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Pour une surface compacte orientée Σ et un groupe de Lie G, on cherche à étudier l'espace X G (Σ) = Hom(π 1 (Σ, v), G)/G des classes d'équivalence de représentations du groupe fondamental (pour un choix indifférent du point base v). Pour la simplicité de l'exposé, dans cette introduction on traite X G (Σ) comme une variété lisse, malgré qu'il n'est prèsque jamais le cas. L'espace X G (Σ) se situe à l'intersection de diverses branches des mathématiques. Citons quelques-uns d'entre eux :

-X U (n) (Σ) apparaît dans la géométrie algébrique parce que si l'on fixe une structure complexe sur Σ, il s'identifie à l'espace des classes d'équivalence de fibrés vectoriels holomorphes sur Σ [START_REF] Narasimhan | Stable and unitary vector bundles on a compact Riemann surface[END_REF][START_REF] Donaldson | Boundary value problems for Yang-Mills fields[END_REF]. -Certaine sous-ensemble de X PSL 2 R (Σ) et X PSL 2 C (Σ) sont des objets d'étude principaux dans la géométrie hyperbolique car ils paramétrisent les structures hyperboliques sur Σ et certaines variétés hyperboliques de dimension 3 [START_REF] Thurston | Hyperbolic Structures on 3-manifolds, II: Surface groups and 3manifolds which fiber over the circle[END_REF][START_REF] William | Topological components of spaces of representations[END_REF] ; De même manière, un sous-ensemble de X PSL 3 R (Σ) paramétrise les structure projectives réelles convexes sur Σ [START_REF] William | Convex real projective structures on compact surfaces[END_REF]. -X G (Σ) s'identifie à l'espace des modules de connexions plates sur les G-fibrés principaux à base Σ. Ainsi, il joue le rôle d'un espace des phases dans la théorie de Yang-Mills en dimension 2 [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF]. -Lorsque G est un groupe de Lie réel semi-simple déployé, pour une composante connexe X H G (Σ) de X G (Σ) découverte par Hitchin [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF][START_REF] Hitchin | Lie groups and Teichmüller space[END_REF], des structrues très riches ont été révélé dans la dernière décennie par plusieurs auteurs [START_REF] Burger | Surface group representations with maximal Toledo invariant[END_REF][START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF][START_REF] Labourie | Cross ratios, surface groups, PSL(n, R) and diffeomorphisms of the circle[END_REF][START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF], avec des méthodes totalements différentes. Fock-Goncharov [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF] et Labourie-McShane [START_REF] Labourie | Cross ratios and identities for higher Teichmüller-Thurston theory[END_REF] proposent le nom espace de Teichmüller généralisé (higher Teichmüller space) pour X G (Σ) dans ce cas. La première partie de ce texte porte sur l'étude de la structure de Poisson sur X G (Σ). Les travaux présentés ici trouvent leur origine dans une collaboration avec Yuichi Kabaya sur l'espace de Teichmüller généralisé en printemps 2012, au cours duquel nous avons besoin de savoir si cette structure de Poisson coïncide avec une autre structure introduite par Fock et Goncharov. Nous abordons ce problème en utilisant les structures quasi-Poisson. Nous qu'un produit scalaire invariant (• | •) est prescrit sur l'algèbre de Lie g. Puis il est bien connu que si le bord de Σ est non-vide, cette structure symplectique se généralise en une structure de Poisson.

Malgré son importance théorique, la structure symplectique d'Atiyah-Bott est difficile à manipuler car il s'agit d'une réduction symplectique depuis la variété de dimension infinie de toutes les connexions plates. Goldman [START_REF] William | The symplectic nature of fundamental groups of surfaces[END_REF][START_REF] William | Invariant functions on Lie groups and Hamiltonian flows of surface group representations[END_REF] a jeté un nouvel éclairage à cette structure en l'interprétant par la forme d'intersection dans la cohomologie tordue de π 1 (Σ), qui est un objet de dimension finie. Ce point de vue lui permettait de montrer notamment une formule de crochet de Poisson pour certaines fonctions sur X G (Σ).

Formule de Goldman

Désignons par s ∈ (S 2 g) g le dual du produit scalaire invariant (• | •). Pour une fonction f ∈ C ∞ (G) invariante par conjugaison et un lacet α sur Σ, nous définissons la fonction de Goldman

f α ∈ C ∞ (X G (Σ)) par f α ([m]) = f (m([α]
)), ∀m ∈ Hom(π 1 (Σ, v), G), où [α] désigne la classe de conjugaison dans π 1 (Σ) portée par α. La formule de Goldman [START_REF] William | Invariant functions on Lie groups and Hamiltonian flows of surface group representations[END_REF] donne le crochet de Poisson pour deux telles fonctions f α et h β , sous l'hypothèse que α et β soient transverses :

{f α , h β }(m) = q∈α∩β ε q (α, β) d L f (m(α q )) ⊗ d L h(m(β q )), s .
Les notations sont expliquées ci-dessous :

-•, • désigne le couplage entre g * ⊗ g * et g ⊗ g ; ε q (α, β) = ±1 est l'indice d'intersection algébrique de α et β au point q ; -nous definissons l'application d L f : G → g * en ramenant chaque covecteur d g f ∈ T * g G à T * e G = g * par translation à gauche. De même, on définit d R f en utilisant la translation à droite. Remarquons que l'invariance de f implique que d L f = d R f est G-équivariante (par rapport à l'action par conjugaison et l'action coadjointe). Plus bas nous allons néanmoins reprendre ces notations pour f quelconque.

α q désigne l'élément dans π 1 (Σ, q) porté par α. Nous définissons m(α q ) en identifiant π 1 (Σ, q) avec π 1 (Σ, v) par un chemin reliant q et v. Remarquons que m(α q ) dépend du choix de ce chemin mais d L f (m(α q )) ⊗ d L h(m(β q )) ∈ g * ⊗ g * n'en dépend pas. En particulier, si G = GL n R et g = gl n R est muni du produit scalaire standard (x | y) = Tr(xy), pour la fonction de trace f = h = Tr on obtient

{Tr α , Tr β } = q∈α∩β ε q (α, β) Tr α#β .
Le lacet α#β := α q β q est dessiné ci-dessous.

Plus précisement, soit B ⊂ G un sous-groupe de Borel et F = G/B la variété de drapeaux. Prenons un ensemble fini W ⊂ ∂Σ et posons Σ = Σ \ W . Une connexion plate avec ossature (framed flat connection) est une paire (∇, f ), où ∇ est une connexion plate sur un G-fibré principal P → Σ et f est une B-réduction plate sur ∂Σ \ W , c'est-à-dire un choix d'une B-orbite f (q) dans P | q pour tout q ∈ ∂Σ \ W , telle que ∇ translate f (q 1 ) à f (q 2 ) dès que q 1 et q 2 se trouvent dans la même composante de ∂Σ \ W .

Désignons par X G, Σ l'espace des modules de connexions plates avec ossature. En particulier, pour le disque D et un sous-ensemble W ⊂ ∂D de cardinal N , X G, D s'identifie à l'espace des configurations de N drapeaux

Conf N (F) = F × • • • × F N /G.
D'autre part, si W est vide (alors Σ = Σ), un ouvert X reg G,Σ ⊂ X G,Σ s'identifie à un revêtement fini d'un ouvert dans X G (Σ).

Fock et Goncharov associent, à chaque graphe trivalent Γ aux sommets W tel que Σ rétracte sur Γ par déformation, un système de coordonnés (X i ) i∈I de X PSLnR, Σ . Ici chaque X i : X PSLnR, Σ → R est une fonction rationelle 1 et I provient de Γ de façon combinatoire. Ils définissent ensuite une structure de Poisson {•, •} FG sur X PSLnR, Σ en déclarant

{X i , X j } FG = ij X i X j (1) 
pour tout i, j ∈ I, où ij = 0, ±1 est une constante combinatoire . Pour des raisons techniques, nous considérons, à la place de X PSLnR, Σ , son revêtement fini X SLnR, Σ , et travaillons avec les relevés de X i et {•, •} FG à X SLnR, Σ . Ceci ne change pas grand-chose. On se demande alors Question 1. Lorsque W = ∅, la structure de Poisson {•, •} FG coïncide-elles avec la structure de Poisson d'Atiyah-Bott relevée à X reg SLnR,Σ ? Plus généralement, pour W arbitraire, peut-on obtenir {•, •} FG par réduction de Poisson ?

Algèbre d'échange

Comme mentioné plus haut, X SLnR, D est l'espace des configurations de N drapeaux dans l'espace projective réel P n-1 . En général, X SLnR, Σ peut être vu comme un "espace des configurations tordues".

A travers des travaux de F. Labourie [START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF][START_REF] Labourie | Cross ratios, surface groups, PSL(n, R) and diffeomorphisms of the circle[END_REF][START_REF] Labourie | Goldman Algebra, Opers and the Swapping Algebra[END_REF], les espaces de configurations de drapeaux interviennent également dans l'étude de X SLnR (Σ) quand Σ est fermé : soit ∂ ∞ π 1 (Σ) le bord du groupe fondamental, c'est-à-dire le cercle ∂D muni de l'action de π 1 (Σ) donnée par une hyperbolisation de Σ. Il est montré dans [START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF] que pour chaque représentation m : π 1 (Σ) → SL n R dans la composante de Hitchin X H SLnR (Σ), il existe une application Hölder équivariante ∂ ∞ π 1 (Σ) → P n-1 qui admet une courbe des drapeaux oscillants f m : ∂ ∞ π 1 (Σ) → F. On peut donc considérer un point dans X H SLnR (Σ) comme une configuration d'un nombre infini de drapeaux. On définit ensuite, pour chaque quadruple x, y, z, w ∈ ∂ ∞ π 1 (Σ), une fonction [x, y, z, w] sur X H SLnR (Σ) dont le valeur au point [m] est le birapport 2 [f m (x), f m (y), f m (z), f m (w)]. Les crochets de Poisson entre telles fonctions sont étudiés dans [START_REF] Labourie | Goldman Algebra, Opers and the Swapping Algebra[END_REF], et donnent lieu à une algèbre de Poisson Z(∂ ∞ π 1 (Σ)) similaire à celle de Goldman, dite l'algèbre d'échange (swapping algebra).

Evidemment, la fonction [x, y, z, w] peut être définie non seulement sur X H SLnR (Σ), mais plus généralement sur n'importe lequel espace de configurations de drapeaux Conf V (F) = Map(V, F)/G, où V est un ensemble quelconque et x, y, z, w ∈ V . On peut aussi définir l'algèbre d'échange Z(V ) pour n'importe lequel sous-ensemble du cercle V ⊂ ∂D. Considérons l'algèbre tensorielle symétrique de l'algèbre de Goldman A = SL(Σ). Le crochet de Lie sur L(Σ) s'étend en un crochet de Poisson sur A de façon unique. Turaev [START_REF] Vladimir | Skein quantization of Poisson algebras of loops on surfaces[END_REF] a interprété une quantification de ce crochet dans le cadre de la théorie des noeuds : il identifie A[[ ]] au module d'écheveau de Σ × [0, 1], c'est-à-dire le R[[ ]]-module engendré par les entrelacs dans Σ × [0, 1] modulo certaines relations, de sorte que le star-produit de deux entrelacs est obtenu par superposition du premier au-dessus du deuxième. Ph. Roche et A. Szenes [START_REF] Roche | Trace functionals on noncommutative deformations of moduli spaces of flat connections[END_REF] ont généralisé cette quantification aux spin networks.

Quantification par déformation

D'autre part, la notion de star-produit a été généralisée dans le cadre des variétés quasi-Poisson par B. Enriquez et P. Etingof [START_REF] Enriquez | Quantization of Alekseev-Meinrenken dynamical r-matrices[END_REF]. Tandis que l'associativité d'un starproduit usuel implique l'identité de Jacobi pour sa limite classique, une quantification d'un crochet quasi-Poisson doit être un star-produit quasi-associatif par rapport à un associateur Φ ∈ U (g) ⊗3 [[ ]] au sense de Drinfeld [START_REF] Drinfel | On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q)[END_REF]. Cette quasi-associativité implique l'identité quasi-Jacobi.

Pour une classe particulière de variété quasi-Poisson, à savoir, celles qui proviennent de l'equation de Yang-Baxeter dynamique, les quantifications ont été bien étudiées [START_REF] Enriquez | Quantization of Alekseev-Meinrenken dynamical r-matrices[END_REF][START_REF] Enriquez | Quantization of classical dynamical r-matrices with nonabelian base[END_REF][START_REF] Alekseev | Quantization of symplectic dynamical rmatrices and the quantum composition formula[END_REF]. D'autre part, en adaptant la méthode célèbre de M. Kontsevich [START_REF] Kontsevich | Deformation quantization of Poisson manifolds[END_REF], G. Halbout [START_REF] Halbout | Quantization of r -Z-quasi-Poisson manifolds and related modified classical dynamical r-matrices[END_REF] a construit une quantification pour toute variété quasi-Poisson où l'action du groupe de Lie est libre.

En particulier, si W intersecte chacune des composantes de ∂Σ, alors

L = M G (Σ, V ) et G = B V .
De plus, si G = SL n R, prenons un graphe trivalent Γ comme ci-dessus, alors il y a une famille des fonctions ∆ j ∈ C ∞ (L) telle que chaque X i (relevé à L) s'écrit comme une fraction des ∆ j .

Ainsi, la question 1 ci-dessus se ramène au problème de calculer les crochets quasi-Poisson de toute paire ∆ i , ∆ j . Ceci nous a amené à la découverte d'une formule de Goldman quasi-Poisson.

Rappelons que Fock et Goncharov [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF] ont considéré un autre espace noté par A G, Σ et certaines fonctions qui portent la même notation ∆ j qu'ici. En fait, les rôles joué par M G (Σ, V ) et par A G, Σ sont similaires, bien qu'il s'agisse de deux espace différents.

Formule de Goldman quasi-Poisson

Etant donnée une fonction f ∈ C ∞ (G) et un chemin orienté α reliant les points dans V , nous posons f α := f (hol α ) ∈ C ∞ (M G (Σ)). Nous avons mis en oeuvre dans l'article [START_REF] Nie | The quasi-Poisson Goldman formula[END_REF] une généralisation de la formule de Goldman, qui calcule les crochets quasi-Poisson entre toutes les fonctions du type f α . Citons la formule obtenue :

Théorème A (Un cas particulier du Theorem 2.6). Fixons s ∈ (S 2 g) g et considérons le crochet quasi-Poisson {•, •} sur C ∞ (M G (Σ, V )) par rapport à s. Supposons que α soit transverse à β, alors

{f α , h β } = q∈α∩β\∂Σ ε q (α, β) d L f (hol α ) ⊗ d R h(hol β ), 1 ⊗ Ad hol β * q α s + 1 2 i,j ε(α i , β j ) d i f (hol α ) ⊗ d j h(hol β ), s .

Expliquons les notations :

-les applications d L f, d R f : G → g * sont définies comme précédemment ; -dans la dernière somme, i et j parcourtent les deux symboles L et R ; α L (resp. α R ) désigne la première (resp. la seconde) moitié de α, où on sépare α en deux à n'importe lequel point au milieu ; -si α i et β j ont une extrémité commune v ∈ V , alors ε(α i , β j ) = ±1 est par définition l'indice d'intersection algébrique de α i et β j au point v ; sinon, on met ε(α i , β j ) = 0. β * q α désigne le chemin qui part de l'origine de α, parcourt α jusqu'au point q, puis transfère à β et termine au point final de β. Au cours de la rédaction de l'article mentionné ci-dessus, Anton Alekseev et Pavol Ševera nous ont communiqué deux travaux simultanés indépendants qui traitaient la même problématique : G. Massuyeau et V. Turaev [START_REF] Massuyeau | Quasi-Poisson structures on representation spaces of surfaces[END_REF] ont établi, avec une méthode très différente, la même formule au cas particulier où G = GL n R et #V = 1, tandis que D. Li-Bland et P. Ševera [START_REF] Li-Bland | Moduli spaces for quilted surfaces and Poisson structures[END_REF] ont montré une formule plus générale que la nôtre en considérant une classe plus large de fonctions, à savoir, les spin networks généralisés. Cependant, comme mentionné plus haut, la théorie quasi-Poisson pour les connexions plates est essentiellement équivalente à la théorie de Fock et Rosly [START_REF] Fock | Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix[END_REF], tous ces résultats sont donc plus ou moins équivalents à une formule de Fock et Rosly 3 .

Dans ce texte nous choisissons de présenter la formule de Li-Bland et Ševera (Theorem 2.6) et leur démonstration dans [START_REF] Li-Bland | Moduli spaces for quilted surfaces and Poisson structures[END_REF], puisqu'ils suivent la même idée que la nôtre [START_REF] Nie | The quasi-Poisson Goldman formula[END_REF] avec des arguments plus simples sur certains points clefs.

Struture de Poisson de Fock-Goncharov via réduction quasi-Poisson

Alekseev, Meinrenken et Kosmann-Schwarzbach [START_REF] Alekseev | Quasi-Poisson manifolds[END_REF] ont généralisé le Cross-section Theorem de Guillemin et Sternberg concernant les actions hamiltoniennes dans le contexte des variétés quasi-Poisson. Cette généralisation nous permet de conclure que la sous-variété L ⊂ M G (Σ) mentionnée dans la Proposition 0.1 admet une structure quasi-Poisson. De plus, Théorème A s'adapte à L pour calculer le crochet des restrictions de f α et f β à L. Nous en déduisons aussi les expressions expicites de crochets quasi-Poisson des ∆ i puis des X i , et donnons enfin une réponse positive à la question 1. 

Algèbre d'échange via réduction quasi-Poisson

Comme un sous-produit de la méthode ci-dessus, nous obtenons Proposition 0.2 ( §2.2, §3.1). Soit V ⊂ ∂D un ensemble fini, alors l'algèbre d'échange Z(V ) est une sous-algèbre de l'algèbre quasi-Poisson C ∞ (M G (D, V )) de façon canonique. En particulier, considérons les fonctions [x, y, z, w] (x, y, z, w ∈ V ) sur Conf V (F) = M G (D, V )/B V mentionnées plus haut, alors les crochets de Poisson entre eux donnés l'algèbre d'échange coïncide avec ceux donné par la réduction quasi-Poisson.

Nous n'allons pas donner une preuve explicite de cette proposition car il se découle aisément de §2.2 et de §3.1 plus bas.

La réduction quasi-Poisson fournit une structure de Poisson non seulement sur l'espaces des configurations de drapeaux, mais sur une classe plus large d'espaces de configurations, c.f. §3.1. Pour certains d'entre eux, une structure de Poisson a été construite de manière différente. Il est naturel de comparer ces structrures. Nous en discuterons dans §3.4.

Structures projectives convexe et ensemble de Tits

Soit P n l'espace projectif réel de dimension n. Une structure projective (réelle) sur une variété M (ou plus généralement un orbifold) est un atlas dont chaque carte identifie un ouvert dans M avec un ouvert dans P n et les changements de cartes sont des transformation projectives.

Une classe de structures projectives largement étudiée est donné par la construction suivante. Un ouvert Ω ⊂ P n est dit proprement convexe si Ω est un convexe borné dans une carte affine R n ⊂ P n . Soit X = X/Π un orbifold, où Π désigne un groupe agissant discrètement sur la variété X. Une structure projective convexe sur X consiste en une repŕesentation fidèle ρ : Π → PGL n+1 R et un ouvert proprement convex Ω ⊂ P n tels qu'on a un difféomorphisme ρ-equivariante X → Ω. L'ouvert Ω est aussi dit un convexe divisible.

Il est bien connu que Ω est déterminé par ρ à dualité près. Donc nous définissons l'espace des modules de structures projectives convexes sur X comme le sous-ensemble dans l'espace des classes d'équivalence de représentations P(X) ⊂ Hom(Π, PGL n+1 R)/PGL n+1 R formé par tout ρ ∈ Hom(Π, PGL n+1 R) qui vient d'une structure projective convexe. Y. Benoist [START_REF] Benoist | Convexes divisibles[END_REF] a montré que P(X) est ouvert et fermé dans Hom(Π, PGL n+1 R)/PGL n+1 R. W. Goldman [START_REF] William | Convex real projective structures on compact surfaces[END_REF] a montré que pour une surface fermé Σ de genre g ≥ 2, P(X) est homeomorphe à R 16g- 16 .

Dans cette thèse nous étudions le cas où X est un orbifold de Coxeter hyperbolique simplicial , c'est-à-dire X = H n /Γ, où H n est l'espace hyperbolique de dimension n et Γ ⊂ Isom(H n ) est engendré par les réflexions par rapport aux faces d'un simplexe P ⊂ H n de sorte que P est un domaine fondamental de l'action de Γ sur H n . Un tel group Γ est déterminé (à conjugaison près) par un diagramme de Coxeter hyperbolique J. Désignons X par X J si Γ vient de J.

En identifiant H n avec une boule dans P n et Isom(H n ) avec le groupe des transformations projectives préservant cette boule (i.e., le modèle de Beltrami-Klein de H n ), on obtient une structure projective convexe tautologique sur X J . J. Tits ont donné un critère assez général pour déterminer si un groupe engendré par des réflexions projectives donne lieu à un convexe divisible, donc on appelle un tel convexe un ensemble de Tits. Nous déduisons du critère de Tits que

P(X J ) ∼ = R >0 si J contient une boucle, un point sinon.
Puis nous étudions la comportement asymptotique de cette famille de structure projective.

Proposition (Proposition 5.5). Soit P un simplexe dans P n . Prenons un diagramme de Coxeter hyperbolique J comme ci-dessus tel que P(X J ) ∼ = R >0 . Alors il existe une famille à une paramètre de representations {ρ t } t∈R >0 de Γ dans PGL n+1 R telle que (1) ρ t (Γ) est engendré par des réflexions projectives par rapport aux faces de P .

(2) L'application R >0 → P(X J ), t → [ρ t ] is bijective.

(3) Soit Ω t l'ensemble de Tits associé à ρ t , alors Ω t tend vers P pour la topologie de Hausdorff, lorsque t tend vers 0 ou +∞. c.f. Figure 5.2.

Métrique de Hilbert et entropie

Tout ouvert proprement convexe Ω ⊂ P n porte une métrique Finslerienne canonique d Ω , dite la métrique de Hilbert. Nous renvoyons à §5.2.1 pour la définition. Si Ω est un ellipsoïde alors (Ω, d Ω ) est isométrique à l'espace hyperbolique H n . Soit d t la métrique de Hilbert sur l'ensemble de Tits Ω t donné par la proposition précédente, au cas où J contient une boucle. Considérons la quantité suivante, dite l'entropie de Ω t :

δ t = lim R→+∞ 1 R log #Γx 0 ∩ B dt (x 0 , R),
où B dt (x 0 , R) désigne la boule à rayon R centré à x 0 ∈ Ω t par rapport à la métrique d t . Il est connu que cette dernière limite existe et ne dépend pas de x 0 . De plus, une adaption d'un résultat de A. Manning [START_REF] Manning | Topological entropy for geodesic flows[END_REF] implique que δ t égale à l'entropie topologique du flot géodésique de Ω t /ρ t (Γ) (un flot de billard dans le fibré tangent unitaire de P ). M. Crampon [START_REF] Crampon | Entropies of strictly convex projective manifolds[END_REF] a montré que l'entropie du flot géodésique d'une variété projective convexe de dimension n est majorée par n -1, où le maximun est atteint si et seulement si Ω est un ellipsoïde. Puis il a demandé si l'entropie admet une borne inférieure.

Le résultat principal de la deuxième partie de cette thèse donne une réponse négative :

Théorème D. δ t tend vers 0 lorsque t tend vers 0 ou +∞.

Rappelons que pour un espace métrique (X, d), la systole est l'infimum des longeures de courbes homotopiquement non-nulles. Soit X le revêtement universel de X. La constante d'hyperbolicité de Gromov est par définition le supremum des tailles de triangles géodésiques dans X, où la taille T (∆) d'une triangle ∆ aux arêtes I 1 , I 2 , I 3 est définie par

T (∆) = min x i ∈I i diamètre({x 1 , x 2 , x 3 })

La démonstration de Théorème D implique

Corollaire. Pour toute surface fermé de genre g ≥ 2, il existe une famille à un paramètre de structures projectives convexes dont l'entropie du flot géodésique tend vers 0, la systole et la constante d'hyperbolicité de Gromov tendent vers +∞ lorsque le paramètre tend vers infini.

Part I

On the quasi-Poisson lattice gauge theory

Chapter 1

Quasi-Poisson lattice gauge theory

In this chapter we give a self-contained presentation of Li-Bland and Ševera's version [START_REF] Li-Bland | Moduli spaces for quilted surfaces and Poisson structures[END_REF] of the quasi-Poisson lattice gauge theory [START_REF] Alekseev | Lie group valued moment maps[END_REF][START_REF] Alekseev | Quasi-Poisson manifolds[END_REF][START_REF] Fock | Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix[END_REF], as well as some necessary preliminaries. §1.1 is a quick review of basic definitions and constructions about quasi-Poisson structure. After giving in §1.2 some backgrounds about flat G-connections over surfaces, we construct in §1.3 the main objet of study in the quasi-Poisson lattice gauge theory a quasi-Poisson structure on M G (Σ, V ), and discuss its relationship with the Fock-Rosly construction. Finally we discuss in §1.4 an important aspect of quasi-Poisson theory which is omitted in §1.1, namely, moment maps and cross-section.

Quasi-Poisson manifolds 1.Schouten brackets

Let M be a smooth manifold and C ∞ ( • TM ) = dimM k=0 C ∞ ( k TM ) be the exterior algebra of multi-vector fields on M .

The Lie bracket of vector fields

[•, •] : C ∞ (TM ) ⊗ C ∞ (TM ) → C ∞ (TM )
extends to the Schouten bracket

[•, •] : C ∞ (∧ • TM ) ⊗ C ∞ (∧ • TM ) → C ∞ (∧ • TM ),
which is characterized by the following properties (see e.g. [START_REF] Dufour | Normal forms of Poisson structures[END_REF] Theorem 2.1)

[C ∞ (∧ a TM ), C ∞ (∧ b TM )] ⊂ C ∞ (∧ a+b-1 TM ), [A, B] = (-1) (a-1)(b-1) [B, A], [[A, B], C] + (-1) (a-1)(b+c-2) [[B, C], A] + (-1) (c-1)(a+b-2) [[C, A], B] = 0, [A, B ∧ C] = [A, B] ∧ C + (-1) (a-1)b B ∧ [A, C], [X, B] = L X B if X ∈ C ∞ (TM ).
where A, B, C are multi-vector fields of degree a, b, c, respectively. In particular, if

P ∈ C ∞ ( 2 TM ), put {f, g} = P (df, dg) (∀f, g ∈ C ∞ (M )), then [P, P ](df, dg, dh) = -2 {{f, g}, h}. (1.1)
where stands for the summation over cyclic permutations of f, g and h.

A Poisson tensor on M is a bivector field P ∈ C ∞ ( 2 TM ) satisfying [P, P ] = 0. Equivalently, it is a Poisson bracket {•, •} on C ∞ (M ), i.e., a Lie bracket satisfying the Leibniz rule.

For any Lie algebra g, the Lie bracket also extends to an algebraic Schouten bracket

[•, •] : • g ⊗ • g → • g with similar properties.

Quasi-Poisson manifolds

Let g be a Lie algebra. An action ρ of g on M (i.e. a homomorphism of Lie algebras

g → C ∞ (TM ), x → ρ x ) extends to a homomorphism • g → C ∞ ( • TM ), ξ → ρ ξ preserving Schouten brackets.
Recall that g acts on g ⊗k in the usual way

x.(y 1 ⊗ • • • ⊗ y k ) = [x, y 1 ] ⊗ y 2 ⊗ • • • ⊗ y k + • • • + y 1 ⊗ • • • ⊗ y k-1 ⊗ [x, y k ].
We let (S 2 g) g denote g-invariant elements in S 2 g ⊂ g ⊗ g.

Here "invariant" means annihilated by any x ∈ g. Let (x i ) be a basis of g and (c k ij ) be the structure constants of g defined by

[x i , x j ] = c k ij x k . Then s ∈ (S 2 g) g has the expression 1 s = s ij x i ⊗ x j with (s ij ) satisfying s ij = s ji and c i kl s lj + c j kl s lj = 0. There is a canonical g-invariant trivector φ ∈ ( 3 g) g ⊂ g ⊗ g ⊗ g associated with s, defined by φ(α, β, γ) = 1 2 γ([s (α), s (β)]), ∀α, β, γ ∈ g * ,
where s : g * → (g * ) * = g is the map α → s(α, •). In coordinates we have

φ = 1 12 c i pq s pj s qk x i ∧ x j ∧ x k . Definition 1.1. Given a g-manifold M and s ∈ (S 2 g) g , a quasi-Poisson (g, s)-tensor on M is a g-invariant bivector field P ∈ C ∞ ( 2 TM ) satisfying [P, P ] = ρ φ .
If P is a quasi-Poisson (g, s)-tensor, then we called the pair (M, P ) a quasi-Poisson (g, s)-manifold and the skew-symmetric bilinear map

{•, •} : C ∞ (M ) × C ∞ (M ) → C ∞ (M ), {f, g} := P (df, dg) a quasi-Poisson bracket.
Because of Eq.(1.1), one can alternatively define a quasi-Poisson manifold as a gmanifold M such that C ∞ (M ) is equipped with a quasi-Poisson bracket, i.e., a skewsymmetric bilinear map satisfying the Leibniz rule and a quasi-Jacobi identity -2 {{f, g}, h} = ρ φ (df, dg, dh).

(1.2)

We will often encounter manifolds equipped with an action of the direct sum g n of n copies of g. We let

s (n) = s ⊕ • • • ⊕ s ∈ S 2 g ⊕ • • • ⊕ S 2 g ⊂ S 2 (g n )
be the direct sum of n copies of s. In coordinates we have

s (n) = n r=1 s ij x i (r) ⊗ x j (r), where x i (r) = (0, • • • , x i r-th , • • • , 0) ∈ g n .
The canonical invariant element in 3 g n associated to s (n) is

φ (n) = 1 12 n r=1 c i pq s pj s qk x i (r) ∧ x j (r) ∧ x k (r),
namely, the direct some of n copies of φ.

An obvious way of constructing new quasi-Poisson manifolds from old ones is to take the direct product. Say, if (M 1 , P 1 ) and (M 2 , P 2 ) are quasi-Poisson (g, s)-manifolds then (M 1 ×M 2 , P 1 + P 2 ) is a quasi-Poisson (g 2 , s (2) )-manifold. Here P 1 (resp. P 2 ) is the bivector field whose restriction to each slice

M 1 × {m} (resp. {m} × M 2 ) is P 1 (resp. P 2 ).
In the next subsection, we shall explain a less trivial way of constructing new quasi-Poisson manifolds.

Fusion

Definition 1.2. Let g and h be Lie algebras and ρ be a g n ⊕ h-action on a manifold M . Then the diagonal embedding

g ⊕ h → g n ⊕ h, (x, y) → (x, • • • , x, y)
induces an action ρ * of g ⊕ h on M . We call ρ * the fusion of ρ at the g-factors. Fusion of Lie group actions is defined in the same way.

Given s ∈ (S 2 g) g , we put

ψ = 1 2 s ij x i (2) ∧ x j (1) ∈ ∧ 2 (g ⊕ g).
One can check that ψ is independent of the basis (x i ). We also consider ψ as an element in 2 (g ⊕ g ⊕ h) via the embedding g ⊕ g → g ⊕ g ⊕ h.

Definition/Proposition 1.3. Take s ∈ (S 2 g) g and t ∈ (S 2 h) h . Let M be a manifold equipped with an action ρ of g ⊕ g ⊕ h.

Let P ∈ C ∞ ( 2 TM ) be a quasi-Poisson (g ⊕ g ⊕ h, s ⊕ s ⊕ t)-tensor. Put P * = P + ρ ψ .
Then P * is a quasi-Poisson (g⊕h, s⊕t)-tensor, called the fusion of P at the two g-factors.

