 

Villalobos et al. (2009) 203.4 203.5 

Saturated 

sand 

293 146.5 
Byrne and Houlsby (1999)  

200 100 

Aalborg 

University 

Saturated 

sand 

200 
0, 50, 100, 150, 

200 
Larsen et al. (2013) 

Ibsen et al. (2013; 2014; 2015) 
300 

0, 75, 150, 225, 

300 

Byrne and Houlsby (1999) conducted a series of 1-g model tests that focused on a caisson 

foundation with a caisson diameter of 100 mm and four embedment ratios (0, 0.16, 0.33 and 0.66) on 

a sand of 95% relative density (marked as Baskarp Cyclone Sand, the particle distribution of test 

sand presented in Figure 1.7(a)) at Oxford University by adopting a three-degree-of-freedom testing 

rig (see Figure 1.7(b)). The tests concentrated primarily on the plastic deformations; the behaviour 

within the yield surface was also examined. The authors found that the yield surface of caisson 

foundations in (V: M/2R: H) space could be well-described by a parabolic ellipsoid. The study 

indicated that the shape of yield surface varied with increasing embedment ratio.  

(a) (b)
 

Figure 1.7 (a) Particle size distribution of sand in experiments (b) Three-degree-of-freedom testing rig at Oxford University 

Villalobos et al. (2009) carried out numerous model tests for a caisson foundation on dry sand at 

a low relative density (marked as white 14/25 Leighton Buzzard sand). The testing was conducted 
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using the same three-degree-of-freedom loading rig at Oxford University as shown in Figure 1.7(b). 

Two model foundations were used, one marked as A with diameter of 293mm and skirt length of 

146.5mm, the other marked as B with diameter of 203.4mm and skirt length of 203.5mm. The 

experiments were successfully interpreted within the framework of work-hardening plasticity, and 

the shape of the yield surface and the post-yield behaviour of the caisson foundation were deduced. A 

key result from this work was that the caisson could mobilize a moment and/or horizontal resistance 

under tensile loads. These works successfully investigated the failure of a caisson foundation under 

multidirectional loading conditions.  

Compared with the researches concentrating on dry sand, investigations on saturated sand might 

be more practical in guiding the design of a caisson foundation. Therefore, the literature review also 

considered several research works that were focused on the failure of a caisson foundation in 

saturated sand (Villalobos et al. 2005; Ibsen et al. 2013; Larsen et al. 2013; Ibsen et al. 2014; Ibsen et 

al. 2015; Li et al. 2015).  

Villalobos et al. (2005) carried out a series of moment capacity tests at model scale to 

investigate the effects of different installation procedures (by bushing or by using suction) on the 

response of a suction caisson foundation in saturated sand (marked as Redhill 110). Tests were 

performed using the three-degree-of-freedom loading rig (3DOF) mentioned above (see Figure 

1.7(b)). Two caissons of different diameters (D1=293mm, D2=200mm) and wall thicknesses 

(t1=3.4mm, t2=1.0mm) but similar skirt length to diameter ratio (L1=146.5mm, L2=100mm) were 

adopted. The comparative tests indicated that the moment resistance of a suction caisson depended 

on the installation method. Under rotation, more vertical uplift was observed for the pushed-installed 

caisson than for the suction-installed caisson. Moreover, the use of suction beneficially reduced the 

resistance to penetration of the caisson. 

Researchers of Aalborg University (Ibsen et al. 2013; Larsen et al. 2013; Ibsen et al. 2014; Ibsen 

et al. 2015) conducted an extensive number of loading tests with small-scale caisson foundations 

subjected to combined loading. Tests were performed on caissons of various sizes, embedment ratios 

and loading paths on saturated dense Aalborg University Sand No. 1. The grading curve is shown in 

Figure 1.8, and the strength values of Aalborg University Sand No. 1 are summarized in Table 1.3 for 

void ratios of 0.55, 0.61, 0.7 and 0.85.  
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Table 1.3 Values of strength parameters for the Aalborg University Sand No. 1 

Void ratio e Friction angle 𝜑 (∘) Cohesion c (kPa) 

0.55 41 19.9 

0.61 38.6 34.57 

0.7 34.21 40.27 

0.85 30.93 7 

 

 

Figure 1.8 Particle size distribution of the Aalborg University Sand No. 1 

Figure 1.9 presents the loading setup designed at Aalborg University for a caisson foundation. 

For the loading phase, a specified vertical loading was applied first. Then a moment and horizontal 

force were applied to the caisson foundation until failure was achieved. The diameter of the caisson 

was kept constant (D1=200mm, D2=300mm), and the length of skirt varied using embedment ratios 

(i.e. ratio) of 0, 0.25, 0.5, 0.75 and 1. The load path given by M/DH varied between 0.37 and 8.7, 

corresponding to loads from waves and winds respectively. Based on the data from small-scale tests 

on caisson foundations subjected to static loads, the shape of the yield, potential and failure surfaces 

were found to be dependent on the embedment ratio and load path. A similar conclusion was found 

for the failure surface of a caisson foundation under general combined loadings, primarily depending 

on the embedment ratio and the applied vertical loading. The size of the failure envelopes increased 

with the increase of the embedment ratio and specified vertical loading. A formula was proposed to 

describe the capacity of caisson foundations for combined loading by calibrating the failure criteria 

of bucket foundations.  
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(a) (b)
 

Figure 1.9 (a) Geometry of the test setup, (b) Loading setup designed at Aalborg University for a caisson foundation 

1.2.3 Centrifuge tests 

It bears mentioning that small-scale tests present some drawbacks. Soil behaviour is 

stress-dependent. Small-scale models and prototypes cannot withstand the same stress level and 

therefore they do not exhibit identical responses. Data and conclusions from model tests should be 

used with caution to predict field behaviour. In order to overcome these difficulties, geotechnical 

centrifuge devices have been developed and adopted to reproduce the actual stress level of a 

prototype in small-scale tests. The results of centrifuge tests can be scaled up to the size of full-scale 

caissons.  

Historically, several researches investigated the static or/and dynamic response of a suction pile 

(Fuglsang and Steensen-Bach 1991; Renzi et al. 1991; Allersma et al. 1997; Allersma et al. 1999; 

Zhang et al. 2003; Raines and Garnier 2004; Kim et al. 2005) or caisson (Clukey and Morrison 1993; 

Clukey et al. 1995; Watson and Randolph 1997; Cao 2003; Yun and Bransby 2003; Cassidy et al. 

2004; Lu et al. 2007; Zhang et al. 2007; Kim et al. 2014) under general combined loadings by 

centrifuge tests. Table 1.4 displays the historical recorded researches on centrifuge model tests for 

suction pile and caisson foundations. 

Table 1.4 Historical sequence of centrifuge model tests for suction pile and caisson foundation 

Soil type Model size Prototype size Acceleration 

(g=9.8m/s2) 

Reference 

D (mm) L (mm) D (m) L(m) 

Clay 152.5 356.9 15.25 35.69 100 Clukey et al. (1995) 

Saturated sand 

39 75 5.9 11.3 

150 Allersma et al. (1997) 

63.2 60 9.5 9.0 

25.2 108 3.8 16.2 
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69 61 10.4 9.2 

Calcareous silt 80 32 12 4.8 150 Watson and Randolph (1997) 

Clay 30 70 4.5 10.5 150 Allersma et al. (1999) 

Clay 

28.7 245 2.87 24.5 

100 Cao (2003) 51.7 245 5.17 24.5 

103.4 245 10.34 24.5 

Dry sand 100 20 10 2 100 Yun and Bransby (2003) 

Clay 60 30 6 3 100 Cassidy et al. (2004) 

Clay 64 300 6.4 30 100 Raines and Garnier (2004) 

Dry sand 30 50 1.5 2.5 50 Kim et al. (2005) 

Saturated sand 

6 7.2 

/ / 

10, 20, 40, 60 

Lu et al. (2007) 6 4.8 40 

6 9 60 

Silt (with 3.2% clay) 

60 72 4.8 5.76 

80 Zhang et al. (2007) 60 90 4.8 7.2 

60 48 4.8 3.84 

Layer of silty sand 

Layer of sandy silt  

92.9 114.3 6.5 8.0 
70 Kim et al. (2014) 

221.4 150 15.5 10.5 

 

Most of the above-mentioned studies focused on clay, only few researches conducted centrifuge 

tests in sand. More specifically, a test program was carried out using the small geotechnical 

centrifuge of the Delft University of Technology to investigate the installation of suction piles in 

sand (Allersma et al. 1997). Figure 1.10 shows the geotechnical centrifuge at the Delft University of 

Technology. All tests were carried out in homogeneous sand layers. In order to reduce the 

particle-size effect, sand with a small grain size was used. The main characteristics of this sand are 

displayed in Table 1.5. The tests were performed at an acceleration of n=150g. The model size and 

corresponding prototype size are shown in Table 1.4. The installation phase of a suction pile was 

investigated by measuring the displacements and pressures during the installation. The results 

indicated a linear relationship between the pressure and the dimensions of the suction pile. The 

penetration load during suction was approximately 8 times smaller than during mechanical 

penetration. 
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Figure 1.10 Geotechnical centrifuge at the Delft University of Technology 

Table 1.5 Properties of the sand used in experiments 

d90 (mm) 0.140 Specific gravity Gs 2.65 

d60 (mm) 0.109 Minimum dry unit weight γd,min (kN/m3) 12.32 

d50 (mm) 0.102 Maximum dry unit weight γd,max (kN/m3) 16.06 

d10 (mm) 0.068 Coefficient of uniformity CU=d60/d10 1.62 

Yun and Bransby (2003) presented the combined vertical, horizontal and moment loading 

response of a caisson foundation on drained loose sand (a mean density of 1540kg/m3) by conducting 

numerous centrifuge tests in the University of Dundee Geotechnical Centrifuge. The model 

foundations tests were all performed at 100 times earth’s gravity. The diameter of 10m and skirt 

length of 2m in the prototype correspond to a diameter of 10mm and skirt length of 2mm in the 

model scale. Figure 1.11 presents a photograph and cross-section of the centrifuge testing apparatus. 

The foundation soil was a poorly graded sand with D50=0.22 mm and D10=0.16 mm. The angle of 

friction φ=31° and dilation angle ψ=0° were based on direct shear box tests. The test results showed 

that the horizontal capacity of the skirted foundation was increased to about 3-4 times that of a raft 

foundation because of the skirts, even in drained conditions. It was also suggested that the foundation 

failure mechanism changed to a rotational mode instead of a sliding mechanism.  
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(a) (b)
 

Figure 1.11 (a) Photograph of part of the centrifuge testing apparatus (b) Cross-section of the test apparatus 

Lu et al. (2007) conducted a series of centrifuge experiments to study the response of caisson 

foundations under horizontal and vertical dynamic loadings by using the 50g-ton centrifuge at 

Tsinghua University (see in Figure 1.12). The applied centrifuge acceleration in the test program is 

displayed in Table 1.4. The experimental material was fine sand with special gravity 2.69 and 

average grain diameter (D50) 0.014cm. It was shown that when the loading amplitude was over a 

critical value, the sand at the upper part around the bucket was softened or even liquefied. The excess 

pore pressure decreased from the upper part to the lower part of the sand layer in the vertical 

direction and decreased radially from the bucket’s side wall in the horizontal direction. Significant 

settlement of the bucket and the sand layer around the bucket was induced by dynamic loading. The 

dynamic response of the bucket with smaller height (the same diameter) was more obvious. 

(a) (b)
 

Figure 1.12 (a) Photograph of the centrifuge at Tsinghua University (b) Layout of the model 
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1.3 Numerical studies on caisson foundations 

1.3.1 Finite element modelling 

An investigation of the failure surface and the bearing capacity characteristics entirely based on 

model tests is costly and time-consuming (Byrne 2000; Nguyen-Sy 2005; Villalobos et al. 2010; 

Ibsen et al. 2013; Foglia et al. 2015). A more timesaving and economic approach are numerical finite 

element simulations, sometimes combined with experimental data. It is however worth mentioning 

that the numerical analysis reliability depends strongly on whether the simulations can accurately 

reproduce the nonlinear behaviour of the soil. 

In recent years, many researchers have numerically investigated the response of a caisson 

foundation in sand. Examples include the vertical bearing capacity characteristics during the 

installation procedure (Erbrich and Tjelta 1999; Houlsby and Byrne 2004; Senders and Randolph 

2009; Harireche et al. 2013; Cerfontaine et al. 2015; Cerfontaine et al. 2016; Park et al. 2016) and the 

bearing capacity behaviour under combined general loadings (Achmus et al. 2013; Liu et al. 2014; 

Gerolymos et al. 2015; Li et al. 2015; Zafeirakos and Gerolymos 2016; Bagheri et al. 2017; Skau et 

al. 2018). Table 1.6 lists the related research studies on the behaviour of caisson foundations 

subjected to combined monotonic and cyclic loadings by analytical or numerical (Finite Element 

Method – FEM) approaches. 

Table 1.6 Summary of analytical and numerical studies on the behaviour of a caisson foundation subjected to combined 

monotonic and cyclic loadings 

Approach Constitutive 

Model 

Soil  

Type 

Soil parameter 

calibration 

Content of analysis Bibliographic 

Reference 

Analytical 

calculation 

/ Dense sand / Resistance to 

penetration with and 

without suction 

Houlsby and 

Byrne (2004) 

Analytical 

calculation 

/ (Medium) dense 

sand 

/ Suction required 

during installation  

Senders and 

Randolph 

(2009) 

Analytical 

calculation 

/ Sand / Effect of soil 

resistance and critical 

suction during 

installation 

Harireche et 

al. (2013) 

 

FEM 

ABAQUS 

 

Drucker-Prager 

 

Dense  

sand 

 

Drained triaxial 

test 

Mechanisms during 

installation, including 

critical gradients of 

suction, degradation of 

skirt friction and tip 

Erbrich and 

Tjelta (1999) 
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resistance 

FEM 

LAGAMINE 

Prevost  

Very dense sand 

Drained triaxial 

test (Andersen et 

al. 2008) 

Monotonic and cyclic 

behavior upon vertical 

transient loading 

Cerfontaine et 

al. (2015) 

Cerfontaine et 

al. (2016) 

FEM 

ABAQUS 

 

Mohr-Coulomb 

 

Sand 

 

Empirical value 

Vertical load transfer 

mechanism and 

bearing capacity 

Park et al. 

(2016) 

FEM 

ABAQUS 

Mohr-Coulomb (Very/medium) 

dense sand 

Back-calculation Bearing behavior 

under drained 

monotonic loading  

Achmus et al. 

(2013) 

 

FEM 

ABAQUS 

 

Mohr-Coulomb 

 

Dense sand 

Soil strength 

profile in specific 

area (East China 

Sea) 

Yield envelope in 2D 

and 3D spaces and 

failure mode 

Liu et al. 

(2014) 

 

FEM 

ABAQUS 

 

Armstrong-Frederik 

(Frederick and 

Armstrong 2007) 

 

 

Cohesive soil 

 

 

Empirical value 

Response to combined 

vertical, horizontal and 

moment loading 

Gerolymos et 

al. (2015) 

 

FEM 

Z-SOIL 

(Truty et al. 

2011) 

 

HSS 

(Benz 2007) 

 

Saturated marine 

sand 

 

Back analysis with 

FEM 

Influence factors on 

the horizontal and 

moment bearing 

capacity; rotation 

center positions under 

monotonic horizontal 

loading 

Li et al. (2015) 

 

 

FEM 

ABAQUS 

 

 

BWGG  

(Giannakos et al. 

2012) 

 

 

Dense sand 

(Marked as 

14/25 Leighton 

Buzzard sand) 

 

 

Empirical 

correlations 

Bearing capacity under 

combined loading 

considering 

embedment ratio, 

vertical load 

magnitude and 

caisson-soil contact 

interface conditions 

Zafeirakos and 

Gerolymos 

(2016) 

 

FEM 

PLAXIS 3D 

 

Mohr-Coulomb 

 

(Medium) dense 

sand 

 

Back-calculation 

Behavior of the 

caisson and response 

of the soil supporting 

the caisson in 

(medium) dense sand 

subjected to static 

horizontal loading 

Bagheri et al. 

(2017) 
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FEM 

PLAXIS 3D 

 

NGI-ADP  

(Grimstad et al. 

2012) 

 

Clay and sand 

 

Soil strength 

profile in specific 

area 

Macroelement for a 

caisson foundation in 

clay. Results also for 

sand. 

Skau et al. 

(2018) 

 

Among the above mentioned research studies, Houlsby and Byrne (2004), Senders and 

Randolph (2009) and Harireche et al. (2013) proposed analytical methods to assess the installation of 

caisson foundations in sand with or without suction. Houlsby and Byrne (2004) compared the 

analytical predictions with four series of case records: (1) trail installations at Tenby and Sandy 

Haven, (2) the first jacket structure named Draupner E, (3) the second jacket named Sleipner T to be 

installed in the North Sea and (4) several laboratory-scale tests. Good agreement was found with the 

measured data. Senders and Randolph (2009) proposed a CPT-based method to estimate the 

self-weight penetration and suction required during the installation of suction caissons in dense sand. 

The method was able to satisfactory predict data from centrifuge model tests and from field 

installation. Harireche et al. (2013) found that a more accurate estimation of the critical suction 

during the installation process could be achieved by considering the effect of varying with depth 

permeability. 

The remaining studies investigated numerically the installation procedure and/or bearing 

capacity of caisson foundations subjected to combined loadings in very dense sand (relative density 

of 90%). Cerfontaine et al. (2015, 2016) studied the axisymmetric behaviour of suction caisson 

installed in sand upon vertical monotonic and cyclic loading. The finite element code LAGAMINE 

combined with the Prevost model was adopted to consider drained and partially drained conditions. 

The simulation results indicated that the transient differential of pressure between the inside and 

outside of the caisson created a suction effect, increasing the caisson resistance both in traction and 

in compression (the increase was bigger in traction). For the cyclic loading cases, all simulations 

presented a settlement accumulation during the cyclic loading. The major part of the load variation 

was sustained by positive or negative variations of the pore water pressure within the soil inside the 

caisson and around it, leading to a low loading of the soil solid skeleton. 

Gerolymos et al. (2015) investigated the response of a caisson foundation in cohesive soil 

subjected to combined vertical (N), horizontal (Q) and moment (M) loading. The finite element code 

ABAQUS with the Armstrong-Frederik Model (Frederick and Armstrong 2007) was adopted to study 

the ultimate states of failure envelopes in dimensionless normalized forms. The effects of the 

embedment ratio, vertical load and interface friction on the bearing capacity were studied in detail. 

Simulation results were then employed to develop a generalized expression for the bearing strength 

in the N-Q-M 3D space. The finite element results and the associated closed-form expression were 
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verified against an upper bound limit-equilibrium solution based on the Brinch Hansen theory for 

ultimate lateral soil reaction. Furthermore, the bearing strength envelope was validated for low and 

high-frequency dynamic loading. Results indicated that the maximum dynamic moment and 

horizontal force were bounded by the static bearing strength envelope for low-frequency loading 

conditions. For the high-frequency cases, a significant over strength was observed, attributed to the 

‘violent’ impacts of the caisson on the sides of the gap.  

Bagheri et al. (2017) conducted research on the behaviour of a caisson foundation in dense and 

medium-dense sand subjected to a static horizontal load. The finite element code Plaxis 3D and 

Mohr-Coulomb failure criterion was adopted to reproduce the elastic perfectly plastic stress-strain 

relationship. The adopted soil properties based on a back-calculation method were validated with 

field test results. Based on the numerical analysis results, dimensionless equations for 

load-displacement and moment-rotation relations were proposed. The simulation results indicated 

that the caisson skirt withstood the major part of the load, while the caisson lid had only a slight part.  

It is noteworthy that various constitutive models have been adopted to study the response of 

caisson foundations subjected to combined loadings. Examples include plasticity constitutive models 

governed by the Mohr-Coulomb failure criterion (Achmus et al. 2013; Liu et al. 2014; Zafeirakos 

and Gerolymos 2016); the so-called NGI-ADP model based on an anisotropic undrained shear 

strength failure criterion (Skau et al. 2018) and an elasto-plastic model named the Hardening Small 

Stain model (HSS), which can reproduce basic macroscopic phenomena exhibited by the soil (Li et 

al. 2015). It is however necessary to point out that some studies adopted back-calculations of 

experimental field tests or empirical equations to calibrate the model parameters (Achmus et al. 2013; 

Zafeirakos and Gerolymos 2016). Some researchers used the representative soil strength profile of a 

specific area; however, related validation of soil parameters was not found in the literature (Liu et al. 

2014; Skau et al. 2018). One study calibrated part of the model parameters with triaxial tests while 

obtaining the other using a back analysis and the finite element method (Li et al. 2015).  

Up to the author knowledge, there is no available study today including conventional triaxial tests or 

model tests up to field tests, necessary to obtain more accurate results and to improve the engineering 

design and understanding of the nonlinear behaviour of caisson foundations. Furthermore, the 

abovementioned studies adopted the conventional finite element method and could not guarantee 

stress redistribution due to the caisson penetration or the evolution of the failure surface under large 

deformations. Extreme loading conditions (i.e. large deformations) need therefore to be considered 

together with a critical state based constitutive model as it describes more accurately the sand 
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characteristics, the influence of several soil parameters (density, friction angle, deformability, 

crushability etc.). and the evolving failure envelope. 

