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Introduction

This Habilitation thesis covers most of my research activities since 2008. Because my PhD thesis was on a
rather unrelated subject (superfluid 3He) to the physics described here, writing another manuscript about
my last ten years’ research turned out to be a satisfactory exercise, and definitely useful at least for myself.
It is structured in three chapters, which summarize mostly published results along what I identified as
three main axes, that is, (i) the physics of superconductor - quantum dot junctions, (ii) thermal effects
in quantum nanoelectronic devices, and (iii) scanning probe microscopy studies at very low temperatures,
- mostly on graphene. The first axis is a direct continuation of the work I began while a postdoc in
the Nanospin team at Institut Néel, together with Nicolas Roch, Franck Balestro, Vincent Bouchiat and
Wolfgang Wernsdorfer. The second axis is about thermal and more recently thermoelectric effects. This
line derives from previous research interests of Hervé Courtois, with who I have been working together
since my recruitment in 2008. From electronic cooling or overheating in quantum devices, we have recently
moved to thermoelectric effects, a topic that is still little explored in quantum dot junctions. Finally, the
interest in scanning probe microscopy techniques for investigating local quantum mesoscopic effects is a
result of my first postdoctoral work at the University of Tokyo. Here too, Hervé Courtois and I found a
fertile ground for collaborating on this shared interest.

While a postdoc with Wolfgang Wernsdorfer, my then-boss and I had a discussion one day about my
professional future. His recommendation was, in essence: whatever subject you chose, what really matters
is to have a vision, that is, an ultimate goal that all your efforts are in one way or the other converging
to. Back in 2008, this goal was in Wolfgang Wernsdorfer’s case measuring the reversal of a single quantum
spin. Which he has achieved since.

Looking over the first three chapters of this manuscript, I have to recognize that I completely failed in
following this advice. Indeed, both the instrumental techniques and the subjects presented here go into
quite divergent directions. The situation is even worse when considering my PhD. To some extent, the
main guideline of this work is probably the coupling between a single quantum level and the many-body
effects induced by an electron reservoir. This can be probed by a variety of experimental tools, mostly
related to tunneling spectroscopies in this case. The tour de force of the last (Prospective) chapter of this
manuscript is to try to leave hope for a possible happy end in the form of a kind of convergence of topics
and techniques.

I am deeply indebted to many people for the pleasure it has been to work at Institut Néel, in particular to
my team-mate Hervé Courtois, but also to Vincent Bouchiat, Wolfgang Wernsdorfer, Nicolas Roch, Franck
Balestro, Benjamin Sacépé, Johann Coraux, Denis Basko, Serge Florens, just to name a few colleagues
in Grenoble. To these add many collaborators and friends from all around the world: Katharina Franke,
Jukka Pekola, Anjan Gupta, Shaffique Adam, Claire Berger, ... Perhaps most importantly, I want to thank
the students and postdocs, who really did the work presented here: Sylvain Martin, Sayanti Samaddar,
David van Zanten, Aurélien Fay, Alessandro De Cecco, Bivas Dutta, Alvaro García Corral, Danial Majidi,
David Wander, Efe Gümüs and Rini Ganguly.
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Chapter 1

Superconductor - quantum dot
junctions

The interplay of superconductivity with a quantum dot (QD) has generated a vast experimental and
theoretical activity since the mid 90’s. This chapter focusses on the device aspects of S-QD hybrids [1],
rather than on the STM point of view discussed in a later chapter. From a fundamental perspective, one of
the main interests of this topic is associated to the fact that superconductivity is a many-body effect best
defined for an open system with a large number of particles and a well-defined phase, whereas the physics
of QDs is dealing with the opposite limit. The above antagonism is readily visible from the commutation
relation of the quantum phase and charge operators,

[
Q̂, ϕ̂

]
= i~, and the ensuing Heisenberg relation

between both quantities.
In a superconductor-quantum dot-superconductor (SQS) junction, the competing basic energy scales

involved are the magnitude of the superconducting order parameter ∆, the temperature kBT , the QD
charging energy U , and the tunnel coupling energies γi to each lead i. Another effective energy scale, kBTK
associated to the Kondo effect, emerges in some cases from the above. A large physical variety of regimes
is thus observed depending on the hierarchy of the above energy scales.

1.1 Electromigration and fabrication of single quantum dot de-
vices

The devices described in this section were obtained by the electromigration technique [2, 3], a detailed
description of which can be found in the theses of Nicolas Roch and David van Zanten [4,5]. A constriction,
of section ∼ 15×150 nm2, is lithographically prepared in a metallic wire, on top of a local backgate. Usually,
the wire is covered with a suspension of the molecules or nanoparticles to be connected. By ramping up the
bias voltage across the wire, the combination of local heating and momentum transfer between the electron
flow and the ions can lead to the opening of a nanometer-wide crack in the wire, a well-known failure
mechanism in conventional electronics. A fast reduction of the bias voltage as soon as the local resistance
increases allows avoiding a thermal avalanche and creating such nano-cracks in a rather controlled fashion.
The little miracle here is that, probably under the influence of local thermal activation, and perhaps of the
local electric field, the molecules/nanoparticles have a tendency to "fall" into the crack, bridging thereby
electrically the leads.

Just to get this straight: electromigration is an exploratory, poorly controlled, and low-
yield fabrication technique for connecting QDs, with no direct mid-term applications in na-
noelectronics.

After the successful implementation of single-molecule electromigration junctions between gold leads
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Chapter 1. Superconductor - quantum dot junctions

in the Nanospin group at Néel by N. Roch, V. Bouchiat, W. Wernsdorfer and F. Balestro [6, 7], I ex-
tended Nicolas Roch’s work to superconducting leads in 2007/08 while a postdoc. Because we were unsure
wether electromigration could actually work in aluminum, we started with electromigration in short gold
constrictions connected to nearby (∼ 100 nm) bulkier Al leads, thereby inducing superconductivity by the
proximity effect (an approach later also used in [8]). The results we obtained in such junctions can be
summarized as follows: (i) electromigration works smoothly, as expected in gold, (ii) the tunnel coupling
to the QDs (fullerenes at that time) is rather strong, (iii) the spectral gap in the proximity superconduct-
ing leads is smeared, and (iv) the gold-aluminum interface degradates quickly (due to the so-called purple
plague, resulting from intermixing of both compounds), if not cooled down within less than 12 hours after
fabrication.

In 2008, we moved to aluminum-only junctions. While the final number of successful devices is insuffi-
cient for establishing reliable statistics, the following device characteristics emerge: (i) electromigration is
slightly more difficult, although still possible, (ii) the tunnel coupling to the QD is generically weaker, (iii)
the leads’ density of states (DOS) has a hard gap, and (iv) prior to electromigration samples can be stored
for more than a week under ambient conditions before showing signs of degradation (mainly a gradual
increase in resistance due to oxidation).

A few years later, in the PhD work of David van Zanten, we came back to electromigration devices, using
this time colloidal gold nanoparticles rather than fullerenes [9]. David van Zanten came to the conclusion
that both the nanoparticle size and the ligands play a crucial role in the device yield [5]. Eventually, most
electronic transport features were very similar to the fullerene-based junctions from my postdoc.

More recently, Bivas Dutta started electromigration in noble metal constrictions in our group, for the
studies described in section 4.2. Bivas has tried several approaches beyond the drop-casting technique.
A few trials based on dielectrophoresis for trapping the nanoparticles from a suspension between the
leads [10] were not conclusive, but would deserve to be deepened. Following an idea from D. Ralph’s
group [11], Bivas Dutta has eventually focussed on evaporating an extremely thin (< 1.5 nm) gold layer
on top of the constrictions (made of gold or platinum). The dewetting of the thin gold layer naturally
produces nanoparticles. Clearly, the surface contaminants on the leads play a crucial role in this dewetting
process. The gold nanoparticles can even be deposited before electromigration. The success rate of such
junctions is strongly enhanced with respect to the drop-casted QDs. However, because of the large number
of electrostatically floating nanoislands in the vicinity of the junction, the electrostatic environment is often
subject to severe switches. Further, the QD spectroscopy does not yield as clearly resolved quantum levels
as in colloidal or molecular QDs.

All these difficulties said, one might wonder why bother with this low-yield technique. The reason for
this lies in a range of original features of the single-molecule or -nanoparticle based superconducting hybrids
presented here, with respect to earlier and widely studied hybrids based on two-dimensional electron gases
(2DEGs), carbon nanotubes (CNTs) or semiconducting nanowires, which are listed below:

• A well separated hierarchy of energy scales. The charging energy U exceeds usually several tens
of meV. The orbital level spacing δE is easily resolved (> 1 meV), larger than the superconducting
gap of aluminum ∆, which is 180 µeV in the bulk and reaches frequently 250 µeV in nanostructured
electrodes. This allows generally to reduce the QD to a single orbital quantum level. The tunnel
coupling γ to gold nanoparticles in all aluminum devices is the smallest parameter, usually ∼ 1 µeV
in the turnstile devices, but can be occasionally larger (see section 1.3.3).

• The quantum confining potential well is defined by the physical edge of the nanoparticle and thus very
sharp and gate voltage insensitive. This is in strong contrast with the tunable but shallow tunneling
barriers, prone to cross-talk, of many other QD devices.

• There is no interface material between the QD and the leads and the contact is point like. For
comparison, in CNT-based or similar SQS junctions, an interface material is often used, which reduces
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1.2. Normal state transport properties of quantum dot devices

(a)	

(b)	

(c)	

Figure 1.1: (a) Example of a transport diagram involving two tunnel junctions. The vertical axis allows for
comparing the chemical potentials of the different elements (leads and QD). The horizontal axis represents
the density of states. The respective band structures of both leads can be offset by applying a bias voltage
Vb. µNQD depends linearly on the gate voltage Vg. (b) SEM image of an all-aluminum electromigrated
constriction on top of a local backgate. (c) ∂I/∂V differential conductance map of an asymmetric device
in the normal state, near its sole experimentally accessible degeneracy point. The conductance ranges
from about 0 (black) to 1.6 µS (bright) (T = 100 mK, B = 600 mT. Due to coupling asymmetry, the
Zeeman splitting is visible only at a single Coulomb diamond edge (see text). The left Coulomb diamond
corresponds to an even electron occupation number.

the gap magnitude and smears the gap edge [12]. This is particularly important for the discussion in
section 4.1.1.

1.2 Normal state transport properties of quantum dot devices
Before presenting the effect of superconductivity in the leads for transport through a QD, this section
briefly reviews a few normal state transport properties. Rather than presenting an extensive lecture on
Coulomb blockade here, I will put forward a selection of N-Q-N transport properties that non-experts in
the field might ignore. I recommend the very nice paper by E. Bonet et al. while at Cornell [13] for further
details.

• The vertical axis in a transport diagram (such as in Fig. 1.1) represents the chemical potential, and
not the energy. This is necessary because - as opposed to the case of optical spectroscopies in which
electrons are promoted and not added - in a tunneling process the charge state (and thus the charging
energy) of a QD is changing.

• The electron spin degree of freedom strongly affects the relative probabilities of tunneling in and out
a quantum dot. Assume an empty spin-degenerate orbital level with symmetric tunnel coupling to
both leads. For tunneling into the QD, both spin species in the lead can contribute. But once an
electron is in the QD, its spin is fixed and thus it can only couple to a single spin-band in the other
lead. Therefore tunneling out is the bottleneck here, even if the junction transparency is the same

7



Chapter 1. Superconductor - quantum dot junctions

to both sides. Consider now a spin-degenerate level occupied by one electron in its ground state, to
which a second one is added. An analogue reasoning shows that now tunneling in is two times less
likely than tunneling out.

• From this effect, one cannot determine the parity of the dot occupation number N from simple con-
ductance measurements, because there is an ambiguity on what the tunnel couplings per spin channel
are, within a factor 2. When several Coulomb diamonds are visible, the occupation number parity
can be guessed from the shell superstructure of the Coulomb diamond pattern. When the coupling
is a bit stronger, the parity of N can also be inferred from the observation of a Kondo resonance in
oddly occupied Coulomb diamonds. Alternatively, parity can be determined from Zeeman splitting
of the quantum dot levels under an applied magnetic field. If the edge of a Coulomb diamond with
occupation number N splits, the first excitation (to state N ± 1) is Zeeman split, thus N ± 1 is odd
and N is even.

• If under magnetic field only one edge of a given Coulomb diamond splits, while the edge at opposite
bias voltage doesn’t (as shown in Fig. 1.1), this is due to asymmetric tunnel coupling. Consider
highly asymmetric tunnel couplings to the leads and a Zeeman-split orbital level. When the orbital
level is lowered towards the Fermi level of the strongly coupled lead, having a single or both spin levels
accessible hardly affects the current because the bottleneck is on the other side. The opposite is true
when the orbital level approaches the Fermi level of the weakly coupled lead: the current increases
in two approximately equal steps.

1.3 Electron transport in SQS devices

1.3.1 The Anderson impurity model
The most widely used starting point for describing an atomic impurity (a single quantum level) in a
superconducting host is the Anderson impurity model [14–16], with Hamiltonian H = HQD +Hmix +HSC.
The QD energy

HQD =
∑
σ

εQD nσ + U n↑n↓

depends on the (spin σ dependent) occupation n = d†d of the level, at a bare energy εQD with respect to
EF .

The Coulomb energy U makes double occupation unfavorable. Further, the coupling energy

Hmix =
∑
σ,k

t c†σ,kdσ + h.c.

describes tunneling between the QD (d, d†) and the host (c, c†). From the tunneling amplitude t and the
host’s normal density of states ρn, one defines the tunnel coupling (hybridization) γ = πt2ρn.

Finally, the superconducting host (or the lead connecting to the QD) is described by

HSC =
∑
σ,k

εk c
†
σ,kcσ −

∑
k

(
∆ c†↑,kc

†
↓,−k + h.c.

)
.

∆ is the complex superconducting order parameter in the host/lead. It can be replaced by |∆| if both the
tunneling amplitude t and the creation operators in that lead are multiplied by eiϕ/2, with ϕ the phase of ∆.
In the remainder, we identify ∆ and its magnitude. In HSC, destroying two electrons with opposite spin and
momentum to form a Cooper pair lowers the energy by ∆ per electron. In the case of two superconducting
leads connected to the QD, both Hmix and HSC will be doubled, with respective indices L,R.

8



1.3. Electron transport in SQS devices

Figure 1.2: SQS junction the weak-coupling regime. Left: I(Vb) at a fixed gate in the normal and
superconducting states, respectively [17]. The current reproduces the shape of one lead’s superconducting
density of states; the conductance onset is shifted in voltage by 2∆/e in the superconducting state. Right:
differential conductance map of a single molecular SQS junction, displaying sharply resolved spectroscopy
of the QD states and a transport gap Ω = 4∆/e around EF [18].

There are numerous competing energy scales in the above problem. The above Hamiltonian is thus
extremely rich, but analytical solutions are only available in some limiting cases. One such special case
is the non-interacting situation U = 0, for which the spectrum and the current can be calculated exactly.
However, the situation of small U is rather marginal in the experiments that will be presented here. We
will go through the various situations described by the Anderson impurity model from an experimental
point of view, sorted by increasing coupling strength.

1.3.2 Weak coupling regime: sequential and co-tunneling

Early experiments

The first experiments in the weak-coupling regime, γL,R � ∆, U , in which a QD was connected to su-
perconducting leads were performed by D. Ralph in Tinkham’s group [17]. Their devices have a vertical
geometry and take advantage of both superconducting and tunneling oxide properties of aluminum. The
QD itself is also a self-assembled aluminum grain, too small to be superconducting itself (in a later paper
this is no longer true [19]). This pioneering SQS transport experiment agrees nicely with the sequential
tunneling picture, that is, in the limit of vanishing tunnel coupling. Here, tunneling is described by Fermi’s
golden rule and the current is given by

I(Vb) ∝
∫
dE ρL(E) ρR(E + eVb) δ(E − µNQD) fL(E) (1− fR(E + eVb)),

where µNQD is a linear function of both Vb and Vg, f is the filling factor and

ρL,R(E) = Re
(

|E|√
∆2 − E2

)
(1.3.1)

is the normalized superconducting density of states in the respective lead. From the properties of the δ
function, the above expression of the current reduces to

|I(Vb)| ∝ ρL(µNQD) ρR(µNQD + eVb).

When µNQD is deep inside one band of one lead, the current around the conductance onset is proportional
to the density of states in the other lead. This is opposed to usual, single-barrier tunneling experiments,
where the differential conductance and not the current is proportional to the density of states. Further, the

9



Chapter 1. Superconductor - quantum dot junctions

conductance onset is shifted to voltages 2∆/e greater in absolute values with respect to the normal state.
All these features are well seen in Fig. 1.2.

One interesting use of superconducting tunneling contacts resides in the fact that this allows overcoming
the thermal Fermi edge smearing, unavoidably associated to tunneling from normal leads. In the latter
case, tunneling spectroscopies present a full-width at half maximum (FWHM) ∼ 3.5 kBT . This long-known
improvement of tunneling spectroscopy resolution by the use of a superconducting probe [20] has been
extensively used in STS [21–23] and device physics [24] recently. However, a deconvolution procedure has
to be applied to recover the spectral features from the differential conductance measurements, roughly
leading to an energy shift by ±∆. For example, in the sample shown in Fig. 1.5, we obtain by this method
a FWHM resolution of the sub-gap states better than 8 µeV, way below the thermal smearing in normal
probes, even at dilution temperatures.

Hybridization

In the work of Ralph and coworkers [17], the sequential tunneling picture does actually not quantitatively
hold because the tunnel coupling, at least to one lead, is not much smaller than ∆. The signatures of
hybridization of a quantum level coupled to superconducting leads were discussed in more detail in two
later theory papers [25,26]. In a NQN junction, hybridization leads to the Wigner-Weisskopf expression of
the QD spectral function, which manifests experimentally (at T = 0) as a lorentzian differential conductance
at the tunneling energy threshold. In a SQS junction, the non-trivial density of states in the lead can be
translated into an effective tunnel coupling, which itself depends on the relative position of the bare QD
energy level εQD with respect to the lead’s chemical potential, namely γ̃(εQD) = γ ρ(εQD), with ρ the single-
particle DOS in S. At large energies, γ̃ ≈ γ and the Wigner-Weisskopf expression is recovered. On the
other hand, for εQD < ∆ the renormalized coupling strength γ̃ drops brutally to zero. A Green’s function
based perturbative calculation yields the hybridized QD spectral function A(E, εQD), which is, within a
proportionality factor, given by the imaginary part of the retarded Green’s function

G(E) = 1
E − εQD − Σ(E) , (1.3.2)

where
Σ(E) = −γ |E|√

∆2 − E2

is the self-energy of the S-Q hybrid. Note that the self-energy and the effective tunnel coupling defined
above are related via γ̃ = −Re(Σ). For a full SQS junction, the self-energies of the QD-lead coupling on
each side must be simply added.

Green’s function’s poles

The Green’s function defined in Eq. (1.3.2) can have either one or two poles, depending on the bare level
position εQD with respect to the gap edge ∆ [27]. For simplicity and without loss of generality, we restrict
the discussion to positive energies with respect to the lead’s Fermi energy. We also introduce a new energy
scale β = (γ2∆/4)1/3, with γ < β � ∆ in weakly coupled devices. When the bare QD level is well below
the gap edge (εQD < ∆−β), there is a single pole, E1, which is real valued and very close to εQD. In other
words, the QD level is not affected by the states above the gap and its lifetime remains infinite.

In the opposite case (εQD > ∆ − β), a second, complex-valued, pole E2 emerges. For large bare dot
levels, εQD → +∞, the real and imaginary parts of E2 can be identified with εQD and γ, respectively. In
other words, when the QD level is far above the gap edge, the Wigner-Weisskopf expression is recovered
and the hybridized level can be described as a dressed state with no shift and a lifetime ~/γ. On the other
hand, the first pole E1 remains real valued for all εQD and increases asymptotically towards the gap edge ∆
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1.3. Electron transport in SQS devices
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Figure 3.12: a) Current though a single level coupled to two superconductors as a function of
the applied source-drain bias calculated with eq. (3.23). Increasing tunnel coupling softens the
coherence peak. b) The spectral density of a single level is significantly altered when it is coupled
to a superconducting density of states, i.e. (1) there is a broadened quasi-particle (QP) state
and (2) a persistent discrete state (Andreev state) that remains bound in the superconducting
gap.

part of the quantum dot’s spectral density. It turns out there is also a discrete state

(see figure 3.12b) appearing from the Green functions known as an Andreev state. The

properties of this discrete state that is bound below the superconducting gap edge, will

be discussed extensively in the next chapter as it is responsible for the non-stationary

current in a superconducting single electron level turnstile.

Figure 1.3: Left: color map (calculation) of the spectral density of the S-Q hybrid for γ = 0.04 ∆, as
a function of εQD ∝ Vg. The magenta line shows the infinite life-time subgap state at energy E1. The
blue region corresponds to the complex pole E2, that is, the QD level dressed by the coupling to the lead.
Right: line cut through the left map along the grey dashed line. Data from [5].

for large εQD, while always remaining below. This discrete sub-gap state would be tending to the gap edge
exponentially if the leads density of states was a step function. However, because of the DOS divergence
at the gap edge, level repulsion is very effective and one finds for large εQD

E1 ≈ ∆− 2 β3

(εQD −∆)2 . (1.3.3)

For completeness, let us also mention the spectral weight of both poles. For εQD < ∆ − β, all the
spectral weight is obviously in the sub-gap state. As εQD is cranked up, more and more spectral weight is
transferred to the dressed state and the sub-gap state weight Z decreases quickly, Z ∼ [β/(εQD −∆)]3.

Dynes broadening

The above calculation assumes a BCS-type DOS in the leads, implying infinite Cooper-pair lifetimes.
Deviations from this ideal picture are known to be small in superconducting aluminum and are usually
described in a more or less phenomenological way by adding an imaginary part to the energy (E → E+ iϑ)
in the BCS DOS in Eq. (1.3.1), called the Dynes parameter. Whether E1 can still be considered as
a separate spectral entity depends therefore on the relative values of ϑ and ∆ − E1. While the intrinsic
Cooper-pair lifetime in aluminum is very large (ϑ/∆ < 10−7), radiation noise from higher temperatures can
lead to the same signatures and must thus be shielded carefully [28]. In the literature, the Dynes parameter
is sometimes misused as a "fudge-factor", allowing to fit data displaying sub-gap leakage in superconducting
tunnel junctions, which should be rather attributed to junction imperfections, such as pin-holes.

1.3.3 Superconductivity versus Kondo effect

Kondo effect

In the (conventional) superconducting ground state, electrons pair up into singlet spin states. Another
many-body effect in which electrons form a singlet spin state is the spin-1/2 Kondo effect, in which a
magnetic impurity is screened by the conduction electrons of a metallic host material. Generally speaking,
the Kondo effect is a many-body effect resulting from the coupling of a Fermi sea to a degenerate impurity
level. In the simplest case, the degeneracy is provided by a spin-1/2 Kramers doublet, but more exotic
degeneracies can exist (S = 1, orbital, charge,...) [6, 29, 30]. In the former case, odd electron occupation
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Chapter 1. Superconductor - quantum dot junctions

of the impurity or QD is a prerequisite for observing the Kondo effect [31, 32]. Electrons in the Fermi
sea exchange with the local impurity spin, leading to rapid impurity spin flips. These spin flips tend to
cancel/screen the local impurity spin, rendering the system effectively non-magnetic at low energies. The
energy gain obtained by the quantum coherent system formed by the impurity and its cloud is kBTK , giving
rise to a novel spectral resonance pinned to the Fermi level of the reservoir (and not to the impurity level),
of width kBTK . The strength of the Kondo effect rapidly increases with tunnel coupling (see [4,15,33] and
references therein), following

TK =
√
γU exp

(
−πU8γ

(
1− 4

ε2QD

U2

))
, (1.3.4)

with γ = γL + γR. The effect of any perturbation W (such as temperature, noise or Zeeman splitting of
the Kramer’s doublet) to the above situation is, to a large extent, universal and depends solely on the ratio
W/TK . True universality relies however on some assumptions, like e.g. U � γ.

In asymmetric NQN junctions, the Kondo resonance develops first between the dot and the lead with
stronger coupling. For T strong

K > T > Tweak
K , the other lead can be considered as a non-invasive tunnel probe

and differential conductance measurements directly map the Kondo resonance on the strongly coupled side.
In case of symmetric couplings, the Kondo cloud extends over both electrodes. In this case, the linear

conductance is G0 = 2e2/h at low enough temperature. The effect of a bias voltage is then to lift the
degeneracy of both reservoirs’ Fermi levels, suppressing coherent tunneling between the leads. The experi-
mental signature is still a zero-bias peak in the differential conductance, but its quantitative interpretation
is way more involved than in the strongly asymmetric case, and calls for an out-of-equilibrium modeling of
the Kondo problem. The FWHM of the zero-bias conductance resonance can still be related to TK , via a
constant ranging from 2.8 to 4 depending on the models and definitions of TK [34]. In case of weak coupling
asymmetry to the leads, Kondo correlations will gradually set in on both leads as temperature is reduced,
which is called the two-stage Kondo effect.

In both cases (symmetric and asymmetric), a much more quantitative estimation of TK is obtained by
measuring the linear conductance as a function of temperature. The behavior of G(T/TK) has a universal
form and can be calculated using numerical renormalization group (NRG) methods. For practical uses, it
is convenient to use a phenomenological fitting function [31], which we also use here. A fit of the normal
state linear conductance of a device obtained by Alvaro Garcia Corral to this equation is shown in Fig. 1.5.
Eventually, TK can also be accessed by applying a magnetic field. The Kondo resonance is stable against
a magnetic perturbation until µBB ∼ kBTK , meaning that the Zeeman splitting is small enough not to
lift the spin degeneracy. Above this critical field Bc, the Kondo zero bias conduction resonance breaks up
into two smaller peaks, shifting symmetrically and linearly from the Fermi level with B − Bc (Fig. 1.4d).
A TK larger than a few Kelvin is difficult to determine precisely from both above methods because high
temperature measurements are often unstable and large magnetic fields would be needed.

Kondo effect versus superconductivity

An interesting situation arises from the competition of Kondo physics with the superconducting correlations
provided by the leads. Because of the single particle excitation gap in the lead DOS, tunneling from and
to the Kondo resonance at EF has an energy cost ∆. Consequently, one can expect the suppression of the
Kondo effect depending on the hierarchy of TK and ∆. The survival of Kondo correlations when TK > ∆
was experimentally first verified by Buitelaar et al. [12] in superconducting CNT junctions.

