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Abstract

This thesis deals with equations of fluid dynamics. We consider the following
two models: one is the Navier-Stokes equation in R3 with an external force, the
other one is the Prandtl equation on the half plane R2 . For the Navier-Stokes system,
we focus on the local in time existence, uniqueness, long-time behavior and blow-
up criterion. For the Prandtl equation on the half-plane, we consider the Gevrey
regularity.

This thesis consists in four chapters. In the first chapter, we introduce some back-
ground on equations of fluid dynamics and recall the physical meaning of the above
two models as well as some well-known mathematical results. Next, we state our
main results and motivations briefly. At last we mention some open problems.

The second chapter is devoted to the Cauchy problem for the Navier-Stokes
equation equipped with a small rough external force in R3. We show the local in
time existence for this system for any initial data belonging to a critical Besov space
with negative regularity. Moreover we obtain three kinds of uniqueness results for
the above solutions. Finally, we study the long-time behavior and stability of priori
global solutions.

The third chapter deals with a blow-up criterion for the Navier-Stokes equation
with a time independent external force. We develop a profile decomposition for
the forced Navier-Stokes equation. The decomposition enables us to connect the
forced and the unforced equations, which provides the blow-up information from
the unforced solution to the forced solution.

In Chapter 4, we study the Gevrey smoothing effect of the local in time solution
to the Prandtl equation in the half plane. It is well-known that the Prandtl bound-
ary layer equation is unstable for general initial data, and is well-posed in Sobolev
spaces for monotonic initial data. Under a monotonicity assumption on the tangen-
tial velocity of the outflow, we prove Gevrey regularity for the solution to Prandtl
equation in the half plane with initial data belonging to some Sobolev space.

Key words: Navier-Stokes equations, Prandtl equations, Gevrey space, Blow-up cri-
terion






Abstract

Cette these est consacrée a 1’etude des équations de la dynamique des fluides.
La théorie des fluides est basée sur une hypothese de continuum qui indique que le
comportement macroscopique d’un fluide est le méme que si il était completement
continu : la densité, la pression, la température et la vitesse sont supposées étre
infiniment petites et ils varient continuellement d’un point a un autre.

Nous considérons les deux modéles suivants:

1. Le premier est I’équation de Navier-Stokes homogene et incompressible R?
avec une force externe, qui décrit un fluide Newtonien, isotrope, homogeéne et
incompressible dans tout 'espace R?,

8tuf — AUf +uy-Vuy = —Vpy + f,
(NSf){ -uy =0, 1)
Uf|t:0 = Uug.

Ici u est un champ de vecteurs a trois composants uy = (uf,1,uf2,us3) représen-
tant la vitesse du fluide, py est une fonction scalaire dénotant la pression, et
toutes sont des fonctions inconnues de la variable d’espace = € R3 et de la
variable de temps ¢ > 0.

2. L'autre est 'équation de Prandtl sur le demi-plan R?, qui est un modele clas-
sique pour résoudre le probleme de la couche limite. Pour simplifier, nous
considérons 1’équation de Prandtl sur le demi-plan avec un écoulement uni-

forme:
up + Uty + vy —uyy =0, (¢, z,y) €0, T[xR%,
Uy + vy = 0,
u|y:0 = ’U|y:0 = 0, lim uw= 1, (2)

Yy—r—+00
u‘tZO = uo(x,y) )

ol u et v représentent la vitesse tangente, qui est inconnue, et la vitesse nor-
male respectivement et v peut étre représenté par u comme suit

ve— /Oy(amu) dg.



Pour le systeme Navier-Stokes, nous nous concentrons sur l'existence locale, 1'unicité,
le comportement a long terme et le critére de blow-up. Pour 'équation de Prandtl
sur le demi-plan, nous considérons la régularité de Gevrey.

Cette these consiste en quatre chapitres. Dans le premier chapitre, nous intro-
duisons quelques informations sur les équations de la dynamique des fluides et
rappelons la signification physique des deux modeles ci-dessus ainsi que quelques
résultats mathématiques bien connus. Ensuite, nous exposons briévement nos prin-
cipaux résultats et motivations. Enfin, nous mentionnons quelques problemes ou-
verts.

Le deuxieme chapitre est consacré au probléme de Cauchy pour I'équation de
Navier-Stokes avec une petite force externe rugueuse dans R3. La rugosité signifie
que la force externe satisfait

t
/ e(t_S)APf(s)ds € L®(R,, L>>)
0

qui contient beaucoup de cas singuliers intéressants bien connus. Nous montrons
'existence locale en temps pour ce systeme pour toutes les données initiales appar-
tenant a un espace de Besov critique avec une régularité négative. Pour obtenir ce ré-
sultat, nous introduisons une équation de perturbation par rapport a (V.S f) et sous
une hypothese de petitesse sur f nous prouvons le résultat d’existence ci-dessus en
appliquant un argument de point fixe sur I'équation de perturbation. De plus, la
solution peut étre décomposée en une partie petite et une partie lisse. En utilisant
un résultat de régularité via une itération, nous montrons que uy € C, ([0, %), L>)
et la partie lisse a une énergie finie quand uy € By, N L3 et ug € By, N L*(R?)
respectivement.

Nous obtenons également trois types de résultats d"unicité pour les solutions
ci-dessus. Nous soulignons que sans I'hypothese de petitesse sur la solution nous
ne pouvons pas prouver que la solution ci-dessus est unique dans L°(L3*°). En
fait, méme pour (NS) l'unicité dans L{°(L3*°) est toujours une probleme ouvert
('unicité ne tient que lorsque la solution est petite dans L{°(L>°°)). La raison pour
laquelle nous nous concentrons sur l'unicité des solutions a (NSf) dans L$° (L)
est que la singularité de la force externe limite la régularité des solutions. Dans notre
cas, peu importe la régularité des données initiales, la solution correspondante a
(NS f) appartient seulement a L°(L3°°). Cependant, nous montrons que la solution
construite au chapitre 2 est unique dans le sens suivant: soit us € C,,([0,7*), L>>)
une solution a (NSf) avec des données initiales ug € L N By, et i; une autre
solution a (N Sf) avec les mémes données initiales. On a

e siuy — uy se compose d'une petite partie et d'une partie lisse, alors uy = uy,
e sity —uy € C([0,T], L>>), alors uy = uy,
e siuy — uy aune énergie finie et 3 < p < 5, alors uy = uy.

Enfin, nous étudions le comportement a long terme et la stabilité d"une solution
globale a priori. Nous montrons que si la solution vy construite ci-dessus est globale,
ce qui signifie que u appartient a C,, (R, L>°°), alors us appartienta L (R, L3>).
Ce résultat est valable pour des solutions globales a priori (sans hypothese de pe-
titesse sur les solutions) et pour les petites forces rugueuses (en particulier, on traite



le cas A~ f ~ ﬁ). Ce résultat est un argument faible-fort de C. Calderén. Cepen-
dant, contrairement au cas non forcé, il est difficile d’obtenir que la perturbation ait
une énergie locale dans le temps. Pour surmonter cette difficulté, nous introduisons
un résultat de régularité via itération, qui satisfait une équation de perturbation plus
générale. Nous prouvons aussi que u ¢ est stable.

Le troisieme chapitre traite d’un critere de blow-up pour I’'équation de Navier-
Stokes avec une force externe indépendante du temps. Plus précisément, si A~ f est
petit dans L3, alors pour tous ug € L3,

(BC) sup llwg(t, )]s < oo = T*(ugp, f) = oc.
0<t<T™* (uo,f)

Ici T*(uo, f) est la durée de vie de uy. Nous remarquons que le probléeme princi-
pal est que 'unicité rétrograde de la chaleur n’est pas valide pour les équations de
Navier-Stokes forcées. Par conséquent, pour obtenir le critere d’explosion, nous ne
pouvons pas suivre le méme argument. Nous développons une décomposition en
profils pour I’équation de Navier-Stokes.

Puisque le critere de blow-up pour (IV.S) est connu, nous nous concentrons sur
la facon de prouver (NS f) a partir de (N.S). Nous utilisons une décomposition en
profils pour les solutions a (V.S f) pour prouver le résultat ci-dessus. Précisément, la
décomposition permet de construire un lien entre I’équation forcée et I'équation non
forcée, qui fournit I'information de la solution non forcée a la solution forcée. Plus
précisément, nous pouvons décomposer u s sous une forme constituée de la somme
des profils de solutions a (/V.S), une solution a (NSf) et un reste. Nous montrons
que l'information de blow-up de u; est déterminée par l'information de blow-up
des profils de solutions a (/NS) par un argument utilisant la propriété scaling de ces
solutions.

Nous soulignons également que 1’on peut obtenir une décomposition en pro-

fils des solutions a I’équation de Navier-Stokes forcée avec une force externe f €

“spt+2-2 L, o ey . P >
LT(Ry, By, 7 ) avec s, + 2 > 0 et des données initiales qui sont bornées dans B,

pour chaque 3 < p < co. Et par le méme argument que la preuve de (BC), on peut
montrer le critére de blow-up comme (BC) en remplagant L? par B,

Au chapitre 4, nous étudions 1'effet de lissage de Gevrey de la solution locale de
I'équation de Prandtl dans le demi-plan. En raison de la dégénérescence de la vari-
able tangentielle, les théories du caractére bien posé et la justification de la théorie
de la couche limite de Prandtl demeurent des problemes complexes dans la théorie
mathématique de la mécanique des fluides.

Il est bien connu que 1’équation de la couche limite de Prandtl est instable pour
les données initiales générales et est bien posée dans les espaces de Sobolev pour
les données initiales monotones. Sous une hypothése de monotonicité sur la vitesse
tangentielle du flux sortant, nous montrons la régularité de Gevrey pour la solution
de I’équation de Prandtl dans le demi-plan avec des données initiales appartenant a
un certain espace de Sobolev.

I est bien connu que la difficulté principale pour 1'équation de Prandtl est la
dégénérescence en variable x, en raison de la présence de v:

S /Oy(ﬁwu) dg.



Pour surmonter cette dégénérescence, nous utilisons 1'idée d’annulation pour ef-
fectuer des estimations sur une nouvelle fonction et plus sur la fonction u. En effet,
on observe que

Up + Ul + VUy — Uyy = 0,
et, avec w = Jyu,
Wy + Uwg + Vwy — wyy = 0.

Pour éliminer le terme v dans le membre de gauche des deux équations ci-dessus,
nous utilisons la condition de monotonicité dyu = w > 0 et donc multiplions la

5N 4 . Oyw T 4 : 4 N i
deuxieme équation par —=2=, puis ajoutons 1’équation résultante a la premiere; cela
Oyw

donne, dénotant f = w — =2

u7
ft +u0p f — Oyy [ = termes de 'ordre inférieur.

Notre observation principale pour la nouvelle équation est la structure subelliptique
intrinseque due a la condition de monotonie. En effet, dénotant Xy = 0; + u0, et
X1 = 0y, nous pouvons réécrire 1'équation ci-dessus a partir du type de Hérmander:

(Xo + X7 X 1) f = termes de I’ordre inférieur.

Et en outre, un calcul direct nous montre que
[Xl, Xo] = (8yu)8x (3)

Ainsi la condition de crochet de Hormander sera remplie formellement, fournie par
Oyu > 0.
D’autre part par d,u > 0, on a I’estimation sub-elliptique suivante:

Vwe GE(K), Al S Il(Xo+ Xi X0 )wllpz + w2,

3

oy €t A% = Ad est le multiplicateur de

avec K un sous-ensemble compact de R

Fourier du symbole (|| + 1)% par rapporta x € R.

Mots clefs: systeme de Navier-Stokes, criteres d’explosion, 1’équation de Prandtl,
régularité Gevrey
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Chapter 1

Introduction

In this thesis we focus on two topics: one concerns the solutions to the incompress-
ible homogeneous Navier-Stokes equation with an external force in R?; the other
one concerns the Gevery class smoothing effect for the Prandtl equation on the half-
plane.

1.1 The Navier-Stokes equations

1.1.1 Physical meaning

Fluid theory is based on a continuum hypothesis which states that the macroscopic
behavior of a fluid is the same as if the fluid were perfectly continuous: the density,
pressure, temperature and velocity are taken to be well-defined at infinitely small
points and are assumed to vary continuously from one point to another.

There are two representations of the fluid motion and of the associated physical
quantities. In the Eulerian reference frame, the reference frame is fixed while the
fluid moves. Thus the quantities are measured at a position z attached to the fixed
frame. The velocity u(t, x) is the velocity at time ¢ of the fluid parcel that occupies
the position z at that very instant ¢. In the Lagrangian reference frame, the reference
frame is the initial state of the fluid. The quantities are attached to the parcels as they
move.

More precisely, if X,,(¢) is the position of the parcel at time ¢t whose position
at time 0 was zg, and if () is some quantity attached to the parcels, we have two
descriptions of the distribution of the values taken by @) at time ¢: the value Q(¢, x)
taken at time ¢ for the parcel which is located at that time at position z, and Q,(t)
the value taken at time ¢ for the parcel which was located at time 0 at position .
In particular, the velocity field u(¢, x) describes the velocities of the parcels as they
move: 4 X, (t) = u(t, Xy, (t)). This gives us the link between the variations of Q. (t)
and those of Q(t, z):

d

3
d
%Qmo (t) = 8tQ(t> x)’szzO(t) + ; 8iQ(t7 x)’x:XIO(t)aXxo,i@)'

The quantity 4@, (t) is called the material derivative of @ and is denoted as Z2-Q.
Thus we have the following formula: the material derivative

3
D%Q = 0Q(t,) + Y uilt,1)9Q(t, ).

=1

The convection theorem



2 Chapter 1. Introduction

If we consider a volume Vj at time 0 filled of fluid parcels, and define V; the
volume filled by the parcels as they move, we have

={yeR3:y=X,(t), z € V}.

The volume element dy of V; is given by J(t,z)dx, where ] is the Jacobian of the

transform z +— X, (¢). Let J = det(ﬁizi‘]j)1<ij<3; we have

) d 0 9 )
3tfyj:%8tyj: tl” :Zi tt)a Yk

ox; Oz 1 Ay
and thus
d 0 0 0 0 0
HTJ = det(ataixiyl, 87%3/2, %yg) + det(%yl, 37567%927 871%)

0 0 0
+det(67y17 aiy% at%y?))

D e P D O
(9 y € 8$2yka 8331'2/2,83:'1/3
3

I
Mc,o

k=1 v

0 0 0 0
+ ;; 87%“2(75; y)det(%yh %yka %ys)

Z—u (t,y)det( 0 9,0 )
3L, Y 8xiyl’8xiy2’8xiyk

= (dlvu(t, x))J,

so that, since J(0,z) =1,

J(t,x) = exp{/0 divu(s, X, (s))ds}.

Thus, we have that the divergence of u is the quantity that governs the deflation or
the inflation of the volume of V;.
Now, if f(t, ) is a time-dependent field over R?, we may define

G(t) = g f(ty)dy

We have

G(t) = g f(t, Xz(t))J(t, z)dz.

We use the fact that 0,(f(t, X.(t))) = & f(t,y), O:J(t,x) = divu(t,y)J(t,z) and

J(t,z)dz = dy to get: the convection theorem

G ey = [ s+ s pdivute, )y

Conservation of mass
We apply the convection theorem to the mass m of the parcels included in the vol-
ume V;. If p(t, y) is the density at time ¢ and at position y, we have m = th p(t,y)dy.
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When the parcels move, their mass is conserved, so we find that %m = 0. This gives:
the conservation of mass

D
Di p + pdivu = 0.

When the fluid is incompressible, the density of a given parcel cannot change, so
D% p = 0, hence we get: incompressibility

divu = 0.

For an incompressible fluid, we find that 9;p = —u - Vp. If the fluid is homoge-
neous, the density does not depend on the position, thus we get: incompressibility
and homogeneity

p = Constant.

Newton’s second law

We apply Newton’s second law to a moving parcel of fluid. The momentum of
the parcel at time ¢ is given by M := th p(t,y)u(t,y)dy. If f(t,y) is the force density
at time ¢ and position y, the force applied to the parcel is F' = th f(t,y)dy. Newton’s
second law of mechanics then gives that

d
—M = F.
dt

The convection theorem gives then

D
" E(pu) + pudivu — fdy =0,

combining with the conservation of mass, we have

D

pﬁtu:fa

which can be written as
p(@tu +u- Vu) =f. (1.1)

It remains to describe the force density f. This is a resultant of several forces: ex-
ternal forces (such as gravity) and internal forces. There are two important types of
internal forces: the force induced by pressure and the force induced by friction.

Pressure

When a fluid is in contact with a body, it exerts on the surface of the body a
force that is normal to the surface and called the pressure. The pressure is a scalar
quantity, which does not depend of the direction of the normal.

Internal pressure is defined in an analogous way. The fluid parcel occupies a
volume §V; the force exerted on the parcel induced by the pressure is then

Fp= —/ Vpdzx.
1%
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This gives us the density for the pressure force: Force density for the pressure

fp=-=Vp.

Strain

Fluids are not rigid bodies. Thus, their motion implies deformations. Those
deformations may be illustrated through the strain tensor. If the velocities and their
derivatives are small enough, we may estimate for initial points =y and yy how the
distance of the parcels will evolve. If z(t) = X,,(t) and y(t) = X,,(t), we have

t
Iz — ylI* ~ llzo — yol* + 2/0 (z(s) —y(s)) - Du(s,z(s))(x(s) — y(s))ds
where the matrix Du is
Du = (0jui(s, z))1<i,j<3-

Cauchy’s strain tensor ¢ is defined as the symmetric part of Du:

€:= %(Du + (Du)T).

The antisymmetric part has a null contribution to the integral, and we find:

lz = ylI* = llzo — ol® + 2/0 (x(s) —y(s)) - e(s,2(s))(x(s) — y(s))ds.

Cauchy’s strain tensor the strain tensor at time ¢ and position x is the matrix e given

by
1 . .
€i,j = 5(8iuj + 0ju;) for 1 <4,5 <3.
If we look at the infinitesimal displacement of y, we have

Dy =ult,y) = ult, ) + ely — ) + 5(Du— (D) )y — ) + Olly — af).
u(t, z) does not depend on y: it corresponds to an translation; 1(Du — (Du)”) does
not contribute to the distortion of distances, it corresponds to a rotation, €; corre-
sponds to the deformation.

Stress

When a fluid is viscous, it reacts like an elastic body that resists deformations.
Applying the theory of elasticity to the fluid motion, one can see that the deforma-
tions induce forces. If 6V is a small parcel, the deformation of the parcel induces a
force exerted on the border of §V/; this force F;s. is given by a tensor T and we have

Fyisc = / TI/dO',
oV

which gives us the force density f,;,. associated to the stress:

3
Jvisci = Z 0;T; j = divT;.

J=1
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When the fluid velocity and its derivatives are small enough, Stokes has shown
that the relation between the stress tensor and the strain tensor is linear. Thus we
find that f,s. is a sum of second derivatives of u. But due to the isotropy of the
fluid, a change of referential through a rotation should not alter the relation between
the force and the velocity. This gives that f,;s. is determined only by two viscosity
coefficients: force density associated to the stress

Joise = pAu + AV (divu)

The above equation corresponds to a relationship between the tensor € and the tensor
T:

T = 2pe + ntr(e)ld,

where 4 is called the dynamical viscosity of the fluid and 7 the volume viscosity of
the fluid. Fluids for which the above relation holds are called Newtonian fluids.
The equations of hydrodynamics
Let us consider a Newtonian isotropic fluid. We already have

D

and

D
—u=f.
Pou=1
The force density f is a superposition of external forces f.,; and internal forces fi;.
In the external forces, one may have the gravity or the Coriolis force. In the internal
forces, one has seen the force due to the pressure:

F P = —Vp
and the force due to the viscosity:
fvise = pAu + AV (divu).

In the absence of other internal forces, we obtain the equations of hydrodynamics

D
i + pdivu =0

and

p%u = —Vp + pAu + AV (divu) + fex.

Those equations are in number of four scalar equations with five unknown scalar
quantities (u1,u2,u3, p and p). The fifth equation depends on the nature of the fluid:
it is a thermodynamical equation of state that links the pressure, the density and the
temperature.

The Navier-Stokes equations

Let us consider the case of a Newtonian, isotropic, homogeneous and incom-
pressible fluid. The above equations of hydrodynamics are transformed into the
Navier-Stokes equations. Since p is constant, it is customary to divide the equations
by p, and to replace the force density f.,; with a reduced density f, := % fext, the
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pressure p with a reduced pressure p, = %p (which is called kinematic pressure),

and the dynamical viscosity x by the kinematic viscosity v = %u. We then have The
Navier-Stokes equations:

{ owu — vAu+u-Vu=—-Vp,. + fr, (12)

V-u=0.

v is positive for a viscous fluid. In case of an ideal fluid(r = 0), we obtain The
Euler equations:

{ Ou+u-Vu=—-Vp, + fr, (13)

V-u=0.

1.1.2 Mathematical aspects

In this paragraph, we consider mathematical problems for the Navier-Stokes equa-
tion in R3. Since we will compare the Navier-Stokes equation without an external
force with the forced case, we use the following notations:

The Navier-Stokes equation without an external force

ou — Au+u-Vu = —Vp,
(NS)¢ V-u=0, (1.4)
’u,‘t:o = Uugp.

The Navier-Stokes equation with an external force

Oup — Aup +uy-Vuy = —Vpr + f,
(NSf)s V-uy =0, (1.5)
u f|t:0 = Uup.
Here u and uy are three-component divergence free vector fields v = (u1,u2,u3)
and uy = (uf1,uf2,uyr3) representing the velocity of the fluids respectively, p and
ps are two scalar functions denoting the pressure respectively, and all are unknown
functions of the space variable z € R? and of the time variable ¢ > 0.
We introduce the Navier-Stokes scaling : VA > 0, the vector field u is a solution

to (NS f) with initial data g, if u ¢, is a solution to (NS f\) with initial data uq »,
where

un 1y (B, 2) = Aup(N2, Ax), fr(t, ) = N f(A\%t, M),
palt, ) == N2p(\?t, Ax) and wug ) := Aug(Az).
Spaces which are invariant under the Navier-Stokes scaling are called critical spaces

for Navier-Stokes equation. Examples of critical spaces of initial data for the Navier-
Stokes in 3D are:

143 .
L3(R3) < Byy " (R¥)(p < 00,q < 00) = BMO™! — Bx!__. (1.6)

We will recall the definitions of function spaces in the last part of this section.

Existence

We begin by introducing existence results for (N.5).
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Weak solutions
We first introduce the weak formulation of (N S). From Leibniz’s formula it is clear
that when the vector field v is smooth and divergence-free, we have

u - Vu = div(u ® u), where div(u® u)’ := Ok (ujug) = div(uju),

B
Il w
—

so that (/V.S) may be written as

Ou — Au + div(u @ u) = =Vp,
(NS)S V-u=0,
u‘t:() = Uup.

The advantage of this formulation is that it makes sense for more singular vector
fields than the previous formulation.

We now formally derive the well-known energy estimate. First, taking the L?(R3)
scalar product of the system with the solution u gives

1d

5 arllullZs + (- Vuhu)re = (Auju)r2 = ~(Vplu)

Using formal integration by parts, we have

(u-ulu)rz = Z /ujaukukdx— Z / u;0;(|ul?)d

1<j,k<3 1<5<3
1
= —/ (divu)|ul*dx = 0,
2 Jgs
and
~(Aufu)z = [ Vals.

Again, integration by parts yields

—(Vp|u) 2 Z/ u;j del‘—/ pdivudz = 0.

It therefore turns out that, by time integration,

t
()22 + 2 /0 1V0(s) [22ds = [luol|22.

It follows that the natural assumption for the initial data w is that it is square inte-
grable and divergence-free. This lead to Leray’s weak solutions ([21]).

Theorem 1.1.1. Let uq be a divergence-free vector field in L?>(RY). Then (N S) has a weak
solution w in the energy space

L®(Ry, %) N LA(Ry, ')

such that the energy inequality holds, namely,

t
lu(®)l1Z2 + 2/0 IVu(s)l[72ds < uoll7.-
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Proving Leray’s theorem relies on a compactness method:

e First, approximate solutions with compactly supported Fourier transforms sat-
isfying the energy inequality are built.

e Next, a time and space compactness result is derived.
o Finally, the solution is obtained by passing to the limit.

In 2D, the Leray weak solutions are unique, however in 3D, Leray weak solutions
are not known to be unique.

Strong solutions

Another important feature of the Navier-Stokes equation in the whole space R? is
that there is an explicit formula giving the pressure in terms of the velocity field. In-
deed, in Fourier variables, the Leray projector [P on the divergence-free vector fields
is as follows:

. 1 & .
F®N;) = 150 - ip > &€ ful€).
k=1
Also P can be written as,
3
(Pf); = f; =Y RiR;f,
=1

where R; is the Riesz transform R; = 61-(—A)_%, for1 < ¢ < 3. Itisclear that Pis a
zero-order differential operator.

Therefore, applying the Leray projector to (N.S) and (NS f), yields that u and
satisfy (formally) the following system respectively,

V-u=0,
U/’t:[] = uo,

Ou— Au+PV - (u®@u) =0,
(N'S)

and

V-us =0, (1.7)

Opur — Auy +PV - (uf @ us) =Pf,
(NSf)
ufli—0 = uo.

Moreover we can transform (IV.S) and (NS f) to the following integral forms:
u = eug + B(u,u) (1.8)

and
t
up = ePug +/ e=IAPf(s)ds + B(uyg,uy), (1.9)
0
where

t
B(u,v) = —% /0 IAPY . (u® v+ v ® u)ds.
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Unforced case
Given ug € S&'(R3), in order to find a solution to (1.8), a natural approach is the
iterate the transform

v e ®ug + B(v,v)

and to find a fixed point u for this transform. This is the so-called Picard contraction
method. A simple way to solve this problem is trying to find a Banach space £7 such
that the bilinear transform B(u, v) is bounded from £ x & to Er. Then we need to
consider the space E of initial data such that etPug € Er for any up € E. The Banach
space & is called an admissible path space and F is called an adapted value space.

Remark 1.1.2. To make sure that a solution to (1.8) is also a solution to (1.4), we need the
solution is at least uniformly locally square integrable. Therefore an admissible space Ep
should be a subspace of L2, . L7((0,T) x R?).

Now we recall some well-known results about the existence of strong solutions
(For the definitions of the following function spaces, see the last paragraph of this
section).

e In 1984, T. Kato [18], E = L3, & = K,(T)(p > 3) (Kato’s space). He proved
that for any initial data ug € L?, there exists a unique maximal time 7* and a
solution u to (IV.S) such that u € K,(T') for any 7" < T*.

And using the fact that B is bounded from L? x L3 to L3, he proved that

Yug € L3, 3T* >0 and u € C([0,T*), L*) N K,, solves (NS).

Moreover T* = oo provided that v is small enough in L3.

e In 1998, F. Planchon [24],'E = B;f’oo(p > 3), &r = K,(c0). For any initial
data ug small enough in B, there exists a unique small solution belonging
to Kp(00).

e H. Koch and D. Tataru [20] obtain a unique global in time solution for initial
data small enough in a more general space, consisting of vector fields whose
somponents are derivatives of BMO functions.

Remark 1.1.3. Roughly speaking, the more singular the adapted value space is, the more

decay in time required on the corresponding admissible space. For example, E = ByY,
spt2

1 <p,q < o0, its corresponding admissible space is L ([0, T, Bp.q " )(for details, see [13]),
where s, + % > 0. It is clear that we need r — 2 to make sure that the above relation holds,
asp — oo.

Forced case
A simple way to solve (1.9) is similar to solving (1.8). The difference is that we
treat

t
etAuo+/ eU=)APf(s)ds
0

as the first step of the iteration. Then we need to consider the space E of ini-
tial data and space F of external force such that ePug € Ep for any up € F and
5 e=)APf(s)ds € Er for any f € F. This fact brings some troubles. For example,
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e For any initial data ug € L?(R?), e!®ug € K, for any p > 3. Combining with
the fact B is only continuous from K, x K, to K, for p > 3, then we need F
satisfying that for any f € F

t
/ e =APf(s)ds € K,
0

for some p > 3. In this case, M. Cannone and F. Planchon [7], proved the local
in time well-posedness for any initial data ug € L3(R3), if the external force f

3
can be written as f = V-V and supg;7 Al , & is small enough for some

3 <p<6andT > 0. Also they showed there exists a unique global solution to
3

. : o a—1E
(NSf), provided T' = oo and uy is small enough in By o ¢ with 3 < ¢ < (),‘r%”p.
However, the above case misses the time-independent external force or more
generally, misses the case when

t
/ et=IBPf(s)ds € L®°(R,, L?).
0

e In the case of &, = L*°(R.,L*>>), B is continuous from L>®(R,, L3*) x
L®(Ry, L**®) to L®(R4, L3*°). M. Cannone and G. Karch [6] proved that
there exist a solution uy € Cy, (R4, L3*°(R3)) to (NSf), if its initial data ug €
L3 is small enough and the external force f satisfies that

t
sup || [ e VAPfds|| 1500
>0 Jo

is small enough in L>° (R, L>*). But their result is only valid for small initial
data ug in L3°°.

In Chapter 2, we consider (NS f) with an external force given as [6] and initial
data belonging to some critical Besov spaces with negative regularity. More pre-
cisely, we consider the force f satisfying that: f € C(Ry,S'(R?)) such that for any
t>0

t
/ eU=IAPfds € LO(Ry, L3>, (1.10)
0

which belong to Cy, (R, L>*°(R3)), see [6]. For any given p > 3, under the smallness
assumption on f depending on p, we show the local and global existence to (NS f)
for initial data uo belonging to B,?%,. Moreover the solution can be decomposed as a
small part and a smooth part. By using a regularity result via an iteration introduced
in [13, 15], we show that us € C,, ([0, T*), L**°) and the smooth part has finite energy
when ug € By, N L3> and ug € ByY, N L*(R?) respectively.

We use a Picard iteration on a perturbation equation instead of using it on (NS f)
directly. More precisely, by using the existence of (NS f) for small initial data in
L3, there exists a unique small global solution N S f(0) belonging to L>°(R ., L>°).
Next, we using Picard iteration on the perturbation equation with initial data v to
obtain local in time existence. Hence the above solution to (NS f) can be written a
small rough global in time part and a large smooth local in time part.

The reason why we focus on the forces satisfying (1.10) is that

1. there are many time independent external forces satisfying (1.10).
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2. there are many rough external forces satisfying (1.10).

More precisely, the one-point stationary singular solutions to (V.S f) of the following
form (constructed by G. Tian and Z. Xin, [25]):

clz|? = 2z1|z| + ca?

un() = xa(cx1 — |x|)
5 T g

ui(z) =2

[z|(clz] — 1) T lal(cla] = 21)?

(1.11)

x3(cx1 — |x|) cxry — |z

e PO el = e

) =2 el — )
where |2| = /27 + 23 + 22 and c is an arbitrary constant such that || > 1. By
straightforward calculations, one can check that, indeed, the functions w1, u2, us3
and p given by (1.11) satisfy (N.Sf) with f = 0 in the point-wise sense for every
z € R3\{0}. On the other hand, if one treats (u,p) as a distributional or generalized
solution to (NSf) in R3, they correspond to the very singular external force f =
(bo, 0,0), where the parameter b # 0 depends on ¢ and ¢, stands for the Dirac mass.
Actually, any external force f have the form of f = (c1do, c200, c3dp), satisfy (1.10)
(Lemma 3.4 in [6], by M. Cannone and G. Karch).

Long-time behavior of global solutions

As mentioned in the above paragraph, for (N.S), if we choose the adapted value
space E as L3 or B,?, for 1 < p,q < oo, we obtain the local in time well-posedness
for any initial data belonging to E. Then for any initial data ug € E, there exists
a maximal time 7%(ug) depending on ug such that for any 7' < T, the associated
solution N S(up) to (N S) belongs to Er.

In [13], I. Gallagher, D. Iftimie and F. Planchon proved that (a particular case):
Let u € C(Ry, L?) be a priori global solution to (NS). Then

e this solution tends to zero at infinity in L3,
e this solution is stable.

Forced case

The situation is more subtle when it comes to forced Navier-Stokes equations.
We focus on the forces satisfying (1.10). From now on, we always assume that
[5 e@=9)APfds € L=(Ry, L>*) is small enough.

