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Abstract

With the advance of the Semantic Web and the Open Linked Data initiatives,

a huge quantity of RDF data is available on the Web. The goal is to make

this data readable for humans and machines, adopting special formats and

connecting them by using International Resource Identifiers (IRIs), which are

abstractions of real resources of the world. As more data is published and

shared, sensitive information could be also provided. In consequence, the

protection of entities of interest (e.g., people, companies) is a real challenge,

requiring adequate techniques to avoid the disclosure/production of sensitive

information on the Web.

Three main aspects are considered to ensure entity protection: (i) Pre-

serving information, by identifying and treating the data that can disclose

entities (e.g., identifiers, quasi-identifiers); (ii) Identifying the utility of the

data to be published (e.g., statistics, testing, research) to adopt an adequate;

and (iii) Modeling background knowledge that can be used for adversaries (e.g.,

number of relationships, a specific relationship, information of a node) to dis-

cover sensitive information.

Anonymization is one technique for entity protection that has been suc-

cessfully applied in practice [RGCGP15]. However, studies regarding anonymiza-

tion in the context of RDF documents, are really limited, showing practical

anonymization approaches for simple scenarios as the use of generalization and

suppression operations based on hierarchies. Moreover, the complexity of the

RDF structure requires a high interaction of the expert user to identify and se-

lect the RDF’s elements to be protected (main entities), and the ones related

to them (identifiers, quasi-identifiers, sensitive information, and unsensitive

information).



Additionally, the similarity among entities to discover similar data in

other datasets, is compromised by disjoint similarities (e.g., the similarity be-

tween float and double is 0 for literal nodes). In literal nodes, datatypes

play an important role, since it has been proven in the literature that the

presence of datatypes, constraints, and annotations improves the similarity

among XML documents (up to 14%). RDF adopts the datatypes from XML

Schema, which are defined by the W3C.

Thus, in this context, the contributions are summarized as follows:

• An analysis of datatypes in the context of RDF matching/integration doc-

uments, its limitations and adequate applicability for the Semantic Web;

• An extended version of the W3C datatype hierarchy, where a parent-child

relationship expresses subsumption (parent subsumes children);

• A new similarity measure for datatypes to take into account several aspects

related to the new hierarchical relations among compared datatypes such as:

distance and depth among datatypes, similar children;

• A new inference datatype approach to deduce simple datatypes based on

four steps: (i) an analysis of predicate information, (ii) an analysis of lexical

space values, (iii) a semantic analysis of the predicate, and (iv) a generalization

of Numeric and Binary datatypes;

• A method to reduce the complexity of the RDF structure of the data to be

published, simplifying the task of analysis, which is performed by the expert

user;

• A method to suggest disclosure sources to the expert user, based on a node

similarity, reducing the task of data classification; and

• A protection method, based on a generalization operation, to decrease

the relations among resources from different datasets, to preserve the main

objectives of integration and combination of the Semantic Web.

The different proposals have been tested through experimentation. Ex-

perimental results are satisfactory and show an important improvement in

the accuracy and high performance for similarity and inference datatype ap-

proaches with respect to the existing works. Our protection approach for RDF

data overcomes the related work and decreases the expert user interaction.
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Resumé

Avec l’avancée du Web Sémantique et des initiatives Open Linked Data, une

grande quantité de documents RDF sont disponibles sur Internet. L’objectif

est de rendre ces données lisibles pour les humains et les machines, en adop-

tant des formats spéciaux et en les connectant à l’aide des IRIs (International

Resource Identifier), qui sont des abstractions de ressources réelles du monde.

L’augmentation du nombre de données publiées et partagées augmente égale-

ment le nombre d’informations sensibles diffusées. En conséquence, la confi-

dentialité des entités d’intérêts (personnes, entreprises, etc.) est un véritable

défi, nécessitant des techniques spéciales pour assurer la confidentialité et la

sécurité adéquate des données disponibles dans un environnement où chaque

utilisateur a accès à l’information sans aucune restriction (Web).

Ensuite, trois aspects principaux sont considérés pour assurer la protec-

tion de l’entité: (i) Préserver la confidentialité, en identifiant les données qui

peuvent compromettre la confidentialité des entités (par exemple, les identifi-

ants, les quasi-identifiants); (ii) Identifier l’utilité des données publiques pour

diverses applications (par exemple, statistiques, tests, recherche); et (iii) Les

connaissances antérieures du modèle qui peuvent être utilisées par les pirates

informatiques (par exemple, le nombre de relations, une relation spécifique,

l’information d’un nœud). L’anonymisation est une technique de protection

de la confidentialité qui a été appliquée avec succès dans les bases de données

et les graphes. Cependant, les études sur l’anonymisation dans le contexte

des documents RDF sont très limitées. Ces études sont les travaux initi-

aux de protection des individus sur des documents RDF, puisqu’ils montrent

les approches pratiques d’anonymisation pour des scénarios simples comme

l’utilisation d’opérations de généralisation et d’opérations de suppression basées

sur des hiérarchies. Cependant, pour des scénarios complexes, où une diversité

de données est présentée, les approches d’anonymisations existantes n’assurent



pas une confidentialité suffisante. Ainsi, dans ce contexte, nous proposons

une approche d’anonymisation, qui analyse les voisins en fonction des connais-

sances antérieures, centrée sur la confidentialité des entités représentées comme

des nœuds dans les documents RDF. Notre approche de l’anonymisation est

capable de fournir une meilleure confidentialité, car elle prend en compte la

condition de la diversité de l’environnement ainsi que les voisins (nœuds et

arêtes) des entités d’intérêts. En outre, un processus d’anonymisation au-

tomatique est assuré par l’utilisation d’opérations d’anonymisations associées

aux types de données.
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A.2 Contributions à la recherche . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.2.1 Analyse et similitude de type de données . . . . . . . . . . . . . . . 133
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Chapter 1

Introduction

The Semantic Web and the Linked Open Data (LOD) initiatives promote the integration

and combination of RDF data on the Web [SH01]. RDF describes resources as triples:

〈subject, predicate, object〉, where subjects, predicates, and objects are all re-

sources identified by their IRIs. Objects can also be literals (e.g., a number, a string),

which can be annotated with optional type information, called datatype. Since the last

decade, RDF is attracting more and more people, and data is gathered and published

by different sources (e.g., companies, governments) for many purposes such as statistics,

testing, and research proposals. For instance, according to [HDP12], more governments

are becoming e-governments, since they are part of the LOD initiatives, providing their

data to have a more flexible data integration, increasing the data quality, and offering new

services. However, as more data is available, sensitive information (e.g., diseases, salaries,

or bank accounts) could be sometimes provided or inferred leading to compromise the

privacy of related entities (e.g., patients, users, companies).

Data can be analyzed and protected before being published on the Web [RGCGP15,

HHD17], or limited in access for queries over controlled scenarios [SLB+17]. In this work,

we only focus on the protection of RDF data, expressed as documents, by the analysis of

the data before publication. A privacy protection of the RDF data is tricky, since the use

of different published heterogeneous datasets could break some protection. For instance,

the combination of well-known datasets as DBpedia and Enipedia1 produces sensitive

information of places of interest (e.g., schools, hospitals, production factories), regarding

their proximity to nuclear power plants (high contamination resource).

1Enipedia is a dataset containing data related to the production of energy and its applications. The

information available on Enipedia is provided by governments, which support the LOD. http://enipedia.

tudelft.nl

1

http://enipedia.tudelft.nl
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According to [RGCGP15], anonymization is one common and widely adopted tech-

nique for sensitive data protection that has been successfully applied in practice. It consists

on protecting the entities of interest by removing or modifying identifiable information to

make them anonymous before publication, while keeping the utility of the data. This

latter is modified according to certain criteria of the existing values (e.g., taxonomies,

ranges) to satisfy some conditions of anonymity (e.g., k-anonymity1, l-diversity2). To ap-

ply anonymization, it is necessary to identify and classify the data (see D in Fig. 1.1) into:

(i) main entities, which are the entities of interest, and (ii) related data that is directly or

indirectly associated to the main entities and can compromise their privacy. The related

data can also be classified as [BWJ06]: (i) Identifiers, data that directly identify a main

entity (e.g., security social number); (ii) Quasi-identifiers, data that can be used to link

with other data to identify a main entity (e.g., birthday, postal code, gender); (iii) Sen-

sitive information, which is the data that compromise a main entity (e.g., diseases); and

(iv) Unsensitive information that does not have a particular role or impact.

Figure 1.1: Anonymization framework inspired from [MDG14]; D is the data to be pub-

lished, BK is the Background Knowledge; and pD the anonymous data obtained by the

anonymization process, considering the classification made by the Expert User

A classification, which is performed by an expert user (see Expert User in Fig. 1.1)

who knows previously the data and is responsible of protecting model, is based on pre-

defined assumptions about how an adversary can take advantage over these data. These

assumptions are called Background Knowledge. The background knowledge (see BK in

Fig. 1.1) is the information related to the published data, which can be used by adver-

saries to discover sensitive information of the main entities. Due to the huge complexity

of the RDF structure, a classification requires a high interaction of the expert user. More-

over, all RDF’s elements can be considered as main entities, and they can also be classified

1k-anonymity is one of the most used common condition, that consists on making entities undistin-

guished from at least k − 1 other entities, because they have similar information [SS98]
2l-diversity is an extension of the k-anonymity model that protects the corresponding sensitive values

within a homogeneous group.
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into identifiers, quasi-identifiers, sensitive information, etc., making the RDF protection

complex.

Works on RDF anonymization are limited [RGCGP15, HHD17]. They mainly apply

generalization and suppression operations over taxonomies (each RDF’s element has a de-

fined taxonomy) to anonymize the RDF document. Defined areas (neighborhood) are also

provided [HHD17], where anonymization properties as k-anonymity are satisfied. Various

anonymous RDF documents are generated by the combination of all values from the tax-

onomies and a measure is required to choose the best option. However, the exhaustive

method to select the best anonymous RDF document makes these approaches unsuitable

for complex cases, since a greater quantity of values to take into account, needs a more

elaborate anonymization process (more possible solutions).

Since RDF forms a directed, labeled graph structure with data, where the edges

(predicates) represent the named link between two resources, represented by the graph

nodes (subjects and objects) [PJH14], databases and graphs anonymization techniques

could be applied, but they are limited and inappropriate for privacy protection in the

Semantic Web, as we detail in Section 5.2.

Thus, in the context of RDF data, the following limitations are identified:

1. RDF anonymization techniques are limited and designed for a particular and ideal

scenario, which is inappropriate when having several linked heterogeneous datasets

[Aro13, RGCGP15, HHD17, SLB+17];

2. The non-consideration of IRIs as external and reachable resources makes the current

RDF solutions unsuitable for protection on the Web, since other available resources

could link or infer sensitive information;

3. The presence and consideration of resources (IRIs and Blank nodes), which are

a fundamental part of the RDF data, makes the database-oriented methods [NJ02,

MGKV06, LLV07, MJK09, SO14] unsustainable for a large quantity of resources due

to the number of JOIN functions needed to satisfy the existing normalized models;

4. Graph anonymization techniques assume simple, undirected and unlabeled graphs

[BDK07, HMJ+08, ZP08, CT08, LT08, YW08, LWLZ08, CKR+11, YCYY13]; thus,

the reduction of complexity of the RDF structure to a simple graph is necessary for

the application of graph solutions, but inappropriate for the Semantic Web, since

properties and semantic relations among resources would be ignored;

5. The complexity of the RDF structure requires a high interaction of the expert user

3



to identify and select the RDF’s elements to be protected (main entities), and the

ones related to the main entities (identifiers, quasi-identifiers, sensitive information,

and unsensitive information); and

6. Approaches based on conceptual RDF representations are needed in order to pro-

vide more general solutions that can be serialized later on different formats (e.g.,

RDF/XML, Turtle, N3, JsonLD).

To overcome these limitations, we propose as the main contribution, a framework

called RiAiR (Reduction, Intersection, and Anonymization in RDF), which is independent

of the serializations formats and providers. Our protection process mainly relies on a four

phases approach where the input is converted into a graph representation, used by all

modules: (i) Reducing-Complexity phase in which the graph is analyzed to reduce its

complexity-structure to extract a compressed one; (ii) Intersection phase, where similar

nodes between the input graph (reduced or not) from the data to be published and the

one from the background knowledge are identified as potential keys (identifiers and quasi-

identifiers); (iii) Selecting phase in which the expert user analyzes and selects the disclosure

sources, which contain at least one potential key; and (iv) protection phase that executes a

protection process over the selected triples. The proposal is designed for RDF documents,

considering their elements (IRIs, blank nodes, literals) and the scenario, where a huge

quantity of information is available. The complexity of the RDF structure is reduced

to make possible the task of classification and to suggest potential disclosure sources to

the expert user, decreasing his interaction. Moreover, by a generalization method, we

reduce the connections among datasets, preserving the main objectives of the Semantic

Web (integration and combination), and protecting the sensitive information at the same

time.

As the reduction and intersection phases are based on a similarity function among

RDF resources, some limitation related to the comparison among literal nodes were found

and studied. For instance, the datatypes, which are associated to the literals, can rep-

resent the same information in several formats according to different vocabularies (e.g.,

a literal value 16.0 can be float or double). Moreover, a huge quantity of RDF docu-

ments is incomplete or inconsistent in terms of datatypes [PHHD10]. Thus, we propose

a new hierarchy of datatypes based on the one proposed by the W3C, and a measure to

obtain similarity values among different datatypes. Additionally, a inference process is

also proposed to provide the datatypes to the literal nodes and perform the similarity.

We continue this chapter by identifying the principal aim and the objectives of the

thesis (Section 1.1). Next, in Section 1.2, we explain our research contributions and, in
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Section 1.3, we conclude this chapter with the outline of the remainder of this work.

1.1 Research Aims and Objectives

Since the protection of sensitive information on the Web is essential for generating, sharing

and publishing data, and there are limitations on existing proposals, a new approach able

to ensure the protection of RDF data, is needed.

The ultimate aim of this thesis is to avoid the disclosure of sensitive information by

introducing a framework for RDF documents, called RiAiR.

Our approach targets RDF protection through the following objectives:

1. Provide an easy classification of the RDF data (keys, sensitive information, etc.);

2. A similarity able to measure the intersection between the data to be published and

the background knowledge to suggest disclosure sources; and

3. Select the most appropriate protection taking into account the main objectives of

the Semantic Web.

1.2 Research Contributions

Based on the aim and objectives described above, and the related work (developed in

Sections 3.2, 4.2 and 5.2), we present the following contributions in this thesis:

1. Datatype Analysis and Similarity

The RDF adopts the XML datatypes defined by the W3C; however, the current hi-

erarchy does not properly capture any semantically meaningful relationship between

datatypes. For instance, datatypes dateTime and time are flattened in the W3C

hierarchy. Thus, we analyze datatypes in the context of RDF matching/integration

documents, since all information is used to discover similar data. Additionally, sim-

ilarity measures for datatypes are not adequate for the Semantic Web, since either

they are too restrictive (same datatype, then the similarity is 1, otherwise 0), or they

are based on specific characteristics from XML and XSD (e.g., constraint facets). In

order to perform a study of datatypes for the Semantic Web, we provide:
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• An analysis of the current W3C datatype hierarchy, its limitations and adequate

applicability for the Semantic Web.

• An extended version of the W3C datatype hierarchy, where a parent-child re-

lationship expresses subsumption (parent subsumes children), which makes it

a taxonomy of datatypes.

• A new similarity measure: extending the state-of-the-art works to take into ac-

count several aspects related to the new hierarchical relations among compared

datatypes such as: distance and depth among datatypes, similar children.

2. Datatype Inference

Datatypes are not always present in the data and according to [ANS09a], the pres-

ence of datatype information, constraints, and annotations on an object improves

the similarity between two documents up to 14%. Hence, an analysis of the infor-

mation related to the value, which does not have its respective datatype, is needed.

An approach able to infer datatype for the Semantic Web is provided, performing:

• An analysis of predicate information, such as range property that defines and

qualifies the type of the object value.

• An analysis of lexical space of the object value, by a pattern-matching process.

• A Semantic analysis of the predicate and its semantic context, which consists

in identifying related words or synonyms that can disambiguate two datatypes

with similar lexical space.

• A generalization of Numeric and Binary datatypes, to ensure a possible inte-

gration among RDF documents.

• Besides, an online prototype called RDF2rRDF is also provided, in order to

test and evaluate the inference process according the accuracy and performance

in the context of huge quantity of RDF data.

3. RDF Protection

Existing anonymization solutions in databases and graphs cannot be directly applied

to RDF data, and RDF solutions are still in develop process and do not ensure enough

privacy; thus, we proposed:

• A method to reduce the complexity of the RDF structure of the data to be

published, simplifying the task of analysis, performed by the expert user;

• A method to suggest disclosure sources to the expert user, based on node sim-

ilarity, reducing the task of data classification; and
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• A protection operation, based on a generalization method, to decrease the rela-

tions among resources from different datasets, to preserve the main objectives

of integration and combination of the Semantic Web.

Results have been presented and published in the proceedings of:

• The 28th International Conference on Database and Expert Systems Applications -

DEXA 2017 [DAKCC17].

• The 18th International Conference on Web Information Systems Engineering - WISE

2017 [DCAKC17].

• International Journal of Data Science and Engineering - DSE 2018 [DCC18].

1.3 Manuscript Structure

We present an overview of each of the following chapters in this thesis:

Chapter 2 (The Semantic Web: Review) presents the background information re-

garding the concepts and principles about WWW, Semantic Web, RDF, and its

respective definitions to better understanding the anonymization process.

Chapter 3 (The Semantic Web: Datatype Analysis and Similarity) presents

the importance of datatypes for the Semantic Web and a motivating scenario to

illustrate the limitations of existing approaches on datatype similarity. This chapter

also describes our contribution for a better datatype similarity, consisting of a new

datatype hierarchy based on the one proposed by the W3C, and a new similarity

measure taking into account cross-children similarity. An experimental evaluation to

measure the accuracy of our proposal is shown, with respect to existing approaches.

Chapter 4 (The Semantic Web: Datatype Inference) describes our datatype in-

ference proposal. This chapter also includes a motivating scenario to show how

inadequate integration among RDF documents can occur if the data types are not

present. A formal proposal is described, consisting on four steps: Predicate Informa-

tion Analysis, Datatype Lexical Space Analysis, Predicate Semantic Analysis, and

Generalization of Numeric and Binary Groups. Finally, we detail our prototype,

called RDF2rRDF, which is used to perform accuracy and performance evalua-

tions, comparing them with existing approaches.
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Chapter 5 (The Semantic Web: Privacy Preservation) describes the importance

of protection for the Semantic Web in RDF documents. Concepts and definitions

related to protection data are presented to formalize the proposal. A motivating

scenario, in the context of energy production, is shown to illustrate the generation

of sensitive information. A framework called RiAiR (Reduction, Intersection, and

Anonymization in RDF) based on four phases: (i) Reducing-Complexity phase, (ii)

Intersection phase, (iii) Selecting phase and (iv) protection phase is also shown.

In this chapter, we present our main prototype and the viability and performance

evaluations.

Chapter 6 (Conclusions and Future Works) concludes our work, recapitulating our

contributions and highlighting future directions.
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Chapter 2

The Semantic Web: Review

“The web as I envisaged it, we have not seen it yet.

The future is still so much bigger than the past.”

— Tim Berners-Lee

This chapter describes technologies used in this thesis, providing a basic and com-

mon background to easy understand the rest of the document. We present the Semantic

Web concepts and its associated elements to discern the nature, purpose, and principles

of the Web. In section 2.1, we outline a brief overview about the Semantic Web on the

Web. In sections 2.1.2 and 2.1.3, we provide a basic definition of the Semantic Web,

illustrating the Semantic Web stacks. Section 2.2 contains a description of all the stan-

dards linked to the Semantic Web as Resource Description Framework (RDF), eXtensible

Markup Language (XML), Internationalized Resource Identifier (IRI), related to the Se-

mantic Web architecture. Thereafter, we present the Semantic Web paradigms related to

Linked Data (LD) initiatives. The chapter ends with a discussion.

2.1 Semantic Web on the Web

The World Wide Web (WWW) marks the end of an era, where the incompatibility and the

interaction of computer systems were a real problem. The WWW gives a huge accessibility

to the information with many social potential and economic impacts. The idea of people

working on a project, in the same space, was a powerful concept of the Web.

The evolution of the Web began as a network of networks-of-documents until become

just a network, where documents, information, people, and social data are linked in several
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ways over the Web. The Semantic Web appears in 2001 developed by Tim Berners-Lee as

a new vision of the Web, where the data is interpreted with a semantic perspective. This

perspective provides a “meaning” in which the syntactic and the semantic connection of

terms establishes interoperability among systems. The Semantic Web also named as Web

of Data, allows a new experience with different interaction among the resources on the

Web.

All this evolution was based on some Web technologies to have a remarkable infor-

mation space, where the resources are linked. These technologies have sufficient efficiency,

scalability, and utility to allow this interaction, being also the base of the Semantic Web.

We develop some Web technologies in the following section.

2.1.1 Web Technologies

There are several technologies related to the operational infrastructure of the WWW as

Internet, Uniform Resource Identifier (URI) (see more details in Section 2.2.1), Hypertext

Transfer Protocol (HTTP), HyperText Markup Language (HTML), and Domain Name

System (DNS).

1. Internet : Internet is an abstraction from the underlying network technologies and

physical address resolution [Sta09].

2. HTTP: Hypertext Transfer Protocol is the Internet protocol for distributed, collab-

orative, hypermedia information systems [FGM+99].

3. HTML: Hypertext Markup Language is the common language of Internet that allows

to publish and retrieve information over the Web [RLHJ+99].

4. DNS: Domain Name System is a distributed database that offers mapping service

from domain name into IP address [ML05].

2.1.2 Semantic Web Definitions and Goal

We can find several definitions of the Semantic Web, but the first one was written by

his creator Tim Berners-Lee. This definition considers the Semantic Web as an extension

of the WWW beyond the Web of Documents (hypertext) to the Web of Data, where

documents and data are linked. In [BLHL+01], Berners-Lee say that: “The Semantic Web
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is not a separate Web but an extension of the current one, in which information is given

well-defined meaning, better enabling computers and people to work in cooperation”.

Another definition presented in [DMVH+00] say that: “The Semantic Web is the next

generation of the Web aims at machine-processable information”. Adding more explanation

in the definition of [BLHL+01], the authors say: “The Semantic Web bring structure to the

meaningful content of Web pages, creating an environment, where software agents roaming

from page to page can readily carry out sophisticated tasks for users.”

The goal of the Semantic Web, described by World Wide Web Consortium (W3C)1,

is to enable computers to do more useful work and to develop systems that can support

trusted interactions over the network.

2.1.3 Semantic Web Architecture

Since the publication of the Semantic Web definition [BLHL+01], Berners-Lee proposed

four versions of the Semantic Web stack, which illustrates the architecture of the Semantic

Web. These versions were explained in several presentations (see Fig. 2.1): Version 1 [BLb]

introduced in 2000, Version 2 [BLc, BLd, BLf] presented as part of two presentation in

2003, Version 3 [BLe] presented in WWW2005, and Version 4 [BLa] introduced in his

keynote address at AAAI2006. All the versions were never published in the literature or

included as part of a W3C. The architectures depict the languages necessary for data

interoperability between semantic applications [GVdMB08].

According to all the stacks, we notice that almost the same set of tools and languages

compose the different architectures of the Semantic Web architecture. These tools and lan-

guages are standards recognized by the W3C. Therefore, we provide detailed information

about these standards in the following section.

2.2 Standards approved by the Semantic Web

The standards linked to Semantic Web are related to the different levels of their archi-

tecture as we explain in the last section. We only developed the standards definitions

related to our research: XML, IRI, RDF, RDF Schema (RDF(S)), and Web Ontology

Language (OWL).

1https://www.w3.org/standards/semanticweb/
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Figure 2.1: Versions of the Semantic Web architecture [GVdMB08]

2.2.1 Internationalized Resource Identifier - IRI

The IRIs constitute the bottom layer that support the Semantic Web architecture (see Fig.

2.1). In this section, we introduce the concepts related to the IRI as resource (Def. 1),

URI (Def. 2), Uniform Resource Locator (URL) (Def. 3), and Uniform Resource Name

(URN) (Def. 4).

Definition 1. Resource ( res): The term resource is used in a general sense for what-

ever might be identified by an IRI [MBLF05, Lew07]. �

Following the definition of resource, we can identify anything with an IRI, but it

is important to notice that this resource may not be necessarily accessed directly for

the users. Indeed, there is a possibility to do not have a human-readable representation

associated with the resource identified by an IRI. Due to this possibility, we may have two

types of resources [Lew07]:

• Information resources: They are resources that have a human-readable representa-

tions that human user can be accessed using HTTP. These resources also are named

as information IRI or Web IRI (URL) make up the vast majority of the WWW

today.
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• Other Web resources: They represent the resources themselves as a non-electronic

information like physical entities and abstract concepts. These resources also are

named as non-information IRI or Semantic Web IRI.

For instance, a Web page describing the concept Hospital is an information re-

source, but the Hospital itself (i.e., health care institution) is a non-information resource.

Each resource would be identified by: the Web IRI (e.g., http://live.dbpedia.org/

page/Hospital) and the Semantic Web IRI (e.g., http://live.dbpedia.org/resource/

Hospital).

Definition 2. Uniform Resource Identifier ( URI): A URI is a compact sequence of

characters that identifies an abstract or physical resource [MBLF05, Lew07] �

We can find two types of URIs, where the URI can be a locator - URL or a name -

URN [MBLF05, Lew07].

Definition 3. Uniform Resource Locator ( URL): A URL refers to the subset of

URIs that, in addition to identifying a resource, provide a means of locating the resource

by describing its primary access mechanism [MBLF05, Lew07]. �

Definition 4. Uniform Resource Name ( URN): A URN are intended to serve as

persistent, location-independent, resource identifiers [Moa97, MBLF05, Lew07]. �

Definition 5. Internationalized Resource Identifier ( IRI): An IRI is a complement

to the Uniform Resource Identifier (URI).An IRI is a sequence of characters from the

Universal Character Set (Unicode/ISO 10646) [DS04b]. �

IRIs can be used instead of URIs where appropriate to identify resources. There is

a diagram to combine all these definitions showing the dependencies between them (see

Fig. 2.2).

2.2.2 Extensible Markup Language - XML

XML was created in 1996, under the auspices of the World Wide Web Consortium (W3C)

XML is for the Semantic Web what HTML is for the Web. The Semantic Web uses XML

as a standard language [DMVH+00] to encode and give a tree structure to the information

through some specific tags. All the information in the Semantic Web is encoded in XML.

Ten design goals for XML were proposed by the W3C recommendation as follows

[BPSM+97]:
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Figure 2.2: Diagram shows that an IRI is a URI, and URI is either a Uniform Resource

Locator (URL), a Uniform Resource Name (URN), or both.

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum,

ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance

Due to these goals, there are two main reasons for choosing XML representation for

a user [UOVH09]:

• XML encode a wide range of data to be a simple way to send documents across the

Web, which is a necessary condition in the Semantic Web, since data can be of any

possible type.

• XML is widely used. The different systems have several parsers and writers to make

easy the transmission of information between them.
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The XML documents can express the same information in different ways and with

completely different structures as well. Therefore, it is important to consider some con-

ditions and specifications to have a well-formed document that allows the correct com-

munication between different computer systems. This is where XML Schema comes into

play.

XML Schema specifies a general structure and element types of an XML instance

by specifying all the nodes required with their data and how they can be nested [FW04].

The data specification is through the definitions and the declaration either built-in data

types [BMC+12] (see Fig. 2.3) or user defined data types [BMC+04].

There are several languages developed specifically to express XML schemas as XML

Schema Definition Language (XSD) [TBM+12], Document Type Definition (DTD) [BPSM+08],

and Relax NG [VdV03].

