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Résumés

From wing pattern genes to the chemistry of speciation:
an integrative dissection of the early stages of

diversification in mimetic butterflies
Abstract

How does biological diversification occur in the face of genetic exchange? How
do reproductive barriers evolve and function? What is the role of adaptive traits in
promoting diversification and speciation? These open questions in evolutionary biology
are at the core of this project. In order to tackle them, we have focused on butterflies
in the neo-tropical genus which are an important component of the diverse butterfly
communities in the Neo-tropics. Butterflies in the genus Heliconius are unpalatable to
predators, use warning colours to advertise their defences, and mimic other defended
butterflies in their local communities. The genus has undergone an adaptive radiation
in wing colour patterns as a result of natural selection for mimicry, and is also well
known for assortative mating based on wing pattern. I have extended the current
knowledge about the ecological function and the genetic basis of wing color patterns in
these butterflies and explored the importance of wing coloration relative to chemical
signaling in the early stages of diversification. To this aim, I have characterised the
adaptive divergence between lineages at different stages of the speciation continuum,
by integrating genomic, phenotypic, behavioural, chemical and ecological data. More
precisely, I have studied the so-called silvaniform sub-clade of Heliconius, known for
harbouring species with tiger patterns that participate in mimicry with large groups
of other closely and distantly-related species. My work includes the comparative
description of the genetic architecture of wing pattern adaptation in two species, H.
hecale and H. ismenius, using crosses, genome-wide next-generation genotyping, and
advanced morphometrics of colour patterns. I have also explored the importance of
natural and sexual selection on wing-patterning loci at early stages of divergence in the
genus. In particular, I have analysed the structure and maintenance of a hybrid zone
between two distinctly coloured parapatric races of H. hecale by using a combination
of population genetics and genomics, coupled to a phenotypic analysis of the clines
and to behavioural assays on male-based mate choice. Finally, I have carried out
genome-wide analyses of divergence and gene flow with whole genome sequencing
data to look for evidence of introgression between coexisting, hybridising co-mimetic
species. This was again coupled to experiments on mating preferences and behavior,
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and yielded evidence for important differences in putative pheromone signals which
may mediate species recognition and the maintenance of species boundaries. Overall,
my results show that although selection on wing pattern divergence have been central
to the diversification of the genus Heliconius, the accumulation of other barriers to gene
flow may be important for the speciation process to be completed.

Keywords
Heliconius, butterflies, reproductive isolation, speciation continuum, genomics, phero-

mones, genetic architecture
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Une étude intégrative des stades précoces de
l’isolement reproducteur chez les papillons Heliconius

Résumé
Comment la diversification biologique peut-elle avoir lieu malgré les échanges géné-

tiques ? Comment les barrières reproductives entre espèces évoluent-elles et fonctionnent-
elles ? Les changements adaptatifs de certains traits favorisent-ils la diversification et la
spéciation ? Ces questions ouvertes en biologie évolutive constituent la base de ce pro-
jet. Pour y répondre, nous nous sommes intéressés aux papillons du genre néo-tropical
Heliconius qui constituent une partie importante des communautés diversifiées de pa-
pillons néotropicaux. Les papillons de ce groupe sont immangeables pour les prédateurs,
arborent des colorations d’avertissement qui signalent leur toxicité, et miment d’autres
papillons toxiques dans leurs communautés locales. Ce genre a connu une radiation
adaptative des motifs colorés soumis à la sélection naturelle favorisant le mimétisme
de divers signaux locaux, mais ces motifs sont également connus comme signaux intras-
pécifiques favorisant les appariements homogames. Mes travaux ont permis d’appro-
fondir les connaissances actuelles sur la fonction écologique et la base génétique de la
couleur des ailes chez ces papillons, et d’explorer l’importance de la couleur des ailes
par rapport aux signaux chimiques au cours des premières étapes de diversification.
Dans cette optique, j’ai caractérisé la divergence adaptive entre les taxons à différents
stades du continuum de spéciation, par une approche intégrative combinant des don-
nées génomiques, phénotypiques, comportementales, chimiques et écologiques. Plus
précisément, j’ai étudié le sous-clade de Heliconius appelé sylvaniformes, contenant des
espèces de papillons aux motifs tigrés, qui participent à des relations de mimétisme avec
de nombreuses autres espèces fortement apparentées ou non. Mes travaux incluent la
description comparative de l’architecture génétique des motifs colorés adaptatifs pa-
rallèlement chez les espèces H. hecale et H. ismenius, en utilisant des croisements, du
génotypage génomique à haut débit, et de la morphométrie des motifs colorés. J’ai éga-
lement exploré l’importance de la sélection naturelle et sexuelle sur les locus contrôlant
ces motifs colorés aux stades précoces de divergence dans ce genre. En particulier, j’ai
analysé la structure et le maintien de la zone d’hybridation entre deux races parapa-
triques de H. hecale montrant des colorations différentes, en combinant la génétique et
la génomique des populations, ainsi que l’analyse phénotypique de clines et des tests
comportementaux sur le choix de partenaire chez les mâles. Enfin, j’ai effectué des ana-
lyses génomiques de la divergence et du flux de gènes en me basant sur des données
de re-séquençage de génomes complets afin de rechercher des traces d’introgression
entre des espèces co-mimétiques et étroitement apparentées. Ceci a été également cou-
plé à des expériences de préférence et de comportement sexuel, ainsi qu’à des analyses
chimiques montrant d’importantes différences dans des composés qui pourraient inter-
venir dans la reconnaissance spécifique et le maintien des limites entre espèces. Dans
l’ensemble, mes travaux montrent que bien que la sélection agissant sur les motifs colo-
rés des ailes ait été centrale dans la diversification du genre Heliconius, l’accumulation
d’autres barrières au flux de gènes peut jouer un rôle important dans l’aboutissement
du processus de spéciation.
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Introduction

Foreword
Organisms display striking variation in phenotypic morphology and function, both

of which are fundamental to biological diversification. How did this remarkable
diversity arise is one of the central questions in evolutionary biology. More specifically,
what are the forces driving the diversity of colours, shapes, behaviours and other traits
we see in nature? How does evolution shape these traits through the selection of “types”
adapted to particular environments? And finally, how does adaptation to particular
environmental conditions originate the discrete entities we call species? Attempts
to answer these questions have resulted from a fruitful combination of models with
empirical data. Thanks to the large availability of data, the study of evolution has now
become highly integrative and has focused on exploring how genes, organisms and
environments interact for diversification to proceed. However, more than 150 years
after the publication of The Origin of Species ([Darwin, 1859]), much remains to be
understood about the factors and mechanisms contributing to evolution.
To solve open questions in evolutionary biology, attention has often been put

on hotspots of biodiversity, since these enclose several taxonomic groups that have
undergone adaptive radiations and are therefore perfect scenarios to disentangle the
mechanisms responsible for diversification. The Neo-tropics are listed as one of the
most biodiverse regions in the world. Thus, it is not surprising that the complexity
of neo-tropical species communities inspired several naturalists to describe diverse
phenomena and developing theories linked to evolutionary biology. The independent
works of Henry Walter Bates and Fritz Müller in the late 1800s stand out in this
respect ([Bates, 1862]; [Müller, 1879]). They explored communities of neo-tropical
butterflies and observed that groups of species shared strikingly similar wing colour
patterns, a resemblance that could hardly be explained by chance. Alternatively, these
authors keyed out an explanation that was in consonance with Darwin’s precepts.
Wing motifs were suggested to be involved in warning signalling to predators (in
particular to birds), thus having a protective function. Mimicry, which is the adaptive
resemblance in signal between several species in a locality, could consist either of edible
species mimicking distasteful models (Batesian mimicry) or of several distasteful species
displaying a common pattern and thus benefiting from predators learning about their
toxicity (Müllerian mimicry; see Figure 1 for a visual description of the phenomenon).
Mimicry, which has been observed in a varied array of animal taxa including insects,
frogs, snakes and millipedes ([Brown, 1981]; [Pfennig et al., 2001]; [Marek and Bond,
2009]; [Alexandrou et al., 2011]; [Twomey et al., 2013]), drives the adaptation of
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Figure 1 – Schematic representation of Müllerian mimicry. Different unpalatable species share
the same conspicuous pattern (in this case the blue colour) which is distinguished from other patterns
and associated to toxicity when memorized by predators.

lineages to “mimetic environments” known as mimicry rings (Figure 2).
Butterflies in the genus Heliconius (tribe Heliconiini) are a classical example of Mül-

lerian mimicry. These butterflies, which are unpalatable to predators, are famous for
their high diversity of wing colour patterns, which warn predators of their toxicity. The
multiple and variable geographic races of the ∼40 species in this clade show mimetic
relationships with other co-occurring species in a given geographic region. This pheno-
typic convergence for mimicry is subjected to very strong selective pressures. Moreover,
wing colour attributes are also implicated in mate recognition, which strengthens their
importance as reproductive isolation barriers. Hence, Heliconius butterflies represent
a great model for the study of speciation, providing a unique opportunity to under-
stand how both convergent and diversifying evolution processes have taken place. They
represent the natural laboratory in which we address questions related to phenotypic
diversification and speciation.

0.1 How do discrete biological entities arise?
There is hardly an ecological factor that does not affect
speciation directly or indirectly, actually or potentially.
Mayr 1963, Animal Species and Evolution, p. 556

Understanding how populations evolve differences, how species originate and how
their distinctiveness is maintained are central questions in evolutionary biology. In
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Figure 2 – Examples of mimicry rings formed by several toxic neo-tropical butterfly species,
including butterflies in the genus Heliconius.

a context of habitat loss, climate change, species invasions, resistance to insecticides
and antibiotics, among other anthropogenic disturbances, elucidating the evolutionary
mechanisms of adaptive divergence might help in predicting the response of organisms
to global changes.
Referring to “discrete biological entities” is here an alternative way to say “species”.

Nowadays, the biological species concept introduced in [Mayr, 1942] is highly debated.
According to Mayr, species are groups of interbreeding natural populations that are
reproductively isolated from other such groups. Here, I adopt an extension of this
concept that allows for some extent of permeability in the species boundaries ([Coyne
and Orr, 2004]). Despite this permeability, species still constitute discrete categories
that can be distinguished on a morphological, genetic, ecological or behavioural basis.
“Discrete” here does therefore not imply complete reproductive isolation, but rather
the maintenance of species-related identity in the face of potential or actual gene flow.
This is the idea behind the genotypic cluster species concept, which defines species as
distinguishable clusters of genotypes that have few or no intermediates when in contact
with each other ([Mallet and Gilbert, 1995]). Although ecotypes or subspecies (i.e.
closely-related taxa below the species level) are also discrete in some respects, they are
generally highly continuous genetically. Additionally, their distinctiveness may lack
permanence and may be more easily reversed than species identity, following a change
in the pattern of divergent selection ([Coyne and Orr, 2004]).
The process by which discrete entities originate is called speciation. Nevertheless,
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Figure 3 – The continuous nature of divergence during speciation. Different means of quantify-
ing divergence can be used to measure arbitrary “stages” of speciation, representing stages from the
initiation through to the completion of the speciation process (when two populations are depicted,
one is shown in blue and the other in orange). Figure and legend taken from [Nosil et al., 2009].

speciation has recently been more broadly defined as the process by which divergence
and reproductive isolation arise ([Nosil et al., 2009]; [Mallet, 2009]). Thus, it is also
related to the origin of taxa below the species level, and it may or not represent a step
towards the origin of species: ecotypes or subspecies may never attain the species status
([Rueffler et al., 2006]; [Nosil et al., 2009]). Importantly, many contemporary species
must have gone through the divergence stage shown by populations or subspecies, and
thus, their exploration is crucial to understand the causes of diversification. Study-
ing speciation can involve looking at partially isolated divergent ecotypes (the “mag-
nifying glass” approach) informing on how ecology and genetics interact to cause the
evolution of reproductive barriers, or by studying “good”, fully isolated species (the
“spyglass” analysis) to infer the causes of speciation ([Via, 2009]). Both approaches
are complementary to understand the nature and biogeography of the speciation pro-
cess but they need to be connected. Studying clades composed by taxa placed along
a speciation continuum allow to integrate knowledge on the gradual transition from
fully interbreeding populations to totally isolated species (e.g. [Hendry et al., 2009];
[Powell et al., 2013]); Figure 3). Figure 3 indicates the continuity of the speciation
process and shows different ways to quantify divergence between pairs of taxa placed
on distinct “stages” of speciation. Few clades representing such continuity are as well
documented as butterflies in the genus Heliconius (see below for an in-depth description
of this clade).
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0.1.1 Distinct forms of isolation contribute to diversification and
speciation

Under the genotypic cluster species concept, complete reproductive isolation is not
a requirement for diversification and not even for speciation to be achieved. The
question arises whether reproductive isolation is needed for adaptive diversification
or if it is rather a side effect of divergent evolution ([Mallet, 2005]). The idea
that isolating barriers evolve through direct selection against gene flow is unlikely
(reinforcement being a possible exception; see below). Instead, reproductive isolation
is currently believed to be a by-product of the response to natural selection, or of
stochastic processes ([Coyne and Orr, 2004]). Isolating barriers accumulate and/or get
stronger along the advancement of the speciation process. Therefore, understanding
diversification and speciation require pinpointing ecological traits which actually or
potentially prevent gene flow between coexisting taxa. Although the barriers we detect
at present are not necessarily the ones that were implicated in the initial reduction
of gene flow between populations, and although their current importance may distort
their historical importance during the speciation process ([Coyne and Orr, 2004]), they
remain highly informative of how reproductive isolation evolves.
Complete lists of possible reproductive barriers between divergent taxa have been

compiled by Dobzhansky and Dobzhansky ([Dobzhansky and Dobzhansky, 1937], p.
231–232), and Coyne and Orr ([Coyne and Orr, 2004] p. 28-29). Basically, reproduc-
tive mechanisms can be divided into those acting before and after fertilisation (pre and
post-zygotic barriers, respectively). Pre-zygotic isolation comprehends ecological di-
vergence (e.g. habitat preference and phenological differences), sexual isolation due to
assortative mating and gametic incompatibility ([Seehausen et al., 2014]). By assorta-
tive mating we mean that individuals mate preferentially with other individuals using
the same resource or habitat, or being similar for characters that also cause ecological
specialisation. Some examples of this phenomenon will be given below. Post-zygotic
reproductive barriers, which affect hybrid sterility and inviability, can be intrinsic or
extrinsic. Although the frontiers between these are not always so precise, intrinsic post-
zygotic barriers, which do not depend on the external environment, are the result of ge-
netic incompatibilities such as negative epistatic interactions between alleles at two or
more loci (Bateson–Dobzhansky–Muller incompatibilities; e.g. ([Brideau et al., 2006]).
In contrast, extrinsic post-zygotic isolation is the result of disruptive selection against
hybrids mediated by environmental factors. For instance, hybrids between a young
species pair of sticklebacks that are ecologically and morphologically differentiated
(limnetic and benthic) grow slower than the parental types in both parental habitats
([Hatfield and Schluter, 1999]). Several other examples of maladaptation of hybrids to
the parental habitats have been reported ([Crespi, 1989]; [McBride and Singer, 2010]),
including Heliconius butterflies (see below; ([Merrill et al., 2012]). Speciation is usually
the result of the accumulation of several forms of isolation; the relative importance and
the timing at which these forms appear along the speciation process are not easy to as-
sess, but seem to vary depending upon the geographic mode of selection (i.e. the degree
of geographic-isolation) and upon the studied taxa ([Coyne and Orr, 1998]; [Schemske,
2000]).
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Targeting single components of isolation, like intrinsic post-zygotic barriers ([Orr
and Turelli, 2001]; [Brideau et al., 2006]) or assortative mating ([Crespi, 1989];
[Kondrashov and Shpak, 1998]; [Jiggins et al., 2001]; [Emelianov et al., 2001];
[Jiggins et al., 2005a]; [Malausa et al., 2005]) between taxa is highly useful for the
understanding of the speciation process. However, exploring the relative importance
of distinct reproductive barriers, and of particular barriers in related lineages at varying
degrees of evolutionary divergence (i.e. the speciation continuum) gives an even better
picture of how diversification proceeds. In some speciation events, divergence along
multiple phenotypic axes (due to multifarious selection) is involved. For instance,
multiple additive minor barriers can contribute to reproductive isolation ([Ramsey
et al., 2003]; [Dopman et al., 2010]). For instance, Dopman et al. 2010 have found
seven significant sources of isolation between the E and Z host-races of the European
corn borer. Alternatively, in some speciation instances major reproductive barriers play
alone an outstanding role in diversification, by resulting in the incidental evolution of
distinct components of reproductive isolation (e.g. pleiotropic effects). For instance, in
Darwin’s finches, beak size conditions both trophic specialisation and mate recognition
due to song produced by males ([Podos, 2001]). Similar cases where traits under
ecological selection are important for mating include host specificity and cuticular
hydrocarbon composition in Drosophila ([Etges and Ahrens, 2001]), wing patterns
involved in defence from predators and signalling to contypic types in butterflies ([Vane-
Wright and Boppre, 1993]; [Brunton and Majerus, 1995]; [Jiggins et al., 2001]); e.g.
mimicry in Heliconius butterflies, see below), among others ([Boughman et al., 2005]).
In such cases, one single trait is able to enhance or maintain both extrinsic post-zygotic
and pre-zygotic isolation. In some particular cases, shifts in habitat preference lead
directly to pre-zygotic isolation (i.e. phytophagous insects that mate on or near the
host plant; see [Drès and Mallet, 2002] for a review). It remains largely unsolved,
however, whether these traits of major effect are able alone to drive speciation or if
they are protagonists at the beginning of a process which requires multidimensional
divergence to be achieved.
Mate choice has been long highlighted as an important factor in speciation ([Dobzhan-

sky and Dobzhansky, 1937]; [Paterson, 1985]; [Kondrashov and Shpak, 1998]). Al-
ready Darwin noted that several rapidly evolving traits of animals served for intraspe-
cific communication, especially during competition for mates, and had nothing to do
with ecological adaptation. He proposed that these traits evolved through sexual selec-
tion and not through natural selection. A variety of signals are displayed usually during
courtship, and act as characteristic features of individuals for mate recognition, not only
informing about mate quality (what for Darwin was sexual selection), but more gener-
ally about the species or ecotype, the gender, etc. Therefore, changes in these signals,
which can be visual, chemical, behavioural, tactile, morphological, acoustic, etc., can
constitute, either singly or in combination, isolating factors between diverging taxa
([Pivnick et al., 1992]; [Svensson, 1996]; [Marco et al., 1998]; [Martín and López,
2000]). Assortative mating based on reproductive traits such as coloration (including
variation in the ultraviolet ([Silberglied, 1979]) is widespread across animal taxa ([Jig-
gins et al., 2001]; [Salzburger et al., 2002]; [Elmer et al., 2009]; [Jiang et al., 2013];
[Pérez i de Lanuza G, 2013]). For instance, the implication of wing colour patterns
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Box 1 The role of visual and chemical signals in mating behaviour in Lepidoptera
Very diverse signal modalities for mate recognition exist in the order Lepidoptera. Wing col-
oration and chemical signalling are often implicated in courtship and serve in inter and intraspe-
cific communication as well as in sexual selection ([Boppré, 1984]; [Silberglied, 1984]). For
species and subspecies recognition in particular, nbutterflies andmoths show clear differences in
the general trend of use of particular kinds of reproductive traits. In moths, chemical communi-
cation is more or less ubiquitous, with females emitting important quantities of pheromones that
assemble conspecific males from long distance ([Lofstedt, 1993]; [Millar, 2000]; [Jurenka et al.,
2003]). Sex pheromones from around 1500 species of moths have been identified, in part moti-
vated by the interest on detecting the molecules that could be potentially used for the bio-control
of populations of moths that affect crops ([Arn et al., 1992]). In contrast, in butterflies, males
are usually attracted to females by long-range visual signals, following specific behavioural dis-
plays by both sexes ([Stride, 1957]; [Silberglied and Taylor, 1973]; [Rutowski, 1991]; [Jiggins
et al., 2001]; [Ellers and Boggs, 2003]). Females of some species use male colour patterns for
species recognition ([Robertson and Monteiro, 2005]). In butterflies, chemical communication
has received much less attention than in moths, but it seems evident that pheromones come into
play in the short range, in a late phase of courtship, together with other signals including tac-
tile communication ([Rutowski, 1991]; [Vane-Wright and Boppre, 1993]). Therefore, not only
volatile compounds, but also cuticular compounds acting as contact pheromones ([Hay-Roe
et al., 2007]; [Dapporto, 2007]; [Ômura and Honda, 2011]; [Heuskin et al., 2014]) seem to
take place as message senders in butterflies. Such olfactory signals are usually emitted by males
([Schulz et al., 1993]; [Costanzo and Monteiro, 2007]; [Nieberding et al., 2008]) and thus drive
female choice. For example, research on pierid butterflies has demonstrated that males emit
mainly scents that are both species and sex specific; namely, males of species Pieris napi, P. rapae
and P. brassicae smell strongly of citral, indole and benzylcyanide, respectively ([Bergström and
Lundgren, 1973]; [Andersson et al., 2007]). Very rarely, female pheromones are important for
male choice. Such cases have been scarcely reported ([Lundgren and Bergström, 1975]; [Wago,
1978]).

in mate recognition has been reported in several butterfly species ([Rutowski, 1977b];
[Silberglied and Taylor, 1978]; [Jiggins et al., 2001]; [Fordyce et al., 2002]; [Sweeney
et al., 2003]; [Robertson and Monteiro, 2005]; [Kemp, 2007]); see Box 1 for more de-
tails about mate choice in Lepidoptera). Although the evolutionary role of assortative
mating is well understood, punctual questions remain largely unsolved. For instance,
when does assortative mating evolve relative to other reproductive barriers? Does it get
stronger along the speciation continuum? These are questions that need to be tackled
in a comparative way within a clade representing the speciation continuum.
Pre-zygotic reproductive isolation based on coloration seems to be one of the causes

of the astonishing diversity of colour patterns in some groups, like birds, fishes, frogs
and insects. A good example of such diversity is the ∼17.000 existing butterfly species,
which are mostly distinguishable on the basis of their wing colour motifs. Visual signals
across animals have been extensively investigated because of their high diversity, their
conspicuousness and their importance in sexual communication in nature. However,
comparatively few studies have looked at the importance of chemical-based signalling
in mate choice, although it is often regarded as the most widespread form of commu-
nication, reported for taxa ranging from unicellular organisms to mammals ([Wyatt,
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Box 2 A few words about pheromones
Chemical information is transferred through semiochemical substances, among which
pheromones are the best known. A pheromone is a chemical (or a mixture of chemicals) se-
creted by an animal, that “releases a specific reaction” in an individual of the same species
([Karlson and Lüscher, 1959]). Pheromones can reveal the gender, age, social status, belonging
to a given group or taxon, etc., or help to find mates, to warn about a danger, to delimitate
an area of distribution, to enhance aggregation behaviour, etc. ([Wyatt, 2003]); such messages
may or not be transferred during courtship. The information that courtship pheromones (also
called sex pheromones) carry needs to be sufficiently conserved to contribute unambiguously to
the perception and location of a suitable mate (e.g. of the same species; [Wyatt, 2003]), but also
versatile to send a precise message about “mate quality” to prospect mates (e.g. [Andersson,
1994]).

2003]; [Ferveur, 2005]; see Box 2). Chemical signals are often divergent across species
and even between ecotypes (e.g. [Cardé et al., 1978]) and thus serve for conspecific
recognition (e.g. [Baer, 2003]). Interestingly, the chemical structure or composition
of pheromones of sister sympatric taxa often show drastic differences, a form of char-
acter displacement ([Mérot et al., 2015]; [Coyne and Orr, 1997]; [Shine et al., 2002]).
For example, closely-related species of beetles in the genus Ips display more dissimilar
pheromones acting as attractant to mating sites than far related species ([Symonds and
Elgar, 2004]).
When visual signals are constrained, for instance by a protective function (e.g.

mimicry), increased dependence on chemical signals for species recognition may be
expected ([Vane-Wright and Boppre, 1993]). Little empirical data exist on testing
that hypothesis. However, it seems to hold true for Amauris butterflies in eastern
Africa, where low colour pattern divergence contrast with a high specificity of the
complex volatiles bouquets associated with males abdominal hairpencils ([Schulz et al.,
1993]). Textbook examples of mimicry complexes like the ones formed by neo-tropical
Heliconius butterflies have been deeply explored in terms of the involvement of wing
colour patterns in male choice ([Jiggins et al., 2001]; [Estrada and Jiggins, 2008];
[Merrill et al., 2011a]); see below) but little is known about the role of pheromones
in mate recognition and in the diversification of Heliconius butterflies (but see ([Mérot
et al., 2015]; [Estrada et al., 2011]). Do closely-related mimetic taxa rely on chemical
cues for species recognition? Does differentiation in chemical signals evolve at similar
rates than visual signals?

0.1.2 Phenotypic divergence as a necessary step towards ecological
speciation

When populations diverge phenotypically in response to environmental constraints,
ecological speciation may happen ([Schemske, 2000]; [Schluter, 2001]). Although
stochastic changes under geographic isolation were long seen as the main factor for
speciation to proceed ([Mayr, 1942]), the role of adaptive change in speciation has
recently regained importance. Divergent natural selection is expected to pull popula-
tions toward distinct adaptive peaks if these inhabit distinct environments composed
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of different ecological niches. In the same way, specific processes such as competition
for resources between coexisting taxa and predation may favour the adaptation to new
environments where the taxa experience contrasting selection regimes ([Mallet and Bar-
ton, 1989a]; [Schluter, 1994]; [Rundle et al., 2003]; [Nosil and Crespi, 2006]). Most
importantly, the evolution of reproductive isolation may occur as a “by-product” of
the genetic changes underlying diverging features among taxa ([Coyne and Orr, 2004],
p.385). In a number of widely cited cases of ecotypes or closely-related species, barriers
to gene flow seem to have evolved as a side effect of divergent ecological selection. For
instance, the beaks of Darwin’s finches, host plant specificity in Rhagoletis fruit flies and
Timema stick insects, body size in stickleback fishes in postglacial lakes, coloration in
poison frogs and in cichlid fishes, pollinator targets and flowering time in plants, wing
patterns in mimetic Heliconius butterflies, are all examples of ecological divergence re-
sulting in reproductive isolation ([Grant and Grant, 1992]; [Feder, 1998]; [Mallet et al.,
1998a]; [Via et al., 2000]; [Nosil, 2004]; [Jiggins, 2008]).
The genus Heliconius, which we will study here, has undergone a radiation of wing

coloration which has received the attention of evolutionary biologists and ecologists
since Bates ([Merrill et al., 2015]); see below and Box 3 for more details on this
group). Striking patterns of ecological and phenotypic diversity in rapidly multiplying
lineages, or adaptive radiations, are also studied in certain clades of fishes, like cichlids
in African lakes or Nicaraguan crater lakes, for Caribbean Anolis lizards, spiders in
Hawaii, Darwin’s Galapagos finches, Hawaiian crickets, columbine flowers, among
others([Grant and Grant, 1992]; [Hodges and Arnold, 1994]; [Losos and De Queiroz,
1997]; [Shaw, 2002]; [Gillespie, 2004]; [Barluenga et al., 2006]). These radiations
range from around fifteen species (Galapagos finches; [Grant and Grant, 2008]) to over
500 species (Lake Victoria cichlids; ([Johnson et al., 2000]; [Nagl et al., 2000]).
Ecological specialisation as a result of divergent selection has a well-reported poten-

tial to favour the formation of new species (e.g. ([Orr and Smith, 1998]; [Schemske,
2000]; [Schluter, 2001]; [Via, 2002]), but “non-ecological” speciation is also thought
to be an important factor explaining extant diversity. Speciation under uniform selec-
tion, polyploidy speciation and speciation by genetic drift may all occur without the
direct involvement of natural selection, although only the latter may be strictly non-
ecological (see [Sobel et al., 2010] for a review on this topic). So, a combination of
adaptive and non-adaptive changes may concur to observed diversification patterns,
but there is a large consensus today about adaptation playing a significant role in most
speciation instances ([Templeton, 2008]). According to Coyne and Orr (2004, p.179)
“...virtually all barriers can be considered ecological in the sense that they arise from
environmentally imposed selection”. Similarly, all instances of ecological speciation
result from environmentally-imposed selection and this may be one of the few ways
to diverge in presence of gene flow. I will now introduce our study system, where
phenotypic diversification is importantly shaped by predation as an ecological agent of
selection ([Mallet et al., 1998a]).
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Box 3 Butterflies in the genus Heliconius are an example of an adaptive radiation
According to [Schluter, 2000] an adaptive radiation is the rapid diversification of an ancestral
population into several ecologically different species, each of which is adapted to a specialised
environmental niche. The genus Heliconius has been presented as a good example of an adaptive
radiation, given that their impressive diversity of wing colour patterns seems to have originated
over a relatively short evolutionary time. Namely, the around 40 species and the 10-fold so
many geographic races have started diversifying ∼10 million years ago (Figure 4; [Kozak et al.,
2015]). The striking diversification of the genus strongly contrasts with the low one observed
in sister genera within the tribe Heliconiini, where rather conservative wing patterns extend
over large geographic areas. This contrast was suggested to rely importantly on the evolution
of mimicry as a force possibly leading to the exploration of existing but previously underutilised
adaptive zones by members in the genus Heliconius (i.e. the mimicry rings formed by several
far-related butterfly species). Nevertheless, given that mimicry is based on selection against
rare morphs, the rampant geographic variation in Heliconius is hard to explain.
There seems to be a change from disruptive to stabilising selection on individual populations
as the number of species participating in local mimetic environments increases, but explaining
how the initial divergence occurs is elusive. It has been suggested that differentiation arises
within essentially continuous populations thanks to disruptive natural and sexual selective
pressures on colour loci. The “shifting balance” hypothesis, according to which new forms
can evolve in local populations and spread to others ([Wright, 1932], [Wright, 1977]) is now
better accepted to explain the emergence and maintenance of new mimetic forms than the
“Pleistocene refugia” hypothesis, which states that distinct colour patterns evolved in allopatry
in forest refuges formed during cycles of Pleistocene cooling and came into secondary contact
when the geographic barriers disappeared ([Brown and Benson, 1974]; [Sheppard et al., 1985];
[Whinnett et al., 2005]). The shifting balance hypothesis considers three distinct phases. First,
a new form arises locally via genetic drift or temporary changes in the selection pressures (phase
I). During phase II, the new form becomes fixed locally through natural selection, and finally,
during phase III, the fitness-enhancing trait spreads to other populations via interdemic selection.
Once a new form has become locally, the depression of fitness of hybrids relative to that of
parental types is enhanced through the involvement of wing colour patterns in mating. In
addition to mimicry, the rapid adaptive radiation undergone by the genus is possibly linked
to some traits unique among Lepidoptera (pollen feeding and pupal-mating behaviour; see
[Beltran et al., 2007] for a description) and with the co-evolution with Passifloraceae host
plants ([Benson et al., 1975]).

0.1.3 Müllerian mimicry as a driver of wing pattern diversification in
Heliconius butterflies

Butterflies in the neotropical genus Heliconius are spectacularly diverse in their
wing colour motifs (see Figure 4 for a recent phylogeny of the clade). They are
unpalatable, and their wing colour patterns act as signals warning predators of their
toxicity. Furthermore, several toxic species commonly show wing colour pattern
convergence locally, thus belonging to the same mimicry ring. This is a positive
frequency-dependent process: m ore common patterns enjoy better protection from
predators. This phenomenon is known as Müllerian mimicry.
Mimicry often involves distantly related species within the genus (e.g. H. melpomene/

H. erato, H. cydno/H. sapho or H. sara/H. doris) or Heliconius species and taxa outside
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the genus (e.g. the case of the silvaniforms ̶ or tiger-patterned butterflies ̶ with butter-
flies in the Danainae and Ithomiinae subfamilies). In contrast, closely-related species
often differ in wing colour pattern (e.g. H. melpomene/H. cydno), which supports the
idea that shifts in colour patterns may favour speciation (see paragraph below; [Mallet
et al., 1998a], [Mallet, 2010]; [Jiggins et al., 2001]; [Chamberlain et al., 2009]). In
some cases, however, closely related species can share mimetic relationships (e.g. sis-
ter species H. melpomene amaryllis/H. timareta thelxinoe and races of silvaniform species
like H. numata elegans/H. ethilla aerotome/H. pardalinus buttleri or H. hecale melicerta
and H. ismenius boulleti). The adaptation of these butterflies to mimetic environments,
called mimicry rings and recognised by the local community of predators, suggests that
wing colour motifs are under strong predator-imposed selective forces.
It is not evident how mimicry, a phenomenon implicating phenotypic convergence,

may also be associated with widespread phenotypic divergence, and may contribute
to speciation. Mimetic clades are often highly diverse, both at a local scale and at
a broad geographic scale ([Alexandrou et al., 2011]; [Rosser et al., 2012]; [Twomey
et al., 2013]). In Heliconius, several mimicry rings, rather than a single one, coexist at a
given location, which contradicts the expectations of Müllerian mimicry as a stabilising
process. The reasons for such diversity are not clear yet, but it has been suggested
that different wing patterns may respond to microhabitat heterogeneity within the
forest ([Joron and Mallet, 1998]). At a larger geographic scale, most Heliconius species
display astonishing racial colour pattern diversity, representing a mosaic distribution
of parapatric races. These subspecies share contact zones that are usually narrow,
an indication of strong natural selection acting on alternative phenotypes on either
sides of the clines, where local predator communities learn to avoid the local warning
pattern. Predator-operated disruptive selection this way favours the pattern that is
abundant (i.e. the parental pattern) and disfavours rare and non-mimetic patterns (i.e.
recombinant patterns), which are removed by frequency-dependent selection. Evidence
of selective pressures acting against non mimetic butterflies has been collected in the
field ([Benson, 1972]; [Mallet and Barton, 1989b]; [Kapan, 2001]). Briefly, these
experiments consisted in releasing modified local mimetic patterns ([Benson, 1972]),
transferring colour pattern subspecies across an interracial contact zone ([Mallet and
Barton, 1989b]) and reciprocally transferring polymorphic forms of a single species
([Kapan, 2001]). Hence, disruptive selective forces favour and stabilise alternative
mimetic patterns locally, but enhance phenotypic diversity if a larger geographical
view is taken. As shown so far, shifts in colour patterning determine phenotypic
distinctiveness between lineages already at early stages of divergence in the clade.
However, divergent selection does not only stabilise distinct colour races locally, but
also distinctly-coloured parapatric species (e.g. theH. erato/H. himera or theH. cydno/H.
pachinus pairs) and sympatric species (e.g. H. melpomene and H. cydno). Actually,
good evidence supports that shifts in mimetic colour patterns might have facilitated
ecological divergence and the maintenance of reproductive isolation in Heliconius
([Jiggins et al., 2001]; [Jiggins, 2008]). For instance, sister species H. melpomene
and H. cydno coexist in a large area but belong to distinct mimicry rings. In Panama,
for example, H. melpomene and H. cydno mimic the far-related species H. erato and H.
sapho, respectively, suggesting that mimicry adaptation has caused a shift in colour
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Figure 4 – Phylogeny of the tribe Heliconiini. This study focuses on species Heliconius hecale
and H. ismenius (indicated with red circles) which belong to the silvaniform clade (highlighted by
a shaded box on the bottom and detailed in Figure 1.4 of Chapter 1). Green dots represent species
referred to in the text. The two major clades in the genus Heliconius, pupal-maters and non-pupal-
maters, are separated by black vertical bars on the right side of the figure. Coloured squares on the
right side of the phylogeny highlight mimetic relationships (when the colour is the same) between
far-related species. Figure slightly modified from [Kozak et al., 2015].
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pattern that might have contributed to species divergence. Divergence of mimetic
patterns has led to reproductive isolation, both at the pre-zygotic level (i.e. assortative
mating based on colour; see next paragraph; [Jiggins et al., 2001]) and at the post-
zygotic level (i.e. disruptive selection due to predation; [Merrill et al., 2012]). In
combination with a degree of hybrid sterility and ecological divergence, mimicry might
have leaded to ecological speciation. Martin et al. (2013) found that gene flow has
persisted throughout the process of divergence among these species, including the
present time, the latter observation being supported by previous studies ([Bull et al.,
2006]; [Kronforst et al., 2006b]; [Heliconius Genome Consortium, 2012]). Although
the findings byMartin et al. (2013) cannot rule out brief periods of geographic isolation,
these support the hypothesis of speciation-with-gene-flow driven by mimicry. Together,
all these observations show how Müllerian mimicry, a phenomenon of convergence,
is believed to be involved in speciation, which implies divergence. However, the
mechanisms underlying the initial divergence remain elusive (see Box 3 for a brief
description of the explaining hypotheses).
Colour patterns in Heliconius butterflies are also implicated in mate preferences.

Males typically prefer to court females (or female wing models) carrying their own
pattern ([Jiggins et al., 2001], [Jiggins et al., 2004]; [Mavárez et al., 2006]; [Melo
et al., 2009]; [Merrill et al., 2011a]). Wing patterns in Heliconius have been referred
to as “magic traits” for speciation (c.f. [Servedio et al., 2011]) because of their
simultaneous contribution to the pre-zygotic isolation (assortative mating) and post-
zygotic isolation (disruptive selection for alternative mimicry associations). However,
how genes for mimetic adaptation and mate preferences become associated remains
largely unresolved.
As outlined above, Heliconius butterflies represent a diversified clade where distinct

stages of the speciation continuum can be found. The stage of lowest reproductive
isolation along this continuum is composed by coexisting colour morphs in polymorphic
populations. A striking example of this local polymorphism is shown by H. numata (see
below), and other species such as H. cydno, H. doris, H. hecale and H. ismenius also have
some polymorphic populations ([Kapan, 2001]; [Chamberlain et al., 2009]). Further
along the continuum are parapatric races of the same species that differ in wing pattern
separated by transition zones with strong gene flow. Next, in a few cases, incipient
parapatric species overlap in contact zones with occasional hybridization (e.g. H. erato
and H. himera, H. cydno and H. pachinus). Some pairs of coexisting closely-related
species show pervasive gene flow despite the evolution of strong isolating barriers (H.
melpomene and H. cydno). Finally, distantly-related species coexist in sympatry and are
believed to never hybridise (e.g. H. melpomene and H. erato). [Merrill et al., 2011b]
studied this continuum and evaluated the strength of assortative mating between four
pairs of taxa that coexist in a portion or in the totality of their distribution (Figure
5A). Figure 5A shows how premating isolation (in the form of population-based male
mate preference) increases throughout the continuum from polymorphic populations
to “good” sympatric ecologically divergent species. Recently, comparative genomic
surveys of genetic differentiation among different Heliconius species and subspecies
have also shown the progression in the extent of reproductive isolation (Figure 5B;
[Nadeau et al., 2012]; [Hill et al., 2013]; [Martin et al., 2013]). [Martin et al.,
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2013] showed that parapatric races of H. melpomene display virtually no genomic
differentiation apart from the high peaks of divergence associated with wing colour
loci (Figure 5B). This contrasts with the comparison of the geographically-isolated
subspecies H. melpomene rosina and H. m. melpomene, displaying similar levels of
genome-wide genetic differentiation to the closely-related species H. melpomene rosina
and H. cydno in sympatry. Moreover, allopatric subspecies of H. melpomene show
partial intrinsic hybrid infertility ([Jiggins et al., 2001]), contributing to the general
observation that closely-related species show more divergence in allopatry than in
sympatry. Isolation by geography clearly contributes to divergence in the genus while
pervasive gene flow occurs between coexisting closely-related species (see below).
Together, these observations suggest that distinct geographic modes of divergence and
speciation have taken place in the diversification of this clade of butterflies.

0.1.4 Speciation as a response to geography
In order to better understand the ultimate causes of speciation, classifying the cases

of divergence according to the degree of spatial isolation existing between the diverging
taxa has proven useful (Figure 6). This separates divergence into scenarios without
gene flow (allopatric speciation) and with varying levels of gene flow (sympatric and
parapatric speciation). Gene flow can this way be investigated as one of the mechanisms
of evolutionary change, acting usually in combination with other evolutionary forces
such as natural selection, genetic drift and mutation.
When physical barriers to gene exchange exist (allopatry) gradual neutral diver-

gence (the fixation of mutations stochastically in either of the isolated populations)
may result in weak or strong disruptive selection and cause reproductive isolation to
evolve ([Mayr, 1942]). By contrast, when there is gene exchange between populations,
deterministic mechanisms (i.e. natural and sexual selection) can enhance divergence
and contribute to maintain species boundaries, and often play a more important role
in divergence than genetic drift. In fact, strong disruptive selection (exceeding some
threshold proportional to the effective migration rate; [Barton, 2013]) on traits impli-
cated in habitat or resource use is required ([Rice and Hostert, 1993]; [Via, 2001]) to
prevent the formation of hybrids both when the diverging populations coexist in a broad
portion of their spatial distribution (sympatry) and when they meet in adjoining regions
of their range (parapatry). The difference between sympatric and parapatric scenarios
of speciation relies on migration (or dispersal in plants). In parapatric models of spe-
ciation, only a small fraction of individuals in each region encounters the other, but
such a limited coexistence in so called “hybrid zones” (see next section) can still allow
considerable gene flow between populations. Parapatric speciation has been consid-
ered anecdotal ([Coyne and Orr, 2004]). For instance, hybrid zones are often assumed
to derive from secondary contact between taxa diverged in allopatry rather than by in
situ divergence. However, in some hybrid zones parapatric divergence seems highly
likely (e.g. the contact zone between morphs of the Littorina saxatilis snails in northern
Spain; [Rolán-Alvarez et al., 1997]). Hybrid zones between subspecies differentiated
by a few ecological traits are excellent situations to understand the mechanisms for the
maintenance of differences in the face of gene exchange.
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Figure 5 – Speciation continuum in Heliconius butterflies (A) mirrored by the strength of assor-
tative mating between taxa at distinct stages of divergence and (B) shown by the extent of genomic
divergence between distinct taxa. Part A shows how male mate preference of syntipic females in-
creases throughout the continuum from polymorphic populations to sympatric ecologically different
species. In each case 1 would indicate a complete preference for the red or yellow female type of
the pair and 0 would indicate a complete preference for the white or rayed female type of the pair.
Part B shows the shapes of the frequency distributions of Fst values between races and subspecies
with distinct degrees of geographical isolation. Part A is slightly modified and legend is partially
taken from [Merrill et al., 2011a]. Part B is slightly modified from Seehausen, but the original data
comes from [Martin et al., 2013].
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It has been suggested that in presence of gene flow, speciation is greatly facilitated
between populations diverging for resources or habitat use (i.e. ecological speciation)
when there is assortative mating ([Bush, 1975]; [Felsenstein, 1981]; [Diehl and Bush,
1989]; [Kirkpatrick and Ravigné, 2002]; [Malausa et al., 2005]). The pleiotropic effects
of ecological adaptation alleviate some of the problems of the selection/recombination
antagonism, according to which evolving assortative mating is highly difficult in
the face of recombination, since the latter can break the association between the
alleles for performance and the choice allele ([Felsenstein, 1981]; [Coyne and Orr,
2004]). Stringent requirements such as linkage between genes affecting performance
and mating favour divergence in presence of genetic exchange ([Kondrashov and
Mina, 1986]; [Rice and Hostert, 1993]; [Schluter, 2000]; [Via, 2001]). In the genus
Heliconius, more than onemechanismmay be operating to drive the association between
mimetic adaptation and mate choice. Namely, in the melpomene sub-clade, a genetic
association between each of two loci responsible for a wing colour preference cue
and mate preference on each cue separately was observed ([Kronforst et al., 2006c];
[Merrill et al., 2011b]). Additionally, [Kronforst et al., 2007] have suggested that
reinforcement, which is the evolution of premating isolation between taxa owing to
selection against unfit hybrids, has been critical driving assortative mating preference
within the melpomene sub-clade. These authors have found that sexual selection was
enhanced in areas of contact between hybridising species.
Renewed interest in sympatric speciation came from findings on the monophyly of

radiations occurring all in sympatry ([Meyer et al., 1990]; [Schliewen et al., 1994]).
Cichlid fishes in African lakes constitute one of the best documented cases where
sympatric speciation seems the most plausible explanation of an adaptive radiation
([Wilson et al., 2000]). Other examples include the host-plant specialist races of
herbivores such as Rhagoletis pomonella flies, Timema cristinae walking-stick insects,
the larch budmoth Zeiraphera diniana and Acyrthosiphon pisum pea aphids ([Feder and
Filchak, 1999]; [Via, 1999]; [Emelianov et al., 2001]; [Nosil and Crespi, 2006]). They
are an example of “mosaic sympatric speciation” ([Mallet et al., 2009]), because broadly
sympatric host plants often represent a locally patchy resource (see Figure 6). These
ecotypes often show high levels of reproductive isolation ([Wood and Keese, 1990];
[Emelianov et al., 2001]). Nevertheless, ecological divergence can also be accompanied
by only weak reproductive isolation and little genetic differentiation, as observed in
Ostrinia nubilalis corn borers, Timema cristinae stick insects, among others ([Dopman
et al., 2005]; [Nosil, 2007]).
Most examples of divergence with gene exchange have been criticised for not

being robust enough to reject the null hypothesis of having diverged in allopatry at
some point of their evolutionary history ([Coyne and Orr, 2004]). Indeed, some
outstanding examples of sympatric speciation appear to have involved a scenario of
geographic isolation ([Feder et al., 2003]). For instance, Rhagoletis fly races were
found to carry chromosomal inversions that might have evolved in allopatry and
provided the genetic variation that facilitated sympatric divergence ([Feder et al.,
2003]). Another example comes from sympatric distinct forms of the lake whitefish
(Coregonus sp.) which are repeatedly found in different lakes in Canada. The origin
of these forms is believed to have followed genetic divergence evolved in allopatry
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Figure 6 – The allopatry/sympatry spectrum, using spatial definitions. Figure and legend taken
from [Mallet et al., 2009].

without phenotypic differentiation ([Bernatchez and Dodson, 1990]) and the evolution
of a limnetic dwarf form from a benthic normal form after secondary contact ([Landry
et al., 2007]). The mentioned cases show, however, the crucial role of character
displacement for divergence in sympatry, responding to ecological opportunity and
competitive interactions.
Currently, there has been a shift in speciation research away from an emphasis on

geography and increasingly towards how selection can favour divergence and what
kinds of traits are involved in early stages of speciation ([Via, 2002]; [Jiggins, 2008]).