Here the action ρ * of g ⊕ h on M is the fusion of ρ.

The fusion operation of quasi-Poisson tensors is not commutative in the sense that in the definition of ψ the role of the two g-factors are asymmetric. However, it is associative in the following sense: for a quasi-Poisson (g n ⊕h, s (n) ⊕t)-tensor P we can apply fusion for n -1 times, each time applying to two adjacent g-factors, and finally get a quasi-Poisson (g ⊕ h, s ⊕ t)-tensor P (where the g ⊕ h action on M is the fusion of the g n ⊕ h-action). Then P does not depend on where we apply fusion at each times. Indeed, P always has the expression

P = P + ρ ψ , ψ = 1 2 k>l s ij x i (k) ∧ x j (l) ∈ ∧ 2 g n ⊂ ∧ 2 (g n ⊕ h). (1.3)
Proof. We need to show [P * , P * ] = ρ * φ . On one hand,

[P * , P * ] = [P, P ] + [ρ ψ , ρ ψ ] + 2[P, ρ ψ ] = ρ φ (2) + ρ [ψ,ψ] = ρ (φ (2) +[ψ,ψ])
([P, ρ ψ ] = 0 because P is invariant under ρ). We have

φ (2) + [ψ, ψ] = 1 12 c i pq s pj s qk x i (1) ∧ x j (1) ∧ x k (1) + x i (2) ∧ x j (2) ∧ x k (2) + 1 4 c i pq s pj s qk x i (1) ∧ x j (2) ∧ x k (2) + x i (1) ∧ x j (2) ∧ x k (2) .
On the other hand, by definition of ρ * we have ρ * φ = ρ ι(φ) , where ι is induced by the diagonal embedding g → g ⊕ g. We have

ι(φ) = 1 12 c i pq s pj s qk [x i (1) + x i (2)] ∧ [x j (1) + x j (2)] ∧ [x k (1) + x k (2)].
From these equalities we see that φ (2) + [ψ, ψ] = ι(φ). The required equality [P * , P * ] = ρ * φ follows.

Remark 1.4. As a particular instance, given quasi-Poisson (g, s)-manifolds (M -→ gah -1 . It follows from g-invariance of the trivector φ that ρ φ = φ L -φ R = 0, so the trivial bivector field P = 0 is a (g 2 , s (2) )-quasi-Poisson structure for any s.

One can construct new examples from this one by taking direct product of several copies and then applying fusions. Actually, these are all the quasi-Poisson manifolds which concerns us in this thesis. The simplest one of such examples is the fusion (G, P * ), where

P * = 1 2 s ij x R i ∧ x L j ∈ C ∞ (∧ 2 T G)
is a quasi-Poisson (g, s)-tensor with respect to the conjugation action of G on itself.

Reduction

By reduction we mean using a specific structure on a G-manifold M to produce a corresponding structure on the quotient X = M/G. When M has a quasi-Poisson structure, we expect a Poisson structure on X.

However, some caution is needed because X is not necessarily a manifold, even not necessarily Hausdorff if G is not compact. Rather than singling out a smooth part of X, we shall formally treat the algebra C ∞ (M ) G of G-invariant functions on M as the "algebra of functions" of M , and sometimes denote it simply by C ∞ (X). By a Poisson structure on X is meant a Poisson bracket on this algebra. This notion will be generalized in §3.1.1.

If M • ⊂ M is a G-invariant open subset such that X • = M • /G is a

Flat connections over surfaces 1.2.1 Flat connections

We introduce in this subsection some backgrounds concerning flat connections on principal G-bundles. Details can be found, for example, in [START_REF] Kobayashi | Foundations of differential geometry[END_REF].

In this thesis, a surface always means a compact oriented surface, possibly with boundary. If the boundary is nonempty, we call it a bordered surface.

Let Σ be a bordered surface, G be a Lie group with Lie algebra g and π : P → Σ a (left) principal G-bundle.

To simplify notations, we assume that G is connected, so that P must be isomorphic to the trivial G-bundle2 , and we fix a trivialization P ∼ = Σ × G. By definition G acts on P by right multiplication on the second factor.

A connection on P is a G-invariant horizontal distribution D. Here "distribution" means giving a linear subspace D p ⊂ T p P depending smoothly on p ∈ P , and "horizontal" means that dπ p (D p ) = T π(p) Σ for any p ∈ P . Furthermore, D is called a flat connection if it is integrable, i.e., a foliation. The space of connections (resp. flat connections) on P is denoted by A (resp. A flat ).

Given a connection D, there is a unique g-valued differential form θ ∈ Ω 1 (Σ, g), call a connection 1-form such that D p is the kernel of the linear map g -1 dg + θ : T p P → g, where g -1 dg ∈ Ω 1 (G, g) is the left invariant Maurer-Cartan 1-form, lifted to P by the projection P ∼ = Σ × G → G. It can be shown that the connection is flat if and only if the curvature 2-form

F (θ) = dθ + 1 2 [θ, θ] ∈ Ω 2 (Σ, g)
Chapter 1. Quasi-Poisson lattice gauge theory vanishes. Thus we have identifications

A = Ω 1 (Σ, g), A flat = {θ ∈ Ω 1 (Σ, g) | F (θ) = 0}.
Note that these identifications depend on the choice of the trivialization P ∼ = Σ × G. A gauge transformation of P is a G-bundle automorphism, namely, a diffeomorphism P → P of the form

Σ × G ∼ = P → P ∼ = Σ × G, (x, s) → (x, g(x)s),
where g : Σ → G is a smooth map. Thus the group G of all gauge transformations is identified with the space of smooth maps Map(Σ, G).

A gauge tranformation brings a distribution to another, preserving G-invariance and horizontality, thus G acts on A. This action clearly preserves A flat . In terms of connection 1-forms, the action is given by

θ g -→ Ad g θ -dgg -1 for any θ ∈ Ω 1 (Σ, g) ∼ = A and g ∈ G ∼ = Map(Σ, G).
Here dgg -1 is the pull-back of the right invariant Maurer-Cartan form by g : Σ → G. (2

Holonomies and fundamental groupoid representations

) if g ∈ G then hol γ (g.D) = g(b)hol γ (D)g(a) -1 ,
Recall that a groupoid is a small category whose morphisms are all invertible. A group is considered as a groupoid with a single object. Let V ⊂ Σ be a set of base points. The fundamental groupoid π 1 (Σ, V ) is the groupoid whose objects are points in V , while a morphism from u ∈ V to v ∈ V is a homotopy class of oriented paths on Σ going from u to v. By abuse of notations, π 1 (Σ, V ) is often understood as the set of morhpisms in this groupoid. If V is a single point, then π 1 (Σ, V ) is just the fundamental group.

We shall write compositions in π 1 (Σ, V ) from right to left. Namely, if α, β ∈ π 1 (Σ, V ) go from u to v and from v to w, respectively, then their composition, which goes from u to w, is denoted by βα.

We call a functor between two groupoids a homomorphism, and call a homomorphism into a Lie group a representation. The main object of study in the present thesis is the space of representations

M G (Σ, V ) = Hom(π 1 (Σ, V ), G)
for a non-empty finite set of boundary points V ⊂ ∂Σ. We call V marked points and the pair (Σ, V ) a marked surface The group G V naturally acts on M G (Σ, V ) by

g.m(γ) = g in(γ) m(γ)g -1 out(γ) , ∀g ∈ G V , m ∈ M G (Σ, V ), γ ∈ π 1 (Σ, V ),
where out(γ) and in(γ)are the starting and ending point of γ, respectively. Given v ∈ V , we shall denote the action of the v th factor of G V by ρ v . When V is a single point, M G (Σ, V ) is a more familiar object -the representation variety of the fundamental group of Σ, where G acts on representations by conjugation.

The above two properties of holonomies shows that the holonomy data of a flat connections can be viewed as a fundamental groupoid representation. Indeed, the map

A flat → Hom(π 1 (Σ, V ), G), D → (γ → hol γ (D)) (1.4)
is surjective and equivariant with respect to the restriction homomorphism

G → G V g → (g(v)) v∈V . (1.5)
Moreover, let G V denote the kernel of the homomorphism (1.5), then (1.4) induces a bijection

A flat /G V ∼ -→ M G (Σ, V ).
We denote also by hol γ the evaluation map of

M G (Σ) at γ ∈ π 1 (Σ, V ), M G (Σ, V ) → G, m → m(γ).
Notice that the lift of this map to A flat coincides with the holonomy hol γ : A flat → G.

The Atiyah-Bott Poisson structure

We recall in this subsection a classical construction of a Poisson structure on the moduli space of flat connections

X G (Σ) := M G (Σ, V )/G V = A flat /G.
due to Atiyah and Bott [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF] 3 . Remark 1.7. (1) X G (Σ) is also the space of conjugacy classes of representations of the fundamental group π 1 (Σ). Indeed, pick v ∈ V , then the groupoid injection

π 1 (Σ, {v}) → π 1 (Σ, V ) induces a map M G (Σ, V ) -→ M G (Σ, {v}).
Under the action of G V on M G (Σ, V ), this map is surjective and equivariant with respect to the v th factor and invariant with respect to other factors. Thus

X G (Σ) = M G (Σ, {v})/G.
(2) In general, X G (Σ) is not a smooth manifold. Following §1.1.4, by a Poisson structure on X G (Σ) we mean a Poisson bracket on the algebra

C ∞ (X G (Σ)) := C ∞ (M G (Σ, V )) G V .
Such a bracket descends to a genuine Poisson structure on any smooth part of X G (Σ).

We fix an invariant scalar product (• | •) on the Lie algebra g. The vector space A ∼ = Ω 1 (Σ, g) carries a natural translation-invariant and G-invariant symplectic form

σ(a, b) = Σ (a | b), a, b ∈ T θ A ∼ = Ω 1 (Σ, g).
Assume that ∂Σ has b connected components. Recall that the loop group LG is the space of smooth maps Map(S 1 , G). Let G ∂Σ denote the kernel of the restriction map

G ∼ = Map(Σ, G) → Map(∂Σ, G) ∼ = LG b .
It can be shown that the curvature

F : A → Ω 2 (Σ, g) ⊂ Lie(G) * ⊂ Lie(G ∂Σ ) *
is a moment map for the action of G ∂Σ , where the first inclusion is given by the natural pairing A, ξ = Σ (A | ξ) between Lie(G) = Ω 0 (Σ, g) and Ω 2 (Σ, g).

Recall that the Marsden-Weinstein reduction (see e.g. [START_REF] Mcduff | Introduction to symplectic topology[END_REF]) says that the quotient of the zero level set of a moment map, which in is case is N = A flat /G ∂Σ , carries a symplectic structure. Hence the space of functions C ∞ (N ) carries a Poisson bracket.

There is a natural projection

N -→ M G (Σ, V )
which is equivariant with respect to the projection of groups

LG b = G/G ∂Σ → G/G V = G V . Thus C ∞ (X G (Σ)) = C ∞ (M G (Σ, V )) G V is identified with the C ∞ (N )
LG b , which has a Poisson bracket. This is by definition the Atiyah-Bott Poisson structure on X G (Σ). Remember our assumption from the beginning of this section that G is connected. If it is not the case, then we shall let A flat be the disjoint union P A flat (P ), where P runs over all isomorphism classes of principal G-bundles over Σ. On each A flat (P ) there is a gauge group G(P ) acting. The above discussions carry over to this situation. For example, we have M G (Σ, V ) = P A flat (P )/G V (P ), X G (Σ) = P A flat (P )/G(P ).

Remark 1.8. (1) To make the above discussions about infinite-dimensional manifold rigorous, one usually work with connections in a certain Sobolev class, instead of smooth ones, so as to make A, G, etc. into Banach manifolds. See e.g. [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF] Section 14. (2) The LG b -action on the symplectic manifold N also admits a moment map. Applying symplectic reduction to it, one can show that a symplectic leaf of X G (Σ) consists of representations of the fundamental group sending each boundary loop to a prescribed conjugacy class in G. Here we pick an arbitrary conjugacy class for each boundary loop. This fact follows alternatively from quasi-Poisson theory.

Despite of its theoretical importance, the above definition of the Atiyah-Bott Poisson structure is difficult to handle in concrete applications, since it involves infinite-dimensional objects. Goldman [START_REF] William | The symplectic nature of fundamental groups of surfaces[END_REF][START_REF] William | Invariant functions on Lie groups and Hamiltonian flows of surface group representations[END_REF] gave a finite-dimensional construction in terms of twisted cohomology and used it to compute Poisson brackets of certain functions on X G (Σ), see §2.1.2 below. Goldman's original approach only works for closed surfaces. A generalization to bordered surfaces is given in [START_REF] Guruprasad | Group systems, groupoids, and moduli spaces of parabolic bundles[END_REF].

In the 90's two alternative finite-dimensional constructions appeared: one is due to V. Fock and A. Rosly [START_REF] Fock | Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix[END_REF] and the other to A. Alekseev, E. Meinrenken and A. Malkin [START_REF] Alekseev | Lie group valued moment maps[END_REF]. These constructions have the advantage of being completely explicit and calculable. The latter one is the main object of the present thesis. However, we shall explain in §3.2.6 that these two constructions actually are equivalent.

Combinatorics of surfaces

We discuss in this subsection some combinatorial facts about bordered surfaces, which are useful in the study of the representation space M G (Σ, V ).

By a skeleton of a bordered surface Σ we mean an embedded graph Γ ⊂ Σ such that the set of vertices V Γ is contained in ∂Σ and Σ retracts to Γ by deformation. Skeletons have the structure of ciliated fat graph, as we explain now.

Given a graph Γ, we shall let V Γ and E Γ denote the set of vertices and edges, respectively. We view each edge as consisting of two half-edges and let E Γ the set of all half-edges of Γ. Recall that a fat graph is a graph Γ such that at each vertex v a cyclic order is given to the set E Γ (v) of half-edges issuing from v. We usually draw a fat graph as immersed in the plane such that the cyclic order at each vertex is the counter-clockwise order.

A ciliated fat graph is graph such that each E Γ (v) is endowed with an order, instead of a cyclic order. We draw a ciliated fat graph an immersed fat graph in the plane with a ciliate attached to each vertex from which the ordering begins. Notice that if there is only one edge issuing from v then no ciliate is needed at v.

Given a ciliated fat graph Γ, one can fatten Γ to get a bordered surface Σ such that Γ is a skeleton of Σ, as shown in the pictures below. Precisely, we fatten each edge into a ribbon and each vertex v into a half-disk in such a way that v is on the boundary and the ciliate points outwards.

Conversely, consider a pair (Σ, Γ) where Σ is a bordered surface and Γ a skeleton. The orientation of Σ endows Γ with the structure of ciliated graph, and one can shrink Σ into a fattened Γ. Therefore, a pair (Σ, Γ) is equivalent to a ciliated fat graph.

Skeletons enable us to better understand the space of fundamental groupoid representations M G (Σ, V ). We call Γ a skeleton of the marked surface (Σ, V ) if V Γ = V . Since (Σ, V ) retracts to (Γ, V ) by deformation, we have π 1 (Σ, V ) = π 1 (Γ, V ). If we give each edge e ∈ E Γ an orientation, then the fundamental groupoid π 1 (Γ, V ) is freely generated by these oriented edges, hence when defining a homomorphism from π 1 (Γ, V ) to G, one only need to assign an arbitrary element of G to each edge. As a result, we have a bijection

(hol e ) e∈E Γ : M G (Σ, V ) = Hom(π 1 (Γ, V ), G) ∼ -→ G E Γ .
(1.6) Remark 1.9. in the literature, members of Hom(π 1 (Γ, V ), G) are called lattice gauge fields and the G V -action called discrete gauge transformation. This explains the title of this chapter.

The natural G V -action on M G (Σ, V ) ∼ = G E Γ can be easily read off from the graph. See the following picture. Here Γ has three edges, an element of G E Γ being an assignment of elements a, b, c in G to each edge.

We shall interpret the G V -action as a fusion of a finer action. We break edges of Γ apart and obtain a graph Γ which is the disjoint union of #E Γ copies of segments. E Γ is viewed as the set of vertices of Γ, so G E Γ naturally acts on Hom(π

1 ( Γ, E Γ ), G) ∼ = G E Γ ∼ = M G (Σ, V ), as pictured below. Let ρ v denote the action of the subgroup G E Γ (v) ⊂ G E Γ on M G (Σ, V ).
Then the action ρ v of the v th factor of G V is just the fusion of ρ v .

We shall now look closer into the above operation of breaking Γ down into segments. Let (Σ, V ) be a bordered surface with marked points V ⊂ ∂Σ. We define the fusion of (Σ, V ) at an ordered pair of marked points (v 1 , v 2 ) to be a new surface with marked points (Σ * , V * ), obtained by gluing two segments of ∂Σ together, as shown in the picture below. We require that the first (resp. second) segment issues from v 1 (resp. v 2 and runs in negative (resp. position) orientation.

Note that if we exchange the roles of v 1 and v 2 , then, in general, we get a different (Σ * , V * ). Indeed, the fusion operation for surfaces is noncommutative but associative in a similar sense as for quasi-Poisson structures.

If Γ is a skeleton of (Σ, V ), then the image Γ * of Γ in Σ * is a skeleton of (Σ * , V * ). As a result, the gluing map (Σ, V ) → (Σ * , V * ) induces a bijection between the space of fundamental groupoid representations. Indeed, the following diagram commutes

M G (Σ * , V * ) M G (Σ, V ) G E Γ * G E Γ G G = G G ∼ = (hole) e∈E Γ * ∼ = (hole) e∈E Γ Moreover, the G V * -action on M G (Σ * , V * ) ∼ = M G (Σ, V
) is obtained from the G V -action by fusing the v th 1 and v th 2 factor. Under the equivalence between ciliated fat graphs and surfaces with skeletons, the fusion operation

(Σ, Γ) (Σ * , Γ * )
is just the operation of merging the vertices v 1 and v 2 of the two ciliated fat graphs, as shown in the picture below. This operation is clearly noncommutative but associative.

Therefore, we can think of a skeleton Γ of Σ as being built from the disjoint union Γ of segments by applying fusion repeatedly, while the ciliates on vertices of Γ serves to record the order of fusions.

Equivalently, let D denote the disk with two marked points, then Γ gives a way of building up (Σ, V ) from a disjoint union of D's by fusion. For example, starting from three copies of D and performing fusion two times, we can get a disk with four marked points. Difference skeletons corresponds to different ways to do so, as shown in the picture below. Here the three colors stand for the three copies of D.

1.3

The Quasi-Poisson structure on M G (Σ, V )

Construction of the quasi-Poisson structure

Fix a Lie group G with Lie algebra g and pick s ∈ (S 2 g) g . Let Σ be a bordered surface and V ⊂ ∂Σ be finitely many marked points. Using the constructions in the previous subsection, we readily get Proposition 1.10. Given a skeleton Γ of (Σ, V ), there is a canonical quasi-Poisson (g V , s (V ) )-tensor P Γ on M G (Σ, V ).

Proof. The construction of P Γ goes as follows. Since G E Γ -manifold Hom(π

1 ( Γ, E Γ ), G) ∼ = M G (Σ, V ) =: M is the direct product of #E Γ copies of the G × G-manifold G, by Example 1.
5, M has the trivial bivector field P = 0 as a quasi-Poisson (g E Γ , s ( E Γ ) )-tensor. The G Vaction on M is a fusion of the G E Γ -action (see §1.2.4), so we get the quasi-Poisson tensor P L as a fusion of P = 0 in the sense of Definition/Proposition 1.3. Note that fusion of quasi-Poisson tensors depends on orders, which, in this case, is specified by the ciliates.

Let us exhibit an explicit expression for P Γ . We shall first establish a notation. Definition 1.11. Let Γ be a graph and Γ be the graph obtained by breaking apart edges of Γ, so that G E Γ naturally acts on Hom(π

1 ( Γ, E Γ ), G) ∼ = Hom(π 1 (Γ, V ), G) =: M .
For any x ∈ g and a ∈ E Γ , we let x (a) ∈ C ∞ (TM ) denote the fundamental vector field of x induced by the action of the a th factor of G E Γ .

Here is an alternative description of x (a) . Choose an orientation for each edge e ∈ E Γ and use (hol e ) e∈E Γ to identify M with G E Γ . Let e ∈ E Γ be the oriented edge containing a. If a is the first (resp. second) half of e, then x (a) is just the left invariant vector field x L (resp. the right invariant vector field -x R ) on the e th factor of G E Γ .

Let (x i ) be a basis of g and assume s = s ij x i ⊗ x j . Using the above notation and Eq.(1.3), we get

P Γ = 1 2 v∈V a<b s ij x (a) i ∧ x (b) j , (1.7) 
where the second summation runs over half-edges a, b ∈ E Γ (v) such that a < b. Here E Γ (v) has an order "<" because it is a ciliated fat graph.

Theorem 1.12. The bivector field P Γ on M G (Σ, V ) does not depend on the choice of the skeleton Γ.

Thus we shall call P = P Γ the canonical quasi-Poisson tensor on M G (Σ, V ). Notice that P depends on a choice of s ∈ (S 2 g) g .

Theorem 1.12 will be proved in §2.3.1 below as a consequence of Theorem 2.17.

It is instructive to verify the theorem in the following simplest example by straightforward computations.

Example 1.13. Let (Σ, V ) be the disk with three marked points on the boundary and put M = M G (Σ, V ). Let Γ, Γ be the two skeletons as shown below, where we give each edge an orientation and let a, b, u, v : M → G be the corresponding holonomies. Let us show that P Γ = P Γ . 

M ∼ → G × G, we have P Γ (a, b) = s ij x L i (a) ∧ x L j (b),
where x L (a) (resp. x L (b)) ∈ T (a,b) G × G denotes the left translation of x to a (resp. b) in the first (resp. second) factor. Similarly, in the coordinates system (u, v) we have

P Γ (u, v) = s ij x L i (u) ∧ x L j (v).
The coordinates change is a = v -1 , b = uv -1 . Some computation gives that at the point (a, b) we have

x L i (u) = (Ad -1 a x i ) L (b), x L j (v) = -x R j (a) -(Ad -1 a x j ) L (b).
Using s ij = s ji we get

P Γ (a, b) = s ij x R i (a) ∧ (Ad a x j ) L (b) = s ij (Ad -1 a x i ) L (a) ∧ (Ad -1 a x j ) L (b) = P Γ (a, b),
where the last equality follows from invariance of s ∈ g ⊗ g.

Remark 1.14. Extending the above computation, one can show that for general (Σ, V ), if a skeleton Γ is obtained from another one Γ by modifying only two edges in a way as above (let us call such a modification a simple move), then P Γ = P Γ . One is then tempted to prove Theorem 1.12 by showing that any two skeletons of (Σ, V ) are related by a sequence of simple moves. This approach, although achievable, involves lengthy arguments in order to show that for any diffeomorphism φ of Σ fixing ∂Σ, the skeletons Γ and φ(Γ) are related by simple moves -one has to find an explicit set of generators of the mapping class group and then check for each generator φ. The proof that we present in §2.3.1 uses completely different ideas.

The quasi-Poisson theory gives a finite-dimensional construction of the Atiyah-Bott Poisson structure in the following sense.

Theorem 1.15 (Alekseev,Malkin,Meinrenken [6]). Let (• | •) be an invariant scalar product on g and s ∈ (S 2 g) g be its dual. Let P be the canonical quasi-Poisson (g V , s (V ) )tensor on M G (Σ, V ). Then the Poisson structure on X G (Σ) = M G (Σ, V )/G V reduced from P coincides with the Atiyah-Bott Poisson structure.

We will not prove the above theorem in this thesis, but only make a few comments here about the proofs. A quick but indirect proof consist in showing that the Atiyah-Bott Poisson brackets of certain functions in

C ∞ (X G (Σ)) = C ∞ (M G (Σ, V )) G V , known as spin networks, which form a dense subset of C ∞ (M G (Σ, V )) G V ,
coincides with their quasi-Poisson brackets. This is possible because a formula for Atiyah-Bott brackets of spin networks is available [START_REF] Baez | Spin networks in gauge theory[END_REF][START_REF] Roche | Trace functionals on noncommutative deformations of moduli spaces of flat connections[END_REF], while a quasi-Poisson bracket formula for them is established in Chapter 2 below. The original proof, which indicates how the quasi-Poisson structure on M G (Σ, V ) arises, is given in [START_REF] Alekseev | Lie group valued moment maps[END_REF] using the language of quasi-Hamiltonian structuresone shall use results from [START_REF] Alekseev | Quasi-Poisson manifolds[END_REF] to translate quasi-Hamiltonian structures to quasi-Poisson structures. However, the latter proof seems only apply to the case where V has exactly one point in each component of ∂Σ. According to David Li-Bland, a on-going joint work of A. Cabrera, M. Gualtieri and E. Meinrenken contains further clarification on this issue.

Equivalence with the Fock-Rosly Poisson structure

Using Poisson Lie group actions, Fock and Rosly gave in [START_REF] Fock | Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix[END_REF] a Poisson structure on M G (Σ, V ) which also reduces to the Atiyah-Bott Poisson structure on the quotient X G (Σ).

The Fock-Rosly Poisson structure is of course different from the canonical quasi-Poisson structure, but it turns out to be a twist of the latter in the sense of Alekseev and Kosmann-Schwarzbach [START_REF] Alekseev | Manin pairs and moment maps[END_REF]. In this subsection we first recall some backgrounds on Poisson Lie groups and then explain this twist equivalence.

Definition/Proposition 1.16.

-A Poisson Lie group is a Lie group G with Poisson structure P such that the multiplication G × G → G is a Poisson map (where G × G is endowed with the product Poisson structure).

-We only consider those Poisson Lie groups such that P has the form

P = a R -a L (1.8)
for some a ∈ 2 g. Here a L and a R are left and right invariant bivector fields on G which restrict to a at the origin. Notice that there are constraints on a ∈ 2 g for (1.8) to be a Poisson tensor. r ∈ g ⊗ g is called a quasi-triangular classical r-matrix if its symmetric part s = (CYBE)

-A sufficient (but not necessary) condition for (1.8) to define a Poisson Lie group structure is that there exists s ∈ (S 2 g) g such that r = a + s is a quasi-triangular classical r-matrix. -A Lie bialgebra is a Lie algebra g such that the dual g * is equipped with a Lie bracket

2 g * → g * whose transpose γ : g → 2 g is a 1-cocycle, namely, x.γ(y) -y.γ(x) -γ([x, y]) = 0.
-Let G be a Poisson Lie group, then its Lie algebra g has a natural Lie bialgebra structure γ : g → 2 g which, roughly speaking, is the differential of the Poisson tensor at the origin. In particular, if the Poisson Lie structure comes from a quasitriangular classical r-matrix, then γ(x) = x.r for any x ∈ g. -Let M be a Poisson manifold and G be a Poisson Lie group. If an action G×M → M is a Poisson map, then it is call a Poisson action. An equivalent condition is that the infinitesimal action ρ of g on M satisfies

L ρx P M = ρ γ(x) , (1.9) 
where P M is the Poisson tensor on M and γ : g → 2 g is the natural Lie biaglebra structure.

We refer to [START_REF] Chari | A guide to quantum groups[END_REF] for details and proves of these statements. Now we can show the equivalence between quasi-Poisson manifolds and Poisson manifolds with Poisson Lie group actions.

4. The notations here are defined as follows. Let U (g) be the universal enveloping algebra of g. Assuming r

= i ui ⊗ vi ∈ g ⊗ g, we define r12, r13, r23 ∈ U (g) ⊗3 by r12 = i ui ⊗ vi ⊗ 1, r13 = i ui ⊗ 1 ⊗ vi, r23 = i 1 ⊗ ui ⊗ vi.
The commutator of any two of them is contained in g

⊗3 . For example, [r12, r23] = i [ui, uj] ⊗ vi ⊗ vj.
Theorem 1.17 (Alekseev,). We take s ∈ (S 2 g) g and a ∈ 2 g such that r = a + s 2 ∈ g ⊗ g is a quasi-triangular classical r-matrix and equip G with the Poisson Lie structure (1.8).

Let M be a G-manifold and P ∈ C ∞ ( 2 TM ) be a bivector field. Then P is a quasi-Poisson (g, s)-tensor if and only if Proof. The proof of Theorem 1.17 is based on the following lemma:

P = P + ρ a
Lemma 1.18. (1) If s ∈ (S 2 g) g and φ ∈ 3 g is the canonical trivector, then we have φ = -1 2 [s 12 , s 23 ] = 1 2 [s 13 , s 23 ] = 1 2 [s 12 , s 13 ]. It follows that φ = 1 2 [[s, s]]. (2) If a ∈ 2 g ⊂ g ⊗ g then [[a, a]] = 1 2 [a, a]. (3) If r = a + s ∈ g ⊗ g with a ∈ 2 g and s ∈ (S 2 g) g , then [[r, r]] = [[a, a]] + [[s, s]].
These follows from straightforward computations and we omit the proof. The conditions that P = P + ρ a is a Poisson tensor and the G action is a Poisson action amount to the following conditions about Schouten brackets

[ρ x , P ] = ρ [x,r] (∀x ∈ g), [P , P ] = 0.
Using the above lemma, one readily verifies that these conditions are equivalent to

[ρ x , P ] = 0 (∀x ∈ g), [P, P ] = ρ φ ,
that is, P is a quasi-Poisson (g, s)-tensor.

Applying the above theorem to M G (Σ, V ), we get a Poisson tensor P on M G (Σ, V ) with the property that, if we equip G with the Poisson Lie group structure (1.8), then the action of the product Poisson Lie group

G V on M G (Σ, V ) is a Poisson action.
Let us now exhibit an explicit expression of P . We take a basis (x i ) of g and assume

a = a ij x i ⊗ x j = 1 2 a ij x i ∧ x j , s = s ij x i ⊗ x j with a ij = -a ji , s ij = s ji . Let Γ be a skeleton of (Σ, V ), then we have ρ a = v∈V ρ v a , where ρ v a = 1 2 a,b∈ E Γ (v) a ij x (a) i ∧ x (b) j . So P = P + ρ a = 1 2 v∈V a<b s ij x (a) i ∧ x (b) j + 1 2 v∈V a,b a ij x (a) i ∧ x (b) j = v∈V   1 2 a<b s ij x (a) i ∧ x (b) j + a<b a ij x (a) i ∧ x (b) j + 1 2 a a ij x (a) i ∧ x (a) j   = v∈V   a<b r ij x (a) i ∧ x (b) j + 1 2 a r ij x (a) i ∧ x (a) j   .
Here in each summation a and b are in E Γ (v). The Poisson structure P is was found by Fock and Rosly [START_REF] Fock | Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix[END_REF]. Notice that P also reduces to the Atiyah-Bott Poisson structure on the quotient X G (Σ), because ρ a reduces to zero.

Lie group-valued moment maps and cross-sections 1.4.1 Lie group-valued moment maps

Recall that in the classical settings of symplectic or Poisson geometry, if (M, P ) is a Poisson manifold acted upon by a Lie group G such that the P is invariant, then an equivariant map µ : M → g * is called a moment map if

P (d µ, x ) = ρ x , ∀x ∈ g.
Here ρ x is the fundamental vector field of x, and the vector bundle morphism P : T * M → TM is given by P (α) = P (α, •) for any 1-form α. Equivalently, µ is a moment map if, for any m ∈ M , the image of

P m ∈ 2 T m M ⊂ T m M ⊗ T m M by the map dµ ⊗ id : T m M ⊗ T m M -→ T µ(m) g * ⊗ T m M ∼ = g * ⊗ T m M is the element in g * ⊗ T m M corresponding to the linear map g → T m M, x → ρ x (m).
The quasi-Poisson version of moment map takes value in the Lie group G: Definition 1.19. Let G and H be Lie groups and M be a G × H-manifold. We fix s ∈ (S 2 g) g and t

∈ (S 2 h) h . Given a quasi-Poisson (g ⊕ h, s ⊕ t)-tensor P on M , a G- equivariant map µ : M → G (where G acts on itself by conjugation) is called a moment map if for any m ∈ M , the image of P m ∈ 2 T m M under the linear map µ * θ L ⊗ id : T m M ⊗ T m M → g ⊗ T m M (recall that θ L ∈ Ω 1 (G, g) denotes the left-invariant Maurer-Cartan form) is given by µ * θ L ⊗ id(P m ) = - 1 2 (1 + Ad -1 µ(m) ) ⊗ ρ • (m) s.
Here

ρ • (m) : g → T m M, x → ρ x (m) is the action of g at m.
Our definition is slightly more flexible then the original one [START_REF] Alekseev | Quasi-Poisson manifolds[END_REF], where one only allows trivial H.