2.2.3 Resource Description Framework - RDF

For the Semantic Web, RDF is the common format to describe resources, which are ab-

stractions of entities (documents, abstract concepts, persons, companies, etc.) of the real

world. It was developed by Ora Lassila and Ralph Swick in 1998 [LSWC98]. RDF uses

triples in the form of 〈subject, predicate, object〉 expressions also named statements, to

provide relationships among resources. The RDF triples can be composed by the following

elements:

− An IRI, which is an extension of the Uniform Resource Identifier (URI) scheme to

a much wider repertoire of characters from the Universal Character Set (Unicode/ISO

10646), including Chinese, Japanese, and Korean character sets [DS04a] (see Section 2.2.1).

− A Blank Node, representing a local identifier used in some concrete RDF syn-

taxes or RDF store implementations. A blank node can be associated with an identifier

(rdf:nodeID) to be referenced in the local document, which is generated manually or au-

tomatically.

− A Literal Node, representing values as strings, numbers, and dates. According to

the definition in [CWL14], it consists of two or three parts:

• A lexical form, being a Unicode string, which should be in Normal Form C2 to

assure that equivalent strings have a unique binary representation.

2It is one of the four normalization forms, which consists on a Canonical Decomposition, followed by a

Canonical Composition -http://www.unicode.org/reports/tr15/
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Figure 2.3: Derivation relations in the built-in type hierarchy [BMC+12].
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• A datatype IRI, being an IRI identifying a datatype that determines how the lexical

form maps to an object value.

• A non-empty language tag as defined by “Tags for Identifying Languages”[AP],

if and only if the datatype IRI is http://www.w3.org/1999/02/22-rdf-syntax-ns#lang-

String.

The Semantic Web proposes an implicit representation of the datatype in the literal

node as a description of the value (e.g., "value"^^xml:string). There are two classes

of datatypes: Simple and Complex. Simple datatypes can be primitive (e.g., boolean,

float), derived (e.g., long, int derived from decimal), or user-defined, which are built

from primitive and derived datatypes by constraining some of its properties (e.g., range,

precision, length, format). Complex datatypes are defined as a set of elements, which can

be either simple or complex datatypes.

Def. 6 presents the formal definition of a simple datatype according to W3C [JJC06].

Definition 6. Simple Datatype (dt): In RDF, a simple datatype, denoted as dt, is

characterized by: (i) a value space, denoted as VS(dt), which is a non-empty set of

distinct valid values; (ii) a lexical space, denoted as LS(dt), which is a non-empty set

of Unicode strings; and (iii) a total mapping from the lexical space to the value space,

denoted as L2V(dt). �

For example, the datatype boolean has the following characteristics:

− V S(boolean) = {true,false}; − LS(boolean) = {”true”, ”false”, ”1”, ”0”};
− L2V (boolean) = {”true”⇒ true, ”false”⇒ false, ”1”⇒ true, ”0”⇒ false}.

Following definitions describe the sets of the RDF’s elements and datatypes:

Definition 7. Set of IRIs (I ): A set of IRIs, denoted as I, is a collection of IRIs that

can be presented in a given RDF document, defined as: I = {i1, i2, ..., in} | ∀ii ∈ I, ii is

an IRI. �

Definition 8. Set of Literal Nodes (L): A set of literal nodes, denoted as L, is a

collection of literal nodes that can be presented in a given RDF document, defined as:

L = {l1, l2, ..., ln} | ∀li ∈ L, li is a literal node. �

Definition 9. Set of Blank Nodes (BN ): A set of blank nodes, denoted as BN, is

a collection of blank nodes that can be presented in a given RDF document, defined as:

BN = {bn1, bn2, ..., bnn} | ∀bni ∈ BN , bni is a Blank Node. �

Definition 10. Set of Datatypes (DT): A set of Datatypes, denoted as DT, is a
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collection of datatypes that can be presented in a given RDF document, defined as: DT =

{dt1, dt2, ..., dtn} | ∀dti ∈ DT , dti is a datatype. �

Definition 11. Set of Simple Datatypes (SDT): A set of Datatypes, denoted as SDT,

is a collection of simple datatypes that can be presented in a given RDF document, defined

as: DT = {dt1, dt2, ..., dtn} | ∀dti ∈ SDT , dti is a simple datatype. �

Table 2.1 summaries the sets of RDF’s elements of Section 2.2.3 and 2.2.4, that we

use in our formal approach description.

Table 2.1: Description of sets
Set Description

I A set of IRIs is defined as: I = {i1, i2, ..., in} | ∀ii ∈ I, ii is an IRI.

L A set of literal nodes is defined as: L= {l1, l2, ..., ln} | ∀li ∈ L, li is a literal

node.

BN A set of blank nodes is defined as: BN = {bn1, bn2, ..., bnn} | ∀bni ∈ BN , bni
is a Blank Node.

DT A set of datatypes is defined as: DT= {dt1, dt2, ..., dtn} | ∀dti ∈ DT , dti is a

datatype.

SDT
The set of simple datatypes proposed by the W3C, is defined as:

SDT = {string, boolean, decimal, datetime, base64Binary, NOTATION, etc.}

After the definition of sets of RDF’elements, we formally describe a triple in Def 12.

Definition 12. Triple (t): A Triple, denoted as t, is defined as an atomic structure

consisting of a 3-tuple with a Subject (s), a Predicate (p), and Object (o), denoted as

t :< s, p, o >, where:

− s ∈ I ∪BN represents the subject to be described;

− p ∈ I is a predicate defined as an IRI in the form namespace_prefix:predicate_name,

where namespace prefix is a local identifier of the IRI, in which the predicate (pre−
dicate name) is defined. The predicate (p) is also known as the property of the triple;

− o ∈ I ∪BN ∪ L describes the object.

�

The example presented in Fig. 2.4 underlines five triples with different RDF re-

sources, properties, and literals:

− t1: <genid:treatment1,treat:hasPatient,genid:patient1>

− t2: <genid:treatment1,rdf:type,treat:Treatment>

− t3: <genid:patient1,rdf:type,ho:Patient>

18
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− t4: <genid:patient1,ho:name,"Bethany Dawson">

− t5: <genid:patient1,ho:birthday,1985-05-19>

Figure 2.4: Example RDF Document.

A set of triples defines an RDF document, which is formally defined in Def. 13.

Definition 13. RDF Document ( d): An RDF document is defined as an encoding

of a set of triples, using a predefined serialization format complying with an RDF W3C

standards, such as RDF/XML, Turtle, N3, etc. �

According to the structure of triples, RDF documents are also known as RDF

Graphs, since the structure allows a node-edge-node relation. An RDF graph is defined

in Def 14.

Definition 14. RDF Graph ( G):An RDF graph of an RDF document is denoted as

Gd(N,E), where each triple ti from d is represented as a node-edge-node link. Therefore,

G nodes (N), denoted as ni, represent subjects and objects, and G edges (E), denoted as

ej, represent corresponding predicates: ni ∈
⋃
ti.s∪ti.o and ej ∈

⋃
ti.p

[THTC+15]. �

2.2.3.1 Serialization formats

RDF data can be represented in different ways (serializations), i.e., stored in a file system

through several formats. The W3C defines four formats: RDF/XML, Turtle, N-Triple,

and N3, but there are also other serialization formats as RDFa, microdata, json-ld adopted

by the W3C as recommendations.

1. RDF/XML [PJH14]: it is the first serialization format adopted by the W3C. This

format serializes the RDF and XML files, where nodes and edges of the RDF doc-

ument are represented using XML syntax. Their current media type is applica-

tion/rdf+xml. The RDF document in Fig. 2.4 can be represented in XML as follows:

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
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xmlns:ho="http://hospital.com/0.2/"

xmlns:treat="http://treatments.com/0.3/"

xmlns:vcard="http://www.w3.org/2006/vcard/ns#">

<ho:Patient rdf:nodeID="patient1">

<ho:name> Bethany Dawson </ho:name>

<ho:birthday> 1985-05-19 </ho:birthday>

</ho:Patient>

<treat:Treatment rdf:nodeID="treatment1">

<treat:hasPatient rdf:nodeID="patient1"/>

</treat:Treatment >

</rdf:RDF>

2. Turtle (Terse RDF Triple Language) [PJH14]: it is a textual serialization format

to encode RDF documents in a compact form and also readable for humans. Their

current media type is application/x-turtle. The RDF document in Fig. 2.4 can be

represented in turtle format as:

@prefix ns0: <http://hospital.com/0.2/> .

@prefix ns1: <http://treatments.com/0.3/> .

_:genid1

a <http://hospital.com/0.2/Patient> ;

ns0:name " Bethany Dawson " ;

ns0:birthday " 1985-05-19 " .

[]

a <http://treatments.com/0.3/Treatment> ;

ns1:hasPatient _:genid1 .

3. N-Triple (Notation of Triples) [PJH14]: it is simple serialization of RDF but not

as compact as Turtle format. Their current media type is text/plain. The RDF

document in Fig. 2.4 can be represented in N-triple format as:

_:genid1 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://hospital.com/0.2/Patient> .

_:genid1 <http://hospital.com/0.2/name> " Bethany Dawson " .

_:genid1 <http://hospital.com/0.2/birthday> " 1985-05-19 " .

_:genid2 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
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<http://treatments.com/0.3/Treatment> .

_:genid2 <http://treatments.com/0.3/hasPatient> _:genid1 .

4. N3 (Notation 3) [PJH14]: it is an extension format of turtle language expressing

a superset of RDF and has been designed with human readability in mind. Their

current media type is text/rdf+n3. The RDF document in Fig. 2.4 can be represented

in N3 format as:

@prefix ho: <http://hospital.com/0.2/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix treat: <http://treatments.com/0.3/> .

@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

[] a treat:Treatment ;

treat:hasPatient [ a ho:Patient ;

ho:birthday " 1985-05-19 " ;

ho:name " Bethany Dawson " ] .

5. RDFa (Resource Description Framework in Attributes): it is a serialization format

that adds structured data to HTML or XHTML documents by extending the at-

tributes of elements. The RDF document in Fig. 2.4 can be represented in RDFa

format as:

<div xmlns="http://www.w3.org/1999/xhtml"

prefix="

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

treat: http://treatments.com/0.3/

ho: http://hospital.com/0.2/

rdfs: http://www.w3.org/2000/01/rdf-schema#"

>

<div typeof="treat:Treatment">

<div rel="treat:hasPatient">

<div typeof="ho:Patient">

<div property="ho:name" content=" Bethany Dawson "></div>

<div property="ho:birthday" content=" 1985-05-19 "></div>
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</div>

</div>

</div>

</div>

6. Microdata: it is a serialization format that describe a simpler way of annotating

HTML elements with machine-readable tags. The RDF document in Fig. 2.4 can be

represented in Microdata format as:

<div>

<div itemtype="http://treatments.com/0.3/Treatment" itemscope>

<div itemprop="hasPatient" itemtype="http://hospital.com/0.2/

Patient" itemscope>

<meta itemprop="birthday" content=" 1985-05-19 " />

<meta itemprop="name" content=" Bethany Dawson " />

</div>

</div>

</div>

7. JSON-LD [MS14]: it is a concrete syntax format that extends the RDF data model

to optionally allow JSON-LD to serialize Generalized RDF Datasets. The RDF

document in Fig. 2.4 can be represented in JSON-LD format as:

{

"@context": {

"ho": "http://hospital.com/0.2/",

"rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

"rdfs": "http://www.w3.org/2000/01/rdf-schema#",

"treat": "http://treatments.com/0.3/",

"vcard": "http://www.w3.org/2006/vcard/ns#",

"xsd": "http://www.w3.org/2001/XMLSchema#"

},

"@graph": [

{

"@id": "_:N3daa2c1446df47deac3f9e77aa61c4c2",

"@type": "ho:Patient",

"ho:birthday": " 1985-05-19 ",

"ho:name": " Bethany Dawson "
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},

{

"@id": "_:N175b6312594e45dcbce29f6884b63a81",

"@type": "treat:Treatment",

"treat:hasPatient": {

"@id": "_:N3daa2c1446df47deac3f9e77aa61c4c2"

}

}

]

}

All these formats are interchangeable, since any format can be converted to another

one, without losing information. Therefore, a modification and/or protection applied to a

specific input (e,g., RDF/XML), can produce a solution in another serialization format for

a particular application. The solution can be later converted to another format (keeping

the obtained properties) if this is required.

To manage RDF data, there are many tools and frameworks available in the liter-

ature, as well as, on the web (online services). One of the most common frameworks is

Apache Jena, which is a free and open source Java framework for building Semantic Web

and Linked Data applications3. It allows to create and read RDF graphs, and serialize

triples using popular formats such as RDF/XML, Turtle, etc.

Thus, the use of a particular serialization format is independent of the process ap-

plied to the RDF data.

2.2.4 RDF Schema

The RDF Schema RDF(S) is a set of classes with certain properties (vocabulary), which are

extensions of the basic RDF vocabulary [DB]. RDF(S) defines properties to better describe

and determine characteristics of resources. Using RDF(S), we are able to define specific

relations between the resources which have a unique meaning [UOVH09] or define the

domain and range of their properties. For example, the rdfs:domain property designates

the type of subject that can be associated to a predicate, while the rdfs:range property

designates the type of object.

In this way, these RDFS properties allow to extend the description of existing re-

3https://jena.apache.org

23



2.2. Standards approved by the Semantic Web

sources and the meaning of RDF classes and properties. The meaning should be manip-

ulated according to a certain logic to infer/derive new information, but this meaning is

not context dependent. For example, if we exchange RDFS statements that are using the

property rdfs:subClassOf, among different applications, these statements will still keep

their meaning because this relation is domain independent [UOVH09]. This last sentence

allows us to assume that the result of applying any anonymization process to RDFS prop-

erties, can be reused for different applications or as a input of new processes, since they

are independent of the domain.

RDF(S) uses the IRI http://www.w3.org/2000/01/rdf-schema# with the prefix

rdfs. The prefix is concatenated with a suffix (prefix:suffix) for convenience and readability

obtaining an abbreviated form. This abbreviated form represents a complete IRI where

the suffix should be the property.

2.2.5 Ontology - OWL

The next level after the RDF-Schema in the Semantic Web architecture, is the standard

OWL. OWL was created to be used for more complex knowledge about things, groups of

things, and relations among things [DSB+04]. This ontology language defines data models

in terms of classes, subclasses, and properties to formally express a particular domain.

An ontology allows a better communication between machines, humans, and humans

with machines, enabling the reuse of domain knowledge or extending the domain of inter-

ests. The main difference between RDF(S) and OWL stands on the higher expressiveness

that we can reach with OWL and the complexity to implement it. A definition of ontology

is presented in Def 15.

Definition 15. Ontology ( onto): An ontology defines a set of representational prim-

itives with which to model a domain of knowledge or discourse. The representational

primitives are typically classes (or sets), attributes (or properties), and relationships (or

relations among class members). The definitions of the representational primitives include

information about their meaning and constraints on their logically consistent application.

[LÖ09] �

In order to introduce some definitions and concepts related to our approach, we

defined a Class of resource in an ontology (Def. 16).

Definition 16. Class ( Class): Given an entity e and an onto o, Class is a function

that returns the class of e defined in o.
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Class(e,o) = class of e ∈ o. �

The following section 2.3 describes the Semantic Web paradigms.

2.3 Semantic Web paradigm

Linked Data is one of the big paradigms and pillars of the Web of Data (Semantic Web).

The Web of Data works with links between datasets understandable not only to humans

but also to machines. Linked Data also provides the best practices for making those links.

We have to precise that the Open Data is not equal to Linked Data. Open Data

can be made available the data to everyone without links, the data also can be freely use

and distributed. So, Linking Open Data (LOD) project merge the Linked Data with the

Open Data based on metadata collected and curated by contributors to the Data Hub.

The authors in [ALNZ13] give a schema to represent the differences of the representation

and the degree of openness between Linked Data, Open Data and Linked Open Data. We

present this comparison in Table 2.2.

Representation \
degree of openness

Possibly closed Open (cf. opendefinition.org)

Structured data model

(i.e. XML, CSV, SQL etc.)
Data Open Data

RDF data model

(published as Linked Data)
Linked Data (LD) Linked Open Data (LOD)

Table 2.2: Comparison of the concepts Linked Data, Linked Open Data and Open Data

[ALNZ13]

2.3.1 Benefits

There are significant benefits using the Linked Data, as the authors in [ALNZ13] shown:

• Uniformity: all the information in the Linked Data is represented as triples using

RDF statement data model. Almost all the elements represented by this structure

are unique IRI/URI.

• De-referencability: IRIs are used for two purposes, for identifying entities and for
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locating and retrieving resources. When the IRI is used to identify an entity, there

is another IRI to describe and represent the entity on the Web.

• Coherence: all the IRIS use in an RDF triple as a subject or object position are linked

through the predicate. This triple has a coherence in the RDF context developed

• Integrability: RDF data model represents all the information in the Linked Data

sources facilitating the syntactic and semantic integration through the schema and

instance matching techniques.

• Timeliness: using linked data sources facilitate a timely availability, due to publishing

and updating of data in simple way.

2.3.2 Best Practices for Publishing and Linking Structured Data

Linked Data is related to a set of best practices for publishing structured data on the

Web. These practices are based on the principles established by Tim Berners-Lee 4 in

[BLa]. These principles help the data became one big data space with linked information.

The principles are: (i) use URIs as names for things, (ii) use HTTP URIs, so that people

can look up those names, (iii) when someone looks up a URI, provide useful information,

and (iv) include links to other URIs, so they can discover more things 5.

The practices are recommendations to make data interconnected, giving the possi-

bility to re-use the information, which is the added value by the Web. The interpretation

of these practices becomes rules. The first rule is related to identify things with URIs,

the second rule is related to use HTTP URIs for following the standard, the third rule is

related to give information on the Web against a URI, and the fourth is related to make

links elsewhere for connecting the data [BLa].

2.3.3 Community projects

LOD community was founded in 2007 [BHIBL08], which the goal is to convert the datasets

to RDF according to the principles and publishing them on the Web [BHBL09]. Inside of

this community, we found several projects and open datasets as:

• BBC Music: it is a dataset about Artists, Releases and Reviews. Largely based upon

4The inventor of the WWW, Semantic Web (SW), and the Linked Data
5https://www.w3.org/wiki/LinkedData
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MusicBrainz and the Music Ontology 6.

• DBpedia: it is a community to transform Wikipedia in a Linked Data version 7.

• Enipedia: it is an active exploration into the applications of wikis and the semantic

web for energy and industry issues. 8.

• Freebase: it is an open-license database for all things in the world, has released a

Linked Data interface 9.

• Geonames: it is a community based on add geospatial semantic information to the

Word Wide Web 10.

• FOAF: it is a vocabulary for describing people and their social network on the Word

Wide Web 11.

• DBLP Bibliography Server Berlin: it is a dataset with 800.000 articles and 400.000

authors, approx. 15 million triples about scientific papers 12.

The growing of LOD is exponential as we can compare LOD of 2007 in Fig. 2.5

and the one of 2017 in 2.6. LOD started with 12 smaller datasets until having more than

1163 datasets in these days. This project has a huge importance and impact for the Web

community and their applications.

2.4 Summary

In this chapter, we have introduced all the background necessary for understanding the

definitions, concepts, and Web technologies linked to the Semantic Web and RDF.

We began this chapter with a brief introduction about Semantic Web on the Web

(Section 2.1) describing web technologies in Section 2.1.1, some definitions of Semantic

Web in Section 2.1.2 and the Semantic Web architecture in Section 2.2. We then described

the standards linked to Semantic Web: IRIs (Section 2.2.1), XML (Section 2.2.2), RDF

(Section 2.2.3), RDF-schema (Section 2.2.4), and OWL (Section 2.2.5). These standards

6https://www.bbc.co.uk/music
7http://dbpedia.org/about
8http://enipedia.tudelft.nl/wiki/Main_Page
9https://developers.google.com/freebase/

10http://www.geonames.org/ontology/documentation.html
11http://www.foaf-project.org/
12http://wifo5-03.informatik.uni-mannheim.de/dblp/

27

https://www.bbc.co.uk/music
http://dbpedia.org/about
http://enipedia.tudelft.nl/wiki/Main_Page
https://developers.google.com/freebase/
http://www.geonames.org/ontology/documentation.html
http://www.foaf-project.org/
http://wifo5-03.informatik.uni-mannheim.de/dblp/


2.4. Summary

Figure 2.5: Linked Datasets as 2007 (Source: http://lod-cloud.net/,2007).

Figure 2.6: Linked Datasets as 2017 (Source: http://lod-cloud.net/,2017).
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allow a representation of real resources on the Web, which can be linked among themselves

through the use of IRIs.

Finally, in Section 2.3, we discussed the Semantic Web paradigm related to Linked

data movement as consequence for the increase of RDF triples and their use on the Web.

Thus, we concluded that currently a huge quantity of RDF data is available, because

of the need to link different resources and the role of international communities as part

of the Linked Open Data initiatives (e.g., W3C, e-governments, companies). Moreover,

the combination of several heterogeneous datasets can disclose sensitive information, since

resources are linked and thus, it is more sensitive to find disclosure sources in other datasets

that breaches the protection.

Against this background, in the next chapter, we introduce the Datatype analysis

and similarity for the Semantic Web in order to discover better similar resources.
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Chapter 3

The Semantic Web: Datatype

Analysis and Similarity

“The advance of technology is based on making it

fit in so that you don’t really even notice it, so it’s

part of everyday life.”

— Bill Gates

As we mentioned in Chapter 2, one of the benefits offered by the Semantic Web

initiative is the increased support for data sharing and the description of real resources

on the web, by defining standard data representation models such as RDF, the Resource

Description Framework. Particularly, heterogeneous RDF documents can express simi-

lar concepts using different vocabularies. Hence, many efforts focus on describing the

similarity between concepts, properties, and relations to support RDF document match-

ing/integration [MAL+15, ANS09b, Aea08].

Indeed, RDF describes resources as triples: 〈subject, predicate, object〉, where

subjects, predicates, and objects are all resources identified by their IRIs. Objects can also

be literals (e.g., a number, a string), which can be annotated with optional type informa-

tion, called a datatype; RDF adopts the datatypes from XML Schema. A datatype is a

classification of data, which defines types for RDF, adopted from XML Schema [PVB04].

There are two classes of datatypes: Simple and Complex. Simple datatypes can be prim-

itive (e.g., boolean, float), derived (e.g., long, int derived from decimal), or user-

defined, which are built from primitive and derived datatypes by constraining some of its

properties (e.g., range, precision, length, format). Complex datatypes contain elements

defined as either simple or complex datatypes. Simple datatypes are formally defined in
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Def. 6.

The W3C Recommendation (proposed in [PJH14]) points out the importance of

the existence of datatype annotations to detect entailments between objects that have the

same datatype but a different value representation. For example, if we consider two distinct

triples containing the objects "20.000" and "20.0", then these objects are considered as

different, because of the missing datatype. However, if they were annotated as follows:

"20.000"^^xml:decimal and "20.0"^^xml:decimal, then we can conclude that both

objects are identical. Moreover, works on XML Schema matching proved that the presence

of datatype information, constraints, and annotations on an object improves the similarity

between two documents (up to 14%) [ANS09a].

Another W3C Recommendation [JJC06] proposes a simple method to determine

the similarity of two distinct datatypes: the similarity between two primitive datatypes is

0 (disjoint), while the similarity between two datatypes derived from the same primitive

datatype is 1 (compatible). Obviously, this method is straightforward and does not capture

the degree of similarity of datatypes; for instance, float is more similar to int than to

date. This observation lead to the development of compatibility tables, that encodes the

similarity (∈ [0, 1]) of two datatypes. They were used in several studies [BMR01, NT07]

for XML Schema matching. These compatibility tables were either populated manually by

a designated person, as in [BMR01, NT07] or generated automatically using a similarity

measure that relies on a hierarchical classification of datatypes, as in [HMS07, TLL13].

Hence, in the context of RDF document matching/integration, these works present

the following limitations:

1. The Disjoint/Compatible similarity method as proposed by the W3C is too restric-

tive, especially when similar objects can have different, yet related, datatypes (e.g.,

float and int vs float and double).

2. The use of a true similarity measure, expressed in a compatibility table, is very

reasonable; however, we cannot rely on an arbitrary judgment of similarity as done

in [BMR01, NT07]; moreover, for 44 datatypes (primitive and derived ones, according

to W3C hierarchy), there are 946 similarity values (n×(n−1)/2, n=44), which makes

the compatibility table incomplete as in [BMR01]; a similarity measure that relies on

a hierarchical relation of datatypes is needed.

3. The W3C datatype hierarchy, used in other works, does not properly capture any

semantically meaningful relationship between datatypes (see, for instance, how data-

types related to dateTime and time are flattened in Fig. 3.2).
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(a) Light Bulb concept and its properties

(b) Lamp concept and its properties

(c) Light Switch concept and its properties

Figure 3.1: Three concepts from three different RDF documents

From these limitations, there is a need to provide a better solution for any RDF

document matching approach, where simple datatype similarity is considered. To achieve

this, we propose:

1. An extended version of the W3C datatype hierarchy, where a parent-child relation-

ship expresses subsumption (parent subsumes child), which makes it a taxonomy of

datatypes.

2. A new similarity measure: extending the one presented in [HMS07], to take into

account several aspects related to the new hierarchical relations between compared

datatypes (e.g., children, depth of datatypes).

This chapter is organized as follows. In Section 3.1, we present a motivating scenario

to illustrate the limitations of the state-of-the-art. In Section 3.2, we survey the literature

on datatype similarity and compare them using our motivating scenario. In Section 3.4,

we describe the new datatype hierarchy and the new similarity measure. In Section 3.5,

we present the experiments we performed to evaluate the accuracy of our approach. And

finally, we finish the chapter with Section 3.6, in which some reflections and discussions

are presented.
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3.1 Motivating Scenario

In order to illustrate the limitations of existing approaches for datatype similarity, we

consider a scenario in which we need to integrate three RDF documents with similar con-

cepts (resources) but based on different vocabularies. Fig. 3.1 shows three concepts from

three different RDF documents to be integrated. Fig. 3.1a describes the concept of a

Light Bulb with properties (predicates) Light, Efficiency, and Manufacturing_Date,

Fig. 3.1b describes the concept of Lamp with properties Light and MFGDT (manufactur-

ing date), and Fig. 3.1c shows the concept of Light Switch with properties Light and

Model_Year.

To integrate these RDF documents, it is necessary to determine the similarity of

the concepts expressed in them. For this, we use the similarity of their properties. More

precisely, we can determine the similarity of two properties by inspecting the datatypes of

their ranges4 (i.e., of their objects).

Intuitively, considering the datatype information of the properties, we can say that:

1. Light Bulb and Lamp are similar, since their properties are similar: the Light prop-

erty, representing the intensity of light, has the datatype float for Light Bulb and

double for Lamp. We know that both float and double express floating points, and

they differ only by their precisions; a similar analysis can be done for the proper-

ties Manufacturing_Date and MFGDT, both represent the manufacturing date, the

datatypes of both properties are related to dates.

2. Light Switch is different from the other concepts, since it is about a switch and not

a Bulb as the other concepts; indeed, the Light property is expressed in binary,

and can hold one of two values, namely 0 and 1, expressing the state of the light

switch (i.e., on and off, respectively).

Hence, to support automatic matching of RDF documents based on their concepts

similarity, it is necessary to have a datatype hierarchy establishing semantically meaningful

relationship among datatypes and a measure able to extract these relations from the

hierarchy. In the following section, we survey the literature on datatype similarity and

compare them using this motivating scenario.

4A range (rdfs:range) defines the object type that is associated to a property.
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3.2 Related Work

To the best of our knowledge, there is no existing work tackling datatype similarity specif-

ically targeting RDF documents. Hence, we review works on datatype similarity described

for XML and XSD, since RDF uses the same XML datatypes proposed by the W3C (the

datatype hierarchy is shown in Fig. 3.2), and we also consider works in the context of

ontology matching. We evaluate these works in an RDF document matching/integration

scenario in the discussion.