The following canonical base will be used in the remainder to describe the QD state: (i) the empty QD,
|0〉, (ii) the singly occupied QD, that is, in a spin doublet state s = 1/2, corresponding to | ↑〉 or | ↓〉, and
(iii) the doubly occupied singlet state, which we write | ↑↓〉. Both |0〉 and | ↑↓〉 are spin singlet states, thus
any linear combination of both is also s = 0.
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(0–10�2e2/h from dark to bright) of device A as a function of gate and bias voltage, measured at zero magnetic field and temperature T= 35mK. c, Extent
of the non-conducting bias-voltage region at degeneracy gate voltage in sample A as a function of magnetic field. d, Schematic of the level alignment for
minimal bias voltage conditions (Vds = ±2�0/e) allowing for finite current flow.
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Figure 2 | Superconductivity versus Kondo effect. a,b, � I/�V as a function of drain–source voltage Vds at constant gate voltage in two samples
(T<40mK) and in both the normal (black line) and the superconducting state (red line). a, Sample B has TK = 14 K, and superconductivity superimposes
on top of the Kondo resonance. The inset shows the normal-state data over a larger bias-voltage window. b, Sample C has TK =0.7K, and the onset of
superconductivity suppresses the Kondo resonance. Above 65 nS, the vertical scale is logarithmic. c, � I/�V map of sample B in the normal state
(T=40mK, magnetic field B=400mT). The plots shown in a are taken along the dotted line (the colour code can be read from the vertical scale in a).
d, Magnetic-field dependence of the low-energy � I/�V in sample C. At about 130mT, the coherence peaks merge into the Kondo resonance, which is
further Zeeman split above Bc ⇧0.4T. The dotted lines are fits to the Zeeman splitting (see text). For better contrast, the � I/�V colour code is different in
the low- and high-field regions.

with rather strong lead coupling, translating into a large Kondo
resonance with Kondo temperatureTK =14K (Fig. 2c, details in the
Supplementary Information). In the superconducting state of the
leads, superconductivity does not suppress the Kondo resonance
and the superconducting features such as the coherence peaks at
Vds =±2⇥0/e superimpose on top of it (Fig. 2a). Such a behaviour
was predicted13,23 and previously observed24,25 in other types of QD
device verifying TK ⌃ Tc. The opposite limit TK < Tc is illustrated
by the more weakly coupled device C (Fig. 2c), which similarly
showed a Coulomb blockade and Kondo resonance pattern, but
with a much lower TK = 0.7K. In the superconducting state,
the Kondo peak at the Fermi level is destroyed13,24. Interestingly,
inside this Coulomb diamond, corresponding to an odd occupation

number, that is, to a local magnetic moment no longer screened
by the lead electrons, the differential conductance is not maximum
at Vds = ±2⇥/e. Further, a sign inversion of the differential
conductance is observed, which is most prominent close to
the degeneracy points. This negative differential conductance,
as already reported in larger superconducting QD systems22,26,27,
results from Fermi’s golden rule applied to the superconducting
leads’ DOSs, which are convoluted with the delta-function-like
DOS of the QD. The gradual reduction of the superconducting gap
under applied magnetic field re-establishes the Kondo resonance
(Fig. 2d). For magnetic fields B > Bc ⇧ 400 mT the resonance is
Zeeman split, with a splitting energy EZ =±g⇥SµB (B�Bc). Here,
g is the electron Landé factor, ⇥S the difference between the two
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Figure 1.4: a and b, ∂I/∂V as a function of Vb at constant gate in two samples (T < 40 mK) and in
both the normal (black line) and the superconducting state (red line). a, Sample B has TK = 14 K, and
superconductivity superimposes on top of the Kondo resonance. The inset shows the normal state data over
a larger bias voltage window. b, Sample C has TK = 0.7 K, and the onset of superconductivity suppresses
the Kondo resonance. Above 65 nS, the vertical scale is logarithmic. c, ∂I/∂V map of sample B in the
normal state (T = 40 mK, B = 400 mT). The plots shown in a are taken along the dotted line (the color
code can be read from the vertical scale in a). d, Magnetic field dependence of the low energy ∂I/∂V in
sample C. At about 130 mT, the coherence peaks merge into the Kondo resonance which is further Zeeman
split above Bc ≈ 0.4T. The dotted lines are fits to the Zeeman splitting (see text). For better contrast,
the ∂I/∂V color code is different in the low and high field regions. Data from [18].

For TK < ∆, the local impurity spin can no longer be screened and the dot ground state is s = 1/2.
In the opposite case, a Cooper pair is broken in order to form a singlet state at the impurity site and the
ground state is a superposition of |0〉 and | ↑↓〉, that is, s = 0. Both above states exist in both regimes of TK
versus ∆, being either the ground state (GS) or the first localised excited state (LES), also called Andreev
bound state (ABS), with energy 0 ≤ Eb < ∆. Notably, the GS→LES transition changes the QD fermionic
parity, meaning that a single electron has been added or removed through a tunnelling process (coming for
example from a second, weakly coupled, lead). Because both the Kondo effect and superconductivity are
many-body problems, the ground state transition characterized by Eb = 0 and occurring near TK ∼ ∆ is
frequently referred to as a quantum phase transition (QPT) in the literature [14,23,34].

The above problem, described in the frame of the Anderson impurity model, has no general analytical
solution. However, a few interesting limiting cases emerge:

• Small U limit. In the non-interacting limit, double dot occupancy is allowed and superconduct-
ing correlations on the impurity site are strongly favored. In this case, the Andreev bound states
correspond to a spin doublet on the QD, with an energy that can be analytically calculated (Eq.
(7) in [15]). Notably, for any ABS energy Eb, the formalism also yields a state of equal weight at
−Eb. This is a consequence of particle-hole symmetry, which is intrinsic to superconductivity and
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Chapter 1. Superconductor - quantum dot junctions

Figure 1.5: Unpublished data by Alvaro García Corral in the regime of strong coupling asymmetry, and
Kondo correlations developing on one lead. Left side maps: differential conductance maps near a charge
degeneracy point in the normal and superconducting state, respectively. The right half of both maps
corresponds to an odd electron occupation number, leading to a Kondo ridge in the normal state and
εQD-dependent subgap states (T = 70 mK; B = 60 and 0 mT, respectively). Top right: temperature
dependence of the linear conductance in the Kondo regime (B = 60 mT, Vg = 0.72 V). The line is a fit
( [31], see text) yielding TK = 0.7 K at this gate voltage. Bottom right: bound state energies Eb as a
function of ∆/kBTK , revealing the screened-unscreened QPT at a critical value ≈ 2.4.

also preserved here because U = 0. The negative energy solution should be understood as the process
of removing an electron, starting from GS, as opposed to the process at +Eb, which corresponds to
adding an electron.

• Large gap limit. The second analytically solvable limiting case is that of ∆ → +∞. The Hamil-
tonian can then be considerably simplified and one finds that (i) the doublet states are eigenstates
of zero energy, (ii) neither the empty site |0〉 nor the doubly occupied | ↑↓〉 state are eigenstates;
however one can construct Bogolyubov-like linear combinations of the latter, one of which being an
eigenstate with negative energy, provided that (εQD + U/2)2 + γ2 < (U/2)2 [15]. In this case the GS
is therefore a singlet state and the impurity spin is screened. The singlet-doublet phase boundary is
then given by the semi-circle represented in Fig. 1.7.

The finite-∆ case calls for numerical renormalization group (NRG) calculations, but the outcome is
qualitatively similar to the above situation. As seen in Fig. 1.7, the phase boundary for the singlet and
doublet GS occurs now at slightly smaller tunnel coupling strengths.

Experimental signatures of the screened-unscreened spin impurity quantum phase transition

The screened-unscreened ground state crossover (or QPT, depending on the authors) was first observed via
supercurrent measurements [35, 36], which we will come back to below. The first controlled spectroscopic
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Figure 3 |Gated Josephson supercurrent in a single C60. a, � I/�V map (0–1.7e2/h from dark to bright) of device D as a function of gate and bias voltage
in the normal state (B= 20mT). The dotted lines emphasize the Coulomb diamond edges. b, Drain–source voltage Vds(I) in the superconducting state for
Vg = �3,�1.5, 0, 1.5, 3 V from black to green. c, Differential resistance map (7–110 k from dark to bright) in the superconducting state (B=0T) for small
bias currents modulated by Imod = 18 pA at f0 =86Hz. The green line is the linear conductance in the normal state. d, Switching current Is normalized to
I0 = 1.01 nA as a function of normal-state conductance (bullets), and fitted to equation (1) (line). The only adjustable parameter is I0. The data points
deviating from the fit at high conductance correspond to measurements made at Vg ⇧4V, where a significant tunnel leakage current from the gate
electrode contaminated the measurements.

spin states and µB the Bohr magneton. As ⇥S = 1, we find here
g =1.84±0.2 along the best linear fit, given by the dotted lines.

Moving on to high coupling strengths � , we show that
Josephson supercurrent can be observed in SMTs. In equilibrium,
dissipationless transport across an S–QD–S structure is achieved by
co-tunnelling of Cooper pairs. The Josephson current amplitude
Ic therefore scales with � 2 and is experimentally accessible only
for relatively strong coupling to the leads. Device D illustrates
the molecular-junction behaviour in this regime. In the normal
state (Fig. 3a), the differential conductance map shows a zero-bias
resonance for positive gate voltages on a ridge delimited by
only faintly visible Coulomb diamond edges. In this regime the
electrostatic on-site repulsion is largely overcome by the strong
coupling to the leads. The maximum differential conductance
GN ⌅ 0.85⇥ (2e2/h) observed here approaches the unitary limit. If
analysed in terms of a Kondo resonance, the width of the resonance
yields a large TK ⇧ 80K, as already reported in normal SMTs in
the past28. In voltage-biased measurements of the superconducting
state, the differential conductance around the Fermi level shows
the usual coherence peaks at Vds = ±2⇥/e with ⇥ ⇧ 120 µeV
(not shown, similar to Fig. 2a). For supercurrent measurements,
however, a current bias is better adapted. Figure 3b shows
Vds(I ) measurements for different gate voltages, showing the gate
dependence of the critical current. In more detail, Fig. 3c shows a
�V /�I differential resistance map for small bias currents. The ridge
visible here defines a switching current Is such that �2V /�I 2 |Is= 0.
For |I | < Is the differential resistance is strongly reduced below
Rj . The quality factor of the junction is Q⇧ 1 (see Supplementary
Information), and the absence of hysteresis observed here indicates
that fluctuations are damped out. The residual resistance below
Is is related to the phase diffusion of the Josephson state along
the ‘tilted washboard’ potential29. Such features are generic to
small Josephson junctions with a large normal-state resistance, even
for quality factors larger than unity29. Another feature common

to small Josephson junctions is the strong reduction of the
switching current with respect to the ideal critical current value
I0(Rj) = ⇥/eRj (equal to 6–20 nA here, depending on the gate
voltage), and is understood as an effect of finite temperature and
environmental coupling (for example, to phonons on the quantum
dot14 or electromagnetic modes in the leads). In an unshunted
junction hosting a single spin-degenerate conductance channel,
the coupling to the environmental admittance is expected7,30 to
produce a reduction of the switching current following

Is/I0 = (1�
�
1�GNh/2e2 )3/2 (1)

Experimentally, this 3/2 power-law dependence was observed to
hold in metallic superconducting single-electron transistors30 and
in carbon-nanotube junctions7. The fit of the Is(GN) data shown
in Fig. 3d to equation (1) yields I0 = 1.01 nA. It is remarkable that,
whereas the justification of equation (1) strictly holds for weakly
damped junctions30, a very good agreement with experiment is
still found in device D, which is at the crossover between the
two damping regimes.

This experiment demonstrates the coexistence and competition
of the effects of Coulomb repulsion, Kondo correlations and
superconductivity in C60 SMTs over a broad range of lead coupling
strengths. In contrast with previous experiments involving carbon-
nanotube junctions7 the energy spectrum is fixed here by the
molecular edifice itself and not by the nanoengineered portion of
nanotube linking the contacting electrode. This experiment paves
the way for further studies targeting phase-sensitive measurements
and the interplay of superconductivity with magnetically active
molecules such as endofullerenes5,19. Future efforts may point
to molecular Q-bit architectures by integrating a gated magnetic
molecule Josephsonweak link into a SQUID geometry.
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Figure 3 |Gated Josephson supercurrent in a single C60. a, � I/�V map (0–1.7e2/h from dark to bright) of device D as a function of gate and bias voltage
in the normal state (B= 20mT). The dotted lines emphasize the Coulomb diamond edges. b, Drain–source voltage Vds(I) in the superconducting state for
Vg = �3,�1.5, 0, 1.5, 3 V from black to green. c, Differential resistance map (7–110 k from dark to bright) in the superconducting state (B=0T) for small
bias currents modulated by Imod = 18 pA at f0 =86Hz. The green line is the linear conductance in the normal state. d, Switching current Is normalized to
I0 = 1.01 nA as a function of normal-state conductance (bullets), and fitted to equation (1) (line). The only adjustable parameter is I0. The data points
deviating from the fit at high conductance correspond to measurements made at Vg ⇧4V, where a significant tunnel leakage current from the gate
electrode contaminated the measurements.

spin states and µB the Bohr magneton. As ⇥S = 1, we find here
g =1.84±0.2 along the best linear fit, given by the dotted lines.

Moving on to high coupling strengths � , we show that
Josephson supercurrent can be observed in SMTs. In equilibrium,
dissipationless transport across an S–QD–S structure is achieved by
co-tunnelling of Cooper pairs. The Josephson current amplitude
Ic therefore scales with � 2 and is experimentally accessible only
for relatively strong coupling to the leads. Device D illustrates
the molecular-junction behaviour in this regime. In the normal
state (Fig. 3a), the differential conductance map shows a zero-bias
resonance for positive gate voltages on a ridge delimited by
only faintly visible Coulomb diamond edges. In this regime the
electrostatic on-site repulsion is largely overcome by the strong
coupling to the leads. The maximum differential conductance
GN ⌅ 0.85⇥ (2e2/h) observed here approaches the unitary limit. If
analysed in terms of a Kondo resonance, the width of the resonance
yields a large TK ⇧ 80K, as already reported in normal SMTs in
the past28. In voltage-biased measurements of the superconducting
state, the differential conductance around the Fermi level shows
the usual coherence peaks at Vds = ±2⇥/e with ⇥ ⇧ 120 µeV
(not shown, similar to Fig. 2a). For supercurrent measurements,
however, a current bias is better adapted. Figure 3b shows
Vds(I ) measurements for different gate voltages, showing the gate
dependence of the critical current. In more detail, Fig. 3c shows a
�V /�I differential resistance map for small bias currents. The ridge
visible here defines a switching current Is such that �2V /�I 2 |Is= 0.
For |I | < Is the differential resistance is strongly reduced below
Rj . The quality factor of the junction is Q⇧ 1 (see Supplementary
Information), and the absence of hysteresis observed here indicates
that fluctuations are damped out. The residual resistance below
Is is related to the phase diffusion of the Josephson state along
the ‘tilted washboard’ potential29. Such features are generic to
small Josephson junctions with a large normal-state resistance, even
for quality factors larger than unity29. Another feature common

to small Josephson junctions is the strong reduction of the
switching current with respect to the ideal critical current value
I0(Rj) = ⇥/eRj (equal to 6–20 nA here, depending on the gate
voltage), and is understood as an effect of finite temperature and
environmental coupling (for example, to phonons on the quantum
dot14 or electromagnetic modes in the leads). In an unshunted
junction hosting a single spin-degenerate conductance channel,
the coupling to the environmental admittance is expected7,30 to
produce a reduction of the switching current following

Is/I0 = (1�
�
1�GNh/2e2 )3/2 (1)

Experimentally, this 3/2 power-law dependence was observed to
hold in metallic superconducting single-electron transistors30 and
in carbon-nanotube junctions7. The fit of the Is(GN) data shown
in Fig. 3d to equation (1) yields I0 = 1.01 nA. It is remarkable that,
whereas the justification of equation (1) strictly holds for weakly
damped junctions30, a very good agreement with experiment is
still found in device D, which is at the crossover between the
two damping regimes.

This experiment demonstrates the coexistence and competition
of the effects of Coulomb repulsion, Kondo correlations and
superconductivity in C60 SMTs over a broad range of lead coupling
strengths. In contrast with previous experiments involving carbon-
nanotube junctions7 the energy spectrum is fixed here by the
molecular edifice itself and not by the nanoengineered portion of
nanotube linking the contacting electrode. This experiment paves
the way for further studies targeting phase-sensitive measurements
and the interplay of superconductivity with magnetically active
molecules such as endofullerenes5,19. Future efforts may point
to molecular Q-bit architectures by integrating a gated magnetic
molecule Josephsonweak link into a SQUID geometry.
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Figure 1.6: (a) Differential resistance map in the superconducting state (B = 0 T) for small bias currents
modulated by Imod = 18pA at f0 = 86Hz. The green line is the zero bias conductance in the normal state.
(b), Switching current Is normalized to I0 = 1.01 nA as a function of normal state conductance (bullets),
and fit to equation (2) (line). The only adjustable parameter is I0. The data points deviating from the
fit at high conductance correspond to measurements taken at Vg ≈ 4 V, where a significant tunnel leakage
current from the gate electrode contaminated the measurements. Data from [18].

evidence of the QPT was obtained by transport experiments in Tokyo [37], on an InAs QD strongly coupled
to a superconducting lead and weakly coupled to a normal tunnel probe. Here, the ground state transition
is tuned by adjusting εQD, and thus TK , via a gate electrode. In subsequent STM experiments on magnetic
molecules [23] these results were better resolved, owing to a superconducting tip as a tunnel probe. Although
there was no control of εQD, this study found variations in the tunnel coupling strength of the molecules,
depending on the adsorption site on Pb(111). In situ measurements of TK on the same molecules at higher
temperature allowed to track the variations of Eb with TK/∆, across the phase boundary.

During my postdoctoral work in the Nanospin group, I obtained several single molecule SQS junctions
which also displayed Kondo correlations. Fig. 1.4 shows transport properties of two devices, which illustrate
both GS situations, depending on the hierarchy between TK and ∆ [18]. Recently, Alvaro García Corral
has obtained several strongly asymmetric SQS junctions, in which one contact acts as a probe of the bound
states formed by the coupling of the QD to the other lead. Here, we also measure TK and EB independently
on a single quantum dot and tune the QPT by the gate voltage (Fig. 1.5). An interesting difference with
the STM experiments in Berlin is related to the rather high temperatures (> 1 K) of the STM, leading
to dominantly thermally activated tunneling spectroscopies [38], whereas in our experiments the tunneling
processes exclusively involve Andreev reflection.

1.3.4 Josephson coupling

In the strong-coupling regime, where Γ is the largest energy scale, higher-order tunneling processes can
bypass the Coulomb blockade effect and Cooper pairs can be coherently and resonantly transferred across
a SQS device [39, 40]. In experiments, the maximum supercurrent observed in SQS Josephsons has nev-
ertheless remained significantly below the predicted values (see [1] and references therein). In the single
fullerene SQS junctions obtained in the Nanospin group, we occasionally also observed Josephson coupling,
with very small critical currents, as shown in Fig. 1.6. Such Josephson junctions have a low quality factor
Q ≈ 1 and no hysteresis. Further, a residual resistance below the switching current Is is related to the
phase diffusion of the Josephson state along the ’tilted washboard’ potential, which will be further dis-
cussed in section 2.1.2. Such features are generic to small Josephson junctions with a large normal state
resistance [41]. The strong reduction of the switching current with respect to the ideal critical current value
I0(Rj) = GN∆/e (equal to 6 to 20 nA here, depending on the gate voltage; GN is the normal state linear
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diagrams in between show one of the three intermediate virtual
states. Owing to Coulomb blockade, a sequence of intermediate
states involves an energy cost comparable to the charging energy, E c

(for D* ,, Ec). Nevertheless, when the tunnel rate is on the order of
E c/h, a Cooper pair can be transported by higher-order co-tunnelling
events23. In principle, there are 24 possible sequences of 4 tunnel
events. However, in a single-level quantum dot only a small number
of sequences are allowed. Figure 3a illustrates the transfer of a Cooper
pair through a quantum dot with a single spin-degenerate level
occupied by one electron (with spin up, j " l). The sequence of four
tunnel processes, indicated by the numbers, is necessarily permuted
compared to ordinary transport of Cooper pairs. The remarkable
result is that the spin-ordering of the Cooper pair is reversed, that is,
the Cooper pair on the right is created in the order j " l, j # lwhile the
pair on the left is annihilated in the order j # l, j " l. This spin-reversal
results in a sign-change of the Cooper pair singlet state (for example,
from (j " # l 2 j # " l)/p2 to eip(j " # l 2 j # " l)/p2), leading to a
p-shift in the Josephson relation and a negative supercurrent.
However, if an extra electron is added to the quantum dot, the
sequence of tunnel events discussed above is prohibited, owing to the
Pauli exclusion principle. Now other sequences of tunnel events are
allowed, which result in a normal, positive supercurrent7 (Fig. 3b).
Therefore, in a single-level quantum dot a negative (positive) super-
current is expected for an odd (even) number of electrons.
We can discriminate between odd and even numbers of electrons

in Fig. 2b by measuring the linear conductance, G, as a function of
gate voltage and magnetic field, B (Fig. 2e). We observe that the
Coulomb peak spacing for the two charge states denoted by the
yellow square and diamond increases owing to the Zeeman effect,

demonstrating that for these charge states the occupation number, n,
is odd21(only data for the state denoted by a yellow square is shown,
jg-factorj < 15, similar to previous results for similar systems24).
These observations are consistent with the model described above.
However, for the charge state around VL ¼ 2447mV with an odd

number of electrons, we observe a very small, but positive critical
current (I c < 10 pA). Moreover, in a different gate voltage range,
shown in Fig. 4a, supercurrent reversal is also observed for charge
states with an even number of electrons. We argue that these
observations originate from co-tunnelling via multiple energy levels
of the quantum dot. The multi-level nature of the quantum dot for
the gate range studied in Fig. 4a emerges from the measurement of
differential conductance in the normal state (Fig. 1e). Here several
peaks parallel to the diamond edges are observed, which correspond
to transport through excited states of the quantum dot. In this gate
voltage range the level spacing, d, is of the order of E c. Therefore,
these excited states can take part in co-tunnelling events and the
simple model of a single-level quantum dot is no longer appropriate.
As a result, all 24 sequences of tunnel events are allowed for both odd
and even numbers of electrons. Therefore, a negative supercurrent
due to permutation of tunnel events is possible for all values of n
(refs 7, 25).
Additionally, in the multi-level regime, properties of the wave-

functions of the quantum dot become important. To illustrate this,
we consider the co-tunnelling event in Fig. 3c in which two different
energy levels are involved in a dot with an even number of electrons.
Because the two electrons take a different path, they can acquire a
different phase. The opposite parity of the wavefunctions results in a

Figure 3 | Energy diagrams illustrating Cooper pair transport through a
quantum dot due to fourth-order co-tunnelling. Top and bottom panels
represent initial and final states, respectively. The intermediate panels show
one of the three virtual intermediate states. Numbers indicate the sequence
of tunnel events. Red (blue) corresponds to the tunnelling of a spin-down
(spin-up) electron. a, Transport occurs through a single spin-degenerate
level filled with one electron. During this event the spin-ordering of the
Cooper pair is reversed. This results in a negative contribution to the
supercurrent (see also diagrams in ref. 5). b, Transport through one spin-
degenerate level filled with two electrons. The spin-ordering of the Cooper
pair cannot be reversed, resulting always in a positive supercurrent.
c, Co-tunnelling event involving two energy levels with wavefunctions of
opposite parity. This results in a negative contribution to the supercurrent7.

Figure 4 | Experimental results and numerical simulations for a multi-level
quantum dot. Panels are ordered clockwise. a, Measured critical current of
the quantum dot, Ic,qd, as a function of VL, showing supercurrent reversal
for even and odd numbers of electrons (indicated by a blue and red dot,
respectively; VR ¼ 20.4 V). b, Calculated probability of p-behaviour, Pp,
for odd (red) and even (blue) numbers of electrons as a function of d/E c.
Strength and sign of tunnel couplings are randomly varied. For d=Ec .. 1;
the limiting case of a single-level quantum dot is reached, resulting in p-
behaviour for odd numbers and conventional behaviour for even numbers
of electrons. In the multi-level limit (d=Ec ,, 1), we obtain Pp < 0.3 for
both even and odd numbers of electrons. c, Calculated critical current, Ic,qd,
as a function of gate voltage, Vgate, for d/E c ¼ 2. For odd numbers of
electrons (red dots), the critical current is typically negative, similar to the
measurement shown in Fig. 2a. d, Ic,qd(Vgate) for d/E c ¼ 0.4. Negative
supercurrents are found for both odd (red dot) and even numbers of
electrons (blue dot), as in the experimental data shown in a.
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Because the Coulomb interaction is taken into account,
Wick’s theorem cannot be used to calculate Z. Instead, ex-
pectation values are calculated using Lehmann representa-
tion. Explicit calculations may be found in the Appendix. In
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with the quasiparticle energy Ek! =-)k!
2+&2.

B. Self-consistent renormalization of the energy

Equations "20#–"22# yield the first corrections to the en-
ergy levels so that the bound-states energies a0 and b0 are
simply shifted by #a=#E−−#E! and #b=#E+−#E!. Obvi-
ously, these expressions are logarithmically divergent when
the bound-states energies a0 and b0 approach the gap edge35

and are therefore only valid as long as, e.g., a0*( log."D
+&# / "&−a0#/. In the limit of large gap &*a0, these correc-
tions to a0 are thus of the order (a0 /& so that the small
dimensionless parameter is indeed ( /&. However, this pecu-
liar logarithmic dependence of the ABS energy renormaliza-
tion shows that doing a straightforward 1 /& expansion
around the effective local Hamiltonian will be rapidly uncon-
trolled and will have a hard time reproducing the logarithmic
singularities at & close to a0. For this reason and also be-
cause the large-gap limit becomes trivial for a finite elec-

tronic bandwidth, as discussed in Sec. II B, it was indeed
more appropriate to single out in the total action all terms left
over with respect to the local superconducting effective
Hamiltonian, see Eq. "15#, and do perturbation theory around
these.

Because our lowest-order expansion obviously still breaks
down when the gap becomes comparable to the bound-state
energy, one would naturally seek to resum the leading loga-
rithmic divergences in Eqs. "20#–"22#. This can be achieved
using a self-consistency condition inspired by Brillouin-
Wigner perturbation theory,47 which allows to extend greatly
the regime of validity of the perturbative scheme. The result-
ing self-consistent equations that we obtain are
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with E=-)2+&2, and a0 ,b0 have been defined in Eqs. "10#
and "11#, with a"&#=a0+#a, b"&#=b0+#b. Note that terms
like 1 / "E+a0# have no self-consistency because there are no
associated divergences. Equations "23# and "24# clearly now
hold as long as the renormalized energies a"&# and b"&# are
not too close to the gap edge, $&, respectively.