Remark 1.20. (1) Assume that (x i ) is a basis of g and s = s ij x i ⊗ x j . Since x R (u) = (Ad -1 u x) L (u) for any u ∈ G, the last condition is equivalent to the condition that the map µ * ⊗ id : T m M ⊗ T m M -→ T µ(m) G ⊗ T m M sends P m to - 1 2 s ij (x L i + x R i )(µ(m)) ⊗ ρ x j (m).
(

) Assume that G = G 1 ×G 2 , 2 
where G i is a Lie group with Lie algebra g i , and

s = s 1 +s 2 for s i ∈ (S 2 g i ) g i , then µ : M → G is a moment map if and only if both factors µ 1 : M → G 1 and µ 2 : M → G 2 are moment maps.
Let Σ be a bordered surface with finitely many marked points V ⊂ ∂Σ. We now describe a moment map for the quasi-Poisson G V -manifold M G (Σ, V ). Let V 0 ⊂ V be the set of marked points v with the property that the component of ∂Σ containing v does not contain any other marked point For each marked point v ∈ V 0 , let β v be the connected component of ∂Σ containing v, oriented against the orientation induced from Σ, so that β v represents an element in

π 1 (Σ, V ). Proposition 1.21. For each v ∈ V 0 , the holonomy hol βv : M G (Σ, V ) → G is a moment map.
Proof. We take an oriented skeleton Γ of (Σ, V ), such that β v is an edge of Γ. So Γ looks as follows in a neighborhood of β v . Here the half-edges b 0 and b 1 are, respectively, the minimal and maximal element in E Γ (v) By definition of the vector field x (a) on M G (Σ, V ) (c.f. §1.3.1), we have µ * θ L (x (a) ) = 0 for any x ∈ g and any half-edge a other than b 0 and b 1 , while

µ * θ L (x (b 0 ) (m)) = -Ad -1 µ(m) x, µ * θ L (x (b 1 ) (m)) = x, ∀m ∈ M G (Σ, V ).
Using the expression (1.7) of the quasi-Poisson tensor P and the fact that

x (b 0 ) (m) = -(Ad µ(m) x) (b 1 ) (m), we obtain µ * θ L ⊗ id(P m ) =µ * θ L ⊗ id   1 2 a<b s ij x (a) i (m) ∧ x (b) j (m)   = 1 2 a<b s ij µ * θ L (x (a) i (m)) ⊗ x (b) j (m) -µ * θ L (x (b) j (m)) ⊗ x (a) i (m) = 1 2 a s ij µ * θ L (x (b 0 ) i (m)) ⊗ x (a) j (m) -µ * θ L (x (b 1 ) j (m)) ⊗ x (a) i (m) = - 1 2 s ij (1 + Ad -1 µ(m) )x i ⊗ ρ v x j (m)
as required. Here a and b are taken over E Γ (v) in each summation, and ρ v x denotes the fundamental vector field of x ∈ g induced by the action of the v th -factor of G V , which has the expression ρ v x = a x (a) .

Remark 1.22. Li-Bland and Ševera [START_REF] Li-Bland | Moduli spaces for quilted surfaces and Poisson structures[END_REF] developed a more general notion of moment maps: for any marked point v ∈ V , not necessarily in V 0 , they let β v be the path in ∂Σ which starts from the marked point v and walks against the induced orientation until the next marked point. They showed that (hol βv

) v∈V : M G (Σ, V ) → G V is a twisted moment map.
This notion will not be used in this thesis.

Quasi-Poisson cross-section theorem

The goal of this subsection is to prove a version of the quasi-Poisson cross-section theorem [START_REF] Alekseev | Lie group valued moment maps[END_REF][START_REF] Alekseev | Quasi-Poisson manifolds[END_REF], which states that for certain submanifold U ⊂ G and any quasi-Poisson manifold M with moment map µ : M → G, the pre-image L = µ -1 (U ) still has a quasi-Poisson tensor.

We shall first explain which U can occur here. Let us fix in this subsection closed subgroups A, A ⊂ G which have the same Lie algebra a ⊂ g, such that A is a normal subgroup of A.

Definition 1.23. An open set U ⊂ A is called a cross-section (with respect to the conjugation action of

G) if -U is invariant by the conjugation action of A. -G.U = {gug -1 | g ∈ G, u ∈ U } is an open subset of G. -The natural map G × A U → G.U, (g, u) → gug -1
is a diffeomorphism onto the image. Here G × A U denotes the quotient of G × U by the A-action

(g, u) a∈ A -→ (ga -1 , aua -1 ).
Example 1.24.

(1) Let G be the split real form of a complex reductive group, A = H be a maximal torus and A = N G (H) be the normalizer. Then U = H reg , the set of loxodromic elements in H (c.f. §3.2.1 below for the definition), is a cross-section. One can effectively take G = GL n R or SL n R and let H (resp. H reg ) consist of diagonal matrices (resp. diagonal matrices without repeated eigenvalues). One can modify this example a little by taking A = H and U = exp(C int ) ⊂ H reg , where C ⊂ h is a Weyl chamber and C int is its interior.

(2) When G is compact, a standard construction of cross-sections goes as follows. Let T be a maximal torus, t be its Lie algebra and A ⊂ t be a Weyl alcove. We choose a face σ of A, take x ∈ σ and set A = A = Stab G (exp(x))), which is known to be independent of the choice of x. Let A σ be the union of faces of A whose closure contains σ. Then U = exp(Ad A A σ ) is a cross-section. In particular, if σ = A int then U = exp(σ).

A typical example for general σ is when

G = SU(n) and A consists of block-diagonal matrices u = diag(u 1 , • • • , u r ),
where each u i is a unitary matrix with a certain size, while U ⊂ A consists of those u's such that the sets of eigenvalues eigen(u 1 ), eigen(u 2 ), • • • , eigen(u r ) are arranged on the unit circle in a strictly clockwise manner.

Remark 1.25. The original use of cross-sections in moment map theory by Guillemin and Sternberg and its generalization to group-valued moment maps [START_REF] Alekseev | Lie group valued moment maps[END_REF][START_REF] Alekseev | Quasi-Poisson manifolds[END_REF] (i.e., Theorem 1.28 below) are concerned with Example 1.24 (2); whereas for our applications in this thesis only Example 1.24 (1) will be involved.

We shall now make the additional assumption that there is a subspace b ⊂ g which is invariant under the adjoint action of A, such that g = a ⊕ b as vector space. Note that in both of the above examples there is a standard choice of b, which is the orthogonal complement of a with respect to a standard invariant scalar product on g.

Lemma 1.26. If U ⊂ A is a cross-section then (Ad u -1)| b is invertible for any u ∈ U Proof.
Assume by contradiction that (Ad u -1)| b is not invertible, then there exists y ∈ b such that Ad u y = y, hence u exp(ty)u -1 = exp(ty) for any t. But exp(ty) / ∈ A for t small enough, so this contradicts the fact that Stab G (u) ⊂ A, which follows from the definition of cross-section.

Lemma 1.27. Let M be a G-manifold and µ : M → G be an equivariant map (where G acts on itself by conjugation). If

U ⊂ A is a cross-section, then (1) L = µ -1 (U ) is a smooth submanifold of M .
(2) There is an identification of quotient spaces

L/ A = µ -1 (G.U )/G.
(3) We have a splitting of vector bundles

TM | L = TL ⊕ (L × b).
(1.10)

Here the trivial bundle L × b is considered as a sub-bundle of TM | L via the map L × b -→ TM | L , (m, y) -→ ρ y (m). (1.11) Proof. (1) It is sufficient to show that µ is transversal to U . Let v x = x L -x R
be the fundamental vector field of x ∈ g induced by the conjugation action. Since G.U is open, for any u ∈ U we have

T u G = T u (G.U ) = {v x (u) | x ∈ g} + T u U.
So the required transversality follows from equivariance of µ.

(2) It follows from the definition of cross-sections that, for any u ∈ U , the subset

{g ∈ G | gug -1 ∈ U } ⊂ G equals A. So equivariance of µ implies that every G-orbit in µ -1 (G.U ) intersects L,
and the intersection is a A-orbit in L. This proves the required identification.

(3) Let us first show that the map (1.11) is an injection of vector bundles. Equivariance of µ implies that the composition of the map (1.11) 

with µ * θ L : T m M → g sends (m, y) to µ * θ L (ρ y (m)) = (1 -Ad -1 µ(m) )y (1.12)
The injectivity results from Eq.(1.12) and Lemma 1.26.

Eq.(1.12) also implies that the sub-bundles L × b and T L are disjoint except at zerosection, because a tangent vector

w ∈ T m M (m ∈ L) belongs to T m L if and only if µ * θ L (w) ∈ a.
It remains to prove that any tangent vector v ∈ T m M at a point m ∈ L can be decomposed as v = w + ρ z (m) for some z ∈ b and w ∈ T m L.

To this end, we can assume that µ * θ L (v) = x + y for some x ∈ a, y ∈ b. We take

z = (1 -Ad -1 µ(m) ) -1 y and put w = v -ρ z (m). We have µ * θ L (w) = µ * θ L (v) -µ * θ L (ρ z (m)) = x + y -(1 -Ad -1 µ(m) )z = x ∈ a, which implies w ∈ a.
So the required decomposition is achieved.

Let us now show how cross-sections interplay with group-valued moment maps.

Theorem 1.28 (Quasi-Poisson Cross-Section Theorem, [3] Section 8). Let U ⊂ A be a cross-section. Assume that s ∈ (S 2 g) g has a splitting

s = s a + s b (s a ∈ a ⊗ a, s b ∈ b ⊗ b). Let M be a G × H-manifold and P be a quasi-Poisson (g ⊕ h, s ⊕ t)-tensor on M . If µ : M → G is a moment map, then the submanifold L = µ -1 (U ) ⊂ M satisfies Chapter 1. Quasi-Poisson lattice gauge theory (1) The splitting (1.10) is P | L -orthogonal, i.e., we have a decomposition of P | L ∈ C ∞ ( 2 TM | L ), P | L = P L + P ⊥ L ,
where P L ∈ C ∞ ( 2 T L) and P ⊥ L : L → 2 b. Moreover, P ⊥ L has the expression

P ⊥ L (m) = - 1 2 Ad µ(m) +1 Ad µ(m) -1 ⊗ id s b (1.13)
5 for any m ∈ L.

(2) L is preserved by the action of A×H. (L, P L ) is a quasi-Poisson (a⊕h, s a ⊕t)-manifold and µ| L : L → A is a moment map.

(3) On the quotient 2)), the Poisson structure reduced from P L coincides with the one reduced from the quasi-Poisson tensor P on µ -1 (G.U ).

L/( A × H) ∼ = µ -1 (G.U )/(G × H) (c.f. Lemma 1.27 (
Proof.

(1) Let P ⊥ L be defined by Eq.(1.13) and put P L = P | L -P ⊥ L . We need to show that for any m ∈ L, the bivector

P L (m) ∈ 2 T m M is contained in 2 T m L.
Eq.(1.12) implies that the image of

P ⊥ L (m) under the map µ * θ L ⊗ id : T m M ⊗ T m M → g ⊗ T m M is µ * θ L ⊗ id(P ⊥ L (m)) = - 1 2 (1 -Ad -1 µ(m) ) ⊗ ρ • (m) Ad µ(m) +1 Ad µ(m) -1 ⊗ id s b = - 1 2 (1 + Ad -1 µ(m) ) ⊗ ρ • (m) s b .
This equality and the definition of moment maps yield

µ * θ L ⊗ id(P L (m)) = µ * θ L ⊗ id(P | L (m)) -µ * θ L ⊗ id(P ⊥ L (m)) = - 1 2 (1 + Ad -1 µ(m) ) ⊗ ρ • (m) s a . (1.14)
Therefore, P L (m) belongs to 2 T m L, as required.

(2) The fact that L is preserved by A × L follows from equivariance of µ.

Let {f 1 , f 2 } L = P L (df 1 , df 2 ) (f 1 , f 2 ∈ C ∞ (L)
) be the bracket associated with P L . To prove that P L is quasi-Poisson, we need to verify that for any m ∈ L and

f 1 , f 2 , f 3 ∈ C ∞ (L), we have the quasi-Jacobi identity -2{{f 1 , f 2 } L , f 3 } L (m) = ρ φa (m)(df 1 , df 2 , df 3 ). (1.15) Since TM | L has the splitting (1.10), there is a neighborhood X ⊂ L of m and a neighborhood Y of 0 ∈ b such that (m, y) → exp(y).m is a is a diffeomorphism from X × Y to a neighborhood of m in M . Let f i ∈ C ∞ (X × Y )
be invariant in vertical directions and restricts to f i on X. On one hand, the splitting of P | L implies that for any m ∈ L; on the other hand, let φ a , φ b ∈ 3 g denote the canonical trivectors associated to s a and b, respectively, then we have

{{ f 1 , f 2 }, f 3 }(m) = {{f 1 , f 2 } L , f 3 } L (m)
-2{{ f 1 , f 2 }, f 3 } = ρ φ (d f 1 , d f 2 , d f 3 ) = ρ φa+φ b (d f 1 , d f 2 , d f 3 ) = ρ φa (df 1 , df 2 , df 3 ),
because P is quasi-Poisson. Therefore the required Eq.(1.15) is proved. The fact that µ| L is a moment map results from Eq.(1.14).

(3) Part (1) implies the for any m ∈ L and

f 1 , f 2 ∈ C ∞ (µ -1 (G.U )) we have {f 1 , f 2 }| L (m) = {f 1 | L , f 2 | L } L (m) - 1 2 ρ ω(m) (m)(df 1 , df 2 ),
where the map ω : L → 2 b is defined by

ω(m) = Ad µ(m) +1 Ad µ(m) -1 ⊗ id s b . Thus if f 1 , f 2 ∈ C ∞ (µ -1 (G.U )) G×H then {f 1 , f 2 }| L = {f 1 | L , f 2 | L } L .
This is exactly what needs to be proved.

Applying Theorem 1.28 to the moment map in Proposition 1.21, we get the following conclusions. Here β v and V 0 are defined in the paragraph preceding Proposition 1.21.

Corollary 1.29. We fix A, Ã ⊂ G, a, b ⊂ g and s = s a + s b ∈ (S 2 g) g as above and let U ⊂ A be a cross-section. Let P be the canonical quasi-

Poisson (g V , s (V ) )-tensor on M G (Σ, V ) and {•, •} be the corresponding quasi-Poisson bracket. Given any subset V 1 of V 0 , the A V 1 × G V \V 1 -manifold L = v∈V 1 hol -1 βv (U ) ⊂ M G (Σ, V ) carries a canonical quasi-Poisson (a V 1 ⊕ g V \V 1 , s (V 1 ) a ⊕ s (V \V 1 )
)-tensor P L , which has the following properties [START_REF]Papers from the Swiss Seminar on Hyperbolic Groups held in Bern[END_REF] The holonomies

hol βv | L : L → A (v ∈ V 1 ), hol βv | L : L → G (v ∈ V \ V 1 ) are moment maps. (2) Let {•, •} L be the quasi-Poisson bracket on C ∞ (L) associated with P L , then for any f 1 , f 2 ∈ C ∞ (M G (Σ, V )) and m ∈ L we have {f 1 | L , f 2 | L } L (m) = {f 1 , f 2 }| L (m) + 1 2 v∈V 1 ρ v ωv(m) (m)(df 1 , df 2 ),
where the map

ω v : L → 2 b is given by ω v (m) = Ad hol βv (m) +1 Ad hol βv (m) -1 ⊗ id s b .
(3) We have an identification of quotient spaces

L/( A V 1 × G V \V 1 ) ∼ = v∈V hol -1 βv (G.U ) /G V .
Moreover, the Poisson structure on the former quotient reduced from P L coincides with the one on the latter reduced from P .

Chapter 2

Quasi-Poisson brackets of spin networks

The goal of this chapter is to present a formula independently found by G. Massuyeau and V. Turaev [START_REF] Massuyeau | Quasi-Poisson structures on representation spaces of surfaces[END_REF], the present author [START_REF] Nie | The quasi-Poisson Goldman formula[END_REF], and D. Li-Bland and P. Ševera [START_REF] Li-Bland | Moduli spaces for quilted surfaces and Poisson structures[END_REF], which can be seen as a generalization of Goldman's formula to the context of quasi-Poisson lattice gauge theory. The statement and proof here are due to Li-Bland and Ševera [START_REF] Li-Bland | Moduli spaces for quilted surfaces and Poisson structures[END_REF]. We first give in §2.1 the formula and its generalization to cross-sections without proof. Then we apply the formula to simple instances in §2.2, revealing some algebra structure analogue to Goldman's Lie algebra. Finally we give the proof of the formula in §2.3.

The quasi-Poisson bracket formula

Spin networks

We denote this function on M G (Σ, V ) also by [Γ, f ] if there is no danger of confusion.

Remark 2.2. (1) If Γ has no boundary vertex then the function

[Γ, f ] is invariant by G V ,
hence is a function on X G (Σ). This covers the original definition of spin networks on X G (Σ)2 .

(2) Let Γ be a skeleton, then every function on M G (Σ) can be considered as a spin network with graph diagram Γ.

Example 2.3. (1) Suppose that Γ has a single interior vertex, no boundary vertex, and a single edge γ (which must be a loop). Then admissible functions are functions on G which are invariant under conjugation. A spin network [Γ, f ] ∈ C ∞ (X G (Σ)) can be described as follows: let [γ] be the conjugacy class in π 1 (Σ) carried by the loop γ,

then the value of [Γ, f ] at [ρ] ∈ X G (Σ), where ρ : π 1 (Σ) → G is a representation, is the value of f at ρ([γ]) ⊂ G.
(2) If Γ consists of two boundary vertices and a single edge e joining them. Then f can be any function on G and [Γ, f ] = f (hol e ).

(3) If Γ is a n-pod, i.e., n boundary vertices joined by edges (e i ) to a single interior vertex, then admissible functions are f ∈ C ∞ (G n ) G (where G acts diagonally on G n by left-multiplication) and

[Γ, f ] = f (1, hol e -1 1 e 2 , • • • , hol e -1 1 
en ). We call e i a leg of the n-pod, and call each boundary vertex a foot. Spin networks associated to tripods will be extensively used in the next chapter.

Remark 2.4. When it concerns cross-sections

L ⊂ M G (Σ, V ) (c.f. §1.4.
2), we shall make a slight generalization of the definition of spin networks. Namely, assuming that L = v∈V 1 hol -1 βv (U ) (the notations here being the same as in Corollary 1.29) and that for some v ∈ V 1 the boundary loop β v is an edge of Γ, then we shall allow the admissible function f in the spin network [Γ, f ] to be defined only on the subset

{(g e ) e∈E Γ | g βv ∈ U } ⊂ G E Γ .

Quasi-Poisson brackets of spin networks

Definition 2.5. Two graph diagrams Γ and Γ on (Σ, V ) are said to be transverse if any interior intersection point q ∈ Γ∩Γ \∂Σ is a transversal intersection point of (the interiors of) some edges e ∈ E Γ and e ∈ E Γ , and moreover if e ∈ E Γ and e ∈ E Γ share a boundary vertex v ∈ V then their tangent directions at v are distinct.

In this subsection we give the main result of this chapter, a formula (Theorem 2.6 below) which computes the quasi-Poisson bracket of two spin networks [Γ, f ] and [Γ , f ] when the graph diagrams are transverse. The result is a sum of new spin networks, whose graph diagrams are divided into two types:

-The graph diagram Γ ∪ Γ . The vertex (resp. edge) set of Γ ∪ Γ is the union of the vertex (resp. edge) sets of Γ and Γ . -For each q ∈ Γ ∩ Γ \ ∂Σ, a graph diagram Γ ∪ q Γ . By definition, Γ ∪ q Γ is obtained from Γ ∪ Γ by adding the point q as an interior vertex. We shall now define the admissible functions which will occur. For each q ∈ Γ ∩ Γ \ ∂Σ, suppose q ∈ e ∩ e for e ∈ E Γ and e ∈ E Γ . Then we have e = e 2 e 1 and e = e 2 e 1 , where e 1 , e 2 ∈ E Γ∪qΓ are respectively the first half of e up to q and the second half starting from q. We let D q (f, f ) be the following function defined on G E Γ∪q Γ :

D q (f, f )((g e ) e∈E Γ∪q Γ ) (2.1) := d d d dδ =δ=0 s ij f (g d ) d∈E Γ \{e} , g e 2 exp( x i )g e 1 f (g d ) d∈E Γ \{e } , g e 2 exp(δx j )g e 1 .
Here (g d ) d∈E Γ \{e} , g e 2 exp( x i )g e 1 is the point in G E Γ whose t th component is g t if t = e and e th component is g e 2 exp( x i )g e 1 .

We need to show that D q (f, f ) is invariant by the action of G

V int Γ∪q Γ . It follows from invariance of f and f that D q (f, f ) is invariant by any G-factor other than the q th , while the invariance by the q th factor follows from g-invariance of s ∈ g ⊗ g.

For each pair of half-edges a ∈ E Γ (v) and a ∈ E Γ (v) sharing a boundary vertex v ∈ V , we define similarly a function D a,a (f, f ) admissible to Γ ∪ Γ . Let e and e be respectively the edges containing a and a . If both a and a run into v, then

D a,a (f, f )((g e ) e∈E Γ∪Γ ) (2.2) := d d d dδ =δ=0 s ij f (g d ) d∈E Γ -{e} , exp( x i )g e f (g d ) d∈E Γ -{e } , exp(δx j )g e ,
whereas, if a and/or a come out of v, we replace exp( x i )g e by g e exp(x i ) and/or replace exp(δx j )g e by g e exp(-δx j ).

A neater expression of D a,a (f, f ) is as follows. We define a symmetric 2-tensor field s (a,a) on

G E Γ ∪E Γ by s (a,a) = s ij x (a) i ⊗ x (a ) j
(c.f. Definition 1.11 for the notations), then we have

D a,a (f, f ) = s (a,a ) (f, f ).
Here f and f are considered as functions on G E Γ ∪E Γ by lifting.

Theorem 2.6. Let [Γ, f ] and [Γ , f ] be transverse spin networks on (Σ, V ). Then their quasi-Poisson bracket is

{[Γ, f ], [Γ , f ]} = q ε q (Γ, Γ )[Γ ∪ q Γ, D q (f, f )] + 1 2 v∈V a,a ε(a, a )[Γ ∪ Γ , D a,a (f, f )].
Here q runs over intersection points q ∈ Γ ∩ Γ \ ∂Σ, while a, a run over half-edges

a ∈ E Γ (v), a ∈ E Γ (v) for each v ∈ V . ε q (Γ, Γ ) (resp. ε(a, a ))= ±1
is the oriented intersection number of Γ and Γ at q (resp. a and a at v).

A proof will be given in §2.3.

Remark 2.7. The theorem implies that the right-hand side of the above formula is invariant when Γ and Γ undergo (boundary-vertex-fixing) homotopies. A manifestation of this invariance is that the algebraic intersection number i(Γ, Γ ) of Γ and Γ , defined by 

i(Γ, Γ ) = q∈Γ∩Γ \∂Σ ε q (Γ, Γ ) + 1 2 v∈V a,a ε(a,
{[Γ, f ], [Γ , f ]} L = q ε q (Γ, Γ )[Γ ∪ q Γ, D q (f, f )] + 1 2 v∈V a,a ε(a, a )[Γ ∪ Γ , D a,a (f, f )] + 1 2 v∈V a,a [Γ ∪ Γ ∪ β v , D a,a (f, f )].
Here the spin networks are considered as functions on the cross-section

L ⊂ M G (Σ, V ). The admissible function D a,a (f, f ) ∈ C ∞ (G E Γ ∪E Γ × U ) for the graph Γ ∪ Γ ∪ β v (see Remark 2.4) is given by D a,a (f, f ) (g e ) E Γ , (g e ) Γ , u = Ad u +1 Ad u -1 ⊗ id s b (a,a ) (f, f ).
Remark 2.9. For spin networks in Example 2.3 (1), Theorem 2.6 is Goldman's formula [START_REF] William | Invariant functions on Lie groups and Hamiltonian flows of surface group representations[END_REF]. The extension of Goldman's formula to spin networks without boundary vertices (c.f. Remark 2.2 (1)) seems well known. Thus we have well understood Poisson brackets of functions on X G (Σ). Recently, three independent works emerged, all of them extending the above well known formulas to those functions on M G (Σ, V ) which do not descent to X G (Σ): Massuyeau and Turaev [START_REF] Massuyeau | Quasi-Poisson structures on representation spaces of surfaces[END_REF] essentially proved Theorem 2.6 for spin networks from Example 2.3 (2) when G = GL n R and f ∈ C ∞ (G) is a matrix entry function (i.e., Corollary 2.11 below); the present author proved the theorem in [START_REF] Nie | The quasi-Poisson Goldman formula[END_REF] for the same type of spin networks and for any G and f ; whereas Li-Bland and Ševera [START_REF] Li-Bland | Moduli spaces for quilted surfaces and Poisson structures[END_REF] prove it in full generality. The proof that we give in §2.3 follows closely the proof of Li-Bland and Ševera.

However, as pointed out in [START_REF] Li-Bland | Moduli spaces for quilted surfaces and Poisson structures[END_REF], since the quasi-Poisson structure on M G (Σ, V ) is twist-equivalent to the Fock-Rosly Poisson structure (see §3.2.6), all these results are in some sense rediscoveries of a formula of Fock-Rosly [START_REF] Fock | Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix[END_REF] which computes Poisson brackets of spin networks under their Poisson structure. See also [START_REF] Audin | Lectures on gauge theory and integrable systems[END_REF] for a more detailed exposition of the Fock-Rosly formula).

Algebras of Goldman, Massuyeau-Turaev and Labourie

In this section we use Theorem 2.6 to do some concrete computations in simple examples. The results could be of interest in their own right.

Goldman's Lie algebra

We assume that G = GL n R, g = gl n R. Let s ∈ (S 2 g) g be the dual of the standard invariant scalar product (x | y) = Tr(xy) on g. Denote by E kl the n × n matrix whose (k, l)-entry is 1 and other entries are 0. We have the expression

s = 1≤k,l≤n E kl ⊗ E lk .
Let α be an oriented loop in the interior of Σ. We add a base point p to α so that

Tr α := [α, Tr] ∈ C ∞ (X G (Σ))
is a spin network as in Example 2.3 [START_REF]Papers from the Swiss Seminar on Hyperbolic Groups held in Bern[END_REF], where Tr ∈ C ∞ (G) G is the trace function. Take another loop β with base point p such that α and β intersect transversally. Theorem 2.6 says that the Atiyah-Bott Poisson bracket of Tr α and Tr β is

{Tr α , Tr β } = q∈α∩β ε q (α, β)[α ∪ q β, D q (Tr, Tr)],
where α ∪ q β is the spin network with three vertices p, p , q and four edges α 1 , α 2 , β 1 , β 2 , as shown in the picture below. D q (Tr, Tr) is a function on G 4 given by

D q (Tr, Tr)(g α 1 , g α 2 , g β 1 , g β 2 ) = d d d dδ =δ=0 k,l Tr g α 2 exp( E kl )g α 1 Tr g β 2 exp(δE lk )g β 1 = k,l Tr(g α 2 E kl g α 1 ) Tr(g β 2 E lk g β 1 ) = k,l (g α ) lk (g β ) kl = Tr(g α g β ).
It is easy to see that if we let α# q β be the loop which runs α and β successively (see the above picture), then [α ∪ q β, D q (Tr, Tr)] = Tr α#qβ . Thus we get Corollary 2.10 (Goldman [START_REF] William | Invariant functions on Lie groups and Hamiltonian flows of surface group representations[END_REF]). The Poisson bracket of Tr α ,

Tr β ∈ C ∞ (X G (Σ)) is {Tr α , Tr β } = q∈α∩β ε q (α, β) Tr α#qβ .
This formula suggests us to define a Lie bracket [α, β] := q∈α∩β ε q (α, β)α# q β on the vector space G generated by free homotopy classes of loops on Σ, so that the embedding

G → C ∞ (X G (Σ)), α → Tr α preserves brackets. It is proved rigorously in [27] that [•, •] is indeed a Lie bracket. (G, [•, •]
) is called the Goldman Lie algebra and is widely used in the study mapping class groups of surfaces. See e.g. [START_REF] Kawazumi | Intersections of curves on surfaces and their applications to mapping class groups[END_REF].

Massuyeau-Turaev's quasi-Poisson algebra

We now exhibit the quasi-Poisson counterpart of Goldman's Lie algebra. Let α be an orineted path joining two marked points v, v ∈ V and let f ij (g) = g ij be the function which assigns to each matrix g ∈ G its (i, j)-entry. Consider the spin network

α ij := [α, f ij ] = (hol α ) ij
as in Example 2.3 [START_REF]Spaces of constant curvature, A translation of Geometriya. II, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform[END_REF]. The quasi-Poisson bracket {α ji , β lk } of two such spin networks can be computed in a similar way. The result is the following corollary, where the notations are defined as follows:

β * q α is the path which starts from the source of α, runs α up to q, then switches to β and ends at the target of β; α ∧ and α ∨ are, respectively, the first and second half of α; ε(α ∨ , β ∧ ) = ±1 is the oriented intersection number of the two half-edges at their common vertex (defined to be 0 if there they do not share a vertex); δ ij = 0, 1 is the Kronecker delta.

Corollary 2.11 , Nie [START_REF] Nie | The quasi-Poisson Goldman formula[END_REF] 3 ). The quasi-Poisson bracket of

α ij , β kl ∈ C ∞ (M G (Σ, V )) is given by {α ij , β kl } = q∈α∩β\∂Σ ε q (α, β)(β * q α) kj • (α * q β) il + 1 2 ε(α ∧ , β ∧ )α il • β kj + ε(α ∨ , β ∨ )α kj • β il + δ jk ε(α ∧ , β ∨ )(αβ) il + δ il ε(α ∨ , β ∧ )(βα) kj .
Two typical examples are shown in the picture below. Here we compute quasi-Poisson brackets of α ij and β kl as pictured on the left, and the resulted is pictured on the right. Corollary 2.11 can be interpreted in a similar way as Goldman's algebra. One should think of the symbol α ij as a "labelled path", i.e., a nontrivial element in π 1 (Σ, V ) together with indices j, i attached to its source and target, respectively. Let A n (Σ, V ) be the commutative associative algebra generated by all labelled paths modulo the obvious relations

j β ij • α jk = (βα) ik if α = β, j (α -1 ) ij α jk = δ ik .
Equip A n (Σ, V ) with the obvious (gl n R) V -action and the bracket {•, •} given by the above corollary, then A n (Σ, V ) is a quasi-Poisson ((gl n R) V , s (V ) )-algebra 4 . This fact can be proved by straightforward but lengthy verifications of quasi-Jacobi identities, in a similar 3. Additional technical assumptions are made in [START_REF] Massuyeau | Quasi-Poisson structures on representation spaces of surfaces[END_REF] and [START_REF] Nie | The quasi-Poisson Goldman formula[END_REF]: in the former paper it is assumed that V is a single point, while in the latter we assumed that V has one point on each connected component of ∂Σ.