(a) Datatype Hierarchy

(b) Type of Datatype (c) Type of Derivative

Figure 3.2: W3C Datatype Hierarchy

Most of the existing works in the XML and XSD area are focused on schema match-

ing in contexts of, for example, XML message mapping, web data sources integration, and

data warehouse loading. The main approaches taken to establish the datatype similarity
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are mainly based on:

1. User-defined compatibility tables [ANS10, Aea08, ASS09, BMR01, DR02, NT07,

NX04, TN10];

2. Constraining facets5 [TLL13];

3. Extended W3C hierarchy and measures [ABF12, ARTW09, HMS07].

User-defined compatibility tables, as the one presented in Table 3.1 (taken from

[BMR01]), express the judgment and perception of users regarding the similarity between

each pair of datatypes. Hence, these tables present similarity values that are not objective,

complete, or reliable.

When constraining facets are considered as in [TLL13], the similarity value between

two different datatypes is calculated by the number of common facets divided by the union

of them. For example, datatypes date and gYearMonth have the same facets (i.e., pattern,

enumeration, whiteSpace, maxInclusive, maxExclusive, minExclusive, and minInclusive),

thus, their similarity is equal to 1. This method allows to create an objective, complete,

and reliable compatibility table; however, suitability is still missing: besides facets, which

are only syntactic restrictions, other information should be considered for the Semantic

Web (e.g., common datatypes attributes6 – datatype subsumption).

Table 3.1: Datatype compatibility table of work [BMR01]

Type (s) Type (t) Compatibility coefficient (s, t)

string string 1.0

string date 0.2

decimal float 0.8

float float 1.0

float integer 0.9

integer short 0.8

Other works have proposed a new datatype hierarchy by extending the one proposed

by the W3C. This hierarchy describes two classes of datatypes: Simple and Complex. Sim-

ple datatypes can be primitive (e.g., duration, dateTime), derived (e.g., integer, long

derived from decimal), or user-defined, which are built from primitive and derived data-

types by constraining some of its properties (e.g., range, precision, length, format). Com-

5Constraining facets are sets of aspects that can be used to constrain the values of simple types (e.g.,

length, pattern, fractionDigits) (https://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#rf-facets).
6An attribute is the minimum classification of data, which does not subsume another one. For example,

datatype date has the attributes year, month, and day.
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plex datatypes contain elements defined as either simple or complex datatypes (see Sec-

tion 2.2.3). In [HMS07], the author proposes five new datatype groups: Text, Calendar,

Logic, Numeric, and Other (see Figure 3.3). They also propose a new datatype similarity

function that relies on that hierarchy and takes into account the proximity of nodes to

the root and the level of the Least Common Subsumer7 (LCS) of the two compared data-

types. The works presented in [ABF12, ARTW09], combine semantic similarity, structural

similarity, and datatype compatibility of XML schemas in a function, by using the hierar-

chy and similarity function proposed by [HMS07]. Even though these works improve the

similarity values, we will see their limitations in the context of our motivational scenario,

concerning to misdefined datatype relations in the datatype hierarchy.

Figure 1. The Hierarchy of Datatypes of XML Schema
by comparing the topology of the sub-trees rooted by two
complex elements associated with such types. The topo-
logical similarity degree is determined by using a tree-edit
distance algorithm.

Unlike Cupid and XClust, LSD [6] uses a multi-strategy
learning approach for element-based-one-to-one matching
at the leaf level of tree-like schemas. Only the simple
datatype is therefore matched.

COMA [4] is a composite generic matching system
consisting of non-machine-learning multi-matchers. For
matching built-in simple types, COMA uses a datatype
matcher with a datatype compatibility table. For match-
ing user-defined simple datatypes, COMA combines the
datatype matcher and a label matcher into a so-called Type-
Name matcher, which matches elements based on a combi-
nation of their labels and datatype similarity. COMA deals
with complex datatypes in a similar approach of Cupid,
which employs structural strategies on tree-like data models
of XML schemas.

In summary, some schema matching approaches are
designed for generic schema matching purposes they are
therefore cannot support all datatypes specially proposed
for XML Schemas. However, current matching approaches
for XML schemas also face to this issue. For matching
built-in primitive datatypes, they use a fixed 2-dimension-
datatype-compatibility matrix, in which the degrees of the
compatibility are given on the basis of human experiences
and knowledge of the matching domain. Therefore they
limit simple datatypes to only some key built-in primitive
datatypes, and they are not tolerant to the expanding num-
ber of built-in datatypes. For matching complex types, they
represent a complex type as a tree-based model on the basis

of aggregation and mostly employ structural strategies with
a bias towards leaves and node labels. In such both two pro-
cesses the inheritance is not taken into account although it
is an important relationship of XML Schema and also an
advantage of XML Schema. Furthermore, it is difficult to
support the cross-inheritance between simple datatypes and
complex datatypes by treating simple types and complex
types in such two different processes and not taking into ac-
count relations between datatypes as the currently existing
work did.

4 Approach Overview

Our approach builds a global hierarchical structure of
datatypes (a tree or a rooted and directed acyclic graph
for general cases, which is discussed later in this section)
and our computations are based on the global hierarchy of
datatypes. We keep both built-in datatypes and user-defined
datatypes (including simple and complex datatypes) of both
two schemas in the same global hierarchical structure. We
develop an algorithm to add a new type into a right posi-
tion in it. Finally, to measure the compatibility of such
datatypes, we introduce a function, which uses the struc-
tural information of the hierarchy.

Consequently, our approach is adaptable to various
datatypes and more suitable for representing rich relations
between datatypes. Our approach is also a foundation for
employing strategies of reusing shared components. Our
approach therefore handles the issues discussed in Section
2.

Each node of the graph presents either a simple datatype
or a complex datatype. For the ease of reading we use “sim-

24th British National Conference on Databases (BNCOD'07)
0-7695-2912-7/07 $20.00  © 2007

Figure 3.3: Extended Hierarchy from the work [HMS07]

In the context of ontology matching, most of the works classify datatypes as either

Disjoint or Compatible (similarity ∈ {0, 1}). Some of them are based on the W3C hierar-

chy, such as [ES07, JMSK09], while others take into account properties of the datatypes

(domain, range, etc.) [CAS09, HA09, HQC08, JLD15, LT06, LTLL09, MAL+15, NB16,

SSK05]. When domain and range properties are considered, if two datatypes have the same

properties, the similarity value is 1, otherwise it is 0. In the context of RDF matching, in

which similar objects can have different but related datatypes, this binary similarity is too

restrictive. The authors in [EYO08] generate a vector space for each ontology by extract-

ing all distinct concepts, properties, and the ranges of datatype properties. To calculate

the similarity between the two vectors, they use the cosine similarity measure. However,

as the measure proposed in [HMS07], the problem remains in the datatype hierarchy that

7It is the most specific common ancestor of two concepts/nodes, found in a given taxonomy/hierarchy.
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does not represent more semantically meaningful relationships between datatypes.

Table 3.2: Related Work Classification

Group Work Datatype Similarity

Datatype Similarity Approach

Requirements

Simple

datatype

Common

Attributes

SW Context

XML

XSD

RDF

OWL

1 W3C [JJC06] Disjoint/Compatible

[CAS09, EYO08, ES07]

[HA09, HQC08, JMSK09]

[JLD15, LT06, LTLL09]

[MAL+15, NB16, SSK05]

(binary values) X X X X

2

[ANS09a, ANS10, Aea08]

[ASS09, BMR01]

[DR02, NT07, NX04, TN10]

User-defined

Compatibility Table
X X X X

3 [TLL13] Constraining Facets X X X X

4 [ABF12, ARTW09, HMS07]
Formula on extended

W3C Hierarchy
X X X X

According to this review of existing works, we classify them into four groups: Group

1, those works are based on Disjoint/Compatible similarity; Group 2, where works apply

user-defined compatible tables; Group 3, datatype similarity values are obtained by the

used of constraining facets; and Group 4, where the works use a formula applied to an

extension of the W3C hierarchy (see Table 3.2). We evaluate them in our motivating

scenario in the upcoming section.

3.3 Resolving Motivating Scenario and Discussion

Now, we evaluate our scenario using the defined groups in Table 3.2. In our motivating

scenario, we have the datatypes float and date from the concept Light Bulb (Fig. 3.1a),

datatypes double and gYearMonth from the concept Lamp (Fig. 3.1b), and boolean and

gYear from concept Light Switch (Fig. 3.1c).

According to the Disjoint/Compatible similarity, either defined by the W3C or not

(Group 1 in Table 3.2), the similarity between the three pairs of datatypes related to Light

property (float–double, float–boolean, and double–boolean) is 0, because the three

datatypes are primitives. We have the same similarity result regarding Manufacturing_Date,

MFGDT, Model_Year properties, since their datatypes are also primitives. It means that

there is no possible integration for these concepts using this Disjoint/Compatible similar-

ity method. However, the concepts Light Bulb and Lamp are strongly related according

to our scenario.
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Based on the user-defined compatibility table shown in Table 3.1 (as works in Group

2 do), the similarity between float–double is a given constant > 0 (as decimal–float

has in the compatibility table), however the similarity values of double–boolean, date–

gYearMonth, date–gYear, and gYearMonth–gYear are not present in the compatibility

table, therefore leading to a similarity value of 0 as in [HMS07] do. In this case, concepts

Light Bulb and Lamp have their respective properties Light considered similar, while

Manufacturing_Date and MFGDT are considered disjoint, even though they are clearly

related.

According to the methods of Group 3 (based on constraining facets), similarity values

for float–double, date–gYearMonth, date–gYear, and gYearMont–gYear are all equal to

1 (because they have the same facets), and for float–boolean and double–boolean, the

similarities are equal to 0.29 (2 common facets divided by the union of them, which is 7).

Thus, the three concepts can be integrated as similar, which is incorrect. Additionally,

datatypes date, gYearMonth, and gYear are related but not equal: besides their facets,

other information (such as datatype attributes - year, month, day) should count to decide

about their similarities.

Finally, according to the works in Group 4, which are based on similarity measures

applied on a datatype hierarchy extended from the W3C hierarchy [HMS07], similarity

between float–double is 0.30, similarity between float–boolean and double -boolean

is 0.09, for date–gYearMonth, date–gYear, and gYearMonth–gYear the similarity value is

0.2968. Even though these works manage in a better way the datatype similarity than all

other Groups, there is still the issue of considering common datatypes attributes (as for

work in Group 3). We can note that date–gYearMonth share year and month as common

attributes, while date–gYear only have year as common attribute; thus, similarity between

date–gYearMonth should be bigger than the other.

Table 3.3 summarizes the integration results of the motivating scenario. Column

Appropriate shows the correct integration according to our intuition. One can note that

existing works cannot properly determine a correct integration. With this analysis, we can

observe the importance of datatypes for data matching/integration and the limitations of

the existing works, from which, the following requirements for a more appropriated data-

type similarity approach, were identified:

1. The similarity measure should consider at least all simple datatypes (primitive and

8We show the results according the measure proposed on [HMS07], all other works in Group 4 propose

similar measures.
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Table 3.3: Integration Results for our Motivating Scenario

Concept Integration G. 1 (Sim) G. 2 (Sim) G. 3 (Sim) G. 4 (Sim)
Appropriate

Integration

Light Bulb and Lamp NI (0.00) NI (0.40) I (1.00) NI (0.30) I

Lamp and Light Switch NI (0.00) NI (0.00) I (0.65) NI (0.19) NI

Light Bulb and

Light Switch
NI (0.00) NI (0.00) I (0.65) NI (0.19) NI

Sim is the average between the similarity of properties within concepts;

Results were obtained by applying a threshold 0.50 for average of properties;

NI = Not Integrable, I = Integrable.

derived datatypes); complex datatypes are out of the scope in this work.

2. The datatype hierarchy and similarity measure should consider common datatype

attributes (subsumption relation) in order to establish a more appropriate similarity.

3. The whole approach should be objective, complete, reliable, and suitable for the

Semantic Web.

Table 3.2 compares the existing works based on these requirements. We can note

that all works consider primitive and derived datatypes and are suitable in XML and

XSD contexts. Only the works in the context of ontology matching (Group 1) consider

RDF data. None of these works consider common datatype attributes. Hence, it is clear

that a new datatype similarity approach is need for the Semantic Web in order to satisfy

the defined requirements. The following section describes our approach, based on a new

hierarchy and a new similarity measure, that overcomes the limitations of existing works

and addresses these requirements.

3.4 Our Proposal

In this section, we describe our datatype similarity approach that mainly relies on an

extended W3C datatype hierarchy and a new similarity measure.

3.4.1 New Datatype Hierarchy

As we mentioned before, the W3C datatype hierarchy does not properly capture any se-

mantically meaningful relationship between datatypes and their common attributes. This
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issue is clearly identified in all datatypes related to date and time (e.g., dateTime, date,

time, gYearMonth), which are treated as isolated datatypes in the hierarchy (see Fig. 3.2).

Our proposed datatype hierarchy extends the W3C hierarchy as it is shown in

Fig. 3.4. White squares represent our new datatypes, black squares represent original

W3C datatypes, and gray squares represent W3C datatypes that have changed their loca-

tion in the hierarchy. We propose four new primitive datatypes: period, numeric, logic,

and binary. Thus, we organize datatypes into eight more coherent groups of primitive

datatypes (string, period, numeric, logic, binary, anyURI, QName, and NOTATION). All

other datatypes are considered as derived datatypes (e.g., duration, dateTime, time) be-

cause their attributes are part of one particular primitive datatype defined into the eight

groups.

We also add two new derived datatypes (yearMonthDuration and dayTimeDura-

tion), which are recommended by W3C to increase the precision of duration, useful for

XPath and XQuery. We classify each derived datatype under one of the eight groups (e.g.,

Period subsumes duration, numeric subsumes decimal) and, in each group, we specify

the proximity of datatypes by a sub-hierarchy (e.g., date is closer to gYearMonth than to

gYear).

The distribution of the hierarchy for derived datatypes is established based on the

subsumption relation and stated in the following assumption:

Assumption 1. If a datatype d1 contains at least all the attributes of a datatype d2 and

more, d1 is more general than d2 (d1 subsumes d2).

As a consequence of Assumption 1, the hierarchy designates datatypes more general

to more specific, from the root to the bottom, which in turn defines datatypes more related

than others according to their depths in the hierarchy. With regards to this scenario, we

have the following assumption:

Assumption 2. Datatypes in the top of the hierarchy are less related than datatypes in

the bottom, because datatypes in the top are more general than the ones in the bottom.

Thus, according to Assumption 2, the datatype similarity value will depend on their

position (depth) in the hierarchy (e.g., gYearMonth–gYear are more similar than period–

dateTime), as we show in the next section.
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3.4.2 Similarity measure

Our proposed similarity measure is inspired by the one presented in [HMS07]. The authors

establish the similarity function based on the following intuition:

“The similarity between two datatype d1 and d2 is related to the distance separating them

and their depths in the datatype hierarchy. The bigger the distance separating them, the

less similar they are. The deeper they are the more similar they are, since at deeper levels,

the difference between nodes is less significant [HMS07].”

The authors state the similarity between two datatypes d1 and d2 as:

c(d1, d2) =

f(l)× g(h) if d1 6= d2

1 otherwise
(3.1)

where:

• l is the shortest path length between d1 and d2;

• h is the depth of the Least Common Subsumer (LCS) datatype which subsumes

datatype d1 and d2.

• f(l) and g(h) are defined based on Shepard’s universal law of generalization [JC97]

in Eq. 3.2 and Eq. 3.3, respectively.

f(l) = e−βl (3.2) g(h) =
eαh − e−αh

eαh + e−αh
(3.3)

where α and β are user-defined parameters.

The work in [HMS07] does not analyze the common attributes (children) of compared

datatypes. For example, the datatype pair date–gYearMonth (with 2 attributes, namely

year and month, in common) involves more attributes than date–gYear (with only 1

attribute, namely year, in common). The authors of [HMS07] consider that the similarity

values of both cases are exactly the same.

In order to consider this analysis, we assume that:

Assumption 3. Two datatypes d1 and d2 are more similar if their children in the datatype

hierarchy are more similar.

Furthermore, the depth of the LCS is not enough to calculate the similarity according

to Assumption 2. Notice that the difference in levels in the hierarchy is also related to
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similarity. For example, according to [HMS07], we have c(time, gYearMonth) = c(date-

Time, gYear), because in both cases the distance between the datatypes is l = 3, and the

LCS is dateTime, whose h = 3 (see Fig. 3.4). However, the difference between levels of

time and gYearMonth is smaller than the one of dateTime and gYear, thus the similarity

of time-gYearMonth should be bigger than the second pair (i.e., c(time, gYearMonth) >

c(dateTime, gYear)). Hence, we assume:

Assumption 4. The similarity of two datatypes d1 and d2 is inversely proportional to the

difference between their levels.

Based on Assumption 3 and Assumption 4, we defined the cross-children similarity

measure in the following.

To consider the cross-children similarity, we first calculate the children similarity

vector Vd1p,d2q of a datatype d1, with respect to datatype d2 in levels p and q, respectively.

In d1 sub-hierarchy, d1 has i children in level p and in d2 sub-hierarchy, d2 has j children

in level q. Thus, Vd1p,d2q is calculated as in Eq. 3.4.

Vd1p,d2q = [c(d1, d
1
1p), . . . , c(d1, d

i
1p), c(d1, d

1
2q), . . . , c(d1, d

j
2q)] (3.4)

where dx1p represents the child x of d1 (with x from 1 to i) in level p and dy2q represents

the child y (with y from 1 to j) of d2 in level q.

Similarly, Vd2q,d1p is the children similarity vector of a datatype d2, with respect to

datatype d1 in the levels q and p respectively, defined as in Eq. 3.5.

Vd2q,d1p = [c(d2, d
1
1p), . . . , c(d2, d

i
1p), c(d2, d

1
2q), . . . , c(d2, d

j
2q)] (3.5)

For each pair of vectors Vd1p,d2q and Vd2q,d1p, we formally define the cross-children

similarity for level p and q, in Def. 17.

Definition 17. The cross-children similarity of two datatypes d1 and d2 for levels p and q,

respectively, is the cosine similarity of their children similarity vectors Vd1p,d2q and Vd2q,d1p,

calculated as:

CCSd1p,d2q =
Vd1p,d2q ·Vd2q,d1p
‖Vd1p,d2q‖‖Vd2q,d1p‖

�

Now, considering all pairs of V (i.e., all levels of both sub-hierarchies), we define the

total cross-children similarity between d1 and d2 in Def. 18.
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Definition 18. The total cross-children similarity of two datatypes d1 and d2 is calculated

as:

S(d1, d2) = 1
L1
×
∑L1

p=1

∑L2
q=1m(d1p, d2q)× CCSd1p,d2q

where m(d1p, d2q) is a Gaussian function based on Assumption 4: L1 and L2 are the

number of levels of sub-hierarchies of d1 and d2, respectively. �

The Gaussian function is defined as follows:

m(d1p, d2q) = e−π×(
(depth(d1p)−depth(d2q))

H−1
)2

where depth(d1p) and depth(d2q) are the depths of the levels p and q respectively. H is

the maximum depth of the hierarchy. Note that the depth of the hierarchy starts from 0.

We denote the cross-children similarity, named S′(d1, d2), as the average between S(d1, d2)

and S(d2, d1) to obtained a symmetric equation.

S′(d1, d2) = 0.5× S(d1, d2) + 0.5× S(d2, d1) (3.6)

Finally, we define similarity between datatypes d1 and d2 in Def. 19 as an extension of

Eq. 3.1.

Definition 19. Similarity between two datatypes d1 and d2, denoted as sim(d1, d2), is

determined as:

sim(d1, d2) =

(1− ω)× f(l)× g(h) + ω × S′(d1, d2) if d1 6= d2

1 otherwise

where ω ∈ [0, 1] is a user-defined parameter that indicates the weight to be assigned to the

cross-children similarity. �

If the user-defined parameter ω is zero (ω=0), we have the original measure of

the authors in [HMS07]. With our RDF similarity approach, we satisfy all identified

requirements. This measure generates similarity values based on a hierarchy (objective,

complete, and reliable) for simple datatypes. The whole approach is more suitable for the

Semantic Web, because common attributes among datatypes are taking into account both

in the hierarchy by Assumption 1 and in the similarity measure by Def. 17.

The following section illustrates how our approach is applied to calculate similarity

between the properties of the concepts Light Bulb and Lamp from our motivating scenario

and, it is compared with the work in [HMS07].

44



CHAPTER 3. The Semantic Web: Datatype Analysis and Similarity

3.4.3 Illustrative Example

To better understand our similarity approach, we illustrate step by step the process to

obtain the similarity between datatypes date from Light Bulb and gYearMonth from

Lamp. We compare it with the one obtained by [HMS07]. To do so, we fix the parameters

with the following values: α = β = 0.3057 (taken from [HMS07]), and ω = 0.20, which

means a weigh of 20% for cross-children similarity and 80% for the distance between

datatypes and their depths (i.e., f(l) and g(h)).

According to our new datatype hierarchy, we have l = 1, as the distance between

date-gYearMonth, and h = 4 the depth of date, which is the LCS. Fig. 3.5(a) shows

these values and the sub-hierarchy from the LCS, according to our new hierarchy. For

[HMS07], the distance between date-gYearMonth is l = 2 and h = 2 is the depth of the

LCS, which is Calendar. Fig. 3.5(b) shows these values and the sub-hierarchy, according

to the hierarchy in [HMS07].

Figure 3.5: a) sub-hierarchy from our new hierarchy; b) sub-hierarchy from [HMS07]

Then, the similarity value is calculated as:

• For our similarity approach is (see Def.19):

sim(date, gYearMonth) = 0.80× f(1)× g(4) + 0.20× S′(date, gYearMonth).

• For [HMS07] is (see Eq. 3.1):

c(date, gYearMonth) = f(2)× g(2);

According to Eq. 3.2 and Eq. 3.3, f(1) = 0.74, g(4) = 0.84 (for our similarity

approach) and f(2) = 0.54, g(2) = 0.55 (for [HMS07]). Hence, for [HMS07] the similarity

value between date-gYearMonth is: c(date, gYearMonth) = 0.297.

For our similarity approach, the cross-children similarity is taken into account to

finally calculate the similarity between date-gYearMonth (see Eq.3.6):

S′(date, gYearMonth) = 0.5× S(date, gYearMonth) + 0.5× S(gYearMonth, date)
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To calculate S′(date, gYearMonth), we have to calculate before the total cross-

children similarities, S(date,gYearMonth) and S(gYearMonth,date). From Def. 18, we

obtain:

S(date, gYearMonth) =
1

2
×

2∑
p=1

1∑
q=1

e−π×(
(depth(d1p)−depth(d2q))

9−1
)2 × CCSdatep,gYearMonthq

The two needed vectors for CCSdate1,gMonthDay1 are presented as follows:

Vdate1,gMonthDay1 = 〈c(date, gMonthDay), c(date, gYearMonth), c(date, gDay), c(date, gMonth)〉

VgMonthDay1,date1 = 〈c(gMonthDay, gMonthDay), c(gMonthDay, gYearMonth), c(gMonthDay, gDay), c(gMonthDay, gMonth)〉

Note that date has two levels of children (thus, p = 1 to 2 in the sum), while gYearMonth

has one level of children (thus, q = 1 to 1 in its sum). According to Eq. 3.1, we calculate

the c(d1, d2) for each element of the vectors and we obtain the cross-children similarity of

CCSdate1,gMonthDay1.

CCSdate1,gMonthDay1 =
〈0.62, 0.62, 0.46, 0.46〉 · 〈1.00, 0.46, 0.67, 0.67〉
〈0.62, 0.62, 0.46, 0.46〉 · 〈1.00, 0.46, 0.67, 0.67〉

CCSdate1,gMonthDay1 = 0.960

Similarly, we calculate CCSdate2,gMonthDay1 = 0.977. Replacing values, we have

S(date, gYearMonth) = 0.945. An equivalent process is done to calculate S(gYearMonth,-

date) = 0.978. Now, we replace the obtained values in the equation:

S′(date, gYearMonth) = 0.5× 0.945 + 0.5× 0.978 = 0.961.

The S′(date, gYearMonth) is replaced by the respective value in the similarity equa-

tion to finally have: sim(date, gYearMonth) = 0.497 + 0.20× 0.961 = 0.688.

Using our approach, the similarity value between date-gYearMonth has increased

from 0.30 (according to [HMS07]) to 0.69. Table 3.4 compares our approach and [HMS07],

with other pairs of datatypes and their respective similarity values. Note that datatypes

with attributes in common (e.g., dateTime and time have in common time) have greater

similarity value than the ones obtained by [HMS07]. Furthermore, Table 3.5 compares the

similarity of some datatypes that are part of String, Period and Numeric groups. We use

the new proposed hierarchy for both similarity measures ([HMS07] and our similarity).

Note that the level of datatype gMonthDay (h=5) is different from the one of datatype
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Table 3.4: Datatypes similarity using the proposal of [HMS07] and our approach

Datatype1 Datatype2 Similarity Value [HMS07] Our Similarity Value

date gYearMonth 0.30 0.69

date gYear 0.30 0.46

dateTime duration 0.30 0.37

dateTime time 0.30 0.53

dateTime gDay 0.30 0.29

decimal float 0.30 0.39

double float 0.30 0.62

date (h=4), and the level of datatype gYearMonth (h=5) is also different from the one of

datatype gYear (h=6). However, both similarity values are the same (0.46) according to

the similarity measure from [HMS07], but for our similarity measure, the similarity values

are different (0.53 and 0.46, respectively). The same situation is noted in some datatypes

from Numeric and String groups, observing a more adequate similarity value obtained by

our similarity measure.

Table 3.5: Datatype similarity using the measure of [HMS07] applied to our new hierarchy,

and our whole new approach

Datatype1 Datatype2

Similarity Value

New Hierarchy

+ Measure of [HMS07]

Our Similarity Value

gMonthDay gYearMonth 0.46 0.53

date gDay 0.46 0.46

short integer 0.34 0.43

int nonPositiveInteger 0.34 0.38

long negativeInteger 0.34 0.34

NCName token 0.46 0.55

Name NMTOKEN 0.46 0.51

token NMTOKENS 0.46 0.46

Following section evaluates the accuracy of our approach.

3.5 Experimental Evaluation

In order to evaluate our approach, we adopted the experimental set of datatypes proposed

in [HMS07], since there is not a benchmark available in the literature for datatype sim-

ilarity. This set has 20 pairs of datatypes taken from the W3C hierarchy. These pairs

were chosen according to three criteria: (i) same branch but at different depth levels (e.g.,
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3.5. Experimental Evaluation

int-long); (ii) different branches with different depth levels (e.g., string-int); and (iii)

identical pairs (e.g., int-int).

In [HMS07], the authors used the human perception as reference values for the 20

pairs. The closer their similarity measure is to the human perception, the better the

measure performs. We used the Human Average similarity values presented by [HMS07]

to benchmark our approach and a new Human Average-2 dataset that we obtained by

surveying 80 persons that have under- and pots-graduate degrees in computer science9.

We also compared our work with the similarity values obtained from the compatibility

table found in [BMR01] and [TLL13], and with the disjoint/compatible similarity from

W3C.

To compare how close are the similarity values to the human perception, we calculate

the correlation coefficient (CC) of every work (i.e., [BMR01, HMS07, TLL13], and our

approach) with respect to Human Average and Human Average-2. A higher CC shows

that the approach is closer to the human perception (Human Average and Human Average-

2), and viceversa. The CC is calculated as follows:

CC = 1
n−1

∑n
i=1

(xi−x̄)
σx

(yi−ȳ)
σy

where n is the number of datatype pairs to compare (n = 20 in this case), xi is the

similarity value between datatype pair i, and yi is its respective human average value, x̄

and ȳ are averages, and σx and σy are standard deviations with respect to all similarity

values x and all human average values y. Results are shown in Table 3.6.