After we obtain the local in time existence of (NS f) for any initial data uy €
L3 N By, for some p > 3, we are interested in the long-time behavior of these
(priori) global solutions. We mention that a solution uy € Cy, ([0, %), L**) to (N Sf)
is global, which just means its corresponding life span 7 = oo, one can’t obtain that
uf(t) has a uniform bound in L3°° as t goes to infinity in general.

We first recall some known results.

e The long-time behavior of small global solution to (NSf): in [6], M. Can-
none and G. Karch proved the following result: let vy and @y belonging to
Cw(R4, L3°°) be two small global solution to (NS f) with initial datas uy and
g respectively. Then

lim [u(t) — ()] s = 0,

t—o00

provided that

A _
Jim [ (ug — @o)| 3.0 = 0.
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If f is time independent, C. Bjorland, L. Brandolese, D. Iftimie & M. E. Schon-
bek, in [3], proved that for small global solutions us € Cy,(Ry, L3*) to (NSf)
with initial data ug € L**, |luf(t) — Ul|ps. — 0 ast — oo if and only if
! (ug — U)|| 3.0 — 0 ast — oo, where U is the corresponding steady state
solution to (NS f). We point out that they use the iteration and semi-group
properties to obtain the above results. However, this kind of method does not
work any more for an arbitrary global solution in Cy, (R, L>*) to (NSf).

e The long-time behavior of priori large global solutions: In [3], C. Bjorland,
L. Brandolese, D. Iftimie & M. E. Schonbek showed a long-time behavior of
priori global solution with time independent external force. More precisely,
suppose that A= f € L3> N L* and A~ f is small enough in L3>, If uy €
LS (Ry, L3*°) N L} ([0, 00), L), then uy € L®(Ry, L3°).

loc loc

However, we point out that there are some too strong conditions on the solutions in
the above two results to cover some interesting cases: In [6], the long-time behavior
result just holds for small global solutions. In [3], the condition A f e L3>°nLt
excludes some important singular forces: A™! f ~ \?ll’ which satisfy (1.10).

In Chapter 2, we show that if the solution u; is global, which means that uy
belongs to Cy, (R4, L), then uf belongs to L (R, L*>°). This result holds for a
priori global solutions (without smallness assumption on solutions) and for small
rough forces (in particular, they contain the case A~ f ~ ﬁ). Also we prove that
the u is stable.

The reason why we can get rid of the restrictions given as above is that, as men-
tioned before, the solution can be decomposed as a small global solution to (/NS f)
and a local smooth large perturbative part, and the smooth part has a local in time
finite energy. Then we have a global energy estimate, which implies that the smooth
large part is bounded uniformly in time. Especially, in [3], the restriction on the ex-
ternal force is aimed to prove the perturbative part has a local in time finite energy.

Uniqueness

In this paragraph, we still assume that the external force satisfies (1.10) and p > 3.
In Chapter 2, for any initial data in L>> N B,’, we have constructed a local in time
solution belonging to C,, ([0, 7*), L>°°), which can be decomposed as a large smooth
part and a small rough part. Moreover if the solution is priori global, then it has a
uniform bound in L3> as t goes to infinity. It is natural to wonder whether this kind
of solution is unique.

We point out that we cannot prove whether the above solution is unique in
Lg°(L3°°) without the smallness assumption on the solution. Actually even for (N.S)
the uniqueness in L{°(L3*°) is still open (the uniqueness just holds when the solu-
tion is small in L (L>>)).

The reason we focus on the uniqueness of solutions to (NSf) in L°(L>*) is
that the singularity of external force limits the regularity of solutions. In our case,
no matter how smooth the initial data is, its corresponding solution to (V.S f) only
belongs to L (L3°).

However, we show the solution constructed in Chapter 2 is unique in the fol-
lowing sense: Let uy € Cy([0,T*), L>*) be a solution to (NSf) with initial data
uy € L>*° N By, and @ be another solution to (NS f) with the same initial data.
Then we have

e if 4y — uy consists of a small part and a smooth part, then u; = uy,
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o if Ur —uf € C([O,T],LS’OO), then ur =uf,

e if iy — uy has finite energy and 3 < p < 5, then uy = uy.

Blow up

In this thesis we are also interested in a blow up criterion for (N.Sf). Before stating
our result, we recall some well-known results for the unforced case.

We suppose that X7 is such thatany v € X satisfying (N S) belongs to C([0, '], X).
Setting

15, (uo) := sup{T > 0|3'u := NS(ug) € X7 solving (NS)}

the Navier-Stokes blow-up problem is:
Question:

Does sup lu(t,-)||x < oo imply that T%, (up) = oo?
0<t<T%,, (uo)

1. In the important work [12] of Escauriaza-Seregin—éverék, it was established
that for X = L?(R?), the answer is yes, by changing supg ;<7 (y,) l[u(t, -)| 15 to
lim Supg<s e (o) llu(t; )| 3. This extended a result in the foundational work of
Leray [21] regarding the blow-up of LP(R3) norms at a singularity with p > 3,
and of the “Ladyzhenskaya-Prodi-Serrin” type mixed norms L{ (L), 2 + % =
1, p > 3, establishing a difficult “end-point” case of those results.

2. In [15], based on the work [19], I. Gallagher, G. S. Koch, E. Planchon gave an
alternative proof this result in the setting of strong solutions using the method
of “critical elements” of C. Kenig and F. Merle. In [14], I. Gallagher, G. S. Koch,
F. Planchon extended the method in [15] to give a positive answer to the above

143
question for X = Bp7q+p (R3) forall 3 < p,q < oo

3. Also in [1], D. Albritton proved a stronger blow-up criterion in By, for 3 <
P, q < oo and his proof is based on elementary splitting arguments and energy
estimates.

We mention that the above results depend on the backward uniqueness of heat
equation strongly.

In Chapter 3, we focus on the Navier-Stokes equation with a time independent
external force. The main trouble is that backward uniqueness of the heat equation
is invalid for the forced Navier-Stokes equations. Therefore to obtain the blow up
criterion we can’t just follow the known road map.

However, since the blow-up criterion for (/V.S) is known, we focus on how to
bring the blow-up information from (NS) to (NSf). In fact, the profile decom-
position of the solutions to (V.S f) plays a crucial role in establishing a connection
between the solutions of (N.S) and (NSf).

Roughly speaking, suppose that the external force f is time independent and
satisfies A™1 f is small in L3. Let {ug, }nen be a bounded sequence in L3. Then we
have an orthogonal decomposition of the type

NS f(uon) = NS(An(p)) + NSf(¢) + Remainders,

where ¢ is a weak limit of {ug , }nen, ¢ is a profile of {ug ,}nen and A,, are Naiver-
Stokes scaling operators. Moreover, we obtain that the life span Ty, of N.S(A,(¢))
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is smaller than the life spans of NS f(up,) and NSf(¢), and the remainders have
uniform bounds on [0, T} 5] and the orthogonality of cores/scales which imply that
forany ¢ € [0, Tp ]

INSf(uon) ()13 = [INS(An(@)) ()]l L3, asn — oo

Using the above idea, we obtain the following blow-up criterion for (NSf): Let
A~!f smallin L3, then

(BC) limsup |Jur(t,-)||Ls < oo = T*(ug, f) = oo.
0<t<T*(uo,f)

Our profile decomposition method is not only valid for time-independent force,
but also can be extended to more general time-dependent external forces. For exam-

ple,

1. our method is valid for the strong solutions belonging to C([0,T™), L3(R?))
constructed in [7] with initial ug € L?, where the external force f can be written
as f = V-V and supg ;o t1*%||VHLg is small enough for some 3 < p < 6.
Actually our method only depends on smallness of U; and the continuity in
time of solution in space L3, which are similar (U can by replace by some small
solution with small initial data in L? constructed in [7]) with the solutions in
[11], whose associated force is time-dependent. Therefore we focus on the case
of f is time-independent in this thesis.

2. We also point out that one might get the profile decomposition of solutions

. 2_o
to the forced Navier-Stokes with an external force f € L" (R, B;f;’“ ) with

sp+ 2 > 0 and initial datas bounded in Byh, for any 3 < p < oo with a similar
proof in [15]. And by the same argument in the proof of Theorem 3.1.4, one
can show a blow-up criterion as (BC) by replacing L3 by B,",.

Open Problems

About the solutions to (NSf), we still have some unsolved interesting problems.
As mentioned, we cannot prove whether the above solution is unique in L{°(L3°°)
without the smallness assumption on the solution. We are interested in the following
questions:

Does iy —uf = Cy(L>*) + small rough part imply up =uys?
And
Does iy — uy = finite energy part + small rough part imply wy = u;?

However, we can’t give a positive answer to the above questions right now. Because
the small rough part still limits the regularity.

About the Blow-up criterion, there are two weakness of our result, which we
want to improve.

e To obtain profile decomposition of solutions to (/NSf) we need to use the
scales/cores orthogonality to deal with the source terms in corresponding per-
turbation equations, which is only valid for the space who can be approxi-
mated by C§°. Hence we can not obtain a profile decomposition for a rough
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external force f, for example A1 ~ rz- as the singularity of f limits the
regularity of the source terms.

e By the our profile decomposition method, we can not obtain that
T li =
< Ooat_lgll* ||ufHL3 o0,
which is true for the case f = 0 proved by D. Albritton, in [1].
Function spaces

Let us first recall the definition of Besov spaces, in dimension d > 1.

Definition 1.1.4. Let ¢ be a function in S(R?) such that ¢ = 1 for |¢| < 1 and ¢ = 0 for
€| > 2, and define ¢; := 2% (29x). Then the frequency localization operators are defined by

Sj = (bj * -, Aj =041 — Sj.
Let f be in S'(R%). We say f belongs to B;q if

1. the partial sum 377" A f converges to f as a tempered distribution if s < % and
after taking the quotient with polynomials if not, and

£l = 129°12 fllz e < o0

We refer to [10] for the introduction of the following type of space in the context
of the Navier-Stokes equations.

Definition 1.1.5. Lef u(-,t) € B;;’ JJora.e t € (t1,to) andlet Aj be a frequency localization
with respect to the x variable. We shall say that u belongs to LP([t1, t2], B;yq) if

||U||£p([t17t2}735’q) = ||2j8HAJ'UHLP([tl,tQ]Lg)HZ;I- < 0.
Note that for 1 < p; < g < ps < 00, we have
Lpl([tl, tg], BZSLQ) — ﬁpl([tl, tz], B;q) — ﬁpz([tl, tg], B;q) — Lpz([tl, tQ], B;q).

Definition 1.1.6. Let p > 3. Kato’s space is defined as follow,
1.3
Ky :={ue C(Ry,LP(R?)) : |lulk, := iggtz 2 || ()| oo sy < 00}
We also recall the definition of the weak-LP (or Marcinkiewicz space):
L7 (RY) = {f R = C: || f]| o < 00},
which is equipped the following quasi-norm
1
£l o= = supt[As ()] 7,
t>0
where

Ar(s) :==miz: f(x) > s}
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1.2 The Prandtl equations

One of the fundamental problems of fluid mechanics is to resolve the differences
between inviscid flows and viscous flows with small viscosity. The issues include
drag, vorticity production and boundary conditions:

e inviscid flow does not correctly describe drag on an object. In an irrotational
flow (V x u = 0), there is no drag resisting the motion of an object in the flow.
For rotational flow, but that does not account for the total drag.

¢ An inviscid flow does not produce vorticity.

e Along a boundary, an inviscid flow allows only the vanishing of the normal
velocity (i.e. the flow cannot cross the boundary); whereas a viscous flow re-
quires the vanishing of the velocity on the surface of a stationary object (i.e.
the fluid sticks to boundary).

Consider the initial value problem for an incompressible flow over a half plane
Ri. The Euler equations for an inviscid flow are (without external force)

ol +uf - vul = —VpF,

V-ulf =0

’ 1.12
U§|y:0 =0, ( )
UE|t=0 = UE’Ov

where (t,7,y) € Ry x R x Ry, and v := (uF, uy) is the velocity and p” is pressure.
The Navier-Stokes equations for a viscous flow are (without external force)

OuNS — v AUNS 4 NS . VNS = —vplVs,
V-ulVS =0,

UNS’y:O — O7

uNS|t:0 — NSO,

(1.13)

where (t,7,y) € Ry x R x Ry, and ™9 = (u'9,ul) is the velocity and p™V* is
pressure. In these equations, the Reynolds number Re = UL /v is the relevant non-
dimensional parameter, in which U and L are characteristic values for the velocity
and length scale. For typical flows, the viscosity v is small, so that Re is large and
the flow should be nearly inviscid.

L. Prandtl resolved the difference between viscous and inviscid flow, starting in
1904. This work contained the first development of boundary layer theory, which is
now a standard part of singular perturbation theory. Prandtl found that the Euler
equations are valid outside a thin “boundary layer” region. The boundary layer
thickness is ¢ = \/v. Viscous drag, vorticity production and relaxation of the no-slip
boundary condition all occur inside the boundary layer.

The Prandtl equations for flow inside the boundary layer are

ot —uPoput + v oyul = (0, + uf 0, )ul’ (y = 0) + dyyu?,

3YP£=0, R
if;;@éyi%)”: ; 0, (1.14)

uP (Y — 00) %uf"(yZO),

P P
\ U ‘t:():u ’07
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in which Y is a scaled variable normal to the boundary, as discussed below.

1.2.1 Derivation and basic properties of Prandtl’s equations

Within the flow, the only parameter is the Reynolds number Re = UL/v. Near a
boundary, however, the relative distance to the boundary is a second parameter. This
suggests that away from the boundary, yielding the Euler equations by the Reynolds
number Re very small, but near a boundary, a different scaling may apply. Prandtl’s
boundary layer scaling is the following

Y = y, u = (u,eV)

€
so that 9, = e~19y. This allows rapid variations normal to boundary and requires
the normal velocity to be small near the boundary:.
Under this scaling, the Navier-Stokes equations become

Opu + udpu + Voyu + 0pp = vau + ()03 u,
OV +ud,V + VoyV + e 20yp = vo%V + (5)8}2/‘/,

Ozu+ Oy V =0, (1.15)
u=v=0onY =0
Set ¢ = /v and take ¢ — 0 to obtain Prandtl’s Equations
Opu + udyu + Voyu + Opp = 02,
Oyp =0, (1.16)

833U+8YV:0,
u=v=0o0nY =0.

Since p = p’ is independent of Y, set it to the limiting Euler value pP(t,x) =
PE(t,z,0) so that

ot (t,2) = 0, PE(t,2,0) = —(Opu? + uFo,ub)(t, x,0),
which implies that

lim u”(t,z,Y) = uf(t,z,0).
Y —o0

Here is a summary of the properties of a solution to the Prandtl equation, show-
ing that it accounts for the differences between inviscid and viscous flow that were
mentioned before. The vorticity for the Navier-Stokes equations, written in the
Prandtl scaling, is

w=¢ed,V — e 1oyu.
It follows that the vorticity in the Prandtl equations is
wl = —oyu.

Since the flow is incompressible, the normal velocity is

Y
P (t,z,Y) = —/ dpul (t, 2, Y)Y,
0
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The boundary conditions for the Prandtl equations are
e no-slip at Y = 0, in the Navier-Stokes

e zero nomal velocity at Y = oo, corresponding to y = 0, as required in Euler.

1.2.2 Gevrey regularity

In Chapter 4, we consider the Prandlt equation in the half plane. The results in
Chapter 4 is a collection of a published paper (SIAM ]. Math. Anal. 48 (2016), pages
1672-1726).

We first study the intrinsic subelliptic structure due to the monotonicity con-
dition, and then deduce, basing on the subelliptic estimate, the Gevrey smoothing
effect; that is, given a monotonic initial data belonging to some Sobolev space, the
solution will lie in some Gevrey class at positive time, just like heat equation. It
is different from the Gevrey propagation property obtained in the aforementioned
works, where the initial data is supposed to be of some Gevrey class, for instance
G"/* proved by D. Gérard-Varet and N. Masmoudi in [17], and the well-posedness
is obtained in the same Gevrey space.

Because of the degeneracy in the tangential variable, the well-posedness theories
and the justification of Prandtl’s boundary layer theory remain as the challenging
problems in the mathematical theory of fluid mechanics.

Under a monotonicity assumption on the tangential velocity of the outflow, Oleinik
was the first to obtain the local existence of classical solutions for the initial-boundary
value problems, and this result together with some of her works with collaborators
are well presented in the monograph [23]. In addition to Oleinik’s monotonicity
assumption on the velocity field, by imposing a so called favorable condition on
the pressure, Xin-Zhang [26] obtained the existence of global weak solutions to the
Prandtl equation. All these well-posedness results were based on the Crocco trans-
formation to overcome the main difficulty caused by the degeneracy and mixed type
of the equation.

Just recently the well-posedness in Sobolev spaces was explored by an energy
method instead of the Crocco transformation; see Alexandre et. all [2] and Masmoudi-
Wong [22]. There are very few works concerned with the Prandtl equation without
the monotonicity assumption. We mention that due to the degeneracy in z, it is
natural to expect Gevrey regularity rather than analyticity for a subelliptic equation.

We recall that the Gevrey class, denoted by G*,s > 1, is an intermediate space
between analytic functions and C* space. For a given domain €2, the (global) Gevrey
space G*(€2) is consist of such functions that f € C*°(Q2) and that

HaafHB(Q) < Ll (al)®

for some constant L independent of a. The significant difference between Gevery
(s > 1) and analytic (s = 1) classes is that there exist nontrivial Gevrey functions
admitting compact support.
For simplicity, we consider the Prandlt equation on the half plane with a uniform
out flow:
Uy + Uty + vy —uyy =0, (t,z,y) €0, T[xR%,
Ug + vy = 0,

Uly—0 = V|y=0 =0, lim u=1
’yO ’yO ' ytoo )

(1.17)

u|t:0 = UO(CE, y) ’
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The approach

We introduce the main idea used in the proof. It is well-known that the main dif-
ficulty for Prandtl equation is the degeneracy in x variable, due to the presence of
v

v=— /Oy(axu) dj.

To overcome the degeneracy, we use the cancellation idea, introduced by Masmoudi-
Wong [22], to perform the estimates on the new function and moreover on the origi-
nal velocity function u. Precisely, observe that

Ug + Ul + VUy — Uyy = 0,
and, with w = Jyu,
Wi + Uz + vwy — wyy = 0.
In order to eliminate the v term on the left-hand side of the above two equations, we

use the monotonicity condition 9yu = w > 0 and thus multiply the second equation

by — % "and then add the resulting equation to the first one; this gives, denoting

w 7

f:w_ayTwuv

Jt +u0y f — Oyy [ = terms of lower order.

Our main observation for the new equation is the intrinsic subelliptic structure due
to the monotonicity condition. Indeed, denoting X¢ = 0; + vd, and X; = 9,, we can
rewrite the above equation as of Hormander’s type:

(Xo + X7X 1) f = terms of lower order.

and moreover,direct computation show
(X1, Xo] = (8yu) 8, (1.18)

Thus Hormander’s bracket condition will be fulfilled formally, provided by d,u > 0.
Now we introduce our main result in Chapter 4.

Theorem 1.2.1. Let u(t, x,y) be a classical local in time solution to Prandtl equation (1.17)
on [0, T') with the properties listed below:

(i) There exist two constants C, > 1,0 > 1/2 such that for any (t,z,y) € [0,T] x R,

C*_l <y>*0' S ayu(tvxa y) S C* <y>*0"

, . 1.19
02u(t, 2, 9)| + |OBu(t, 2, )] < Cu (y) """, (1.19)

where (y) = (1 + |y|*)1/2.

(ii) There exists ¢ > 0,Cy > 0 and integer No > 7 such that

€% Bl .17, v eg) + 1€ eyl ooy oty < Co- - (1:20)
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Then for any 0 < Ty < T, there exists a constant L, such that for any 0 < t <17,

Vm>14No, [[eVO7ut)] poga, <t 7D Lm (m!)30+) (1.21)
+
Therefore, the solution u belongs to the Gevery class of index 3(1 + o) with respect to x € R

forany 0 <t <Tj.

The solution described in the above theorem exists, for instance, if that the initial
data ug can be written as

Uo((IZ, y) = ué(y) + ﬂo(.%‘,y),

where v} is a function of y but independent of = such that C~! (y) ™7 < d,u(y) <

C (y)~7 for some constant C' > 1, and @ is a small perturbation such that its weighted
Sobolev norm He20yﬁ0 H H2No+T(R2) is suitably small. Then using the arguments in [2],

we can obtain the desired solution with the properties listed in Theorem 1.2.1 ful-

filled.

The well-posedness problem of Prandtl’s equation depends crucially on the choice
of the underlying function spaces, especially on the regularity in the tangential vari-
able z. If the initial datum is analytic in z, then the local in time solution exists(c.f.
[5]), but the Cauchy problem is ill-posed in Sobolev space for linear and non linear
Prandtl equation proved by D. Gérard-Varet and E. Dormy in 2010 (see [16]). In-
deed, the main mathematical difficulty is the lack of control on the x derivatives.
For example, v in (1.17) could be written as — [ u.(y')dy’ by the divergence-free
condition, and here we lose one derivatives in z-regularity.

The degeneracy cannot be balanced directly by any horizontal diffusion term, so
that the standard energy estimates do not apply to establish the existence of local
solution. But the results in our main Theorem 1.2.1 show that the loss of derivative in
tangential variable x can be partially compensated via the monotonicity condition.

Under the hypothesis (4.1.2), the equation (1.17) is a non linear hypoelliptic equa-
tion of Hérmander type with a gain of regularity of order } in z variable , so that
any C? solution is locally C*°, see [27, 28, 29]; for the corresponding linear operator,
[8] obtained the regularity in the local Gevrey space G®.

However, in this thesis we study the equation (1.17) as a boundary layer equa-
tion, so that the local property of solution is not of interest to the physics application,
and our goal is then to study the global estimates in Gevrey class. In view of (1.19)
we see u, decays polynomially at infinite, so we only have a weighted subelliptic
estimate . This explains why the Gevrey index, which is 3(1 + o), depends also on
the decay index o in (1.19).
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Chapter 2

The incompressible Navier-Stokes
equation with an external force

2.1 Introduction

We study the incompressible Navier-Stokes equations in R3,

V-up=0,

ath —AUf—i-Uf . VUf =-Vp+f,
(NS)
Uf’t:(] = Uup.

Here uy is a three-component vector field uy = (u1,f,us ¢, us s) representing the
velocity of the fluid, p is a scalar denoting the pressure, and both are unknown
functions of the space variable # € R3 and of the time variable ¢ > 0. Finally
f = (f1, fo, f3) denotes a given external force defined on [0,7] x R3 for some T €
R4 U {oo}. We recall the Navier-Stokes scaling : VA > 0, the vector field uy is a so-
lution to (NS f) with initial data ug if uy ¢, is a solution to (NS fy) with initial data
uo,», Where

uy gy (8, 2) := sV, Ax), fa(t,z) == A3 f(\%t, Ax),
palt, ) = A2p(A%t, Az) and wug ) = Aug(Az).

Spaces which are invariant under the Navier-Stokes scaling are called critical spaces
for the Navier-Stokes equation. Examples of critical spaces of initial data for the
Navier-Stokes equation in 3D are:

143 .
L3(R?) < Byg 7 (R3)(p < 00,q < 00) = BMO™! < Byl

(See below for definitions).

To put our results in perspective, let us first recall related results concerning the
Cauchy problem for the classical (the case f = 0) Navier-Stokes equation with pos-
sibly irregular initial data:

V.-u=0,

Ou— Au+u-Vu=—Vp,
(NS)
u]t:() = Uup.

In the pioneering work [22], J. Leray introduced the concept of weak solutions to
(NS) and proved global existence for datum ug € L% However, their uniqueness
has remained an open problem. In 1984, T. Kato [20] initiated the study of (IV.S)
with initial data belonging to the space L?(R?) and obtained global existence in a
subspace of C([0,00), L*(R?)) provided the norm ||ug||;3(gs) is small enough. The
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3
existence result for initial data small in the Besov space B,, ;Jr; for p, € [1,00) and
3

q € [1,00] can be found in [10, 16]. The function spaces L?(R?) and B;;JFE for
(p,q) € [1,00)? both guarantee the existence of local-in-time solution for any ini-
tial data. In 2001, H. Koch and D. Tataru [21] showed that global well-posedness
holds as well for small initial data in the space BMO~'. This space consists of vector
fields whose components are derivatives of BMO functions. On the other hand, it
has been shown by J. Bourgain and N. Pavlovi¢ [6] that the Cauchy problem with
initial data in BO_O{OO is ill-posed no matter how small the initial are. Also P. Germain
showed the ill-posedness for initial data in Bo_o%q for any ¢ > 2, see [19].

However, the situation is more subtle when it comes to forced Navier-Stokes
equations. In 1999, M. Cannone and F. Planchon [11] worked on constructing global
mild solutions in C([0,7T), L3(R?)) to the Cauchy problem for the Navier-Stokes
equations with an external force. They showed the local-in-time wellposedness for
any initial data uyp € L3(R3), if the external force f can be written as f = V - V and

SUDPg<teT tl_%HVHLg is small enough for some 3 < p < 6 and 7" > 0. Also they
showed there exists a unique global solution to (NS f), provided T" = co and vy is

. 143
small enough in Bq70: “with3 < ¢ < 63_—”13. Later in 2005, M. Cannone and G. Karch

[9] proved that there exists a solution us € Cy, (R, L3¥*°(R?)) to (NSf), if the initial
data up € L** is small enough and the external force f satisfies that

t
sup”/ e(t_S)AIP’fds’
t>0 11 Jo

2.1)

L3,

is small enough depending on the norm of the bilinear operator B (defined in (2.3))
in L°(R, L>%).

The basic approach to obtain the above results is, in principle, always the same.
One first transforms the Navier-Stokes equations (V.S f) into an integral equation,

t
up(t) = e ug + / et =IAPf(s)ds + B(ug,uyp)(t) (2.2)
0
where
1 t
B(u,v) := —5 / et=9)Apy . (u®v+v®u)ds, (2.3)
0

[P being the projection onto divergence free vector fields. It is customary to obtain
the existence of a strong global (T = o0) or local (" < oo) solution uy € X7 of
(2.1), with X7 being an abstract critical Banach space, by means of the standard
contraction lemma. For example, in [10, 9] the terms €' and fg e(=9)APf(s)ds are

treated as the first point of the iteration and they require that e g, [ e*=APf(s)ds
both belong to the corresponding Banach space X7. That is why in [10] V needs to
have a suitable decay in time and in [9] the smallness is measured in L>*°(R3) and
the initial data ug is restricted to L>*°. The big difference between [11] and [9] is
the following: in [11] the external force has good regularity and ePug belongs to
Kato’s space for initial data belonging to B, for some p > 3 (see Definition 2.2.4),
which allows the fixed point lemma to work in Kato’s space. Therefore the solutions
in [11] belong to C([0,T*), L3); however in [9], the external force is rough, which
limits the regularity of solution. Therefore in [9] the solutions to [9] only belong to
L (L>*°), even for small smooth initial data. That is the reason why these solutions
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lack uniqueness, unless the solution is small in L$°(L3°).

In this paper we consider (V.S f) with an external force given in [9], however the
class of initial data is different. More precisely, we consider the force f satisfying :
f € C(R;,S8'(R?)) with for any ¢ > 0

t
/ =98P fds € LRy, L3,
0

which belongs to Cy, (R, L3*(R3)), see [9]. Under a smallness assumption on f
(controlled by a universal small positive constant depending on the singularity of
initial data), we first show the local and global existence to (NS f) for initial data ug
belonging to B,,. Moreover we obtain that the above solution belongs to L (L)
when its initial data is in L3>°N By, for p > 3. Then we show the long-time behavior
and stability of the above priori global solutions with initial data in L>> N By,
We need to mention that the uniqueness of solutions in L (L3>), even for smooth
initial data, is a still open problem. However we show that if the difference between
the above solution and another solution to (V.S f) with the same initial data belongs
to C([0,T], L>*°) or has finite energy on some interval [0, T, then they are equal on
[0, 77.

The rest of the paper is organized as follows. In Section 2 we give some notations
and the main results of this paper. Section 3 addresses the proof of the existence and
uniqueness of solutions to (NSf) with initial data ug belonging to B,%,. Section
4 is devoted to the long-time behavior and stability of a priori global solution to
(NSf) described in Section 2. The last section is devoted to a regularity result via
an iteration. In the appendix, we recall several known results and properties of
solutions in Besov spaces.

2.2 Notations and Main Results

Let us first recall the definition of Besov spaces, in dimension d > 1.

Definition 2.2.1. Let ¢ be a function in S(R?) such that ¢ = 1 for |¢| < 1 and ¢ = 0 for
€| > 2, and define ¢; := 2% (29x). Then the frequency localization operators are defined by

Sj = ¢j * .y A]’ = Sj+1 - Sj.
Let f be in S'(R?). We say f belongs to Bg’q if

1. the partial sum 377" A f converges to f as a tempered distribution if s < % and
after taking the quotient with polynomials if not, and

1£ls; = 1277185 lazlle < oo.

We refer to [14] for the introduction of the following type of space in the context
of the Navier-Stokes equations.

Definition 2.2.2. Let u(-,t) € B;vq forae. t € (ti,t2) and let A; be a frequency local-
ization with respect to the x variable (see Definition 3.1.1). We shall say that u belongs to

ﬁp([tlv t2]a B;,q) Zf

1l 2o ey o, ) = 1271 5ull Loty a122) lles < 00
([ ) }7 p,q) J
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Note that for 1 < p; < g < pa < oo, we have

L ([t ta), BS,) = L ([t ta), BS,) = L£2([ta, ta)], BS,) — L ([t ta), BS,)-

Let us introduce the following notation (also used in [17]): we define s, := —1 + %
and

. csp+2 R . .
L(ty, ta) = L[t ta]; By *) N LY ([t1, ta; By *), Leb (1, 12) == L5 (¢, ta)

L& (t1, t2) := L% (t1, t2), LEY(T) == LE?(0, T)and LEP[T < T := Ny LE°(T).

Remark 2.2.3. We point out that according to our notations, u € L¥P[T < T*] merely
means that w € L& (T) for any T < T* and does not imply that u € L&°(T*) (the notation
does not imply any uniform control as T/ T*).

Definition 2.2.4. Let p > 3. Kato’s space is defined as follow,
1_3
Ky = {u € CRe, LP(RY) : [ul i, = supt2™ 5 u(t) | oges) < o0
>

In this paper we are also interested in the weak-strong uniqueness of solutions to
(NS f). We introduce the following notations. We define that forany 7' € R, U{+o0}
E(T) = L>([0,T%), L*) N L*([0,T*), H")
and
Epoe(T) = Lig([0,T), L*) N Lo ([0, T), H').

We also recall the definition of Lorentz spaces LP¢ with1 < p < coand 1 < ¢ <
0.

Definition 2.2.5. Let (X, \) be a measure space. Let f be a scalar-valued \-measurable
function and

Af(s) =Mz : f(z) > s}
Then the re-arrangement function f* of f is defined by:
[5(t) :==inf{s : A\p(s) < t}.
And for any 1 < p < oo, the Lorentz spaces LP9 is defined by:
LPAURY) = {f : R = C, || fllzra < oo},
where
) 1
flisa = { 3L @7 O] g <o
supgo{t? f* (1)}, ¢

We note that it is standard to use the above as a norm even if it does not satisfy
the triangle inequality since one can find an equivalent norm that makes the space
into a Banach space. In particular, LP*° agrees with the weak-L” (or Marcinkiewicz
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space):
Lp*(]Rd) ={f: R — C: | fll o < o0},

which is equipped the following quasi-norm

3=

[Fll o = supt[As(8)] 7.
t>0

To deal with external forces and for simplicity of notation we introduce the fol-
lowing space (introduced in [9]),

y=Uecmﬁswﬂrﬁkwwwﬂmme%m%ﬁm»

equipped with the norm

t
1y i=sup | [ e-2pr(s)as]
t>0 1 Jo L3ee

Remark 2.2.6. We mention that Y contains many rough external forces.

For example,

1. For every g € C’w(RJr,L%"’o), f=Vg e Yand |fl|y
Lemma 3.2 in [9]).

S Mgl e, 00

2. Every time-independent f satisfying A=1f € L3 belongs to Y (see Theorem 4.3 in
[5]).

3. By Lemma 3.4in [9], Y contains some really rough external force: f := (c1d0, c2do, c300),
where &y stands for the dirac mass.