4. A quasi-Poisson (g, s)-algebra is just a commutative algebra equipped with a g-action and a bracket {•, •}, satisfying the same conditions as the algebra of functions of a quasi-Poisson g-manifold satisfies. See Definition 4.14 below for a detailed definition.

way as Goldman did for his Lie algebra. Probably there is another proof using Van den Bergh's theory of double brackets, as Massuyeau and Turaev did in [START_REF] Massuyeau | Quasi-Poisson structures on representation spaces of surfaces[END_REF] 5 .

Remark 2.12. (1) By definition, the natural map

A n (Σ, V ) → C ∞ (M G (Σ, V )
) is a morphism of quasi-Poisson algebras. We conjecture that this morphism is injective.

(2) When defining A n (Σ, V ) and proving it to be quasi-Poisson, we do not need V ⊂ ∂Σ to be finite -one can even take V = ∂Σ. But in this case more foundational works are needed in order to define a quasi-Poisson structure on the infinite-dimensional M G (Σ, V ).

The Swapping algebra

A n (Σ, V ) has an interesting Poisson subalgebra:

Proposition 2.13. Let i 0 , j 0 ∈ {1, • • • , n} be distinct, then {α i 0 j 0 | α ∈ π 1 (Σ, V ) is nontrivial } generates a Poisson subalgebra L(Σ, V ) of A n (Σ, V ).
Proof. We need to prove that the quasi-Poisson bracket of

A n (Σ, V ) restricted to L(Σ, V ) is a Poisson bracket, that is, satisfies the Jacobi identity. The canonical trivector φ ∈ ( 3 g) g associated to s = k,l E kl ⊗ E lk ∈ (S 2 g) g is φ = i,j,k (E ij ⊗ E ki ⊗ E jk -E ij ⊗ E jk ⊗ E ki ) .
Note that although we write φ as an element of g ⊗3 , it is indeed skew-symmetric. Since A n (Σ, V ) is a quasi-Poisson algebra, for α i 0 j 0 , β i 0 j 0 , γ i 0 j 0 ∈ L(Σ, V ) we have

-2 {{α i 0 j 0 , β i 0 j 0 }, γ i 0 j 0 } = ρ φ (V ) (α i 0 j 0 , β i 0 j 0 , γ i 0 j 0 ), (2.3) 
where ρ denotes the g V -action on A n (Σ, V ). Let ρ v be the action of the v th factor. Since φ (V ) is the direct sum of #V copies of φ, in order to prove that (2.3) gives zero, we only need to show

ρ v φ (α i 0 j 0 , β i 0 j 0 , γ i 0 j 0 ) = 0. (2.4)
It is easy to see that the action ρ v of x ∈ g on α i 0 j 0 is given by

ρ v x (α i 0 j 0 ) =          t (α i 0 t x tj 0 -x i 0 t α tj 0 ) if α starts and ends at v, t α i 0 t x tj 0 if α only starts from v, -t x i 0 t α tj 0 if α only ends at v, 0 otherwise.
It follows immediately that the required equality (2.4) holds if at least one of the three paths α, β and γ neither start nor end at v. Case-by-case computations show that (2.4) holds as well in other situations. For example, if α, β and γ all start from v and do not 5. Massuyeau and Turaev only treated the case #V = 1, where π1(Σ, V ) is the fundamental group. So what need to be done here is to generalize their result to fundamental groupoids. end at v, then

ρ v φ (α i 0 j 0 , β i 0 j 0 , γ i 0 j 0 ) = i,j,k ρ v E ij (α i 0 j 0 )ρ v E ki (β i 0 j 0 )ρ v E jk (γ i 0 j 0 ) -ρ v E ij (α i 0 j 0 )ρ v E jk (β i 0 j 0 )ρ v E ki (γ i 0 j 0 ) = i,j,k (α i 0 i δ jj 0 β i 0 k δ ij 0 γ i 0 j δ kj 0 -α i 0 i δ jj 0 β i 0 j δ kj 0 γ i 0 k δ ij 0 ) = α i 0 j 0 β i 0 j 0 γ i 0 j 0 -α i 0 j 0 β i 0 j 0 γ i 0 j 0 = 0.
Since i 0 and j 0 are fixed, generator of L(Σ, V ) are in one to one correspondence with nontrivial element of π 1 (Σ, V ), thus L(Σ, V ) can be considered as the commutative associative algebra freely generated by nontrivial elements in π 1 (Σ, V ). The Poisson bracket is given on generators by

{α, β} = q∈α∩β\∂Σ ε q (α, β)(β * q α) • (α * q β) + 1 2 ε(α ∨ , β ∨ ) + ε(α ∧ , β ∧ ) α • β, (2.5)
and is extended to other elements by the Leibniz rule.

For the disk Σ = D, the Poisson algebra L(D, V ) was studied by Labourie [START_REF] Labourie | Goldman Algebra, Opers and the Swapping Algebra[END_REF], who call it the swapping algebra. To explain the name, let us note that a nontrivial element in π 1 (D, V ) is just an oriented chord xy going from y ∈ V to x ∈ V , while the Poisson bracket (2.5) of two chords is {xy, zw} = ε(xy, zw)xw • zy.

(

Here ε(xy, zw) = 0, ±1, ± 1 2 is defined in three cases respectively: it is the oriented intersection number of xy and zw if they intersect in the interior of the disk; one-half the oriented intersection number if intersect on the boundary; and 0 if xy and zw are disjoint.

L(D, V ) is related to configurations of flags in a projective space, as explained in §3.1.3 below.

The SL n R case

For our purpose later on, it is desirable to consider the structure group SL n R instead of GL n R. It turns our that the above formulas adapts to this case with only a little modification.

Recall that

s = kl E kl ⊗ E lk ∈ (S 2 gl n R) gl n R
is the dual of the invariant scalar product (x | y) = Tr(xy) on gl n R. We let s 1 ∈ (S 2 sl n R) slnR denote the dual of the restriction of (• | •) to sl n R. Let Pr : gl n R → sl n R be the orthogonal projection, which is given by

Pr(x) = x - 1 n Tr(x)I.
Then we have

s 1 = (Pr ⊗ Pr)(s) = kl (E kl - δ kl n I) ⊗ (E lk - δ kl n I) = s - 1 n I ⊗ I. (2.7) Let {•, •} SL denote the canonical quasi-Poisson bracket on C ∞ (M SLnR (Σ, V )) with re- spect to s 1 .
Observe that s 0 := I ⊗ I also belongs to (S 2 gl n R) gl n R , hence there is a canonical quasi-Poisson ((gl n R) V , s

(V ) 0 )-tensor on M G (Σ, V ). Let us consider the quasi-Poisson bracket {•, •} 0 associated with it.
We call a function f :

GL n R → R homogeneous if f (λa) = λf (a) for any λ ∈ R * . Lemma 2.14. Let [Γ, f ] be a spin network on (Σ, V ) such that the admissible function f ∈ C ∞ ((GL n R) E Γ
) is homogeneous with respect to each GL n R-factor. Let [Γ , f ] be a spin network with the same property, which is transverse to

[Γ, f ]. Then {[Γ, f ], [Γ , f ]} 0 = i(Γ, Γ )[Γ, f ] • [Γ , f ].
Here the algebraic intersection number i(Γ, Γ ) is defined in Remark 2.7.

Proof. If f and f are homogeneous then by definition

[Γ ∪ q Γ , D q (f, f )] = [Γ ∪ Γ , D a,a (f, f )] = [Γ, f ] • [Γ , f ].
So the lemma follows from Theorem 2.6.

Corollary 2.15. The quasi-Poisson brackets of the restrictions of Tr

α , α ij ∈ C ∞ (M GLnR (Σ, V )) to M SLnR (Σ, V ) are given by {Tr α , Tr β } SL = - i(α, β) n Tr α • Tr β + q∈α∩β ε q (α, β) Tr α#qβ , {α ij , β kl } SL = - i(α, β) n α ij • β kl + q∈α∩β\∂Σ ε q (α, β)(β * q α) kj • (α * q β) il + 1 2 ε(α ∧ , β ∧ )α il • β kj + ε(α ∨ , β ∨ )α kj • β il + δ jk ε(α ∧ , β ∨ )(αβ) il + δ il ε(α ∨ , β ∧ )(βα) kj . Proof. Let {•, •}, {•, •} 0 and {•, •} 1 denote the quasi-Poisson brackets on C ∞ (M GLnR (Σ, V ))
with respect to s, s 0 and s 1 , respectively. By the definition of the quasi-Poisson tensor (1.7), we have

{ϕ| M SLnR (Σ,V ) , ψ| M SLnR (Σ,V ) } SL = {ϕ, ψ} 1 | M SLnR (Σ,V )
for any ϕ, ψ ∈ C ∞ (M GLnR (Σ, V )). On the other hand, since s 1 = s -1 n s 0 , the same definition implies that

{•, •} 1 = {•, •} - 1 n {•, •} 0 .
Noting that the trace function and matrix entry functions are homogenous, the required equalities follows from Lemma 2.14 and the previously proved Corollary 2.10 and 2.11.

Proof of Theorem 2.6

The aim of this section is to give a proof of Theorem 2.6. As a by-product, we also give a proof of Theorem 1.12 . Here we follow Li-Bland and Ševera [START_REF] Li-Bland | Moduli spaces for quilted surfaces and Poisson structures[END_REF] closely.

The homotopy intersection form

Given oriented paths α, β and a transversal intersection point q ∈ α ∩ β, we put

λ(q) = 1 if q ∈ ∂Σ, 2 otherwise.
Let α q denote the portion of α running from the starting point up to q.

Let Zπ 1 (Σ, V ) be the groupoid algebra of π 1 (Σ, V ), namely, the free Z-module generated by π 1 (Σ, V ) with a multiplication defined by linearly spanning the composition law in

π 1 (Σ, V ) (if a, b ∈ π 1 (Σ, V ) are not composable, we put ab = 0 ∈ Zπ 1 (Σ, V )). If a = i n i a i ∈ Zπ 1 (Σ, V ) for n i ∈ Z and a i ∈ π 1 (Σ, V ), we put a := i n i a -1 i .
Definition/Proposition 2.16. We define the homotopy intersection form as a map

(•, •) : π 1 (Σ, V ) × π 1 (Σ, V ) → Zπ 1 (Σ, V ) (a, b) = q∈α∩β λ(q)ε q (α, β)[α -1 q β q ], (2.8) 
where α, β are representatives of a, b which are transverse. Then (•, •) is well-defined and satisfies

(b, a) = -(a, b), (2.9) 
(ab, c) = (b, c) + b -1 (a, c). ( 2 

.10)

Proof. To show that (•, •) is well-defined, one need to verify that the right-hand side of Eq.(2.8) is invariant when α and β undergo homotopy modifications. But such modifications can be decomposed into a sequence of elementary moves shown in Figure 2.1 (see e.g. [START_REF] William | Invariant functions on Lie groups and Hamiltonian flows of surface group representations[END_REF]) for a proof of this fact), and it is elementary to verify invariance under these moves. The proofs of (2.9) and (2.10) are also elementary.

Figure 2.1: Elementary moves

Let P be a bivector field on a manifold M and ω, ∈ Ω 1 (M, g) = Ω 1 (M ) ⊗ g be g-valued 1-forms. The map P (ω, ) : M → g ⊗ g is defined by applying P to the Ω 1 (M )parts of ω, and tensor product to the g-parts. In other words, for any ξ, η ∈ g * we have ξ ⊗ η, P (ω, ) = P ( η, ω , η, ).

Here •, • denotes the pairing between g * ⊗ g * and g ⊗ g or between g * and g.

Theorem 2.17. Let Γ be a skeleton of (Σ, V ) and P Γ be the quasi-Poisson (g V , s (V ) )tensor defined in §1.3.1 Eq. (1.7). Then for any a, b ∈ π 1 (Σ, V ) we have

P Γ (hol * a θ L , hol * b θ L ) = 1 2 (Ad hol (a,b) ⊗id)s. (2.

11)

As a result, P Γ is independent of the choice of Γ.

Here we extend every m ∈ M G (Σ, V ) to a homomorphism of algebras m : Zπ 1 (Σ, V ) → ZG and define hol a : M G (Σ, V ) → ZG (∀a ∈ Zπ 1 (Σ, V )) as the evaluation map at a. The adjoint action Ad : G → GL(g) is also extended to an algebra homomorphism Ad : ZG → End(g).

Proof. We shall first show that -if Eq.(2.11) holds for a and b, then it also holds for b and a; -if Eq.(2.11) holds for a and c as well as for b and c, then it also holds for ab and c. Let σ : g ⊗ g → g ⊗ g be the map switching the two factors. We have

P Γ (hol * b θ L , hol * a θ L ) = -σ(P Γ (hol * a θ L , hol * b θ L )) = - 1 2 (id ⊗ Ad hol (a,b) )s = - 1 2 (Ad hol (a,b) ⊗id)s.
So the first assertion results from Eq.(2.9). To prove the second assertion, notice that for any smooth maps λ, µ from a manifold M to G, we have

(λ • µ) * θ L = Ad -1 µ λ * θ L + µ * θ L . Therefore P Γ (hol * ab θ L , hol * c θ L ) = P Γ (Ad -1 hol b hol * a θ L + hol * b θ L , hol * c θ L ) = 1 2 (Ad -1 hol b ⊗id)(Ad hol (a,c) ⊗id)s + 1 2 (Ad hol (b,c) ⊗id)s
So the second assertion results from Eq.(2.10).

As a result, we only need to verify Eq.(2.11) when a and b are represented by edges of Γ, since π 1 (Σ, V ) is generated by the homotopy classes of these edges.

To this end, we assume that a is an edge of Γ equipped with an orientation, and let a 1 , a 2 ∈ E Γ denote the first and second half of a, respectively. For any a ∈ E Γ , we have The expression (1.7) of P Γ and Eq.(2.12) yield

hol * a θ L (x (a) ) =      x if a = a 1 , -Ad -1 hola x if a = a 2 , 0 otherwise. ( 2 
P Γ (hol * a θ L , hol * b θ L ) = 1 2 s ij k,l=1,2 δ(a k , b l )hol * a θ L (x (a k ) i ) ⊗ hol * b θ L (x (b l ) j ) = 1 2 s ij δ(a 1 , b 1 )x i ⊗ x j -δ(a 1 , b 2 )x i ⊗ (Ad -1 hol b x j ) -δ(a 2 , b 1 )(Ad -1 hola x i ) ⊗ x j + δ(a 2 , b 2 )(Ad -1 hola x i ) ⊗ (Ad -1 hol b x j ) .
On the other hand, by definition of the homotopy intersection form,

1 2 Ad hol (a,b) ⊗id s = 1 2 s ij ε(a 1 , b 1 )x i ⊗ x j + ε(a 1 , b 2 )x i ⊗ (Ad -1 hol b x j ) + ε(a 2 , b 1 )(Ad -1 hola x i ) ⊗ x j + ε(a 2 , b 2 )(Ad -1 hola x i ) ⊗ (Ad -1 hol b x j ) .
Thus one readily verifies Eq.(2.11) for this choice of a and b.

Finally, since (hol e ) e∈E Γ : M G (Σ, V ) → G E Γ is a diffeomorphism, the cotangent space at any point of M G (Σ, V ) is generated by cotangent vectors of the form hol * a θ L , x , where a ∈ π 1 (Σ, V ). Therefore, Eq.(2.11) implies that P Γ is independent of Γ.

Similar reasoning as in the last paragraph of the proof yields

Corollary 2.18. If (Σ , V ) → (Σ, V ) is an embedding then the induced map f : M G (Σ, V ) → M G (Σ , V ) is a quasi-Poisson map, i.e., f * : C ∞ (M G (Σ , V )) → C ∞ (M G (Σ, V )) preserves quasi- Poisson brackets.

Proof of Theorem 2.6: the case

V int Γ = V int Γ = ∅ Let us first assume that V int Γ = V int Γ
= ∅, so that each edge e ∈ E Γ and e ∈ E Γ represents an element in π 1 (Σ, V ). Any f ∈ C ∞ (G E Γ ) is an admissible function for Γ. Given x ∈ g and e ∈ E Γ , we let x e denote the element of g E Γ whose e th component is x and other components are 0. We define a map

∂ L e f : G E Γ → g * by ∂ L e f , x = x L e (f ), ∀x ∈ g.
If g e : G E Γ → G is the projection to the e th factor then we have

df = e∈E Γ ∂ L e f , g * e θ L .
Therefore, the differential of the spin network [Γ, f ] = f (hol e ) e∈E Γ is given by

d[Γ, f ] = e∈E Γ ∂ L e f ((hol e ) e∈E Γ ), hol * e θ L .
Theorem 2.17 yields

{[Γ, f ], [Γ , f ]} = e,e ∂ L e f ⊗ ∂ L e f P hol * e θ L , hol * e θ L = e,e ∂ L e f ⊗ ∂ L e f
Ad hol (e,e ) ⊗id s, (2.13) where the summation runs over edges e ∈ E Γ and e ∈ E Γ .

For fixed e and e , each interior intersection point q ∈ e ∩ e \ ∂Σ contributes a term to the homotopy intersection form (e, e ), as well as each pair of half-edges a ⊂ e, a ⊂ e sharing a vertex. The contribution of an interior intersection q to Eq.(2.13) is

∂ L e f ⊗ ∂ L e f Ad e -1 q eq ⊗id s = ε q (e, e )s ij d d =0 f (hol d ) d∈E Γ \{e}
, hol e exp( Ad hol e -1 q e q x i )

• d dδ δ=0 f (hol d ) d∈E Γ \{e } , hol e exp( x j ) = ε q (e, e )s ij d d =0 f (hol d ) d∈E Γ \{e} , hol e hol e -1 q exp( x i )hol eq • d dδ δ=0 f (hol d ) d∈E Γ \{e } , hol e hol e -1 q exp( x j )hol e q = ε q (Γ, Γ )[Γ ∪ q Γ , D q (f, f )].
In the second step we considered the function in question as lifted to M G (Σ, V ∪ {q}) and used Ad-invariance of s. Similar computations show that the contribution of a pair of half-edges a, a to Eq.(2.13) is 1 2 ε(a, a )[Γ ∪ Γ , D a,a (f, f )]. Therefore Theorem 2.6 is proved in this case.

Proof of Theorem 2.6: the general case

Suppose now that Γ and Γ are arbitrary graph diagrams transverse to each other. Let Σ c be the surface obtained from Σ by deleting a small open disk

D v ⊂ Σ \ Γ ∪ Γ near each v ∈ V int Γ ∪ V int Γ , as shown below.
There are embeddings of marked surfaces

(Σ, V ) ←-(Σ c , V ) -→ (Σ c , V ∪ V int Γ ∪ V int Γ ). ( 2 

.14)

We view [Γ, f ] and [Γ , f ] as spin networks on (Σ c , V ) in the obvious way, and also view them as spin networks on (Σ c , V ∪ V int Γ ∪ V int Γ ) by considering every vertex as a boundary vertex. These spin networks, as functions on the representation spaces, are lifts of each other under the maps induced by (2.14)

M G (Σ, V ) -→ M G (Σ c , V ) ←-M G (Σ c , V ∪ V int Γ ∪ V int Γ ).
The first and second map are, respectively, injective and surjective, and by Corollary 2.18 they are both quasi-Poisson maps. Applying the previously proved

V int Γ = V int Γ = ∅ case to M G (Σ c , V ∪ V int Γ ∪ V int Γ )
, we conclude that Theorem 2.6 holds in general.

Chapter 3

Configuration spaces and moduli of framed flat connections

The goal of this chapter is to give a proof of Theorem B in the introduction (i.e.,Theorem 3.23 below). As we will see, Fock-Goncharov's moduli space of framed flat connections generalizes both configuration space of flags and moduli spaces of surface fundamental group representations. So we shall first explain in §3.1 the basic ideas bridging quasi-Poisson theory and configuration spaces. In particular, we show how the swapping algebra computes Poisson brackets of certain functions on the configuration space of flags. In §3.2 we give a self-contained presentation of some ingredients of the Fock-Goncharov theory in order to understand the statement of Theorem 3.23 and reduce it to straightforward computations. These computations are implemented in §3.3. Finally, we discuss in §3.4 some further developments and problems.

Quasi-Poisson reduction and configuration spaces

Reduction with respect to a reducing subgroup

A main feature of the quasi-Poisson theory is that the reduction of the quasi-Poisson manifold M G (Σ, V ) by the action of G V yields the Atiyah-Bott Poisson structure on X G (Σ) (Theorem 1.15). Li-Bland and Ševera [START_REF] Li-Bland | Moduli spaces for quilted surfaces and Poisson structures[END_REF] observed that we can perform reduction with respect to a smaller group, still obtaining a Poisson quotient.

Definition 3.1. Fix s ∈ (S 2 g) g . A subalgebra c ⊂ g is called reducing if it satisfies [s (c ⊥ ), s (c ⊥ )] ⊂ c, where c ⊥ = {α ∈ g * | α(c) = 0}. In particular, c is called coisotropic if s (c ⊥ ) ⊂ c. A closed subgroup C ⊂ G is called reducing or coisotropic if its Lie algebra is.
Note that if a subalgebra c is reducing, then so is any subalgebra containing c. Proof. We need to show that {•, •} satisfies the Jacobi identity when applied to functions in C ∞ (M ) C , or equivalently,

[P, P ](df 1 , df 2 , df 3 ) = ρ φ (df 1 , df 2 , df 3 ) = 0, ∀f i ∈ C ∞ (M ) C .
We take any m ∈ M and let α i ∈ g * be defined by

α i (x) = ρ x (m)(f i ). Then f i ∈ C ∞ (M ) C means α i ∈ c ⊥ . We have ρ φ (df 1 , df 2 , df 3 )(m) = φ(α 1 , α 2 , α 3 ),
which vanishes because of the definition of φ and reducing subalgebras.

Example 3.3. (1) Let G be a complex semi-simple Lie group (or its split real form). Let s be proportional to the dual of the Killing form. Then any Borel subgroup B ⊂ G is isotropic, hence so is any parabolic subgroups. This is easy to verify using the expression

s = i,j s ij h i ⊗ h j + α∈∆ + (α | α) 2 (e α ⊗ e -α + e -α ⊗ e α ) ,
where we take Cartan subalgebra h ⊂ g, positive roots ∆ + ⊂ h * and Chevalley basis (h i , e ±α ) 1≤i≤r,α∈∆ + (r is the rank and (s ij ) is some symmetric r × r matrix) so that Lie

(B) = h ⊕ Span{e α | α ∈ ∆ + }.
(2) SO(n) ⊂ SL n R and SO(n) ⊂ SO(1, n) are reducing but not isotropic. It is likely that this generalizes to any symmetric pair.

Configuration spaces

Proposition 3.4. Let D be the disk and V be an arbitrary subset of ∂D. Choose a subgroup C v ⊂ G for each v ∈ V . Then we have a canonical identification

M G (D, V )/ v∈V C v ∼ = v∈V G/C v /G.
On the right-hand side, we take the quotient of the diagonal G-action on the product of homogenous spaces G/C v .

As a result, if V is finite and each

C v is reducing, then v∈V G/C v /G carries a Poisson structure. Proof. It is sufficient to define a map p : M G (D, V ) → v∈V G/C v such that the compo- sition p : M G (D, V ) p -→ v∈V G/C v /G -→ v∈V G/C v /G (3.1)
is surjective and each fiber of p is a v∈V C v -orbit in M G (D, V ). For any x, y ∈ V , let xy denote the oriented chord going from y to x. We pick v 0 ∈ V and define p by

p(m) = [e] v 0 , hol v 0 v (m) v v∈V \{v 0 } ,
where for any v ∈ V and g ∈ G we let [g] v ∈ G/C v denote the projection of g.

The composition (3.1) is surjective because, on one hand, any element in v∈V G/C v can be brought into the slice {[e] v 0 } × v∈V \{v 0 } G/C v by the diagonal G-action; on the other hand, the map

(hol v 0 v ) v∈V \{v 0 } : M G (D, V ) → G V \{v 0 } (3.2) is bijective.
Identifying M G (D, V ) with G V \{v 0 } using the map (3.2), it is easy to see that the fiber of the map (3.1) passing through any (a v ) v∈V \{v 0 } ∈ G V \{v 0 } has the form

{(g 0 a v g -1 v ) v∈V \{v 0 } | g 0 ∈ C v 0 , g v ∈ C v } ⊂ G V \{v 0 } .
This is exactly a v∈V C v orbit. Thus we get the required identification. Finally, one can verify that this identification is independent of the choice of v 0 , hence canonical.

If C v = C for any v, then v∈V G/C v /G = Map(V, G/C)/C =: Conf V (V, G/C).
is a configuration space of points in the homogenous space G/C. In this thesis we are mainly concerned with the case where G = SL n R and C v is the upper-triangular subgroup B. Let F = G/B be the complete flag variety. Then Proposition 3.4 gives a canonical identification

Conf V (F) ∼ = M SLnR (D, V )/B V .
Our goal is to study the Poisson structure on this space reduced from the quasi-Poisson structure of M SLnR (D, V ).

Cross ratio functions

Definition 3.5. Let x, y ∈ P n-1 be two points and X, Y ⊂ P n-1 be two hyperplanes. If x / ∈ Y and y / ∈ X, we define their cross ratio as

[x, X, y, Y ] = x, X ŷ, Ŷ x, Ŷ ŷ, X ∈ R,
where x, ŷ ∈ R n are lifts of x and y, whereas X, Ŷ ∈ R * n \ {0} are linear forms vanishing on X and Y , respectively. •, • is the pairing of R n and R * n .

It is easy it see that [x, X, y, Y ] does not depend on the choices of x, ŷ, X, Ŷ , and is invariant by projective transformations. When n = 2 we get the usual definition of cross ratio on the projective line

[x, X, y, Y ] = (x -X)(y -Y ) (x -Y )(y -X) .
We write a flag x ∈ F as x = (x (1) 

⊂ • • • ⊂ x (n) )
, where x (k) is a k -1-dimensional hyperplane in P n-1 . Given four flags x, y, z, w ∈ F, we define their cross ratio as [x, y, z, w] := [x (1) , y (n-1) , z (1) , w (n-1) ].
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We shall slightly reformulate this definition. Recall that a nonzero k-vector l

∈ k R n is called decomposable if l = v 1 ∧ • • • ∧ v k , where v i ∈ R n . A decomposable k-vector determines a subspace l = Span{v 1 , • • • v k } independent
of the choice of the v i 's. By an affine flag is meant a sequence of decomposable multi-vectors λ = (λ (1) 

, • • • , λ (n-1) ), λ (k) ∈ ∧ k R n , such that λ (k) ⊂ λ (k+1)
. Hence there is a underlying flag λ = (λ

(1) ⊂ • • • ⊂ λ (n-1)
), and we say that λ lifts λ.

Take Ω ∈ n R * n and let X, Y, Z, W be affine flags lifting x, y, z, w, respectively. Then the cross ratio (3.3) can be rewritten as [x, y, z, w] = Ω(X (1) ∧ Y (n-1) )Ω(Z (1) ∧ W (n-1) ) Ω(Z (1) ∧ Y (n-1) )Ω(X (1) ∧ W (n-1) ) , (3.4) which is independent of the choices of Ω and the lifts. Cross ratio gives rise to functions on Conf V (F). Indeed, given x, y, z, w ∈ V , by abuse of notation, we define the cross ratio function as

1 [x, y, z, w] : Map(V, F) → R, [x, y, z, w](f ) = [f (x), f (y), f (z), f (w)].
Then [x, y, z, w] is invariant under projective transformations, and is considered as a function on Conf V (F).

As in §2.2.2, for any 1 ≤ i, j ≤ n we define a function

xy ij ∈ C ∞ (M G (D, V )) by xy ij (m) = hol xy (m) ij , ∀m ∈ M G (D, V ).
(On the right-hand side, we let g ij denote the (i, j)-entry of a matrix g ∈ G.)

Proposition 3.6. The lift of the cross ratio function to M G (D, V ) by the quotient map

π : M G (D, V ) → M G (D, V )/B V ∼ = Conf V (F) is given by π * [x, y, z, w] = yx n1 • wz n1 yz n1 • wx n1 .
Proof. Let U ⊂ G be the group consisting of upper-triangular matrices whose diagonals are 1. Given a basis (e i ) of R n , we have an identification between G/U and the space A of all affine flags. For any a ∈ G, we let [a] ∈ A denote the affine flag corresponding to the left coset aU

∈ G/U . Put Ω = e * 1 ∧ • • • ∧ e * n , where (e * i ) is the dual basis of R * n , then we have Ω([a] (k) ∧ [b] (n-k) ) = det(a (1) , • • • , a (k) , b (1) , • • • , b (n-k) ),
where a (i) denotes the i th column of the matrix a. In particular,

Ω([e] (n-1) ∧ [a] (1) ) = a n1 . (3.5)
Let Conf V (A) := Map(V, A)/G be the configuration space of affine flags. Then π factorizes through the natural projection

π 0 : Conf V (A) → Conf V (F).
1. We allow a negligible subset on which the function does not make sense.

Eq.(3.4) implies that the function π * 0 [x, y, z, w] on Conf V (A) is a fraction of four functions, each of them having the form

Conf V (A) → R, f → Ω(f (x) (1) ∧ f (y) (n-1) ) ∀f ∈ Map(V, A). (3.6)
This expression is invariant by the G-acton on f ∈ Map(V, A), hence indeed gives a function on the quotient Conf V (A). Now we only need to show that under the quotient map

M G (D, V ) → M G (D, V )/U V ∼ = Conf V (A), the function (3.6) lifts to yx n1 ∈ C ∞ (M G (D, V )). But we have the following commutative diagram M G (D, V ) Map(V, A) Conf V (A) Conf V (F) Ψy /U V # # /B V 9 9 /G G G π 0 G G
where Ψ y is the map

M G (D, V ) → Map(V, A), m → (x → [hol yx (m)]).
Therefore it follows from Eq.(3.5) that the map (3.6) lifts to yx n1 , as required.

By the discussions in §2.2.3 (reinforced with §2.2.4, since G = SL n R), the subalgebra of C ∞ (M G (D, V )) generated by functions of the form xy n1 is closed under Poisson bracket:

{xy n1 , zw n1 } = ε(xy, zw) xw n1 • zy n1 - 1 n xy n1 • zw n1 .
This formula and Proposition 3.6 allows us to compute Poisson brackets of any two cross ratio functions on Conf V (F).

Twisted configuration spaces

In this subsection we generalize Proposition 3.4 to arbitrary bordered surface Σ. We shall first introduce some notations.

Take a subset V ⊂ ∂Σ and subgroups C v ⊂ G (v ∈ V ) as before. Let π : D → Σ ∼ = D/Π be the universal covering map, where Π := π 1 (Σ) is the fundamental group acting on D by deck transformations. Put V = π -1 (V ). Given a representation ϕ ∈ Hom(Π, G), an element (a ṽ) in ṽ∈ V G/C π(ṽ) is said to be ϕ-equivariant if ϕ(γ).a ṽ = a γ.ṽ , ∀γ ∈ Π.

The generalization of Proposition 3.4 to this situation is the following Proposition 3.7. We have a canonical identification

M G (Σ, V )/ v∈V C v = (a ṽ), ϕ ∈ ṽ∈ V G/C π(ṽ) × Hom(Π, G) (a ṽ) is ϕ-equivariant /G.
Here G acts diagonally on the product ṽ∈ V G/C π(ṽ) × Hom(Π, G). We omit the proof since it is a straightforward adaptation of the proof of Proposition 3.4.

In particular, if

C v = C for any v, then Proposition 3.7 identifies M G (Σ, V )/C V with f, ϕ ∈ Map( V , G/C) × Hom(Π, G) f is ϕ-equivariant ,
which is viewed as a "twisted configuration space" of points in G/C. Example 3.8. Let Σ be the cylinder. Then for any subset V ⊂ ∂Σ of order N , the pair (Σ, V ) is homotopy equivalent to the pair (R/N Z, R/Z), so

M G (Σ, V ) = M G (R/N Z, R/Z).
The twisted configuration space in this case is

{ (a i ) i∈Z , h | a i ∈ G/C, h ∈ G, h.a i+N = a i }/G,
where the G-action is given by g. (a i ) i∈Z , g = (g.a i ) i∈Z , ghg -1 .