0.1.5 The genomic landscape of divergence with gene flow
A central tenet of population genetics is that the portions of the genome that confer

reproductive isolation between diverging taxa are expected to resist gene flow, which
allows phenotypic differentiation to be preserved in response to natural selection. In
contrast, most of the genome is neutrally affected by migration and genetic drift, and
is exchanged freely between hybridising populations. Under a more detailed view of
a verbal model of diversification and speciation with gene flow ([Feder et al., 2012]),
divergence is expected to start at specific “barrier loci” (c.f. [Abbott et al., 2013])
or “speciation genes” (c.f. [Wu, 2001]), which anticipate and cause the evolution
of reproductive incompatibility. At this initial step of divergence, punctual so-called
“genomic islands of divergence” (c.f. [Turner et al., 2005]), which divergence exceeds
neutral background expectations contrast with the majority of the genome, which is
supposed to introgress freely between hybridising populations since it does not confer
some degree of isolation. It has been suggested that the next stage implies divergence
across greater portions of the genome through hitchhiking of other physically linked
adaptive and neutral loci (i.e. divergence hitchhiking). Finally, towards the completion
of the speciation process, “genome hitchhiking” further reduces the global genomic
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average effective migration rate. The following paragraphs include some evidence
supporting and challenging this model.
The view idea of “semi-permeable” species boundaries has been supported by

genome-wide scans of divergence between pairs of hybridising taxa, empowered by
the innovation on next-generation sequencing (NGS) technologies ([Seehausen et al.,
2014]). This has benefited from a population genomics approach relying on the
genotyping of a large set of loci to accurately determine the loci associated with
adaptation and reproductive isolation, in relation to the level of genomic differentiation
under neutrality.
The discovery of genomic islands of divergence in empirical analyses is one of the

main contributions of the emerging field of speciation genomics to the understanding
of the molecular underpinnings of reproductive isolation barriers ([Seehausen et al.,
2014]). However, the enthusiasm about these islands faces some caveats. In particu-
lar, relation between divergence and divergent selection remains controversial. Low
recombination genomic regions (i.e. near centromeres and within chromosomal in-
versions) and low nucleotide diversity regions can also show elevated differentiation
([Carneiro et al., 2009]; [Joron et al., 2011]; [Ellegren et al., 2012]; [Cruickshank and
Hahn, 2014]). The results of Cruickshank and Hahn (2014) are particularly intriguing.
They reanalysed data from five different outstanding studies that had reported genomic
islands of divergence, and did not recover such islands when using a measure of diver-
gence that is independent of intra-group diversity (Dxy) instead of one that depends
upon such diversity, and which is usually estimated (Fst; [Beaumont, 2005]). These
results diminish reliability on divergence scans alone for detecting regions functionally
involved in diversification and speciation. To distinguish unambiguously divergent
selection from other causes in shaping the genomic landscape, it is advantageous to
combine top-down and bottom-up approaches to identify genomic regions involved in
speciation ([Michel et al., 2010]), that is to say, to combine genome scans with a knowl-
edge on the association of adaptive traits and reproductive isolation. If the genetic
architecture of divergent traits is not known at all, genomic scans are “blind” ([Elle-
gren et al., 2012]), and misleading conclusions are susceptible to be made ([Turner
et al., 2005]). For instance, genome scans of divergence among sibling species of the
malaria-transmitting mosquito Anopheles gambiae found three genomic islands of diver-
gence ([Turner et al., 2005]) and suggested them to be due to selection against hybrid
genotypes during backcrossing. However, a recent analysis of reproductive isolation
between these species coupled to genomic scans of divergence found that the introgres-
sion of the insecticide resistance mutation gsc-1014F homogenised one of the tallest
genomic islands, but did not hinder reproductive isolation between the species ([Clark-
son et al., 2014]). Hence, these authors concluded that islands of divergence may not
necessarily have an impact on speciation.
Finally, speciation with gene flow might not always start at islands of divergence.

Instead, “continents” of multiple differentiated loci (widespread divergence) were
found already at early stages of speciation between Rhagoletis pomonella host races
([Michel et al., 2010]). Widespread genomic divergence was also observed between
sibling Anopheles species ([Lawniczak et al., 2010]). These results indicate that the steps
proposed by this model can be intricate along a speciation continuum. Concerning more
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advanced stages of speciation, there is empirical data that seem to support divergence
and genomic hitchhiking ([Rogers and Bernatchez, 2007]; [Nosil et al., 2008]; [Jones
et al., 2012]). However, by comparing three pairs of Heliconius species showing distinct
degrees of reproductive isolation [Kronforst et al., 2013] found that in advanced stages
on the speciation continuum, divergence evolves due primarily to the origin of new
divergent regions, and not to the enlargement of the islands of divergence related to
wing coloration loci. Other studies have also shown small individual regions of genomic
divergence between well isolated species ([Turner et al., 2005]).
The understanding of the genomic landscape of divergence with gene flow is enabled

by comparative studies between populations at distinct stages along the speciation con-
tinuum, even if the study systems may not represent a direct evolutionary progression.
Heliconius butterflies are among the few cases where the sequential accumulation of
presumed barrier loci has been explored at different points of the speciation continuum
within one single clade. These studies have, however, only performed comparisons
from the subspecies to the sister-species levels. What are the outcomes of a longer
evolutionary time in shaping the genomic landscape of divergence between co-existing
lineages? Also, does the genomic profile of differentiation reflect the existence of a
few barrier loci at early stages of divergence when other sub-clades in the genus are
explored? Can differentiation outliers be really considered barrier loci having a role in
diversification? These are questions that need to be further investigated to get a better
understanding of the speciation process.

0.2 How does hybridisation affect diversification?
We used to make fun of Edgar Anderson by saying that he

was finding hybrids under every bush. Then we realized that
even the bushes were hybrids.

Warren H. Wagner; taken from Abbott et al. 2013

Following [Harrison, 1993], hybridisation is “the interbreeding of individuals from
two populations, or groups of populations, which are distinguishable on the basis of one
or more heritable characters”. This definition overcomes the difficulty of categorising
taxonomic units (e.g. species) implicated in the process, and extends over less differ-
entiated taxa (e.g. subspecies). The role of hybridisation on biodiversity genesis and
dynamics depends on how far this process advances into producing hybrid generations.
In particular, the generation of (at least partially) fertile or viable offspring and the
transfer of genetic material between the hybridising taxa through backcrossing leads
to genetic admixture; this process is called introgressive hybridisation or introgression
([Anderson, 1949]).
Confusion exists in relation to the evolutionary outcomes of hybridisation. This

controversy is fuelled by evidence of both the restraining and creative effects of
hybridisation. An overview of this evidence will be given below. Then, a glimpse
at the incidence of natural hybridisation will be presented, including the approaches
applied to detect it, given that the importance of hybridisation in shaping biodiversity
may be directly proportional to its frequency in nature. Next, I will present a general
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description of areas where populations are believed to be undergoing important levels
of hybridisation (i.e. hybrid zones), because such systems provide natural laboratories
to examine the speciation process. The organisation of the subsections that will be
outlined here responds somehow to the history of research on hybridisation reviewed
by ([Schwenk et al., 2008]).

0.2.1 The evolutionary outcomes of hybridisation
For adaptation, divergence and speciation to proceed, hybridisation represents

a problem because of its homogenising effect on genetic variation, and hence, its
counteracting effect on differentiation. Hybridisation was long considered unbeneficial
for diversification, since the cessation of gene flow and recombination was thought to
be absolutely necessary for population differentiation and the generation of new species
([Dobzhansky and Dobzhansky, 1937]; [Mayr, 1942]). Hybridisation can act as a
constraint on divergence by continuously breaking down linkage disequilibria between
adaptive loci ([Felsenstein, 1981]; [Kirkpatrick and Ravigné, 2002]), and this is one of
the causes of the production of unfit hybrids.
However, rather than always counteracting the diversification process, the effects

of hybridisation can sometimes be constructive and enhance diversification by generat-
ing new species, adaptive novelty and adaptive variation ([Anderson, 1949]; [Stebbins,
1959]). One of the first outstanding studies that showed experimentally the potential
significance of introgressive hybridisation in animal evolution was the work by Lewon-
tin and Birch ([Lewontin and Birch, 1966]) on the Australian fruit flies Dacus tryoni
and D. humeralis. Nowadays, it is accepted that the effects of hybridisation on the
speciation process are highly dependent upon the involved hybridising taxa, the stage
of divergence and the ecological context where it occurs ([Abbott et al., 2013]). Hy-
bridisation is, however, an inevitable component of diversification, and needs to be
investigated to get a better picture of the evolutionary process.
Findings about the recurrence of natural hybridisation have unveiled the importance

of reticulate evolution, which is based on natural hybridisation between different
evolutionary lineages ([Arnold, 1992]). Hybridisation occurs inevitably in almost all
proposed speciation processes, excepting cases of instantaneous or strictly allopatric
speciation ([Barton, 2013]; [Abbott et al., 2013]), for instance in species complexes
that have evolved through adaptive radiations ([Seehausen, 2004]). Seehausen (2004)
proposed that the high incidence of hybridisation between populations invading new
environments, its potential to increase genetic diversity and to elevate the response to
selection, might all represent reasons for rapid diversification under divergent selection
in instances of adaptive radiation. Box 3 presents the butterflies in the genus Heliconius
as a good example of an adaptive radiation, where pervasive gene flow has been
detected in spite of the rarity of hybrids found in nature ([Gilbert, 2003]; [Bull et al.,
2006]; [Kronforst et al., 2006b]; [Mallet et al., 2007]; [Mallet, 2009]; [Pardo-Diaz et al.,
2012]; [Heliconius Genome Consortium, 2012]; [Martin et al., 2013]). Nevertheless,
hybridising species (and subspecies) of Heliconius remain distinct in sympatry and
parapatry ([Mallet et al., 2007]; [Mallet, 2009]). Are high hybridisation rates universal
to entire clades or are they instead restricted mainly to groups of species within such
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clades? When does hybridisation between diverging species stop? These are questions
that remain unanswered.
The deleterious evolutionary consequences of hybridisation include environmen-

tally mediated or intrinsic incompatibilities that lead to unviable offspring or affect
their fertility, and/or the loss of genetic integrity ([Rhymer and Simberloff, 1996]).
Hybrid unfitness has extensively been reported both in experimental and natural set-
tings ([Hatfield and Schluter, 1999]; [McBride and Singer, 2010]). Moreover, there
are special cases where hybridisation collapses the species boundaries. For instance,
speciation reversal can happen between species maintained by a selection/migration
balance, due to environmental changes that can have anthropogenic origin, like pollu-
tion or predators dynamics changes ([Seehausen et al., 1997]; [Taylor et al., 2006]) or
species translocations that bring together otherwise allopatric species (e.g. biological
invasions).
The rupture of the selection/migration equilibrium can also take the opposite

direction. Namely, if disruptive selection (and sexual selection) overcomes the effect
of gene exchange, if there is a progression towards larger genomic regions being
protected from introgression ([Via et al., 2000]; [Wu, 2001]) or if reinforcement
evolves ([Servedio and Noor, 2003]), reproductive isolation can be strengthen further
and further between the hybridising taxa. In particular, reinforcement of reproductive
barriers through selection of assortative (contypic) mating has attracted big attention
as one of the favourable indirect effects of hybridisation on divergence, but has often
been controversial ([Coyne and Orr, 2004]). Although empirical work shows the
potential of reinforcement to generate increased prezygotic isolation ([Servedio and
Noor, 2003]; [Coyne and Orr, 2004]), it is not clear if it can result in complete isolation
(e.g. ([Bímová et al., 2011]).
Alternatively, if circumstances remain unchanged and the selection/migration bal-

ance lasts over time, hybridisation may not have an obvious impact on diversification
among the parental taxa ([Barton and Hewitt, 1985]); existing differentiation may be
maintained, but there may be no progress towards further divergence. If selection
pressures are high enough, local adaptations may persist in spite of high levels of
gene exchange ([Endler, 1977]). For instance, species-related morphological integrity
can be maintained in the face of persistent genetic admixture ([Noor et al., 2000];
[Saint‐Laurent et al., 2003]; [Kraus et al., 2012]). A good example of this scenario are
sympatric species of ducks (family Anatidae), which hybridise very often in the wild
producing viable and fertile offspring and thus exchange genetic material ([Kraus et al.,
2012]), and still remain morphologically distinct (males species-specific plumage, or-
namentation and courtship behaviour; see Figure 7). Another nice example is provided
by hybridising Heliconius species and even parapatric races (e.g. ([Jiggins et al., 1996];
[Martin et al., 2013]). Analysis of putatively neutral markers have shown that species
Heliconius melpomene and H. cydno show important levels of gene exchange ([Bull et al.,
2006]; [Kronforst et al., 2006b]; [Martin et al., 2013]). [Martin et al., 2013] have
uncovered the persistence of gene flow at several moments of the process of diver-
gence. Impressively, these authors provided evidence that up to 40% of the genome in
H. melpomene shows admixture with H. cydno or H. timareta in sympatry. This percent-
age of the genome clustered by geography rather than by species. However, species H.
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melpomene and H. cydno remain “good” species with distinct ecologies and strong bar-
riers to gene flow, including both pre and post-zygotic isolation ([Jiggins et al., 2001];
[Naisbit et al., 2002]; [Merrill et al., 2012]). Similar cases of distinctiveness despite a
high incidence of introgression are found in several other groups of hybridising species
or subspecies ([Noor et al., 2000]; [Saint‐Laurent et al., 2003]), and among polymor-
phic populations of a number of species, including the Galapagos lava lizardMicrolophus
albemarlensis ([Jordan et al., 2005]) and the Dominican anole Anolis oculatus ([Stenson
et al., 2002]).
As suggested so far, hybridisation can be a beneficial process that potentially allows

populations to gain genetic diversity and to promote adaptation to new environments
while either driving speciation or retaining their integrity. In that sense, [Mallet
et al., 2007] suggested that hybridisation can act as a multilocus “macro-mutation”
that results in big phenotypic shifts to colonise new adaptive peaks. In an extreme
case of such a shift, hybrid speciation can happen virtually instantaneously if hybrids
obtain the entire chromosomal set of both parental species (i.e. allopolyploid speciation;
([Spolsky et al., 1992]; [Soltis and Soltis, 2000]). Hybrid speciation can also occur
with hybrids retaining the parental chromosome number (i.e. homoploid speciation).
In such scenarios, the hybrid species is a separate cluster of genotypes that becomes
stabilised and remains distinct when in contact with either parent ([Mallet et al., 2007]).
Whereas polyploid speciation has widely been reported in plants, homoploid speciation
has been much less documented, presumably due to the difficulty of detecting diploid
hybrid species with certainty. There are, however, some species of animals and plants,
which appear to have a homoploid hybrid origin. For instance, the species Senecio
squalidus in the British Isles has resulted from hybridisation between S. aethnensis and
S. chrysanthemifolius ([James and Abbott, 2005]). A putative example of a hybrid
species is Heliconius heurippa, which is suggested to have formed from the interbreeding
between species H. melpomene and H. cydno ([Mavárez et al., 2006]). The forewing of
H. heurippa has an intermediary morphology between these parental species, which
was accurately reconstructed by backcrossing F1 hybrids to H. cydno. Additionally,
the resulting hybrids prefer approaching and courting models having their own colour
pattern than the parental species’ patterns ([Melo et al., 2009]).
Whenever there are no fitness costs related to the introgressive events (e.g. mal-

adaptive combinations of alleles), hybridisation can increase the genetic diversity of
hybrids. For instance, populations of Darwin’s finches Geospiza show little evidence of
poor genetic diversity, in spite of regular bottlenecks often caused by rainfall-related
environmental extremes. This has been partially attributed to ongoing hybridisation
among coexisting species ([Freeland and Boag, 1999]). Extremely high levels of ge-
netic diversity presumably due to hybridisation have also been reported in plants (e.g.
species in the genusMimulus; [Sweigart and Willis, 2003]). Genetic diversity of hybrids
can sometimes exceed the combined variation of the parental types (i.e. transgressive
segregation; see ([Rieseberg et al., 1999]) for a review on this topic). In such circum-
stances, hybrids can be fitter than the parental types (i.e. heterosis or hybrid vigour),
although this phenomenon is mostly observed in the first hybrid generation and de-
creases in later generations ([Grant and Grant, 1992]). For example, hybrids between
Darwin’s finches Geospiza in Daphne Major Island display environment-dependent hy-
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Figure 7 – Distinctive plumage ornamentation among duck species despite high levels of
interspecific hybridisation. Male and female of each of the studied duck species: (a) Anas
platyrhynchos (mallard), (b) Anas acuta (northern pintail), (c) Anas crecca (teal), (d) Anas penelope
(Eurasian wigeon), (e) Anas strepera (gadwall), (f) Aythya fuligula (tufted duck). Figure taken and
legend modified from [Kraus et al., 2012].

brid superiority ([Grant and Grant, 1992]).
Finally, interspecific hybridisation can permit the transfer of adaptively advanta-

geous genes from one species to the other (i.e. adaptive introgression), potentially
accelerating speciation. Adaptive introgression has been demonstrated in only a few
convincing cases in plants and animals, sometimes in settings with significant levels of
human intervention. Well known examples in mammals include the transfer of an allele
that provides resistance to rodent poisons from the Algerian mouse Mus spretus to the
partially sympatric house mouse Mus musculus ([Song et al., 2011]) and the spread of
melanism in wolves and coyotes following admixture with domestic dogs ([Anderson
et al., 2009]). In Heliconius butterflies, alleles of a wing colour pattern locus called
optix also seem to have been transferred through hybridisation between closely-related
species, triggering phenotypic convergence for mimicry ([Pardo-Diaz et al., 2012]; [He-
liconius Genome Consortium, 2012]). More precisely, unidirectional introgression of
genomic segments containing the gene optix from H. melpomene to H. timareta explains
at least in part their resemblance for mimicry ([Pardo-Diaz et al., 2012]). In the tree
topology of the genomic region containing the gene optix, the taxa are clustered by
colour pattern rather than by species ([Pardo-Diaz et al., 2012]; [Heliconius Genome
Consortium, 2012]).

0.2.2 The occurrence of hybrid zones
According to [Barton and Hewitt, 1985], hybrid zones are “narrow regions in which

genetically distinct populations meet, mate, and produce hybrids” (see Box 4 for a
classification of hybrid zones). The level of current hybridisation observed in a hybrid
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Box 4 Classification of hybrid zones
Hybrid zones are classified either by the extent of reproductive isolation existing between the hy-
bridising populations or by their origin ([Barton and Hewitt, 1985]; [Harrison and Bogdanowicz,
1997]; [Jiggins and Mallet, 2000]). The first classification relies on the distribution of genotypic
classes ([Harrison and Bogdanowicz, 1997]) and on the view that hybrid zones may constitute a
continuum of distinctive levels of differentiation, which mirror speciation as a gradual process
([Jiggins and Mallet, 2000]). On the one extreme of this continuum, “unimodal” hybrid zones
consist mostly of intermediate hybrid genotypes. On the other extreme, “bimodal” hybrid zones
are predominantly composed by individuals genetically similar to one or the other parental geno-
type, with few intermediates (see [Jiggins and Mallet, 2000], for examples). In other words, uni-
modality suggests random mating and complete hybrid viability, whereas bimodality indicates
that a degree of reproductive isolation has developed and speciation is partially complete ([Har-
rison and Bogdanowicz, 1997]; [Jiggins and Mallet, 2000]), representing early and advanced
stages of differentiation, respectively. The second classification of hybrid zones separates “pri-
mary” from “secondary” contact hybrid zones. The former ones result from in situ divergence in
the face of gene flow, thanks to selection towards opposite ends of an environmental gradient.
In contrast, the latter ones result from secondary contact between populations having diverged
during a period of spatial isolation. Given that in the former case, differentiation has occurred
in the face of gene flow (i.e. sympatric or parapatric speciation models) while in the latter
case, it occurred in allopatry, distinguishing between these alternative scenarios informs about
how the speciation process takes place ([Barton and Hewitt, 1985]). It has been suggested that
most reported hybrid zones are secondary ([Barton and Hewitt, 1985]). For instance, notable
examples of hybrid zones like the ones between the toads Bombina bombina and B. variegate
([Szymura and Barton, 1991]; [MacCallum et al., 1998]), or between the grasshoppers Chor-
thippus parallelus parallelus and C. p. erythropus ([Butlin and Ritchie, 1991]), represent suture
zones between Pleistocene refugia in Central and Northern Europe.

zone between lineages somehow reflects the level of differentiation and hence, of the
stage of speciation attained between these lineages. Therefore, hybrid zones have been
referred to as “natural laboratories” ([Harrison, 1993]) where to explore how taxa
diverge and speciate, or how their identity is maintained while exchanging genes to
some extent. In particular, hybrid zones allow investigating how the distinct kinds of
reproductive isolating barriers evolve and participate in diversification.
The structure of a hybrid zone can be predicted by using a theoretical framework

called cline theory (see Box 5 for a more detailed description of the concepts and uses
of cline theory). This framework also allows modelling hybrid zone dynamics and in-
ferring the relative contribution of natural selection and dispersal to their structuring,
based on the measurement of the width, slope and concordance of (phenotypic or geno-
typic) clinal variation in hybrid populations ([Mallet and Barton, 1989a]; [Barton and
Hewitt, 1989]; [Barton and Gale, 1993]). In particular, assessing comparatively the
width of multi-locus clines allows investigating differential introgression, pinpointing
adaptive loci and characters, and comparing the strength of selection among distinct
traits in the face of introgressive hybridisation. Finally, the inference of the factors con-
tributing to the maintenance of hybrid zones also benefits from applying the rationale
behind cline theory.
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Box 5 Using cline theory for characterising a hybrid zone and the selective pressures
on adaptive traits diverging across it
Cline-based analyses have been used to evaluate the strength of selection operating on a
particular trait or locus, and can be a first step to uncover local adaptations and their genetic
basis. For such analyses, allele frequencies are measured at distinct localities and compared to
the geographic position across a hybrid zone. The width of the cline (which is the inverse of its
maximum slope) is inversely proportional to the strength of selection, following the simplified
equation σ/√s, where σ is equivalent to dispersal and s is selection. Another useful variable
is the cline centre, which is the geographic position where the maximum allele frequency
gradient is observed. The width and the centre of a cline can be statistically compared to
these variables for other clines to investigate the hybrid zone dynamics. Different clines are
said to be “consistent” (or “congruent”) if they have the same centre and “concordant” if they
have virtually the same width.
Multi-locus cline consistency informs about the history of the hybrid zone. Cases of consistent
clines like, for instance, at the hybrid zone between fire-bellied toads Bombina bombina and B.
variegate, for allozymes, mtDNA, mating call and colour patterns ([Szymura and Barton, 1986])
have been interpreted as the result of secondary contact after allopatry; such an interpretation is
stronger if some of the characters or loci are known to be neutral ([Barton and Hewitt, 1981]).
In contrast, coincident clines are not expected in primary hybrid zones, unless alleles at the
distinct loci respond to the environment in the same way. Also, clinal variation for neutral loci
is not expected under parapatric divergence, unless neutral loci are linked to selected loci. Multi-
locus cline concordance, on the other hand, does not inform about the history of divergence, but
about the current ecology and in particular, about patterns of introgression expected to respond
to selection. As explained above, remarkable variance in introgression across the genome is
often observed; regions under selection are less permeable to gene flow than neutral regions.
Thus, adaptive traits show clinal variation whereas neutral regions do not. Finally, the strength
of selection acting on a given trait is inversely proportional to the width of the cline for that
trait.

0.3 What is the genetic architecture of adaptation?
It is almost impossible with any brevity to exemplify the

notion of adaptation. Just because adaptation consists, even
in the simplest cases, in a multiplicity of correspondences
between one sufficiently complicated system, the organism
itself, and another equally complicated, the environment in
which it finds itself. It is, indeed, just this multiplicity that

makes the thing recognizably adaptive.
Fisher 1934. Taken from [Orr, 1998]

Understanding the link between diversification and genetic structure allows get-
ting a better understanding of the speciation process. In contrast to the availability
of ecological data showing the importance of selection as a main force for popula-
tion divergence and speciation, genetic data underlying these processes is still scarce
([Linnen and Hoekstra, 2009]; [Butlin et al., 2012]). How does ecological and pheno-
typic divergence occur at the genetic level is a question that remains largely unsolved.
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Ecologically-important traits are usually complex and the sets of loci and their relation-
ships underlying this complexity constitute the genetic architecture. The term “genetic
architecture” encloses the number and genomic position of the loci contributing to a
trait, their effect size, the way their alleles interact (i.e. dominance), the way the loci
interact to modulate each others’ contributions (i.e. epistasis and additivity), the way
they interact with the environment (i.e. epigenetics) and the contribution of a single
locus to distinct traits (i.e. pleiotropy).
Genetic architecture influences the potential of a trait to vary, and thus to evolve

(see [Hansen, 2006]). This is why the study of genetic architecture has been central
to many biological questions such as the understanding of biological diversification,
of diseases, and of plant and animal breeding (e.g. [Rogers et al., 2013]). Although
unravelling individual genetic variants underlying complex traits has shed important
light on the control of phenotypic variation, the understanding of gene action and
trait evolvability can only be fully assessed in its architectural context. Moreover,
unveiling the genetic architecture of complex traits is often the first step towards
the identification of the trait genes and trait nucleotide variants, which ultimately
determine trait variation.
As stated above, the genetic architecture defines how the trait value is determined by

the genotype (i.e. the genotype-phenotype map). Most population genetic models rely
on the assumption that the genotype-to-phenotype map remains unchanged over short
time scales, and thus, that the genetic architecture of a trait is constant, and selection
only acts on allele frequencies. However, several simulation studies have shown that
genetic architecture is expected to evolve when any of its components changes (e.g.
[Wagner and Altenberg, 1996]). Such findings have, for example, suggested that gene
effects, and not only gene frequencies, are evolutionary variables ([Hansen, 2006]). The
evolution of genetic architecture has been proposed to have an important influence on
the evolution of recombination ([Azevedo et al., 2006]) and on reproductive isolation
and speciation ([Fierst and Hansen, 2010]).
The evolution of components such as dominance and epistasis has been largely

explored theoretically but to a lesser extent empirically ([Lande, 1980]; [Barton, 1995];
[Coyne and Orr, 1998]; [Carlborg and Haley, 2004]; [Kroymann and Mitchell-Olds,
2005]; [Carter et al., 2005]; [Hansen, 2006]; [Phillips, 2008]). Here, our work focuses
mainly on the number of loci contributing to a complex trait and the distribution of
their effect size. In the following lines I will outline the most influential theoretical
work regarding these components of genetic architecture and will not give many details
regarding dominance and epistasis. A central question to this theoretical framework
is how many loci are involved in adaptation: few or many? Here, I will focus on
the model by [Fisher, 1930], which has been extensively used to describe how the
genetic architecture of a trait can determine the access to a fitness optimum. This model
postulates that a quantitative trait is encoded by many loci with small, additive effects.
Fisher’s pioneer geometric model of evolution settled the first principles of character
evolution, but made some assumptions (like treating complex gene interactions like
statistical noise) that limited the subsequent research on the evolution of genetic
architecture ([Hansen, 2006]). Fisher concluded that evolution is fuelled by very small
mutations (consistent with the micromutational or infinitesimal views), and that factors
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of large phenotypic effect have little or no importance in adaptation. More recently,
however, Robertson ([Robertson, 1967]) proposed a nearly exponential distribution of
allelic effects, where most phenotypic change is driven by a few loci with moderate
to large effect, and an increasingly larger number of loci with increasingly smaller
effects making up the remainder. Over a single bout of adaptation towards a local
optimum, Orr ([Orr, 1998]) also found an exponential distribution of gene effect sizes.
The adaptive walk proposed by Orr ([Orr, 1998]) seems to match the theoretical
expectations about the distribution of gene effect sizes fixed during mimicry evolution
([Baxter et al., 2008a]). More precisely, it fits the widely accepted “two-step” model
proposed to explain the adaptive peak shift during the evolutionary transition to a new
mimicry ring ([Turner, 1985]). Under this model, a large mutational step (step 1)
contributes to get to the “slopes” of a new adaptive peak (the approximate resemblance
to a locally protected mimicry ring). Subsequently, several small mutational steps allow
climbing up to the phenotype optima (the perfection of resemblance between the co-
mimics). The effect of migration was not taken into account in the model by Orr ([Orr,
1998]) but was proposed by Griswold ([Griswold, 2006]) to skew the distribution of
gene effects towards larger effect sizes during an adaptive walk.
A largely unsolved question is how the genetic architecture of an adaptive trait is

shaped by factors such as selection and migration. What determines how many loci are
involved in adaptation? Here again, models trying to predict the evolutionary trajectory
have been developed. [Rajon and Plotkin, 2013] have developed a population genetics
model for the evolution of the number of loci controlling a trait. Their model predicts
that relatively few loci are expected to contribute to a trait under weak or strong
selection, but many loci with variable effects encode a character under moderate
selection. Under a migration-selection balance, highly concentrated architectures of
adaptation were found, with few and tightly linked functionally variants of large effect
([Yeaman and Whitlock, 2011]). [Kopp and Hermisson, 2006] on the other hand,
found that frequency-dependent disruptive selection also favours the evolution of an
asymmetric genetic architecture, with most of the genetic variation concentrated on a
small number of loci. The message coming out of these results, as pointed by [Kopp and
Hermisson, 2006] is that genetic architecture is under strong selection, and that neither
the details of the genetic architecture nor its potential to evolve should be ignored.
However, scant empirical data exists allowing to test these models and more generally,
allowing to understand the evolution of the genetic architecture of adaptive traits.
I will next present how distinct approaches, and in particular Quantitative Trait

Locus (QTL) mapping, have come into play to help testing the mentioned predictions.
I will mention outstanding cases where the genetic architecture of adaptive traits has
been unraveled, making emphasis on wing colour patterns for mimicry in Heliconius.
Finally, I will present some data aiming at questioning the repeatability of evolutionary
paths at the genetic and molecular levels.

0.3.1 Unravelling the genetic architecture of adaptive traits
In a review about the genetic theory of adaptation, Orr ([Orr, 2005]) has emphasised

that there is a big gap between the rich body of mathematical theory on phenotypic
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evolution and the large and growing body of data on the genetic basis of adaptation. In
concordance to this statement, it is still not possible to make any general conclusions
about the genetic architecture of adaptive traits, about its response to factors such as
selection and migration, and about the relative importance of additive and non-additive
variation.
Quantitative Trait Locus (QTL) mapping ([Lander and Botstein, 1989]) put in evi-

dence a broad empirical diversity of observed genetic architectures of complex traits,
which range from Fisherian to Mendelian. Pictures of Fisherian genetic architectures
have been mainly detected in agriculturally and medically important complex charac-
ters, as well as for traits in model species ([Laurie et al., 2004]; [Schön et al., 2004];
[Ehrenreich et al., 2009]). For instance, in Arabidopsis, the gene network controlling
flowering time consists of more than sixty genes ([Ehrenreich et al., 2009]). Cases have
been reported where traits believed to rely on few large effect loci have been shown to
have a substantially more complex genetic architecture than previously thought. These
inconsistencies, believed to be due to experimental constraints such as sampling size
and other factors affecting statistical power, have been observed for traits such as seed
oil content ([Laurie et al., 2004]) and grain yield ([Schön et al., 2004]) in maize, and
for numbers of Drosophila sensory bristles ([Dilda and Mackay, 2002]). Hence, it is im-
portant to keep in mind that the gene effect might sometimes be so small that researches
might lack power to detect them.
Notably, a myriad of instances rejecting the long accepted Fisherian expectations

have been found, in particular for traits that are fitness-related or function as barriers
to gene flow. More precisely, genetic analysis of phenotypic variation between popu-
lations or species have frequently revealed several traits controlled by a small number
of genes of major effect and their interactions (e.g. [Tanksley, 1993]; [Kearsey and
Farquhar, 1998]; [Reed et al., 2011]). Adaptations having simple modes of inheritance
include coat colour variation in mouse species, colour polymorphism in the moth Bis-
ton betularia, trichome variation and resistance to salinity in Arabidopsis lyrata, armour-
plate reduction and pelvic reduction in the threespine stickleback Gasterosteus aculeatus,
floral characters in Mimulus flowers, the elements of wing colour patterns in Heliconius
butterflies, among others ([Bradshaw et al., 1995]; [Cresko et al., 2004]; [Shapiro et al.,
2004]; [Colosimo et al., 2004]; [Joron et al., 2006]). Despite these findings, many QTL
of minor effect, whose detection is possibly limited by statistical limitations, may also
contribute to adaptation.
Among the mentioned adaptive traits, Heliconius butterfly wing patterns stand out

because of their complexity, which contrasts with their apparently simple genetic basis.
Big efforts have been made on identifying the genes accounting for mimicry in this
clade (see Box 6), since this can reveal what is the raw material for adaptation and
how selection acts on this material. In distinct species in the genus Heliconius, a few
major loci of simple Mendelian inheritance have been recurrently found to control
separate wing colour pattern elements; variants of these elements appearing together
on the wing generate a given mimetic pattern. Since Chapter 1 provides details about
the colour loci (see in particular Table 1.1 and Figure 1.4) and Box 6 gives details
about the approaches used to discover them, I will not give any details here. Briefly,
the Heliconius colour-pattern toolbox, how it has been called, is distributed along 4 of
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the 21 chromosomes characterising the genus. Although mimetic patterns are usually
controlled by a multilocus architecture dominated by a low number of genes of major
effects, loci of minor and continuous effect have also been detected, thanks to a few
attempts made to map quantitative colour pattern variation ([Baxter et al., 2008a];
[Jones et al., 2011]; [Papa et al., 2013]). This distribution of colour gene effect
sizes matches the expectations of the two-step model predicting the colonisation of
a new mimicry ring (see above), especially because minor effect loci influence the
major colour elements controlled by the larger effect loci, presumably improving the
resemblance for mimicry ([Papa et al., 2008]; [Jones et al., 2011]). Interestingly, this
multilocus architecture, although being found in most Heliconius species explored so
far, is not generalised.
Wing coloration in H. numata, a tiger-patterned species which belongs to the

silvaniform or numata sub-clade (see Figure 4) is almost entirely controlled by a
supergene, which is a cluster of tightly linked genes ([Joron et al., 2006], [Joron et al.,
2011]). The supergene P, how it is named, is homologous to one of the genomic regions
present in the multilocus toolbox ([Joron et al., 2006]). This completely different
genetic picture of adaptation underlies an impressive local polymorphism restricted to
H. numata, which is absent or very limited in other Heliconius species. More precisely,
H. numata has multiple coexisting colour morphs, each of them mimicking a different
species of Melinaea, a genus in the Ithomiinae subfamily (see Figure 14A; [Brown and
Benson, 1974]). Each morph is determined by a specific allele of the supergene with
precise allelic dominance (Figure 14A), and maintains its phenotypic integrity thanks
to the co-action of strongly linked genetic elements. This strong linkage is due to the
suppression of recombination owing to specific chromosomal rearrangements within
a ∼400 Kb region (Figure 14B). In consequence, distinct haplotypes at the supergene
and inversion breakpoints are in complete association with colour morphs ([Joron et al.,
2011]; see Figure 14B). The variation of the genetic architecture of wing patterning in
the genus Heliconius, ranging from a nearly symmetric architecture (with loci having
similar gene effects) in H. melpomene, H. erato and H. cydno, to a highly asymmetric
architecture (with largely unequal gene effects) in H. numata, makes it possible to
explore which factors play a role in the evolution of the genetic architecture of complex
traits.
Our knowledge on the molecular basis of adaptive variation remains limited, be-

cause the identification of the trait genes and ultimately the nucleotide variants is
clearly more difficult than the identification of QTLs. The genetics of speciation have
often been addressed by combining QTL mapping with other approaches such as candi-
date genes, multilocus genome scans, functional assays and molecular scans ([Nielsen,
2005]; [Vasemägi and Primmer, 2005]; [Noor and Feder, 2006]; [Stinchcombe and
Hoekstra, 2007]). This has allowed identifying some specific genes (and in rarer cases,
specific nucleotides) underlying characters under selection ([Colosimo et al., 2005];
[Hoekstra et al., 2006]), including two of the genes controlling wing patterns in Heli-
conius (called optix and WntA; [Reed et al., 2011]; [Martin et al., 2012]; see Box 6 for
more details).
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Box 6 A brief history of the mapping of wing colour pattern genes in Heliconius
butterflies
The exploration of the genetics of wing colour pattern in Heliconius began formally in the 1950s
and became increasingly feasible with the arrival of the technologies necessary to access and
analyse genetic information. A classical forward genetics approach (which starts from the phe-
notype and goes towards the genetics causing it) has been used to disentangle the genetic basis
of these adaptive traits. Central to this was the development of methods for rearing Heliconius in
captivity, thus opening the way for diverse genetic experiments. Intra-specific crosses between
geographic races differing in wing pattern revealed that colour pattern was under the control of
a few loci with Mendelian inheritance in several species ([Sheppard et al., 1985]). The devel-
opment of molecular markers such as Amplified Fragment Length Polymorphisms (AFLPs), Re-
striction Fragment Length Polymorphisms (RFLPs), microsatellites and single-copy nuclear loci
(SCNL), facilitated linkage mapping to localise the regions controlling colour in H. melpomene,
H. erato and H. cydno ([Tobler et al., 2004]; [Jiggins et al., 2005b]; [Kapan et al., 2006]), which
are species belonging to two major clades within Heliconius. These studies targeted a handful
of genes of major effect which were found to be located on four of the twenty ones Heliconius
chromosomes and which are all properly described in the text and in Table 1.1 of Chapter 1.
With the ultimate aim of uncovering the genetic changes underlying these complex phenotypes,
major efforts have been made to get closer to the identification of the sites that are causally
involved in the variation of the pattern elements in Heliconius. A crucial step towards the
colour genes in Heliconius was the creation of Bacterial Artificial Chromosome (BAC) libraries,
and the identification of BAC clones which could be assembled into chromosomal walks across
key regions, helping to define candidate genes within them ([Ferguson et al., 2010]; [Baxter
et al., 2010]; [Counterman et al., 2010]). Additionally, population genetics studies have
provided molecular signals of selection on the candidate genes. When estimating gene flow
and population differentiation between different races of the same species, the candidate colour
regions show higher levels of structuring than the markers in the rest of the genome ([Baxter
et al., 2010]; [Joron et al., 2011]). Also, genotype-by-phenotype association tests on wild
specimens confirmed the strong association between some genes within the regions of interest
and the patterns they control for ([Counterman et al., 2010]; [Reed et al., 2011]). These results,
together with functional analyses of gene spatial expression, have led to the identification of
two of the genes responsible for important elements in colour variation across the genus. The
first is a morphogen homologous toWntA in Drosophila, that determines the size and position of
melanic patterns around the discal cell of the forewing, which was attributed to the loci called
Ac and Sd in a wide range of geographic races of H. melpomene, H. cydno and H. erato and also
has important effects in H. himera, H. sara and H. atthis ([Martin et al., 2012]). The second is
a transcription factor, homologous to the Drosophila gene optix, which prefigures the variety of
red wing elements controlled by loci named B-D/D/G-Br in Heliconius melpomene, H. erato and
H. cydno ([Reed et al., 2011]). The genes WntA and optix both govern conspicuous elements in
wing patterning and drive the convergence for mimicry between H. melpomene and H. erato, as
well as the divergence of these species into many distinct geographic races.

0.3.2 What is the genetic basis for phenotypic convergence?
The unification of the terms convergence and parallelism to the term convergent evo-

lution ([Arendt and Reznick, 2008]; [Manceau et al., 2010]) has proved useful in sev-
eral cases ([Manceau et al., 2010]; [Nadeau and Jiggins, 2010]; [Losos, 2011]; [Martin
and Orgogozo, 2013]), particularly when the adjectives genetic and phenotypic are also
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Figure 8 – Molecular patterns at multiple levels underlying phenotypic convergence. Similar
phenotypes can evolve by (A) distinct genes, (B) the same gene but unknown causal mutations,
(C) different mutations in the same gene or (D) the same mutation in the same gene. Some cases
included and explained in more detail in the text are mentioned above the molecular patterns they
exemplify. Figure modified from [Losos, 2011]; [Elmer and Meyer, 2011]).

adopted ([Elmer and Meyer, 2011]). The term phenotypic convergent evolution refers
to the independent evolution of the same features in different evolutionary lineages
(independently of the phylogenetic distance between them), typically in response to
similar environmental challenges. Such phenotypic convergence has been observed in
a wide array or organisms ([Brown, 1981]; [Losos, 1992], p. 199; [Colosimo et al.,
2005]; [Rogers and Bernatchez, 2007]; [Arendt and Reznick, 2008]) and has been sug-
gested to be shaped by natural selection ([Endler, 1986]; [Schluter, 2000]; but see
[Losos, 2011] for a nice discussion about the variable role of selection on convergence).
As described above, mimicry is one of the most outstanding examples of phenotypic
convergence shaped by selective forces. Natural systems displaying phenotypic conver-
gence provide ideal scenarios to investigate whether this resemblance involves or not
the same genetic mechanisms (i.e. the developmental genetic pathways, loci, genes
and genetic variants), thus leading to a better understanding of the molecular under-
pinnings of adaptive evolution. Convergent phenotypes can occur by the evolution of
distinct molecular patterns across taxa: distinct genes, the same gene but unknown
causal mutations, different mutations in the same gene and the same mutation in the
same gene (see Figure 8).
To what extent the evolutionary process is repeatable, and therefore predictable,

is an important current question. Is there a common genetic basis for convergence
between distinct taxa? At which functional level does genetic convergence occur? Are
these genetic similarities the result of parallel evolution or collateral evolution? Does
convergent evolution more often involve standing genetic variation or new mutations?
Based on an explosion of research into these issues, the answer to the first question,

on which I will mainly focus here, is not a clear yes or no, but rather sometimes. In
cases where convergence results from similar molecular mechanisms, such mechanisms
can occur through distinct historical patterns: by parallel evolution or by collateral
evolution, the latter being the product of shared ancestry or of hybridisation ([Stern,
2013]). Nice reviews questioning the evolutionary repeatability or versatility have
been written ([Arendt and Reznick, 2008]; [Manceau et al., 2010]; [Elmer and Meyer,
2011]; [Kronforst et al., 2012]; [Martin and Orgogozo, 2013]; [Stern, 2013]).
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Before describing a little tip of the increasingly accumulating empirical data aiming
at answering the questions presented in the last paragraph, I will highlight some issues
that should be kept in mind. A first thing to focus the attention on is that finding a
convergent genetic basis can sometimes be the result of focusing on candidate genes,
thus enhancing ascertainment biases and precluding the discovery of other possibly
evolutionary important genes. One solution to this problem is to complement gene
“hunting” with unbiased experimental approaches such as genetic mapping. A second
thing to take into consideration is that determining whether or not the same phenotype
is defined by the same genetic basis clearly depends upon the mechanistic level that is
analysed: phenotypic convergence mirrors genotypic convergence more often at higher
functional levels (e.g. at the gene level) than at finer levels (e.g. at the nucleotide level).
For example, it could be stated that repeated complete pigment loss (i.e. albinism) in
cave populations of Astyanax mexicanus fishes has a homologous genetic basis, because
it involves the same gene (see below for more details). This situation is presumably
very common when the causal mutations underlying a phenotype are unknown. Alter-
natively, we could affirm that convergent albinism in different populations has not a
common molecular basis, given that actually, it involves distinct mutations of the same
gene ([Protas et al., 2006]).
The observation that some closely-related taxa can use distinct genetic mechanisms

for the control of similar phenotypes highlights the ability of natural selection to
build specific structures from distinct starting points ([Losos, 2011]). The use of
different genetic solutions to solve similar ecological problems might be favoured for
phenotypes potentially attained via many different pathways, such as pigmentation-
related traits. Examples include adaptive melanisation in different populations of the
pocket mice Chaetodipus intermedius. The increased pigmentation in mice populations
living in geographically distant lava flows in the United States, which provides cryptic
protection, is attributed to the gene encoding the melanocortin-1 receptor (Mc1r) in one
population in Arizona but to an unknown gene in New Mexico populations ([Hoekstra
and Nachman, 2003]). A similar study case involves the evolution of light coats in
oldfield mice (Peromyscus polionotus). Pale mice inhabit sand dunes on Florida’s Gulf
Coast and benefit from reduced predators attack by crypsis on the substrate colour
([Vignieri et al., 2010]). Such lightly-coloured phenotype was found to be mainly
controlled by a single amino acid mutation in the gene Mc1r ([Hoekstra et al., 2006]).
Surprisingly, in a different population of pale mice occupying the dunes of Florida’s
Atlantic Coast, variants of Mc1r were not involved in the control of pale coats.
Phenotypic convergence implicating disparate taxa and having a similar genetic

basis have also been reported, and have been suggested to support the idea that genetic
evolution displays some predictability ([Stern, 2013]), and that constraints may exist
on adaptive evolution ([Losos, 2011]). A remarkable example of such a scenario is the
evolution of dark or pale coloration in a wide variety of animals including birds, felids,
lizards, the black bear, wooly mammoths and mice ([Theron et al., 2001]; [Eizirik et al.,
2003]; [Rosenblum et al., 2004]; [Mundy, 2005]; [Römpler et al., 2006]; [Hoekstra
et al., 2006]). Interestingly, variation of these melanin-based traits in all these far-
related taxa is controlled by the same gene Mc1r. Another nice example of coupled
phenotypic and genetic convergence at a high taxonomic level comes from multiple
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species belonging to four orders of insects, which have evolved cardenolide resistance
to feed on poisonous milkweed plants through precisely the same substitution at one
amino acid position in the (Na++K+)ATPase gene ([Dobler et al., 2012]; [Zhen et al.,
2012]). Molecular convergence in the latter example was driven by parallel evolution
(c.f. [Stern, 2013]). Other cases of parallel evolution at the gene function level have
been reported between far-related taxa: loss of larval trichomes in Drosophila sechellia
and D. ezoana, resulting from regulatory changes in the gene shavenbaby ([Sucena et al.,
2003]; [Frankel et al., 2012]; although the adaptive basis of this phenotype remains
to be established). The kind of findings I have mentioned in this paragraph pushed
researchers to suggest that “all genes are not equal in the eyes of evolution” ([Stern and
Orgogozo, 2009]). More precisely, the evolution of similar traits in different taxa often
involves changes in the same genes (“gene reuse); hence, hotspot genes (c.f. [Stern and
Orgogozo, 2009]) and hotspots of evolution (c.f. ([Martin and Orgogozo, 2013]) seem to
exist that “lead the way” of an important portion of the evolutionary events.
Several cases of convergent phenotypic evolution show the combination of evolution

at homologous genes and also non-homologous evolution involving distinct genes.
In the Mexican cave tetra, Astyanax mexicanus, multiple populations have pairs of
surface-dwelling morphs and cave-dwelling morphs ([Strecker et al., 2012]) the latter
associated with pigment and eye loss. Complete loss of pigment in multiple populations
has resulted from different deletions in the same gene, the ocular albinism 2 (Oca2)
coding region ([Protas et al., 2006]). Also, in two of these albino cave populations,
partially reduced pigmentation (another phenotype, the “brown” phenotype) has been
attributed to different mutations in the gene Mc1r and to an undetermined mutation at
a different gene in a third population ([Gross et al., 2009]). These observations suggest
that although the same gene is implicated in both cases, complete or partial loss of
pigment in cavefishes has occurred independently in the distinct populations. Another
impressive example of repeated evolution is the repeated reduction of armour-plate and
pelvic structures in lake populations of the threespine stickleback, Gasterosteus aculeatus,
contrasting with the heavily armoured marine forms of this species. The gene Pituitary
homeobox 1 (Pitx1) has been identified as the major effect locus on pelvic reduction
in freshwater populations from across the globe ([Shapiro et al., 2004]; [Coyle et al.,
2007]). It was confirmed that deletions in the cis-regulatory region upstream of Pitx1
were implicated in pelvic reduction ([Chan et al., 2010]). This deletion has variable
sizes (suggesting that it arose from independent events) and was found to be important
in several independent freshwater populations. Interestingly, Pitx also controls the
pelvic reduced phenotype in some ninespine stickleback populations, a clade diverged
around 13 My ago from a common ancestor to ninespine and threespine sticklebacks
(Figure 9), although variation at a different unknown gene seems to be responsible for
this phenotype in ninespine sticklebacks from Alaska ([Shapiro et al., 2009]). Also,
a derived allele at the gene Ectodysplasin (EDA) has caused reduced armour plating in
different threespine stickleback populations, also in response to the repeated adaptation
of fish to freshwater ([Colosimo et al., 2005]; [Jones et al., 2012]). In most populations,
this derived phenotype resulted from fixation of the same ancestral allele of EDA (i.e.
collateral evolution through shared ancestry) and in one case from de novo evolution
of an EDA allele ([Colosimo et al., 2005]).
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Figure 9 – Phylogenetic relationships and candidate genes for pelvic reduction in threespine
and ninespine sticklebacks. Pitx1 controls this convergent phenotype in all but one studied
populations. Figure taken and legend slightly modified from [Shikano et al., 2013].