IV. RESULTS

A. Phase diagram

We start by discussing the 0-+ transition line, by compari-
son to the NRG data by Bauer et al.2 Figure 2 shows the
extension to smaller gaps & values of the phase diagram

FIG. 2. "Color online# Phase diagram of a simple dot with Cou-
lomb interaction U, tunnel coupling ( to superconducting elec-
trodes with gap & for '=0 and +(=0.2D. The symbols indicate
NRG data from Ref. 2 and the various lines our results.
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Figure 1.7: 0-π transition. Top left: phase diagram of the QD ground state [16], highlighting the Eb = 0
phase boundary for different values of ∆/πΓ. Here, ξd = εQD +U/2, thus ξd = 0 is the center of the oddly
occupied Coulomb diamond. The symbols are from NRG calculations [15] and the lines are analytical
approximations [16]. Bottom left: experimental signature of 0-π phase transition, visible as a marked
discontinuity in the switching current, in a CNT-based SQUID [44]. Right side panels: cartoon of the
different intermediate states leading to the transfer of a Cooper pair, in a 0− and π−junction, respectively.
Note the different spatial order of the Cooper pair singlet in the final state in the π−junction [35].

conductance) is understood as an effect of finite temperature and environmental coupling (e.g. to phonons
on the quantum dot or electromagnetic modes in the leads). In an unshunted junction hosting a single
spin-degenerate conductance channel, the coupling to the environmental admittance is expected [42,43] to
produce a reduction of the switching current following

Is/I0 = (1−
√

1−GNh/2e2 )3/2. (1.3.5)

Experimentally, this 3/2 power-law dependence was observed to hold in metallic superconducting single
electron transistors [42] and in carbon nanotube junctions [43]. It is remarkable that whereas the justifica-
tion of Eq. (1.3.5) strictly holds for weakly damped junctions [42], a very good agreement to experiment is
still found in the device shown in Fig. 1.6, which is at the crossover between the under- and overdamped
regimes.

0-π transition

In case both leads are rather strongly coupled to the QD, the Kondo screening cloud extends into both
contacts. The screened-unsceened ground state transition in a SQS junction can thus strongly affect the
ability of the junction to resonantly transfer Cooper pairs [14]. The singlet-doublet QPT leads to a change
in the current-phase relation of the Josephson junction, the phase acquiring a π-shift in the case of a
doublet GS. A (probably simplistic, yet illustrative) cartoon explaining why the Cooper pair is π−shifted
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1.4. SQS junction as a single electron injector and turnstile

Figure 1.8: (a) Experimental current map of a superconductor - quantum dot hybrid device as function of
gate and bias potential, in absence of periodic gate drive (device S). Colored solid lines correspond to the
four superconducting gap edges as illustrated in (b). The device is operated as a single level turnstile when
its state is modulated periodically around its (n, n+ 1) charge degeneracy point. The on-state currents are
I+ = 290 pA (red) and I− = −250 pA (blue). (b) Energy diagram of the device with a small bias applied,
illustrating electron tunneling events in and out the quantum dot. Grey areas indicate the amplitude range
for solely forward tunneling, also seen in (a). Driving the turnstile with a square wave signal allows for
tunneling to occur within a narrow energy window.

(inverted) after traversing the SQS junction is reproduced in Fig. 1.7. Several transport experiments
have brought striking signatures of the 0-π transition in SQS Josephson junctions [34–36, 44]. As will be
discussed in section 4.3.3, a single experiment in which the tunnel coupling to one superconducting lead
could be continuously tuned would allow to combine the signatures of the QPT both in spectroscopy and
Josephson transport.

1.4 SQS junction as a single electron injector and turnstile
The following section will focus on the ability to control current flow at the single electron level, taking
advantage of the properties of weakly coupled SQS junctions, such as the one shown in Fig. 1.2. We will
consider sequential tunneling processes only, and higher-order effects will appear as detrimental. The quest
for controlling current flow down to the single electron level in nanodevices has triggered a vast activity on
quantum metrological current sources in recent years [45–61]. In a quantum current source, electrons are
conveyed one by one across a mesoscopic conductor, which is achieved by Coulomb repulsion. Among the
most promising recent approaches are islands with tunable barriers in 2D electron gases [46,50,55,61] along
with superconducting single electron transistors [51]. Beyond metrological applications, the development
of on-demand single-electron sources opens broad perspectives in the field of quantum coherent electronics
and electron optics [62–66].

The SINIS turnstile, invented by Jukka Pekola and collaborators in Helsinki [51, 67], takes advantage
of the sharply defined energy gap in the superconducting density of states, as an energy filter. A normal
metallic region (N) is weakly coupled to two superconducting leads (S) through tunnel barriers. N has to
be sufficiently small to have a Coulomb charging energy U , which should be at least on the order of the
superconducting gap in the leads, ∆. Nevertheless, N displays a dense set of states, appearing as continuous
at accessible temperatures. A finite island temperature then allows for an entire energy window ∼ kBT of
available states in N for tunneling, which leads to turnstile operation errors associated to double occupation
or tunneling into the wrong lead [67].
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Figure 1.9: (a) Current-bias traces measured near the charge degeneracy point. Characteristic plateaus
appear with I = ef (indicated by dashed lines) when applying a small modulation signal (magenta: Aε ≈
0.64∆, f = 190 MHz, blue: Aε ≈ 1.0∆, f = 60 MHz) to the gate. The black trace shows the current
response with no ac gate drive. (b) Current-gate traces measured for Aε ≈ ∆ and the same frequencies as
in (a), at Vb = 3

2∆/e (magenta) and Vb = ∆/e (blue). (c) Current at the inflection point of the plateaus
shown in (a) as function of operation signal frequency. The insets highlight deviations of the normalized
current I/ef from 1 in both the low and high frequency ranges (all data are from device S).

During the thesis of David van Zanten, we have realized a source of quantized dc current based on a
single quantum energy level [68], which will be described in this section. The physical operation principle is
similar to the SINIS turnstile, with the important difference that electrons are here carried by a single energy
level of a quantum dot (Q). After demonstrating the expected principal turnstile operation characteristics,
we focus on novel electronic transport features of the SQS turnstile. In particular, we show that tunneling
can be tuned to occur within a narrow energy window. We theoretically compare the dominant turnstile
error processes in the SQS and SINIS devices, concluding that the former has a lower sensitivity to out-of-
equilibrium quasiparticles.

The charging energy U , the quantum dot orbital level spacing δE, the tunnel couplings γi and the
capacitances C to the three terminals source, drain and gate, which we denote by indices S, D and G,
respectively, are determined from transport data in static conditions, that is, measuring the current I as
a function of the applied bias voltage Vb and gate voltage Vg. The I(Vb, Vg) maps show typical Coulomb
blockade behavior in which only a single or at most a few charge degeneracy points (Fig. 1.8a) are accessible
in the available gate voltage range. We find charging energies U > 50 meV and orbital energy level spacings
δE on the order of 1 meV or higher. Because δE � kBT , the thermal population beyond the ground state
is vanishingly small and electron transport occurs uniquely through a single orbital quantum level [17].
We focus on two devices with quite different tunnel couplings: S has rather symmetric tunnel couplings
(γS = 2.1 µeV, γD = 1.4 µeV), while A is strongly asymmetric (γS = 5.2 µeV, γD = 0.4 µeV). A detailed
description and modeling of the dc transport characteristics of both devices can be found in [69].

Turnstile operation

As discussed earlier, the absence of quasi-particle states at energies |E| < ∆ ≈ 260 µeV in the leads results
in a suppression of conductance for |Vb| < 2∆/e at any gate voltage (Fig. 1.8a). For turnstile operation,
a small constant bias 0 < |Vb| < 2∆/e is applied and a periodic modulation signal with frequency f and
variable amplitude is added to the static gate potential. The energy difference between the n + 1 and n
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Figure 1.10: (a) Colormap of ∂I/∂Vb as a function of bias and gate modulation amplitude (f = 56
MHz, ε̄ = ε̄0). Narrow blue regions, corresponding to rapid increase in current, separate areas of voltage
independent current (white), with values I = 0 and I = ±ef . (b) Colormap of turnstile current as a function
of static gate offset from degeneracy point and gate modulation amplitude (f = 60 MHz, Vb = 1.5∆/e).
All data are from device A.

electron occupation numbers in the quantum dot, ε(t), varies between ε̄ ± Aε, where ε̄ is controlled by
the static voltages Vg and Vb. A single electron can tunnel into the quantum dot as soon as ε(t) reaches
the occupied states of the contact with the higher chemical potential (Fig. 1.8b; right grey triangle in
Fig. 1.8a). By raising ε(t) via the back gate to reach the empty states above the upper gap edge in the
opposite lead (left grey triangle in Fig. 1.8a), the level is emptied to that lead. By driving ε(t) cyclically,
one electron is conveyed per cycle from the higher chemical potential lead to the other, giving rise to a dc
current I = ef .

The combination of both above tunneling processes, in and out of the quantum dot, corresponds to the
desired operation mode of the turnstile and will be named forward tunneling in the remainder. As shown
in Fig. 1.8, forward tunneling requires the amplitude Aε of the modulation of ε(t) to be Aε > ∆− e|Vb|/2.
On the other hand, a too large modulation amplitude Aε > ∆ + e|Vb|/2 will eventually allow for tunneling
into/from the opposite lead. Such backtunneling processes are detrimental to current quantization, and
their signature will be discussed later on.

Throughout this section, a square wave signal, with a rise time τ ≈ 1.6 ns associated to the finite
bandwidth of the generator, is used for modulating ε(t). The experimental dc current I(Vb) measured
for ε(t) with an amplitude Aε around ε̄ = ε̄0 ≡ (µS + µD)/2 is shown in Fig. 1.9a. Here µS,D are
the leads’ chemical potentials, with µS − µD = eVb. Above the threshold voltage for forward tunneling,
V fwb = ±2(∆−Aε)/e, a broad current plateau at I = ef develops. Turnstile operation is only effective for
a restricted range of ε̄ (Fig. 1.9b). The value of the turnstile current, determined at the inflection point,
follows the predicted linear dependence on frequency (Fig. 1.9c), with a standard deviation of about 1 %,
to which adds a systematic deficit of about 0.7 % at higher frequencies. The plateaus show a small residual
slope at all frequencies, which is due to a parasitic capacitive crosstalk between gate and lead. This could
be strongly reduced in later experiments.

At charge degeneracy, the thresholds for the onset of both forward and backtunneling can be seen as
the narrow blue stripes in Fig. 1.10a. Both thresholds cross at Vb = 0 when Aε = ∆. Whereas the
frequency-dependent transmission of the ac gate signal to the device is not precisely known, this crossing
is used to calibrate Aε. The bright color identifies regions of voltage-independent current, corresponding
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Figure 1.11: (a) Turnstile current as a function of operation signal amplitude (device A, f = 56 MHz,
ε̄ = ε̄0 and eVb = 0.7∆). The sharp decrease in current indicates the sudden onset of backtunneling. The
continuous line is the numerical calculation for the SQS with all parameters determined by the device dc
transport properties (see text). The dashed line is the analogous calculation for an SINIS device with
normal state resistance RN = 300 kΩ, U = 3.0∆ and assuming quasi-equilibrium of electrons in N by
electron-phonon relaxation [70]. The arrows indicate the values of Aε used in (c). (b) Slope at inflection
point of I(Vb) on the turnstile plateaus, averaged over Aε, as a function of temperature (device A). The
dashed line is the calculation for the SINIS device, with parameters as in (a). (c) Calculation of the energy
distribution of the delivered charge per cycle, for different gate drive amplitudes Aε, with parameters as
in (a). The negative part of the panel displays the backtunneling contribution. The highest position of
the quantum dot level, as determined by the gate modulation, is represented in the inset by the lines of
corresponding colors.

to I = 0 and I = ±ef , respectively. When ε̄ is slightly detuned from ε̄0 by the static gate potential, the
onset of forward tunneling is linearly shifted towards larger Aε (Fig. 1.8b). Note that turnstile operation
requires two successive tunneling events to occur. This is visible in Fig. 1.10b, where the current is shown
as function of gate detuning and modulation amplitude. For larger amplitudes Aε, an increasing tolerance
of the turnstile operation with respect to the proper tuning of ε̄− ε̄0 develops.

Signatures of single quantum level operation

Having evidenced electron turnstile operation, let us now identify the hallmarks of transport through a single
quantum energy level. In SINIS turnstiles, backtunneling can be occasioned by electrons from the high-
energy tail of the thermal energy distribution in N. The backtunneling probability increases thus steadily
and smoothly as Aε is cranked up [71]. Conversely, in a SQS turnstile backtunneling sets in abruptly, when
the threshold Aε = ∆ + |Vb|/2e is exceeded. This is seen in Fig. 1.11a, where at high enough modulation
amplitudes, the current drops suddenly from ef . We numerically model the turnstile current dependence
on Aε, both for the SINIS and the SQS turnstile, by solving the time-dependent rate equations using
the measured output of the ac signal generator. In the SQS case, the instantaneous tunneling rates to
each lead are found from the retarded Green’s function’s pole [25, 26, 69], that is, beyond Fermi’s golden
rule. This is particularly important near the singularities in the superconducting density of states (see
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1.4. SQS junction as a single electron injector and turnstile

Supplemental Information file). The calculation (continuous line in Fig. 1.11a) nicely captures the abrupt
decrease of the current as soon as the backtunneling threshold is met. For comparison, in a SINIS device
with parameters taken from the most precise devices presently studied [72,73], the onset of backtunneling
is markedly smoother (dashed line).

This particularly sharp onset of backtunneling is all the more pronounced if the rise time τ of ε(t) is short,
or more precisely, if the time available for forward tunneling only is brief. If ε is raised to the backtunneling
threshold within τ � γ−1

S,D, the probability of backtunneling may actually exceed that of forward tunneling.
This means that a current inversion, of magnitude up to ef , might eventually be produced with proper
parameter combinations. This could however not be observed in our experiment, because the square wave
rise time is of the same order of magnitude as the inverse tunneling rate (τ ∼ γ−1

S,D).
To highlight the energy selectivity of the tunneling process, we calculate the energy resolved transferred

charge dq/dε over a half-period of an ac gate cycle, using the assumptions and parameters of the calculation
in Fig. 1.11a. The results are shown for different values of Aε and for both forward and backward processes
in Fig. 1.11c. While a certain fraction of forward tunneling occurs near the superconducting gap edge (where
the lead’s density of states is largest), good energy selectivity of the tunneling is achieved for sufficiently
large values of Aε. For even larger Aε, backtunneling is possible, which we represent using negative values
of dq/dε. The accuracy of the energy selectivity is ultimately limited by the tunnel coupling, but in the
present experiment it is dominated by deviations of the ac drive signal from a perfect square wave. The
SQS device is expected to yield about the same energy resolution as the semiconducting ac single electron
source [62], assuming identical gate drive and tunnel couplings.1 For comparison, the energy distribution
of levitons [65] is pinned to the Fermi level.

Turnstile operation errors

We now move to the discussion of possible error processes of the SQS turnstile. One obvious source
of error is the missed tunneling event. As the tunneling rate is finite, tunneling may be missed during
the corresponding half-period, leading to I < ef . For a single-level quantum dot, the Fermi golden rule
tunneling rate for each lead (i = S,D) can be written as Γi = (2) γi ns(ε(t) ± eVb/2), where ns(E) is the
normalized quasi-particle density of states in the superconducting leads. The factor of 2 takes into account
the possibility of tunneling for two spin projections, and is present only for tunneling at one of the leads.
For a symmetric square wave modulation of ε(t), the probability of missed tunneling at one of the leads
can be roughly estimated as e−Γiteff . Here, the effective time available for tunneling teff ≈ 1/(2f)− τ , takes
into account the signal rise time. At frequencies around 200 MHz, this estimate gives a current deficit of
0.8 % for the device parameters of sample S, which agrees well with the experimental value of about 0.7
% (Fig. 1.9c inset). For device A, the missed tunneling rates at high frequencies are higher because of the
tunneling bottleneck at its less transparent tunnel junction.

In turnstile operation with a normal metal island and at finite temperature, a fraction ∼ exp(−∆/kBT )
of electrons has sufficiently high energy for backtunneling. In aluminum-based SINIS turnstiles, the asso-
ciated error is rapidly dominant above about 300 mK [73]. An expected hallmark of energy quantization
in the turnstile operation should be a rather marked temperature insensitivity as long as δE � kBT and
Pauli blocking of states in the leads can be neglected. We have followed the turnstile operation of device A
as a function of temperature up to 0.5 K and we indeed observe the turnstile plateau to subsist through the
entire temperature range, with only a rather moderate increase in error rate. We quantify the error by the
I = ef plateau slope dI/dVb. As seen in Fig. 1.11b, this slope shows only little dependence on temperature.
For comparison, the calculation of the same for a SINIS turnstile, shows a rapid divergence above about
300 mK. While thermal errors are negligible only in the low mK range in most reported turnstiles, the SQS
device can operate up to relatively high temperatures without suffering from thermal tunneling.

1This is because the integral over the density of states of a superconductor is the same as in the normal state.
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Figure 1.12: Schematic view of different sequential tunneling processes in the SINIS (a) and SQS (b)
turnstiles on the ejection stage. The main ejection process is shown by the solid black arrow, various
parasitic processes are shown by dotted red arrows. In both panels the grey shading corresponds to the
occupied states.

An important source of errors in superconducting turnstiles is related to the presence of non-equilibrium
quasiparticles in the leads, with concentration xqp = nqp/(2ρn∆). Here, nqp is the quasiparticle density in
the lead and ν is the density of states (per spin projection) at the Fermi level in the normal state. Such
quasiparticles can accumulate as a consequence of noise and, in particular, of the turnstile operation itself
and are well known to be difficult to evacuate [72, 74]. Using the diffusion model described in [72] we
estimate nqp ∼ 10 µm−3 near the SQS junction, yielding xqp ≈ 2 × 10−6. In the SINIS turnstile, direct
tunneling of such quasi-particles between one lead and the central island occurs with a rate ∼ xqp g∆
leading to a frequency-independent leakage current. Here g is the dimensionless conductance of the tunnel
junctions, in units of the conductance quantum. Crucially, this leakage, which is at present the main source
of errors in SINIS turnstiles [72], is suppressed for the SQS device by the lack of states in the quantum dot
at the quasiparticle energy.2 For tunneling processes of higher order in γS,D, the limitations to accuracy of
the SINIS and the SQS devices are comparable.

To conclude the discussion of the respective merits of the SINIS and SQS turnstiles, the SQS device is
in principle immune to errors induced by sequential tunneling processes of residual quasi-particles in the
leads. As far as higher-order processes are concerned (quasiparticle cotunneling and Cooper pair-electron
cotunneling), the error at equal reduced conductance g is theoretically the same in both turnstiles. However,
it has to be noted that in order to reach the same g as in a SINIS junction, the SQS junctions needs a
quite strong tunnel coupling, because a single channel conducts the current, as opposed to thousands of
conductance channels in a planar NIS junction. The SQS junction is therefore much more prone to higher-
order effects in γ/∆. To answer a question I am frequently asked: the SQS turnstile is quite certainly
not the future of quantum current metrology. It’s originality resides in the ability to deliver electrons at
well-defined energies. Therefore, and as will be described in the Perspectives chapter, one of the main
applications envisioned in the near future is turned towards the use of the SQS single electron injector as
a source of well-defined energies in quantum circuits.

2Another contribution of the non-equilibrium quasiparticles, the Pauli blocking term, may also be significantly suppressed
in the SQS turnstile depending on the quasiparticle distribution function.
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Chapter 2

A thermal view on quantum
nanoelectronic devices

The flow of heat at the microscopic level is a fundamentally important issue, in particular if it can be
converted into free energy via thermoelectric effects [75]. The ability of most conductors to sustain heat
flow is linked to the electrical conductance σ via the Wiedemann-Franz law: κ/σ = L0T , where κ is the heat
conductance, L0 = π2k2

B
3e2 the Lorenz number and T the temperature. While the understanding of quantum

charge transport in nano-electronic devices has reached a great level of maturity, heat transport experiments
are lagging far behind [76], for two essential reasons: (i) unlike charge, heat is not conserved and (ii) there
is no simple thermal equivalent to the ammeter. Heat transport can nevertheless give insight to phenomena
that charge transport is blind to [77, 78] and, remarkably, a series of experiments has demonstrated the
very universality of the quantization of heat conductance, regardless of the carrier statistics [77–85].

On the other hand, many low temperature quantum transport experiments in nanoelectronic devices
assume isothermal conditions. Nevertheless, it is well known that the electrons in nanodevices at low
temperatures are generically overheated with respect to the phonons, due to the weakness of electron-
phonon coupling and the difficulty to completely shield incoming radiation from higher temperature stages.
Further, the electronic device operation itself can be the source of dissipation and even thermal avalanches,
such as in the case of thermally hysteretic Josephson junctions.

The first part of this chapter will give an overview of my recent activities about overheating and thermal
avalanches in Josephson junctions, when driven close to their critical current. The important message here
is that electronic overheating can have paramount influence on the device characteristics, which must be
considered in the interpretation of the data. The second part describes experiments in which thermal
gradients were created on purpose as to study thermal transport. An experiment about phononic heat
transport between two nearby quantum devices [86] will not be discussed here. We will rather focus on a
recent experiment on the test of the Wiedemann-Franz law at the nanoscale [87].

2.1 Electron overheating in Josephson junctions

2.1.1 Dissipation and thermal balance in µ-SQUIDs

Our group has a long-standing collaboration with Anjan Gupta from IIT Kanpur on the thermal prop-
erties of micro-SQUIDs based on Nb microconstrictions. Such devices display excellent performances for
characterizing micromagnets, such as small crystals of molecular magnets [88]. Their hysteretic V (I) char-
acteristic however requires in usual operation a slow operation mode, because once the superconducting
switching current of the junction has been reached, the current has to be significantly reduced again to
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Chapter 2. A thermal view on quantum nanoelectronic devices

4

FIG. 4: Variation of Ic, Ir1 and Ir2 with bath temperature
for (a) µS1 and (b) µS2. The symbols are the data points.
The continuous lines are fits given by (in mA and K), (a)
Ic = 0.42(7.4 − Tb) and (b) Ic = 0.29(7.4 − Tb) while the
other two are described by Ir1 = 0.17(8.4 − Tb)

0.43 and Ir2 =
0.37(8.7 − Tb)

0.5 for both the devices. The cartoon pictures
of the device shown in different regions depict the state of
the device during current ramp-down with blue as SC and
red as resistive portions. The light gray-shaded area shows
the bistable region where the whole device is in the fully SC
state during the current ramp-up from zero. In the dark gray-
shaded region, only WLs are resistive.

Ic coincides with its crossing with Ir1 at Th. Below Th,
Ic exceeds the stability (re-trapping) current Ir1. In this
case, a single phase-slip event induced by thermal fluctu-
ations in the WL can cause a thermal runaway [18]. IVCs
thus exhibit a sharp voltage jump at Ic. A distribution of
Ic values is obtained, since a phase slip-induced transition
is stochastic [24]. Above Th, Ic is smaller than the sta-
bility (runaway) current Ir1, so that no thermal runaway
can happen at Ic: the reversible (mono-stable) regime is
obtained. Due to phase-slips proliferation near Ic, the
transition to the resistive state (at Ic) is then smeared
with a voltage tail below Ic, see Fig. 3(e). The later can
arise either from stochastic phase-slips [18] or determin-
istic phase dynamics [25]. The related non-zero dissipa-
tion just below Ic also heats some portion of the device

above the bath temperature. Assuming that the whole
SQUID loop is at nearly uniform temperature, which is
justified since the loop size is comparable to lth, we es-
timate that the power generated just below Ic of 72 nW
for Tb = 7.25 K brings the SQUID loop to a temperature
of about 7.8 K. Because of this, and the fact that the
WL region is actually a SC with a lower critical temper-
ature, the temperature dependence of Ic between Th and
Tc1 cannot be simply described by that of S-N-S WLs
[26]. Ic and Ir1 are expected to cross at some tempera-
ture even if the WL Tc is same as that of the adjacent
SC. But then the hysteresis-free regime will exist over a
narrower temperature range. Thus the smaller Tc of the
WL and the proximity SC plays crucial role in widening
this hysteresis-free temperature range. Finally, lower Ic

or higher Ir1 values will widen this range even further.
In conclusion, we present the complete device-state

diagram of Nb based µ-SQUIDS. We highlight a non-
classical weak link behavior which is understood in the
framework of a thermal instability picture. The non-
hysteretic high temperature regime of the weak-links is
shown to benefit from proximity superconductivity. The
present new understanding of the physical mechanisms at
the origin of a non-hysteretic behavior is key to further
developments in µ-SQUID magneto-sensors for which the
suppression of hysteresis represents a key issue.
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Figure 2.1: Variation of the different critical currents with temperature. Ic is the critical current, Ir1 and Ir2
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during the current ramp-up from zero. In the dark gray-shaded region, only the weak links are resistive.
Taken from [89].

recover the superconducting state, due to overheating. Together with Anjan Gupta and his group, we have
studied various routes to optimizing the thermal runaway in the dissipative state. The main ideas can be
summarized as follows:

• When some part of a superconducting circuit turns normal due to a too large current density, the N-S
interface will propagate depending on the balance between Joule heating in N and thermal drain to
remote reservoirs. From this one can get a rather complex "phase diagram" of the circuit state, with
larger section regions becoming progressively normal as the bias current current increases (Fig. 2.1).

• At higher temperatures, the devices are less hysteretic mainly because the critical current Ic is smaller
and thermal couplings are better. However, we have also found that the picture is not as simple as
described above and that the superconducting proximity effect from the larger leads on the constriction
also influences this reduction in hysteresis [89].

• It is known that shunting the constriction with a less resistive path allows reducing the local thermal
runaway, and thus speeding up the SQUID operation. However, such a normal shunt should not be
too close, as to avoid inverse proximity effect on the constrictions. It should not be too far either,
because the large kinetic inductance of the superconducting path to the shunt will not allow to
deviate sufficiently rapidly the current flow from the constriction. In the work of Nikhil Kumar [90]
we compare the thermal hysteresis of the same SQUID with and without a nearby gold shunt. The
gold shunt is removed by a wet etch in between the two measurements. The hysteresis is significantly
less pronounced in the presence of the shunt.

• Usually, when the critical current is exceeded, the quantum phase runaway heats the constriction to
temperatures higher than Tc, meaning that the Josephson coupling across the junction also vanishes
and the constriction turns entirely normal. However, this needs not be true. When the ratio of the
heat generation to its evacuation, which we quantify as a dimensionless parameter β, is sufficiently
small, the Josephson coupling is not entirely destroyed although the junction is dissipative (Fig. 2.2).
This allows understanding the a priori surprising voltage oscillations in the dissipative state displayed
by some SQUIDs, when the magnetic field is swept [91].
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2.1. Electron overheating in Josephson junctions

(c)	

Figure 2.2: (a) Device state diagram, where β is the ratio of heat production to its evacuation at I = Ic. Istatr

is the current above which the weak link temperature is heated above Tc. Idynr is the current below which
the device falls into the zero-voltage state, whatever its history. The grey shaded region is the dynamic
regime where the weak link has a finite voltage but carries a non-zero supercurrent. (b) Oscillations of
the critical and the retrapping currents with magnetic field in the hysteretic regime at 2.42 K. (c) V (B)
oscillations (for bias currents between 50 to 70 µA) of another device with small critical current and thus
small β = 0.36 at 1.3 K. Taken from [91].