1.3.2 Macroelement modelling 

The finite element method allows the use of complicated constitutive laws, 3D meshes and the 

application of combined loadings. Nevertheless, the price to pay is the high computational demand in 

terms of running time, computer memory and data storage capacity. Furthermore, highly qualified 

engineers are needed to prepare and run the calculations and to do the post-treatment.  

An alternative method is the macroelement concept, a generalised 2D or 3D stress-resultant 

model that concentrates the nonlinear behaviour of the soil foundation system to a reference point. 

The theory of plasticity has been often employed to reproduce the response of shallow foundations 

under combined loadings, see for example (Nova and Montrasio 1991; Montrasio and Nova 1997; 

Gottardi et al. 1999; Martin and Houlsby 2000; Byrne and Houlsby 2001; Cremer et al. 2001; 

Cassidy et al. 2002; Cremer et al. 2002; Houlsby and Cassidy 2002; 2004; 2006; Grange et al. 2008; 

Chatzigogos et al. 2009; Grange et al. 2009; Chatzigogos et al. 2011). Research has been also 

focused on modelling the response of bucket foundations for offshore wind turbines (Byrne 2000; 

Houlsby 2005; Villalobos Jara 2006; Achmus et al. 2013; Ibsen et al. 2013). Nguyen-Sy (2005) 

derived a hyperplastic model (Houlsby and Puzrin 2007) and applied it to bucket foundations. di 

Prisco et al. (2003a, 2003b) integrated the Nova and Montrasio (1991) model with a boundary 

surface model to represent cyclic loading. An application of the latter was presented in di Prisco et al. 

(2006). Buscarnera et al. (2010) used the same model to calculate the accumulated displacement of 

an onshore wind turbine on gravity-based foundation under wind loading. Kafle and Wuttke (2013) 

slightly modified the models of Nova and Montrasio (1991) and di Prisco et al. (2003) to predict the 

response of a footing on unsaturated soil. Foglia et al. (2015) conducted a series of monotonic and 

cyclic laboratory tests on a bucket foundation and the test results were interpreted within the 

macroelement approach, using an existing analytical model (Villalobos et al. 2009), suitably 

modified to accommodate the footing embedment and the application of cyclic load. Skau et al. 

(2018) adopted the multi-surface plasticity framework to analyse the characteristic behaviour of a 

bucket foundation subjected to irregular cyclic loading.  

Macroelements considering rate-type hypoplastic constitutive equations (Kolymbas 1991; 

Tamagnini et al. 2000; Niemunis 2003) have been recently developed for shallow and deep 

foundations. Salciarini and Tamagnini (2009) proposed a hypoplastic macroelement for surface 
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footings. The same model was later extended to 6-DOF by Tamagnini et al. (2013). A hypoplastic 

macroelement for vertical and inclined piles has been recently developed by Li et al. (2016), Li et al. 

(2018). Table 1.7 lists the developed macroelement models of foundations including footing, spudcan 

and caissons in sand and clay subjected to monotonic and cyclic loadings in recent years. 

Table 1.7 A list of existing macroelements for foundations in sand or clay 

Modeling 

approach 

Soil type Framework Foundation 

type 

Loading Reference 

Model tests Silica sand Plasticity Footing   Monotonic (Nova and Montrasio 

1991; Montrasio and 

Nova 1997) 

FEM 

DYNAFLOW 

Saturated clay Plasticity Footing Cyclic,  

Seismic 

(Cremer et al. 2001) 

Model tests Sand Plasticity Footing Monotonic (Houlsby and Cassidy 

2002) 

Model tests Loose carbonate sand Plasticity Circular 

footing 

Monotonic (Cassidy et al. 2002) 

Model tests Silica sand (yellow 

Leighton Buzzard 

14/25) 

Plasticity Footing Monotonic (Bienen et al. 2006) 

Centrifuge tests Clay Plasticity Caisson Monotonic (Cassidy et al. 2006) 

Model tests Sand and clay Hyperplasticity Caisson Monotonic, 

Cyclic 

(Nguyen-Sy and 

Houlsby 2005) 

Model tests Sand Plasticity Footing Monotonic, 

Seismic 

(Grange et al. 2008) 

Model tests Sand Hypoplasticity Footing Monotonic, 

Cyclic 

(Salciarini and 

Tamagnini 2009; 

Tamagnini et al. 2013) 

Model tests Silica sand (yellow 

Leighton Buzzard 

14/25) 

Plasticity Caisson Monotonic (Villalobos et al. 

2009) 

FEM 

ABAQUS 

Coarse-grained soil Plasticity Footing Cyclic (Buscarnera et al. 

2010) 

Model tests Sand Plasticity Footing Monotonic, 

Cyclic 

(Chatzigogos et al. 

2011) 

Model tests Unsaturated sand Plasticity Footing Cyclic (Kafle and Wuttke 

2013) 

Model tests Saturated sand Plasticity Caisson Monotonic (Ibsen et al. 2013) 
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Centrifuge tests Soft clay (UWA 

kaolin clay) 

Plasticity Spudcan Monotonic (Zhang et al. 2014) 

Model tests Sand (Aalborg 

University Sand 

No.1) 

Bounding 

surface plasticity  

Caisson Monotonic, 

Cyclic 

(Foglia et al. 2015) 

Centrifuge tests Sand Hypoplasticity Pile Monotonic, 

Cyclic 

(Li et al. 2016; Li et 

al. 2018) 

FEM 

PLAXIS 3D 

Over consolidated 

clay 

Multi-surface 

plasticity  

Caisson Monotonic, 

Cyclic 

(Skau et al. 2018) 

 

More details about the existing macroelements for caisson foundations in sand or clays (Byrne 

and Houlsby 1999; Cassidy 1999; Gottardi et al. 1999; Villalobos et al. 2005; Cassidy et al. 2006; 

Villalobos Jara 2006; Foglia et al. 2015; Skau et al. 2018) are given in the Appendix. Their main 

characteristics are provided Table 1.8. 
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Table 1.8 Framework of macroelements for caisson foundations in sand and clay 

Elastic behavior Yield surface Hardening law Flow rule Reference 
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1.4 Conclusions 

This first chapter of the manuscript focused on a brief literature review on experimental and 

numerical studies on the behaviour of caisson foundations subjected to combined loadings. The finite 

element method used often in the literature for the simulations cannot however guarantee the stress 

redistribution during the caisson penetration, the evolution of the failure surface and the 

characterisation of the failure modes under large deformations. Furthermore, a comprehensive study 

combining conventional triaxial tests, model tests and field tests is still lacking. These issues are 

treated in the following chapters. 
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Chapter 2 Numerical investigation on the evolving failure of caisson foundations: 

Combined Lagrangian - SPH technique, Mohr-Coulomb model 

 

2.1 Introduction 

Caisson foundations are often used in offshore engineering. For an optimum design, 

understanding the failure process of a caisson during its installation and the subsequent external 

loadings is crucial. Extensive experimental field tests on small-scale and full-scale caisson 

foundations have been conducted to determine the installation characteristics and the lateral load 

suction foundation capacity (Hogervorst 1980; Tjelta et al. 1986; Tjelta 1995). Field tests are 

valuable as they help to obtain necessary data for the foundation design, nevertheless they are 

expensive and time consuming. For these reasons, model laboratory tests have been also conducted 

under controlled experimental conditions either in clay (Houlsby et al. 2005; Villalobos et al. 2010; 

Barari and Ibsen 2012) or sand (Houlsby et al. 2006; Cox et al. 2013; Foglia and Ibsen 2013; Zhu et 

al. 2013). Finally, 2D and 3D numerical studies have been also performed (Erbrich and Tjelta 1999; 

Sukumaran et al. 1999; El-Gharbawy and Olson 2000; Deng and Carter 2002) to investigate the 

foundation bearing capacity under different loading combinations and drainage conditions. In all 

these numerical studies however, the installation process was ignored and the evolving failure and 

the final failure modes under different loading combinations were not discussed. 

This chapter focuses on the investigation of the failure process and failure modes of a caisson 

foundation in sand by numerical modelling. As the failure evolves under large deformations, a 

combined Lagrangian - Smoothed Particle Hydrodynamics method (SPH) is adopted for the 

simulations. This numerical strategy is first validated by simulating cone penetration tests in sand. 

Then, an experimental campaign of a caisson in the same sand is selected to calibrate the model. 

More representative loading combinations are then chosen to reproduce the failure process. Finally, 

three additional caisson dimensions (D/d=0.5, 1.5 and 2.0, changing the ratio of the caisson diameter 

D to the skirt length d while keeping the same soil-structure surface contact area) under six 

representative combined loading paths are studied to investigate the influence of the caisson 

dimensions to the failure process and failure modes. 
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2.2 Combined Lagrangian - SPH technique 

The Smooth Particle Hydrodynamics (SPH) method was first developed by Gingold and 

Monaghan (1977) for simulations in astrophysics. Further developments of the method allowed for 

applications to a broad range of problems in solid mechanics. In SPH simulations, the computational 

domain is discretized into a finite number of particles, each representing a certain volume and mass 

of material (fluid or solid) and carrying simulation parameters such as acceleration, velocity, density 

and pressure/stress.  

The material properties ( )f x at any point x  in the simulation domain are calculated 

according to an interpolation process over its neighboring particles that are within an influence 

domain   through  

 ( ) ( ) ( ), df x f x W x x h x


  = −   (2-1) 

where W  is the kernel or smoothing function, which is essentially a weighting function. 

The continuous integral representation of the field variable ( )f x in Eq.(2-1) can be further 

approximated by the summation over neighboring particles as  

 ( ) ( ) ( ) ( ) ( )
1 1

, ,
N N

i
i i i i i

i i i

m
f x f x W x x h V f x W x x h

= =

= − = −    (2-2) 

where iV  , im  and i  are the volume, mass and density of the ith particle, respectively; and N  is the 

number of particles within the influence domain. The spatial derivative of field variable ( )f x  can be 

approximated through the differential operations on the kernel function 

 
( )

( )
( )

i

1

,N
ii

i i i

f x W x x hm
f x

x x=

  −
=

 
   (2-3) 

The efficiency and accuracy of SPH simulations depend on the kernel function (see Eq.(2-1) 

and Eq.(2-3)). The SPH particles are used as interpolation points and are the basis for calculating all 

the field variables in the continuum around them. The SPH particles, like the objects in astrophysics, 
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can be separated by large distances. The field variables between the SPH particles are approximated 

(smoothed) by smoothing shape functions. The interaction between SPH particles starts when a 

particle gets to a certain distance (smoothing length h) from another one. SPH particles interact with 

each other only if they are within the influence domain. Otherwise, they are independent. Therefore, 

a larger smoothing length (i.e. larger influence domain) results in a smoother or more continuous 

behavior; whereas a smaller smoothing length (i.e. smaller influence domain) yields more discrete 

behaviors as the SPH particles are more independent.  

In a solid body discretized with densely packed SPH particles there is no connectivity defined 

between the particles through the mesh. A major attraction of the SPH technique is therefore that 

there is no need for a fixed computational grid when calculating spatial derivatives. Instead, 

estimates of derivatives are obtained from analytical expressions based on the derivatives of the 

smoothing functions (Li and Liu 2002). Since the connectivity between the particles is generated as a 

part of the computation and can change over the time, the SPH method can handle analysis of very 

large deformations and displacements. 

One disadvantage of the SPH method over the Lagrangian method is however the necessary 

computational requirements (Bojanowski 2014). The SPH method is also less accurate under small 

deformations. For this reason, in the following only a part of the soil domain is modeled with the 

SPH method while a Lagrangian model is adopted for the rest (combined Lagrangian-SPH 

technique). The combined Lagrangian-SPH technique already implemented in the commercial finite 

element code ABAQUS is adopted. The function “Tie Constraint” of the code treats the interface 

between the SPH and the Lagrangian domains so that no relative motion exists. It allows fusing two 

domains even though their meshes are not identical. More details on this modeling strategy can be 

found in the ABAQUS manual (ABAQUS 2014). 

The SPH method implemented in ABAQUS uses the explicit time integration method (Hibbitt 

et al. 2001). As shown in Figure 2.1, the equilibrium condition is first written with the balance of 

internal force and external force, 

 ( ) ( ) ( )t t t
Mu P I= −   (2-4) 

where M is the mass matrix; u is the acceleration; P is the applied external force vector, and I is 

the internal force vector.  
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 The equations of motion for the body are then integrated using the explicit time 

central-difference integration rule as follows: 

 ( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( )

2 2

2

2
t t

t

t t t

tt t

t t t t t t

t t
u u u

u u t u

 



+

+ −

+ + +

 + 
= +


 = + 


 (2-5) 

where u is the displacement and the subscript t refers to the time in an explicit dynamic step. 

u is the velocity; t is the increment of time. For the stability of calculation, the time increment t  

should be smaller than a limited value min dt L c   with the smallest element dimension of mesh Lmin 

and the dilatory wave speed cd.  

Finally, incremental strain calculated by incremental displacement will be called by the 

constitutive model to update stresses and then internal forces, up to a new equilibrium condition. 

Equilibrium equation 

VUMAT

For t

(a) (b)
 

Figure 2.1 SPH numerical method (a) kinetics and interactions of a SPH particle and (b) Flow chart of explicit analysis 

2.3 Validation of the numerical strategy 

In the following, the combined Lagrangian-SPH model is first calibrated and validated using 

experimental results of a sand cone penetration test and of a caisson foundation. 

2.3.1 Experimental campaign 

A well-documented series of laboratory tests of a caisson foundation in sand (marked as baskarp 

sand no. 15) including Cone Penetration Tests (CPT), the installation phase and the application of 

monotonic loadings is selected hereafter, Foglia et al. (2015). The experimental set-up consisted of a 

sand box (1600 mm × 1600 mm × 1150 mm), a loading frame and a hinged beam. A system of steel 
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cables and pulleys induced loadings to the foundation through an electric motor drive placed on the 

hinged beam. The load, set by means of three weight hangers, was transferred to the foundation 

through a vertical beam bolted on the caisson lid. The foundation was instrumented with three 

LVDTs and two load cells (see in Figure 2.2).  

 

Figure 2.2 Testing rig at Aalborg University, Foglia et al. (2015) 

Cone Penetration Tests (CPT) were carried out to assess the soil parameters. The caisson 

foundation was made of steel, with an outer diameter of 300 mm, a lid thickness of 11.5 mm, a skirt 

length of 300 mm and a skirt thickness of 1.5 mm. Six tests on caisson foundations were then 

performed under different monotonic loading combinations (one pure vertical load up to failure and 

five dimensionally homogeneous moment to horizontal load ratios (M/DH=1.1, 1.987, 3.01, 5.82, 

8.748) at constant vertical load). 

2.3.2 Numerical model 

The numerical model has the same dimensions as the experimental box. The horizontal 

displacements are constrained on the lateral sides as well as all the translational degrees of freedom 

at the bottom. A perfect elasto-plastic Mohr-Coulomb model is adopted for the soil behavior (the 

constitutive equations are presented in the Appendix). The constitutive model parameters are 

obtained based on the tests results of Ibsen et al. (2009). We get finally: Young modulus E 26 MPa, 

the Poisson ratio  0.25, the frictional angle  40.8°, the dilation angle  17.5°, and the cohesion c 6 

kPa. Furthermore, the density is taken equal to 1100 kg/m3, the friction coefficient of the soil-caisson 

interface 0.35 (k=tan (/2)) and the damping ratio is set to 0.  
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In the combined Lagrangian - SPH model, only the portion of the soil experiencing large 

deformations is modeled with SPH particles (see Figure 2.3). The SPH domain has a length of 1400 

mm (the side with the horizontal or moment loading), a width of 800 mm, a height of 1150 mm and a 

total number of 88407 particles. The Lagrangian mesh at the outside is composed by 105984 

hexahedral elements. For numerical stability reasons, at least four SPH particles per face of a 

Lagrangian element in contact are considered.  

 

Figure 2.3 Combined Lagrangian - SPH model 

The caisson is modeled using 927 rigid tetrahedron elements with the same dimension and 

thickness as in the experiments. According to Foglia et al. (2015), the density of the caisson is taken 

equal to 7800 kg/m3, the Young modulus 200 GPa and the Poisson ratio 0.3. The caisson is initially 

positioned on the surface of soil at the center of box. For the CPT tests simulation, the caisson is 

replaced by a cylinder bar (using 807 rigid tetrahedron elements) with a diameter of 20 mm and a 60 

degrees cone at bottom. 

2.3.3 Validation using CPT tests 

In order to validate the combined Lagrangian - SPH model with the chosen material parameters, 

CPT test simulations are first carried out. The cone penetration velocity is taken equal to 5 mm/s, 

following Foglia et al. (2015). A rigid Mohr-Coulomb type interface model is adopted applied on the 

entire (tip and shaft) surface of the cone. 

A comparison of the experimental and numerical results is presented in Figure 2.4, where four 

CPT experimental tests are provided by Foglia et al. (2015). A good agreement is achieved which 
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indicates that the combined Lagrangian - SPH model is validated. It can be used in the following to 

simulate the nonlinear behavior of caisson foundations. 

 

Figure 2.4 Comparison between experiments and simulation of CPT tests, CLSPH Mohr-Coulomb model 

Each SPH particle represents one gauss integration point. As in the finite element approach, the 

total strain of each particle is divided into an elastic and a plastic part. The equivalent plastic strain 

PEEQ is therefore defined as PEEQ =
2

:
3

p p

ij ij    (where p

ij  is the tensor of the plastic strain rate). 

The fields of equivalent plastic strain (PEEQ), the deviatoric stress (S Mises, Pa) and the mean 

effective stress (S Pressure, Pa) corresponding to a penetration of 400 mm are plotted in Figure 2.5 

which shows reasonable distributions and an influence distance much smaller than the SPH domain. 

 1 
(a)                                                     (b)                                                      (c)

 

Figure 2.5 Results of CPT simulation, CLSPH Mohr-Coulomb model: fields of (a) equivalent plastic strain (PEEQ), (b) 

deviatoric stress (S Mises, Pa) and (c) mean effective stress (S Pressure, Pa) 

2.3.4 Validation using caisson foundation tests 
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The combined Lagrangian - SPH model of Figure 2.3 is used hereafter to simulate one pure 

penetration test (Hogervorst 1980) by vertical displacement control at a rate of 5 mm/s, and five tests 

at different dimensionally homogeneous moment to horizontal load ratios (M/DH=1.1, 1.987, 3.01, 

5.82, 8.748) (Foglia et al. 2015). The tests are done under a constant vertical load of 241 N and 

combined horizontal - rotation control at the middle point of the caisson.  

ABAQUS explicit is used for the simulations. For explicit calculations, the loading rate is 

usually ten times the real loading rate in order to save computational time. Nevertheless, the 

quasi-static state of the simulation should be guaranteed (Qiu et al. 2009). In ABAQUS/SPH, 

quasi-static conditions are defined when the ratio of the kinematic energy over the internal energy is 

smaller than 5%. Noting that the loading rates were not presented in the monotonic tests. For the 

calculations presented hereafter, a displacement rate of 10 mm/s and rotation rate of 0.5 degree/s are 

selected after many attempts to find an optimum trade-off between computational time and 

computational stability. All monotonic loading paths are followed until the horizontal capacity (HR) 

or moment capacity (MR) are reached. The displacements and rotations corresponding to the 

horizontal capacity (HR) or moment capacity (MR) are summarized in Table 2.1. 

Table 2.1 Displacements and rotations for capacity level loadings and for different M/DH values, CLSPH Mohr-Coulomb 

model  

M/DH u (mm) Dθ (mm) HR (N) MR/D (N) 

1.1 5.8 7.4 420 540 

1.987 4.6 6.0 330 640 

3.01 4.0 5.5 190 690 

5.82 5.0 6.8 110 700 

8.748 3.5 5.1 90 760 

Figure 2.6 shows the applied vertical force versus the vertical displacement for the pure vertical 

loading test (comparison between the experimental results and the numerical simulations). Figure 2.7 

presents the horizontal load (H) versus the horizontal displacement (U) and the dimensionally 

homogeneous moment (M/D) versus the rotational displacement (D) for five M/DH values (1.100, 

1.987, 3.010, 5.820 and 8.748). For all tests a good agreement is achieved between the experiments 

and the simulations. The combined Lagrangian – SPH model with the chosen material parameters is 

therefore well calibrated. It can be used for further numerical investigations of the failure process and 

mode of caisson foundations.  



 

41 

 

Figure 2.6 Pure vertical loading test: vertical displacement versus vertical force, comparison of experiments and 

simulations, CLSPH Mohr-Coulomb model 

S S

 

Figure 2.7 Monotonic multidirectional loading tests: (a) horizontal force versus horizontal displacement, (b) dimensionally 

homogeneous moment versus rotational displacement, comparison of experiments and simulations for five M/DH values, 

CLSPH Mohr-Coulomb model 

It can be observed that the calculated curves are not smooth. This is probably due to numerical 

noise, typical for SPH calculations with the explicit time integration scheme. The numerical noise 

can be affected by various factors, such as the time increment, the contact law between the 

foundation and the soil and the application of the mass scaling method for improving the calculation 

efficiency.  