The latter paragraph encompasses examples of phenotypic convergence among
relatively closely-related taxa, some of which resulted through changes in the same
genes but did not involve the same mutations. The genetic basis of convergence
for mimicry within the genus Heliconius has not been yet solved to the functional
mutation level. However, some interesting findings have been gathered so far. Crosses
between closely related species have shown that the same wing colour pattern loci in
the “toolkit” not only operate within species but also underlie phenotypic divergence
between species ([Jiggins and McMillan, 1997]; [Gilbert, 2003]; [Naisbit et al., 2003];
[Kronforst et al., 2006a]). Comparative mapping work across distinct species, including
H. erato and H. melpomene, which belong to sub-clades split from a common ancestor
∼10 My ago (see Figure 4) showed that loci affecting similar wing pattern elements
routinely mapped to the same position on homologous chromosomes ([Joron et al.,
2006]; [Kronforst et al., 2006a]; [Chamberlain et al., 2011]). Convergence in red
pattern elements making up the mimetic patterns is the best understood at the genetic
level, with recent expression and association data pointing to the gene optix as the causal
gene of red patterning in several Heliconius species ([Reed et al., 2011]; [Martin et al.,
2014]). Compelling evidence for collateral evolution through species hybridisation (c.f.
[Stern, 2013]) has been provided for the sharing of optix alleles between H. melpomene
and H. timareta, and with the further related species H. elevatus ([Pardo-Diaz et al.,
2012]; [Heliconius Genome Consortium, 2012]). The second mimicry gene identified
so far,WntA, is also responsible for a convergent pattern element throughout the genus
([Martin et al., 2012]). Thus, the current picture we have is one of a conserved and
shared “toolkit” of genes across the genus, underlying both convergence for mimicry
and an astonishing diversity of wing patterns.
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0.4 How does our work contribute to answer largely unresolved
questions?

More than one and a half centuries of research on the genus Heliconius has brought
together several domains of knowledge, including ecology, evolutionary biology, genet-
ics, population genetics and genomics, among several others. Chronologically speaking,
there seems to be a point of inflection on the type of questions addressed concerning
this group, which coincides with the development of genetic tools. A first bulk of data
is related to the biology and ecology of the clade and a second period of research has
mainly focused on evolutionary genetics. Brown ([Brown, 1981]) summarizes the early
stages of research on this clade. I will mention some of the topics included in that review
to briefly highlight some general features of our study system (see also [Beltran et al.,
2007] for a good description of some of these features). The study of the geographic
variants in the genus and proposals for their taxonomic relationship started in the nine-
teen century (and continues until today). Simultaneously, ecological approaches have
been used to study the biology and life history of different Heliconius species and to ex-
amine the co-evolution of these butterflies and their host plants in the genus Passiflora.
Heliconius larvae feed on these plants and get cyanogenic glycosides that make them
distasteful to birds. The particular diet of adult butterflies, which consists of amino-
acids taken from pollen complementing nectar as a glucose source, was reported as one
of the reasons for the long reproductive period of adult Heliconius. Efforts have been
made to investigate clade-specific behaviours like this pollen-feeding behaviour and
nocturnal communal roosting. In addition, odour production has also been explored
and proposed to be important for chemical communication and as a defence against
predators.
Although fruitful research has continued on these distinct topics and on several

other domains (e.g. [Mérot et al., 2015]; [Beltran et al., 2007]; [Estrada et al., 2011];
[Llaurens et al., 2014]; [Rosser et al., 2014]; [Le Poul et al., 2014]; [Kozak et al.,
2015]), the exploration of the genetics of wing colour pattern in Heliconius has taken
comparatively more strength. As it could be seen above, in Box 6, a long list of studies
has aimed at determining the genetic basis of these adaptive traits. In the last years,
we entered a time where an important part of the evolutionary questions is answered
in the light of genomics. The research linked to Heliconius is not an exception. The
genome of Heliconius melpomene was published three years ago ([Heliconius Genome
Consortium, 2012]) and has opened a door into the symbiosis between genomics and
traditional approaches used for mapping colour genes, for exploring their mechanisms,
the selective forces acting on them and their role in speciation with gene flow, for
determining the contribution of introgression of adaptive alleles for mimicry, etc.
Our project takes advantage of this combination of approaches to contribute to the
understanding of the genetic architecture of colour patterns and the implication of these
and other traits at distinct stages of diversification, with special emphasis on species in
the silvaniform clade (Figure 5).
Research on the genus Heliconius has mainly focused on species within the far-

related sub-clades melpomene and erato, which belong to the non-pupal-maters and
pupal-maters clades, respectively, two main subdivisions of the genus (Figure 4; see
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Figure 10 – The parallel radiation of mimetic colour-pattern complexes in Heliconius erato
and H. melpomene. Each region demarcates the boundaries of a different colour pattern and is
coloured based on broad categorization of the colour patterns. The highly divergent races/incipient
species are indicated with separate colours. Figure and legend taken from [Hines et al., 2011].

([Beltran et al., 2007]). The best studied mimicry ring is the one formed by species H.
melpomene and H. erato. These two species show a remarkable parallel radiation, each
having several sharply distinct geographic races that mimic one another perfectly in
any particular place (Figure 10). Another species that has attracted great interest is
H. numata. This species belongs to the so called “silvaniform” or numata clade. As we
stated in the section above, H. numata is remarkable on account of an extraordinary lo-
cal polymorphism that is absent or very limited in other Heliconius species ([Brown and
Benson, 1974]). Most of the silvaniform species share mimicry rings with other groups
of butterflies, mainly in the Danainae and Ithomiinae subfamilies, and such mimicry
complexes are an important component of the butterfly biota in the Neo-tropics. A
typical “tiger” colour pattern composed by a mosaic of black, orange and yellow/white
elements is characteristic of most silvaniforms (H. besckei andH. elevatus are exceptions).
Given the complexity of these patterns, the taxonomic classification of the silvaniforms
based on colour patterns has been considered as one of the most difficult in Lepidoptera
([Brown, 1981]). This task has taken advantage from biosystematic work on the field
and insectary, showing that very similar adults can be distinguished as eggs or larvae
([Brown, 1976] and references therein). Nowadays, ten species are described in the
clade; the most recent phylogeny of Heliconius shows their relationship (Figures 4 and
1.4; see [Kozak et al., 2015]).
Here, we investigate two scarcely explored silvaniform species, H. ismenius, which

is the sister species of H. numata, and H. hecale, a quite far related species of H.
ismenius within the clade. Species H. hecale has a broad distribution across South and
Central America, but H. ismenius is limited to the northwest of South America and
Central America, where both species overlap (Figures 11 and 12). Species H. hecale
displays particularly strong phenotypic variation across their range, having around
thirty distinctly coloured geographic races (Figure 12), whereas H. ismenius has less
than ten subspecies (Figure 11). In spite of this geographic diversity, both species show
very limited local polymorphism, with at most two coexisting morphs in one single



0.4. How does our work contribute to answer largely unresolved
questions? 49

Figure 11 – Distribution of Heliconius ismenius geographic races. Coloured surfaces represent
the range of each subspecies, named on top or bottom of each wing image. Races used in this study
are shown in increased size in relation to the rest. Map taken from [Rosser et al., 2012] and wing
images taken from [Holzinger and Holzinger, 1994].

locality (i.e. yellow and white morphs of H. hecale zuleika in North West Panama or
of H. ismenius telchinia in Central Panama). Although some races of H. hecale and H.
ismenius belong to the same mimicry ring in some areas, these two species can be easily
distinguished on the basis of the resource use and morphology of immature stages,
in concordance to what I said above. For instance, these species are found on distinct
Passiflora host plants in Panama; H. hecale usually feeds on P. vitifolia, andH. ismenius on
P. quadrangularis or P. ambigua. We observed in the insectaries that females of H. hecale
usually lay separate eggs on the tips of the host plants, whereas H. ismenius females lay
diffuse clutches of eggs on mature and immature leaves, and thus have semi-gregarious
larvae (see Figure 13). The morphology of the caterpillars of both species differs in the
number and size of longitudinal rows of black dots on a white body (see Figure 13).
Here, we exploit the increasingly robust synergy between genomic, phenotypic and

ecological data to tackle open questions in evolutionary biology. By making the link
between the gene and the community levels of biological organisation we investigate
how does biological diversification take place in the face of gene flow, and how do
reproductive barriers evolve and function. This thesis is composed of three chapters,
which are summarised on the schema in Figure 15. In this study we investigate the
factors and mechanisms that have favoured diversification of the genus Heliconius, by
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Figure 12 – Distribution of Heliconius hecale geographic races. Coloured surfaces represent the
range of each subspecies, named on top or bottom of each wing image. Races used in this study
are shown in increased size in relation to the rest. Maps taken from [Rosser et al., 2012] and wing
images taken from [Holzinger and Holzinger, 1994].
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Figure 13 – Pictures showing (sometimes slight) differences at distinct stages in the life cycle
between Heliconius ismenius and H. hecale.

focusing particularly on H. hecale and H. ismenius, two species having complex wing
colour motifs which are very different from those mainly studied so far.
In the first part of this work (Chapter 1, green boxes in Figure 15) we ask what

the genetic basis of biological diversification is. To what extent is adaptive phenotypic
diversity determined by similar genetic architectures? Are convergent phenotypes nec-
essarily defined by similar genetic architectures? What factors influence the evolution
of the genetic architecture of adaptive traits? We will explore the extent of conservatism
in the genetic architecture of wing colour control for mimicry within the silvaniform
clade, to get a better picture of the evolution of distinct genetic architectures account-
ing both for convergence and diversification in the genus Heliconius, and to provide
insights into the origin of the supergene architecture in H. numata.
This helps defining more precisely the question of the role of single major effect

adaptive traits on divergence. Can such ecologically very important traits drive specia-
tion alone to completion or is ecological speciation rather a multidimensional process
relying on several factors? How can fully interbreeding lineages remain phenotypically
distinct? What is the relative importance of different reproductive isolation barriers
along the speciation continuum? How is genomic divergence built through time?
In chapter 2 (orange boxes in Figure 15), we study the hybrid zone betweenH. hecale
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Figure 14 – Local polymorphism in H. numata is controlled by a supergene. (A) H. numata
has multiple coexisting colour morphs at a single locality, and each of them mimics a different
species ofMelinaea, a genus in the Ithomiinae subfamily. Morphs of H. numata display a hierarchical
dominance relationship, with dominance increasing from left to right. (B) Particular chromosomal
rearrangements are associated with distinct coexisting morphs. Part A slightly modified from [Joron
et al., 2011]; part B provided by Mathieu Joron.
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Figure 15 – Schema summarising this study. Some important features of Heliconius butterflies
and unsolved questions are presented within the empty boxes. The approaches used to understand
particular issues are mentioned within the fully coloured boxes. Green, orange and yellow boxes
correspond to Chapters 1, 2 and 3 of this thesis, respectively.

melicerta and H. hecale zuleika in Panama and explore how selective pressures acting on
wing coloration contribute to maintain phenotypic distinctiveness in presence of gene
flow at early stages of divergence. By assembling population genetics and genomics,
cline theory and male-based mate choice behavioural assays, we assess the extent of
genome-wide gene flow between these races, we explore the strength of extrinsic post-
zygotic isolation resulting from selective pressures imposed by predators on the mapped
wing colour elements and we evaluate the strength of pre-zygotic isolation resulting
from mate recognition based on wing patterns.
Finally, in Chapter 3 (yellow boxes in Figure 15), we investigate the relative role of

colour and chemical communication as barriers to gene flow at an advanced stage of spe-
ciation. We use genomic data linked to chemical ecology approaches and behavioural
data to perform genome-wide analysis of gene flow between natural populations of
H. hecale and H. ismenius, to investigate whether pervasive interspecific hybridisation
is universal to the whole genus Heliconius, to explore the genomic landscape of diver-
gence between these “good” species and to investigate whether chemical cues may be
involved in keeping the species boundaries between them. We take benefit from con-
trasting populations where both species share the same wing-patterns (Eastern Panama)
to populations where the two species have distinct wing patterns (Western Panama).
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Abstract
Understanding the genetic architecture of adaptive traits has been at the centre of modern

evolutionary biology since Fisher, but evaluating how the genetic architecture of ecologically
important traits influences their diversification has been hampered by the scarcity of empirical
data. Now, high-throughput genomics facilitates the detailed exploration of variation in the
genome-to-phenotype map among closely-related taxa. Here, we investigate the evolution of
wing pattern diversity in Heliconius, a clade of neo-tropical butterflies which have undergone
an adaptive radiation for wing-pattern mimicry and are influenced by distinct selection regimes.
Using crosses between natural wing-pattern variants, we used genome-wide RAD-genotyping,
traditional linkage mapping and multivariate image analysis to study the evolution of the ar-
chitecture of adaptive variation in two closely-related species: Heliconius hecale and H. ismenius.
We implemented a new morphometric procedure for the analysis of whole-wing pattern varia-
tion, which allows visualising spatial heatmaps of genotype-to-phenotype association for each
QTL separately. We used the H. melpomene reference genome to fine-map variation for each
major wing-patterning region uncovered, evaluated the role of candidate genes and compared
genetic architectures across the genus. Our results show that although the loci responding to
mimicry selection are highly conserved between species, their effect size and phenotypic action
vary throughout the clade. Multilocus architecture is ancestral and maintained across species
under directional selection, whilst the single-locus (supergene) inheritance controlling polymor-
phism in H.numata appears to have evolved only once. Nevertheless, the conservatism in the
wing-patterning toolkit found throughout the genus does not appear to constrain phenotypic
evolution towards local adaptive optima.

Keywords Heliconius, mimicry, genetic architecture, adaptive traits, Next Generation Sequenc-
ing, morphometric analysis.

1.1 Introduction
Over the past decade, next generation sequencing technologies have provided increased

power to identify the genomic targets of selection: the loci, genes and genetic variants that
control adaptive phenotypes ([Stinchcombe and Hoekstra, 2007]). These tools expand the
frontiers beyond classical model species and, in particular, have provided powerful insights
into convergent evolution (c.f. [Arendt and Reznick, 2008]), whereby the same phenotype
evolves in two or more lineages independently, typically in response to similar environmental
challenges. Natural systems displaying phenotypic convergence provide a robust framework
to investigate whether this convergence derives from the recruitment of the same or different
genes and genetic mechanisms, thus allowing a better understanding of the molecular basis of
adaptive evolution ([Stern, 2013]).
The evolution of an adaptive trait is influenced by its genetic architecture. This term

encapsulates the often complex genotype-to-phenotype relationship and includes the number
and nature of genetic elements (genes and alleles), their absolute and relative genomic locations,
their effect sizes and their interactions. These interactions can occur with the environment
(e.g. via epigenetic effects), between distinct genes (i.e. epistasis, additivity), between variants
at the same locus (i.e. dominance) and in additional effects on other phenotypic traits (i.e.
pleiotropy). The genetic architecture of phenotypic variation can influence both convergence
and diversification processes, and selective pressures may operate on any of its components,
either singly or in combination ([Hansen, 2006]). A large number of theoretical studies
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described the evolution of these different features ([Lande, 1980]; [Barton, 1995]; [Orr, 1998];
[Carter et al., 2005]). Nevertheless, scant empirical data exists on the factors associated with
the evolution of genetic architectures and on how heterogeneity in the genetic architecture of
complex traits can influence their diversification ([de Visser et al., 1997]; [Lair et al., 1997]).
Butterflies in the genus Heliconius represent an excellent system to investigate the evolution

of the genetic architecture of complex adaptive traits. This clade contains distinct lineages
which display different wing colour patterns, show heterogeneity in the genetic architecture
of these traits, and permit a comparative approach across lineages thanks to the occurrence of
both convergent and divergent evolution. Additionally, the ecological roles of wing patterns
and the selection regimes shaping their variation have been relatively well studied in this genus
([Brown, 1981]; [Kapan, 2001]; [Jiggins et al., 2001]). Heliconius butterflies are unpalatable
to predators and the spectacular wing colour patterns advertise their toxicity. Several species
within and outside this genus converge in wing patterns, enjoying survival benefits in the face of
predation by using similar signals of toxicity. This convergence is known as Müllerian mimicry.
This adaptation to the local prey environment recognised by educated predators suggests that
the genes controlling wing colour are subject to strong selective pressures.
  Previous studies have defined a palette of genomic regions of large phenotypic effect

shared by distinctHeliconius species and underlying the diversification of colour patterns ([Joron
et al., 2006]; [Kronforst et al., 2006a]; [Papa et al., 2008];[Kronforst et al., 2006a]). This
conserved “toolkit” of genes is mainly distributed across four of the 21 Heliconius chromosomes,
but several minor effect loci have also been detected (see summary Table 1.1). Two of the causal
genes that drive adaptive pattern variation have been identified. One is the WntA signalling
ligand, a putative morphogen that determines the size and position of melanic patterns in the
forewing median region (corresponding to the effects of loci Ac/Ac/Sd in Heliconius melpomene,
H. cydno and H. erato, respectively; [Martin et al., 2012]). Another gene is a transcription factor,
homologous to the Drosophila gene optix, which prefigures the variety of red wing elements
controlled by the cluster of loci B-D/D/G-Br in Heliconius melpomene, H. erato and H. cydno
([Reed et al., 2011]; [Martin et al., 2014]). Causal genes at two other major loci have yet to
be formally characterised at the gene level: K which controls the white/yellow switch in H.
melpomene and H. cydno ([Kronforst et al., 2006c]), and a tight cluster of loci that controls most
of the variation in yellow and white pattern elements. The latter is a complex of at least three
linked loci (Yb, Sb and N) in H. melpomene, two of which have also been described in its sister
species H. cydno (Yb and Sb). In the more distantly related H. erato, this region harbours the Cr
locus which controls similar pattern variation ([Jiggins and McMillan, 1997]). Recombination
occurs between loci Yb, Sb and N in H. melpomene, but Cr in H. erato segregates as a single
genetic unit ([Sheppard et al., 1985]; [Mallet, 1989]; [Ferguson et al., 2010]).
This variation in the level of linkage reveals slight modifications in the genetic architecture,

nested within an otherwise highly conserved multilocus architecture throughout the Heliconius
genus for the control of pattern variation ([Kronforst et al., 2006a]; [Papa et al., 2008]). There
are other subtle architectural differences. For instance, the red/yellow forewing band switch is
caused by variation in a single locus, D, in H. erato, but by the interaction of two unlinked loci
(B and N) in H. melpomene ([Sheppard et al., 1985]).
To date, almost all our knowledge about the architecture of colour pattern variation in

Heliconius comes from studies of species displaying variable shapes of red, white and yellow
elements within a mainly black wing ([Jiggins and McMillan, 1997]; [Jiggins et al., 2005b];
[Kronforst et al., 2006a]; [Reed et al., 2011]; [Nadeau et al., 2014]). In contrast, the genetic
basis of variation for “tiger” patterns, which are composed of a mosaic of black, orange and
yellow/white elements, is less known. These patterns are widely used by species of the so-called
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“silvaniform” sub-clade of Heliconius, which contains ten described species sharing mimicry
relationships with other groups of butterflies, mainly in the Danainae subfamily. Within this
clade, the genetic basis of colour pattern has only been characterized in species H. numata
([Joron et al., 2006]). Compared to what is known in other Heliconius species, H. numata
shows a strikingly different genetic architecture of wing pattern variation. Indeed, a single-
locus (supergene P) virtually monopolizes the control of wing pattern variation in this species.
According to [Thompson and Jiggins, 2014], a supergene is “a genetic architecture involving
multiple linked functional genetic elements that allows switching between discrete, complex
phenotypes maintained in a stable local polymorphism”. The supergene P is positionally
homologous to the Yb-Sb-N cluster of H. melpomene ([Joron et al., 2006]).
Mimetic selection regimes are largely determined by the distribution and abundance of dis-

tinct signals used by local prey communities. Most Heliconius species, including tiger-patterned
species, display geographic races differentiated in wing patterning in response to directional se-
lection imposed by positive frequency dependence favouring one single well-defended pattern
in each locality ([Brown, 1981]). By contrast, H. numata displays a rich local polymorphism,
and all populations harbour distinct forms mimicking multiple distinct tiger-patterned species
([Brown and Benson, 1974]). This polymorphism is believed to be driven by fine-scale varia-
tions in the abundance of alternative tiger-patterned mimicry rings, causing balancing selection
at the regional level ([Joron et al., 1999]). The heterogeneity in selection regimes shaping He-
liconius wing patterns, i.e. local monomorphism under directional selection vs. polymorphism
under balancing selection, allows investigating the relationship between selection regimes and
the evolution of distinct genetic architectures underlying complex adaptive traits.
Here, we focus on the silvaniform clade within Heliconius and ask whether the genetic

architecture of colour pattern variation is associated with the phenotypic variation itself or with
the selection regime shaping it. To this end we carefully analyse wing pattern inheritance in
two unexplored tiger-patterned species in this sub-clade, H. hecale and H. ismenius, which show
geographic variation under local directional selection for mimicry. We combine traditional
linkage mapping powered by next generation sequencing, multivariate quantitative genetics
and fine-mapping of candidate genes, to identify the genomic regions controlling wing pattern
variation in these two species and to explore the evolution of genetic architectures in a broader
comparative framework.

1.2 Materials and Methods
1.2.1 Crossing experiments

Intraspecific crosses were performed between geographic races of H. hecale and H. ismenius
(Figure 1.1 and Table 1.2).For H. hecale, we crossed subspecies melicerta (eastern Panama) with
zuleika (western Panama), and melicerta with clearei (Venezuela) to obtain F1 males which were
backcrossed to melicerta females (Figures 1.1, 1.3AI and 1.3BI). For H. ismenius, we crossed
boulleti (eastern Panama) with telchinia (western Panama), and then backcrossed F1 males to
boulleti females (Figures 1.1 and 1.3CI). Breeding was performed at the Smithsonian Tropical
Research Institute (STRI) in Gamboa, Panama. Butterflies were kept in ∼ 2× 2× 2m cages and
provided with ample sugared water and pollen. Passiflora vitifolia and P. edulis were used for
H. hecale oviposition and as larval food-plants, while P. quadrangularis was used for H. ismenius.
The bodies of parents and progeny were preserved in NaCl-saturated DMSO solution at −20 °C
and wings were stored separately in glassine envelopes.
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Figure 1.1 – Summary of crosses performed in Heliconius hecale and H. ismenius. Geographic
distribution of the subspecies used for the crosses are indicated by filling patterns, and sampling
localities by circles and squares. The distribution of other H. hecale races found in Northern South
America is also shown: H. h. annetta (I), H. h. rosalesi (II), H. h. anderida (III) and H. h. barcanti
(IV).

1.2.2 Phenotypic analysis of the broods
Wing pattern variation was quantified in three distinct ways. First, variation segregating

with largely discrete alternative phenotypic states (e.g. presence/absence) was scored in all
progeny. This included the number of marginal yellow spots in the dorsal and ventral views
of the hindwing. However, much continuous variation was observed and hard to score by eye.
Therefore, in order to get a comprehensive measure of colour pattern variation in the mapping
families, we used morphometric quantification of pattern with the Colour Pattern Modelling tool
(CPM; [Le Poul et al., 2014]). This method uses recursive alignment of wing outlines and image
segmentation to identify conserved and homologous pattern elements. Briefly, CPM consists of
a first colour clustering step, where colours are treated as classes of pigments. Second, wing
images are aligned based on pattern and outline, onto a modal wing “model” built recursively
from the image stack. Finally, a Principal Component Analysis (PCA) of colour variation of
homologous pixels across wings is performed to reduce the dimensionality of pattern variation.
Hindwings and forewings were treated separately for the first two steps, but combined for the
PCA. For each cross, all offspring of the largest broods with intact wings were included.

1.2.3 Restriction Site-Associated DNA (RAD) library construction and
sequencing

RNA-free genomic DNA was extracted from thoracic tissue using the Qiagen DNeasy Blood
and Tissue kit following manufacturer’s instructions. Three RAD libraries were prepared from
the backcross parents and 62 offspring of the largest broods of each type of cross, using the
protocol adapted by [Heliconius Genome Consortium, 2012]. Briefly, 300-350ng of genomic
DNA were digested with the 8bp-cutter restriction enzyme, SbfI. We expected 1,053 cutting sites
based on CCTGCAGG occurrences in the reference H. melpomene genome. For brood parents,
reactions were scaled up to 1,000-1,400ng inputs to increase representation. One of 64 Illumina
P1 adapters, each with a unique 5-base barcode, was used to tag each specimen within a library.
During the final PCR amplification step, 18 cycles of PCR were used, with eight independent
amplifications pooled to minimize the contribution of PCR errors. Each library was paired-end
sequenced in one lane of an Illumina HiSeq2000 with 100-base read length.
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1.2.4 Bioinformatics analysis
The function process_radtags implemented in Stacks v0.9991 ([Catchen et al., 2013]) was

used to demultiplex the separate libraries and apply basic quality filters. The processed reads of
each individual were mapped to the reference genome of H. melpomene version 1.1 ([Heliconius
Genome Consortium, 2012]) using Stampy v1.0.17 ([Lunter and Goodson, 2011]) with default
parameters except for setting the substitution rate to 0.01. SAM/BAM file conversion, analysis,
and filtering were performed using SAMtools v0.1.18 ([Li et al., 2009]) and Picard Tools v1.67
(http://picard.sourceforge.net). To limit genotype miscalling due to PCR bias, PCR
duplicates were removed using Picard Tools v1.67. At this stage, samples for each type of cross
were combined in the same alignment file and processed together. Local realignment around
indels was performed using the Genome Analysis Tool Kit (GATK) v1.6-2 ([DePristo et al., 2011]).
SNP genotypes were called using the GATK v1.6-2 UnifiedGenotyper with default parameters

with the exception of setting expected heterozygosity to 0.015. We applied positional filters to
exclude repetitive regions of the genome ([Heliconius Genome Consortium, 2012]). Filters
for coverage (> 10× and < 200 × /249× for offspring/parents, respectively), genotype (GQ
≥ 30) and mapping quality (MQ ≥ 40) were applied using a custom Perl script ([Kanchon
Dasmahapatra, pers. comm.]). After filtering, markers with genotype calls at fewer than 80%
of individuals were excluded. Sites showing Mendelian inconsistencies were removed and
missing genotype calls were imputed, scaffold-by-scaffold, using Beagle v.3.3.2 ([Browning and
Browning, 2009]). Different subsets of individuals per brood were tested to define the dataset
that generated the best quality downstream linkage maps. Final linkage maps were constructed
from populations of 41, 42 and 29 offspring for the larger melicerta×zuleika, melicerta×clearei
and boulleti×telchinia broods, respectively.

1.2.5 Linkage map construction
Crossing-over does not occur during oogenesis in Lepidoptera ([Turner and Sheppard, 1975]),

so an intact haplotype of each chromosome is passed from mother to offspring. Consequently,
any female informative marker on a given autosome can inform on the segregation of linked
maternal variation (“chromosome print”, c.f.. [Jiggins et al., 2005b]). In contrast, male-
informative SNPs (heterozygous in father but homozygous in mother) and intercross sites (het-
erozygous in both parents) do recombine and inform on genetic distances within chromosomes.
Genetic maps were computed independently for each cross using Joinmap v3.0 ([Van Oijen and
Voorrips, 2001]). We filtered out SNPs that deviated from the expected 1:1 segregation ratio
(female and male-informative backcross markers) and 1:2:1 ratio (intercross markers) to gen-
erate a genotype matrix. Linkage groups corresponding to the 20 Heliconius autosomes were
reconstructed using female informative markers and a LOD threshold ≥ 6 for all three datasets.
The sex chromosome was not reconstructed. Male informative and intercross markers were col-
lapsed to unique segregation patterns using a custom Perl script ([John Davey, pers. comm]).
Collapsed markers were combined with female-informative chromosome prints and clustered
by linkage group (LOD≥ 5). Individual linkage maps were built using the Kosambi mapping
function and a LOD≥ 1.

1.2.6 Mapping wing pattern loci
Phenotypes segregating with discrete alternative states were incorporated directly into map

construction, alongside the collapsed marker sets, and were thus co-localised with the markers
with which the phenotype was most strongly associated. A generalized linear model (GLM) was

http://picard.sourceforge.net
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used to test for an association between the number of spots on the margin of the hindwing and
each of the 20 “chromosome prints”, using R. This analysis was possible since the mother of the
brood (and not the father) was heterozygous for this trait. The overall colour pattern variation
quantified with CPM was mapped as QTLs by using a genome-wide Haley-Knott regression
implemented in the R/qtl package ([Broman et al., 2003]). This analysis was extended by
performingmultivariate analysis on all principal components with an eigenvalue≥ 2%using the
R/shapeQTL package (available on request; see 1.5.1 for more details). Statistical thresholds for
significant linkage were based on 1000 permutations. To further evaluate the identified QTLs,
we ran a stepwise multiple QTL model search using the algorithm developed in ([Broman and
Sen, 2009]) and implemented in the R/shapeQTL package for multivariate traits. The search was
restricted to additive QTLs but epistatic interactions between discovered QTLs were evaluated
in the final model. Since colour pattern analysis is affected by sex ([Jones et al., 2011]), we used
gender as an additive covariate. We employed only male informative markers on the 20 dense
autosomal linkage maps for the different broods. The subsets of offspring in the final linkage
maps having intact wings were used for this analysis. A conventional threshold of LOD≥ 3 and
other relaxed requirements were used to detect suggestive QTLs (SI Methods).

1.2.7 Refining candidate intervals
To fine-map candidate intervals associated with discrete phenotypic variation, we geno-

typed additional markers within each region of interest in an extended panel of progeny. A
combination of newly designed and previously published markers was used, generally targeting
single-copy nuclear loci (SCNL), but on occasion anchored in non-coding regions (Table 1.3).
Markers were first amplified in brood parents, then in the progeny when allelic variation was
found (see 1.5.1 for more details about genotyping methods).

1.2.8 In situ hybridisation
Larval wing disc in situ hybridisations were performed following a previously described

procedure ([Martin et al., 2012]). Wing imaginal discs of three H. hecale melicerta individuals
and two H. hecale zuleika individuals originated from phenotypically pure stocks maintained in
insectaries at STRI, in Gamboa, Panama. The WntA riboprobe was synthetized from a 885bp
cDNA amplicon previously cloned from the closely related species Heliconius cydno ([Martin
et al., 2012]).

1.3 Results
Mapping families show variable progeny. In each cross type, we obtained two families

sired by the same F1 male crossed to unrelated mothers. In H. hecale, we reared a total of 120
(98+22) and 290 (183+107) butterflies for the melicerta×zuleika and melicerta×clearei crosses,
respectively (Figure 1.3). H. ismenius was more difficult to rear, and we obtained 54 (36 + 18)
offspring for the boulleti×telchinia crosses. The offspring of the broods showed segregation of
discrete colour pattern characters affecting large portions of the wings (Figure 1.3), as well as
some minor quantitative variation.
Four major loci segregated independently in Mendelian ratios (Table 1.5) and were named

according to the inferred homology with mapped loci of similar phenotypic effect in other
Heliconius species. First, HhK governed the white (HhKc) / yellow (HhKm) switch for the
forewing band in the H. h. melicerta×clearei families (Figure 1.3BI), white being dominant to
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Figure 1.2 – Fine mapping of wing patterning loci in H. hecale and H. ismenius. Gray shaded
boxes show recombinant individuals found in a total of N offspring in H. hecale melicerta×H. h.
clearei (mel/cle), H. hecale melicerta×H. h. zuleika (mel/zul), and H. ismenius boulleti×H. i. telchinia
(bou/tel) crosses. Annotated genes on each scaffold and candidate colour genes are represented by
gray and black block arrows, respectively. Scaffolds on LG1 (top panel) are ordered according to
the H. melpomene reference genome, but the order is unknown for the three scaffolds indicated on
the right (HE670375, HE671246 and HE668177).
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yellow. Second, HiAc and HhAc shaped the size and position of black patterns close to the
forewing discal cell in H. ismenius (Figure 1.3CI) and in the H. h. melicerta×zuleika families
(Figure 1.3AI), respectively. The H. i. telchinia (HiAct) and H. h. zuleika (HhAcz) alleles
were fully dominant over the H. i. boulleti (HiAcb) and H. h. melicerta (HhAcm) alleles,
respectively. Dominant alleles break the continuity of the forewing yellow band by increasing
the size of a black spot next to the discal cell. Third, HhN and HiN controlled presence vs.
absence of small yellow dots in the largely black forewing submarginal area in H. hecale and H.
ismenius, respectively. Although those loci are similar in the wing position and type of variation
controlled, the two species showed differences in phenotypic action and dominance, which is
detailed in Figures 1.3AI and 1.3CI. Because of its restricted phenotypic effect on the wing,
HiN was considered a locus of minor effect. Fourth, in H. hecale and H. ismenius, respectively,
HhBr and HiBr controlled the shape of the black marginal band of the hindwing, defined by
the orange elements around this band. In our crosses, H. h. zuleika (HhBrz) and H. i. telchinia
(HiBrt) alleles were strongly dominant overH. h. melicerta (HhBrm) andH. i. boulleti (HiBrb)
alleles, respectively (Figures 1.3AI and 1.3CI). Dominant alleles produce a broken boundary of
the black marginal band, whereas recessive homozygotes show a smooth, wide black band.
Additionally, we recognised two presumably polygenic traits with continuous variation in

our H. hecale families. Throughout this paper, trait names will be written in non-italics (in
contrast to Mendelian loci) and will refer simultaneously to the quantitative trait and the QTL
of major effect associated with it. First, melicerta×zuleika families showed segregation for the
number of yellow spots (2 to 7) along the distal hindwing margin, a trait we called Hspot
(Figure 1.3AI). The alleles were not fixed in specific parental races: the F1 father seemed to
be homozygous and the mother of the backcross brood heterozygous for this trait. Second,
melicerta×clearei crosses showed continuous variation in wing melanisation (Cm; Figure 1.3BI).
Loci controlling Cm variation essentially determined the position of the boundary between black
and orange areas on hindwings and in the proximal region of forewings.

1.3.1 Construction of RAD-sequence linkage maps
We obtained around 162, 247 and 343million reads for each of the three libraries (Table 1.6).

The number of reads per individual ranged from 132, 182 to 38, 739, 993, excluding 4 individuals
in each library which were virtually absent due to presumed barcode failure. The intended over-
representation of parental samples was observed. Tables 1.6-1.7 provide a detailed breakdown
of RADseq library statistics. After applying basic quality filters, on average 82% of the raw read
dataset was retained (Table 1.6), of which approximately 94% was mapped to the H. melpomene
reference genome. PCR duplicates can potentially lead to biases towards a single allele and thus
introduce genotyping errors, and so were excluded from our dataset. Despite efforts to reduce
library clonality during the preparation stages, we observed a drastic decrease in data quantity
when excluding PCR duplicates from the mapped reads: only around 9% of the mapped reads
were retained. To maximise genotype accuracy, the duplicate-removed dataset was used for
the map construction, with the corollary that some individuals were excluded from the analysis
due to a high proportion of missing data. Subsets of individuals with the highest total number
of high quality calls were retained in the analysis: a subset of 41, 42 and 29 offspring plus
the 2 backcross parents for the bigger melicerta×zuleika, melicerta×clearei and boulleti×telchinia
broods (Figure 1.5). At this stage, any remaining missing genotypes were imputed and markers
with improbable segregation patterns, such as Mendelian inconsistencies, were excluded. On
average, 2, 187 total polymorphic sites were informative for map construction: 963 female
informative, 857 male informative and 367 intercross markers (Table 1.10). These SNPs were
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recovered from 460, 510 and 566 RAD-tags among the 1, 053 expected cutting sites by SbfI
enzyme, in the three broods respectively. Thus these sites are well distributed across the genome.
The depth at each of these variable sites averaged 114× for the parents and 50× for the offspring
(Figure 1.6). The male informative and intercross markers together were collapsed to ∼ 660
unique segregation patterns on average, 39.2% of which were supported by more than two
markers (Table 1.10). Around 450 markers on average were mapped to the 20 autosomes for
each type of cross, but they were heterogeneously distributed across the linkage groups (Figures
1.7-1.9).

1.3.2 Colour loci in H. hecale and H. ismenius map to previously
identified regions

The loci segregating in our broods map to the same genomic regions where colour genes
have previously been localised in other Heliconius species.

HhKmaps to chromosome 1, and clusters with markers on the genomic scaffold that contains
the developmental gene wingless (HE671174; Figure 1.10). We found 1 recombinant in 153
genotyped offspring between HhK and wingless (Figure 1.2). The mapping interval is described
on the basis of the order of the scaffolds defined for H. melpomene and may indicate the
position of HhK between scaffolds HE670375 or HE671246 (relative position unresolved) and
the scaffold containing wingless (Figure 1.2).
Both HhAc and HiAc map to chromosome 10. In both H. h. melicerta×zuleika and H. i.

boulleti×telchinia crosses, these loci co-segregate with markers on scaffold HE668478 (Figure
1.10), which contains the gene WntA. By genotyping additional markers around this locus for
a larger number of offspring, we revealed a perfect association of HhAc/HiAc with WntA in our
crosses (no recombinants in the vicinity of WntA; Figure 1.2).

Figure 1.3 (preceding page) – Phenotypic effect of Mendelian wing-patterning loci and major
QTLs identified in H. hecale and H. ismenius crosses. For each type of cross (A-C), panel I
(left) shows the crosses performed, the phenotypes associated with inferred genotypes at the ma-
jor Mendelian loci (colour HhK; forewing melanisation HhAc/HiAc; forewing distal band layer/spot
HhN/HiN; hindwing band HhBr/HiBr) and variation of the quantitative traits (dashed boxes: Hind-
wing spots Hspot, continuous melanization Cm). Parental races (top left) are represented by their
dorsal views, the F1 male siring the mapping families (top right) by its dorsal and ventral views, and
typical backcross specimens (bottom) have arrows pointing to the variable character. The name of
the mapping families is written on the bottom of the panels of each cross type, with total number of
offspring shown in brackets. Families labelled in bold were used to build the RAD libraries. Panel II
(right) shows the genomic position and phenotypic effect of major QTLs. Coloured wing diagrams
show the spatial distribution of individual QTL effects on pattern variation extracted from multi-
variate wing pattern analysis. Phenotypic variation is broken down into heatmaps for each of the
three main colours (black, orange and yellow), representing, for every wing position, the strength
of association between colour presence and allelic transition at the QTL (from blue to red). For
analytical simplicity, both white and yellow elements in the H. hecale melicerta×H. h. clearei cross
were considered as yellow elements. Genomic plots show genome-wide association (LOD) between
wing pattern variation and markers along the 20 autosomes, with 5% (solid line) and 10% (dashed
line) association thresholds. Panel AIII shows the detection of WntA transcripts by in situ hybridi-
sation on wing imaginal discs of the last larval instar of H. h. melicerta and H. h. zuleika. WntA
expression shows marked differences along the discal crossvein (arrows), in the M3-Cu2 inter-vein
region (brackets), and in the Cu2-Cu1 inter-vein region (arrowheads). Colour dots indicate vein
intersection landmarks. Phenotypic variation controlled by the HhAc locus is represented on the
right.
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The HhN and HiN loci map to chromosome 15 (Figure 1.10). More specifically, they
cluster with RAD markers placed close to the superscaffold containing Yb-Sb-N/Cr/P in other
species (HE667780; Figure 1.10). In H. ismenius we found one recombinant between HiN
and gene HMEL000025 (Figure 1.2), one of the candidate genes for Yb in H. melpomene and
putatively part of the P supergene in H. numata ([Wu et al., 2010]; [Nadeau et al., 2012]). In
H. hecale, we found 1 recombinant between HhN and the only informative marker available for
genotyping in 23 offspring (Figure 1.2). For this particular analysis, we only used individuals of
genotypeHhNzHhNz, due to the difficulty of distinguishingHhNzHhNm andHhNmHhNm

genotypes with certainty.
Finally, both HhBr and HiBr map to chromosome 18 (Figure 1.10). HhBr/HiBr co-segregate

with RAD markers on the scaffold containing optix (HE670865; Figure 1.10). In the H. hecale
families, we found no recombinants between HhBr and markers near optix in 106 offspring
genotyped (Figure 1.2). In H. ismenius, a region that excludes the coding region of optix was
delimited (Figure 1.2).
We found a significant association between the number of yellow spots on the margin of

the hindwing (Hspot) and the maternal variation (chromosome prints) of linkage groups 15
(P = 1.37× 10−4), 6 (P = 8.69× 10−3) and 12 (P = 1.21× 10−2). The variation associated
with this QTL is highly correlated with the discrete effect of HhN (τ = 0, 55; p = 1, 09× 10−9),
which suggests that the number of yellow spots is largely controlled by a locus located close to
the Yb-Sb-N/Cr/P region on chromosome 15.
The genomic position and phenotypic effect of three of the mapped major Mendelian loci

was confirmed through quantitative, multivariate analysis of whole wing variation (Figures
1.3AII, 1.3BII, 1.3CII and 1.11). We found peaks of significant association between the variation
of specific wing areas and the genomic regions described above. Our morphometric analysis
allowed visualising in the form of heatmaps the genotype-to-phenotype association, which
enabled a fine description of the effects associated with each identified QTL (Figures 1.3AII,
1.3BII and 1.3CII). The effect of these QTLs corresponded to that controlled by HhAc/HiAc (on
LG10; Figure 1.3AII and 1.3CII),HhN (on LG15; Figure 1.3AII), andHhBr/HiBr (on LG18; Figure
1.3AII and 1.3CII). For all but one of those QTLs, confidence intervals included markers placed
on the scaffolds containing known candidate colour genes (Figure 1.11). These intervals are
relatively precise, extending over 8.43± 7.39 cM on each chromosome.
In both species, loci HhAc and HiAc essentially control variation in black patterns situated

around the forewing discal crossvein and extending into the M3-Cu1 region (Figures 1.3AII
and 1.3CII). In situ hybridisation assays showed that WntA mRNA is expressed in the median
forewing region in H. hecale larval wing disks, overlapping with the presumptive position of the
HhAc/HiAc-dependent pattern variations (Figure 1.3AIII).
Additionally, our quantitative approach highlighted that the Cm trait is mainly explained by

a major QTL mapped to a narrow region around optix on LG18 (Figures 1.3BII and 1.11B). This
variation is also affected, albeit to a lower extent, by a second QTL mapping near HMEL000025
on LG15. The effect of this second QTL is mainly restricted to the medial region of the hindwing,
similar to the region affected by Yb inH. melpomene and close allies. We did not detect significant
epistasis between these two QTLs (F (13, 25) = 1.93, P = 0.08). Furthermore, the QTL on LG15
in the melicerta×clearei family explains minor yellow/black variations in the distal area of the
forewing band (HhN in Figure 1.3BII) in the same position as locus HhN. Also, this QTL is
associated with variation in yellow apical forewing spots (Fspot) in the same melicerta×clearei
family (Figure 1.3BII). Finally, the Hspot trait was also highlighted in the melicerta×zuleika
family in association with the QTL on LG15. We found a significant epistatic interaction between
this QTL on LG15 and the QTL on LG10 in the melicerta×zuleika brood (F (7, 23) = 3.189,
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P = 0.02). Our morphometric analysis allowed detecting some cases where a genomic position
is associated with multiple pattern elements on the wing (Figures 1.3AII and 1.3BII). However,
this might be caused by different genetic elements, as suggested by the “apparent” pleiotropy
of the HhN-Hspot cluster in Figure 1.3AII, which may be homologous to N-Sb of H. melpomene
and therefore may represent the action of distinct, tightly linked loci (see Discussion below).
Therefore, we do not claim pleiotropic effects of any mapped QTL, even though such effects
have previously been reported in Heliconius (Table 1.1).
Several suggestive QTLs (LOD≥ 3) located across eight distinct chromosomes (including

LG1, LG10 and LG15) were found to be modulating pattern element variations controlled by
major QTLs (Figure 1.12 and Table 1.11). Remarkably, we find a suggestive QTL on LG15 in
the boulleti×telchinia brood, which explains the variation controlled by the minor effect locus
HiN in this brood (Figure 1.12C).  

1.4 Discussion
1.4.1 Heliconius hecale and H. ismenius bear a multilocus architecture

for the control of wing patterning
Using image analysis of wing patterns and linkage mapping based on dense genome-

wide genotyping, we have characterised the genetic architecture of mimicry variation in two
species, Heliconius hecale and H. ismenius, belonging to the underexplored “silvaniform” clade
of Heliconius. These approaches revealed multiple, unlinked colour loci in those species, and
showed that the combination of high density genotyping, use of a reference genome, and
multivariate phenotypic analysis can yield detailed information on the genetic underpinnings
of the major components of adaptive traits, as well as a sensitive description of the effect
of individual QTL loci on the variation of such complex traits. Mapping was based both on
Mendelian characters traditionally scored by eye and on amultivariate morphometric analysis of
whole-wing pattern complexity. The latter does not rely on the subjective detection of variable
elements, and proved powerful to extract major components of variation from the complexity
of the entire wing pattern variation.
The power and precision of a QTL analysis relies on an accurate phenotypic description, a

dense array of molecular markers, and a sufficient number of offspring. The limiting factor here
was the number of offspring genotyped (between 29 and 42 individuals), leading to an easier
detection of QTLs of large effect. We retrieved each of the individual characters scored manually
(mostly of major effect), which validates the relevance of our quantitative analysis and gives
credit to the additional QTLs revealed. The credible intervals were relatively narrow around
each mapped QTL (Figure 1.11) and (with one exception) encompassed candidate genes known
from other studies. This reflects the good resolution introduced by our phenotyping, despite the
low number of offspring analysed. Additionally, novel candidate minor effect genomic regions
were identified as suggestive QTLs (loci detected with limiting statistical power; Table 1.11).
One of the strengths of the method used is that it permitted whole-wing visualisation of all
phenotypic changes associated with each QTL separately.
Mapped loci include both Mendelian loci and QTLs affecting relatively large wing regions

strongly differentiated between the variants used in our crosses. Minor effect loci (i.e. suggestive
QTLs) modify pattern elements also controlled by major loci, and modulate their phenotypic
effects and the resemblance to local co-mimics. These findings are consistent with theoretical
expectations concerning the distribution of gene effect sizes fixed during mimicry evolution
([Baxter et al., 2008a]). Notably, our results confirm that a multilocus architecture of wing
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pattern variation spread out on multiple chromosomes is a feature shared by most species in
the genus ([Sheppard et al., 1985]; [Mallet, 1989]; [Naisbit et al., 2003]; [Jones et al., 2011];
[Papa et al., 2013]).

1.4.2 The wing colour architecture in Heliconius hecale and H. ismenius
is largely homologous to the architecture found in other

Heliconius species
Major wing patterning loci discovered here finely map in homologous positions to major

colour loci previously identified in Heliconius, and the pattern elements and wing positions
affected are generally conserved (Figure 1.4B). In some cases, their effects in H. hecale and
H. ismenius are very similar to what is observed in other species. For instance, HhK causes a
similar white/yellow switch in H. hecale as K in H. cydno and H. melpomene ([Naisbit et al.,
2003]; [Kronforst et al., 2006c]; Figure 1.4A). Both loci map near to wingless on linkage group
(LG) 1, and the combination of positional and phenotypic effect strongly argues for HhK to be
the ortholog of K ([Kronforst et al., 2006c]; Figure 1.4A). K is not formally identified yet, but
our results for HhK exclude the coding region of wingless. Similarly, loci HhAc and HiAc on
LG10 control melanisation of the discal region of the forewing, reminiscent of the variation
controlled by Sd and Ac in other species (Figure 1.4, Table 1.1) and identified to the WntA
gene ([Martin et al., 2012]). Here, WntA is in perfect linkage with HhAc and HiAc (Figure 1.2),
and its expression is markedly reduced in H. h. melicerta compared to H. h. zuleika around the
discal crossvein and the adjacent M3-Cu1 and Cu2-Cu1 domains (Figure 1.3AIII). This strongly
suggests that cis-regulatory variation of WntA expression causes the allelic effects of the HhAc
and HiAc loci, revealing the molecular identity of HhAc/HiAc and confirming its homology at
the gene level to one of the known “toolkit” colour loci in Heliconius.
In other cases, however, the phenotypic effects of toolkit loci were quite different in H.

hecale and H. ismenius to their known effects in other species (see Figure 1.4A). The versatility
in the effect of these loci across taxa is consistent with their developmental position as switch
genes presumed to act relatively early in scale fate determination. Furthermore, this highlights
the importance of the interaction of some components of genetic architecture in generating
radically different phenotypes, despite an overall conserved multilocus architecture.
LG15 contains three linked loci related to distinct parts of the forewings and hindwings.