2.1.2 Electron overheating in ac driven SNS Josephson junctions

This study is an extension to the work led by Hervé Courtois when visiting Aalto University in 2008 [92],
which demonstrated that hysteresis in SNS Josephson junctions is indeed of thermal origin. The present Nb-
Au based SNS junctions were realized using a novel lithographic technique, developed by Sayanti Samaddar
in our group [93]. Shadow evaporation of Nb is indeed problematic because the high melting temperature
of Nb leads to strong degassing of the usual organic lithographic resists, which in turn deteriorates the
superconducting properties of the Nb nanostructures. With Sayanti Samaddar, we have developed the use
of a metallic mask, based on an Al/Mo bilayer. Here, the pattern is reactive-ion etched into the top Mo
layer, through a lithographically defined structures in an organic resist layer. Then, the bottom Al layer is
easily and selectively etched using rather soft etchants such as the standard clean-room developer MF319.
This can lead to suspended Mo bridges such as seen in Fig. 2.3, which allow for shadow evaporation of
clean S-N interfaces.

This allowed us studying the response of high-critical current proximity Josephson junctions to a mi-
crowave excitation. Electron overheating in such devices is known to create hysteretic dc voltage-current
characteristics. Here, we demonstrate that it also strongly influences the ac response [94]. The interplay
of electron overheating and ac Josephson dynamics is revealed by the evolution of the Shapiro steps with
the microwave drive amplitude. Extending the resistively shunted Josephson junction model by including
a thermal balance for the electronic bath coupled to phonons, a strong electron overheating is obtained.

A normal metal (N) coupled to two superconducting electrodes (S) constitutes a Josephson junction, that
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Chapter 2. A thermal view on quantum nanoelectronic devices

is, a device capable of sustaining a dissipationless supercurrent [95–97]. The small normal state resistance
and lead-to-lead capacitance of SNS junctions make these strongly overdamped in the RCSJ model [95],
meaning that the quantum phase dynamics is intrinsically non-hysteretic. Still, hysteresis is observed in the
voltage-current (V -I) characteristics of high-critical current SNS junctions due to electronic over-heating
associated to the sudden onset of dissipation when the bias exceeds the critical current [92]. Besides, under
a microwave excitation at frequency ν, the junction characteristics display current-independent voltage
plateaus defined by Vn = nhν/2e with n an integer [98]. These so-called Shapiro steps are due to the
phase-locking of the supercurrent oscillations at the Josephson frequency 2eV/h to the microwave. Shapiro
steps have been frequently used for studying the phase dynamics of a variety of Josephson junctions [99–103],
including junctions based on novel materials [104–111]. Still, the interplay between the electron over-heating
and the ac Josephson dynamics has not yet been investigated.

This section reports a study led by Alessandro De Cecco [94] in which we discuss the response of high-
critical current proximity Josephson junctions to a microwave excitation. We demonstrate the prominent
role of electronic over-heating in the Shapiro steps map. Low-index steps can be masked by the switching to
the resistive state. A simple model explains this behavior as well as the observation of a sharp discontinuity
in the measured critical current when the ac current is increased.

The Nb-Au-Nb junctions are fabricated using the lift-off lithography technique based on the metallic
bilayer shadow mask described above [93], which avoids the deterioration of Nb superconducting properties
by organic contamination (Fig. 2.3c inset). The junctions were all about 210 nm wide, the separation
between the Nb electrodes ranging from 180 to 500 nm, while the Au part was about 200 nm longer in
order to ensure a good overlap with each electrode. The normal-state resistance of the junctions can be
related to a diffusion constant D in Au of about 100 cm2/s. The critical temperature of the Nb electrodes
is 8.5 K. Table 2.1 lists the main device parameters for the different junctions investigated.

DC transport

Fig. 2.3a-b show V-I characteristics of a typical sample. At low temperature, a strong superconducting
branch is observed (Fig. 2.3a), with a large critical current Ic exceeding 100 µA. This is achieved owing to
the short length of the Au bridge and the high interface transparencies. Above Ic, the V-I characteristic
switches to the ohmic branch, characterized by the normal-state resistance RN . When the current is
lowered again, the V -I characteristic remains on the ohmic branch down to the so-called retrapping current
Ir < Ic. This pronounced hysteretic behaviour is of thermal origin and is typical of SNS junctions with a
large critical current density [92]. At higher temperatures however, the thermal instability at the switching
is negligible and the characteristic recovers a reversible behavior (Fig. 2.3b).

The temperature dependence of the critical current is displayed in Fig. 2.3c. The properties of long
SNS junctions depend only little on the superconducting electrodes’ energy gap ∆, but are mainly governed
by the normal island’s Thouless energy [96, 101] ETh = ~D/L2, where D is the diffusion constant and L
the length of N. Within the Usadel equations framework and assuming ETh � ∆ and kBT > ETh, the
temperature dependence of Ic is [112]:

eRNIc = η ETh
32

3 + 2
√

2

[
2πkBT
ETh

]3/2
exp
(
−

√
2πkBT
ETh

)
. (2.1.1)

Here the phenomenological parameter η < 1 describes a reduction in the critical current related, for instance,
to non-ideal interfaces. A very good fit to the data is obtained in all devices, with η always exceeding 0.6,
see Table 1. The effective length Leff =

√
~D/ETh associated to the fit Thouless energy Efit

Th exceeds
the mere separation L between the electrodes. It should indeed include about twice the superconducting
coherence length since Andreev reflections take place in S over such a length [112]. The dependence of the
critical current on a perpendicular magnetic field (Fig. 2.3d) shows both a quasi-gaussian monotonic decay
associated to dephasing and a oscillatory part arising from interference effects [113, 114]. The retrapping
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2.1. Electron overheating in Josephson junctions

No L RN Efit
Th Leff η I0

c I0
r T ∗

(nm) (Ω) (µeV) (nm) (µA) (µA) (K)

J1 225 2.4 28.1 474 0.86 104 33 1.9

J2 300 2.1 23.6 536 0.89 78 45 1.4

J3 180 1.7 49.6 390 0.78 178 35 2.6

J4 500 3.6 9.9 785 0.67 14 2 1.1

Table 2.1: Parameters of the reported samples. In all samples, the Au strip width W is 210±10 nm, its
thickness is 20 nm for sample J1 and 30 nm for samples J2 - J4, while Nb thickness is 60 nm for sample
J1 and 90 nm for samples J2-J4. L is the Nb-Nb distance. RN is the normal-state resistance measured at
4.2 K. Efit

Th and η are the fitting parameters in Eq. 1. Leff =
√
~D/Efit

Th is the effective junction length. I0
c

and I0
r the values of the critical/retrapping currents respectively at T → 0 and in the absence of magnetic

field and microwave excitations. T ∗ is defined by Ic(T ∗) = I0
r .
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Figure 2.3: V-I characteristics of device J3 measured at temperatures of (a) 100 mK and (b) 4.2 K. The ar-
rows indicate the sweeping direction of the current bias. (c) Temperature dependence of the critical current
Ic (black dots) and the retrapping current Ir (red dots) for sample J3. The green dotted line represents a
fit to Eq. (1). Inset: AFM image of a typical Nb-Au-Nb junction. (d) Magnetic-field dependence of the
critical current Ic (black dots) and the retrapping current Ir (red dots) (T = 280 mK, device J1). Steps
in current values appearing at large magnetic field are artifacts. (e) Grazing angle SEM picture of the
suspended Mo-Al bilayer mask. The Mo (bright) is suspended at the position where the weak links will be
created.

current can be roughly thought of as the value of the critical current at a bias-dependent, higher electronic
temperature T ∗, determined by the thermal balance between the dissipated Joule heat and the coupling
to the phonon bath. Conversely, T ∗ is also the temperature scale above which Ir and Ic merge and the
behavior of the junction becomes non-hysteretic.
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Figure 2.4: (a) Differential resistance map as a function of the dc current bias I and the microwave
excitation amplitude Iµ for a frequency ν = 6 GHz (device J2, Tbath = 100 mK). The white arrow indicates
the sweeping direction of the dc current bias. The top black arrows point to the individual V-I curves taken
at microwave drives of (b) 0.020 (c) 0.035 (d) 0.056 (a.u.). Voltage is normalized to hν/2e. (e) Calculated
differential resistance map, including thermal effects.

Microwave response

We now turn to the effect of a microwave excitation on the V-I characteristics. Microwave signals in the
frequency range 1 to 26 GHz and with a power Pµ were applied to the shielded cavity containing the sample.
As the impedance of our samples is small compared to the estimated line impedance at high frequency, the
samples are still current-biased in the microwave regime. The color map of Fig. 2.4a shows the differential
resistance dV/dI obtained by numerical derivation as a function of the dc bias current I and the microwave
induced current Iµ ∝ P

1/2
µ at frequency ν = 6 GHz. The supercurrent branch and the Shapiro steps (up

to an index exceeding 10) appear as dark regions, with zero differential resistance. At large excitation
amplitudes, Fig. 2.4a map is symmetric in I and the Shapiro steps’ widths oscillate with the microwave
excitation amplitude, producing a well-known pattern [104,105,108,110,111]. At small microwave current
Iµ, the hysteresis appears through the asymmetry of Fig. 2.4a map with respect to I.

Strikingly, several low-index steps do not appear in the (positive) current branch corresponding to a
current increasing from zero to above the critical current Ic. Individual V-I characteristics displayed in
Fig. 2.4b-d clearly demonstrate that the absence of these steps stems from the voltage directly jumping
from zero up to about RNIc, corresponding to the ohmic branch. Steps corresponding to voltages below
RNIc thus cannot be detected. The behavior discussed here is clearly distinct from the discussion of
recent experiments on Josephson junctions based on topological insulator materials [108,110,111], in which
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2.1. Electron overheating in Josephson junctions

odd-index Shapiro steps are predicted to be absent [106,107,109].
Let us first focus on the behavior of the critical current as a function of the microwave current amplitude

Iµ. In a current bias picture, the microwave irradiation adds adiabatically an oscillatory excursion Iµ to
the bias current I, so that the current oscillates between I − Iµ and I + Iµ [102]. Switching to the resistive
state then occurs at a lower critical current Ic − Iµ. Once the junction has switched, it remains in the
resistive state due to hysteresis. To first approximation, one expects then a linear suppression of Ic with
increasing Iµ, as seen in Fig. 2.4a. We attribute the slight downward deviation from linear behavior to
a small increase in the cryostat bath temperature at high microwave power. On the retrapping branch, a
similar decay of the retrapping current Ir with the microwave current Iµ is observed. Here the electronic
temperature is high compared to the bath temperature and varies with both the dc and ac bias, which
plays a dominant role.

Tilted washboard potential in the presence of dissipation

In order to provide a quantitative description, we need to consider the energy relaxation from the normal
metal electronic population. In the present temperature range, electron-phonon scattering is the dominant
mechanism. The coupling power between electrons at a temperature Te and phonons at a temperature Tph
is Pe−ph = ΣU(T 5

e −T 5
ph), where Σ is the material-dependent coupling constant and U is the metal volume.

Considering a retrapping temperature T ∗ of 1 to 3 K, the related rate τ−1
e−ph ≈ 0.16× T 3 GHz in Au [115]

is in the low GHz range (≈ 0.4 GHz in J2 at T ∗ = 1.4 K for instance). In most of the frequency range
investigated here, the thermal relaxation is thus slow compared to the microwave (τ−1

e−ph < ν) so that the
electronic temperature can be considered as almost constant with time at a given (I,Iµ) bias point.

We consider a Resistively Shunted Junction (RSJ) model [95] with a current bias, complemented with
a thermal balance. The time-dependent current i(t) = I + Iµ sin(2πνt) through the junction is considered
as the sum of the ohmic current v/R and the Josephson current Ic sinϕ, where ϕ is the phase difference
across the junction:

i(t) = I + Iµ sin(2πνt) = Ic sinϕ+ v/R. (2.1.2)

The time-dependent voltage v relates to the time-derivative of the phase as v(t) = ~ϕ̇/2e from the second
Josephson relation. From Eq. (2.1.2), the phase dynamics can be modeled as that of a massless particle of
position ϕ in a tilted washboard potential U(ϕ) = −~[Ic cosϕ+ i(t)]/2e. The potential slope is proportional
to the current bias i(t): its average is thus determined by I and it oscillates with an amplitude given
by Iµ. For large enough I or Iµ, the particle rolls down the slope. The Shapiro steps at voltage values
Vn = nhf/2e correspond to the particle hopping across n minima during one microwave period.

We can write the instantaneous Joule power:

p(t) = i · v = Ic
~
2e ϕ̇ sinϕ+ 1

R

(
~
2e ϕ̇

)2
. (2.1.3)

The first term is the change of the Josephson energy. It is zero in average and does not contribute to the
average power P dissipated over one cycle. Only the second term, which is the Joule power across the
junction resistance, dissipates. It can be non-zero in average even though the average voltage V is zero.

In terms of heat balance, the dissipated power P is balanced by the electron-phonon coupling power
Pe−ph. The related temperature elevation acts on the phase dynamics through the temperature dependence
of the critical current following Eq. (2.1.1). Using Eqs. (2.1.2) and (2.1.3) and taking the volume U as
a free parameter, we have numerically calculated the time-dependence of the phase, the dissipated power
and the ensuing electronic temperature Te for every (I,Iµ) bias point, which gives access to the related dc
voltage drop V . Fig. 2.4e shows the calculated differential resistance for device J2’s parameters. For the
best fit, the volume U was chosen as 10 times the physical volume. This can be explained by both the
inverse proximity effect in the leads in the vicinity of the N-S interface and the thermal conductance of the
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Figure 2.5: (a) Calculated electronic temperature Te map corresponding to situation of Fig. 2, i.e. for
device J2 at Tbath = 100 mK. Inset: Line cut showing the electronic temperature at zero dc bias current as
a function of the microwave current. (b) Line cuts of the map (a) showing the dependence of the electronic
temperature as a function of the dc bias current I at different values of the microwave current indicated
by arrows at the top of the map.

leads between the N island and the N metal regions of the leads. A semi-quantitative agreement for the
differential resistance between Fig. 2.4a and 2.4e is readily seen.

The associated temperature map of Fig. 2.5a highlights the importance of dissipation in the ac phase
dynamics in SNS junctions. Strikingly, the electronic temperature varies significantly as a function of the
microwave current bias: the temperature increases from the bath temperature of 0.1 K up to above 2 K.
On the first Shapiro step, the temperature is already of about 1 K. Even for zero dc current I and hence
zero voltage V , the electrons in N are significantly overheated at large microwave drives, see Fig. 2.5a inset.
The Shapiro steps structure appears also on the temperature map, as can be seen in Fig. 2.5a and more
clearly in Fig. 2.5b as wiggles in every curve, especially the curve (2).

Both the data (Fig. 2.4a) and the calculations (Fig. 2.4e) exhibit a sudden drop of the critical current
Ic as the retrapping current Ir reaches the border of the n = 0 Shapiro step (at a microwave current Iµ = I∗

of about 0.04 in Fig. 2a). The numerical solution of the phase dynamics provides the explanation for this:
for a zero dc current bias (I = 0), while at an ac drive below I∗ the particle oscillates in a single washboard
valley, above I∗ it hops back and forth between two valleys. Although not causing any dc voltage over
the junction, this produces dissipation similar to that of the n = 1 state, which is also revealed by the
temperature map Fig. 2.5a.

In summary, this study evidences that electron over-heating is of paramount influence in the microwave
response of Josephson junctions [94]. Exploring the microwave response of Josephson junctions involves
variable electronic temperatures, which is of uttermost importance for the complete analysis of devices based
on new materials like topological conductors. In a subsequent recent work to which I contributed [116],
Benjamin Sacépé and coworkers exploited the very same approach to the microwave response of Josephson
junctions incorporating thin flakes of Bi2Se3. Under isothermal conditions, the odd index Shapiro steps
are predicted to be absent in topological Josephson junctions due to a 4π-periodic current-phase relation.
However, all but the the n = 1 index Shapiro step are experimentally observed. Using the same analysis as
above this non-observation of higher-order missing Shapiro steps can be explained by ac dissipation, and
ensuing thermal poisoning.
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Figure 2.6: A single-electron transistor and the set-up for the heat transport measurement. (a) False-
colored SEM image of the full device. The circuit in red indicates the charge transport set-up, while the
black one stands for the heat transport set-up. (b) Schematic of the device, with the different elements
shown in colors. (c) Zoomed-in view of the central part of the SET. (d) Differential conductance map of
sample A SET at 50 mK against drain-source voltage VSET and induced charge ng.

2.2 Thermal transport in single electron devices
As device dimensions are reduced, electron interactions gain capital importance, leading to Coulomb block-
ade in mesoscopic devices in which a small island is connected by tunnel junctions. A metallic island
connected to a source and a drain through tunnel junctions exceeding the Klitzing resistance RK = h/e2

and under the influence of a gate electric field constitutes a Single-Electron Transistor (SET) [117]. The
charging energy of the island by a single electron writes EC = e2/2C where C is the total capacitance of
the island. It defines the temperature and bias thresholds below which single-electron physics appears. In
the regime where charge transport is governed by unscreened Coulomb interactions, the question of the
associated heat flow has been addressed by several theoretical studies [118–125]. The Wiedemann-Franz
law is expected to hold in an SET only at the charge degeneracy points in the limit of small transparency,
where the effective transport channel is free from interactions, and is violated otherwise.

In this experiment, led by Bivas Dutta in collaboration with our colleagues at Aalto University, we
performed measurements of both the heat and charge conduction through a metallic SET, with both
quantities displaying a marked gate modulation [87]. A strong deviation from the Wiedemann-Franz law is
observed when the transport through the SET is driven by the Coulomb blockade, as the electrons flowing
through the device are then filtered based on their energy.

Figure 2.6a is a colored scanning electron micrograph of one of the devices that we have investigated while
Fig. 2.6b shows a schematics with the same colors for every element. It includes an SET with a drain made
of a bulky electrode that is well thermalized to the bath. In contrast, the source of the SET is connected
to its lead through a direct Normal metal-Superconductor (NS) contact, which thermally isolates it due
to poor thermal conductivity of a superconductor at low temperature. In addition, four superconducting
contacts form Superconductor-Insulator-Normal metal (SIN) junctions. As will be discussed below, the
latter can be used either as electronic thermometers or coolers/heaters. Samples were fabricated by three-
angle evaporation of Cu (30-45 nm), Al (20 nm) and again Cu (30 nm). The Al layer was oxidized in order
to form tunnel barriers with the second Cu layer. Still, the drain, island and source are in the normal state
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as the SET tunnel junctions are based on a short Al strip rendered normal by inverse proximity effect via a
clean contact to a long normal (Cu) line [126]. The SET island was designed with a small volume in order
to render the electron-phonon coupling negligible in the island.

We report here on two investigated devices with identical geometry but different drain-source tunnel
resistance RN of 164 kΩ (sample A) and 52 kΩ (sample B). Figure 2.6d shows the differential conductance at
50 mK as a function of both the SET bias VSET and the average number ng = CgVg/e of electrons induced
electrostatically by the gate potential Vg on the island. Here Cg is the capacitance between the gate and
the island. Coulomb diamonds (in dark blue) are regions of zero current through the SET. Every diamond
is centered around an integer value of ng and defines a fixed charge state on the island. At zero bias, the
charge conductance is thus vanishing, except in the vicinity of the degeneracy points at half-integer values
of ng. At these points, two charge states have the same energy and the conductance (for small barrier
transparency) is half the high-temperature value, which is related to the fact that only these two states are
involved. From the map, one can estimate a charging energy EC of about 155 and 100 µeV for sample A
and B, respectively.

Thermal balance

In the present work, our approach is to study the thermal balance in the source when it is heated or cooled.
In every thermal measurement, we ensured that no current is flowing through the SET, so that pure heat
transport can be considered. The thermal conductance of the SET is inferred from the heat balance in the
source, and then compared to the electrical conductance measured in parallel.

We will consider here that the electron population of the source is in quasi-equilibrium at a well-defined
(electronic) temperature Te. This is justified as the mean electron escape time from this element is longer
than the estimated electron-electron interaction time [127]. By heating or cooling electrons in the source,
its electronic temperature Te can be different from the temperature of the phonons thermalized at the bath
temperature Tb. We achieve electronic thermometry by measuring the voltage drop across a current-biased
NIS junction [70, 128, 129], the current set-point being chosen to be low enough in the sub-gap regime
(eV < ∆, ∆ being the energy gap of the superconductor) to avoid any significant cooling.

Indeed, a current bias through a (pair of) NIS junction enables to cool electrons with respect to the
phonons [130, 131]. This can be understood as a kind of selective evaporation: when the voltage drop is
below the energy gap, only higher energy electrons can escape the normal metal. The maximum cooling
power is obtained right below the gap in terms of voltage drop across one NIS junction. At a larger voltage,
the usual Joule heating is recovered and electrons are heated above the thermal bath temperature.

The cooling and heating of the source electronic bath is illustrated for sample B in Fig. 2.7 left. Here
one NIS junction to the source is used for thermometry while a second junction acts as a cooler used for
cooling/heating. At a low cooler bias Vcool, the electronic temperature Te is below the bath temperature
Tb of 152 mK (indicated by a horizontal dashed line in Fig. 2.7 left) so that cooling is achieved. The
maximum temperature reduction of about 50 mK is reached at a potential drop Vcool of about 190 µeV,
close to the gap ∆ for Al. A larger cooling is obtained when the gate potential is adjusted so that electron
transport through the SET is blocked (ng = 0) and so is thermal transport through it. At higher bias
of the cooler (Vcool > ∆), an electron overheating is obtained: Te > Tb. Again, the electron temperature
change (here an increase) is larger when the SET is blocked. The electron temperature at a fixed cooler
bias but as a function of the gate potential is displayed in Fig. 2.7 right. Clear temperature oscillations are
obtained, with an opposite sign for the electron cooling and the over-heating regimes. This demonstrates
the contribution of the thermal conductance of the SET to heat transport.

In order to quantify the thermal conductance through the SET, we describe the thermal balance in
the source following a thermal model depicted in Fig. 2.6b. In this model, the electron bath in the source
receives the power Q̇cool from the cooler junction, with a positive or negative sign corresponding to cooling
or heating respectively. It can be calculated from [70]
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Figure 2.7: Left: Variation of electronic temperature Te of sample B source with cooler bias voltage, at
gate open (ng = 0.5) and gate closed (ng = 0) states, at a bath temperature Tb of 152 mK. The full line is
a fit of the gate-open state data, see text. Right: Temperature modulation by the gate voltage expressed
in terms of induced charge ng in the heating regime (top) and in the cooling regime (bottom) at cooler bias
points indicated by the blue and red arrows in the left plot.

Q̇cool = 1
e2Rcool

∫ ∞
−∞

(E − eVcool)nS(E)[fsource(E − eVcool)− fS(E)]dE − Q̇0, (2.2.1)

where Rcool is the tunnel junction resistance of the cooler, nS(E) is the (BCS) density of states of
the superconductor, fsource,S(E) is the thermal energy distribution function in the source or the S lead
of the cooler at respective temperatures Te and TS. The parasitic power Q̇0 takes into account imperfect
thermalization of the electrical connections. The main energy relaxation channel for the source electrons
is the coupling to phonons, with a power following Q̇e-ph = ΣV(T 5

e − T 5
ph), where Σ is characteristic of

the material, V is the volume, and Tph is the phonon temperature here assumed to be equal the bath
temperature [70]. Eventually, the SET transmits a power Q̇SET to the source.

Let us first consider the gate-open position ng = 0.5, where the two charge states involved in electron
transport have the same electrostatic energy. Electron transport is thus (for small barrier transparency)
unaffected by electron interaction and the Wiedemann-Franz law is expected to be valid. The power Q̇SET

can thus be calculated from the measured differential conductance for charge dI/dV at low bias. We use
the thermal balance for the source electrons Q̇SET − Q̇cool − Q̇e-ph = 0 to extract the cooling/heating
power Q̇cool. Here the electron-phonon coupling power Q̇e-ph is calculated using the actual volume V and
a parameter value: Σ = 2.8 nWµm3 K−5, close to the expected value for Cu. The parasitic power Q̇0 is
found to be 0.1 fW in agreement with previous works [80].

The preceding analysis at the gate open state provides us with a full knowledge of the thermal behavior
of the source, including all physical parameters for electronic cooling and electron-phonon coupling. We
now assume that, whatever the gate potential is, the temperature of the superconducting leads of the
cooler varies with the cooler’s bias as determined above in the gate open case. The measured values
of the source electronic temperature Te(ng) are used to calculate the power flowing through the SET as
Q̇SET = Q̇cool + Q̇e-ph as a function of ng. Considering the limit of a small temperature difference, the SET
heat conductance is then calculated as κ = Q̇SET/(Tb − Te).
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Figure 2.8: Top: Thermal (blue dots) and charge (green dots) conductances of the SET at a bath tempera-
ture of 132 mK (left, sample A) and 152 mK (right, sample B) in units of the conductances in the gate-open
state κ0 and σ0. The thermal flow through the SET was calculated assuming that the Wiedemann-Franz
law is fulfilled at the gate-open state. The charge transport was measured at a bias of 22.4 µV (sample A)
and 19.2 µV (sample B). The heat transport data was acquired by cooling the source electronic bath by 30
mK (sample A) and 22 mK (sample B) below the bath temperature. Bottom: Lorenz ratio (purple dots)
defined as L/L0 where L = κ/(σTm) for sample A (left) and sample B (right). The error bars are related
to the uncertainty in temperature measurement. The Wiedemann-Franz law sets L = L0. The red line is
the theoretical prediction based on Ref. [124].

Electronic versus thermal conductance

Figure 2.8a shows both the heat conductance κ and the charge conductance σ for samples A and B, as
a function of the gate potential. Both quantities were measured at the same bath temperature. An SET
bias of about 20 µV and an electron cooling by about 25 mK were used for the charge and the heat
transport measurements respectively. The charge conductance is plotted in units of the low-bias gate-open
conductance σ0. The heat conductance is plotted in units of the Wiedemann-Franz value in the gate-open
state κ0 = σ0L0Tm(ng=0.5). We use here the mean temperature Tm = (Te +Tb)/2 so that a linear response
is expected in the Wiedemann-Franz regime even for the case of a significant temperature difference Te−Tb.

For both samples A and B, the charge and heat conductances oscillate with ng. In the case of sample A
(top left), the two conductances mostly overlap over the full gate potential range. Close to the gate-closed
state, the two conductances seem to deviate one from the other but their absolute values are small. In
contrast, sample B exhibits a clear deviation from the Wiedemann-Franz law. At the gate closed state, the
heat conductance clearly exceeds the charge conductance multiplied by L0T .

In order to get more insight, let us now consider the Lorenz factor defined as L/L0 with L = κ/(σTm).
The Wiedemann-Franz law sets a Lorenz factor equal to unity. In contrast, for sample B the Lorenz factor
(Fig. 2.8 bottom right) oscillates between 1 at gate-open state and about 4 at gate closed state. This is
the main result of this work. Sample A shows essentially the same behavior over the gate potential range
where it can be accurately determined whereas error bars are very large in the vicinity of the gate-closed
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state due to vanishingly small conductances. We obtained similar results for the whole range of bias points
of the cooler, both in the cooling and the heating regimes.