 

42 

Two extreme cases are selected hereafter to study large deformations: one pure vertical loading 

test and one moment combined horizontal loading test (M/DH=8.748). The fields of equivalent 

plastic strain (PEEQ), deviatoric stress (S Mises, Pa) and mean effective stress (S Pressure, Pa) are 

plotted in Figure 2.8. Distributions are again reasonable and the influence distance (in vertical and 

horizontal directions) is again much smaller than the SPH domain. 

(a)                                                     (b)                                                      (c)

(d)                                                     (e)                                                      (f)
 

Figure 2.8 Contour of plastic deviatoric strain (PEEQ), deviatoric stress (S, Mises, Pa) and Mean stress (S Pressure, Pa) for 

(a-c) pure vertical loading test and (d-f) moment combined horizontal loading test (M/DH=8.748),  CLSPH 

Mohr-Coulomb model 

Finally, the bearing capacity diagrams (or failure envelopes) in the H:M/D loading plane and for 

the same vertical loading provided by the numerical simulations and by models of reference in the 

literature (Villalobos et al. (2010), Ibsen et al. (2014) and Foglia et al. (2015)) are compared in 

Figure 2.9. A good agreement is again achieved, validating the adopted numerical strategy. 
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Figure 2.9 Failure envelope in the H:M/D loading plane for the same vertical loading: simulation with the CLSPH 

Mohr-Coulomb model versus experimental results and predictions of models of reference 

2.4 Numerical analysis of failure process and failure modes 

Based on the validated numerical model, various tests under different loading combinations are 

simulated hereafter: three single loading tests (P-V, P-H and P-M for pure vertical, pure horizontal 

and pure moment loading respectively), four tests under two combined loadings (C-VH for combined 

horizontal and vertical loadings, C-VM for combined vertical loading and moment, C-H+M for 

combined horizontal loading and moment at the same direction, C-H-M for combined horizontal 

loading and moment at the opposite direction), and two tests under three combined loadings 

(C-VH+M and C-VH-M which are similar to C-H+M and C-H-M with additional vertical loading). 

During all simulations, the displacement rate is kept equal to 10 mm/s and the rotation rate 0.5 

degree/s. The applied displacement or rotation angle is big enough to ensure the complete 

development of a sliding surface in the sand. 

Figure 2.10 illustrates the way to determine Fy; the softening part is not considered; the peak 

value is used to define failure. The results of the test simulations are summarized in Table 2.2. The 

evolution of the sliding surface of the caisson foundation is represented by the equivalent plastic 

strain. Five phases are illustrated: 0.33Fy (Fy being the force or moment on the failure surface), 

0.66Fy, 0.95Fy, 2DFy (DFy is the displacement or rotation angle at 0.95Fy) and 4DFy. Table 2.3 

presents specific views at 4DFy. In particular, the XZ, XY, YZ sections and the overall (3D) view are 

included. 
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Figure 2.10 Determination of the peak values 
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Table 2.2 Evolution of the sliding surface of a caisson foundation in sand under different loading paths, CLSPH Mohr-Coulomb model 

 F=0.33Fy F=0.66Fy F=0.95Fy S=2DFy S=4DFy 

P-V 

 

 

   

P-H 

 
 

   

P-M 

 

 

 

  

C-HV 
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C-VM 

 
 

   

C-H+M 

     

C-H-M 

 

  

  

C-H+VM 
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C-H-VM 
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Table 2.3 Specific views of the sliding surface of a caisson foundation in sand under different loading paths, CLSPH 

Mohr-Coulomb model 

 XZ-section view XY-section view YZ-section view Overall view 

P-V 

 
  

 

P-H 

  
 

 

P-M 

 
 

  

C-HV 

   
 

C-VM 

   
 

C-H+M 
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C-H-M 

 
  

 

C-H+VM 

 
  

 

C-H-VM 

 
  

 

2.4.1 Failure modes under single loading paths 

For the single vertical loading test (P-V), the plastic zone expands at the beginning along the 

vertical direction. With increasing displacement, the soil underneath the caisson is compressed and 

the plastic zone expands also along the horizontal direction. Significant plasticity concentrates on the 

bottom of the caisson. The final plastic zone looks like a matrass, as shown in Table 2.2. 

For the single horizontal loading test (P-H), the plastic zone expands in the horizontal direction, 

see Table 2.2. The shear stress at the bottom of the caisson being higher, the plastic zone expands less 

at the bottom than in the above layer. As a result, the final sliding surface is similar to spheroidicity, 

see Table 2.3. Plastic zone is mainly situated on the sliding plane and near the right skirt of the 

caisson. 

For the single moment loading test (P-M), the plastic zone expands in the circumferential 

direction. Comparing with the previous two cases, the plastic zone occupies a smaller area and it is 

primarily concentrated on the sliding plane near the left inner skirt of the caisson. 

2.4.2 Failure modes under two combined loading paths 

For the C-VH case, the plastic zone extends first in the resultant force direction H and V, 45°

with the horizontal direction. With increasing displacement, a polarization of the plastic zone occurs. 
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As shown in Table 2.2, the plastic zone extends in with two directions, the horizontal and the vertical. 

The plastic zone mainly concentrates on the 45°glide plane, the areas near the right skirt and at the 

bottom of the caisson. Compared to the cases of pure vertical and pure horizontal loading, the plastic 

zone of the C-VH case can be considered as the superposition of the former two. 

Under combined V and M loadings, case C-VM, the plastic zone expands along with the 

vertical and the circumferential directions. Compared to the case of the pure moment, the extension 

of the plastic zone in the circumference is larger. The final sliding surface approximates as a 

spheroidicity. High plastic zone primarily centralizes on the sliding plane near the left inner skirt of 

the caisson. 

As shown in Table 2.1, the plastic zone expands in the circumferential and horizontal directions 

under combined H and M loadings for the C-H+M case. As mentioned above, because the shear 

stress at the upper soil layer is smaller, the sliding surface looks like a basin and the plastic zone is 

basically bilateral symmetric. Compared to the case of the pure moment, the plastic zone extends 

mostly at the left side.  

Similar to the above case, the plastic zone of the C-H-M case expands along with the 

circumferential and horizontal directions. Compared to C-H+M and because of the opposite direction 

of horizontal loading, the plastic extension is more apparent. The plastic extension of H and M is 

mutually stimulative, with a positive correlation. A high plastic area centralizes mainly on the sliding 

plane and has the form of a continuous zone expanding in the horizontal and circumferential 

directions. 

2.4.3 Failure modes under three combined loading paths 

As shown in Table 2.2, the extension of the plastic zone for C-H+VM follows three directions, 

i.e. horizontal, vertical and circumferential. The final sliding surface is a shape of hemispheroidicity. 

The plastic zone primarily concentrates on the left skirt (including the inner and outer sides) of the 

caisson and near the bottom. 

For the C-H-VM case, the edge of the plastic zone has the shape of a smooth arc. With the 

rotational displacement increasing, the upper soil layer is lifted. The plastic zone concentrates 

primarily on the sliding plane near the caisson bottom. Like for the C-H-M case, the extension of the 

plastic zone due to H and M is mutually stimulative. Compared to C-H-M case, the final sliding 
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surface is smaller, the reason being is that the vertical loading enhances the interaction between the 

caisson and the soil, thereby reducing the displacement and rotation of the caisson. 

2.4.4 Bearing strength and sliding surface area under different loading conditions 

In order to find the relation between the bearing strength and the sliding surface expansion 

under different loading conditions, the sliding surface area is calculated hereafter for each case. The 

shape of the sliding surfaces for all cases can be approximated as an ellipsoid, which can be 

described as,  

 

2 2 2

2 2 2
1

x y z

a b c
+ + =   (2-6) 

where a, b and c respectively define the length of the ellipsoid in the three dimensions expressed as: 
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
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  (2-7) 

To measure (a1, a2 and a3), (b1, b2 and b3) and (c1, c2 and c3), an illustrative example is given 

hereafter; as shown in Figure 2.11 and for the XZ-section, the weights of a1, a2 and a3 are 0.25, 0.5 

and 0.25 respectively, because of the irregular shape. A similar method is adopted for the two other 

directions.  
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2a3

2b1

2b2 2b3

 

Figure 2.11 Illustrative example for calculating the sliding surface area 

By measuring the length of the ellipsoid in the three dimensions, the sliding surface area is 

calculated following the Knud Thomsen formula,  
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      


 + +

  
 

  (2-8) 

where 1.6075   with the relative error approximates to 1.061% (Krajcik and McLenithan, 

2001).  

Results are summarized in Table 2.4. Figure 2.12 shows the sliding surface area under different 

loading paths.  

Table 2.4 Bearing strength and sliding surface area under various loading paths, CLSPH Mohr-Coulomb model 
 

a (mm) b (mm) c (mm) s (mm2) V (N) H (N) M/D (N) 

P-V 665.9 665.9 866.3 2160432 87949 \ \ 

P-H 991.7 693.3 441.4 1547919 \ 720 \ 

P-M 887.6 647.9 530.1 1473167 \ \ 810 

C-VH 1012.5 729.4 729.5 2117608 4227 923 \ 

C-VM 1070.1 817.7 660.7 2247553 4019 \ 1237 

C-H+M 913.0 670.8 480.8 1468090 \ 652 793 

C-H-M 807.6 572.1 511.6 1235435 \ 563 652 

C-VH+M 1239.5 786.8 659.5 2465439 3771 852 939 

C-VH-M 807.6 572.1 757.5 1589610 4625 671 576 

 

Figure 2.12 Sliding surface area under different loading paths, CLSPH Mohr-Coulomb model 
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As shown in Table 2.4 and Figure 2.12, among the single loading cases, the penetration test 

(pure vertical load) has the higher strength and the more significant sliding surface area. The sliding 

surface areas are nearly the same for the pure H and M cases. For the two combined loading cases, 

while V combined with H or M, compared to single loading case, the global bearing capacity is 

improved. For the three combined loading cases, comparing the case C-VH+M to C-VH-M, the 

higher sliding surface and the larger bearing capacity are observed when the direction of H and M are 

the same (see C-VH+M case). 

2.4.5 Influence of the caisson dimensions 

Three additional caisson dimensions, designated as D/d=0.5, 1.5 and 2 (D being the caisson 

diameter and d the skirt length) with the same soil-structure contact area are studied hereafter: the 

narrow-deep caisson R0.5 (D=224mm, d=447mm), the wide-shallow caisson R1.5 (D=350mm, 

d=233mm) and the R2.0 (D=387mm, d=193mm). For each caisson configuration, six representative 

combined loading paths are selected for the simulations: H-V, V-M, H+-M, H--M, H+-V-M, 

H--V-M.As the failure progress and failure modes are found very similar to that of D/d=1.0 (only 

with a different sliding surface size), the plastic zones are not plotted in this section. Only the bearing 

strength and the sliding surface areas are used for the comparisons.  

As shown in Figure 2.13, the bearing strength for vertical loads increases slightly and linearly, 

while the horizontal and moment capacities show a slightly linear decrease. Comparing the cases 

H+-M to H--M, H+-V-M to H--V-M, for the opposite direction of applied horizontal loading, the H 

and M bearing capacities reduce. When a vertical load is applied, the H and M bearing capacities are 

improved. 

The sliding surface area is calculated for all cases and plotted in Figure 2.14. It can be seen that 

in all cases, with increasing D/d ratio, the sliding surface area decreases slightly and then increases 

linearly. Comparing the cases H+-M to H--M, H+-V-M to H--V-M, for the opposite direction of 

applied horizontal loading, the sliding surface expansion reduces. When a vertical load is applied, the 

sliding surface area increases.  
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(a) (b)

(c)
 

Figure 2.13 Bearing strength for different combined loadings and ratios D/d: (a) H-V & V-M, (b) H+-M  & H--M, (c) 

H+-V-M  & H--V-M, CLSPH Mohr-Coulomb model 

 

Figure 2.14 Sliding surface areas for different combined loadings and ratios D/d, CLSPH Mohr-Coulomb model 
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2.5 Conclusions 

The evolving failure of a caisson foundation in sand was modelled under various loading 

combinations. A combined Lagrangian - Smoothed Particle Hydrodynamics method was adopted to 

deal with large deformations. The method was first calibrated and validated by simulating sand cone 

penetration tests. The results of an experimental campaign of a caisson were then used to further 

validate the approach.  

More representative loading combinations were then chosen to numerically study the failure 

process and failure modes. It is concluded that, (1) the sliding surfaces for various combined 

loadings have the same shape but different sizes; (2) the vertical loading improves the horizontal 

or/and moment strength and thus increases the bearing capacity of the caisson foundation; (3) for the 

case when H and M are on the same direction, the sliding surface is more pronounced and the 

bearing capacity is bigger. 

Various caissons with different dimensions were then simulated, submitted to representative 

combined loading paths. It was found that with increasing D/d ratio, the vertical loading bearing 

capacity increases slightly and linearly, while the horizontal and moment capacities present a slightly 

linear decrease. The sliding surface area first decreases slightly and then increases linearly. 

A critical state-based soil model combined with the SPH method is introduced and validated 

with granular collapse experimental data in chapter 3. Then, in chapter 4, the validated model is used 

to further investigate the 3D bearing capacity diagram of caisson foundations under complex loading 

conditions and different soil parameters.  
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Chapter 3 SPH-SIMSAND numerical approach and validation with granular 

collapse experiments 

 

3.1 Introduction 

Granular collapse, such as debris, rock avalanches and landslides is a common issue in natural 

hazards. In order to understand this phenomenon, two types of experiments are often conducted: 

rectangular channel flowing tests, Balmforth and Kerswell 2005; Lajeunesse et al. 2005; Lube et al. 

2005; Lube et al. 2007; Bui et al. 2008; Crosta et al. 2009 and column flowing tests, Lube et al. 

(2004, 2005 and 2007). In rectangular channel flowing tests, granular collapse is obtained by putting 

the granular material in a rectangular channel while quickly removing a vertical side boundary. In 

column flowing tests, the granular material is positioned in a hollow cylinder pipe. Daerr and 

Douady (1999) showed using low aspect ratio column granular collapse experiments that the final 

deposit morphology depends on the initial soil density. Lajeunesse et al. 2004; Lube et al. 2004; 

Lube et al. 2005; Lube et al. 2007 showed that the final deposit morphology (deposit radius, deposit 

height and slumping velocity) mainly depends on the initial aspect ratio of the granular column (the 

authors did not study the influence of soil density).  

Recently, various numerical studies were also conducted to investigate granular collapse. 

Several authors confirmed that the final deposit morphology depends on the initial aspect ratio using 

the Discrete Element Method (DEM) (Staron and Hinch 2005; Zenit 2005; Lacaze et al. 2008; 

Girolami et al. 2012; Soundararajan 2015; Utili et al. 2015). In these articles, the effect of the initial 

void ratio (corresponding to the soil density) was not studied. Kermani et al. (2015) and 

Soundararajan (2015) simulated the effect of initial porosity on 3D asymmetrical collapsing and for 

different aspect ratios. The number of particles in the majority of DEM simulations being however 

limited, the applicability of this method to real scale problems remains questionable.  

The finite element method was also adopted to reproduce granular collapse (Shen et al. 2014; 

Shen et al. 2017; Wu et al. 2016; Wu et al. 2017a). Crosta et al. 2009 used the classical 

Mohr-Coulomb and Drucker-Prager constitutive models and the Arbitrary Lagrangian-Eulerian 

technique. Zhang et al. 2015 the Particle Finite Element Method, Bui et al. 2008; Nguyen et al. 2016 

the Smooth Particle Hydrodynamics (SPH) and Sołowski and Sloan 2015 the Material Point Method.  
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In this chapter we illustrate and validate the use of the Smooth Particle Hydrodynamics (SPH) 

method with a more advanced soil constitutive model than the Mohr-Coulom model used in the 

previous chapter. Combining the SPH method with a critical state constitutive model is a necessary 

step to identify a more realistic 3D failure surface for caisson foundations in sand (see chapter 4).  

3.2 The SIMSAND critical state constitutive model  

The SIMSAND model was developed based on the Mohr-Coulomb model by implementing the 

Critical State Line (CSL) concept (Yin et al. 2016a; Jin et al. 2017) with non-linear elasticity, 

non-linear plastic hardening, and a simplified three-dimensional strength criterion. The 

state-dependent peak strength and stress-dilatancy (contraction or dilation) are well captured by the 

SIMSAND model (Jin et al. 2017). The SIMSAND equations are summarized in Table 3.1. 

Calibration of the model parameters can be carried out using a straightforward way (Wu et al. 2017) 

or optimisation methods (Jin et al. 2016a,b; Yin et al. 2016b, see for example Table 3.2. for 

calibrated values for the Toyoura sand). 

Table 3.1 The SIMSAND model 

Components Constitutive equations 

Elasticity 
( ) ( )

1

3 1 2 3 1 2

e
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Three-dimensional strength criterion 
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* pat atmospheric pressure (pat = 101.3 kPa); p effective mean pressure; q deviatoric stress; ec critical state 

void ratio; p peak friction angle; pt phase transformation friction angle; Mpt stress ratio corresponding to the phase 

transformation; Mp peak stress ratio;  Lode’s angle, Sheng et al. (2000), Yao et al.(2004, 2008 and 2009) ; np and 

nd parameters controlling the degree of interlocking due to neighboring particles, Yin and Chang (2010, 2013). 
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Table 3.2 The parameters of the SIMSAND model and calibrated values for the Toyoura sand  

Parameters Definitions Value 

  Referential bulk modulus (dimensionless) 130 (kPa) 

 Poisson’s ratio 0.2 

n Elastic constant controlling the nonlinear stiffness 0.5 

 Critical state friction angle 31.5 (°) 

eref Initial critical state void ratio 0.977 

 Constant controlling the nonlinearity of CSL 0.0596 

 Constant controlling the nonlinearity of CSL 0.365 

Ad Constant of magnitude of the stress-dilatancy  0.7 

kp Plastic modulus related constant  0.0044 

np Inter-locking related peak strength parameter 2.4 

nd Inter-locking related phase transformation parameter 2.9 

The SIMSAND model was implemented into ABAQUS/Explicit as a user-defined material 

model via user material subroutine VUMAT. The procedure of model implementation follows the 

way of Hibbitt et al. (2001), see also chapter 2. In ABAQUS/Explicit combining with VUMAT, the 

strain increment on the element  at t is first solved by ABAQUS using an explicit time 

central-differential integration method. Then, the stress increment  is updated through VUMAT 

using the solved . For the stress integration, the cutting plane algorithm proposed by Ortiz and 

Simo (1986) was adopted. 

3.3 Rectangular channel soil collapse simulations 

3.3.1 Experimental and numerical configurations 

In order to validate the SPH-SIMSAND model and the adopted numerical integration scheme, 

the rectangular channel soil collapse tests of (Bui et al. 2008)) are first simulated hereafter. In the 

experiments, small aluminium bars of various diameters (0.1cm and 0.15cm) were used to simulate 

soil. The bars were initially arranged into an area of 20cm length × 10cm height × 2cm width, 

delimited by two flat solid walls. The experiment starts by quickly moving the right wall horizontally 

to the right causing the flow of the aluminium bars to the side due to gravity (Figure 3.1). 
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Soil sample
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model the wall

50mm

200mm

100mm

20mm

 

Figure 3.1 Rectangular channel soil collapse experiments, Bui et al. (2008) 

In the numerical model, the spatial discretization domain is shown in Figure 3.2(a). SPH 

particles are used to model the soil while the two solid walls are discretized with rigid hexahedral 

finite elements. The initial SPH particles distance is (approximately) the same in the horizontal and 

vertical directions, in order to reproduce homogenous conditions. 

A cell size of 0.2 cm was adopted for all the simulations hereafter by checking mesh 

dependency (Figure 3.2(b-d) with different sizes from 0.1 to 0.2 cm) and the particle space was half 

of the cell size (i.e. eight particles in each cell). The total number of particles was around 400,000. 

The bottom surface was set as a fixed boundary, whereas the nodal displacement of the four lateral 

boundaries were restricted in normal direction. 
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Figure 3.2 SPH particle density and mesh-dependency: (a) 2D spatial domain discretization for SPH particles and rigid 

hexahedral finite elements, (b) cell size of 0.1 cm (c) cell size of 0.15 cm (d) cell size of 0.2 cm  

Due to the lack of mechanical tests on the experimental behaviour of the material used in the 

rectangular channel soil collapse tests, the SIMSAND model is adopted for the numerical 

simulations calibrated for the Toyoura sand, see Table 3.2. Figure 3.3 presents the typical 

state-dependent behaviour of granular materials simulated by the SIMSAND model under a very low 

confining stress (as was the condition in the rectangular channel soil collapse tests). It can be 

observed that the initial void ratio (or initial density) significantly influences the peak strength and 

the dilation/contraction. which should be considered in granular collapse since the density is highly 

changing during the collapse. Actually and following Lube et al.(2004 and 2005), the collapse 

behaviour is less sensitive to the grain properties of the granular material than to its density. 