HhN/HiN control the presence/absence of yellow elements in the forewing of the two species,
and we hypothesize their homology to the H. melpomene N, also situated on LG15 and affecting
a similar wing region. Other loci in other Heliconius species have been reported to affect the
melanisation on the post-discal and subapical regions of the forewing (Fs and L inH. cydno, Ro in
H. erato), but they map to different chromosomes, or their location is unknown ([Sheppard et al.,
1985]; [Nijhout et al., 1990]; [Linares, 1996]; [Nadeau et al., 2014]). Interestingly, locus Ro
maps to LG13 inH. erato ([Nadeau et al., 2014]) which shows that similar wing-pattern elements
can have a distinct underlying genetic basis in different species. In H. hecale, two QTLs (Hspot
and Fspot) are also situated on linkage group 15. The phenotypic effect of Hspot (yellow or
white spots along the hindwing margin) and its linkage to HhN suggest a homology to Sb, a
locus tightly linked to N in H. melpomene. In H. numata silvana, the supergene P, situated on
LG15 and presumed to contain the ortholog of Sb, also controls a very similar variation along
the hindwing margin as in H. hecale. Regarding Fspot, no locus has been previously described to
affect the forewing apical region, presumably because Heliconius species studied to date rarely
show pattern variation in this wing region. Fspot may represent a new wing patterning locus
in Heliconius with a role for mimicry variation mainly in silvaniform species.
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Figure 1.4 – Conservatism and novelty in the genetic architecture underlying the diversity
of Heliconius wing patterns. (A) Known genetic architectures underlying pattern diversity
throughout the clade mapped onto an unscaled phylogeny. Orange tree branches represent nine of
the ten species in the silvaniform clade. Major colour variation loci are located on four chromosomes
(top) and control variation in similar wing regions (arrows) throughout the genus. Wing phenotypes
are represented based on Holzinger and Holzinger (1994). Note that the effect of the Br locus in H.
cydno is shown on the ventral side. Loci with names in brackets were described based exclusively
on interspecific crosses. (B) Comparative diagram of the distribution of the gene effects across the
wing for toolkit loci in the silvaniform clade (excepting H. numata; left) and in the H. melpomene
and H. erato clades (right), showing the general conservatism of the regions affected by homologous
elements of the multilocus architecture despite some flexibility.
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Despite the lack of functional analyses to pinpoint the causal gene(s) within the Yb-Sb-
N/Cr/P cluster, molecular signals of selection were reported for the locus HMEL000025 ([Wu
et al., 2010]; [Nadeau et al., 2012]). In H. ismenius, fine-mapping excludes the coding region
of this gene from the interval for HiN (Figure 1.2), but does include its regulatory region, as
well as other neighbouring genes. Taken together, fine-mapping and gene effects suggest that
Fspot, Hspot and HhN form a cluster in H. hecale, partly homologous to the Yb-Sb-N cluster in H.
melpomene, and possibly forming part of the elements participating in supergene P in H. numata
([Joron et al., 2006], [Joron et al., 2011]).
Finally, LG18 contains HhBr/HiBr, mapping close to optix both in H. hecale and H. ismenius.

Optix underlies the variation controlled by loci D, B-D and Br-G in H. erato, H. melpomene and
H. cydno, respectively ([Reed et al., 2011]; [Supple et al., 2013]; [Martin et al., 2014]). Here,
the conspicuous variation associated with HhBr and HiBr affect a similar wing position as Br in
H. cydno ([Gilbert, 2003]; Figure 1.4A) albeit with slightly different phenotypic effects. In H.
ismenius, mapping excludes the coding region of optix but includes a large intergenic region that
has been proposed to contain 3’ enhancers of optix involved in its pattern-related cis-regulatory
evolution ([Pardo-Diaz et al., 2012]; [Supple et al., 2013]). While a previous report failed
to detect the expression of optix in the developing hindwings of H. hecale fornarina ([Martin
et al., 2014]), this does not rule out a colour patterning role for this gene in silvaniform species.
Notably, species-specific delayed expression of optix could generate such a negative result in H.
hecale. The region around optix also emerges as the one of largest effect in the melanisation
of hindwings and forewings (Cm) in H. hecale, specifically at wing positions affected by the D
locus in H. melpomene (Figure 1.4). Interestingly, hindwing melanisation is also associated with
markers near HMEL000025 on LG15, especially at the position of the hindwing bar controlled
by Yb in H. melpomene and H. cydno. The lack of significant epistasis between those markers
may indicate that these genes largely act additively and relatively independently of each other,
but could also be the result of a limited power to detect the epistatic interactions.
Epistasis and dominance are commonly used as criteria to infer gene homology between

taxa ([Naisbit et al., 2003]). Here, we did not use these to infer homology since they show
wide variations across the genus. For instance, no evident epistasis was detected between loci
on LG15 and LG18, in contrast to other species (e.g. N and B for the forewing submarginal
band; [Sheppard et al., 1985]; [Naisbit et al., 2003]). Conversely, loci on LG10 and LG15
show epistasis in H. hecale. A similar interaction was also reported between loci Sd (LG10) and
Cr (LG15) in H. erato ([Mallet, 1989]). These results suggest that gene interactions can differ
between species and their detection depends on individual allele effects. Regarding dominance,
the putative orthologs HhN (H. hecale) and HiN (H. ismenius) express codominance in different
ways. Variation in dominance could be related to variation in mimicry selection pressures.
Variable dominance relationships have been reported for some loci across Heliconius species
([Joron et al., 2006]) as well as within species ([Le Poul et al., 2014]). 

1.4.3 The supergene P is restricted to Heliconius numata and has
evolved from a multilocus architecture.

The multilocus architectures of mimicry found in the explored silvaniform species contrast
with the single-locus architecture controlling mimicry polymorphism in H. numata. This
indicates that the supergene evolved uniquely in the H. numata lineage from a multilocus
architecture shared between its sister species H. ismenius and other more distant relatives.
Many Heliconius species show geographic variation in their mimicry associations and local

populations are usually fixed for a given warning pattern, except in narrow hybrid zones
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where unlinked genes segregate freely. A few species such as H. cydno, H. hecale and H.
ismenius maintain single-character polymorphisms in some part of their range (e.g. colour
switch or presence/absence of a pattern element paralleling similar variation in the local
mimicry community ([Brown and Benson, 1974]; [Kapan, 2001]). In contrast, H. numata
shows rampant polymorphism across its entire range, involving highly differentiated wing
patterns and the concerted co-variation of multiple colour elements across the wing. This
polymorphism is controlled by a cluster of loci locked into a supergene, allowing the segregation
of discrete mimicry types ([Brown and Benson, 1974]; [Joron et al., 1999]). Our data therefore
argue for this peculiar architecture to be evolutionarily associated with the maintenance of
polymorphism in H. numata and further confirm that balancing selection might be shaping the
genetic architecture of wing patterns in this species.
Interestingly, single-locus architecture is not associated with a specific type of wing pattern,

as both H. hecale and H. ismenius have “tiger-patterns” very similar to some of the H. numata
forms (see Figure 1.4A). For instance, H. numata silvana, associated with the ancestral allelic
class of the H. numata supergene ([Joron et al., 2011]), is phenotypically similar to H. ismenius
boulleti and H. hecale melicerta. H. numata also participates in mimicry with H. hecale or closely
related species in many parts of its range ([Brown, 1981]). Mimicry evolution can therefore
involve distinct genetic architectures, even though some of the loci may be homologous ([Jones
et al., 2011]). Recent research has revealed that similar phenotypes may not always show a
parallel genetic basis at the nucleotide or gene level ([Arendt and Reznick, 2008]; [Manceau
et al., 2010]; [Elmer and Meyer, 2011]). However, to our knowledge, no cases have been
reported where different genetic architectures, in terms of linkage and gene effect size, underlie
highly similar phenotypic variations.
Our mapping shows that the Heliconius “toolkit” of colour genes is used throughout the

H. numata clade, where only the supergene architecture was previously known. Within H.
numata, the large-effect toolkit loci not associated with the supergene play a minor role in
pattern variation ([Jones et al., 2011]). The contrasting genetic architectures observed when
comparing H. numata to other silvaniform species do not relate to differences in the identity of
the colour loci themselves, but rather to large variations in the effect size of the loci participating
in determining wing patterning. The increase in linkage between elements controlling different
regions on the wings may explain the build-up of a large effect supergene in H. numata. As
previously suggested, the H. melpomene loci Yb, N and Sb may be the orthologues of some
elements composing the supergene in H. numata ([Joron et al., 2006], [Joron et al., 2011]),
and our data also suggest the existence of a gene cluster at this position in Heliconius hecale.
Those elements control variation in distinct regions of the wing (Figure 1.4B), and their co-
variation in response to mimicry may participate to an initial build-up of co-adapted clusters
in this region, later locked into a supergene in H. numata within the ∼ 400 Kb genomic region
where recombination is suppressed by inversions (c.f. the “sieve” hypothesis; [Turner, 1977];
[Joron et al., 2011]). This may be consistent with the observation that large gene effects may
often result from the aggregation of independent small effect mutations ([Martin and Orgogozo,
2013]).

1.4.4 Conservation of genetic architectures does not constrain
adaptation

Our results extend our knowledge of the homology of wing colour loci implicated in differ-
ent adaptive radiations in the genus Heliconius, and show how shared genetic architectures are
implicated both in mimicry convergence between species and in the diversification associated
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with local adaptation ([Joron et al., 2006]; [Papa et al., 2008]; [Reed et al., 2011]; [Martin
et al., 2012]). The toolkit of Heliconius wing-patterning genes therefore stands as an ancestral
architecture shared by species with radically different wing patterns and exposed to different
mimicry selection pressures. If mimetic wing patterns are considered as an integrated complex
trait, variation in the distribution of individual effect sizes and interactions among the contribut-
ing genes across the radiation demonstrates how profoundly malleable these traits are. Using a
conserved set of switch genes, novel phenotypes appear to be explored via the effects of those
genes on phenotypic variation, presumably through an evolution of the downstreamwiring with
effector genes, and the possible involvement of new modifiers, rather than by the recruitment of
new switch genes. The conservatism in the wing-patterning toolkit does not appear to impose
strict limits on the evolution of novel phenotypes, highlighting the power of selection regimes
in bringing populations to local adaptive optima.
Here, we have mainly focused on primary components of genetic architecture such as

number of loci, genome position, and the distribution of gene effect sizes. However, the
mapping populations restricted our capacity to investigate aspects related to interactions such as
epistasis, dominance and pleiotropy, which may also respond to selection and contribute to the
complexity of the adaptive responses ([Le Poul et al., 2014]). We encourage the use of detailed
morphometric quantification of pattern variation on large mapping populations to examine the
interaction of the components of genetic architecture and their role in adaptive evolution.

1.5 Supplementary information
1.5.1 Supplementary methods

• 1 • Genotyping methods
Markers were first amplified in brood parents, then in the progeny when allelic variation

was found. Where possible, allelic variation was scored using amplicon length variation in 3%
agarose gels stained with SYBR®Safe. In the absence of clear size variation, but where Sanger
sequencing revealed an appropriate restriction enzyme site difference within the amplicon,
size differences in restriction digestion profiles were used to infer genotype. In two cases,
competitive allele-specific PCR KASP™assays (LGC Genomics, UK) were used, following the
manufacturer’s protocol, with fluorescence measured in a CFX96 Bio-Rad Real-Time PCR
machine. In other cases, direct Sanger sequencing of PCR products was used. A list of the
used markers and more details about the genotyping methods are given in Table 1.3.

• 2 • PCR Conditions
Standard PCRmaster mixes and thermal cycling conditions were used. PCR mixes contained

10–50 ng of genomic DNA, 1× reaction buffer with 2mMMgCl2, 0.1mM each dNTP, 50 pmol of
each primer and 0.25 U DreamTaq polymerase (Fermentas). Thermal cycling conditions were
94 °C for 1 min, 35 cycles of 94 °C for 15 sec, 55 °C annealing for 30 sec, 72 °C for 60 sec, and a
final extension at 72 °C for minutes.

• 3 • Multivariate quantitative trait locus (QTL) analysis
Mapping colour pattern loci Taking distinct nested subsets of Principal Components (PCs)
derived from Colour Pattern Modelling (CPM) may change genome association profiles slightly.
Therefore, to detect the most robust QTL peaks we explored genome association profiles using
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different subsets of axes by incrementing the number of added PCs. The subset of axes
containing all PCs explaining more than 2% of variance in the principal component analysis
(PCA) was chosen. Additionally, we explored subsets that encompassed an increasing number
of components accounting for down to 1% of explained variance, which revealed additional
suggestive QTLs, especially on linkage groups known to harbour wing patterning loci or QTLs
in other species. The effect of an additive colour QTL was estimated using Haley-Knott
regression ([Haley and Knott, 1992]; [Knott and Haley, 2000]) by fitting the multivariate
linear model yi|Mi ∼ Nq(µ + Σcxicβc + Σjpijβj , S, where xic is the value of the covariate
c and pij = Pr(gi = j|Mi) is the probability of the QTL genotypes given the flanking markers
for individual i and β are the q-dimensional effect of the covariate c or of the genotype j.
These probabilities were computed using R/qtl ([Broman et al., 2003]) at each centimorgan
along the 20 autosomal chromosomes considering a genotyping error rate of 10−3 and the
Kosambi map function ([Broman et al., 2002]). Presence of the QTL was evaluated using the
Pillai trace criterion ([Pillai, 1967]). The probabilities associated with its approximated F
statistics were transformed to their negative log10 to make results comparable with LOD scores
([Leamy et al., 2008]). All computations for colour pattern QTL mapping were conducted in
the R/shapeQTL package written by Nicolas Navarro and available under request. Genome-wide
significance threshold. Genome-wide significance for the presence of a QTL was evaluated using
a permutation approach ([Churchill and Doerge, 1994]). The trait together with its covariate
(sex) was reshuffled among individuals whereas the original genotype probabilities were kept
constant. The genome scan was repeated on these data and the maximal score (LOD) was
recorded for each of 1000 iterations. We took the 90th quantile of that distribution as the 10%
genome-wide threshold to detect QTLs, but defined QTLs with LOD≥ 3 as being suggestive.

Multiple QTL modeling We adopted an approach for model search including or dropping
QTLs without any prior on the number of QTLs per chromosome following the approach
developed for univariate traits by Broman and collaborators ([Broman and Speed, 2002];
[Manichaikul et al., 2006]; [Broman and Sen, 2009]). Searches were restricted to additive
QTLs only. Model choice was based on penalized scores using the – log10 of the P-value minus
the model complexity times the 5% genome-wide threshold.

Interval estimates of QTL locations To determine the credible intervals around each
significant QTL peak, we used the bayesint function of R/qtl with a coverage probability of
0.95. Coverage of these intervals was proven stable and consistent across a variety of situations
([Manichaikul et al., 2006]). Intervals were computed from the chromosome profile of the QTL
conditional on all other refined QTL positions.

QTL effects, effect sizes and visualization QTL effects were estimated conditional on the
covariate (sex) and other QTLs included in the final model using multivariate regression of
phenotypes on the backcross parameterization of QTL genotype probabilities. The effect of
each colour pattern QTL was visualized within Color Patterning Modeling (CPM).

Test for epistatic interactions Epistatic interactions between the uncovered QTLs were
tested for by implementing a multivariate linear model with additive pairwise interaction
between the QTLs.
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Table 1.2 – Sampling localities for the specimens of Heliconius hecale and H. ismenius used in the crosses

Species Race Country Locality GPS coordinates

Heliconius hecale
melicerta Panamá Gamboa, Colón N9°7.257, W79°43.591
zuleika Panamá Miramar, Bocas

del Toro
N8°59.369, W82°14.597

clearei Venezuela Tumeremo,
Bolívar

N6°50.185, W61°35.554

Heliconius ismenius boulleti Panamá Yaviza, Darién N8°16.783, W77°48.589
telchinia Panamá Miramar, Bocas

del Toro
N8°59.369, W82°14.597
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Table 1.7 – Number of per-individual 100-bp Illumina reads (sequenced and filtered through the
first quality filtering steps) in Library 1 (Brood 122: H. hecale melicerta × H. h. zuleika)

Barcode Sample Sequenced
reads Retained reads Mapped

reads
Reads after
deduplication

CGATA MJ11-27181 25732118 18438392 16778275 1045850
ACACG MJ11-2688 9948346 7205156 6791939 949641
CCAAC MJ11-2779 9939526 7779076 7337787 912266
ATATC MJ11-2731 10319068 7483572 7059846 907840
AGGAC MJ11-2730 9181841 7292064 6918616 892152
ATGCT MJ11-2776 9207657 7267068 6886915 877760
CGGCG MJ11-24632 8396067 6994052 6626957 854830
AGAGT MJ11-2729 8855104 6591020 6252333 847735
CCGGT MJ11-2780 8858882 7125696 6548152 844874
CAGTC MJ11-2778 8446873 6659330 6284163 838981
CAACT MJ11-2777 8374724 6177230 5830719 806271
TTGGC MJ11-2642 6671879 5386058 5026425 739315
AAAAA MJ11-2685 6210214 4324324 4105322 667760
GCATT MJ11-2612 5442139 4441378 4223045 579166
GGAAG MJ11-2614 5164532 4049114 3848970 554353
AAGGG MJ11-2686 5479533 2903670 2743489 509770
GCGCC MJ11-2613 4379898 3631954 3449297 499812
GGGGA MJ11-2616 4541978 3617850 3440234 499135
TAGCA MJ11-2630 4546801 3690104 3502306 490533
TGGTT MJ11-2640 4284587 3425896 3259201 475009
GAAGC MJ11-2591 4057737 3302644 3137934 465573
ACGTA MJ11-2728 3997431 2602282 2435934 451995
TAATG MJ11-2627 4060992 3208364 3053018 443538
GTGTG MJ11-2626 3929706 3096300 2943795 431993
CTAGG MJ11-2580 3577563 2814156 2672368 403496
GAGAT MJ11-2596 3298722 2410394 2223612 338276
CATGA MJ11-2813 4861128 3930732 3617383 337509
TCTCT MJ11-2963 4956151 3547176 3260669 321423
GTCAC MJ11-2786 1928458 1584916 1495332 316396
GGTTC MJ11-2787 1662645 1375690 1298944 283395
TATAC MJ11-2965 2193856 1730656 1639341 275326
TCAGA MJ11-2637 2322884 1788856 1698940 272777
TGCAA MJ11-2848 3302057 2779298 2618276 267625
TTTTA MJ11-2845 3255758 2436620 2304275 254513
TTAAT MJ11-2641 2067017 1602960 1516407 247341
TGTGG MJ11-2847 3202932 2453990 2304730 244115
GGCCT MJ11-2788 1343268 1065984 1009162 234640
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TACGT MJ11-2966 1901846 1532234 1451874 232105
TCCTC MJ11-2964 1598237 1272922 1205446 210738
CACAG MJ11-2844 2758648 1958736 1844666 207073
CCCCA MJ11-2812 2199867 1804264 1702524 202929
TTCCG MJ11-2846 2298902 1863760 1756883 197950
TGACC MJ11-2639 1479142 1158840 1101095 192258
CTGAA MJ11-2581 1484154 1143548 1086926 183045
GTACA MJ11-2625 1470511 1078542 1023942 174039
CGCGC MJ11-2810 1402412 1212288 1132074 140201
CGTAT MJ11-2809 1925999 1229322 1165702 138446
CTCTT MJ11-2808 1469152 1129968 1072183 135665
TCGAG MJ11-2638 1066706 692680 658963 114911
GTTGT MJ11-2785 604765 449850 427501 108821
GACTA MJ11-2804 1044231 892068 848964 107587
ATCGA MJ11-2784 564604 432496 408847 105636
CTTCC MJ11-2807 1015487 785930 744019 94790
GATCG MJ11-2791 1122903 837066 725156 92291
AGCTG MJ11-2806 873478 712370 670957 88462
GCTAA MJ11-2789 854270 708964 671480 84591
CCTTG MJ11-2811 922259 668524 633733 82567
AGTCA MJ11-2805 703939 563242 533604 70742
GCCGG MJ11-2790 548449 461576 436666 59917
ATTAG MJ11-2782 350203 165148 156696 44637
ACTGC MJ11-2657 20076 1760 1655 798
AATTT MJ11-2653 49739 1630 1489 683
AACCC MJ11-2651 9263 1276 1198 549
ACCAT MJ11-2656 44116 1360 1289 544

Total 247 783 430 188 974 386 177 609 643 23 454 960

1 Mother of brood 122
2 Father of brood 122
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Table 1.8 – Number of per-individual 100-bp Illumina reads (sequenced and filtered through the
first quality filtering steps) in Library 2 (Brood 112: H. hecale melicerta × H. h. clearei)

Barcode Sample Sequenced
reads Retained reads Mapped

reads
Reads after
deduplication

CGATA MJ11-27061 31586600 26752988 24751360 1753361
CGGCG MJ11-22962 8892296 7738266 7313679 1085291
CAGTC MJ11-2711 5281174 1560946 1485986 479463
GAAGC MJ11-2430 3056550 2112546 2007728 478822
AAGGG MJ11-2670 5328565 2630936 2513321 469090
AGAGT MJ11-2690 5307831 2461396 2348132 460205
ACACG MJ11-2672 4686169 2370502 2269696 451060
GAGAT MJ11-2432 3054033 2265006 2159296 440877
TCGAG MJ11-2543 2905596 2304474 2192958 439031
TAGCA MJ11-2522 2867345 2064096 1967730 438357
GCATT MJ11-2433 2818020 1608594 1530684 424645
GCGCC MJ11-2467 2610108 1988918 1893799 419014
TAATG MJ11-2521 2687770 2198134 2093376 414354
ATATC MJ11-2693 4653598 2377810 2270310 414315
GGAAG MJ11-2483 2845371 2108804 2000793 413891
CCGGT MJ11-2715 4349906 2407456 2292018 405284
TCAGA MJ11-2539 2481961 697724 663884 395128
ACGTA MJ11-2678 4390208 898550 843157 394874
CAACT MJ11-2708 4215097 984888 936834 393694
CTGAA MJ11-2428 2517675 1772692 1681187 393525
AGGAC MJ11-2691 4221221 4684 4396 392870
GGGGA MJ11-2486 2466810 4558 4030 391989
ATGCT MJ11-2695 4271691 3956 3478 391671
CCAAC MJ11-2714 4335602 3076 2781 383291
GTGTG MJ11-2492 2444909 3518438 3237167 370833
AAAAA MJ11-2648 4053702 4388290 4182964 369351
TTGGC MJ11-2593 2102579 4031774 3846639 343279
GTACA MJ11-2491 2004021 3780838 3582411 314747
CTAGG MJ11-2403 1919328 4471800 4268083 308116
TGCAA MJ11-2874 2101028 3562670 3370565 208582
TTAAT MJ11-2592 1179074 3863334 3662897 199176
TCTCT MJ11-2882 1925304 3602622 3422215 198716
TGGTT MJ11-2578 1175456 3630180 3433194 182746
TATAC MJ11-2886 1788779 4538612 4304519 181636
TCCTC MJ11-2883 1668337 3661136 3462336 172084
TTTTA MJ11-2840 1575227 3774034 3508621 161672
TGTGG MJ11-2872 1528011 106116 100190 155147
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TACGT MJ11-2889 1482460 222490 206870 152859
TGACC MJ11-2577 901106 98452 93130 149028
CCCCA MJ11-2830 1231483 850112 802002 135213
CATGA MJ11-2835 1213001 742494 709037 126761
TTCCG MJ11-2871 1085307 625206 597542 113251
GTCAC MJ11-2753 968012 625700 597286 108186
GGTTC MJ11-2754 849310 188108 142238 95484
GGCCT MJ11-2755 729743 277804 264490 80997
GACTA MJ11-2769 724078 638648 610420 79232
GCTAA MJ11-2759 708833 277024 262923 78435
CGTAT MJ11-2799 748972 496068 472509 77493
CGCGC MJ11-2815 571647 369196 352124 65859
AGCTG MJ11-2793 576094 430126 410663 64824
CTCTT MJ11-2797 514797 593006 565555 56653
CTTCC MJ11-2795 431437 500100 476158 47334
CCTTG MJ11-2816 377567 315946 300598 40945
GATCG MJ11-2763 328597 1057588 1008614 37489
AGTCA MJ11-2770 323388 1060754 978067 37018
CACAG MJ11-2839 282425 238696 222314 31191
ATCGA MJ11-2748 259617 1358780 1296008 29519
GCCGG MJ11-2762 216249 937192 890200 25964
ATTAG MJ11-2747 134276 1333234 1237185 14746
GTTGT MJ11-2750 132182 1856788 1768236 13690
AATTT MJ11-2609 29376 1661118 1587855 649
AACCC MJ11-2608 8429 1458554 1391294 644
ACCAT MJ11-2633 28437 1562614 1493977 536
ACTGC MJ11-2636 12803 1288380 1222532 399

Total 162 166 578 137 315 022 129 572 241 16 954 588

1 Mother of brood 112
2 Father of brood 112
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Table 1.9 – Number of per-individual 100-bp Illumina reads (sequenced and filtered through the
first quality filtering steps) in Library 3 (Broods 96 and 101 mainly: H. ismenius boulleti × H. h.
telchinia)

Barcode Sample Sequenced
reads Retained reads Mapped

reads
Reads after
deduplication

CTAGG MJ11-22641 38739993 32662854 30342291 1892527
CGATA MJ11-23632 35389452 30194930 28576405 1805661
CGGCG MJ11-24063 20585884 17325512 15399581 1383246
CAACT MJ11-2402 11850348 10062816 9479636 1142718
AAGGG MJ11-2329 8458331 6960246 6539455 918845
GCATT MJ11-2301 12787618 10934104 10339925 816704
AAAAA MJ11-2328 7597081 6342870 5984500 812860
TGGTT MJ11-2318 12740143 10897012 10283756 799158
GAAGC MJ11-2290 12163923 10553168 9936356 745201
ATATC MJ11-2368 7975510 6518902 6197532 742741
ACACG MJ11-2364 5624189 4709820 4491874 717336
CAGTC MJ11-2408 5959139 5034456 4712162 701873
CCAAC MJ11-2426 5881182 4974108 4687226 684329
ATGCT MJ11-2369 5788804 4842640 4621616 677135
GGGGA MJ11-2304 9563462 8086646 7622086 661028
TAGCA MJ11-2313 8668218 7495530 6988366 589846
GGAAG MJ11-2303 8074931 6585794 6268711 561974
TGACC MJ11-2317 6893188 5865872 5462717 529000
TCAGA MJ11-2315 7144977 6181174 5884549 516684
GAGAT MJ11-2300 7201087 5766030 5457954 513365
GCGCC MJ11-2302 6894298 5970946 5685755 513153
CCGGT MJ11-2427 3846722 3211670 3031477 501911
GTACA MJ11-2305 6605964 5678316 5281624 499396
CTGAA MJ11-2314 6084170 5239820 4933966 462258
TAATG MJ11-2312 6127570 5031616 4750616 438485
TCGAG MJ11-2316 5605360 4749388 4471598 431093
GTGTG MJ11-2306 5673645 4796346 4477293 427402
AGAGT MJ11-2366 3326990 2630738 2516304 418175
TGCAA MJ11-2687* 4703459 4046032 3857234 352986
ACGTA MJ11-2365 2490780 2082294 1977996 349413
TCCTC MJ11-2652* 4034566 3480000 3307773 318913
TCTCT MJ11-2849* 4335342 3622550 3446747 318703
TGTGG MJ11-2655* 4237022 3618720 3449153 317078
TTGGC MJ11-2320 3534799 3039474 2833474 314358
TTCCG MJ11-2617* 3788221 3211864 3006985 284027
TATAC MJ11-2781* 3682044 3118546 2975126 278910
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AGGAC MJ11-2367 2103408 1772862 1663580 268682
TTAAT MJ11-2319 2855219 2265572 2149925 253072
TTTTA MJ11-2998 3256291 2651558 2504958 225434
GGTTC MJ11-2379 1218766 1012952 954444 186409
TACGT MJ11-2771** 2248345 1858028 1775254 176892
CATGA MJ11-2574 2113463 1809542 1670742 163741
CCCCA MJ11-2538 1707097 1472432 1387340 160200
GTCAC MJ11-2355 942327 794328 742446 150804
CACAG MJ11-2575 1716787 1463884 1374591 141343
GGCCT MJ11-2380 784393 637040 599575 126435
GCTAA MJ11-2495 768449 641738 600169 123719
AGTCA MJ11-2531 1414800 1218734 1149939 115585
GTTGT MJ11-2999 731729 586036 473402 100733
CGTAT MJ11-2535 1261035 1020876 961773 100591
CTCTT MJ11-2534 1255996 1029298 910773 97738
CCTTG MJ11-2537 1123829 934320 878531 90555
ATCGA MJ11-2514 594343 465982 434760 81186
CGCGC MJ11-2536 857887 728766 683611 80286
CTTCC MJ11-2533 983648 822396 775596 80273
GATCG MJ11-2525 449316 374746 352131 77861
GACTA MJ11-2530 403094 334220 318600 68845
AGCTG MJ11-2532 573222 452954 425768 48395
GCCGG MJ11-2496 220997 183268 171040 40981
ATTAG MJ11-2443 136823 93956 88736 19320
ACTGC MJ11-2327 21869 5498 5004 763
AACCC MJ11-2324 8616 696 681 162
AATTT MJ11-2325 54797 574 541 125
ACCAT MJ11-2326 46057 1472 1132 121

Total 343 911 015 290 156 532 272 334 861 26 418 742

1 Father of broods 96 and 101
2 Mother of brood 96
3 Mother of brood 101
*Individuals belonging to brood 122
**Individual belonging to brood 112
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1.5.3 Supplementary figures

Figure 1.5 – Number of retained positions after filtering genotype calls for coverage (> 10×
and < 200× /249× for offspring/parents, respectively), genotype quality (GQ ≥ 30) and mapping
quality (MQ≥ 40) with a custom Perl script ([Kanchon Dasmahapatra 2012, pers. comm.]). (A) H.
hecale melicerta×H. h. zuleika, (B) H. hecale melicerta×H. h. clearei and (C) H. ismenius boulleti×H.
i. telchinia broods (grey and black bars denote brood 96 and 101, respectively). In all panels, blue
bars indicate the F1 father and red bars the mother(s). Only individuals left of the vertical dashed
green line were retained for mapping (41, 42 and 29 offspring plus 2 backcross parents in Broods
122, 112 and 96, respectively). Due to low sequence volumes in all Brood 101 progeny, this brood
was excluded from the mapping.
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Figure 1.10 – Genomic position (in centimorgans) for each colour locus on its linkage group
(LG) in H. hecale melicerta×H. h. clearei (mel/cle), H. hecale melicerta×H. h. zuleika (mel/zul), and H.
ismenius boulleti×H. i. telchinia (bou/tel) crosses. Markers are named by their segregation patterns
(seg.pat.) collapsing multiple supporting RAD markers (number in brackets). Locus HhK maps
to LG1, together with the genomic scaffold that contains gene wingless (HE671174; several SNPs
collapsed to seg.pats. numbers 181 and 182), but also with markers on scaffolds HE670375 and
HE671357 (seg.pats. 613+520 and 179+159+490, respectively). Loci HhAc and HiAc map to
LG10. They cluster together with markers on the WntA scaffold scfHE668478 (seg.pat. 378+344
and 519). Loci HhN and HiN map to LG15, close to the Yb-Sb-N/Cr/P superscaffold (scfHE667780;
seg.pat. 124+196 and 695). Loci HhBr and HiBr map to LG18. They cluster with markers on the
scaffold containing the gene optix, scfHE670865 (seg.pat. 652 and 293+696).
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Figure 1.11 – Detail of QTL mapping around the highest peaks of LOD score in each cross. (A)
H. hecale melicerta×H. h. zuleika, (B) H. hecale melicerta×H. h. clearei and (C) H. ismenius boulleti×H.
i. telchinia. Credible intervals around the highest peak (see also Figure 1.3) are delimited by
vertical dashed lines. H. melpomene genome scaffolds (scf) containing candidate colour loci (WntA,
HMEL000025 and optix) are indicated for each major QTL, with the position of the corresponding
RAD marker (seg.pat.) shown by arrows. Credible intervals were determined using the bayesint
function of R/qtl with a coverage probability of 0.95.
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Figure 1.12 – Genomic position and phenotypic effect of suggestive QTLs identified in the H.
hecale and H. ismenius crosses. (A) H. hecale melicerta×H. h. clearei, (B) H. hecale melicerta×H.
h. zuleika and (C) H. ismenius boulleti×H. i. telchinia. Each panel illustrates the phenotypic effect of
a specific QTL (upper pane) and the genome-wide association scans (lower pane) with the targeted
QTL and linkage group indicated by black arrows. The subset of principal components used in each
case is stated. Coloured wing diagrams show the spatial distribution of individual QTL effects on
pattern variation extracted from multivariate wing pattern analysis. Phenotypic variation is broken
down into heatmaps for each of the three main colours (black, orange and yellow), representing,
for every wing position, the strength of association between colour presence and allelic transition
at the QTL (from blue to red). For analytical simplicity purposes, both white and yellow elements
in the H. hecale melicerta×H. h. clearei cross were considered as yellow elements. Genomic plots
show the genome-wide association (LOD) scan between wing pattern variation and markers on the
20 autosomes, with the conventional association threshold of LOD= 3 shown with an horizontal
dashed line. See Table 1.11 for information about the approximate genomic location of each QTL.
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2.1 Introduction
Hybrid zones offer the opportunity to study the speciation process and explore the evolu-

tion of reproductive isolation barriers between divergent but still hybridising taxa. How can
reproductive barriers arise in an essentially continuous population and how do they maintain
boundaries between diverged lineages? How do different pre and post-zygotic isolation factors
interact to trigger diversification? And more generally, what are the mechanisms allowing cer-
tain adaptive traits to lead the radiation of whole clades? These questions have extensively
been investigated but remain largely unanswered ([Coyne and Orr, 2004]). Although evolu-
tionary mechanisms involved in maintaining and enhancing diversification in the face of gene
flow might differ among different taxa, natural and sexual selection seem to play a central role
in these processes ([Coyne and Orr, 1998]; [Schemske, 2000]; [Schluter, 2000]; [Malausa et al.,
2005]; [Via, 2009]).
Hybrid zones exemplify distinct stages of reproductive isolation between hybridising pop-

ulations ([Barton and Hewitt, 1989]; [Szymura and Barton, 1991]; [Harrison, 1993]; [Veen
et al., 2001]); their study has contributed to describe speciation as a gradual and accumulative
process ([Jiggins and Mallet, 2000]). Documenting different stages of the speciation continuum
within a single clade allows exploring how different ecological and genetic factors cumulate and
contribute to reproductive isolation between populations ([Hendry et al., 2009]; [Powell et al.,
2013]). Here we focus on butterflies from the neo-tropical genus Heliconius, which exemplify
distinct stages of this continuum and which have undergone a recent adaptive radiation of apose-
matic wing colour patterns acting as warning signals of their toxicity ([Brown, 1981]; [Mallet,
1993]). Several toxic species from inside and outside the genus share locally the same wing
colour pattern (i.e. Müllerian mimicry), which decreases predation risk and therefore generates
strong local selective pressures on wing coloration. Most Heliconius species display a geographic
mosaic of parapatric distinctly-coloured races mimicking local communities of defended species.
Hybrid zones among these geographic races have variable size depending upon the strength of
disruptive selective pressures and the level of gene flow ([Mallet, 1986]; [Jiggins et al., 1997];
[Blum, 2008]; [Arias et al., 2012]; see Table 2.4). Interestingly, wing patterns are not only
subjected to strong disruptive selective forces due to counter-selection on hybrid individuals
displaying non-mimetic wing colour patterns (acting as post-zygotic isolation barriers; [Merrill
et al., 2012]), but are also essential cues for mate preferences (constituting pre-zygotic barriers
to gene flow; [Jiggins et al., 2001]; [Merrill et al., 2011a]). Wing colour patterns might thus
act as “magic traits” (c.f. [Servedio et al., 2011]) facilitating ecological speciation ([Gavrilets,
2004]; [Jiggins et al., 2005a], [Jiggins, 2008]).
Recent advances in genomics have facilitated the access to whole genome data allowing

investigating various models of speciation with gene flow in different organisms ([Lawniczak
et al., 2010]; [Feder et al., 2012]; [Ellegren et al., 2012]), including Heliconius butterflies whose
reference genome (H. melpomene) was sequenced in 2011 ([Heliconius Genome Consortium,
2012]). Genomic islands of divergence have been observed around wing colour loci when
comparing parapatric races of H. melpomene, and have been suggested to be the result of strong
divergent selection due to local mimicry ([Nadeau et al., 2012]; [Martin et al., 2013]; [Kronforst
et al., 2013]). This high divergence in restricted fractions of the genome contrasts with high
gene flow observed among races in the rest of the genome, suggesting that geographical races of
H. melpomene are on an early stage of the speciation process. However, although mimetic wing
colour patterns are an important diversification factor in Heliconius ([Mallet et al., 1998a]), it
is unclear whether diversifying selection on this trait would be sufficient to generate speciation.
Additional ecological and/or genetic factors might be required for speciation process to be
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completed. In consistence with this idea, speciation has been shown to have proceeded as a
multifactorial process between pairs of rarely-hybridising closely-related species likeH. cydno/H.
pachinus, H. erato/H. himera and H. melpomene/H. cydno, implicating divergence at host plant
specificity and microhabitat preference ([Smiley, 1978]; [Mallet and Gilbert, 1995]; [Jiggins
et al., 1996]). The exploration of interracial hybrid zones in Heliconius allows investigating how
reproductive barriers cumulate, how disruptive natural and sexual selection forces on wing
coloration act together, and how these selective pressures counterbalance gene flow during
incipient stages of diversification.
Most research on Heliconius hybrid zones focuses on species in the two distantly-related

clades melpomene and erato (see Table 2.4). The selective mimetic environment determining
local adaptation of the colour pattern lineages in these clades is often simple and homogeneous,
in part because the mimetic circles are usually not very speciose. For instance, species H.
melpomene and H. erato are perfect and exclusive mimics of each other across a large portion
of their distribution area. Research on this relatively simple system has allowed driving
straightforward conclusions about the importance of mimicry in the diversification of the genus
([Mallet, 2009]). Other Heliconius species like those in the “silvaniform” clade have been
comparatively much less explored and, to our knowledge, no hybrid zone between silvaniform
lineages has been investigated so far. Silvaniform species belong to “tiger-patterned” mimetic
communities, which are important components of the butterfly communities in the neo-tropics
and display high complexity of wing patterns, composed of a mosaic of black, orange and
yellow/white elements. In this case, although mimicry rings are usually clearly defined, with
several species (mainly in the Danaine subfamily) showing fine-detail similarities, mimicry is
also often blurred by imperfect mimics. Such a context allows exploring to which extent the
complexity of mimetic patterns and the composition of the mimetic communities determines
the characteristics and the dynamic of hybrid zones in the genus Heliconius.
Here, we focus on the Panamanian hybrid zone between two distinctly-coloured races of

the silvaniform Heliconius species H. hecale, namely H. hecale zuleika and H. hecale melicerta.
We take advantage of the known genetic architecture or wing patterning in this species,
which was investigated by performing crosses between these races ([Huber et al., 2015]).
We implement a combination of population genetics and genomics, cline theory and mating
behaviour experiments with the aim of characterising the divergence stage between theH. hecale
races and placing them into a broad comparative context in the speciation continuum within the
genusHeliconius. By having an integrative view on this hybrid zone, we explore how natural and
sexual selection contribute to maintain phenotypic divergence in presence of gene flow in early
stages of divergence. We first use population genetics and population genomics approaches to
estimate the extent of genome-wide gene flow between these two Central American H. hecale
parapatric races. We investigate whether the genomic regions associated with the colour loci are
more divergent than the genomic background, a fact that would result from disruptive selective
pressures for adaptation to local mimetic environments. Next, we explore the strength of natural
selection acting on these loci in the field, taking profit of the known allelic segregation at each
colour locus. Namely, three major colour loci, which vary in the dominance relationship of their
alleles, determine wing pattern differences between H. h. zuleika and H. h. melicerta ([Huber
et al., 2015]). We build phenotypic clines at those major loci along a sampled transect and
compare them to evaluate what does the steepness of the colour pattern clines tell about the
disruptive selection maintaining divergence between the two races. We further ask whether the
width and position of the clines differ between loci. Finally, we test for male-based mate choice
to determine whether there are assortative mating preferences that could be strengthening
divergence between the H. hecale races.  



2.2. Materials and Methods 107

2.2 Materials and Methods
2.2.1 Butterfly sampling along the Panamanian transect

Two sampling strategies were used (Figure 2.1). On the one hand, we collected a total
of 333 adult butterflies of both races along a west-to-east transect spanning ∼ 800 km from
San José (Costa Rica) to Darién (Panama) to analyse the transition zone between Heliconius
hecale melicerta and H. hecale zuleika. The transect was defined all along the centre of the
Panamanian Isthmus. Distances among populations on this linear transect were computed
based on the location of the red dots on the map (see Figure 2.1). The average distance
between populations was 133.46 km (±83.59 km), with the lowest distance (34.7 km) existing
between populations BT (Bocas del Toro) and Ch (Chiriquí), which are actually located on
distinct slopes of the mountain chain Cordillera Central. The westernmost sampled population
contains almost exclusively phenotypically pure H. hecale zuleika and the eastern most analysed
population is virtually pure for H. hecale melicerta. Five intermediate sites were sampled within
these extremes throughout Panama. Butterflies caught in distinct sites within a diameter of
50 km were considered as belonging to the same population. Between 25 and 67 specimens
were collected in each population. Most of the butterflies were collected during the years
2011 and 2012, and a few were caught in 2009 and 2013. Wings were removed and stored in
envelopes for further phenotypic description, and bodies were placed in a DMSO/EDTA/High-
NaCl solution for proper DNA preservation. On the other hand, for mate choice experiments
zuleika and melicerta butterflies were collected from populations Bocas del Toro (BT) and Colón
(Cl), respectively, and then bred at the Smithsonian Tropical Research Institute (STRI) (see
[Huber et al., 2015] for more details).

2.2.2 Microsatellite genotyping and population genetic analysis
We examined allelic variation at eight microsatellite loci, one of them taken from Mavárez

and González ([Mavárez and González, 2006]) and the rest developed for Heliconius numata
([Le Poul et al., 2014]), a species belonging to the silvaniform clade, like H. hecale. We analysed
a set of 24 H. h. zuleika specimens from Bocas del Toro (BT) and 32 H. h. melicerta samples from
Darién (D). Primer sequences are shown in Table 2.2. Microsatellite markers were amplified
using M13-tailed specific primers labelled at the 5’-end with one out of four fluorescent dyes
(YAKYE, AT565, AT550 or FAM) to allow multiplexing (Eurofins Genomics).The sequence of
the used M13-tail was: 5’ CACGACGTTGTAAAACGAC 3’. PCR was carried out in 10 µl final
volume reactions. They contained around 4 ng of genomic DNA, 1× reaction buffer, 0.2 mM of
each dNTP, 0.1µM of the forward primer, 1µM of the reverse primer, 1µM of the M13 labeled
primer and 1.25 units of DreamTaq Polymerase. We performed standard PCR reactions, starting
with 2 min of initial denaturation at 94 degreeCelsius, following with 44 cycles of 30 seconds at
94 degreeCelsius, 30 sec at 52 degreeCelsius and 45 sec at 72 degreeCelsius, and finishing with a
final extension for 5minutes at 72 degreeCelsius. Markers were scored on an ABI3130 sequencer
(Applied Biosystems). The size of the alleles was determined in reference to the Genescan-500
LIZ dye size standard (Life Technology) and using the software GeneMarker v2.4.0. Statistical
analysis of microsatellite data was performed using the software GENETIX v4.05.2 ([Belkhir
et al., 1996]). We surveyed within-race genetic diversity in terms of expected heterozygosity
(He) and observed heterozygosity (Ho), and estimated the Fst statistic between populations
([Weir and Cockerham, 1984]). We also ran a factorial correspondence analysis (FCA), which
projects the individuals on a factor space based on the similarity of their allelic states.
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Figure 2.1 – Sampling sites (little black dots) and studied populations (big red dots) on the
analysed transect (dashed line) along the transition zone between H. hecale zuleika and H.
h. melicerta. CR: Costa Rica; BT: Bocas del Toro; Ch: Chiriquí; V: Veraguas; Cc: Coclé; Cl: Colón;
D: Darién. The number of specimens collected in each population is shown in brackets. Orange and
black arrows point to the collecting sites for specimens used for population genetics and genomics
analyses, respectively. Yellow arrows indicate sampling sites where living butterflies were collected
for mate choice assays. The location of Panama and the Southeast of Costa Rica are delimited in a
black rectangle on the map of America in gray.

2.2.3 Exploration of intraspecific genome-wide differentiation on
re-sequenced whole genomes

We compared full genome sequences of ten wild-caught H. hecale samples. We chose five
phenotypically pure specimens of each colour pattern race H. hecale zuleika and H. hecale
melicerta, which were collected in populations Chiriquí (Ch) and Darién (D), respectively
(Figure 2.1). We extracted genomic DNA from ∼ 1/3 of the thorax of the preserved bodies
using the DNeasy Blood and Tissue Kit (Qiagen). We prepared custom Illumina sequencing
libraries for each sample separately and sequenced them to an average depth of 24× using an
Illumina Hi-Seq 2000 (2 × 100 paired-end sequencing). We mapped the quality-filtered reads
for each sample back to the reference genome scaffolds of H. melpomene version 1.1 ([Heliconius
Genome Consortium, 2012]) using Stampy v1.0.17 ([Lunter and Goodson, 2011]) with default
parameters except for the substitution rate set to 0.05. After removing PCR-duplicate reads
using Picard Tools v1.107 (http://picard.sourceforge.net) and locally realigning around
indels using the Genome Analysis Tool Kit (GATK) v2.8-1 ([DePristo et al., 2011]), we scored
variable sites also using GATK ([DePristo et al., 2011]), setting the expected heterozygosity
to 0.015. We obtained a subset of high quality genotypes for biallelic sites having > 5×
coverage, > 30 genotype quality (GQ) and > 40 mapping quality (MQ), using GATK ([DePristo
et al., 2011]), and used it for subsequent analyses. This final dataset consisted of 3, 206, 100
SNPs. We evaluated genome-wide genetic divergence between the H. hecale parapatric races
by estimating the Fst statistic (the fixation index, a measure of population differentiation;
[Weir and Cockerham, 1984]). Fst values were calculated with an average/sliding windows
approach across the genome using the VCFtools software package ([Danecek et al., 2011]).We

http://picard.sourceforge.net
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Figure 2.2 – Sample of pure and hybrid phenotypes found for the three colour genes across
the Panamanian hybrid zone. Black arrows highlight the phenotypic effect of each locus, to be
contrasted between the phenotypically pure H. hecale zuleika (column on the left) and H. hecale
melicerta (column on the right). Under each wing picture, the genotypic state for a given locus is
written, with asterisks meaning “unknown allele”.

also zoomed into the scaffolds containing the wing colour loci to explore whether or not islands
of divergence existed around the candidate colour genes. Moreover, we estimated genome-wide
diversity (π or Pi) for each race using VCFtools ([Danecek et al., 2011]).