According to Theorem 2.1 in [9], there exists a constant g > 0 such thatif f € Y
and uy € L3 satisfy that ||ugl/zs.~ + ||f|ly < €0, there exists a unique solution to
(NS f) with initial data u and external force f, denoted by NS f(ug), which belongs
to Cw (R4, L) such that

INSf(uo)ll ooy, 100y < 2([[uol L2 + [ f[ly)-

In particular, we have NSf(0) € Cy, (R, L>*) satisfying

INSF(O) oo (ry ra0ey < 2/ flly < 2e0.

From now on, we denote Uy := NS f(0).

Now let us state our main results. We first state a local in time existence result for
(NSf) for initial data belonging to B, for any p > 3 under a smallness assumption
on f depending on p (it is no loss of generality to set p, p rather than p, ¢, which
deduces some technical difficulties). Moreover we obtain a local in time existence
result for (NSf) in L°(L>*) for initial data belonging to By%, N L3>,

Theorem 2.2.7 (Existence). Let p > 3. There exists a small universal constant c(p) > 0
with the following properties:
Suppose that f € Y is a given external force satisfying that || f||y < c¢(p). Then

1. for any initial data ug € By, a unique maximal time T*(uq, f) > 0 and a unique
solution uy € LI®[T < T*] 4+ Cy([0,T*), L>*) to (NS f) with initial data ug
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exist such that
up —Up € LT < T7).

with rog = 2. And if T* < oo,

limsup ||u — UfHIL;Om(T) =
T—=T*

Moreover there exists a small constant 1) > 0 depending on f and p such that

ol gz, <n = T* = 00 and Jlug — Upllgzoe oy < CCHuoll g

2. ifug € By N L3, the above solution uy to (NS f) with initial data ug belongs to
Cw([0,T*), L3).

3. ifug € By N L2(R?), the above solution uy to (NS f) with initial data u satisfies
that

Uy — Uf S Eloc(T*)'
Our method is to transform (NS f) into the perturbation equation,

ow—Av+v-Vo+Up-Vv+v-VUy = -V,
(PNSy,)y V-v=0,

Vlt=0 = vo = o,
The corresponding integral form of (PN Sy, ) is
v =ePvg + B(v,v) +2B(Uy,v), (2.4)

where B is defined as (2.3). The reason why we focus on (PN Sy, ) is that (2.4) allows

. . . SolESE
us to use the classical contraction lemma in the Besov space L7 ([0, T], B, © ") with

any p > 3 and some r > 2.

Also in order to control the energy estimate, we adopt the argument about the
trilinear form fOT Jgs(a - Vb) - c(t)dxdt in [18].

From Theorem 2.2.7, for any ug € B, N L3, there exists a solution u; €
Cy([0,T), L3*). Actually C,([0,T*), L>*) is the highest regularity of solutions
to (NSf), as the singularity of f limits it. Therefore the uniqueness of solutions
to (NSf) in Cy,([0,T*), L>*) is crucial. We point out that we cannot prove that
the above solution is unique in L (L**°) without the smallness assumption on the
solution. Actually even if for (N.S) the uniqueness in L{°(L**) is still open (the
uniqueness just holds when solution is small in L°(L3°°)). However, we obtain
that the above solution is unique in the following sense:

Theorem 2.2.8 (Uniqueness). Let p > 3. There exists a universal small constant 0 <
c1(p) < c(p) with the following properties:

Suppose that f € Y is a given external force satisfying that || f|ly < ¢ and uy €
Cw([0,T%), L>*) is a solution to (NSf) constructed in Theorem 2.2.7 with initial data
up € L3®°NByY,. Then uy is unique in the following sense: Assume that iy € Cy, ([0, T], L>>°)
for some T' < T™* is another solution to (NS f) with same initial data uy.

o Ifuy —uy € Ly>(T) + {U(t,x) € Cop(Ry, L>®) : [|U]|oo(r, ) 800 < 2¢1} for
some 2 < r < %, then uy = uy on [0, T).
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o ifupr — iy € C([0,T], L>>), then uy = g on [0, T
o if3<p<5banduy—ay € L(0,T),L*) N L2([0,T], H'), then uy = iy on [0, T).

We prove Theorem 2.2.7 and 2.2.8 in Section 3. Our method depends on an iter-
ation regularity result developed in Section 5.

The global existence of the solutions described in Theorem 2.2.7 for large initial
data ug € By, is still open, even for f = 0. We mention that even if a solution
up € Cyu([0,T*),L>*) to (NSf) is global, which just means its corresponding life
span T* = oo, one cannot obtain that u(¢) has a uniform bound in L** as ¢ goes
to infinity in general. However, if vy is a global solution to (NS f) with initial data
uy € By, N L described in Theorem 2.2.7, the next theorem shows the solution
belongs to L®(R, L>>).

Comparing with previous results of long-time behavior, our assumptions on uy
and f are all in critical spaces, but the class of initial data is smaller. For example, in
[5] C. Bjorland, L. Brandolese, D. Iftimie & M. E. Schonbek proved that if the external
force f is time-independent satisfying that A=1f € L3 N L* and ||A7!f||13. is
small, then for any priori global solution uf € Cy, (R4, L3*°) N L} (Ry, L*) with
initial data ug = vy + wy satisfying that vg € L? and ||w|| 13, is smaller than a fixed
small constant ¢, then uf € L (R, L3*). It clear that the space of initial data they
are working on is larger than L>> N By?, and A~!f € L3> N L* implies that f € ).
However the condition A~1f € L3°° N L* excludes some important singular force:
A~Lf~ ﬁ, which belongs to .

Theorem 2.2.9 (Long-time behavior of global solutions). Let p > 3. Suppose that
[ € Y is a given external force such that || ||y < c1(p), where c1(p) is the small constant in
Theorem 2.2.8.

Suppose that uy € Cyy([0,00), L) is an priori global solution to (NS f) described
in Theorem 2.2.7, whose initial data ug € L>> N ByY,. Then there exists a constant M
independent of uy such that

limsup ||us(t)]| 3.0 < M.
t—o00

The idea of the proof of long-time behavior, as in [16, 5], consists in decom-
posing the initial velocity in a small part plus a square integrable part. The small
part remains small by the small data theory and the square-integrable part will
become small at some point by using some energy estimates. More precisely, we
split the initial data ug = o + vo, where @y is small enough in L>* and vy €
L%*(R3) N L3, By the global existence of (NSf) for small initial data (see [9]) we
have NSf(uo) € L*(R4,L>*®) and v := uy — NSf(ip) satisfies the perturbation
equation PN Sy g¢(q,)- Compared to the unforced case, it is hard to obtain that v has
finite energy on [0, 7] for any 0 < T' < oo in general, which is the reason why the
restriction on external force: A~!f € L3> N L% is crucial in Theorem 4.7 in [5]. In
our case, we have obtained that v has finite energy on [0, 7] for any 0 < T' < oo by
Theorem 2.2.7.

We show the stability of priori global solutions constructed in Theorem 2.2.7 in
the following theorem.

Theorem 2.2.10 (Stability of global solutions). Let p > 3. Suppose that f € C(Ry,S'(R3))
satisfies the same conditions as Theorem 2.2.9 and that wy is an priori global solution to
(NSf) described in Theorem 2.2.7 with initial data ug € By

Then there exists an § (depending on uy) with the following property.
For any initial data uy € By, satisfying |[uo — to| B, < 9, there exist a global solution s
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to (N S f) with initial data ug, and
[l () = as(O)llLgoee ooy < lluo — ull gz -

The stability result for the solution introduced as above is an extension of Theo-
rem 3.1 in [16]. We prove it with a similar proof to Theorem 3.1 in [16], the difference
between these two cases is that there is a small bounded in time and no-decay in
time drift part in our case. The proofs of Theorem 2.2.9 and 2.2.10 are presented in
Section 4.

2.3 Existence and uniqueness of (NS f)

The aim of this section is to prove Theorem 2.2.7 and Theorem 2.2.8. Let us recall the
situation: Let p > 3 be fixed and the external force f € YV and || f||y < ¢(p), where
¢(p) is a small universal constant smaller than the constant ¢ in Theorem 2.1 of [5].
The class of initial data is B,,.

2.3.1 Existence of (NSf)

By Theorem 2.1 in [5], there exists a unique solution Uy := NSf(0) € L°°(Ry, L>>)
such that

10Ul oo @ 1.0y < 20 flly < 2¢(p)- (2.5)

Then we can transform the Cauchy problem of (NS f) into the Cauchy problem
of (PN Sy, ):

ow—Av+v-Vo+Up-Vv+v-VUy = -V,
(PNSy,)y V-v=0,
v]¢=0 = o,

whose integral form is
o(t,x) = e®ug 4+ B(v,v) + 2B(2U4,v),

where B is defined in (2.3). We use a standard fixed point lemma to solve the above
system: We first recall without proofs the following lemma.

Lemma 2.3.1. Let X be a Banach space, L a linear operator from X — X such that a
constant X\ < 1 exists such that

Ve e X, |[L(@)lx < Allzllx,
and B a bilinear operator such that for some -y,
V(z,y) € X*, [[B(z,y)llx <vllzllx]yllx.

Then for all z1 € X such that
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the sequence defined by
20 4 ™)+ B, 50)
with ©(©) = 0 converges in X and towards the unique solution of
x =1+ L(z) + B(z,2)
such that
29lzllx < (1-N).

In the proof of Theorem 2.2.7, we first show the local in time existence of (NS f)
with initial data in B, Next, we show the propagation of the regularity of the
solution constructed above with initial data, in addition, belonging to L3> or L.

Proof of Theorem 2.2.7. Let ug € By, be a divergence-free vector field. We note that v
is the solution satisfying system (PN Sy, ) with initial data uy.

Existence: It is clear that if there exists a solution v to (PN Sy, ) with initial data
up on [0, T, then v + Uy is a solution to (V.S f) with initial data ug. Hence to prove
the first statement in Theorem 2.2.7, it is enough to prove that for any initial data
uy € By, there exists a unique 7* > 0 and a unique solution v € L7 to (PN Sy,)
with initial data ug.

Now we start to prove the above statement by applying Lemma 2.3.1.

.S

2
We choose £([0,T], Bp;,”)) as the Banach space in Lemma 2.3.1, where ry =
pzfpl. It is easy to check that s, + % > 0. To apply Lemma 2.3.1, we need to obtain that

2
B(u,v) defined in (2.3) is a continuous bilinear operator from £ ([0, T], B;;m) X
2 5.2
L]0, T, B;;TO) to L7 ([0,T], B;;TO) and the linear operator L(v) := 2B(2Uy,v) is
2
25+ 70

continuous on £ ([0, 7], By, ) with its norm strictly smaller than 1.
In fact, according to the first statement in Lemma 2.6.2 and the first statement of

.s+2

Proposition 2.6.3, we have that B is a continuous operator from £ ([0, T]; By, ) x

spt2
Lro([0,T]; B,Sfp "0 to itself and hence, for some v > 0

| B(v1,v2)]| o2z <l 2 [jve 2 .
T oo ) cro(o 1By, 0y Lro((o 1By, T0)

According to the third statement in Proposition 2.6.3, replacing w by Uy, we have

. spt+2
forany v € £7([0,T]; By, ™),

1BEU;, o) ez <1BEULY)| s
‘CTO([OvTth,p 0) LTO([O7T];Bﬁ,p 0)
< 20)NUy Loy L300y |V st 2

Lo ([0,T];Bp,, ")

where C(p) — oo as p — oo and % =i+ é. By taking c(p) < (4C(p))~!, then by the
above estimate and (2.5) , we have

A =271 CP)|Ufl oo (ry 150y < 1,
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and
1BQ2U, v)|| < Aljfl copt 2

'Sp+% r T0
) L7o([0,7];Bp,p )

Lro ([OvT];BP,P

Therefore according to Lemma 2.3.1 and the fact that

A
JeBoll e S ol
»=P,p

one can find a small enough number 7(p, f) such that, for any ug € B, with
.S +.l .
|| uoll B < there exists a unique global solution v € L(R,, B, ) with ini-

tial data u satisfying that
1-A

Cspt 2 S 5

v <
| H£T0<R+,Bp,p 0y T 2y

Moreover we notice that for any given uy € By, and any T' > 0,

3=

A j(sp+= A
leBuoll ea = (2 @I ol oryan))
(0T1Byp ) Mg,

- H(1 _ e—mTcp22j)%zjsp”AjuoHLpHW

Next, an application of Lebesgue’s dominated convergence theorem shows that

1
p

lim || (1 — 77072 )75 275 || A jug | o |, = O

t—0

It follows that for any given ug € By, there exists T such that

1—))2
e uol| 2 < (Gt
£ro((0,T)i By 0) 4y

- Spt
Therefore we have v € £7([0, T]; B;T)p ). .
Hence for any ug € By, there exists a T*(ug, f) > Osuch thatv € £7([0,T*), Byh).

s 42
And according to Lemma 2.6.2, we obtain that v € L£"([0,T™); B;er) for any r €
[r0, 0], which implies that v € Lp0**°[T" < T™].
When T* < 0o, we claim that

A, [[vllpgeee iy = oo,

by a similar argument in [13]. In fact, if

lim
T—T*

'UH]L;(J:OO(T) < oo,

in particular,

v e L2([0,T%), Byy)
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which implies that for any ¢ > 0, there exists N (¢) such that for any ¢’ € [0,T™*)

3=

> 2 |ap)h,)” <

71>N(e)

Therefore for any fixed ¢ € [0,T%),

_ 25\ L -
e o ()] oz = [ T2 Y5 20 | Aot 1
Lro([0.T;Bpp %)

1
S (X 2aOIg,)” + 2O @ = ol g o7 5,
liI>N(e)
S £+ 2N(5)3p(1 _ eTOT)||UH,COO([0,T*)’B;?I))7
which implies for any ¢ € [0,7*), there exists a 7 independent of t' € [0,7%) such
that

<Q;jﬁ'

e (t)]| ot 2
cro(0:B0 0) Ay

.s+2

Hence we obtain that v € £7°([0, T* +7/2], By, "), which contradicts the maximal-
ity of T*.

To finish the proof of the first statement in Theorem 2.2.7, we need to prove v is
the unique solution to (PN Sy, ) with initial data ug € Byh, in LT < T™]. We
suppose that v € L;°°°°(T') for some 7" < T™ is another solution to (PN Sy, ) with the
same initial data ug and set w := v — v. It is easy to check that w satisfies that

w = B(w,w) + B2(Us +v),w).
A similar argument as above implies that

2
ol e, SEollwl? e Kool

2 2 W]l sptiZ
t ;P t p?p+ "o t B;?P TO) E:O B;fp "o
Al i

for some Ky > 0. This fact implies that one can find a K1 > K > 0 such that

< K 2 + K .
[|w]] "o .ZT% < Ki||wl| o ,;ij_% 1HU”£;O(.:§;+% HwHEZO(.ZT%)
We infer that
K + K — > 0. .
[[wl] 0 .;p;rfo ( 1||wH£;.O( .ZT%) 1Hv||£:0( .;T%) 1)=0 (2.6)

. spt+2 N
By continuity of the norm of £}° (B;?p "0) with respect to the time, there exists 7" such
that for all ¢ € [0, T

K jw] + Kilv|] —~1<0.
c c

2
ro 3Pt 70

2

.sptgis
0 BP 0
t(P»P

t(P:P
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Therefore, for t € [0, 7] relation (2.6) can hold only if Hw\|£m LD | = 0, that is
7 \Pp,p
w = 0 on [0, T], by continuity again, w = 0 on [0, 7] for any T’ < T*.
The first statement of the theorem is proved.
Propagation of perturbations:
Next we turn to show the propagation of v. According to Theorem 2.5.1 by choos-
ing w = Uy and w = 0, we have that v can be written as, for any 7" € [0,7™)

v =l + v° ,
where v = Hy, € L}>®(c0) and v¥ = Wy, + Zn, € L>([0,T], L*>*) with Ny
being the largest integer such that 3(Ng — 1) < p. We first notice that in the case
when w = 0, Hy is a sum of a finite number of multilinear operators of order at
most N — 1, acting on e/“ug only. Hence according to Lemma 2.6.6 and an inductive
argument, we obtain for any NV > 2,

Hy € L®(Ry, L>>),

which implies that v/ € L>(R,, L>>).

To prove the second statement of the theorem, we are left with the proof of v €
Cyw([0,T%), L*>). We notice that by Lemma 2 & 3 in [2], e'"®uy € Cy ([0, 00), L3>).
This fact combined with Lemma 2.6.6 implies that for any 7" € [0,7™)

v=v 4+ 0% = Hy, + W, + Zn, € Cy([0,T%), L>>).

The second statement of Theorem 2.2.7 is proved.

Finite energy of perturbations:

In the last part of the proof, we show that v has finite energy on [0, 7] for any
T < T, ifug € By, N L2.

Now we suppose that ug € By, N L? and T € [0, T*) is fixed. We recall that

v = e®ug + B(v,v) + B(2U}, v).
It is clear that e'®uy € E(c0). Hence we only need to prove B(v,v) + B(2Uy,v) €
E(T).
By replacing v of B(v,v) + B(2U¢,v) by vl 4 v¥, we have

B(v,v) + B(2Uy,v) =B(v" v 4 20° 4 2U;)
+ B(v®,v° + 2Uy).

By applying Lemma 2.6.8 and the fact that e'®ug € E(c0), we first obtain v/ =

Hpy, € E(c0). Again by Lemma 2.6.8, we obtain that
B v + 205 4 2U;) € E(T),

provided that v € 1)°(c0) and v + Uy € £L>([0,T7, Bj%,) where ¢ = 7%.

Now we turn to the proof of B(v®,v° +2U;) € E(T). We recall that
v¥ 42U € L([0,T], L>>). (2.7)
On the other hand, by S e L;?I;OO(T) with some rg = % and some p < 3, we have

v € LEX(T) € LEX(T),
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provided that ]% < 3 for any p > 3 and standard embedding L3'>°(T') < L§(T).
Hence by Lemma 2.6.9, we obtain

vd € L2([0,T], L%?). (2.8)
Thanks to (2.7) and (2.8), applying Lemma 2.6.8, we obtain
B(v®,v® +2U;) € B(T).

Therefore we obtain v € E(T") Theorem 2.2.7 is proved. O

2.3.2 Uniqueness of (NSf)

Although the solutions in Theorem 2.2.7 need not be unique in L{°(L3*°), the fol-
lowing arguement shows that the gap between two different solutions has infinite
energy.

Proof of Theorem 2.2.8. Letuy € Cyy([0,T*), L>°) be a solution to (NS f) constructed
in Theorem 2.2.7 with initial data ug € L3 N By,

We now prove the first statement in Theorem 2.2.8:

Assume that @y € C,, ([0, 77, L>*) for some T' < T* is another solution to (N Sf)
with initial data ug and satisfies w := %y — uy = wy + wo, where

w1 € L;ZOO(T) and ‘|w2HLoo(R+7L3,oo) < 4cy
forsomep > 3,2 <r < I% According to Theorem 2.2.7, uy can be decomposed as
ur =0+ Uf,

where v € LI'°[T < T*] and Uy € Cy (R, L**°) with |Uf| oo (g, 1300 < 2c1.
We notice that w satisfies:

w = B(w,w)+2B(ur,w)
= B(wi + w2, w) + B(2us,w)
= B(w; +2v,w) + B(ws + Uy, w).

On the other hand, we notice that for any ¢ < 3,
L2([0,T], Byo) — L=([0,T], L>>)

combining with wy,v € Ly*°(T) and w € L>([0, 77, L3°°), using Proposition 2.6.3,
we obtain that, for any 7 € [0, T

| B(w1 + 2v, w)HLOC([O,TLLB*OO) SlIB(wr + 2”vw)HLoo([o’ﬂ,B;?p)

(2.9)
<K 2 0o 3,00) .
- le + UHK’“([O,TEB;?:%)HwHL (0.7, £5)

And according to Lemma 2.6.6, we obtain that

| B(wz + Uy, w) | poo (0,7, 1300y S lwa + Ul oo, p3.00) [0 Loo (0,7, 8.5 -

From the smallness of w2 and Uy, which is

[wall oo (r L300y + [1Uf |l oo ry 1300y < Ber,
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we obtain that
| B(wz + Uy, )| oo (jo,7],800) < W]l poo (077,235 (2.10)

provided that ¢; is small enough.
By (2.9) and (2.10), we obtain that for any 7 € [0, 7],

HwHL"o([O,TLLS"X’) < Kllwy + QUHU ) .5p+%)”wHLw([o,r],L&oo)-

([0,7);Bp.p

s, 42
By continuity of the norm of E?(B;Z;L?’) with respect to time, there exists N real

numbers (7;)1<;<n such that 7} = 0 and Ty = T, satisfying that

N-1
0,71 = | 72 Ti] and [y + 20]
=1

<
U([Ti,TiH];B;?;%) T 2K’
forallie {1,...,N —1}.
Now we prove that w = 0 on [T}, T;41] forall i € {1,..., N — 1} by induction. We
tirst notice that

IN

||| £oo (0,75, 23:0) K|wy + 2U||U -sp-s-%)||w||L°°([O,T2},L3v°°)

([07T2]§B:;7 p

IN

1
lwllzee o.5) 2322),
which implies that
w=0 on [0,T3].
Now we assume that w = 0 on [0, 7] for some k > 2. Hence
17,7 (Hw = w = B(w;y + 2v, 17,7 (H)w) + B(wz + Uy, 177 (tHw).
Therefore we have the following bounds for w,

[wl] oo (11, 410,£300) = [l Low (0,13 41),£3)

1 1
< iHB(wl + 20, )| Loo (0,73 11],23) T §”B(w2 + Up, W) oo (0,734 1],L3%¢) -

Combining with (2.10), we have

Wl Loo (13, Ts 1), 280y < 1B, 7y (w1 + 20), w)|| oo (0,73 4], L3%0) - (2.11)
On the other hand, we notice that

B(wy + 2v,w) = B(w + 2v, 11y, mqw) = B(1gy, 7)(w1 + 20),w),
again by Lemma 2.6.3, we obtain that

| B(w1 + 20, )| Lo (0,13 1),2350) = 1Bz, 7y (w1 + 20), w) || oo ((0,13,,1], L)

< K|1 wy + 2v et 2 W[ oo 100
< Kl1g, 1w )||LT([0,Tk+1};Bpf’p+z)H | Lo ([0,T310,23)
= K ’U)1+2’U Leo 2 ||W oo 3,00
| IIU([TMTHJ;BP{,;T)II | Lo ([T, Thos 1], L352)
1
< Sllwllzee gy 2300)-
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Hence, by the above estimate and (2.11), we have

1
”wHLN([Tk,Tk+1],L3’°O) S 5 HwHLOO([Tk,Tk+1LL3’OO)7

which implies that
w =0 on [Tk,Tk+1].

Then we have w = 0 on [0, T']. The first statement in Theorem 2.2.8 is proved.

Now we turn to prove the second statement in Theorem 2.2.8:

Assume that 4y € Cy,([0, T, L>*) for some T' < T* is another solution to (NS f)
with same initial data ug. We denote w := %y —wuy. By the assumption of the theorem,
w =t —uy € C([0,T], L>*°) with w(0) = 0. We notice that w satisfies the following
equation on [0, T

w(t) = B(w 4+ 2Uf,w) + B(2v,w),
where v :=uy — Uy € L)0"*°[T" < T*]. According to Lemma 2.6.6, we have
| B(w+2Ug, w)|| oo ([0,4,85)

<LCllwl|Foe(io.4. 280y + Cllwll oo (po4,25.) Ul Lo (0,8, L3) (2.12)
([0,¢] )

<Cllw|| zoo((o0,1,L3.50) 1 Us |y 13.00) + [l Lo (0,11, £3:50))-

According to the continuity of w in L** and the fact that w(0) = 0, one can
choose a 77 such that, combined with the smallness of Uy,

1
HUfHLOO([O,t],L&OO) + HwHLOO([O,t],L&OO) < 30

which implies that

1
| B(w + 2Uy, )| oo (0,11, 13.) < g”wllLoo([o,Tl],L&oo)- (2.13)
By Lemma 2.6.3, by a similar argument as the above paragraph, we have that for
any t € [0,T]

1B (20, w) || Los (0,4, L3:0) < CHUHU .s,,+%)HwHLw([o,t],L&oo)-

0([0,t],Bp,p

. Spt =
By continuity of the norm of £7([0, ], B,, ") with respect to the time, there exists

T5 > 0 such that
C HUH 2 <
which implies that

1
|1 B(2v, ) || oo (0,15, 13:00) < gHWHLW([O,TQ},L:‘W)- (2.14)



38  Chapter 2. The incompressible Navier-Stokes equation with an external force

According to (2.13) and (2.14), taking Ty = min{T}, 7>}, we have

1wl zoe (0,70, 23:2)
< |[B(w + 2Ug, w)|| oo (j0,1),23.%) + [[1B(20, w) || oo (0,1, 23.)

IN

2
3 HwHLOO([O,TO],L&OO)a

which implies w = 0 on [0, 77] and, by continuity, w = 0 on [0, T] too. Therefore we
proved the second result in the theorem.

Now we are left with the proof of the last statement of the theorem. Since we
need to apply Lemma 2.6.7 to obtain a uniform energy bound, we set 3 < p < 5 to

2
make sure that v € £P([0, 1], B;ij”) with s, + % > 0.
Assume that s € C,,([0,77], L>*) for some T < T* is another solution to (NS f)

with same initial data up. We denote w := @y —uy. By the assumption of the theorem,
w € L>=([0,T), L*) N L*([0,T], H') satisfies the following system:

Ow —Aw+w-Vw+us-Vw+w-Vuy = -V,
V-w=0,

w]t:() =0.

Therefore we have the following energy equation, for any ¢t € (0,7),

t t
()12 +2/ IVe(s)|2ads = _2/ / w- Vg - wdads.
0 0 JR3

According to Theorem 2.2.7, uy can be written as uy = Uy + v, where Uy := NS f(0)
is the solution to (V.S f) with initial data 0 and v € L;>**°[T" < T™] is the solution to
(PN Sy,) with initial data ug. Therefore we have that

t
|// w - Vuy - wdzds|
0 JR3

t t
§|/ / w-V(Uf)'wdxds\+]/ / w- Vv - wdzds|.
0 JR3 0 JR3

By Young’s inequality in Lorentz spaces, the first term on the right can be controlled

by:
¢ t
\// w-V(Uf)-wdxd5|:|// w - Vw - Updzds|
0 JR3 0o JR3

t
S/O lw(s) o2 Ve ()l 2l|Ug (s)]| 3,00 ds.
We observe now that H'(R?) — L%2(R3). This embedding follows from the Young

inequality for Lorentz spaces after noticing that (—A)_% is a convolution operator
with a function bounded by ﬁ whcih therefore belongs to L2, Hence

t t
/0 () o2 IV () 2 [T () oo ds < [T o i 2o /0 |V (s)|[2ds.
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Since Uy is small enough in L* (R4, L3*°), we obtain

t 1 t
|/ / w - V(Uy) - wdzds| < / [Vw(s)||32ds.
0 Jrs 3Jo

We recall that v € L;9°°(T) with 3 < p < 5 and one can take ry = pzfpl. This

. sp+2
implies v € LP([0,T], Bpf)pﬂ’) with % + % > 1. Applying Lemma 2.6.7, we obtain

t t t
]/ /3w -V - wdzds| < C/ Hw(s)H%Q||v(s)||p.s4+2d5 —|—/ IVw(s)||22ds.
0o Jr 0 BATP 0

Then w satisfies the following energy inequality,

t t
Ol + [ 1Va@lEeds <€ [ lw@IEalo(@l,. ys
BP:P
By Gronwall’s inequality and the fact that w|;—¢ = 0, we get

t
(Ol + [ 19alo)ads < 0.

Then w = 0 on [0,T], which implies that uy = @y on [0,7]. Hence we have proved
the second statement of Theorem 2.2.8.
Theorem 2.2.8 is proved.

2.4 Long-time Behavior and Stability of Global Solutions

Let f be a given external force satisfying the assumption of Theorem 2.2.7. We con-
sider a global in time solution u¢ to (NS f) constructed in Theorem 2.2.7 with initial
data ug € L N By%,. Also we are interested in the stability of this kind of global
solutions.

2.4.1 Long-time behavior of global solutions

Now let us start to prove Theorem 2.2.9. In order to apply a weak-strong argument,
we need to use the regularity result in Theorem 2.5.1 to obtain the local in time
part has a local in time finite energy by a similar argument to the proof of the third
statement of Theorem 2.2.7. However, we need to deal with a more complicated drift
term than before.

Proof. Let ug € L N By, Suppose that us € Cy,(Ry, L**) is a solution to (N Sf)
with initial data ug such that

vi=uy — Uy € LT < oo,

where Uy := NSf(0) and rg = p%pl. By the smallness assumption on f, we have Uy €
L>® (R, L**). Therefore to prove the theorem, we need to prove v € L>®(R., L>*).
To achieve this goal, we only need to prove v € L}***°(c0). More precisely, if v €
]L;Ozoo(oo), by choosing 7' = oo, w = Uy and w = 0, Theorem 2.5.1 implies v can be
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written as
v =0l + v37

where v = Hy, € L}>®(00) and v® = Wi, + Zn, € L (R, L**) with Ny being

the largest integer such that 3(Ng — 1) < p. We recall that in the case when w = 0,

o = H N, 1s a sum of a finite number of multilinear operators of order at most No—1,

acting on e*Avq only.

Hence according to up € L3, Lemma 2.6.6 implies Hy, € L°°(R, L3*). Thus
v € L®(Ry, L3>).

Now we start to prove that v € 1;***°(00):

We use the method introduced by C.Calderén in [7] to prove results on weak
solutions in LP spaces, and used in [18] in the context of 2D Navier-Stokes equations:
we split the initial data into two parts, ug = wo + vg, where wy € L3N B;f}g NL? and
7o € L N By}, such that

10l 3. < e(p) < c(p),
and its associated solution v to (PN Sy, ) satisfies that
lellyro= ooy < CCHIIEo .
We define w := v — 0. It is easy to find that w satisfies the following system,
Ow —Aw~+w-Vw+ (Us+7) - Vw+w-V({Uf+0) = -V,
V.-w=0,
w|t:0 = wy-
Also w can be written as the following integral form
w = e®wy + Bw,v+ v+ 2Uy).

Step 1: We first show that for any 7' € (0,00), w € E(T). Suppose that " > 0 is
fixed. We notice that e'®wy € E(T) provided wy € L?. Applying Theorem 2.5.1, by
taking w = Uy and w = v, we obtain that w can be written as

w=uwl+ wS,
where wf € L, >°(o0) and wd € L) for some 2 < j < 3. Therefore we obtain
w® € LgZ(T),
provided that ro = % < 3 for any p > 3. Hence by Lemma 2.6.8, we have
B(w’,v+v+2U;) € E(T),

asv+ v+ 2Uy € L°°([0,T], L>>).
We recall that w? = H ﬁo, where H f(;o can be written as

No—2
E _ p7E M @M ®(No—1—M)
‘HNO - HNQ—I + Z BNo—l,No—l(v ’UL )7
M=0
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where BZJ‘GIO _1.N,—1 are (No — 1)-linear operators and vy, = e'®wo. We recall that
HE = 2wy and HE = HE 4 B(e'®wy, e®wp) + B(w, e®wp).
Therefore by Lemma 2.6.8 and an inductive argument, we obtain that
HY, € E(T),
provided that wy € L? and o € LJ°**°(T)). Applying Lemma 2.6.8 again, we have
B(w",v+v+2U;) € E(T),
as v+ 0+ 2Us € L®([0,T), By,) deduced by Lemma 2.6.4. Therefore we obtain that
forany T' € (0,00), w € E(T).