Furthermore, density is highly changing during the collapse and should therefore be considered. 

p0 = 5kPa p0 = 5kPa

CSL

(a) (b) (c)

e0 = 0.75

e0 = 0.9

e0 = 1.05

p0 = 5kPa

e0 = 0.75

e0 = 0.9

e0 = 1.05

 

Figure 3.3 Simulated stress-strain behaviour of conventional triaxial tests using the SIMSAND model calibrated for the 

Toyoura sand: (a) deviatoric stress versus axial strain, (b) void ratio versus axial strain, and (c) void ratio versus mean 

effective stress in demi-logarithmic scale 

The simulation of the experiments is carried out in two steps: a) the first step to balance the 

geostatic field and b) the second step to move the right wall along the horizontal direction with a 

speed of 1m/s to the right. The contacts between the sand and the two walls are described with the 

classical Coulomb law with a friction coefficient  = tan (/2) = . 

3.3.2 Validation 

Different void ratios e0 from 0.75 to 1.05 are assumed hereafter for the simulations and 

compared with the experimental results. As shown in Figure 3.4, the smaller the void ratio (or the 

higher the initial density), the steeper the free surface and failure line and the longer the run-out 
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distance. This agrees with the experimental results of Lube et al. (2005). Luckily, the simulation with 

e0= 0.95 fits well the experiment. Thus, e0= 0.95 is adopted as a reference void ratio in the following.  

(a)

0 8 16 24 32 40 48

4 12 20 28 36 44

(Displacement: cm)

(b)

(c)
 

Figure 3.4 Rectangular channel soil collapse simulations and experimental data: (a) final free surfaces and failure lines 

for various initial void ratios (e0=0.75, 0.85, 0.95, 1.05), (b) final deformed shaped of the column in the experiment, and 

(c) final deformed shaped of the column in the simulations with e0=0.95 

Figure 3.5 shows the numerical deformed shaped of column and the distribution of deviatoric 

plastic strain at different time steps. The movement takes place for approximately 0.6s. 

t=0.05s

t=0.1s

t=0.3s

t=0.6s

0 2 4 6 8 10 12

1 3 5 7 9 11

Deviatoric plastic strain: %
 

Figure 3.5 Rectangular channel soil collapse simulations: deformed shape and deviatoric plastic strain distribution at 

different time steps 

3.4 2D column collapse simulations 

3.4.1 Influence of aspect ratio 
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In order to have a better understanding on the granular column collapse and to further validate 

the adopted SPH-SIMSAND numerical approach, the two-dimensional column collapse experiences 

of Lube et al. (2005) with different initial aspect ratio are simulated hereafter. In the numerical model, 

the spatial discretization domain has the same dimensions as in the experiments of Lube et al. (2005), 

see Figure 3.6, where hi is the initial height, di the initial basal length and a=hi /di the aspect ratio of 

the granular column. As in the experiments, six aspect ratios are simulated (a=0.5, 1.0, 1.5, 3.0, 7.0, 

9.0) where the column initial basal length is taken constant and equal to 10 cm. The element size for 

all aspect ratios is 0.2cm. The total number of SPH particles varies from 31250 to 562500 for the 

different column aspect ratios, see Table 3.3. 

  

  

  

   
 

Figure 3.6 2D column collapse: discretization domain plane views 

Table 3.3 2D column collapse: discretization parameters for all simulations 

Aspect ratio a Initial basal length di (cm) Initial height hi (cm) Column size(cm3) Number of SPH particles 

0.5 10 5 10×5×5 31250 

1.0 10 10 10×10×5 62500 

1.5 10 15 10×15×5 93750 

3.0 10 30 10×30×5 187500 

7.0 10 70 10×70×5 437500 

9.0 10 90 10×90×5 562500 

 

Three different aspect ratios (a = 0.5, 1. 5 and 7.0) are compared with the experimental results 

of Lube et al. (2005) in Figure 3.7, where the distribution of the deviatoric plastic strain can be seen. 
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A good agreement is observed in terms of deposit morphology. Furthermore, simulations captured 

the progressive collapsing process and more specifically: 

(1) For a = 0.5: the outer region at the bottom flows and the length of the run-out region at the 

column foot increases. The inner region is less disturbed than for the other cases and a flat 

area remains at the top.  

(2) For a = 1.5: the run-out distance at the bottom increases and a flat undisturbed area is created 

at the top during the initial stage. Finally, a cone tip is formed.  

(3) For a = 7.0: an important degradation of the column height first happens. Then, the run-out 

distance at the column foot increases and the upper initially undisturbed surface begins to 

flow. Finally, a very large run-out distance with a cone tip is formed. 
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Figure 3.7 2D column collapse: comparison of progressive granular collapse between simulations and experiments for 

different aspect ratios (a-d) a = 0.5, (e-h) a = 1.5 and (i-l) a = 7.0 

3.4.2 Flow description 

Figure 3.8 shows the successive numerical granular collapse profiles for the three aspect ratios. 

Lube et al. (2004) distinguished three deposit morphologies based on the aspect ratio range: (1) a 

<0.74, (2) 0.74 < a <1.7 and (3) a >1.7. These distinctive flow processes are well captured by 

simulations:  
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For a = 0.5 (< 0.74): a lateral flow develops at the column foot and a flat undisturbed area 

remains at the top. The deposit height h0 stays constant.  

For 0.74 < a = 1.5 <1.7: the evolution of the lateral flow is accompanied by a small decrease of 

the initial height h0. A wedge shape is formed at the end.  

For a = 7 >1.7: initially, the column height greatly decreases but the upper surface remains 

unchanged. Then, the lateral flow quickly develops. Simultaneously, the length of the upper surface 

decreases and a dome-like shape is formed. At the final stage, the run-out distance d  is important 

and a wedge shape is formed at the top h . 

(a) a=0.5

(b) a=1.5

(c) a=7.0
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Figure 3.8 2D column collapse: numerical progressive column collapse profiles for different aspect ratios (a) a = 0.5, (b) 

a = 1.5 and (c) a =7.0 

Figure 3.9 shows the comparison of plastic strain fields between simulations with different 

aspect ratios, where the smallest value of deviatoric plastic strain 
p

d  is coloured in black. The 

undisturbed stable area inside the granular column is characterized by a relatively small value of 

deviatoric plastic strain. For the cases a = 0.5, 1.0 and 1.5 only, an undisturbed trapezoid area 

develops on the upper free surface of the column. For the larger aspect ratios a = 3.0, 7.0 and 9.0, a 

triangle area is formed at the upper free surface and the repose angle presents an increasing trend.  
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Figure 3.9 2D column collapse: side view of plastic deviatoric strain after collapsing for different aspect ratios (a) a = 0.5, 

(b) a =1.0, (c) a = 1.5, (d) a = 3.0 , (e) a = 7.0 and (f) a = 9.0 

3.4.3 Influence of soil density 

In order to study the influence of soil density, granular columns with four initial void ratios (e0 = 

0.75, 0.85, 0.95 and 1.05, corresponding to a unit weight of  = 1.51, 1.43, 1.36 and 1.29 when 

Gs=2.65) and for six aspect ratios (a = 0.5, 1.0, 1.5, 3.0, 7.0 and 9.0) are simulated hereafter. The 

numerical results are compared with the best-fitting equations of Lube et al. (2005) in Figure 3.10. It 

can be seen, the numerical results are in agreement with the best-fitting equations for the normalized 

final run-out distance when e0=0.95. Differences however appear for smaller initial void ratios, 

especially for the larger aspect ratios cases. The normalized final deposit height seems less sensitive 

to the soil density. However, the effect increases for the larger aspect ratios cases. The comparisons 

indicate that the deposit morphology (final run-out distance and final deposit height) depends not 

only the aspect ratio but also on the initial density. This is in agreement with results reported by the 

Discrete Element Method (Kermani et al. 2015). 
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Figure 3.10 2D column collapse: comparison between the numerical simulations and the best-fitting equations of Lube et 

al. (2005) for different aspect ratios and initial void ratios (a) normalized final runout distance and (b) normalized final 

deposit height 

Figure 3.11 presents the final deposit morphology of the numerical simulations with different 

initial void ratios. It can be seen that the final deposit morphology is sensitive to the initial void ratio 

or the soil density. For the cases of a < 1.15, the height of the circular undisturbed zone in the upper 

surface is maintained but its area decreases. The run-out distance increases with increasing initial 

void ratio (or decreases with decreasing initial soil density). For a higher column a > 1.15, the denser 

granular material causes shorter run-out distance and higher final deposited height. This result is in 

agreement with DEM simulations Kermani et al. (2015) and experiments Daerr and Douady (1999).  

The SPH method combined with the critical state based SIMSAND model captures well the 

influence of void ratio (or soil density) on granular collapse. The different deposit morphologies for 

different void ratios with the same aspect ratio can be explained by stress-dilatancy. For a dense sand, 

a stronger interlocking force develops between the particles, a higher mobilized strength and finally a 

stable inner region is formed during collapse. A denser granular column corresponds to a bigger 

inclination of the slope surface, a more important deposit height and a smaller run-out distance. 
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Figure 3.11 2D column collapse: influence of the initial void ratio on the final deposit morphology for (a) a = 0.5; (b) a = 

1.0; (c) a = 1.5; (d) a = 3.0; (e) a =7.0; (f) a = 9.0 

3.4.4 Monitoring collapse 

The collapsing time t is normalised hereafter by the intrinsic critical time tc that can be 

calculated from the initial height of the sand column tc = gih  (Soundararajan 2015). Figure 3.12 

and Figure 3.13 present the simulation results of the normalized run-out distance (d -di)/di and the 

normalized deposit height h /di with the normalized time t/tc. All results present an ‘‘S-shape’’ curve 

with two successive stages, regardless the initial aspect and void ratios; an acceleration and then a 

deceleration stage starting close to 1.5tc ~ 2.0tc. Collapse ceases approximately at 3.5tc.  
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The following conclusions can be made: 

(1) For the same initial void ratio, a higher aspect ratio leads to a more important normalized 

run-out distance and deposit height.  

(2) For the same aspect ratio, a denser sand (smaller initial void ratio) leads to a more important 

deposit height but to a shorter run-out distance in the same time scale. 

(3) The normalized deposit height initially increases when the right boundary plate is lifted 

(Figure 3.13(a-c)). This uplift depends strongly on the soil density. A denser soil leads to a 

more important uplift. The reason for this is again the stronger interlocking between particles 

that develops more on a denser sand at initial shearing. 

a=0.5 a=1.5 a=7.0

(a) (b) (c)
 

Figure 3.12 2D column collapse: evolution of the normalized runout distance for different aspect ratios and initial void 

ratios 

/ / / 

a=0.5 a=1.5 a=7.0

(a) (b) (c)
 

Figure 3.13 2D column collapse: evolution of the normalized deposit height for different aspect ratios and initial void 

ratios 
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3.5 Conclusions 

A numerical investigation on granular collapse, based on the critical state soil model SIMSAND 

and the SPH method has been carried out. The validation was first provided by comparing 

experimental data from rectangular channel and two-dimensional column collapse tests. Then, the 

influence of the initial aspect ratio and the soil density was studied in details.    

All comparisons show that the adopted numerical strategy is able to reproduce qualitatively and 

quantitatively the main behaviours of granular column collapse, i.e. free surface, failure line, the 

final deformed profile for the rectangular channel test, final run-out distance and deposit height. 

More specifically, when the initial soil density decreases the failure surface shrinks and the free 

surface enlarges. A lower initial void ratio generates a stronger interlocking force leading to a higher 

deposit height and a shorter run-out distance. 

The combination of the SIMSAND model with the SPH method is able to reproduce granular 

collapse considering the influence of different aspect ratios and soil densities. It is therefore an 

effective computational tool for the analysis of real scale granular flow. The combination of the 

SIMSAND model with the SPH method being validated, the Combined Lagrangian-SPH method and 

the SIMSAND model are adopted in the next chapter to further study the failure envelope of a 

caisson foundation in sand. 

 

 

 

 



 

71 

Chapter 4 Numerical investigation on the evolving failure of caisson foundations: 

Combined Lagrangian - SPH technique, SIMSAND model 

 

4.1 Introduction 

The design of caisson foundations has recently become an important geotechnical challenge. 

Although caisson foundations have been used in the oil and gas industry for several decades (Tjelta 

1995; 2001), they have been used for Offshore Wind Turbines since the early 21st century (Iskander 

et al. 2002; Villalobos et al. 2004; Houlsby et al. 2005; Nguyen-Sy and Houlsby 2005; Houlsby et al. 

2006; Senders 2009; Villalobos et al. 2009). Providing a skirt, caisson foundations significantly 

improve the stiffness and the bearing capacity with the additional expense of a (minor) weight 

increase compared to classical surface foundations (Villalobos et al. 2003). A caisson foundation is 

lighter than a gravity platform jacket; nevertheless, the horizontal loads and moments are high in 

comparison to its weight. 

For an optimum caisson foundation design in the offshore field it is necessary to consider the 

couplings between the vertical force (V), the horizontal force (H) and the bending moment (M). 

Previous research studies on the bearing capacity of caisson foundations in sand mainly focused in 

in-situ tests (Hogervorst 1980; Tjelta 1995; Houlsby et al. 2006), model test (Gottardi et al. 1999; 

Byrne and Houlsby 2001; Cassidy et al. 2002; Ibsen et al. 2013; Ibsen et al. 2014; Foglia et al. 2015) 

or finite element method simulations (Gourvenec 2008; Bransby and Yun 2009; Liu et al. 2014; 

Gerolymos et al. 2015; Ntritsos et al. 2015; Zafeirakos and Gerolymos 2016). The above 

experimental or numerical results can be used to construct simplified numerical strategies for design 

purposes, e.g. macroelements (Nova and Montrasio 1991; Montrasio and Nova 1997; Gottardi et al. 

1999; Byrne and Houlsby 2001; Cremer et al. 2001; Cassidy et al. 2002; Grange et al. 2008; 

Salciarini and Tamagnini 2009; Li et al. 2016). Following the macroelement concept, the entire 

soil-foundation system is regarded as a single element with a constitutive law expressed in 

generalised variables following the plasticity or hypoplasticity theory. Compared to a conventional 

finite element approach, macroelements are simpler, faster and more robust but suitable only for 

specific foundation - soil configurations. 

The definition of the failure surface is of paramount importance in the development a 

macroelement (Gottardi and Butterfield 1993; Houlsby and Cassidy 2002; Gourvenec and Randolph 

2003; Gourvenec and Barnett 2011; Li et al. 2014) as it introduces the effects of combined loads for 

different loading levels. An investigation of the failure surface entirely based on model tests induces 

however important financial and computational costs (Byrne 2000; Nguyen-Sy 2005; Villalobos et 

al. 2010; Ibsen et al. 2013; Foglia et al. 2015). A timesaving and more economical approach is to use 

a combination of experiments and finite element method simulations. It is worth noting however that 
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the reliability of the numerical analysis depends on its ability to realistically reproduce the soil 

nonlinear behaviour.  

The response of a caisson foundation in sand subjected to combined loading has been recently 

simulated with different constitutive models, such as a plasticity constitutive model governed by the 

Mohr-Coulomb failure criterion (Achmus et al. 2013; Liu et al. 2014; Zafeirakos and Gerolymos 

2016), the NGI - ADP model with an anisotropic undrained shear strength failure criterion (Skau et 

al. 2018) and an elastoplasticity model called Hardening Small stain Soil model (HSS) which can 

reproduce basic macroscopic phenomena in the soil (Li et al. 2015). The calibration strategy of the 

soil parameters is also of great importance. Some studies adopt back calculations from experimental 

field tests or empirical formulas (Achmus et al. 2013; Zafeirakos and Gerolymos 2016), the 

representative soil strength profile of specific areas when the relevant soil parameters are not 

available (Liu et al. 2014; Skau et al. 2018) or triaxial tests and back analysis using the finite element 

method (Li et al. 2015). However, the full numerical analyses with different scales from laboratory to 

in-situ conditions including large deformation phases (e.g. CPT or caisson penetration for 

validations) have not been reported. 

The Combined Lagrangian-SPH method (CLSPH) is adopted hereafter to consider large 

deformations. The SIMSAND critical state elastoplastic constitutive model is used to describe in a 

realistic way the sand characteristics, the evolving failure envelope and the influence of different soil 

parameters (density, friction angle, deformability and grain crushability). The SIMSAND soil 

parameters are calibrated from triaxial tests on Baskarp sand. The CLSPH-SIMSAND numerical 

model is then validated using a cone penetration test, model tests and a reduced scale field test. A 

large number of finite element simulations are then carried out to investigate the behaviour of a 

caisson foundation in sand subjected to different load combinations. In order to identify the failure 

envelope in the H-M-V space, radial displacement loadings are applied. Various factors affecting the 

shape and size of the failure envelope are considered, including soil density, friction strength, soil 

stiffness, grain breakage, foundation geometry and aspect ratio. The coupling relationships among 

geometry, aspect ratio and characteristic parameters of the failure envelope are quantified with a 

general equation. An analytical formula of the 3D failure surface is finally proposed, useful for 

design purposes and the development of macroelements. 

4.2 Validation of the CLSPH-SIMSAND approach 

4.2.1 Drained triaxial tests 

The calibration of the constitutive model parameters can be carried out using the 

straightforward method from experimental results (Wu et al. 2017) or using optimization methods 

(Jin et al. 2016a,b; Yin et al. 2016b). In this study, the experimental results of conventional drained 
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triaxial tests on Baskarp sand (named Aalborg University Sand No 0) by Houlsby et al. (2005) are 

used to calibrate the SIMSAND model parameters. For the triaxial experiments, three void ratios (0.85, 

0.70, 0.61) and nine stress levels (5kPa, 10kPa, 20kPa, 40kPa, 80kPa, 160kPa, 320kPa, 640kPa, 

800kPa), 27 groups in total, were tested. 

A typical value of Poison’s ratio v = 0.25 is assumed. The other two elastic parameters (K0, n) 

are determined with an isotropic compression test (see Figure 4.1). The critical state line related 

parameters eref, ,  are measured from the position of the critical states in the p-e plane (Figure 

4.2(d)). Other parameters are calibrated manually from tests on sand with a void ratio e0=0.85 (Wu et 

al. 2017).  All the calibrated parameters are summarized in Table 4.1. Using these values, additional 

tests (e0=0.7, 0.61) are simulated demonstrating the good performance of the model (see Figure 4.2). 

IC test

K0 = 344 kPa

n = 0.58

Simulations

Experiments

 

Figure 4.1 Calibration of the SIMSAND model parameters from isotropic compression test on Baskarp sand 

Table 4.1 Calibrated parameters of the SIMSAND model for the Baskarp sand 

Parameters Name Value 

 Referential bulk modulus (dimensionless) 344 (kPa) 

 Poisson’s ratio 0.25 

n Elastic constant controlling nonlinear stiffness 0.58 

 Critical state friction angle 35.1 (°) 

eref Initial critical state void ratio 1.25 

 Constant controlling the nonlinearity of CSL 0.38 

 Constant controlling the nonlinearity of CSL 0.11 

Ad Constant of magnitude of the stress-dilatancy  0.45 

kp Plastic modulus related constant  0.0034 
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(a2)    0.70 (a3)    0.61(a1)    0.85
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10kPa
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   0.61

(d1)    0.85 (d2)    0.70 (d3)    0.61

eref = 1.25

 = 3

 = 11

(e1)    0.85 (e2)    0.70 (e3)    0.61

Experiments

Simulations

 

Figure 4.2 Calibration of the SIMSAND model parameters from drained triaxial tests on Baskarp sand with void ratios 

varying from 0.61 to 0.85 and stress levels from 5 to 800 kPa: (a-c) ratio of deviatoric stress to mean effective stress (q/p’) 

versus axial strain; (d) void ratio versus mean effective stress in semi-logarithmic scale; (e) void ratio versus axial strain 
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4.2.2 Indoor model tests 

4.2.2.1 Experimental campaign 

The experimental campaign of Foglia et al. (2015) simulated in chapter 2 with the CLSPH-Mohr 

Coulomb model is hereafter revisited with the CLSPH-SIMSAND approach.  

4.2.2.2 Numerical model 

The numerical discretization and the boundaries conditions are the same as in chapter 2. The 

SIMSAND constitutive model is adopted.  

4.2.2.3 Validation using CPT tests 

In order to validate the CLSPH-SIMSAND numerical model, the CPT test is simulated hereafter. 

Following Houlsby et al. (2006), the cone penetration applied velocity is taken equal to 5 mm/s. 

Assuming a typical soil-structure interface friction coefficient, a rigid Mohr-Coulomb type interface 

model is adopted and the interface model is applied on the entire (tip and shaft) surface of the cone, 

see Figure 4.3(a).  

Figure 4.3(b) presents the simulation results and the comparison with four groups of CPT data, 

Foglia et al. (2015). A good agreement is generally observed which indicates that the 

CLSPH-SIMSAND model with calibrated material parameters performs in a satisfactory manner. 