2.2.4 Wing colour pattern analysis
A previous study has shown that the marked differences in wing colour pattern between

the Panamanian races H. hecale zuleika and H. h. melicerta are largely determined by three loci
of Mendelian inheritance (HhAc, HhN and HhBr), which are homologous to those identified in
other Heliconius species ([Huber et al., 2015]). Therefore, we were able to score wing colour
genotypes for the whole sample along the studied hybrid zone, based on visual inspection
of phenotypic switches at each of these three loci (see Figure 2.2 for example phenotypes).
For locus HhAc, heterozygotes could not be distinguished from homozygotes because of strong
dominance of the zuleika allele; zuleika-like phenotypes were thus coded as one unknown allele
and one zuleika allele. For locus HhBr, the zuleika allele is also strongly dominant over the
melicerta allele. However, the heterozygous state was usually differentiable from the dominant
recessive state. For locus HhN, heterozygotes could be easily distinguished from homozygotes.
Nevertheless, whenever doubts existed to determine one or both allelic states of a locus for a
given specimen, we coded the allele as unknown. By using such a conservative strategy we
are confident about the genotypic assignment we have achieved, although we are aware of the
underestimation in the number of admixed individuals in a given population.
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2.2.5 Analysis of phenotypic cline shape
We estimated changes in the allele frequency for the three major wing colour pattern loci

along the Panamanian hybrid zone (see Chapter 1). First, we calculated allele frequency in
each population and integrated it with the distance of the populations along the drawn linear
transect (see Figure 2.1). We then mathematically described the geographic structure of the
studied hybrid zone by modelling the shape of the cline for each wing colour trait separately.
We generated maximum-likelihood curves for each phenotype by using the algorithms proposed
by [Szymura and Barton, 1986] [Szymura and Barton, 1991] and implemented in the R
package HZAR ([Derryberry et al., 2014]). We fit a sigmoidal curve at the centre of the
cline using the Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm ([Metropolis
et al., 1953]; [Hastings, 1970]). This method allowed searching for the maximum-likelihood
estimates of clines parameters, which could then be compared among clines. Following [Mullen
and Hoekstra, 2008] we implemented a model that allowed four parameters to vary for each
character: cline centre (c), cline width (w), minimum and maximum frequencies at the tail ends
of the cline (pmin and pmax, respectively).

2.2.6 Phenotypic hybrid index
To evaluate the distribution of genotypic classes (i.e. phenotypically pure versus admixed

individuals) in any give population across the transition zone, we derived a “phenotypic hybrid
index” similar to that used by [Jiggins et al., 1997] and [Arias et al., 2012]. We used the allele
scoring for the three colour loci in each sampled individual. The mean value over all allelic
states yielded a score between 0 and 1, where 0 corresponds to an entirelymelicerta-like butterfly
and 1 to a phenotypically pure zuleika phenotype. In contrast, specimens with a score between
these extremes are hybrid for at least one of the three loci. For instance, a three locus genotype
[HhAczHhAc* HhNmHhNmHhBrzHhBrm] would be equivalent to [1+ “unknown”+0+0+1+0]
and would give that individual a phenotypic hybrid index of 2/5 = 0.4.

2.2.7 Mate choice experiments between the two races
To understand the mate preferences operating on the phenotypes, we tested whether H.

hecale show mating preferences toward wing colour pattern. First we tested for male choice
only by allowing mature males of each race (N = 31 of H. h. melicerta and N = 32 of H.
h. zuleika) to choose between female wing models of both races. Males, which were reared
to sexual maturity in the insectaries or collected in the field, were tested on different days
to register the total number of approaches and courtship events in three independent trials
(technical replicates). Models consisted of real non washed female wings and were connected to
a plastic wire to be moved in a fluttering motion inside a 2×2×2m cage (used device: Butterfly
2000, Adriana Tapia’s design). Courting events were registered during 5 minutes, switching the
position of the two models in the middle of this period to avoid biases due to their position in
the cage or to male learning. A likelihood approach ([Edwards, 1972]; [Jiggins et al., 2001];
[Kronforst et al., 2006c]; [Merrill et al., 2011b]) was used to estimate the relative probability
of males courting the zuleika wings rather than the melicerta wings. The total number of events
directed towards zuleika models by male x (nxzul) and to melicerta by the same male (nxmel),
in addition to the probability of courting melicerta wings by male y (Pymel), were included in
the likelihood function:

ln(L) = Σnxzul ln(Pymel) + nxmel ln(1− Pymel)
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The solver option in Excel (Microsoft) was used to estimate the probabilitiy of male courtship by
numerically searching for values of P that maximized ln(L). The support limits (asymptotically
equivalent to 95% confidence intervals) were assessed by looking for values that decreased ln(L)
by two units ([Edwards, 1972]). To compare the courtship events of the males of both species,
we produced a model where the relative probabilities were established equally (Pmel = Pzul)
and a model where the probabilities for each species were calculated separately (Pmel ̸= Pzul).
These were compared by performing a likelihood ratio test assuming that the test statistic
G = 2∆ ln(L) is χ2-distributed and using one degree of freedom.
To jointly test male and female preferences, we performed 25 “tetrad” experiments ([Jiggins

et al., 2001]), exploring the extent of intraspecific assortative mating. A single recently emerged
virgin female and a mature male (more than 5 days old) of each race were placed in a 2× 2× 2
m cage and the total number of events in each main step of courtship was registered during
30 minutes or until the first couple of butterflies mated. A successful courtship sequence in
H. hecale consists of four main steps, which are described in detail in Chapter 3: localization
(the male approaches the female), hovering (the male moves his wings fast on top of the female,
close to her head), attempting (the male bends his abdomen towards the female’s) and success
(mating). However, the female can refuse the male at any point (more commonly around the
two last steps of courtship) by adopting a female rejection posture, where she opens her wings
flat against the substrate and raises up her abdomen while displaying her abdominal glands. In
cases in which both couples mated simultaneously half a mating was recorded for each of them.

2.3 Results
2.3.1 Extreme H. hecale populations lack differentiation across of the

transition zone
Genotype data from eight relatively variable microsatellites (9 alleles per marker in average;

see Table 2.2) showed no genetic differentiation when comparing the zuleika-like population
from Bocas del Toro (BT) to the melicerta-like population from Darién (D). The factorial
correspondence analysis (FCA) showed no genetic structure. More precisely, the specimens
belonging to the two H. hecale colour races were not at all discriminated in the factor space
(Figure 2.3), suggesting that the genetic composition similarity is not greater between than
within races. The estimated Fst value based on microsatellites was not significantly different
from zero (0.009, 95% confidence interval calculated on 1000 bootstraps from the markers:
−0.003 to 0.026). The analysis of race differentiation based on re-sequenced whole-genomes
from populations Chiriquí (Ch) and Darién (D) also showed a very low genome-wide Fst value
(0.02± 0.07).

2.3.2 The profile of differentiation between the parapatric races is
highly variable throughout the genome

Sliding window analyses revealed a strikingly high number of peaks having Fst values
exceeding the genomic threshold (corresponding to the genome-wide mean), and drawing
a highly heterogeneous landscape of genomic differentiation between the races of H. hecale
studied (Figure 2.4A). Differentiation peaks exhibited, with some exceptions, rather low Fst
values (mainly ranging from 0.2 to 0.3). The differentiation profile was largely robust to changes
in window size, although with somewhat shallower peaks (results not shown). Because Fst is a
measure of relative divergence which can be inflated by low within-group nucleotide diversity
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Figure 2.3 – Factorial Correspondence Analysis (FCA) of the microsatellite data. H. hecale
zuleika (in yellow boxes) and H. hecale melicerta specimens (in yellow boxes) were collected in
Bocas del Toro and Darién populations, respectively.

([Charlesworth, 1998]), some of the observed differentiation peaks might be the by-product
of the low nucleotide diversity observed in H. hecale (Pi = 0.007). Accordingly with this
idea, genome-wide plots of Fst and Pi show that these summary statistics are locally inversely
correlated (Figure 2.8).

2.3.3 Wing patterning loci are major genomic islands of differentiation
between H. h. zuleika and H. h. melicerta

Some of the highest divergence peaks were related to the wing colour loci mapped in H.
hecale (Figure 2.4B), and presumably result from the strong selective forces for mimicry. The
highest peak of differentiation across the genome (Fst ∼ 0.6) is located close to colour locus
HhBr, which sits in an interval encompassing optix ([Huber et al., 2015]); its phenotypic effect
can be seen in Figure 2.2). Optix is known as a major colour patterning gene whose expression
prefigures the variety of red wing elements in other Heliconius species (e.g. H. melpomene, H.
cydno and H. erato; [Reed et al., 2011]; [Martin et al., 2014]), and functional sites appear to
sit in its regulatory region ([Reed et al., 2011]; [Pardo-Diaz et al., 2012]; [Heliconius Genome
Consortium, 2012]; [Supple et al., 2013]). Similarly, we detected a clear peak of differentiation
close and upstream to a gene named WntA and nowhere else within the scaffold containing
this gene (Figure 2.4A). WntA was found to control melanic patterns near to the forewing
discal cell in several Heliconius species ([Martin et al., 2012]) and also in H. hecale ([Huber
et al., 2015]; Figure 2.2 shows the phenotypic effect of HhAc, this locus being homologous to
WntA). In contrast to the results we just described, no clear molecular signals of selection were
detected on the genomic scaffold containing a third colour region in H. hecale, HhN (Figure
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Figure 2.4 – Genome-wide genetic differentiation (Fst) between H. hecale zuleika and H. h.
melicerta. (A) Divergence landscape across the 21 chromosomes. The genomic location of colour
loci on the genome is highlighted with black arrows. Candidate genes for each locus are shown in
brackets under the colour locus name. (B) Fst statistic along the genomic scaffolds containing the
colour loci. The position of candidate genes (WntA, HMEL000025 and optix) is indicated in each box
by a vertical gray box or a line. Statistics were calculated for overlapping 20-kb windows moving
in 5kb intervals. The genomic threshold of differentiation is set by a horizontal dashed line. Five
genomes of each race were used for comparison.
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Table 2.1 – Maximum likelihood parameter estimates for the phenotypic clines of the three colour
loci determining most of wing pattern differences between H. hecale zuleika and H. h. melicerta

Colour locus Width (km) Centre (km) pmin pmax
Hybrid index score
(three loci together)

91.52
(63.10-196.17)

421.15
(402.58-435.64)

0.04
(0.01-0.07)

0.95
(0.92-0.98)

HhAcz 70.41
(5.15-122.29)

425.02
(409.55-458.82)

0.00
(0.00-0.02)

0.94
(0.89-0.96)

HhNz 16.83
(1.47-100.03)

386.11
(379.41-421.25)

0.08
(0.05-0.12)

0.92
(0.89-0.95)

HhBrz 186.27
(146.65-219.76)

425.25
(405.32-440.33)

0.00
(0.00-0.02)

0.99
(0.96-1.00)

Two log-likelihood unit support limits are shown in brackets. Cline width corresponds to 1/maximum
slope. The center of the cline is measured as the distance from the westernmost locality in Figure 2.1.
Parameters pmin and pmax are the minimum and maximum estimated frequency at the eastern end and
western end of the cline, respectively.

2.4B; [Huber et al., 2015]). This region assembles a cluster of loci (Yb-Sb-N/Cr/P) controlling
several white/yellow wing colour elements in different Heliconius species ([Joron et al., 2006];
[Ferguson et al., 2010]). A strong candidate gene within this region is HMEL000025, named
poik ([Nadeau et al., 2015]) which location is shown in Figure 2.4B. As observed in this figure,
no clear differentiation peak is associated to this gene.

2.3.4 Phenotypic clines of the three colour loci are consistent but not
concordant in the H. hecale hybrid zone

Mathematical cline fitting worked well under the chosen model (all four parameters were
allowed to vary), both at the centre and the tails of the sigmoidal clines (Figure 2.5). We
characterised the width and the centre of the clines for the three colour loci together (based on
the hybrid index score; Figure 2.5A and Table 2.1) and for each colour loci separately (Figure
2.5B and Table 2.1). A maximum-likelihood (ML) estimate of the centre of the hybrid zone
accounting for joint allelic variation at the distinct loci located it at 421.15 km from the Costa
Rican population, that is to say, between populations Veraguas (V) and Coclé (Cc) (Figure 2.5A).
However, hybrid specimens are found far outside this centre (see phenotypic hybrid index pie-
charts in Figure 2.5A). Namely, a few specimens having a hybrid phenotype for one of the loci
(results not shown) were even collected in the populations from the extremes of the sampled
transect (Costa Rica and Darién), despite the high phenotypic homogeneity in these populations.
The width of the hybrid zone is of 91.52 km (Table 2.1). The location of the cline centres for the
colour loci separately (Figure 2.5B) does not differ significantly, and is almost identical among
loci HhAc and HhBr (425.02 km and 425.25 km, respectively), but slightly distinct between
any of these and HhN (386.11 km) (Table 2.1). Hence, these three clines are consistent with
each other. In contrast, ML estimates of cline width are highly variable among the three colour
loci, ranging from 16.83 km for HhN to 186.27 km for HhBr (Table 2.1). The difference in
clines width among loci suggests contrasted levels of selection on the different colour pattern
elements.
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Figure 2.5 – Phenotypic clines for the three wing colour loci and distribution of genotypic
classes along the studied transect between H. hecale zuleika and H. hecale melicerta. (A)
Cline (upper panel) and phenotypic hybrid index (lower panel) based on the genotypes of the three
colour loci (HhAc, HhN and HhBr) together. Cline is drawn as explained in B, but using the per
population phenotypic hybrid index based on the three loci together. This index is based on the
frequency of pure H. hecale zuleika individuals (zuleika-like), phenotypically pure H. h. melicerta
(melicerta-like) and specimens of mixed ancestry for at least one of the colour genes (hybrid-like).
(B) Plot of the fitted cline (line) to the observed frequency data (black dots) over the associated
95% credible cline region (gray area) for ech colour loci separately. The frequency of the H. hecale
zuleika alleles is plotted. A model where all four parameters (cline width, cline centre, pmin and
pmax) were set free was used. Analyses were performed within the HZAR package of R. The name
of the populations along the transect are as follows: Costa Rica (CR), Bocas del Toro (BT), Chiriquí
(Ch), Veraguas (V), Coclé (Cc), Colón (Cl) and Darién (D). The location of the centre of the hybrid
zone is shown with an up-pointing black arrow.
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2.3.5 H. hecale melicerta males court preferentially their own race, but
H. hecale zuleika males do not

In order to evaluate pre-zygotic isolation between the two races of H. hecale as a result
of assortative mating, we tested males of the two studied races for their courtship preference,
using female wing models and real females of both races. We recorded a total of 837 and
608 courtship events directed toward H. hecale melicerta and H. h. zuleika female wing models,
respectively, by 31 H. h. melicerta males (Table 2.3). For 32 tested H. h. zuleika males, a total
of 422 and 455 events were registered toward the H. hecale melicerta and H. h. zuleika models,
respectively (Table 2.3). By implementing a likelihood approach based on these data, we found
that H. h. zuleika males did not show significant assortative mating whereas H. h. melicerta
males significantly preferred to court the wing models of their own race rather over the H. h.
zuleika models (G = 21.439, P < 0.001; see Figure 2.6).
Among the 25 tetrad mate-choice experiments, 76% of them (N = 19) resulted in mating

(Table 2.3). The results of these trials confirmed the asymmetric assortative mating trend
observed in the experiments using models (Figure 2.6). Matings happened significantly more
frequently within H. h. melicerta pairs (8.5 out of 19) than within H. h. zuleika pairs (1.5 out of
19) (X2 = 4.90, df = 1, p = 0.03). We also registered more matings between H. h. melicerta
males and females than between H. h. melicerta males and H. h. zuleika females (8.5 versus 3)
although this difference was not significant (X2 = 2.63, df = 1, p = 0.10). Also, more matings
happened between H. h. zuleika males and H. h. melicerta females than between H. h. zuleika
males and H. h. zuleika females (6 versus 1.5), but this difference is not significant (X2 = 2.70,
df = 1, p = 0.10). Thus, consistently with the male choice results based on wing models, H. h.
zuleika males do not seem to care about mating with their own race.

2.4 Discussion
2.4.1 Extensive gene flow exists between parapatric races of H. hecale
Using both hyper-variable microsatellite markers and a hyper-dense array of markers, we

observed no genetic structure between parapatric races H. hecale zuleika and H. h. melicerta,
meaning that their gene pools are actively mixing. However, cases of even weaker genomic
structure between species have been reported (e.g. [Puebla et al., 2014]). Thus, the lack of
genetic structure between the H. hecale races may not be sufficient to assess their current stage
of speciation.
The low differentiation found here across the transition zone between two races of H.

hecale diverging in wing pattern and mimetic alliance is reminiscent of the lack of genetic
structure between parapatric races of H. melpomene, based on RAD markers ([Nadeau et al.,
2012]) or whole-genome sequencing ([Martin et al., 2013]). In contrast, across Costa Rica,
phenotypically monomorphic populations of H. erato petiverana located tens of kilometres apart
were found to be strongly differentiated, based on AFLPmarkers ([Kronforst and Gilbert, 2008]),
mitochondrial DNA and nuclear genes ([Hill et al., 2013]). However, Kronforst and Gilbert
([Kronforst et al., 2007]) did not detect genetic discontinuities among populations of H. hecale
zuleika in Costa Rica. The strong contrast observed between the absence of geographical genetic
structure in H. hecale andH. melpomene and the mosaic of genetically distinct populations within
H. erato suggests potential differences in dispersion abilities, local ecological adaptations and
demographic histories across the genus Heliconius.
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Figure 2.6 – Male choice of H. hecale melicerta and H. hecale zuleika between female wing
models of both races. Values are estimated relative to the probability of courting H. hecale zuleika
models, where 1 means a complete choice for zuleika and 0 a complete choice for melicerta. The 0.5
value means no preference. Several males of each race (N = 32 zuleika andN = 31 melicerta) were
tested. Error bars show support limits equivalent to 95% confidence intervals.
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2.4.2 Peaks of differentiation are scattered along the genome and
include the colour loci

Despite the overall low divergence observed between H. hecale zuleika and H. h. melicerta,
the sliding-window approach revealed high heterogeneity in the Fst estimates throughout the
genome, which contrasts with the expectations for early stages of diversification under a verbal
model of diversification and speciation with gene flow (see [Feder et al., 2012]). Also, the high
number of shallow differentiated regions we found in the intraspecific H. hecale comparison
contrasts with the few genomic islands of divergence (c.f. [Turner et al., 2005]) detected
between parapatric races of H. melpomene, exclusively located around the wing colour pattern
loci ([Martin et al., 2013]). Islands of divergence are usually thought to be regions under
disruptive selection that contrast with the surrounding genome, where alleles migrate freely
and have their frequencies homogenised across populations ([Feder et al., 2012]). These
peaks of differentiation have been proposed to have a central role in early stages of speciation
([Harr, 2006]; [Carneiro et al., 2010]; [Nadeau et al., 2012]; [Feder et al., 2012]) and to
be frequently associated with speciation genes ([Nosil and Schluter, 2011]). However, the
causes of these divergence patterns are now heavily debated, and features of the genomic
architecture (e.g. low recombination rates and low nucleotide diversity) have been suggested
to account for the differentiation outliers ([Noor and Bennett, 2009]; [Bierne et al., 2011];
[Cruickshank and Hahn, 2014]). Recently, Cruickshank and Hahn ([Cruickshank and Hahn,
2014]) reanalysed published datasets of studies reporting genomic islands of divergence and
found that the estimation of the dXY statistic, an absolute measure of divergence which does not
depend onwithin group diversity, failed to recover such islands detected with Fst-basedmethods.
We believe that some of the islands found here display inflated Fst because of low nucleotide
diversity (π) ([Charlesworth, 1998]; [Cruickshank and Hahn, 2014]). We did actually find a
negative correlation between Fst and π (see Figure 2.8), and we observed relatively low overall
nucleotide diversity in H. hecale as compared to H. melpomene (π averaged between different
H. melpomene subspecies= 0.012; [Martin et al., 2013]). It is difficult to assess which ones
among the differentiation peaks we detected actually represent genomic regions responding to
disruptive then to stabilizing selective forces. We suggest that some of these might be the result
of selective forces whereas others might be statistical artefacts, also including false positive
outliers derived from probabilistic events on a low number of samples and variable markers
within a window (see [Willing et al., 2012]).
We observed that some of the peaks of divergence are linked to the genomic regions having

a major effect on wing-pattern differences between the races of H. hecale ([Huber et al., 2015]),
and presumed to be under strong selective pressures for mimicry. Similar results were found
when comparing parapatric races of other Heliconius species ([Nadeau et al., 2012]; [Martin
et al., 2013]). Here, the highest peak of divergence is located around the genomic region that
was suggested to contain the cis-regulatory elements of optix (Figure 2.4B; [Pardo-Diaz et al.,
2012]; [Supple et al., 2013]). Strangely, in situ hybridizations failed to associate optix expression
to colour pattern in H. hecale fornarina ([Martin et al., 2014]), but the differentiation peak we
found strongly suggest a potential role of the cis-regulatory region of optix in the control pattern
variation in H. hecale, like in other Heliconius species ([Reed et al., 2011]; [Pardo-Diaz et al.,
2012]; [Supple et al., 2013]; [Martin et al., 2014]). This confirms that regulatory variations
of gene optix underlie an enormous phenotypic variability in the distribution of red and orange
pattern elements across the genus.
We also found a high peak of differentiation close to the candidate colour geneWntA, which

determines the position and size of melanic patterns in the forewing median region in Heliconius
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and several other Nymphalid species ([Martin et al., 2012]; [Gallant et al., 2014]; [Martin and
Reed, 2014]). In H. hecale, median black pattern variation was mapped to a narrow interval
around gene WntA, and the association of WntA expression with pattern determination was
also confirmed in this species by positional expression assays ([Huber et al., 2015]). Here, the
unique peak of differentiation detected on the genome scaffold containing WntA falls upstream
of the coding region, roughly corresponding to the region containing SNPs fully associated with
variations between H. cydno galanthus and H. pachinus ([Gallant et al., 2014]).
Surprisingly, no simple signal of differentiation was detected around the third main colour

locus (HhN) ([Huber et al., 2015]). Instead, a complex profile of alternate peaks and troughs
of differentiation was observed, a pattern similar to the one observed at the same complex
locus (the Yb-Sb-N cluster) when comparing the parapatric races of H. melpomene amaryllis and
H. m. aglaope in Peru ([Nadeau et al., 2012]). Although the peaks observed in H. hecale did
not really correspond to candidate colour loci (or their putative regulating region) within this
interval (i.e. HMEL000025 or poik; [Wu et al., 2010]; [Nadeau et al., 2015]), this kind of signal
might respond to the high complexity of a region encompassing several colour loci homologous
to those composing the supergene P, which controls local polymorphism of wing colour in the
closely-related speciesH. numata ([Huber et al., 2015]; [Joron et al., 2006], [Joron et al., 2011]),
resulting in a differentiation signal that is difficult to interpret.
Overall, our analyses show that some peaks of differentiation correspond to the genomic

regions known to be involved in wing colour pattern variations for mimicry in H. hecale
and other Heliconius species, which confirms their validity as regions potentially under strong
divergent then purifying selection. Our results therefore confirm the importance of wing colour
loci in local adaptation and population differentiation in this clade. However, we ignore whether
other peaks of divergence correspond to distinct traits that have not been studied far, but that
might be divergent between the studied races.

2.4.3 A hybrid zone of intermediary width exists between the races of
H. hecale

In the populations sampled in the extremes of this hybrid zone most individuals displayed
the “pure” phenotype, suggesting strong disruptive selection acting on colour patterns due to
mimicry. However, we collected a few specimens that were heterozygous for one of the wing
colour pattern loci. At a first glance, this showed a rather large hybrid zone, with individuals of
mixed genotype found over a region of∼ 800 km. [Mallet, 1993] referred to races ofH. hecale as
an example of weakly differentiated forms separated by broad clines, at the lower extremity of
the continuum of geographic differentiation levels displayed by the different Heliconius species.
However, by calculating average hybrid index scores which take into account the allelic state
at all three colour loci simultaneously we showed that this hybrid zone is ∼ 92 km wide. This
transition zone is of intermediary width when compared to other intraspecific hybrid zones
studied in other Heliconius species. Spanning all across the spectrum mentioned by Mallet
([Mallet, 1993]), hybrid zones between races ofH. erato from four distinct localities showwidths
as variable as 10, 30, 80 and 140 km ([Mallet et al., 1998a]). Overall, hybrid zones in the
erato and melpomene clades have been reported to be 10 − 200 km wide ([Brown and Mielke,
1972]; [Turner, 1971]; [Benson, 1982]; [Mallet, 1986]; [Merchán et al., 2005]). However,
a detailed analysis of the transects, of the reproductive barriers between lineages and of the
genetic architecture of colour variation across the hybrid zone, have only been made in a limited
number of cases (see Table 2.4 for a list of well understood hybrid zones in Heliconius).
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Figure 2.7 – Partial representation of tiger-patterned mimicry rings in Panama. This figure
includes preliminary presence/absence collecting data, and is not representative of the relative
abundance of each mimicry ring. Co-mimics of H. hecale melicerta (indicated by an arrow in the
yellow box) are preponderant in the eastern population, Colón, and limited to this population. In
contrast, co-mimics of H. hecale zuleika (indicated by an arrow in the upper-left orange box) are
infrequently observed in Colón, and preponderantly found in the western population, Bocas del
Toro. A third mimicry ring (black boxes) is also present in both populations, but only rarely in
the Eastern one. We called it telchinia-like or clarescens-like because it contains races H. ismenius
telchinia and H. ismenius clarescens, only distinguishable on the basis of the presence and absence
of the hindwing medial black band, respectively. A hindwing black band of intermediary size is
present in the leftmost H. ismenius butterfly in the black box from Bocas del Toro. By-eye designated
“perfect” and “imperfect” mimics are enclosed in boxes with a continuous and discontinuous border,
respectively.

The width of the colour clines is inversely proportional to the strength of selection for
mimicry, thus, it depends upon the mimetic community. Tiger-patterned mimetic environments
are highly variable and speciose (see Figure 2.7) and contrast with other simpler and species-
poorer mimicry rings in the clade (i.e. the one formed by races of H. melpomene and H. erato.
Hence, selection against some hybrids between the H. hecale races may not be very efficient.
Mallet et al. ([Mallet et al., 1998b]) and Jiggins et al. ([Jiggins et al., 1996]) stated that
the narrowness of hybrid zones may be inversely associated with the number of wing pattern
elements that define the differences between forms as perceived by predators. When comparing
to the best documented hybrid zones in the clade, H. hecale melicerta and zuleika are separated by
the widest hybrid zone (Table 2.4), in spite of being distinguishable on the basis of three major
loci. The intricate composition of wing elements of different sizes observed in tiger-patterned
butterflies might be prone to be highly variable ([Le Poul, 2014]). Overall, the intermediate
cline width estimated for H. hecale is consistent with the moderate number of genomic regions
with a significant effect on wing colour pattern detected so far, and with the complexity of tiger
patterns and tiger mimetic communities.
The clinal allele distributions and hence the evidence of restricted gene flow at wing colour

loci strongly contrast with the absence of genetic structure at genome-wide molecular markers.
This confirms that colour loci control characters directly involved in local adaptation, which is
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concordant with the colour loci-related molecular signals of selection detected in this and other
studies ([Nadeau et al., 2012]; [Supple et al., 2013]; [Martin et al., 2013]; [Kronforst et al.,
2013]).

2.4.4 Variation in the strength of selection among the three main
colour pattern loci of H. hecale?

Over all three colour loci, the width of the Panamanian H. hecale hybrid zone suggests
predator-operated selective forces of intermediate intensity to be acting against specimens of
admixed ancestry. However, the cline shape for the three loci differs, which contrasts with
the common finding of similar clines at different loci, chromosomes and characters involved
in hybrid zones ([Barton and Hewitt, 1985], [Barton and Hewitt, 1989]). Cline discrepancy
associated with differential introgression among distinct loci across the same hybrid zone has
been commonly attributed to gene-specific natural selection ([McDonald, 1994]), but also
to genetic drift ([Bierne et al., 2003]) or hybrid zone movement ([Stuckas et al., 2009]).
Differential selective pressures would more readily influence deviations from concordance (i.e.
equal widths or shapes) than from coincidence (i.e. equal positions), since only the shape of
the cline is directly associated with the selection coefficient ([Barton and Gale, 1993]). In the
H. hecale hybrid zone, the width of the phenotypic clines is variable, with loci HhN (controlling
submarginal yellow elements in the forewing) and HhBr (controlling the shape of the black
hindwing marginal band) showing the steepest and the flattest hybrid zones, respectively, and
locus HhAc (controlling median forewing melanisation patterns) displaying an intermediary
width. For locus HhAc and to a lesser extent for locus HhBr, the frequency of heterozygous
might have been underestimated on the left tail of the cline, artificially decreasing the estimated
width of the clines. The causative SNPs are yet to be identified for these loci and would allow a
precise genotyping of the wild samples in order to refine the width of the clines. Nevertheless,
the difference displayed by the three colour loci suggests varying selection on different elements
of the wing colour pattern. Such variation could reflect mimetic community variations and
local predators’ cognitive capacities. Frequency-dependent selection for mimicry is critically
determined by other toxic species, and some pattern elements might be more variable than
others across all species involved, which may account for differences in the strength of selection
on distinct elements of the wing. This could also depend on the perceptual effect of each locus for
predators. For instance, birds visual systems are thought to perceive the contrast between black
and yellow in Heliconius as more striking than black vs. orange ([Llaurens et al., 2014]), which
might result in stronger selection on the variations of black and yellow elements controlled by
HhN and HhAc than on the black and orange elements controlled by HhBr.
In contrast to the different cline shapes among colour loci, cline centres of the three loci

are concordant. Hence, linkage disequilibrium between loci could potentially result from the
dispersal of combined parental alleles at each locus into the centre of the hybrid zone ([Barton
and Hewitt, 1985]), although this remains to be properly tested. Thus, in spite of the high
genome-wide gene flow between H. hecale races, strong selection maintaining the association
between loci (spatial coupling of clines; c.f. ([Abbott et al., 2013]) could presumably be
overcoming the effect of recombination on continuously breaking down allelic associations
between these adaptive loci. Spatially coupled barriers may favour both long-term maintenance
of the hybrid zone between the H. hecale races or further divergence.
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2.4.5 Asymmetrical male choice between the H. hecale races
Disruptive selection resulting from local mimicry might promote assortative mating in H.

hecale. Here we detect male preferences for their own colour pattern in the melicerta race.
This finding is in accordance with previous work in other Heliconius species where intraspecific
assortative mating was also detected ([Jiggins et al., 2004]; [Merrill et al., 2011a]). Our
results extend over previous work on Heliconius and other butterflies to confirm that mate
choice based on wing coloration is widespread as one of the mechanisms maintaining or
enhancing divergence between lineages ([Rutowski, 1977b]; [Silberglied and Taylor, 1978];
[Jiggins et al., 2001]; [Fordyce et al., 2002]; [Sweeney et al., 2003]; [Robertson and Monteiro,
2005]; [Kemp, 2007]). Moreover, in H. hecale, like in other Heliconius species, male-operated
colour-based assortative mating seems to evolve readily, and whether it is really a first step
leading to the accumulation of other barriers is unknown. However, it seems to evolve prior
to genomic incompatibilities and to habitat specialisation, alongside with divergence in wing
colour patterning ([Naisbit et al., 2002]; [Jiggins et al., 2004]).
However, we detected no preferential mating within H. hecale zuleika. Within themelpomene

clade, ([Merrill et al., 2011a]) also observed that male mating preferences were subtle between
distinct forms of one species, and was asymmetric both in cases of local polymorphism (between
morphs of H. cydno alithea) and parapatric variation (between races H. melpomene aglaope and H.
m. amaryllis). Our results show that assortative mating is partial between zuleika and melicerta
races, supporting the hypothesis that premating isolation increases along a continuum starting
with polymorphic populations and ending with well isolated sympatric species with strong
symmetrical assortative mating, and hence, that the H. hecale races stand at the beginning of
this speciation continuum.

H. hecale melicerta acts as the choosier race in our study, and bears recessive alleles at most
major colour loci. Similarly, in the polymorphic race H. cydno alithea in Ecuador, homozygous
recessive yellow males were shown to court yellow females preferentially, whereas no choice
was exerted by white males bearing at least one dominant allele ([Kronforst et al., 2006c];
[Chamberlain et al., 2009]; [Merrill et al., 2011a]). It is possible that the recessive allele, only
expressed in homozygotes, is associated with stronger assortative preference than the dominant
allele which is expressed in both homozygous and heterozygous offspring. The relationship
between dominance of pattern elements and choosiness remains to be further investigated, as
this relationship might depend on the linkage between colour pattern genes and preferences
([Merrill et al., 2011b]).

2.4.6 Influence of mate choice on cline movement?
Given that zuleika alleles are largely dominant to melicerta alleles, we would predict that the

zuleika/melicerta cline in H. hecale should move towards the East of Panama, as a consequence of
the so-called dominance drive ([Barton and Hewitt, 1985]), suggested to be one of the factors
yielding the mobility of the hybrid zone between races H. erato hydara and H. e. petiverana
in Panama ([Mallet, 1986]; [Blum, 2002]; see Table 2.4). Conversely, asymmetry in mate
choice would favour a westward hybrid zone movement responding to asymmetric introgression.
Namely, asymmetric mate choice has been reported to lead to hybrid zone shifts, especially in
birds ([Parsons et al., 1993]; [Pearson, 2000]; [Bronson et al., 2003]; [Stein and Uy, 2006]).
Historical data suggests that the H. hecale hybrid zone has been actually moving towards the
west of Panama ([Mallet, 1993]; [Rosser et al., 2012]). The syntype of H. h. zuleika was
collected around the Panama Canal in 1877 ([Rosser et al., 2012]) and this region was defined
as the hybrid zone between H. h. melicerta and H. h. zuleika during the building of the Panama
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Canal, ∼ 100 years ago ([Brown, 1976]). Co-mimics of H. h. zuleika are still observed in this
locality, although much rarer than melicerta co-mimics (Figure 2.7). We showed that nowadays
this population (here called Colón) is almost monomorphic for H. h. melicerta, suggesting that
the hybrid zone moved perhaps over 100 km westward during the 20th century. Although
formal evidence is needed to validate the westward movement of this hybrid zone and to test
its direct link with asymmetric mate preference, our results suggest that sexual selection on wing
colour pattern might be one of the mechanisms shaping population dynamics and diversification.
We ignore, however, if the mimetic community as a whole may have been spreading westward,
this way influencing the spreading of the melicerta allele.
At their current stage, neither habitat specialisation nor hybrid genomic incompatibilities

seem to be acting against gene flow between the two H. hecale races. On the one hand, no
clear habitat discontinuity seems to exist between the East and the West of Panama, while
the Atlantic and Pacific slopes of the Cordillera Central are well known to have contrasted
precipitation profiles ([Pyke et al., 2001]). Actually, in the Heliconius clade, only some rare
documented cases exist reporting macrohabitat differences to be causing genetic or phenotypic
ruptures between parapatric races, thus playing a role in diversification ([Blum, 2002]; [Arias
et al., 2008]). On the other hand, the races studied here are not known to show any kind
of intrinsic genomic incompatibilities, the hybrids being completely interfertile ([Huber et al.,
2015]). Accordingly, to date, no cases of hybrid sterility have been reported between Heliconius
parapatric subspecies. Overall, here we demonstrate the central role of wing colour pattern
genes in shaping divergence at early stages of speciation in the silvaniform clade, extending
over the work done so far in other clades and other types of wing patterns within the genus
Heliconius. Ecological data are needed to understand other factors implicated at the beginning
of speciation in the clade and their genetic underpinnings, which would also contribute to make
the functional link to the observed genomic islands of divergence.
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Table 2.3 – Number of courtship events directed toward H. hecale melicerta (melicerta) and H. hecale
zuleika (zuleika) female wing models by males of both species (N = 31melicerta andN = 32 zuleika)

Male Female Male Female
melicerta zuleika melicerta zuleika

melicerta 1 5 3 zuleika 1 14 6
melicerta 2 8 16 zuleika 2 32 22
melicerta 3 18 14 zuleika 3 11 13
melicerta 4 16 18 zuleika 4 2 5
melicerta 5 39 29 zuleika 5 1 10
melicerta 6 51 37 zuleika 6 16 19
melicerta 7 31 12 zuleika 7 8 14
melicerta 8 32 16 zuleika 8 7 10
melicerta 9 44 26 zuleika 9 8 13
melicerta 10 31 21 zuleika 10 22 24
melicerta 11 22 26 zuleika 11 5 8
melicerta 12 13 11 zuleika 12 10 21
melicerta 13 9 10 zuleika 13 9 7
melicerta 14 11 13 zuleika 14 1 2
melicerta 15 16 21 zuleika 15 4 7
melicerta 16 15 13 zuleika 16 27 23
melicerta 17 15 6 zuleika 17 13 16
melicerta 18 31 26 zuleika 18 20 25
melicerta 19 22 18 zuleika 19 4 7
melicerta 20 20 12 zuleika 20 15 12
melicerta 21 43 27 zuleika 21 6 5
melicerta 22 40 22 zuleika 22 14 17
melicerta 23 52 35 zuleika 23 9 10
melicerta 24 39 20 zuleika 24 9 13
melicerta 25 34 24 zuleika 25 16 19
melicerta 26 53 25 zuleika 26 7 3
melicerta 27 21 20 zuleika 27 36 37
melicerta 28 27 14 zuleika 28 49 45
melicerta 29 17 14 zuleika 29 18 22
melicerta 30 55 50 zuleika 30 9 6
melicerta 31 7 9 zuleika 31 20 14

zuleika 32 28 28
Total 837 608 Total 422 455

Average per male 27.00 19.61 Average per male 13.61 14.68
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2.5.2 Supplementary figures

Figure 2.8 – Genome-wide differentiation (Fst) between H. hecale zuleika and H. h. melicerta
and nucleotide diversity (Pi or π) of both races. Statistics were calculated for overlapping 20-kb
windows with increasing steps of 5kb. Chromosomes are indicated on the X-axis with alternating
gray and white vertical bands. The genomic threshold for a given plotted statistic is represented as
a horizontal solid line. The position of the three wing colour loci is indicated by vertical arrows,
with the name of the identified causal genes or candidate genes in brackets.
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Abstract
Characterising genetic exchange between lineages at different stages of the speciation con-

tinuum is important to understand the evolutionary history of reproductive isolation. Heliconius
butterflies have undergone an adaptive radiation in wing colour patterns as a result of natural
selection for local mimicry and are also now well known for assortative mating based on wing
pattern. Because of the double effect of wing pattern shifts on sexual isolation and on selection
against non-mimetic hybrids, wing patterns are often considered “magic traits” acting against hy-
bridisation and facilitating speciation. Here, we investigate the relative importance of wing pat-
tern and chemical differentiation in determining hybridisation between closely-related species
H. hecale and H. ismenius in geographic regions where they are mimetic and regions where
they are not. We test for higher signatures of genomic introgression where species share wing
patterns, but show that the genomic landscape of differentiation is similar in both geographic
regions. Nevertheless, we show that major wing pattern alleles still appear to be introgressed
between co-mimics, suggesting a key role for adaptive introgression in the context of mimicry
evolution, but not resulting in a more permeable species barrier. This, and behavioural assays
suggest that other cues are important in determining strong sexual isolation. We test for chem-
ical differentiation between species and identify important differences in putative pheromones
which we hypothesise mediate mate choice and the maintenance of species differences. Our re-
sults show that evidence for strong nucleotide differentiation and clear adaptive introgression at
wing pattern loci may be partly misleading about their functional role in ecological speciation.
In a clade where assortative mating is readily triggered by wing pattern differences, our results
show that this alone may not lead to speciation and that the accumulation of other barriers to
gene flow may be important in the completion of speciation.

3.1 Introduction
Few concepts have been as controversial in the field of evolutionary biology as the species

concept. Nevertheless, it underlies our understanding of life diversification and more specifi-
cally, of the speciation process. Mayr’s depiction of the living world as discrete clusters of repro-
ductively isolated entities called species, has widely been substituted by the idea that distinct
species are characterised by substantial but incomplete reproductive isolation ([Coyne and Orr,
2004]). However, despite the permeability in their boundaries, species are still discrete entities
that can be distinguished on a morphological, genetic, ecological and/or behavioural basis (e.g.
[Noor et al., 2000]; [Saint‐Laurent et al., 2003]; [Kraus et al., 2012]). This relaxed biological
species concept allows seeing speciation as a continuous process where divergence accumulates
in different ways including neutral divergence, local adaptation and coevolution, with intro-
gressive hybridisation occurring inevitably throughout most speciation events, excepting cases
of instantaneous or strictly allopatric speciation. Although a consensus exists now about the im-
portance of hybridisation on diversification ([Stebbins, 1959]; [Arnold, 1992]; [Dowling et al.,
1997]; [Seehausen, 2004]; [Barton, 2013]; [Abbott et al., 2013]), understanding how differ-
ences between populations can accumulate and how the species boundaries can be kept in spite
of the homogenising effect of gene flow remains largely unsolved.
Complete reproductive isolation is not a requirement for diversification and not even for

speciation to be achieved. However, divergence and speciation necessarily involve acquiring
reproductive barriers, which are features able to decrease gene flow between lineages. Isolating
barriers cumulate and/or get stronger with the advancement of the speciation process ([Coyne
and Orr, 2004]), and this actually determines the gradual nature of this process. Following
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Seehausen et al. ([Seehausen et al., 2014]), reproductive isolation can be conveniently classified
into extrinsic post-zygotic isolation (resulting from divergent ecological selection and depending
on the interaction with the environment), intrinsic post-zygotic isolation (deriving from genetic
incompatibilities) and pre-zygotic isolation (responding to the effects of divergent mate choice,
habitat preference, reproductive timing and gametic incompatibility). How these isolating
mechanisms evolve and accumulate, and what is the relative importance of given barriers in
relation to others, are questions that need to be tackled in order to understand the process of
divergence with gene flow. Also, pinpointing traits that actually or potentially prevent gene
flow between coexisting lineages helps understanding biological diversification. Although the
barriers we detect at present are not necessarily the ones that were implicated in the initial
reduction of gene flow between populations, and although their current importance may distort
their historical importance during the speciation process ([Coyne and Orr, 2004]), they still
inform about the evolution of reproductive isolation between taxa.
In recent years, the emerging fields of speciation genomics and population genomics have

allowed the investigation of the genetic underpinnings of diversification with gene flow. Namely
the search for barrier loci (i.e. loci underlying traits involved in reproductive isolation) and
the more broad exploration of the genomic architecture of divergence (i.e. the number, size
and distribution of the most divergent regions), even in non-model taxa ([Hohenlohe et al.,
2010]; [Lawniczak et al., 2010]; [Ellegren et al., 2012]; [Kronforst et al., 2013]; [Seehausen
et al., 2014]). Also, the possibility of evaluating the importance of genetic exchange in
the evolutionary history of differentiating populations and lineages at different stages of the
speciation continuum, has also been enhanced by genomics. For instance, in butterflies of the
neotropical genusHeliconius, [Martin et al., 2013] found that gene flow has persisted throughout
the∼ 2million years of divergence between sympatric sister species H. melpomene and H. cydno.
Currently, across the range of those two species, a high fraction of the genome clusters by
geography rather than by species, showing rampant admixture. Nevertheless, H. melpomene
and H. cydno remain “good” species, with distinct ecologies and strong barriers to gene flow,
including both pre- and post-zygotic isolation ([Jiggins et al., 2001]; [Naisbit et al., 2002];
[Merrill et al., 2012]). These results confirm pervasive gene flow between diverging species
despite the rarity of hybrids in nature ([Gilbert, 2003]; [Bull et al., 2006]; [Kronforst et al.,
2006b]; [Heliconius Genome Consortium, 2012]). Heliconius butterflies hence provide a great
study system to investigate how divergence proceeds in presence of gene flow.

Heliconius butterflies have undergone a recent adaptive radiation in wing colour patterns as
a result of natural selection for local mimicry. In this and other adaptive radiations, rapid
diversification was proposed to be associated with high rates of hybridisation ([Seehausen,
2004]). Hybridisation would play a creative role by favouring the generation of genetic
diversity and enhancing the response to selection. In Heliconius, colourful wing patterns serve
as warning signals of their unpalatability to predators that learn the appearance of good versus
defended prey. Warning patterns are often shared locally by several toxic species, an adaptive
convergence called Müllerian mimicry. Hybrid intermediates tend to bear non mimetic patterns
which are under stronger risk of attack than parental forms ([Merrill et al., 2012]), which
represents an extrinsic post-zygotic barrier to gene flow. Moreover, wing patterns are involved
in male-operated mate choice, with males preferentially courting females carrying their own
wing colour pattern. Assortative mating based on wing pattern was proposed to be important
in the speciation between H. melpomene and H. cydno, or H. erato and H. himera ([Mallet et al.,
1998b]; [Jiggins et al., 2001]), but also operates between geographic races of H. melpomene
([Jiggins et al., 2004]; [Merrill et al., 2011a]). Wing coloration differences therefore also
represent a pre-zygotic isolation barrier. The contribution of female choice based on wing
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coloration is largely unknown (but see [Boyko, 2005]). Also, the role of chemical signals as
pre-zygotic isolating factors promoting diversification and speciation in Heliconius butterflies
has been until recently virtually unexplored in the genus ([Mérot et al., 2015]; [Estrada
et al., 2011]), despite its widespread importance in several species of Lepidoptera, where it
is implicated in intraspecific and interspecific communication as well as in sexual selection
([Vane-Wright and Boppre, 1993]; [Millar, 2000]; [Jurenka et al., 2003]; [Schulz et al., 2008];
[Nieberding et al., 2008]).
As a consequence of the combination of local convergence for mimicry and broad-scale geo-

graphic divergence, Heliconius butterflies represent a rich array of phenotypically differentiated
lineages spanning the speciation continuum from polymorphic populations to parapatric races,
and to fully isolated species in sympatry. Assortative mating based on wing patterns increases
throughout this continuum ([Merrill et al., 2011a]). Genomic surveys of differentiation among
Heliconius species and subspecies have given insights into the extent of gene flow, and into the
rate and dynamics of genomic divergence during speciation ([Nadeau et al., 2012], [Nadeau
et al., 2013]; [Martin et al., 2013]; [Kronforst et al., 2013]) motivating further research on how
genomic divergence is built through time.
Here, we investigate whether introgressive hybridisation is common throughout the genus

Heliconius. We focus on closely-related species Heliconius hecale and H. ismenius, which diverged
∼ 3 million years ago ([Kozak et al., 2015]) and whose distributions overlap in the northwest
of South America and the south of Central America. This allows us to evaluate gene flow
at a putatively more advanced stage in speciation than previously reported. H. hecale and
H. ismenius belong to the so-called silvaniform clade in which species mostly participate in
“tiger-patterned” mimicry rings with members of other butterfly families, especially Danainae
and Arctiidae. Whole genome resequencing complements previous work on early stages of
divergence in the genus, and allows exploring how the accumulation of reproductive isolation
accumulates through the speciation process.
By playing a role in survival and in mate choice, mimicry shifts may favour speciation

([Jiggins et al., 2001]; [Mallet, 2010]) and sister species often belong to distinct mimicry rings
(but see [Brower, 1996]; [Giraldo et al., 2008]; [Mérot et al., 2013]). However, closely-related
species H. hecale and H. ismenius share the same wing patterns in certain parts of their range. In
eastern Panama, western Colombia and Venezuela H. h. melicerta and H. i. boulleti are extremely
similar and join the same mimicry ring with many other species. In contrast, in western Panama,
the two species (H. h. zuleika and H. i. clarescens) have distinct patterns, each one joining a
distinct mimicry ring. Here, based on the prediction that wing coloration differences should
not operate as barriers to gene flow, we use behavioural, chemical and genomic approaches to
test whether species boundaries are more permeable to gene flow where the two species share
the same wing pattern, and ask which recognition cues may be operating in keeping species
separate.