The physical origin of the violation of the Wiedemann-Franz law resides in the energy selectivity of
electron transport through an SET. As a consequence of this, the population of electrons flowing through
the SET is non-thermal. For instance, at the gate-closed state, only electrons with an energy (counted
from the Fermi level) above the charging energy EC contribute to the zero-bias SET conductance. These
electrons obviously carry the same (electron) charge but a higher energy. Thus the heat conductance does
not decay due to interactions as much as the charge conductance does and the Lorenz number exceeds
its basic value L0. Electron co-tunneling can counter-balance this, as it involves electrons with an energy
close to the Fermi level. The cross-over to the co-tunneling regime shows up at the gate-closed state as a
maximum of the Lorenz factor at a temperature T ≈ 0.1EC/kB [124].

We have calculated the theoretical Lorenz factor for our samples using the theory of Ref. [124]. Figure
2.8 bottom shows as full lines the calculated Lorenz factor in parallel with the experimental data. As for
parameters, we used the calculated values of kBT/EC ≈ 0.06 and 0.12 for sample A and B respectively
and the measured values of the SETs conductance. The theoretical prediction and the experimental data
match very well, within error bars. For sample A, the calculated Lorenz number shows a relative minimum
in the gate-closed state, which cannot be checked in the experiment due to experimental uncertainties.

To conclude, this work demonstrates that the heat transport through an SET can be driven by a gate
potential, making the SET a heat switch. The celebrated Wiedemann-Franz law is strongly violated away
from the charge degeneracy positions. Our experimental data agree very well with theoretical predictions.
As a prospect, investigating SETs where the island is a quantum dot could exhibit new thermo-electric
effects driven by a single energy level [68].
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Chapter 3

Bridging the gap between scanning
probe and device physics

Device physics and scanning probe microscopy studies are usually the playgrounds of very different scientific
communities, in terms of experimental techniques. However, the STM tunnel junction itself can be seen
as a device, with spatially tunable characteristics. Our group at Néel has been working in the past years
(decades...) at the interface between both fields, principally along two directions: (i) the scanning probe
inspection of the local properties of solid-state devices (see [132, 133] for two results obtained prior to my
recruitment), and (ii), more recently, creating devices with one contact being the STM tip, in combination
with other control knobs such as a gate electrode. The latter is however still at the level of a project.

This chapter mainly describes the Grenoble cryogenic AFM-STM setup built in 2009, along with three
selected results obtained with this instrument on the local properties of graphene [134–136]. The planned
integration of a UHV surface preparation chamber to the STM setup, which will allow to extend our work
beyond inert surfaces, is described in the Perspective chapter.

3.1 Cryogenic combined AFM-STM

3.1.1 The scanning probe microscope

While a postdoc at Tokyo University, part of my work was devoted to conceiving and building a new cryo-
genic STM that would allow for coarse xy positioning the sample. The PhD dissertation of A. Wachowiak
was a very useful document for this purpose. The Pan-design [21] was chosen for the coarse Z approach
of the tip. For XY positioning the sample, I used commercial piezoelectric stacks, with orthogonal polar-
isation from one layer to the next and independent contacts. Thereby, the same stack could move either
along X or Y , depending on which layers of the stacks the voltage was applied to. The sample was pressed
against the stacks by a spring from top, but was not guided along a peculiar axis, that is, is was free to
move in the XY plane. This solution is very compact (it is chosen by several commercial suppliers, such as
CreaTec) and suited the requirement to fit the STM into a diameter of less than 26 mm, as anticipated for
applications in high magnetic fields. The STM that I built in Tokyo produced good topographic images,
although it was tested inside a rather poorly vibration-isolated helium cryostat (Fig. 3.1a,b). However, it
was never inserted into the dilution-refrigerated setup I had designed it for. Also, although the coarse Z
motion (tip approach/retract) was very reliable, the XY motion was not sufficiently deterministic. The
sample stage eventually always drifted to a position where it would get stuck.

When starting my research project at Néel in 2008, I concluded from my previous experience that the X
and Y coarse motions have to be separated. We designed the sample positioning to occur via two orthogonal
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Figure 3.1: Left: STM head developed at the University of Tokyo. Center: Atomically resolved topogra-
phy on graphite obtained at 4K with this instrument. Right: Inverted dilution cryostat set up in Grenoble,
with the combined AFM-STM on top of the cold plate.

uniaxial translations: a frame moving along a groove. This frame then carries the sample holder, which
itself can move orthogonally, along a groove on the first frame. The obvious drawback here resides in the
larger lateral dimensions, of about 65 mm here. Because the sionludi has a wide cold stage and because we
did not target high magnetic fields, this was not a critical issue. The main difference with the frequently
used geometry involving a stack of orthogonal positioners (e.g. Attocube) is that the above-described XY
coarse motion system sample is very flat and thus less prone to vibrations.

The combined AFM-STM that allowed obtaining the results presented in this chapter was constructed
in 2009, principally by Sylvain Martin and myself. The AFM operation was significantly improved a few
years later, by Sayanti Samaddar. Detailed descriptions of the construction and the setup can be found
in both their theses. In the remainder of this section, I will simply highlight a few peculiar features and
unpublished results.

3.1.2 Length extension resonator-based combined AFM and STM

In low-temperature AFM, quartz tuning forks are the usual choice for the mechanical-to-electrical trans-
duction of the tip-sample interaction. In the early 2000’s quartz length extension resonators (LERs) were
proposed as an alternative [137, 138] (Fig. 3.2a). These are more compact than usual tuning forks and
resonate usually at 1 MHz or above. They are extremely stiff in the z direction, perpendicular to the
sample surface, with a k = 106 N/m. This is a drawback in terms of force sensitivity for AFM operation,
but an advantage for subsequent STM, and led us to chose this solution for our AFM-STM. A detailed
comparison of the relative merits of the tuning fork and the LER can be found in [139] and in the thesis of
Sayanti Samaddar.

Because of the high operation frequency, actuation and sensing of the LER requires some precautions.
Dedicated electronics allow for simple self compensation of the large and strongly temperature-dependent
stray capacitive currents. In our setup, we apply the excitation signal identically to two close-lying and
similar wires throughout the cryostat, one leading to the LER, the other one being a dead end in the
vicinity of the SPM. The measured signal is the difference of the currents to both sides, which ideally leaves
over the sole contribution of the LER resonance (Fig. 3.2e). This self-cancellation has the great benefit of
being independent of the SPM temperature since the capacitances of both wires vary similarly. Removal of
residual contributions from stray capacitances is achieved by fine-tuning of the relative phase and amplitude
of the AFM current amplifications. Further, we also observed that only two wires are enough for both and
simultaneous AFM and STM operation. This is not the case in tuning fork-based AFM-STMs, in which
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(a)

(b)

(f)	

(g)	
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Figure 3.2: (a) Optical image of the LER. The two side electrodes are microbonded to the supporting chip.
(b) SEM image of a 4 µm tungsten wire glued on the side of the top electrode of the LER. (c) A zoomed
in view of (b) showing the shape of the tip, defined by FIB-etching. (d) SEM image of a commercial
PtIr-coated silicon cantilever and tip glued on the top of the top electrode of the LER. (e) Schematics of
the electronic readout and compensation setup. (f) Variation of the tunneling current (in units of pA) with
the amplitude of oscillation of the LER at room temperature and at 130 mK, respectively. The data are
fitted with a modified Bessel’s function of zeroth order. (g) AFM topograph of the surface of CVD grown
epitaxial graphene on iridium(111) at room temperature (∆fset= 5Hz, Aset = 700 pm, Vbias = 0.8 V). (h)
STM topograph over the same region recorded in a consecutive scan (Iset = 100pA, Vbias = 0.8 V). The
continuous ridges running all over surface are wrinkles of the graphene sheet. The region on the top left of
each image shows uncovered iridium having undergone atmospheric oxidation.

the STM wire cannot act as the resonator counter-electrode. This difference is due to the very different
resonance frequency regimes of both types of resonators.

The combined operation of the STM and AFM modes allows for a variety of experiments. For example,
when the tip is brought into tunneling contact, measuring the tunneling current as a function of the LER
oscillation amplitude allows for calibrating directly and in situ the LER amplitude of oscillation. This
oscillation amplitude dependence of the tunnel current is due to the non-linear dependence of the tunneling
current on the tip height, and can be captured by a simple Bessel-type integral, leading to the fits in Fig.
3.2f. Further, the combination of AFM and STM topographies at the same location gives interesting insights
into the surface properties, as exemplified by Figs. 3.2g,h. The region which appears as a protrusion in the
top left corner of the AFM image appears actually lower than the surroundings in the STM topography.
This region is graphene-free iridium, covered by a non-conductive oxide (IrO). The stronger tip-sample
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Figure 3.3: (a) Low temperature AFM image of an Al-Cu-Al Josephson junction. (b) Tunneling spectro-
scopies on proximized Cu at increasing distances from the interface. At a distance of 100 nm, the induced
gap becomes unobservable, in striking contrast with the critical current of several µA of the Josephson
device. (c) Effect of increasing current bias in the SNS device on the tunneling spectroscopies near the
initial position of (b) (at zero magnetic field ). (d) Effect of increasing magnetic field on the same (at zero
current bias).

interaction in the STM mode leads also to the deformation of some structures, such as seen at the point of
convergence of three graphene wrinkles in the top right corner of both images.

Eventually, we must also stress one of the main drawbacks of the LER: its symmetry properties and
extremely small mass make the LER’s quality factor rather sensitive to the mass imbalance caused by the
tip attached to one prong. This has obliged us to test several strategies for attaching tips, which need to
be both sharp and electrically conductive/connected (Figs. 3.2b-d). Up to date, individually focussed-ion-
beam-shaped tungsten tips appear as the most viable solution, although their preparation is quite time
consuming and the electrical contact is sometimes lost at low temperatures.

3.1.3 Spectroscopy of the superconducting proximity effect

Determining the local value of the proximity-induced pairing amplitude at the vicinity of a transparent NS
interface has been one of the main motivations that led Hervé Courtois to construct a dilution-refrigerated
STM in Grenoble in the late 1990’s. This was achieved with his student Norbert Moussy, who was able
to determine the proximity-induced gap near the gold-niobium interface [140], in good agreement with the
Usadel formalism (see also [141]).

Thereafter, the most obvious follow-up experiments were to extend to above measurements to (i) incor-
porate a current or a quantum phase bias across the diffusive normal island between two superconductors,
and (ii) consider a non-diffusive (ballistic) normal conductor, such as a quantum dot. This initially im-
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pulsed the development of the combined AFM-STM technique, in order to being able to locate single
phase- or current-biased devices, on an insulating substrate. Eventually, both the phase-bias- and the
superconducting quantum dot spectroscopy experiments were tackled a few years later by P. Joyez and
coworkers [24, 101]. Here, a few complementary and unpublished results obtained by Sylvain Martin on
local tunneling spectroscopies on current-biased SNS junctions will be presented.

One of the main difficulties of the Grenoble STM experiments on SNS devices was due the unfortunate
choice of copper (rather than silver, as used in [101]) as the normal conductor. As we found out after
significant efforts, even in an extended 10 nm-thick copper thin film on top of superconducting aluminum,
the proximity effect is significantly suppressed at the surface [142], possibly due to the quick growth of a
magnetic oxide on copper under ambient conditions. This is somewhat surprising because Cu has excellent
properties as an N link in SNS Josephson junctions, while the presence of a magnetically active surface
should produce pair breaking.

Figure 3.3a shows an AFM image obtained by T. Quaglio on an Al-Cu-Al junction [133]. In this device,
the superconducting gap is nearly immediately suppressed when the tip moves from the Al to the Cu
surface. In a similar device, Sylvain Martin succeeded in observing a more progressive variation of the
induced gap, when moving to the Cu (Fig. 3.3b). Interestingly, it was possible to observe the evolution
of the induced gap as a function of the applied current across the Josephson junction (Fig. 3.3c). When
the critical current is reached, the induced gap disappears. The same effect is obtained by applying a
magnetic field at the same location (Fig. 3.3d). This is not surprising because in the Hamiltonian of the
(inhomogeneous) superconducting state, the superfluid velocity and the vector potential ~A appear on equal
footings.

3.2 Charge disorder and screening in graphene
The difficulties encountered in working on non-inert surfaces using scanning probe techniques and without a
preparation chamber encouraged us to develop an activity on graphene surfaces and devices. As of 2010, we
started collaborating with J. Coraux, who at that time started growing graphene on thin film iridium(111)
at Néel, which led to three joint publications [134,136,143]. A few years later, we were ready to move from
bulk samples to graphene devices [135,136].

3.2.1 Charge disorder in graphene on Ir(111) upon molecular intercalation
At the time of Sylvain Martin’s first experiments on Gr/Ir(111), M. Crommie’s group had recently published
on the Origin of spatial charge inhomogeneity in graphene [144]. This paper not only demonstrated the
mapping of the charge puddles by STM, but further associated the observed charge inhomogeneities to the
presence of individual charge inhomogeneities below the graphene. These were identified by surrounding
LDOS fringes (Friedel oscillations), which became visible at energies off the Dirac point and displayed the
expected spatial periodicity ∝ (E − ED)−1. Eventually, these authors highlighted the total absence of
correlations between the doping landscape and neither the topography, nor its curvature. This was at that
time a particularly hotly debated issue, in which the mainstream scenario of charge density inhomogeneities
induced by isolated charges in the substrate [145] was challenged by more exotic scenarios, calling for
possible effects of the graphene curvature on the local doping [146–148].

In Sylvain Martin’s work, we demonstrated the coexistence of charge puddles and topographic ripples
in graphene decoupled from the Ir(111) substrate it was grown on. We show the topographic corrugations
and the charge disorder to be locally correlated. This sounds at first sight as it was challenging the findings
of the Crommie group in a different system. However, here the situation in graphene on Ir(111) is quite
different and the observed correlation appears as a result of the intercalation of molecular species. More
interestingly, from the analysis of quasi-particle scattering interferences observed by STM, we determine
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Figure 3.4: (a) Scanning tunneling micrograph on graphene on Ir(111). The image size is 400×400 nm2,
tunnel current I = 1 nA, bias voltage V = 0.57 V). The atomic step in epitaxial Ir(111) covered by
graphene is 2.5 Å high. Inset: zoom-in (2.3×2.3 nm2) atomic resolution image, I = 1 nA, V=0.01V.
(b) Local tunneling spectroscopy G(V ) = dI/dV . The Dirac point (eV = ED, arrow) is defined by the
minimum of G.

a linear dispersion relation, demonstrating that graphene on a metal can recover its intrinsic electronic
properties. The measured Fermi velocity vF = 0.9± 0.04× 106 m/s is lower than in graphene on dielectric
substrates, pointing to a strong screening of electron-electron interactions in graphene by the nearby metallic
substrate.

The experiment is conducted using the home-made scanning probe microscope described above, at 130
mK. Local tunnel conductance data were obtained using the lock-in technique (VAC = 6 mV, f = 407 Hz).
Samples are heated to 70◦C while pumping the chamber and during cryostat cool-down, in order to avoid
cryosorption of residual gases. The studied sample is graphene prepared by chemical vapor deposition
(CVD) on epitaxial Ir(111) under ultra-high vacuum (UHV), as described in [149]. The samples are
exposed to air between the growth and STM inspection. This produces a decoupling of the graphene from
its metallic support by oxygen intercalation, transforming the moiré pattern into a disordered topographic
landscape [143]. Figure 3.4(a) shows the topography of graphene on a plain Ir atomic terrace. A disordered
topographic landscape with a typical rms roughness σz ≈ 50 − 100 pm is observed, comparable to the
corrugation of graphene on SiO2 [144]. While the usual moiré pattern is absent, atomic resolution is
routinely achieved, demonstrating the cleanliness of the surface.

Mapping the local doping level

The electronic LDOS can then be accessed in STM by the measurement of the local tunneling conductance
G(V ) = dI/dV . The tunnel spectra display a V-shape (Fig. 3.4(b)), characteristic of the density of states
of graphene and similar to data observed by STS on exfoliated graphene on SiO2 [150, 151]. The voltage
Vmin at the conductance minimum has been identified in previous works [144] as the charge neutrality
point, that is, the Dirac point in graphene at energy ED = eVmin. The value of ED reflects the strength
of the local graphene doping [144, 146, 151], which is p-type here. A dip of width of about 20 meV is also
present around zero bias, which is frequently reported in STS studies on graphene [150–152] and will not be
discussed in this work. We have measured a series of high-resolution conductance maps at low temperature.
At each position r of a tunnel conductance map, the Dirac point energy ED is extracted using a parabolic
fit around the minimum of G. The average doping (sample dependent by ±10%) is found to be E0

D = 340
meV in Fig. 3.5a. This is somewhat larger than that of the same system in undisrupted UHV conditions (≈
100 meV) [153], and lesser than that achieved therein by controlled and exclusive intercalation of oxygen
(≈ 500 meV) [154].
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The map shown in Fig. 3.5a pictures the spatial inhomogeneities of ED around its mean value, forming a
smooth landscape of charge puddles, of about 8-9 nm in diameter. From the relation E2

D = (~vF )2πn [155],
where ~ and vF are the reduced Planck constant and the Fermi velocity respectively, we deduce the
distribution of the charge carrier density n (Fig. 3.5b), where we take vF = 0.9 × 106 m/s as will be
discussed later. Notably, the standard deviation σn ≈ 1.2× 1012 cm−2 is slightly higher than in graphene
exfoliated on SiO2 (≈ 4 × 1011 cm−2) [144]. We further note that the puddle radius is very close to the
Thomas-Fermi screening length which can be evaluated [155] as λTF ≈ 1.1× n−1/2 ≈ 3.4 nm.

Doping versus corrugation

We now focus on the comparison between the Dirac point distribution and the topography. Since only
topographic variations at length scales similar or larger than the typical puddle size can correlate with the
charge inhomogeneities, we filter out the topographic maps from structures of dimensions below half the
mean puddle size. Figure 3.5a shows the superposition of an ED(r) map (color scale) along with the long
wavelength-pass filtered topography z(r) recorded at the same position (3D profile). A very high degree
of correlation between doping and topography is readily seen. We have quantified this by calculating the
normalized cross-correlation function

χz−ED
(r) =

∑
i

ED(ri − r)× z(r)/(σED
× σz)

of the two data sets. The local cross-correlations χ0
z−ED

between z(r) and ED(r) are in excess of 60 % in
large area maps (Fig. 3.5c). These correlations are independent on the region chosen, but are enhanced
in maps with dimensions much larger than the typical puddle size. When correlating spectroscopic maps
with topography, one also has to recall that in constant-current STM mode a LDOS variation will lead to
a change in the tip-sample distance z. This can misleadingly induce phantom topographic features. We
have carefully analyzed such possible LDOS contribution to the topography and shown them to be much
smaller than the observed corrugation.

The above analysis therefore leads to the conclusion that disordered graphene on a metallic substrate
displays a strong local correlation between doping and topography. Several scenarios can be considered for
this observation. A contribution of curvature effects [147, 148, 156] could for example be anticipated. In
the present system, the theoretically expected contribution of this effect is however nearly two orders of
magnitude below the observed amplitude of the doping disorder, as we analyzed in a correspondence with
M. Polini and coworkers. The graphene doping could further be due to graphene-metal distance dependent
charge transfer from the metallic substrate due to finite electronic wave function overlap. Calculations of
this effect [157] yield a qualitatively correct description, including the correct sign of χ0

z−ED
for graphene

on iridium. Scanning probe measurements at the boundary between coupled and uncoupled graphene on
iridium have however shown the graphene to iridium distance to increase by about 1 nm upon decou-
pling [143], a distance at which the above scenario would have negligible contributions. The most likely
explanation of the doping bases on the presence of molecular species intercalated between the graphene and
its substrate [143, 154]. Locally enhanced accumulation of negatively charged intercalates induce a reduc-
tion of the Fermi level, that is, enhanced p-doping in the graphene. It has indeed been shown that oxygen
intercalation at high temperatures could reversibly modify both the graphene doping and its hybridization
to the substrate [154].

Determination of the band structure from Fourier-transform STS

In order to obtain a more microscopic understanding of the role of the local electrostatic environment
as electron scattering centers, we have tracked the wave vector k distribution of interference patterns in
the Fourier transforms of LDOS maps. The evolution of the dominant k, relative to the Brillouin zone
corner, as a function of the energy level of each map then reflects the dispersion relation of the scattered
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Figure 3.5: (a) Dirac point map (color code) superimposed with a 3D plot of the long-wavelength topog-
raphy. Image of 250×250 nm2. (b) Carrier density distribution extracted from (a) (see text). (c) Angular
average χz−ED

(|r|) of the cross-correlation function (see text) between the above ED and topography maps.

electrons. In graphene, both the large k intervalley and the small k intravalley scatterings have been
observed by this technique [158]. For intravalley scattering, the wave vector transfer q links two points of
the circle resulting from the intersection of a given Dirac cone and a constant energy plane. A particular
characteristic of graphene is the suppression of low-energy backscattering [159]. One therefore expects a
smooth distribution of q between 0 and 2kF for intravalley scattering, seen as a disk in reciprocal space.

In our data, the LDOS maps at energies far from E0
D display clearly resolved structures at length scales

smaller than the typical puddle size (Figs. 3.6a–f). Further, the size of the observed features decreases with
increasing |E − E0

D|. The Fourier transform maps display a disk-like structure (Fig. 3.6g) from which we
extract k = qmax/2 at each energy (Fig. 3.6h). The radius qmax/2 of the interference patterns is defined
as the inflection point of the angular averaged Fourier intensity, that is, the minimum of its smoothed
derivative. This criterion produces the k(E) dispersion with least noise but also slightly overestimates the
wave vectors involved by adding a constant shift [144] to the detected values of q, which results in the linear
dispersion bands crossing at k > 0 in Fig. 3.6h.

The experimental dispersion relation at small k has the features of graphene close to the Dirac point,
evidencing thus the scattering mechanism at work as intravalley. A fit by the linear dispersion relation of
graphene E = E0

D ± ~vF k (Fig. 3.6h) yields vF = 0.90 ± 0.04 × 106 m/s. In unhybridized graphene, vF
is a sensitive probe of the strength of electron-electron interactions [155, 160], which can be screened by
a large dielectric constant ε environment. While a Fermi velocity vF = 2.5 × 106 m/s has been reported
on a low-ε quartz substrate [161], it decreases to about 1.1 − 1.4 × 106 m/s on SiO2 [144, 150], with a
limiting value of about 0.85 × 106 m/s expected for infinite screening [161, 162]. The present system can
actually be envisaged as graphene on a dielectric substrate with divergent ε. In spite of the rather high
doping level, the Thomas-Fermi screening length λTF remains larger than the graphene-iridium distance.
One can thus reasonably assume the substrate screening to dominate over the intrinsic screening of the
graphene, although highly doped. With the above analysis it is thus seen that (i) the linear dispersion
relation of graphene decoupled from a metallic substrate survives at both positive and negative energies
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Figure 3.6: (a) - (f) G(r, E) maps for E = −185; 15; 125; 345; 555 and 700 meV respectively. The color scale
is set to cover fluctuations of ±25 % with respect to the average G at a given E. As the Dirac point is
approached, the islands size can no longer be resolved. (g) Power spectral density from angular averaging
of Fourier transform of (b) (blue) and (c) (green). The inset shows the Fourier transform of (b). The
scale bar is 0.5 nm−1. (h) Energy - wave vector relation extracted from Fourier analysis of the density of
states maps at energy E. The dashed lines are fits to the linear dispersion relation of graphene, yielding
vF = 0.90± 0.04× 106 m/s and E0

D = 0.32 eV.

and (ii) electron-electron interactions in the graphene sheet are strongly screened.
In conclusion, this study demonstrated that CVD-grown graphene can be completely decoupled from its

metallic substrate, displaying local properties that are very similar to graphene on a dielectric substrate like
SiO2. The main contrasting feature with respect to the latter system is that the dopants here indeed have
a topographic signature. We observe a linear electronic dispersion relation, demonstrating unhybridized
graphene with highly screened electron-electron interactions. While the coupling constant of graphene, that
is, the ratio of interaction to kinetic energy α ∝ (εvF )−1, is of order unity in unscreened graphene [160],
studying graphene in a large and adjustable dielectric constant environment could allow for tuning the fine
structure constant α.

3.2.2 Charge puddles in graphene near the Dirac point

As discussed above, the charge carrier density in graphene on a dielectric substrate such as SiO2 displays
inhomogeneities, the so-called charge puddles. Because of the linear dispersion relation in monolayer
graphene, the puddles are predicted to grow near charge neutrality, a markedly distinct property from
conventional two-dimensional electron gases. By applying a variable gate potential, while performing
scanning tunneling microscopy/spectroscopy on a mesoscopic graphene device, we directly observe the
puddles’ growth, both in spatial extent and in amplitude, as the Fermi level approaches the Dirac point.
Self-consistent screening theory provides a unified description of both the macroscopic transport properties
and the microscopically observed charge disorder.
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Electrostatic screening in 2D electron gases

Electrons in graphene are subjected to a disordered potential created by random charged impurities, either
adsorbed on the graphene or buried in the substrate, leading to charge puddles [144, 146, 155, 163–166].
Scanning probe microscopies have in particular strongly contributed to unraveling the puddles’ spatial
properties and have challenged different theories about their origin [144,146,163]. Charge puddles are usu-
ally thought of as a limitation to the extent the charge neutrality point can be approached macroscopically,
thereby also limiting possible device performances. However, the behavior of the puddles itself unveils the
fascinating electronic properties of graphene and, more generally, Dirac materials.

Electrostatic screening in two dimensions (2D) has a counterintuitive behavior. Thomas-Fermi screening
entails a characteristic length scale q−1

TF. Unlike in three dimensions, the Thomas-Fermi wave vector qTF

in a 2D electron gas (2DEG) is proportional to the density of states at the Fermi level. As a consequence,
qTF is energy- and thus carrier density-independent in conventional 2DEGs, while qTF is proportional to
kF =

√
πn in graphene and other Dirac materials. This has the important consequence that the unscreened

potential created by a charged impurity in a medium with dielectric constant κ, V (q) = e2/2κε0q and the
screened potential Ṽ (q) ∝ (q + qTF)−1 are identical within a multiplicative constant [155]. In other words,
near charge neutrality local inhomogeneities in the screened potential can be arbitrarily large. Further, a
rough estimate of the lateral extent of charge carrier density correlations is given by q−1

TF, from which a strong
growth ∝ 1/

√
n of the puddles size is expected near charge neutrality. The carrier density dependence of

both the charge puddles’ amplitude and size in a Dirac material has not been reported yet.

The sample is fabricated on a heavily doped Si substrate covered with thermal oxide. Single layer
graphene is prepared by mechanical exfoliation [167]. The number of graphene layers and the absence of
surface contamination are confirmed from combined optical, Raman and ex-situ AFM characterization.
Using a mechanical mask [168], we deposit the metallic source and drain contacts to form a 4 µm long
graphene junction (Fig. 3.7a). Organic resist is avoided, as to ensure a residue-free surface for scanning
probe microscopy. Details of the device fabrication are described in the thesis of Sayanti Samaddar.