Fock-Goncharov Poisson structure from quasi-Poisson reduction

Framed connections

Let G be the split real form of a complex reductive group. Fix a maximal torus H ⊂ G and a Borel subgroup B containing H. Let F = G/B denote the flag variety.

Let R ⊂ h * be the roots of g relative to h. Each α ∈ R integrates to a character H → R * , λ → λ α . An element λ in H is called regular (or loxodromic) if λ α = 1 for any α ∈ R. An element g in G is called regular if it is conjugate to a regular element in H. Let H reg , G reg denote the set of regular elements in H and G, respectively.

Let Σ be compact oriented surface such that ∂Σ = ∅. We choose a finite (possibly empty) subset W ⊂ ∂Σ and put Σ = Σ \ W . In the picture below, points in W are indicated by little circle. Definition 3.9. Let P → Σ be a principal G-bundle. A framed flat G-connection on Σ is a pair (∇, f ), where ∇ is a flat G-connection on P and f is a ∇-invariant choice of a reduction of structure group to B on each component of ∂Σ \ W (such f is called a framing of ∇). The space of all framed G-connections on P is denoted by A F flat (P ). We let A F flat = P A F flat (P ) be the disjoint union, where P runs over isomorphism classes of principal G-bundles over Σ.

Precisely, f is a choice of a B-orbit2 in the fiber P | q for any q ∈ ∂Σ \ W , such that if q 1 and q 2 lies on the same component of ∂Σ \ W then the parallel translation of ∇ carries the B-orbit in P | q 1 to the one in P | q 2 . Clearly, to determine f we only need to pick one point on each component of ∂Σ \ W and describe the B-orbits at these points. Definition 3.10. A circle component (resp. interval component) of ∂Σ\W is a connected component of ∂Σ \ W which is homeomorphic to a circle (resp. an open interval). Let V ⊂ ∂Σ \ W be a set of marked points such that each component of ∂Σ \ W contains exactly one marked point, c.f. Figure 3.1. Let V circle , V interval ⊂ V consist of marked points on circle and interval components, respectively. For each v ∈ V circle we let β v denote the boundary loop based at v, oriented against the induced orientation.

Fix a trivialization P |

v ∼ = G at each v ∈ V .
Then a framing of a flat connection ∇ is the same as a choice of left B-coset in each P | v , such that for any marked point on circle component v ∈ V circle , the chosen coset aB satisfies hol βv (∇) ∈ aBa -1 . Thus we have an identification

A F flat (P ) = { ∇, (f v ) v∈V ∈ A flat (P ) × F V | ∀v ∈ V circle , hol βv (∇) fixes the flag f v } (3.7)
Definition 3.11. The gauge group G(P ) naturally acts on A F flat (P ) and the quotient is denoted by X G, Σ (P ). The disjoint union X G, Σ = P X G, Σ (P ), where P runs over isomorphism classes of principal G-bundles over Σ, is called the moduli space of framed G-connections over Σ.

Moreover, we let X reg G, Σ (P ) denote the G(P )-quotient of

{(∇, (f v ) v∈V ) ∈ A F flat (P ) | hol βv ∈ G reg , ∀v ∈ V circle } and put X reg G, Σ = P X reg G, Σ (P ) 
The following proposition provides our working definition of X G, Σ :

Proposition 3.12. The subset v∈V circle hol -1 βv (B) of the G V -manifold M G (Σ, V ) is invariant by B V , and we have identifications

X G, Σ ∼ =   v∈V circle hol -1 βv (B)   /B V , (3.8) X reg G, Σ ∼ =   v∈V circle hol -1 βv (H reg )   /(B V interval × H V circle ) (3.9)
In particular, if 

V circle = ∅, i.e., W has at least one point on each component of ∂Σ, then X G, Σ ∼ = M G (Σ, V )/B V is
X G, D = M G (D, V )/B V ∼ = Conf V (F).
(2) If W = ∅, then Σ = Σ, V has exactly one point on each component of ∂Σ, and

X reg G,Σ ∼ = L/H V , where L = v∈V hol -1 βv (H reg ).
We denote

M reg G (Σ, V ) = v∈V hol -1 βv (G reg ). Then in this case X reg G, Σ is a finite covering of the open subset X reg G (Σ, V ) := M reg G (Σ, V )/G V of X G (Σ) = M G (Σ, V )/G V .
In fact, it follows from Lemma 1.27 (2) that we can identify

X reg G (Σ, V ) ∼ = L/N G (H) V . So X reg G,Σ ∼ = L/H V is a degree #V • #N G (H)/H covering of X reg G (Σ, V ) (recall that N G (H)/H

is the Weyl group and has finite order).

Proof of Proposition 3.12. For brevity we assume in this proof that G is connected, so any principal G-bundle over Σ is isomorphic to the trivial one. In the general case, one only needs to argue for each isomorphism class of principal G-bundles and take the disjoint union.

Recall that M G (Σ, V ) is identified with the quotient of A flat by the restricted gauge group

G V = {g ∈ G | g(v) = id, ∀v ∈ V }.
In view of the the interpretation (3.7) of A F flat , we have

A F flat /G V = {(m, (f v ) v∈V ) ∈ M G (Σ, V ) × F V | ∀v ∈ V circle , hol βv (m) fixes the flag f v },
and X G, Σ = A F flat /G is the quotient of the above set by the diagonal action of

G V = G/G V . Let ([B], • • • , [B]
) ∈ F V be the element whose entries are all the origin [B] ∈ G/B = F. Since F is a homogenous G-space, we can bring any element of A F flat /G V into the slice

v∈V circle hol -1 βv (B) × {([B], • • • , [B])} ⊂ A F flat /G V
by the G V -action. As a result, X G, Σ is the quotient of the above subset by

Stab G V ([B], • • • , [B]) = B V .
This proves the first statement.

To prove the second statement, we put

L = v∈V circle hol -1 βv (H reg ), N = v∈V circle hol -1 βv (B ∩ G reg )
By definition and the first statement, we have X reg

G, Σ

= N/B V . Since every B-orbit in B∩G reg (with respect to the conjugation action) intersects H reg and we have Stab B (h) = H for any h ∈ H reg , it follows from equivariance of the hol βv 's that every B V -orbit in N intersects L, and the intersection is a B V interval ×H V circle -orbit. This establishes the required identification.

Triple ratio functions

In the sequel we set G = SL n R and let B ⊂ G be the upper-triangular subgroup. To simplify notations, we assume V circle = ∅ unless otherwise specified, so that

X G, Σ = M G (Σ, V )/B V .
Fock and Goncharov [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF] introduced some rational functions on X G, Σ which provide coordinates systems on X G, Σ . These functions consists of two types: triple ratio functions and edge functions. In this subsection we give our reformulation of the definition of triple ratio functions. Edges functions will be treated in the next subsection.

Like cross ratio functions (Proposition 3.6), triple ratio functions and edge functions are fractions of certain spin networks on M G (Σ, V ). The graph diagrams of the spin networks occurring here are tripods (see Example 2.3 (2)). Definition 3.15. For each triple of non-negative integers p, q, r satisfying p + q + r = n, we define a function Det p,q,r :

G × G × G → R by Det p,q,r (a, b, c) = det(a (1) , • • • , a (p) , b (1) , • • • , b (q) , c (1) , • • • , c (r) ),
where for any matrix a ∈ G, we denote the i th column of a by a (i) . Note that Det p,q,r is invariant by the diagonal action of G by left-multiplication.

Let ∆ be a tripod on Σ with feet v 1 , v 2 , v 3 ∈ V , an interior vertex o, and legs e 1 , e 2 , e 3 , as shown in Figure 3.2 on the left. Consider Det p,q,r as a function on G E ∆ , then it is admissible. We denote the resulting spin network by

∆ p,q,r := [∆, Det p,q,r ] ∈ C ∞ (M G (Σ, V )).
In particular, ∆ n,0,0 = ∆ 0,n,0 = ∆ 0,0,n ≡ 1. By definition, the ∆ p,q,r 's are expressed in terms of holonomies by ∆ p,q,r = Det p,q,r (1 , hol e -1 1 e 2 , hol e -1 1 e 3 ) = Det p,q,r (hol e -1 2 e 1 , 1 , hol e -1 2 e 3 ) = Det p,q,r (hol e -1 3 e 2 , hol e -1 3 e 1 , 1 ).

∆ p,q,r is not invariant under B V , but they have nice covariant properties:

Lemma 3.16. Let χ k : B → R * (1 ≤ k ≤ n) be the character of B whose value at b ∈ B is the product of the first k diagonal entries of b. Then for any (b v ) v∈V ∈ B V we have (b v ) v∈V .∆ p,q,r = χ p (b v 1 )χ q (b v 2 )χ r (b v 3 )∆ p,q,r . Proof. Follows from the elementary fact that if a, b, c ∈ G and b 1 , b 2 , b 3 ∈ B then Det p,q,r (ab 1 , bb 2 , cb 3 ) = χ p (b 1 )χ q (b 2 )χ r (b 3 ) Det p,q,r (a, b, c).
To better imagine the totality of all the ∆ p,q,r 's for a fixed ∆, we fatten ∆ into a triangle, and make a equilateral n-subdivision of the triangle, as shown in Figure 3.2 on the right.

Let I ∆ denote the the set of vertices of the subdivision, which are shown as black dots. As indicated in the picture, points in I ∆ are in one-one correspondence with triples of non-negative integers (p, q, r) with p + q + r = n. If i ∈ I ∆ is labelled (p, q, r), we denote ∆ i := ∆ p,q,r . if there is an edge from i to j, -1 if there is an edge from j to i, 0 otherwise.

(3.10) Definition 3.17. Let I int ∆ ⊂ I ∆ denote the set of internal vertices of the equilateral n-subdivision, i.e., those corresponding to triples of integers (p, q, r) with p, q, r > 0. The triple ratio function X ∆ i at a vertex i ∈ I int ∆ is a rational function on M G (Σ, V ) defined by

X ∆ i = j∈I ∆ ∆ ji j ,
or more explicitly,

X ∆ p,q,r = ∆ p+1,q,r-1 ∆ p-1,q+1,r ∆ p,q-1,r+1 ∆ p,q+1,r-1 ∆ p-1,q,r+1 ∆ p+1,q-1,r .
It follows from Lemma 3.16 that X i is invariant under B V , hence we also consider X i as a function on the quotient

X G, Σ = M G (Σ, V )/B V ,
where we allow a negligible subset on which X i is not defined.

Edge functions

Two tripods ∆ 1 and ∆ 2 on (Σ, V ) are said to be adjacent if they share two feet, and the two-leg in ∆ 1 supported at these feet is homotopic to the one in ∆ 2 .

Let ∆ 1 and ∆ 2 be adjacent tripods. We fatten them into adjacent triangles, which share an edge e, and make an equilateral n-subdivision on each triangle as before. See the picture below. Here e is the vertical edge in the middle.

As before, we orient each internal edge of the subdivision, and define a number ij = 0, ±1 for each i, j ∈ I ∆ 1 ∪ I ∆ 2 . We also label vertices in I ∆ 1 and vertices in I ∆ 2 by triples of non-negative integers (p, q, r) with p + q + r = n, respectively, in the way shown in the above picture. Let i be a vertex of the subdivision contained in the interior of the edge e (there are 3 such vertices in the above picture). The edge function

X ∆ 1 ,∆ 2 i at i is a rational function on M G (Σ, V ) given by X ∆ 1 ,∆ 2 i = j∈I ∆ 1 ∪I ∆ 2 ∆ ji j .
Here ∆ j = (∆ 1 ) j (resp. (∆ 2 ) j ) if j is contained in the fattening of ∆ 1 (resp. ∆ 2 ). By the same reason as for triple ratio functions, each edge function

X ∆ 1 ,∆ 2 i is invari- ant under B V , hence we consider it as functions on X G, Σ = M G (Σ, V )/B V , allowing a negligible subset on which X ∆ 1 ,∆ 2 i is not defined.
Note that each i in the interior of e is labelled (k, 0, l) in I ∆ 1 and labelled (k, l, 0) in I ∆ 2 . Here (k, l) is a pair of positive integers satisfying k+l = n. A more explicit expression for the edge functions is

X ∆ 1 ,∆ 2 i = (∆ 1 ) k-1,1,l (∆ 2 ) k,l-1,1 (∆ 1 ) k,1,l-1 (∆ 2 ) k-1,l,1 .
Like cross ratio functions in §3.1.3, triple ratio functions and edge functions come from projective invariants of flags. In fact, given p, q, r ∈ N + such that p + q + r = n, using the same notations as Eq.(3.4), the triple ratio of three flags x, y, z ∈ F is defined as

T p,q,r (x, y, z) = Ω(X (p+1) ∧ Y (q) ∧ Z (r-1) )Ω(X (p-1) ∧ Y (q+1) ∧ Z (r) )Ω(X (p) ∧ Y (q-1) ∧ Z (r+1) ) Ω(X (p) ∧ Y (q+1) ∧ Z (r-1) )Ω(X (p-1) ∧ Y (q) ∧ Z (r+1) )Ω(X (p+1) ∧ Y (q-1) ∧ Z (r) ) ,
which is independent of the choices of Ω ∈ n R * n and the affine flags X, Y, Z lifting x, y, z, and invariant by projective transformations.

Proposition 3.19. Let Σ = D be the disk and ∆ be a tripod on

D with feet v 1 , v 2 , v 3 ∈ V . Then the function X ∆ p,q,r on M G (D, V )/B V ∼ = Conf V (F) = Map(V, F)/G can be alternatively expressed as X ∆ p,q,r (f ) = T p,q,r (f (v 1 ), f (v 2 ), f (v 3 )), ∀f ∈ Map(V, F).
This statement is similar to Proposition 3.6, and the proof is essentially the same. Similarly, given k, l ∈ N + such that k + l = n, we can define a projective invariant of four flags T k,l (x, y, z, w) = Ω(X (k-1) ∧ Y (1) ∧ Z (l) )Ω(X (k) ∧ Z (l-1) ∧ W (1) ) Ω(X (k) ∧ Y (1) ∧ Z (l-1) )Ω(X (k-1) ∧ Z (l) ∧ W (1) ) , 

Ideal triangulation and coordinates system

Fock and Goncharov showed that one can choose some tripods on (Σ, V ) such that the triple ratio functions and edge functions associated with them form a coordinates system of X G, Σ . In this subsection we briefly review this construction.

The choice of tripods here is determined by some combinatorial data -a triangulation T of Σ with vertex set V . It is easy to see that, by duality, giving such a triangulation is equivalent to giving a trivalent graph Γ T on Σ with vertex set W such that Σ retracts to Γ T by deformations. See Figure 3.4 for some examples, where each colored region represents a triangle. Note that here we need the assumption V circle = ∅. Fix such a triangulation T . We consider a triangle of T as a fattened tripod on (Σ, V ). So each triangle gives rise to (n-1)(n-2) 2 triple ratio functions, and each two adjacent triangles give rise to n -1 edges functions. The Fock-Goncharov coordinate system just consists of all these functions.

More precisely, we make an equilateral n-subdivision of each triangle of T and orient the edges of the subdivision as before. c.f. the following picture, which corresponds to the first example in Figure 3.4.

We let I T denote the set of vertices of the subdivision, and define ij = ±1 (i, j ∈ I T ) by (3.10) as before. Put I int T = I T \ ∂Σ (points of I int T are black dots in the above picture). Then we have a spin network ∆ i ∈ C ∞ (M G (Σ, V )) for each i ∈ I T , and a resulting triple ratio function or edge function

X i = j∈I T ∆ ji j .
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Theorem 3.20 ).

Let X • G, Σ ⊂ X G,
Σ be an open subset on which X i is defined for every i ∈ I int T . Then the map

(X i ) i∈I int T : X • G, Σ -→ R #I int T is a diffeomorphism to the image.
When V circle = ∅, the same statement is true if we take a suitable triangulation T . This will be discussed in the next subsection.

The V circle = ∅ case

When V circle = ∅, the moduli space of framed connections X G, Σ is the quotient of

N = v∈V circle hol -1 βv (B) ⊂ M G (Σ, V )
by B V . The triple ratio functions and edges functions as defined in the same way as before and restricted to N . However, in this case one should modify the triangulation T in the previous subsection in order to get a coordinates system.

Namely, rather than triangulating Σ, we shall triangulate the surface Σ obtained by shrinking each circle component of ∂Σ \ W into a point. Let V , V interval and V circle be, respectively, projections of V , V interval and V circle on Σ. So V circle is in the interior of Σ.

Any triangulation T of Σ with vertex set V is still equivalent to a trivalent graph Γ T with vertex set W such that Σ retracts to Γ T by deformations. c.f. the examples pictured below. Note that W can be empty. Fix such a triangulation T . We can do the same thing to T as in the previous subsection, except that when defining ∆ i ∈ C ∞ (M G (Σ, V )) for i ∈ I T , we must lift the triangle in which i sits to a triangle (a fattened tripod) on Σ. The following lemma ensures that ∆ i does not depend on the choice of the lift. 62Chapter 3. Configuration spaces and moduli of framed flat connections Lemma 3.21. Let ∆ be a tripod on (Σ, V ) which has v ∈ V circle as a foot. We replace the leg e of ∆ supported at v by the new leg eβ v , and denote the resulting tripod by ∆ . Then the triple ratio functions associated with ∆ and ∆ coincides. Namely, X ∆ p,q,r = X ∆ p,q,r , ∀p, q, r ∈ N + such that p + q + r = n.

Similarly, if ∆ 1 , ∆ 2 are adjacent tripods and ∆ 1 , ∆ 2 are obtained from they by the above modification (see the picture below), then we also have equalities of edges functions

X ∆ 1 ,∆ 2 k,l = X ∆ 1 ,∆ 2 k,l , ∀k, l ∈ N + such that k + l = n.
Proof. Let v be labelled by (n, 0, 0) in the n-subdivision of fattened ∆, then for any p, q, r we have ∆ p,q,r = χ p (hol βv )∆ p,q,r . One verifies by definition that X ∆ p,q,r = X ∆ p,q,r . The seconded statement is similar.

Once the ∆ i 's are in hand, we define the X i 's as in the previous subsection. Theorem 3.20 still holds in this case. is defined by declaring the Poisson brackets of the X i 's to be

Fock-Goncharov Poisson structure from quasi-Poisson reduction

{X i , X j } = -ij X i X j , ∀i, j ∈ I int T . (3.11)
On the other hand, the quasi-Poisson theory also provides us with a Poisson structure on an open subset of X G, Σ . Indeed, the set H reg of regular elements in H is a crosssection, and we have a vector space decomposition sl n R = h⊕h ⊥ (h ⊥ consisting of matrices with zero diagonals) and a corresponding splitting s = s h + s h ⊥ . By Corollary 1.29, the

H V circle × G V interval -manifold L = v∈V circle hol -1 βv (H reg ) has a canonical quasi-Poisson (h V circle ⊕ g V interval , s (V circle ) h ⊕ s (V interval ) )-tensor P L . So Propo- sition 3.2 says that X reg G, Σ ∼ = L/ B V interval × H V circle carries a Poisson structure reduced from P L .
The main result of this section is In particular, when W = ∅, the Fock-Goncharov Poisson structure coincides with Atiyah-Bott's: Corollary 3.24. We assume W = ∅ and put L = v∈V hol -1 βv (H reg ), so that there is a covering map

X reg G,Σ ∼ = L/H V → L/N G (H) V ∼ = M reg G (Σ, V )/G V = X reg G (Σ)
(c.f. Example 3.14 ( 2)). Then the lift of the Atiyah-Bott Poisson structure on X reg G (Σ) coincides with the Fock-Goncharov Poisson structure on X reg G,Σ .

Proof. By Theorem 1.15 the Atiyah-Bott Poisson structure P AB on X reg G (Σ) is reduced from the canonical quasi-Poisson (g V , s (V ) )-tensor on M reg G (Σ, V ). By Corollary 1.29, P AB can also be reduced from the quasi-Poisson (h V , s (V ) h )-tensor P L on L, hence the lift P AB of P AB to X reg G,Σ is reduced from P L as well. So P AB is exactly the Poisson structure that we just defined on X reg G,Σ , and Theorem 3.23 says that it coincides with Fock-Goncharov's.

To prove Theorem 3.23, we need to verify Eq.(3.11) under our Poisson structure. But we have expressed the X i 's as fractions of the spin networks ∆ i , so the proof boils down to straightforward computations with Theorem 2.6 (or more generally, Corollary 2.8, if V circle = ∅). We display the computations in detail in §3.3.

Proof of Theorem 3.23

In this section we give a computational proof of Theorem 3.23, using the quasi-Poisson formula for spin networks established in §2.1.2.

Our goal is to to compute the Poisson bracket {X i , X j } for each pair i, j ∈ I int T . Let us first compute the quasi-Poisson bracket {∆ i , ∆ j }, for i, j ∈ I T .

Poisson brackets of the ∆ i 's

Proposition 3.25. Let Σ be a bordered surface and V ⊂ ∂Σ be finitely many marked points. Let L ⊂ M SLnR (Σ, V ) be a cross-section as defined in Corollary 1.29, with respect to an arbitrary choice of V 1 , and let {•, •} be the quasi-Poisson bracket on C ∞ (L). Let ∆ be a tripod on (Σ, V ). For any p, q, r ∈ N + , p + q + r = n, let ∆ p,q,r be the spin network defined in §3.2.2, considered here as a function on L by restriction. Then we have {∆ p 0 ,q 0 ,r 0 , ∆ p,q,r } = 1 2n ω (p 0 , q 0 , r 0 ), (p, q, r) ∆ p 0 ,q 0 ,r 0 • ∆ p,q,r , where ω (p 0 , q 0 , r 0 ), (p, q, r)

=     
r 0 q -q 0 r if p ≥ p 0 , q ≤ q 0 , r ≤ r 0 or p ≤ p 0 , q ≥ q 0 , r ≥ r 0 , p 0 r -r 0 p if p ≥ p 0 , q ≤ q 0 , r ≥ r 0 or p ≤ p 0 , q ≥ q 0 , r ≤ r 0 , q 0 p -p 0 q if p ≥ p 0 , q ≥ q 0 , r ≤ r 0 or p ≤ p 0 , q ≤ q 0 , r ≥ r 0 .

The expression for ω (p 0 , q 0 , r 0 ), (p, q, r) is more transparent from Figure 3.6 below, where we exhibit the values of ω (p 0 , q 0 , r 0 ), (p, q, r) respectively when (p, q, r) belongs to different regions. 64Chapter 3. Configuration spaces and moduli of framed flat connections Figure 3.6: Values of ω (p 0 , q 0 , r 0 ), (p, q, r) Proof. It is just an application of the quasi-Poisson bracket formula in Corollary 2.8. We reproduce the formula here for convenience of the reader:

{[Γ, f ], [Γ , f ]} L = q ε q (Γ, Γ )[Γ ∪ q Γ, D q (f, f )] + 1 2 v∈V a,a ε(a, a )[Γ ∪ Γ , D a,a (f, f )] + 1 2 v∈V a,a [Γ ∪ Γ ∪ β v , D a,a (f, f )].
Since the required equality is skew-symmetric when the roles of (p 0 , q 0 , r 0 ) and (p, q, r) are switched, we can assume r ≥ r 0 without loss of generality.

We move ∆ by homotopy to a tripod ∆ as shown in Figure 3.7, so that the two tripods are transverse and have a single interior intersection point A. The formula gives the quasi-Poisson bracket {∆ p 0 ,q 0 ,r 0 , ∆ p,q,r } as a sum of three terms, which we evaluate respectively in Eq.( 1), Eq.( 2) and Eq.( 3) below. 

ε A (∆, ∆ )[∆ ∪ A ∆ , D A (Det p 0 ,q 0 ,r 0 , Det p,q,r )] = r 0 q n ∆ p 0 ,q 0 ,r 0 • ∆ p,q,r ( 1) 
To prove Eq.( 2), first we note that ε A (∆, ∆ ) = -1. 

The graph ∆ ∪

s = - 1 n I ⊗ I + 1≤k,l≤n E kl ⊗ E lk ,
by definition, the admissible function ψ = D A (Det p 0 ,q 0 ,r 0 , Det p,q,r )

∈ C ∞ (G E ∆∪ A ∆ ) is ψ(a, b, c 1 , c 2 , a , b 1 , b 2 , c ) = - 1 n d d d dδ =δ=0 Det p 0 ,q 0 ,r 0 (a, b, e c 2 c 1 ) • Det p,q,r (a , e δ b 2 b 1 , c ) + k,l d d d dδ =δ=0 Det p 0 ,q 0 ,r 0 (a, b, c 2 exp( E kl )c 1 ) • Det p,q,r (a , b 2 exp(δE lk )b 1 , c ).
Admissibility implies that ψ is invariant by the G-action on G E ∆∪ A ∆ associated to the vertex A, so we have 

ψ(a, b, c 1 , c 2 , a , b 1 , b 2 , c ) = ψ(a, b, I, c 2 c 1 , a , c -1 1 b 1 , b 2 c 1 , c ) (3.12) = - r 0 q n Det p 0 ,q 0 ,r 0 (a, b, c 2 c 1 ) Det p,q,r (a , b 2 b 1 , c ) + k,l d d d dδ =δ=0 Det p 0 ,q 0 ,r 0 (a, b, c 2 c 1 exp( E kl )) • Det p,q,r (a , b 2 c 1 exp(δE lk )c -1 1 b 1 , c ).

By definition, [∆ ∪

A ∆ , ψ] is a function on M G (Σ, V ) whose lift to M G (Σ, V ∪ {A, o, o }) is ψ(a, b, c 1 , c 2 , a , b 1 , b 2 , c ),
d d =0 Det p,q,r (a, b, c exp( E kl )) =      Det p,q,r (a, b, c) if k = l ≤ p, Det p,q,r (a, b, σ kl (c)) if k > p and l ≤ p, 0 otherwise. (3.13)
Here σ kl (c) is obtained from c by exchanging the k th and l th column.

Proof. To prove the first equality, we compute d dδ δ=0 Det p,q,r (a, c exp(δE lk )b, c)

= det(a (1) , • • • , a (p) , (cE lk b) (1) , (cb) (2) , • • • , (cb) (q) , c (1) 

, • • • , c (r) ) + • • •
+ det(a (1) , • • • , a (p) , (cb) (1) , • • • , (cb) (q-1) , (cE lk b) (q) , c (1) 

, • • • , c (r) ), but (cE lk b) (i)
is a linear combination of c (1) , • • • c (r) if l ≤ r, so each of the above determinants vanishes.

The second equality also follows from elementary computations and we omit the proof.

1 2 3 i=1 ε(a i , a i )[∆ ∪ ∆ , D a i ,a i (Det p 0 ,q 0 ,r 0 , Det p,q,r )] ( 2) 
= 1 2 min(p 0 , p) -min(q 0 , q) -r 0 -

p 0 p n + q 0 q n + r 0 r n ∆ p 0 ,q 0 ,r 0 • ∆ p,q,r
To prove Eq.( 2), note that ε(a 1 , a 1 ) = 1 and ε(a 2 , a 2 ) = ε(a 3 , a 3 ) = -1, whereas the admissible function ψ i = D a i ,a i (Det p 0 ,q 0 ,r 0 , Det p,q,r ) for the graph ∆ ∪ ∆ is given by

ψ 1 (a, b, c, a , b , c ) = - 1 n d d d dδ =δ=0 Det p 0 ,q 0 ,r 0 (e a, b, c) • Det p,q,r (e δ a , b , c ) + k,l d d d dδ =δ=0 Det p 0 ,q 0 ,r 0 (a exp( E kl ), b, c) • Det p,q,r (a exp(δE lk ), b , c ) = - p 0 p n + min(p 0 , p)
(the last equality uses Eq.(3.13)), and similarly for ψ 2 and ψ 3 . Hence we get Eq.( 2).

1 2 i [∆ ∪ ∆ ∪ β v i , D a i ,a i (Det p 0 ,q 0 ,r 0 , Det p,q,r )] = 0. ( 3) 
This is a sum over those i's for which

v i ∈ V circle . For any h = diag(h 1 , • • • , h n ) ∈ H reg we have Ad h +1 Ad h -1 ⊗ id s h ⊥ = k =l h k + h l h k -h l E kl ⊗ E lk ,
we obtain ( 3) by using Eq.(3.13) again. For example, when i = 1, we have

D a 1 ,a 1 (Det p 0 ,q 0 ,r 0 , Det p,q,r )(a, b, c, a , b , c , h) = d d d dδ =δ=0 k =l h k + h l h k -h l Det p 0 ,q 0 ,r 0 (a exp( E kl ), b, c) • Det p,q,r (a exp(δE lk ), b , c ) = 0.
Combining Eq.( 1), Eq.( 2) and Eq.( 3), we get

{∆ p 0 ,q 0 ,r 0 , ∆ p,q,r } = 1 2n
n min(p 0 , p) -min(q 0 , q) -r 0 -p 0 p + q 0 q + r 0 r + 2r 0 q) ∆ p 0 ,q 0 ,r 0 • ∆ p,q,r .

Noting p 0 + q 0 + r 0 = p + q + r = n, one verifies that the parenthesized terms equal ω (p 0 , q 0 , r 0 ), (p, q, r) by elementary computations.

Proposition 3.27. Under the hypothesis of Proposition 3.25, -if ∆ is a tripod adjacent to ∆ as in Figure 3.3, so that the two vertices that they share are labelled (n, 0, 0) and (0, 0, n) in I ∆ , respectively, and labelled (n, 0, 0) and (0, n, 0) in V ∆ , then {∆ p 0 ,q 0 ,r 0 , ∆ p,q,r } = 1 2n n min(p 0 , p) -min(r 0 , q) -p 0 p n + r 0 q n ∆ p 0 ,q 0 ,r 0 • ∆ p,q,r .

-if ∆ is a tripod sharing with ∆ a single vertex, which is labelled (n, 0, 0) in both I ∆ and V ∆ , then {∆ p 0 ,q 0 ,r 0 , ∆ p,q,r } = 1 2n n min(p 0 , p) -p 0 p n ∆ p 0 ,q 0 ,r 0 • ∆ p,q,r .

-if ∆ is a tripod disjoint with ∆, then {∆ p 0 ,q 0 ,r 0 , ∆ p,q,r } = 0.

The first two statements follows from almost the same computations as in the above proof of Eq.( 2) and Eq.( 3). The last statement is immediate, since if two spin networks have disjoint graph diagrams then Corollary 2.8 implies that their quasi-Poisson bracket vanishes.

Poisson brackets of the X i 's

Using Proposition 3.25 and 3.27, we can prove Theorem 3.23 by straightforward verifications in the following cases, respectively:

(1) i and j are in the interior of some triangle t ∈ T , (2) i is in the interior of t ∈ T , while j is on the boundary of t, (3) i is in the interior of t ∈ T , while j is in some triangle t ∈ T adjacent to t, (4) i is in the interior of t ∈ T , while j is in some triangle t ∈ T which share a single vertex with t. (5) i and j are in two disjoint triangles t, t ∈ T .

The complexity of verifications are in a decreasing order, the last case being obvious. Here we only treat Case (1) in some detail.

Let us first show that {log ∆ p,q,r , log X p ,q ,r } = 1 if (p , q , r ) = (p, q, r), 0 if (p , q , r ) = (p, q, r). (3.14) By the definition of X p,q,r , we have log X p,q,r = log ∆ p+1,q,r-1 + log ∆ p-1,q+1,r + log ∆ p,q-1,r+1

log ∆ p,q+1,r-1 -log ∆ p-1,q,r+1 -log ∆ p+1,q-1,r .