3.2 Materials and methods
3.2.1 Specimens for genomics

18 specimens of theH. hecale andH. ismeniuswere collected from two populations in Panama
(Figure 3.1 and Table 3.2). These species are excellent co-mimics of each other In Eastern
Panama (subspecies H. h. melicerta and H. i. boulleti), but display distinct patterns in Western
Panama where they join different mimicry rings (subspecies H. h. zuleika and H. i. clarescens).
Three to five specimens of each subspecies were sampled from Darién (East of Panama) and
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Figure 3.1 – Distribution (shaded areas) and sampling localities (circles) of the subspecies of
Heliconius hecale and H. ismenius involved in this study. The non mimetic pair of races on the
left (H. hecale zuleika and H. ismenius clarescens) was sampled from the locality displayed as a black
circle (Chiriquí, West of Panama). The mimetic pair of races on the right was sampled from two
populations shown in red (Colón and Darién, Center and East of Panama, respectively). A number of
specimens per subspecies (in brackets) were sampled in the populations indicated by a broken line
and used for whole-genome resequencing. The butterflies for the stocks (for behavioral experiments
and chemical analyses) were collected in the three localities.

near David, Chiriquí (West of Panama) (Figure 3.1). Bodies were preserved in a NaCl-saturated
DMSO solution and wings in paper envelopes for phenotypic analysis.

3.2.2 Butterflies collection and rearing
For behavioural and chemical data we obtained butterflies of the subspecies H. hecale

melicerta and H. ismenius boulleti from Darién (East of Panama) and from around Gamboa, Colón
(Central Panama), and individuals of H. hecale zuleika from Chiriquí (Figure 3.1). Stocks of
these races were reared in cages of 2 × 2 × 2m at the Smithsonian Tropical Research Institute
insectaries in Gamboa, Panama. Passiflora plants were used as oviposition and larval hostplants,
and Lantana sp., Psychotria sp., Gurania sp. and Psiguria sp. were used as adult food plants.
Artificial solution of sugar and pollen was provided as a nutritional complement.

3.2.3 Whole-genome resequencing and bioinformatics analysis
DNAwas isolated from the preserved bodies using the DNeasy Blood and Tissue Kit (Qiagen).

Separate Illumina paired-end libraries were generated according to the manufacturer’s protocol
(Illumina Inc.). Each library was shotgun sequenced to an average coverage of ∼ 25× on
an Illumina Hi-Seq 2000 with 2 × 100-base read length. Seven samples belonging to the H.
melpomene clade ([Martin et al., 2013]) were used as an outgroup (Table 3.2). Quality-filtered
sequence reads were mapped to the reference genome scaffolds of H. melpomene version 1.1
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([Heliconius Genome Consortium, 2012]) using Stampy v1.0.17 ([Lunter and Goodson, 2011])
with default parameters except for setting the substitution rate to 0.05 SAM/BAMfile conversion,
analysis, and filtering were performed using SAMtools v0.1.19 ([Li et al., 2009]) and Picard Tools
v1.107 (http://picard.sourceforge.net). PCR-duplicate reads were removed using Picard
Tools v1.107. Local realignment around indels was performed using the Genome Analysis Tool
Kit (GATK) v2.8-1 ([DePristo et al., 2011]). Genotypes were called across all individuals using a
multiallelic calling function in GATK v2.8-1with an expected heterozygosity of 0.015. A dataset
of high quality genotypes for biallelic sites having> 5× coverage in> 80%of the samples,> 30
genotype quality (GQ) and > 40 mapping quality (MQ) was obtained and used for subsequent
analyses. GATK was used for these filtering steps. A subset of unlinked sites, called the trimmed
dataset hereafter (24513 SNPs), was obtained from the dataset containing the 18 samples, by
picking one variable site every ∼ 1kb. For most comparative analyses, however, we used a
subset of 12 samples (3 samples of each studied race having higher coverage, which we called
the restricted dataset; see Table 3.2) to minimise possible biases due to the unequal number of
re-sequenced genomes analysed. The restricted dataset consisted of ∼ 3.2 millions high quality
SNPs.

3.2.4 Statistical tests for interspecific gene flow
Three distinct and complementary analyses were performed to test for genome-wide gene

flow between species H. hecale and H. ismenius as a whole, between the pair of co-mimic races
and between the pair of non-mimetic races. First, we tested for genetic admixture between the
individuals of the two species by applying the multilocus Bayesian clustering software Structure
v.2.3.4 ([Pritchard et al., 2000]) on the trimmed dataset. Admixture analyses were performed
between all 10 hecale and 8 ismenius samples, and between both pairs of sympatric races (H.
hecale melicerta vs. H. ismenius boulleti and H. hecale zuleika vs. H. ismenius clarescens). We used
an initial run with K = 1 to estimate the allele frequency distribution parameter,λ. Next, we
ran short clustering runs (1000 burn-in, 10000 data collection) with the estimated value of λ,
for different numbers of clusters (K = 2− 6), ancestry type (with vs. without admixture) and
allele frequency estimation (correlated vs. independent). Since the Markov chain convergence
was achieved with the preliminary number of updates and since no important differences were
observed between the tested sets of models, our long runs consisted of 10000 updates of the
chain after an initial burn-in of 10000 on K = 2− 4 clusters, using an admixture model and a
correlated allele frequency estimation. For each tested set of parameters, 3 iterations were run.
Second, we tested for genetic differentiation between the races in sympatry using estimates
of the fixation index, Fst ([Weir and Cockerham, 1984]), and average pairwise nucleotide
divergence, dXY . For this and all analyses to be described next, we used the restricted dataset.
Fst values were calculated for non-overlapping windows across the genome using the VCFtools
package ([Danecek et al., 2011]). Comparisons between the sympatric races of both species
were contrasted to intraspecific comparisons. Fst is a relative measure of differentiation and is
influenced by diversity within species. In contrast, dXY is an absolute measure of divergence.
We estimated dXY for non-overlapping windows on the 141 longest scaffolds, covering a total
of ∼ 1/3 of the genome. We also estimated genome-wide diversity (π or Pi) and Tajima’s D
([Tajima, 1989]) for each window using VCFtools. Finally, we compared the extent of gene
flow between the pairs of sympatric races using a method that relies on the relative abundance
of alternative biallelic polymorphisms, named “ABBAs” and “BABAs” ([Green et al., 2010];
[Durand et al., 2011]; see Figure 3.4). Briefly, given three taxa P1, P2, P3, where P1 and P2
are sister taxa, and an outgroup O (topology [(P1,P2),P3],O), denoting A the ancestral state

http://picard.sourceforge.net


3.2. Materials and methods 135

of a polymorphism and B the derived allele, we look for positions retaining a polymorphism
in the crown group. Sites showing the pattern AABA, ABAA, BAAA and BBAA are sorted by
lineage, and cannot inform on putative gene flow; in contrast sites showing ABBA or BABA
denote an incongruent lineage sorting. Ancestral polymorphism may be retained in balanced
proportions between ABBAs and BABAs, while an imbalance is expected with gene flow between
P3 and either P1 or P2, posterior to the split of P1 an P2. Alternatively, an excess of ABBAs
reflects a higher gene flow between P3 and P1. Here we carried out this test using two
distinct configurations allowing assessing gene flow between the co-mimics H. hecale melicerta
and H. ismenius boulleti (top of Figure 3.4A) on the one hand, and between the non mimetic
pair H. hecale zuleika and H. ismenius clarescens on the other hand (bottom of Figure 3.4A).
ABBA and BABA patterns were quantified throughout the genome in non-overlapping windows.
We compared these patterns by estimating two statistics, Patterson’s D ([Green et al., 2010];
[Durand et al., 2011]), based on allele frequencies at each variable site, and f ([Green et al.,
2010], modified by [Martin et al., 2013]), reflecting the fraction of the genome that has been
shared. A 1Mb block jack-knifing approach was implemented to calculate themean and variance
of D and f, and to test whether D differed significantly from zero. For the dXY estimation, ABBA-
BABA counts and comparisons, we used custom scripts developed by [Martin et al., 2015].

3.2.5 Courtship description
Videos of the courting and mating behaviour of H. hecale butterflies were taken until mating

happened (successful courtship,N = 4) or until at least one whole sequence had been registered
(unsuccessful courtships, N = 13). These were used to define the sequence of behaviours
and their relative importance in courtship. The behaviours that were always recorded along
the entire sequence (starting with localization and ending with success or female rejection) were
referred to as main events. We called minor events behaviours that were less conspicuous but
linked to the main events, and therefore always present in the courtship sequence. Finally, we
described atypical events rarely repeated across replicates. The classification of the events of
courtship in H. hecale has resulted from the multiple behaviour experiments performed in this
and on previous studies concerning one other species in the genus ([Klein and Araújo, 2010])
and other species in the subfamily Heliconiinae ([Crane, 1955], [Crane, 1957]; [Rutowski and
Schaefer, 1984]; [Mega and Araújo, 2010]).

3.2.6 Analysis of interspecific male-female encounters
To explore the signals involved in species recognition between H. hecale melicerta and H.

ismenius boulleti, we performed no-choice heterospecific encounter experiments. Three mature
males of one species were put in a 2× 2× 2m cage with one newly emerged (a few hours old)
female of the other species. Fifteen-minute videos were taken to register all male courtship
events and female response. Nine videos for heterospecific encounters involving H. hecale
melicerta males and 7 videos involving H. ismenius bouletti males were analysed to register the
number main courtship events occurring. Homospecific no-choice trials were run as control
using H. hecale (N = 24). The total number of events in each main courtship step was recorded
during 15 minutes of observation. The intraspecific trials were slightly different from the
interspecific experiments, since they involved two males and two females of each of the two
races H. h. melicerta and H. h. zuleika. Thus, these two types of experiments are not properly
comparable against each other in terms of the number of events recorded, but they still provide
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us with a good understanding of the signals that may be important for species recognition in
our study species.

3.2.7 Male choice using female wings models
To determine the importance of female wing cues in eliciting courtship in H. hecale melicerta

and H. ismenius boulleti males, we performed choice courtship experiments where males of one
species were presented with female wing models of both species. We registered localization
events (short approaches of males to models) and hovering (fast wing movement and nearly
stationary flight next to the models for more than 3 seconds) separately. Several males reared
to sexual maturity in the insectaries or collected in the field were tested on different days to
obtain independent behavioural registrations for each male (i.e. technical replicates). A total
of 42 H. h. melicerta and 35 H. i. boulleti were characterised by 3 registrations, plus 4 H. h.
melicerta and 3 H. i. boulleti males which had only two registrations each. Models were made of
real unwashed female wings, connected to a plastic wire and moved in a fluttering motion inside
a 2×2×2m cage (used device: Butterfly 2000, Adriana Tapia). Courting events were registered
during 5 minutes, inverting models in the middle. The relative probability of males courting
boulleti female models rather than melicerta models was estimated using a likelihood approach
([Edwards, 1972]; [Jiggins et al., 2001]). Localization and hovering were analysed separately.
The probability of courtship by male y towards melicerta wings (Pymel) and the total number
of events of male x directed towards boulleti models (nxbou) and to melicerta models (nxmel),
in addition to the probability of courting melicerta wings by male y (Pymel), were included in
the likelihood function as follows:

ln(L) = Σnxbou ln(Pymel) + nxmel ln(1− Pymel)
The solver option in Excel (Microsoft) was used to estimate the probabilities of male courtship
by numerically searching for values of Pymel that maximized ln(L). The support limits
(asymptotically equivalent to 95% confidence intervals) were assessed by looking for values
that decreased ln(L) by two units ([Edwards, 1972]). To compare courtship across species, we
compared two alternative models, one with equal relative probabilities (Pmel = Pbou) and
one with probabilities calculated separately for each species (Pmel ̸= Pbou). Comparison was
performed by a likelihood ratio test assuming a χ2-distribution with one degree of freedom for
the test statistic G = 2∆ ln(L).

3.2.8 Testing for female choice based on colour in H. hecale
To assess whether visual cues are important in mating acceptance by Heliconius females, we

performed experiments involving a virgin H. hecale female (subspecies melicerta or zuleika) and
two mature males (at least 5 days old) of their own subspecies with two different colouration
treatments (Figure 3.8B). Treated males were painted with black ink, using a Sharpie pen, to
cover the white and yellow patches of dorsal and ventral forewings, following Kemp ([Kemp,
2007]). Shammales were used as controls and were painted on the black region of the forewing,
covering a similar surface as for treated males but avoiding pattern modification. Experiments
were run in 1×2×2m cages. In this case females were over one day old, since older females are
more active and may be better able to reject courting males than recently emerged females. A
total of 26 trials were performed (13 involving H. h. zuleika females and 13 involving melicerta
females) resulting in 20 successful courtships. Direct observation of sexual behaviour was
carried out until mating occurred or for a maximum period of 3 hours, and all main courting
events were registered.
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3.2.9 Chemical analyses
To evaluate chemical signalling differences between H. hecale melicerta and H. ismenius

boulleti, chemical compounds were extracted from three different tissues. The wing regions
where forewing and hindwing overlap (hereafter denoted OW), and male abdominal glands
(male claspers, C) have been proposed to contain androconia (the glands for the production
of male pheromones) and to be important in the release of volatile signals by Heliconius males
([Emsley, 1963]; [Brown, 1981]; [Schulz et al., 2008]; [Estrada et al., 2011]). Our description
of courtship behaviour suggest they might have a similar role in H. hecale and H. ismenius.
Abdominal glands from virgin females (G hereafter) were also analysed. A third tissue, the
cuticule of the body close to the base of the wings (B), was analysed because of the presence
of small bristles which might be involved in the production of chemical signals. Tissues from
3 − 7 individuals were analysed separately for females and mature males of both species. All
extractions were done right after sacrificing the individuals. Pieces of tissue were immersed
into 130− 200 µl of hexane containing dodecane 100 ng/µl as internal standard. Suitable glass
vials were used and the extractions were not stopped. Elution samples were analysed with gas
chromatography coupled to mass spectrometry (GC-MS) with a Bruker Autosampler SCION SQ
436-GC. We used a non-polar Rtx-5 MS fused silica capillary column (0.32 I.D., 30 m long, 0.25
µm thick film) and helium as the gas carrier. Volumes of 0.5 µl were injected in a split-less
mode with the injector temperature at 250 degreeCelsius. We used peak area as a measure of a
compound’s abundance relative to the concentration of dodecane in the sample, fixing the latter
to 100%. Peaks that could not be quantified because of their low concentration were treated
as missing data for a given extract. Since nothing is known about the sensitivity of chemical
receptors in these species of butterflies, we refrained from excluding low-concentration peaks
from our descriptions. Quantification values were log-transformed [log10(x+1)] to avoid losing
information when comparing peaks differing importantly in abundance, as described by [Lecocq
et al., 2013].

3.2.10 Statistical analysis of chemical data
To allow for a general visual description of the chemical similarities and differences between

species and sexes, we generated heatmap-like graphs on the corrected concentration values
of the distinct peaks in the chemical blends of each tissue separately, using Matlab R2012a
Student Version. Since chemical bouquets may be perceived as composite signals, we performed
multivariate analysis on the concentration of all compounds present in each tissue separately,
where each compound is treated as a variable. We analysed the data of both species and
sexes together on the one hand, and separating by sex on the other hand. Statistical analyses
were performed in R 3.0.2 (www.r-project.org). We visualised the compositional similarity
between the chemical cocktails by performing non-supervised non-metric multidimensional
scaling (NMDS) ordination implemented in the vegan, ecodist, MASS and ade4 packages in R.
Prior to NMDS, the Bray-Curtis distance matrix of the chemical composition was computed.
The appropriate number of dimensions was chosen for each dataset by plotting a “scree
diagram” (stress versus number of dimensions). The significance of chemical differences
between categories (i.e. species and sex) was assessed by a discriminant analysis on the Bray-
Curtis similarity matrix, using a permutational multivariate analysis of variance (perMANOVA;
[Anderson, 2001]) implemented in the vegan package, with 1000 permutations. Whenever
the categories were significantly different, partial least squares discriminant analysis (PLS-DA)
was applied to the dataset in order to identify variables (i.e. compounds) determining the
separation of groups and thus being most diagnostic of a given category. R packages mixOmics

www.r-project.org
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and DiscriMiner were used for this purpose. We also estimated the indval index, which gives
the probability of association between a compound and a given category. More precisely, we
computed indicator values that suggest which compounds are indicative of a given category.
For this analysis we followed [Heuskin et al., 2014], and used the indval function in the R
package labdsv. Finally, a comparison of the per-compound concentration was performed by
using a Kruskal-Wallis test coupled with a pairwise Wilcoxon rank-sum test, which p-values
were corrected for multiple testing using the Bonferroni correction. So far, only major peaks of
interest were identified by comparison of mass spectra (within the NIST library) and retention
indices with those of authentic reference samples. Retention indices (RIs) were calculated
relative to the retention times of a mix of alkane standards (C10-C26). Other peaks of interest
remain to be identified to allow performing biological assays to assess their role in species
recognition between H. hecale and H. ismenius.  

3.3 Results
3.3.1 Structure of the genomic differentiation between H. hecale and H.

ismenius
For the three datasets analysed, we found an inferred optimum of clusters of 2, suggesting

strong genetic differentiation between H. hecale and H. ismenius (Figure 3.2A). A high genome-
wide average Fst value (0.37 ± 0.11) was found between the two species. This value contrasts
with the Fst calculated between the parapatric races of any of the studied species, which
was close to zero (Figure 3.2B). Comparing the two H. hecale subspecies yielded a higher Fst
value (0.02 ± 0.07) than comparing the H. ismenius subspecies (−0.02 ± 0.06). The values
of Fst are heterogeneous along the genome (Figure 3.3). The position of the highest peaks
of differentiation is conserved among the two performed comparisons, and some of them are
located around the colour genes (shown by vertical dashed lines in Figure 3.3). However, the
peaks of differentiation are correlated with troughs of diversity throughout the genome (Figure
3.3). The overall nucleotide diversity is very low in these species (Pi = 0.007 in H. hecale
and Pi = 0.003 in H. ismenius; see Figures 3.3 and 3.12A), thus the estimated genome-wide
Fst values might also be inflated. However, we estimated a high value of genome-wide dXY

(an absolute measure of divergence) that averaged 0.04± 0.01, based on a sample of scaffolds
corresponding to ∼ 1/3 of the genome.

3.3.2 Signals of higher interspecific genetic admixture between the
mimetic pair than between the non mimetic pair were not

consistently found
We tested whether H. hecale melicerta and H. ismenius boulleti exchange genes more fre-

quently than H. h. zuleika and H. i. clarescens, given the wing pattern resemblance exist-
ing between the former pair but absent between the latter pair. We did not find strong evi-
dences supporting this hypothesis (see Figure 3.2A described above and results below). How-
ever, a slightly lower interspecific Fst distribution was observed between the mimetic pair of
races than between the non-mimetic pair (Figure 3.2B). Divergence between the co-mimics is
lower (0.432± 0.098) than between the non mimetic races (0.463± 0.098) (two-sample Z-test:
Z = −47.052, P < 2.2 × 10−16; Kolmogorov-Smirnov test: D = 0.163, P < 2.2 × 10−16;
Figure 3.2B). The Fst statistic is dependent on the allele frequency at a locus ([Jakobsson et al.,
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2013]). We observe differences in the distribution of allele frequencies (measured as genome-
wide Tajima’s D; Figure 3.12B) between the races of H. hecale. Namely, subspecies H. h. zuleika
shows a higher value of Tajima’s D than H. h. melicerta (even though the means do not differ
significantly with a two-sample Z-test: Z = O, P = 1, the density plots are significantly dis-
tinct under a Kolmogorov-Smirnov test: D = 0.083, P < 2.2 × 10−16). Thus, although the
estimated Tajima’s D values are close to zero (Figure 3.12B), the slight difference observed on
the distribution of allele frequencies between the H. hecale subspecies might be affecting the
Fst values. The difference in divergence observed between the mimetic and non-mimetic pairs
studied system is not found when estimating absolute divergence dXY values (Figure 3.2C). We
do not find such a trend neither when comparing the extent of gene flow between the two pairs
of sympatric species with an ABBA-BABA test. The Patterson’s D and f statistics calculated on
the totality of the genome did not detect an excess of ABBA sites with respect to BABA sites
in any of the two configurations in Figure 3.4A (Table 3.1). However, when looking into the
distribution of both kinds of polymorphic sites tallied across the genome, local biases could be
detected. When testing for allele sharing between the mimetic pair of races (configuration on
the top of Figure 3.4A) one particular region showed a striking excess of ABBA over BABA sites
(Figure 3.4B), close to and downstream the wing colour gene optix (Figure 3.4C). Associated to
the ABBA to BABA excess around optix, we found a decrease in the value of divergence, dXY

(Figure 3.4C).
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Figure 3.2 – Results of the genomic analyses used to test for gene flow between species H.
hecale and H. ismenius. (A) Structure analysis showing complete genetic differentiation (K = 2
and no admixture) between the two species as a whole (top), between the co-mimics H. h. melicerta
and H. i. boulleti (bottom left) and between the non mimetic races H. h. zuleika and H. i. clarescens
(bottom right). Different individuals are separated by dashed vertical lines. (B) Density plots of
pairwise Fst values for non-overlapping 25-kb windows. The mimetic races (H. h. melicerta-H. i.
boulleti) are less divergent than the non-mimetic races (H. h. zuleika-H. i. clarescens). The high
Fst values for interspecific comparisons contrast with Fst values close to zero for the intraspecific
comparisons. The H. hecale comparisons show slightly higher Fst values than the H. ismenius
comparisons. (C) Boxplots of the average pairwise nucleotide divergence (dXY ) for non-overlapping
25-kb windows. No difference is observed when contrasting the two pairs of sympatric races. Again,
divergence is more important between the H. hecale races than between the H. ismenius subspecies.
Significance codes: ∗ ∗ ∗p < 0.001, #p > 0.05.
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Table 3.1 – Genome-wide statistics derived from ABBA-BABA tests

Paa P2a P3a Patterson’s D
± standard error Z-scoreb p-valueb

f statistic (%)
± standard error

H. ismenius
clarescens

H. ismenius
boulleti

H. hecale
melicerta

−0, 004± 0, 005 −0, 735 0, 462 −0, 010± 0, 014

H. hecale
melicerta

H. hecale
zuleika

H. ismenius
clarescens

0, 003± 0, 002 1, 494 0, 135 0, 039± 0, 026

H. hecale
zuleika

H. hecale
melicerta

H. ismenius
boulleti

−0, 003± 0, 002 −1, 444 0, 149 −0, 038± 0, 026

H. ismenius
boulleti

H. ismenius
clarescens

H. hecale
zuleika

0, 005± 0, 006 0, 891 0, 373 0, 012± 0, 014

a P1, P2 and P3 represent the three populations used for the ABBA-BABA test (see Methods for
details). The first and second rows correspond to the configurations mainly tested (upper and lower
configurations in Figure 3.4A, respectively). The two lower rows are alternative ways to resolve the
comparison between the mimetic and non- mimetic pair of sympatric species
b Z-score and p-value

3.3.3 Description of the courtship behaviour of Heliconius hecale
H. hecale displays a relatively simple sequence of major behavioural units. Nevertheless, in

accordance to the results of Crane, ([Crane, 1957]) for related species, rare or small behavioural
events are quite variable, depending on the receptivity of the female. In captivity, the aerial
phase (both sexes flying) is very short and simple or absent, in contrast to its complexity in
some species in other groups of butterflies ([Tinbergen et al., 1942]; [Pliske, 1975]; [Brower,
1996]). The prolonged aerial-ground phase (male flying and female sitting) defines this species
as being patrolling, according to [Scott, 1972]. The ground-ground phase (male and female on
the surface) represents the last part of the sequence. Figure 3.5 shows fivemain events registered
in the H. hecale courtship, three involving male behaviour (localization, hovering and attempting),
female behaviour (female rejection) and both sexes behaviour (success). During localization, the
male approaches the resting female. If the male is interested in the female, he hovers above
her for several seconds (hovering) and lands besides the female to bend the tip of his abdomen
towards hers (attempting). The female can be receptive to the male or she can reject him by
adopting the mate-refusal posture ([Obara, 1964]) at any point of the male courtship. These
major behavioural units are explained in detail in the ethogram in Table 3.3, where alternative
names used by different authors are also included. Here we mainly use the nomenclature that
Nieberding et al. ([Nieberding et al., 2008]) used in their analysis of the courtship behaviour of
Bicyclus anynana (Nymphalidae: Satyrinae). Table 3.3 shows the minor events recorded (short
behavioural units) and atypical events (events that happen occasionally) observed in the male
behaviour. Importantly, some atypical events started by males and implicating direct contact
between sensorial organs (antennae and legs with wings and head) were registered between
males and females. Table 3.3 contains a description of the main and minor events that involve
females only or both males and females simultaneously. The limited number of videos did not
allow us to determine the importance of the minor and atypical steps in courtship, but they are
mentioned here since they are consistently supported by previous studies. Moreover, Table 3.3
comprises a partial list of butterfly species for which the same behavioural units have been
reported.
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Figure 3.4 – Four clade ABBA-BABA test of introgression. (A) Alternative analysed configurations
tested for differential gene flow between the two parts of our study system. Namely, introgression
between the co-mimics H. h. melicerta and H. i. boulleti and among the non mimetic races H. h.
zuleika and H. i. clarescens are tested for in the configurations on top and bottom, respectively. (B)
Count of ABBA and BABA polymorphic sites (on the configuration on the top) across the genome
in non-overlapping 25-kb windows. A striking bias towards an excess of ABBAs is observed on the
optix scaffold. (C) Number of sites with ABBA and BABA patterns and average pairwise nucleotide
divergence (dXY ) across the optix scaffold. The location of gene optix is shown by an arrow. The
plotted values were calculated per 1 kb windows, moving in increments of 200bp.

Figure 3.5 – Synthetic diagram of the main steps of courting and mating behaviour of
Heliconius hecale. Successful and unsuccessful courting sequences are summarized here. Steps in
dark grey, light grey and white boxes represent male-related, female-related and male and female-
related behaviours, respectively. Female rejection can happen at any point of the series but it is more
frequent at later stages.
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Figure 3.6 – Comparison of interspecific and intraspecific male-female encounters. The
number of events in each main step of courtship is shown for interspecific trials (dashed line; H.
hecale melicerta and H. ismenius boulleti tested together, N = 16) and intraspecific trials (solid line;
only H. hecale tested, N = 24. The table and the Y -axis show the total number of events at each
behavioral unit (registered across the totality of the trials) and the number of events at each step
averaged by the number of trials, respectively.

3.3.4 Interspecific recognition between co-mimics primarily involves
short range cues

None of the interspecific male-female encounters led to mating (0 out of 16 trials; table
below Figure 3.6), whereas in 75% of the intraspecific control trials, mating occurred within
the first 15 minutes (18 out of 24 trials; table below Figure 3.6). This result highlights the fact
that the used experimental conditions were suitable for sexual behaviour leading to mating. We
observed highly distinct trends in the courtship sequence between the two types of encounters
tested (Figure 3.6). For intraspecific trials, we noticed a gradual transition between the main
steps of courtship. More precisely, 72.4% of the localization events were followed by hovering
events, and 57.6% of the hovering events elicited attempting behaviours in males. Finally, 22.5%
of attempting events led to mating. In contrast, in interspecific experiments, males repeatedly
approached the female (high number of localization events), but very few of these events were
followed by active courtship (i.e. hovering and attempting). This indicates that heterospecific
confusion is common based on long range cues, but species discrimination is very efficient
at short range. Figure 3.6 also shows that the average number of female rejection events per
trial, which encompass refusal at any point of courtship by males, is higher in inter than in
intraspecific experiments. The totality of the interspecific attempting events (N = 7), which
were exerted consistently by at least four distinct males across the three different trials, were
strongly rejected by the tested female (results not shown).
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Figure 3.7 –Male choice of H. hecale melicerta and H. ismenius boulleti between female wings
models of both species. Probabilities of approaching (A) shortly (localization) and (B) sustainedly
(hovering) the H. ismenius boulleti models, where 1 means a complete choice of boulleti models and
0 a preference for melicerta models. A total of 42 H. h. melicerta males and 35 H. i. boulleti males
were tested. Error bars show support limits equivalent to 95% confidence intervals.

3.3.5 Wing cues contribute to species recognition by males in the short
range

Males approached the homo and heterospecific female wing models indistinctly (localization
events; G = 0.002, P = 0.96; Figure 3.7A). In contrast, males of both species tended to hover
for more than 3 seconds (hovering) over conspecific than heterospecific models (G = 21.323,
P < 0.001; Figure 3.7B). In particular, H. hecale melicerta males hovered more readily than
H. i. boulleti males over conspecific models (see confidence intervals in relation to the line of
no-choice at 0.5; Figure 3.7B), showing differences in their general propensity to court.

3.3.6 Mate discrimination by H. hecale females does not rest on male
wing colour cues

Matings to the sham versus the treated male were equal, suggesting that H. hecale females
did not discriminate differently-coloured males (nsham = 10, ntreated = 10, Figure 3.8A).
Females rejected one or the other male equally across all the experiments, but rejection of
colour-modified males was more common (nsham = 59, ntreated = 78, χ2 = 2.635, P = 0.10;
Figure 3.8A). However, H. hecale zuleika females (N = 12) rejected treated males more often
than H. hecale melicerta females (nsham = 10, ntreated = 22, χ2 = 4.500, P = 0.04).

3.3.7 H. hecale melicerta and H. ismenius boulleti differ in their chemical
blends

Despite the high variance in the abundance of the peaks in the chemical cocktails both
between and within sexes and species, we were able to determine which peaks differed
consistently between the analysed categories (see Figures 3.9A, 3.10A and 3.11A). The most
important compositional differences were found for claspers (C) and overlapping wings (OW) of
males (Figures 3.9A and 3.9B, 3.10A and 3.10B). Non-supervised multivariate analyses allowed
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Figure 3.8 – Summary of the behavioural experiments to test for female choice in H. hecale
based on visual cues. (A) Total events recorded in each of the main courtship steps during 3 hours
long trials. (B) EachH. hecale female could chose between twomales of its own species and race. One
of them was treated by modifying its color pattern (yellow patterns on both sides of the forewings
blacked with Sharpie). The other male (called sham) was black-painted on the black regions of the
forewing. Only H. hecale melicerta male wings are shown here.

a good discrimination between males of the two species, and between males and females, but
could not distinguish between females of the two species (perMANOVA for glands, both sexes
together: F = 14.4, df = 24, p = 0.000; perMANOVA for wings, both sexes together:
F = 7.6, df = 17, p = 0.000; NMDS plots, Figures 3.9B and 3.10B). The composition of
claspers and wings were significantly different between males (perMANOVA for C: F = 19.6,
df = 11,p = 0.002; for W: F = 18.7, df = 10, p = 0.003) but not between females
(perMANOVA for G: F = 1.1, df = 12, p = 0.322; for W: F = 0.7, df = 6, p = 0.845).
Comparing males of the two species, intriguingly, showed that most of the variable compounds
were present in H. h. melicerta and absent in H. i. boulleti tissues, or more concentrated in the
former than in the latter (Figures 3.9A and 3.10A, Tables 3.4 and 3.5).
The definitive identification of the compounds is not available yet; therefore, a unique

numeric label for each compound is used throughout the text and is included in the first column
in Table 3.4. Nevertheless, in the heatmaps for the different tissues (Figures 3.9A, 3.10A and
3.11A), a linear numeration for the different compounds is used, whose correspondence to the
unique compound labels is shown in Table 3.4.
In H. h. melicerta claspers, β-ocimene (compound number 3, also number 3 in Figure 3.9A;

see Table 3.4) dominates the cocktail (∼ 46.9% of total), consistently with the findings of
Estrada et al. ([Estrada et al., 2011]). However, in contrast with Estrada et al. ([Estrada et al.,
2011]), this compound is present in H. i. boulleti males, although just as a trace. Contrary
to the expectations, we did not find α-ionone, previously found to be specific to H. ismenius
claspers ([Estrada et al., 2011]). We ignore whether this is related to the subspecies of H.
ismenius analysed or to differences in the conditions used among studies. Only one compound
of low concentration is exclusive to H. i. boulletimales (compound number 35, but number 33 in
Figure 3.9A; see Table 3.4) and 3 compounds are more concentrated in boulleti’s claspers than
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Figure 3.9 – Analysis of the chem-
ical composition of the abdominal
glands (C and G) of H. hecale
melicerta and H. ismenius boul-
leti. (A) Heatmap showing the log-
transformed [log10(x+1)] relative con-
centration of each compound (horizon-
tal bands) for males and females of
both species (columns). Single individ-
uals are labelled under each column.
(B) Non-metric multidimensional scal-
ing (NMDS, stress equal to 4.92) ordi-
nation of the chemical cocktails of H.
h. melicerta males (MMC) and females
(MFG), and H. i. boulleti males (BMC)
and females (BFG). Each dot represents
a sample of any of these categories. The
discrimination of the groups is signifi-
cant (perMANOVA: F = 14.4, df =
24, p = 0.000). (C) Partial least
squares discriminant analysis (PLS-DA)
based on comparisons among chemical
blends composition. A correlation cir-
cle is plotted between the compounds
(variables) (blue dots and labels) and
the components. The variables being
indicative of the groups are strongly
correlated with the groups being sepa-
rated (close to the concentric circle of
radius 1). To look for a correspondence
between the labels of the compounds in
A and C, see Table 3.4.
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in melicerta’s claspers (peaks 36, 42 and 48, corresponding to 34, 40 and 45, respectively, in
Figure 3.9A; see Table 3.4). 42 compounds differ significantly in their concentration between
the male genitalia of the two species, most being exclusive or more abundant in melicerta males
(Table 3.4). Most of these variables are located close to the concentric circle of radius 1 in
the correlation circle shown in Figure 3.9C; thus, they show a strong correlation with the
axis separating melicerta from boulleti. Moreover, the indval index pinpointed 44 compounds
(largely the same than the 42mentioned above) significantly associated with either species, but
especially withmelicertamales (Table 3.4). A total of 29 compounds were found as male-specific
(Table 3.4).
Abdominal glands (AG) of females showed only a few small peaks (Figure 3.9A and Table

3.4). Only two low concentration compounds differed between species, one being present only
in boulleti (compound number 77, but 73 in Figure 3.9A; see Table 3.4). This compound is also
exclusive to the cuticule of boulleti females (Table 3.6, but is also present on female wings of
both species (Table 3.5). The second compound is exclusive toH. h. melicerta female glands (and
male claspers of the same species) (compound number 24, but 22 in Figure 3.9A; see Table 3.4).
Nevertheless, neither compound is significantly different between species (Wilcoxon rank-sum
test) or indicative of species status (indval index; Table 3.5), possibly due to their low general
abundance.
In wing extracts, two compounds dominate the cocktails from males H. h. melicerta and are

absent or only present as traces in males H. i. boulleti (Figure 3.10A and Table 3.5). One is
the alkane heneicosane (∼ 57.1% of total; number 38, but 15 in Figure 3.10A) and the other
is presumed to be a ketone, 2−pentadecanone (∼ 7.87% of total; number 22, but 10 in Figure
3.10A). Additionally, seven other compounds are also found in higher abundance in melicerta
males (Table 3.5) and contribute to the separation of the melicerta and boulleti groups (Figure
3.10B and 3.10C). The indval index identified six compounds as indicative of melicerta males
(Table 3.5). Only two wing compounds are male-specific and one low-concentration compound
is female-specific (see Table 3.5). Female wing extracts showed fewer compounds of small
abundance, which were highly conserved between species. Only one compound was present
at very low concentration in melicerta and absent in boulleti wings, but, possibly due to its low
abundance, this difference is not significant (compound number 79, but 33 in Figure 3.10A; see
Table 3.5).
Cuticule extracts (B) have fewer compounds than the other tissues, and are highly conserved

between species and sexes (Figure 3.11A; Table 3.6). Although the NMDS plots indicate that
melicerta males segregate from the rest of the categories (Figure 3.11B), this clustering is not
significant (perMANOVA for all categories together: F = 1.6, df = 18, p = 0.132; perMANOVA
for males only: F = 1.9, df = 8, p = 0.140; perMANOVA for females only: F = 2.3, df = 9,
p = 0.008).

3.4 Discussion
3.4.1 The closely-related species Heliconius hecale and H. ismenius show

strong genome-wide differentiation
Here we have used whole-genome sequencing data to examine gene flow and differentiation

between two species, H. hecale and H. ismenius, belonging to the silvaniform radiation of
Heliconius, and to compare to other Heliconius clades. Estimates of genome-wide divergence
statistics show weak evidence of interspecific hybridisation. A genomic admixture analysis
using Structure showed complete genetic differentiation between the two silvaniform species.
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Figure 3.10 – Analysis of the chemi-
cal composition of the wings (OW)
of H. hecale melicerta and H. isme-
nius boulleti. (A) Heatmap showing
the log-transformed [log10(x+ 1)] rel-
ative concentration of each compound
(horizontal bands) for males and fe-
males of both species (columns). Sin-
gle individuals are labelled under each
column. (B) Non-metric multidimen-
sional scaling (NMDS, stress equal to
4.53) ordination of the chemical cock-
tails of H. h. melicerta males (MMOW)
and females (MFOW), and H. i. boulleti
males (BMOW) and females (BFOW).
Each dot represents a sample of any of
these categories. The discrimination of
the groups is significant (perMANOVA:
F = 7.6, df = 17, p = 0.000). (C) Par-
tial least squares discriminant analysis
(PLS-DA) based on comparisons among
chemical blends composition. A cor-
relation circle is plotted between the
compounds (variables) (blue dots and
labels) and the components. The vari-
ables being indicative of the groups are
strongly correlated with the groups be-
ing separated (close to the concentric
circle of radius 1). To look for a cor-
respondence between the labels of the
compounds in A and C, see Table 3.5.
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Figure 3.11 – Analysis of the chem-
ical composition of the cuticule in
the basis of the wings (B) of H.
hecale melicerta and H. ismenius
boulleti. (A) Heatmap showing the log-
transformed [log10(x+1)] relative con-
centration of each compound (horizon-
tal bands) for males and females of
both species (columns). Single individ-
uals are labelled under each column.
(B) Non-metric multidimensional scal-
ing (NMDS, stress equal to 4.41) ordi-
nation of the chemical cocktails of H.
h. melicerta males (MMOW) and fe-
males (MFOW), and H. i. boulleti males
(BMOW) and females (BFOW). Each dot
represents a sample of any of these
categories. The discrimination of the
groups is not significant (perMANOVA:
F = 1.6, df = 18, p = 0.132). To
look for a correspondence between the
labels of the compounds in A and the
right label of the compounds, see Table
3.6.
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Although this analysis might perform better on hyper variable markers like microsatellites,
which allow the detection of fine genetic structure variations, a study based on genome-wide
RAD-sequencing data found some extent of genetic admixture between sympatric populations
of H. melpomene and H. timareta, and H. melpomene and H. cydno, even on a limited number of
samples ([Nadeau et al., 2013]). This suggests that our analysis should be suitable to detect
important levels of gene flow when they exist, which is apparently not the case in the system
we investigate. The high genome-wide differentiation between the sympatric species studied
here is more important than between coexisting species belonging to the melpomene clade
([Martin et al., 2013]; [Kronforst et al., 2013]), but similar to the estimates between allopatric
species in that clade ([Martin et al., 2013]). These high levels of divergence were interpreted
as an absence of detectable gene flow between allopatric species H. cydno and H. timareta in
another study ([Nadeau et al., 2013]). This value of Fst might be inflated to some extent by
the low nucleotide diversity of our study species. However, the estimation of a measure of
absolute divergence (dXY , which is independent of genetic variability) on a subsample of the
genome yielded a value almost twice as that estimated between coexisting H. melpomene and
H. cydno in Costa Rica ([Kronforst et al., 2013]). Therefore, any used genetic differentiation
statistic indicates stronger genome-wide divergence between the sympatric species H. hecale
and H. ismenius than between other coexisting closely-related Heliconius species explored so
far, suggesting that strong barriers to gene flow exist between these silvaniform species, which
trigger strong genomic structure.

3.4.2 Shared wing patterns do not necessarily increase gene flow
Genomic sequencing now allows estimating the admixed portion of the genome and the

patterns of gene flow between pairs of diverging taxa. Studying three species in the melpomene
clade, [Martin et al., 2013] revealed increased shared variation in sympatry, with up to 40%
of the genome being admixed between coexisting species. Here, we also used the so-called
ABBA-BABA test ([Green et al., 2010]; [Durand et al., 2011]; [Martin et al., 2013]) to look
for evidence of gene exchange between co-mimics H. hecale melicerta and H. ismenius boulleti
relative to the admixture between the non-mimetic pair H. h. zuleika and H. i. clarescens. By
contrast to the melpomene clade ([Martin et al., 2013]), our comparisons showed no excess of
ABBA sites relative to BABA sites in any comparison, using either Patterson’s D or the f statistic,
suggesting weak and undetected or absent allele sharing in sympatry. These results, as well as
the equality of the absolute divergence (dXY ) in the two parts of our study system, appear to
reject the hypothesis of an increased rate of hybridisation and resulting gene flow when species
share the same mimicry ring.
Nonetheless, the Fst distribution was shifted towards lower values for the pair of mimetic

races compared to the non-mimetic pair. Although this trend is expected if species exchange
more genes in the area where they are mimetic, Fst is not a straightforward indicator of gene flow
as it is sensitive to demographic differences and overall levels of polymorphism. For instance,
the Fst statistic depends upon the allele frequency at a locus ([Jakobsson et al., 2013]). H.
hecale zuleika shows a higher value of Tajima’s D than H. hecale melicerta, although both values
are close to zero. We ignore so far whether a biological or a technical factor could be causing
both the slight difference in Tajima’s D observed between the H. hecale races and the shifted
estimates of interspecific Fst values.
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3.4.3 Adaptive introgression seems to have occurred at some point of
species divergence

Altogether, our analyses do not argue for a significant effect of mimicry on allele sharing
at the genome level, although adaptive introgression of some of the mimicry alleles themselves
do show the importance of occasional hybridisation in the phenotypic evolution and ecology
of those species. Namely, punctual events of introgressive hybridisation seem to have taken
place at some point between diverging H. hecale and H. ismenius lineages. One particular
genomic region, the “optix scaffold”, shows a striking excess of ABBA over BABA sites between
the mimetic races. Interestingly, this region is close to the cis-regulatory region of the wing
patterning gene optix which controls a variety of red elements on the wings of H. melpomene,
H. erato and H. cydno ([Reed et al., 2011]; [Supple et al., 2013]; [Martin et al., 2014]).
This region was recently shown to control shape variation of the black marginal band on the
hindwing of both H. hecale and H. ismenius ([Huber et al., 2015]). In particular, mimetic
races H. hecale melicerta and H. ismenius boulleti bear a recessive allele for this locus, associated
with a wide black marginal band surrounded by orange. Since shared derived mutations are
enriched among this pair of races in sympatry relative to the comparison of non-coexisting
races of the two species, similar alleles in sympatric races may reveal adaptive introgression
between them at the optix locus. Furthermore, we found a decrease in the estimate of absolute
divergence, dXY , associated to the ABBA to BABA excess around optix. Such a decrease has
been related to introgression between taxa with shared ancestry, and not to ancestral structure
([Smith and Kronforst, 2013]). Nonetheless, Martin et al. ([Martin et al., 2014]) found that a
reduction in dXY at Patterson’s D and f statistics outliers is not enough evidence of introgression,
given that these outliers actually tend to cluster in regions of low dXY . Overall, however,
our results seem to be consistent with the findings of adaptive introgression in other pairs
of Heliconius species for this colour-patterning region ([Pardo-Diaz et al., 2012]; [Heliconius
Genome Consortium, 2012]; [Smith and Kronforst, 2013]), although with distinct alleles and
distinct mimicry communities. Those results argue for a pervasive role of introgression as a
powerful mechanism to achieve mimicry perfection in pairs of closely related species.
Other major effect wing patterning loci known to segregate in H. hecale and H. ismenius do

not show evidence for introgression neither here nor in other species studied so far. In particular,
we did not observe any evidence of allele sharing in the genomic scaffold containing colour gene
WntA ([Martin et al., 2012]), which controls a phenotypic element that is similar between the
mimetic pair and also among the non-mimetic pair ([Huber et al., 2015]). We wonder whether
the evolutionary mechanisms which underlie phenotypic convergence at different loci reflect
differences in selection pressures on pattern elements themselves or intrinsic genetic differences
that make some regions of the genome more prone than others to be transferred across the
species boundaries and selected to fixation in distinct lineages of the clade. Equally, it is unclear
at this stage whether the phenotypic convergence at wing colour elements controlled by loci
other than optix may be due to parallel evolution (c.f. [Stern, 2013]) leading to similar allelic
effects in response to mimicry selection and/or to ancestral structure. These two scenarios
are not mutually exclusive, and thus it is possible that a combination of both has taken place.
Questions about the origin of wing pattern similarities between H. h. melicerta and H. i. boulleti
extend over other similarly-looking races of these species (e.g. H. hecale australis, H. ismenius
metaphorus and H. i. tilleti) and other silvaniform species (e.g. H. ethilla ethilla and H. e. claudia)
displaying a leapfrog distribution across the Neo-tropics.
Overall, our results contrast with the findings of pervasive gene flow between taxa within

the H. melpomene and H. cydno lineages ([Bull et al., 2006]; [Kronforst et al., 2006b]; [Martin
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et al., 2013]), which nevertheless show distinct ecologies (microhabitat preference, larval host
plant use, mimicry shift, assortative mating and partial hybrid sterility ([Jiggins et al., 2001];
[Naisbit et al., 2002]). Although natural hybridisation events usually occur between closely-
related species in the genus, these can also happen between non-sister species for more than 3
My after speciation (according to molecular clock dating data; [Mallet et al., 2007]). Species
H. hecale and H. ismenius have diverged over the last ∼ 3 My, which is ∼ 1 My longer than
H. melpomene and H. cydno ([Kozak et al., 2015]). Hence, we report a case where 3 My seem
to have been sufficient to erase most of the signal of admixture found in other comparisons.
The occasional hybridisation that may occur between taxa at increasing phylogenetic distances
could have genome-wide consequences only during the first 2 My which quickly disappear
thereafter, presumably due to stochastic processes such as genetic drift, but also to the build-up
and strengthening of barriers to gene flow. The accumulation of these barriers may be associated
with an acceleration of the genome-wide divergence accumulation towards later stages of the
speciation process ([Kronforst et al., 2013]). Although the relative importance of pre and
post-zygotic isolation during the investigated speciation event remains unclear, current hybrids
between H. hecale melicerta and H. ismenius boulleti are potentially viable. Fully-viable first
generation hybrids between these taxa produced by hand-pairing looked very similar toH. hecale
melicerta (non published data) suggesting they might enjoy mimicry protection and good adult
survival. Although the fertility of H. hecale×H. ismenius hybrids was not directly assessed, H.
cydno×H. ismenius crosses, which are more distantly related, do produce backcrosses in captivity
([Mallet et al., 2007]), suggesting that a similar situation could occur in our study species. In
contrast, very strong pre-zygotic isolating mechanisms may exist which impede hybridisation
and gene flow between H. hecale and H. ismenius. Our field observations during sampling
indicate that these species have distinct preferences on microhabitat (data not shown), which
may be somehow linked to larval host plant specialisation as well, consistent with previous work
on ecological speciation occurring in sympatric host races of several herbivore species of insects
([Wood and Keese, 1990]; [Via et al., 2000]; [Emelianov et al., 2001]; [Thomas et al., 2003]).
Namely, caterpillars of H. hecale feed on Passiflora vitifolia, whereas the ones of H. ismenius feed
on P. quadrangularis and P. ambigua. Moreover, as we show here, signals putatively involved in
species recognition, other than wing colour patterns, also seem to have diverged between these
species (see below).