The experimental setup is our home-made combined AFM-STM, operating at a temperature of 130 mK
[134], at which all measurements presented here were obtained. The sample stage allows for in situ multi-
terminal transport measurements of the device. AFM is performed by electrical excitation and read-out of
a mechanical quartz Length Extension Resonator (LER) [137,138]. This allows to rapidly move the tip to
the graphene junction with the help of the position code [101,133]. Scanning tunneling micrographs reveal
a clean graphene surface, following the substrate corrugation with a roughness of about 100 pm. Scanning
tunneling spectroscopy (STS) is achieved by lock-in measurements of the differential tip-to-sample tunneling
conductance Gt(x, y) = dIt/dVb, by adding a 12 mV ac modulation at frequency f = 322 Hz to the bias
voltage Vb, which is uniformly applied to the sample.

Transport measurements are performed with the tip retracted a few hundreds of nm from the sample
surface. However, approaching the tip to STM contact does not produce a significant effect in the device
characteristics. The conductivity of the graphene device shows a perfectly linear behavior at high carrier
densities (Fig. 3.7b), in line with a density independent mobility of about 6000 cm2V−1s−1. This indicates
that carrier transport is dominated by long range disorder, as can be caused by random charge impurities in
the substrate [145]. A slight difference between the measured electron and hole mobilities, µe/µh = 0.9±0.05
could be related to the difference in their scattering cross-sections off charged impurities [165].

The gate voltage at which conductivity is minimized gives the overall charge neutrality point, V 0
g = 29

V. This overall hole doping is consistent with the presence of negatively charged silanol groups on the
surface. A residual conductivity σ0 ≈ 11 e2/h is found at the charge neutrality point. Within self-consistent
screening theory [155], the above values of residual conductivity and mobility point to a charged impurity
distribution with a density ni = 7.5±0.5×1011 cm−2 at a distance 0.1 nm < d < 1 nm below the graphene,
in agreement with earlier experiments in similar conditions [145,165,166].

46



3.2. Charge disorder and screening in graphene

80 V
65 V

-10 V

35 V 
5 V

(c)

2 µm

Needle
Sensor

(a)

Source
Graphene

Drain

0 50-50

Vg (V)

σ
 (

e
2 /h

)

0

50

100

150

200

Vg 

Vb (V)

G
t (

a.
u.

) 
 

0 50-50

Vg (V)

0

0.1

0.2

-0.1
V

b0  (
eV

)

(d)

(b)

data
fit

SiO2

Vg
0 

0.3

-0.2

0 0.5-0.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

0.4

Vg
D 

Vb
0 

Figure 3.7: (a) Experimental configuration, combining transport measurements with scanning probe mi-
croscopy on a monolayer graphene device. A conductive tip mounted on a stiff mechanical resonator serves
as the probe for combined AFM-STM. Two isolated electrical contacts (Source and Drain) enable two-probe
transport measurements. The atomic force micrograph shows both the topography (vertical scale, varying
between 0 and 57 nm) and the phase (varying by 3.8◦ from blue to brown). (b) Device conductivity as a
function of backgate voltage Vg, measured at a bias voltage of 5 mV. The overall charge neutrality point is
found at V 0

g = 29 V. (c) Differential tip-to-sample tunneling conductance Gt as a function of the voltage Vb
(uniformly applied to the sample), at several values of Vg. The red and black arrows indicate the position
of the primary (V 0

b ) and the secondary minimum of Gt respectively (see text). Isett = 50 pA at Vb = 0.9 V.
The curves are vertically offset for clarity. (d) Variation of the primary minimum with Vg. The black
dashed line shows the fit with Eq. (3.2.1), yielding the fit parameter V Dg = 28 V.

STS on gated graphene

We performed scanning tunneling spectroscopy on the graphene sheet, at distances greater than 1µm from
the metal-graphene interface as to rule out any possible influence of the leads on local properties. Fig.
3.7c shows the differential tunneling conductance Gt(Vb) acquired at a given location, but at different gate
voltages Vg. As in the previous section, a V-shape spectrum, characteristic of graphene, is obtained in
every case. A frequently reported gate-independent depression of the tunneling conductance is seen at zero
bias [134, 150, 151]. In addition, the curves display two gate-dependent local minima, highlighted by red
and black arrows respectively, which move in opposite directions with Vg.

The primary minimum V 0
b (red arrows) occurs when the Fermi level of the tip is aligned with the local

Dirac point ED(r) of graphene, which can be written as:

V 0
b = −γ sign(Vg − V Dg )

√
|Vg − V Dg |, (3.2.1)

where γ = ~vF
√
πκε0/(e3t) employing a plate-capacitor model, with vF = 1.1 × 106 m/s the graphene

Fermi velocity, t = 285 nm and κ = 3.9 the SiO2 thickness and dielectric constant, respectively. The local
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quantity V Dg is the gate voltage at which the Fermi levels of both the graphene and the tip are aligned with
the Dirac point. It includes the influence of the local gating produced by the tip due to both the tip-sample
work function mismatch and the bias voltage [168,169]. In the absence of capacitive coupling to the tip, the
spatially averaged V Dg would coincide with V 0

g found from transport experiments. In the case of Fig. 3.7,
the experimental gate dependence of the primary minimum V 0

b can be well fitted with Eq. (3.2.1), yielding
V Dg = 28 V (Fig. 3.7d), the value of γ being determined by known parameters. The nearly exact matching
of V Dg at that particular position and tip condition with the global value of V 0

g is coincidental, since V Dg
depends on the position. The secondary minimum (black arrows) occurs when the Fermi level of graphene
passes through the Dirac point [150,168–170]. The above analysis provides a detailed understanding of the
electron tunneling spectra dependence on the gate potential, at a given location.

Dirac point mapping

Several strategies can be used for mapping the local Dirac point. Performing a complete spectrum with
open feedback loop at each position, from which ED is then individually extracted, is the most reliable
method but is very time-consuming [134, 144]. Mapping Gt with closed feedback loop set to a fixed set-
point tunnel current Isett and a single Vb that is slightly offset from the average primary minimum V 0

b

by δVb, was shown to reproduce qualitatively the ED(x, y) maps [144]. This stems from the fact that, to
first approximation, a shift in ED simply shifts the Gt(Vb) curves along the Vb axis. Complications with
this approach arise when one wishes to compare ED maps at different gate voltages because V 0

b itself is a
function of Vg. Our strategy consists in first determining V 0

b (Vg) at a given position (Fig. 3.7d) and then
mapping Gt at a gate dependent bias voltage Vb(Vg) = V 0

b (Vg)± 100 mV. The sign of the offset is set such
that |Vb| > |V 0

b |.
We further normalize the differential tunnel conductance maps to the set-point tunnel conductance,

writing G̃t = (Vb/Isett )Gt. This normalization is known to provide a more faithful conversion of the
differential tunnel conductance to the density of states when the set-point tunnel conductance is not fixed
from map to map [171]. We have verified the structures observed in G̃t maps to be consistent with the ED
maps found from full current imaging tunneling spectroscopy (CITS) measurements, which were acquired
at selected gate voltages. These full CITS also allow for determining the proportionality factor between
the G̃t and ED maps.

Experimental maps of the variations of G̃t ∼ ED around their spatially averaged value are shown for
several gate voltages in Fig. 3.8. It is readily seen that not only the lateral extent, but also the amplitude
of the doping inhomogeneities, gradually increase as the Fermi level approaches the Dirac point. For proper
quantification of the observed inhomogeneities, we introduce the auto-correlation function of the ED maps.
Assuming rotational symmetry (which is only approximately true, due to the finite size of the maps), the
latter is a function of only r = |r|. The charge puddles’ size ξ is determined from fitting the angular average
of the auto-correlation function of each ED map to a gaussian decay. The gate dependence of ξ displayed
on Fig. 3.9a shows a strong increase near charge neutrality, which is found at a gate voltage V̄ Dg of about
38 V. This value is a spatially averaged property of the map area. Because of the capacitive influence of
the tip 1, V̄ Dg is somewhat larger than the charge neutrality condition V 0

g = 29 V found from transport
experiments [168,169].

We further determine the standard deviation of the Dirac point variations δED over a map. This
quantity, which reflects the amplitude of the doping inhomogeneities across the sample, is plotted on Fig.
3.9b as a function of Vg and also shows a marked peak at V̄ Dg ≈ 38 V. The error bars on ξ and δED are
mainly associated to the finite size of the maps. Some asymmetry of the puddles’ behavior is observed,
which appear somewhat larger and more prominent at large electron doping, than on the hole doped side.
As electron doping involves a quite large gate potential of about 60 V, a possible scenario for this asymmetry

1The capacitive lever arm of the tip with respect to the back gate can be estimated to β ≈ 50, meaning that a tip-sample
work function difference by 0.2 eV will induce a shift in V D

g by 10 V.
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Figure 3.8: Spatial maps of the variations of the local Dirac point energy ED around its spatially averaged
value ĒD, over an area of 100 × 100 nm2 at different gate voltages (indicated below each figure). The
imaging parameters for the original Gt maps (see text) are Isett = 50 pA and bias voltages Vb equal to (a)
0.298 V, (b) 0.191 V (c) 0.122 V, (d) −0.145 V, (e) −0.232 V and (f) −0.267 V.

is that the back-gate eventually influences the substrate impurities distribution itself [166].

Comparison with self-consistent screening theory

Our main experimental findings are thus that both the amplitude and the spatial extent of the puddles
significantly increase as the Fermi level approaches the Dirac point. For a quantitative understanding, we
now compare these results to calculations, which we have led in collaboration with the team of Shaffique
Adam at the National University of Singapore. From Thomas-Fermi theory in 2D, assuming a flat Fermi
sea, follows that variations in the local value of ED/e are equal to variations in the screened electrostatic
potential Ṽ [172]. For a random 2D distribution of charged impurities with density ni at a distance d from
the graphene sheet, the auto-correlation function of the screened potential can be written [173]

C(r) = 2πni
(

e2

4πε0κ

)2 ∫ +∞

0
q dq

[
1
ε(q)

e−qd

q

]2

J0(qr), (3.2.2)

where J0 is the zeroth-order Bessel function and ε(q) is the graphene dielectric function. The latter describes
the screening of Dirac fermions which, within Random Phase Approximation (RPA), can be written as [145]

ε(q) =
{

1 + 4kF rs/q for q < 2kF ,
1 + πrs/2 for q > 2kF ,

(3.2.3)

where rs = e2/(4πε0κ~vF ) ≈ 0.8 on SiO2 is the effective fine structure constant of graphene. The depen-
dence of the correlation function on the mean doping level (and thus on the gate potential) enters here
through the dependence of ε(q) on 2kF .

We calculated the auto-correlation function for the screened potential and extracted the correlation
length ξ and fluctuation amplitude δṼ = δED/e. The result for d = 1 nm, shown as dashed curves in
Fig. 3.9a,b, accounts for the overall decrease of both ξ and δED, that is, stronger screening with increasing
charge carrier density. The calculations have no other adjustable parameter than V̄ Dg = 38V , the impurity
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Figure 3.9: (a) Puddle size and (b) amplitude of doping inhomogeneities, as a function of the back-gate
potential. The dashed lines are calculations without self-consistent correction to carrier density, with
d = 1 nm. The gray areas represent the range of values expected from a random impurity distribution
at a distance d ranging from 0.1 to 1 nm from the graphene sheet. They are delimited by solid lines
corresponding to calculations using the extremal values of d, respectively. For all calculations, the value
derived from transport data is used: ni = 7.5× 1011 cm−2.

density in the substrate ni being determined from the transport measurements. The puddles size follows
in particular the expected trend ξ ∼ q−1

TF ∝ 1/
√
n at high carrier densities, where n ∝ |Vg − V̄ Dg | is the

gate induced charge carrier density. This agreement validates the microscopic picture of random potential
fluctuations, for the description of which we call for Thomas-Fermi screening in a Dirac material.

At charge neutrality, for a homogeneous system, there are no excess charges available to screen the
impurity potential. Accordingly, Eq. (3.2.3) predicts that both the amplitude and the correlation length
diverge. However, this ignores the fact that the induced charges within the puddles can themselves screen
the impurity potential. Accounting for this process self-consistently [145] leads to rewriting the RPA
dielectric function of Eq. (3.2.3) with a corrected charge carrier density. The usual expression of kF =

√
πn

is then replaced by
√
π(n+ n∗) [173], where n∗ represents the disorder-induced residual charge carrier

density in the graphene sheet which cannot be compensated by a global gate. The self-consistent calculations
are plotted in Fig. 3.9a,b. The gray regions are delimited by the theoretical curves for d = 0.1 nm and 1
nm respectively. The ensuing saturation of both the puddles’ size and amplitude at the charge neutrality
point is in very good agreement with the experimentally observed trend.

To conclude, Sayanti Samaddar’s work provides the first microscopic observation of the growth of charge
inhomogeneities in graphene near the Dirac point. It further shows that the observed behavior can be very
well described with a theory based on a microscopic description of the impurity potential, using parameters
found from transport measurements, performed in situ on the very same graphene sample. This observation
gives utmost credit to the charged impurity potential scenario as a limiting factor to the exploitability of
Dirac physics in graphene on SiO2.
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3.2. Charge disorder and screening in graphene

Figure 3.10: Sketch of the band structure and its filling in a three-dimensional semiconductor (left) and in
graphene (right), as a function of wave vector and of distance normal to the vacuum interface. The surface
states of the 3D semiconductor are not represented. Ev, Ec and Evac are the local values of the top of the
valence band, the bottom of the conduction band, and the vacuum energy, respectively. The superscripts
n and p indicate the situation of electron and hole doping, respectively.

3.2.3 Equivalence of electronic doping and work function in graphene at the
nanoscale

After determining the response of a single graphene sheet to a disordered potential by measuring the local
density of states, it was tempting to extend the experiments to a force-measurement related approach.
This is readily available in situ in the combined AF-STM setup. In this section, a study of the conjunct
variations of the doping level and the work function in graphene is presented and discussed. Indeed, if
surface effects are neglected, any change of the Fermi level in a semiconductor is expected to result in
an equal and opposite change of the work function. This is however not observed in general in three-
dimensional semiconductors, because of Fermi level pinning at the surface. By combining Kelvin Probe
Force Microscopy and Scanning Tunneling Spectroscopy on single layer graphene, we have measured in the
frame of Sayanti Samaddar’s PhD work both the local work function and the charge carrier density. The
one-to-one equivalence of changes in the Fermi level and the work function is demonstrated to accurately
hold in single layer graphene down to the nanometer scale [136].

In the basic picture of semiconductors and semiconductor interfaces, the Fermi level position and the
work function are utterly linked [174–178]. The work function W is defined as the difference of local
vacuum energy level Evac and the Fermi level EF. If Evac is fixed, one thus has simply ∂W/∂EF = −1.
This fundamental relation however fails to hold at the surface of most three-dimensional semiconductors
owing to the pinning of the Fermi level by surface states. As sketched in Fig. 3.10, a generally large density
of surface states lying within the semiconductor band gap pins the Fermi level with respect to the band
structure. Any change in EF is thereby accompanied by an almost equal shift in the band structure and
thus Evac at the surface, leading to |∂W/∂EF| � 1 in practice [176].

The graphene surface has no dangling bonds that provide surface states to pin the Fermi level. By
electrostatically tuning the doping level in a graphene device, the work function was observed to follow
with good agreement the expected ∂W/∂EF = −1 gate dependence, with ED−EF assessed from transport
measurements through the device [179, 180]. The above conclusions were thus drawn from values of both
W and ED − EF obtained from spatial averaging over the entire device, without demonstrating the work
function to doping level correspondence on the local scale. However, as discussed in the preceding sections,
the doping level in graphene itself can be strongly inhomogeneous down to the nanometer length scale,
calling thus for a truly local comparison of the Dirac point level (that is, doping) and work function.

Using both scanning tunneling microscopy (STM) and Kelvin probe force microscopy (KPFM) we
experimentally compare the local electronic charge carrier density (that is, the Fermi level position) and
the work function in single layer graphene. Hereto, we study the conjunct variations of the above quantities
as a function of (i) electrostatic gating and (ii) position across local delaminations of the graphene from its
substrate. We have studied two different kinds of graphene samples. The first set of data presented here was
obtained on graphene prepared by mechanical exfoliation on SiO2/Si [167]. We further investigate graphene
grown on an Ir(111) substrate and decoupled by intercalation of a disordered molecular layer [134,143]. We
demonstrate in both cases that variations of the local charge neutrality point, ED −EF , are in one-to-one
correspondence with variations of the work function.

The monolayer graphene sample and the STS measurements are the same as described in the previous
section. KPFM is performed at slightly larger tip-sample distances than STS, such that tunneling can be
neglected and van der Waals forces are small. In frequency-modulated non-contact atomic force microscopy
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and related techniques such as KPFM, measuring the resonator frequency shift ∆f provides access to the
mechanical tip-sample force gradients [181]. At zero bias voltage, that is, when the Fermi levels of probe
and sample are aligned, an electric field exists between probe and sample, due to their distinct work
functions and, in some cases, to local charges or dipoles. The local contact potential difference (VLCPD) is
the potential of the sample with respect to the tip that allows for cancelling these electrostatic forces. In
the absence of isolated charges or dipoles, this potential equals the difference in the sample and tip work
functions [182], VLCPD = (Wsample −Wtip)/e.
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Figure 3.11: (a) Variation of the AFM probe frequency shift (each curve is offset by 10 mHz for clarity)
with sample-to-tip voltage, at different back-gate voltages Vg. The black dots indicate the position of the
curves’ maxima at VLCPD, as determined from a parabolic fit. (b) Change of VLCPD with Vg. The line
shows the best fit (see text) with fit parameters V Dg = 25 V and W0 = 80 meV. (c) Color map showing
the dependence of the differential tunneling conductance Gt on bias and back gate voltage. (d) Back-gate
voltage dependence of the primary minimum V 0

b (see text) of the tunnel spectroscopies as shown in (c).
The line shows the fit with Eq. (3.2.1), yielding V Dg = 28 V.

Using KPFM in situ on the same sample and graphene area, we have recorded the parabolic dependence
of ∆f on Vb for different gate voltages, the maximum of each parabola corresponding to Vb = VLCPD, whose
dependence on Vg is shown in Figs. 3.11a,b. It is nicely fitted by the right-hand term of Eq. (3.2.1) offset
by the sample-tip work function difference at the graphene charge neutrality point, W0. The small value of
|W0| < 0.1 eV is in good agreement with the fact that both the tungsten tip and charge neutral graphene
have a work function close to 4.5 eV [183].

Tunnel spectroscopies acquired in situ in the immediate vicinity (Figs. 3.11c,d) show an identical gate
dependence of eV 0

b , that is, ED − EF , which is also very well fitted by Eq. (3.2.1). Notably, the gate
coupling α is the same for both experiments and is entirely determined from known parameters. The
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3.2. Charge disorder and screening in graphene

close agreement of both sets of data thus confirms the precise equivalence of changes of the Fermi level
position and the work function in graphene. As compared to previous work [179], this is to our knowledge
the first comparison of both the work function and the Fermi level determined on the local scale. In our
experiment, the only difference between both approaches appears in the value of V Dg . This can be well
understood by considering the fact that the tip-sample capacitance being an order of magnitude larger in
STM contact, the tip acts as a strong local gate which locally distorts the doping profile [169]. Apart from
the tip-sample capacitance, the extent of this distortion directly depends on the effective potential drop
between the sample and tip which is equal to Vb−VLCPD. This would ultimately cause a slight shift in the
point of occurrence of charge neutrality, which depends on the tip-sample distance and the work function
mismatch between charge neutral graphene and the tip [135].

Eventually, we have also measured the relative variations of work function and ED − EF in a different
configuration, namely, graphene decoupled from the iridium substrate it was grown on, as discussed in
section 3.2.1. This work was performed in collaboration with B. Grévin from INAC/CEA, who performed
part of the KPFM measurements in his dedicated setup, and who I am indebted to for teaching us the
basics of KPFM. In graphene on iridium, one cannot adjust the average charge carrier density by electric
field effect from a back gate. However, one can correlate spatial variations of the Dirac point level and
the work function along the sample surface by moving to topographic delaminations of the graphene, the
so-called wrinkles [184]. Here again, and as discussed in more detail in [136], the combination of STM and
KPFM demonstrates on the local scale the validity of the relation ∂W/∂EF = −1 between work function
and doping.

In conclusion, by combining two scanning probe microscopies and two graphene substrate types, we
have demonstrated the one-to-one correspondence of the Fermi level and the work function in graphene to
hold accurately and on the local scale.
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Chapter 4

Perspective

This chapter presents my ongoing research works, preliminary results or projects. It is structured along the
three main axes of the three preceding chapters and proposes their deepening, namely along the following
directions: (i) the dynamical behavior of SQS junctions, (ii) thermal and thermoelectric effects in QD
junctions, and (iii) a scanning probe microscopy approach to study of the competition of superconductivity
and other many-body effects.

4.1 Quantum dynamics in SQS hybrids

4.1.1 Landau-Zener-Stückelberg physics at the edge of a semi-continuum

This section is devoted to an interpretation by Denis Basko of some experimental data we obtained during
the thesis of David van Zanten. Because the experimental data would deserve to be reproduced and explored
in more depth, they are not yet published. In the meanwhile, Denis Basko has published the theoretical
frame independently from our data [27]. Below, I will present some preliminary data corroborating Denis
Basko’s scenario of Landau-Zener-Stückelberg physics, which can occur when the quantum dot level is
driven sufficiently slowly across the superconducting single-particle gap edge.
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Figure 4.1: (a) Standard picture of the Landau-Zener transition occurring at the avoided crossing of two
perturbatively coupled states. The amplitude of the wave function in both final states depends critically
on ε̇ at the avoided crossing. (b) Analogue of the Landau-Zener transition, as a quantum level crosses the
edge of a semi-continuum it is coupled to. In the adiabatic limit, the particle stays in the ground state.
For fast drives, the wave function amplitude is insensitive to the subgap state and the particle behaves
semi-classically.
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Figure 4.2: (a): Different turnstile operation regimes in the parameter space describing a parabolic excur-
sion of the quantum dot level about the superconducting gap edge. The two control parameters are the
reduced height h/β of the parabola above the gap edge, and the parameter η ∝ (parabola curvature)1/3.
The colored regions correspond to the different regimes identified in the text, that is, the semi-classical turn-
stile operation regime (yellow), classically missed tunneling (white), adiabatically missed tunneling (pink),
and the non-Markovian regime (green). A frequency sweep at fixed amplitude corresponds to a vertical line
in this map. The dashed line represents a typical amplitude sweep, assuming f = 10−2γ = 10−4∆. Figure
adapted from D. Basko [27]. (a): Calculation of the SQS current near the threshold for turnstile operation,
as a function of bias voltage. The oscillations of the current are characteristic of the Stückelberg oscilla-
tions, due to the interference of the wave functions having travelled along the two different trajectories in
Fig. 4.1. Only at much higher bias/amplitude will the current tend towards ef (courtesy D. Basko).

Landau-Zener transition

Assume two quantum levels (1, 2) of an unperturbed Hamiltonian, separated by an energy ε = E2 − E1,
which can be externally controlled (by a gate, magnetic field, ...), and which are further coupled through a
time-independent perturbation W . The latter has no significant qualitative influence on the system, unless
|ε| is tuned to be smaller than the off-diagonal terms |W1,2| (which is nothing but the tunnel coupling Γ in
our case) in the basis of the original levels. In the latter case, the eigenvalues of the full Hamiltonian display
an anti-crossing at ε = 0, often referred to as level repulsion. Now, when a particle is initially in one of the
unperturbed quantum levels (for example, the one of lower energy) and ε(t) is swept dynamically through
degeneracy at t = t0, the probability of finding eventually the particle in one or the other eigenstate varies
rapidly between 0 and 1 depending on the value of ~ ε̇(t0)/|W1,2|2 compared to 1 [185–188] (Fig. 4.1).
Such Landau-Zener transitions, in which a particle in promoted to the excited state by diabatically driving
the system through level degeneracy, are benchmark experiments in atomic physics [189] and quantum
magnetism [190]. In the opposite limit of small ε̇, the adiabatic theorem ensures that the particle stays in
the ground state.

Crossing of a single level with a semi-continuum

The generalization of the Landau-Zener transition to a single level entering a semi-continuum, which it is
weakly coupled to, was first described by Demkov and Osherov [191]. It was recently refined for the special
case of a semi-continuum with a singular edge, such as provided by the superconducting single particle gap
edge [27]. Here, the static spectral functions of the perturbed system change qualitatively as the single level
crosses the gap edge, as already discussed in section 1.3.2. From this description, it becomes clear that the
semi-classical "elevator-like" picture used in the discussion of the SQS turnstile (section 1.4) corresponds
to the limit of a strongly diabatically driven quantum level.
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In [27] an excursion of the single quantum level into the semi-continuum is considered, parametrized by
a parabola ε(t) = h − η3 t2, the origin of energies being taken at the gap edge. Semi-classically, tunneling
is possible over the time window ∆t = 2

√
h/η3 around t = 0. Several regimes can be identified, depending

on the hierarchy of three relevant energy scales: h, η and β = (γ2∆) 1
3 (a quantity we already encountered

in section 1.3.2, within a numerical prefactor). Depending on these, different regimes are identified in Fig.
4.2a and can be summarized as follows:

• η/h � 1. The parabolic level excursion into the semi-continuum is too brief for tunneling to occur
(white region). The same is true for h < 0, that is, meaning that the level is not even entering
semi-classically the semi-continuum.

• η/h � 1 and ηh � β2 (pink region). In this limit, which represents the main novelty of the
prediction by D. Basko, the behavior is adiabatic, meaning that the particle does not tunnel to the
semi-continuum, although this would be expected semi-classically.

• If ηh� β2 (yellow region). Adiabaticity is broken and the usual semi-classical picture for tunneling,
using the Fermi golden rule expression, is recovered.

• Finally, when η and h are both ∼ β or less (green region), the calculations are difficult because the
Markovian approximation breaks down but the ejection probability will be neither very close to 0
neither to 1.

When a SQS turnstile is driven with a sinusoidal gate voltage, decreasing the frequency can be viewed as
going down on a vertical line in Fig. 4.2a. For very large frequencies, missed tunneling leads to significant
deviations from I = e f in the white region. At intermediate frequencies (yellow region), semi-classically
as well as adiabatically missed tunneling events are both strongly suppressed and turnstile operation is
optimal. Finally, at very low frequencies (pink region) the particle remains adiabatically in the sub-gap
state and the tunneling is exponentially suppressed, with a probability

P∞ ≈ exp
(
−π4

(
β√
ηh

)3
)
.

When decreasing the gate drive amplitude at a fixed bias and frequency, the parabola parameters
follow η = ((∆ + h)ω2/2) 1

3 , shown as a quasi-horizontal line in Fig. 4.2a. If η(h) enters the pink region,
adiabatically missed tunneling sets on. In this case, and in stark contrast with the semi-classical situation,
the tunneling probability displays a beating pattern at the edge of the adiabatic regime (Fig. 4.2b). This
is due to quantum interference of the two wave functions that recombine after ∆t =

√
h/η3, having taken

different paths in energy space. This effect is analogous to the Landau-Zener-Stückelberg interference
effect [189,190].