To prove the first case in (3.14), we apply Proposition 3.25 and get {log ∆ p,q,r , log X p,q,r } = 1 2n ω (p, q, r), (p + 1, q, r -1) + ω (p, q, r), (p -1, q + 1, r)

+ ω (p, q, r), (p, q -1, r + 1) -ω (p, q, r), (p, q + 1, r -

-ω (p, q, r), (p -1, q, r + 1) -ω (p, q, r), (p + 1, q -1, r)

= 1 2n (2p + 2r + 2q) = 1.
The second case in (3.14) results from similar computations. Here one needs to compute separately for (p , q , r ) belonging to each of the three regions in Figure 3.6. It follows from Eq.(3.14) and Eq.(3.15) that {log X p,q,r , log X p ,q ,r } =

     1 if (p , q , r ) -(p, q, r) = (1, 0, -1), (-1, 1, 0) or (0, -1, 1), -1 if (p , q , r ) -(p, q, r) = (-1, 0, 1), (1, -1, 0) or (0, 1, -1), 0 otherwise.
This is exactly the required equality {log X i , log X j } = ij in Case (1). 68Chapter 3. Configuration spaces and moduli of framed flat connections

Further discussions

This last section of the present chapter is not detailed. We suggest some further developments of the above considerations.

A Poisson algebra of functions on M SLnR (Σ, V )

In Fock-Goncharov theory, we considered spin networks of the form ∆ i only for tripods ∆ coming from a triangulation T of Σ. It is natural to consider the totality of such spin networks for all tripods. The subalgebra of C ∞ (M SLnR (Σ, V )) generated by them is not closed under quasi-Poisson bracket, but there is a natural quasi-Poisson subalgebra C n (Σ, V ) containing it, as we explain in this subsection.

We define a labelled n-pod γ on (Σ, V ) as a n-pod each of whose legs is labelled by an integer in {1, • • • , n}. Overlapping feet are allowed. Labelled n-pods are considered up to homotopy.

A labelled n-pod γ gives rise to a spin network similar to ∆ i . Indeed, let e 1 , • • • , e n be the edges of γ, labelled by

p 1 , • • • , p n , respectively. Define Det p 1 ,••• ,pn ∈ C ∞ ((SL n R) n ) by Det p 1 ,••• ,pn (a 1 , • • • , a n ) = det(a (p 1 ) 1 , • • • , a (pn) n ),
where a (i) denotes to i th column of the matrix a ∈ SL n R. Then Det p 1 ,••• ,pn is an admissible functions for the n-tripod. We view the labelled n-pod γ as the spin network [γ, Det

p 1 ,••• ,pn ]. We define C n (Σ, V ) as the subalgebra of C ∞ (M SLnR (Σ, V ))
generated by all labelled n-pods.

C n (Σ, V ) is far from being free. There are the following relations, the first being obvious.

(1) If two edges of γ with the same label share a foot, then γ = 0 (2) Assuming m > n, any labelled m-pod Γ (whose edges are still labelled by {1, • • • , n})

gives rise to a number of quadratic relations as follows, which are essentially Plücker relations from projective embedding of the Grassmannian Gr(n, m). We index the edges of Γ by 1, • • • , m and let Γ(i 1 , • • • , i n ) denote the labelled n-pod formed by edges with indices 1

≤ i 1 < • • • < i n ≤ m. Furthermore, for general i 1 , • • • , i n ∈ {1, • • • , m} we put Γ(i 1 , • • • , i n ) = 0 if some of the i k 's coincide, otherwise put Γ(i 1 , • • • , i n ) = sgn(σ)Γ(i σ(1) , • • • , i σ(n) ), where σ ∈ S n is the unique permutation such that i σ(1) < • • • < i σ(n) . Then for any 1 ≤ k 0 < • • • < k d ≤ m and 1 ≤ i 1 < • • • < i d-1 ≤ m we have a relation d j=0 (-1) j Γ(i 1 , • • • , i d-1 , k j )Γ(k 0 , • • • , k j , • • • , k d ) = 0.
It is likely that these give all relations in C n (Σ, V ). Some computations using Theorem 2.6 yield

Proposition 3.28. C n (Σ, V ) ⊂ C ∞ (M SLnR (Σ, V )) is closed under the quasi-Poisson bracket {•, •}. Moreover, the restriction of {•, •} to C n (Σ, V ) is a Poisson bracket.
Indeed, the bracket of two labelled n-pods γ and γ can be described in a way very similar to the Massuyeau-Turaev algebra and swapping algebra. Namely, let

v i , v i ∈ V (i = 1, • • • , n) denote the feet of γ and γ , respectively, then {γ, γ } = q∈γ∩γ \∂Σ ε q (γ, γ )[γ, γ ] q + 1 2 i,j ε(v i , v j )[γ, γ ] i,j - 1 n γ • γ , ( 3.16) 
where the second summation runs over i, j ∈ {1, • • • , n} such that v i = v j . Here [γ, γ ] q denotes the product of the two labelled n-pods obtained by swapping the pair of legs intersecting at q; similarly, [γ, γ ] i,j is the product of the two labelled n-pods obtained by swapping labels of γ and γ at the common feet v i = v j .

Remark 3.29. The last term in Eq.(3.16) is dispensable: replacing the coefficient 1 n by any λ ∈ R, Eq.(3.16) still defines a Poisson bracket on C n (Σ, V ).

Certain fractions of elements in C n (Σ, V ) can be viewed as functions on twisted configuration spaces of (partial) flags. As an example, let P ⊂ SL n R be the parabolic subgroup stabilizing the point [1 : 0 : • • • : 0] ∈ P n-1 , so that P n-1 = SL n R/P , and M SLnR (Σ, V )/P V is a twisted configuration space of points in the projective space. Let γ 1 , • • • , γ N and γ 1 , • • • , γ N be n-pods whose edges are all labelled by 1, then the fraction

γ 1 • • • γ m γ 1 • • • γ m is P V -invariant if the set of feet of γ 1 , • • • , γ m , taking multiplicities into account, coincides with the set of feet of γ 1 , • • • , γ m .
V. Ovsienko, R. Schwartz and S. Tabachnikov [START_REF] Ovsienko | The pentagram map: A discrete integrable system[END_REF] 3 constructed a Poisson structure on the moduli space of "twisted N -gons"

P N = M SL 3 R (R/N Z, R/Z)/P N (c.f. Example 3.8
) in order to study a discrete dynamical system on an open part of P N . In fact, in a way similar to Fock and Goncharov, they defined a coordinates system (x i , y i ) i∈Z/N Z on an open part of P N and defined a Poisson structure by prescribing Poisson brackets of coordinates functions (which are also log-constant).

Let Σ be the cylinder and V = {v i } v∈Z/N Z be N marked points on ∂Σ. Identifying

M SL 3 R (R/N Z, RZ) = M SL 3 R (Σ, V ),
their coordinates admit the following expressions under our framework:

x i = 1 - (i -1, i, i + 1)(i -2, i + 1, i + 2) (i -2, i, i + 1)(i -1, i + 1, i + 2)
y i = 1 - (i + 1, i -2, i -1)(i + 1, i -1, i) (i + 1, i -2, i -1)(i + 2, i -1, i)
where (i, j, k) denotes the labelled tripod whose feet is v i , v j , v k and each edge is labelled by 1. Thus we can compute Poisson brackets of these coordinates functions under the Poisson structure on P N reduced from M SL 3 R (Σ, V ). However, computations shows that this Poisson structure does not coincides with Ovsienko-Schwartz-Tabachnikov's.

3. We would like to thank Zhe Sun for informing us of this article.

Chapter 4

Deformation quantization of M G (Σ, V )

The goal of this chapter is to prove Theorem C in the introduction, namely, construct a star product quantizing the quasi-Poisson manifold M G (Σ, V ). We first briefly recall in §4.1 some ingredients from the theory of quasi-Hopf algebras, due to Drinfeld [START_REF] Drinfel | Quasi-Hopf algebras[END_REF][START_REF] Drinfel | On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q)[END_REF], then we discuss in §4.2 quantizations of quasi-Poisson manifolds, in particular M G (Σ, V ).

Associators

We fix a field k of characteristic zero. All vector spaces and (co)algebras are defined over k. All (co)algebras are assumed to be (co)associative and have (co-)unit unless otherwise specified. Given an algebra A and distinct integers r

1 , • • • , r k ∈ {1, • • • , n} (where k ≤ n), for any ξ ∈ A ⊗k , we let ξ r 1 •••r k ∈ A ⊗n denote the image of ξ by the map V ⊗k → V ⊗n sending a 1 ⊗ • • • ⊗ a k to b 1 ⊗ • • • ⊗ b n , where b r i = a i for i = 1, • • • , k and b r = 1 if r = r 1 , • • • , r k . For example, if k = n = 3 then (x ⊗ y ⊗ z) 231 = z ⊗ x ⊗ y.

Quasi-bialgebras and braids

Recall that a bialgebra is an algebra A equipped with a map ∆ :

A → A ⊗ A (called a coproduct) satisfying -∆ has a co-unit : A → k. Namely, ( ⊗ id) • ∆ = (id ⊗ ) • ∆ = id.
-∆ is a homomorphism of algebras. Here A ⊗ A viewed as an algebra in the standard way. Namely, the multiplication is given by (

x ⊗ y)(x ⊗ y ) := xx ⊗ yy and 1 ⊗ 1 is the unit. A bialgebra A is called coassociative if (id ⊗ ∆)∆(x) = (∆ ⊗ id)∆(x), ∀x ∈ A. Definition 4.1. A quasi-bialgebra is a bialgebra A such that there exists an invertible element Φ ∈ A ⊗ A ⊗ A (called an associator) satisfying (id ⊗ ∆)∆(x) = Φ • (∆ ⊗ id)∆(x) • Φ -1 , ( 4.1) 
(id ⊗ ⊗ id)Φ = 1 ⊗ 1, (4.2) 
and the pentagon equation

1 ⊗ Φ • (id ⊗ ∆ ⊗ id)Φ • Φ ⊗ 1 = (id ⊗ id ⊗ ∆)Φ • (∆ ⊗ id ⊗ id)Φ. (Pentagon) Furthermore, A is called quasi-triangular with universal R-matrix R ∈ A ⊗ A if ∆(x) 21 = R∆(x)R -1 ∀x ∈ A (4.3)
and R satisfies the following hexagon equations

(∆ ⊗ id)R = Φ 312 R 13 Φ -1 132 R 23 Φ, (Hexagon1) 
(id ⊗ ∆)R = Φ -1 231 R 13 Φ 213 R 12 Φ -1 . ( Hexagon2 
)
To understand these definitions we need to introduce some more notions. By a parenthesizing of an ordered set with n elements (or n aligned points) is meant the object shown on the left-hand side in the picture below, which is equivalent to the object on the right -a binary tree with one root and n leaves.

(••)((••)•) ⇐⇒ • • • • •
Given a parenthesizing p of an ordered set with n elements, we can iterate the coproduct ∆ for n -1 times -with p telling us where to apply ∆ at each time -to get a map ∆ p : A → A ⊗(n-1) . For example,

∆ (••)• (x) = (∆ ⊗ id) • ∆(x), ∆ •(••) (x) = (∆ ⊗ id) • ∆(x), ∆ (•(••))• (x) = (id ⊗ ∆ ⊗ id) • (∆ ⊗ id) • ∆(x), etc. Given n ∈ N, if I, J, K are disjoint subsets of {1, • • • , n}, each endowed with a parenthe- sizing, we denote Φ I,J,K = (∆ I ⊗ ∆ J ⊗ ∆ K )Φ I∪J∪K ∈ A ⊗n ,
Similarly we define R I,J ∈ A ⊗n . For example, with this notation (Pentagon) can be written as Φ 2,3,4 Φ 1,23,4 Φ 1,2,3 = Φ 1,2,34 Φ 12,3,4 . (Pentagon) Definition 4.2. We define a groupoid B n as follows. Objets of B n are parenthesized permutations of {1, • • • , n}. A morphsim is a braid with n strands such that the two ends of each strand are indexed by the same number, as explained by the following pictures.

(1 (2 3)) 4

(4 3) ( 2 1) 
Braids are read from top to bottom. This picture presents a morphism in B 4 from the object (1( 23))4 to (43) [START_REF] Dufour | Normal forms of Poisson structures[END_REF].

K K J) (I (I J) If I, J, K are disjoint parenthesized subsets of {1, • • • , n} and their union is {1, • • • , n},
a picture like this presents a morphism where the upper I, J, K and the lower ones are joint by trivial braids.

The following two types of morphisms are called elementary

• • • • J) (J (I I) , • • • • J) (I ((I (J K) K)) .
Here •

• represents a (possibly empty) trivial braid whose two ends are the same parenthe-

sized subsets of {1, • • • , n}.
It is easy to see that elementary braids generate B n in the sense that every morphism can be decomposed into elementary ones. Proposition 4.3. We define a homomorphism from B n to the group of invertible elements in A ⊗n by requiring images of elementary morphisms to be

    • • • • J) (J (I I)     = R I,J ,     • • • • J) (I ((I (J K) K))     = Φ I,J,K .
Then ρ is well-defined, i.e., the image of a morphism does not depend on its decomposition into elementary ones, if and only if R and Φ satisfies (Pentagon), ( Hexagon1) and (Hexagon2).

Proof of the "only if" part. (Pentagon), (Hexagon1) and (Hexagon2) are respectively given by the following generating relations

((• •) •) • (• (• •))• •((• •) •) • (• (• •)) = ((• •) •) • (• •)(• •) • (• (• •)) , (••) • • (••) = (• •) • • (• •) • (• •) (• •) • (• •) • • (• •) , (••) • • (••) = • (• •) (• •) • (• •) • • (• •) • (• •) (• •) • .
A prove of the "if" part can be found, e.g., in [START_REF] Ohtsuki | Quantum invariants[END_REF].

Representations and braided monoidal categories

A representation of a quasi-bialgebra A is by definition a representation of the underlying algebra of A. Let us recall the latter notion: Definition 4.4. Let A be an algebra. A k-vector space M is called a (left) A-module or a representation of A if it is equipped with a linear map λ : A ⊗ M → M such that the following diagrams commute:

A ⊗ A ⊗ M A ⊗ M A ⊗ M M id⊗λ G G λ G G m⊗id λ , k ⊗ M A ⊗ M M M i⊗id G G id G G ∼ = λ .
We also denote x.m := λ(x ⊗ m) for x ∈ A, m ∈ M (called the action of x on m). The category of all A-modules is denoted by Mod A .

The main point of this subsection is that when A is a quasi-triangular quasi-bialgebra, Mod A has rich structures. Example 4.6. If G is a finite group and A is the group algebra k[G], then a A-module is the same as a G-module. If g is a Lie algebra and A is the universal enveloping algebra U g, then a A-module is the same as a g-module. In these two cases, the notions of trivial A-module and tensor product of A-modules coincide with classical ones.

Since A is not necessarily coassociative, the natural vector space isomorphisms

(L ⊗ M ) ⊗ N ∼ -→ L ⊗ (M ⊗ N )
is not necessarily a A-module morphism. However, we do have a A-module morphism between them provided by the associator, as stated in the following proposition. Similarly, the permutation map

σ : M ⊗ N ∼ -→ N ⊗ M, m ⊗ n → n ⊗ m is not a A-module morphism in general, but if A is quasi-triangular with universal R- matrix R ∈ A ⊗ A,
then there is a A-module morphism.

Proposition 4.7. If A is a quasi-bialgebra with associator Φ ∈ A ⊗3 , then

γ : (L ⊗ M ) ⊗ N ∼ -→ L ⊗ (M ⊗ N ) a ⊗ b ⊗ c -→ Φ.(a ⊗ b ⊗ c) is an isomorphism of A-modules. Furthermore, if A is quasi-triangular with universal R-matrix R ∈ A ⊗ A, then β : M ⊗ N ∼ -→ N ⊗ M a ⊗ b -→ σ(R.(a ⊗ b))
is also an isomorphism of A-modules. The latter is the image of the former by β.

Proof. The actons of

x ∈ A on a ⊗ b ⊗ c ∈ (L ⊗ M ) ⊗ N and Φ.(a ⊗ b ⊗ c) ∈ L ⊗ (M ⊗ N ) give respectively (∆ ⊗ id)∆(x).(a ⊗ b ⊗ c) and ((id ⊗ ∆)∆(x) • Φ).(a ⊗ b ⊗ c).
A monoidal category is roughly speaking a category C in which one can perform tensor product of two objects A, B to get an object A ⊗ B. A braided monoidal category is then a monoidal category equipped with isomorphisms

γ : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), β : A ⊗ B → B ⊗ A
for any objects A, B and C such that β and γ are functorial and satisfies some compatibility conditions which are similar to the pentagon and hexagon equations, see e.g. [START_REF] Chari | A guide to quantum groups[END_REF] for details. In particular, if A is a quasi-triangular quasi-bialgebra then Mod A is a braided monoidal category.

Given n objects in a braided monoidal category C, each parenthesized permutation of order n corresponds to a way of tensoring these objects together. For example, for n = 4 and objects M 1 , • • • , M 4 , the parenthesized permutations (12)(34) and ( 13) [START_REF] Fock | Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix[END_REF] correspond to (M 1 ⊗ M 2 ) ⊗ (M 3 ⊗ M 4 ) and (M 1 ⊗ M 3 ) ⊗ (M 2 ⊗ M 4 ), respectively. A braid B joining two parenthesized permutations gives rise to an isomorphism ι(B) between the two tensor products. For example,

B =   (1 (1 4) 4) 2) 3) (3 (2   (4.4) induces ι(B) : (M 1 ⊗ M 2 ) ⊗ (M 3 ⊗ M 4 ) -→ (M 1 ⊗ M 3 ) ⊗ (M 2 ⊗ M 4 ).
We omit the precise definition of ι(B) for general braided monoidal category. For the category Mod A , it has the expression

ι(B) = σ B • (B).
: B 4 → A ⊗4 is given in the previous subsection. An element of A ⊗4 is viewed here as a map from M 1 ⊗ M 2 ⊗ M 3 ⊗ M 4 to itself via the A-action, and σ B is the permutation given by the braid. For B in (4.4), σ B is the permutation of 2 nd and 3 rd factors

σ 23 : M 1 ⊗ M 2 ⊗ M 3 ⊗ M 4 → M 1 ⊗ M 3 ⊗ M 2 ⊗ M 4 .
Recall that one can define an algebra in a categorical way as an object A in a monoidal category together with a morphism m : A ⊗ A → A which serves as multiplication. Furthermore, in a braided monoidal category one can define an associative algebra as an algebra such that the following diagram commutes

(A ⊗ A) ⊗ A A ⊗ (A ⊗ A) A γ G G m•(m⊗id) 0 0 m•(id⊗m) Ð Ð
One can verify that if (A 1 , m 1 ) and (A 2 , m 2 ) are associative algebras in a braided monoidal category and we define a multiplication on A 1 ⊗ A 2 as the composition

m : A ⊗ A = (A 1 ⊗ A 2 ) ⊗ (A 1 ⊗ A 2 ) ι(B) -→ (A 1 ⊗ A 1 ) ⊗ (A 2 ⊗ A 2 ) m 1 ⊗m 2 -→ A 1 ⊗ A 2 = A,
where B is the braid (4.4), then (A, m) is still an associative algebra. We call (A, m) the tensor product of (A 1 , m 1 ) and (A 2 , m 2 ).

Associators in U (g) ⊗3 [[ ]]

Let g be a Lie algebra and U (g) be the universal enveloping algebra. Fix t ∈ (S 2 g) g ⊂ g ⊗ g ⊂ U (g) ⊗ U (g). In terms of t 12 , t 13 , t 23 ∈ U (g) ⊗3 , the canonical trivector φ ∈ ( 3 g) g associated to t can be written as

φ = - 1 2 [t 12 , t 23 ] = 1 2 [t 13 , t 23 ] = 1 2 [t 12 , t 13 ].
We will only consider a specific type of quasi-triangular quasi-biaglebras -those of the form (U (g)

[[ ]], Φ, R), with R = e t 2 ∈ U (g) ⊗2 [[ ]] and Φ = 1 + 2 φ 2 + O( 3 ) ∈ U (g) 3 [[ ]] (4.5)
for some φ 2 ∈ U (g) ⊗3 .

The associator Φ here can be seen as a quantization of φ in the sense that φ is given by the first approximation φ 2 of Φ. Precisely, we have the following proposition. ) is a quasi-triangular quasi-bialgebra and Φ is given by (4.5), then

φ 2 satisfies Alt(φ 2 ) = -1 2 φ ∈ ( 3 g) g ⊂ U (g) ⊗3 .
Here

Alt(φ 2 ) := σ∈S 3 sgn(σ)σ(φ 2 ) ∈ U (g) ⊗3 .
Proof. It follows from the second-order part of (Hexagon1). Remark 4.10. In the literature, one usually impose stronger conditions in the definition of associators, in order to gain richer structures. Namely, it is often assumed that Φ has the form Φ = Φ( t 12 , t 23 ), where we let k X, Y denote the algebra of non-commutative formal power series in the variables X, Y and require that Φ(X,

Y ) ∈ k X, Y satisfies -Φ(X, Y ) = exp f (X, Y ), where f (X, Y ) ∈ k X, Y is contained in the Lie subalge- bra of k X, Y generated by X and Y . -Φ(X, Y ) -1 = Φ(Y, X).
An in-depth study of such associators goes back to Drinfeld [START_REF] Drinfel | On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q)[END_REF]. In particular, the first example of an associator was constructed therein, and it is shown that associators over Q (hence over any field k of characteristic 0) exit.

Let t (n) = t ⊕ • • • ⊕ t ∈ (S 2 g n ) g n
be the direct sum of n copies of t. Given an associator Φ ∈ U (g) ⊗3 [[ ]] quantizing t, we can define an associator

Φ (n) ∈ U (g n ) ⊗3 [[ ]] = (U (g) ⊗n ) ⊗3 [[ ]] quantizing t (n) as the image of Φ ⊗ • • • ⊗ Φ n ∈ (U (g) ⊗3 ) ⊗n [[ ]] under the identification (U (g) ⊗3 ) ⊗n [[ ]] ∼ -→ (U (g) ⊗n ) ⊗3 [[ ]] (a 1 ⊗ b 1 ⊗ c 1 ) ⊗ • • • ⊗ (a n ⊗ b m ⊗ c n ) -→ (a 1 ⊗ • • • ⊗ a n ) ⊗ (b 1 ⊗ • • • ⊗ b n ) ⊗ (c 1 ⊗ • • • ⊗ c n ).
Thus also has the expression (4.6). The latter condition amounts to

x • = • ∆(x), ∀x ∈ g, (4.7) 
•( ⊗ id) = • (id ⊗ ) • Φ. When k = R, C and (M, P ) is a (real or complex) quasi-Poisson G-manifold, a Φ-star product on M is by definition a Φ-star product on C ∞ (M ) such that each θ k in (4.6) is a bidifferential operator.

Proof. The first-order part of Eq.(4.7) is

x.θ 1 (a, b) = θ 1 (x.a, b) + θ 1 (a, x.b), which implies g-invariance of {•, •}.
The first and second order parts of Eq.(4.8) are respectively 

θ 1 (a, b)c + θ 1 (ab, c) = aθ 1 (b, c) + θ 1 (a, bc), (4.9) 
{ab, c} = θ 1 (ab, c) -θ 1 (c, ab) = θ 1 (ab, c) -θ 1 (a, bc) + θ 1 (a, cb) -θ 1 (ac, b) + θ 1 (ca, b) -θ 1 (c, ab) = aθ 1 (b, c) -θ 1 (a, b)c -aθ 1 (c, b) + θ 1 (a, c)b + cθ 1 (a, b) -θ 1 (c, a)b = a{b, c} + b{a, c}.
The quasi-Jacobi identity follows from Eq.(4.10):

{{a, b}, c} = θ 1 (θ 1 (a, b), c) -θ 1 (c, θ 1 (a, b)) -θ 1 (θ 1 (b, a), c) + θ 1 (c, θ 1 (b, a)) = θ 1 (θ 1 (a, b), c) -θ 1 (a, θ 1 (b, c)) -θ 1 (θ 1 (b, a), c) + θ 1 (b, θ 1 (a, c)) = aθ 2 (b, c) + θ 2 (a, bc) -θ 2 (a, b)c -θ 2 (ab, c) + m(φ 2 .(a ⊗ b ⊗ c)) -bθ 2 (a, c) -θ 2 (b, ac) + θ 2 (b, c)c + θ 2 (ab, c) + m(φ 2 .(b ⊗ a ⊗ c)) = m(Alt(φ 2 ).(a ⊗ b ⊗ c)) = - 1 2 m(φ.(a ⊗ b ⊗ c)).
Remark 4.17. This definition of deformation quantization for quasi-Poisson manifolds was given by Enriquez and Etingof [START_REF] Enriquez | Quantization of Alekseev-Meinrenken dynamical r-matrices[END_REF]. For a specific class of quasi-Poisson manifolds (those arising from the classical dynamical Yang-Baxter equation), quantizations are thoroughly studied [START_REF] Enriquez | Quantization of Alekseev-Meinrenken dynamical r-matrices[END_REF][START_REF] Enriquez | Quantization of classical dynamical r-matrices with nonabelian base[END_REF][START_REF] Alekseev | Quantization of symplectic dynamical rmatrices and the quantum composition formula[END_REF]. Using Kontsevich's method of quantizing Poisson manifolds, Halbout [START_REF] Halbout | Quantization of r -Z-quasi-Poisson manifolds and related modified classical dynamical r-matrices[END_REF] showed the existence of quantization for quasi-Poisson G-manifolds when the G-action is free.

In the rest of this chapter, under some assumptions on Φ, we construct an explicit Φ (V ) -star product on M G (Σ, V ) quantizing the canonical quasi-Poisson t (V ) -tensor. The idea of construction is the same as how the quasi-Poisson tensor itself is constructedwe start by quantizing the disk with two marked points and then show how fusion of quasi-Poisson manifolds lifts to fusion of star products.

Quantization of the disk with two marked points

Consider a real Lie group G as a G × G-manifold via the action ρ (a,b) : g → agb -1 . The induced g ⊕ g-action is ρ (x,y) (g) = x L (g) -x R (g).

For any ϕ ∈ 3 g, the zero bivector field on G is a quasi-Poisson (g, 0, ϕ) 2 -bivector field because ϕ L -ϕ R = 0. It admits a simple quantization when ∆ = ∆ 0 , and the associator Φ ∈ U (g) ⊗3 [[ ]] is g-invariant and satisfies S ⊗3 (Φ) = Φ -1 , in particular, if Φ = Φ( t 1,2 , t 2,3 ) is given by an even Lie associator Φ ∈ R X, Y :

The idea of constructing a Φ (V ) -star product on M G (Σ, V ) is the same as that of constructing a

Let D be the disk with two marked points. Recall from §1.1.1 and §1.3.1 that M G (D) = G and the G action is ρ (a,b) : g → agb -1 . The trivial bivector field P = 0 on M G (D) is a quasi-Poisson t (2) -tensor for any t ∈ (S 2 g) g . It is natural to guess that the commutative product in C ∞ (M ) is a star product quantizing P = 0. It is indeed the case under some restrictions on Φ, as stated in the following proposition. Here S : U (g) → U (g) is the antipode map, i.e., an anti-homomorphism which restricts to -id on g ⊂ U (g). 

D(f 1 ⊗ • • • ⊗ f k ) = I 1 ,••• ,I k λ I 1 ,••• ,I k (∂ I 1 f 1 ) • • • (∂ I k f k ).
where I 1 , • • • , I k run over multi-indices and each λ I 1 ,••• ,I k is a smooth function.

Let D k (M ) be the space of k-multi-differential operators on M and set D(M ) = D 1 (M ). D k (M ) can be identified with the C ∞ (M )-module tensor product of k-copies of D(M ). The natural map from the vector space tensor product to C ∞ (M )-module tensor product is

D(M ) ⊗k -→ D k (M ) D -→ D, D(f 1 ⊗ • • • ⊗ f k ) = m • D(f 1 ⊗ • • • ⊗ f k )
where m : C ∞ (M ) ⊗k → C ∞ (M ) is the usual product of functions.

A g-action on M induces an algebra homomorphism U (g) ⊗k → D(M ) ⊗k , hence a linear map U (g) ⊗k → D k (M ).

When M = G, let L and R be the homomorphism and anti-homomorphism of algebras from U (g) to D(G) defined by

L(x 1 • • • x n ) = x L 1 • • • x L n , R(x 1 • • • x n ) = x R n • • • x R 1 for any x i ∈ g.
The tensor products of k-copies of them L ⊗k , R ⊗k : U (g) ⊗k → D(G) ⊗k are also denoted by L, R for brevity.

Clearly, the map U (g) ⊗k → D(G) ⊗k induced by the right (resp. left) action of G on itself is L (resp. R • S ⊗k ). In particular, L(ξ) and R(S ⊗k (η)) commutes for any ξ, η ∈ U (g) ⊗k since the left and right actions commutes. We also have

Lemma 4.20. Let A, B ∈ U (g) ⊗k . Then L(A) • R(B) = R(AB) (resp. L(BA)) if A (resp. B) is g-invariant.
Proof. We assume k = 2 to simplify notations. For general k the proof is the same.

By linearity we can assume that

A = x 1 • • • x m ⊗ y 1 • • • y n and B = u 1 • • • u p ⊗ v 1 • • • v q , where x i , y i , u i , v i ∈ g. For any f, g ∈ C ∞ (G), we have L(A) • R(B)(f ⊗ g) = x L 1 • • • x L m u R p • • • u R 1 (f ) ⊗ y L 1 • • • y L n v R q • • • v R 1 (g),
hence for any a ∈ G we have

L(A) • R(B)(f ⊗ g)(a) = ∂ ∂t t=0 ∂ ∂s s=0 f (exp(t 1 u 1 ) • • • exp(t p u p )a exp(t 1 x 1 ) • • • exp(t m x m )) • g(exp(s 1 v 1 ) • • • exp(s p v q )a exp(s 1 y 1 ) • • • exp(s n y n )) = ∂ ∂t t=0 ∂ ∂s s=0 f (a exp(t 1 Ad -1 a u 1 ) • • • exp(t p Ad -1 a u p ) exp(t 1 x 1 ) • • • exp(t m x m )) • g(a exp(s 1 Ad -1 a v 1 ) • • • exp(s p Ad -1 a v q ) exp(s 1 y 1 ) • • • exp(s n y n )) = L((Ad a B)A)(f ⊗ g)(a),
where " ∂ ∂t t=0 " stands for

∂ ∂t 1 • • • ∂ ∂t p ∂ ∂t 1 • • • ∂ ∂t m (t 1 ,••• ,tp,t 1 ,••• ,t m )=0
, and similarly for " ∂ ∂s s=0 ". Therefore,

L(A) • R(B) = L(BA) if B is g-invariant.
The other equality is proved by the same argument.

Proof of Proposition 4.18. The invariance (4.7) is obvious. We now prove (4.8).

It is sufficient to show that under the map U (g ⊕ g) ⊗3 → D 3 (G) induced by the g ⊕ gaction on G, the image of Φ (2) ∈ U (g ⊕ g) ⊗3 [[ ]] is trivial (i.e., the product C ∞ (G) ⊗3 → C ∞ (G)). But this image is L(Φ)R(S ⊗3 (Φ)), so it follows from the above lemma that it equals L(S ⊗3 (Φ)Φ) (noting that Φ ∈ (U (g)[[ ]]) g ), hence is trivial by assumption.

Fusion at the quantum level

The algebraic version of quasi-Poisson fusion (Defintion/Proposition 1.3) is as follows. where t 23 , t 41 ∈ g ⊗4 ⊂ (U (g) ⊗ U (g)) ⊗2 . Here A is considered as a g-algebra via the diagonal embedding g → g ⊕ g.

In this subsection we shall produce a Φ-star product * quantizing {•, •} * from a Φ (2) star product quantizing {•, •}.