3.4.4 A highly heterogeneous landscape of differentiation
A genome-wide sliding windows analysis of Fst between H. hecale and H. ismenius showed

that genomic differentiation was heterogeneous, with some peaks of elevated divergence arising
from an overall highly differentiated and variable genomic background. Such heterogeneity has
been explained by certain models of speciation with gene flow which are based on the idea that
the portions of the genome that confer reproductive isolation between diverging taxa exceed
neutral background expectations ([Wu, 2001]; [Feder et al., 2012]). In contrast, the majority
of the genome is believed to be affected by genetic drift and migration, and is exchanged
freely between hybridising populations. However, Fst outliers seen late in speciation, like
between our study species, do not necessarily correspond to the genomic regions influenced
by divergent selection during early phases of ecological speciation ([Via, 2009]). Instead, these
peaks could likely be the result of genetic drift. Genetic drift may have a stronger influence
on genomic structure in cases of weak effective population size, which is presumably the case
here, in particular in H. ismenius, given the extremely low nucleotide diversity of this species.
Interestingly, however, the peaks of differentiation we found were in the same genomic regions
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in the two parts of the range, supporting the idea that some of these regions may indeed underlie
variation of traits involved in adaptation and/or reproductive isolation between the two species
(irrespective of their wing patterns), and thus implicated in divergence and speciation (so-called
“speciation genes”; [Wu, 2001]). Inflated Fst values can result from a low within-species genetic
diversity ([Charlesworth, 1998]; [Cruickshank and Hahn, 2014]). Here, we indeed observed
inversed patterns of genetic differentiation and nucleotide diversity, and, notably, the peak of
Fst occurring close to optix may be attributed to the observed low local nucleotide diversity,
since absolute divergence (dXY ) is decreased at this locus. We ignore whether low diversity
in punctual genomic regions respond to low mutation rates, to purifying selective forces, or to
other causes. However, loci involved in speciation are expected to be submitted to disruptive
then purifying selection with the fixation of species-specific alleles corresponding to fitness
optima. Therefore, although misleading high observed differentiation values could result from
low nucleotide diversity alone, this low diversity could be the signal of purifying selection on
important loci for speciation, which may be associated to functional differences between the
species, like “barrier loci” implicated in early stages of speciation, and whose role in divergence
is strengthened as the speciation process proceeds.
Nucleotide diversity troughs do not only correspond to colour loci, and the heterogeneity

in divergence levels might reflect ecological adaptations other than selection for mimicry.
Belonging to the same mimicry ring does not hamper the maintenance of strong barriers
to gene flow, which could cause the putative signals of purifying and disruptive selection
seen. Such reproductive isolation factors could result from divergent ecological selection
like microhabitat preference or larval host specialisation, and from divergent mate choice,
among others. Although we suspect distinct ecological adaptations of these species based on
preliminary observations (e.g. microhabitat preference and host plant specialisation), rigorous
data will be needed to test the hypothesis of microhabitat adaptation and to understand its
footsteps in the genome. Here, we provide insights into species-specific chemical recognition
signals for assortative mating which may play an outstanding role in speciation.

3.4.5 Species recognition seems to take place at short range in males
and females

To explore species recognition betweenH. hecale melicerta andH. ismenius boulleti, we started
by describing courtship behaviour in the former species. Very few studies have characterised the
courting behaviour in Heliconius and related genera, but the species appear to display conserved
sexual behaviour ([Crane, 1957]). We characterised the courtship in H. hecale as a conserved
sequence of fivemain (conspicuous) events and severalminor (short) events, with the occasional
addition of atypical behaviours which happen sporadically.
On the basis of the good understanding of the courtship sequence, we explored the nature

and action range of the signals implicated in species recognition, in order to give insights
into some of the barriers to hybridisation which maintain two mimetic species separate. We
observed that males of both species are highly attracted to females and female wing models of
the mimetic species, showing that male-operated heterospecific confusion can happen at a long
range, which is consistent with the results of Estrada and Jiggins ([Estrada and Jiggins, 2008])
for H. melpomene and H. erato. Our results also confirm that visual signals are important signals
eliciting male courtship in Heliconius. By contrast, H. hecale females do not seem to care very
much about conspecific male coloration. Nevertheless, although females did not preferentially
mate with the wing colour controls over the colour-modifiedmales, they showed a trend to reject
colour-modified males more often. Therefore, visual cues may be important at least to some
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extent for female choice in this species, but other species-specific signals in the close range
may override the effect of the differences in colour and turn the females undiscerning when
exposed to homospecific males. A similar switch between signals (from visual to chemical cues)
has been reported in Vane-Wright and Boppre ([Vane-Wright and Boppre, 1993]) for males of
Argynnis paphia, in response to the release of a female pheromone. Although such a switch needs
to be tested between distinctly-coloured races of Heliconius, our results give insights into the
importance of short-range signals other than colour for female choice in Heliconius butterflies.
Contrary to what we found in H. hecale, male wing coloration has been reported as crucial

for female choice in several species of butterflies, both for intra and interspecific recognition
(e.g. [Robertson and Monteiro, 2005]). Importantly, Boyko ([Boyko, 2005]) found females
to choose on the basis of wing colour in H. charitonia, which is to our knowledge, the only
available data on this issue in the genus Heliconius. It has been proposed that recently emerged
females are unable to reject males and that assortative mating is likely to be operated mainly by
male choice ([Jiggins et al., 2001]). This is the reason why for the female choice experiments
we used more than one day old females. However, contrary to the expectations of no-female
choice in newly emerged females, we observed that during interspecific encounters, hours-old
females drastically rejected the few mating attempts by heterospecific males. This indicates
that even very young females exert a mate choice that has been mostly overlooked in the
Heliconius literature. A determinant role of females opposed to male confusion in species
recognition was also found in the close to identical species Leptidea sinapis and Leptidea reali
([Friberg et al., 2007]). Females (not males) are the choosing sex in all but sex-role-reversed
species or species in which both sexes make substantial investments in the offspring. Heliconius
males make little investment in their offspring, besides the transfer of a spermatophore during
copulation. Overall, these observations suggest that species discrimination takes place in the
short range for both sexes, with males and females decreasing and refusing, respectively, the
number of heterospecific short range courtship events. Also, experiments using female wing
models showed that males pursue into more advanced steps of courtship (into a closer contact
with the female wings) preferentially on their own species models, a choice that is more
accentuated in H. hecale than in H. ismenius males. These results indicate that female wings
carry at least some species-related information that is used by males in the short range for
species recognition. Several factors influence species recognition in other butterflies and might
contribute to species discrimination in the close range between the mimetic species studied
here. These encompass species-dependent courtship behaviours, wing, body or appendage
morphology, wing motion, disparity in colour or UV reflectance, minute differences in colour
pattern, and more importantly, chemical signals ([Rutowski, 1977a]; [Rutowski, 1977b]; [Vane-
Wright and Boppre, 1993]; [Fordyce et al., 2002]). Among these, the latter have been shown
to be more important than the rest in several species in view of their high evolvability ([Schulz
et al., 1993]; [Nieberding et al., 2008]). Therefore, we focused on evaluating whether these
cues differed between the studied species.

3.4.6 Chemical signals differ between the mimetic species, especially
between males

To test the hypothesis that chemical differences between H. h. melicerta and H. i. boulleti
exist both in males and in females, we compared chemical blends from distinct tissues. We found
that while males have rich and complex chemical cocktails that strongly differ between species
in the relative abundance of the compounds (significant group separation in the multivariate
space), females of both species have chemical blends which are both poor in compounds and
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similar in their composition. Although the identification of most compounds is still unachieved,
the general description of the extracts from abdominal glands and wings puts in evidence a rich
battery of compounds being apparently specific to males and particularly to H. hecale melicerta
males. Few compounds are restricted to H. i. boulletimales or more concentrated in their tissues
than in H. h. melicerta, but we ignore whether the scarcity of species-specific signals in H. i.
boulleti males is biologically relevant or if some compounds may not be detected by our assay.
Independently of this, the difference between themales of the two species is notable, particularly
concerning the chemical blends from wings and claspers. The high number of species-specific
compounds contrasts with the pair of closely related co-mimetic species H. melpomene amaryllis
and H. timareta thelxinoe ([Mérot et al., 2015]). The latter are somewhat less divergent and
have been found to hybridise and to exchange genes ([Heliconius Genome Consortium, 2012]).
This may suggest that the chemical differentiation cumulates along evolutionary time between
diverging Heliconius lineages.
Cuticular extracts from male and female bodies of both species were similar, suggesting

a conserved chemical constitution of the exoesqueleton of those parts which are presumably
not directly involved in the production or release of signals for intra and interspecific chemical
communication. This allowed us to use body extracts as a negative control, which contrasted
with the high differences in chemical blends of wings and abdominal glands. Male androconia
include modified scales in the region where wings overlap ([Emsley, 1963]; [Brown, 1981]),
and are clearly exposed, presumably facilitating the diffusion chemical signals, when the male
hovers close to the female, or when the male lands close to the female and attempts mating.
This provides evidence for the implication of wing androconia in the production and/or release
of chemical signals.
Regarding abdominal glands, H. melpomene males contain an important amount of β-

ocimene in their claspers acting as an antiaphrodisiac transferred to females during copulation
([Schulz et al., 2008]). In other species, other compounds are found in important amounts
([Estrada et al., 2011]). If major and minor compounds produced in the claspers vary among
males of different species, they can potentially be used in species discrimination. We indeed
found strong differences between the claspers’ composition of the two species. We found a
huge peak of β-ocimene in the H. hecale glands, contrasting with the trace amounts found
in H. ismenius. Several other compounds also showed qualitative and significant quantitative
differences between species. Such variation could be indicative of male species and status during
courtship, as males typically alight with claspers wide open, presumably releasing chemical
cues.
Although female species-specific compounds are largely described from moths ([Arn et al.,

1992]; [Lofstedt, 1993]; [Millar, 2000]; [Jurenka et al., 2003]), they have barely been explored
in butterflies ([Dapporto, 2007]; [Ômura and Honda, 2011]; [Heuskin et al., 2014]). In the
butterfly Argynnis paphia, female pheromones are necessary to elicit male courtship at short
range ([Magnus, 1958]). Here, three compounds found at very low concentration in female
wings and female abdominal glands varied between H. h. melicerta and H. i. boulleti, but did
not differ significantly among them. Whether these compounds play a role in male behaviour is
unknown. However, preliminary evidence suggests they could have a role in attracting males.
Indeed, abdominal gland extracts of 4 females poured onto the wings of a mature male rendered
him very attractive to the other males, and elicited active courtship lasting several minutes (data
not shown). We therefore hypothesized the presence of female cues in the abdominal glands of
females, whose specificity is unknown. The small chemical differences we foundmight therefore
contribute to a female signal together with other short distance cues such as semiochemicals
produced elsewhere or other emission patterns (e.g. temporal patterns). Chemical differences
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in the extracts from female wings are depreciable. Thus, minor wing colour pattern differences
between species might contribute to male discrimination happening in the short range, in a
similar way than in Lycaeides butterflies ([Fordyce et al., 2002]). Actually, in spite of the
minute-wise mimetic convergence between H. hecale melicerta and H. ismenius boulleti, minor
differences exist in the shape and position of the forewing yellow elements.
Overall, our study suggests some candidate chemicals which might act as important phero-

mones used in species recognition. The large chemical differences seen in males suggest that
species recognition might operate largely through female choice based on chemical signals.
Consistently, several studies have reported chemical-mediated species recognition for butterfly
females (e.g. [Vane-Wright and Boppre, 1993]; [Costanzo and Monteiro, 2007]). The impor-
tant difference in the chemical constitution between males and females gives a hint of their
implication for sex recognition too.

3.4.7 Compound volatility may not be a requirement for efficiency on
species recognition

Among the three major compounds found in the claspers and wings of H. h. melicerta males
and virtually absent inH. i. boulletimales, two are highly volatile (β-ocimene, 2-pentadecanone),
which is consistent with an air-borne pheromone function. A third coumpound (heneicosane)
has also been considered a volatile substance ([Ômura and Honda, 2011]), but it is an alkane
of 21 carbons without additional functional groups and an elevated retention time, suggesting
a rather low volatility. Nevertheless, we were able to detect it in a solid phase microextraction
(SPME) experiment in which the males did not get into contact with the filter (results not shown).
Most other compounds of minor concentration in the chemical cocktail seem to be non-volatile
based on their retention times and mass spectra. Highly volatile pheromones travelling long
distances are well known from moths ([Arn et al., 1992]), but aliphatic hydrocarbons may
also be implicated in semiochemical communication ([Roelofs and Cardé, 1971]). Butterflies
on the other hand do not exert long range chemical recognition and courtship signals happen
at a short range. Yet direct contact between sensorial organs (antennae and legs with wings
and head) occurs during courtship in Heliconius butterflies (this and previous studies: [Crane,
1955]; [Mega and Araújo, 2010]; [Klein and Araújo, 2010]), so some compounds like cuticular
hydrocarbons could act as pheromones of contact, as in other insects including Lepidoptera
([Millar, 2000]; [Jurenka et al., 2003]; [Ferveur, 2005]; [Hay-Roe et al., 2007]; [Dapporto,
2007]; [Heuskin et al., 2014]). Males also hover within a few centimeters of the female’s
head, and could mechanically disperse compounds of low volatility. A similar fast wing motion
known as wing fanning has been documented in males of the moth Bombyx mori to enhance
female volatile pheromone interception by antennae ([Loudon and Koehl, 2000]).
Our data suggest that chemical signatures may play an important role in keeping species

boundaries in Heliconius butterflies, and represent one of the several barriers to interspecific
hybridisation. However, we are still lacking the functional link between species-specific
chemical cocktails and mate choice. Therefore, future work will be needed to assess and
confirm the identity of the chemical compounds, and perform functional assays to test their
implication in species recognition. Although factors influencing mate choice are crucial in the
process of speciation with gene flow, microhabitat-related and other ecological adaptations are
also highly important and probably contributed to the divergence of H. hecale and H. ismenius
and to their advanced stage of speciation where interspecific gene flow is not really detectable
with a genomics approach. Our work allows having a view on the genomic structure at a
late stage of the speciation continuum and making comparisons throughout distinct Heliconius
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clades, contributing to answer whether speciation rates may differ across these clades. In that
sense, analysing gene flow between pairs of silvaniform species whose divergence time is alike
to the one within the melpomene clade will be highly useful. Our results ultimately contribute
to a better understanding of the process of speciation with gene flow and the forces leading
diversification in the genus Heliconius.
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3.5.2 Supplementary figures

Figure 3.12 – Density plots of nucleotide diversity (Pi or π) and Tajima’s D values for non-
overlapping 25-kb windows across the whole genome of H. hecale and. H. ismenius. boulleti: H.
ismenius boulleti; clarescens: H. ismenius clarescens; melicerta: H. hecale melicerta; zuleika: H. h. zuleika.



Chapter 4

Concluding remarks

4.1 It’s all about selection
I have investigated the genetic and ecological architecture of phenotypic diversification

in butterflies, contrasting instances of intraspecific phenotypic divergence to instances of both
interspecific phenotypic convergence and divergence. I have shown that genetic architecture
of wing coloration is at the same time conserved and flexible, and this versatility may be the
reason for its ready response to selection.

Figure 4.1 – Hypothetical representation of the
evolution of supergene P from an ancestral mul-
tilocus architecture. Boxes of different colours cor-
respond to different wing colour loci, whose pheno-
typic effect is reflected in their size relative to the
whole rectangle area. The effect size of the super-
gene is enhanced presumably due to an increase in
the strength of linkage (green dashed line) of coex-
isting genetic regions on a chromosome and to the
accumulation of punctual mutations (black dots) ly-
ing on these regions.

By mapping wing colour loci in the sil-
vaniform species Heliconius hecale and H. is-
menius and placing my results on a com-
parative framework, I confirmed theoretical
findings suggesting that the genetic architec-
ture of a trait is an evolvable rather than
a constant feature ([Lande, 1980]; [Barton,
1995]; [Coyne and Orr, 1998]; [Carter et al.,
2005]; [Hansen, 2006]). In particular, I
found that gene effect sizes, and not only
gene frequencies, are evolutionary variables
([Hansen, 2006]). Moreover, I suggested that
the evolution of the genetic architecture of
adaptive traits is associated with the regime
of selection acting on those traits. More pre-
cisely, I found that a multilocus architecture
like the one existing in the two species stud-
ied here and in most other Heliconius species
is associated with directional selection for lo-
cal mimicry, leading to local monomorphism,
which seems to be the ancestral state. In con-
trast, the single-locus (supergene) architecture
restricted to H. numata, is associated with bal-
ancing selection keeping several morphs lo-
cally and is apparently a derived feature.
These results allow giving insights into the evolution of supergenes ([Nabours, 1933]; [Ford,

1966]; [Turner, 1977]). Rather than involving the sequestering and tight-linking of genetic
regions brought together from distinct parts of the genome by translocations ([Nabours, 1933];



172 Chapter 4. Concluding remarks

[Ford, 1966]), I found evidence for the “sieve” hypothesis ([Turner, 1977]), according to which
the recruitment of loci that are already closely linked and able to produce together major
phenotypic effects gives rise to supergenes. Within the region homologous to the supergene
P in H. numata, I found more than one locus being spatially linked and having near-to-equal
size effects in H. hecale (see cartoon in Figure 4.1). Tight linkage between these co-varying loci
could have resulted from the suppression of recombination in H. numata thanks to polymorphic
inversions ([Joron et al., 2011]). Moreover, the large effect of the supergene P (Figure 4.1),
could have hypothetically resulted from the aggregation of several independent small effect
mutations (black dots in Figure 4.1) on the co-adapted loci rather than by large-effect mutations.
This would be in consistence with the observations by Martin and Orgogozo ([Martin and
Orgogozo, 2013]) on a large number of documented cases for large-effect variants. In H. hecale
and H. ismenius, I also mapped a few major effect colour loci (although with an individual
effect size that strongly contrasts with the one of the supergene P; see cartoon on Figure 4.1)
whose phenotypic effect may also be potentially fuelled by small mutations and tuned by the
small effect of several other loci for mimetic convergence (the two-step model; see Introduction;
[Turner, 1985]; [Orr, 1998]).
Understanding whether or not convergent evolution is mirrored by convergence at the

genotypic level is one of the main questions in evolutionary genetics. Attempts to answer this
question have resulted from evaluating the phenotype-genotype correspondence at functional
levels such as the genetic pathway, the gene and the nucleotide levels (Figure 8; e.g. ([Protas
et al., 2006]; [Hoekstra, 2006]; [Arendt and Reznick, 2008]; [Manceau et al., 2010]). Here,
I found that phenotypic convergence can be due to strikingly distinct genetic architectures in
terms of the gene effect sizes, which has not been, to my knowledge, explicitly reported in
literature. Namely, the multilocus and the supergene architectures are both able to control
mimetic and non-mimetic but similar wing patterns, which highlights the power of selection for
mimetic resemblance. This observation supports the idea that convergent evolution results
from the unfettered ability of natural selection in solving similar ecological problems from
different starting points (c.f. the adaptationist perspective on the evolutionary process; [Losos,
2011]). Pigmentation-related traits have been proposed to be more prone to result in convergent
evolution via different genetic basis, given their several different underlying genetic pathways
([Hoekstra, 2006]; [Manceau et al., 2010]; [Kronforst et al., 2012]), and this has been observed
in an array of instances ([Hoekstra, 2006]; [Manceau et al., 2010]). Furthermore, I also found a
lack of genetic architecture-to-phenotype determinism in the fact that tiger-patterns like those
displayed by H. hecale and H. ismenius are controlled by the exact same toolkit of wing colour
loci used by contrastingly distinct coloured species in the genus Heliconius ([Kronforst et al.,
2006a]; [Baxter et al., 2008b]; [Papa et al., 2008]). Importantly, this same toolkit can underlie
mimetic phenotypes as well, even between very distantly-related species such as H. melpomene
and H. erato. Thus, the flexibility in the phenotypic outcomes of the same loci is here shaped by
strong selective constraints for mimetic resemblance among species forming the mimicry rings.
Such versatility and evolvability in the genotype-to-phenotype map account for both phenotypic
diversification and mimetic convergence in the genus Heliconius.
Mimetic convergence cannot be explained by chance. Instead, strong selective pressures are

imposed by similar environmental conditions (i.e. mimicry rings), like other cases of phenotypic
convergence ([Losos, 1992]; [Colosimo et al., 2005]; [Rogers and Bernatchez, 2007]; [Soria-
Carrasco et al., 2014]). I have found evidence of selection acting on wing coloration at early
stages of divergence, by using cline theory with population genetics, and by studying genome-
wide patterns of divergence. Disruptive selection determining local adaptation to distinct
mimetic environments on either side of the hybrid zone between H. hecale melicerta and H.
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hecale zuleika is reflected in the clinal allele distribution at the colour loci, which contrasts
with the absence of genetic structure found elsewhere on the genome. Selective pressures
are of intermediate strength, as reflected by a hybrid zone of intermediate width relative
to other interracial hybrid zones in the genus ([Mallet, 1986]; [Blum, 2002]; [Arias et al.,
2012]). However, moderate selection is still able to keep colour patterning-related phenotypic
distinctiveness in spite of an enormous level of gene flow among the two races. The complexity
of tiger patterns and the highly speciose and variable tiger-patterned mimetic environments may
determine disruptive selection of intermediate strength on hybrid butterflies at either side of
this hybrid zone. I also found that the strength of selection on the distinct wing pattern elements
differs, which suggests that all wing colour elements are not equal in the eyes of predators, and
perhaps neither in the eyes of mates.
Recently, genome-wide molecular surveys have helped in pinpointing genomic regions

under divergent selection, and presumed to be involved in speciation (e.g. [Jones et al.,
2012]; [Lawniczak et al., 2010]; [Nadeau et al., 2012]; [Ellegren et al., 2012]; [Kronforst
et al., 2013]). Such regions, which have been called genomic islands of divergence may be
attributed to the direct action of divergent selection, but may also result from features of genome
architecture, such as local rates of recombination or local nucleotide diversity ([Carneiro et al.,
2010]; [Ellegren et al., 2012]; [Cruickshank and Hahn, 2014]). To really understand the
processes underlying heterogeneous landscapes, the statistical exploration of the data coupled
to a better knowledge on the differentiated ecological traits and their genetic basis is needed.
Combining genomic scans with candidate gene approaches may allow distinguishing regions
involved in diversification from false positives (e.g. ([Michel et al., 2010]). Here, I adopted
such a synergistic approach and found that some islands of divergence are associated with
wing colour loci at early stages of differentiation, thus showing that the regions known to
underlie ecological differences under strong disruptive selection such as wing patterns appear
as outliers of differentiation in the genome, and may therefore resist gene flow. However,
I also found peaks of differentiation around wing colour regions between well diverged co-
mimetic lineages, although genetic divergence at alleles causing similar phenotypes would
not really be expected. I hypothesize that these molecular signals, rather than being the
response to diverging selection, are the by-product of purifying selection on alleles for mimicry
resemblance, manifested in the low nucleotide diversity around the wing colour loci. I observed
a highly heterogeneous differentiation landscape in the interracial comparison, with multiple
peaks contrasting with the few peaks of divergence associated to colour loci when comparing
other pairs of colour races in Heliconius species explored so far. The increase in the number of
islands of divergence has been suggested to result from the advancement of speciation towards
later stages ([Kronforst et al., 2013]) contrasting with the classical model of speciation with
gene flow, where islands are expected to become larger instead of more numerous along this
continuum ([Feder et al., 2012]; see Introduction). Instead, the multiple peaks I observed
may result from the overall very low nucleotide diversity in H. hecale, and interpreting this as
evidence that those populations are at a more advanced stage of divergence than other pairs
of races studied so far is not straightforward. Because of the statistical issues outlined here, I
suggest that a deeper evaluation of this genomic data is lacking to be able to yield conclusions
about how genomic differentiation has evolved along the two stages of the speciation continuum
studied here. Although genomic surveys of differentiation can be highly useful to detect some
of the genomic regions controlling ecologically important traits during speciation with gene
flow, the genomic profile of differentiation can be misleading. So please, mind the gap between
differentiation outliers and speciation genes!
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4.2 Powerful, but not almighty
I have explored the process of speciation with gene flow among two pairs of taxa spanning

the speciation continuum: between parapatric races ofH. hecale, and between the two sympatric
closely-related species H. hecale and H. ismenius. By doing so, I integrated the “spyglass” and the
“magnifying glass” views on the speciation process (see Introduction or [Via, 2009]. This allows
investigating the mechanisms for the evolution of reproductive isolation along the speciation
continuum in the genus Heliconius.
Ecological speciation has been suggested to be favoured by divergent selection on ecologi-

cally important traits, in particular if these traits are also involved in assortative mating ([Bush,
1975]; [Felsenstein, 1981]; [Diehl and Bush, 1989]; [Kirkpatrick and Ravigné, 2002]; [Malausa
et al., 2005]). In Heliconius butterflies like in other model systems, “magic” traits are able to en-
hance or maintain both extrinsic post-zygotic and pre-zygotic isolation simultaneously. Several
instances exemplifying a similar situation involve divergent lineages at very early stages of spe-
ciation (e.g.; [Feder and Filchak, 1999]). A debated issue is whether single adaptive traits are
able to drive speciation to completion or if instead, speciation will never proceed if additional
features do not diverge in the process. This large and unsolved question applies to the multiple
coloured races of Heliconius butterflies.
The parapatric races of Heliconius hecale are distinguishable merely at the wing colour

pattern level, and they do not seem to have evolved other specific ecological adaptations.
In particular, no clear differences are known on macrohabitat and microhabitat preference
between the H. hecale races. Both races were indeed usually collected in similar habitats,
with open spaces formed by grasses and bushes, close to the borders of forests, or in forest
gaps (personal observation). Furthermore, larvae of the two races feed on the same host-plant
Passiflora vitifolia. These observations are in accordance to previous work; more precisely,
distinct ecological factors (e.g. larval host plant or habitat specialisation) have not been shown
to be involved in geographic race formation in the genus ([Mallet and Gilbert, 1995]; [Jiggins
et al., 1996]).
I observed that assortative mating based on wing coloration, although partial and asymmet-

ric, exists between the races of H. hecale studied here, confirming that colour-based male mate
choice is ubiquitous across the genus and evolves early in the speciation continuum. In contrast,
at advanced stages of the speciation process, wing coloration does not play an outstanding role
in keeping species boundaries. Indeed, species H. hecale and H. ismenius are mimetic and still
maintain their genomic integrity (see below). Here, I put in evidence that the evolution of diver-
gent chemical signals has occurred between these “good” sympatric species that share mimetic
patterns, and might contribute to the maintenance of the species boundaries between lineages
that would be expected to hybridise. I suggest that species recognition based on pheromones is
strongly operated by females, contrary to mate choice based on wing coloration, which is oper-
ated mainly by males. Other factors such as host plant specificity and microhabitat preference
also seem to have diverged between these species, although rigorous ecological data is lacking.
My results do not contrast with findings on other sub-clades in the genus. Shifts in coloration

have been suggested to have been important for speciation ([Mallet et al., 1998a]; [Mallet,
2010]; [Jiggins et al., 2001]; [Chamberlain et al., 2009]). For instance, sister species H.
melpomene and H. cydno were proposed to have speciated in association with a mimicry shift.
However, they have also evolved host plant specificity, microhabitat preference and partial
hybrid infertility due to genomic incompatibilities ([Jiggins et al., 2001]; [Naisbit et al., 2002]),
suggesting that colour pattern divergence may not be a sufficient driving force of speciation in
the genus.
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My results reinforce the view that wing coloration divergence is central at the beginning of
the speciation process but is presumably not enough to achieve speciation. Speciation in the
clade might instead be a multidimensional process, with distinct traits acting as reproductive
isolation barriers accumulating along the process. In accordance to this idea, there are 10-
fold more geographic colour races than species in the genus, suggesting that divergence in
wing coloration alone does not always lead to separate species. Moreover, some pairs of
geographic colour races within species have deeper genealogies than pairs of species within
the genus ([Kozak et al., 2015]), indicating that such races can be maintained at early stages of
divergence for long evolutionary periods without speciating. In the same way, the hybrid zone
between the races of H. hecale studied here could be potentially maintained indefinitely under
a stable balance between diverging selection on wing coloration and high genetic admixture if
environmental conditions remain stable.
Overall, I put my results in a comparative framework and found that similar mechanisms

operate on the diversification of the whole clade. Consistent with previous findings, I observed
that intrinsic genomic incompatibilities evolve late along this continuum. Namely, no intrinsic
genomic incompatibilities exist between the races of H. hecale. More surprisingly, hybrids
between sympatric species H. hecale and H. ismenius are viable. In contrast to these instances
of speciation with gene flow, the accumulation of barriers in allopatry seem to follow a very
different pattern. For instance, I found that the Haldane rule applies to hybrids between H.
hecale melicerta and H. hecale clearei, which are allopatric races of a same species (results not
shown). Namely, hybrid females are less viable than males and totally infertile, whereas males
are completely fertile. In contrast, “good” species in sympatry do no show hybrid unviablity.
This indicates that, as expected, strong barriers to gene flow evolve easily at the intraspecific
level when geographic isolation exists.

4.3 Pervasive hybridisation is not the rule in the genus
Ongoing gene flow at multiple levels of divergence in the genus Heliconius has been found

([Bull et al., 2006]; [Kronforst et al., 2006b]; [Martin et al., 2013]). Here, I did not find
molecular signals of introgressive hybridisation among the pair of closely related species H.
hecale and H. ismenius, despite their relatively short divergence time. This divergence time
might have been long enough for the evolution of very strong reproductive barriers to gene
flow, like the chemical signals mentioned above, which act as pre-zygotic isolation barriers. I
thus suggest that hybridisation is not ubiquitous in the genus Heliconius (consistent with the
results of [Krzysztof Kozak, pers. comm.]), although a notable number of species in the genus
hybridise, mainly in the melpomene, cydno and silvaniforms sub-clades ([Mallet et al., 2007]),
the latter of which contains the species studied here.



Appendix A
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A.1 Introduction
Les êtres vivants présentent des variations de forme et de fonction remarquables, variations

naturelles qui sont le fondement de la diversification biologique. L’origine de cette incroyable
diversité est l’une question centrale en biologie évolutive. Quelles sont les forces qui agissent sur
la diversité de couleurs, de formes, de comportements ou d’autres traits ? Comment l’évolution
module-t-elle ces traits en sélectionnant les organismes plus adaptés à l’environnement ? Et en-
fin, comment le processus d’adaptation à des conditions environnementales particulières peut-il
donner lieu aux entités discrètes que l’on nomme espèces ? Les nombreuses données disponibles
et la combinaison fructueuse de données empiriques et des modèles permet aujourd’hui d’étu-
dier ces questions de manière intégrative et d’explorer comment les gènes, les organismes et
l’environnement interagissent dans le processus d’adaptation et de diversification. Cependant,
plus de 150 ans après la publication de The Origin of Species ([Darwin, 1859]), de nombreux
aspects restent mal compris et les recherches se poursuivent pour comprendre les facteurs et les
mécanismes de l’évolution.
Pour résoudre ces questions cruciales en biologie évolutive, les hotspots de biodiversité

ont été largement étudiés car ces zones comprennent de larges groupes taxonomiques résultant
d’une radiation adaptative. Ils fournissent des exemples de choix pour tester les scénarios de
diversification. Les néotropiques sont l’une des régions les plus riches du monde en nombre
d’espèces. Ce n’est donc pas une surprise si ces régions ont inspiré de célèbres naturalistes
et permis le développement des théories de biologie évolutive. L’une des plus remarquables
provient des travaux de Henry Walter Bates et Fritz Müller à la fin du XIXème siècle ([Bates,
1862] ; [Müller, 1879]). En explorant les communautés de papillons néotropicaux, ils ont
observé que des groupes d’espèces partageaient une ressemblance frappante de patron de
couleur alaire, une ressemblance probablement pas due au hasard. Ces auteurs ont proposé
une hypothèse explicative en écho aux théories darwinienne. Ils ont suggéré que les motifs
alaires étaient utilisés comme un signal de danger pour les prédateurs (notamment les oiseaux),
et avaient une fonction de protection. Le mimétisme est cette ressemblance adaptative entre
différentes espèces d’une même région géographique, inclus des espèces comestibles mimant
des modèles toxiques (mimétisme batesien) ou plusieurs espèces toxiques partageant un patron
commun et bénéficiant mutuellement de l’apprentissage des prédateurs (mimétisme müllerien ;
voir la Figure 2 pour une description mutuelle du phénomène). Le mimétisme, observé dans
une large gamme de taxon incluant les insectes, les amphibiens, les serpents ou les millipèdes
([Brown, 1981] ; [Pfennig et al., 2001] ; [Marek and Bond, 2009] ; [Alexandrou et al., 2011] ;
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[Twomey et al., 2013]), module l’adaptation des lignées à un environnement mimétique, appelé
cercle mimétique (Figure 2).
Les papillons du genre Heliconius (tribu des Heliconiini) sont un exemple classique de

mimétisme müllerien. Ces papillons, non comestibles pour les prédateurs, sont célèbres pour
leur grande diversité de patron de couleur alaire qui avertit les prédateurs de leur toxicité. Les
multiples races géographiques de la quarantaine d’espèces de ce groupe présentent des patrons
variés et des relations mimétiques entre espèces coexistant dans une région géographique
donnée. Cette convergence phénotypique de mimétisme est soumise à de très fortes pressions
de sélection. Par ailleurs, la couleur des ailes est également impliquée dans la reconnaissance
de partenaire, ce qui renforce l’importance de ce trait pour l’isolement reproducteur. Ainsi,
les papillons du genre Heliconius apparaissent comme un modèle idéal pour l’étude de la
spéciation, offrant une opportunité unique pour comprendre comment des processus évolutifs
de convergence et de diversification agissent. Ce groupe d’espèces représente un laboratoire
naturel dans lequel nous pouvons tester les hypothèses de diversification phénotypique et de
spéciation.
En conséquence de la combinaison de la convergence locale pour le mimétisme et de la

divergence à une large échelle géographique, les papillons du genre Heliconius représentent
un éventail de lignées différentiés au niveau phénotypique, et qui couvrent le continuum de
spéciation, en partant de populations polymorphiques, passant par des races parapatriques et en
arrivant jusqu’à des espèces complètement isolées existant en sympatrie ([Nadeau et al., 2012] ;
[Martin et al., 2013] ; [Merrill et al., 2011a]). Ces dernières années, nous sommes entrés dans
l’ère de la génomique, qui fournit un éclairage nouveau et pertinent sur de nombreuses questions
de biologie évolutive. Les recherches sur la diversification d’Heliconius ne font pas exception. Le
génome d’ Heliconius melpomene a été publié il y a trois ans ([Heliconius Genome Consortium,
2012]) et a ouvert de nouvelles portes sur la combinaison des approches traditionnelles et
de la génomique pour étudier l’évolution de l’isolement reproducteur au long du continuum
de spéciation ([Nadeau et al., 2012], [Martin et al., 2013]). En particulier, cette synopse
d’approches a permit de cartographier les gènes de la couleur, explorer leurs mécanismes, les
forces de sélection auxquelles ils sont soumis, leur rôle dans la spéciation, leur contribution au
mimétisme ou leur implication dans des évènements d’introgression adaptative ([Reed et al.,
2011] ; [Pardo-Diaz et al., 2012] ; [Supple et al., 2013]). Ma thèse tire parti de cette approche
intégrée pour tester l’architecture génétique des patrons de couleur et l’implication de ces traits
dans différents stades de diversification, en mettant l’emphase sur les espèces du groupe des
sylvaniformes.
Les recherches sur Heliconius ont, jusqu’à maintenant, été centrées sur deux sous-clades

assez éloignés phylogénétiquement, melpomene et erato, qui correspondent aux deux principales
branches du genre (Figure 4 ; voir ([Beltran et al., 2007]). D’ailleurs, le cercle mimétique le
mieux connu est celui formé par les deux espèces H. melpomene et H. erato. Ces deux espèces
présentent une radiation parallèle remarquable, ayant chacune un grand nombre de patrons
mimétiques correspondant à des races géographiques qui imitent parfaitement l’autre espèce
localement (Figure 10). Une autre espèce a attiré l’attention des scientifiques, H. numata. Celle-
ci appartient au sous-groupe des sylvaniformes (ou clade « numata ») et est remarquable par son
polymorphisme local, absent ou limité chez les autres espèces, et par le contrôle de la couleur
via un supergène. La plupart des cercles mimétiques sylvaniformes incluent d’autres groupes de
papillons, principalement de la sous-famille des Danainae ou des Ithomiinae, et ces complexes
mimétiques multi-clade sont un composant important de l’écologie des néotropiques. Un patron
« tigré » typique est composé d’une mosaïque d’éléments noirs, orange et jaunes/blancs et
caractérisé la plupart des sylvaniformes (à l’exception de H. beskei et H. elevatus). Etant donné
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la complexité de ces patrons, la classification taxonomique des sylvaniformes basée sur le
patron de couleur était considérée comme l’une des plus difficiles chez les lépidoptères ([Brown,
1981]). Cette tâche a été considérablement améliorée par les travaux sur le terrain et en
insectarium montrant que des adultes très similaires pouvaient être distingués au stade larvaire
([Brown, 1976]). Aujourd’hui, dix espèces sont décrites chez les sylvaniformes et leur relation
phylogénétique sont établies dans la phylogénie la plus récente (Figures 4 et 1.4 ; voir [Kozak
et al., 2015]).
Dans ma thèse, j’étudie deux espèces de sylvaniformes peu connues, H. ismenius, l’espèce-

sœur de H. numata, et H. hecale, une espèce moyennement éloignée de H. ismenius. H. hecale
présente une large distribution de l’Amérique centrale à l’Amérique du Sud alors que H. ismenius
est limité au Nord-ouest de l’Amérique du Sud et à l’Amérique centrale, où les deux espèces
sont présentes (Figures 11 et 12). H. hecale présente une grande variation phénotypique dans
son aire de distribution, avec trente races géographiques de patron alaire distinct (Figure 12)
alors que H. ismenius comprend moins de dix sous-espèces (Figure 11). Malgré cette grande
diversité géographique, les deux espèces présentent un polymorphisme local très limité, avec
au maximum deux races coexistant dans une localité donnée (par exemple les formes blanches et
jaunes de H. hecale zuleika au Nord-ouest du Panama ou H. ismenius telchinia au Panama central).
Dans certaines zones, les races locales de H. hecale et H. ismenius appartiennent au même cercle
mimétique. En dépit de la ressemblance phénotypique des adultes, ces deux espèces peuvent être
facilement séparées sur la base de leur plante-hôte et de la morphologie larvaire. Au Panama
par exemple, H. hecale dépose généralement ses œufs sur Passiflora vitifolia alors qu’H. ismenius
utilise Passiflora quadrangularis ou P. ambigua. En insectarium, nous avons également observé
que les femelles d’H. hecale pondent des œufs séparés à l’extrémité de la plante-hôte alors que
les femelles d’H. ismenius déposent des groupes d’œufs sur des feuilles matures ou immatures, et
les larves sont semi-grégaires (voir Figure 13). La morphologie des chenilles diffère au niveau
du nombre et de la taille des lignes longitudinales de points noirs (Figure 13).
Mes travaux de thèse exploitent la synergie entre données génomiques, phénotypiques et

écologiques pour répondre aux questions posées par la biologie évolutive. En faisant le lien
entre différents niveaux d’organisation biologique, du gène aux communautés, je cherche à
comprendre comment la diversification biologique avec flux de gènes et comment les barrières
à l’hybridation évoluent et fonctionnent. Cette thèse est composée de trois chapitres, schématisés
sur la Figure 15. Je cherche à comprendre les facteurs et les mécanismes de la diversification
chez Heliconius en m’intéressant au cas d’H. hecale et H. ismenius, deux espèces aux patrons de
couleurs complexes, bien différents des espèces traditionnellement étudiées jusqu’à maintenant.
La première partie de ma thèse (Chapitre 1, en vert sur la Figure 15) s’intéresse aux bases

génétiques de la diversification biologique et pose les questions suivantes : Dans quelle mesure la
diversité phénotypique adaptative est déterminée par des architectures génétiques similaires ?
Des phénotypes convergents reposent-ils sur des architectures génétiques communes ? Quels
facteurs influencent l’évolution de l’architecture génétique des traits adaptatifs ? J’y explore le
conservatisme d’architecture génétique du patron mimétique dans le clade des sylvaniformes
afin d’offrir un aperçu général de l’évolution des architecture génétiques impliquées dans la
convergence adaptative et la diversification chez Heliconius et de fournir un nouvel angle de
compréhension de l’origine du supergène de H. numata.
Mes résultats contribuent à définir plus précisément le rôle des traits d’effet majeur, comme

les patrons de couleur. Ces trait d’effet écologique/phénotypique majeur peuvent-ils conduire
seuls à la spéciation ou la spéciation écologique est-elle plutôt un processus multidimensionnel
associés à plusieurs traits et plusieurs facteurs écologiques ? Comment des taxons inter-fertiles
restent ils phénotypiquement distincts ? Quelle est l’importance des différentes barrières impli-
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quées dans l’isolement reproducteur selon le degré de divergence des espèces ? Comment la
divergence génomique se construit-elle au cours du temps ? Dans le chapitre 2 (en orange sur
la Figure 15), j’étudie la zone hybride entre H. hecale melicerta et H. hecale zuleika au Panama
afin de tester comment les pressions de sélection agissant sur la coloration alaire contribuent à
maintenir les différences phénotypiques malgré l’existence d’un flux de gènes important à ces
premiers stades de divergence. En combinant génétique et génomique des populations, théories
des clines et des tests comportementaux sur le choix de partenaire par les mâles, je mesure le
flux de gènes entre races à l’échelle du génome, j’estime la force d’isolement reproducteur post-
zygotique extrinsèque (imposé par la prédation) et j’évalue la force d’isolement reproducteur
pré-zygotique dû aux choix des mâles.
Dans le chapitre 3 (en jaune sur la Figure 15), je teste les rôles relatifs de la couleur et

de la communication chimique en tant que barrières au flux de gènes à un stade avancé de
spéciation. J’utilise des données de génomique associées à des approches d’écologie chimique
et des expériences comportementales afin d’évaluer le flux de gènes à l’échelle du génome
entre populations naturelles d’H. hecale, de tester l’existence d’hybridation interspécifique,
d’explorer les paysages de divergence génomique entre « vraies » espèces et de rechercher si les
informations chimiques sont impliquées dans le maintien des barrières interspécifiques. Pour
cela, je contraste deux situations, l’une où H. hecale et H. ismenius partage le même patron de
couleur (l’est du Panama) et l’autre où les races géographiques de ces deux espèces ont des
patrons différents (l’ouest du Panama).

A.2 Chapitre 1. Du conservatisme et de la nouveauté dans l’architecture
génétique de l’adaptation chez les papillons du genre Heliconius

Bárbara Huber, Annabel Whibley, Yann Le Poul, Nicolas Navarro, Arnaud Martin, Simon
Baxter, Abhijeet Shah, Benoît Gilles, Thierry Wirth, W. Owen McMillan, Mathieu Joron

Arriver à faire le lien entre la diversification phénotypique et l’architecture génétique des
trais adaptatives permet de mieux comprendre les processus de diversification et de spéciation.
Pourtant, en contraste avec la grande disponibilité de données écologiques montrant l’impor-
tance de la sélection comme une force importante de la divergence des populations et de la
spéciation, des données génétiques sous-jacentes à ces processus restent peu abondantes ([Lin-
nen et al., 2009] ; [Butlin et al., 2012]). En particulier, comment la divergence phénotypique
et écologique ont lieu au niveau génétique est une question qui n’est pas encore résolue. Les
traits écologiquement importants sont souvent complexes et sont contrôlés par des groupes de
gènes et ses interactions, ce qui constitue l’architecture génétique de ces traits. Le terme archi-
tecture génétique comprend le nombre et la position génomique des gènes qui contribuent à un
trait, la taille de ses effets phénotypiques, l’interaction de ses allèles (i.e. dominance), la façon
dont les gènes interagissent pour moduler l’effet d’autres gènes (i.e. épistasie et additivité), la
contribution d’un gène à des traits différents (i.e. pléiotropie) et les interactions des gènes avec
l’environnement (i.e. épigénétique).
L’architecture génétique détermine le potentiel d’un trait à varier et en conséquence,

à évoluer (voir [Hansen, 2006]). Donc, la compréhension de l’évolvabilité d’un trait peut
être seulement achevée dans un cadre architecturel. Pourtant, une brèche existe entre la
riche théorie mathématique et la croissante masse empirique concernant la base génétique de
l’adaptation ([Orr, 2005]). En particulier, l’évaluation de comment l’architecture génétique des
traits adaptatifs influence la diversification de ces traits a été ralentie par le manque de données
empiriques.
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Au long de la dernière décennie, l’accès aux données génomiques d’haut débit ont fourni une
puissance accrue pour l’identification des cibles de la sélection, c’est-à-dire des loci, des gènes et
des variantes génétiques qui contrôlent des phénotypes adaptatifs ([Stinchcombe and Hoekstra,
2007]). Ces outils ont élargi les frontières au-delà des espèces modèles et ont permit, en
particulier, de mieux comprendre l’évolution convergente (c.f. [Arendt and Reznick, 2008]), où
le même phénotype évolue au sein de deux ou plus lignées de façon indépendante, couramment
en réponse à des défis environnementaux similaires. Des systèmes naturels montrant de la
convergence phénotypique constituent des cadres robustes pour évaluer si cette convergence est
l’issue du recrutement des mêmes ou des différents gènes ou mécanismes génétiques, permettant
ainsi une meilleure compréhension de la base moléculaire de l’évolution adaptative ([Stern,
2013]).
Le mimétisme est un exemple exceptionnel d’évolution convergente. Ici, nous avons étudié

l’évolution de l’architecture génétique sous-jacente à la diversité des motifs alaires chez Helico-
nius, un genre de papillons qui a subi une radiation adaptative pour le mimétisme basé sur les
couleurs des ailes. Les patrons alaires des Heliconius, qui son aposématiques et qui avertissent
les prédateurs sur la toxicité de ces papillons, se distinguent pas seulement par sa diversité frap-
pante, mais aussi parce que sa complexité est a une base génétique plutôt simple. Des grands
efforts ont été faits pour cartographier les gènes responsables du mimétisme dans ce clade (voir
Box 6), puisque cela peut révéler quel est le matériel brut pour l’adaptation et comment la sé-
lection agit sur ce matériel. Dans la plupart des espèces d’Heliconius étudiées jusqu’au présent,
quelques peu de loci d’effet majeur et d’hérédité mendélienne contrôlent des éléments de la
couleur alaire séparés ; des variantes de ces éléments apparaissant ensemble sur l’aile générant
un patron mimétique donné. Ce groupe de gènes, appelé le toolbox ou toolkit de la coloration
alaire, est distribué au long de 4 des 21 chromosomes qui caractérisent le genre ([Joron et al.,
2006] ; [Kronforst et al., 2006a] ; [Papa et al., 2008] ;[Kronforst et al., 2006a]). Pourtant, des
QTLs d’effet mineur ont aussi été identifiés (voir Table 1.1 pour un résumé). A ce jour, le gros
de notre connaissance de l’architecture de la variation des patrons de couleur chez Heliconius
provient de l’étude de quelques espèces montrant des éléments rouges, blancs et jaunes dans un
contexte noir ([Jiggins and McMillan, 1997] ; [Jiggins et al., 2005b] ; [Kronforst et al., 2006a] ;
[Reed et al., 2011] ; [Nadeau et al., 2014]). En revanche, la base génétique des patrons dits «
tigrés » des sylvaniformes a juste été caractérisée dans l’espèce H. numata ([Joron et al., 2006]).
Comparé à l’architecture à plusieurs loci décrite plus haut, cette espèce montre une architecture
de la couleur très différente. Notamment, un supergène, c’est-à-dire un ensemble de plusieurs
gènes fortement liés, monopolise le contrôle de la variation de la couleur alaire de cette espèce.
Les régimes de sélection pour le mimétisme sont largement déterminés par la distribution

et l’abondance des différents signaux d’avertissement montrés par les communautés locales
de proies. La plupart des espèces d’Heliconius, y incluses les espèces ayant des patrons tigrés,
montrent des races géographiques différentiées au niveau des couleurs alaires, en réponse à
la sélection directionnelle favorisant seulement un patron protégé dans une localité ([Brown,
1981]). En revanche, H. numata montre un polymorphisme locale très riche, et toutes les
populations de cette espèce abritent des formes distinctes qui miment des multiples espèces
ayant des patrons tigrés ([Brown and Benson, 1974]). Ce polymorphisme est probablement
maintenu grâce à la sélection balancée agissant au niveau local. L’hétérogénéité dans le régime
de sélection façonnant les patrons alaires chez Heliconius permet d’étudier la relation entre les
régimes de sélection et l’évolution des architectures génétiques distinctes sous-jacentes aux traits
adaptatives complexes.
Ici, nous nous sommes concentrés sur le clade des sylvaniformes et avons examiné si l’archi-

tecture génétique des motifs colorés des ailes est-elle associée avec la variation phénotypique
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elle-même ou avec le régime de sélection qui modèle cette variation. Pour achever ce but, nous
avons analysé l’hérédité de la couleur alaire chez deux espèces de sylvaniformes, notamment H.
hecale et H. ismenius. Nous avons combiné la cartographie génétique classique complémentée
par du séquençage haut débit avec des analyses multivariées de génétique quantitative et du
génotypage pour des gènes candidats. Cette combinaison d’approches nous a permis d’identifier
les régions génomiques qui contrôlent la variation de coloration alaire chez ces deux espèces et
pour explorer l’évolution des architectures génétiques dans un cadre comparatif plus large.
Nous avons commencé par faire trois types de rétrocroisements intraspécifiques entre des

races géographiques de H. hecale et H. ismenius différentes pour les motifs colorés alaires (Figure
1.1). Nous avons obtenu des familles nombreuses surtout pour les croisements de H. hecale, mais
pas tellement pour ceux concernant des races panamiennes de H. ismenius. Nous avons en suite
génotypé une partie de ces familles avec du séquençage de l’ADN associé à des sites de restriction
(RAD sequencing), et avons analysé ces données massives avec des logiciels de bioinformatique
divers. Nous avons ainsi pu reconstruire des chartes chromosomiques denses pour les trois types
de croisements faits.
Nous avons ensuite analysé la ségrégation des allèles pour les différents loci d’hérédité men-

délienne contrôlant des éléments de la couleur alaire et les avons cartographiés par cartographie
de liaison. Nous avons également utilisé des analyses morphométriques multivariées profitant
d’une description de l’espace morphométrique complet grâce à un outil développé au sein de
notre équipe (Colour Pattern Modelling tool or CPM ; [Le Poul et al., 2014] ; voir Figure 1.3).
Cette description ne repose pas sur la détection subjective des éléments variantes et permet de
visualiser des heatmaps d’association entre le génotype et le phénotype pour chaque locus de
caractères quantitatifs (QTL) séparément. En mettant en œuvre cet ensemble d’analyses, nous
avons caractérisé l’architecture génétique de la variation mimétique chez les deux espèces ex-
plorées (Figure 1.4). Nous avons trouvé une architecture à plusieurs loci de la couleur non liés
pour le contrôle des variations de couleur chez ces espèces, indiquant que l’architecture à un seul
gène (le supergène) est limitée à H. numata et est probablement un état dérivé. L’architecture à
plusieurs loci, en revanche, est répandue dans le genre et parait être ancestral.
Les régions de la couleur que nous avons cartographiés sont homologues aux composants

génétiques de la toolbox retrouvé ailleurs dans le genre (Figure 1.4). Cela indique que des
architectures génétiques conservées peuvent être à l’origine des phénotypes très différents. Aussi,
des architectures génétiques exceptionnellement distinctes (par rapport à l’effet individuel des
différents loci) peuvent être à la base des phénotypes très similaires et même mimétiques. En
conséquence, nous concluions que l’évolution de l’architecture génétique des traits adaptatifs
répond aux régimes de sélection qui façonnent la variation de ces traits, mais n’est pas lié
intrinsèquement à la variation phénotypique elle-même.