Since the similarity measures for work [HMS07] and our work depend on the values

of α and β, we evaluate the results under different assignments of α and β. To that end,

we devised four experiments:

1. In the first experiment, we fix α = β = 0.3057 as chosen by [HMS07], which they

report to be the optimal value obtained by experimentation. We calculated the

similarity values as in Eq. 3.1 to: (i) the W3C extended hierarchy [HMS07] (column

6 in Table 3.6); and (ii) our proposed datatype hierarchy (column 7 in Table 3.6).

We calculated the CC for both scenarios with respect to Human Average and Human

Average-2. With this experiment, we evaluated the quality of our proposed datatype

hierarchy.

2. In the second experiment, we fix α = β = 0.3057 as chosen by [HMS07], but instead

9Results are available: http://cloud.sigappfr.org/index.php/s/yRRbUQUeHs0NJnW
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3.5. Experimental Evaluation

of using their measure (Eq. 3.1), we used our cross-children similarity measure (see

Def. 19) with our proposed datatype hierarchy (column 8 in Table 3.6). We fixed the

ω = 0.2010. With this experiment, we compared the quality of our approach against

all other works.

3. In the third experiment, we chose values for α and β from the range (0, 1], with a

0.02 step. In this case, 2010 possibilities were taken into account.

4. The fourth experiment is similar to the third one, except that a smaller step of 0.001

is considered. Therefore, there were 999181 possibilities.

As shown in Table 3.6, for experiments 1 and 2, we obtained a CC of 80,21% and

77.15% respectively, with respect to the Human Average. With respect to our Human

Average-2, we obtained even better CC (90,23% and 92.39%).

In the third experiment, we obtained our best results for α = 0.20 and β = 0.02,

CC = 82.60% with respect to the Human Average (see Table 3.7, row 1). For α = 0.50

and β = 0.18, CC = 95.13% with respect to our Human Average-2 (see Table 3.7, row

2). In general, the similarity values generated by our work were closer to both human

perception values than the other works (99.90% of the 2010 possible cases).

Table 3.7: Third experiment with step = 0.001
α β CC.

Human Average [HMS07] 0.20 0.02 82,60%

Human Average-2 0.50 0.18 95.13%

Similarly, for the fourth experiment, we obtained our best results for α = 0.208 and

β = 0.034 with a CC=82.76% with respect to the Human Average of the work [HMS07]

(see Table 3.8, row 1). With respect to our Human Average-2, we obtained the best results

for α = 0.476 and β = 0.165, with a CC=95.26% (see Table 3.8, row 2). In general, the

similarity values generated by our work were closer to both human perceptions (99.97%

of the 999181 possible cases).

Table 3.8: Forth experiment with step = 0.01
α β CC.

Human Average [HMS07] 0.208 0.034 82.76%

Human Average-2 0.476 0.165 95.26%

In conclusion, our approach outperforms all other works that we surveyed by con-

sidering a new hierarchy that captures a semantically more meaningful relation among

10By experimentation, we determined this value as the optimal one.
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datatypes, in addition to a measure based on cross-children similarity. Note that our

work is not exclusive to RDF data; it can be also applied to XML data similarity and

XSD/ontology matching.

3.6 Summary

In this chapter, we analyzed the datatypes, the current datatype hierarchy proposed by

the W3C, and its limitations for the Semantic Web. We also investigated the issue of

datatype similarity for the application of RDF matching/integration. In this context, we

proposed a new simple datatype hierarchy aligned with the W3C hierarchy, containing

additional types to cope with XPath and XQuery requirements in order to ensure an easy

adoption by the community. Also, a new datatype similarity measure inspired by the work

in [HMS07], is proposed to take into account the cross-children similarity.

This similarity measure is independent of the values within the nodes, therefore, it

can be applied to any hierarchy/taxonomy. For instance, we apply this contribution in

our protection approach (see Chapter 5) where a new predicate is returned based on a

hierarchy provided by the expert user.

We experimentally compare the effectiveness of our proposal (datatype hierarchy and

similarity measure) against existing related works. Our approach produces better results

(closer to what a human expert would think about the similarity of compared datatypes)

than the ones described in the literature.

Include complex datatypes in this contribution is the next challenge. Also, the

analysis of semantic types, which are more specific for the Semantic Web, can complement

the scape of this work.
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Chapter 4

The Semantic Web: Datatype

Inference

“For a lot of companies, it’s useful for them to feel

like they have an obvious competitor and to rally

around that. I personally believe it’s better to

shoot higher. You don’t want to be looking at your

competitors. You want to be looking at what’s

possible and how to make the world better.”

— Larry Page

As we described in Chapter 3, datatypes play an important role on RDF match-

ing/integration. However, a huge quantity of RDF documents is incomplete or inconsis-

tent in terms of datatypes [PHHD10]. Hence, when this information is missing, datatype

inference emerges as a new challenge in order to obtain more accurate RDF document

matching results. We recall that datatypes can be classify as simple and complex, and the

W3C proposes a hierarchy.

In the context of XSD, works such as [Chi02, HNW06] infer simple datatypes by a

pattern-matching process on the format of the values; i.e., the characters that make unique

a datatype, which is called lexical space according to the W3C Recommendation [PVB04].

These works consider a limited number of simple datatypes (date, decimal, integer,

boolean, and string), thus for other datatypes, as year (e.g., 1999), this method cannot

determine its correct datatype, since it is identified as an integer.

Others works in the context of programming languages and OWL are focused on in-

ferring complex datatype through axioms, assigned operations, and inference rules [FP06,
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Hol13, PB13], which are elements not present in an RDF document for simple datatypes.

Thus, in the context of RDF document matching/integration, these works are not suitable

mainly for two reasons:

1. Lexical space based methods cannot infer all simple datatypes, since there are inter-

sections between datatype lexical spaces (e.g., 1999 can be an integer or a gYear

according to the lexical space of both W3C datatypes); and

2. Complex datatype inference methods cannot be applied to simple datatypes, since

in RDF, a simple datatype is an atomic value associated to a predicate.

To overcome these limitations, we propose a new approach that considers, in addition

to the lexical space analysis, the analysis of the predicate information related to the object.

It consists of four steps:

1. Analysis of predicate information, such as range property that defines and qualifies

the type of the object value;

2. Analysis of lexical space of the object value, by a pattern-matching process;

3. Semantic analysis of the predicate and its semantic context, which consists in iden-

tifying related words or synonyms that can disambiguate two datatypes with similar

lexical space; and

4. Generalization of Numeric and Binary datatypes, to ensure a possible integration

among RDF documents.

The rest of this chapter is organized as follows: Section 4.1 presents a motivating

scenario to illustrate the importance of datatypes. Section 4.2 surveys the related liter-

ature. Section 4.3 describes our inference approach. Section 4.5 shows the experiments

to evaluate the accuracy and performance of our approach. Finally, we present some

discussion and reflections in Section 4.6.

4.1 Motivating Scenario

In the motivating scenario presented in Chapter 3, we show the importance of datatypes

for the similarity between concepts, properties, and relations in the context of RDF docu-

ment matching/integration. In this chapter, we complement this aspect showing another
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4.1. Motivating Scenario

scenario with more ambiguous information, when datatype information is not presented.

Then, we need to integrate three RDF documents with similar concepts (resources) but

based on different vocabularies. Fig. 4.1 shows three concepts from three different RDF

documents that we want to integrate. Figs. 4.1a and 4.1b describe the concept Light

Switch, with property (predicate) isLight, whose datatype is boolean. However, they

are represented with different lexical spaces: binary lexical space with value 1 in Fig. 4.1a

and string lexical space with value true in Fig. 4.1b. In both cases, isLight property

expresses the state of the light switch (i.e., turned on or turned off). Fig. 4.1c shows the

concept Light Bulb, with property Light, whose datatype is float, and property weight

with datatype double.

(a) Light Switch. Datatype boolean: Binary Lexical Space (0, 1)

(b) Light Switch. Datatype boolean: String Lexical Space (false, true)

(c) Light Bulb

Figure 4.1: Three concepts from three different RDF documents

For the integration, it is necessary to analyze the information of their concept prop-

erties. Intuitively, considering the datatype information, we can say that:

1. Both Light Switch concepts from Figs. 4.1a and 4.1b are similar, since their proper-

ties are similar: the isLight property is boolean in both cases, and boolean literals

can be expressed either as binary values (0 or 1) or string values (true or false)

according to the W3C [PVB04].

2. Light Bulb concept is different from the other ones. Indeed, the Light property is

expressed with float values, expressing the light intensity, that has nothing to do

with light switch state (i.e., turned on or turned off).

If the datatype information is missing and the integration is made only based on

literals, we have problems related to the ambiguity of properties. Contrary to our intuition,
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concepts in Figs. 4.1a and 4.1b are incompatible because of the use of different lexical

spaces (i.e., value 1 is not compatible with value true, which can be considered as a string

datatype instead of boolean). The integration of concept Light Switch from Fig. 4.1a

with concept Light Bulb from Fig. 4.1c will be possible, even though it is incorrect. The

Light properties of both respective documents are compatible because the lexical spaces

of their values are the same (1 and 1275 respectively, can be integer). With the presence

of datatype information, we can avoid this ambiguity even if the lexical spaces of the values

are compatible.

In this scenario, we can realize the role of datatype inference, when this information

is missing, for matching/integration of RDF documents. Thus, an approach capable of

inferring the datatype from the existing information is needed.

In the following section, we survey existing works on datatype inference. We high-

light their limitations and discuss their possible applications on RDF document match-

ing/integration.

4.2 Related Work

To the best of our knowledge, no prior work manages simple datatype inference for RDF

documents. However, datatype inference has been addressed in the context of XSD, pro-

gramming languages, and OWL (theoretical approaches) and there are tools for XSD

available on the Web. To evaluate the existing works, we have identified the following

criteria of comparison:

1. Consideration of simple datatypes, since this is the scope of the work;

2. Analysis of local information, such the object value, and external information, since

the Semantic Web allows the integration of resources available on the Web; and

3. Suitability for the Semantic Web, the whole method should be objective, complete

and applicable for any domain.

Following sections describes the theoretical and tools approaches
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4.2.1 Theoretical Approaches

For theoretical approaches, we classify the existing works, according to similar solu-

tions, into four groups:

Lexical space based approaches

In the inference of XSD from XML documents, datatypes are reduced to a small set of val-

ues (date, decimal, integer, boolean, and string) or to only string datatypes [Chi02,

HNW06]. The authors in [HNW06] propose a hierarchy between the reduced datatypes

according to the lexical spaces of the W3C Recommendation (see Fig. 4.2). The lexical

space of a datatype describes the representation format and restricts the use of characters

for the object values. The proposal returns the most specific datatype that subsumes the

candidate datatypes obtained from the patter-matching of the values. However, a gYear

value is reduced to integer, which is incorrect. Table 4.1 shows the lexical spaces of simple

datatypes according to the W3C.

Figure 4.2: Hierarchical structure to recognize datatypes. Solid lines describe strictly

hierarchical relations, the dotted line a loose relation [HNW06]

Axioms, constructors, and operations based approaches

In the context of programming languages, the authors in [FP06] focus on inferring com-

plex datatypes, modelling them as a collection of constructor, destructor, and coercion

functions. Other works [Hol13, WGMH13], also use axioms and pattern matching over

the constructors of the datatype during the inference process. In [ACH08, Bou15], op-

erations and a syntax associated to datatypes are analyzed to infer complex datatypes.

Simple datatypes such as date and integer are mainly inferred by a pattern-matching

process of the value format using the lexical spaces. However, some simple datatypes
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Table 4.1: Lexical Space for Simple Datatypes (W3C Recommendation [PVB04])

Datatype Lexical Space Examples

string Any character ”Example 123”

duration PnYnMnDTnHnMNS P1Y2M3DT10H30M

dateTime CCYY-MM-DDThh:mm:ss-UTC 1999-05-31T13:20:00-05:00

time hh:mm:ss 13:20:00-05:00

date CCYY-MM-DD 1999-05-31

gYearMonth CCYY-MM 1999-05

gYear CCYY 1999

gMonthDay –MM-DD –05-31

gDay –DD –31

gMonth –MM– –05–

boolean true, false, 1, 0 false

base64Binary Base64-encoded 0YZZ

hexBinary Hex-encoded 0FB7

float 32-bit floating point type 12.78e-2, 1999

decimal Arbitrary precision 12.78e-2, 1999

double 64-bit floating point type 12.78e-2, 1999

integer [0-9] 1999

have intersection among their lexical spaces as gYear and integer, therefore, and this

pattern-matching process is not able to infer a correct datatype.

Inference rules based approaches

In the context of OWL, the authors in [PB13] propose a method to heuristically generate

type information by exploiting axioms in a knowledge base. They assign type probabilities

to the assertions. In the domain of health-care, [SFJ15] proposes a type recognition

approach (inference type) by associating a weight to each predicate, using support vector

machines to model types and by building a dictionary to map instances. For [LHLZ15], the

Semantic Web needs an incremental and distributed inference method because of the long

ontology size. The authors use a parallel and distributed process (MapReduce) to “reduce”

the“map”of new inference rules. The authors in [KMK15] state that DBpedia only provide

63.7% of type information. Hence, they propose an approach to discover complex data-

types in RDF datasets by grouping entities according to the similarity between incoming

and outgoing properties. They also use a hierarchical clustering and the confidence of

types for an entity. The use of inference rules helps to infer datatypes where a specific

information is known (e.g., type of properties, knowledge database). However, RDF data

is not always available with its respective ontology, which makes impossible the task of
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formulating inference rules.

Semantic analysis based approaches

In [GTSC16], the authors analyze two types of predicates: object property (semantic type,

e.g., dbr:Barack Obama) and datatype property (syntactic type, e.g., xsd:string). They

propose an approach to infer the semantic type of string literals using the word detection

technique called Stanford CoreNLP 11 to identify the principal term and the UMBC12

semantic similarity service to discover the semantic class. However, a semantic type is

not always related to the same datatype, since it depends on the datatype defined in the

structure. A value can be expressed as a string or integer according to two different

ontologies.

4.2.2 Tools

On the other hand, there are tools that generate XSD from XML documents, inferring

the type of data from existing values (lexical spaces), such as XMLgrid [XML10], FreeFor-

matted [fre11], and XmlSchemaInference by Microsoft [Mic]. However, they do not share a

standard process to infer datatypes. For example, the attribute weight and isLight from

the following XML document extracted from Fig. 4.1, have different inferred datatypes

according to these three tools.

<Light_Bulb>

<Light>1250</Light>

<weight>30.00</weight> </Light_Bulb>

<Light_Switch>

<isLight>1</isLight>

</Light_Switch>

• XMLgrid infers weight as double and isLight as int;

• Using FreeFormatted, the datatype for weight is float and for isLight is byte;

• While according to XmlSchemaInference weight is decimal and isLight is unsignedByte.

11CoreNLP is a natural language analysis tool for text that extract particular relations, datatypes, etc.

- http://stanfordnlp.github.io/CoreNLP/
12Semantic similarity service that analyses semantic relations between words/phrases extracted from

Wordnet - http://swoogle.umbc.edu/
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The criteria used to infer the datatype are unknown since these tools do not describe

their algorithms. Thus, the direct application of existing approaches presents limitations

in the context of RDF document integration/matching.

Table 4.2: Related Work Classification

Work
Inference

Method

Requirements

Information SW

Simple

Datatypes
Local External

XML

XSD

RDF

OWL

[Chi02, HNW06] Lexical Space Reduced Set X X X X

[FP06, Hol13, WGMH13]

[ACH08, Bou15]

Axioms, operations,

constructors
Only Complex X X X X

[PB13, SFJ15, KMK15] Inference rules Only Complex X X X X

[GTSC16] Semantic Analysis Only string X X X X

Tools:[XML10, fre11, Mic] Not provided Not provided X X X X

Table 4.2 shows our related work classification. Note that none of the works satisfies

all the defined requirements. Following section describes our datatype inference process.

4.3 Inference Process: Our Proposal

Our datatype inference approach mainly relies on a four step process that considers the

annotations on the predicate, the specific format of literal object values, the semantic

context of the predicate, and the generalization of datatype for Numeric and Binary groups.

Fig. 4.3 shows the framework of our inference process composed by the four steps. Each

step can be applied independently and in different orders according to user parameters.

Figure 4.3: Framework of our RDF Inference process

The input of our framework is an RDF Description which can be represented in

different serializations formats (such as RDF/XML, Turtle, N3) and the user parameters

(inference steps and their order). The output is an RDF Description with its respective

inferred datatypes. A description of each step is presented as follows:
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4.3.1 Predicate Information Analysis (Step 1)

In a triple t: <s,p,o>, the predicate p establishes the relationship between the subject s

and the object o, making the object value o a characteristic of s. Information (properties)

such as rdfs:domain and rdfs:range can be associated to each predicate to determine

the type of subject and object. As one of the steps to deduce the simple datatype of a

particular literal object, we propose to inspect the property rdfs:range, if this information

exists. We formally describe this Step 1 with the following definitions and rule.

Definition 20. Predicate Information ( PI): Given a triple t :< s, p, o >, Predi-

cate Information is a function, denoted as PI(t), that returns a set of triples defined as:

PI(t) = {ti | ti =< si, pi, oi >}, where:

− si is the predicate of t (t.p), acting as a subject on each ti triple;

− pi is an RDF defined property ∈ {rdfs : type, rdfs : label, rdfs :range, ...};
− oi is the value of pi. �

Table 4.3 shows the set of triples (PI), returned by the function Predicate Informa-

tion, for property dbp:weight, which is presented in Fig. 4.1c.

Table 4.3: Example of the set of triples of Predicate information (PI) for dbp:weight

Subject Predicate (Property) Object (Value)

dbp:weight rdf:type owl:DatatypeProperty

dbp:weight

dbp:weight

dbp:weight

dbp:weight

dbp:weight

rdfs:label

rdfs:label

rdfs:label

rdfs:label

rdfs:label

Gewicht (g) (de)

gewicht (g) (nl)

peso (g) (pt)

poids (g) (fr)

weight (g) (en)

dbp:weight rdfs:label weight (g) (en)

dbp:weight rdfs:range xsd:double

dbp:weight prov:wasDerivedFrom
http://mappings.dbpedia.org/

OntologyProperty:weight

Definition 21. Predicate Range Information (PRI ): Given a triple t :< s, p, o >,

Predicate Range Information is a function, denoted as PRI(t), that returns the value

associated to the rdfs:range property, defined as:

PRI(t) =

ti.o if ∃ti ∈ PI(t) | ti.p = rdfs:range,

null otherwise.
�

Applying Def. 21 to the set of predicate information (PI) of property dbp:weight

(see Table 4.3), the Predicate Range Information function returns the value xsd:double.
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Definition 22. Is Available (IA): Given a predicate p, Is Available is a boolean function,

denoted as IA(p), that verifies if p is an IRI available on the web:

IA(p) =

True if p returns code 200;

False otherwise.
�

Using the three previous definitions, we formalize our first inference rule.

Rule 1. Datatype Inference by Predicate Information Analysis:

Given a triple t :< s, p, o >, in which o ∈ L (Def. 8), the datatype of o is determined as

follows: R1: if IA(p) =⇒ datatype = PRI(t).

Rule 1 verifies if the predicate of the triple is an IRI available (Def. 22) and Def.

21 determines if the rdfs:range property exists from the set of triples extracted by Def.

20.

Alg. 1 is a pseudo-code of how this rule can be implemented in high level program-

ming language.

Algorithm 1: Predicate Information Analysis

Input: Triple t=< s, p, o >

Output: Datatype dt

1 if IA(t.p) then

2 Graph triples = PI(t); //Set of triples with information from

predicate.

3 foreach triple in triples do

4 if triple.p == rdfs:range then

5 dt = t.o; //If range information exists, the datatype is

returned.

6 return dt;

7 return dt=null; //Range information does not exist.

8 return dt=null; //There is not external information available.

As the input, the algorithm receives the triple t :<s,p,o>, from which we want to

determine the datatype of its object value. If the IRI representing the predicate exists (line

1 – Def. 22), we access the link to extract all available information as triples (line 2 – Def.

20). For example, if we have dbp:weight (more specifically http://www.dbpedia.org/-

ontology/weight) as the predicate, we can get the list of triples shown in Table 4.3

(each row in Table 4.3 represents a triple). If among these triples there is the property

rdfs:range, then its associated object value, which is the datatype, is returned (lines 3

to 5), otherwise null is returned (lines 7 – (Def. 21). According to Fig. 4.1c, the output

of the algorithm will be the datatype xsd:double.
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This algorithm examines external information and it is independent of the query

language. Rule 1 can also be implemented as a simple SPARQL query:

select distinct ?datatype where

{?subject ?predicate ?literal.

?predicate rdfs:range ?datatype }

Where ?subject ?predicate ?literal is the triple to be analyzed; ?predicate is the

analyzed predicate (dbp:weight in example of Table 4.3); and ?datatype is the returned

result. Following step analyzed the lexical space of a literal object in order to infer its

datatype.

4.3.2 Datatype Lexical Space Analysis (Step 2)

According to Def. 6, a datatype is a 3-tuple consisting of: (i) a set of distinct valid

values, called value space; (ii) a set of lexical representations, called lexical space; and

(iii) a total mapping from the lexical space to the value space. In some cases, the data-

type can be inferred from its lexical space, when it is uniquely formatted (e.g., value

1999-05-31 matches with the format CCYY-MM-DD, which is the lexical space of datatype

date). However, in several cases (such as boolean, gYear, decimal, double, float,

integer, base64Binary, and hexBinary), the lexical spaces of datatypes have common

characteristics, leading to ambiguity (e.g., value 1999 matches with lexical spaces of gYear

and float – see Table 4.1). Figure 4.4 illustrates graphically the lexical space intersections

of W3C simple datatypes.

Figure 4.4: Datatype Lexical Space Intersection

To compare the datatype lexical spaces with the literal values, we classify the data-

types in a hierarchy (see Fig. 4.5) based on the lexical spaces intersections (from a general
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lexical space to a specific one). Since all literal values can be strings, the string datatype

is the root of the hierarchy.

Figure 4.5: Lexical Space Hierarchy

To analyze the lexical spaces, we propose the following definition.

Definition 23. Candidate Datatypes (CDT): Given a literal object o, the set of

its candidate datatypes is determined by the function Candidate Datatypes, defined as:

CDT (o) = {dt | dt ∈ SDT (Def. 11) ∧ o ∈ LS(dt) (Def. 6)} �

By Def. 23, the set of candidate datatypes of the object literal value 1 presented

in Fig. 4.1a is: CDT(1)={float, decimal, double, hexBinary, base64Binary, inte-

ger, boolean, string}. Based on this definition, we formally define our second inference

rule.

Rule 2. Datatype Inference by Lexical Space:

Given a triple t :< s, p, o >, in which o ∈ L, the datatype of o is determined as follows:

R2: datatype =


string if |CDT (o)| = 1,

dt | dt ∈ CDT (o) ∧ dt 6= string if |CDT (o)| = 2,

null otherwise.

Rule 2 analyzes the number of possible datatypes of a literal object value. The order

to analyze the lexical space of each datatypes is established by a lexical-space hierarchy

(see Fig. 4.5). In all cases, the datatype string is a candidate datatype, since it has the

most general lexical space (see Fig. 4.4 or Fig. 4.5); if the number of candidate datatypes is

one, then the only datatype, which is string, is returned. If the number of candidate data-

types is two, then the other datatype is returned. Otherwise, we have an ambiguous case
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and any decision cannot be provided. Hence, the inference process remains incomplete due

to the ambiguous cases and further analysis is needed.

A pseudo-code following the definition of Rule 2 is proposed in Alg. 2.

Algorithm 2: Lexical Space Analysis

Input: Triple t=< s, p, o >

Output: Datatype dt

1 DT dt list = new [Datatype(String)]; // Every value is a string (see Fig. 2).

2 dt list = CDT(t.o); // Pattern-matching verification with all simple datatype

lexical spaces.

3 if size(dt list) > 2 then

4 return dt=null; // Ambiguous case.

5 else

6 if size(dt list) == 1 then

7 dt = first value of dt list; // Non ambiguous case, it is string.

8 else

9 dt = second value of dt list; // Non ambiguous case, string and

other datatype.

10 return dt;

The Algorithm receives a triple t :<s,p,o> and returns a list of candidate datatypes

that can be associated to the object. This list is initialized with the datatype string,

because any object value is a string (line 1). According to the lexical spaces defined by

the W3C (see Table 4.1), the list of candidate datatypes is generated by a pattern matching

process (line 2 in Alg. 2 – Def. 23) following the order obtained from the hierarchy shown

in Figure 4.5.

If the number of candidate datatypes is more than 2, we are under an ambiguous

case, since the lexical space of the literal value matches with several lexical spaces of the

datatypes (lines 3 and 4 of Alg. 2). If we have only string as a candidate datatype, then

this is the returned information (line 7 of Alg. 2). If we get two candidate datatypes, they

are string and another one; thus, the datatype of the object value is the second one (line

9 of Alg. 2).

The following step analyses semantically the predicate of the literal object through

the definition of context rules.
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4.3.3 Predicate Semantic Analysis (Step 3)

In presence of ambiguous cases, a semantic analysis of the predicate can be done to resolve

ambiguity. The predicate name can define the context of the information in a scenario

where the data is consistent. Regarding the W3C datatype lexical spaces, the datatypes

boolean, gYear, decimal, double, float, integer, base64Binary, and hexBinary data-

types are ambiguous. However, the ambiguity of boolean, gYear, and integer, in some

specific scenarios, can be resolved by examining the context of its predicate according to a

knowledge base. For example, the predicate dbp:dateOfBirth has the context date, then

it is possible to assume gYear as the datatype; the predicate dbp:era has the context

period and the datatype assigned can be integer; however, for predicate dbp:salary, it

is possible to assign datatypes decimal, double, or float; the ambiguous case persists.

In order to describe our inference process in this step, we formalize a knowledge base as

follows:

Definition 24. Knowledge Base (KB): Knowledge bases (thesaurus, taxonomies, and

ontologies) provide a framework to organize entities (words/expressions, generic concepts,

etc.) into a semantic space. A knowledge base has the following defined functions:

− Similarity (sim): Given two word values n and m, Similarity is a function, denoted

as sim(n,m), that returns the similarity value among the words:

sim(n,m) = A similarity value ∈ [0, 1] between n and m according to KB.

− IsPlural (IP): Given a string value n, IsPlural is a function, denoted as IP(n), that

returns True if the word n is plural:

IP (n) =

True if n is plural according to KB;

False otherwise.

− IsCondition (IC ): Given a string value n, IsCondition is a function, denoted as

IC(n), that returns True if the word n is a condition:

IC(n) =

True if n is a condition according to KB;

False otherwise.
�

The semantic context is formalized, based on the knowledge base, as follows:

Definition 25. Context (ct): A context is a related word or synonym, which clarifies

or generalizes the domain of a word. It is associated to a similarity value according to a
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knowledge base. A context is denoted as a 3-tuple ct :< w, y, v >, where w is a word; y is

a related word of w; and v is sim(w,y) ∈ [0, 1]. �

Definition 26. Set of Contexts (CT): Given a word w, its set of contexts is defined

as CT = {cti | cti :< w, yi, vi > is a context of w}. �

For example, from Fig. 4.1c, the set of contexts of predicate weight is: CT =

{<weight,load,0.8>, <weight,heaviness,0.5>, <weight,obesity,0.4>, <weight,-

size,0.3>}

Definition 27. Predicate Context (PC ): Given a triple t :< s, p, o > and a threshold

h, Predicate Context is a function, denoted as PC(t,h), that returns a set of contexts

defined as:

PC(t, h) = {cti | cti :<p.property namei, yi, vi>, vi ≥ h}. �

The context can determine the datatype for some literal objects through a semantic

analysis, then we assume two scenarios for an ambiguous case:

− If date is in the context (< word,date, 0.5 >) and the literal value is a number (e.g.,

1999), then the datatype is gYear because gYear (1999) is a part of datatype date (1999-

05-31);

− If period is in the context (< word,period, 0.5 >) and the literal value is a number

(e.g., 3 months), then the datatype is integer because it is about quantity.