Step 2: In this we show a global energy estimate for w. Let us write an energy
estimate in L?, starting at some time ¢ € (0, 00). We get

t t
lo ()| +2 / (s |Zads = w(to)||2a — 2 / / (@ V(0 +U)) - wdds.
to to JRR3

We notice that
t t
| / / (@ VU}) - wdids| < U | g gy o) / lwll oz [ Veoll 2.
to JR3 to

We recall that H'(R?) < L%2(R3), which combined with the above relation implies
that

t t
| / / (@ VUp) - wdzds| < Uyl gy 2o / IVeo(s)|2ds
to JR3 to

Since [|Uy|| oo (r, 130y < 2¢1(p) with ¢;(p) is small enough, hence we obtain

1 t
|// w - VUy) wdxds\gz t [Vew(s)|32ds. (2.15)
0

On the other hand, by a similar argument as above, we have that © can be written as,
v = o + 9%,

where o € 1L,/ (c0) and % € L)%/ for some 2 < j < 3. Hence

|// w - V) - wdzds|
tg JR3
t
S‘//(W'VUH)-wdxds]—i-]//(w-V(vS)-wdxds.
to JIR3 to JR3

We recall that v is a sum of a finite number of multilinear operators of order at
most Nog — 1, acting on ety only, as v € L;O’Oo(oo) is the small global solution to
(PN Sy, ), which is the case of w = 0. Then by Lemma 2.6.5 (for details see [16]), we
obtain that there exists K only depending on p,

L _
sup 2[5 e < [0l gn < Ke(p)
>0 ,
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Therefore

t t ds
|/ / (w- V') - wdads| S/ () 22 Vel 2 v/s 187 || oo —=
to JR3 \/>

d
||w<>uL2ds+Ke / lo(s) 2222

\/§

Again by Theorem 2.5.1, we also notice that there exists K1 only depending on p
1951 oo £y S IWNollro= (o) + 1 236 I (o) S 100l ggp, < Fale(p))-

Hence we obtain

| / / ) - wdzds|

¢
< ||@S”L°°(R+,L3v°°)/t lw(s)l[Lo2[[Vew(s) | 2ds
0

t
<105 mypo) [ IVl Fads
0
t
< Kie(p) | [|[Vw(s)[7:ds.
to
Since ¢(p) is small enough, we have
t 1 t
|/ / (w- V(7)) - wdeds| < ~ [ [|[Vw(s)|22ds. (2.17)
to R3 4

to

According to (2.15), (2.16) and (2.17), we have the following energy estimate for w,

ds

lo®)Is + / (s [2ads < w(to)|Za + K2 / Jo(s) I T2

We now use Gronwall’s Lemma, which yields

1 t t K2€2
(@)l + 5 [ (o) Bads < ool ()
2 to tO
Now by Sobolev embedding and interpolation we have

t t t
/ ()50 ds S [ Nw ()l ds < / ()72 Vw(s) |17 2ds,
to p.p to Hz to

which by the above estimate yields

' t K2€2
(t = t0) inf lo(s)ly S et} ()
Hence we obtain
. t 282/2 1
It ws)lg, S letto)lo ()= t0)7H.
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In particular we can write, for all ¢t > ¢y + 1,

) K221
inf [lw(s)ll g S lw(to)l| 2t =~

which can be made arbitrarily small for e(p) ;% and ¢ large enough. It follows that
one can find a time 7y such that

ool g, < n(p).

By Theorem 2.2.7, we have v € LL0**°(c0).
Theorem 2.2.9 is proved. O

2.4.2 Stability of global solutions

We are now in a position to show the stability of an a priori global solution con-
structed in Theorem 2.2.7: let us prove Theorem 2.2.10.

Proof. Suppose that a divergence free vector field uy € By, generating a global so-
lution uy € LT < oo] + Cy(Ry, L) with rg = % such that v := uy — Uy €
Lo*°[T" < oo], where Uy := NSf(0). According to Theorem 2.2.9, we obtain that
actually

v € L (00).

Now let @y € B,%, be another divergence free vector field. By Theorem 2.2.7,
there exist a T*(i9) and a solution uy € L0 °[T' < T*(ig)] + Cy (R4, L*>°) such that
uy — Uy € L0°[T < T*(up)]. We mention that the life span 7 (i) is priori finite.

We denote w := uy — uy, then it is enough to prove that for ||w|;—o|| B, small
enough w € L0*°(00).

The function w satisfies the following system:

ow—Aw+w-Vw+ (v+Us)-Vw+w-V(v+Us) = -V,
V.-w=0,

wli=o = wp.

We deduce from Proposition 4.1 in [16] and Lemma 2.6.2 & 2.6.3 that w satisfies the
following estimate:

sup [lw(t)||ge» + [Jw]] ot
t€]a,B] PP L£70([0,8],Bpp 0) 2.18)

<K|w(a)ll g + K|wl? o2 K| w2 Nl pt 2

B £r0 (a8, 0) cro(aBlByy ) Lro((aBlByy 0)
for some constant K > 1 and all times «, 5 € [0, T]. Then there exists N real numbers
(T3)1<i<n such that 71 = 0 and Ty = oo, satisfying

1
Ry = UM [T}, Tiy1] and ||o <o Vie{l,.N-1} (@19

. Sp"rl
Lo([T,Ti+1),Bpp )

Suppose that

1
pop <, 2.20
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Then there exists a maximal time 7j € R4 U {co} such that

1

HwHE”O([O,TO],B;{’p) < 1K (2.21)

If T = oo then the theorem is proved. Suppose now that T < oo. Then we can find
an integer k € {1,..N;} such that

Ty <To < Tgy1-
Then we have

0] < 2K [w(T3)| gor,

. 5p+%
L70([T;,Ti41],Bp,p

)
which implies that

sup  Juw®)l g < 2K (T g
tE[Ti,Ti+1] ’ ’

By induction, we have foralli € {1,...,k — 1},
(T3l s, < (2K) ™ [lwoll oo -
We conclude from the above two results that

[|w] ooz < (2K)|woll go
Lo (T3 Tiia], By 70 Brv

and

sup  [lw(t)|l g < (2K) Jwol v -
te[T;,Tiq1] B By»

for all i < k— 1. The same arguments as above also apply on the interval [T}, Tp] and
yield

[[o]] ot

< (2K)¥||wol| s
£ro ([T Tol, B 70) Boi

and
sup [Jw(t)]| go» < (2K)F|Jwol| o -
te[Tk,TO] BP»P Bp,p
On the other hand,
k—1
[[wl| 2 S [Jwll iz Tl oyt 2
Lro ([07T0LBP%:L "o ) zz; Lro ([TivTiJrlLBp?er o ) Lro ([Tk»TOLBPi:F o )
1

N s _—
< NEE) oz, < 1
Under assumption (2.21) this contracdicts the maximality of 7j. Then the theorem is

proved.
O
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2.5 Regularity via iteration
Consider the following equation,
v(t, z) = e®vg + B(v,v) + B(w, v) + B(w,v), (2.22)

where B is defined in (2.3) . This section is devoted to showing the regularity of the
solution to (2.22) by using an iteration method introduced in [16, 17] and we adopt
a similar notation in [17].

Theorem 2.5.1 (Regularity). Let p > 3and 2 < rg < %. And let w € L®°(R, L3>)
and w € I[‘,;O“’O(oo). Suppose that v € 1L;0°°°(T') for some T' > 0 satisfies (2.22)with initial
data vy € By,
Then for any integer N > 2 such that 3(N — 1) < p, there are Hy € Ly™(c0), Wy €
T

L%, for some 2 < p < 3and Zy € Ly (T) with py := & and ry = max{1, 2} such

that,
v=Hyx+Wn+ 2y. (2.23)

In particular, by taking Ny := max{N € N: N > 2,3(N — 1) < p}, we obtain that v can
be written as

v=2o"+ vs,
where v = Hy, € L;(c0) and v° := Wi, + Zn, € L% (T) < L>([0,T], L*>*)
with p := max{p, pn, }-

The argument leading to a similar result to the above theorem in the case w =
w = 0 can be found in [16] and [17] (in turn inspired by [24]). The idea of proving
Theorem 2.5.1 is nearly the same as the idea in [16] and [17]. However, since in our
case we need to handle two kinds of drift terms, the decomposition via iteration
becomes much more complicated than those results. More precisely, there are two
main difference with previous reuslts:

e the fact that one of the drift terms w does not have decay in time and cannot be
approximated by smooth functions limits the decay in time and the regularity
of Wy . That is no matter how many times we iterate, there is at least one term
of Wi only belonging to L%, (T').

e Compared with the previous results in the case when w = 0 (for details, see
[16]), we cannot obtain that H belongs to Kato’s spaces in general.

In the following, we adapt most of the notations in the proof of Lemma 3.3 in [17].
Proof. Letwv € L0"°°(T') for some T' > 0 satisfies (2.22). We can write v as
v =wvr, + B(v,v) + B(w,v) + B(w,v), (2.24)

where

vr, = ey,
This gives the desired expansion when N = 2: We note that

v=Hy+ W3+ Zs,
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where
Hy =v, Wy = B(w,v) and Zy = B(v,v) + B(w,v).

Lemma 2.6.1 implies that Hy € Li};oo(oo). According to the second and last statement
in Proposition 2.6.3, we have

” < 2T 00
1Bl e ) S W0
2
and
[B(v,0)] = S ollpore (pyll@llpro (o).

0 100 ~Y
Ly (T
2
He el (T) )
Note that the fact that the bilinear term B(v, v) and linear B(w, v) allow to pass from

ro
which implies Z5 € L}
2

an L? to an L? integrability is a key feature in this proof.

We recall the embedding property L>* < By% for any ¢ > 3. Combining with
the above property with the last statement of Proposition 2.6.3 by taking ¢ = z%’
we obtain that

1Bw, v)llree () S Tl @y, o0 10l )
2T

Hence Wy € L%, (T) with p = % < 3. Therefore we prove Theorem 2.5.1 in the
case N = 2.
Next we plug the expansion (2.24) in to the term Z3(v) := B(v,v) + B(w,v), to
find
u=vr, + B(w,v) + B(v,v) + B(w, v)
=vr, + B(w,v) + B(w, vy, + B(w,v) + B(v,v) + B(w,v))
+ B(vg, + B(w,v) + B(v,v) + B(w,v),vr + B(w,v) + B(v,v) + B(w,v))
=vr, + B(vp.vr) + B(w,v) + B(w,v) + B(w, B(w,v)) + 2B(vr, B(w,v))
+2B(B(w,v), B(v,v)) + 2B(B(w, v), B(w,v)) + B(B(w, v), B(w,v))
+2B(vg, B(v,v)) + B(w, B(v,v)) + B(w, B(w,v)) + 2B(vr,, B(v,w))
+2B(B(v,v), B(w,v)) + B(B(v,v), B(v,v)) + B(B(w,v), B(w,v)).
This gives the expansion for N = 3:
v =Hs + W3+ Z3 with Hs = Hy + B(vp,vr) + B(w,vr),
W3 = B(w,v) + B(w, B(w,v)) + 2B(vr,, B(w,v))
+ 2B(B(w,v), B(v,v)) + 2B(B(w,v), B(w,v)) + B(B(w,v), B(w,v))
and
Z3 =2B(vr, B(v,v)) + B(w, B(v,v)) + B(w, B(w,v)) + 2B(vr,, B(v, w))
+ 2B(B(v,v), B(w,v)) + B(B(v,v), B(v,v)) + B(B(w,v), B(w,v)).

The first statement of Proposition 2.6.3 implies that Hz € IL*(c0) and the expected
bounds of Z3 follow again from product laws as soon as £ > 3. Now we need to
check that W3 € L%, (T'). According to the previous arguments, we have B(w, v) €
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IL;27°(T'). Hence we obtain that
B(w,v) € L*([0,T], By%o), Vg > 3,

provided that p < 3. Again by the last statement of Proposition 2.6.3 and taking
q = p3_p2, we have the rest of terms in Z3 belong to LL;°,>°(7T"), which implies that
W3 € L2, (T).

Iterating further, the formulas immediately get very long and complicated, so let
us argue by induction:

Assume that for any 2 < N < N, there is an integer Ky > 0, and for any
0 < k < Ky some (N+k)-linear operators B%+k7N(the parameter M € {1,..., N+k}
measures the number of entries in which v and w, rather than v, appears and the
second parameter in the subscript denotes that the operators are generated in Nth
step) such that

v=Hny+Wn+Zn

with for any NV > 3

N-2
Hy=Hy_1+ Y BN |y (@®V, AN (2.25)
M=0

Zn may be written as the form

N
ZN = Z Z B%N(v‘@‘], ZD@L,’U%(N_M))

M=1 J+L=M,
J=1 (2.26)
Ky N+k

+ZZ Z B;\V/f_‘_k’N(U@J?w@L,v%(N—kk—M))’

k=1 M=0 J+L=M

and
N-1 J—1 |
Wy = Z Z BN v 1(B(v,v)%, B(w,v)®™,
M=1J+L=M l:'1 it+j=li+j+m=J (227)
B(w,v)%, &L, U%(N*lfolfm))
+ Wn_1.

we have used the following convention: for any J + L = M

B%—i—k,N(“ﬂ .. 7U,’U,"‘ ’1)7 w7... ,w) = B%_‘rk’N(u@J’U@L’w@(NfM))
—_——— —— ——

J terms L terms N—M terms
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Now let us prove that for any 2 < N < Nj

=> > ZZ S BY(B(v,0)®, B(w,v)®™,

M=1J+L=M =0 i+j=li+j+m=J

B(w, )®J,w®L,v%(N L=t=m)y (2.28)
N-
z (@M o V) 4 Zy

where Zy ;1 can be written in the following way: there exists an integer Kny; > 0
forforall0 <k < Kyyiand 0 < M < N 41+ k,some N + 1 + k-linear operators

B%ﬂer ~+1, such that

N+1
_ M ®J GOL ,ON+1-M)
IN+1 = E : E By v (077, 0% v )

M=1 J+L=M,
Jz1 (2.29)
Kn+1 N+k+1

M ®J ~®L , N+1l+k—M
+Z Z Z BN+k+1,N+1(U y W™, U, )-

k=1 M=0 J+L=M

In order to prove (2.28) and (2.29) we just need to use (2.24) again: replacing v by
v, + B(v,v) + B(w,v) + B(w, v) in the argument of B%N gives

M @] L K S&N-M)
BN7N(1) ;W vy )

:B]A\;{N((UL + B(w 1}) + B(qu)) + B(w’ U))®J, w@Ljy%(NfM))
R(N—M
:BJAV{N(UL @k, UL( ))

J—
+ZZ S BMN(B(,0)%, Bw,v)®™, B(w,v)®, @®L,of V)

1=0 i+j=lit+j+m=J

J
+Z Z BN_H’N(,U@(Q@JU)?U)@( +J)’UL( ))7
=1 i+j=l

where B}, \ are some N + [-linear operators. Therefore we have

Ky N+k

_ R(N+k—M
ZN+1 :Z Z Z B%+k,N(U®J7W®L7”L( ))

k=1 M=0J+L=M

+ i Z i Z B%HN(U®(2i+j),w®(L+g’)7UQL@(N—L_Z)>

M=1J+L=M I=1 i+j=l

after reordering, this proves (2.28) and (2.29). Moreover (2.28) and (2.29) imply that
(2.25) and (2.27) hold for the case that N = Ny + 1.

To conclude the proof the theorem it remains to prove that Hy € L}D;OO (c0), Wn €
L% for some 2 < p < 3and Zy € Ly'™(T) withpy := £ and ry = max{1,¢}. In
fact, the above results again follow from estimates about the heat flow (see Lemma
2.6.1) and product laws in Proposition 2.6.3, which are based on a similar argument
of the cases that N = 2, N = 3.
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Now we take Ny := max{N € N: N > 2, 3(N — 1) < p}. Itis obvious that

PNo = A < 3, which implies that
v =W, + 2, € L%™(T) < L([0,T], L*>)

provided Lemma 2.6.4.
Theorem 2.5.1 is proved.

2.6 Appendix

2.6.1 Estimates on the heat equation

For the completeness of our proof, we give standard estimates for the heat kernel
in Besov space. A similar result can be found in [12]. We first recall the long-time
behavior of heat flow. We mention that the following lemmas only focus on critical

Besov spaces.

Lemma 2.6.1. Let p, q € [1,00) and g € By,Y. Then we have that
g € L) (o0)
and
1 tA S =
tliglo ||€ gHBp?q 0.
Proof. Let g € B;%,. We notice that for any j € Z,

— 2 —. - 2
I Asgle S e | Azglle < 279e ey |

~

9llzyz,
where ||(¢jq)jezllea = 1. Then for any r € [1, 0o], we have
A —jspo—24
e Al s 12y S 272 F esgllgl o
which implies that
127 Ajgll e 22)) jezllen S N9llzn

tA 1:
Hence we have e'2g € IL,j0°(o0).

Moreover for any € > 0, one can choose an integer N such that for any ¢ > 0

1
(> 2w fettagl, ) <

lj|>N

| ™

Also we have

qjs tAA 119 —jgsp —qt272N g
> 29|l rAglf, S 27 %re g
l71<N

oMz,
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hence for the fixed N, there exists a 7'(¢) > 0 such that for any ¢t > T,

1
(3 2w letaqli, )" <

l7I<N

| ™

Therefore we have that for any € > 0, there exists a 7'(¢) > 0, such that forany ¢ > T’
AL
e gllzon <.
The lemma is proved. ]

Lemma 2 6.2. Let p € [1,00] and r € [1,00]. Suppose that f is a function belonging to
Lh(Byh, ™ NG ) We denote that, for any t € [0, T

t
H(f) ::/0 =B f(s, )ds. (2.30)

syt 2
Then we have H(f) € E?(Bpf’; ") forany ¥ > r, and

H <
Iy gerety ST, szoa

Moreover, if r < oo,

Jim [|H(f)] g = 0.

Proof. We first notice that
SRR
1A H (Pllzey < II/ le®2A5f (s, )| pds o

2
<||/ A2 | A (5, ) | s o
_ 27
< 12 18 Fll gy

sp+

where 1 +1 =1+ 1 Since f € £}(B, 2) we have

T

i 2_
1A Fllppre S 27900524,

f“ 5p+7—2 Y

L (Bplp )
where (d; ;) € 7 and ||(d;j,)|le = 1. We also notice that

e ||, S 277
t

Then we have

—j 2,2
I8 HD e S 27557 D dilfll a2

Lh(Bylpy ")

—i(s 2
2 It D) ;|| £

£ +7—2 Y
L5 (Bphy

)

which implies that

| DA P g2z s, S 10, 2

PP )
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-
Thus we proved that H(f) € L”}(Bpf’;r ") for any 7 > r, and

Hf - espt2 S f| syt 2_9 -
| ()HUT(BP?JT) | ’E’“T(Bp?p” 2

Now we suppose that r < co.
First we decompose H( f) into two parts:

Hi(f) = /0 F (=08 £ (s )ds,

and

Hy(f) = / e f (s s,

We notice that H;(f) can be written as

tA t

Hy(f) =% [T 602 1(s,)ds = T H(P)(3).
0 2

According the above argument, we have, for any ¢ > 0, H(f)(%) € B,%,. Applying
Lemma 2.6.1, we have

. tA t
Jim [l H(H) ()l g, = 0.

Now we turn to Ha(f), we have

3 .
1A Ha ()l S /622J(t5)llﬁjf(8)!md8

t
2

(1
S 290D AG Il L (2,000:0):
which implies that
S < T
IE2 O it, S 11y 5, = O 25 €= .
Lemma 2.6.2 is proved. O

2.6.2 Product laws in Besov spaces

In this paragraph we recall the following product laws in Besov spaces, which use
the theory of paraproducts. We only elected to state the results we needed previ-
ously, but it should be clear that we have not stated all possible estimates in their
greatest generality.

Proposition2.6.3. 1. Letp > 3and2 <r < pszg‘ Then there exists a constant v > 0

s 42
such that for any v, w € L7 ([0, T}, Bpf};rr ), we have

vw 21 S|V o2 |l vz . (2.31)
| Hcr([o,TLBpf’p” D) | Hm([o,TLBp?p“)” £ ([0,1),B35,77)
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2. Let p1,p2 € (3,00),2 <1 < ;73 Leand T € Ry U {oo}. Suppose that v € Ly, (T)
and w € 1Ly °(T). Then we have

lowl _, poriony S S lolluge o lwllgpe ),

£2((0,7),B )

where L = L + L
p p1 b2

Sp+ = 2
3. Let p > 3. Suppose that w € L°°([0 T), L3*°) and v € L™([0,T]; B, S p ) for some
T € Ry U {+oo} with ro = ;%5 then we have

VW ) L, < W 700 NI ,
0 ooty < COM ool sy

where%—g—i- and C(p) — oo as p — 0.

Since the first two results in the proposition are standard and well-known, which
can be found in [12, 16], we only give the proof of the last of the proposition.

Proof. For simplicity, we treat w and v as functions. We have
Ajwv = AjTyo + AjT,w + AjR(u, v).

We first take ¢; such that ]13 = % + == 3 + 6 implying that ¢; = 5% > 3.
About A;T,,v, we have

1A;Twvllro ey S 1(Sw)(Ajv)l| Lro ey S 185wl Loo (Lanyl[v |l Lro (2r)-
And we notice that

850l zequny S 3 NAwliezan S 32277 csccllivll g oy o

J'<j J'<j

and

—j(sp+
o]l prozey S 2770770 e 0] )

L£ro([0.T):Bp p TO)

Since s4, < 0, we have

+——1
||2‘7(SP )HAij’UHLro(LP/)”ZP/ 5 ||w||L°°([0,T],B;;1,1oo)”UHETO([O T] B p+T20).
P,p

This combined with Lemma 2.6.4, implies that

17 Tt oy S Wollmrsnllll | e @3
»=p,p
Now we choose ¢ := 1 and p; := 4p. Itis easy to check such that L — p% + % =

6i We notice that

w\H

1A Towl[ro ey S 1S5l ro ey [[Ajwll poo 14y,
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and
=i (sp1+75)
ISilo@n) S S IAlrowen S 27 e lloll s
§'<i L7o([0.T;:Bpyp )
47 +l
S 27Tl B
L£r0([0,T};Bpp '°)
and
18wl oo (zay S 277%¢ 00l wl] oo 0,77, 525
: 2 __ 3 1 _ 1
Since sp, + 5 = —14 4, +1— 5 = —7, <0, wehave
(spt75=1)
127770 A Tl prozayller S Pl oo 0,17, 20, 19 iz - (2.33)

L£ro([0,T]:Bp,, )

Again by Lemma 2.6.4, we have

. 7_}_1_1
12777 )HAijUHLTO(Lﬁ)HEP S Pllwllpeepo,r),28.00) ]l i o (234)
Lro([0.11:Bpp "
Now we turn to the remainder A;R(w,v). We denote that % = % + é = % + %-
Since
||AjR(wav)||L’“0(Lﬁ)§ Z ||Akw||Loo(Lq)||AkUHLT0(LP)
k>j—1
—k(sqtsp+-2)
S 2 TP L oo Chp w”coo 071,84 (o]l sptiZ )
kgj (011 Baiee) £ro((0,7):B,, ")
and
Sp+ 8q + 2.7 >0
p q o - 4]?
we have that, by applying Lemma 2.6.4,
. 2
9t~ DIALR w, V)| pro (s Spllwl] ;o 55q ||V
| 1A B (w, )l Lo o) ler SPIwll 2o 0,17, B50. | ”muo,ﬂ;BZf%
< E
Np w oo 3,00 v s 2
lwll Lo ([0,17,23:2) HU"O([O,T];B::TO)
. X .SI;-‘rTl—l
which is R(w,v) € ETO([O,T];Bﬁp/ ° ).

. spt+2—1
And we have R(w,v) € L™([0,T]; B;: 0 ), as p < p. Combining with (2.32) and
(2.34) we get

[[wo]] 21 S O@)wllLee o,z V]l o+
e 0 T o oyt )
where C(p) — oo as p — oo. The proposition is proved. O

We also recall the following standard embedding without proof. For details of
the proof, one can check [4, 24].
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Lemma 2.6.4. Let ¢ < 3 < go. Then the following embeddings hold:
Byl — L*™ — B2,

2.6.3 Properties of the bilinear operator B

We show a well-known results on the continuity of B(u,v) in Kato’s space by using
the spatial decay of the convolution kernel appearing in B (see [24])

Lemma 2.6.5. Let p > 3.Suppose that u,v € K,(R3), then

1B, 0)|[k, < [l 0]l - (2.35)
Moreover if p > 6, then

1B, 0)|[ Koo < lullr, [0 ,- (2.36)

And we recall that B is abounded operator from L>([0, T], L>°°)x L>°([0, T, L>*°)
to L>([0, T, L>*) for any T' € R U {+00} (see [5])

Lemma 2.6.6. Suppose that u,v € L°°([0,T], L>*) for some T € Ry U {+oc}. Then

1B (u, U)HLOO([O,T],L&OO) < Hu||L°°([0,T],L3a°°)Hu||L°°([0,T],L3a°°)‘
Moreover, B(u,v) € Cy([0,T], L>*).

The following lemma is a particular case of the result about the continuity of the
trilinear form [ [55(a - Vb) - cdzdt proved by LGallagher & F. Planchon in [18].

Lemma 2.6.7. Let d > 2 be fixed, and let r and q be two real numbers such that 2 < 2 <

2
. S’I‘JFE

00,2 < q < +o0. Suppose a € LRy, L*) N L*(R,, HY) and ¢ € L1([0,T], Bry ).
Then for every 0 <t < T,

t t
\/ /f(a-Va)-cd:cds\S!!Va\%z(R+,L2)+C/ la(s)1Z2lle(s)]” . 2 ds.
o JRr3 0 Brg ¢

Now we recall that for any 7" € R, U {400}
B(T) = L*([0,T%), L*) n L*([0,T"), H").

Lemma2.6.8. 1. Letp > 3andT > 0. .
Suppose that v € E(T) and v € L>([0,T], By's) . Then B(v,v) € E(T).
2. Let T € (0,00). Suppose that v € L>([0,T], L>*) and v € L*([0,T], L5?). Then
B(v,v) € E(T)

Proof. We denote w := B(v, v), which satisfies the system

V-w=V.-0=V-9=0,

W= = wo

{ ow—Aw+v-Vv+v-Vo=—Vn,

For v € E(T) and & € £>([0,T], B;"x), by Proposition 4.2 in [16], we obtain that
B(v,v) € E(T).
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Hence we are left with the proof of the second statement of the lemma. We now
suppose that v € L*°([0, 7], L>*°) and v € L?([0, T, L5?).

First let J. be a smoothing operator that multiplies in the frequency space by a
cut-off function bounded by 1 which is a smoothed out version of the characteristic
function of the annulus {e < [£| < 1}. Then we have for any ¢ € [0, 7]

t t
@) +2 [ IV w()ds = fuolfe +2 [ [ (00 V2w) - odods
0 0 JR

¢
+ 2/ / (v - VJ?w) - vdads.
0 JR3
Then for any ¢ € [0, 7],

t t
| / / (v-VJ2w) - o+ / / (v - VJ2w) - vdads|
0 JR3 0 JR3

t
< CAHVﬁwhﬁﬂmﬂWmm

= 1/tWszIIQz + C:HUIIZoo .00y 017 2 6.2y
= 2 0 L 2 L (RJ,-,L ’ ) L ([O7T]7L ’ )

which implies that for any ¢ € [0, T

t
1Jew ()72 +/0 IV Jew(s) 1 Z2ds < llwollze + 0] 700y po.oo) 1011220 1, 202

By taking e — 0, we have w € E(T)). O

Lemma 2.6.9. Let p > 3. Suppose that g € LEX[T < T*] for some T* > 0. then we have
g € L2([0,T), L52(R3)) for any T < T*.

Proof. Suppose that g is a function belonging to L*°[T" < T*] for some T* > 0. Then
for any fixed T' < T*, we have that

1
19l 23 o7, 56,y = T3 M9 oo .17, 55 )

: st 2
Hence we obtain g € £3([0,T], Bg,) N £3([0,T],Bg?;3)

s¢ + 2 > 0, Then by using Proposition 2.22 in [1], we have

. Since that s¢ < 0 and

1 3
gl 0. < Nallzs o pmp0 gl
£3((0,7),54 1) L3([O7T],BS?OO) £3([0,T]7Bg?;%)

IN

1
Ts ||9||1Lgigg(T)-
Now we are left with proving that

£3([0, 71, B,) < L*([0,T), L>?).

By Littlewood-Paley decomposition,

91l L3 (fo,1,26:2) < Z 189l 23 ([0,7),26:2)-
JEL
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And Ajg can be written as the following convolution form:

Ajg = Aj(Ajg) = 2% /R (@ (@ —9)Ajg(y)dy.

By using Young’s inequality,

"Ajg”Li3([0,T],L6»2) S 23th(2j')HL}E"Ajg|’L3([O,T],L6)
S 1A9llzsory.Lo) S €illgll zs om0,

where 3., |¢;| = 1. Then we have
9/l 30,7, L02) S ||9H53([07T]738’1),
which combined with the fact that

1
91l z2(10,7,26:2) < T |l9ll L3 (j0,7),26:2)-

The lemma is proved. O
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Chapter 3

Regularity Criterion for the Forced
Navier-Stokes Equations in L’

3.1 Introduction

We consider the incompressible Navier-Stokes equations with a time independent
external force in R?,

Oy — Aup +uy-Vuy = f — Vp,
(NSf) V-u=0,

ufli—o = uo

for (t,x) € (0,T) x R3, where u; is the velocity vector field, f(z) is the given external
force defined in R? and p(t, x) is the associated pressure function. In this paper, we
study the blow-up criterion for (N Sf).

3.1.1 Blow-up problem in critical spaces

To put our results in perspective, we first recall the Navier-Stokes equations (with-
out external force) blow-up problem in critical spaces. Consider the Navier-Stokes
system:

V-u=0,

ou — Au~+u-Vu = —Vrm,
(NS)
uf’t:() = Ug

where u(t, ) : R® — R3 is the unknown velocity field.
The spaces X appearing in the chain of continuous embeddings

-1 3 -—1+§ .—1+§/ ’ /
H2 5 L* < Bpg "= B, ", 3<p<p <00,3<q<q <o)

are all critical with respect to the Navier-Stokes scaling in that |Jug \||x = ||u| x for
all A > 0, where ug ) := Au(Az) is the initial data which evolves as uy := Au(\?t, Az),
.—143

as long as u is the initial data for the solution u(¢, z). While the larger spaces By « *,
BMO ™! and BO_O{OO are also critical spaces and global well-posedness is known for the
first two for small enough initial data in those spaces thanks to [4, 20, 23] (but only for
finite p in the Besov case, see [3]), the ones in the chain above guarantee the existence
and uniqueness of local-in-time solutions for any initial data. Specifically, there exist
corresponding spaces X7 = X7((0,7) x R3) such that for any ug € X, there exists
T > 0 and a unique strong solution © € X7 to the corresponding Duhamel-type
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integral equation,

u(t) = ey — /t eU=IAPY - (u(s) @ u(s))ds -
0 .

= e"®ug + B(u,u),
where

(v @w)jk = vjwg, [V-(0@w)] =35 O(vjwy)
and Pv := v + V(=A)"}(V - v),

which results from applying the projection onto divergence-free vector fields oper-
ator P on (N S) and solving the resulting nonlinear heat equation. Moreover, X is
such that any u € X satisfying (/V.S) belongs to C([0,T], X). Setting

T, (ug) := sup{T > 0|3'u := NS(ug) € Xt solving (NS)}

the Navier-Stokes blow-up problem is:
Question:

Does  sup |u(t, )|l x < oo imply that T, (ug) = 007
0<t<T;;T(uO)

In the important work [9] of Escauriaza-Seregin-Sverak, it was established that for
X = L3(R3), the answer is yes. This extended a result in the foundational work of
Leray [21] regarding the blow-up of LP(R?) norms at a singularity with p > 3, and
of the “Ladyzhenskaya-Prodi-Serrin” type mixed norms L{(L%), % + % =1,p>3,
establishing a difficult “end-point” case of those results. In [15], based on the work
[18], I. Gallagher, G. S. Koch, F. Planchon gave an alternative proof this result in the
setting of strong solutions using the method of “critical elements” of C. Kenig and F.
Merle. In [14], I. Gallagher, G. S. Koch, F. Planchon extended the method in [15] to

3
give a positive answer to the above question for X = B,, ;+5 (R3) forall 3 < p,q < oo
(see Definition 3.1.1). Also in [1], D. Albritton proved a stronger blow-up criterion
in By, for 3 < p,q < oo and his proof is based on elementary splitting arguments
and energy estimates.
We recall the main steps of the method of “critical elements”: assume the above
question’s answer is no for some X and define

oo > A.:=inf{ sup |NS(uo)(t)|lx|uo € X with Tk, (uo) < oo},
be(0.T%, (u0)

where NS(uy) is a solution to (N .S) belonging to C([0, T, . (uo), X) with initial data
up € X. And define the set of initial data generating “critical elements”(possibly
empty) as follows:

De = {up € X|T"(up) < oo, sup [[NS(uo)llx = Ac}.
te[0,7* (uo))

The main steps are:
1. If A. < oo, then D, is non empty.