A.3 Chapitre 2. La zone d’hybridation entre deux races de Heliconius
hecale : une exploration du rôle de la couleur alaire dans des stades

précoces de diversification
Bárbara Huber, Annabel Whibley, Benjamin Rice, Francisco Delgado, Luis Murillo, Adriana

Tapia, Thierry Wirth, W. Owen McMillan, Violaine Llaurens, Mathieu Joron
Les zones d’hybridation offrent la possibilité d’étudier la spéciation et d’explorer l’évolution

des barrières d’isolement reproducteur entre des lignées divergentes mais qui s’hybrident
encore. Comment ces barrières peuvent-elles évoluer au sein d’une population essentiellement
continue et comment arrivent-elles à maintenir les limites entre des lignées divergées ? Comment
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les différents facteurs prézygotiques et postzygotiques interagissent-ils pour promouvoir la
diversification ? Et de façon plus générale, quels sont les mécanismes qui permettent que certains
traits adaptatifs mènent à la radiation d’un clade ? Ce sont des questions qui ont été largement
étudiées, mais qui restent encore sans réponse claire ([Coyne and Orr, 2004]). Même si les
mécanismes évolutifs qui maintiennent et favorisent la diversification vis-à-vis du flux de gènes
varient selon le taxon étudié, la sélection naturelle et la sélection sexuelle semblent jouer un
rôle central dans ce processus ([Coyne and Orr, 1998] ; [Schemske, 2000] ; [Schluter, 2000] ;
[Malausa et al., 2005] ; [Via, 2009]).
Les zones hybrides illustrent différents stades d’isolement reproducteur ([Barton and Hewitt,

1989] ; [Szymura and Barton, 1991] ; [Harrison, 1993] ; [Veen et al., 2001] ; leur étude a
contribué à la description de la spéciation comme étant un processus graduel et cumulatif
([Jiggins and Mallet, 2000]). La description des différents stades du continuum de spéciation
au sein d’un clade permet d’explorer comment les différents facteurs écologiques et génétiques
s’accumulent et contribuent à l’isolement reproducteur entre des populations ([Hendry et al.,
2009] ; [Powell et al., 2013]). Ici, nous nous sommes intéressés aux papillons néotropicaux du
genre Heliconius, qui illustrent des stades variés de ce continuum et qui ont subi une radiation
adaptative des couleurs des ailes qui sont aposématiques et agissent comme des signaux
d’avertissement de la toxicité de ces papillons ([Brown, 1981] ; [Mallet, 1993]). Plusieurs
espèces d’Heliconius et d’autres espèces toxiques partagent localement les mêmes patrons de
coloration alaire (i. e. mimétisme müllerien), ce qui décroit le risque de prédation et donc est à
la base de forces sélectives fortes sur la couleur alaire au niveau géographique locale.
La plupart des espèces d’Heliconius montrent une mosaïque de races parapatriques à motifs

alaires différents, chacune d’elles participant à des communautés locales de papillons toxiques
et mimétiques, ce que l’on appelle des cercles mimétiques. Des zones d’hybridation existent
entre ces races et leur largeur est surtout dépendante de la sélection disruptive agissant contre
les papillons montrant des patrons de couleur intermédiaires entre les types parentaux, qui
sont eux reconnus par les prédateurs ([Mallet, 1986] ; [Jiggins et al., 1997] ; [Blum, 2008] ;
[Arias et al., 2012] ; voir Table 2.4). Les couleurs des ailes ne sont pas seulement soumises à la
sélection disruptive forte due à la sélection contre les individus hybrides (en étant des barrières
d’isolement postzygotique ; [Merrill et al., 2012]), mais elles sont aussi essentielles comme des
signaux impliqués dans le comportement de cour (en étant des barrières pré-zygotiques au flux
de gènes ; [Jiggins et al., 2001] ; [Merrill et al., 2011a]). En conséquence, les motifs de coloration
des ailes sont considérés comme des traits magiques (d’après [Servedio et al., 2011]) pouvant
faciliter la spéciation écologique ([Gavrilets, 2004] ; [Jiggins et al., 2005a], [Jiggins, 2008]).
Pourtant, même si les patrons de coloration sont un facteur important dans la diversification

du clade Heliconius ([Mallet et al., 1998a]), il reste à déterminer si la sélection diversifiante
agissant sur ces traits est suffisante pour mener à l’achèvement du processus de la spéciation.
L’étude des zones d’hybridation interraciales chez les papillons du genre Heliconius permet
de rechercher comment les barrières au flux de gènes s’accumulent au long de la spéciation,
comment la sélection naturelle disruptive et la sélection sexuelle sur la coloration alaire agissent
ensemble et comment ces forces sélectives contrebalancent le flux de gènes pendant des stades
précoces de diversification.
Ici, nous avons exploré la zone d’hybridation entre les races panamiennes H. hecale melicerta

et H. hecale zuleika qui ont des motifs colorés différents. L’espèce H. hecale fait parti du clade des
sylvaniformes et, à notre connaissance, aucune zone d’hybridation impliquant des sylvaniformes
n’a été étudiée jusqu’à présent. Etant donnée que les sylvaniformes appartiennent à des cercles
mimétiques plus complexes et plus riches en espèces que d’autres espèces dans le genre mieux
connues (par exemple H. melpomene et H. erato), l’étude de la zone d’hybridation entre des races
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de H. hecale permet d’explorer dans un cadre comparatif à quel point la complexité des patrons
de coloration et la composition des communautés mimétiques déterminent la structure et la
dynamique des zones d’hybridation dans le genre Heliconius.
Nous avons profité du fait que l’architecture génétique des motifs colorés chez H. hecale est

connue (voir Figure 2.2 ; [Huber et al., 2015]). Nous avons mis en œuvre des approches de gé-
nétique et génomique des populations, utilisé la théorie des clines et l’analyse du comportement
de choix de partenaire, pour caractériser le stade de divergence entre les races de H. hecale et
le placer dans un contexte comparatif dans le continuum de spéciation dans le genre Heliconius.
En cherchant à avoir un regard global de cette zone hybride, nous avons exploré comment la sé-
lection contribue à la maintenance de la divergence phénotypique en présence du flux de gènes
dans des stades précoces de divergence.
Nous avons commencé par évaluer le niveau de flux de gènes entre les races parapatriques de

H. hecale et n’avons retrouvé aucune différentiation génétique entre des populations quasiment
phénotypiquement pures situées aux extrêmes de la zone hybride (Figure 2.1), que ce soit en
utilisant des marqueurs hypervariables du type microsatellites ou en analysant des marqueurs
à haute densité provenant du re-séquençage de génomes entiers (Figure 2.3 et Figure 2.4A).
Le haut niveau de flux de gènes retrouvé sur l’ensemble du génome contraste avec des pics
de différentiation ponctuels parsemés le long du génome (Figure 2.4A). Nous avons exploré si
les régions génomiques contenant les gènes de la couleur étaient plus divergentes que le reste
du génome, ce qui serait le résultat de pressions sélectives disruptives pour l’adaptation aux
milieux mimétiques locaux. Nous avons trouvé que quelques uns de ces pics de différentiation
sont effectivement associés à des gènes de la couleur des ailes (Figure 2.4B). Notamment, le
pic de divergence le plus haut est retrouvé autour de la région cis-régulatrice du gène optix,
qui contrôle des motifs alaires rouges chez plusieurs espèces d’Heliconius ([Reed et al., 2011] ;
[Martin et al., 2014] ; [Reed et al., 2011] ; [Supple et al., 2013]), et aussi chez H. hecale ([Huber
et al., 2015]). Un autre pic de différentiation est situé sur la région régulatrice putative du gène
WntA, qui contrôle des éléments mélaniques chez H. hecale et d’autres espèces ([Martin et al.,
2012] ; [Gallant et al., 2014] ; [Martin and Reed, 2014] ; [Huber et al., 2015]). . Ensuite, nous
avons exploré la force de la sélection naturelle agissant sur les loci de la couleur sur le terrain.
Notamment, nous avons analysé la zone de transition entre les races panamiennes d’ H. hecale,
en traçant des clines phénotypiques pour chacun des trois loci qui définissent la différence de
coloration alaire entre ces deux races (Figure 2.5). Cela nous a permis d’évaluer la force de
la sélection disruptive pour le mimétisme, qui est inversement proportionnelle à la largeur du
cline et qui maintient la divergence phénotypique entre les deux races en face d’un flux de gènes
très répandu. Pour cela, nous avons bénéficié de la connaissance de la ségrégation des allèles
pour chaque locus et d’un échantillonnage de 333 spécimens provenant de sept populations le
long d’un axe ouest-est couvrant 800 km depuis San José (Costa Rica) jusqu’à Darién (Panama)
(Figure 2.1). Nous avons retrouvé que cette zone hybride a une largeur de 92 km (Figure
2.5A), c’est à dire qu’elle a une dimension moyenne quand elle est comparée à d’autres zones
hybrides étudiées dans le genre ([Mallet et al., 1998a]). Cela peut-être interprété comme étant le
résultat de forces sélectives plutôt faibles qui sont possiblement dues à la complexité des patrons
alaires tigrés et des communautés mimétiques auxquels ces papillons appartiennent (Figure
2.7). Nous avons fait une comparaison des clines et avons trouvé une différence significative
pour la largeur de ces clines (Table 2.1 et Figure 2.5B). Nous suggérons que cette différence
peut être expliquée par des pressions sélectives d’intensité variable entre les différents éléments
composant les patrons de couleur alaire. Cette variation pourrait refléter des variations dans les
communautés mimétiques et dans la capacité d’apprentissage des prédateurs.
Finalement, nous avons testé si les mâles des deux races d’H. hecale exercent un choix de
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partenaire sélectif qui pourrait fortifier ou maintenir le niveau de divergence entre ces races.
Nous avons trouvé que les mâles d’une des deux races (H. h. melicerta) préfèrent faire la cour
aux femelles de sa propre race (mais cette préférence est faible ; voir Figure 2.6). Par contre, les
mâles de l’autre race (à savoir H. h. zuleika) ne montrent pas de préférence (Figure 2.6). Nous
faisons l’hypothèse que ce choix asymétrique basé sur les patrons de couleur, bien que faible,
pourrait être l’un des facteurs en jeu qui mènerait à la mobilité de cette zone d’hybridation, qui
semble être en train d’être déplacée vers l’ouest ([Mallet, 1993] ; [Rosser et al., 2012]).
Dans l’ensemble, la distribution clinale des allèles des gènes de la couleur et l’évidence d’un

flux de gène restreint au niveau de ces gènes, contrastent avec l’absence de structure génétique
dans l’ensemble du génome. Cela confirme que ces gènes contrôlent des traits directement
impliqués dans l’adaptation locale, ce qui est à la fois concordant avec les signaux moléculaires
liés à ces gènes qui ont été détectés dans cette étude et dans des travaux antérieurs ([Nadeau
et al., 2012] ; [Supple et al., 2013] ; [Martin et al., 2013] ; [Kronforst et al., 2013]). Les
pressions sélectives détectées pourraient pourtant ne pas être assez fortes pour mener ces races
parapatriques à des stades plus avancés de divergence. Cette zone hybride pourrait se retrouver
a contrario dans un équilibre stable de migration-sélection.

A.4 Chapitre 3. Des espèces apparentées et sympatriques avec le même
déguisement : un aperçu sur la reconnaissance de l’espèce entre

Heliconius hecale et H. ismenius
Bárbara Huber, Annabel Whibley, Catalina Estrada, Darha Solano, Robert Orpet, W. Owen

McMillan, Brigitte Frérot, Mathieu Joron
L’introduction d’un concept d’espèce plus relaxé que le concept biologique d’espèce de

Mayr (e.g. [Mallet, 1995]) permet de voir la spéciation comme étant un processus où la
divergence s’accumule de différentes façons, dont la divergence neutre, l’adaptation locale
et la coévolution, mais où l’hybridation et l’introgression ont lieu de façon presqu’inévitable
dans la plupart des événements de spéciation, à exception de la spéciation allopatrique stricte
([Coyne and Orr, 2004]). Malgré la perméabilité de la limite entre espèces, celles ci constituent
des entités discrètes qui peuvent être distinguées d’un point de vue morphologique, génétique,
écologique ou comportemental (e.g. [Noor et al., 2000] ; [Saint‐Laurent et al., 2003] ; [Kraus
et al., 2012]). Un consensus existe actuellement sur l’importance de l’hybridation dans la
diversification ([Stebbins, 1959] ; [Arnold, 1992] ; [Dowling et al., 1997] ; [Seehausen, 2004] ;
[Barton, 2013] ; [Abbott et al., 2013]). Pourtant, les façons dont les différences entre des
populations s’accumulent et dont la limite entre des espèces peut être maintenue malgré l’effet
homogénéisateur du flux génique restent mal comprises. Quels traits agissent comme des
barrières réelles ou potentielles contre le flux de gènes entre des lignées coexistantes ? Quelle
est l’importance relative de certaines barrières par rapport à d’autres ? L’abord de ces questions
plus spécifiques contribue à la compréhension de la diversification biologique.
En particulier, la caractérisation du flux génique entre des lignées à différents stades du

continuum de spéciation est importante pour comprendre l’histoire évolutive de l’isolement
reproducteur (e.g. [Hendry et al., 2009] ; [Powell et al., 2013]). Les papillons du genreHeliconius
constituent une collection de lignées étalées au long du continuum de spéciation commençant
par des populations polymorphiques et finissant avec des espèces sympatriques totalement
isolées. L’accouplement sélectif basé sur les patrons de coloration augmente au long de ce
continuum ([Merrill et al., 2011a]). De plus, des sondages génomiques de différentiation entre
des espèces et races différentes d’Heliconius ont fourni un aperçu du niveau de flux génique, en
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plus du taux et de la dynamique de la divergence génomique au long du continuum de spéciation
([Nadeau et al., 2012] ; [Hill et al., 2013] ; [Martin et al., 2013] ; [Kronforst et al., 2013]). Par
exemple, [Martin et al., 2013] ont trouvé que le flux génique a persisté au long des ∼2 millions
d’années de divergence entre les espèces sympatriques Heliconius melpomene et H. cydno, qui
restent néanmoins de « bonnes » espèces, montrant des écologies distinctes et des fortes barrières
d’isolement reproducteur au niveau prézygotique comme au niveau postzygotique ([Jiggins
et al., 2001] ; [Naisbit et al., 2002] ; [Merrill et al., 2012]). Ces résultats confirment le flux
génique répandu entre des espèces divergentes, malgré la rareté des hybrides rencontrés dans
la nature ([Gilbert, 2003] ; [Bull et al., 2006] ; [Kronforst et al., 2006b] ; [Mallet et al., 2007] ;
[Mallet, 2009] ; [Pardo-Diaz et al., 2012] ; [Heliconius Genome Consortium, 2012] ; [Martin
et al., 2013]). Les papillons du genreHeliconius sont ainsi un modèle idéal pour étudier comment
la divergence a lieu en présence du flux génique.
Les motifs colorés alaires chezHeliconius sont importants pour l’isolement sexuel opéré par le

mâle, mais sont aussi impliqués dans la sélection contre les hybrides qui ne sont pas mimétiques ;
c’est pour cela que ces patrons de couleur ont été couramment considérés comme étant des
« traits magiques » agissant contre l’hybridation et facilitant la spéciation chez ce groupe de
papillons. Au contraire, la part du choix de la femelle basé sur la coloration alaire n’a pas été
testée (à l’exception de [Boyko, 2005]). En outre, le rôle des signaux chimiques dans l’isolement
reproducteur prézygotique pouvant promouvoir la diversification et la spéciation chezHeliconius
n’avait pas été exploré jusqu’à récemment ([Mérot et al., 2015] ; [Estrada et al., 2011]), malgré
son importance chez plusieurs espèces dans l’ordre Lepidoptera, où ces signaux sont impliqués
dans la communication intraspécifique et interspécifique, ainsi que dans la sélection sexuelle
([Vane-Wright and Boppre, 1993] ; [Millar, 2000] ; [Jurenka et al., 2003] ; [Schulz et al., 2008] ;
[Nieberding et al., 2008]).
Ici, nous avons examiné si l’introgression est un point commun à tout le clade des Heliconius.

Nous nous sommes concentrés sur les espèces proches Heliconius hecale et H. ismenius, qui
ont divergé il y a environ 3 millions d’années ([Kozak et al., 2015]) et qui se chevauchent
géographiquement dans le nord-ouest de l’Amérique du Sud et dans le sud de l’Amérique
Centrale. Cette étude a permis d’évaluer le niveau de flux génique à un stade plus avancé de la
spéciation que ce qui avait été étudié précédemment. En particulier, nous basant sur des données
génomiques dérivées du re-séquençage de génomes entiers, nous avons complémenté des études
précédentes dans ce domaine, lesquelles ont impliqué des stades précoces de divergence, pour
explorer comment l’isolement reproducteur et ses traces au niveau génomique s’accumulent au
long du processus de la spéciation. L’estimation des statistiques de divergence génomique a
montré une faible évidence d’introgression interspécifique entre Heliconius hecale et H. ismenius.
Notamment, une analyse de mélange génétique avec le programme Structure a montré une
différentiation génétique complète entre les deux espèces de sylvaniformes (Figure 3.2A).
Aussi, nous avons trouvé des valeurs de Fst et dXY (deux mesures distinctes de différentia-

tion génétique) très élevées par rapport à d’autres comparaisons dans le genre. Nos résultats
contrastent ainsi avec la découverte d’un flux génique fort et généralisé entre des taxons ap-
partenant aux sous-clades melpomene et cydno ([Bull et al., 2006] ; [Kronforst et al., 2006b] ;
[Martin et al., 2013]).
En jouant un rôle dans la survie et dans le choix de partenaire, des décalages mimétiques

favorisent la spéciation ([Jiggins et al., 2001] ; [Mallet, 2010]). En fait, des espèces sœurs
participent souvent à des cercles mimétiques différents (mais regardez [Brower, 1996] ; [Giraldo
et al., 2008] ; [Mérot et al., 2013]). Pourtant, les espèces proches H. hecale et H. ismenius
partagent elles aussi les mêmes patrons de coloration dans des régions particulières de sa
distribution géographique. Dans l’est du Panama, et dans l’ouest de la Colombie et du Venezuela,
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H. h. melicerta et H. i. boulleti sont extrêmement similaires et rejoignent le même cercle
mimétique avec plusieurs autres espèces. En revanche, dans l’ouest du Panama, les deux
espèces (H. h. zuleika et H. i. clarescens) ont des patrons distincts, chacune appartenant à un
cercle mimétique différent (Figure 3.1). Ici, nous avons utilisé des approches génomiques,
comportementales et chimiques pour tester l’hypothèse que la limite entre les espèces est
plus perméable au flux génique quand les deux espèces partagent les mêmes motifs colorés.
Aussi, nous avons examiné quels signaux de reconnaissance pourraient être en train d’agir pour
maintenir ces espèces séparées.
Nous avons mis en œuvre un test pertinent, notamment une analyse nommé ABBA-BABA

test ([Green et al., 2010] ; [Durand et al., 2011] ; voir Figure 3.4A) basé ici sur le génotypage
de l’ensemble du génome, et n’avons pas retrouvé d’évidence d’un flux génique plus important
entre la paire mimétique H. h. melicerta/H. i. boulleti qu’entre la paire non mimétique H. h.
zuleika/H. i. clarescens. Notamment, les statistiques Patterson’s D et f n’ont pas montré un excès
des sites du type ABBA en relation à des sites du type BABA dans aucune des deux configurations
testées. Nous avons cependant prouvé que des événements ponctuels d’introgression ont eu
lieu à un moment donné de l’histoire de divergence entre les lignées H. hecale et H. ismenius.
En regardant la distribution des deux types de sites polymorphiques tout au long du génome,
des biais locaux ont été détectés. Spécifiquement, en testant le partage d’allèles entre la paire
mimétique de races (voir la configuration dans le haut de la Figure 3.4A) nous avons observé un
excès frappant de sites ABBA en relation à des sites BABA, lié au gène de la couleur optix (Figure
3.4B and Figure 3.4C), et également associé à une baisse dans la valeur de dXY (Figure 3.4C)).
Cela indique que l’introgression adaptative joue un rôle clé dans le contexte de l’évolution du
mimétisme, tout en soulignant l’importance des événements occasionnels d’hybridation pour
l’évolution phénotypique et pour l’écologie des sylvaniformes, qui ne conduisent néanmoins
pas à des frontières plus perméables entre ces espèces.
Globalement, nos analyses ne plaident pas en faveur d’un effet significatif du mimétisme

sur le taux de partage d’allèles au niveau du génome. Cette observation, en plus des expériences
de comportement menées, suggère que des signaux différents de la couleur alaire déterminent
un isolement sexuel fort entre H. hecale et H. ismenius. Pour explorer la nature et la portée
de ces signaux, nous avons commencé par examiner le comportement de cour de l’espèce H.
hecale, et l’avons décrit comme étant composé par cinq étapes principales (Figure 3.5). Nous
avons ensuite conduit des expériences visant à explorer le comportement sexuel entre la paire
mimétique H. h. melicerta et H. i. boulleti, et avons observé que les mâles des deux espèces sont
fortement attirés par les femelles et par les modèles alaires de l’autre espèce (Figure 3.6), ce
qui montre que la confusion hétérospécifique opérée par le mâle peut avoir lieu dans la longue
portée, en accord avec les résultats de [Estrada and Jiggins, 2008] sur H. melpomene et H. erato.
Nous avons cependant observé que la reconnaissance de l’espèce s’inscrit dans la courte portée
pour les mâles aussi bien que pour les femelles, suggérant que des signaux chimiques pourraient
être différenciés entre H. hecale et H. ismenius.
Nous avons donc testé si des différences existaient entre ces espèces au niveau des bouquets

de composés chimiques produits par trois différents tissus potentiellement impliqués dans la
production de phéromones, notamment la zone de chevauchement entre les ailes, les glandes
abdominales et le tégument à la base des ailes. Nous avons procédé à l’extraction de ces com-
posés avec de l’hexane, et nous avons passé les extraits par chromatographie en phase gazeuse
couplée à la spectrométrie de masse (GC-MS). Nous avons ainsi retrouvé des différences chi-
miques importantes entre les espèces étudiées (voir Figures 3.9, 3.10 et 3.11). Nous faisons
l’hypothèse que quelques uns des composés différenciés pourraient servir de médiateurs pour le
choix de partenaire et la reconnaissance de l’espèce. De façon plus spécifique, nous avons trouvé
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que ce sont les mâles qui montrent les cocktails chimiques les plus complexes et les plus diffé-
rents entre espèces un niveau de l’abondance des composés, ce qui peut-être observé comme une
séparation significative dans l’espace multivarié (voir Figures 3.9B et 3.10B). Cette forte diffé-
rence est évidente au niveau des ailes et des claspers des mâles mais pas au niveau de la cuticule
(Figure 3.11). Au contraire, les femelles présentent des mélanges pauvres en composés et plutôt
similaires entre espèces. La grande différence compositionnelle observée chez les mâles suggère
que la reconnaissance de l’espèce est opérée de façon importante par le choix des femelles basé
sur des signaux chimiques. Dans un clade où le choix de partenaire est largement provoqué par
la divergence des patrons de coloration alaire, nos résultats montrent que cette divergence toute
seule n’est pas suffisante pour mener à la spéciation, et que l’accumulation d’autres barrières au
flux génique peut être importante. Nos données montrent que des signatures chimiques peuvent
être décisives pour la maintenance des limites entre espèces d’Heliconius, et qu’elles constituent
l’une des barrières contre l’hybridation interspécifique. Pourtant, il nous manque encore le lien
fonctionnel entre les cocktails chimiques spécifiques aux espèces et le choix de partenaire. Donc,
l’identification de ces composés est nécessaire pour pouvoir évaluer son vrai rôle dans la recon-
naissance de l’espèce. Aussi, bien que les facteurs impliqués dans le choix de partenaire soient
essentiels à la spéciation en présence de flux de gènes, des adaptations écologiques, y compris
celles liées au microhabitat, ont aussi leur importance et ont sûrement contribuées à la diver-
gence entre H. hecale et H. ismenius et à l’atteinte d’un stade de spéciation avancé où le flux
génique interspécifique ne peut pas être détecté en utilisant une approche génomique.

A.5 Conclusions
A.5.1 C’est la sélection qui a le dernier mot

J’ai étudié l’architecture génétique et écologique de la diversification phénotypique des
papillons, en contrastant des cas de divergence phénotypique au sein d’une espèce avec des cas
de convergence et de divergence phénotypique impliquant des différentes espèces. J’ai montré
que l’architecture génétique de la coloration de l’aile est à la fois conservée et flexible, et je
suggère que cette polyvalence pourrait être la raison de sa réponse à la sélection.
En cartographiant des loci contrôlant la couleur des ailes chez les espèces de sylvaniformes

H. hecale et H. ismenius, et en plaçant mes résultats dans un cadre comparatif, j’ai confirmé des
attendus théoriques suggérant que l’architecture génétique d’un trait évolue et qu’elle n’est pas
une caractéristique constante ([Lande, 1980] ; [Barton, 1995] ; [Coyne and Orr, 1998] ; [Carter
et al., 2005] ; [Hansen, 2006]). En particulier, j’ai trouvé que la taille de l’effet des gènes, et non
seulement les fréquences des gènes, sont des variables évolutives ([Hansen, 2006]). En outre, j’ai
suggéré que l’évolution de l’architecture génétique des caractères adaptatifs est associée avec
le régime de sélection agissant sur ces traits. Plus précisément, j’ai trouvé qu’une architecture à
plusieurs gènes comme celle existant dans les deux espèces étudiées ici ainsi que dans la plupart
des autres espèces d’Heliconius, semble être l’état ancestral. Cette architecture est associée à la
sélection directionnelle pour le mimétisme local et conduit à un monomorphisme local. En
revanche, l’architecture à un seul locus (c’est-à-dire un supergène), est restreinte à H. numata et
est apparemment l’état dérivé. Le supergène est associée à une sélection équilibrante, permettant
la coexistence de plusieurs formes colorées localement.
Ces résultats permettent d’avoir un aperçu de l’évolution des supergènes ([Nabours, 1933] ;

[Ford, 1966] ; [Turner, 1977]). Plutôt que de dériver de la liaison serrée des régions génétiques
réunies à partir de parties distinctes du génome par des translocations ([Nabours, 1933] ; [Ford,
1966]) j’ai trouvé des preuves de l’hypothèse nommée the sieve hypothesis ([Turner, 1977]),
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selon laquelle ce qui donne lieu à des supergènes c’est le recrutement de loci qui sont déjà
étroitement liés et capables de produire ensemble des effets phénotypiques majeurs. Dans la
région homologue au supergène P chez H. numata, j’ai trouvé des loci étant spatialement liés et
ayant des effets phénotypiques presque égaux chez H. hecale (Figure 4.1). Un lien étroit entre
ces loci pourrait avoir résulté de la suppression de la recombinaison chez H. numata grâce à des
inversions chromosomiques ([Joron et al., 2011]). De plus, le grand effet du supergène P (Figure
4.1), pourrait hypothétiquement être dû à l’agrégation de plusieurs mutations à effet faible (voir
les points sur la Figure 4.1) sur les loci co-adaptés plutôt que par des mutations à grand effet.
Ce serait cohérent avec les observations de [Martin and Orgogozo, 2013] sur un grand nombre
de cas documentés pour des variantes à grand-effet. Chez H. hecale et H. ismenius j’ai également
cartographié des loci de couleur à grand-effet (ayant pourtant un effet individuel qui contraste
fortement avec celui du supergène P ; voir Figure 4.1) dont l’effet phénotypique peut aussi être
potentiellement alimenté par de petites mutations et reglé par l’effet faible de plusieurs autres
loci pour la convergence mimétique (le two-step model, voir Introduction ; [Turner, 1985] ; [Orr,
1998]).
Comprendre si l’évolution convergente est reflétée par la convergence au niveau du géno-

type est l’une des principales questions en génétique évolutive. Les tentatives pour répondre à
cette question ont permis d’évaluer la correspondance du phénotype au génotype à des niveaux
fonctionnels tels que la voie génétique, le gène et le nucléotide (Figure 8 ; e.g. ([Protas et al.,
2006] ; [Hoekstra, 2006] ; [Arendt and Reznick, 2008] ; [Manceau et al., 2010]). Ici j’ai trouvé
que la convergence phénotypique peut être due à des architectures génétiques étonnamment
distinctes en termes de la taille de l’effet de gènes, ce qui n’a pas été, à ma connaissance, expli-
citement rapporté dans la littérature. Notamment, les architectures a plusieurs loci et à un seul
supergène sont à la fois capables de contrôler des patrons alaires mimétiques et non-mimétiques
mais similaires, ce qui met en évidence la puissance de la sélection pour la ressemblance mi-
métique. Cette observation soutient l’idée que l’évolution convergente découle de la capacité
de la sélection naturelle à résoudre des problèmes écologiques similaires à partir de points de
départ différents ([Losos, 2011]). Les caractères liés à la pigmentation semblent plus enclins
à entraîner l’évolution convergente à partir d’une base génétique différente, compte tenu des
plusieurs voies génétiques sous-jacentes ([Hoekstra, 2006] ; [Manceau et al., 2010] ; [Kronforst
et al., 2012]) ce qui a été observé dans une variété de cas ([Hoekstra, 2006] ; [Manceau et al.,
2010]). En outre, j’ai aussi trouvé un manque de déterminisme allant de l’architecture génétique
au phénotype dans le fait que des patrons tigrés comme ceux affichées par H. hecale et H. isme-
nius soient contrôlées par la même boîte à outils de la couleur utilisée par des espèces du genre
Heliconius aux couleurs fortement distincts ([Kronforst et al., 2006a] ; [Baxter et al., 2008b] ;
[Papa et al., 2008]). Cette même boîte à outils est sous-jacente à des phénotypes mimétiques
même entre espèces éloignées telles que H. melpomene et H. erato. Ainsi, la flexibilité dans le
résultat phénotypique des même loci est ici marquée par des fortes contraintes sélectives pour
la ressemblance mimétique entre les espèces appartenant à un même cercle mimétique. Cette
polyvalence et évolutivité de l’architecture génétique cause à la fois la diversité phénotypique
et la convergence mimétique observées dans le genre Heliconius.
La convergence mimétique ne peut pas être expliquée par le hasard. En revanche, des condi-

tions environnementales similaires (i.e. des cercles mimétiques) imposent de fortes pressions
sélectives, de façon similaire à ce qui a lieu dans d’autres cas de convergence phénotypique
([Losos, 1992] ; [Colosimo et al., 2005] ; [Rogers and Bernatchez, 2007] ; [Soria-Carrasco et al.,
2014]). J’ai constaté de la sélection agissant sur la coloration alaire à une étape précoce de la
divergence, en utilisant la théorie des clines couplée à la génétique des populations, bien que en
étudiant le profile de divergence au long du génome. De la sélection disruptive déterminant une
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adaptation locale à des environnements mimétiques distincts sur chaque côté de la zone d’hy-
bridation entre H. hecale melicerta et H. hecale zuleika est reflétée dans la distribution clinale des
allèles au loci de la couleur. Ceci contraste avec l’absence de structure génétique trouvée ailleurs
sur le génome. Ces pressions sélectives sont de force intermédiaire, comme le montre la largeur
intermédiaire de la zone d’hybridation en relation à d’autres zones hybrides interraciales dans le
genre ([Mallet, 1986] ; [Blum, 2002] ; [Arias et al., 2012]). Cependant, cette sélection de force
modérée est encore capable de garder l’individualité phénotypique, c’est-à-dire des patrons de
coloration différenciés, malgré un niveau considérable de flux génique entre les deux races. La
complexité des patrons tigrés et les environnements mimétiques riches en espèces et fortement
variables pourraient déterminer une sélection disruptive de force intermédiaire sur des papillons
hybrides sur chaque côté de cette zone hybride. J’ai aussi trouvé que la force de la sélection sur
les différents éléments du patron diffère, ce qui suggère que les éléments de coloration de l’aile
ne sont pas égaux aux yeux des prédateurs, et peut-être pas non plus aux yeux des partenaires.
Récemment, des études moléculaires à l’échelle du génome ont aidé à localiser des régions

génomiques sous sélection divergente et potentiellement impliquées dans la spéciation (e.g.
[Jones et al., 2012] ; [Lawniczak et al., 2010] ; [Nadeau et al., 2012] ; [Ellegren et al., 2012] ;
[Kronforst et al., 2013]). De telles régions, qui ont été appelées des îlots de divergence, peuvent
être attribués à l’action directe de la sélection divergente, mais peuvent aussi résulter des par-
ticularités de l’architecture du génome, comme des taux locaux de recombinaison ou de la di-
versité nucléotidique locale ([Carneiro et al., 2010] ; [Ellegren et al., 2012] ; [Cruickshank and
Hahn, 2014]). Pour comprendre vraiment les raisons à la base des paysages hétérogènes, nous
avons besoin d’une exploration statistique des données associée à une meilleure connaissance
des traits écologiques différenciés et de leur base génétique. La combinaison des scans géno-
miques avec des approches basés sur des gènes candidats peut permettre de distinguer entre des
régions impliquées dans la diversification et des faux positifs (e.g. ([Michel et al., 2010]). Ici, j’ai
adopté cette synergie d’approches et j’ai trouvé que quelques îlots de divergence sont associés
avec des loci de la couleur à des étapes précoces de différentiation. Cela montre que les régions
connues comme étant sous-jacentes à des différences écologiques sous forte sélection disruptive
(tels que les patrons de couleur) apparaissent comme des valeurs aberrantes de différentiation
génomique, et pourraient donc résister au flux génique. Pourtant, j’ai aussi trouvé des pics de
différenciation autour des régions de la couleur de l’aile entre des lignées co-mimétiques bien
divergés, bien que l’on ne s’attendrait pas vraiment à trouver de divergence génétique au sein
des allèles causant des phénotypes similaires. Je fais l’hypothèse que ces signaux moléculaires,
plutôt que d’être une réponse à la sélection divergente, sont le résultat d’une sélection puri-
fiante sur des allèles impliqués dans la ressemblance mimétique, ce qui est reflété dans le peu
de diversité nucléotidique autour des loci de la couleur de l’aile. J’ai observé un paysage de dif-
férenciation fortement hétérogène dans la comparaison interraciale, avec de multiples pics. Ceci
contraste avec le peu de pics de divergence associés aux loci de la couleur qui ont été retrouvés
dans des comparaisons interraciales des espèces explorées jusqu’à maintenant. Il a été suggéré
que l’augmentation du nombre d’îlots de divergence serait due à la progression de la spéciation
vers des étapes avancées ([Kronforst et al., 2013]), ce qui contraste avec le modèle classique de
spéciation avec flux génique, selon lequel on s’attend à voir grandir les îlots plutôt que de les
voir augmenter en nombre au long de ce continuum ([Feder et al., 2012] ; voir Introduction). Au
contraire, les multiples pics que j’ai observés pourraient résulter de la diversité nucléotidique glo-
balement très basse chez H. hecale. Donc, interpréter ces multiples pics comme une évidence que
ces populations se trouvent à une étape de divergence plus avancé que d’autres paires étudiées
jusqu’ici n’est pas évident. Basée sur les ambigüités décrites ici, je suggère qu’une évaluation
plus profonde de ces données génomiques nous manque pour pouvoir affirmer des conclusions
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sur la manière dont la différenciation génomique a évolué au cours des deux étapes de conti-
nuum de spéciation étudiées ici. Bien que des études génomiques de différenciation puissent
être très utiles pour détecter quelques-unes des régions génomiques contrôlant des caractères
écologiquement importants pendant la spéciation avec flux génique, le profil génomique de dif-
férenciation peut être prêt à confusion. C’est pourquoi il faut faire attention au décalage entre
les valeurs aberrantes de différenciation et les gènes de la spéciation.

A.5.2 Puissant, mais pas tout-puissant
J’ai exploré le processus de spéciation avec flux génique entre deux paires de taxons au long

du continuum de spéciation : entre des races parapatriques de H. hecale, et entre les deux espèces
proches sympatriques H. hecale et H. ismenius. En faisant cela, j’ai intégré deux vues distinctes
sur le processus de spéciation nommées spyglass et magnifying glass (voir Introduction ou [Via,
2009]). Ceci a contribué à rechercher les mécanismes de l’évolution de l’isolement reproducteur
au long du continuum de spéciation dans le genre Heliconius.
Il a été proposé que la spéciation écologique est favorisée par la sélection divergente

sur des traits écologiquement importants, en particulier si ces traits sont aussi impliqués
dans l’accouplement sélectif ([Bush, 1975] ; [Felsenstein, 1981] ; [Diehl and Bush, 1989] ;
[Kirkpatrick and Ravigné, 2002] ; [Malausa et al., 2005]). Chez les papillons du genre Heliconius
comme dans d’autres systèmes modèles, des traits dits « magiques » sont capables de fortifier
ou de maintenir à la fois un isolement extrinsèque postzygotique et prézygotique. Plusieurs cas
présentant une situation similaire implique des lignées divergentes dans des stades précoces
du processus de spéciation (e.g. ; [Feder and Filchak, 1999]). Pourtant, on ne sait pas de
manière sûre si des traits adaptatifs importants sont capables seuls d’achever la spéciation ou au
contraire, si la spéciation ne pourrait jamais aboutir si des traits additionnels ne divergent pas
dans le processus. Cette question ouverte s’applique aux multiples races colorées des papillons
Heliconius.
On peut distinguer les races parapatriques de Heliconius hecale seulement au niveau de la

couleur alaire. Elles ne semblent pas avoir évolué d’autres adaptations écologiques spécifiques.
En particulier, aucune différence au niveau de la préférence du macrohabitat ou du microhabitat
semble exister entre ces races. Les deux races ont été récoltées en général dans des habitats
similaires, dans des espaces ouverts d’herbes et de maquis, près des bordures de forêts, ou dans
des clairières (observation personnelle). De plus, les larves des deux races se nourrissent de la
même plante hôte Passiflora vitifolia. En effet, on n’a pas observé que des facteurs écologiques
distincts (par exemple la plante hôte de la larve ou la spécialisation de l’habitat) aient été
impliqués dans la formation des races géographiques dans le gène ([Mallet and Gilbert, 1995] ;
[Jiggins et al., 1996]).
J’ai observé que de la préférence de partenaire sélective basé sur la coloration de l’aile, bien

que partielle et asymétrique, existe parmi les races de H. hecale étudiées ici. Cela confirme que le
choix du partenaire basé sur la coloration et opéré par le mâle est répandu dans le genre et qu’il
évolue tôt dans le continuum de spéciation. Au contraire, à des étapes plus avancées du processus
de spéciation, la coloration de l’aile ne joue pas de rôle prépondérant pour garder les frontières
de l’espèce. En effet, les espèces H. hecale et H. ismenius sont mimétiques et elles gardent encore
leur intégrité génomique (voir plus loin). Ici, j’ai mis en évidence que l’évolution de signaux
chimiques divergents s’est produite entre ces « bonnes » espèces sympatriques qui partagent
des patrons mimétiques. Ces signaux pourraient contribuer à la conservation des frontières de
l’espèce entre des lignées dont on se serait attendu qu’ils s’hybrident. Je suggère que cette
reconnaissance de l’espèce basée sur des phéromones est opérée par les femelles, contrairement
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au choix du partenaire basé sur la coloration de l’aile, qui est opéré principalement par les
mâles. D’autres facteurs tels que la spécificité de la plante hôte et la préférence du microhabitat
semblent aussi avoir divergé entre ces espèces, bien que des données écologiques rigoureuses
manquent à ce stade.
Mes résultats ne contrastent pas avec les constatations faites dans d’autres sous-clades dans

le genre. Il a été suggéré que des changements dans la coloration ont dû être importants pour
la spéciation ([Mallet et al., 1998a] ; [Mallet, 2010] ; [Jiggins et al., 2001] ; [Chamberlain et al.,
2009]). Par exemple, les espèces sœurs H. melpomene et H. cydno ont été suggérées d’avoir
spéciées en association avec un changement mimétique. Pourtant, la spécificité de la plante
hôte a aussi évolué, tout comme la préférence du microhabitat et l’infertilité hybride partielle
en raison des incompatibilités génomiques ([Jiggins et al., 2001] ; [Naisbit et al., 2002]). Cela
suggère que la divergence des patrons de coloration pourrait ne pas être une force suffisante
pour conduire à l’achèvement de la spéciation dans le genre.
Mes résultats renforcent l’opinion que la divergence de la coloration alaire est centrale

au début du processus de spéciation, mais n’est pas suffisante pour achever la spéciation.
La spéciation dans le clade est probablement, au contraire, un processus multidimensionnel,
avec divers trais opérant comme des barrières reproductives d’isolement accumulées durant le
processus. En accord avec cette idée, il y a 10 fois plus de races géographiques à des colleurs
diverses que d’espèces dans le genre, ce qui suggère que la divergence dans la coloration de l’aile
seule ne conduit pas toujours à la spéciation. De plus, quelques paires de races au sein d’une
espèce ont des généalogies plus profondes que des paires d’espèces dans le genre ([Kozak et al.,
2015]), ce qui indique que ces races peuvent restées dans des stades de divergence précoces
pendant une longue période évolutive sans spécier. De la même façon, la zone hybride entre
les races de H. hecale étudiées ici pourrait potentiellement être conservée indéfiniment dans
un équilibre stable entre la sélection divergente agissant sur la coloration de l’aile et un haut
mélange génétique, si les conditions environnementales restent stables.
Dans l’ensemble, j’ai mis mes résultats dans un cadre comparatif et j’ai trouvé que des

mécanismes similaires opèrent sur la diversification de tout le clade. En accord avec des résultats
précédents, j’ai observé que des incompatibilités génomiques intrinsèques évoluent dans des
stades avancés du continuum. Notamment, aucune incompatibilité génomique intrinsèque
n’existe entre les races de H. hecale. Encore plus surprenant, des hybrides entre les espèces
sympatriques H. hecale et H. ismenius sont viables. Contrastant avec ces cas de spéciation avec
flux génique, l’accumulation de barrières en allopatrie semble suivre unemodalité très différente.
Par exemple, j’ai trouvé que la règle d’Haldane s’applique à des hybrides entreH. hecale melicerta
et H. hecale clearei, qui sont des races allopatriques d’une même espèce (résultats non montrés).
A savoir, des femelles hybrides sont moins viables que des mâles et totalement infertiles, alors
que les mâles sont complètement fertiles. Au contraire, les hybrides entre les « bonnes » espèces
en sympatrie étudiées ici ne montrent pas d’inviabilité. Ceci indique que, comme on s’attendrait,
de fortes barrières contre le flux génique évoluent facilement au niveau intraspécifique quand
des conditions d’isolement géographique existent.

A.5.3 Une hybridation généralisée n’est pas la règle dans le genre
Le flux génique à de multiples niveaux de divergence dans le genre Heliconius a été trouvé

([Bull et al., 2006] ; [Kronforst et al., 2006b] ; [Martin et al., 2013]). Ici, je n’ai pas observé
de signaux moléculaires d’introgression dans la paire d’espèces proches H. hecale et H. ismenius,
malgré le fait qu’elles aient divergé depuis peu de temps. Leur temps de divergence peut avoir
été assez long pour produire de très fortes barrières reproductives contre le flux génique, comme
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par exemple les signaux chimiques mentionnés ci-dessus, qui semblent agir comme des barrières
d’isolement pré-zygotique. C’est pourquoi je suggère que l’hybridation n’est pas généralisée dans
le genreHeliconius (en accord avec les résultats de Krzysztof Kozak, communication personnelle),
bien qu’un nombre important d’espèces dans le genre s’hybrident, principalement des espèces
des sous-cladesmelpomene, cydno et des sylvaniformes ([Mallet et al., 2007]), la dernier desquels
comprend les espèces étudiées ici.
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