However, if the context is date, the word from which we obtain the context, cannot be

plural, since plural words express quantities. Thus, in this case the word is related to the

datatype integer according to our scenarios. Def. 28 generalizes our scenarios to assign a

datatype to a literal object, according to the context of its corresponding predicate name.

Definition 28. Predicate Name Context (PNC ): Given a triple t :< s, p, o >, in

which o ∈ L (Def. 8), and a threshold h, Predicate Name Context is a function, denoted

as PNC(t,h), that returns a datatype defined as:

PNC(t, h) =



gYear if∃cti ∈ PC(t, h) | cti.yi = date ∧ gYear ∈ CDT (o);

integer if∃cti ∈ PC(t, h) | cti.yi = date ∧ integer ∈ CDT (o)

∧IP (p.property name);

integer if∃cti ∈ PC(t, h) | cti.yi = period ∧ integer ∈ CDT (o);

null otherwise.

�

In addition, to determine a datatype as boolean, we assume that a word is defined

as condition in a knowledge base (e.g., Wordnet).
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Using the previous definitions, we formally define our third inference rule.

Rule 3. Datatype Inference by Semantic Analysis:

Given a triple t :< s, p, o >, in which o ∈ L, and a threshold h the datatype of o is

determined as follows:

R3: datatype =

boolean ifboolean ∈ CDT (o) ∧ IC(p.name property);

PNC(t, h) otherwise.

Rule 3 returns the datatype of the object value when a defined context associated

to the predicate exists. If that is not the case, we are still under an ambiguous case.

Note that Rule 3 is proposed for a scenario where the data is consistent with the W3C

recommendations (e.g., self-descriptive names).

Alg. 3 is a pseudo-code of our semantic analysis step. The algorithm receives the

triple t :<s,p,o> to be analyzed. For the analysis of the predicate name, an external

service is required in order obtained the synonyms of the predicate name, called contexts

(line 2 in Alg. 3). If more than one defined context is available in the set of contexts (Def.

27), the algorithm returns the one which has more similarity value (lines 16 – 17 in Alg.

3). A null datatype is returned if none defined context is present.

Algorithm 3: Predicate Semantic Analysis

Input: Triple t =< suject, predicate, object >, float h

Output: Datatype dt

1 DT dt list = CD(t)

2 PC contexts = get context SERVICE(t.predicate.name, h);

3 DT candidates = {}
4 if contexts contains date then

5 if t.predicate.name is plural and dt list contains integer then

6 dt = new Datatype(integer);

7 candidates.add(dt);

8 else if dt list contains gYear then

9 dt = new Datatype(gYear);

10 candidates.add(dt);

11 if context is period and dt list contains integer then

12 dt = new RDFDatatype(integer);

13 candidates.add(dt);

14 if context is condition and dt list contains boolean then

15 dt = new Datatype(boolean);

16 candidates.add(dt);

17 candidates.ORDER BY DESC()

18 return candidates.first or dt = null;

Following step describes the generalization method for literal values that are part of
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numeric and binary groups.

4.3.4 Generalization of Numeric and Binary Groups (Step 4)

If we still have ambiguity, as an alternative to disambiguate the datatypes decimal,

double, float, integer, base64Binary, and hexBinary, we propose two groups of data-

types: Numeric and Binary. In each group, we define an order among the datatypes

by considering lexical space intersection (see Fig. 4.4). Hence, for the Numeric Group,

we have decimal > double > float > integer and in the Binary Group, base64Binary

> hexBinary. According to these groups, we return the most general datatype, if all

candidate datatypes belong only to one of these two groups.

Definition 29. Generalization (G): Given a literal object o, the set of its candi-

date datatypes is reduced by the function Generalization, defined as: G(o) = {dt | dt ∈
CDT (o)∧(dt is the most general datatype according to Numeric and Binary groups)}

�

Note that datatype string is always part of candidate datatypes. We formally

define our fourth inference rule as follows:

Rule 4. Datatype Generalization:

Given a triple t :< s, p, o >, in which o ∈ L (Def. 8), the datatype of o is determined as

follows:

R4: datatype =

dt | dt ∈ G(o) ∧ dt 6= string if |G(o)| = 2,

null otherwise.

However, we can have a case where an object value has decimal and base64Binary

as candidate datatypes and our inference approach cannot determinate the most appro-

priate datatype.

Alg. 4 is a pseudo-code of a possible implementation of Rule 4. The algorithm re-

ceives the triple t :<s,p,o> to be analyzed. The list of candidate datatypes is reduced re-

moving specific datatypes and keeping the most general ones (decimal and base64Binary)

(line 2 in Alg. 4). If the list of candidate datatypes has only a value, the datatype is string

(line 2 in Alg. 4), but if there are two, the datatype is the second one (line 2 in Alg. 4),

since the first one is string. If there are more than two datatypes, the ambiguity persists

and this step is not able to produce a result.
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Algorithm 4: Generalization of Numeric and Binary Groups

Input: Triple t =< s, p, o >

Output: Datatype dt

1 DT dt list = CDT(t); //Candidate Datatypes

2 DT generalDT = get general datatypes(dt list); //General datatypes from

Numeric and Binary groups.

3 if size(generalDT) == 1 then

4 return dt = new Datatype(string);

5 if size(generalDT) == 2 then

6 return dt = second value of generalDT;

7 return dt=null; // Ambiguous case.

Our inference approach allows to improve the datatype analysis for RDF matching/inte-

gration by complying with the identified requirements (see Section 4.2): (i) the use of local

available information, as the predicate value in Step 1 and Step 3 and the datatype lexical

space in Step 2, as well as external available information, such the predicate information in

Step 1 and the predicate context in Step 3 ); and (ii) this method is objective and complete

for the Semantic Web, since all simple datatypes are considered, which are available in the

most common Semantic Web databases as DBpedia.

Alg. 5 shows a global vision of our inference process, composed by the four steps.

Each step can be applied independently according to user-preferences as we mentioned it

before. However, we suggest an order starting from a general solution (Step 1 ), that can

be applied to all datatypes, until a specific one for particular cases (Step 4 ). This order

obtained the best results during experimentation. If the predicate information analysis

(lines 1 to 3 in Alg. 5) cannot infer the datatype, then datatype lexical space inference is

used (lines 4 to 7 in Alg. 5). The semantic analysis is processed if we obtain a datatype

null from previous inference (lines 8 to 11 in Alg. 5). The last step is applied if once again

we obtain a datatype null from previous inference (lines 12 to 13 in Alg. 5).

In the following section, we analyze the complexity of our datatype inference process

in order to measure the applicability for real cases.

4.4 Complexity Analysis

A complexity analysis of our inference approach indicates a linear order performance in

terms of the number of triples (O(n)).
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Algorithm 5: Datatype Inference Process

Input: Triple t =< s, p, o >, float h

Output: Datatype dt

1 dt = predicate information analysis(t); //Step 1

2 if dt is not null then

3 return dt;

4 else

5 dt = datatype lexical space analysis(t); //Step 2

6 if dt is not null then

7 return dt;

8 else

9 dt = predicate semantic analysis(t,h); //Step 3

10 if dt is not null then

11 return dt;

12 dt = generalization(t); //Step 4

13 return dt;

• For Step 1, the predicate information of each triple is extracted to search the

rdfs:range property, since the number of properties associated to the predicate

of each triple (Def. 20) is constant, then its execution order is O(n).

• In the case of Step 2, for each triple a pattern-matching is executed for all simple

datatypes (finite number of execution) thus, it is of linear order (O(n)).

• In Step 3, for each triple, its set of contexts is extracted to determine the best related

work (in a constant time), thus its time complexity is also O(n).

• Finally, Step 4 reduces the finite set of candidate datatypes (generalization) in a

linear order (O(n)).

As the four steps are executed sequentially, the whole inference datatype process

exhibits a linear order complexity, O(n). The following section evaluates the accuracy and

demonstrate the linear order performance of our proposal.

4.5 Experimental Evaluation

To evaluate and validate our inference approach, an online prototype system, called

RDF2rRDF 13, was developed using PHP and Java. Fig. 4.6 shows the graphic user

13http://rdf2rrdf.sigappfr.org/
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interface of the prototype, where the inference steps can be selected according to user

preferences.

Figure 4.6: Graphic User Interface of our Inference Approach

For Step 3, we implemented our assumptions of contexts using the semantic similarity

service UMBC: Semantic Similarity Service Computing, which is based on distributional

similarity and Latent Semantic Analysis (Def. 27). UMBC service is available online and

an API is provided14. Also, we used Wordnet15 to recognize if a word is plural assuming

that every word has a root lemma where the default plurality is singular. Additionally, we

assume that a word is a condition if it has the prefix “is” or “has”. All these assumptions

compose our knowledge base.

Table 4.4 shows the different datatypes available in several semantic web databases.

Note that DBpedia has more variety of datatypes compared with the others, thus our

experiments were made with DBpedia database.

Table 4.4: Semantic Web databases
DataBase Datatypes

DBpedia
integer, gYear, date, gMonthDay, float,

nonNegative, double, Integer and decimal

Wordnet string

GeoLinked data point (complex datatype)

Experiments were undertaken on a MacBook Pro, 2.2 GHz Intel Core(TM) i7 with

14http://swoogle.umbc.edu/SimService/api.html
15WordNet is a large lexical database of English (nouns, verbs, adjectives, etc.)
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16.00GB, running a MacOS Sierra and using a Sun JDK 1.7 programming environment.

Our prototype was used to perform a large battery of experiments to evaluate the

accuracy and the performance (execution time) of our approach in comparison with the

related work. To do so, we considered two datasets:

• Case 1: 5603 RDF documents gathered from DBpedia person data16, in which

1059822 triples, 38292 literal objects, and 8 different datatypes are available.

• Case 2: the whole DBpedia person data as a unique RDF document with 16842176

triples, in which only datatypes date, gMonthDay, and gYear are presented.

For Case 1, we evaluated the accuracy and performance of each step of our datatype

inference approach, Step 1 + Step 2, Step 1 + Step 3, Step 2 + Step 3, and the whole

inference process. The order of the whole inference process was established starting from

a general solution (Step 1 ), that can be applied to all simple datatypes, until a specific

solution for particular cases (Step 3 and Step 4 ). In Case 2, we only evaluated the whole

inference process, since it is mainly used for performance because the high number of

triples.

4.5.1 Accuracy evaluation

To evaluate the accuracy of our approach, we calculated the F-score, based on the Recall

(R) and Precision (PR). These criteria are commonly adopted in information retrieval and

are calculated as follows:

PR =
A

A+B
∈ [0, 1] R =

A

A+ C
∈ [0, 1] F-score =

2× PR×R
PR+R

∈ [0, 1]

where A is the number of correctly inferred datatypes; B is the number of wrongly inferred

datatypes; C is the number of correct datatypes not inferred by our inference approach

(datatypes that should be inferred but were not because of ambiguity).

Test 1: In Table 5.12, for Step 1, 24059 datatypes were inferred (45.35% of the total,

38292) with a Precision, Recall, and F-score of 99.89%, 62.81%, and 77.12% respectively.

This process inferred 26 invalid simple datatypes because inconsistencies on the data. In

Step 2, 17435 datatypes were inferred (45.35% of the total) with a Precision, Recall, and

16Information about persons extracted from the English and Germany Wikipedia, represented by the

FOAF vocabulary - http://wiki.dbpedia.org/Downloads2015-10
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F-score of 96.91%, 44.76%, and 61.24% respectively. This process inferred 537 invalid

datatypes (14 simple and 523 complex datatypes) and it could not determine the data-

type for 20857 literal objects. Combining Step 1 and Step 2, the Precision, Recall and

F-score values increased considerably (99.17%, 88.85%, and 93.73% respectively). In Step

3, only 2480 datatypes were inferred (Recall 6.85%), since it is proposed for particular

cases (context rules). Precision in Step 4 is less than all other Steps; however, the Recall

is greater than Step 2 and it makes a F-score similar to Step 2. Other combinations as

Step 1 and Step 3 and Step 2 and Step 3 have high Precision but low Recall, because the

Recall of Step 3 (specific cases). We can noted that the combination of Step 2 and Step

4 has the same Precision and Recall as the ones of Step 4. According to the definition of

Step 4, it uses the datatype candidates in order to keep the most general datatypes. The

candidates are obtained by a lexical-space matching process, which is the Step 2. The

same situation is noted between the results of Step 1, Step 4, and Step 1, Step 2, Step 4.

Table 4.5: Accuracy Evaluation
Inference

Process

Accuracy Evaluation

Valid Invalid Ambiguity Precision Recall F-score

Case 1: Step 1 24033 26 14233 99.89% 62.81% 77.12%

Case 1: Step 2 16898 537 20857 96.92% 44.76% 61.24%

Case 1: Step 3 2480 119 35812 95.20% 6.85% 11.62%

Case 1: Step 4 16899 1962 19431 89.60% 46.52% 61.24%

Case 1: Step 1 + Step 2 33771 281 4240 99.17% 88.85% 93.73%

Case 1: Step 1 + Step 3 26394 145 11753 99.45% 69.19% 81.61%

Case 1: Step 2 + Step 3 19259 656 18377 96.71% 51.17% 66.93%

Case 1: Step 1 + Step 4 33772 999 3521 97.13% 90.56% 93.73%

Case 1: Step 2 + Step 4 16899 1962 19431 89.60% 46.52% 61.24%

Case 1: Step 1 + Step 2

+ Step 4
33772 999 3521 97.13% 90.56% 93.73%

Case 1: Whole Approach 36132 551 1609 97.71% 96.50% 97.10%

Case 2: Whole Approach 2250402 710234 0 76.01% 100.00% 86.37%

Executing the whole approach, 37066 datatypes were inferred (96.80%). The Preci-

sion, Recall and F-score are 97.71%, 96.50%, and 97.10% respectively.

The best F-score was obtained with the whole inference process; however, the Pre-

cision decreased from 99.89% (Step 1 ) to 97.71% because of Step 3 and Step 4 (Precision

95.20% and 89.60% respectively). Table 4.6 shows the Precision, Recall, and F-score for

each datatype available in the Case 1. In this table, the datatype date was not correct in-

ferred 7 times; however, its lexical space is unique according to the W3C recommendation;

regarding the data, these 7 cases have the format YY-MM-DD instead of CCYY-MM-DD
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(inconsistencies of the data).

Table 4.6: A detailed Inference per Datatype (Case 1) - Whole Approach

Datatype Valid Not - Valid Ambiguity Precision Recall Case 1: F-score

integer 13567 424 1311 96.37% 91.72% 93.99%

gYear 5067 1 0 99.98% 100% 99.99%

date 16446 7 0 99.91% 100% 99.98%

gMonthDay 459 0 0 100% 100% 100%

float 0 142 0 0% NaN NaN

double 266 1 0 100% 99.63% 99.81%

nonNegativeInteger 77 0 0 100% 100% 100%

decimal 0 0 1 NaN 0% NaN

Complex 250 273 0 47.80% 100% 64.68%

Total 36132 934 1226 97.71% 96.50% 97.10%

For Case 2, the Precision decreased to 76.01%. It is caused by the noise and in-

consistencies of the DBpedia datasets [PHHD10] (e.g., dbo:deathDate should have the

datatype property date, but in the queried datasets, it was set as gYear).

Test 2: We also evaluated the accuracy of our approach in comparison with alternative

methods and tools, namely Xstruct, XMLgrid, FreeFormated, and XMLMicrosoft [XML10,

fre11, HNW06, Mic]. Since these works infer datatypes in XML documents, we transformed

all literal nodes to XML format by using the value and its relation. Table 4.7 shows the

accuracy results obtained for Case 1. Note that our approach has the best Precision and

F-score. Our Recall is less than the other ones because we consider a bigger number of

datatypes and thus, there are more ambiguous cases (lexical space intersections).

Table 4.7: Accuracy Comparison with the Related Work for Case 1
Work Precision Recall F-score

Xstruct 83.28% 100% 90.88%

XMLgrid 83.61% 100% 91.07%

FreeFormated 43.32% 100% 60.45%

XMLMicrosft 43.23% 100% 60.36%

RDF2rRDF 97.71% 96.50% 97.10%

Test 3: For Case 1, we performed an extra experiment to measure the behavior of our

inference approach when a partial number of datatypes is missed (25%, 50% and 75%).

Table 4.8 shows the results obtained for this experiment. Precision, Recall and F-score

were measured with respect to the number of missed datatypes. Since each document has

at most two same predicates, the results have not increased significantly. However, in a

scenario where a huge number of same predicates are presented, the known datatype of a

literal node is added to all the literal nodes associated to its predicate, then a better and
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easy inference is performed.

Table 4.8: Availability of datatypes for Case 1

Availability of Datatypes Precision Recall F-score

0% 97.71% 96.50% 97.10%

25% 97.78% 96.47% 97.12%

50% 97.66% 96.66% 97.16%

75% 97.64% 96.91% 97.27%

4.5.2 Performance evaluation

To evaluate the performance, we measured the average time of 10 executions for each test.

Table 4.9 shows the results obtained in our performance evaluation.

Test 4: In Case 1, the execution time of Step 1 was greater than Step 2, because the

use of external calls increased the execution time. However, the execution time of Step

1 + Step 2 was similar to Step 1, since Step 1 works as a filter of triples and leaves less

analysis for Step 2. Step 3 has the greatest execution time, since it depends of an external

service. Step 4 depends of the list of candidate datatypes; thus, its execution time should

be greater than Step 2 because the use of extra operations to reduce the set of datatypes

(generalization).

Table 4.9: Performance Evaluation
Inference

Process

Performance Evaluation

Execution Time Cache Building Time

Case 1: Step 1 31.336s 11.582s

Case 1: Step 2 15.939s 15.939s

Case 1: Step 3 243.826s 40.764s

Case 1: Step 4 17.879s 17.879s

Case 1: Step 1 + Step 2 33.216s 13.966s

Case 1: Whole Approach 53.247s 14.236s

Case 2: Whole Approach - 59.282s

Test 5: Additionally, we implemented in Step 1 and Step 3 the use of cache to store

predicate information and predicate contexts, respectively (see Table 4.9 - column 3). This

cache is reused for consequential analysis of triples, since same predicates are available in

different triples. For Case 1, the use of cache in Step 1 reduced the execution time in

more than 65% and made the execution time of Step 1 + Step 2 less than Step 1 and Step

2, separately. The cache in the whole inference approach represented more than 70% of

improvement in the performance and an average of 157 × 10−7sec. per triple. Moreover,
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for more than 16 million of triples (Case 2), the execution time remained in the order of

seconds (59.28s) and the average execution time per tripe was reduced to 35×10−7sec. We

presume in Case 2 that the majority of triples were inferred in Step 1, which uses cache.

Fig. 4.7 shows the execution time with respect to the number of triples. The per-

formance obtained confirms the linearity of our inference approach. Note that the use of

cache makes the function stable for high number of triples because of the finite number of

predicates available in the DBpedia database.

Figure 4.7: Execution Time of our Inference Approach

4.6 Summary

In this chapter, we investigated the issue of datatype inference for RDF documents match-

ing/integration. We proposed an approach, consisting of four steps: the analysis of the

predicate information associated to the object value, analysis of the lexical space of the

value itself, semantic analysis of the predicate name, and generalization of datatypes.

Each step in the inference process can infer different datatypes, for example, a

number (e.g., 12) is consider as datatype Decimal for our Step 4, while for Step 1 is int.

We recommend the use of Step 1, as well as, Step 2, since both inference steps have a high

Precision.

We evaluated the accuracy and performance of our inference process with DBpedia

datasets (DBpedia person data). Results show that the inference approach increases the F-

score up to 97.10% (accuracy) and it does not incur in high execution time (performance).

Extending this work to include other datatypes as complex ones and propose more

context rules to resolve extra ambiguity, are some of our next steps.
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Chapter 5

The Semantic Web: Sensitive

Data Preservation

“Obviously, everyone wants to be successful, but I

want to be looked back on as very innovative, very

trusted and ethical and ultimately making a big

difference in the world.”
— Sergey Brin

As we mentioned in Chapter 1, the Semantic Web and the Linked Open Data (LOD)

initiatives promote the integration and combination of RDF data on the Web [SH01]. RDF

data is gathered and published by different sources (e.g., companies, governments) for

many purposes such as statistics, testing, and research proposals. However, as more data

is available, sensitive information (e.g., diseases) could be sometimes provided or inferred

compromising the privacy of related entities (e.g., patients).

For the authors in [RGCGP15], anonymization is one common and widely adopted

technique for sensitive data protection that has been successfully applied in practice. It

consists on protecting the entities of interest by removing or modifying identifiable in-

formation to make them anonymous before publication, while keeping the utility of the

data. To apply anonymization, it is necessary to classify the data into: (i) main entities,

which are the entities of interest, and (ii) related data that compromise the main entities.

The related data is also classified as: (i) Identifiers, data that identify a main entity (e.g.,

security social number); (ii) Quasi-identifiers, data that can be used to link with other

data to identify a main entity (e.g., birthday, postal code); (iii) Sensitive information,

data which compromises a main entity (e.g., diseases); and (iv) Unsensitive information
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that does not have a particular role. A classification, which is performed by an expert

user who knows previously the data and is responsible of protecting the model, is based

on predefined assumptions about how an adversary can take advantage over this data.

These assumptions are called Background Knowledge. Due to the huge complexity of the

RDF structure, a classification requires a high interaction of the expert user. Moreover,

all RDF’s elements can be considered as main entities, and they can also be classified

into identifiers, quasi-identifiers, sensitive information, etc., making the RDF protection

complex.

Thus, in the context of RDF data, several limitations are identified: (i) RDF

anonymization techniques are limited and designed for a particular and ideal scenario,

which is inappropriate when having several linked heterogeneous datasets [Aro13, RGCGP15,

HHD17, SLB+17]; (ii) the non-consideration of IRIs as external and reachable resources

makes the current RDF solutions unsuitable for protection on the Web, since other avail-

able resources could link or infer sensitive information; (iii) the presence and consideration

of resources (IRIs and Blank nodes), which are a fundamental part of the RDF data, makes

the database oriented methods [NJ02, MGKV06, LLV07, MJK09, SO14] unsustainable for

a large quantity of resources due to the number of JOIN functions needed to satisfy the

existing normalized models; (iv) graph anonymization techniques assume simple, undi-

rected and unlabeled graphs [BDK07, HMJ+08, ZP08, LT08, YW08, LWLZ08, CKR+11,

YCYY13], which are inappropriate for the Semantic Web, since properties and semantic

relations among resources would be ignored; and (v) the complexity of the RDF struc-

ture requires a high interaction of the expert user to classify the RDF’s elements to be

protected, and their related data.

To overcome these limitations, we propose a framework, called RiAiR (Reduction,

Intersection, and Anonymization in RDF), which is independent of serialization formats

and providers. The proposal is designed for RDF documents, considering all their elements

and a scenario of a huge quantity of information. The complexity of the RDF structure

is reduced to make possible the task of classification and to suggest potential disclosure

sources to the expert user, decreasing his interaction. By a generalization method, we

reduce the connections among datasets to protect the data and to preserve the objectives

of the Semantic Web (integration and combination).

The chapter is organized as follows. Section 5.1 presents a motivating scenario to

illustrate the disclosure of sensitive information on the Web. Section 5.2 surveys the related

literature. The main problematic of this study is formalized in Section 5.3. Section 5.4

describes our approach. Section 5.5 shows the experiments to evaluate the viability and
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performance of our approach. Finally, we present our conclusions in Section 5.6.

5.1 Motivating Scenario

The goal of the Semantic Web is to publish datasets, mainly as RDF, describing and

combining resources on the Web for an open access. The datasets are usually treated

and protected before being published; however, sensitive information could be deduced

using related information available from other datasets. To illustrate this, let’s consider

a scenario in which a data manager X works for a government to publish a dataset A,

related to energy production and its applications, on the Web1.

An extract of the dataset A to be published is shown in Table 5.1.

Table 5.1: An example of the data extracted from Enipedia dataset

No cat:Fuel -

type

cat:radio-

active
rdfs:label

prop:City

(rdfs:label)

prop:Country

(rdfs:label)
prop:Lat. prop:Long.

1 art:Nuclear true Hartlepool
Hartlepool

Cleveland
United Kingdom 54.6824 -1.2166

2 art:Nuclear true Limerick Pottstown United States 40.2257 -75.5866

3 art:Nuclear true Neckar Neckarwestheim Germany 49.0411 9.1780

4 art:Nuclear true Beaver Valley Shippingport United States 40.6219 -80.4336

Figure 5.1 shows the schema of the dataset A to be published. Note that the proper-

ties prop:Latitude, prop:Longitude, rdfs:label, and cat:radioactive define values,

while the properties prop:City, prop:Country, and cat:Fuel_type define resources.

Figure 5.1: Structure of the data extracted of the Enipedia dataset

As a data manager, X should pay attention about the side effect of publishing

the dataset A on the Web, since it can produce sensitive information for entities already

1The example provided uses an extract from Enipedia dataset.
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published. For instance, DBpedia2, which is a linked open dataset extracted from Wi-

kipedia, can be used as background knowledge in order to discover sensitive information

related to places of interest. This dataset can be easily connected by the use of properties,

such as prop:Latitude and prop:Longitude present in the dataset A as well. Table 5.2

shows some places of interest available in the DBpedia dataset.

Table 5.2: Some places of interest available in the DBpedia dataset
No rdf:type rdfs:label prop:Lat. prop:Long.

1 dbo:School Hartlepool College of Further Education 54.6839 -1.2109

2 dbo:School English Martyrs School and Sixth Form College 54.6754 -1.2362

3 dbo:School Coventry Christian Schools 40.2505 -75.5930

4 dbo:School Hölderlin-Gymnasium Lauffen am Neckar 49.0704 9.1394

5 dbo:School Pennsylvania Cyber Charter School 40.6385 -80.4549

By the intersection among coordinates (prop:Latitude and prop:Longitude) of

nuclear power plants (dataset A) and the ones of places of interest (dataset DBpedia), one

can easily identify their proximity in a defined Region. A Region is an area obtained

by the maximum distance between a nuclear power plant and a place of interest. The

following SPARQL query produces the intersection between the dataset A to be published

and the dataset DBpedia. Note that a Region of 100km was used to obtain the results.

SELECT DISTINCT

?Place ?g bif:st_distance(?g,bif:st_point(".$long.",".$lat."))

AS ?distance

FROM

<http://dbpedia.org> WHERE {?p rdfs:label ?Place ;

geo:geometry ?g ; rdf:type dbo:School .

FILTER

(bif:st_intersects (?g, bif:st_point (".$long.", ".$lat."), 100)

&& (lang(?Place) = \"en\"))}

ORDER BY ASC(?distance)

Table 5.3 is the result of the intersection between the dataset A and dataset DBpedia.

It shows in row 1 that a school is less than 500 meters distance from a nuclear power plant

in United Kingdom. It also shows which hospitals, universities, and any other crowded

places are close to power nuclear plants in a defined area. One can even identify which are

the dirtiest power nuclear plants (prop:Carbonemissions) and the places next to them.

If this combined information is available on the Web, it can be misused against the nuclear

power plants to stop their production and management, and even against the places of

interest near to them.