The plastic deviatoric strain (SDV18), the void ratio (SDV1) and the mean effective stress (S 

Pressure, kPa) fields corresponding to a penetration of 400 mm are plotted in Figure 4.3(c)-(e). 

Results show reasonable distributions with an influence distance much smaller than the SPH domain. 
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Figure 4.3 Results of the CPT test: (a) spatial discretization, (b) comparison of q-w curves between experiments and 

simulation, fields of (c) plastic deviatoric strain, (d) void ratio, (e) mean effective stress at the end of the CPT test, 

CLSPH-SIMSAND model 

4.2.2.4 Validation using caisson foundation tests 

The combined Lagrangian - SPH model is hereafter used to simulate a vertical penetration test 

with a vertical displacement control at a rate of 5 mm/s, and five tests at various dimensionally 

homogeneous moment to horizontal load ratios (M/DH=1.1, 1.987, 3.01, 5.82, 8.748) at a constant 

vertical load of 241 N. The horizontal displacements and the rotations are applied at the middle point 

of the caisson. A relatively slow displacement rate of 10 mm/s and a rotation rate of 0.5 degree/s are 

chosen to eliminate the dynamic effects. All monotonic loading paths are followed until the vertical 

bearing capacity (VM) or the horizontal capacity and moment capacity (MR) are reached. 

The applied vertical force versus the vertical displacement for the penetration test is plotted in 

Figure 4.4. The results of five typical M/DH values (1.100, 1.987, 3.010, 5.820 and 8.748) are shown 
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in Figure 4.5. For all five cases the horizontal load (H) versus the horizontal displacement (U) and 

the dimensionally homogeneous moment (M/D) versus the rotations (D) are plotted. A good 

agreement is obtained for all tests between experiments and simulations, showing the good 

performance of the CLSPH-SIMSAND approach. 

(a) (b)

(c) (d)
 

Figure 4.4 Results of the pure vertical penetration test: (a) comparison of vertical force - vertical displacement between 

experiment and simulation, fields of (b) plastic deviatoric strain, (c) void ratio and (d) mean effective stress at the end of the 

vertical penetration test, CLSPH SIMSAND model 

Simulations

Experiment-M/DH=8.748

Experiment-M/DH=5.820

Experiment-M/DH=3.010

Experiment-M/DH=1.987

Experiment-M/DH=1.1

Simulations

Experiment-M/DH=8.748

Experiment-M/DH=5.820

Experiment-M/DH=3.010

Experiment-M/DH=1.987

Experiment-M/DH=1.1

 

Figure 4.5 Comparison between simulated and experimental results for indoor model tests of a caisson foundation under 

combined loadings, CLSPH SIMSAND model 
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An extreme case is selected hereafter to check the behavior of the model under large 

deformations: the moment horizontal loading test M/DH=3.010. The plastic deviatoric strain 

(SDV18), the void ratio (SDV1) and the mean effective stress (S Pressure, kPa) fields at the end of 

loading are plotted in Figure 4.6(a)-(c). To further examine the progressive failure, a higher load is 

applied till the appearance of sliding at the bottom and the results are plotted in Figure 4.6(d)-(f). All 

results show reasonable field distributions with an influence distance, in the vertical and horizontal 

directions, much smaller than the SPH particles domain. 

(a) (b) (c)

(d) (e) (f)
 

Figure 4.6 Simulated progressive failure of the M/DH=3.01 test; peak values and post-peak values: fields of (a,d) plastic 

deviatoric strain, (b,e) void ratio, (c,f) mean effective stress, CLSPH SIMSAND model 

The failure envelopes on the H:M/D loading plane of Villalobos et al. (2010), Ibsen et al. (2014) 

and Foglia et al. (2015) plotted in Figure 4.7 and compared with the numerical simulations for the 

same vertical loading. A good agreement is again observed. 
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Figure 4.7 Comparison between simulated and experimental results; failure envelopes on the H:M/D loading plane, 

CLSPH SIMSAND model 

4.2.3 Field test 

4.2.3.1 Experimental setup 

In order to further validate the numerical model, a reduced scale field test conducted by 

Houlsby et al. (2005) is simulated hereafter. A steel caisson with an outer diameter of 2m and a skirt 

length of 2m was tested. The skirt was made of steel plate 12mm thick and the caisson was installed 

in a shallow pond near the sea to model a bucket foundation. The load eccentricity h and vertical load 

V were 17.4m and 37.3kN, respectively. The caisson was installed in dense Baskarp sand area with 

unit weight 19.5kN/m3 and specific gravity 26.5kN/m3 (e0=0.549) as indicated by Ibsen et al. (2005). 

The test contained three phases: installation, loading and dismantling. For the loading phase, an old 

tower from a wind turbine was mounted on top of the caisson. The caisson was loaded by pulling the 

tower horizontally with a wire. The combined loading (H, M) was controlled by changing the tower 

height. 

4.2.3.2 Numerical model 

The caisson is modelled using rigid hexahedron elements with the same dimensions and 

thickness as in the experiment (see Figure 4.8), while the behavior of the sand is reproduced with the 

SIMSAND model. The interface behavior between the caisson and the soil is modelled with a 

classical Coulomb model, where the tangential frictional stress is assumed proportional to the normal 

stress. Large deformations and geometric non-linearities are considered. The modelling strategy is 

similar to that of the indoor model tests (combined Lagrangian - SPH model).  
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The calculation domain is composed of two parts: the inner SPH domain and the outer 

Lagrangian domain. The SPH domain has a length of 10m (horizontal direction), a height of 12m and 

a total number of 106840 particles. The Lagrangian part is discretized with 32670 hexahedral 

elements. The SPH domain interacts with the Lagrangian finite element domain via contact 

interfaces that can open and close (Documentation 2010). More specifically and due to the lack of 

experimental data for the limit stress in the tangential direction, no threshold (τmax) on the tangential 

frictional stress is adopted. The contact behavior between the caisson and the soil is characterized by 

a friction coefficient μ = tan(c/2) = 0.32, where the soil critical friction angle is c = 35.1. A penalty 

algorithm is adopted for the contact behavior (Hibbitt et al. 2001). The horizontal displacements of 

the lateral sides are constrained as well as the translational degrees of freedom at the bottom. The 

different parameters used for the simulation are summarized in Table 4.1. 

 

Figure 4.8 Combined Lagrangian-SPH model for the field test: (a) 3D mesh, and (b) middle cross section 

4.2.3.3 Validation using caisson foundation tests 

A moment-rotation test on the 2×2 m caisson is first considered to further prove the robustness 

of the CLSPH-SIMSAND approach (see Houlsby et al. (2005)). A relatively slow displacement rate 

of 10 mm/s and a rotation rate of 0.5 degree/s are applied to eliminate dynamic effects. Numerical 

results are compared with the experimental results in Figure 4.9. The performance of the model is 

again satisfactory. The numerical model reproduces correctly not only the moment evolution but also 

the bearing capacity of the caisson. 
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Figure 4.9 Comparison between simulated results and field measurements: moment M and rotation Dθ curve, CLSPH 

SIMSAND model 

An extreme case is shown hereafter to analyze the progressive failure of the field test. The 

simulation is composed of two steps: the caisson foundation is first installed to the specified depth; 

then, a displacement rate of 10mm/s and rotation rate of 0.5 degree/s are applied up to the ultimate 

strength. The plastic deviatoric strain (SDV18), the void ratio (SDV1) and the mean effective stress 

(S Pressure, kPa) fields are shown in Figure 4.10 for the different phases. It is obvious that the area 

of these three variables increases with increasing applied displacement. The peak value also 

increases with time. The CLSPH-SIMSAND approach again successfully reproduces the progressive 

failure of the caisson foundation. 

 deviatoric plastic strain void ratio mean effective stress 

 

(a) 

   

 

(b) 
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(c) 
   

 

(d) 

   

Figure 4.10 Simulated results of the field test at different phases: (a) end of penetration, (b) ½ of the peak values of the 

forces, (c) peak values of the forces, and (d) post-failure stage, CLSPH SIMSAND model. 

In the following and based on the previous satisfactory validation results, the 

CLSPH-SIMSAND approach is adopted to numerically reproduce the H-M-V failure envelope of a 

caisson foundation for different soil properties and foundation geometries. 

4.3 Numerical study of the failure envelope in H-M plane 

4.3.1 Loading procedure 

In order to identify the failure envelope of a foundation, Gottardi et al. (1999) proposed to 

follow two loading control paths : (1) Swipe tests in which a vertical displacement is first applied to 

the foundation up to a certain level of vertical force, and then an increasing horizontal displacement 

under a constant vertical displacement; (2) Radial displacement tests in which the ratio between the 

applied displacements or the combined rotation-displacement increments is kept constant. 

In the following, numerical radial displacement tests are adopted as the main loading control. 

The sign conventions for the loads (horizontal force, vertical force and bending moment) applied on 

the Loading Reference Point (LRP) of the caisson foundation are presented in Figure 4.11. The 

foundation model has an outer diameter (D) of 2m, a skirt length (L) of 2m, and a lid and skirt 

thickness (t) of 12mm. The main goal of this study being the evaluation of the bearing capacity of the 
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caisson foundation, the possible upper structures (e.g. wind turbine and superstructure) are not 

discretized.  

Initial position

current position

LRP

D

L

V

H

M

LRP

u

w

θ

t

t

 

Figure 4.11 Loading and displacement conventions for a caisson foundation 

Offshore Wind Turbine caisson foundations are relatively light, with a typical mass of 600t 

(vertical deadload 6MN) (Houlsby et al. 2005). The horizontal and overturning moment bearing 

capacities are therefore important for the design. To investigate the form of the failure surface in the 

H-M plane, different loading paths are applied hereafter on the LRP of the caisson. As shown in 

Figure 4.12, a constant vertical load is imposed up to a specified value χ = Vi/V0 (V0 being the 

maximum load). Then, radial displacement loadings are applied considering a constant ratio between 

the combined rotation-displacement increments. The value of the displacement is large enough to 

ensure that the maximum strength is reached. In the following χ = 0 refers to an actual load factor of 

χ ≤ 0.01(only the caisson self-weight is considered).  

vi

LRPu

θ

 

Figure 4.12 Schematic plot of radial displacement control 

Figure 4.13 illustrates the way chosen to determine the bearing capacity; the ultimate bearing 

capacity is defined by the ends of loading paths.  
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Load paths

Failure loci

 

Figure 4.13 Determination of a failure point (the ends of loading paths) 

Examples of load paths in the H-M plane from the numerical radial displacement tests are 

shown in Figure 4.14. The ratio between the increments of the rotation θ and the horizontal 

displacement u is constant (δθ/δu ≡ constant), which implies a straight loading path (Figure 

4.14(a)). By connecting the values at the end of the different load paths, the complete failure 

envelope is obtained, as shown in Figure 4.14(b) and for different vertical load levels Figure 4.15.  

(a) (b)

 

Figure 4.14 Numerical results of radial displacement control tests in the H-M plane: (a) load paths, and (b) failure surface, 

CLSPH SIMSAND model 
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(Example case)

 

Figure 4.15 Failure envelopes at different vertical load levels in the H-M plane, CLSPH SIMSAND model 

Some general results are summarized below:  

(1) the failure envelopes of caisson foundations in sand are of inclined elliptical shape;  

(2) the presence of bending moment has a significant influence on the horizontal bearing 

capacity depending on the loading direction. 

4.3.2 Influence of soil properties 

The influence of various soil parameters - soil density, friction strength, soil stiffness and grain 

breakage - on the failure envelope of a caisson foundation in sand is studied hereafter.  

Four initial void ratios (e0 = 0.62, 0.67, 0.73 and 0.80, corresponding to a relative density Dr = 

80%, 60%, 40% and 20%), four critical state friction angles (ϕc = 25°, 30°, 35.1°, 40°), four soil 

stiffness constants (kp = 0.01, 0.0034, 0.001, 0.0005; the bigger value represents the smaller stiffness) 

and four grain breakage constants (Ca & Cb = 0 & 0, 2500 & 4, 7000 & 7, 12000 & 10) are adopted 

for the simulations. Note that the set e0 = 0.62, ϕc = 35.1°, kp = 0.0034, Ca = 0 and Cb = 0 

corresponds to the Aalborg University Sand No 0 mentioned above. The grain breakage related 

constants “Ca & Cb = 2500 & 4, 7000 & 7, 12000 & 10”, corresponds to different crushabilities of a 

hypothetical sand (Jin et al., 2018). Bold letters are used to identify the original parameter group 

values corresponding to the field test presented in section 4.2.3. In order to identify the influence of 

each property, only the related input parameters are changed for the numerical calculations while the 

other parameters are kept constant, see Table 4.1. Three characteristic measures are used to describe 
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the shape and size of the envelope in H-M space. The length of the long axis a, the short axis b and 

the rotation angle ∅, see Figure 4.16. 


a

b

X

Y

 

Figure 4.16 Schematic plot of the failure envelope and definitions of the characteristic measures a, b and ∅ 

Figure 4.17 presents the original form and the fitting curve of failure envelopes for varying soil 

densities in the H-M plane. It is worth noting that the obtained failure envelope excluded the field 

case simulated with the original parameter group (marked in bold). For increasing soil density, the 

size of the failure envelope expands. In other words, the horizontal and bending moment capacities 

improve with increasing soil density. A linear relationship can be observed in logarithmic scale 

between the parameter a and the soil relative density Dr, Figure 4.17(d).  

a = 49.958Dr + 2153.2
R² = 0.9907
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Figure 4.17 Failure envelopes in the H-M plane for different relative sand densities: (a) Dr = 20%, (b) Dr = 40%, (c) Dr = 

60%, and (d) correlation between the ellipse size a and Dr, CLSPH SIMSAND model 
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A similar conclusion is obtained regarding the soil friction strength and the stiffness parameters, 

Figure 4.18 and Figure 4.19. With increasing critical friction angle and soil stiffness, the size of the 

failure envelope increases. The corresponding asymptotic equations are again linear, implying that 

the bearing capacity of a caisson foundation improves linearly in logarithmic scale with increasing 

soil friction strength and soil stiffness. 
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Figure 4.18 Failure envelopes in the H-M plane for different sand critical friction angles: (a) ϕc = 25°, (b) ϕc = 30°, (c) ϕc = 

40°, and (d) correlation between the ellipse size a and ϕc, CLSPH SIMSAND model 
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Figure 4.19 Failure envelopes in the H-M plane for different relative sand densities: (a) Dr = 20%, (b) Dr = 40%, (c) Dr = 

60%, and (d) correlation between the ellipse size a and Dr, CLSPH SIMSAND model 

The horizontal and bending moment bearing capacities decrease when considering grain 

breakage (see Figure 4.20). The most significant attenuation occurs for very easily crushable sand 

(e.g. parameters of Dog’s bay sand by Jin et al., 2018). Finally, it should be noted that the short axis b 

presents a similar linear trend for different soil properties. On the other hand, the influence of the soil 

properties on the inclination ∅ of the bearing capacity diagrams is negligible (∅ remains constant and 

equal to 42°). 
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Figure 4.20 Failure envelopes in the H-M plane for different sand grain crushabilities: (a) easy crushing, (b) medium 

crushing, (c) hard crushing, and (d) ellipse size a versus crushability, CLSPH SIMSAND model 

4.3.3 Influence of the caisson foundation size for the same aspect ratio L/D 

Previous research works on the failure envelope of caisson foundations mainly focused on 

model tests on a small scale (Byrne 2000; Houlsby 2005; Villalobos Jara 2006; Ibsen et al. 2013; 

Foglia et al. 2015). In order to identify the failure envelopes for a full range of caisson sizes, four 

conventional caisson size aspect ratios (L/D = 0.5, 0.75, 1.0, 2.0) are selected for the simulations 

presented hereafter. L and D range from 1m to 20m, details are listed in Table 4.2. The simulation 

marked in bold (2×2m) is the field case simulated in the section 4.2.3. 

Table 4.2 Geometry size configurations 

L/D = 0.5 L/D = 0.75 L/D = 1.0 L/D = 2.0 

1×2m 1.5×2m 2×2m 2×1m 

2×4m 3×4m 4×4m 4×2m 

4×8m 6×8m 8×8m 8×4m 

8×16m 12×16m 16×16m 16×8m 

10×20m 15×20m 20×20m 20×10m 
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The failure envelopes for different caisson sizes L/D in the H-M plane are summarized in Figure 

4.21(a)-(c), the simulation results of the case L/D = 0.75 are presented later on (in the section 4.3.5). 

As the variations of the horizontal bearing capacity and the bending moment strength are of the order 

of four to five, a normalized presentation is adopted in the figures.  
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Figure 4.21 Normalized failure envelopes in the H-M plane for different geometry sizes: (a) L/D = 0.5, (b) L/D = 1.0, (c) 

L/D =2.0 and plot of the failure envelope characteristic measures versus the contact surface area S (d) ellipse size a, (e) 

ratio b/a, and (f) inclination angle ∅, CLSPH SIMSAND model 

The main results are:  

(1) For all conventional caisson sizes L/D the failure envelopes present a similar inclined 

elliptical shape.  
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(2) When L/D < 1, the failure envelopes present a slight tendency to contract with increasing 

caisson size; for L/D = 1, the failure envelopes are equivalent. When L/D > 1, the failure envelopes 

present a slight tendency to expand.  

(3) With increasing caisson size L/D, the failure envelope exhibits a tendency to contract inward; 

for the same level of bending moment a smaller horizontal bearing capacity is obtained for larger 

aspect ratios. Yielding (horizontal) or even failure is more likely to occur on a caisson foundation 

with a larger aspect ratio. On the contrary and for the same level of horizontal force, a greater 

bending moment strength occurs for large aspect ratio i.e. an offshore wind turbine with a bigger 

caisson size aspect ratio has a stronger overturning resistance. 

 

Following a similar analysis, the influence of the caisson size characteristics on the failure 

envelope is presented in Figure 4.21(d)-(f). Here, S is the total contact surface area between the 

caisson and the soil decomposed in two parts: the surface area of the bottom of the caisson and the 

surface area of the skirt. The values of the long axis a for different geometric sizes show a linear 

increase in logarithmic coordinates; the horizontal bearing capacity and overturning resistance are 

higher with increasing caisson size. For a specified contact surface area, the bearing capacity of the 

caisson improves slightly with increasing aspect ratio, Figure 4.21(d). The b/a ratio (b the short and a 

the long axis) versus the total contact surface area S is plotted in Figure 4.21(e). For increasing 

caisson sizes, b/a decreases when L/D < 1, stays constant for L/D = 1 and increases for L/D > 1. The 

inclination angle remains however unchanged, Figure 4.21(f). The influence of the caisson size 

aspect ratios on the inclination of the bearing capacity diagrams is therefore negligible. 

4.3.4 Influence of the aspect ratio L/D for the same soil-structure contact surface area 

A number of studies on caisson foundations were carried out to investigate the influence of the 

aspect ratio L/D,  experimental (Houlsby et al. 2005; Cassidy et al. 2006; Zhang et al. 2007; Ibsen et 

al. 2013; Zhu et al. 2014; Ibsen et al. 2015; Tran and Kim 2017) and numerical (Cassidy et al. 2006; 

Gerolymos et al. 2012; Liu et al. 2014; Li et al. 2015; Cheng et al. 2016; Zafeirakos and Gerolymos 

2016). In these studies, the L was changed while D was kept constant (or vice versa) and therefore 

the contact surface area was different. 

In the following, the impact of the aspect ratio L/D on the failure envelope is studied for the 

same soil-structure contact surface area (implying thus the same cost of construction materials). 

Three groups of aspect ratio combinations are designed with original geometries equal to 2×2m, 
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4×4m, and 8×8m, details are given in Table 4.3. The corresponding numerically simulated failure 

envelopes are shown in Figure 4.22(a)-(c) ). Due to the similar sizes, results are not normalized.  

The main conclusions are: 

(1) The failure envelopes present different degree inclined elliptical shapes.  

(2) With increasing L/D ratio, the failure envelope axis rotates clockwise. During the rotation, 

the envelope gradually retracts along the short axis and stretches along the long axis direction.  

(3) With increasing L/D ratio, the bearing capacity gradually transforms from horizontal force 

dominated failure to bending moment failure. For L/D < 1, the failure envelopes display a horizontal 

bearing capacity dominated trend; for L/D = 1, the bearing horizontal force and bending moment 

capacities are essentially the same; for L/D > 1, the bending moment bearing capacity is 

predominant.  

During the design phase of caisson foundations for offshore wind turbines an adequate aspect 

ratio should be therefore selected according to the actual service environment. The relation between 

the aspect ratio L/D (for the same soil-structure contact surface area) and the failure envelope is 

quantified and presented in Figure 4.22. It can be seen that a and ∅ increase with increasing aspect 

ratio, while in the contrary the ratio b/a decreases.  