Let us first consider the simpler case where we have two quasi-Poisson (g, t)-algebras (A 1 , {•, •} 1 ) and (A 2 , {•, •} 2 ) and A = A 1 ⊗ A 2 is a vector space tensor product, with g ⊕ gaction given by letting the first and second g-factor act on A 1 and A 2 , respectively. Then the "direct product" of {•, •} 1 and {•, •} 2 , defined by

{a 1 ⊗ a 2 , b 1 ⊗ b 2 } = {a 1 , b 1 } 1 ⊗ a 2 b 2 + a 1 b 1 ⊗ {a 2 , b 2 },
is a quasi-Poisson (g ⊕ g, t (2) )-star product on A. If i is a Φ-star product on A i quantizing {•, •} i , it is easy to see that the composition 

: A ⊗ A = A 1 ⊗ A 2 ⊗ A 1 ⊗ A 2 σ 23 -→ A 1 ⊗ A 1 ⊗ A 2 ⊗ A 2 1 ⊗ 2 -→ A 1 ⊗ A 2 = A is a Φ (2) -
: A ⊗ A = (A 1 ⊗ A 2 ) ⊗ (A 1 ⊗ A 2 ) ι(B) -→ (A 1 ⊗ A 1 ) ⊗ (A 2 ⊗ A 2 ) 1 ⊗ 2 -→ A 1 ⊗ A 2 = A,
where B is the braid (4.4) and ι(B) = σ 23 • (B). Notice that (B) can be expressed in terms of Φ via a decomposition of B into elementary braids. For example, the decomposition

  (1 (1 4) 4) 2) 3) (3 (2  
 =       1((32) 4) 1 (3 (24)) (1 3) (2 4)       •   1((2 3) 4) 1((3 2) 4)   •       (1 2) (3 4) 1 (2 (34)) 1((23) 4)       gives (B) = (Φ 1,3,24 ) -1 Φ 3,2,4 e t 23 /2 (Φ 2,3,4 ) -1 Φ 1,2,34 .
Notice that * is related to by * = • (B). (4.11) In the general case where A is not necessarily a tensor product, we shall show that (4.11) defines a Φ-star product quantizing We shall call * the fusion of .

Proof. Let us first prove Eq.(4.7) for * . To be more clear, we let g 1 and g 2 denote the first and second factor of g ⊕ g, respectively. The coproduct ∆ (2) of U (g 1 ⊕ g 2 ) is

U (g 1 ⊕ g 2 ) ∼ = U (g 1 ) ⊗ U (g 2 ) -→ U (g 1 ) ⊗ U (g 2 ) ⊗ U (g 1 ) ⊗ U (g 2 ) ∼ = U (g 1 ⊕ g 2 ) ⊗ U (g 1 ⊕ g 2 )
x ⊗ y -→ ∆ (2) (x ⊗ y) = (∆(x) ⊗ ∆(y)) 1324 .

Hence Eq.(4.7) for reads

(x ⊗ y) • = • (∆(x) ⊗ ∆(y)) 1324 . (4.
12)

The action of x ∈ g on A via the diagonal embedding g → g ⊕ g is just the action of ∆(x) = x ⊗ 1 + 1 ⊗ x on A. Thus Eq.(4.7) for * amounts to

∆(x) • * = * • (∆ ⊗ ∆)∆(x).
To prove this equality, we insert Eq.(4.11) and Eq.( 4.12) into it, and find that it is sufficient to prove

((∆ ⊗ ∆)∆(x)) 1324   (1 ( 1 4) 4) 2) 3) (3 (2 
  =   (1 (1 4) 4) 2) 3) (3 (2   (∆ ⊗ ∆)∆(x)
(here an below, for any braid B ∈ B PaC n , we write (B) just as (B) for brevity). This in turn follows from condition (4.1) and (4.3) in the definition of quasi-triangular quasibialgebras.

We proceed to prove Eq.(4.8) for * . The action of Φ ∈ U (g

) ⊗3 [[ ]] on A ⊗3 [[ ]]
via the diagonal embedding is the action of Φ 12,34,56 

= (∆ ⊗ ∆ ⊗ ∆)Φ ∈ U (g) ⊗6 [[ ]] on A ⊗6 [[ ]]. Hence what we need to prove is * •( * ⊗ id) = * • (id ⊗ * ) • Φ 12,34,56 . (4.13)
Recall from the end of §4.1.3 that the considered associator in

U (g ⊕ g) ⊗3 [[ ]] = U (g) ⊗6 [[ ]] is Φ (2) = (Φ ⊗ Φ) 135246 =   ((13)5)((24) 6) (1(35))(2(4 6))   .
It is easy to see that (∆ (2) ⊗ id) 

• ( * ⊗ id) = •   (1 (1 4) 4) 2) 3) (3 (2   • ( ⊗ id) •   ((12)(34)) (56) ((13)(24)) (56)   = • ( ⊗ id) • (∆ (2) ⊗ id)   (1 (1 4) 4) 2) 3) (3 (2  
)( 24)) ( 56)

  = • (id ⊗ ) •     ((12)(34)) (56) (1(35))(2(4 6))     .
Similar computations shows that the right-hand side of Eq.(4.13 34,56 this equals the left-hand side because we have Φ 

) is * • (id ⊗ * ) • Φ 12,34,56 = • (id ⊗ ) •     (12)((34)(5 6)) (1(35))(2(4 6))     • Φ 12,

Quantization of M G (Σ, V )

Let Γ be a skeleton of (Σ, V ). We have seen in §1.2.4 that Γ represents a way of building up Σ from disks of two marked points by fusion. Using results from the two preceding subsections, one readily gets a Φ-star product on M G (Σ, V ) quantization the canonical quasi-Poisson structure (assuming S ⊗3 (Φ) = Φ -1 ). However, unlike the the quasi-Poisson tensor, depends on the choice of a skeleton Γ of (Σ, V ). Even worse, since fusion at the quantum level is not associative, also depends on a parenthesizing of each E Γ (v).

To give an explicit expression of , we define, for each parenthesizing p of an ordered set with n-elements, a morphism B p in the groupoid B 2n . The definition of B p should be clear from the following examples.

Set

n v = # E Γ (v) for each v ∈ V . If n v ≥ 2, we choose a parenthesizing p(v) of the ordered set E Γ (v), and get a morphism B p(v) in B 2nv . The homomorphism : B n → U (g) ⊗n [[ ]] induces by Φ yields an element (B p(v) ) in U (g) ⊗2nv [[ ]]. Let ρ v be the G E Γ (v) -action on M G (Σ, V ) introduced in §1.2.4. It gives rise to a homomorphism of algebras U (g) ⊗2nv [[ ]] → D(M G (Σ, V )) ⊗2 [[ ]]. Let ρ v (B p(v)
) be the image of (B p(v) ) by this map. If n v = 1, then we put ρ v (B p(v) ) = 1. Notice that the ρ v (B p(v) ) 's commute with each other because the ρ v 's commute, hence we can consider their product v∈V ρ

v (B p(v) ) ∈ D(M G (Σ, V )) ⊗2 [[ ]].
Proposition 4.23. Take t ∈ (S 2 g) g and an associator Φ ∈ U (g) ⊗3 [[ ]] quantizing t such that S ⊗3 (Φ) = Φ. Given a skeleton Γ on (Σ, V ) and parenthesizings p(v) as above, the formal power series of bidifferential operators

= v∈V ρ v (B p(v) ) ∈ D 2 (M G (Σ, V ))[[ ]] (c.f. §4.2.3 for the notation) is a Φ-star product quantizing the canonical quasi-Poisson (g V , t (V ) )-tensor on M G (Σ, V ).
Proof. Repeatedly using Proposition 4.22, we conclude that if 

(A, {•, •}) is a quasi-Poisson (g n , t (n) )-algebra, {•, •} * is the fusion of {•, •}, which is quasi-Poisson (g, t)-bracket

On the Hilbert geometry of simplicial Tits sets

This last chapter is independent of the rest the thesis. The goal here is to study the Hilbert metrics on certain specific examples of convex projective orbifolds constructed using reflection groups. We first give in §5.1 some backgrounds on reflections groups and convex projectively structure, and set up the examples which will be studied. Then we prove in §5.2 the main results, Theorem D and Corollary in the introduction.

Reflection groups and Convex projective structures

Convex rojective structures

Let P n be the real projective space of dimension n. A (real) projective structure on a manifold (or more generally an orbifold) is an atlas which patches open sets of P n together by projective transformations.

An extensively studied class of projective structures (see [START_REF] Benoist | A survey on divisible convex sets[END_REF] and the references therein) comes from the following construction. We call an open subset Ω ⊂ P n properly convex if Ω is a bounded convex subset of an affine chart R n ⊂ P n . Let X = X/Π be an orbifold, where Π is a group acting discontinuously on the manifold X. A convex projective structure on X consists of a faithful representation ρ : Π → PGL n+1 R and a properly convex open set Ω ⊂ P n , such that there is a ρ-equivariant homeomorphism X → Ω.

We shall consider convex projective structures up to projective transformations. It is well known that Ω is uniquely determined by ρ up to duality. So the moduli space of convex projective structures on X is defined as a subset in the space of conjugacy classes of representations P(X) ⊂ Hom(Π, PGL n+1 R)/PGL n+1 R consisting of those ρ ∈ Hom(Π, PGL n+1 R) which arises from a convex projective structure on X. It is known that P(X) is an open and closed subset [START_REF] Benoist | Convexes divisibles[END_REF]. When X is a orientable closed surface of genus g ≥ 2, P(X) is homeomorphic to R 16g-16 [START_REF] William | Convex real projective structures on compact surfaces[END_REF].

Reflection groups

In this section we recall some well known facts about reflection groups and Tits set. c.f. [START_REF] Benoist | Five lectures on lattices in semisimple Lie groups[END_REF][START_REF]Spaces of constant curvature, A translation of Geometriya. II, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform[END_REF] for details.

Let P n denote the real projective space of dimension n. A projective transformation s ∈ PGL n+1 R is called a reflection if it is conjugate to ± diag(-1, 1, • • • , 1). The fixed point set of a reflection s is the disjoint union of a hyperplan F ⊂ P n and a point f ∈ P n . Reflections are in one-one correspondence with pairs (f, F ) with f / ∈ F . Given a n-dimensional simplex P ⊂ P n with face set {F i } i∈J , where J = {0, 1, • • • , n}, we chose a reflection s i with respect to each F i . We are interested in the group Γ ⊂ PGL n+1 R generated by {s i } i∈J . We call Γ a simplicial reflection group, and P the fundamental simplex. We will say the reflection group is marked if we want to keep track of the order of generators. Note that n-dimensional simplices are conjugate to each other by projective transformations. Since we do not want to distinct conjugate marked simplicial reflection groups, we can always assume that P

= {[x 0 : • • • : x n ] ∈ P n |x i ≥ 0, ∀i}, whose faces are P i = {[x 0 : • • • : x n ] ∈ P n |x i = 0, x k ≥ 0, ∀k = i}.
With the above choice of fundamental simplex, a marked reflection group is determined by

a n + 1-tuple of points (f 0 , • • • , f n ) satisfying f i / ∈ P i . Let f i = [α i0 : • • • : α in ]
. By a normalization, we can assume α ii = 1 for any 0 ≤ i ≤ n. We record these f i 's by the matrix A = (α ij ) whose diagonals are 1's.

Two marked simplicial reflection groups, given by A and A as above, are conjugate if and only if there is a projective transformation which stabilizes P and takes f i to f i . This is equivalent to the existence of λ

0 , • • • , λ n > 0, such that diag(λ 0 , • • • , λ n )A diag(λ -1 0 , • • • , λ -1 n ) = A .
this defines an equivalence relation A ∼ A . Let M n+1 be the set of (n + 1) × (n + 1)matrices whose diagonals are 1, then moduli space of marked simplicial reflection groups in P n is M n+1 / ∼. However, a generic point in this space generates a non-discrete group Γ. We show give conditions under which Γ is discrete.

Recall that a Coxeter diagram J is defined by a finite set v J = {0, 1, • • • , n} as set of nodes, together with integers m ij ≥ 2 associated to each non-ordered pair i, j ∈ v J , i = j as weighted edges. We usually draw J as a graph, we shall omit weight-2 edges, only draw those with weight ≥ 3.

The Coxeter diagram J = ({0, 1, • • • , n}, {m ij }) yields an abstract Coxeter group

W J = τ 0 , • • • , τ n |(τ i τ j ) m ij = τ 2 i = 1, ∀i = j
The Cartan matrix of J, denoted by C J , is defined to be the symmetric matrix whose diagonal entries are 1 and the (i, j)-entry iscos(π/m ij ) if i = j. Now we can state conditions under which A ∈ M n+1 will give a discrete group. ( [14], Theorem 1.5) Theorem 5.1 (Tits, Vinberg). Let A ∈ M n+1 and f i ∈ P n be the point whose coordinates are given by the i-th row of A. Let Γ be the subgroup of PGL n+1 R generated by s 0 , • • • , s n , where s i is the reflection with respect to P i and f i .

Then the translates γP (γ ∈ Γ) are disjoint except at boundary if and only if there exists a Coxeter diagram J = ({0, 1, • • • , n}, {m ij }), such that A satisfies the following condition ( * J ): ( * J ) :

For any distinct pair i, j ∈ {0, 1, • • • , n}, we have α ij ≤ 0, and

     α ij = α ji = 0 if m ij = 2 α ij α ji = cos 2 (π/m ij ) if 3 ≤ m ij < ∞ α ij α ji ≥ 1 if m ij ≥ ∞ When ( * J ) is satisfied, we have the following conclusions, (1) ρ : τ i → s i (0 ≤ i ≤ n) is an isomorphism from W J to Γ.
(2) The set Ω = ∪ γ∈Γ γP , called the Tits set, is either the whole P n or a convex subset in some affine chart of P n . Γ acts discontinuously on Ω.

(3) Ω is open if and only if the stabilizer of each vertex of P is a finite group. 

P(X

J ) ∼ = R + if J has a loop, a point otherwise.
Given a n × n matrix A = (a ij ) and an ordered set of indices 1

≤ i 1 , • • • , i k ≤ n with k ≥ 1, we call a i 1 i 2 a i 2 i 3 • • • a i k-1 i k a i k i 1 a cyclic product of length k.
Lemma 5.3. Let A = (a ij ) be a n × n matrix satisfying the condition: For any i, a ii = 0. For any i = j, a ij = 0 if and only if a ji = 0 (5.1)

and the same hypothesis for B. We write A ∼ B if A and B are conjugate via a diagonal matrix, i.e., there are λ

1 , • • • , λ n = 0, such that diag(λ 1 , • • • , λ n )A diag(λ -1 1 , • • • , λ -1 n ) = B.
Then, A ∼ B if and only if their cyclic products with the same indices coincide, i.e., for any ordered subset {i

i , • • • , i k } ⊂ {1, • • • , n}, we have a i 1 i 2 a i 2 i 3 • • • a i k-1 i k a i k i 1 = b i 1 i 2 b i 2 i 3 • • • b i k-1 i k b i k i 1 .
Proof. We say a matrix A is reducible if, after a reordering of basis if necessary, A can be put into a block-diagonal form. Otherwise A is said to be irreducible. The hypothesis on A and B implies a ii = b ii and a ij = 0 ⇔ b ij = 0 for any i = j. Therefore, after a reordering of basis if necessary, we can assume that A and B are both block-diagonal with irreducible blocks, and the r-th block of A has the same size with the r-th block of B. Clearly, A and B are conjugate via a diagonal matrix if and only if their blocks are. Thus we can assume A and B are irreducible.

We are looking for λ 1 , • • • , λ n which satisfy λ -1 i a ij λ j = b ij , or equivalently,

λ i λ j = a ij b ij , for all i = j such that b ij = 0 (5.2)
First, we take λ 1 = 1. Irreducibility means that, for each

i ∈ {1, 2, • • • , n}, there is sequence of distinct indices 1, i 1 , i 2 , • • • , i k , i, such that a 1i 1 , a i 1 i 2 ,• • • , a i k-1 i k , a i k i are all non-zero. We should set λ i = λ i λ i k λ i k λ i k-1 • • • λ i 1 λ 1 = a ii k b ii k a i k i k-1 b i k i k-1 • • • a i 1 1 b i 1 1 (5.3)
this definition does not depend on the sequence of indices that we chose, since if we take another sequence 1, j 1 , j 2 , • • • , j m , i, then the definition becomes

λ i = a ii k b ii k a i k i k-1 b i k i k-1 • • • a i 1 1 b i 1 1 = b 1j 1 a 1j 1 b j 1 j 2 a j 1 j 2 • • • b jmi a jmi (5.4)
where we used the coincidence of cyclic products a ij a ji = b ij b ji . Now the hypothesis implies that the right hand sides of (5.3) and (5.4) are the same. In same way, we can verify that the hypothesis implies these λ i 's satisfy (5.2).

Proof of Proposition 5.2. If there is no loop in the Coxeter diagram of J, then for any A satisfying ( * J ), its cyclic products of length ≥ 3 are all 0, while cyclic products of length 1 are just diagonal entries, which equal 1, and cyclic products length 2 are determined by ( * J ). By Lemma 5.3, for any A, B ∈ M J , we have A ∼ B.

If there is a loop in the Coxeter diagram, from Figure 5.1 we see that the whole graph is a circuit. Thus any A satisfying ( * J ) has the following form (here we set n = 4, for example):

A =        1 α 01 0 0 α 04 α 10 1 α 12 0 0 0 α 21 1 α 23 0 0 0 α 32 1 α 34 α 40 0 0 α 43 1       
Again there are no choices for cyclic products of length 1 and 2. The only two non-zero cyclic products of length ≥ 3 are ϕ

(A) = α 01 α 12 • • • α n-1,n α n1 and ϕ(A) = α 10 α 21 • • • α n,n-1 α 1n . But by the condition ( * J ) we have ϕ(A) ϕ(A) = cos 2 ( π m 01 ) cos 2 ( π m 12 ) • • • cos 2 ( π m n1 )
Therefore by Lemma 5.3, for any A, B ∈ M J , A ∼ B if and only if ϕ(A) = ϕ(B). This value is always positive if n is odd, and always negative if n is even. Thus the following map is a homeomorphism:

P(X J ) = M J / ∼ → R + [A] → |ϕ(A)|
In order to study how the Tits set deforms when [A] goes to 0 or +∞ in P(X J ), we need the follow lemma, which bounds the Tits set by a simplex. Lemma 5.4. Let J be a Lannér diagram and take A ∈ M J . Let f i ∈ P n be a point whose homogeneous coordinates are given by the i-th row of A. Consider the representation ρ : W J → PGL n+1 R sending τ i to the reflection s i fixing P i and f i . Then there is a simplices in P n with vertices f 0 , • • • , f n which contains the Tits set Ω.

Proof. Let L i be the hyperplane of

P n passing through f 0 , • • • , f i-1 , f i+1 , • • • , f n .
Assume by contradiction that Ω is not contained in any simplex with vertices f 0 , • • • , f n . Then Ω meets some L i . Without loss of generality, we suppose Ω ∩ L 0 = ∅.

L 0 is stabilized by the finite Coxeter group Γ 0 = s 1 , • • • , s n , because the reflection s i stabilizes any hyperplane passing through f i , and L 0 is spanned by {f 1 , • • • , f n }. Thus Γ 0 is a finite affine transformation group of the affine chart A 0 := P n \L 0 ∼ = R n . It follows that Γ 0 must have a fixed point in A 0 , namely, the barycenter of an orbit.

On the other hand, let H i denotes the hyperplane containing P i . Since the fixed point set of

s i is H i ∪ {f i }, the only fixed point of Γ 0 in P n is p 0 = [1 : 0 : • • • : 0] = H 1 ∩ • • • ∩ H n .
Therefore we have proved p 0 / ∈ L 0 . We may consider the affine chart A 0 as a linear space with origin p 0 , and endow it with a Γ 0 -invariant Euclidean scalar product. Γ 0 is then a finite Euclidean Coxeter group generated by n Euclidean reflections with respect to the subspaces L 1 , • • • , L n . We shall remark that such a group can not preserve any convex cone except for the whole A 0 , since otherwise the barycenter p of some non-zero orbit in the cone is a non-zero fixed point of the group, and it follows that each of L 1 , • • • , L n contains the line passing through p 0 and p , contradicting the independence of the L i 's. Now take C = x∈Ω∩L 0 [p 0 , x], the cone of Ω ∩ L 0 over p 0 . Here [p 0 , x] denotes the segment in Ω joining p 0 and x. C is a Γ 0 -invariant subset of Ω. C ∩ A 0 is a Γ 0 -invariant convex cone of A 0 , clearly does not equals the whole A 0 . Thus the above remark concludes our contradiction argument. Proposition 5.5. Let P be a simplex in P n . Let X J = H n /Γ be as in Proposition 5.2, such that P(X J ) ∼ = R + . Then there exists a one-parameter family of representations {ρ t } t∈R + of Γ into PGL n+1 R, such that (1) Each ρ t (Γ) is generated by projective reflections with respect to faces of P .

(2) R + → P(X J ), t → [ρ t ] is bijective.

(3) Let Ω t be the convex open subset of P n associated with ρ t . Then each Ω t is properly convex, and Ω t converges to P in the Hausdorff topology when t tends to 0 or +∞. (See Figure 5. , where α ij < 0 and α ij α ji = cos 2 (π/m ij ).

We define a one-parameter family of matrices {A t } t∈R ⊂ M J as follows, For i = 0, 1, 2, 3, let f i (t) be the point in P n whose homogeneous coordinates are given by the i-th row of A t . Define ρ t : W J → PGL n+1 R to be the representation sending τ i to the reflection fixing f i (t) and the face P i of P . Then t → [ρ t ] is a homeomorphism from R to P(X J ). Let Ω t be the Tits set of ρ t (W J ).

A t =      1 -t cos 2 ( π m 01 ) 0 -t -1 -t -
p 0 = [1 : 0 : 0 : 0], • • • , p 3 = [0 : 0 : 0 : 1] are the vertices of P . Each f i (t) converges to p i+1 when t → +∞, and to p i-1 when t → -∞. Here the indices are counted mod 4. Therefore the simplex containing Ω t given by Lemma 5.4 converges to P in the Hausdorff topology when t → 0 or + ∞.

Entropy of the Hilbert metric on simplicial Tits sets

Hilbert metrics

For any properly convex open set Ω ⊂ P n , we define the Hilbert metric d Ω as follows. Take any affine chart R n containing Ω. For x, y ∈ Ω, let x 0 , y 0 be the points on the boundary ∂Ω such that x 0 , x, y, y 0 lie consecutively on the segment [x 0 , y 0 ], then we define We refer to [START_REF] Benoist | Convexes divisibles. I. In Algebraic groups and arithmetic[END_REF][START_REF] Crampon | Entropies of strictly convex projective manifolds[END_REF] for basic properties of the Hilbert metric. In this section, we study the geometry of the Hilbert metric d t on Ω t (see Proposition 5.5).

Our main result concerns the metric geometry on the above family of convex sets. Recall that any properly convex open set Ω ⊂ P n carries a canonical Finsler metric d Ω , called the Hilbert metric. If Ω is an ellipsoid, then (Ω, d Ω ) is isometric to the real hyperbolic n-space H n .

The one-parameter family {Ω t } in Proposition 5.5 give rise to a family {d t } of Hilbert metrics. From Proposition 5.5 we can already deduce some easy geometric properties of this family. For example, the diameter and volume of X J with respect to d t tends to infinity as t → 0 or ∞. The purpose of this paper is to study the following deeper quantity: Definition 5.6. Let Γ be a group, and ( X, d) be a metric space. The orbit growth of a point x 0 ∈ X with respect to an isometric discontinuous Γ-action on X is the number

δ( X, d) = lim R→+∞ 1 R log #Γx 0 ∩ B(x 0 , R)
where B(x 0 , R) denotes the ball of radius R centered at x 0 .

We shall assume that the stabilizer of every point in X is a finite group, so that δ( X, d) does not depend on the choice of x 0 .

δ( X, d) is also called the volume entropy because it equals the exponential growth rate of the volume of B(x 0 , R). If ( X, d) is the universal covering of a compact non-positively curved Riemaniann manifold, A. Manning [START_REF] Manning | Topological entropy for geodesic flows[END_REF] proved that the topological entropy of the geodesic flow of X equals δ( X, d). This result easily generalizes to geodesic flows of convex projective manifolds.

The main results

M. Crampon [START_REF] Crampon | Entropies of strictly convex projective manifolds[END_REF] proved that for any properly convex open set Ω ⊂ P n which covers a manifold with convex projective structure, we have

δ(Ω, d Ω ) ≤ n -1.
The equality is achieved if and only if Ω is an ellipsoid. He then asked whether δ(Ω, d Ω ) has a lower bound.

The main result of the present part of the thesis gives a negatively answer:

Theorem 5.7. Let X J be a hyperbolic simplicial Coxeter orbifold with P(X J ) ∼ = R + . Let ρ t and Ω t be as in Proposition 5.5, and d t be the Hilbert metric on Ω t . Then δ(Ω t , d t ) → 0 as t → 0 or + ∞.

The main ingredient in the proof of Theorem 5.7 is the following result As another consequence of Proposition 5.8, we construct families of convex projective structures on surfaces which answer Crampon's problem and have some other curious properties.

Corollary 5.9. On every oriented closed surface of genus g ≥ 2, there exists an oneparameter family of convex projective structures such that when the parameter goes to ∞, the entropy of geodesic flow tends to 0, the systole and constant of Gromov hyperbolicity tending to +∞.

Recall that for a metrized manifold (X, d), the systole is defined as the infimum of lengths of homotopically non-trivial closed curves on X. Let X be the universal covering of X, then the constant of Gromov hyperbolicity is defined to be the supremum of sizes of geodesic triangles in X (where the size of a geodesic triangle ∆ is the minimal perimeter of all geodesic triangles inscribed to ∆, see [START_REF]Papers from the Swiss Seminar on Hyperbolic Groups held in Bern[END_REF], Chapter 2, §3).

Proof of the main results based on Proposition 5.8

In subsection we shall prove Theorem 5.7 and Corollary 5.9 admitting Proposition 5.8. Ω t has the structure of Coxeter complex, i.e., Ω t is a simplicial complex whose k-cells are translates of the k-cells of P by the W J -action. We denote the k-skeleton of Ω t by Ω Proof. The first inequality is evident from the definition.

We prove the second inequality. Let c : [0, 1] → Ω (k) t be a piecewise segment joining x, y ∈ Ω (k-1) t such that the length of c equals d (k) t (x, y). Let t 0 = 0, t 1 , t 2 , • • • , t r = 1 ∈ [0, 1] be such that each c([t i-1 , t i ]) lies in a single kcell, and the c(t i )'s are in Ω (k-1) t . Since c is length-minimizing, each c[t i-1 , t i ] must be a segment, whose length equals the distance between then two end points. Thus if we could prove d Therefore, we can assume that both x and y lie on the boundary of a k-cell. Since each k-cell is isometric to some subcell of P , it is sufficient to prove that, for any k-dimensional subcell F of P , we have for all t ∈ R + and all x, y ∈ F d (x, y) and there is nothing to prove. Thus, we can assume that x ∈ A and y ∈ B, where A, B are (k -1)-dimensional subcells of F , such that E = A ∩ B is a (k -2)dimensional subcell. Let x 0 , y 0 ∈ E be the nearest point to x, y in E, respectively. i.e., d t (x, E) = d t (x, x 0 ) and d t (y, E) = d t (y, y 0 ).

The three segments [x, x 0 ], [x 0 , y 0 ] and [y 0 , y] lie in Ω this is the required inequality.

Proof of Theorem 5.7. Note that each vertex of the simplex P lies on different orbits of W J , so the vertex set Ω (0) t is the union of n + 1 orbits. Hence, fixing any vertex v 0 , we have the follow expression for the orbit growth h t of the W J -action on Ω t : 

h t =
t ) → 0, when t → 0 or + ∞ To this end, let l(t) be the minimal length of edges of P under d t . We have seen in Proposition 5.5 that Ω t approaches the simplex P when t → 0 or +∞. Using the expression of Hilbert metric (5.5) one can see the length of each edge of P tends to +∞, thus l(t) → +∞.

On the other hand, a W J -invariant geodesic metric on the graph Ω

(1) t is uniquely determined by lengths of the edges of P , and monotone with respect to each of these lengths. Therefore, if we let d 1 be the metric defined by setting all edge lengths to be 1, then we have d The proof is complete.

Proof of Corollary 5.9. Let Σ be a surface with genus ≥ 2. We claim that there are integers p, q, r ≥ 3 with 1 p + 1 q + 1 r < 1 and a subgroup Π of finite index in the (p, q, r)triangle group ∆ = ∆ p,q,r such that Π acts freely on the hyperbolic plan H 2 with quotient H 2 /Π ∼ = Σ. Restricting the one-parameter family of representations ρ t : ∆ → PGL n+1 R given by Proposition 5.2 and 5.5 to Π, we obtain an one-parameter family of convex projective structures on Σ. We shall show that this family fulfils the requirements.

The entropy of geodesic flow is the orbit growth δ(Ω t , d t ) for the Π action, and is the same as the orbit growth for the ∆-action since Π ⊂ ∆ has finite index. Thus δ(Ω t , d t ) → 0 by Theorem 5.7.

Proposition 5.8 implies that for any t, every triangle inscribed to the fundamental triangle P has perimeter greater than 1 C times the perimeter of P . When t → 0 or +∞, under the metric d t , the length of each edge of P tends to +∞, so the perimeters of all inscribed triangles tends to +∞ uniformly. It follows that the constant of Gromov hyperbolicity of Ω t tends to +∞.

To show the systole goes to +∞, we take a homotopically non-trivial closed curve c which is the shortest under d t . The image of c under the orbifold covering map Σ ∼ = H 2 /Π → H 2 /∆ ∼ = P is a closed billiard trajectory in the triangle P which hits each of the three sides. The lengths under d t of such trajectories are bounded from below by the minimal perimeter of inscribed triangles of P . We have already seen the latter goes to +∞.

Finally, we prove the claim using a constructions by hand. See the picture below. The boldfaced 10-gon consists of ten fundamental domains of ∆ = ∆ 5,5,5 . We take the five elements in ∆ indicated by the arrows, each of them pushing the 10-gon to an adjacent one. One can check that the group Π generated by them has the 10-gon as a fundamental domain. The quotient H 2 /Π is a surface obtained by pairwise gluing edges of the 10-gon. A calculation of Euler characteristic shows H 2 /Π have genus 2. Since closed surfaces of higher genus covers the surface of genus 2, by taking subgroups of Π, we conclude that all surfaces of genus ≥ 2 is the quotient of H 2 by some subgroup of ∆, and the claim is proved.

Proof of Proposition 5.8

To begin with, we need the following fact concerning simplicial and projective structures on Ω t . Looking at Figure 5.2, we may observe that the 1-skeleton of Ω t consists of straight lines. There is a same phenomenon in higher dimension, i.e., Ω (k) t is a union of k-dimensional subspaces. Note that by "subspace" of Ω t , we mean the intersection of a subspace of P n with Ω t . An equivalent statement of the above fact is that the kdimensional subspace L containing a k-cell F must be an union of k-cells. This can be proved using the fact that the tangent space of a vertex in Ω t has the structure of a finite Coxeter complex, and it is well known that the above statement holds for finite Coxeter complex (See for instance [START_REF] Humphreys | Reflection groups and Coxeter groups[END_REF]). We omit the details.

First we present a proof of Proposition 5.8 for the 2-dimensional case, since the main idea is transparent in this case, while in higher dimensions we have to deal with some extra difficulties.

Proof of Proposition 5.8 for n = 2. We may assume W J =< τ 1 , τ 2 , τ 3 |(τ 1 τ 2 ) p = (τ 2 τ 3 ) q = (τ 3 τ 1 ) r = τ 2 1 = τ 2 2 = τ 2 3 = 1 > Suppose x and y lie on the sides A and B of a triangle P in P 2 , respectively. Denote the common vertex of A and B by E. We need to prove there is a constant C depending only on p, q, r, such that Cd t (x, y) ≥ d t (x, E) + d t (y, E) for any t.