2DBpedia does not contain sensitive information, since all data correspond mainly to well-known entities

(e.g., places, governments, actors, singers).
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Table 5.3: Some places of interest next to Nuclear Power Plants
Nuclear

PowerPlant
City Country School

Distance

(Km)

Hartlepool
Hartlepool

Cleveland
United Kingdom

Hartlepool College of

Further Education
0.40244

Hartlepool
Hartlepool

Cleveland
United Kingdom

English Martyrs School

and Sixth Form College
1.48812

Beaver Valley Shippingport United States
Pennsylvania Cyber

Charter School
2.5761

Limerick Pottstown United States Coventry Christian Schools 2.81988

Neckar Neckarwestheim Germany
Hölderlin-Gymnasium

Lauffen am Neckar
4.2998

Figure 5.2: Intersection between Energy Production dataset and other datasets

Figure 5.2 illustrates graphically the intersection between dataset DBpedia and the

dataset A. The resource Region links School, University, Hospital and Power Plant

resources.

To protect the dataset A to be published, X needs to identify and classify the

data, according to the assumptions of how an adversary can obtain or produce sensitive

information, using the background knowledge, as follows. The information of a Power

Plant resource of type nuclear (art:Nuclear) is sensitive, if there is at least a place of

interest (e.g., School) in a defined Region3.

• Keys: (Identifiers/Quasi-Identifiers): Properties prop:Longitude and prop:Lati-

tude are keys since both values indicate the position of a Power Plant, which belongs

to a defined Region.

• Sensitive Information: An resource (dbo:School) and its properties are sensitive

3Considering only DBpedia dataset as external related information (background knowledge).
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information, since it defines the place of interest.

• Unsensitive Information: Other values and properties, which are not considered in

the previous types, are unsensitive information.

Once X has established the classification, a protection technique based on this clas-

sification, should be used to protect the disclosure of sensitive information. Thus, the

following challenges are defined in this study. Thus, the following challenges are defined

in this study:

• Provide an easy classification of the RDF data (keys, sensitive information and

unsensitive information);

• A similarity measure able to evaluate the intersection between the data to be pub-

lished and the background knowledge, to suggest disclosure sources; and

• Select the most appropriate protection taking into account the complexity of the

RDF data and the objectives of the Semantic Web.

Our contribution in this study is as follows:

• A general framework designed for RDF documents, independent of the serialization

formats, in a scenario where linked and heterogeneous resources are presented; i.e.,

the Web;

1. A method to reduce the complexity of the RDF structure of the data to be

published, simplifying the task of analysis, performed by the expert user;

2. A method to suggest disclosure sources to the expert user, based on node sim-

ilarity, reducing the task of data classification; and

3. An anonymization operation, based on a generalization method, to decrease

the relations among resources from different datasets, to preserve the main

objectives of integration and combination of the Semantic Web.

The following section presents the related work of RDF anonymization.

5.2 Related Work

In this work, we focus on anonymization thecniques as a solution to protect the sensitive

information since it has been widely adopted for sensitive data protection.
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To the best of our knowledge, works on RDF document anonymization are lim-

ited [RKKT13, RKKT14a, RKKT14b, RKKT14c, RGCGP15, SLB+17, HHD17]; however,

due to the particularity of the RDF data, other domains where anonymization has been

extensively studied could be applied, such as: databases [MGKV06, LLV07, MJK09, SO14,

YLZY13, GLLW17] and graphs [BDK07, CKR+11, HMJ+08, ZP08, LT08, YW08, CT08].

To evaluate and classify the existing works, we identified the following criteria of compar-

ison according to the challenges and objectives of this work:

1. The complexity of the data, which should be aligned with the one of RDF structure,

considering heterogeneous nodes and relations, increasing the expressibility and dif-

ficulty of the representation;

2. The type of classification method for identifiers, quasi-identifiers, sensitive and un-

sensitive information due to the high quantity of entities, properties and values

available on the Web, making difficult the task of the expert user; and

3. The conditions of anonymity that are proposed in the current proposals to identify

the most appropriate ones for the Semantic Web.

Following sections describe the RDF, databases, and graph approaches in the context

of anonymization.

5.2.1 RDF Document Anonymization

For RDF documents, the authors in [RGCGP15] provide an overview of RDF’s elements

over the role in anonymization (e.g., explicit identifiers, quasi-identifiers, sensitive data).

They propose a framework to anonymize RDF documents, which satisfies the k-anony-

mity condition. They consider the use of taxonomies for values and relations (each type

of value and relation has its own taxonomy). Generalization and suppression operations

are applied over these taxonomies to anonymize the RDF document. Once the opera-

tions are applied, several anonymous RDF documents are produced by the use of all value

combinations from the taxonomies. A measure for anonymous solutions that satisfied the

k-anonymity condition, is proposed to select the best option. In [HHD17], the authors

extend the previous work defining an area (neighborhood), where the k-anonymity condi-

tion is satisfied. The exhaustive method to select the best option makes these approaches

unsuitable for complex cases, since a greater quantity of values to take into account, needs

a more elaborate anonymization process (more possible solutions). Moreover, the authors

83



5.2. Related Work

assume a classification of the data provided by the model and they do not specify how

this classification was performed.

Additionally, there are some works on the context of statistical queries [Aro13,

SLB+17] based on grouping operators (e.g.,SUM, AVG,MAX) and others based on expert-

defined sanitization queries [RKKT13, RKKT14c, RKKT14b, RKKT14a] to remove iden-

tifiers, but we only focus on the protection of RDF documents.

5.2.2 Database Anonymization

In some cases when one has small RDF data, a common practice can be to convert the RDF

to a structured dataset as tables to reuse existing techniques. Anonymization in databases

has been extensively studied and many works are available in the literature. One of the

most used work is proposed in [Sam01], the authors define a condition, called k-anonymity,

where an entity cannot be identified, since there are at least k − 1 other similar entities.

However, the problem of satisfying the k-anonymity condition is NP-hard, producing dif-

ferent studies where the complexity and an efficient solution are addressed. For instance,

to anonymize the data, the authors in [NJ02] apply techniques based on neural networks,

the authors in [AS16] apply genetic algorithms, while in [NJ02] the authors use matching

learning. Non-perturbative operations, such as generalization and suppression methods,

where data is modified according to certain criteria of the existing values (e.g., taxonomies,

ranges), are mainly used to satisfy the k-anonymity condition [AW16]. Other studies use

perturbative operations, such as Micro-aggregation/clustering methods, where the entity

values are replaced or modified by the centroid of the clusters, adding in some cases new

entities to satisfy conditions of anonymization in each cluster [SYLL12, ZZYY14].

According to [MGKV06], k-anonymity condition does not protect the sensitive val-

ues, since k similar entities can have the same sensitive information, which is the one

required by the adversary. For that, the authors in [MGKV06] extend the k-anonymity

condition considering a diversity (l) of sensitive values for each set of similar entities (l-

diversity). However, the disclosure is still possible due to the attribute distribution of the

dataset. The authors in [LLV07] propose a condition where the distribution of each sen-

sitive attribute should be close/similar to the whole attribute distribution in the dataset

(t-closeness). Other studies extend the previous mentioned conditions to address par-

ticular assumptions of the background knowledge. The authors in [MJK09] propose a

(k,T)-anonymization model over spatial and temporal dimensions. Other works apply the

conditions of anonymity to different values as the authors [SO14] do, where l-diversity con-
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dition is satisfied by the sensitive information as well. The l-diversity condition is extended

in the clustering proposal work [YLZY13], defining a (k, l, θ)-diversity model, which takes

into account the cluster size, the distinct sensitive attribute values, and the privacy pre-

serving degree of the model. An improvement of certain conditions is made for special

scenarios; for instance, the authors in [HYY08] divide numerical sensitive values into sev-

eral levels, getting a better protection for numerical values. Also, properties of the data

such as utility, value distribution, etc., are considered to propose anonymization models.

The work in [GLLW17] takes into account the association between quasi-identifiers and

the sensitive information as a criterion to control the use of generalization hierarchy. Some

semantic features are added in recent works. The authors in [OTSO17] provide a (l, d)-

semantic diversity model based on a clustering method. They analyze the distance among

sensitive values (d) to consider more actual diversity. According to [SOTO17], a value

can be quasi-identifier and sensitive information at the same time, proposing a method

that can treat “sensitive quasi-identifier” and satisfying the conditions of l-diversity and

t-closeness.

Differential Privacy as k-anonymity is another well-used technique to provide privacy.

The authors in [DMNS06] propose a perturbation method for true answer of a database

query by the addition of a small amount of distributed random noise. This method is

extended by other authors as in [HRMS10], where they improve the accuracy of a general

class of histogram queries while satisfying differential privacy. The work in [MCFY11] is a

non-interactive setting model, generalizing probabilistically the raw data and adding noise

to guarantee differential privacy. Other studies are focused on the privacy of anonymized

datasets, since a dataset, in the context of databases, can be affected by updating and

removing operations, which can expose the sensitive information. The authors in [SI12]

propose an architecture which protects the main entities for databases that require re-

moving operations frequently. They apply generalization operations based on hierarchies

(non-perturbative method). The model satisfies k-anonymity condition; however, the ar-

chitecture needs to verify each new deleting request the anonymized data in order to

protect the privacy of the original datasets. A centralized scenario is required to apply

this proposal.

Work on database anonymization approaches that satisfy k-anonymity and its vari-

ations, assume that the classification of data into identifiers, quasi-identifiers, sensitive

and un-sensitive information is provided by an expert user, who knows the data, focusing

mainly on the method to satisfy the conditions of anonymization. In the Semantic Web,

it is unable to understand the detailed characteristics of external datasets and assume all

the background knowledge possessed by adversaries. Moreover, as more information is
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involve, more complex is the task of converting the RDF data to a structured normalized

model, since a high granularity (many tables) is produced due to the use of IRIs, acting

as foreign-keys.

Following section describes the works related to graph anonymization.

5.2.3 Graph Anonymization

RDF data can be represented as a graph structure, having labeled-nodes, and directed

and labeled-edges. In the literature, there are several works in the context of social

media, where the authors assume a simple network as undirected, node-unlabeled and

edge-unlabeled structure [LT08, YW08, CT08] (see Group 9 in Table 5.4). These works

focus on the privacy through the number of edges among nodes, since an adversary can

have the information about the relations, which can be the only one with a particular

number (k-degree condition). The work in [CT08] proposes a greedy algorithm to satisfy

the k-degree by partitioning all nodes to n clusters. Each cluster becomes uniform with

respect to the quasi-identifier attributes and the quasi-identifier relationship (generaliza-

tion). To choose the best n values, two criteria are taken into account: (i) each cluster has

to contain at least k nodes and (ii) minimize the information loss of the data. The authors

in [LT08] propose an algorithm to satisfy the k-anonymity condition over the number of

edges of each node. They also rename the k-anonymity as k-degree condition. The pro-

posal consists in two steps: (i) Degree Anonymization, where a degree sequence of the

graph (descending order) is generated to group similar nodes with the same degree and

(ii) Graph construction, where an algorithm decides among which nodes a new edge is

added according to satisfy the k-degree condition. In [YW08], the authors anonymize a

graph by adding random edges. They provide an analysis on the spectrum of the graph

to measure the impact of the anonymization solution. The spectrum is directly related to

the topological properties such as diameter, presence of cohesive clusters, long paths and

bottlenecks, and randomness of the graph. Works in this group only take into account

the number of relations as a condition of anonymity (k-degree), but in a scenario where a

diversity of nodes is present, the number of operations to satisfy the k-degree condition in-

creases exponentially. Moreover, diversity of edges values is not analyzed and the authors

assume that the classification of the data is provided by the expert user.

Other works manage more complex graphs by assuming labeled-node structure as

in [BDK07, CKR+11, HMJ+08, ZP08] (see Group 10 in Table 5.4). The authors in

[BDK07] demonstrate assuming several attacks that removing identifiers and renaming
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the nodes in an arbitrary manner, from a social graph, is an ineffective anonymization

mechanism. Walk-based attacks are able to compromise the privacy for modest numbers

of node (around 90%); thus, it has been proven for the authors that removing identifiers

of the data is not a well protection. The authors in [CKR+11] assume that the adversary

knows only degree-based information, which is the number of relations (edges) that has

each node. To anonymize the graphs, they add new nodes instead of edges, since they

affirm that “introducing new nodes does not necessarily have an adverse effect. To the

contrary, adding new nodes with similar properties could better preserve aggregate mea-

sures than will distorting the existing nodes”. To satisfy the k-anonymity condition, an

algorithm following four steps is provided: (i) Optimally partition degree sequence (de-

scending order), (ii) Augment graph with new dummy nodes, (iii) Connect original graph

nodes to new dummy nodes, and (iv) Insert inter-dummy-node edges to anonymize dum-

mies. In [HMJ+08], the authors propose an anonymization technique that protects against

re-identification by generalizing the input graph. They generalize the graph by grouping

nodes into partitions, and then publishing the number of nodes in each partition, along

with the density of edges that exist within an across partitions. To preserve the privacy

of individuals, which are represented as nodes in a social network, the authors in [ZP08]

assume that an adversary may have the background knowledge about the neighborhood

of some target individuals. Two properties are taking into account: (i) node degree in

power law distribution [FFF99] and (ii) small-world phenomenon [WF94] to ensure a low

loss of data. They greedily organize nodes into groups and anonymize the neighborhoods

of nodes in the same group to satisfy the k-anonymity condition.

Works in this group have the same drawbacks as the previous one, which are related

to the modeling of social graphs as a simple structure (even if the graph is node-labeled),

and the assumption of the classification, which is provided by the expert user.

The authors in [LWLZ08] work also on the context of social networks by ensuring the

privacy of main entities, which are the nodes in the graph (see Group 11 in Table 5.4). They

consider a weight over edges, since it can represent affinity among two nodes, frequency

among two persons, or similarity between two organizations. They propose a Gaussian

Randomization Multiplication strategy due to its simple implementation in practice and

responds to the dynamic-evolution nature of social networks, since it is very hard and

costly to collect the information in advance in a huge and dynamic scenario. This work

represents in a better way the scenario present in the Semantic Web. However, edges-

labeled are reduced to values and they are not considered as reachable resources which

can be used to disclosure the sensitive information. Also, this work assumes that the

classification of the data is provided by an expert user.
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Another interesting work is presented in [YCYY13] (see Group 12 in Table 5.4),

the authors assume a more complex graph than the previous described groups. In fact,

in addition of the node degree, they also assume the values of the nodes as sensitive

data. They propose a framework, which satisfies k-anonymity and l-diversity conditions.

They generate a sequence of 3-tuples (id, node-degree, and its respective sensitive value).

A grouping algorithm is applied over the list to group similar triples, following certain

criteria to satisfy the conditions of anonymization (k-anonymity and l-diversity). The

sequence is called KDLD sequence, when all the defined conditions are satisfied. From the

KDLD sequence, the graph is rebuilt. Then, they propose a graph construction technique

adding nodes to preserve utilities of the original graph. Two key properties are considered:

(i) Add as few noise edges as possible; (ii) Change the distance between nodes as less as

possible.

In general, graph anonymization approaches assume a simple structure of the data

as an undirected and unlabeled-edge social media graph. Also, k-degree is a one of the

common conditions of anonymity used for the authors; however, considering a diversity

of nodes as in RDF and using the existing solutions to satisfy the k-degree condition, the

complexity increases considerably.

The following section summarizes and discusses the works related to anonymization.

5.2.4 Summary and Discussion

Existing techniques in the context of RDF document anonymization are really limited.

In [RGCGP15, HHD17], the authors reduce the complexity of RDF structure to micro-

data, where a huge quantity of information such as heterogeneous nodes and relations

is simplified and anonymized. However, in a scenario where thousands of heterogeneous

resources are present, the current solutions are not appropriate due to the greedy algorithm

to generate all possible solutions (anonymous RDF) and then, their measure to evaluate

and select the most adequate one.

Since RDF data can be converted, in some cases, to a structured data as databases,

database anonymization techniques could be also applied. Small RDF data can be man-

aged by these solutions; however, reducing the complexity of big RDF data into structured

models can produce a high semantic information loss (properties), and a huge granularity

of the structured normalized-model. Moreover, solutions are proposed for simple cases

where data satisfy conditions of anonymity, but when a diversity of values is present, the

complexity of the solutions increases exponentially.
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Table 5.4: Related Work Classification

G Work
Requirements

Conditions

of Anonymity
Complexity of data

Classification

Method

1 [RGCGP15] k-anonymity RDF
Manual

(I, QI, SI, USI)

2 [HHD17]
k-anonymity

neighborhood
RDF

Manual

(I, QI, SI, USI)

3 [SLB+17]
Differential

privacy
RDF

Manual

(SI)

4 [Aro13]
Differential

privacy
RDF

Manual

(SI)

5 [NJ02] k-anonymity
Structured

data

Manual

(I, QI, SI, USI)

6 [MGKV06, LLV07, MJK09, SO14]
k-anonymity

and variations

Structured

data

Manual

(I, QI, SI, USI)

7 [DMNS06]
Differential

privacy

Structured

data

Manual

SI

8 [HRMS10, MCFY11, SI12]

Differential

privacy and

variations

Structured

data

Manual

(SI)

9 [CT08, LT08, YW08] k-degree

Undirected,

node-unlabeled,

edge-unlabeled

Manual

(I, QI, SI, USI)

10 [BDK07, CKR+11, HMJ+08, ZP08] k-degree

Undirected,

node-labeled,

edge-unlabeled

Manual

(I, QI, SI, USI)

11 [LWLZ08] k-degree

Undirected,

node-labeled,

edge-labeled

(weight)

Manual

(I, QI, SI, USI)

12 [YCYY13]
k-degree

l-diversity

Undirected,

node-labeled,

edge-unlabeled

Manual

(I, QI, SI, USI)

13
[RKKT13, RKKT14a]

[RKKT14b, RKKT14c]
Sanitization RDF

Manual

(I, QI, Si, USI)

As RDF data can be also represented as a graph, anonymization graph approaches

have been explored in this work. The simplicity of the graph structure assumption makes

the current approaches not adequate for the Semantic Web, where heterogeneous nodes and

relations are present. Some criteria of anonymization, such as k-degree, can be adopted to

the Semantic Web, but the solutions to satisfy these criteria have to be modified according

to the complexity of the RDF structure.

Most of the works in RDF documents, databases and graphs anonymization assume

that the classification of the data required to satisfy the conditions of anonymity, is pro-

vided by expert user. However, the scenario of the Semantic Web complicates the task

of classification, since it is difficult to understand the detailed characteristics of external

datasets and assume all the background knowledge possessed by adversaries.
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Table 5.4 shows our analysis in this regard. Note that none of the works on database

and graph anonymization satisfies the criteria of complexity of data (heterogeneous nodes

and relations). Moreover, the classification on the data is mainly provided by the proposals

and there is no information about how it was performed. We assume that the process to

classify the data has been manual. Thus, a new anonymization approach able to cope all

requirements is needed to provide an appropriate protection of sensitive information for

the Semantic Web.

Before describing how our approach addresses these requirements, the following sec-

tion introduces some common terminologies and definitions of anonymization in the con-

text of RDF.

5.3 Problem Definition

As we show in the motivating scenario, there are cases in which sensitive information can

be disclosed through the data published from different sources on the Web (due to data

intersection). Thus, the data to be published, denoted as D, should be protected before,

in order to avoid compromising the disclosure or production of sensitive information.

The available information on the Web is called background knowledge. It can be

provided automatically or semi-automatically by the expert user and can contain simple

or complex resources (e.g., one RDF resource, RDF graph, text files). The background

knowledge is formally defined in Def. 30.

Definition 30. Background Knowledge (BK ): It is a set of IRIs, considered as nodes

and denoted as BK: {n1, n2, ..., ni | ∀ni, ni is a IRI}. �

In this work, we assume that the intersection between D and BK can disclose or

produce sensitive information, hence identifiers and quasi-identifiers appear in D due to

the connection among its subjects and objects. We rename both concepts to keys, defined

in Def. 31, since they allow the disclosure of sensitive information.

Definition 31. Keys (K ): Keys are identifiers and quasi-identifiers, denoted as K : {ki |
∀ki ∈ I ∪BN ∪ L, ki produces sensitive information}. �

We formally define our assumption concerning the intersection between D and BK

datasets in Ass.5.
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Assumption 5. Key Detection (Intersection) (IN ): The intersection between a set

of triples T and a set of IRIs I is defined as a set of nodes (subjects and objects of triples)

that belong to the RDF graph of T (GT ), denoted as IN , where each node of IN has another

similar one in I. The similarity among the two nodes is measured by a similarity function

(simFunc), whose value is equal or greater than an established threshold.

IN : T u I =
⋃
{ni∈GT |sim(ni∈T,nj∈I,α,β,γ)≥threshold}

Where:

– u is an operator that defines the intersection between triples and IRIs;

– ni is a subjects or object that belong to T ;

– nj is a IRI that belong to I;

– sim is the similarity function defined in Def. 32.

The similarity function between two nodes is defined in Def. 32.

Definition 32. Similarity function (simFunc): The similarity between two nodes is

defined as a float value, denoted as simFunc that takes into account tree different as-

pects of the nodes: (i) syntactic; (ii) semantic; and (iii) context analysis, such that:

simFunc(ni, nj , α, β, γ) = α× syntactic similarity(ni, nj) +

β × semantic similarity(ni, nj) +

γ × context similarity(ni, nj))

Where:

– ni ∈ I ∪BN ∪ L and nj ∈ I;

– Syntactic similarity is a function which considers the syntactic aspect of the node, whose

values are in [0, 1];

– Semantic similarity is a function which considers the semantic aspect of the nodes,

whose values are in [0, 1];

– Context similarity is a function which considers the incoming and outgoing relations

of the nodes, whose values are in [0, 1];

– α+ β + γ = 1. �

According to the type of nodes of BK (IRIs), different similarity functions should

be provided to discover similar nodes. The nodes belonging to the intersection between D

and BK (IN), are potential keys according to our assumption, then K = IN . The triples

from D that contain at least a key are considered as disclosure sources, defined in 33, since

the triples are connected to other resources.

Definition 33. Disclosure Sources (DS): It is a set of triples, which contains at least

a key from K, denoted as DS : {dsi | ∀dsi ∈ D∧(dsi.s ∈ K∨dsi.o ∈ K), dsi is a disclosure

source that disclose or produce sensitive information}, . �
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However, all triples in D that contain at least a key, cannot be considered as dis-

closure sources, since it depends of the scenario; thus, the interaction of the expert user

is needed to identify only the ones that compromise the data to be published. Def. 34

formally explains the result of the expert interaction.

Definition 34. Disclosure-Source Query (EU ): It is a selection/projection query

applied over DS (
∏
DS), that returns triples considered as disclosure sources by the expert

user according to the scenario. This set of triples is denoted as EU : {eui | ∀eui ∈ DS,

eui is considered as a disclosure source by the expert user}. �

Using the classification of the expert user, anonymization methods can be applied

on the selected triples in order to prevent the disclosure of sensitive information. Note

that even the original set of triples (D) could be protected, it should be re-protected

considering the already published data (BK) and their intersections with the original one.

An anonymization operation is formalized in Def. 35.

Definition 35. Protection Function (ProtFunc): It is a function applied on a triple

that returns another similar one, by modifying either the subject, the predicate, the object,

or all the three RDF elements, to avoid the disclosure of sensitive information. It is denoted

as ProtFunc(t ∈ D, op, par), where op is a protection operation (e.g., generalization,

suppression) and pr are the parameters of configuration (e.g., level of generalization). �

By the result of applying the protection process on the set of triples selected by the

expert user, the protected data is obtained. This latter is formalized in Def. 36 and it does

not allow the disclosure of sensitive information.

Definition 36. Protected data to be published (pD): It is a set of triples denoted

as pD, which is the result of applying any protection technique on the set of triples selected

by the expert user (EU) of D; i.e., the data to be published are protected if their intersec-

tion with the BK does not produce the triples selected by the expert user, using the same

threshold established during the intersection:

pD = D u {ProtFunc(eui) | eui ∈ EU}
Where:

– D is the data to be published;

– u defines the replacement of the set EU ⊂ D with the one obtained by applying a op-

eration function over its elements;

– EU is the set of triples considered as disclosure sources by the expert (see Def. 34);

– ProtFunc is a function that applies a protection operation (e.g., generalization, sup-

pression) on either the subject, predicate, object, or all three values. �
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The following section describes our protection process.

5.4 Protection Process: Our Proposal

Our protection process mainly relies on a four phases approach (see Fig. 5.3), called RiAiR,

where the input, a set of RDF documents in any serialization format (D), is converted into

a graph representation, used by all modules: (i) Reducing-Complexity phase in which the

graph is analyzed to reduce its complexity-structure to extract a compressed one; (ii)

Intersection phase, where similar nodes between the input graph (reduced or not) from

D and the one from the BK are identified as potential keys (IN); (iii) Selecting phase in

which the expert user analyzes and selects the disclosure sources (EU), which contains at

least one potential key; and (iv) protection phase that executes a protection process over

the selected triples (EU).

Figure 5.3: Framework of our RDF protection process

A description of each phase is presented in the following sections.

5.4.1 Reducing-Complexity Phase

Since the expert user needs to classify thousands of triples available in D, a reduction

step is needed in order to simplify the interaction and make easy the task of classification.

Some triples are essential to describe concepts; therefore, they cannot be removed from

the data and are considered as constraints. These latter are a set of triples, defined by the

expert user, that have an important role over the data. The set of constraints is defined

in Def. 37.

Definition 37. Constraints (C ): It is a selection/projection query applied over D (
∏
D)

the indicate the triples to be preserved. It is denoted as C:{ci:< si, pi, oi >| ∀ci ∈ D, ci is

a triple to be preserved}. �
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For example, we define as a constraint the triples whose predicates are equal to the

value http://www.w3.org/1999/02/22-rdf -syntax-ns#type, since it describes the concept

of a resource.

The set of triples T={ti : 〈si, pi, oi〉} of D is analyzed by the similarity function

simFunc defined in Def. 32, considering the set of IRIs as a simple node (e.g., a resource).

This similarity should take into account the context of the value (e.g., a similarity function

based on the incoming and outgoing relations) instead of the analysis of the value itself in

order to identify a more general resource. From two similar nodes, the one that subsumes

the other is kept. A sorting step to organize the triples in a defined order is needed to return

a unique output (e.g., Depth-Subject-Predicate-Object order). As sensitive information

can be present in resources and literal values as well, we classify the nodes into two

categories: internal nodes, which are the ones that are subjects and objects at the same

time, and external nodes that are only objects in the set of triples (T).

We propose Algo. 6 and Algo.7 to reduce the complexity of each category of nodes.

The reducing-complexity algorithm applied on internal nodes, receives a set of triples

T={ti : 〈si, pi, oi〉}, a threshold th1, and returns another set of triples T’={t′i : 〈s′i, p′i, o′i〉}.
In Algo. 6, each triple (ti) in T is analyzed by the simFunc applied to its subject (node)

with other subjects from T (lines 4-5 of Algo. 6). If the simFunc is equal or greater than

the defined threshold (th1), the triple (ti) is added to the list processedListTriples and the

subject of ti will be replaced by the one from tj in all triples from T (lines 8, 9 of Algo. 6).

The replacing function is performed in line 11 of Algo. 6 and the modified set of triples is

returned in line 13.

The algorithm for external nodes receives a set of triples T={ti : 〈si, pi, oi〉}, a

threshold th1, and returns another set of triples T’={t′i : 〈s′i, p′i, o′i〉}, according to the

threshold (th1) provided by the expert user. A list, called removeListTriples, is used to

store temporally the triples to be removed in the last step of the algorithm (line 1 in

Algo. 7). As the previous algorithm, a sorting step is needed to return an unique output.

Each subject (node) from triple ti in T is compared with other subjects that belong to

the triples in T, using the similarity function simFunc defined in Def. 32 for simple nodes.