2. If A. < oo, then any ug € D, satisfies NS(ug)(t) — 0in S’ ast 7 T*(up).
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3. If A. < oo, by backward uniqueness of the heat equation (see [10] ), for any
ug € D, there exists a tg € (0,7*(ug)) such that NS(ug)(tg) = 0, which contra-
dicts to the fact that A. < oc.

In this paper, we consider the blow-up problem for the Navier-Stokes equation
with a time-independent external force f, where A~!f is small in L? and the initial
data belongs to L3(R3).

According to Theorem 3.5.2, we know that there exists a universal constant ¢ > 0
such that, if the given external force satisfies || A1 f| ;s < ¢, then for any initial data
ug € L3, there exists a unique maximal time 7™ (ug, f) > 0 and a unique solution to
(NSf) uy belonging to C([0,T]; L3((R3)) for any T' < T* with initial data ug. Again
by Theorem 3.5.2, we have that if T*(ug, f) = oo, then uy € C([0,00), L>(R3)) N

L>®(R;, L3(R?)), and if T*(ug) < oo, we have forany p > 3and 2 < r < p2f3,

lim up —U = 00,
t—)T*(uo,f) H f f||LT([07t]7B;{)P+%

where Uy € L3 is the unique small steady-state solution to (NS f) (for existence and

2
uniqueness of small steady-state solution, see [2]) and the function space £§(B;f’p+;)
is defined in Definition 3.1.2. However, the above criterion is on the corresponding
perturbation solution instead of solution u.

In this paper, we give the following blow-up criterion for (NSf): Let A~! f be
small in L3, then

(BC) limsup ||uy(t,-)|[zs < oo = T™(uo, f) = oo.
0<t<T* (uo,f)

We use a profile decomposition for the solutions to (NS f) to prove the above re-
sult. Precisely, the decomposition enables us to construct a connection between the
forced and the unforced equation, which provides the blow-up information from
the unforced solution to the forced solution. More precisely, we can decompose u
in a form consisting of the sum of profiles of solutions to (N.S), a solution to (NS f)
and a remainder. We show that the blow-up information of u; is determined by the
blow-up information of the profiles of solutions to (INV.S) by an argument using the
scaling property of those solutions. Compared with the “critical element” roadmap,
we avoid using backward uniqueness of the heat equation (which is only true for the
unforced case). We also mention that the method used in [1] can not be applied to
our forced case, because the proof of [1] relies on the following scaling property: if
u is solution to (NV.S) with initial data ug, then AMu(At, Az) is also a solution to (N.S)
with initial data Aug(A-). However the above scaling property is not true for the
Navier-Stokes equation with a time-independent force f satisfying A~'f € L3. In
fact, for any solution u to (V.S f) with initial data ug, Auf(A?*t, Az) is no longer a so-
lution to (N Sf), unless f is self-similar (which means f(t, ) = \3f(\%t, A\x)), hence
does not satisfy A~!f € L3. (And his proof still relies on the backwards uniqueness
of heat equation.)

We also point out that one can obtain a profile decomposition of solutions to the

-
forced Navier-Stokes equation with an external force f € L"(R, B;f’;_r 2) (Defini-

tion 3.1.2) with s, + 2 > 0 and initial data bounded in By, for any 3 < p < oo with
a similar proof as in [15]. And by the same argument as the proof of Theorem 3.1.4,
one can show the blow-up criterion as (BC) by replacing L? by B,,.
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3.1.2 Notation and Statement of the Result
Let us first recall the definition of Besov spaces, in dimension d > 1.

Definition 3.1.1. Let ¢ be a function in S(R?) such that ¢ = 1 for |¢| < 1 and ¢ = 0 for
€| > 2, and define ¢; := 2% (27 x). Then the frequency localization operators are defined by

Sj = gf)j * - Aj = Sj+1 — Sj.
Let f bein S'(R%). We say f belongs to B;q if

1. the partial sum 377" A;f converges to f as a tempered distribution if s < % and
after taking the quotient with polynomials if not, and

1Ly, = 1278 ples < oo

We refer to [8] for the introduction of the following type of space in the context
of the Navier-Stokes equations.

Definition 3.1.2. Let u(-,t) € B;q forae. t € (ti,t2) and let A; be a frequency local-
ization with respect to the x variable (see Definition 3.1.1). We shall say that u belongs to

Lo([tr, ta], By o) if
HuHﬁp([tth],B;’q) = HZJSHAJ‘UHLP([tl,tQ]Lg)Hzg < 0.
Note that for 1 < p; < ¢ < py < 00, we have
LP([t1, 1], By ) = L[t 1], By ) <= £ ([t 1], By ) < L2 ([t 2], By ).
Let us introduce the following notations (introduced in [14]): we define s, := —1+ %
and
St s spti

]Lg:b(tl,tz) = L([t1,ta)s Bpp ) ML ([t 82 Bply ),

L8 = 1L%% LE(T) := 140, T) and LEP[T < T*] := Nper-LE°(T). (3.2)

Remark 3.1.3. We point out that according to our notations, u € L&[T < T*] merely
means that u € LEY(T) for any T < T* and does not imply that u € L&5(T*)(the notation
does not imply any uniform control as T ' T*).

Now let us state our main result.

Theorem 3.1.4. Suppose that || A1 f| ;s < ¢, where c is the small universal constant in
Theorem 3.5.2. Let ug € L3(R?) be a divergence free vector field and uy = NS f(ug) €
C([0,T*(uo, f)), L*(R3)), where T*(ug, f) is the maximal life span of ug, be the unique
strong solution of (NS f) with initial data ug. If T*(uo, f) < oo, then

limsup [[u(?t)||13(r3) = oo (3.3)
t—)T*(uo,f)

Remark 3.1.5. Our profile decomposition method is not only valid for a time-independent
force, but also can be extended to more general time-dependent external force. For ex-
ample: our method is valid for solutions belonging to C([0,T*), L3(R?)) constructed in
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[6] with initial ug € L3, where the external force f can be written as f = V -V and
SUPO<¢< o0 tk%HVHL% is small enough for some 3 < p < 6. Actually our method only

depends on the smallness of Uy and the continuity in time of solutions in space L3, which are
similar (Uy can by replaced by some small solution with small initial data in L® constructed
in [6]) with the solutions in [6], whose associated force is time-dependent. After that we can
obtain (BC') for any fixed small external force as above by a similar argument of the case that
f is time independent.

The rest of this article is structured as follows. In Section 2, we give the proof The-
orem 3.1.4, which relies on a profile decomposition of solutions to (NS f). Section
3 is devoted to showing the profile decomposition of solutions to (NSf). In Sec-
tion 4, a perturbation result for (IV.S) is stated in an appropriate functional setting
which provides the key estimate of Section 3. Finally in the Appendixs, we recall
some well-posedness results for (N.Sf) and the corresponding steady-state equa-
tion. Also we collect standard Besov space estimates used throughout the paper in
it.

3.2 Proof of the main theorem

Suppose that ||[A7Lf| ;s < cis a fixed external force.
Let us define

A :=sup{A > 0] sup NS f(uo) ()]s < A
t€[0,7* (uo, ) (3.4)

= T*(ug, f) = o0, Yug € L3(R?)}.

Note that A. is well-defined by small-data results. If A, is finite, then A. can be
rewritten as

A, =1inf{  sup |NSf(uo)(t)||z3|uo € L? with T*(ug, f) < oo}
t€[0,7* (uo, f))

In the case when A. < oo, we introduce the (possibly empty) set of initial data
generating a critical element as follows:

D.:= {ug € L*(R)|T*(uo, ) < 00, sup  [NSF(uo)(t)]ps = Ac}.
t€[0,T* (uo,[))

Before proving Theorem 3.1.4, we prove the above set is empty.
Proposition 3.2.1 (D, is empty). Suppose that A, < oo, then D. = ().

Proof. We prove the proposition by contradiction. Assume D, # (), we take a ug . €
D. and denote u. = NS f(uo ). By the definition of D., we have T (uq ., f) < co and

sup  [[NSf(uoe) )|z = Ae.
te[0,T* (uo,c,f))

We choose a sequence (sp)nen C [0,T%(uo, f)) such that s, * T*(uo., f). Let
uon = Uc(Sp) and u, = NSf(ug,). Since A, < oo, we know that (ugp)nen is a
bounded sequence in L3(R3) and

sup un(t)l|zs = Ae.
tE[0,7* (uo.n,f))
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By Theorem 3.3.3 with the same notation, for any ¢ < 7, u,, has the following profile
decomposition , for any J > Jy and n > n(Jy),

J
Up = UM+ Ajul? +wy) + 1),
=2
where 7, = minje {3, 77}. After reordering, we can write
J .
Up = ZAMUJ +w! +r!
j=1
with Aj; , = Id for some 1 < jy < Jy and for j < J and n large enough,
Vi <k<Jo, X,TF <\, Tr.
First we claim that jo > 1. In fact, by Theorem 3.3.3,
Al,nTl* < T*(uo,nv f) = T*(UO,Ca f) —$p — 0, as n — o0,
which implies that

lim Ay, = 0.
n—oo

Hence jo > 1, which implies that with the new ordering U! = NS(¢), and T} < cc.

Now we take s € (0,77) and let ¢, = )\%ns. According to Proposition 3.3.4, we
have

AL = un(tn)llzs > 1U ()75 + e(n. 5),

where lim,,_, €(n,s) = 0 for any fixed s. By the blow-up criterion for the Navier-
Stokes equation (see [15])

limsup [|[U"(t)| 23gs) = o,
t—Ty

then we choose a s¢ € (0,77) such that
1 (s0)ll 3 sy > 2Ae.

And we can take a corresponding ng := n(so) such that |e(ng, so)| < A2. Then we
get

A3 >8A% — A3 =743
which contradicts the fact that A. < co. Then D, = (. O
Now we prove Theorem 3.1.4 by contradiction.

Proof of Theorem 3.1.4. We suppose that A. < co which means (3.3) fails.
Let us consider a sequence ug , bounded in the space L3 such that the life span of
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NS f(uon) satisfies T (ug n, f) < oo for each n € N and such that

Ay = sup ||NSf(u0,n)||L3(lR3)
te[0,T* (uo,n,f))

satisfies
A. <A, and A, — A., n — 0.

Then by Theorem 3.3.3 and after reordering as above, we have for any J > Jy and
n > n(Joy)

J
Up = NSf(UO,Tw f)= ZAijj + ’U)i + r57Vt € [077—77«]
j=1

and for any n > ng(Jo), recalling that T’ is the life span of U J
Vi<k<Jo, A,T; <N, Ty,

where U7 = NS f(¢;,) (jo is such that A, , = 1) and U/ = NS(¢;) forany 1 < j <
Jo with j # jo. Theorem 3.3.3 also ensures that there .Jy such that T'; < oo (if not we
would have 7,, = oo and hence T%(ug p, f) = oo, contrary to our assumption). On
the other hand, we recall that U7 := NS f (¢j,) with 1 < jo < Jy, where ¢;, is a weak
limit of (uo,,)n>1. Therefore by the above re-ordering, two different cases need to be
considered:

e jo = 1: the lower-bound of the life span of w,, is controlled by the life span of
Ul = U = NSf(¢j,), which generates a critical element.

e jo > 1: the lower-bound of the life span of w,, is controlled by the life span of
A1 NS(¢1).

Case 1: jo = 1. In this case, by definition of A., we have U! = NSf(¢1), A1, =1d
and

sup [[NSf(¢1)llrs = Ae. 3.5)
s€[0,T7)

For any s € (0,T}), setting ¢, := A{ s, by Proposition 3.3.4

Ay 2 sup  [[NSf(uon)ll7s = NS (uon)(tn)ll7s
t€[0,7* (wo,n, f)

1T (8)II7s + e(n, 9),

v

where for any fixed s € [0, T})

nh—>Holo e(n,s) = 0.

According to (3.5) and the fact that 4,, — A. as n — oo, we infer that

sup [[NSf(o1)Ls = Ac,
s€[0,T7)
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which means ¢, € D.. This fact contradicts Proposition 3.2.1.
Case 2 jy > 1:. In this case, U! = NS(¢1) and U! satisfies that

limsup [|[UL(#)|| 5 = oo, (3.6)

t—=TY}

and Ay, # 1d.
On the other hand for any s € (0, 17), setting ¢,, := )\%’ns,

Ay > sup INSf(uon)llis > INSSf(uon)(tn)
te[0,T* (uo,n,f))

10U ()17 + e(n, 5),

v

where

lim e(n,s) =0, Vs e [0,17).

n—oo

Thanks to (3.6), one can take sg such that
1U* (s0) |5 > 2Ac
and choose ng := n(sg) such that £(ng, so) < A2 and A3 < 242, then we have

247 > U (s0)ll75 +e(no, s0)
> TA3

which contradicts the fact that A. < co. Then we prove that for any wy, if 7% (uo, f) <
o0

limsup [[NSf(uo)||rsmsy = oo.
t—)T*(uo,f)

Theorem 3.1.4 is proved.

3.3 Profile decomposition

In [15] a profile decomposition of solutions to the Navier-Stokes equations associ-
ated with data in By, is proved for d < p < 2d + 3, thus extending the result of
[18]. In this section we use the idea of [15] to give a decomposition of solutions to
the Navier-Stokes equations with a small external force and associated with initial
data in L3.

3.3.1 Profile decomposition of bounded sequence in L?

Before stating the main result of this section, let us recall the following definition.

Definition 3.3.1. We say that two sequences (Ajn, Tjn)nen € ((0,00) x RN for j €
{1, 2} are orthogonal, and we write (A1 n, T1,n)nen L (A2n, 21 )nen, if

lim A1,n + AZ,n + ‘xl,n _xZ,n‘ _

. 3.7
n—+0o0 A2,n A1,n )\1,n oo ( )
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Similarly we say that a set of (Xjn, Tjn)nen, for j € N, j > 1, is orthogonal if for all j # 7/,
(/\j,na xj,n)nEN uE (>\j’,na wj/,n)nEN-

Next let us define, for any set of sequences (A, Zjn)nen (for j > 1), the scaling
operator

1 t T—xj
U' , J,n
)\Jvn j<)\in )\],TL

Aj’nt(t,JJ) = ) (38)

It is proved in [19] that any bounded (time-independent) sequence in B,,(R?)

may be decomposed into a sum of rescaled functions A;,¢;, where the set of se-
quences (Ajn, Tjn)nen is orthogonal, up to a small remainder term in B;%, for any

q > p. Since in this paper we only consider the initial data in L3, we only state
the profile decomposition result of bounded sequences in L? in [19]. The precise
statement is in the spirit of the pioneering work [16].

Theorem 3.3.2. Let (¢n,)n>1 be a bounded sequence of functions in L3(R3) and let ¢, be
any weak limit point of (¢n)nen. Then, after possibly replacing (¢n)nen by a subsequence
which we relabel (py,)n>1, there exists a subsequence of profiles (¢;) j>2 in L*(R?), and a set
of sequences (Ajn, Zjn)nen for j € Nwith (A ,,21,) = (1,0) which are orthogonal in the
sense of Definition 3.3.1 such that, for all n, J € N, if we define v, by

J
on =Y Njndj+1,

j=1
the following properties hold:

e the function 1;] is a remainder in the sense that for any p > 3,

. . I .. — 0
Jim (limsup 47555, ) = 0; (3.9)

o There is a norm || - || ;s which is equivalent to || - || 3 such for eachn € N,
[e.9]
73 oo 3
D le5llFs sy < liminf [ |73 s
j=1

and, for any interger J,

lnllzs < llenllzs +o(1)
as n goes to infinity.

We mention that, in particular, for any j > 2, either lim, o |z;,| = oo or
limy, 500 Ajn € {0,00} due to the orthogonality of scales/cores with (A1, z1,) =
(1,0), and also that

> leslizs < liminf flon]|2s. (3.10)
j=1
3.3.2 Profile decomposition of solutions to (NSf)

Theorem 3.3.3. Suppose that | A7 f||;s < ¢, where c is the small universal constant in
Theorem 3.5.2.
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Let (uo.n)nen be a bounded sequence of divergence-free vector fields in L3(R3), and ¢,
be any weak limit point of {uon}. Then, after possibly relabeling the sequence due to the
extraction of a subsequence following an application of Theorem 3.3.2 with ¢, = ugy,
defining u, = NSf(uon), Ul == NSf(¢1) € C([0,T1],L3) and U7 = NS(¢;) €
C([0,Ty), L?) for any j > 2 (where Tj is any real number smaller than T, where T} is the
life span of U7 for j > 1, and T7 = oo if T} = oc), the following properties hold:

o there is a finite (possibly empty) subset I of N such that
Vjel, TV < oo and V5’ € N\I, U7 e C(Ry, L}(R?)).

Moreover setting 7, := minjecs )\?nTj if I is nonempty and 1, = oo otherwise, we
have

sup [|up | cos (£3(r3)) < 003 (3.11)

o there exists some large Jy € N such that for each J > Jy, there exists N (J) € N such
that for all n > N (J), all t < 7, and all x € R3, setting w;] := e (1;]) and defining
ri by

J
un(t, ) = U+ A7 +w) + 1), (3.12)

j=2
then w;) and r;) are small remainders in the sense that, for any 3 < p < 5,

Jim. (h?ILILSngHwnH]L};"O(oo)) = lim (hgsgp\\rn\lwwm)) =0. (313

We recall the following important orthogonality result without proof. Its proof
is the same as the proof of Claim 3.3 of [15], as it just depends on orthogonality
property on scales/core. To state the result, note first that an application of Theorem
3.3.3 yields a non- empty blow-up set I C {1,...,Jy}. Then we can re-order those
first Jy profiles, thanks to the orthogonality (3.7) of the scales );,, so that for ng =
no(Jo) sufficiently large, we have

Vn>mng, 1<j<j <Jo= N, T5 <\, T (3.14)

(some of these terms may equal infinity).

Proposition 3.3.4. Let (uon)n>1 be a bounded sequence in L3 and for which the set T
of blow-up profile indices resulting from an an application of Theorem 3.3.3 is non-empty.
After re-ordering the profiles in the profile decomposition of w, = NS f(uo,) such that
(3.14) holds for some .Jy, setting t, := X} s for s € [0,T}') one has (after possibly passing
to a subsequence in n):

||“n(t)||i3 = H(Al,nUl)(tn)sz3 + [Jultn) — (Al,nUl)(tn)”?iS +¢(n, s), (3.15)
where e(n, s) — 0as n — oo for each fixed s € [0, TY).

Proof of Theorem 3.3.3 . Let (ugn)n>1 be a bounded sequence in L3. We first use The-
orem 3.3.2 to decompose the above sequence.
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Then with the notation of Theorem 3.3.3

J
won = Y Ajndj + ¥il-
j=1

We define

Uy, := NSf(upy,), U :=NSf(p1) € C([0,T7), L3(R3)),
Ul = NS(¢;) € C([O,TZ’;),L?’(R?’)) and w! := e (¥)).

n

By (3.9) and standard linear heat estimates we have
. . J o
Jim. (hisogp [[wy IIL;,:oo(oo)) =0.
According to (3.10), we have for any p > 3

|Uoallgz) ], < [[Qloslles) 2y,  timint fuomlos, (3.16)
which implies that, for any j > 2,
U7 e Ly>™(T < Ty)
and there exists Jy > 0 such that for any j > Jy, T} = oo. Moreover, forany j > Jy
U7 € L (00) and |07 lpyoeqor) < 1951 5m

Hence, I will be a subset of {1, ..., Jy} which proves the first part of the first state-
ment in Theorem 3.3.3.

From now on, we restrict p € (3,5). By the local Cauchy theory we can solve
(NS f) with initial data ug,, for each integer n, and produce a unique solution u,, €
C([0,Ty), L3(R?)), where T} is the life span of u,,. Now we define, for any J > 1,

J
ri = Uy — ZAijj — w;{,
j=1
where we recall that A; ,U' = U'. We mention that the life span of A;,U7 is A3, T*.
Therefore, the function r; (¢, ) is defined a priori for ¢ € [0,,), where
t, = min(T,; 7,)

with the notation of Theorem 3.3.3. Our main goal is to prove that r; is actually
defined on [0, 7,,] (at least if J and n are large enough), which will be a consequence
of perturbation theory for the Navier-Stokes equations, see Proposition 3.4.1. In the
process, we shall obtain the uniform limiting property, namely,

lim (hmsup HT;{HLg:oo(Tn)) = 0. (3.17)
J—ro0 n—00

Let us write the equation satisfied by r;/. We adapt the same method as [14] and
[15]. It turns out to be easier to write that equation after a re-scaling in space-time.
For convenience, let use re-order the functions A;,, U7, for 1 < j < Jy, in such a way
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that, for some ng = ng(Jy) sufficiently large, we have as in [15],
Vn > ng, j < j/ < Jo= )\j,nzj; < )\j’,nT’;"

And we define 1 < jo < Jj as the integer such that Aj,,, = Id. And AjomUj0 =
NSf(¢j,) = Us + V70 (see Theorem 3.5.2). We note that /\inT]* is the life span of
AR U7

The inverse of our dilation/translation operator A, is

]’I%,f(s y) jnf( ]ns >\] ny+$] n) (318)

Then we define, for any integer J,

§<J, URt = AT A U9, R = Apyry), Vo = AL, Vo

1nn7
Ul = A7, Uf, WJlfA w; and U}l := A7)

1,n%n

Clearly we have
J .
RM =U, — QU + W)
j=1

and R;" is a divergence free vector field, solving the following system:

{aRil ARV + PRy - VR + QR UL+ G = F, (319)

Rr{l\t_o =0,

where we recall that P := Id— VA~!(V) is the projection onto divergence free vector
fields, and where

Q(a,b) :=P((a-V)b+ (b-V)a)
for two vector fields a, b. Finally we have defined
J
GPl= > UM+ W vl
J#Jo

and

<

Flt =~ @(W“ Wikt — ZQ UL U =Y QU wikh.
J#J J=1

In order to use perturbative bounds on this system, we need a uniform control on the
drift term G;* and smallness of the forcing term F;)"*. The results are the following.

ok

Lemma 3.3.5. Fix Ty < T}. The sequence (G‘] Jn>1 is bounded in LP(]0,T1], Bsﬁf

uniformly in ], which means that

hm limsup |G| 2 = 0.

—00 np—oo CP([OTl]B,,p )

The proof of the above lemma is the same as the proof of Lemma 2.5 in [15], as it
just depends on orthogonality property on scales/core.
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Lemma 3.3.6. Fix Ty < T7. The source term F 11 goes to zero for each J € N, as n goes to

4
infinity, in the space F := LP([0,T1], B, p+ ) +£5([0,T1], By p+p ). In precisely,

lim limsup ||[E"! |7 = 0.
J—=00 npn—oo

Assuming these lemmas to be true, the end of the proof of the theorem is a direct
consequence of Proposition 3.4.1.
O

Now let us prove Lemma 3.3.6.

Proof of Lemma 3.3.6. We first notice that

J J

1 1 o .
EM == 5@ Wi =5 3 QLU = > QUL W)
i#i'.i#do =130
J'#jo
J . . .
— Y QUPLUNY = QU WM.
J=1,j#jo
And we note that the structure of
1 1 < o J .
Ap = =5QUVIL W — o 3T QUL U = Y QUL W
#3330 J=Lj3#jo
3'#Jo

is the same as the G¥ of Lemma 2.7 in [15]. As a consequence of Lemma 2.7 in [15],
we obtain

hm limsup ||AJ| 7 = 0.

—0 n—oo

Hence to finish the proof of Lemma 3.3.6, we need to show

hm limsup || B || = 0,

n— oo
where
Bli=— Y QUPMLULM) - Ui, Wi,
J=Lj#Jo

By product laws and scaling invariance, we first have

Uj0,17 WJ,l < WJ,l Uj071 - - sp
QR Wl P Wl om0 )H 2 oo o), 27

J
S Wallsge 10ll s5r,
implies that

lim limsup ||Q(U!, W) 2_, =0.

. Sp+ 2
J—=00 n—oo cr(0,14].B,0, P )
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Now we are left with proving that

J
lim limsup || ZQ U, UI Y| £ = 0.

J—=00 n—oo

J#i’
We can write 23’7:1, it QU Uit) as the following way:
Y. QUPLUYN = QUL UM + ) QAU URY).
J=1,j#j0 J#J0 J#Jo

Since for any j # jo Up' € L>®(Tp), Vi®' € LE™(Tp) and 3 < p < 5, by (3.20) in
Proposition 3.3.7, we have for all j’, j # jo

lim ||Q(UJ!, viool =0.
Tim [/ Mg st
And according to Uy € L3(R?), we have
lim | QU ATIU L, =0
I QAN AT s
by Proposition 3.3.7. By the above two relations, we have
J
lim limsup || QU Ui spi2-2 = 0.
J—o0 n—00 ]127];&]0 Ep([(]?TlLBP?PJrP 2)
Lemma 3.3.6 is proved. 0

3.3.3 Orthogonality Property

In this paragraph, we show the orthogonality properties used in the proof of Lemma
3.3.6. The first statement of Proposition 3.3.7 is just a particular case of orthogonality
property given in [14] (see the proof Lemma 3.3 in [13]). By the same idea in [14],
we give a orthogonality property in the case that one of the element in the product
is time-independent.

Proposition 3.3.7. We assume that (A1 ,,, Z1.n)nen and (A2n, 2.5 )nen are orthogonal. Let
T € Ry U {+oo}. Then the following properties hold:

Sp+

1. Letp > 3and 1— < < 1. Suppose that v,w € L£*([0,T], B,5 ). Then we have

A [[(Arn)(Aznw)l] @01 B2 Y

=0, (3.20)
where T,, := min{\{,, T, A3, T}.

2. Letp>3and2 <r < 2” . Suppose that U € L3(R3) and v € L"([0,T], BSer ).

li A, U)(Aa g, =0, 21
Jim |[(A1nU)(A2,n0)| o B 0 (3.21)

where T, := Xo., T.

Proof. As we mentioned above, (3.20) is a particular case of orthogonality property
given in [17], we only need to prove the second statement of the proposition.
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For any given € > 0 one can find two compactly supported (in space and time)
functions v, and U, such that

[ —ve| U = Uells <e.

£2a([0,T), BS”+

Product rules (along with the scale invariance of the scaling operators) gives that

A A —
A1) B0 = U e
H(Arn(v = ve)) (A2 (U )” “([0.T], Bsp+ n
Hhanlo 0} Azl - T, om i S

Then it is enough to prove that for fixed ¢ > 0

Jim[[(81,0U2) (A2 n(ve) | +2o1) = 0,

i)

s

£r([0,74],B5,
Again by Proposition 3.5.3, we have for some 3 < ¢ < _*4 and small enough ¢ > 0,

Ay Ao 2 A pUe|| 5 Aoy
AU Aol o) S DUl gralnptell ey

According to the fact that

1AL Uel gea+s S AU s,
a9

and

Ao nv

” 2 5” [0 Tn] Bbp+ 75) N EQ“([O T] B$p+,,,)
we have
A2\ 0
< (=
[Aanle) B2 @), sz S (F2) =00 0= o
if 2 ’\2 * — 0. Hence we prove (3.21).
O

3.4 Estimates on perturbation equations
Now we consider the following perturbation equation,

wli=o = wo, '

Let us state the following perturbation result.

Proposition 3. 4 1. Let T € Ry U{+oo}and 3 < p < 5. Suppose that U € L3(R3) g €

£(0,7), By (R0 and f € F(0,T) := £2(00,T) By ) + £5(0, 70, B ),
Assume that |U||psgs) < c1 < ¢, wherec > 0isa universal small constant Theorem 3.5.2.
Then there exists a constant C' independent of T' and e such that the following is true. If

lwoll g=o + L.f | 7o, < €oexp( = Cllg|l o
Bt (10 ( (o1 }p;f‘”))
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then w € LY(T) and

<C Ssp exp(C s
lwligry < Clwollgs, + 15 1rqom)esp@loll - oyes )

The proof the proposition follows the estimates of [13] (see in particular Propo-
sition 4.1 and Theorem 3.1 of [13]). The main difference is the absence of an exterior
force and a small time-independent drift term in [13], but those terms are added with
no difficulty to the estimates.

Proof. By Proposition 4.1 of [13], for any o, 8 € [0,T] , we have the following esti-
mates
wllg= o, < Kllw(@)ll g + Kl F 7o, + Kllw [

AL (33

+ K(HUHLS + ||g||£p [a /3] BSP+2/P))||w||£p([a7ﬁ]7B;?)p+2/P)‘

We recall that ¢ is a small enough number such that

1
K|U —.
10llzs < 4

And we claim that there exist N real numbers (7;)1<;<n such that 7} = 0 and T =
T, satisfying [0, T] = UN ' [T}, Ti41] and

HgH d S TR Vie{i,1...,N—1}

Lo(T Tl Byl 7))~ AKC
Suppose that

1
||w0||BSP + 1l 7o) < m (3.24)

By time continuity we can define a maximal time 7 € R U {co} such that

1
~ .5p+2

w < —.
| Hm([o,T],Bp,p Py T 4K

If T > T then the proposition is proved. Indeed, by (3.23), we have,,

3
w s < K||w()||ps» + K oo+ = ||w s
0l e, S KN+ Ky + gl s
which deduces that
) iy < TN, + 1)

Hence according to (3.23) ,

3
||wH£°°([Ti,Ti+1],B;{’p) < K||w(Ti)HB;§; + K| fl 7z, 100 + EHU)H Jsp+2

Lr ([T27T1+1] Bpp )
< AR ([Tl g, + 1 F7(00)):
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Therefore,
(Tl g, < ARV (o) g, + 1 7o)
which implies that
2 < (AK)Y(||lw(0)]| pop + .
Il e, S ) (0Ol + 1 Lr0m))
Hence,
w 2 < NUK)N(|w(0)|] 55 + .
L (N OIPE B ETER
Take N ~ ||g|| .sp+2 » Wehave
£r([0,T),Bp,p ¥
w 2 S (Jlw(0)|| g5 + exp(C o2 )
Il ooty S O, + W lomp)ese@lal s )
And by (3.23), we have
Il o) S Uwolline + 15l eage i)}l i)

Thus the proposition is proved in the case T' > T.
Now we turn to the proof in the case of 7' < T. We define an integer K €
{1,..., N — 1} such that

T <T < Tip-

Then for any ¢ < k — 1, we have

w e < (AK)(||w(0)]| g + ,
190 ey S AE) (Ol + 1Lr0m))

and
(@)l < AR (wO)l en + 1 Lrom)-
The same arguments as above also apply on the interval [T}, T] and yield,

||w||54([Tk,T],H1) < (4K)N||w0||f{1/2 + CNKQHfHﬁ([o,T],Hfl)»

and

ol g g 12y < AE)Y ol 12+ ONE |l s oy

Therefore we have
1
N
||7UHg4([o,T],H1) < NMAEK)™ (lwoll /2 + ||f”g4([a,5]7gfl)) < AR

which contradicts to the maximality of 7.
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3.5 Appendix

3.5.1 Some results on the steady-state Navier-Stokes equations

In this part, we recall some existence results on the steady state Navier-Stokes equa-
tions, and the Navier-Stokes equations equipped with the same time-independent
external force. The steady state Navier-Stokes system is defined as follows,

~AU+U-V = f—VII,
(SNS){ V.U=0,

where f(z) is the external force defined on R3. Since we only care about the case
of U € L3, we state the following result for A~ f € L3 without proof, which is a
consequence of Theorem 2.2 in [2].

Proposition 3.5.1. There exists an absolute constant § > 0 with the following property. If
f € S satisfies A~1 f € L3(R?) and

1A Fllssy < 6,
then there exists a unique solution to (SNS) such that
1Ullzs < 20A7 fllzs < 26.

Now we state a well-posedness result of (NSf), which is a particular case of
results of Theorem 2.2.7,2.2.8 and 2.2.9.