SQS turnstile experiments with a sine gate drive

The turnstile experiment described in section 1.4 (and [68]) was using a square ac gate drive of the QD
level, corresponding to a large |ε̇|, meaning that adiabatic effects can be neglected. Within the semi-
classical picture, we observed the static thresholds for tunneling, linking the bias voltage and the gate drive
amplitude linearly, and leading thereby to the cross-like pattern seen in Fig. 1.10, which separates the
regions of current equal to 0 and ±ef , respectively. In Fig. 4.3 are shown the same data for a sine gate
drive. At high frequencies, a similar cross-like pattern is observed. However, as the frequency is lowered,
between the two turnstile current regions a gap opens, at which the current is suppressed. As the frequency
is lowered, this gap widens. Note that we have taken great care to ensure that this gap was not due to an
improper centering of the dc part of ε(t).
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Figure 4.3: Maps of the differential conductance of the SQS turnstile as a function of bias voltage and
sinusoidal ac gate drive amplitudes, at different frequencies. The results are to be compared with the map
shown in Fig.1.10, in which a square gate drive was applied. As the frequency is lowered, the turnstile
plateaus at ±e f start to be separated by a gap in Vb. Note that the x-axis involves the logarithm of the
drive amplitude, which leads to a distortion with respect to the cross-like pattern from Fig. 1.10.

While it is too early to claim the experimental observation of Landau-Zener(-Stückelberg) physics
occurring at the edge of the singular superconducting semi-continuum, this perspective has clearly been
one the main objectives in the studies of SQS junctions lately. During the initial experiments led by
David van Zanten, we did not understand this opening of a gap and did thus not fully characterize the
effect. In particular, we are lacking experimental evidence of the Stückelberg beating pattern just above the
turnstile threshold. Nevertheless, the magnitude of the observed gap agrees qualitatively with theoretical
estimations.

Possible limitations of the adiabatic scenario

We have identified two effects that could spoil the prediction of adiabatically missed tunneling at slow
sinusoidal gate drives.

Decoherence. Any supplementary perturbation might induce transitions from the fragile sub-gap
state to the continuum. These can be seen semi-classically as high-frequency noise on top of the sinusoidal
gate drive, breaking thus adiabaticity, or quantum mechanically speaking, as photons connecting the sub-
gap state to the states above the gap edge. Careful engineering of the electromagnetic environment might
thus be key for enhancing the signatures of adiabatically missed tunneling. If such decoherence does not
completely destroy the effect, it might nevertheless lower the threshold for breaking the adiabatic protection.
From first estimates, it seems indeed that the experimentally observed suppression of tunneling near the
threshold be slightly less than the prediction (Fig. 4.4), and completely collapse above ∼ 70 MHz.
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Figure 4.4: Amplitude of the gap observed in Fig. 4.3 as a function of frequency. The line shows a
calculation of the same by D. Basko, assuming a BCS-type density of states without Dynes broadening and
no decoherence mechanism of the subgap state.

Smearing of the superconducting edge. The superconducting gap edge of aluminum is extremely
sharp [74]. However, finite Cooper pair life-times (due to intrinsic or extrinsic processes [192, 193]), will
induce a smearing, which is well captured by the Dynes parameter, already discussed in section 1.3.2.
When the distance of the sub-gap state energy to the gap edge is less than the Dynes broadening, which
we find using Eq. (1.3.3) to occur for h > γ

√
∆/ϑ, the adiabatic picture breaks down. For a very con-

servative estimate of the Dynes parameter ϑ = 10−4∆ and assuming γ = 0.01∆, one finds adiabaticity to
be unaffected up to h ≈ ∆, that is, amplitudes at which semi-classical backtunneling must already also be
considered. Therefore, although great care must be taken to shield the SQS junction electromagnetic envi-
ronment, Dynes broadening should not significantly alter the sub-gap state protection with pure aluminum
as the superconducting material. We stress that the very particular properties of our superconducting
junctions, in terms of point-like contact and absence of an interface material to the QD, as discussed in
section 1.1, can probably explain why this effect has never been observed before, for example in CNT-based
superconducting junctions.

4.1.2 Spin selection and manipulation in the SQS turnstile

In materials with small spin-orbit coupling (such as in aluminum), an applied magnetic field B will shift
the densities of states of both spin eigenstates along the quantization axis by their respective Zeeman
energies EZ = ± 1

2gµBB. Here, g is the material-dependent gyromagnetic ratio, which is close to 2 for
free electrons, and also in aluminum [194]. The ensuing spin-dependent tunneling probabilities lead to
a doubling of the coherence peak structures in tunnel spectroscopies, where one lead is superconducting
aluminum. This effect is the basis of Meservey-Tederoff spectroscopy [194], and can be used for measuring
the spin polarization of the other (normal or magnetic) lead. Importantly, the magnetic field should not
destroy or excessively smear the superconducting spectroscopic features, which can be achieved by using a
parallel magnetic field and Si-doping induced disorder in the aluminum leads.

Similarly, a QD level’s spin degeneracy is also lifted by a magnetic field (see discussion in section 1.1),
where g will again vary between ∼ 2 and quite large numbers in large spin-orbit coupling materials, such as
semiconducting QDs [195]. It is now an intriguing question how the Zeeman spin-splitting of the relevant
densities of states, both in the leads and in the QD, would affect the SQS turnstile operation, and if spin-
selective turnstile operation can be achieved. In the case where glead ≈ gQD ≈ 2, the densities of states of
each spin species are shifted by the same amount throughout the device, and no spin dependence of the
tunneling probabilities can be induced. Conversely, a small difference between glead and gQD could suffice
to allow one spin species to tunnel between the QD and one lead, but not the other. The criterion is that
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|(glead− gQD)µBB| be less than the spectroscopic smearing, in particular of the superconducting gap edge,
which gets strongly altered above about 1 Tesla, in the best case.

Finally, the case where the QD has a g factor differing significantly from 2 also corresponds to large
spin-orbit coupling. While large Zeeman splittings can now be easily achieved, the levels are no longer
spin eigenstates. Nevertheless, the quantum expectation of Sz in either level can still be different from
0. Therefore, any difference in the leads’ and QD’s respective g factors could in principle lead to spin-
polarized turnstile operation. Besides possible applications as a spin-polarized single-electron source, the
understanding of spin-dependent tunneling processes in SQS-type junctions and turnstiles, with or without
spin-orbit coupling, would be a highly intriguing challenge.

4.1.3 Calorimetric detection of a single tunneling electron

Quantum thermodynamics and the control of entropy flow in the quantum regime has been recently the
subject of intense theoretical and experimental investigations [197], with the Landauer erasure principle
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Figure 4.5: (a) Proposed RF readout of the SINIS electron thermometer using a superconducting LC
resonator, as already used in Aalto. (b) Time-resolved transmission at resonance, reflecting the relaxation
of the temperature in N after the heater is switched off at t = 1 ms [196]. (c) Gate-controlled charge
and energy exchanges between N and a QD. If the gate is driven with a square signal, the QD injects
one electron and one hole (both providing the same amount of heating) per gate cycle. (d) Schematic
time dependence of the gate drive, instantaneous charge current and temperature in N, respectively, in the
course of the cycles described in (c). Drawings by Efe Gümüs.
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[198] and the understanding of Maxwell demons [199] at heart. For the study of thermodynamics, reliable
and fast thermometry is key. The NIS tunnel junctions discussed in section 2.2 are excellent electron
thermometers in the sub-Kelvin regime. Because of the high impedance of such junctions, they are however
very slow, due to large RC time constants, on the order of a fraction of a second. In this context, the group
of J. Pekola at Aalto University (Finland) has recently developed a dispersive read-out technique of NIS
junctions, by embedding these inside a radio-frequency on-chip resonator [196,200]. The resonator response
at resonance then strongly depends on the tunnel junction impedance, which itself depends on the local
temperature (Figure 4.5). The above fast thermometry technique already demonstrated mK sensitivity at
MHz read-out bandwidth in its first version, and could still be significantly improved.

The goal of this project, which will be conducted by Efe Gümüs, is a proof-of-principle experiment for
detecting extremely small instantaneous energy releases in a quantum circuit. The first milestone will be
to couple this novel dispersive thermometry technique to a single-electron injector, based on the same or a
similar principle as the turnstile devices from section 1.4. For a copper island of volume 30×300×500 nm3

at 50 mK, the injection of a single 0.1 meV electron raises the electronic temperature by 0.7 mK, which is
within reach of the RF-NIS thermometers.

We have recently implemented three microwave lines to the sample cavity in one sionludi. Two of
them are used for the resonator transmission measurements, the third for the ac gate drive. At this stage,
the setup is close to a conformal copy of the one described in [196]: we are using the same cryogenic
circulators (located at base temperature), low pass filters, and a similar cryogenic amplifier (LNF; 0.4 -
8 GHz; gain=+40dB, located at 4 K). Presently we are using LC resonators provided by Aalto. Data
acquisition is done with a NI PXI generator/synthesiser. Fig. 4.6 shows the first measurements of the bare
LC resonator.

Before coupling electromigrated QD junctions to the above circuit, we will start with a simpler device,
shown on Fig. 4.6b. A small island is tunnel coupled to a larger normal region N, large enough to
have a negligible charging energy (as compared to the superconducting dot) but small enough to have
a heat capacity allowing for detecting small heat releases. The normal island is tunnel coupled to two
superconducting leads, forming an NIS junction. The tunnel barriers to the dot and to the leads will be
identical if two evaporation angles are used, but can be different using three angles. The entire junction
resides on the ac backgate developed for the SQS turnstiles.

Figure 4.6: Left: Transmitted power ∝ S2
1,2 of the superconducting LC resonator. At base temperature,

a resonance at 735 MHz is visible, with quality factor 60. In the absence of the NIS junction in parallel,
this response changes very little up to T ≈ 1 K. Around T ≈ T aluminum

c , the transmission rapidly collapses
towards the red curve, measured at 4 K. Right: Proposed single electron injector into N, provided by a
single electron box, or a quantum dot (blue cube). Data and drawings by Efe Gümüs.
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Towards implementing a Maxwell demon using temperature as the feedback parameter

The tunneling device depicted in Fig. 4.5c could be used as a Maxwell demon. Suppose the that QD level
is ε ∼ kBT > 0 (the origin of energies being taken at the Fermi energy of N). The average occupation of
the QD is now < 1/2. However, If the temperature TN in N is finite, an electron at energy ε could from
time to time tunnel into the QD, lowering thereby the energy in N by kBT , and decreasing thus TN . If
the occupation number of the QD can be measured in real time, ε can then be immediately set to negative
values ∼ −kBT , as soon as the electron has entered the QD. The electron will then be released to fill a
hole at energy −kBT in N, which leads again to cooling. And the same procedure is started from the
beginning. Such a Maxwell demon, which allows generating a cooling power from information (here, the
occupation number of the QD), has already been implemented by the Helsinki group in a similar device
geometry. In their experiment, the demon was measuring the charge state of the QD (a single electron box
there). However, the RF readout of TN could here be taken advantage of, and take the fluctuations in TN
as the demon feedback parameter: if at ε ∼ kBT , TN shows a negative fluctuation, ε is immediately driven
to ∼ −kBT , etc.
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4.2 Thermal transport through a quantum dot junction

In this section, ongoing experiments and projects on the thermoelectric response of single quantum dot
junctions are described. This work is led by Bivas Dutta, who was joined by Danial Majidi recently, and
the results are very recent and yet under analysis. The principle of these experiments is similar to those
described in section 2.2, the principle difference being that the single-electron box connecting the source
and drain has now discrete energy levels. Depending on the tunnel couplings, the physics at play can
however display completely novel features, including Kondo-correlations.

4.2.1 SNS thermometry

In section 2.2, the local thermometry for determining the temperature gradient across the SET was per-
formed using NIS junctions. In the recent QD-based thermoelectric experiments, we have moved to SNS
Josephson junction-based thermometry, via the temperature dependence of the critical current, as given
for example in Eq. (2.1.1). NIS thermometry is precise but it has a few drawbacks: First, forcing a current
through these extremely high differential resistance junctions at voltages below ∆/e produces dissipation
and has long RC response times. In the particular situation of electromigration junctions, the source island
as shown in Fig. 4.7 must have at least one low-impedance access, which is not the case of the NIS junctions.

(a)	 (b)	

100	nm	SNS	
thermometer	

Heater	

Drain	 Source	island	

1	µm	

I c	
(µ
A)
	

Iswitch	(µA)	

(c)	 (d)	

Figure 4.7: (a) Scanning electron micrograph of the QD device for thermoelectric measurements. The
central source island is made of gold. The leads of the electromigration junction itself (orange color) are
made of Pt, which suppresses proximity superconductivity from the nearby Al probes. Four transparent
superconducting aluminum contacts are used for SNS thermometry (right-most pair) and heating (left
pair), respectively. The left-most contact is a drain both for charge and heat flow. (b) Zoom on an
electromigration junction such as the one in the dashed box in (a), showing one 8 nm diameter nanoparticle
here. (c) Switching current histograms, from which Ic is extracted at a given temperature. (d) Temperature
dependence of the critical current of the SNS thermometer.
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This problem is circumvented in SNS-based thermometry, using transparent contacts of the superconduct-
ing leads to the source island. Beyond being compatible with electromigration, this choice further saves one
shadow-evaporation angle and allows for thermovoltage measurements with lesser access impedance to the
junction. Finally, the estimation of the Joule power injected into the source island is also much simpler and
more reliable using transparent contacts to the island rather than using NIS junctions, in which a balance
between Eq. (2.2.1) and heat backflow from the superconducting leads has to be considered [87].

As discussed in section 2.1.2, for good thermometric sensitivity, the Thouless energy of the SNS junction
must be smaller than kBT . In our case, ET is usually 5 to 15 µeV and, after careful filtering of the electrical
lines, we find an unsaturated Ic(T ) dependence (Fig. 4.7d). Because the experimentally measured switching
current is a stochastic quantity, we determine Ic from the median value over 5000 measurements, taken
with a rate of about 300 Hz. The associated temperature noise is ∼ 100µK/

√
Hz and we can detect changes

in the heat load δQ̇ of a few tens of aW to the island. The heater junctions are also of SNS type, but
here the normal part is sufficiently long (> 2µm) and narrow to ensure ohmic behavior down to extremely
small nominally injected powers. We also ensure that the closest NS interface for proximity-induced pairing
correlations to be negligible at the QD contact (which was not the case in early experiments).

4.2.2 Thermopower of a weakly coupled quantum dot junction

The thermopower of a junction is defined as

S = − VTh

∆T

∣∣∣∣
I=0

,

relating a small temperature difference ∆T to an associated open-circuit thermovoltage VTh. In the presence
of sequential tunneling processes only, the thermopower of a QD junction has a sawtooth behavior. The
signal increases linearly, goes through zero at each degeneracy point, and switches sign abruptly in the
middle of each Coulomb diamond [118]. In practice, cotunneling processes become rapidly the dominant
mechanism away from the charge degeneracy point, leading to a truncation of the sawtooth signal [120]
(see sketch in Fig. 4.9).

The measurement of the thermovoltage across a high-impedance device is rapidly confronted to diffi-
culties in providing experimentally true open-circuit conditions. The frequently used lock-in technique at
frequency 2ω, with ω the heater current modulation angular frequency, is also prone to equilibration prob-
lems. Given the nearly divergent RC times of the junction away from charge degeneracy, the assumption
of instantaneous current equilibration (corresponding to the subscript I = 0 in the definition of S) is not
necessarily verified for experimentally reasonable excitation frequencies. Therefore, in all ensuing thermo-
voltage measurements, we have used the following protocol: we sweep the dc voltage bias and measure the
current, defining therefrom −VTh as the bias voltage at which the current changes sign (Fig. 4.8a). When-
ever tested in parallel to our method, the 2ω lock-in technique led to a qualitatively identical thermovoltage
response as a function of Vg, but quantitatively much smaller amplitudes.

Measuring the full I(Vb, Vg) characteristics in presence of a temperature gradient further allows ex-
tracting the thermocurrent ITh, defined at Vb = 0. The full thermoelectric data can be fitted using a
cotunneling model (collaboration with Paolo Erdman, Fabio Taddei and Saro Fazio from Pisa) [201], which
allows extracting the local temperatures and thus the temperature drop ∆T , even without an independent
thermometer (Fig. 4.8b). Knowing both the thermoelectric power generated and ∆T , we are presently
analyzing the full efficiency of the QD junction as a heat engine, in the spirit of a recent publication on a
similar system, based on a QD defined in a semiconducting wire [202]. However, both the above-cited work
and our experiments shown in Fig. 4.8 are lacking an independent determination of ∆T . This significantly
weakens the conclusions on the heat engine efficiency, because the determination of the heat flow across
the junction is indirect. This is in contrast with the experiments of section 2.2, in which this heat flow was
experimentally known. In the present case, the absence of an independent measurement of ∆T was due to
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(a)	 (b)					

ng	-	1/2	

Figure 4.8: (a): I(Vb, Vg) map (color code range = ±1.5 pA) of a weakly coupled QD junction, near a
degeneracy point and in the presence of a thermal gradient across the junction, with a power Q̇ = 9 fW
applied to the source island. Along the black line, by which we define −VTh(Vg), the current is zero.
Tb = 80 mK. (b): Experimental thermocurrent at a finite Vb = −9µV versus ng ∝ Vg and fit (line) using
the sequential+cotunneling model developed by Erdman and collaborators. The fit allows estimating the
temperature on both sides of the junction, and thus ∆T , without an independent thermometer. Here,
Tsource = 235 mK, Tdrain = 143 mK, ΓL = 9 MHz, ΓR = 30 ΓL are found from the fit.

a broken contact on the SNS thermometer. The experiment will be repeated soon, including thermometry,
and will allow a reliable determination of the maximum achievable efficiencies, both at zero and maximum
output power, in a single quantum level-based thermoelectric device.

4.2.3 Thermopower in the presence of Kondo correlations

Thermopower is always the result of electron-hole asymmetry. When the highest occupied level of a QD
junction is far down from EF , the spectral function is asymmetric, but its effect is shunted by cotunneling.
In the presence of Kondo correlations, which can appear for an odd QD occupation number and sufficiently
high couplings as discussed in chapter 1, a novel spectral resonance emerges. The Kondo peak, of width
kBTK , is at the Fermi level and symmetric around EF .

In their calculation of the thermoelectric properties of a junction across a spin 1/2 impurity [203], Costi
and Zlatić find a 2e-periodic thermovoltage signal, which has a clear sign change from one degeneracy point
to the following one. The only experiment to date on thermovoltage in the Kondo regime was performed
in a QD formed in a 2DEG [204]. However, the signatures of the Kondo effect superimpose with other
effects such as conventional cotunneling in the devices studied in that work, leading to an ambiguous
thermovoltage signature, that does not change sign from one degeneracy point to the following. The main
conclusion from that work is essentially that the Mott formula

SMott = π2k2
BT

3 e
∂ lnG(E)

∂E
,

relating the energy-dependent charge conductance G(E) to the thermopower under the assumption of
uncorrelated transport, does not hold.

Fig. 4.9 describes a QD junction displaying a spin-1/2 Kondo effect, revealed by a zero-bias resonance
in charge conductance in every other Coulomb diamond. The associated energy scale is TK ∼ 1 K, and
varies with Vg. The Kondo origin of the resonance is confirmed by measurements under magnetic field
(data not shown), under which the resonance splits. The plot on the right bottom side in this figure shows
the measured thermopower of the QD junction. The data are in agreement with the theoretically expected
behavior, shown above, and display in particular a sign change of S at consecutive charge degeneracy points,
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Figure 4.9: The left maps show differential conductance maps of the device (T = 70 mK), the top one being
a zoom of the map in the lower panel. The zero-bias resonances appearing alternatingly to the left and
and to the right hand of consecutive degeneracy points are the result of a spin-1/2 Kondo resonance in the
oddly-occupied Coulomb diamonds. As the QD chemical potential in the oddly occupied state moves away
from the leads’ chemical potential, the Kondo energy scale TK decreases, following Eq. (1.3.4), until it can
no longer be resolved experimentally. The left top panel shows schematically the theoretically expected
thermopower of a QD junction, assuming (i) sequential tunneling only [118], (ii) additional contributions
from cotunneling [120], and (iii) Kondo correlations [203]. The presence of Kondo correlations induces a
striking 2e periodicity of S in the gate-induced charge on the QD, in stark contrast with the other transport
mechanisms. The experimental data (lower right panel) show the characteristic sign change of S between
two neighboring degeneracy points, in excellent agreement with the Kondo picture.

pointing to an overall 2e periodicity. This preliminary result is still under investigation and analysis.

4.2.4 Heat imprint of the electron transport in a quantum dot junction

Electron transport usually produces Joule heating. In some special cases however, such as in NIS coolers,
it may produce cooling of one lead [70] (section 2.2). This effect has been thoroughly investigated by Hervé
Courtois before my recruitment [205, 206] and I have contributed to a few works [86, 207–211] which will
not be described here. Electronic on-chip refrigeration is based on the energy selectivity of the available
transport channels: when only high-energy quasi-particles may leave one lead, this lead’s enthalpy might get
reduced and its temperature decreases. The mechanism is analogous to Peltier cooling in semiconducting
p− n junctions [70].

Energy-selective transport is also naturally provided by QD junctions and QD-based refrigeration has
been proposed [212] and later realized in a 2DEG [213]. We also plan to study QD-based refrigeration, as a
function of a variety of parameters, such as the tunnel couplings and the ensuing quantum coherence across
the junction. The pioneering experiment by Prance et al. [213] was eventually limited by the charging
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4.2. Thermal transport through a quantum dot junction

energy and the internal thermalization of the island to be cooled by the QD. In our experimental geometry,
these problems should be absent because of the metallicity and the transparent superconducting contacts
to the source island, as depicted in Fig. 4.7a.

The samples we have studied so far have not allowed entering the regime in which refrigeration could
be observed. However, in the following will be presented a QD junction which we have operated as a
heat valve, similarly to the preceding single-electron heat transistor experiment that allowed studying the
Wiedemann-Franz law in the presence of Coulomb interactions [87]. Further, we study here the gradual
crossover from thermal transport (at zero current) towards Joule heating, which sets on as the bias voltage
is cranked up. The data are presently still under analysis.

Fig. 4.10d shows preliminary results of a temperature map of the island as a function of bias and gate
voltages to the QD junction. At the same time, an additional and constant heating power of 5 fW is applied
to the island. The light blue region corresponds to the situation in which electron transport through the
QD is blocked and the island temperature is defined by the thermal balance between the heat input and
losses to the colder environment, just as discussed in detail in [87]. Close to the degeneracy point, the
island cools, essentially not because of the above-described refrigerator effect, but simply because the QD
allows heat to flow to the drain. The novel thermal balance near equilibrium is still under analysis but
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Figure 4.10: (a) Differential conductance of a QD junction around one of its degeneracy points, with
charging energy 4 meV and γ = 350µeV. (b) Calculation of the temperature inside the source island as a
function of the gate and bias voltages, applied to a single-electron transistor (continuous density of states),
assuming an applied heating power of 5 fW, a resistance at high energies of 300 kΩ and Tdrain = Tbath =70
mK. The scale bar displays T (Vb, Vg) in K. (c) Experimentally measured electron temperature in the source
island as a function of gate at different biases applied to the QD junction. (d) Experimental temperature
map of the source island T (Vb, Vg) in units of mK.
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should eventually allow extending our experiments on the Wiedemann-Franz law from a SET to a single
quantum level junction, in which cotunneling plays a crucial role.

From the charge transport experiments on the same device (Fig. 4.10a), we can determine the tunnel
coupling, which we find from the widths of the Coulomb diamond edges to be on the order of 350 µeV.
This energy scale is larger than both the bias voltage energy and kBT . At large biases we can quantita-
tively determine the Joule heat released to the lead formed by the island, by monitoring its temperature
(Fig. 4.10d). This is perhaps the first Coulomb diamond plot of a QD junction based on a temperature
measurement rather than a charge conductance. A rather striking feature in this temperature map is the
small region near a constant bias Vb = +25µV (Fig. 4.10c), at which a temperature inversion with respect
to the background temperature is observed as the QD chemical potential crossed both leads’ Fermi levels.
Such a behavior cannot be understood using an SET picture, which leads to the calculation in Fig. 4.10b.
The understanding of how a QD with such a large tunnel coupling can still provide the energy selectivity
required for the above-described scenario is still under investigation and analysis.
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4.3 Scanning probe microscopy approach to subgap physics in
superconductors

As discussed in chapter 3, most of the scanning probe experiments performed so far in the sionludi at
Institut Néel were conducted on graphene, taking advantage of the inert surface of graphene which does
not necessarily require in situ surface preparation. However, in order to move to the physics related to
superconductivity and develop the full potential offered by dilution-refrigerated experiments, such a UHV
preparation chamber is key. The integration of such a chamber to a dilution-refrigerated scanning probe
microscope at Institut Néel is the fruit of a collaboration with Katharina Franke at FU Berlin. In the
following are described a few instrumental and physical aspects of this collaboration.

4.3.1 STM with a gate

One drawback of STM is that the current through a particular junction can be controlled only by essentially
two control knobs: the applied bias voltage and the tip height. My proposal is to go one step further, to
insert a third electrode and to actually create a device, by gating a single molecule or quantum dot STM
experiment. The gate can then be utilized to tune the quantum dot into a particular energy level or
quantum state, such as discussed in chapter 1. By making STM and device physics meet, we will study
the competition of diverse quantum many-body effects at play here, such as electron interactions, Kondo
correlations and superconductivity.

Recently, remote gating of molecules or atoms adsorbed on graphene has been reported in an STM
experiment [214,215]. Adsorbates usually couple only weakly to graphene and an overall backgate potential
can be applied through the graphene. The achievable gate modulation remained however weak, with a gate
coupling α = dE/d(eVg) < 0.004, insufficient for changing the charge state at equilibrium. Further, the
choice of a graphene substrate strongly restricts the engineering possibilities of the molecule-substrate
interactions. Finally, a graphene substrate is not suited for our study, which ultimately targets inducing
superconducting correlations from the substrate to the molecule.

Introducing a gate electrode on a conductive surface implies some electrical isolation, a condition that
is not easily compatible with the requirements of STM. Using clean-room nanofabrication techniques, we
will fabricate ex situ bilayer structures on an insulating substrate, similar to the one shown in Fig. 4.11a,
that is, with an undercut. If a thin metallic film is then evaporated on the sample in situ, the lower layer
is still electrically isolated from the one on top of the bilayer thanks to the shadowing provided by the
undercut. The two isolated metallic structures provide the gate electrode and the substrate, respectively.