To verify if the triple has an external node, its depth4 is calculated. If the depth of ti is

different than 0, then the object node is not external, and we move forward to the next

triple in T (lines 4-5 of Algo. 7). If the simFunc between ti and tj is equal or greater

than the defined threshold and ti does not belong to the set of constraints (C in Algo. 7)

defined by the expert user (see Def. 37), the triple ti is added to the removeListTriples list

4The depth of a triple is considered as the biggest path of its object to a terminal node.
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Algorithm 6: Reducing Complexity - Internal Nodes

Input: Set of triples T={t:〈s,p,o〉}, threshold th1

Output: Set of triples T’

1 processedListTriples = {}; //List of processed triples.

2 replaceListNodes = {}; //List to replace nodes in the set of triples.

3 T = T.sort(HSPO); //Sorting by depth-subject-predicate-object order.

4 foreach ti in T do

5 foreach tj in T-{ti} do

6 if tj /∈ processedListTriples then

7 if simFunc(ti.s, tj .s)≥ th1 then

8 processedListTriples.add(ti);

9 replaceListNodes.add(Pair(ti.s,tj .s));

10 break; //Since a similar node was found, the next ti is analyzed.

11 T’ = T.replaceNodes(replaceListNodes); // Nodes are replaced.

12 T’ = T’.removeDuplicateTriples(); //Duplicate triples are removed.

13 return T’;

(lines 8-10 in Algo. 7). Finally, the triples are removed in line 11 in Algo. 7).

Note that Algo. 6 and Algo. 7 are independent and they can be used in any order.

The reducing-complexity algorithms are applied to the data to be published (D).

Once the reductions are obtained, the intersection among this set and the BK can be

performed. Following phase describes the intersection phase.

5.4.2 Intersection Phase

The previous phase reduces the complexity-structure of D; the number of triples of D to

decrease the interaction of the expert user over the data. However, identifying the triples

that are disclosure sources in the reduced set of D, is still a difficult task for the expert

user. To identify the nodes of the reduced set D that belong to the intersection with the

background knowledge (BK), we propose Algo. 8, based on the intersection among two

datasets assumption (see Ass. 5) and using the similarity function defined in Def.32.

Algo. 8 receives a set of triples T={ti : 〈si, pi, oi〉}, a set of IRIs I, a threshold

th2, and returns a set of nodes IN, according to the threshold defined by the expert user.
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Algorithm 7: Reducing Complexity - External Resource

Input: Set of triples T={t:〈s,p,o〉}, threshold th1

Output: Set of triples T’

1 removeListTriples = {}; //List to remove triples.

2 T = T.sort(HSPO); //Sorting by depth-subject-predicate-object order.

3 foreach ti in T do

4 if ti ∈ removeListTriples ∨ depth of ti 6= 0 then

5 continue; //Next triples is analyzed.

6 foreach tj in T - {ti} do

7 if tj /∈ removeListTriples then

8 if simFunc(ti.s, tj .s)≥ th1 and ti /∈ C then

9 removeListTriples.add(ti); //Adding triples to be removed.

10 break; //Since a similar node was found, the next ti is analyzed.

11 T’ = T.removeTriples(removeListTriples); //Triples of removeListTriples list

are removed.

12 return T’;

Each subject and object from triple ti in T are analyzed by using the similarity function

(simFunc) with the IRI ij in I. If simFunc is equal or greater than the defined threshold

(th), the subject or object from triple ti in T are added to the list IN (lines 4-9 in Algo. 8).

TThe set IN is returned in line 10.

The nodes of IN are considered as potential keys (see Def.31), since they allow the

connection of the data to be published with other datasets. Following section presents the

selecting phase which is executed by the expert user.

5.4.3 Selecting Phase

According to Def. 33, triples that contain at least a key are disclosure sources and can

disclose or produce sensitive information; however, not all triples that belong to this

definition can reveal sensitive information; therefore, the interaction of the expert user is

needed to select only the triples that compromise the data. The selection can be performed

by a query or any other method.

To further simplify the expert user interaction, we propose the use of a Graphic User

Interface (GUI) based on the set of potential disclosure sources (DS). By a visual interface,
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Algorithm 8: Intersection among two datasets

Input: Set of triples T={ti:〈s,p,o〉}, I, threshold th2

Output: Set of nodes IN

1 IN = {}; //Set of nodes.

2 foreach ti in T do

3 foreach ij in I do

4 if simFunc(ti.s, ij)≥ th2 then

5 if ti.s /∈ IN then

6 IN.add(ti.s); //The subject of T is added.

7 if simFunc(ti.o, ij)≥ th2 then

8 if ti.o /∈ IN then

9 IN.add(ti.o); //The object of T is added.

10 return IN;

the expert user can analyze and select only the triples which are disclosure sources for the

scenario. The set of triples obtained by the selection of the expert user, is the set EU (see

Def. 34).

Following section describes the protecting phase applied over the set of triples EU.

5.4.4 Protection Phase

Once the disclosure sources are selected by the expert user, a protection process on these

triples can be performed. We propose the use of generalization operations on the predicate

of each triple, to only reduce the connections among datasets (D and BK), preserving

the objectives of integration and combination of the Semantic Web. A taxonomy for

each type of relation from the set of triples EU (see Def. 34), has to be provided by

the expert user. Moreover, a measure to calculate the level of generalization, applied to

the taxonomies (to choose a predicate form a set of values), is needed (e.g., hierarchical

and taxonomy measures) in order to provide an appropriate, customized and measured

protection according to different scenario. Algo. 9 describes the protection process by

applying a generalization operation on each selected triple of EU (see Def.35).

Algo. 9 receives a set of triples T={ti : 〈si, pi, oi〉}, a set of taxonomies TA, a level

of generalization g, which is a value among [0, 1], and returns a set of modified triples

T’={t′i : 〈s′i, p′i, o′i〉}, according to the taxonomies and the level of generalization provided

97



5.4. Protection Process: Our Proposal

Algorithm 9: Protection Process

Input: Set of triples T={ti:〈s,p,o〉}, Set of taxonomies TA, Level of

generalization g

Output: Set of triples T ′

1 T’ = {}; // Set of triples.

2 foreach ti in T do

3 Taxonomy ta = TA.getTaxonomy(ti.p); // Taxonomy of predicate ti.p.

4 ti.p = ta.getPredicate(g); // Predicate from taxonomy ta.

5 T’.add(t); // The modified triple is added to T’.

6 return T’;

by the expert user. From the set of taxonomies provided by the expert user (TA), the

taxonomy which corresponds to the predicate of ti (ti.p) is used to obtain another predicate

that satisfy the level of generalization (g) (lines 3 and 4 in Algo. 9). The modified triple

is added to the list T ′ (line 5 in Algo. 9) and the whole list is returned in line 6.

Note that to obtain the protected RDF data, the compressed triples selected by the

expert user, have to be released to apply the protection process over their triples.

Our whole proposal overcomes the limitations identified in the context of RDF pro-

tection. The proposal is designed for RDF data, considering their elements (IRIs, blank

nodes and literals) and the scenario, where linked and heterogeneous resources are avail-

able. The complexity of the RDF structure is reduced in order to decrease the interaction

of the expert user and to make easy the task of classification. Potential keys are identified

and disclosure sources are provided to the expert user. Moreover, by a generalization

method, we reduce the connections among datasets, preserving the main objectives of the

Semantic Web (integration and combination), and protecting the sensitive information at

the same time.

The following section evaluates the complexity of our proposal.

5.4.5 Complexity Analysis of the whole Anonymization Process

A complexity analysis of our anonymization approach indicates a quadratic order perfor-

mance in terms of number of triples of the data to be published (n) and the ones from the

background knowledge (m), i.e., O(n2 +m2). A detailed complexity analysis was done on

each phase of the process to get the complexity of the whole process:
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• For the Reducing-complexity phase, each triple (n) is analyzed by searching another

similar one in the set of triples, then their execution order is O(n2).

• The Intersection phase based on the reduced set of triples from D, has an execution

order O(n × m), D and BK respectively, for the worst case where no triple was

removed by reducing-complexity phase.

• The Configuration phase, which is made by the expert user, depends of the number

of triples from D that contain potential keys, which are obtained by the intersection

between D and BK. Thus, this phase has an execution order O(n) where all triples

are considered as disclosure sources.

• The anonymization phase, applied over the triples selected by the expert user, has

an execution order of O(n), if all triples from D are considered as disclosure sources.

As the four phases are executed sequentially, the whole anonymization approach

exhibits a quadratic order complexity, i.e., (O(n2 +m2 + n×m+ 2× n)).

The following section evaluates the viability and demonstrate the quadratic order

performance of our proposal.

5.5 Experimental Evaluation

5.5.1 Prototype and Implementation

To evaluate and validate our anonymization approach, a desktop prototype system, called

RiAiR, was developed using Java. Fig. 5.4 shows a visual interface of our prototype, which

has several customizable options according to user-preferences. For example, the expert

user can apply the reducing-complexity process to either internal, external nodes, or only

one of them. The thresholds for the reduction, intersection, and anonymization processes

can be also customized by the expert user, selecting a value among [0,1] in the left area of

the visual interface.

For the reducing-complexity and intersection phases, we implemented the similarity

function, called simFunc (Def. 32), considering only the context similarity by using the

incoming and outgoing properties (relations) from the nodes, since the behavior of a node

can be defined through its relations (context). We present the similarity function as follows.
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Figure 5.4: Visual interface of our Anonymization Approach

simFunc(ni, nj , α=0, β=0, γ=1) = α× syntactic similarity +

β × semantic similarity +

γ × (0.5× |incomingProperties(ni)∩incomingProperties(nj)|
|incomingProperties(ni)∪incomingProperties(nj)| +

0.5× |outgoingProperties(ni)∩outgoingProperties(nj)|
|outgoingProperties(ni)∪outgoingProperties(nj)|)

Where:

– incomingProperties is a function that returns the incoming relations of a node;

– outgoingProperties is a function that returns the outgoing relations of a node;

Note that for the reducing-complexity phase, the intersection and union among

properties is made by a syntactic string comparison; while for the intersection phase (see

Def. 31), since the datasets are provided from different sources, the syntactic compari-

son is performed to only the property name of the incoming and outgoing properties (e.g.,

http://www.domain1.com/nameProp is equal to http://www.domain2.com/nameProp,

since both property names are equals - nameProp).

For the anonymization phase, we implemented a generalization operation based on

taxonomies provided by the expert user. The taxonomies are processed by the approach

through the use of a simple document in XML format, presented as follows.

<taxonomies>

<taxonomy_1>

<taxonomy_1a>

</taxonomy_1a>

<taxonomy_1b>

</taxonomy_1b>

100



CHAPTER 5. The Semantic Web: Sensitive Data Preservation

</taxonomy_1>

<taxonomy_2>

<taxonomy_2a>

</taxonomy_2a>

</taxonomy_2>

...

</taxonomies>

A taxonomy for each triple of the set EU (see Def.34) is analyzed by applying a

similarity measure that returns another similar relation (predicate) according to a defined

threshold. We use the similarity measure of Chapter 4, since it takes into account the

deepness, the distance, and the children in common of the taxonomies.

5.5.2 Datasets and Environment

Our prototype was used to perform several experiments to evaluate the viability and the

performance (execution time) of our approach in comparison with the related work. To

do so, we considered three datasets:

• Data 1: the DBpedia person data5 with 16’842,176 triples (used to evaluate the

reducing-complexity phase due to the huge number of triples);

• Data 2 (BK): the DBpedia geo coordinates 6 with 151,205 triples; and

• Data 3 (D): an extraction of Enipedia dataset (power plants), considering prop-

erties cat:Fuel_type, rdfs:label, cat:radioactive, prop:City, prop:Country,

prop:lat, prop:long, and prop:year, with 568 triples.

Using Data 1, Data 2, and Data 3, we evaluated the viability and performance

of the reducing-complexity process, while for the intersection phase, we used Data 2 and

Data 3. The protection phase is applied over the reduced set of triples obtained by the

reducing-complexity phase and the set of nodes of the intersection phase between Data

3 and Data 2. Since in this particular case the BK is also a set of triples (a complex

node), we applied the reducing-complexity process over the dataset as well. Experiments

were undertaken on a MacBook Pro, 2.2 GHz Intel Core(TM) i7 with 16.00GB, running

a MacOS High Sierra and using a Sun JDK 1.7 programming environment.

5Information about persons extracted from the English and Germany Wikipedia, represented by the

FOAF vocabulary - http://wiki.dbpedia.org/Downloads2015-10.
6Geographic coordinates extracted from Wikipedia - https://wiki.dbpedia.org/downloads-2016-10.
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5.5.3 Evaluation metrics

5.5.3.1 Accuracy in disclosure sources

In order to evaluate the accuracy of our approach when a set of triples are suggested as

disclosure sources to the expert user, we calculated the F-score, based on the Recall (R)

and Precision (PR). These criteria are commonly adopted in information retrieval and are

calculated as follows:

PR =
A

A+B
∈ [0, 1] R =

A

A+ C
∈ [0, 1] F-score =

2× PR×R
PR+R

∈ [0, 1]

where A is the number of correctly suggested triples; B is the number of wrongly suggested

triples; and C is the number of triples not suggested by our approach but considered as

disclosure sources.

According to our scenario, Data 3 contains eight properties, from which only two

properties (prop:lat and prop:long) are considered as disclosure sources. Thus, 142 triples

need to be selected by the expert user, since 71 power plants are present (a total of 568

triples). We describe the accuracy evaluation in subsection Configuration Phase.

5.5.3.2 Protection Data Verification

To consider the data as a protected one, it should not contain disclosure sources which

compromise the data; thus, to verify the data, we propose a measure based on the sensitive

triples returned by applying a query over the datasets. The verification is performed as

the relation between the sensitive information produced by the original data with respect

to the one produced by the protected data; i.e.,

AnonV(D,pD) =
N. of sensitive triples from D − N. of sensitive triples from pD

N. of sensitive triples from D
∈ [0, 1].

where D is the data to be published and pD the protected one (see Def. 36).

For our evaluation, we use the query presented in our motivating scenario, consider-

ing any type of resources (e.g., dbo:School, dbo:Hospital) as places of interest. A total

of 364 entities, represented by 1456 triples, are sensitive information.

SELECT DISTINCT
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?Place ?g bif:st_distance(?g,bif:st_point(".$long.",".$lat.")) AS ?distance

FROM <http://dbpedia.org>

WHERE {?p rdfs:label ?Place ; geo:geometry ?g.

FILTER (bif:st_intersects (?g, bif:st_point (".$long.", ".$lat."), 100)

&& (lang(?Place) = \"en\"))}

ORDER BY ASC(?distance)

This metric evaluates the protected RDF data in the subsection Protection Phase.

We describe and evaluate as follows each process to obtain a protected RDF data.

5.5.4 Reducing-Complexity Phase

We performed the reducing-complexity process over three real datasets available on the

Web (Data 1, Data 2, and Data 3). We evaluated the Jena parsing-time (ms) and

the size (bytes) of the input and output to compare the improvement of working over the

output in terms of viability and performance.

5.5.4.1 Viability Evaluation

Test 1: We chose randomly the value 0.44 as the threshold for the reducing-complexity

process. We extracted 1,000 triples from each dataset and increased the number of triples

by a step of 1,000 for the next iterations. Table 5.5 shows the results obtained for Data 1.

This process reduced the complexity of more than 16 million of triples to only 132 triples,

since the values were extracted from Wikipedia following a schema with a finite number

of properties. The Jena parsing-time of the input is reduced to 1.01 ms (132 triples) and

its size to 9333 bytes. Note that applying the same threshold for different sets of triples

extracted from Data 1, we obtain the same output for all the cases, showing that the

general schema of the resources (finite number of properties) is returned by this process.

For Data 2, Table 5.6 shows the results of applying the reducing-complexity process.

The dataset of 151,205 triples is reduced to only 4 triples, i.e., the 151,205 triples follow the

schema represented by the 4 returned triples. The Jena parsing-time and the size of the

input were reduced to 0.40 ms and 455 bytes, respectively. In Data 3, the output contains

only 8 triples from 568 triples as we can observe in Table 5.7. The Jena parsing-time and

the size of the dataset was reduced to 0.68 ms and 769 bytes, respectively. Similarly to

the two previous data sets, the 8 returned triples represents the scheme of all triples in

the set.
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Table 5.5: Test 1: Reducing-Complexity process for Data 1, using a threshold 0.44
Data 1 Input Output

Threshold Triples
Jena Time

(ms)

Size

(bytes)
Triples

Jena Time

(ms)

Size

(bytes)

0.44 1,000 7.99 68958 132 1.10 9333

0.44 2,000 16.89 138108 132 1.08 9333

0.44 3,000 23.95 207036 132 1.12 9333

0.44 4,000 30.41 276070 132 1.05 9333

0.44 5,000 36.50 345687 132 1.07 9333

0.44 6,000 42.75 414809 132 1.15 9333

0.44 7,000 48.23 484719 132 1.06 9333

0.44 8,000 53.11 553507 132 1.10 9333

0.44 9,000 56.93 622646 132 1.01 9333

0.44 10,000 61.12 666224 132 1.09 9333

0.44 16’842,176 – – 132 1.03 9333

Table 5.6: Test 1: Reducing-Complexity process for Data 2, using a threshold 0.44
Data 2 Input Output

Threshold Triples
Jena Time

(ms)

Size

(bytes)
Triples

Jena Time

(ms)

Size

(bytes)

0.44 1,000 9.45 77144 4 0.40 455

0.44 2,000 17.94 154729 4 0.35 455

0.44 3,000 25.37 232222 4 0.39 455

0.44 4,000 31.49 309952 4 0.44 455

0.44 5,000 38.63 387289 4 0.36 455

0.44 6,000 44.98 464888 4 0.41 455

0.44 7,000 51.81 543737 4 0.37 455

0.44 8,000 57.41 622768 4 0.36 455

0.44 9,000 62.74 700421 4 0.39 455

0.44 10,000 69.89 778651 4 0.42 455

0.44 151,205 – – 4 0.40 455

Test 2: In order to select the best threshold for the reducing-complexity process of each

dataset, we evaluated the number of triples, Jena parsing-time, and the size of the output

by using a threshold value between [0.01 - 1.00] with a step of 0.01. Table 5.8 shows

the results obtained for Data 1. As we can observe, we obtained the best result for the

thresholds from 0.01 to 0.29, where only nine properties are used in the whole database.

The Jena parsing-time of the output was reduced to 0.49 ms, while the size was reduced

to 834 bytes.

For Data 2 and Data 3 (see Tables 5.9 and 5.10), the best results were obtained

for a wide range of thresholds [0.01 - 0.49]. By regarding the datasets, in Data 2 and

Data 3, all resources were described by the same properties (four and eight properties,

respectively), while in Data 1, there are some resources described by only three or four

properties from a total of nine, therefore in Data 1, the optimal threshold was obtained

in a smaller range [0.01 - 0.29], since for the range [0.30 - 0.49], some resources were not
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Table 5.7: Test 1: Reducing-Complexity process for Data 3, using a threshold 0.44
Data 3 Input Output

Threshold Triples
Jena Time

(ms)

Size

(bytes)
Triples

Jena Time

(ms)

Size

(bytes)

0.44 568 4.99 37645 8 0.68 769

considered as similar to the general schema due to their smaller number of properties.

Table 5.8: Test 2: Reducing-Complexity process for Data 1 with a step 0.01
Data 1 Input Output

Threshold Triples
Jena Time

(ms)

Size

(bytes)
Triples

Jena Time

(ms)

Size

(bytes)

[1.00 , 0.50] 10,000 63.62 666224 10,000 62.56 666224

[0.49 , 0.45] 10,000 61.54 666224 148 1.17 10420

0.44 10,000 62.21 666224 132 1.12 9333

0.43 10,000 65.32 666224 111 0.96 7934

0.43 10,000 62.59 666224 75 0.86 5423

[0.41 , 0.40] 10,000 61.98 666224 55 0.80 4040

0.39 10,000 60.81 666224 39 0.72 3069

0.38 10,000 62.44 666224 26 0.63 2174

[0.37 , 0.36] 10,000 62.86 666224 33 0.65 2617

[0.35 , 0.34] 10,000 61.12 666224 18 0.56 1523

[0.33 , 0.30] 10,000 63.29 666224 12 0.51 1047

[0.29 , 0.01] 10,000 63.58 666224 9 0.49 834

0.29 16’842,176 – – 9 0.49 834

Table 5.9: Test 2: Reducing-Complexity process for Data 2 with a step 0.01
Data 2 Input Output

Threshold Triples
Jena Time

(ms)

Size

(bytes)
Triples

Jena Time

(ms)

Size

(bytes)

[1.00 , 0.50] 10,000 69.25 778651 10,000 69.42 778651

[0.49 , 0.01] 10,000 70.91 778651 4 0.39 455

0.49 151,205 – – 4 0.39 455

5.5.4.2 Performance Evaluation

To evaluate the performance of of the reducing-complexity phase, we measured the average

time of 10 executions for each test.

Test 3: We evaluated the time of the reducing-complexity process of 10,000 triples from

Data 1 by using several thresholds between [0.01 - 1.00] in order to observe the influence of

the threshold over the reduction time. Figure 5.5 shows that from a threshold 0.49, where

the number of triples is reduced to only 148, the reduction time decreases to 4,977.91 ms

until 3,668.54 ms for a threshold value of 0.01. As more triples are reduced during the

reducing-complexity process, less comparisons are performed, since for each iteration less
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Table 5.10: Test 2: Reducing-Complexity process for Data 3 with a step 0.01
Data 3 Input Output

Threshold Triples
Jena Time

(ms)

Size

(bytes)
Triples

Jena Time

(ms)

Size

(bytes)

[1.00 - 0.50] 568 4.92 37645 568 4.89 37645

[0.49 -0.01] 568 4.71 37645 8 0.39 769

0.49 568 – – 8 0.39 769

operations of similarity are needed to discover another similar node.

Figure 5.5: Test 3: Execution time of the Reducing-complexity process using a threshold

between 0.01 and 1.00

Test 4: In this test, we evaluated the impact of the number of triples, from Data 1, on

the execution time of the reducing-complexity phase. We used a threshold value of 0.29,

which was one of the thresholds that reduced more triples, and a step of 10,000 triples

for the iterations. Figure 5.6 shows the execution time with respect to the number of

triples. For 60,000 triples, the execution time is 302.65s. The result obtained confirms

the quadratic performance of this process. The following section evaluates the intersection

phase.

Figure 5.6: Test 4: Execution time of the Reducing-complexity process using a threshold

value of 0.29
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5.5.5 Intersection Phase

Using the reduced datasets of Data 2 and Data 3, obtained by the reducing-complexity

process (4 and 8 triples, respectively), we perform the intersection process considering

Data 3 as the data to be published (D), while Data 2 as the background knowledge

(BK).

5.5.5.1 Viability Evaluation

To evaluate the viability of applying this process over real scenarios, we chose randomly a

threshold value (0.65) and later we analyzed the behavior of this process with respect to

several threshold values.

Test 5: By using a threshold value of 0.65, the intersection process did not return any

intersection node. Regarding the reduced datasets, the nodes that represent the latitude

and longitude properties are terminal nodes, thus they do not have outgoing properties

and its similarity is 0.50. Additionally, The similarity between the node which represents

a power plant (Data 3) and the one which represents a place of interest (Data 2) is

calculated based on the properties in common (intersection – only latitude and longitude)

from a total of ten properties (union – eight properties in D and four properties in BK),

thus their similarity is 0.20.

Test 6: We evaluated the viability of this process using several thresholds from 0.01 to

1.00 with a step of 0.01. From a threshold value between 1.00 and 0.50, no node was

returned. For [0.49, 0.21], two nodes which represent the coordinates of the power plant

resource in D, are returned as potential keys, which is what we expect. For [0.20, 0.01],

three nodes are returned (coordinates and the node which represents the power plant).

Table 5.11: Test 6: Intersection process between Data 2 and Data 3 with a step 0.01
Threshold Number of Nodes

[1.00 - 0.50] 0

[0.49 - 0.21] 2

[0.20 - 0.01] 3

5.5.5.2 Performance Evaluation

Test 7: The time required to discover the nodes that can be potential keys, was measured.

An average of 10 execution indicates a time of 0.24 ms for this process.
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5.5.6 Selecting Phase

A GUI based on triples was built to reduce the effort of the expert user. The interface

selects automatically the triples which contain at least one potential key (IN) which are

returned by the intersection process.

Test 8: We measured the average of verifying the selected triples, which contain the nodes

detected during the intersection process, of 10 people that have under- and pots-graduate

degrees in computer science. Since only eight triples are available in the reduced dataset

of Data 3, the verifying average time was 8.23 s.

Test 9: We evaluated the accuracy of the set of triples suggested as disclosure sources

by our approach, using the F-score measure. Table 5.12 shows that for a threshold be-

tween [0.49 , 0.21] all triples which compromise the data to be published are suggested

(Data 3), obtaining a F-score 100%. For a threshold between [0.20 , 0.01] also the triples

which compromise the data are suggested, but other triples were suggested as well. These

thresholds have a F-score of 40%.

Table 5.12: Test 9: Accuracy evaluation for the set of triples suggested as disclosure

sources to the Expert User

Intersec.

Thres-

hold

N. of

potential

keys

Triples

suggested

as

disclosure

sources

(Expert

User

Interface)

Triples

suggested

as

disclosure

sources

(Internal

Mapping)

Valid
Not

Valid

Not

sugges-

ted

Prec.

(%)

Rec.

(%)

F-score

(%)

[1.00 , 0.50] 0 0 0 0 0 142 0 0 0

[0.49 , 0.21] 2 2 142 142 0 0 100 100 100

[0.20 , 0.01] 3 8 568 142 426 0 25 100 40

5.5.7 Protection Phase

The relations (properties) that belong to the triples considered as disclosure source by

the expert user, have to be protected in order to reduce the risk of disclosure of sensitive

information. According to the configuration process, the eight triples from the reduced set

of Data 3 were pre-selected in the selecting interface, showing that they can be used to

disclosure sensitive information. By the verification of the expert user, the anonymization

process is performed. Since there are eight triples with different properties (predicates),

eight taxonomies need to be provided by the expert user.

Test 10: We measured the average time of 10 executions, by using a random threshold
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of generalization (0.36). A time of 1.12 ms was required to perform this process.

Test 11: Additionally, we evaluated the protected data by using the AnonV function

defined in the subsection evaluation metrics. Table 5.13 shows that for a threshold less

than 0.50 in the intersection phase, the protected data (pD) does not produce sensitive

information, obtaining the maximum evaluation value (100%).

Table 5.13: Test 11: Protection Data Evaluation according to the number of sensitive

triples produced by the D and pD

Intersec.

Threshold

Sensitive

Triples in D

Sensitive

Triples in pD

Protected Data

Verification (%)

[1.00 , 0.50] 1456 1456 0

[0.49 , 0.21] 1456 0 100

[0.20 , 0.01] 1456 0 100

In these subsections, we evaluated the viability and performance of our approach by

using datasets available on the Web. We demonstrated a huge reduction of the expert-user

interaction suggesting disclosure sources. Also, a high performance was obtained for all

the phases. Following subsection evaluates our approach with respect to related work.

5.5.8 Related Work Comparison

In order to measure the viability and the performance of our approach with respect to the

state of the art, we selected a work for each identified group of the related work section.

For RDF data, we selected the work in [RGCGP15], for structured data (database) the

work in [SO14], while for graph data the work in [YCYY13]. Thresholds of 0.49, 0.10, and

0.36 were used for the reducing-complexity (D and BK), intersection, and generalization

processes, respectively in our approach.

Test 12: We evaluated the average time of 10 executions of the anonymization processes.

From Data 2, 10,000 triples are considered as the background knowledge (BK) and the

whole Data 3 as the data to be published (D). Table 5.14 shows the results obtained for

this comparison. The non-viability of the works in [RGCGP15, SO14, YCYY13] for real

scenarios, was clearly demonstrated in this evaluation, since the interaction of the expert

user to classify the data, required a high effort (more than three hours), making this

task almost impossible. Moreover, the execution time of the protection processes, without

considering the classification, was greater than one hour for [RGCGP15, SO14, YCYY13]

(the executions were stopped after one hour of processing), while for our solution was only
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5.28 s. Note that we considered the time of classification similar to the time of verification

which was obtained in our configuration-phase evaluation (∼1 second for triple).