(a)
 

y = 8327.5x0.7345

R² = 0.895

y = 122559x1.2284

R² = 0.9806

y = 29154x0.9231

R² = 0.9264

1E+3

1E+4

1E+5

1E+6

1E+7

0.1 1 10

a
[k

N
]

L/D

S=15.7 m^2

S=251.3 m^2

S=62.8 m^2

(d)
 

(b)
 

y = 0.333e-0.402x

R² = 0.8908

y = 0.2504e-0.296x

R² = 0.975

y = 0.2681e-0.252x

R² = 0.9878

1E-2

1E-1

1E+0

0 1 2 3 4 5 6

b
/a

L/D

S=15.7 m^2

S=251.3 m^2

S=62.8 m^2

(e)
 



 

93 

(c)
 

y = 40.169x0.4428

R² = 0.9658

1E+1

1E+2

0.1 1 10


 [
 ]

L/D

S=15.7 m^2

S=251.3 m^2

S=62.8 m^2

(f)
 

Figure 4.22 Failure envelopes in the H-M plane for different geometry sizes: (a) 2×2m, (b) 4×4m, (c) 8×8m, and plot of 

the failure envelope characteristic measures versus the aspect ratio L/D: (d) ellipse size a, (e) ratio b/a, and (f) inclination 

angle ∅, CLSPH SIMSAND model 

Table 4.3 Geometry size configurations for a constant surface contact area 

S = 15.7 m2 S = 62.8 m2 S = 251.3 m2 

L (m) D (m) L/D L (m) D (m) L/D L (m) D (m) L/D 

1 2.83 0.35 2 5.8 0.34 4 11.6 0.34 

1.5 2.31 0.65 4 4 1 6 9.55 0.63 

2 2 1 6 2.97 2.02 8 8 1 

3.56 1.5 2.37 8 2.33 3.43 12 5.94 2.02 

4.15 1.39 3 10 1.91 5.23 20 3.82 5.23 

 

4.3.5 Combined effect of the soil-structure contact surface and the aspect ratio 

In the previous sections, the influence of the caisson foundation size (L/D) and the aspect ratio 

L/D for the same soil-structure contact surface area on the shape and size of the failure envelope in 

the H-M space has been presented in detail. A formula is proposed hereafter to describe the coupling 

effect of the soil-structure contact surface area and the aspect ratio on the failure envelope: 

  1 2 3 4ln( ) ln( ) ln( ) ln( ) ln( )x a a S a L / D a S L / D= + + +  (4-1) 

where x represents the failure envelope characteristic measures (a, b/a and ∅); S is the soil-structure 

total contact surface area; L/D is the aspect ratio and a1, a2, a3 and a4 are four constants used for 

fitting. Based on the previous numerical results (sections 4.3.3 and 4.3.4), the four constants are 

calibrated using the Least-Squares Fitting Method in MATLAB. Figure 4.23 displays the comparison 

between the numerical and the analytical formula estimated values for the three characteristic 
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measures (a, b/a and ∅) of the failure envelope. A strong correlation is observed that proves that the 

proposed formula is applicable for design purposes and the development of simplified modelling 

strategies such as the macroelement approach. 
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Figure 4.23 Comparison between numerically obtained characteristic measures and formula estimated values for: (a) size 

of ellipse a (b) 3D plot of a versus S and L/D, (c) b/a with (d) 3D plot of b/a versus S and L/D, and (e) inclination angle ∅ 

with (f) 3D plot of ∅ versus S and L/D, CLSPH SIMSAND model 
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4.4 Numerical estimation of V0 for the H-M-V failure envelope 

4.4.1 Influence of V0 on the H-M failure envelope 

The horizontal and overturning moment bearing capacities of caisson foundations vary 

significantly with the vertical load. In order to quantify this effect, a similar procedure as in section 

4.3 is followed hereafter. More specifically, radial displacement numerical simulation tests are 

carried out for various levels of vertical load. The failure envelopes for different vertical load levels 

are presented in Figure 4.15. The field case shown in Figure 4.14 is also added (χ = 0.31). It can be 

concluded that:  

(1) the influence of the vertical load on the inclination of the bearing capacity diagrams is 

negligible. 

(2) the size of the bearing capacity diagram first increases with increasing vertical load and then 

displays a decreasing trend. This observation agrees with the experimental studies (Villalobos et al. 

2009).  

4.4.2 Numerical failure envelope in the H-V plane 

Numerical radial displacement tests are hereafter performed to identify the failure envelope in 

the H-V plane. A displacement vector is applied on the LRP of the caisson foundation (see Figure 

4.12) with an angle varying from 0~180°.  The principle of the maximum load (see section 4.3.1) is 

again adopted to identify the points of the failure locus, see Figure 4.13. The obtained failure 

envelope is similar to the experimental data from Meyerhof (1953), Hansen (1970), DNV (2014) and 

Ibsen et al. (2014). Due to the high non-linearity the failure points form however an unsmoothed 

curve. The main results are summarized hereafter:  

(1) The failure envelopes are symmetric about the H/V0 axis.  

(2) A strong interaction is observed between the vertical and the horizontal loads. The horizontal 

bearing capacity first increases and then decreases. As shown in Figure 4.24, a peak value is obtained 

for a vertical load equal to 0.4~0.5 of the vertical bearing capacity. This agrees with Figure 4.15 on 

the H-M plane. It can be also observed that the horizontal force is non-zero for null vertical loading 

because of the existence of the skirt. 
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Load paths

Fitting curve

 

Figure 4.24 Numerical results for various load paths and approximate failure envelope in H-V plane, CLSPH SIMSAND 

model 

4.4.3 Numerical failure envelope in the H-M-V 3D space 

By combining the results in the H-M plane for different vertical levels (Figure 4.14(b) and 

Figure 4.15) and in the H-V plane (Figure 4.24), the H-M-V 3D space envelope is plotted in Figure 

4.25. It has inclined elliptical cross-sections along the vertical force axis and its size is controlled by 

the value of the vertical load. 

 

Figure 4.25 Failure envelope in the three-dimensional H-M-V space (numerical simulations, CLSPH SIMSAND model) 

4.4.4 Influence of the soil properties and the caisson dimensions 
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The influence of the soil relative density Dr, the soil stiffness kp, the friction angle ϕc, the grain 

breakage and the caisson dimensions (soil-structure contact surface area, aspect ratio) on the vertical 

bearing capacity V0 are studied hereafter. 

A strong linear tendency can be observed between V0 and Dr, ϕc and kp, see Figure 4.26. The 

vertical bearing capacity decreases for higher sand crushability. The most significant attenuation 

occurred with the Dog’s bay sand, which is the most crushable sand.  
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Figure 4.26 Relationship between vertical bearing capacity V0 and related soil properties: (a) relative density, (b) critical 

friction angle, (c) plastic stiffness and (d) sand grain crushability, CLSPH SIMSAND model 

The influence of the caisson foundation geometry on V0 is presented in Table 4.2 (a similar 

simulation configuration as in section 4.3.3 is made). Figure 4.27 displays the relation between the 

vertical bearing capacity and the soil-structure contact surface area for three conventional aspect 

ratios. V0 and S present a linear relation in logarithmic coordinates. It is worth noting that for 

different aspect ratios, the vertical peak-bearing capacity is found the same for similar contact 

surface areas. In other words, the vertical bearing capacity is mainly controlled by the contact surface 

area between the soil and the caisson, regardless of the aspect ratio. 
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Figure 4.27 Vertical bearing capacity V0 versus contact surface area S for different aspect ratios L/D, CLSPH SIMSAND 

model 

To estimate the influence of the aspect ratio, the same soil-structure contact surface is 

maintained while simultaneously changing the values of L and D. The relation between the aspect 

ratio and the vertical bearing capacity for three geometry levels is shown in Figure 4.28. V0 and L/D 

present a linear negative correlation in logarithmic coordinates; for the same surface contact area a 

bigger L/D implies smaller contact area between the bottom of the caisson and the soil. Furthermore, 

for the same aspect ratio the vertical bearing capacity increases with an increase in the caisson’s 

geometry because of the contact area increase at the bottom of the caisson.  
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Figure 4.28 Vertical bearing capacity V0 versus aspect ratio L/D, CLSPH SIMSAND model  

The same analytical equation as in section 4.3.5 is adopted to describe the coupling between 

geometry, aspect ratio and vertical bearing capacity. Figure 4.29 illustrates the comparison between 

the simulation-based values and the formula-estimated values for a given vertical bearing capacity. 

The proposed analytical formula successfully reproduces the simulation results. 
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Figure 4.29 (a) Comparison between the vertical bearing capacity V0 and the formula estimated V0, and (b) 3D plot of the 

correlation between V0, the contact surface area S and the aspect ratio L/D, CLSPH SIMSAND model 

4.5 Analytical equations for the failure envelope 

4.5.1 Analytical equations for failure envelope in the H-M plane 

As shown in Section 4.3.1, the failure envelope in the H-M plane has an inclined elliptical shape. 

Following Villalobos et al. (2009), a similar formula is introduced to reproduce the inclined failure 

envelope of a caisson foundation in sand: 

  

2 2

0 0 0 0

2 1 0
i i i i

H M H M
y e

hV DmV hV DmV

   
= + + − =   

   
 (4-2) 

The general shape of the surface is determined by the parameters hi, mi, and e. The fitting 

parameters hi and mi represent the intersection of each ellipse with the H/V0 and M/DV0 axes 

respectively, e being the eccentricity of each ellipse. Using this equation, the yield points simulated 

in the previous sections can be fitted using a least-squares regression.  

Eq. (4-2) satisfies the implicit equation of an ellipse, also referred to as the general equation:  

  
2 2

1 2 3 4 5 6 0A X A XY A Y A X A Y A+ + + + + =  (4-3) 

The general equation’s coefficients can be obtained from the semi-major axis a, the semi-minor 

axis b, the centre coordinates (xc, yc) and the rotation angle ∅ of the failure envelope using the 

following formulae: 
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  (4-4) 

The center coordinates of the failure envelope in the H-M plane coincide with the origin. A4, A5 

and A6 therefore become: 
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  (4-5) 

Here, only three parameters, a, b and ∅ describe the shape and size of the failure envelope in the 

H-M plane. By comparing Eq. (4-2) and Eq. (4-3), hi, mi and e are expressed as follows: 
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It must be pointed out that the values of a and b are related to the current vertical loading level χ. 

The coupling relationships among the characteristic measures of the failure envelope, soil-structure 

contact surface area and aspect ratio have been comprehensively analysed and quantified through Eq. 

(4-1). For a given caisson geometry, the failure envelope in the H-M space for a given soil can be 

therefore obtained using Eq. (4-1), Eq. (4-2) and Eq. (4-6). 

Using Eq. (4-6), the fitted parameters hi, mi and e of the first group of aspect ratio combinations 

studied in section 4.3.4 are displayed in Table 4.4, in which the original geometry (field test) equals 

2×2m. Figure 4.30 shows the comparison of Eq. (4-2) with the numerical results for the normalized 

failure envelope in the H-M plane. It is observed that the proposed equation fits well the different 

yield points. 
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Table 4.4 Intersection and eccentricity parameters: hi, mi and e 

L (m) D (m) L/D V/V0 a b ∅ (°) hi mi e 

1 2.83 0.35 0.18 4793 1820 25.4 0.1005 0.0601 0.657 

1.5 2.31 0.65 0.26 5655 1518 36.4 0.1054 0.0808 0.871 

2 2 1 0.31 6155 1308 42.1 0.0982 0.0896 0.913 

3.56 1.5 2.37 0.26 15855 1557 63.9 0.0760 0.1521 0.970 

4.15 1.39 3 0.28 21546 1878 66.3 0.0962 0.2151 0.973 

Yield point

Fitting curve

Yield point

Fitting curve

(a) (b)

 

Figure 4.30 Comparison of fitted curves by the analytical equation and numerical results for different aspect ratios: (a) 

L/D=0.35, 0.65 and 1, (b) L/D=2.37 and 3, CLSPH SIMSAND model 

4.5.2 Analytical equation for the failure envelope in the H-M-V 3D space 

Figure 4.31 shows how hi and mi vary with the normalized load V/V0. Note that the apex of the 

failure surface at low vertical loads is not at the origin but at a negative value because of the tension 

capacity of the caisson foundation. The tension capacity needs to be considered in order to obtain a 

more reasonable expression for the 3D failure surface.  

The proposed formula is similar to that proposed by Villalobos et al. (2009) but in a more 

concise form. 
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The two parameters β1 and β2 are shaping parameters that allow to best fit the data and are 

generally close to unity (lager values will make the failure envelope concave (Ibsen et al. 2013)). h0 

and m0 are the maximum values of hi and mi over the full range of V/V0. t0 controls the tension 

loading that the caisson foundation can sustain. It can be obtained by using a function of the skirt 

thickness t relative to the diameter of the caisson (Villalobos et al. 2004, 2005). 

mi data

hi data

h fit

m fit

 

Figure 4.31 Intersection points hi and mi as a function of the normalized vertical load V/V0 

Eq. (4-2), (4-7) and (4-8) can be combined to represent an inclined parabolic ellipsoid in the 3D 

H-M-V plane as follows: 
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 (4-10) 

Here Vt is the tension capacity of the caisson foundation. An example of the complete 

three-dimensional shape of the rotated failure surface is shown in Figure 4.32. 
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Figure 4.32 Illustration of the failure surface shaped as a parabola and inclined ellipse in the (V, M/D, H) load space 

The parameters obtained from the best curve fitting with the numerical results are presented in 

Table 4.5. The 3D failure envelope for a caisson foundation in sand according to Eq. (4-9) is plotted 

in Figure 4.33(a). The expressions proposed by Gottardi et al. (1999), Byrne and Houlsby (1999) and 

Villalobos et al. (2009) are also plotted in Figure 4.33(b), Figure 4.33(c) and Figure 4.33(d). The 

correlation factor R2 is estimated as 0.88, 0.67, 0.79 and 0.82, respectively indicating that Eq. (4-9) is 

more suitable to reproduce the 3D failure envelope of the caisson foundation.  

Table 4.5 Parameters of the proposed failure surface for the 2×2 m caisson foundation 

Parameter Name Value 

V0 Vertical bearing capacity: kN 19330 

t0 Tension factor 0.06 

e Eccentricity of failure surface 0.913 

h0 Dimension of failure surface (horizontal) 0.145 

m0 Dimension of failure surface (moment) 0.138 

β1 Shaping factor of failure surface 0.99 

β2 Shaping factor of failure surface 0.95 
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Figure 4.33 Numerical yield points fitted by the three-dimensional failure envelopes based on (a) Eq. (4-9), (b) Gottardi 

et al. (1999), (c) Byrne and Houlsby (1999) and (d) Villalobos et al. (2009) 

4.6 Conclusions 

A numerical study combining the Lagrangian-SPH method (CLSPH) and the elastoplasticity 

constitutive law SIMSAND is presented to identify the failure envelope of caisson foundation in 

sand. The soil parameters of the SIMSAND model were first calibrated from a series of triaxial tests 

on Baskarp sand. A simulation of a cone penetration test was then conducted to validate the 

CLSPH-SIMSAND modelling strategy. A series of model tests and a field test of a caisson 

foundation were also selected and simulated. Results demonstrated that the CLSPH-SIMSAND 

approach was able to reproduce the response of caisson foundation in sand with the calibrated soil 

parameters. 

Then, a large number of finite element numerical calculations were carried out to investigate the 

behavior of a caisson foundation subjected to different load combinations. The radial displacement 
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method was adopted for the simulations. A series of factors including soil density, friction strength, 

soil stiffness, grain crushability, caisson geometry and aspect ratio, were considered to study the 

failure envelope. Finally, an analytical formula was proposed to describe the 3D failure envelope in 

the H-M-V space that can be used for the design and the development of simplified modelling 

strategies as the macroelement approach, seen in the next chapter. 
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Chapter 5 A hypoplastic macroelement for a caisson foundation in sand 

 

5.1 Introduction 

Caisson foundations are traditionally used for offshore structures such as oil and gas platforms, 

tension leg platforms or floating platforms (Randolph et al. 2011). During the last decade, the 

increasing application of caisson foundations for offshore wind turbines has proven to be a 

cost-effective alternative to gravity-based foundations and monopiles. Caisson foundations are made 

of steel and are usually subjected to vertical and long-duration monotonic or cyclic horizontal loads 

and moments that are transferred to the foundation through the footing beneath the structure (Byrne 

and Houlsby 2003; Ibsen 2008; Lesny 2010). For an optimum design, understanding the performance 

of caisson foundations under combined (multidirectional) loading is therefore necessary. 

The finite element method is widely adopted to analyze the nonlinear behaviour of caisson 

foundations (Gourvenec 2008; Bransby and Yun 2009; Liu et al. 2014; Gerolymos et al. 2015; 

Ntritsos et al. 2015). Nevertheless, nonlinear finite element analyses are time-consuming and require 

considerable skill. A high-efficient and convenient practical strategy to reproduce the nonlinear 

behavior of foundations under combined loadings is the so-called macroelement approach introduced 

in geotechnical engineering by Nova and Montrasio (1991). In this approach, the nonlinear behavior 

of the soil - foundation system is expressed in terms of generalized forces and displacements through 

a reference point (Gottardi et al. 1999). The 2D or 3D stress resultant constitutive law is expressed 

following the plasticity or the hypoplasticity theory. 

The first developments of the macroelement approach were for shallow footings under 

monotonic loading conditions (Montrasio and Nova 1997; Gottardi et al. 1999; Le Pape and Sieffert 

2001; Martin and Houlsby 2001; Cassidy et al. 2002). More recently, the attention has been focused 

on the simulation of the cyclic/dynamic response of shallow footings for seismic analysis. Paolucci 

(1997) adopted an elastic-perfectly plastic macroelement with a non-associated flow rule. Crémer et 

al. (2001; 2002) developed an isotropic/kinematic hardening macroelement for cyclic/dynamic 

loading conditions and Grange et al. (2009) proposed a multi-mechanism, isotropic/kinematic 

hardening model considering the overturning mechanism and uplift. Further contributions in this 

field can be for example found in (Gajan 2006; Shirato et al. 2008; Chatzigogos et al. 2009; Gajan 

and Kutter 2009; Figini et al. 2012). Recent developments concern the spudcan behavior for jack-ups 
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(Martin and Houlsby 2001; Zhang et al. 2014) and caissons on clay (Cassidy et al. 2006) or on sand 

(Ibsen et al. 2014). Chatzigogos et al. (2011) conceived a bounding surface hyperplastic model for 

shallow foundation and Nguyen-Sy (2005), Nguyen-Sy and Houlsby (2005)  proposed a 

hyperplastic model for the cyclic and seismic response of caisson foundations on sand. All the 

aforementioned macroelement models were developed within the framework of the classical 

(isotropic or anisotropic) theory of plasticity. Alternatively, macroelement models considering the 

rate-type constitutive equations of hypoplasticity (Kolymbas 1991; Tamagnini et al. 2000; Niemunis 

2003) have been developed for shallow (Salciarini and Tamagnini (2009), Tamagnini et al. (2013)) 

and pile foundations (Li et al. (2016), Li et al. (2018)).  

The aim of this chapter is to study the response of a caisson foundation in sand under static 

monotonic and cyclic loadings with a novel macroelement developed under the framework of 

hypoplasticity. First, a brief description of the macroelement’s mathematical formulation is presented. 

An enhanced failure surface is introduced and the macroelement parameters are calibrated using one 

monotonic and one cyclic indoor model tests. Finally, further model tests are used to evaluate the 

predictive performance of the model.  

5.2 Hypoplastic macroelement model 

5.2.1 General framework 

The hypoplasticity macroelement for shallow foundations and deep foundations introduced by 

Salciarini and Tamagnini (2009) and Li et al. (2016), Li et al. (2018) is used as a starting point to 

develop a hypoplastic macroelement for a caisson foundation in sand for static monotonic and cyclic 

loadings. The general framework is briefly given hereafter. The following definitions are adopted 

hereafter: bold letters define tensors, ||∙|| the norm of a tensor and (∙) the derivative with respect to 

time. 

 The mechanical response of the caisson foundation is described by means of a generalized load 

vector t and a generalized displacement vector u defined as: 

  : , , /
T

V H M D=t   (5-1) 

  : , ,
T

w u D=u   (5-2) 
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where H, V and M are the horizontal forces, the vertical force and the moment applied to the caisson, 

w, u and θ the vertical displacements, the horizontal displacements and the rotations respectively. 

The characteristic length D is the caisson diameter used to homogenize the dimensions of the 

components of t and u. The generalized velocity vector d is defined as: 

 :=d u   (5-3) 

The hypoplastic macroelement formulation in rate-form for monotonic loading conditions reads: 

 ( , , )=t t q d d    (5-4a) 

 ( ) + ( , ) T,= t q N t q η   (5-4b) 

 =
d

d
   (5-4c) 

where q is a pseudo-vector of internal variables accounting for the effects of the previous loading 

history. 

The tangent stiffness ( , , )t q d  differs from the classical elasto-plastic tangent stiffness in that 

it varies continuously with the direction η of the generalized velocity, a property known as 

incremental nonlinearity. It has two components, a “linear” term ( ),t q  and a “nonlinear” term 

( , )N t q . The “linear” term describes the initial linear constitutive relationship of the macroelement. 

With the variation of the stress state however, the “linear” behavior is continuously modified 

by ( , )N t q . 

In order to consider cyclic loadings, the “internal displacement” δ is introduced as internal 

variable, as proposed by Niemunis and Herle (1997) and Salciarini and Tamagnini (2009). The 

constitutive equation of the hypoplastic model is thus modified as follows: 

 ( , , )=t t q d, d   (5-5) 
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where χ, mT, and mR are constants. 