Theorem 3.5.2. Suppose that f is a time-independent external force such that ||A™1f|| 13 <
¢, where ¢ < § is a universal small constant. Let Uy € L3(R3) be the unique solution to
(SNS) with ||Us||ps < 2||A~L f||1s (the existence of Uy is provided by Proposition 3.5.1)
.Then we have

1. For any initial data ug € L3(R3), there exists a unique maximal time T* (ug, f) >
0 and a unique solution uy to (NS f) with initial data uy such that for any T <

T*(u07 f)/
uy € C([0,T], L*(R?)).

Moreover there exists a constant dy(f) such that if ||ug — Ul|rs < 02, then uy €
Co(Ry, L3(R3)). The solution uy satisfies that for 3 < p < 5

li — Uy ooy = 00. 3.25
T_>T111(1UO7f)IIUf fllLge () = 00 (3.25)

2. Letus € C(Ry, L3(R3)) with initial data ug € L3(R3). Thenuy € L°(Ry, L3(R3))
and uy — Uy € 1L;0°°°(00) for some ro > 2 and p > 3, and

Juy = Ul g, = 0.

lim
t—o0
3.5.2 Product laws and heat estimates

We first recall the following standard product laws in Besov space, which use the
theory of para-products (for details, see [7, 13]).
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Proposition 3.5.3. 1. Letp > 3,q > 3and r > 2. Moreover assume that sq+ s, + 2 >
0. We have, for any |e| < 1 such that 1 — 2 + ¢ > 0,

[[ow]] s+ < CE]

~Sq+te w . 2 _ .
L7([0,T),B,5 ™ £°°([0,T],Bq?q )H HU([O,T],BS“T 5)

p,p
2. letp>3and2 <r < ]%. Then for any € € R such that 1 — 2 — |e| > 0, we have

lowll 5

< C(e)|v w '
LT([O’TLBP,:D ) — ( )H ||£T 'Sp+%+5 || || ._9p+%_8

([OvTLBPvP ) ‘CT([OvTLBPvP )

Now let us recall the following standard heat estimate. For any p € [1, oo}, there
exists some cp, ¢ > 0 such that forany f € S’and j € Z,

—ct227
1252 )llze < coe™ 1A f | o

Hence for 0 < ¢ < oo, recalling
t
B(u,v) = / eU=IAPY - (u(s) ® v(s))ds,
0

Young's inequality for convolutions implies that for any 7 € [r, oo]

HB(u7 U)||CF([07T]’B;J;2+2(%7%)) 5 ||U & UHL‘,T([O’TLB;}—)I). (326)

And we recall that B is a bounded operator from L>°([0, T, L) x L>([0, T, L>>°)
to L>°([0, T, L>>) for any T' € Ry U {+00} (see [2])

Lemma 3.5.4. Suppose that u,v € L°°([0,T], L>*) for some T € Ry U {+oc0}. Then

1 B(w; )| oo (j0,77,800) < MWl poo (jo,77,28.00) [[w]] Loo (j0,77, 23,0 -
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Chapter 4

Gevrey class smoothing effect for
the Prandtl equation

4.1 Introduction

In this work, we study the regularity of solutions to the Prandtl equation which is
the foundation of the boundary layer theory introduced by Prandtl in 1904, [24]. The
results in this chapter is a collection of a published paper (SIAM J. Math. Anal. 48
(2016), pages 1672-1726).

The inviscid limit of an incompressible viscous flow with the non-slip boundary
condition is still a challenging problem of mathematical analysis due to the appear-
ance of a boundary layer, where the tangential velocity adjusts rapidly from nonzero
at the area far away from the boundary to zero on the boundary. Prandtl equation
describes the behavior of the flow near the boundary in the case of small viscosity
limit, and it reads

Up + Uy +VUy +Dp = Uyy, >0, TR, y>0,
Uy + vy = 0,

u|y=0 = U|y=0 =0, yggloou = U(t,[L’),

u|t=0 = ’U/(](I',y) )

where u(t,z,y) and v(t, z,y) represent the tangential and normal velocities of the
boundary layer, with y being the scaled normal variable to the boundary, while
U(t,z) and p(t,z) are the valuesof the tangential velocity as y — ooand pressure
of the outflow satisfying the Bernoulli law

U +U0,U + 0,q = 0.

Because of the degeneracy in tangential variable, the well-posedness theories and
the justification of the Prandtl’s boundary layer theory remain as the challenging
problems in the mathematical theory of fluid mechanics. Up to now, there are only
a few rigorous mathematical results (see [4, 13, 14, 15, 22] and referencesin). Un-
der a monotonic assumption on the tangential velocity of the outflow, Oleinik was
the first to obtain the local existence of classical solutions for the initial-boundary
value problems, and this result together with some of her works with collaborators
were well presented in the monograph [23]. In addition to Oleinik’s monotonicity
assumption on the velocity field, by imposing a so called favorable condition on
the pressure, Xin-Zhang [26] obtained the existence of global weak solutions to the
Prandtl equation. All these well-posedness results were based on the Crocco trans-
formation to overcome the main difficulty caused by degeneracy and mixed type of
the equation. Just recently the well-posedness in the Sobolev space was explored by
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virtue of energy method instead of the Crocco transformation; see Alexandre et. all
[1] and Masmoudi-Wong [21]. There is very few work concerned with the Prandtl
equation without the monotonicity assumption; we refer [2, 3, 20, 9, 25, 30] for the
works in the analytic frame, and [12, 17] for the recent works concerned with the ex-
istence in Gevrey class. Recall Gevrey class, denoted by G*, s > 1, is an intermediate
space between analytic functions and C*° space. For a given domain, the Gevrey
space G*(2) is consist of such functions that f € C*°(2) and that

HaafHLQ(Q) < LI (al)®

for some constant L independent of «. The significant difference between Gevery
(s > 1) and analytic (s = 1) classe is that there exist nontrivial Gevrey functions
admitting compact support.

We mention that due to the degeneracy in z, it is natural to expect Gevrey regu-
larity rather than analyticity for a subelliptic equation. We refer [5, 6, 7, 8] for the link
between subellipticity and Gevrey reguality. In this paper we first study the intrinsic
subelliptic structure due to the monotonicity condition, and then deduce, basing on
the subelliptic estimate, the Gevrey smoothing effect; that is, given a monotonic ini-
tial data belonging to some Sobolev space, the solution will lie in some Gevrey class
at positive time, just like heat equation. It is different from the Gevrey propagation
property obtained in the aforementioned works, where the initial data is supposed
to be of some Gevrey class, for instance G"/* in [12], and the well-posedness is ob-
tained in the same Gevrey space.

Now we state our main result. Without loss of generality, we only consider here
the case of an uniform outflow U = 1, and the conclusion will still hold for Gevrey
class outflow U. We mention that the Gevrey regularity for outflow U is well devel-
oped (see [18] for instance). For the uniform outflow, we get the constant pressure p
due to the Bernoulli law. Then the Prandtl equation can be rewritten as

Up + Uty + vy — uyy =0, (t,z,y) €0, T[xR%,
Ug + vy = 0,

A (4.1.1)

lim uw=1,
Yy—r—+00
u|t:O = UO(CC,y)-

The main result concerned with the Gevrey class regularity can be stated as fol-
lows.

Theorem 4.1.1. Let u(t, z,y) be a classical local in time solution to Prandtl equation (4.1.1)
on [0, T'] with the properties subsequently listed below:

(i) There exist two constants Cy, > 1,0 > 1/2 such that for any (t,z,y) € [0,T] x RZ,

C;Hy) ™7 < Oyult,z,y) < Culy)™7,

o 412
02u(t, 2, y)| + |Bu(t, z,1)| < Cu ()", (412)

where (y) = (1+ [y[*)1/2.

(ii) There exists ¢ > 0,Cy > 0 and integer No > 7 such that

HezcyawuHLoo([o,T}; HNO(Rﬁ_)) + “620983583}11,”L2([07T]; HNO(Ri)) <Cy. (4.1.3)
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Then for any 0 < Ty < T, there exists a constant L, such that for any 0 < t < T,

V'm > 1+ Ny, Heéyagnu < ¢3m=No=1) pm (m!)g(HU) , (4.1.4)

Ol 2z
where 0 < ¢ < c¢. The constants L depends only on Cy,T1,Cx, ¢, ¢ and o. Therefore, the
solution u belongs to the Gevery class of index 3(1 + o) with respect to x € R for any
0<t<Ts.

Remark 4.1.2.

1). The solution described in the above theorem exists, for instance, suppose that the
initial data uy can be written as

uo(w,y) = ug(y) + to(z,y),

where u§ is a function of y but independent of = such that C~! (y) ™7 < d,us(y) <

C (y)~7 for some constant C' > 1, and 4y is a small perturbation such that its weighted

Sobolev norm HchyaoH H2NOT(R2 ) is suitably small. Then using the arguments in [1],
+

we can obtain the desired solution with the properties listed in Theorem 4.1.1 ful-
filled. Precisely, the solution u(t, z,y) is a perturbation of a shear flow u*(¢,y) such
that property (i) in the above theorem holds for u, and moreover ¥ (u — u®) €
L™ ([O, T, H NO‘H(R%)) . Moreover following the analysis in [21] with some modi-
fications, we can also obtain more general solutions with exponential decay rather
than perturbative solutions around monotonic shear flows.

2). The well-posedness problem of Prandtl’s equation depends crucially on the choice
of the underlying function spaces, especially on the regularity in the tangential vari-
able z. If the initial datum is analytic in z, then the local in time solution exists(c.f.
[20, 25, 30]), but the Cauchy problem is ill-posedness in Sobolev space for linear and
non linear Prandtl equation (cf. see [10, 11]). Indeed, the main mathematical dif-
ficulty is the lack of control on the = derivatives. For example, v in (4.1.1) could
be written as — [ u,(y')dy’ by the divergence-free condition, and here we lose one
derivatives in z-regularity. The degeneracy can’t be balanced directly by any hori-
zontal diffusion term, so that the standard energy estimates do not apply to establish
the existence of local solution. But the results in our main Theorem 4.1.1 shows that
the loss of derivative in tangential variable x can be partially compensated via the mono-
tonicity condition.

3). Under the hypothesis (4.1.2), the equation (4.1.1) is a non linear hypoelliptical
equation of Hérmander type with a gain of regularity of order £ in z variable (see
Proposition 4.2.4), so that any C? solution is locally C*°, see [27, 28, 29]; for the cor-
responding linear operator, [8] obtained the regularity in the local Gevrey space G*.
However, in this paper we study the equation (4.1.1) as a boundary layer equation,
so that the local property of solution is not of interest to the physics application, and
our goal is then to study the global estimates in Gevrey class. In view of (4.1.2) we
see u, decays polynomially at infinite, so we only have a weighted subelliptic esti-
mate (see Proposition 4.2.4). This explains why the Gevrey index, which is 3(1 + o),
depends also on the decay index o in (4.1.2).

4). Finally, the estimate (4.1.4) gives an explicit Gevrey norm of solutions for the
Cauchy problem with respect to ¢ > 0 when the initial datum is only in some fi-
nite order Sobolev space. Since the Gevrey class is an intermediate space between
analytic space and Sobolev space, the qualitative study of solutions in Gevery class



84 Chapter 4. Gevrey class smoothing effect for the Prandtl equation

can help us to understand the Prandtl boundary layer theory which has been justi-
tied in analytic frame.

The approach

We end up the introduction with explaining the main idea used in the proof. It’s
well-known that the main difficulty for Prandtl equation is the degeneracy in x vari-
able, due to the presence of v:

v=— /Oy(axu) dy.

To overcome the degeneracy, we use the cancellation idea, introduced by Masmoudi-
Wong [21], to perform the estimates on the new function and moreover on the origi-
nal velocity function u. Precisely, observe

Ut + Ul + VUy — Uyy = 0,
and, with w = 9yu,
Wi + Uwz + vwy — wyy = 0.

In order to eliminate the v term on the left sides of the above two equations, we use
the monotonicity condition d,u = w > 0 and thus multiply the second equation
Oyw

by —=.=, and then add the resulting equation to the first one; this gives, denoting

f:w_ayTWu’

[t +u0y f — 0y, f = terms of lower order.

Our main observation for the new equation is the intrinsic subelliptic structure due
to the monotonicity condition. Indeed, denoting Xy = 0; + 0, and X; = J,, we can
rewrite the above equation as of Hormander’s type:

(Xg + X7 X 1) f = terms of lower order.

and moreover,direct computation shows
(X1, Xo] = (8yu) Os. (4.1.5)

Thus Hormander’s bracket condition will be fulfilled, provided by d,u > 0, and
consequently the following subelliptic estimate holds :

Vwe CR(), A%l 5 | (Yo + X1 )l o + [l o

3

P zy and A% = A? is the Fourier multiplier of symbol

with K a compact subset of R

(€)* with respect to 2 € R. We refer to [16] for detail on general subelliptic operator.
We remark the above subelliptic estimate is local, and as far as Prandtl equation is
concerned, the situation is more complicated: on one side only global estimate is
interesting, that is, we have to consider y > 0 rather than in a compacted subset of
R4, on the other there are boundary and initial problems. When y varies in the half
line y > 0 the Hormander’s bracket condition (4.1.5) is no longer true, since 9,u — 0
as y — +oo. To over this difficulty we perform, following the arguments used in the
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classical (local) subelliptic estimate with some modification, a weighted subelliptic
estimate of the following form: for any w € L? ([0, T], H*(R?%)) ,

H \Gyu|1/2 Al/3wHL2 < H (XO + Xile)wHL2 + HwHL2 + terms from boundary conditions,
which indicates the loss-gain phenomenon, that is in order to gain A'/3 regularity

we have to loss \(9yu|1/ ? weight. Similarly as for as higher derivatives 97 are con-
cerned, we can perform a equation for

™m
for = O — D0 gmy, wd, (aw “) . m>1,
w w
to cancel the bad term involving 9'v, and moreover the above weighted sublliptic
estimate still holds for this equation. Moreover by Hardy inequality, in order to
obtain the control of 9)'w and 0}'v, it is sufficient to perform estimates on f,, (see
Section 4.4 for detail).
Our choice of the weight function W, (see (4.2.2) below) is motivated by the
loss-gain estimate. Recall

_ @Bm+oo
2

2
<Y (1+cy)71A§, 0<¢<3 meN, y>0

E: 2cy 1
Wn = <+<3m+e>o

where the essential part is the factor
_ Bm+Ho
2

<1+(3mQ(f£)a> AS.

Wl

Thus as ¢ is increased by one, we gain A’ regularity and meanwhile loss the weight
(y)"% ~ layu\%. Moreover

9 _ (Bm+Llo
cy 2
14—
< + (3m +{)o

is bounded from below by e =% and goes to 0 as y — +oc, so we add the factor €% in
the expression of W, to guarantee the strictly positive lower bound. Another factor
(14 cy)~ ! is introduced for the purpose that

2cy
2cy 1
8y<€ ( i (3m+€)a>

Observe the Prandtl equation is initial-boundary problem, and we will study the
smoothing effect. Thus it is natural to introduce a cut-off function in time:

_ (3m+£)o
2

=0.
y=0

(e )

¢fn _ ¢3(m7(N0+1))+Z _ (t(T _ t))S(mf(No+1))+Z’ m>Nyg+1, 0< <3,

which ensures that ¢¢, f,, vanishes at the endpoints.
Now we perform the equation for GY, = ¢f, WY, fn:

(00 + ud +v0, — 92) GE, = (085 )W fn + -+
ayGf;L‘ =0 = 07

e o
Grl,_y = 0.
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and have the energy estimate:

¢ ¢ 1/2| p—1/2t
”GmHLoo([o,T]; r2r2)) + HameHLQ([o,T}xRi) <m'2|p7Y GmHLQ([O,TlxRi) o
and we have to control the first term on the right hand side, which arises from the
commutator between 9; and the cut-off function ¢!, and is a crucial part to study the
smoothing effect. Here we will make use of the weighted subelliptic estimate (see
Section 4.3) to treat this term. More details can be found in Section 4.2.

The paper is organized as follows. In Section 4.2 we prove Theorem 4.1.1, and
state some preliminaries lemmas used in the proof. The other sections are occupied
by the proof of the preliminaries lemmas. Precisely, we prove in Section 4.3 a subel-
liptic estimate for the linearized Prandtl operator. Section 4.4 and Section 4.5 are
devoted to presenting a crucial estimate for an auxilliary function and non linear
terms. The last section is an appendix, where the equation fulfilled by the auxilliary
function is deduced.

4.2 Proof for the main Theorem

We will prove in this section the Gevery estimate (4.1.4) by induction on m. As in
[21], we consider the following auxilliary function

Oyw

o = 0w My = wd, <aﬂ;“> Com>1, (4.2.1)

Cw
where w = dyu > 0 and u is a solution of equation (4.1.1) which satisfy the hypotheis
(4.1.2). We also introduce the following inductive weight ,

_ (Bm+Llo
2

2
Wt = v (1+( Y (l—i—cy)_lAé, 0<0<3 meN, y>®22)

mn 3m+{)o

where A? = A% is the Fourier multiplier of symbol (¢)? with respect to z € R. Notting

W2 > e (1+cy)™' > coe, (4.2.3)
for0< ¢ <e.
Since :
w _
y\ <)t
w

we have that, if u is smooth,
”W%meL?(Ri) < HWSAﬁ?WHB(Ri) +CHWP ()" 07 ull L2 (r2 )
On the other hand, we have the following Poincaré type inequality.
Lemma 4.2.1. There exist C;,Cy > 0 independents of m > 1,0 < ¢ < 3, such that
—1 { am —1 { am 4
As a result,

1A= W0 ]l ey < CrllWinfin|l o ) (4.2.5)
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and
1A~ 0, W0 | agazy < Co (|0 WikFnll agazy + IWinFmll ez ) -
We will prove the above lemma in the section 4.4 as Lemma 4.4.2.

Since the initial datum of the equation (4.1.1) is only in Sobolev space H™0+1, we
have to introduce the following cut-off function, with respectto 0 <t < T < 1, to
study the Gevrey smoothing effect by using the hyopelliticity,

¢£1 _ ¢3(m—(N0+1))+€ — (t(T _ t))3(m—(No+1))+é’ m>No+1, 0<0<3. (4.2.6)

We will prove by induction an energy estimate for the function ¢2, W2, f,,,. For this
purpose we need the following lemma concerned with the link between ¢2, W3 fi,
and ¢2, W2 | fm+1, whose proof is postponed to the section 4.4 as Lemma 4.4.3
and Lemma 4.4.4.

Lemma 4.2.2. There exists a constant Cy, depending only on the numbers o, ¢ and the
constant C, in Theorem 4.1.1, in particular, independents on m , such that for any m >
No +1,

2
c 201
|’¢9n+1W79L+1fm+1HLOO([O,T]; L2(]R2+)) + Z Ha;LJ/A 3 ¢9n+1W191+1fm+1 HLQ([O,T}XR?‘_)
=1

2
. 23-1)
< CQH(Z):TSHWT%meLOO([QT];LQ(RfL)) +C2ZH‘95A E ¢§nwr?1meL2([o,T}xRi)v
j=1

and

’\35A_1¢9n+1w7%+1fm+1”L2([0,T]xRi)
2
3 73 jA— 20z (3 3
= CQH(bmemeLOO([O,T]; L2(R%)) +C2 Z H%A : ¢memeL2([o,T]xRi)
j=1

+ CQHagAil(bgnW;;lfmHLQ([O,T]XR?'_)’

and

)~ 3yA1/3A§2Wr€z_lmeL2(Ri) < C2H8yA§2W£zmeL2(Ri) T C2HA5_2szmeL2(Ri)'

Now we prove Theorem 4.1.1 by induction on the estimate of ¢O, W2 f,,. The
procedure of induction is as follows.

Initial hypothesis of the induction. From the hypothesis (4.1.2) and (4.1.3) of Theo-
rem 4.1.1, we have firstly, in view of (4.2.1),

3
0<m< Nog+1, He2cnyHLoo([o,T]; L2(R2)) + Z HeQCya?Z/meLQ([O,T]XRi) < (.

i=1

(4.2.7)
Hypothesis of the induction. Suppose that there exists A > C + 1 such that, for
some m > Ny + 1 and for any No + 1 < k < m, we have

BN GWR fr € L([0,T] x RY), (4.2.8)
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H%kakHLoo([OT] L2(R%) +Z

SAk 5((]6—5)) (1+o')'

([0,T]xR2) (4.2.9)

Claim I,,,11: we claim that (4.2.8) and (4.2.9) are also true for m + 1. As a result,
(4.2.8) and (4.2.9) hold for all £ > Ny + 1 by induction.

Completeness of the proof for Theorem 4.1.1. .

Before proving the above Claim I,,1, we remark that Theorem 4.1.1 is just its
immediate consequence. Indeed, induction processus imply that for any m > 1+ N,
we have forany 0 <t < T,

H¢O wo fm(t)HL2(R2) < Am—5 ((m _ 5)!>3(1+a) <A™ (m!>3(1+a) ’
+
then with (4.2.2), (4.2.3), (4.2.4) and (4.2.6), we get that, forany 0 < ¢t <T7 <T <1,

t3(mfN071)HeEyamuHL2( (T T) 3(m—Np—1) H¢0 wo me

RQ) L2(R%r)’
yields, forany m > Np+1land 0 <t <T) <T <1,

t3(mfN071) Heéyam (T _ Tl)_S(m_NO_l) A™ (m!)3(1+a)

IN

“Hm(uﬁ)
< (T . T1)73m A™ (m!)3(1+0) )

As a result, Theorem 4.1.1 follows if we take L = (T — T}) 3 A. O

Now we begin to prove Claim I, 1, and to do so it is sufficient to prove that
the following:
Claim E,, »,0 < ¢ < 3: The following property hold for 0 < ¢ < 3,

BN OL WY fmn € LA([0, T] X RQ)
65 W, meLoo([o 7); 12(R2)) T ZJ 1 Ha]A_ G Wi fnll 20, 7)xR2 ) (4.2.10)
< AM— 5+6 ((m _ 5)!)3(1+0) (m B 4) {(1+0)

In fact, Claim E,, 3 yields 8SA_1¢§,1W;;Lfm € L*([0,T] x R?) and

H¢3 W3 meLoo([O T); L2 R2

sWy mmll L2011 xR2)
j= 1

SAmeJr% ((m _ 5)!)3(1+U) (m N 4)3(1+a)
=A™ [(m 4 1) - 5)1] 7,

which, along with Lemma 4.2.2, yields 95A~'¢0 ;W0 || fmy1 € L*([0,T] x R%) and

2
H¢9n+1W191+1fm+1HLoo([o,T]; L2(R?%)) + Z H Y m+1W -|—1fm—i-1HL2 ([0,T]xR3)
j=1

< CoA™ 3 [(m 4 1) = 5)1]*0F),
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recalling C> is a constant depending only on the numbers o, ¢ and the constants
Co, Cy in Theorem 4.1.1. As a result, if we choose A in such a way that

A2 > 0y,
then we see (4.2.9) is also valid for £ = m + 1. Thus the desired Claim I, 1 follows.

Proof of the Claim E,,, ; .

The rest of this section is devoted to proving Claim E,, » holds for all 0 < ¢ < 3,
supposing the inductive hypothesis (4.2.8) and (4.2.9) hold.

We will prove Claim E,, ¢ by iteration on 0 < ¢ < 3. Obviously Claim E,, o
holds, due to the hypothesis of induction (4.2.8) and (4.2.9) with £ = m. Now sup-
posing Claim E,, ; holds forall 0 <: < ¢ —1,i.e., forall0 <i </ —1wehave

DALY, Wi, fn € L2([0,T) x R2),

) . 2= i
||¢’¢nWTanm”LOO([0’T]; L2(R1)) + 2]2':1 Haz]/A E ¢mefm||L2([o,T}xRi)(4~2-11)

< AT ((m = 5 (m — 4 ),

we will prove in the remaining part Claim E,, ; also holds. To do so, we first intro-
duce the mollifier A5 = A5 2 which is the Fourier multiplier with the symbol (5¢) -2,

0 < 0 < 1, and then consider the function F' = Aé_zqﬁanﬁl fm. Under the inductive
assumption (4.2.11), we see F' is a classical solution to the following problem ( See
the detail computation in Section 4.6 and the equation (4.6.1) fulfilled by fy, ):

8yF]y:0 =0, (4.2.12)

{ (at +ud +v0y — 85) F=2Z,5s,
F‘t:O =0,

where

Zines =N 20 Wi Z + A2 (9000, ) Wi fin

(4.2.13)
+ [0, +v0y — 857 Ag_z(ﬁﬁzwﬁb] fm

with Z,, given in the appendix (seeing Section 4.6), that is,

Zn = —22:1 ()@ i1 —mgl ()@ 0@
TS G- ()]

=1

The initial value and boundary value in (4.2.12) is take in the sense of trace in Sobolev
space, due to the induction hypothesis (4.2.9) and the facts that 8yA52¢fn Jmly=0 =0
(seeing (4.6.5) in the appendix) and

—(3m+i)o/2
Oy (chy <1 + 7( 2y > (1+ cy)1>

3m +i)o =0

y=0

We will prove an energy estimate for the equation (4.2.12). For this purpose, let
t € [0,7), and take L? ([0,t] x R%) inner product with F' on both sides of the first
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equation in (4.2.12); this gives
e ((875 + ud + v0, — 812,) F, F)LQ([OJ]XRQ) Re (Zm.05, F)LQ([OJ]X]R?F) .

Moreover observing the initial-boundary conditions in (4.2.12) and the facts that
uly—o = v|y—o = 0 and 9,u + Jdyv = 0, we integrate by parts to obtain,

1 t
Re ((0; + ud + vdy, — 85) F, F)LQ([O’t]XRi) = iHF(t)H%Q(R%r) + /0 ”ayF(t)H%qRi)dt

Thus we infer

2
HFH > ([0,T]; L2(R% )+ Ha FHLQ([O T|xR2 ) <2 (Zm,f,t?? F)LQ([O,T}XRi) )
and thus

2 2 2/3
HFH oo([OT LQ(RQ )+ ”a FHLZ([OTXR2) + Ha A~ / FHLZ([OT ><R2)

<2|(Zmess Fpa(oayear)| + 102A7F )2, (42.14)

< 2H¢1/2vae:5HL%[O,T]XR?QHd)il/QFHLQ([O,T]XRi) +l05A 72/3FH§,2([0,T]><R2+)‘

[0,T]xR2)

In order to treat the first term on the right hand side, we need the following propo-
sition, whose proof is postponed to Section 4.5.

Proposition 4.2.3. Under the induction hypothesis (4.2.7) -(4.2.9) and (4.2.11), there exists
a constant C3, such that, using the notation F' = Agnganﬁl fm and

f — ¢1/2Ag2¢7€—b_1W£Z_1fm
with ¢ defined in (4.2.6),
H¢1/22m ¢ 5HL2 ([0,7)xR%)

<m03”¢ 1/2FHL2 ([0,T]xR2. +C3HayFHL2([o,T]xR3)
+ C3A™ 5 ((m - 5)1)® <1+U>7

and
HA71/3¢1/2Zm,g,1,5HLQ([&T]XR%)
< mCs|| AT AN W Fol| a0 7y (4.2.15)
+03HayA_l/?)Ag2¢f7’L_1W’f1_lfmHLZ([O,T]xRi) + CyA™ 6 ((m — 5)1)P1F)
and

—2 1/2
HA 50y / Zm,zfl,éum([o,ﬂxﬂ%i)
< Coll ()™ A2l paqompeny + 03HajA—2/3fHLz([o,T]xRi) (4.2.16)

+m C3 (‘}A_Q/?’Qsﬁz_lwfm_lfm HL2([0,T]xRi)

_i_HAfQ/S(bfl/Qay(bﬁ;lWﬁ;lfm )) + C3Am76 ((m N 5)!)3(1+U) )

HL?([O,T]xRi
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The constant C'3 depends only on o, ¢, and the constant C,, but is independent of m and 6.

Now combining (4.2.15) in the above proposition and (4.2.14), we have

HF||20<>([0T LZ(RZ =+ Z‘

§2m6’3H¢* /QFHB([O,T]xRi) + (203)2“¢71/2FH12 [0,T]xR% ) H5' FHL2 ([0,T1xR2)

+ (Am—6 ((m o 5)!)3(14-0)) + ||82A 2/3F||

([0,T1xR2)

L2([0,T]xR% )’

which yields, denoting by Cy = 4C3 + 10C3 + 2,

_g
||FH20<>(0T] LZ(RQ +ZH8JA ] FHL2 OT]XRQ)
J=1

6 gy 2 (475 (o = 57049

([0,T]xR?
+ 2H8QA 2/3F”L2([OT «R2 )

or equivalently,

HFHLoo([OT LZ(R2 +ZHBJA77 HL2 [OT} )
7j=1

< Oy (m! 2|67 2F | oo sz ) + 1A Fll o z15m2)) - (4217)
+24™6 ((m — 5)1)30+9)

It remains to treat the right terms on the right hand side. To do so we need to study
the subellipticity of the linearized Prandtl equation :

Pf=0uf +udef +v0yf —0;f =h,  (t,x,y) €]0,T[xR2, (4.2.18)

where u, v is solution of Prandtl’s equation (4.1.1) satisfying the condition (4.1.2) and
(4.1.3). Then we have

Proposition 4.2.4. Let h,g € L?([0,T] x R?)) be given such that d,h, 8,9 € L*([0,T] x
R%). Suppose that f € L*([0,T); H*(R%)) with 85 f € L? ([0,T] x R%), is a classical
solution to the equation (4.2.18) with the following initial and boundary conditions :

f0,2,y) = f(T,z,y) =0, (x,y) € R%, (4.2.19)
and

0,0 (1,2,0) =0, 9,f(t,2,0) = (82) (t,2,0) + g(t,2,0), (t,2) €]0, T[xR(4.2.20)
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Then for any € > 0 there exists a constant C., depending only on €, o and the constants C.,
, such that

| ()= A1/3fHL2([o,T]xR3) + Hazg‘/\_l/SfHLQ([O,T]XRi)
< G (HA_I/shHLZ([o,T}xRi) + 110y £ | 2 0,772 ) + HfHL2([O,T]><R3_)) (4.2.21)
+Ce (H ()2 8yA1/6fHL2([o,T]xR3) + | {y)7 Ail/gangLQ([O,T]xRiD
+€HA_2/3athL2([O,T}><]R3_)'
Moreover
H35A_2/3f||L2([0,T]xR3)
SO(H ()~ Al/ngLZ([o,T]xRi) + HA72/3athL2([O,T]><R3_)
100Nz * 1 agornez) )

where C is a constant depending only on o, c, and C., Cy in Theorem 4.1.1.

We will prove this proposition in next section 4.3. This subellipitic estimate gives
a gain of regularity of order £ with respect to « variable, so it is sufficient to repeat
the same procedure for 3 times to get 1 order of regularity.

Continuation of the proof of the Claim E,, ¢ . . 5
We now use the above subellipticity for the function f = f, with f defined in
Proposition 4.2.3, i.e.,

f= ¢1/2A§2¢f{1Wff1fm _ Ag2¢3(m‘N°‘1)+€‘%W£‘1fm.