The adsorption of a molecule on a metallic surface usually leads to a fixed energy level alignment of
the molecular states with respect to the metal’s Fermi level. Only in the weak coupling regime, with a
sizable tunnel barrier and a smaller capacitive coupling to the substrate Cs, the external modulation of the
molecular levels by a gate potential is possible. One key requirement for realizing gated STM on adsorbed
molecules/QDs is thus to ensure sufficient QD-substrate capacitive decoupling as to allow for efficient gate
modulation of the molecule’s chemical potential (large gate capacitive level arm α). The suitable coupling
with the substrate can be either tuned by ligand-design or the use of insulating thin film barriers, such as
CuN or NaCl. These barriers can be grown in situ with epitaxial quality, before molecule deposition. It
is however essential for the investigation of quantum coherent effects, that a sufficient tunnel coupling is
also maintained. It is thus planned to systematically and quantitatively characterize achievable (γs, Cs)
parameters in different QD-barrier-substrate systems. In each system, we will extract both quantities from
tunnel spectroscopies at different gate voltages.
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Figure 4.11: (a) Scanning electron micrograph of nanostructured STM gate. The entire surface is metal
covered, yet both structures are galvanically isolated from each other. (b) 2D simulation of the achievable
electrostatic gating in such a configuration, assuming a pyramidal tip. The lever arm α depends on the size
of the QD, and can reach between ∼ 10−4 for a fullerene and 2× 10−2 for a 10 nm nanoparticle. A more
realistic 3D simulation of the screening by the tip would lead to larger values of α. (c) Preliminary scanning
tunneling spectroscopy experiments by Alessandro De Cecco on functionalized Au nanoparticles, showing
Coulomb blockade. The inset shows the topography of the 8 nm Au nanoparticle on which the spectra are
taken. (d) Electrostatic force microscopy (EFM) image taken at the interface between the gate and the
substrate layers in a device as shown in (a). As the gate voltage is cranked up (the source is grounded),
the EFM contrast increases, demonstrating the electrical continuity of the gate electrode and its galvanic
isolation from the source.

4.3.2 Ultra-high vacuum preparation chamber

In the frame of the project described with more details in the next section, we have started designing a
UHV preparation chamber, which will be coupled to the existing inverted dilution cryostat used for the
scanning probe microscopy experiments described in chapter 3. In order to ensure reliable tip and sample
handling under UHV conditions, we will use a commercial cryogenic AFM-STM head, the Tribus Ultra
from from Sigma Surface Science.

Many (although not all, as for example the setup in AG Wulfhekel at KIT) dilution-refrigerated UHV
STM experiments use a vertical (top- or bottom-) loading geometry. This implies severe technical com-
plications, associated to the long mechanical path to the heart of the experiment and difficulties with
handling the successive thermal radiation screens. The situation is much simpler for the lateral loading
mechanisms used in virtually all commercially available UHV-STM setups operating in the 1-10 K range,
in which the sample exchange is handled by a short wobble stick and the opening of the radiation shields is
well mastered, under comfortable optical supervision. We will take advantage of the peculiar and compact
geometry of the Grenoble inverted dilution cryostat (sionludi), which is not surrounded by a helium bath,
to transpose the principle of the lateral UHV loading mechanism to a dilution-refrigerated experiment. The
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40	cm	

Figure 4.12: Preliminary drawing of the UHV chamber, connected to the sionludi (left-hand side) and an
anti-vibration table, which will be realized by Axesstech (drawing courtesy Cyril Bruyère and Valentin
Dargaud).

thermal screens will be handled as in 4K experiments, with the only difference of an extra shield at lower
temperatures. Thus, we also target full compatibility with the higher-temperature standards, including
standard tip and sample holders.

The UHV surface preparation chamber (Fig. 4.12) will operate in the low 10−10 mbar range. It will
include an ion gun for in situ surface oxide removal, an electron-beam evaporator for depositing thin films
of metals and molecules, and a heating stage for annealing the sample. More involved surface elaboration
processes are not planned; however, the chamber can be connected to a UHV suitcase, which can be coupled
to other UHV facilities in Grenoble. We foresee the delivery of all elements by the end of 2018.

4.3.3 Scanning Josephson tunneling spectroscopy
From a two-months research visit to the group of K. Franke at FU Berlin in 2016 began a collaboration which
led to a joint ANR-DFG project (JoSpec), started in 2018. The project target is to gain an understanding
of the superconducting state in the vicinity of magnetic nanostructures and to develop a broader toolbox for
experimental checks of the topological nature of the subgap states, based on combining scanning tunneling
spectroscopies, local Josephson current measurements, and their microwave responses. The main questions
that will be addressed are:

• How do Shiba states affect the Josephson current? In typical Scanning Tunneling Spec-
troscopy (STS) experiments, the tunnelling current is measured in the low-conductance regime, where
single-electron tunnelling dominates. When the tip is brought into closer distance, Andreev reflec-
tions can give rise to a Josephson current at zero voltage. The insertion of mesoscopic magnetic
structures into the Josephson junction leads to a modification of the Josephson current due to a shift
in the quantum phase difference through the junction. We foresee revealing experimentally the role
of Shiba states arising from atomic-scale magnetic structures, such as single atoms and ferromagnetic
nanostructures, in the dc Josephson transport.
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• How large is the superconducting order parameter ∆ near a single magnetic impurity?
The strength of the Josephson coupling carries the signature of the magnitude of the local super-
conducting order parameter ∆. Theory predicts a local renormalization of ∆ when Shiba states are
present [16,216]. ∆ is also predicted to undergo an abrupt change, when crossing the quantum phase
transition between a screened and non-screened impurity. STS is not well suited to determine the size
of the superconducting gap, because the spectrum is always dominated by the density of states of the
final state of the tunnelling process, which is the bulk superconductor. In contrast, the Josephson
current is expected to be a local property and therefore suited for an accurate determination of local
changes in ∆. Hence, we aim at mapping the Josephson current around single atoms and around
designed magnetic nanostructures.

• Can one-dimensional magnetic chains or two-dimensional islands on a superconducting
surface bear a non-trivial topological character? There is a very active research field on
the topological nature of induced superconductivity in magnetic nanostructures [217–219]. One-
dimensional magnetic chains on the strongly spin-orbit coupled superconductor Pb are the prime
example of many theoretical considerations predicting topological superconductivity and Majorana
zero-modes [220]. Although many indications point to the existence of Majorana modes, complete
evidence cannot be obtained from conventional STS. More conclusive evidence is expected from the
supercurrent and its response to a microwave excitation. Such signatures would be directly accessible
in transport experiments along the chains [221]. However, this is not possible for the atomic-scale
chains on Pb(110). Therefore, the plan is to investigate whether the microwave response of the
Josephson current between the tip and the chain transport is affected by zero-energy modes.

Josephson spectroscopy

The first proposals [21,222] and experimental attempts [223] to establish a Josephson current in a STM ap-
peared around 2000. Because tunneling spectroscopies in high-Tc materials are rather smeared and because
the Josephson coupling depends on the superconducting gap ∆, measuring the critical current provides a
more sensitive tool for measuring local variations of the pairing amplitude [224]. Type-I superconducting
tip and substrate combinations have been used only very recently in experiments going beyond the pioneer-
ing work by Naaman et al. [223]. The Princeton group compared the sub-gap density of states produced by
Fe adatoms on Pb(110) with maps of the Josephson current amplitude in the same region, showing a 50%
decrease of the latter in the vicinity of the impurity [225]. The Stuttgart group has recently made use of
Josephson current measurements to gain information about the electromagnetic admittance of the tunnel
junction environment [226]. This knowledge could then be used to explain and model the finite resolution
of tunnel spectroscopies, obtained in the same environment but at larger junction normal state resistance
Rn.

Concerning the above-cited works, it is essential to stress that all have been performed using the
well-established STM technique of voltage-biased tunnel junctions. In case of a voltage bias, the Josephson
coupling manifests as an anomaly in the I(V ) curves at zero energy, that is well described by the Ivanchenko-
Zilberman formalism [227], or P (E) theory in more modern words. However, the amplitude of the current
anomaly near zero bias voltage represents only a vanishing fraction of the true Josephson critical current
Ic, a quantity that can only be assessed using a current bias. Applying a current bias to a high impedance
junction is however a true challenge. The situation is even worse when the same impedance has to be
constantly monitored and adjusted using a feedback loop, as is typically the case in STM. A single, very
recent publication [228] has demonstrated actual current bias in a superconducting STM junction. Notably,
even in this work the observed switching current is more than two orders of magnitude smaller than Ic,
an effect that is attributed to the coexistence of strong fluctuations and strong damping in the quantum
phase dynamics.
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Figure 4.13: (Left): Josephson current measurement in 250 kΩ Pb-Pb tunnel junction in the STM at FU
Berlin, displaying a switching current of nearly 2 nA at 1.5 K. (Right): Switching current versus normal
state tunneling resistance. The dashed line shows the Ambegaokar-Baratoff limit.

Microwave response of superconducting junctions

As discussed in section 2.1.2, adding a microwave component at frequency f to the current bias in a
Josephson junction can lead to a phase locking of the dynamics of quantum phase ϕ across the junction
to multiples n of f , such that the quantum phase ϕ hops between n minima of the Josephson potential
per drive cycle. Through the second Josephson relation, this produces a quantized non-zero dc voltage
drop, V = nhf/2e, with h the Planck constant and 2e the charge of a Cooper pair, called Shapiro steps.
Beyond metrological applications in voltage standards, the microwave response of a Josephson junction
contains valuable information about the phase and quasi-particle dynamics in the junction [94,100]. It was
proposed that the presence of a 4π-periodic component in the E(ϕ) dispersion relation of a junction could be
detectable in the microwave response, through to the disappearance of the odd-n Shapiro steps [221, 229].
The microwave properties of Josephson junctions have thus received strong renewed attention in recent
years, for the quest of signatures of Majorana particles in topological superconducting junctions [108,230].

First results

In the frame of my visits to Berlin, we have jointly implemented a true current (rather than voltage) bias
to the STM junction in an CreaTec STM with base temperature 1.5 K in Berlin. This technique is at the
very opposite of the traditional STM approach, in which the voltage-biased tunnel junction itself is always
the part of the circuit with the highest impedance. We have measured the voltage drop across the tunnel
junction and observed the characteristic features of a Josephson supercurrent flow (Fig. 4.13, left). This is
to our knowledge a premiere, except for one very recent publication in the field [228]. As opposed to that
work however, our junctions display hysteretic features and the amplitude of the switching current Is is
close to the Ambegaokar-Baratoff limit [231], RnIc = (π/3)∆/e (Fig. 4.13, right), demonstrating that the
dynamics of the quantum phase ϕ across the junction is not dominated by environmental noise. Note that
due to the small critical currents, the relatively elevated temperatures and the bulk geometry of both the
tip and the sample, thermal runaway is negligible here and the hysteresis is of capacitive origin.

The Berlin team has further recently implemented a microwave line to the STM, acting as an antenna
to the tunnel junction. We have performed tunneling spectroscopies in the voltage bias mode on the bulk
Pb surface in the presence of a 40 GHz microwave excitation, both in the sequential tunneling regime
and at low tunneling resistances (Fig. 4.14). The results can be interpreted in the frame of the Tien-
Gordon model [232] of photon-assisted tunneling of electrons and Cooper pairs in superconducting tunnel
junctions, and can be related to experiments both in mechanical break junctions [233] and, more recently,
STM experiments [234] with superconducting contacts.
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Experiment	 Simula/on	

Sequen/al	tunneling	

Cooper	pair	tunneling	

Figure 4.14: Experimental data and associated Tien-Gordon model-based calculation of the differential
tunneling conductance as a function of dc bias and ac drive amplitude, between a superconducting tip
and surface. The calculation of the top line assumes sequential tunneling processes only, and yields good
agreement with the data taken with Rn = 20 MΩ. The calculation of the bottom line assumes Andreev
transport only, yielding also good agreement with the data taken at small bias voltages and Rn = 200
kΩ. The plots on the left show horizontal line cuts through the respective experimental maps. T = 1.5 K,
f = 40 GHz.

Photon-assisted tunneling

Consider a superconducting tunnel junction with a dc voltage bias Vb. The current is the sum of two
contributions, I(1)(Vb) + I(2)(Vb), which stem from the tunneling of single electrons and of Cooper pairs,
respectively. In the presence of an additional microwave voltage drive of amplitude A and angular frequency
ω, the Tien-Gordon model predicts the time-averaged current to be also the sum of two contributions
I(p)(Vb, A) (with p = 1, 2):

I(p)(Vb, A) =
∞∑

`=−∞
J2
`

(
peA

~ω

)
I(p)

(
Vb −

`~ω
pe

)
. (4.3.1)

Here, J` is again the Bessel function of order ` and the corresponding term in the sum corresponds to
the absorption of ` photons. The tunnel conductance with applied ac drive calculated from Eq. (4.3.1)
leads to the two plots shown in the right-hand columns in Fig. 4.14. The only input to the calculation are
the experimentally measured dc currents I(p)(Vb). In the high resistance tunnel junction case (top line),
we assume the only dc contribution to be sequential (p = 1), whereas in the low tunnel resistance case and
at energies well below the gap, the only dc contribution is taken to stem from Cooper pairs (p = 2).

The results can be interpreted both from a semi-classical or a or quantum-mechanical point of view.
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Figure 4.15: Experimental data (left) and associated Tien-Gordon model-based calculation (right) of the
differential tunneling conductance as a function of dc bias and ac drive amplitude, on a magnetic impurity
on Pb(111). The calculation assumes sequential tunneling processes only, and yields good agreement with
the data, implying that Andreev processes play a negligible role in the transport through the subgap states
(T = 1.5 K, Rn = 20 MΩ, f = 40 GHz).

Consider the convergent set of bright lines in the high-impedance experiment of Fig. 4.14. They simply
correspond to the lowering of the tunneling threshold in Vb from 2∆/e to 2∆/e − A as an ac drive of
amplitude A is added. All other bright lines (resonances) in this plot can also be drawn back to similar
semi-classical arguments.

A closer inspection (better visible in Fig. 4.15 for a simple question of scale) reveals that these tilted
lines are in reality composed of a set of vertical segments. Each of these segments is spaced along the
bias voltage axis by ~ω/e. The nth resonance thus corresponds to a process in which n photons of energy
~ω are absorbed, which provides the quantum picture of the photon-assisted charge transfer processes.
Interestingly, in the case of Cooper pair transport (bottom line of Fig. 4.14), the resonances are vertically
spaced by ~ω/(2e) rather than ~ω/e, which confirms that the elementary charge at play is 2e here.

It is worth noting that similar findings have already been reported in dilution-refrigerated experiments
with break junctions [233] and an STM [234]. One technical novelty here is that the experiments could be
performed at 1.5 K, owing to the extremely high-bandwidth microwave capabilities (40 GHz, generator-
limited) of the setup in Berlin. Further, Fig. 4.15 shows the same method applied to a tunneling spec-
troscopy on a magnetic impurity displaying two Shiba states, visible as tunneling resonances at voltages 1.7
and 2.3 mV. The Berlin group has recently investigated the relative contribution of sequential and Andreev
processes in transport through subgap states in dc STM-SQS experiments [38]. The experimental data in
Fig. 4.15 are very well reproduced assuming a sequential contribution only, but we expect to find significant
deviations from this, either by increasing the tunnel conductance (work in progress) or by working at lower
temperatures.

Feasibility of coherent Cooper pair transfer in an STM junction

There is again a fundamental difference between the above microwave experiments and e.g. the transport
experiments described in section 2.1.2, which is the bias: voltage in one case, current in the other. Because
of the voltage bias, the above described STM microwave experiments call for incoherent transfer processes,
both of single electrons and of Cooper pairs. For the planned experiments and the (non-)observation of
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Shapiro steps, we need not only a current bias but also the Josephson energy EJ = ~Ic/(2e), that is, the
depth of the Josephson potential well to be larger than the temperature fluctuations ∼ kBT . Therefore,
even in the experiment shown in Fig. 4.13a there is a finite voltage slope below the critical current, due
to phase diffusion. As opposed to the SNS experiments, in which Rn is on the order of Ωs, here, a single
quantum channel is involved and Rn > h/(2e2) is 4 orders of magnitude larger.

Aassuming ∆ = 1.3 meV, as for Pb, and a tunneling resistance Rn = 50 kΩ, which is about the smallest
tunneling resistance at which a point-like Pb-Pb junction can be stabilized without atoms at the apex
reconfiguring, the maximum achievable Ic is then 26 nA and the associated EJ ≈ 50µeV. This is less than
kBT ∼ 100µeV in the best case in a pumped-helium STM, meaning that preserving quantum coherence in
a Josephson weak link made of a single quantum transport channel at 1.3 K is rather challenging, if not
impossible. For this reason, we have not yet succeeded in observing clear Shapiro steps in current-biased
STM experiments in Berlin.1 Eventually, working in a dilution-refrigerated experiment will be the more
viable solution on the long run for studying Josephson physics in single quantum conduction channels.

1Because EJ is not so much smaller than kBT , there is a chance that using NbN tips, which are much harder than Pb
(allowing for smaller Rn) and have a gap in excess of 2.5 meV, this might be achieved even at relatively high temperatures. We
have tested NbN-coated tips in Grenoble (collaboration with Max Hofheinz, previously at INAC/Grenoble, now in Sherbrooke)
and indeed observed a well-developed, sharp tunneling gap with the expected amplitude.
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Conclusion

The last few years have allowed improving our ability to integrate single quantum dots into quantum
circuits. Lately, it has been possible in our team to consider combining such junctions with more elaborate
structures, such as SINIS or SNS junctions. This allows nowadays performing thermometry in the vicinity
of the QD junction, but it could also be extended to other device types, such as spin valves or interference
experiments. The other experimental technique at hand in our laboratory, cryogenic scanning tunneling
microscopy, has so far remained mainly focussed on graphene studies. However, the ongoing implementation
of a preparation chamber will allow studying a much bigger diversity of systems in a near future. Finally, to
the above dc transport probes came recently the investigations of quantum devices using a radiofrequency
or microwave drive.

Many exciting developments could be imagined for the coming years by combining the above experi-
mental techniques. The Josephson spectroscopy project on magnetic nanostructures on superconducting
substrates goes towards that direction, and so is the gated-STM project, but many other "marriages" can
be imagined. For example, the recent development in the group of Eli Zeldov of scanning SQUIDs as a
tool to map dissipation in quantum circuits is one really fascinating application, combining the physics of
scanning probe microscopy, nanothermics and Josephson junctions [235]. Why not imagine for example
performing an electron turnstile experiment using an STM tip as a contact? Or using a mobile tip for the
QD thermoelectricity experiments would also present significant advantages. The list is long... but the
time is short.

77



Chapter 4. Perspective

78



References

[1] S De Franceschi, L Kouwenhoven, C Schönenberger, and W Wernsdorfer. Hybrid superconductor–
quantum dot devices. Nature Nanotechnol., 5:703–711, 2010.

[2] H Park, A K L Lim, A P Alivisatos, J Park, and P L McEuen. Fabrication of metallic electrodes
with nanometer separation by electromigration. Appl. Phys. Lett., 75:301–303, 1999.

[3] H Park and P L McEuen. Nano-mechanical oscillations in a single-C60 transistor. Nature, 407:57–60,
2000.

[4] N Roch. Transistors à molécule unique : des effets Kondo exotiques à la spintronique moléculaire.
PhD thesis, Université Joseph Fourier, 2009.

[5] D M T van Zanten. Quantum dynamics revealed in weakly coupled quantum dot - superconductor
turnstiles. PhD thesis, Université Grenoble Alpes, 2015.

[6] N Roch, S Florens, V Bouchiat, W Wernsdorfer, and F Balestro. Quantum phase transition in a
single-molecule quantum dot. Nature, 453:633–637, 2008.

[7] Roch, N and Winkelmann, C B and Florens, S and Bouchiat, V and Wernsdorfer, W and Balestro,
F. Kondo effects in a C60 single-molecule transistor. physica status solidi (b), 245:1994–1997, 2008.

[8] J O Island, R Gaudenzi, J de Bruijckere, E Burzurí, C Franco, M Mas-Torrent, C Rovira, J Veciana,
T M Klapwijk, R Aguado, et al. Proximity-induced Shiba states in a molecular junction. Phys. Rev.
Lett., 118:117001, 2017.

[9] F Kuemmeth, K I Bolotin, S-F Shi, and D C Ralph. Measurement of Discrete Energy-Level Spectra
in Individual Chemically Synthesized Gold Nanoparticles. Nano Lett., 8:4506–4512, 2008.

[10] L Bernard, M Calame, S J van der Molen, J Liao, and C Schönenberger. Controlled formation of
metallic nanowires via Au nanoparticle ac trapping. Nanotechnology, 18:235202, 2007.

[11] K I Bolotin, F Kuemmeth, A N Pasupathy, and D C Ralph. Metal-nanoparticle single-electron
transistors fabricated using electromigration. Appl. Phys. Lett., 84:3154, 2004.

[12] M Buitelaar, T Nussbaumer, and C Schönenberger. Quantum Dot in the Kondo Regime Coupled to
Superconductors. Phys. Rev. Lett., 89:256801, 2002.

[13] E Bonet, M Deshmukh, and D C Ralph. Solving rate equations for electron tunneling via discrete
quantum states. Phys. Rev. B, 65:045317, 2002.

[14] M-S Choi, M Lee, K Kang, and W Belzig. Kondo effect and Josephson current through a quantum
dot between two superconductors. Phys. Rev. B, 70:020502(R), 2004.

[15] J Bauer, A Oguri, and A C Hewson. Spectral properties of locally correlated electrons in a Bardeen–
Cooper–Schrieffer superconductor. Journal of Phys.: Condensed Matter, 19:486211, 2007.

79



References

[16] T Meng, S Florens, and P Simon. Self-consistent description of Andreev bound states in Josephson
quantum dot devices. Phys. Rev. B, 79:224521, 2009.

[17] D C Ralph, C T Black, and M Tinkham. Spectroscopic measurements of discrete electronic states in
single metal particles. Phys. Rev. Lett., 74:3241, 1995.

[18] Winkelmann, C B and Roch, N and Wernsdorfer, W and Bouchiat, V and Balestro, F. Superconduc-
tivity in a single-C60 transistor. Nature Phys., 5:876, 2009.

[19] C T Black, D C Ralph, and M Tinkham. Spectroscopy of the Superconducting Gap in Individual
Nanometer-Scale Aluminum Particles. Phys. Rev. Lett., 76:688, 1996.

[20] L Solymar. Superconducting Tunneling and Applications. Chapman and Hall, London, 1972.

[21] S H Pan, E W Hudson, and J C Davis. Vacuum tunneling of superconducting quasiparticles from
atomically sharp scanning tunneling microscope tips. Appl. Phys. Lett., 73:2992, 1998.

[22] S-H Ji, T Zhang, Y-S Fu, X Chen, X-C Ma, J Li, W-H Duan, J-F Jia, and Q-K Xue. High-resolution
scanning tunneling spectroscopy of magnetic impurity induced bound states in the superconducting
gap of Pb thin films. Phys. Rev. Lett., 100:226801, 2008.

[23] K J Franke, G Schulze, and J I Pascual. Competition of superconducting phenomena and Kondo
screening at the nanoscale. Science, 332:940–944, 2011.

[24] J D Pillet, C H L Quay, P Morfin, C Bena, A Levy Yeyati, and P Joyez. Andreev bound states in
supercurrent-carrying carbon nanotubes revealed. Nature Phys., 6:965–969, 2010.

[25] A Levy Yeyati, J C Cuevas, A López-Dávalos, and A. Martín-Rodero. Resonant tunneling through a
small quantum dot coupled to superconducting leads. Phys. Rev. B, 55:R6137, 1997.

[26] K Kang. Transport through an interacting quantum dot coupled to two superconducting leads. Phys.
Rev. B, 57:11891, 1998.

[27] D M Basko. Landau-Zener-Stückelberg physics with a singular continuum of states. Phys. Rev. Lett.,
118:016805, 2017.

[28] J Pekola, V Maisi, S Kafanov, N Chekurov, A Kemppinen, Y Pashkin, O P Saira, M Möttönen, and
J Tsai. Environment-Assisted Tunneling as an Origin of the Dynes Density of States. Phys. Rev.
Lett., 105:026803, 2010.

[29] P Jarillo-Herrero, J Kong, H S J Van Der Zant, C Dekker, L P Kouwenhoven, and S De Franceschi.
Orbital Kondo effect in carbon nanotubes. Nature, 434:484–488, 2005.

[30] Z Iftikhar, S Jezouin, A Anthore, U Gennser, F D Parmentier, A Cavanna, and F Pierre. Two-channel
Kondo effect and renormalization flow with macroscopic quantum charge states. Nature, 526:233–236,
2015.

[31] D Goldhaber-Gordon, H Shtrikman, D Mahalu, D Abusch-Magder, U Meirav, and M A Kastner.
Kondo effect in a single-electron transistor. Nature, 391:156–159, 1998.

[32] S M Cronenwett, T H Oosterkamp, and L P Kouwenhoven. A tunable Kondo effect in quantum dots.
Science, 281:540–544, 1998.

[33] T Yoshioka and Y Ohashi. Numerical renormalization group studies on single impurity Anderson
model in superconductivity: A unified treatment of magnetic, nonmagnetic impurities, and resonance
scattering. Jour. Phys. Soc. Japan, 69:1812–1823, 2000.

80



References

[34] R Maurand, T Meng, E Bonet, S Florens, L Marty, and W Wernsdorfer. First-Order 0-π Quantum
Phase Transition in the Kondo Regime of a Superconducting Carbon-Nanotube Quantum Dot. Phys.
Rev. X, 2:011009, 2012.

[35] J A van Dam, Y V Nazarov, E P A M Bakkers, S De Franceschi, and L P Kouwenhoven. Supercurrent
reversal in quantum dots. Nature, 442:667–670, 2006.

[36] J-P Cleuziou, W Wernsdorfer, V Bouchiat, Th Ondarçuhu, and M Monthioux. Carbon nanotube
superconducting quantum interference device. Nature Nanotech., 1:53–59, 2006.

[37] R S Deacon, Y Tanaka, A Oiwa, R Sakano, K Yoshida, K Shibata, K Hirakawa, and S Tarucha.
Tunneling Spectroscopy of Andreev Energy Levels in a Quantum Dot Coupled to a Superconductor.
Phys. Rev. Lett., 104:076805, 2010.

[38] F Ruby, Mand Pientka, Y Peng, F von Oppen, B W Heinrich, and K J Franke. Tunneling Processes
into Localized Subgap States in Superconductors. Phys. Rev. Lett., 115:087001, 2015.

[39] L G Aslamazov and M V Fistul. Resonant tunneling in superconductor-semiconductor-
superconductor junctions. Sov. Phys.-JETP, 56:681, 1982.

[40] C W J Beenakker and H van Houten. Josephson current through a superconducting quantum point
contact shorter than the coherence length. Phys. Rev. Lett., 66:3056, 1991.

[41] M Tinkham. Introduction to Superconductivity. Dover Publications, 2004.

[42] P Joyez, P Lafarge, A Filipe, D Estève, and M H Devoret. Observation of parity-induced suppression
of Josephson tunneling in the superconducting single electron transistor. Phys. Rev. Lett., 72:2458,
1994.

[43] P Jarillo-Herrero, J A Van Dam, and L P Kouwenhoven. Quantum supercurrent transistors in carbon
nanotubes. Nature, 439:953–956, 2006.
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