Let us fix a t and denote s 1 := ρ t (τ 1 ), s 2 := ρ t (τ 2 ), which are reflections with respect to A and B, respectively. s 1 s 2 is a rotation of order p. (y) lies on the opposite half ray of the geodesic ray Ex (see Figure 5.3). On the other hand, the successive images of [x, y] We introduce the following terminology. Let E be a (k -1)-cell of Ω t . We say two k-cells are E-colinear, if they lie on the same k-dimensional subspace and their intersection is E. As we have explained in the beginning of this section, the k-dimensional subspace of Ω t containing a k-cell A is an union of k-cells. Thus for any (k -1)-dimensional subcell E of A, there is an unique k-cell which is E-colinear to A.

The crucial point of the above proof is the following: let V be the k-cell E-colinear to A. Then we can connect x ∈ A and some point of V by a curve which is piecewise isometric to [x, y], and the number of pieces is determined combinatorially. We then have proved the needed inequality using the fact that the distance from x to any point of V is greater than the distance from x to E.

In higher dimensions, the situation is more delicate: the cell V which is E-colinear to A may not be a translate of A or B. In this case, we can not construct a curve piecewise isometric to [x, y] going from x to V . Instead of this, we take a cell A = ρ t (γ)A, the translate of A by the action of some γ ∈ W J , such that A and V are contained in the same top-dimensional cell. Now we can go from x to A along a curve piecewise isometric to [x, y]. To prove Proposition 5.8, we then need to show that the distance from x to A is greater than the distance from x to E. In order to do this, we shall develop some lemmas concerning distance comparisons in Hilbert geometry.

Using the definition of Hilbert metric (5.5), it can be shown that if Ω ⊂ P n is a properly convex open set which is strictly convex (see the end of Section 2), then the Hilbert metric d Ω has the following property. Let L be a subspace of arbitrary dimension of Ω and x be a point of Ω outside L. Then among all points of L, there is an unique point x 0 ∈ L whose distance to x is minimal. We call x 0 the projection of x on L, and denote it by x 0 = Pr(x, L).

Let L ⊂ Ω be a hyperplane, i.e., subspace of codimension one. We say that Ω have reflectional symmetry s with respect to L if s ∈ PGL n+1 R is a reflection preserving Ω and fixing each point of L. In this case, the triangle inequality and the fact that geodesics are straight lines yields the following simple characterization of projection: Pr(x, L) = [x, s(x)] ∩ L (5.8) 

Soit

  A une algèbre commutative associative sur R et A[[ ]] l'espace des séries entières formelles à coefficient dans A et à indéterminée . Rappelons qu'un star-produit sur A est une application linéaire :A ⊗ A → A[[ ]] telle que -s'écrit sous la forme a b = ab + θ 1 (a, b) + 2 θ 2 (a, b) + • • • ,où ab est le produit commutative de a et b dans A, tandis que chaque θ i est une application linéaireA ⊗ A → A. -le morphisme de R[[ ]]-modules A[[ ]]⊗ R[[ ]] A[[ ]] → A[[ ]] quiétend est un produit associatif sur A[[ ]]. Cette dernière condition implique que {a, b} = θ 1 (a, b) -θ 1 (b, a) définit un crochet de Poisson sur A. Le star-produit est appelé une quantification de {•, •}.
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 3 23). La structure de Poisson {•, •} FG sur X SLnR, Σ coïncide avec celle donnée par la réduction quasi-Poisson depuis L. En particulier, quand W = ∅, {•, •} FG coïncide avec la structure de Poisson d'Atiyah-Bott relevée à X reg SLnR,Σ .

Fix a

  connection D ∈ A and an oriented smooth path γ ⊂ Σ going from a to b. Given any p ∈ P | a , one can lift γ to a path γ ⊂ P which is tangent to D and starts from p. Let p ∈ P | b by the ending point of γ. The map p → p is a bijection between the fibers P | a and P | b . Moreover, it follows from G-invariance of D that, under the trivialization P ∼ = Σ × G, this map has the form G ∼ = P | a → P | b ∼ = G, s → hs for some h ∈ G. We call g the holonomy of the connection D along the path γ and denote it by h = hol γ (D). It can be shown that (1) if D is flat then hol γ (D) only depends on the end-points-fixing homotopy class of γ;

Figure 1 . 1 :

 11 Figure 1.1: Two skeletons of the disk with three marked points.

1 2 (

 2 r+r 21 ) is g-invariant and r satisfies the following classical Yang-Baxter equation 4 [[r, r]] := [r 12 , r 13 ] + [r 12 , r 23 ] + [r 13 , r 23 ] = 0.

  is a Poisson tensor such that the action of the Poisson Lie group G on M is a Poisson action.

5 .

 5 The fact that the right-hand side of (1.13) belongs to 2 b results from Ad µ(m) ⊗ Ad µ(m) s b = s b .

. 12 )

 12 Put b and b 1 , b 2 similarly. For any pair of half-edges a, b ∈ E Γ we define δ(a, b) = b ∈ E Γ (v) for some v and a < b, -1 if a, b ∈ E Γ (v) for some v and a > b, 0 otherwise.
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 32 Let C ⊂ G be a reducing subgroup. If M is a G-manifold and P is a quasi-Poisson (g, s)-tensor on M , then the quasi-Poisson bracket {•, •} restricts to a Poisson bracket on C ∞ (M ) C . Following §1.1.4, we call this Poisson bracket "the Poisson structure on M/C reduced from P ". 50Chapter 3. Configuration spaces and moduli of framed flat connections
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 3 Configuration spaces and moduli of framed flat connections

Figure 3 . 1 :

 31 Figure 3.1: A surface with a choice of W and V .

58Chapter 3 .Figure 3 . 2 :

 332 Figure 3.2: Tripod ∆, fattened ∆ and the associated ∆ p,q,r 's

3. 2 .Figure 3 . 3 :

 233 Figure 3.3: Two adjacent tripods

60Chapter 3 .

 3 Configuration spaces and moduli of framed flat connections and a similar statement as Proposition 3.19 holds. Note that the T k,l (x, y, z, w)'s are related to the cross ratio [x, y, z, w] by k+l=n T k,l (x, y, z, w) = -[y, z, w, x].
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 34 Figure 3.4: Triangulations and dual graphs.

Figure 3 . 5 :

 35 Figure 3.5: Trivalent graphs on Σ correspond to triangulations of Σ.
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 322 and Goncharov defined a Poisson structure on an open subset of X G, Σ by prescribing Poisson brackets of their coordinates functions: Let the notations be the same as in Theorem 3.20. The Fock-Goncharov Poisson structure on X • G, Σ
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 323 The above Poisson structure on X reg G, Σ coincides with the Fock-Goncharov Poisson structure.
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 37 Figure 3.7: ∆ and ∆

  A ∆ has eight edges. We think of an element in G E ∆∪ A ∆ as an assignment of elements a, b, c 1 , c 2 , a , b 1 , b 2 , c ∈ G to each edge, as shown in Figure3.7 (here and below, we put G = SL n R). Since the dual s ∈ (S 2 sl n R) slnR of the scalar product (x | y) = Tr(xy) has the following expression (c.f. §2.2.4) 
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 326 where a, b, c 1 , • • • : M G (Σ, V ∪{A, o, o }) → G are now holonomies of the corresponding paths. Since ∆ is homotopic to ∆ , there are relations, say, b 2 c 1 = c , between those holonomies. We claim that when b 2 c 1 = c , the last summation in Eq.(3.12) yields zero. This implies the required equality ( 1). The claim follows from the following observation: For any a, b, c ∈ G we have d dδ δ=0 Det p,q,r (a, c exp(δE lk )b, c) = 0 if l ≤ r, and
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 45 If A is a quasi-bialgebra, then -the trivial A-module is k considered with the action x.k := (x)k (∀x ∈ A, k ∈ k).-the tensor product M ⊗ N of A-modules M and N is the vector space tensor product M ⊗ N with the action x.(m ⊗ n) := ∆(x).(m ⊗ n).

  The latter is the image of the former by γ because of the condition (4.1). Hence γ is a morphism of A-modules. γ is bijective because Φ is invertible. Similarly, the action of x ∈ A on a ⊗ b ∈ M ⊗ N and σ(R.(a ⊗ b)) are respectively ∆(x).(a ⊗ b) and ∆(x).σ(R.(a ⊗ b)) = σ(∆ op (x)R.(a ⊗ b)) = σ(R∆(x).(a ⊗ b)).
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 48 If (U (g)[[ ]], Φ, e t 2
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 492 Given t ∈ (S 2 g) g , we call a formal power series Φ ∈ U (g) ⊗3 [[ ]] of the form (4.5) an associator quantizing t if (U (g)[[ ]], Φ, e t is a quasi-triangular quasi-bialgebra. Notice that the condition (4.3) in Definition 4.1 is automatically satisfied, while the condition (4.1) means Φ ∈ (U (g) ⊗3 [[ ]]) g . The bialgebra U (g)[[ ]] is itself coassociative, but we still need a nontrivial associator in order to have a nontrivial braided monoidal category Mod (U (g)[[ ]],Φ,e t/2 ) .
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 8416 Here an element in U (g) ⊗k [[ ]] is considered as a map A ⊗k [[ ]] → A ⊗k [[ ]] via the g-action on A. Notice that (4.7) just means is g-invariant. If is a Φ-quasi-star product on A, then {a, b} := a b -b a modis a quasi-Poisson (g, t)-bracket on A, and we say that quantizes {•, •}.

θ 2 (

 2 a, b)c + θ 2 (ab, c) + θ 1 (θ 1 (a, b), c) (4.10) = aθ 2 (b, c) + θ 2 (a, bc) + θ 1 (a, θ 1 (b, c)) + m(φ 2 .(a ⊗ b ⊗ c)),where θ 1 , θ 2 and φ 2 are the terms appearing in the expansions Eq.(4.6) and Eq.(4.5) of and Φ.The Leibniz rule of {•, •} follows from Eq.(4.9):
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 418419 If the associator Φ ∈ U (g)⊗3 [[ ]] satisfies S ⊗3 (Φ) = Φ -1 , then the usual product of functions is a Φ(2) -quasi-star product on G. An associator of the form Φ = Φ( t 12 , t 23 ) as in Remark 4.10 satisfies S ⊗3 (Φ) = Φ -1 if and only if Φ(X, Y ) is even in the sense that f (X, Y ) only has terms of even degree. It is shown by Bar-Natan[START_REF] Bar-Natan | On associators and the Grothendieck-Teichmuller group[END_REF] that such Φ(X, Y ) exists.A k-multi-differential operator on a manifold M is a linear map D : C ∞ (M ) ⊗k → C ∞ (M ) such that in a local chart it has the form
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 421 Let A be a g⊕g-algebra and {•, •} be a quasi-Poisson (g⊕g, t(2) )-bracket on A. The fusion of {•, •} is the quasi-Poisson (g, t)-bracket {a, b} * := {a, b} + 1 2 m((t 23 -t 41 ).(a ⊗ b)),

  star product on A. Here σ 23 permutes the second and third factors. One can construct a Φ-star product * on A quantizing {•, •} * by letting (A[[ ]], * ) be the tensor product of associative algebras (A 1 [[ ]], 1 ) and (A 2 [[ ]], 2 ) in the braided monoidal category Mod (U (g)[[ ]],Φ,e t/2 ) , as discussed in the end of §4.1.2. Precisely, * is the composition *

  )(24)) (56) ((13)5)((24) 6)   , Hence the left-hand side of Eq.(4.13) is *

  , and is a Φ (n) -star product quantizing {•, •}, then for any parenthesizing p of {1, • • • , n}, we have a Φ-star product * quantizing {•, •} * given by

1 Figure 5 . 1 :

 151 Figure 5.1: Lannér diagrams. Here single, double and triple edge stand for weight 3, 4 and 5, respectively.

2 )

 2 Proof. We only consider the case n = 3 to simplify the notation. Let us fix a Lannér diagram J with 4 nodes which has a loop. Any A ∈ M J has the form

d

  Ω (x, y) = 1 2 log[x 0 , x, y, y 0 ], where [x 0 , x, y, y 0 ] = |x 0 -y||y 0 -x| |x 0 -x||y 0 -y| (5.5)
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 58 There exists a constant C depending only on the Coxeter diagram J, such that if A and B are two k-dimensional cells of P and E = A ∩ B is a (k -1)dimensional cell, where 1 ≤ k < n, then for any x ∈ A, y ∈ B and any t ∈ R + , we have Cd t (x, y) ≥ d t (x, E) + d t (y, E)

tProposition 5 . 10 .

 510 to be the intrinsic metric on the k-skeleton Ω (k) t , i.e., d (k) t (x, y) equals the minimal length of piecewise segments joining x, y and lying in Ω Suppose 2 ≤ k ≤ n. There is a constant C, depending only on J, such that for any t ∈ R + and any x, y ∈ Ω

  t (x, y) ≤ d

  As a consequence, d t (x, y) ≤ d

( 1 )

 1 t (x, y) ≤ C d t (x, y) for some constant C depending only on J.

  t i-1 ), c(t i )) ≤ Cd

t

  (c(t i-1 ), c(t i )) then we would take the sum over 1 ≤ i ≤ r and use the triangle inequality to obtaind (k-1) t (x, y) ≤ Cd

  (k-1) t (x, y) ≤ Cd

  (k) t (x, y) = Cd t (x, y).If x, y both lie on the same (k -1)-dimensional subcell of F , then we have d(k) t (x, y) = d (k-1) t

(k- 1

 1 ) t , and form a piecewise segment joining x, y. Thus we haved (k-1) t (x, y) ≤ d t (x, x 0 ) + d t (x 0 , y 0 ) + d t (y 0 , y) (5.6)by the triangle inequality, we haved t (x 0 , y 0 ) ≤ d t (x 0 , x) + d t (x, y) + d t (y, y 0 ) (5.7) (5.6)and (5.7) gives d (k-1) t (x, y) ≤ 2d t (x, x 0 ) + 2d t (y, y 0 ) + d t (x, y) Now we apply Proposition 5.8, and conclude that d (k-1) t (x, y) ≤ (2C + 1)d t (x, y)

( 1 )

 1 t ≥ l(t)d 1 . By definition of entropy of graphs, this gives t , d 1 ) → 0
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  smooth manifold, then such a Poisson bracket descends to a genuine Poisson structure on X • .

The quasi-Jacobi identity (1.2) implies Definition/Proposition 1.6. For any quasi-Poisson (g, s)-tensor P on a G-manifold M , the restriction of the quasi-Poisson bracket {•, •} to C ∞ (M ) G is a Poisson bracket, which we call the Poisson structure on M/G reduced from P .

  Then ∂D \ W consists of finitely many open intervals and V has one point in each interval. In this case X G, D is a configuration space of flags:

	a twisted configuration space (c.f. §3.6).
	Remark 3.13. It follows from the cross-section theory ( §1.4.2) and Proposition 3.2 that
	the quotient (3.9) is a Poisson manifold (see §3.2.6 below for details); on the other hand,
	we do not know at present how to use (quasi-)Poisson theory to endow the quotient (3.8)
	with a Poisson structure, unless V

circle = ∅. This is the reason why we have to introduce the more restrictive identification (3.9) rather than working directly with (3.8). Example 3.14. (1) Let Σ be the disk D.

  {•, •}

* as well: Proposition 4.22. Under the settings of Definition 4.21, if is a Φ (2) -star product on the g⊕g-algebra A quantizing the quasi-Poisson (g, t)-bracket {•, •}, then * given by Eq.(4.11) is a Φ-star product quantizing {•, •} * .

  12,34,56 = 

		((12)(34)) (56)
		
		(12)((34)(5 6))

  .

  Figure 5.2: Deformation of Ω t when t tends to 0 and to +∞. Since |ϕ(A t )| = t 4 , by the proof of Proposition 5.2, every matrixA in M J is ∼equivalent to exactly one A t . t → [A t ] is a homeomorphism from R + to M J / ∼.

					
	1 -t cos 2 ( π 0 m 30 )	1 -t -1 0	-t cos 2 ( π m 12 ) 1 -t -1	0 -t cos 2 ( π m 23 ) 1	   

  lim ) is defined to be the exponential growth of the number of vertices in large balls, i.e., Therefore, Proposition 5.10 implies there is a constant C depending only on J such that

	h(Ω	(1) t , d (1)	(1) t , d (1) t ).
	So it is sufficient to prove			
	h(Ω (1) t , d		
	R→∞	1 n	log #{v ∈ Ω	(0) t |d t (v, v 0 ) ≤ R}
	The entropy h(Ω (1) t , d (1) t ) of the metric graph (Ω (1) t , d (1)
	h(Ω (1) t , d (1) t ) = lim R→∞	1 n	log #{v ∈ Ω (0) t |d (1)

t t (v, v 0 ) ≤ R} t ) ≤ h t ≤ C h(Ω

  by the sequence of transformationss 2 , s 2 s 1 , s 2 s 1 s 2 , • • • , s 2 s 1 s 2 • • • s 1 p-1is a piecewise segment joining x and y , which consists of p pieces, each piece having the same length d t (x, y). Thus we havepd t (x, y) ≥ d t (x, y ) ≥ d t (x, E)When p is even, we obtain pd t (x, y) ≥ d t (x, E) in the same way (see Figure5.4).As for y, we have the same inequality pd t (x, y) ≥ d t (y, E)

	Thus we may conclude that
	2pd

t (x, y) ≥ d t (x, E) + d t (y, E) Proposition 5.8 is proved for n = 2.

Cette dernière, implicite dans l'article de Fock et Rosly[START_REF] Fock | Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix[END_REF], a été explicitée par M. Audin[START_REF] Audin | Lectures on gauge theory and integrable systems[END_REF].

This is because principal G-bundles over Σ are classified by homotopy classes of maps Σ → BG, but Σ is homotopic to a graph and the classifying space BG is simply connected if G is connected.

Although Atiyah and Bott considered a more restrictive situation where Σ is a closed. The generalization which we present here is well known. See e.g.[START_REF] Audin | Lectures on gauge theory and integrable systems[END_REF].

Spin networks[START_REF] Baez | Spin networks in gauge theory[END_REF] were first introduced by Penrose as certain functions on the moduli space of flat connections X G (Σ). In this subsection we introduce an extension to M G (Σ, V ) of this notion. Definition 2.1. Let Σ be a bordered surface and V ⊂ ∂Σ be finitely many marked points. A graph diagram on (Σ, V ) is an oriented immersed graph 1 Γ on Σ with edges E Γ and vertices V Γ , such that a particular subset of vertices V ∂ Γ contained in V is specified. By homotopy of Γ we mean homotopy fixingV ∂ Γ . We call V int Γ = V Γ \ V ∂ Γinterior vertices (since we can move them to the interior of Σ by homotopy), and callV ∂ Γ boundary vertices. A spin network on (Σ, V ) is a pair [Γ, f ], where Γ is a graph diagram on (Σ, V ) and f is a function on G E Γ , such that f is invariant by the G V int Γ .Here G E Γ is identified with Hom(π 1 (Γ, V Γ ), G), on which G V Γ acts in a natural way. Such functions are called admissible for Γ.A spin network [Γ, f ] gives rise to a function on M G (Σ, V ) as follows. The groupoid homomorphism π1 (Γ, V Γ ) → π 1 (Σ, V ∪ V int Γ ) gives rise to a G V int Γ -equivariant map Hom(π 1 (Σ, V ∪ V int Γ ), G) → Hom(π 1 (Γ, V Γ ), G) = G E Γ . The G V intΓ -invariant function f on the target lifts to a G V int Γ -invariant function on the domain, which descends to the quotientHom(π 1 (Σ, V ∪ V int Γ ), G)/G V int Γ = Hom(π 1 (Σ, V ), G) = M G (Σ, V ).1. That is, a smooth map ψ : Γ → Σ, where Γ is an oriented graph, such that ψ is injective on the set of vertices, and images of different edges are transverse. We just call the image ψ(Γ) an oriented immersed graph if there is no danger of confusion.

The original definition is slightly more restrictive: it requires that f comes from linear representations of G.

Since P is a principal G-bundle, G acts on each fiber on the right.
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Deformation quantization 4.2.1 Deformation quantization of Poisson manifolds Definition 4.11. Let A be a commutative algebra. A star product on A is a k[[ ]]linear associative product : A[[ ]] ⊗ k[[ ]] A[[ ]] → A[[ ]]

, whose mod reduction is the commutative product in A.

Equivalently, there is a sequence of maps θ 1 , θ 2 , • • • : A ⊗ A → A such that

and for general f, g ∈ A[[ ]] the star product f g is given by linear expansion. Associativity of imposes constraints on the θ i 's.

Proposition 4.12. Let {•, •} : A ⊗ A → A be the skew-symmetric bilinear map defined by {f, g} = f g -g f mod (In other words, {f, g} = θ 1 (f, g) -θ 1 (g, f )). Then {•, •} is a Poisson bracket on A, and we say that the star product quantizes the Poisson bracket {•, •}.

A more general statement will be proved later (Proposition 4. [START_REF] Chari | A guide to quantum groups[END_REF]).

Let M be a Poisson manifold, then we define a star product on M as a star product on C ∞ (M ) such that each θ k in Eq.(4.6) is a bidifferential operator.

Example 4. [START_REF] Benoist | A survey on divisible convex sets[END_REF] (The Moyal product). The following expression gives a star product on R d endowed with constant Poisson structure P = P ij ∂ i ∂ j (P ij = -P ji ), called the Moyal product:

where for any multi-index I = (i 1 , • • • , i r ) and J = (j 1 , • • • , j r ), we set

Deformation quantization of quasi-Poisson manifolds

We fix from now on a Lie algebra g, an element t in (S 2 g) g , and an associator Φ ∈ U (g) ⊗3 quantizing t. First we state an algebraic definition of quasi-Poisson brackets. Definition 4.14. Let A be a commutative g-algebra 1 . A skew-symmetric bilinear map

, where means summations over cyclic permutations of a, b, c.

is called a Φ-star product if the mod reduction of is the commutative product in A and (A[[ ]], ) is an associative algebra in the braided monoidal category Mod (U (g)[[ ]],Φ,e t/2 ) (see §4.1.2).

That is, a commutative algebra on which g acts by derivations

Observe that if A ∼ B, then A verifies ( * J ) if and only if B does. Let M J ⊂ M n+1 be the set of matrices satisfying ( * J ) whose diagonals are 1. Then M J / ∼ is the moduli space of marked reflection groups isomorphic to W J .

We also observe that a subgroup of PGL n+1 R acts discontinuously on the whole P n if and only if it is a finite group. On the other hand, it is well known that W J is a finite Coxeter group if and only if the Cartan matrix C J is positively definite. So the Tits set Ω is a convex set contained in an affine chart if and only if J satisfies (i) C J is not positively definite. Furthermore, the condition for openness in the theorem is equivalent to (ii) Every proper principle submatrix of C J is positively definite.

All the Coxeter diagrams J satisfying (i) and (ii) are completely classified, see [START_REF]Spaces of constant curvature, A translation of Geometriya. II, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform[END_REF]. There are two cases:

Euclidean Case: In addition to (i) and (ii), we assume C J is degenerate. In this case C J has corank 1, and there is a faithful representation ρ 0 : W J → Isom(E n ) which realize W J as an Euclidean simplicial reflection group. In this case, the Tits set Ω can only be either a simplex, or an affine chart.

Hyperbolic Case: In addition to (i) and (ii), we assume C J is non-degenerate. Such a Coxeter diagram is called a Lannér diagram, as they are first classified by F. Lannér. In this case C J has signature (1, n), and there is a faithful representation ρ 0 : W J → Isom(H n ) which realize W J as a hyperbolic simplicial reflection group. We reproduce in Figure 5.1 the table of all Lannér diagrams (see [START_REF]Spaces of constant curvature, A translation of Geometriya. II, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform[END_REF], p.205). Note that they exist only for n ≤ 4. In this case, since W J is a hyperbolic group in the sense of Gromov, by the Theorem 1.1 of Benoist [START_REF] Benoist | Convexes divisibles. I. In Algebraic groups and arithmetic[END_REF], the Tits set Ω is strictly convex, i.e., ∂Ω does not contain any straight segment.

Moduli space of convex projective structures

In this section, we take a Lannér diagram J = ({0, 1, • • • , n}, {m ij }). Let ρ 0 : W J → PGL n+1 R realizes W J as a hyperbolic reflection group with fundamental simplex P . We will not distinguish W J and its image ρ 0 (W J ). Our goal is to determine the space of convex projective structures on the orbifold X J = H n /W J .

Let P 0 , • • • , P n be the faces of P and L i be the hyperplane of P n containing P i . Consider a faithful representation ρ : W J → PGL n+1 R which defines a convex projective structure. There is some convex open set Ω ρ and a homeomorphism Φ : H n → Ω ρ which is ρequivariant, i.e., Φ(γ.x) = ρ(γ).Φ(x), for any x ∈ H n and any γ ∈ W J .

Since ρ(τ i ) has order 2, its fixed point set in P n is the disjoint union of a k-dimensional subspace and a (n-k)-subspace. On the other hand, ρ(τ i ) fixes pointwisely Φ(L i ), a (n-1)dimensional submanifold of Ω ρ , we conclude that k = 1, Φ(L i ) is a (n -1)-subspace and ρ(τ i ) is a reflection. Therefore, ρ(W J ) is a projective reflection group with fundamental simplex Φ(P ).

Following the discussion in the last section, we may suppose that the fundamental simplex is P = {[x 0 : • • • : x n ] ∈ P n |x i ≥ 0, ∀i} and the reflection group ρ(W J ) is given by some matrix A ∈ M J , whose i-th row is the homogenous coordinates of a fixed point f i of ρ(τ i ). Conversely, every A ∈ M J yields a representation ρ : W J → PGL n+1 R preserving a Tits set Ω ρ , and thus defines an element [ρ] ∈ P(X J ). Moreover, given two such representations ρ 1 and ρ 2 which comes from A 1 , A 2 ∈ M J respectively, ρ 1 and ρ 2 are conjugate if and only if A 1 ∼ A 2 . Therefore, we have the identification The points y and y 0 has the same properties. Therefore, all the four points x, y, x 0 , y 0 lie on the plane pxy. This plane is invariant by s. So we may consider Ω 0 = pxy ∩ Ω instead of Ω, and L 0 = pxy ∩ L instead of L. Thus we have reduced to the two-dimensional case. See Figure 5.5 Suppose L 0 intersects ∂Ω 0 at two points q 1 , q 2 . Since Ω 0 has reflectional symmetry with respect to L 0 , the lines pq 1 and pq 2 are tangent to Ω. Now the inequality d Ω (x 0 , y 0 ) ≤ d Ω (x, y) follows from the definition (5.5) of Hilbert metric and the following well known fact from projective geometry: given four lines l i (1 ≤ i ≤ 4) meeting at a point p, then for any line l intersecting l 1 , l 2 , l 3 , l 4 consecutively at p 1 , p 2 , p 3 , p 4 , the number [p 1 , p 2 , p 3 , p 4 ] is a constant not depending on the choice of l. Remark 5.12. Lemma 5.11 is not true without the hypothesis of symmetry.

Lemma 5.13. Let Ω ⊂ P n be a properly strictly convex open set with reflectional symmetries s

Then for any point x of W outside D and any x ∈ D, there is some point

Proof. Fix a point x ∈ D. We chose an affine chart A ⊂ P n , an origin point x 0 of A in order to endow A with a linear space structure, and then an Euclidean scalar product on A. We could make these choices so as to fulfil the following conditions:

(1) A contains the closure of Ω.

(2) L 1 , • • • , L m are linear subspaces of A. In particular, the origin x 0 of A lies in W .

(3) Γ preserves the Euclidean scalar product.

(4) x ∈ W ⊥ , where W ⊥ is the orthogonal complement of W .

Our aim is to show that x 0 ∈ D and x 0 satisfies the required inequality. We shall consider intensively the linear space W ⊥ . Let us denote the origin x 0 simply as 0. Each of

For 1 ≤ i ≤ m, we define

where ∠(y, L i ) is the usual Euclidean angle. We may take θ small enough so that

where Pr W ⊥ (y, L i ) is the usual Euclidean projection of y on L i . Using the characterization of projection onto reflectional hyperplanes (5.8), we see that Pr W ⊥ (y, L i ) coincides with the projection Pr(y, L i ) in the sense of Hilbert geometry described earlier.

We construct a sequence of points

there is some C i k containing y k . Then we set y k+1 = Pr W ⊥ (y k , L i k ). The above inequality yields

As mentioned above, y k+1 = Pr(y k , L i k ). Lemma 5.11 implies

Therefore, by the continuity of d Ω , we conclude that

Let us return to the particular convex set Ω t . For any cell V of Ω t , the union of all n-cells containing V is called the star-like neighborhood of V , and denoted by St(V ). We need the following Lemma 5.14. St(V ) is a convex subset of Ω t .

Proof. Let F be any (n-1)-cell lying on the boundary of St(V ), and let L be the hyperplane containing F . L does not contain V , so V is contained in exactly one of the two closed "half spaces" of Ω t bounded by L. Since St(V ) is an union of n-cells containing V , using the fact that L is an union of (n -1)-cells, we can conclude the whole St(V ) lie in the same half space as V .

Thus, St(V ) is an intersection of closed half spaces, therefore convex.

Proof of Proposition 5.8. Fix a Lannér diagram J. By definition of Lannér diagrams, a subgroup of

, ∀i = j > generated by a proper subset of {τ 0 , • • • , τ n } is a finite Coxeter group. Let C be the maximum of word-length-diameters of all such subgroups. We will show Cd t (x, y) ≥ d t (x, E). Then by exchanging the roles of x and y, we have Cd t (x, y) ≥ d t (y, E), and these two inequalities give the required one.

Let V be the k-cell which is E-colinear to A. There is γ ∈ Stab ρ(W J ) (E), such that P = ρ t (γ)P is a top-dimensional cell containing V . We denote A := ρ t (γ)A ⊂ P , x := ρ t (γ)x ∈ A .

First we claim that there is a curve joining x and x which is piecewise isometric to [x, y], with number of pieces at most C.

Denote s i = ρ t (τ i ), a reflection with respect to the face

The k-cell A contains the (k -1)-cell E, so there is only one vertex a of A which lies outside E. Similarly B has only one vertex b outside E. Each face P i of P must contain at least one of the two points a and b. Hence each face containing E also contains A or B. It follows that if i ∈ J E then s i fixes x or y. Therefore, each segment in the above sequence shares at least one end point with the next one. So the union of these segments is connected, and we can extract a subset of these segments to form a curve joining x and x = ρ t (γ)x which is piecewise isometric to [x, y]. The number of pieces is at most m, hence bounded by C.

Thus, we conclude Cd t (x, y) ≥ d t (x, x )

Next, we need to prove d t (x, x ) ≥ d t (x, E) (5.9)

We apply Lemma 5.13. Let St(V ) be the convex compact set D in the hypothesis of Lemma 5.13, which contains x . Let J A ⊂ {0, 1, • • • , n} be the set of indices of those faces P i such that A ⊂ P i , and let L i be the hyperplane on which P i lies. Then W = ∩ i∈J A L i is the k-dimensional subspace containing A and V . For each i ∈ J A , since L i contains V , the reflection s i preserves St(V ). Thus the hypothesis of Lemma 5.13 are verified, and we conclude that there is x 0 ∈ V such that d t (x, x ) ≥ d t (x, x 0 ) A ∪ V is the intersection of St(E) and a k-dimensional subspace, thus must be convex. So [x, x 0 ] intersects E at some point x 1 . Clearly we have d t (x, x 0 ) ≥ d t (x, x 1 ) ≥ d t (x, E) Hence we have obtained (5.9), and the proof is complete.