Similar to (4.2.12), we see f is a classical solution to the following problem:

8yf‘y:0 = O’
f‘t:O - f‘t:T =0,

where Z,, o1 5 is defined in (4.2.13). The initial value and boundary value in (4.2.12)
is take in the sense of trace in Sobolev space. The validity of Claim E,, o1 due to the
inductive assumption (4.2.11) yields that 83 felL? ([0, T] x Ri) . Next we calculate
(8if — 82f)|, _,- Firstly we have, seeing (4.6.6) in the appendix,

{ (0 +ud + 08y = 05) f = ¢ Zpn 15+ (0:0"?) AT Wi fim,s

y=

(8t fn — 02 fm) ly=0 = —2 {8?} (&;wﬂ fm‘yzo.

w
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Then

atf|y20 :A5_2 (at¢3(mfNofl)+€f%) W;;;lfm ‘yzo + Ag2¢3(mfNofl)+Zf%W;;Lflatfm‘

_ m— No— _1 _ _ m—No— 1l
=52 (0TS W | A2 N2 |
_ 2A6_2¢3(m_N0_1)+€_%W§L_1 [ay <az)w>:| fm’yzo
_ m—No— _1 _ _ m—No— 1l
=05 (g N VTR NN | AP N W)

This, along with the fact that
— m—No—1)+0—Lx0—
U A LA 185fm‘y:0
—2 3(m—No—1)+l—L 11—
OB
2c2
—92 _ _
_8yf‘y:0 <(3m +0—-1)o

B L A 1

+ 3cz> Ag2¢3(m—N0—l)+£—%A(K—l)/Sfm‘yzo

due to the fact that 9y A; % fin|y—0 = O (seeing (4.6.5) in the appendix), gives

(8tf - agf) ‘y:O

:A(S—Z (8t¢3(m—N0—1)+4_%) A(Z_l)/gfm‘y=0

2c? 2\ A=243(m—No—1)+0~3  (£-1)/3
X o T3C) N0 : Il

3m+/¢—1

def

g‘y:O

with

g = A5_2 (8@3(’”*%*1)*“%) A“fl)/?’fm

3m+0—1
A 2gmNo ) (13 [ay <8yw)] I

2
_ <(2) + 3c2> A2 NS AR, (42.22)
g

W
Then using Proposition 4.2.4 for h = ¢*/2Z,, 115 + (0:¢'/?) Ay 205 Wi £, and
the above g, we have

H <y>_a/2A1/3f”L2([07T]><R2+) + Hangil/SfHLQ([O,T]XRi)

<Ce (HA_l/?’h’HLZ([O,T]XRi) + HanyB([o,T]xRi) + Hme([o,T}xRi))

+C (H (y) "2 ayAl/ﬁfHLQ([O,T}xRi) + [ (y)7 A_l/gangm([o,T}xRi))

+ EHA_Q/S‘?@/hHB([o,T]xRi)'

y=0

y=0

y=0
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We claim, for any € > 0,

(HA 1/3hHL2 [OT ><]R2 + Ha fHLQ [OT]XRZ + HfHL2 [0 T]XRQ ))

Ce (H L Al/ﬁfHL2 (o.1]xR2) T ()7 A 1/Saygnm([o,ﬂxﬂﬁ))
+sHA*W@MWGO’T]XR%
< &G (H <y>_a/2 Al/sfuLz([o,T]xRi) + Hang_l/?)fHLz([O’T}XR1)> (4.2.23)

= —(140)/2
+em~ ) <HFHL2([O,T]><R3_) + HayFHLZ([o,T}xRi)>
+C’gvgm(1+°')/2Am’5+Z7Tl ((m — 5)1) m{ED+o),
where C5 is a constant depending only on o, ¢, and the constant C,, but independent
of m and d, and C.; is a constant depending only on ¢, ¢, 0, ¢, and the constant
C,, but independent of m and §. Recall F' = A(;Qéanf; fm- The proof of (4.2.23) is

postponed to the end of this section. Now combining the above inequalities and
letting € be small enough, we infer for any & > 0,

4™ A2 F 2o mymz) + 105AT £ o o ey

<gm~(1+9)/2 (\ (4.2.24)

‘FHLQ(OT]XRQ + 0y FHL2 (o, T]><R2))
+Cgm(1+g)/2Am 541 6 ((m_5)) m(( 1)(1-1—0)'

Now we come back to estimate the terms on the right side of (4.2.17). To do so we
need the following technic Lemma, whose proof is presented at the end of Section
4.4.

Lemma 4.2.5. Recall F = A52¢8, WY, frn and f = ¢1/2A52¢5 W EL £, There exists a
constant Cg, depending only on o, ¢, and the constant C, but independent of m and ¢, such
that

H¢71/2FHL2([O,T]><R2) + H82A72/3FHL2 (0,T]xR2)
< Co (m?)| )72 AV | paqoizpuny + 15A7 o)
+ Co (105 Wi fnll oo sy + 10008 Wi Fonl ooy )
and

HGSA_IFHB([O,T]xRi)
ScﬁHagA_l/SfHB([o,T]xRi) + CﬁHaSA_?/SfHB([o,T]xRi) (4.2.25)
+ Cs (||¢f{1Wff1fm||L2([o,T}xﬂai) + Hgyﬁbfn_lwfz_lfmHL2([0,T}xR3)> :

End of the proof of the Claim E,,, , .
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We combine (4.2.24) and the first estimate in Lemma 4.2.5, to conclude

”¢71/2FHL2([O,T]><R?F) + “3§A72/3FHL2([0,T]XM)
< &Cem™'/? <HFHL2([0,T]xRi) - HayFHB([QﬂXM))
i C6C§m%+aAm—5+“Tl ((m — 5)1)* m¢-D0+0)
+ Co (H¢£Z1VV£T11%1HL2qqquRi)‘* Hay¢£?lvvﬁflf51HL2QQ7qu1)>
< 50677171/2 (HFHLQ([O,T]XREL) + HayFHL%[O,T]X]Ri))
+ (CoC + Co)m P2 A™ 755 (m = 5))* ) (am — 4) (D)

the last inequality using (4.2.11). This along with (4.2.17) yields

2
S 2(=1)
HFHLOO([O,T}; L2(R2)) + Z H%A ’ FHB([O,T]xRi)
j=1

< 201G (1P| 2oz ) + 10 F ooy )
+Cy (C@Cg + CG) m1+oAm75+Z7T1 ((m _ 5)!)3(1+a) (m . 4)(571)(1+0)
+2A4™76 ((m — 5)1)31F)

Consequently, letting £ > 0 be small sufficiently,

2
C_2(j-1)
HFHLOO([O,T]; L2(R%)) + Z H‘%A ? FHL?([O,T]xRi)
Jj=1

<CrmITT AT (1 — 5)1)30F9) 1y — 4)EDA+0) 0 gm=6 (1 — 5)1)30H0)
ch(m _ 4)1+0Am—5+% ((m o 5)!)3(1+o‘) (m B 4)(5_1)(14_0)
+ Cr A8 (m — 5)1)30H)

where C7, Cy are two constants depending only on o, ¢, and the constants Cy, C, in
Theorem 4.1.1, but is independent of m and §. Now we choose A such that

A> (2054 2C7 +1)5.
It then follows that, observing ¢ > 1,

2
. 201
||F||Loo([o,T];L2(R2+)) +Z Ha{,A ? FHL?([O,T]xR'i)
7j=1

< AT (m = 5)!)° (m — 4) ),

Observe the above constant A is independent of §, and thus letting 6 — 0, we see
(4.2.11) holds for i = £. It remains to prove that 9 A~ g%, W}, fn. The above estimate
together with (4.2.24) gives

H <y>7a/2 Al/ngm([o,T}xRi) + HaZAil/B'me([O,T]xRi) <Cm,
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with C, 1 a constant depending on m but independent of §, and thus, using the last
estimate in Proposition 4.2.4 and (4.2.23),

[O5A22f || 1o < Cpa,

0,T]xR32)

with Cj, 2 a constant depending on m but independent of 4. As a result, combining
(4.2.25), we conclude

[y P < Cmga

0,T]xR2)

with Cy, 3 a constant depending on m but independent of §. Thus letting 6 — 0, we
see B3Nt gl W f,n € L*([0,T) x R3). Thus Claim E,, ¢ holds. This completes the
proof of Claim I,,, 1, and thus the proof of Theorem 4.1.1.

We end up this section by the following

Proof of the estimate (4.2.23). In the proof we use C to denote different constants
depending only on o, ¢, and the constants Cy, Cx in Theorem 4.1.1, but is indepen-
dent of m and 6.

(2) We first estimate || A~1/3h|| L2 ) recalling

[0,T]xR%
h= Y2215+ (0012) AP0 Wi o
Using interpolation inequality gives, observing |9,¢'/2| < ¢~1/2,

1A (0r6?) A5 260 Wi fll e
Sm_1/2¢1/2H (8t¢1/2> Ag2¢f{1Wv€L_lmeL2(Rm)
N m(@+1)/2¢7(€+1)/2HA717% <8t¢1/2> A2 WE £,

Sm_l/QHA(S_2¢£1_1WT€L_1me

.
L2(R.)
n m(£+1)/2HA—l—%¢_(£+2)/2A5_2¢£1_1W£1_1fmHLQ(RJ;)
S VAl W gy D AN e

the last inequality following from (4.2.2) which shows W?,i > 1, is a decreasing
sequence of functions as i varies in N, and the fact that

¢ FD2pEL < g0

Moreover, using (4.2.5) and the inductive assumptions (4.2.11) and (4.2.9), we com-
pute, observing ¢/2 4+ 1 < 3(1 + o),

mfl/QHAg%fQ;lW,i*lfm %) + m(f+1)/2HA71A6_2¢971*1W7?1*1fmHLQ([O,T]xRi)

< O W gy + Com 268, WO ooy

< Om~ 12 pm-5+ T ((m — 5)1)3H9) (g — 4) D (AF0),

2
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Thus we have, combining the above inequalities,

A7 (006'72) A0 Wi ol oy

(4.2.26)
< Cm—l/QAm—S—&-Z_Tl ((m — 5)!)3(14-0) (m — 4)((—1)(1—{—0)'
Similarly, we can show that
HayAil/g <8t¢1/2 AcS_Q(ZanilW;;;lfmHL%[O,T}XR&)
< OmTV2AMSHTE ((m - 5))3AH9) (4 — 4)(E-D (o), (4.2.27)

Using (4.2.15) in Proposition 4.2.3, we have

HA_1/3¢1/QZm,£—1,5HLQ([O»T]XR?F)

< mCSHA71/3¢71/2A5_2¢£;1WT€:1fmHL2([O,T]XRi)
03| 0y ATY A2 W

+C3A™ 8 ((m - B)1)°,

HL2([0,T}><R2+)

and moreover repeating the arguments as in (4.2.26) and (4.2.27), with 01¢"/? there
replaced by ¢~1/2,

MO [AY6 A2 WA oy

+C3 “8yA—1/3A(5—2¢fn_1W£1—1fm “LQ([O,T]XRi)

Cml/2 gm—5+5 ((m — 5)!)3(1+0) (m — 4)(E=D0+a)

IN

and thus

-1 o — o
A6 21l s ) < CmY2 A (G = 5 (m a0,
This along with (4.2.26) yields

£-1 o - o
A7 2R a0 rpuen y < Ot/ 2A T (m = 5)) ) (1m — 4) (D),

2
[0,T]xR%.

(b) In this step we treat HA_2/38thL2([ ) It follows from (4.2.27) that

2
0,T]xR%

-2/3 2\ A=2 0—1yprt—1
1A %0, <8t¢1/ >A5 P Wi mem([o,T]xRi)
< COmY2pmestE ((m — 5))3H) (g — 4)ED(+0)

On the other hand, by (4.2.16) we have, recalling f = f = ¢'/2A52¢5 ' Wi £,
_2 Y
A 3ay¢1/2zm,€fl,6HL2([o7T]XRi) < Gsl(y) Al/?’me([o,T}xRi)
21 —2/3 —2/3 4—1ypr0—1
+C3H8yA / f“L?([o,T]xRi) +m03<HA / b Win fmum([o,T]xRi)

+ |A23 20,6 WE ful| 017 ) + CoA™C ((m = 5)1)’
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and moreover similar to (4.2.26) and (4.2.27), we have

m Ca (||A=2 6t Wi o +[|AT2 620,00 W o1

([OlexR'i)>

HL?([O,T]xRQ

< OmM2 Aot ((m = 5)1)30+9) (g — 4)ED(+0)

since ‘@qﬁ” 2| > 1. Combining the above three inequalities gives

HA72/3athL2([O,T]><Ri) < C (H (v)™" Al/SfHLQ([OaT]XRi) + “851\72/3-]0“LQ([O,T]xRi))
L OmY/2 g5+ ((m — 5)!)3(1+a) (m — 4)(-D0+0)

(c) It follows from the inductive assumption (4.2.11) that, observing P2 <1,

IN

1
Z HazJ/me([o,T]xRi)

Hgi’ﬁz_lwﬁz_lfmHL?([O,T]xR@ + Hay?bfn_lwé_lfmHL2([0,T]xR1)
§=0

< AT ((m = 5)) 0 (m — 400,

Now we estimate || (y)” A=1/30,g]| ., with g is defined in (4.2.22). It is quite

({0,717 ><]R§r)’
similar as in step (a). For instance,

o A— — m—No— -1 -
| {y)” A 1/35yA52(3t¢3( No—1)+¢ Q)A(g 1)/3fm||L2([0,T}><R3_)

<A AT G WD, ol o

<C|AT T AT W ol a0,y )

+ C"8Z/A_1/3¢_1/2A6_2¢£H_1WT€L_1fmHL2<[0,T}xRi)'

Then similar to (4.2.26) and (4.2.27), we conclude

o A — — m—Ng— _1
I ()7 A7H20,052 (0u0* = 0D ) A o 7y
SC’m_l/gAm_5+% ((m _ 5)!)3(1-1-0) (m _ 4)((—1)(1-1—0)'

The other terms in (4.2.22) can be estimated similarly, and a classical commutator
estimate (see Lemma 4.3.1 in the following section) will be used for treatment of the
third term in (4.2.22). Thus we conclude

T A— m—5+£=1 o _ -
1 )7 A0 2 o ey < CA™ 2T ((m = B)DPF) (m — 4) 00+,

(d) It remains to estimate —o/29,A0¢ and we have
L2(

([0,T]xR3 )"

H (y) 0/28 A1/6fHL2 ([0, T1xR3)

—o m— _1 _ 2
:H y) /28yA1/6A5 ¢3 No—1)+¢ QWe 1meL2 (0152

<|| (v) =7 B, AN WE fon [0yA5 200 Wi fnll 2

2 (o772
<C (H@ Ay QSE Wy meL2 ([0,7]xR2) + HA d)e W, fm“L?([o,T]xRi))
X Hayqsfn_lwgz_lfm

([0,7]xR2)

HL2([0,T]><R3_)’
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the last inequality following from the third estimate in Lemma 4.2.2. This, along
with the inductive assumption (4.2.11) implies, for any € > 0,

IR 8yA1/3fHL2([O,T]><Ri)

<m0 (HF“L2([0,T]xR1) + HayFHm([o,T}xRi))
+Cém(l+a)/2Am—5+% ((m _ 5)!)5 Tn(f—l)(l-ﬁ-or)7
recalling F' = Ad_zqﬁﬁleg fm-

Now combining the estimates in the above steps (a)-(d), we obtain the desired
(4.2.23). 0

4.3 Subelliptic estimate

In this section we prove the Proposition 4.2.4. Since the following commutators es-
timates would be used in our proof, we state some results of them in below lemma.
Throughout the paper we use [Q1, Q2] to denote the commutator between two op-
erators ()1 and @2, which is defined by

[Q1, Q2] = Q1Q2 — Q2Q1 = —[Q2, Q1].
We have

(Q1, Q2Q3] = Q2[Q1, Q3] + [Q1, Q2] Qs. (4.3.1)

Lemma 4.3.1. Denote by [a| the largest integer less than or equal to o > 0. For any T € R

and a € C’IE‘THH (R2), the space of functions such that all their derivatives up to the order of
[|7|] + 1 are continuous and bounded, there exists C' > 0 such that for suitable function f
andany 0 < 6 < 1,

[la, ATAEZ]fHLQ(Ri) < C||AT_1A§2f”L2(Ri)7
and
H[aaﬂc’?ATAgQ]fHLQ(Ri) < CHATA(S_ZfHL?(Ri)-

The constant C depends on only on T and ||a|| ,j+n+1 55 -
o) I ()

Since A”A;? is only a Fourier multiplier of = variable, so we can prove the above
Lemma by direct calculus or pseudo-differential computation, cf. [16, 19]. In this
section, we use above Lemma with ¢ = wora = vand 7 = —1/3, —2/3. So that with
hypothesis (4.1.3), the constant in Lemma 4.3.1 depends only on the constant Cj in
Theorem 4.1.1.

Proof of the Proposition 4.2.4. Taking the operator A~2/3 on both sides of (4.2.18), we
see the function A=2/3 f satisfies the following equation in ]0, 7| xR2:

ONTf + ud A2 f 4 w0, A3 f — 02N f

(4.3.2)
= A"2Bh 4 [udy + 8y, A3,

and that

—-2/3 -2/3 —2/3
Al g = AR =0, 9,A7| =0 (4.3.3)
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due to (4.2.19) and (4.2.20), since A=2/3 is an operator acing only on x variable. Recall
[u@ +vd,, A=%/ 3} stands for the commutator between 19, + v0, and A—2/3,

Step 1). We will show in this step that

| (9yu)"/? axA_2/3in2([0,T]><R2 )

Re ( ST z/3f> +05A oy mz ) (434)

<2
L2([0,T]xR%)

+C (HA_I/thLZ’([o,T]xRi) + HanyB([o,T]xR‘i) + HfHQLZ([O,T]XRi_)) '

To do so, we take L?([0,T] x R2) inner product with the function 9,0,A~3f €
L%([0,T] x R%) on the both sides of equation (4.3.2), and then consider the real parts;

this gives
B ~2/3 —2/3
Re (UaxA fy Oy f)L2([0,T]xRi)
— A-2/3 A-2/3 _ 2N—2/3 AT
e (04755, 0,0, f)Lz([OT]xR'i) Re (9207231, 0,0,A72/%1)
2/3 2/3
+ Re (vE)A fy 9y0:A" f>L2[0T]xR2)

~Re (A7, 0,0,A7"F)

L2([0,T]xR2 )

(4.3.5)

L2([0,T]xR2)
_ 2/3 2/3
Re ([uds + vy, A5, 0,0,472%F) P

We will treat the terms on both sides. For the term on left hand side we integrate by

parts to obtain, here we use u‘yzo =0,

—Re (uaxA*Q/?’f, ayaﬂ»‘Aﬂ/gf) L2([0,T]xR2)
= _5{ (u8 AR, 9,0,A7 2/3f> L2((0.T]xR2)

N (8y81A_2/3f’ uaxA_2/3f> L2([0,T]xR2) }
= 5l @A e

Next we estimate the terms on the right hand side and have, by Cauchy-Schwarz’s

inequality ,

e (0

—2/3 A-2/3
F> 9y0a f) L2([0,T]xR2)

92A
Yy
1

5”82A 1/3fHL2(OT><]R2) §HanyL2([o,T]xRi)’

<IN My * 190 oy

2/3 2/3
Re (A h, 9,0,A f)L2(0T]XR2
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and

‘—Re (v0,A72/2 1, 0,0,072/%F)

L2([0,T]xR%)

< ‘(ay £, (A3, 0]0,0,07% )

L2([0,T]xR%)

_l’_

(v, A=20,0,072/%F)

L2([0,T]xR%)

< CHany;([o,T}xRi)’

the last inequality using Lemma 4.3.1. Finally

'—Re ([u@x + 08y, A3 f, 8,0,A7%3 f)

L2([0,T]xR%)

< [|AYP[ud; + 00y, Af?ﬁ”“i?qoﬂmi) + HanyQH([o,T}xRi)
< 2( ] [ude + 00y, AN\ o 1y

+| [u0r + v, Al/g]A_g/ngi?([O,T}xRi)> + Hanyi%[O,T]xRi)
<

2 2
¢ (Hﬂ‘L%[O,T}XRi) + Hanym([o,T}xRi)) ,

These inequalities, together with (4.3.5), yields the desired (4.3.4).

Step 2). In this step we will estimate the second term on the right hand side of
(4.3.4) and show that for any € > 0,

_ 2
[95A 1/3fHL2<[0,T]xRi)

S € H (ayu)l/Q 6$A_2/3inQ([O,T]><R3_) (4:36)

+ Ce HanyiQ([O,T]XRQ )y T Hfo'ﬂ([O,T]XRQ) + HA_l/thi%[O,T}xR?) ;
T =3 ¥

with C. a constant depending on ¢. We see that the function A~'/3f satisfies the
equation in ]0, 7 xRR?,

OATBf + (udy +v0y) A3 f — 2NV f

(4.3.7)
= A7Y3h 4 [udy + 00y, A7),
with the boundary condition
ATVBF| = AT =0, 9,07 =0, (4.3.8)

Now we take L*([0,7]xR?2 ) inner product with the function —92A~1/3f € L2([0,T]x
R? ) on both sides of (4.3.7), and then consider the real parts; this gives

4
[ [P (4.3.9)
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where
Ji = |Re <3tA Vif, opAT 1/3f>L2 (0,T1xR3) |
B = |Re ((ud, +v9,) A, 8§A_1/3f>[0,T}xL2([0,T}XR2)
J3 = Re< 1/5h 82 1/5f>L2 ([0,T]xR?) ’
Ji1 = |[Re <[“5 +vdy, A 1/3]f 0N~ 1/3f>L2 [0,T]xR2) |

Integrating by parts, we see

(@Afl/:af’ 82 1/3f> _ (&8/& /3¢ 9,A~ 1/3f)

L2(]o, T]><]R{2) L2([0,T]xR%)

which along with the fact

1/3 1/3 _
Re (9:09,A71/%f, 9,7~ f)Lz(OT]sz) —0

due to (4.3.8), implies

Ji = [Re (8,5A*1/3 f, 20713 f)

L2([0,T]xR%)

About J; we integrate by parts again and observe the boundary conditition (4.3.8),
to compute

Re (uaA VB f 92N 1/3f)L o)
2 X 2

= —Re (uaA 1739 yfy AT 30 f)LQ(OT] R2)
X

B —~1/3 —-1/3
Re ((8yu)8x/\ fi A ayf)ﬁ([O,T}XRi)

= 5 (@wA7Pa,f, A0,)

L2([0,T]xR%)

—Re ((ayu)axA—l/Bf, A—1/36yf) Lo (oreez)
) +

This gives

Re (uaA—1/3 f, 920713 f)

2([0,T]xR2)
14772 (By10) DA™ Fll 01 100 o oimiety + CUO oy

< (10" 0A ™ fl (o zycay + oo 1m0 N2 it
2
+CH8 fHL2 ([0,T1xR2)

e || (0y U)l/Qa A Z/SfHLz([O T]xR2) + Ce (Hanyiz([O,T}xRi) + Hf}ﬁ,?([O,T]xRi)) :

IN

A

IN



4.3. Subelliptic estimate 103

Moreover integrating by part, we obtain

Re (UOyA_l/S f, 2A73 f)

1
=5 ’ ((ayv) Oy AT F, 0N f)

< CHany;([o,T]xRi)'

L2([0,T]xR?) L2([0,T]xR2)
Thus

Ty < el| (0yu)'7? 0,0 2/BfHﬁ([OT |xR2 )

+ Ce (HanyL2([O,T xR%) T HfHL2 (o, T]xR?)) :

It remains to estimate J3 and J;. Let € > 0 be an arbitrarily small number. Cauchy-
Schwarz’s inequality gives

(4.3.10)

Jz =

Re (A—1/3h, 92N~/ f)

L2([0,T]xR2)

< & [loA ol + Cel| A0 g

([0,T1xR3)

and for J;, Lemma 4.3.1 implies

Ji = |Re ([ud, +v0,, A7V]f, 2071 )

L2(R%)

IN

02N gy + O (1 ey + 100 e

where C’E is constant depending on . Now the above two estimates for J3 and Jy,
along with (4.3.9) - (4.3.10), gives

=€ Hag l/ngLQ([O,T]XW +e |1 @yu)' 2 0 A I3
2
+Ce (HanyLZ([o,T]xRi) + Hme([o,T]xRi))
s (I 1y + 1007 )

L2([0,T]xR2)

and thus, letting € small sufficiently,
|’8§A71/3fH%2([0,T]><Ri)

<Ce (Hayfuiﬁ ([0, T]xR3) + Hfo'ﬂ([O,T]x]Ri) + HA_l/?)h“i?(Ri))

e 1@y 0 A 12 (o 1y 2 )

This is just the desired estimate (4.3.6).
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Combining the estimates (4.3.4) and (4.3.6), we obtain, choosing ¢ sufficiently
small,

| (@yuw)"? aIA_Q/SinZ([O,T]XIR{Z +|05A~ 1/3fHL2 (10,T)xR2)

< C|Re (atA 2/3f, 0,0,A 2/3f> (4.3.11)

L2([0,T]xR%)

_ 2
+C (HA l/thLZ([o,T]xRi) + Hanym([o,T]xRi) + HfHL2([o,T}xR2+)> :

Step 3) It remains to treat the first term on the right hand side of (4.3.11). In this
step we will prove that, for any ¢; > 0,

Re <8A 2/3f,0,0,A 2/3f)

L2([0,T]xR%)

< 51/ / ‘ 8ZA—1/2f> (t,x,())‘ dudt + Cs1H (y) A_l/gangi%[o,T]xRi) (4.3.12)
+e,'C (H —o/2 Al/Ginz([o,T]xRi) + | )2 8yA1/6fo12([O,T]><Ri)> '

For this purpose we integrate by parts again and observe the boundary condition
(4.3.3) , to compute

(aa=2%1, 0,0,0° 2/3f)L2 P

= = (ATf, 90,0,07%F)

L2([0,T]xR%)

- (aA 2/3f, 9,0,A 2/3f)

L2([0,T]xR2)

- (8 OpA2f, DA 2/3f>L2 ([0,T]xRE2)

+/0 /R 8tA_2/3f(t,x,0)) <3xA_2/3f(t,x,O)> dudt,

which, along with the fact that

2 Re (aA 2/3F. 9,0,A" 2/3f)L2 -
- (6/\ 23 9,0, 2/3f) (8y8mA_2/3f, 8tA_2/3f>

)

L2([0,T]xR2) L2([0,T]xR%)

yields, for any €; > 0,

Re <6A 2/3f,0,0,A 2/3f)

L2([0,T]xR?)

; /R (9tA*2/3f(t,x,0)> <8xA*2/3f(t,x,O)> dxdt‘

(4.3.13)
(A1/6at/r2/3 F(t,z, 0)) (A*l/ﬁax/rm F(t,z, 0)) d:cdt’

0
T 2 T 2
§61/ /(atA_1/2f(t,x,O)> dxdt+511/ /(Al/ﬁf(t,x,o)> dadt.
0 R 0 R
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Moreover observing
Ao F(t2,0) = ()72 AYOF) (t2,0),
it then follows from Sobolev inequality that
2 _o 2 o 2
AOf2,0)| < (W) A o, + 100 ) AV o, )
C <H (y) " Al/GfH;(m) +| (y>_"/2 ayAl/GinZ(R+))
with C' a constant independent of ¢, . And thus
T
/ / (Al/Gf(t,x,O))Qda:dt
0o JR
<O (0 NP aomany + 100 ) A g pycay) 319
<C(llw) “/2A1/6fHL2(0Tsz a1 "/21\1/66 v 7o mixes)) -
Using the fact that
OV (t,2,0) = (95A712F ) (t,2,0) + A~ 2g(t,,0)

due to assumption (4.2.20), we conclude

/T/ (6tA_1/2f(tax70))2d(L'dt

OT R 2 : 2

/ /‘<65A1/2f> (tax,o)’ da:dt—i—/ /‘Al/Qg(t,xjo) dadL.
o JR o Jr

Moreover observe

—+o0

( / gy dﬂ>1/2 ( / i

IN

9 1/2
205q(t,2,9)| d@) ,

which implies

T 2 o . 9
/o /R‘A_l/Qg(t,x,O)‘ dudt < C| (y)” A 1/28?4-9”L2([0,T]><R2+)

<Cll )’ A_1/3angiQ([0,T]xRi)’

and thus

T 2
/ / (atA_l/2f(t,1:,O)> drdt
0 R
’ 24 —1/2 2 — 9
/0 /R (32072727 (0,2, 0| e + €| ) A2, 2 15

This along with (4.3.13) and (4.3.14) yields the desired (4.3.12).
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Step 4) Combining (4.3.11) and (4.3.12), we have, for any £; > 0,
_ _ 2
H (ay“)l/Q %\ 2/3in2([0,T]xRi) + H@ZA 1/3fHL2([0,T]xRi)
T 3 2 o . 9
= 61/0 /R ‘(8§A I/Qf) (t, z, 0)‘ dzdt + Ce, || ()7 A UgangL?([O,T]XRi)
+51_10 (H <y>_a/2 A1/6in2([O,T]><Ri) + H <y>_a/2 ayAl/Gin?([O,T]XRi))

+O (1012 oz + 1 W7oty + 187l oy ) -

Moreover we use the monotonicity condition and interpolation inequality to get, for
any €2 > 0

| <y>_a/2Al/6fH%Q([O,T]xRi)
<eo| (y) "2 Al/3f”i?([o,T]xRi) + 551“ (y) "2 fHQLQ([o,T}xRi)
<ea| <y>_a/2 6wA_2/3in2([o,T]xR1) +Co| <y>_a/2 f“iﬂ([O,T]xRi)
<ef| (9yu)"/* 0:A || o

2
0,7]xR2) T CS2HfHL2([o,T]xR1)‘

From the above inequalities, we infer that, choosing €5 small enough,

@) 0N F1[ 7 1y mny + 10582 A1 2 o e

T 2
§E1/ / ‘(8§A71/2f) (t,m,O)‘ dxdt
o Jr (4.3.15)
—0 2 o — 2
ey (|| )™ 0 oy + 1007 A 2008 L2 1))

+Cq <H8ny2LZ([0,T]xRi) + Hin%[O,T}XRi) + HAil/thi?(Ri)) )

Step 5) In this step we treat the first term on the right side of (4.3.15), and show
that, forany 0 < e < 1,

[ [ @a27) s

<C||(dyu) 20,423 f|2, ( ) +eC| A~23g,h3, ( (4.3.16)

0,T]xR3.
2 2
+ e (19172 mnz) + 1022 o 112 ) -

To do so, we integrate by parts to get

[ [ n5) oo da

0,T]xR?% )

3A—1/2 20 —1/2
2Re (G5A7Y2F, 2ATV2F) -

_ 3A—2/3 20—1/3
2Re (G572, 2ATVF) | (or1z2)
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This yields

/‘ 82A 1/2f (t, 0)‘ dedt
‘83 2/3fHL2 OT]XRQ) + 25_1”82 1/3fHL2 [O T]><R2) (43.17)
< EHE)S 2/3fHL2([0,T}><]R3_) + CaHanym([o,T}xRi)’

the last inequality holding because we can use (4.2.20) to integrate by parts and then
obtain

HasA_l/ngi2([0,T]xRi) - ( A 2f)
< ‘ (9387231, 0,f)

= HagA_Q/SfHH([o,T]xRi)HanyH([o,T}xRi)'

L2([0,T]xR2)

(4.3.18)

L2([0,T]xR2)

Thus in order to prove (4.3.16) it suffices to estimate [|95A=2/3f| . (0.T)xR2 ) We
, T
study the equation

OAT230, f + udu N30, f +v0,A"2/30, f — 93N f
A2B0yh + [udy 4+ vdy, A=23]0, f — A=¥3(0yu)dp f — A~2/3(8,v)0, f,
which implies, by taking L? inner product with —95A~/3f,
37\ —2/3 _ —2/3 34 —2/3
1O3A2 1122 0 7y y = —Re (AA™220, £, DA2F) | o

~Re (uazf\_g/ 20y f + 00,30, f, OGN ) £2([0,T]xR2 )
, +

+Re (A72/%0,n, 93072/%F) = Re (A™23(9,0)9, f, GA2"F)

L2([0,T]xR%) L2([0,T]xR2)

+Re ([ud, +vd,, A=]0,f, GIA27F) L2 (lomR2)
; ¥

—2/3 3A—2/3
—Re (A2/3(9,u)0. £, 9N~ f)Lz([o,T]xRi)'

Next we will treat the terms on the right hand side. Observing
OANTP0,f| o =
due to (4.2.20), we integrate by part to compute

~ A3, f, —OgAT?
Re (815 Oy f, —0y f>L2([0,T]XRi)

— ZA—Q/S 2A—2/3
Re (9037237, G2A7237) S
the last equality holding because

24 —2/3 21 —2/3
I, A /f‘tzozayA /f‘t:TZO
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due to (4.2.19). Since u‘y:O then integrating by parts gives
_  A2/3 _GBA-2/3
Re (u@ oyf, =0, f) L2((0.TIxE3)

B —2/3
— _Re (“az/\ Ro5f, opA f>L2([0,TlxR2+)

B ~2/3 2\ —2/3
Re ((8yU)5zA Ay f, oA f) £2([0,T)xR2)

_ 1 —2/3 92 —2/3 92
= (@awr2ray, o ayf)LQ([OVT]XRi)

~Re ((0,u)0:A"2%0, 1, EA5F) o
, ¥

IN

1 _
5“896““L00HA 2/38§fHL2([0,T]xR1)

- - 2 27 —1/3 |2
"‘HA 1/3(62,!“)8va Q/SanyLQ([O,T]XRi) + Hé?yA / fHL2([o,T]x1Ri)'
On the other hand, using Lemma 4.3.1 gives