The evolution rate of the internal displacement is defined as: 

 
( ) ( 0)

( 0)

r T

  



 − 
= 
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
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>
  (5-7) 

where is the identity matrix, the scalar 0≤ρ≤1 is the normalized magnitude of η , 
R


 

=  
 

η
, 

r  and R are two constants and: 
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0              ( )

/


   
= 

 = 
η

 
  (5-8) 

By comparing Eqs. (5-4), (5-5) and (5-6) it can be observed that both the “linear” and 

“nonlinear” terms of the constitutive relationship are modified to reproduce cyclic loadings. The 

matrix , which accounts for the stiffness at a load reversal point, is defined as: 

 
1 e
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=   (5-9) 
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  (5-10) 

where e  is the elastic stiffness matrix and kvv, khh, kmm and khm define the vertical, horizontal, 

rotational and coupled horizontal-rotational stiffness of the foundation system respectively. As was 

the case for pile foundations (Li et al. (2016), Li et al. (2018)), the coupled effect between horizontal 

forces and moment must be considered for the caisson foundation because of the skirt. 

The nonlinear function N can be expressed as: 

 ( ) = ( ) ( )Y−N t t m t   (5-11) 
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where Y(t) is the scalar function which controls the degree of nonlinearity; and m(t) is the unit 

gradient which describes the plastic flow direction. In order to correctly define these two items in the 

hypoplasticity constitutive equation (eq. (5-11)), we need to introduce two important surfaces, i.e. the 

ultimate failure surface F(t) and the loading surface f(t). 

In order to establish the ultimate failure (capacity) surface F(t) for caisson foundation, in this 

study, numerical investigation is adopted to find the 3D failure surface and the details are as 

following. It is worth noting that a comprehensive investigation has been discussed in chapter 4 and 

a quick review is presented here. Different loading paths were numerically chosen to investigate the 

form of the failure surface in the H-M plane (Jin et al. 2018). As shown in Figure 5.1, a constant 

vertical load was first applied to the LRP (Loading Reference Point) of the caisson foundation up to a 

specified value. Then, radial displacement loadings were imposed (constant ratio of the 

rotation-displacements increments) to reach the ultimate strength. The failure loci points were 

defined as the final loading points of the different loading paths, Figure 5.2. The experimental model 

test results of Foglia et al. (2015) were also used to validate and complete the approach. 

vi

LRPu

θ

 

Figure 5.1 Caisson foundation, LRP (Loading Reference Point), vertical force and radial displacement loading in the H-M 

plane 

Failure loci

Load paths

 

Figure 5.2 Determination of the failure loci for different load paths 
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A mathematical formula is presented hereafter to describe the failure surface in the H:M/D 

loading plane. Inspired by the work of Villalobos et al. (2009), the inclined failure envelope is given 

as: 
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   
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where V0 is the vertical bearing capacity of the foundation, the fitting parameters hi and mi represent 

the intersection of each ellipse with the H/V0 and M/(DV0) axes respectively and e is the eccentricity 

of the ellipse. Using a least-squares regression, Eq.( 5-12) is calibrated to fit the failure loci points 

obtained from simulations under different loading combinations (Jin et al. 2018) and monotonic 

model tests (Foglia et al. 2015), see Figure 5.3.  

Test data

Fitting curve

Simulations

 

Figure 5.3 Failure envelope in the H:M/D loading plane: fitting curve based on model tests data and numerical simulation 

results 

More specifically, Figure 5.4 shows the calibrated values of hi and mi as a function of the 

normalised vertical load V/V0. The apex of the failure surface for low vertical loads has a negative 

value because of the tension capacity of the caisson foundation. Eqs. (5-13) and (5-14) provide the 

fitting functions, similar but simpler than the formulas proposed by Villalobos et al. (2009): 
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where β1 and β2 are shaping factors, generally close to unity, determined using a trial-error 

procedure. The upper limit of β1 and β2 is 1 as larger values make the failure envelope concave 

(Ibsen et al. 2013). V0 can be determined numerically, by applying a pure vertical load up to failure. 

h0 and m0 are the maximum values of hi and mi over the full range of V/V0. They are found 

approximately for V/V0 = 0.4~0.5. The dimensionless quantity t0 controls the tension loading that the 

caisson foundation can sustain (tension capacity) and can be obtained as a function of the skirt 

thickness to the caisson diameter (Villalobos et al. 2004; Villalobos et al. 2005). The two shaping 

factors β1 and β2 are hereafter determined using a trial-error procedure from the model tests 

conducted by Foglia et al. (2015). Note that Eqs. (5-13) and (5-14) can be used for different vertical 

load levels. All the macroelement constants are listed in Table 5.1. 

mi data
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Figure 5.4 Shaping factors hi and mi as functions of the normalized vertical load V/V0 

Eqs. (5-12), (5-13) and (5-14) can be combined to represent an inclined parabolic ellipsoid in 

the 3D H-M-V space (see Figure 5.5), as follows: 
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Figure 5.5 Failure surface in the 3D H-M-V space 

In the framework of hypoplasticity, F(t) is the bound of bearing capacity for caisson foundation 

which functions as a bounding surface. When the stress state approaches the bounding surface, 

plasticity is developing and at the bounding surface the full plastic state is reached. It is assumed that 

the current stress state lies on a so-called loading surface, f(t), which has the same shape as the 

bounding surface but with a smaller size, see Figure 5.6.  

m(t)

Loading surface

Failure surface

f(t)

F(t)

 

Figure 5.6 The unit gradient of the loading surface: m(t) 

With the development of plasticity, the loading surface will expand as isotropic as the bounding 

surface. The degree of nonlinearity is measured by the scalar function Y(t) defined as: 

 ( ) =Y t   (5-17) 
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where κ is a material constant that controls the evolution of the loading function; and 𝜉 ∈ [0,1], 

measures the distance between the loading surface f(t) and failure surface F(t).  

From a geometric point of view as shown in Figure 5.6, the loading surface f(t) which has a 

coincident shape compared to the failure surface F(t) but of smaller size can be described as: 
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  (5-18) 

with: 

 0 0 0

*V V V=    (5-19) 

The current stress state (H, M, V) must lie on the loading surface with 𝜉 ∈ [0,1]. By substituting 

current stress state (H, M, V) to eq. (5-18), we can have a nonlinear function with respect to variable 

𝜉. The root value of 𝜉 ∈ [0,1] can be determined by numerical approaches such as Newton-Raphson 

or bisection algorithm. In this study, the bisection method was adopted to calculate 𝜉.  

m(t) is the normalized plastic flow direction taken as the normalized gradient of the loading 

function at the current loading state (see in Figure 5.6). An associative plastic flow rule is adopted 

and m(t) is given by:  

 ( ) =
f

f

 

 

t
m t

t
  (5-20) 

Where f is the above-mentioned loading function homothetic to F = 0 and passing through t. 

5.2.2 Synthesis of the macroelement parameters 

The macroelement constants can be divided into four groups, see Table 5.1. Six of them 

describe the failure surface; four stiffness coefficients define the pseudo-elastic behaviour; one 

hardening constant controls the stiffness decay of the macroelement response for monotonic loadings; 

and five constants control the response for cyclic loadings.  
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Table 5.1 Parameters of hypoplastic macroelement model 

Group Parameters Description Value 

 

 

Failure surface 

V0 (kN) Vertical bearing capacity 90 

t0 (-) Tension factor 0.06 

e (-) Eccentricity of failure surface 0.91 

h (-) Dimension of failure surface 

(horizontal) 

0.068 

m0 (-) Dimension of failure surface (moment) 0.045 

1  (-) Shaping factor of failure surface 0.96, 0.97 

 

Pseudo-elastic stiffness 

kvv (kN/m) Vertical stiffness 3100 

khh (kN/m) Horizontal stiffness 3200 

kmm (kN/m) Rotational stiffness 1800 

khm , kmh (kN/m) Coupled translation-rotation stiffness 2500 

Hardening parameter 𝜅 (-) Loading function constant 1.1 

 

 

Cyclic behaviour (internal 

displacement) 

mR (-) Stiffness at load reversal point 10 

mT (-) Stiffness when neutral loading 2 

R (-) Range of linearity 0.006 

𝛽r (-) Rate of evolution of internal 

displacement 

0.5 

𝜒 (-) Transition of stiffness 0.5 

 

5.3 Calibration and validation 

5.3.1 Model tests 

The hypoplastic macroelement for caisson foundations in sand is implemented into the 

MATLAB based finite element toolbox FEDEASLab (Filippou and Constantinides 2004). Numerical 

simulations and the model tests conducted by Foglia et al. (2015) are compared to identify and 

calibrate the macroelement parameters.  

The experimental set-up by Foglia et al. (2015) consisted of a sandbox (1600 mm × 1600 mm × 

1150 mm), a loading frame and a hinged beam. A system of steel cables and pulleys has been used to 
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apply loads to the foundation through an electric motor drive positioned on the hinged beam. The 

load, set by means of three weight hangers, was transferred to the foundation through a vertical beam 

bolted onto the caisson lid. The foundation was instrumented with three LVDTs (Linear Variable 

Differential Transformer) and two load cells. The caisson foundation was constructed of steel, with 

an outer diameter of 300 mm, a lid thickness of 11.5 mm, a skirt length of 300 mm and a skirt 

thickness of 1.5 mm. Various tests under different loading combinations have been carried out.  

In the following, five dimensionally homogeneous monotonic moment-to-horizontal load ratios 

tests and two cyclic model tests at constant vertical load have been simulated numerically to identify 

and calibrate the macroelement constants and then to validate its performance. 

5.3.2 Identification and calibration of the macroelement parameters 

The pseudo-elastic stiffness coefficients of the macroelement are identified using adequate 

loading conditions and numerical simulations, see Figure 5.7, Li et al. (2016) and Jin et al. (2018). 

For example, the coupling stiffness kmh is obtained by applying a small horizontal displacement at the 

LRP while the rotation is kept fixed. Results are summarized in Table 5.1. 

kvv

(a)

khh

khm

(b)

kmh

kmm

(c)

 

Figure 5.7 Loading conditions adopted to determine the stiffness coefficients of macroelement model 

The model test with the monotonic loading combination M/DH = 3.01 of Foglia et al. (2015) is 

chosen to calibrate the hardening parameter κ. Additional macroelement simulations for different 

values of κ and for the same loading path were also been performed. Results are given in the H:u 

plane in Figure 5.8. Based on the comparison between the experimental and the simulation results, κ 

= 1.1 has been adopted for the loading function constant. 
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Figure 5.8 Loading conditions adopted to determine the hardening parameter of macroelement model 

The cyclic response macroelement constants have been calibrated by trial and error using model 

test with the cyclic loading combination M/DH = 1.987 of Foglia et al. (2015). The loading 

frequency is f = 0.1Hz and the number of cycles (N) 5 × 104. Calibration is facilitated by the fact that 

the macroelement model response is not so sensitive to the constants 𝛽r and 𝜒. The size of the 

pseudo-elastic domain R can be guessed from the length of the quasi-linear portion of the 

load-displacement curves upon unloading or reloading, while the parameters mR and mT affect the 

ratio between the system stiffness under reverse or tangential loading and continued loading 

conditions. The calibrated values of the five cyclic constants are summarized in Table 5.1.  

Comparison between the experimental results and the macroelement simulations is shown in Figure 

5.9(a) and Figure 5.9(c), where only the first 100 cycles are presented. Numerical simulations 

performed by Foglia et al. (2015) are also plotted in Figure 5.9(b). Here, The macroelement model 

presented in Foglia et al. (2015) originated from an existing model (Nova and Montrasio 1991) 

within the framework of work-hardening plasticity. The numerical results adequately describe the 

observed response of the system in the combined horizontal-moment cyclic loading test, indicating 

that the calibrated values of the macroelement constants controlling the cyclic response are 

reasonable. 
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Figure 5.9 Horizontal displacement (u) versus horizontal load (H) for (a) experimental results, (b) simulated results by 

Foglia et al. (2015), (c) Macroelement prediction of this study; and rotational displacement (Dθ) versus dimensionally 

homogeneous moment (M/D) for (d) experimental results, (e) simulated results by Foglia et al. (2015), (f) Macroelement 

simulation of this study 

5.3.3 Validation of the macroelement 

Five monotonic tests  and one cyclic test of Foglia et al. (2015) are adopted hereafter to 

evaluate the predictive capabilities of the macroelement. The monotonic tests were conducted at five 

different dimensionally homogeneous moment-to-horizontal load ratios (M/DH = 1.1, 1.987, 3.01, 

5.82, 8.748). The cyclic test was carried out for M/DH = 1.987, Mmin = -5N∙m, Mmax = 75N∙m, Hmin = 

-10N and Hmax = 125N. The loading frequency was f = 0.1Hz and the number of cycles N= 5 × 104. 

The parameters of Table 5.1 are adopted in the macroelement simulations. Only the first 100 cycles 

are simulated and compared with the experimental response. 
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Figure 5.10 shows the comparison between the experimental model test results and the 

macroelement predictions for the monotonic tests. A fairly good agreement is observed for all the 

five moment-to-horizontal load ratios. Figure 5.11, illustrates the comparison between the 

experimental model test results and the macroelement predictions for the horizontal-rotational cyclic 

loading test. The macroelement prediction results are satisfactory, presenting even a better agreement 

in terms of accumulated permanent displacements that the numerical simulations of Foglia et al. 

(2015).  

Overall, the coupling between the horizontal and rotational responses is well reproduced by the 

macroelement for both monotonic and cyclic loading conditions.  

Simulations

Experiment-M/DH=8.748

Experiment-M/DH=5.820

Experiment-M/DH=3.010

Experiment-M/DH=1.987

Experiment-M/DH=1.1

Simulations

Experiment-M/DH=8.748

Experiment-M/DH=5.820

Experiment-M/DH=3.010

Experiment-M/DH=1.987

Experiment-M/DH=1.1

 

(a)                                                        (b) 

Figure 5.10 Comparison between experimental results and macroelement predictions for model tests under combined 

loadings of M/DH: curves of (a) H-u and (b) M/D-Dθ 
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Figure 5.11 Horizontal displacement (u) versus horizontal load (H) for (a) experimental results, (b) simulated results by 

Foglia et al. (2015), (c) Macroelement prediction of this study; and rotational angle (θ) versus moment (M) for (d) 

experimental results, (e) simulated results by Foglia et al. (2015), (f) Macroelement prediction of this study 

 

5.4 Conclusions 

In this chapter, a novel macroelement for caisson foundations in sand is proposed within the 

framework of the theory of hypoplasticity. The incremental nonlinear constitutive equations are 
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defined in terms of generalized forces, displacements and rotations and the “internal displacement” 

concept is incorporated to take into account the effects of precious loading history under cyclic 

loading. An enhanced function has been proposed for the failure surface, in order to take into account 

multiple directional couplings. 

A series of well-documented laboratorial reduced-scale 1g model tests have been used to 

calibrate the macroelement constants and to assess its performance. Comparisons between 

predictions and experimental results demonstrate that the proposed macroelement is capable of 

reproducing the behaviour of caisson foundations in sand subjected to monotonic and cyclic 

loadings.  

It is worth noting that the efficiency of the macroelement is much higher than that of 

conventional nonlinear 3D finite element simulations in terms of computational costs. This 

advantage is of particular importance for practical applications where the caisson foundation is 

subjected to a large number of cycles caused by environmental loadings, such as the ocean current 

and waves. The proposed macroelement is a useful tool for the design of caisson foundations in sand 

subjected to combined monotonic or cyclic loadings. 
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Chapter 6 General conclusions and perspectives 

 

6.1 General conclusions 

In this PhD, the behavior of caisson foundations in sand under combined monotonic and cyclic 

loadings is investigated by finite element numerical simulations and the development of a novel 

macroelement. The new numerical tools are validated with experimental results available in the 

literature. The main contributions and conclusions of the work are summarized as follows: 

(1) A review of the existing experimental and numerical studies on the response of caisson 

foundations subjected to combined loadings is first presented. The limitations of the current 

approaches are highlighted; a method that can accurately reproduce large deformations during 

extreme loading conditions (such as during the installation phase) is required. Furthermore, an 

advanced constitutive model and a fast and robust numerical tool are necessary to correctly 

simulate the nonlinear behaviour of the foundation under combined loadings. 

(2) The evolving failure of a caisson foundation in sand submitted to complex loading combinations 

is first simulated using a Combined Lagrangian - Smoothed Particle Hydrodynamics (CLSPH) 

method and the Mohr-Coulomb constitutive model. The performances and limitations of the 

approach are discussed. 

(3) In order to improve the modeling strategy, a modern critical state soil constitutive law 

(SIMSAND) is introduced. The model is combined with the CLSPH method to simulate large 

deformations and the approach is validated using experimental data from rectangular channel and 

two-dimensional column collapse tests. All comparisons show that the adopted numerical 

strategy is able to reproduce qualitatively and quantitatively the main behaviour of granular 

column collapse, i.e. free surface, failure line, deformed profile, run-out distance and deposit 

height. 

(4) The CLSPH - SIMSAND approach is then adopted to reproduce the nonlinear behavior of a 

caisson foundation in sand subjected to different load combinations. After several validations 

using experimental results, the 3D bearing capacity of the foundation is investigated considering 

several factors including soil density, friction strength, soil stiffness, grain crushability, geometry 
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size and aspect ratio. An analytical formula is proposed to describe the 3D failure envelope. Once 

the caisson geometry determined, the value of vertical bearing capacity and the shape and size of 

the failure envelope can be directly obtained. The pivotal parameters for the analytical formula 

can be found by simple numerical simulations, empirical equations or experimental results. 

(5) A novel macroelement for a caisson foundation in sand is finally introduced, based on the 

framework of hypoplasticity. Comparison between the macroelement predictions and the 

observed response indicates that the macroelement is capable of reproducing the caisson-soil 

system nonlinear behavior for combined monotonic and cyclic loadings. The required calculation 

time is much smaller than that of a classical finite element model and therefore the macroelement 

is a very useful tool for structural design in the offshore engineering field. 

6.2 Perspectives 

Several perspectives are possible: 

(1) In practice, caisson foundations are used in two configurations to support offshore wind turbines. 

The first is a mono-caisson supporting a mono-tower, the research object of this thesis. The 

second configuration is three or four caissons supporting a jacket structure. In this last 

configuration, the pullout resistance is a key design factor and the suction force must be 

considered to obtain the accurate response in the vertical direction. The installation phase 

considering suction effect needs also to be numerically investigated. 

(2) This research mainly focused on the bearing capacity characteristics of a caisson foundation in 

sand. A similar procedure should be also adopted for clays. Numerical simulations on soft clays 

need to reproduce the undrained characteristics of the saturated porous media. 

(3) The macroelement developed in this PhD considers three degrees of freedom, i.e. vertical (V), 

horizontal (H) and rotational (M). Further investigations should extend it to six degrees of 

freedom, i.e. Vertical (V), horizontal (Hx, Hy), rotational (Mx, My) and torsional (T) loading. 
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Appendixes 

(I) Basic equations of the Mohr-Coulomb model 

The basic equations of the Mohr-Coulomb model are presented hereafter: 

Yield function: 

 tan 0 mcF R q p c= − − =   (A.I-1) 
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Potential function: 

 ( ) ( )
2 2

0 wtan tanmG c R q p  = + −   (A.I-3) 

( ) ( )

( ) ( ) ( )( )

22 2

w
22 2 2

4 1 cos 2 1
= ,

32 1 cos 2 1 4 1 cos 5 4
m mc

e e
R R

e e e e e




−  + −  
 
 −  + − −  + −

 

   with 
3 sin

=
3 sin

e




−

+
  (A.I-4) 

where F yield function, q deviatoric stress, p mean stress, friction angle, c cohesion, J3 the third 

invariant of the deviatoric strain tensor, G potential function,  dilatancy angle, c0 initial value of 

cohesion,  = 0.1 (default value in ABAQUS).  
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 (II) Basic equations for a plasticity model for shallow foundations in sand (Byrne and Houlsby 

1999; Cassidy 1999; Gottardi et al. 1999; Villalobos et al. 2005) 

Gottardi and Houlsby (1995) were among the first authors to investigate the full behavior of 

circular footings on sand in the laboratory under combined loads through a macro-model approach. 

The tests were performed on dense dry sand (Dr = 75%). Gottardi et al. (1999) interpreted the 

experiments and suggested an expression of F (V, Vt, Vpre), which is given in Table A.II.1.  

Table A.II.1 Yield Surface Expressions Reported in Literature 

Models F (V, Vt, Vpre) Foundation type 

Gottardi et al. 

(1999) 
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Circular surface and 

caisson foundations 
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(2005) 
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Caisson foundations 

Yield surface 

The shape of the yield surfaces presented in the following sections can be expressed by the 

following general empirical equation: 
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  (A.II-1) 

where f describes the yield surface function; and Vt = tension capacity of the shallow foundation. The 

general shape of the surface is determined by three parameters, 0h , 0m , and a, in the radial planes. 