Following section presents our conclusions of this chapter.

5.6 Summary

In this chapter, we investigated the protection of sensitive information for RDF documents

before publication on the Web. We proposed an protection approach, consisting on four

phases: (i) Reducing-Complexity phase, where the input, a set of RDF documents (D) in

any serialization format, is analyzed to reduce its graph complexity; (ii) Intersection phase,

where similar nodes (IN) between the reduced graph from the data to the published (D)

and the one from the background knowledge (BK) are identified as potential keys; (iii)

Configuration phase in which the expert user analyzes and selects the triples that contain

at least one potential key, considered as disclosure sources (EU); and (iv) protection phase

that executes an generalization operation over the selected triple.

We evaluated the viability and performance of our protection approach with several

datasets available on the Web. Results show that our approach decreases the interaction

of the expert user by reducing the complexity of the graph structure (reducing-complexity

phase), identifying potential keys (intersection phase), and suggesting potential disclo-

sure sources through a graphic user interface to the expert user. Moreover, we evaluated

our approach with respect to the state of the art, demonstrating that our proposal over-

come existing solutions and these later are not able to manage linked and heterogeneous

resources.

Following chapter describes the summary of all chapters, conclusions and future

directions of this work.
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Chapter 6

Conclusions and Future Works

“If you want to live your life in a creative way, as an

artist, you have to not look back too much. You

have to be willing to take whatever you’ve done and

whoever you were and throw them away.”

— Steve Jobs

In this thesis, we proposed and evaluated an RDF protection framework, called

RiAiR. The proposal is designed for RDF documents, considering all their elements and

a scenario of a huge quantity of information. The complexity of the RDF structure is

reduced to make possible the task of classification and to suggest potential disclosure

sources to the expert user, decreasing his interaction. By a generalization method, we

reduce the connections among datasets to protect the data and to preserve the objectives

of the Semantic Web (integration and combination).

We investigated several similarity functions in order to provide the most adequate

one. A similarity function based on the context of the resources (incoming and outgoing

properties) was used to perform the experiments. However, in syntactic similarities, some

limitations corcening the datatypes were found and studied in this thesis. A similarity

and an inference approach among datatypes were proposed.

The experimental evaluation of accuracy, viability, and performance through several

databases available on the Web, reflects the effectiveness of your approach in comparison

with existing works.

In this chapter, we present the conclusions of our work and a discussion regarding

the limitations around the challenges. We conclude with the future works that can extend
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CHAPTER 6. Conclusions and Future Works

the scope of the approach to ensure a better protection for the Semantic Web.

6.1 Synopsis

Chapter 2 described the background information regarding the WWW, Web technolo-

gies, and its principles. A Semantic Web definition, its architecture and the standard

frameworks as the RDF to describe real resources on the Web, were reported. We

discussed the relation between the principles of the Web and how RDF fulfill them.

We analyzed the Web of Data, Linked Open Data and the initiatives to convert the

datasets to RDF data according to the reported principles.

Chapter 3 analyzed the datatypes proposed by the W3C in the context of RDF match-

ing/integration. We also discussed about the current datatype hierarchy, which does

not properly capture any semantically meaningful relationship between datatypes.

In additional, we noticed that existing similarity measures among datatypes are not

suitable for the Semantic Web, since either they are too restrictive, based on ar-

bitrary judgment, or formulas applied to the W3C hierarchy. In this context, we

proposed:

• An analysis of the current W3C datatype hierarchy, its limitations and adequate

applicability for the Semantic Web.

• A new datatype hierarchy, extending the one proposed by the W3C.

• A new similarity measure, extending the existing works to take into account

the children of each datatype (cross-children similarity).

Experiments showed an important improvement in the accuracy of the approach

with respect to the existing works.

Chapter 4 highlights the importance of the datatypes for RDF matching/integration.

However, datatypes are not available in some RDF documents; thus, we analyzed

the state-of-the-art about datatype inference in order to deduce the datatype from

existing information. For the Semantic Web, we provided an inference based on the

following steps:

• An analysis of predicate information, such as range property that defines and

qualifies the type of the object value.

• An analysis of lexical space of the object value, by a pattern-matching process.

• A Semantic analysis of the predicate and its semantic context.
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• A generalization of Numeric and Binary data- types, to ensure a possible inte-

gration among RDF documents.

In addition, an online prototype called RDF2rRDF was developed, in order to

test and evaluate the inference process, according the accuracy and performance, in

the context of huge quantity of RDF data. Results showed better accuracy (up to

97.10%) than existing works and a lineal order performance.

Chapter 5 described our main contribution of this study. As more RDF data is published

and shared on the Web, sensitive information such as diseases, salaries, or bank

accounts, can be also provided. Thus, we proposed a new approach able to avoid

the disclosure of sensitive information.

The protection approach was based on four phases: (i) Reducing-Complexity phase

in which the graph is analyzed to reduce its complexity-structure to extract a com-

pressed one; (ii) Intersection phase, where similar nodes between the input graph

(reduced or not) from D and the one from the BK are identified as potential keys;

(iii) Selecting phase in which the expert user analyzes and selects the disclosure

sources, which contains at least one potential key; and (iv) protection phase that

executes a protection process over the selected triples. Mainly, we provided:

• A general framework designed for RDF documents, independent of the seri-

alization formats, in a scenario where linked and heterogeneous resources are

presented; i.e., the Web;

1. A method to reduce the complexity of the RDF structure of the data to be

published, simplifying the task of analysis, performed by the expert user;

2. A method to suggest disclosure sources to the expert user, based on node

similarity, reducing the task of data classification; and

3. A protection operation, based on a generalization method, to decrease the

relations among resources from different datasets, to preserve the main

objectives of integration and combination of the Semantic Web.

A desktop prototype was developed in order to test and evaluate the protection

process using our motivating scenario. Results showed a viable approach with high

performance.
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6.2 Future Works

In this section, we discuss possible directions for future works that would advance our

research and provide a better study. Future works directions include improvements into

similarity and inference of datatypes, similarity and inference in matching tools, and sim-

ilarity measure among resources. These directions are described as follows:

6.2.1 Complex Datatypes

In chapters 3 and 4, we restricted the scope of our study to simple datatypes. However,

the analysis of datatypes can be extended to complex datatypes, since as we mentioned

in Chapter 2, complex datatypes contain elements defined as either simple or complex

datatypes. Thus, a complex datatype can be treated as a set of simple datatypes in some

cases. An average of their elements can be used to measure the similarity among complex

datatypes. In the case of inference, to deduce complex datatypes, extra context rules can

be proposed according to the type of database to resolve the ambiguity.

6.2.2 Matching Tools

Chapters 3 and 4 propose two different approaches in the context of RDF document

matching/integration. Then, these approaches should be evaluated in real matching tools

in order to measure the improvement with respect to current methodologies. For example,

according to the related work classification from Chapter 3, works from Group 1 ([CAS09,

EYO08, ES07, HA09, HQC08, JMSK09, JLD15, LT06, LTLL09, MAL+15, NB16, SSK05])

use binary similarity (similarity among equal datatypes is one, otherwise the similarity is

zero), if we replace the existing similarity with the one proposed in this thesis, we can

observe the importance of an adequate datatype similarity. For our inference approach,

an evaluation between a database without datatypes, a database with their respective

datatypes, and another one with the datatypes inferred by our approach, will motivate

the need of datatypes for the Semantic Web, as well as, the contribution of our proposal.

6.2.3 Inferring Semantic Datatypes

Our inference approach presented in Chapter 4, is focuses on simple datatypes for literal

nodes. There are two types of properties (predicates), object property and datatype
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property, then our proposal can be considered as an inference approach for datatype

properties, since a datatype property is always related to a literal node. This property

is known in the literature as Syntactic datatype, because it describes the format of the

value it-self that is related to it. However, semantic datatypes (nodes related to object

property) are also present in RDF documents; thus, a new approach able to infer them is

needed. Semantic datatype is a complex challenge, since a node (IRI and blank node) can

have different semantic datatypes according to the context of the data.

6.2.4 Similarity measure among Resources

The accuracy of our protection approach depends on the similarity measure applied in

the reduction and intersection phases. Since heterogeneous and linked RDF datasets are

provided using several vocabularies, semantic similarities are needed in order to compare

similar resources with different properties.
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Appendix A

Appendix

A.1 Introduction

Avec les progrès des techniques du Web sémantique, actuellement une énorme quantité de

données est disponible sur Internet. Ces données sont collectées et publiées par différentes

sources (par exemple, les entreprises, les gouvernements) à de nombreuses fins, telles que

des services, des statistiques, des tests, de la recherche, etc. Le Web sémantique permet

l’intégration et la combinaison de ces données en fournissant des modèles standards tel

que RDF et OWL [SH01].

Selon [HDP12], plus en plus de gouvernements deviennent des gouvernements élec-

troniques, puisqu’ils font partie des initiatives Linked Open Data, fournissant leurs données

pour une intégration des données plus flexible, augmentant la qualité des données et four-

nissant de nouveaux services et une réduction des coûts. Linked Data est un ensemble

de bonnes pratiques pour la publication et la connexion de données structurées sur le

Web [BHB09]. L’idée est de rendre les données lisibles pour les humains et les machines,

en adoptant des formats spéciaux et en les connectant en utilisant des identifiants de

ressources internationales (IRI), qui sont des abstractions de ressources réelles du monde.

Cependant, vu que davantage de données sont publiées et partagées, des informa-

tions sensibles telles que des maladies, des salaires ou des comptes bancaires sont également

fournies et, par conséquent, compromettent la vie privée des entités (patients, utilisateurs,

entreprises). Ainsi, pour protéger la vie privée des entités principales, il est nécessaire

d’identifier, dans les données publiées, les informations permettant de découvrir directe-

ment ou indirectement la relation entre les entités principales et les informations sensibles.
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Dans un environnement interne (par exemple, une entreprise particulière), l’accès

aux données est limité aux utilisateurs disposant de droits appropriés, grâce à des tech-

niques de contrôle d’accès [BSB + 05]. En revanche, le Web est une plate-forme ouverte,

où tout utilisateur a accès sans aucun contrôle ou privilège. Ainsi, dans le contexte des

données disponibles sur le Web, d’autres techniques sont nécessaires pour gérer les prob-

lèmes de confidentialité. De plus, il est nécessaire de garder la disponibilité et l’utilité

de l’information, tout en préservant la vie privée. Ensuite, trois aspects principaux sont

considérés pour assurer la protection de l’entité :

1. Préserver la confidentialité, en identifiant et en traitant les données qui peuvent

compromettre la confidentialité des entités (par exemple, les identifiants);

2. Identifier l’utilité des données publiques pour diverses applications (par exemple,

statistiques, tests, recherches);

3. Connâıtre les connaissances de base qui peuvent être utilisées par les adversaires

(par exemple, le nombre de relations, une relation spécifique, l’information d’un

nœud). Les connaissances antérieures peuvent être facilement obtenues, en raison

de l’accès gratuit à l’information sur le Web et l’utilisation des IRI, ce qui permet

des connexions entre différentes données qui peuvent compromettre la confidentialité

des entités.

Selon [RGCGP15], l’anonymisation est une technique de protection de la vie privée

qui a été appliquée avec succès en condition réelle. Il consiste à protéger les entités

principales en supprimant ou en modifiant les informations identifiables pour les rendre

anonymes, tout en conservant l’utilité des données. Ces données sont modifiées en fonction

de certains critères des valeurs existantes (par exemple, taxonomies) pour satisfaire aux

conditions d’anonymat.

L’anonymisation dans les bases de données a été bien étudiée et plusieurs proposi-

tions sont disponibles dans la littérature [AFK + 06, XWP + 06, LDR06, KG06, BS08,

CJT13, MKM13]; Cependant, ces techniques ne sont pas directement applicables à RDF,

car il s’agit d’un modèle plus complexe, dont les données sont représentées sous forme d’un

graphe orienté, avec des informations sur les nœuds et les arêtes qui ont des propriétés et

des restrictions. Cela signifie que les relations entre les ressources ont des significations

et peuvent être utilisées pour déduire des données supplémentaires. Par exemple, une

propriété dbo:works qui lie un créateur à une peinture, permet de déduire que le créa-

teur est un dbo:painter, alors que la même propriété liant un créateur à un livre, fait
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inférer que le créateur est un dbo:writer. De plus, les IRI sont des ressources interna-

tionales et uniques, donc ils gardent leurs propriétés dans toutes les données, même si elles

proviennent de différentes sources.

Actuellement, dans de nombreux domaines (réseaux sociaux, données de communi-

cation, traces de mobilité et graphiques Web), les informations sont générées, partagées

et fournies au public, à la communauté de recherche et aux partenaires commerciaux sous

forme de données graphiques [JMB17]. Par conséquent, les techniques d’anonymisation

appliquées aux structures de graphes deviennent populaires de nos jours. Le problème

avec ces approches de graphes d’anonymisations est que des solutions sont proposées pour

modéliser des hypothèses particulières de la structure du graphe et des connaissances

antérieures, qui sont vraiment restrictives pour les applications RDF. Dans les graphes

classiques, il existe un seul type de nœuds, tandis que dans RDF, il existe différents types

de nœuds (par exemple, IRI, nœuds vides et nœuds littéraux). Dans les graphes RDF, il

existe des données dans les nœuds ainsi que dans les arêtes, et toutes sortes de données

peuvent être présentées (c’est-à-dire, des identifiants, des quasi-identifiants et des données

sensibles).

Par conséquent, plusieurs techniques d’anonymisation des graphes doivent être com-

binées (par exemple, graphes non dirigés [LT08a, YW08a, CT08, BDK07, ZP08a, HMJ

+ 08a, ZG08, ZP11, CSYZ08], graphes de vertex étiquetés [BDK07, ZP08a, HMJ + 08a,

ZG08 , ZP11, CSYZ08]) afin de couvrir la structure et les besoins RDF. De plus, RDF est

plus sensible à la perte d’informations, puisque le masquage des nœuds, des arêtes et la

modification de la structure du graphe compromettent considérablement la certitude de

l’inférence.

L’anonymisation dans les données RDF n’a pas été bien étudiée jusqu’à présent.

L’étude récente [RGCGP15], est un travail initial de protection des individus sur les don-

nées RDF, car elle montre une approche pratique d’anonymisation pour des scénarios

simples comme l’utilisation d’opérations de généralisation et de suppression basées sur des

hiérarchies. Mais, elle est encore inadéquate pour les scénarios complexes, où une énorme

quantité de données et de connaissances antérieures sont utilisées, et pour la protection

des informations sensibles.

Pour résoudre ces limitations, nous proposons comme contribution principale un

cadre appelé RiAiR (Réduction, intersection et anonymisation dans RDF), indépendant

des formats et des fournisseurs de sérialisation. Notre processus de protection repose

principalement sur une approche en quatre phases dans laquelle l’entrée est convertie en

une représentation graphique utilisée par tous les modules: (i) Phase de réduction de la
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complexité dans laquelle le graphique est analysé afin de réduire sa structure de complexité

pour en extraire un comprimé; (ii) phase d’intersection, où des nœuds similaires entre le

graphe d’entrée (réduit ou non) issu des données à publier et celui issu des connaissances

de base sont identifiés en tant que clés potentielles (identifiants et quasi-identifiants); (iii)

Sélection de la phase dans laquelle l’utilisateur expert analyse et sélectionne les sources

d’informations qui contiennent au moins une clé potentielle. et (iv) un phaset de protection

qui exécute un processus de protection sur les triples sélectionnés. La proposition est

conçue pour les documents RDF, en tenant compte de leurs éléments (IRI, nœuds vides,

littéraux) et du scénario dans lequel une quantité énorme d’informations est disponible. La

complexité de la structure RDF est réduite afin de rendre possible la tâche de classification

et de suggérer des sources de divulgation potentielles à l’utilisateur expert, diminuant

ainsi son interaction. De plus, par une méthode de généralisation, les connexions entre

les jeux de données sont réduites, en préservant les objectifs principaux de SemanticWeb

(intégration et combinaison) et en protégeant les informations sensibles au même moment.

Comme les phases de réduction et d’intersection sont basées sur une fonction de

similarité entre les ressources RDF, certaines limitations liées à la comparaison entre les

nœuds littéraux ont été trouvées et étudiées. Par exemple, les types de données, qui sont

associés aux littéraux, peuvent représenter les mêmes informations dans plusieurs formats

en fonction de vocabulaires différents (par exemple, une valeur littérale 16.0 peut être

flottante ou double). De plus, une quantité énorme de documents RDF est incomplète ou

incohérente en termes de types de données [PHHD10]. Ainsi, nous proposons une nouvelle

hiérarchie de types de données basée sur celle proposée par le W3C, ainsi qu’une mesure

permettant d’obtenir des valeurs de similarité entre différents types de données. De plus,

un processus d’inférence est également proposé pour fournir les types de données aux

nœuds littéraux et effectuer la similarité.

A.2 Contributions à la recherche

Nous présentons les contributions suivantes dans cette thèse :

A.2.1 Analyse et similitude de type de données

Le RDF adopte les types de données du XML définis par le W3C; cependant, la hiérarchie

actuelle ne capture pas correctement toute relation sémantiquement significative entre

les types de données. Par exemple, les types de données dateTime et time sont mises
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au même niveau dans la hiérarchie W3C. Ainsi, nous analysons les types de données

dans le contexte des documents de correspondance/intégration RDF, puisque toutes les

informations sont utilisées pour découvrir des données similaires. De plus, les mesures de

similarité pour les types de données ne sont pas adéquates pour le Web sémantique, car

elles sont trop restrictives (même type de données, la similarité est 1, sinon 0) ou basées

sur des caractéristiques spécifiques de XML et XSD (par exemple, constraint facets). Afin

d’effectuer une étude des types de données pour le Web sémantique, nous fournissons :

• Une analyse de la hiérarchie actuelle des types de données du W3C, ses limites et

son applicabilité adéquate pour le Web sémantique.

• Une version étendue de la hiérarchie des types de données W3C, où une relation

parent-enfant exprime la subsomption (parent subsume les enfants), ce qui en fait

une taxonomie des types de données.

• Une nouvelle mesure de similarité : étendre les travaux de pointe pour prendre en

compte plusieurs aspects liés aux nouvelles relations hiérarchiques entre les types de

données comparés, tels que: la distance et la profondeur entre les types de données,

les enfants similaires, etc.

A.2.2 Inférence du type de données

Les types de données ne sont pas toujours présents dans les données et selon [ANS09a], la

présence d’informations de type de données, de contraintes et d’annotations sur un objet

améliore la similarité entre deux documents jusqu’à 14%. Par conséquent, une analyse

de l’information liée à la valeur, qui n’a pas son type de données respectif, est nécessaire.

Une approche capable d’inférer le type de données pour le Web sémantique est fournie,

effectuant:

• Une analyse des informations de prédicat, telles que la propriété de plage qui définit

et qualifie le type de la valeur de l’objet.

• Une analyse de l’espace lexical de la valeur de l’objet, par un processus d’appariement

de formes.

• Une analyse sémantique du prédicat et de son contexte sémantique, qui consiste à

identifier des mots apparentés ou des synonymes pouvant désambigüıser deux types

de données ayant un espace lexical similaire.
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• Une généralisation des types de données numériques et binaires, pour assurer une

intégration possible entre les documents RDF.

• En outre, un prototype en ligne appelé RDF2rRDF est également fourni, afin de

tester et d’évaluer le processus d’inférence en fonction de la précision et des perfor-

mances dans le contexte d’une énorme quantité de données RDF.

A.2.3 Anonymisation de documents RDF

Les solutions d’anonymisation existantes dans les bases de données et les graphes ne peu-

vent pas être directement appliquées aux données RDF, et les solutions RDF sont encore

en cours de développement et n’assurent pas une confidentialité suffisante; Nous avons

donc proposé:

• Une méthode pour réduire la complexité de la structure RDF des données à publier,

simplifiant la tâche d’analyse, effectuée par l’utilisateur expert.

• Une méthode pour suggérer des sources de divulgation à l’utilisateur expert, basée

sur la similarité de nœud, réduisant la tâche de classification des données.

• Une opération de protection, basée sur une méthode de généralisation, visant à ré-

duire les relations entre les ressources de différents jeux de données, afin de préserver

les objectifs principaux d’intégration et de combinaison du Web sémantique.

A.3 Structure du Manuscrit

Nous présentons un aperçu de chacun des chapitres suivants dans cette thèse:

A.3.1 Le Chapitre 2 - Le Web Sémantique: Révision

Présente les informations générales sur les concepts et les principes de WWW, Web Séman-

tique, RDF et ses définitions respectives pour mieux comprendre le processus d’anonymisation.
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A.3.2 Le Chapitre 3 - Le Web Sémantique: Analyse et Similarité de

Types de Données

Présente l’importance des types de données pour le Web sémantique et un scénario mo-

tivant pour illustrer les limites des approches existantes sur la similarité des types de

données. Ce chapitre décrit également notre contribution pour une meilleure similarité

de type de données, consistant en une nouvelle hiérarchie de types de données basée sur

celle proposée par le W3C, et une nouvelle mesure de similarité prenant en compte la

similarité entre enfants. Une évaluation expérimentale pour mesurer l’exactitude de notre

proposition est montrée, en ce qui concerne les approches existantes.

A.3.3 Le Chapitre 4 - Le Web Sémantique: Inférence de Type de Don-

nées

Décrit notre proposition d’inférence de type de données. Ce chapitre comprend égale-

ment un scénario de motivation pour montrer comment une intégration inadéquate entre

les documents RDF peut se produire si les types de données ne sont pas présents. Une

proposition formelle est décrite, consistant en quatre étapes: l’analyse des informations de

prédicat, l’analyse de l’espace lexical de type de données, l’analyse sémantique des prédi-

cats et la généralisation des groupes numériques et binaires. Enfin, nous détaillons notre

prototype, appelé RDF2rRDF, qui est utilisé pour effectuer des évaluations de précision

et de performance, en les comparant aux approches existantes.

A.3.4 Le Chapitre 5 - Le Web Sémantique: Préservation de la Confi-

dentialité

Décrit l’importance de la confidentialité pour le Web sémantique dans les documents

RDF. Des concepts et des définitions sur les données d’anonymisation sont présentés pour

formaliser la proposition. Un scénario motivant, dans le contexte du domaine des cen-

trale nucléaire, s’avère analyser l’applicabilité des approches existantes et leurs limites.

L’approche de protection reposait sur quatre phases: (i) Phase de réduction de complex-

ité dans laquelle le graphique est analysé afin de réduire sa structure de complexité afin

d’en extraire une structure comprimée; (ii) Phase d’intersection, où des nœuds similaires

entre le graphe d’entrée (réduit ou non) de D et celui de BK sont identifiés comme clés

potentielles; (iii) Phase de sélection dans laquelle l’utilisateur expert analyse et sélectionne

les sources d’informations, qui contient au moins une clé potentielle; et (iv) la phase de
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protection qui exécute un processus de protection sur les triples sélectionnés.

A.3.5 Le Chapitre 6 - Conclusions et travaux futurs

Dans cette thèse, nous avons proposé et évalué un cadre de protection RDF, appelé RiAiR.

La proposition est conçue pour les documents RDF, en tenant compte de tous leurs élé-

ments et d’un scénario contenant une quantité énorme d’informations. La complexité de

la structure RDF est réduite afin de rendre possible la tâche de classification et de suggérer

des sources de divulgation potentielles à l’utilisateur expert, diminuant ainsi son interac-

tion. Par une méthode de généralisation, réduisez les connexions entre les jeux de données

pour protéger les données et préserver les objectifs du Web sémantique (intégration et

combinaison).

Nous avons étudié plusieurs fonctions de similarité afin d’en fournir la plus adéquate.

Une fonction de similarité basée sur le contexte des ressources (propriétés entrantes et

sortantes) a été utilisée pour effectuer les expériences. Cependant, dans les similitudes

syntaxiques, quelques délimitations ont été trouvées et analysées dans cette thèse.

L’évaluation expérimentale de la précision, de la viabilité et des performances de

plusieurs bases de données disponibles sur le Web reflète l’efficacité de notre approche par

rapport aux travaux existants. Dans ce chapitre, nous présentons les conclusions de nos

travaux et une discussion sur les limites des défis. Nous concluons avec les travaux futurs

susceptibles d’étendre la portée de l’approche afin d’assurer une meilleure confidentialité

pour le Web sémantique.

Les directions futures des travaux comprennent des améliorations dans la similarité

et l’inférence des types de données, la similarité et l’inférence dans les outils de corre-

spondance et mesure de similarité entre ressources. Ces directions sont décrites comme

suit:

Types de Données Complexes

Dans les chapitres 3 et 4, nous avons limité la portée de notre étude à des types de

données simples. Cependant, l’analyse des types de données peut être étendue à des types

de données complexes, car comme nous l’avons mentionné au chapitre 2, les types de

données complexes contiennent des éléments définis comme des types de données simples

ou complexes. Ainsi, un type de données complexe peut être traité comme un ensemble
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de types de données simples dans certains cas. Une moyenne de leurs éléments peut

être utilisée pour mesurer la similarité entre les types de données complexes. Dans le

cas de l’inférence, pour déduire des types de données complexes, des règles de contexte

supplémentaires peuvent être proposées en fonction du type de base de données pour

résoudre l’ambigüıté.

Outils de correspondance

Les chapitres 3 et 4 proposent deux approches différentes dans le contexte de correspon-

dance/intégration de documents RDF. Ensuite, ces approches devraient être évaluées dans

de vrais outils d’appariement afin de mesurer comment est l’amélioration par rapport aux

méthodologies actuelles. Par exemple, selon la classification de travail connexe du chapitre

3, les travaux du groupe 1 ([CAS09, EYO08, ES07, HA09, HQC08, JMSK09, JLD15, LT06,

LTLL09, MAL + 15, NB16, SSK05]) utilisent une similarité binaire (la similarité entre les

types de données égaux est d’un, sinon la similarité est nulle), si nous remplaçons la sim-

ilarité existante par celle proposée dans cette thèse, nous pouvons observer l’importance

d’une similarité de type de données adéquate. Pour notre approche d’inférence, une éval-

uation entre une base de données sans types de données, une base de données avec leurs

types de données respectifs, et une autre avec les types de données déduits par notre

approche, motivera le besoin de types de données pour le Web sémantique ainsi que la

contribution de notre proposition.

Inférer des Types de Données sémantiques

Notre approche d’inférence présentée au chapitre 4, se concentre sur des types de données

simples pour les nœuds littéraux. Comme nous l’avons décrit dans le chapitre 2, il existe

deux types de propriétés (prédicats), propriété d’objet et propriété de type de données

(propriété d’entité renommée et propriété de valeur, respectivement), notre proposition

peut être considérée comme une approche d’inférence pour le type de données propriétés,

car une propriété de type de données est toujours liée à un nœud littéral. Cette propriété

est connue dans la littérature sous le nom de type de données Syntactic, car elle décrit le

format de la valeur elle-même qui lui est associée. Cependant, les types de données séman-

tiques (nœuds liés à la propriété de l’objet) sont également présents dans les documents

RDF; ainsi, une nouvelle approche capable de les inférer est requise. Le type de données

sémantique est un défi complexe, car un nœud (IRI et nœud vide) peut avoir différents

types de données sémantiques selon le contexte des données.
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Mesure de similarité entre les ressources

La précision de notre approche de protection dépend de la mesure de similarité appliquée

dans les phases de réduction et d’intersection. Etant donné que les ensembles de données

RDF hétérogènes et liés utilisent plusieurs vocabulaires, des similitudes sémantiques sont

nécessaires pour comparer des ressources similaires avec des représentations différentes.
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