The parameters 0h and 0m determine the size of the yield surface at the widest section of the surface 

along the V-axis by 0 /M preH V=  and 0 /H preM DV= , respectively, where 0MH = is the value of H at 

the intersection with the M = 0 axis, and 0HM = is the corresponding value for M. The terms 

0MH = and 0HM = are also denoted Hpeak and Mpeak, respectively. 

Byrne and Houlsby (1999) evaluated a large set of combined loading tests on bucket 

foundations in very dense sand (Dr = 95%). For such a case, they also found that the shape of the 

yield surface could be approximated by rotated ellipses in the radial planes. The rotation of the yield 

surface as well as the shape was found to change with the embedment ratio. 
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Adopting the yield surface expression suggested by Gottardi et al. (1999) results in a change in 

the parameters with the embedment ratio. The presented yield surface functions clearly have one 

drawback relative to the behavior of bucket foundations. The apex of the yield surface at low vertical 

loads for bucket foundations is not located at the origin but at a negative value due to the tension 

capacity in contrast to surface foundations. Villalobos et al. (2004,2005) also noticed this. They 

suggested a modified yield function by introducing a dimensionless constant, t0 (see Table A.II.1). 

The constant t0 is proposed to be a function of the skirt thickness t relative to the diameter of the 

bucket. The apex of the yield surface at low vertical loads is of especially great importance for wind 

turbine foundations because of the small self-weight of the structure. The yield surface expression by 

Villalobos et al. (2005) is based on experiments on bucket foundations with a single embedment ratio 

equal to 0.5 on saturated medium dense sand. The findings presented by Villalobos et al. (2004) are 

also based on observations from tests on bucket foundations with two different embedment ratios 

(0.5 and 1) on loose (Dr = 30%) dry sand. 

The choice between β1 and β2 determines the value of 1 1 2/ ( )v   = +  , i.e., the location of 

the peak of the parabola along the V-axis, as well as the slope of the ends of the parabola. The values 

of β1 and β2 are generally found to be close to unity; however, values of β1 and β2 less than unity 

reduce the sharp angles of the yield surface at the intersections with the V-axis. The values of βi are 

limited by a value equal to 1.0 because the failure surface for larger values becomes concave. For β1 

= β2 = 1, the yield surface is seen to coincide with the expression from Gottardi et al. (1999), and the 

widest section in the radial plane is located at 0.5v = . The value of v in the literature is generally 

found to be between 0.45 and 0.5 for surface footings, i.e., β1 < β2. For surface footings, Houlsby 

and Cassidy (2002) simplified the expression from Martin (1994) by choosing 0a =  and 

1 2 1 = = , which corresponds to observations from Butterfield (1979). 

Elastic behavior 

The elastic behavior of a circular foundation subjected to planar loading can be described by the 

following yield surface elastic matrix: 
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  (A.II-2) 

where R = radius of the foundation; G = shear modulus of the soil; and 0

ij
k = nondimensional static 

stiffness components. The static stiffness components for surface, embedded, and bucket foundations 

have been investigated theoretically, e.g., by Spence (1968), Poulos and Davis (1974),Bell (1991), 

Ngo-Tran (1996),Doherty and Deeks (2003),and Liingaard (2006).The static stiffness components 

are found to be dependent on Poisson’s ratio, the shear modulus, the embedment ratio, i.e., d/D, the 

stiffness of the foundations relative to the stiffness of the soil, and the base roughness. 
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Hardening law 

During loading of the foundation, the hardening law proposes the size of the yield surface for a 

given load state. Within the micromodel approach, the size is assumed to be controlled by the 

vertical preload of the foundation, i.e., the upper apex of the yield surface. The type of hardening law 

presently used is the strain-hardening type, where the relation between the vertical plastic settlement 

and the vertical preload is used. 

A linear relation proposed by Byrne and Houlsby (1999) is given by the following equation: 

 p pV k w=   (A.II-3) 

where pk = plastic stiffness, which is assumed to be constant; and pw = plastic component of the 

vertical settlement. This relation is not practically useful for soils. 

Based on the results from vertical loading tests on circular surface footings on medium dense 

(Dr = 75%) and dry yellow Leighton Buzzard sand, Gottardi et al. (1999) fitted the following 

empirical expression: 
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  (A.II-4) 

where pmw = size of the vertical plastic settlement at failure. 

Additionally, Cassidy et al. (2002) found that the following relatively simple relation fits the 

results from vertical loading tests of circular footings on loose carbonate sand: 
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+
  (A.II-5) 

where c, k1, and k2 are constants. 

Flow rule 

During loading of a foundation when yielding occurs, the hardening rule determines the 

stiffness of the response, whereas the ratios between the plastic displacement components are 

determined by the flow rule. The plastic displacements including rotation are determined from a 

potential function by the flow rule given in the following formula: 
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  (A.II-6) 

where g = 0 is a potential function; and λ is a positive scalar that defines the magnitude of the plastic 

displacements, which is determined from the hardening law. The potential function is defined as a 

function that forms a potential surface in the load space on which the direction of the incremental 

plastic displacements is perpendicular. If the potential function is chosen to be identical to the yield 

function, then this is denoted as associated flow and is non-associated flow otherwise. 

The same behavior is observed for embedded and bucket foundations(Gottardi et al. 1999; 

Villalobos et al. 2004). Because associated flow is only observed in the radial plane, the potential 

surface must differ from the yield surface in all terms containing vertical load. Houlsby and Cassidy 

(2002) suggested a non-associated potential function, described as a modification of the yield 

function, by introducing an association parameter, v , in the following way:   
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( ) 3 4

3 4

3

2
( )

3 4

34

4

 

 

 


 

+ +
=  

  

 

where 'V  = intersection of the plastic potential with the V-axis determined by g = 0. The value of 

the β factors can be chosen independently of the corresponding factors in the yield surface 

expression. It is noted that associated flow is obtained if 1v = ; 1 3 = ; and 2 4 = . 

The association parameter av has two purposes: 

1. It controls the relative magnitude of the vertical displacement; 

2. It controls the position of the parallel point, defined by Tan (1990), which is the peak of the 

potential surface. For v less than unity, the parallel point is moved to a lower value of / peakV V . 
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(III) Basic equations for a plasticity model for shallow foundations in clay (Cassidy et al. 2006) 

A single surface strain hardening plasticity model is proposed. It contains four components:(i) a 

yield surface in combined V-M-H load space that defines the boundary of elastic an plastic response, 

(ii) a description of elastic behaviour for any incremental changes of load within the yield surface, 

(iii) a hardening law that describes the change in yield surface size with embedment, and (iv) a flow 

rule to describe the irreversible footing displacements during the elsto-plastic event. 

Yield surface 

Based on finite element results,  Taiebat and Carter (2000) suggested the three-dimensional 

failure surface of a shallow circular footing lying on the surface of homogeneous undrained soil 

could be described as 
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  (A.III-1) 

where uV , uM  and uH  are the ultimate capacities of the footing under purely vertical, moment and 

horizontal loads respectively, and 1  is a shape-factor-defining eccentricity in the 

moment-horizontal load plane. For application to a caisson, the size of the surface under pure 

horizontal load ( uH ) and pure moment load ( uM ) can be determined using the upper-bound 

mechanisms of Murff and Hamilton (1993) and Randolph et al. (1998).  

For that case a caisson of (scaled prototype) diameter D = 6 m and skirt length L = 3 m was 

tested in normally consolidated kaolin clay with increasing strength with depth of ρ≈1.25 kPa/m. The 

non-dimensional upper-bound value for the pure rotation case ( 0H = ) was / 0.754u uM DAs =  and 

for the horizontal translation ( 0M = ) was / 2.97u uH As = . Therefore, Eq. (A.III-1) can be written 

in a form consistent with previous force-resultant models for spudcans as: 
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  (A.III-2) 

where m0 and h0 are dimensionless size parameters (0.754 and 2.97 respectively for the case outlined 

above), D and A are the caisson diameter and area, and V0 represents the value of pure vertical 

bearing capacity for the current vertical penetration. 

Elastic behaviour 

The elastic relationship between the increments of load (dV, dM, dH) and the corresponding 

elastic displacements ( e,d ,e edw du ) is: 
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  (A.III-3) 

where G is a representative shear modulus and vk , mk , hk , ck are dimensionless constants. The 

values of these constants may be derived using, for instance, finite element analysis of a footing. 

Hardening law 

Traditional bearing capacity theory is used to determine the hardening law, with the vertical 

load–displacement relationship determined by the capacity of the footing for each level of vertical 

penetration. All of the penetration resistances are estimated using an undrained shear strength ( us ) 

profile. 

There is little penetration resistance whilst the skirts are penetrating the soil (down to 3 m in this 

case). Therefore, before the base-plate has made contact with the soil surface ( iw h ), the vertical 

resistance is calculated as the sum of the internal and external frictional resistance plus the bearing 

capacity of the annulus of the skirt and is given by: 

 i i 0 0 1 c 2( ) ( s ' )u u aveV D D s w N w D t    = + + +   (A.III-4) 

with an adhesion factor (typically taken as the inverse of the soil sensitivity), h the location of the 

base of the skirt from the mudline, t  the wall thickness, cN a bearing capacity factor for a buried 

strip footing, 1us  the average shear strength along the skirt, 2us the shear strength at the base and 

'  the effective unit weight. 

Once the caisson’s base-plate has made contact with the soil surface (at iw h= ) and the 

installation valve closed, two type of behaviour can occur, as shown in Fig. 4. With continued 

installation into the seabed, failure progresses to a strain level where a bearing-capacity mechanism 

acting over the whole base area is reached. For this case an estimate of vertical load could be 

determined by: 

 
c

2
* 0

0 0 1 2s
4

u u

D
V D Ls N


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where 
c

*N  is a bearing capacity factor for the axisymmetric case, with Randolph et al. (2004) 

reviewing appropriate methods to evaluate this for circular footings with varying strength profiles, 

roughness values and embedment. Lower bound plasticity solutions of Martin(2001, 2003) and 

Houlsby and Martin (2003) provide the most readily accessible values. For these factors the shear 

strength 2us  should be taken at the base of the skirts. 
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Eq. (A.III-5) can be used to calculate the initial bearing capacity load, but also the load once the 

footing penetrates plastically further into the ground. However, the use of Eq. (A.III-4) and (A.III-5) 

creates a stress discontinuity at the position of the baseplate touching the surface ( iw h= ). It does not 

reflect the experimental evidence of the transition of load that occurs. A simple inverted parabolic 

transition is used to develop the full capacity after touchdown, with only the normalized initial 

stiffness and displacement at the point of the fully developed load requiring definition. 

The other behaviour is the pullout resistance with reversal of loading once the caisson’s skirts 

have been installed and the caisson sealed. There is initially an extremely stiff response, which can 

be modelled by the elastic stiffness matrix. However, once the loading reverts into tension a 

substantial softening of the load displacement occurs. The combination of skin friction and “reverse” 

end bearing on the annulus of the skirt and the base-plate must be considered (remembering the 

assumption of a sealed caisson). That is, the ideal vertical load–penetration curve would be: 

 
c

2
* 0

0 0 1 2s
4

u u

D
V D ws N


 = − −   (A.III-6) 

Flow rule 

When the load state touches and expands (or possibly contracts) the yield surface, plastic 

displacements occur. Though the stiffness of the response is determined by this expansion (or 

contraction) through the hardening law, the ratios of the plastic displacements are determined by the 

flow rule. The simplest form is associated flow, where the yield surface also acts as the plastic 

potential, and the ratios of the plastic displacement components are determined by 

 ,    ,    
/

p p p

f f f
dw du d

V H M D
   

  
= = =

  
  (A.III-7) 

where λ is a non-negative multiplier that can be determined from the requirement that an 

elastic–plastic load step must remain on the yield surface. Associated flow was observed on a caisson 

during a series of constant vertical-load probe tests conducted in a geotechnical centrifuge from 

Watson et al. (1998, 1999, 2000). 
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(IV) Basic equations for a hyperplasticity model focused on shallow foundations (Villalobos 

Jara 2006) 

The present study is intended to provide experimental information to construct hyperplasticity 

models by means of determining for instance the yield surface and a flow rule. In order to obtain 

practical results hyperplastic models necessitate accurate values of the model parameters. Thus, the 

determination of these parameters from laboratory tests was an important objective of this 

investigation. The advance in theoretical modelling necessitates of advances in physical modelling as 

well to make possible that a mathematical theory has useful applications in geotechnical engineering. 

Elasticity 

In hyperplasticity theory the elastic behaviour occurs inside and on the yield surface as assumed 

traditionally in plasticity. An elastic load-displacement relationship can be presented in a 

displacement controlled form as follows: 
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  (A.IV-1) 

where VK , MK  , HK  and MHK are the stiffness coefficients given by:  
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  (A.IV-2) 

R is the footing radius, d is the distance between the assumed LRP and the point where the combined 

loads are applied. w ,   and u  are the elastic vertical, rotational and horizontal displacements. 

Yield surface 

Recently, an expression of the yield surface for caisson footings has been proposed by 

Nguyen-Sy and Houlsby (2005). This new formulation differs from the yield function used by 

Cassidy (1999) since it includes the possibility for tensile vertical loads. The yield function can be 

expressed in a reduced form as follows: 

 1 22 22 2

12 1 2( ) (1 ) 00y t v +t v
 = − − =   (A.IV-3) 

The horizontal and moment loads are expressed through t in the form of an eccentric ellipse, 

where for the planar case t is given by: 

 2 2 2t h m emh= + −   (A.IV-4) 

where e is the eccentricity of the ellipse. Considering the isotropic hardening case, the dimensionless 

horizontal and moment loads are given by the following expressions: 
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The dimensionless vertical loads 1v  and 2v  are given by: 

 1 1 2 2

1 2

0 0

(1 ) ' (1 ) '
   

V V V V V Va a V a a V
v v

V V

 + − + −
= =   (A.IV-6) 

V  , M  and H  are the dissipative generalized vertical, moment and horizontal loads, which are 

related to the dissipation function d by means of the partial derivative 
i

i

d





=


where i are internal 

variables that represent irreversible behaviour and play the role of plastic displacements under 

certain conditions . 

Yield surface 

In hyperplasticity theory the dissipation function gives origin to the yield function and the flow 

rule (Collins and Houlsby 1997). Therefore, there is no need to define a plastic potential function. 

This is a significant difference with the work hardening plasticity theory implemented for instance in 

Model B and Model C. The flow rule defines the direction of the irreversible displacement 

increments. The traditional division between elastic and plastic as reversible and irreversible is not 

necessarily true because of the dependency of stiffness on the internal variable in coupled materials. 

However, an associated flow rule in generalized load space holds always and plastic displacement 

increments are obtained according to: 
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  (A.IV-7) 

where λ is a positive scalar multiplier that accounts for the magnitude of the velocity vectors. The  

αi components are known generically as internal state variables and are related with irreversible 

processes, for this reason they are related with χi by means of the dissipation function. 

The non-associated flow rule can be expressed in hyperplasticity as: 
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  (A.IV-8) 

Once the derivatives are obtained in true load space the internal variable increments have the 

following expressions: 
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(V) Basic equations for a plasticity model for caisson foundations under general monotonic and 

cyclic loading (Foglia et al. 2015) 

The original model consists of five elements: yield surface, plastic potential, hardening law, 

flow rule and an elastic matrix. These elements are combined to form the flexibility matrix which 

relates the vector of normalized incremental displacements, dq, to the vector of normalized 

incremental forces, dQ, both referring to the load reference. 

Variables q and Q are defined as follows: 
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In Eqs. (A.V-1) and (A.V-2), w is the vertical displacement, u is the horizontal displacement, 

θ is the rotation while μ and ψ are constitutive, dimensionless, parameters of the model. In the 

following subsections the sole equations used in this study are provided and readers are invited to 

refer to Nova and Montrasio (1991) for details on the original model. 

Yield surface 

The equation of the yield surface is as follows: 

 2 2 2 2( ) (1 )s c

c

f h m t 
 


= + − + −   (A.V-3) 

where ρc is the hardening parameter, and β is a parameter which was introduced to improve the fit of 

the equation to the available experimental data. The parameter st , introduced to account for the skirt 

about the foundation perimeter, enhances the deviatoric load capacity of the foundation at low value 

of vertical load and allow for vertical tensile loads to be sustained by the soil-foundation system. The 

equation is similar to that proposed in Villalobos et al. (2009) for caisson foundation on sand. 

Hardening law 

The hardening law is the rule which governs the evolution of the hardening parameter, d  as a 

function of plastic displacement and is given by the following equation: 
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d dR
d d

V

   
  

 

 
= − + + 

 
  (A.V-4) 
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where  and  are constitutive dimensionless parameters. According to the original model, 

parameter R0 coincides with the initial stiffness on the vertical displacement and vertical load curve. 

Flow rule 

The plastic potential is based on the original model, suitably adjusted to allow for the inclusion 

of parameter ts and is defined as follows: 

 2 2 2 2

s g

g

(h ) (m ) ( t ) (1 )g 
   


= + − + −   (A.V-5) 

where ρg is a fictitious variable and λ as well as χ are constitutive dimensionless parameters. 

When the conditions f = 0 and df = 0 are fulfilled, the incremental plastic displacements is 

expressed by the equation: 

 p

g
dq

Q


= 


  (A.V-6) 

where Λ is the plastic multiplier. 
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(VI) Basic equations for a plasticity model for caisson foundations under general monotonic 

and cyclic loading (Skau et al. 2018) 

The elastic stiffness matrix 

The elastic stiffness matrix is defined as a 3×3 matrix: 
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The stiffness coefficients
v

ek , 
h

ek  and 
ek


 refer to the elastic stiffness in the vertical direction, 

horizontal direction and rotation around the out of plane axis. The coupling terms are set to zero 

since the LRP is located below mudline and implicitly includes parts of the coupling between the 

horizontal load and moment applied at seabed. This is an approximation, and it will be shown later 

that LRPz  varies as function of the mobilization level. 

Yield function and flow rule 

The yield function and the flow rule are formulated based on the FEA results as those shown 

earlier in the paper. As stated initially, it is an aim to formulate the macroelement mathematically 

transparent and simple. The macroelement is intended for OWT foundations, where low and 

moderate mobilization levels are most relevant. An elliptic surface is therefore taken as the potential 

function, g. It was also chosen to use these surfaces as yield surfaces. The yield function f is then 

given by the same function imposing associated flow, for all surfaces i : 

 i ig f

F F

 
=

 
  (A.VI-2) 

where fi is an ellipsoid: 
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  (A.VI-3) 

The denominators ,maxiV , ,maxiH and ,maxiM are the axis crossings for the surface i. ,i V , ,i H , 

,i M  are the coordinates of the origin (initially equal zero) of surface i. Compared to other yield 

surface formulations (Byrne and Cassidy 2002; Bienen et al. 2006; Cassidy et al. 2006), the function 

cannot describe rotated ellipses. However, this is accounted for by keeping the depth of the load 
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reference point ( LRPz ) as an input. This will effectively describe the same response at seabed. The 

values of ,maxiV , ,maxiH and ,maxiM  will determine the shape of the ellipses, thus the flow direction. 

The values should therefore be determined based on the development of plastic work along the three 

axes. 

Hardening rule 

The hardening is a multilinear approximation. This means that each surface, i has a constant 

“plastic stiffness”. The total plastic displacement is taken as sum of all plastic displacement 

contributions using the Koiter (1953):  
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du du d g F
= =

= =      (A.VI-4) 

where k is the outermost surface being violated. Since the foundation response is anisotropic by 

nature, an anisotropic hardening formulation has been adapted. The hardening is based on the load – 

displacement response in the three uniaxial directions. The approach of using the three uniaxial 

responses as basis for describing general response to any load path, was illustrated in Skau et al. 

(2017). In this formulation, the hardening for a combined load path is approximated by weighting the 

plastic stiffness in the three uniaxial directions by the flow direction for the current load state. The 

formulation, also used for modelling clay in Ref Grimstad et al. (2014), can be expressed for any 

surface i as: 

 / /p

i i i iD g F   =     (A.VI-5) 

where /ig F  is the plastic flow direction vector, and p

iD  is the “plastic stiffness matrix” for 

surface, i : 
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,i v

pk , 
,i h

pk ,
,i u

pk

 refer to the plastic stiffness in the vertical direction, horizontal direction and rotation 

around the out of plane axis. Note that the plastic stiffness, 
p

iD , is only associated with the 

translation of surface i. This means that e.g. the vertical tangential stiffness ,

p

k vk , for loading between 
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,maxkV and 1,maxkV + is the combined stiffness from all surfaces being translated. This is analogue to the 

total stiffness of 1D-springs coupled in series: 

 
1, ,

1 1k

p p
ik v i vk k+

=    (A.VI-7) 

Macroelement input 

The input has been limited to ensure simplicity for users. With the exception of numerical 

parameters such as tolerance and number of substeps, the input is limited to: 

•  The depth of the load reference point, LRPz . The depth where negligible horizontal 

displacement evolves when a moment load is applied to the foundation. 

• The uniaxial response – for loads applied in the load reference point. In total three curves V – 

uv, H – uh, M - uθ, as tabulated data. 

• Number of surfaces, N 
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