HA—1/3(8yu)8xA_2/3anyiQ ([0,T]xR%)

IN

2| A0 A0y f |1 0, rpm2

2 A 0,0, A0, s i

IN

Cuanyi?([O,T]xRi)‘
Thus

— Re (uafoz/?’ayf, _8SA2/3f>L2([O,T}XRi)

<C (HanyiQ([O,T}XR?‘_) + Ha?gAil/SfHEQ([O,T]XR?F))

- _ 2 2
¢ HaSA 2/3fHL2([0,T]xRi) + Cé'Hanyp([o,T}xRi)’
where the last inequality using (4.3.18). Using (4.3.18) we conclude

~ Re (vé)yA*Q/g@yfv —85A2/3f>L2([0,TlxRi)

IN

5 _ _
5”83A Z/SinQ([O,T}xRi) + CgH‘az?A U3in?([0,T]><R2+)

=€ HaSA_WSin?([O,T]XRi) + CgHanyi2([0,T]><Ri)'

N

Cauchy-Schwarz inequality gives, for any € > 0,
A—2/3 - 3A—2/3
Re ( Oyh, —0, f) L2([0,7]xR2)

< 5“aSA_2/3f"iQ([O,T]XR3_) + 5_1HA_Q/sathi?([o,T}xRi)’
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and

— Re (A™23(9,0)0,f, 03027 F)

L2([0,T]xR2)

= 5“83A_2/3f”i2([0;r]xRi) 6_1H8yUHL°OHanyLQ([O,T]xRi)

and

~2/3 —93N2/3
e ([Uax +0dy, AP0, f, —0,A f)LQ([QT}XRi)

< “32A72/3fui2([0,:r]xﬂ§1) + 2671 [ud + 08y, A7 anyiQ([O,T]xRi)

My DN | Oy

_ 4.3.19
B 1 ) + CEO o @31

+ C: H‘?QA 1/3fHL2 [0,T]xR3)

= HBS 2/3f“L2([0,T]xR1) + Cé“‘?nyi?([o,T]xRi)’

A

the second inequality using Lemma 4.3.1, while the last inequality following from
(4.3.18). Finally,

—Re (A2/3(0,u)0.f, 83A‘2/3f)L2([0 et

&llayA~ 2/3fHL2 (10,T)xR2 ) + & AT (9yuw) fHL2 ([0,7]xR3 )

IN

AT £ o.rwmzy & @A™ |3 0. 17.m2)
+&7 | [Oyu, AT 2/3]6 f“L2([0,T]xR1)
6H33A Q/BfHLz (0,T]xR2) -|-CéH(ayu)l/QazA_2/3fHi?([o,T]xRi)

IN

IN

+C§HfHL2([O,T]><R?F)'
This, along with (4.3.19) -(4.3.19), yields, for any ¢ > 0,

HaSA72/3inQ([O,T]><Ri)
< oA 2 oy )+ Cll @) 20 A2 g e

+Cs (HA *%9 hHL2 (o,7)xR2) T 18y f“m (o,7)xR2) T HfHL2 [OT]XR2)>'
Thus letting € be small enough, we have

Hazkr/‘)AiZ/Sin?([QT]xRi)
< C||(@yu) 20,0723 |12, (07182 (4.3.20)
+C (HA *%9 hHL2 (o,7)x®2) T HfHL2 (o,7)x®2) T ||8nyL2 ([0, T]xR2)> '

This along with (4.3.17) yields the desired estimate (4.3.16).
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Step 6) Now we combine (4.3.15) and (4.3.16) to conclude for any 0 < €,¢1 < 1,

_ 2
I (@yu)2 0.A~2 | (orixezy T 105A” 1/3fHL2 (10,T]xE2)

< a0 @) ? AT | L, +ElaCHA 239 hHLZ

([0, T]xR32)
+Ce1 e (H ~7%9 Al/ﬁf“L? ([0,T]xR2) +| v ATV 9HL2 ([o, T]XR?,_))

+Cere (10813201182 + 171720 27582 + HA Ve )

([0,T]1xR%)

which implies, choosing £; > 0 sufficiently small,

| (@yw)!/? DA~ 2/3fHL2 (0,T]xR2) T HagAil/:Sin?([O,T]xRi)
e||A” 2/3athL2([o,T]xR3)
Ce (H (y) " ayAl/GinQ([O,T]xRi) +[ )7 A_l/gangi2([0,T]><R§r))
+Ce (Hayfuizqo,ﬂxmi) + HfH;([o,T]xRi) + “A_1/3h“i2(1&§)) ;
with & > 0 arbitrarily small. This, along with
)™ A2 o iz y SN @) A i 1

<CIl) ™" 0™ f |2 o 1182y + O N2 nz)
due to (4.1.2), implies, for any & > 0,
H <3/>7U/2 A1/3inQ([O,T]><R3_) + Ha?gA_l/ngi?([O,T]xRi)
< EHA_Q/gathiQ([O,T]xRi)
Ce (1)~ OA [ aymzy + | 907 A0, )
+Ce (1008 2o mnzy + 132 mpenzy + 1A s ) -

This is just the first estimate in Proposition 4.2.4. And the second estimate follows
from (4.3.20) since |9, u| is bounded from above by (y) . Thus the proof of Proposi-
tion 4.2.4 is complete. O

4.4 Property of inducative weight functions

This section is devoted to proving the Lemma 4.2.1, Lemma 4.2.2 and Lemma 4.2.5,

used in Section 4.2.
Recall, form > Ng+1and 0< /<3,y >0,0<t<T <1,

_ Bm+bHo
2
e e B R S
thus

Pl < b2 (4.4.1)
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provided Nop +1 <my <mjand 0 < /¥y </{; < 3.
Next we list some inequalities for the weight W,. Observe the function

-
v — <1+cy>
Y

is a monotonically decreasing function as  varies in the interval [1, +-o0o[ for y > 0.
Thus

0<0<3, (Wi fll oy < Wina fll 12, (442)
and

2

VO<0<i<3 Wiy Sl < 1WA gy < [Whafll o,y @43

provided that m; > mg > 1, and that 3mgy + ¢ — ¢ > 3mgs + . Moreover, since

2 cy\~’ 1 2 cy\ ' 1
VOo<a<3 Vy>1, 83601/(1—1— (I+cy) | <Cue”¥ |14+ = (I+cy)
Y Y

with C, a constant independent of v, then the following estimates:

1100, Wil fll 2z ) < CUWif |2z (44.4)

1082, Wil £l oz < € (IWid | aguey + Wi [ p2ges )

i ' , (4.4.5)
C (Wit agez + 10Wind | z)

IN

112, Wi £l sy < € (W gy + IWh0u ey + W02 e

o | . 4.4.6)
C (Wit llpagezy + [0 Winll oz + |95 Win | o

IN

hold for all integers m,i with m > 1 and 0 < i < 3, where C, C are two constants
independent of m.

Lemma 4.4.1. Under the assumption (4.1.2) and (4.1.3). Let c be the constant given in
(4.2.2), and A™, A be the Fourier multiplier associate with the symbols (£)™ and (6§)™,
respectively. Then there exists a constant C, such that for any m,n > 1,0 < ¢ < 3, and for
any 0 < ¢ < ¢, we have

|eVATTAF O ul| ®2) < C||ATAZ W, fnl| 1 &2y (4.4.7)

and

T1L A T2 QM TLAT: 4
AR iy € CIN AP W it e @48
Proof. In the proof we use C' to denote different constants which are independent of
m. Observe w € L* and w > 0 then
0"Mu

[N Rpye T TNV -LAT
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On the other hand, integrating by parts we have
|eVAT AP —— o HLz RZ) = / / e <AT1 AP — 0 > ATIAY 78 dydzx

- / / (9,€°%) (Aﬁma )AnATQa“dydx
= — / / e%y{ (AﬁAT?a >]A71A§28 dyda
2¢ Jr Jo w w
1 9 a0 A OMU
_2C/R/o 629<A 1A52w> Oy AT AT ——=dydz

1 kT oMy AT 0™u
< EHecyA LA HL2 R2) HecyA A5 0y < w > |’L2(Ri)’
which implies
F T T 8 u C T T m
e AT AR HLQ(RQ) < lerAm AR, ( w > HL2(R2
. o™
= HATlAngcyw_lway ( " > HL2(R2
S HeéwalATlAgQway ( Zu> HLQ(RQ

¢y, ,— TLAT o"u
| [e¥wt, AT AR]wd, (w) HLQ(Ri).
Thus we have, by the above inequalities,

Y ATL AT2 QM Cy, ,—LATIAT: 0"u
He YA 1A528 UHL2 < CH@ Yo LlA 1A62w8y <w> HLQ(Ri)

(R%)
|| [ewt, AmAT W, (L) |
’ s v\ o L2(R3)
On the other hand, (4.1.2) and (4.1.3) enables us to use Lemma 4.3.1 to obtain
c — TL AT amu TL AT amu
e, A 8700, () sy < CIAAP00, (78 sy

: o
C|lew AT AR W), (cd“) |2z

IN

IN

As aresult,
eV AT AT O™ | o gy < C ™ AT AP, oy |
5 L2(R w L2(RY)
< CHATlA?WﬁmeLQ(Ri),
the last inequality using the fact that f,, = wd, (2-*), and that

B B 2 —/2
eVl < CeY(14y)? < Ce?Y <1 + cy)
v
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for any v > 1. This is just the desired (4.4.7). Now we prove (4.4.8). Recall v(t, z,y) =
— [ du(t, x,y')dy’. Then we have

Y
ATAFOM = / AT AP u(z, y ) dy'
0

Therefore

IN

AT AF O™ 0| oo v ; L2(RA)) 1™l oy 1€A™ A | o as

ClIA™ AF W, s || g2z

IN

the last inequality using (4.4.7). Thus the desired (4.4.8) follows and the proof of
Lemma 4.4.1 is complete. O

We prove now Lemma 4.2.1, recall

m Oy o, o'u
fmzf)xw—y@xu:way( >

w w

Lemma 4.4.2. There exists a constant C, such that
I ()™ Wr{zam“Hm(Ri) +|| () WM%HLz(Ra) < C“Wﬁzmem(Ri)' (4.4.9)
As a result, for some constant C,
AW frl ey < OISl
and
HA_layWr?zmeHL?(Ri) <C <HayW791meL2(R3_) + HWBzmep(Ri)) '

Proof. In the proof we use C' to denote different constants which depend only on o,
¢, and C; and are independent of m. We first prove (4.4.9). Observe

. 2cy —(3m+L)o/2 .
14— 1
w (y) ( + (3m+€)0) (1+cy)
o 20y —(B8m+L)o/2
<C(l+y " (1 + Gt 0o +€)o>

I

20y ) —(3m+0)a /2

< CRO—H(R + y)_g_l (1 + m

where R > 1is a large number to be determined later. Thus using the notation

2ey —(B3m+L)o/2 o
R =11 — o—1
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we have
_ _ om
4 W™ ul| gz ) = || )™ W@ —) | o
0mu 0"Mu
<Jjw (w) W HL2 (R2) +| v [wa w]—— HL2 (R2)
” . A/ omu O™ u
<crr e A0 L [wﬁw A Z
On the other hand, using Lemma 4.3.1
_ om om
| W)~ (W, w] uHLz (B2) < RH[A3 w]e* Vbl 127u||1:2 (R2)
< CRH€2C%R ZDHLQ(RQ)
Combining these inequalities we conclude
om
)™ WA ™ ey < CRT|2V0E AP (4.4.10)

Moreover, observe u|y:O = 0 and thus we have, by integrating by parts,

. 0"™u
H 2be AZ/B HL2 )

/ / v (bF ,(y))” (AW8 “) s —dydx
w

-1 / 7 @) @) () an

w

// 4cbe 8 b ( )) (AE/38 u) AE/S8 udyd:c
w

_ dey (R 2 ¢y30™u wsM

o L[ e o) {ay (a2 [Ty

1 * ey (3R ¢/39™u o [ OMu
4C/R/0 e (bm,g(y) <A - Oy A " dydz,

which, along with the estimate

|0y o] < (¢ + (0 +1)R™Y) bk,
gives

. 0"
||€2 ybﬁz gAe/s HL2 (R2)

c+(a—i—1)
- 2c

. om o™
H 2 be Aé/s UHL2 Rz)He eay <A€/3wu> HLZ(Ri)'

. o™u
H g AP e

Now we choose R =1+ 2(o + 1)c™!, which gives R > 1 and

(c+1DR <

l\D\O
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Then we deduce, from the above inequalities,
. 0™u . 0™Mu
et A g < 2 DA (T

Moreover, observe R > ¢~! + 1 and the monotonicity assumption w > C;1(1+y)~°,
and thus

bR

IN

) —(Bm+L)o/2

(e (1 g 2

)(3m+€)a/2

IN

_ 2cy

As a result, we obtain
. 0"u "My
et AP gy < Cullotid, () e

which along with (4.4.10) gives

| ()~ WflamuHLz(Ri)
o0Mu
< O|wW,,dy <w> HL2(R3_)

M oMu
C||wiwd, < ) HL2 rz) t Ol o, W0y (w) HL?(R%J

IN

—(3m+0)o /2
) (I+ey)™t,

Using the notation py, ¢(y) = € (1 + (373%%

My 0Mu
1> WE]O, (w> ez = [ A pre ()0, (w) [P

=[[[w )7 A] ()77 pme()0, <8:u> HL?(R?L)
SCH <y>—a pm,ﬁ(y)ay <a:u> HLQ(Ri)

0Mu omu
<Cllome)od, (%) sy < N0, (%) e

w
Then, combining these inequalities we conclude,

0™

17 50l < et (2

) lisagy = CIWh ol e
For the other terms in (4.4.9), we have
f <y>_1 Win0"wl| 2 g2
<[~ meL2 r2) H( yw) /w) (y)~ lwfﬁam“HH(Ri)
+[|[(Oyw)/w, W] ()™ amuHLQ(Ri)
<[ W;;lmeLz(Ri) +C <y>_1WT€16muHL2(Ri)
< Wil ey
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Thus the desired estimate (4.4.9) follows. As a result, we have
A7 W0 ot aquzy <IAT Wi ol sy + AV [0 (@) /) [0l e
W8 ol e + 9 RO o) < CIWE ol e
Similarly, we can deduce that, using (4.4.4),
1A 0 W0 fnsl pagaz ) < C (10 Wikl ez + Wil e ) -
Thus the proof of Lemma 4.4.2 is complete. O

We prove now the Lemma 4.2.2 by the following 2 lemmas .

Lemma 4.4.3. There exists a constant C such that, foranym > 1and 1 < £ < 3,
—0/2 5 A1/3 A 277701 27170 27170
572 0N AW ull ) < ClOAT Wl s+ CIAT Wb e

Proof. We can write

(3m+L—1)o
—2qyt— 2cy T PV
A1/3A 2wé 1 _ 2cy 1 . A 1 1AA2
5§ 'm e +(3m+£—1)a (1+cy) s A
= e (Y) A5 Wi,
where
9 _Bmit1)o 9 Bm+)o
cy 2 cy 2
am(9) ( * (Bm+ £ — 1)a> ( + (3m + )0
Direct computation gives
|am.e(y)]
2 0'/2 9 _ (3m;'e)<7 9 (3777;—8)0'
cy cy cy T2
=14+ —-— 14 ——7 14—
( +(3m—|—€—1)0> T Bmr 1) T Bm+ 0o
2cy /2 o2
M Bmrene) =W

Moreover observe |9yanm, ¢(y)| < 2¢|am¢(y)|, and thus
[Byam,e ()] < C ().
As aresult,
007 AT ol gy = )70 (oW
H <y>,0/2 “mvéayAEQvammeLQ(Ri) + H <y>70/2 (Oyam.¢) AEQWnZameL?(R'i)

IN

IA

(10T W8 ol ey + AT Wil s )

The proof of Lemma 4.4.3 is thus complete. O



4.4. Property of inducative weight functions 117

Lemma 4.4.4. There exists a constant C, depending only on o, ¢, and C,. , such that for any
integers m > No + 1, we have

”¢>0 +1W +1fm+1||L°° ([0,T]; L?(R3)) +ZH8‘7A_ . ¢O +1W +1fm+1HL2(0T}xR2)
7j=1
< Cll¢n Wy, mdm | oo .17, I L2(R2)) +CZ HajA_ W meL2([o,T}xR1)v
7=1
and

H‘?SA_ m+1W +1fm+1HL2( 0,T]xR2 )

(J 1)

< CllenWafmll o1 rp@zy T Z (e S T?LmeLQ([O,T]XRi)
=1

+C|| AT i Wi, fm HL%[O,T}xR’i)'

Proof. In the proof we use C' to denote different constants which are independent of
m. In view of the definition (4.2.1) of f,,, we have, observing (4.4.1),
}|¢gz+1Wr?z+1fm+1 HLoo ([0,7]; L2(R2))

3170 Al &3 W3 gm
|6 Win 1A meLoo ([0,7); L2(R%)) +C|(y oA USTA “HLoo([o,T]; L2(R2))

C||6m W fom

IN

IN

HLoo([o,T]; L2(R3))’

the last inequality using (4.4.9) and (4.4.3). Similarly, using (4.4.4), we can deduce
that

Hayqbgn—i-lwr?m—i-lfm-l-l HLOO([O,T]; LQ(R?'_)) SCHaygbgnW:g meLOO([O,T]; LQ(R?'_))
+Cl| o Wi, meLOO([O,T]; L2(R2))"

The other terms
H62 2/3<bm+1 7%+1fm+1HLoo([o,T};L%Ri)y H83A ¢m+1 r0n+1fm+1HLoo([o,T];L%Ri))

can treated in the same way, thanks to (4.4.5) and (4.4.6). So we omit it here. Thus
the proof of Lemma 4.4.4 is complete. O

Proof of Lemma 4.2.5. Observe

s Bm+{4—1)o -2 2c 2cy -
B 2¢ Bm+L—1)o (3m+£—1)
3

o (BT (v )

el

_o 2cy 2
14— .
cm-: < " <3m+e—1>a>

[

(1+y)

Y

v
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© (4411)

Then
9 7 (3m+2£—1)o' 9 _ (Bm+Ho
_g cy _a cy
1 14— > 1+—
(1+y) 2( +(3m—|—€—1)0> 2 Om 2( +(3m—i—€—1)a
Moreover we find
9 _ (Bm+Ho
(1+—Cy ?
Bm+{—1)o
_ Bm+Ho _ Bm+Ho
[ Bm+L)o 2 (Bm+¢—1) N 2cy 2
A\ Bm+l-1)o (3m+ ) (Bm+{)o
_ Bm+bo _ (Bm+00o
N Im 44 2 14 2cy 2
“\3m+l—-1 (Bm+{)o
9 _ (3777,;@)0'
cy
>C {14+ —"—+
= ( T Bmt e)a> :
which along with (4.4.11) gives
9 _ (Sm;l)o 9 _ (3m+25—1)o
cy < g cy
1+ —— <C 1 1+——
( +(3m+£)a> < Omz(1+y) 2( T Bmri—1)o
As a result, recalling
(Bm+L—1)o
(1+y) 2APWL = (1 4y) 26 (1 + m (1+cy) 'A3,

we have, observing ¢ 2¢f, = ¢zl
||¢_%Ag2¢fnwfmfmHL2([O,T]><R2+)
< Om?(1 + y)_%Al/%%AEQ?f)ﬁz_lWri_lfmHL%[O,T]xRi)’
that is, recalling F' = AgnganTﬁfm and f = ¢1/2Ag2¢f,;1W£L_1fm,
1672 Pl 2o ryxpz ) < Cm??| (y) 72 A1/3fHL2([O,T]><R3_)'
Moreover, using (4.4.3) and (4.4.5) we have, observing qbfn < ¢t/ 2¢fn_ L
105A72 2 F 2 to,rixz ) = 05A7 A5 260 Wi fonll 12 0 11 xm2)
SC(|’85A_1/3Ag2¢7€1w7€1_1fmHL2([0,T]><R1)
+ HayA_l/gAa_%anﬁflfmHL%[O,T}xRi)
AT il 2o e
<C (Héﬁﬁ?lwﬁlmem([o,T]xRi) + Hayd)f;lwﬁjlfmHLQ([O,T]XR?._))
+ CH85A_1/3f”LQ([O,T]XRi)'
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Then combining the above inequalities, the first estimate in Lemma 4.2.5 follows.
The second one can be deduced similarly. In fact using (4.4.3) and (4.4.6) gives

HaS 1FHL2 ([0,TIxR2) = HQSA 1A ¢e W) meL2
<C||O3A2BA2 G, WE fin

([0,T]xR%)
2A—2/3A—2 14 /—1
XM)+CW%A BAS 26 W ﬂﬂmmwwM)

+ CHByA_?/?’AEQQSﬁIlWﬁTIfmHLz([o,T]xRi) + O AN S WE fo s
< ClOGA* 2 F || 2o ryxrz ) + CNOAT 1] 12

HL?([O,T]
([0,T]xR2)
([0,T]xR2)

+C (||¢£1_1W;;L_1fm”L2([O,T]XRi) + ”89¢£;1W£1_1fmHL%[O,T]XR?,_)) :

This is just the second estimate in Lemma 4.2.5. The proof is thus complete. O

4.5 Estimates of the nonlinear terms

In this section we estimate the nonlinear terms Z,,, ; 5 defined in (4.2.13), and prove
the Proposition 4.2.3. Recall

m m—

Zm,é,é = Z (7?) Ag2¢an7€z(8] fm+1 -7 Z ( > K Wz (a] ) yfmfj

j=1 j=1

s () (oo

1=

on: cbfWg[ ( >]

A2 (@gbﬁl) W fon + [40y + 00y — 02,0265 WE] fim
~Tmts + A2 (008, ) Wik + [uD + 00, — 02, 05260, W] i,

where
m m m—1 m )
Fts = —Z(J 260 W) frs1 — 3 ( j)Ag%ané(afv)ayfm-j
j=1

We remark it is suffices to prove the estimates (4.2.15) and (4.2.16) in Proposition
4.2.3, since the esimate (4.2.15) can be treated exactly similar as (4.2.15). Next we
will proceed to prove (4.2.15) and (4.2.16) through the following Proposition 4.5.1
and Proposition 4.5.2. Proposition 4.5.2 is devoted to treating the term 7, ¢ 5 in the
definition of Z,, ; 5, while the the other two terms are estimated in Proposition 4.5.1.

To simplify the notations, we will use C' to denote different constants depending
only on o, ¢, and the constants Cy, C in Theorem 4.1.1, but independent of m and 6.
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Proposition 4.5.1. We have, denoting F = Ay *¢% W f, and f= O OLAWET fon,
H¢1/2A5_2 (8t¢7{1) anmeL?([o T]xR? )
¢ vt
+H¢1/2 w0y + Ua — 82 A (b W meL%[O,T}XRi)
1/2
< mCHd) / F“L2 ([0,7]xR2 +CH8?/FHL2([0,T]xRi)

and
[A750,672057 (9t ) Wi il oo s
H|A=50,0'2[ud, + vD, — 02, AS 26l W Ul g2 (o, 77x22)
o N lz -3
< Clw) A | gomnmre) + CNOAT3 2o, r1xr2)

+mCHA_%¢_1/23y¢fn_1me_lfmHLZ([O,T]xRi) + CHA_gﬁbf;z_lWréz_lfmHL?([O,T]xRi)'

Proof. 1t is sufficient to prove the second estimate in Proposition 4.5.1, since the treat-
ment of the first one is similar and easier and we omit it here for brevity. Observe

‘@gbfn_l) < 3mgls? < 3mel o,
and thus

_2 - - -
1A750,0" 2057 (906 ) Wi Fll 2 o s

-2.,-1/2 (—1yr0—1 (4.5‘1)
< 3ml[A736 720,80 W fonll 2077 m2 )

We write, using (4.3.1),
|A=58,0 2 [ud, + v, — 02, A5 WE] meL2 ([0,T]xR2)
< (w0 + 09y, 8, A38,6" AT W ol 2o e
+[[[ud + 08, — 5, A58, AT W Fl o1
def

= Q51+ Qs2.

We first estimate ()5 ;. Observe

| [ud, A_%ay¢1/2Ag2¢fn_1W£l_l}meLZ([O,T]XR?,_)

< (w0, ATSAT L W 0,10 Funll o e

[0, AN 8y, W] |6 Fll oy
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On the other hand, we compute, using Lemma 4.3.1 and (4.4.4),

| [uo, Af%/\g_%f{lwf;lay] ¢1/2meL2([O,T}><R3_)
| [ud, Ai%A(S_QQanilW?f;l]8y¢1/2meL2([O,T}><Ri)

HATS A2 Wi [ud, 9,)6M2 Fon| o

IN

[0,T]xR2)

Cllo,A=5 A 25 WL 9 2

IN

“LQ([O,T]XRi)
_2, _ _

+C|| AT b Wi 2 | a0 e

+H (8yU)A_%Ag2¢£n_1W£l_1a$¢l/2fm“L2([07T]><Ri)

HI[AT3 A0 Wi (0yw)] 056" finll 20,11z

Cllo,A=5 5 W i

IN

2 g
“L?([O,T]xuai) +Cl AT W lmeLQ([O,T}XRi_)
+C|[(y) ™7 A%¢l/2A52¢fn_1W£L_1fmHL2([0,T}><R3-)'

Similarly we also have, using again Lemma 4.3.1,

[ [ua, A5 A2 0, Wh ]qbl/zmeLmOyT}xRi )
< CHA_%¢fn_1W£z_1fmHL%[O,T]xRi)'

As a result, combining these inequalities, we have
_2 2yl
[[u0, A 30,0 PN g Wi l]meLQ([o,T}xRi)
—2 - 2 -
< CllopAT 30 W fonll aqpo.ycrz ) + ClIAT 80 W Fonl| 2o 2

+O|| ()™ A5G AG 20 Wi Fonl 2o e

Similarly, repeating the above arguments with ud, replaced by vd, and 92 respec-
tively, one has

[v0y, A=30,6"2A5 268 Wi fm“L%[O,T]xRi)

IN

ClloGA=5 6 28520 Wi fnll ooy my + ClIAT5 085 W ol 2o e

_2 et
+C||A SO0 Wi, 1meL2([o,T]xRi)’

and

1108, A=30,6 20528 Wi full oyt

IN

C“agA_%¢l/2Ag2¢7€l_1W£l_lfm"LQ([O,T]XRi) +CfA~5 y¢£z_1W£z_lmeL2([o,T]xRi)

2 i
+C|JA75 ¢p, W lmem([o,T]xRi)'
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As a result, we conclude, combining these inequalities,

Q51 = H [Ua + vdy — 857 A%ay‘z’lﬂ/\&_%ﬁlwﬁl]mem([o,T}xRi)
Ol ()™ A3 A2 0 Wi il oy
+O[|05A5 0" 2 A Wi ol 2o ez

L2 e C2 e
+C||a, A5 ¢y, Wiy 1meL2([O,T]><Ri)+CHA 30 W, 1meL2([o,T]xR‘i)'

IN

The term )5 » can be treated similarly and easily, and we have

Q52 = H [u@ + 00y — 85’ A_gay‘bl/z]A§2¢£1_1Wr€z_lmeL2([o,T}xRi)
Cll ()~ A%¢1/2AE2¢551W£~71fmHL%[O,T}x]Ri)
+C“651\_%451/2A32¢£?1W£L_1fmHL2([0,T]xR1)

2 2 i
+C||0,A 5 ¢ ' Wi lmeLQ([O,T}XRi)—i_CHA 30 Wi lmeL2([0,T]><R3L)'

IN

Thus
|A=5 0,62 [udy +vd, — 62, AEQQZ)ﬁrL_lWﬁL_l]fWHLQ([O,T}XRi)
< O™ A%¢1/2A52¢£H_1W£L_1fmHLQ([O,T]xRi)
+0H65A_%¢1/2A32¢£1_1Wn€z_1fmHL%[O,T}xRi)
+CH6ZIA_§¢£’L_1W7€Z_1fmHL%[O,T]XR?Q + C||A_%¢£I_1W7€L_lfmHL%[O,T]XR?Q'

This along with (4.5.1) gives the second estimate in Proposition 4.5.1. The proof is
thus complete. O

Proposition 4.5.2. Under the induction hypothesis (4.2.9), (4.2.10), we have, denoting F =
A2 Wi fn,

1642 Tl 2 po,z182 ) < MCNF || 2o 77,m2 ) + CA™E (m = 5,
and

IA=220y"2 Top 1.5

<mC([|A=2PA7200 Wi

L2([0,T]xR%)

||L2([0,T]xR1)
+ [[A20,A5 26 Wi fonll o 0112
+ CA™ 0 ((m — 53t

where the constant C' > 0 is independent on m and 6 > 0.
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We first prove the first estimate in Proposition 4.5.2. In view of the definition
given at the beginning of this section, we see,

H(bl/zjmé(SHLQ([O,T]XRi) < Hjm,@,JHLQ([O,T]XRi)

Z( )HA 20 Wi (@) foni1 5| 2 (0 2
7j=1
m—1

+ Z ( >HA 2¢€ WZ ((9] a fm JHL2 OT]XRi) (4.5.2)
=1

1
+Z( )HA 2o Wi 0y (9y/w)] (0)(0" )| 21071032 )
+ 2045760 Wi 19y (0y0/0)] Funll 2 0,775 )

And we will proceed to estimate the each term on the right hand side of (4.5.2), and
state as the following three Lemmas.

Lemma 4.5.3. Under the same assumption as in Proposition 4.2.3, we have

m—1
m B .
Z <j > HA5 2¢£1W7€z(ajv)ayfm—j HL?([O,T]xRi)

Jj=1

< mC’HA ¢£ Wf meL2 + CAm_6 ((m . 5>!)3(1+a) '

([0,T1xR%)

Proof. We first split the summation as follows:

Z ( >HA 20l Wi (070)0y fin - JHL2 ([0,7T]xR2)
m—1
= X ()@t

J

+ Z ( )HA Qd’[ W, (aj ) yfm—jHLQ([D,T]xRi)‘

7j=1
Moreover as for the last term on the right hand side, we use (4.4.3) to compute,

HA72¢4 wt (8JU)8yfm*jHL2([0»T}XR3-)

< Hﬁbz wy A£/3(8gv)3 fm—me ([0,T1xR%)
= H‘ﬁg Wi (90) Dy fin— ill 2 (10,T]xR2) + H‘bg Wind (8jv)ayfm—jHL?([O,T}xRi)
= Hgbz WO (&"v )0y fm—jHLZ([o,T]xRi) + HqﬁfrzW%(aﬁlv)ayfm—jHL%[O,T}xRi)

+H¢Z WO (v )(ayarfm—j)HL?([o,T}xRi)‘
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Thus we have

3

i\g

-1
m _ .
(7 ) U5 09010, 1y
1

J

3

-1
<Zn> {A ‘bg W, (aj )ayfm*jHLQ([O,T]XR?F)
-2

-3
m
> g WO aj )ayfm*jHL%[O,T]xRi) (4.5.3)

> (!
> (J

A
+ + T
3 33M
w)—'

>H¢€ W2 (87 1w)o y - JHL2 ([0,T]xR2 )

Mw

+ ( >H¢’“’ Win (9 0)(9ya fin—) | L2 (0,772 )

1

<.
Il

Next we estimate step by step the terms on the right side of (4.5.3).

(1) We treat in this step the first term on the right hand side of (4.5.3), and prove
that

m—1
Z <]>HA ¢L; We(aj )8y fin— JHL2 ([0,T]1xR%)

j=m-—2
< mCAT S Wi fnl| 2o 17z ) + CA™ 7 ((m = )07 (@45.4)

To do so, direct computation gives

m—1

m .
A72 14 L aj L
2, <j > 14570 Won @01y ol 2 012
m—1 m '
< (j > HA32A€/362C‘1’ (1+ey)™! ¢7{1(8Jv)8yfm,jHLQ([O’T}XRi)
j=m—2
m—1
<

m . _ _ ;
(j > Hez YOy fm—j) s PN (14 ey)™! d’fnaJUHLQ([o,T]xRi)
2

j=m
m—1
+ 2

j=m—

m c _ _ .
2 (j > 1% Dy fin—s), A AP (1t ey)™ ¢fn3]”HL2([O,T]xR2+)'
On the other hand, by (4.2.7),

m—1
3 (T) 1€ @y fm-g) A5 2N (14 e0) ™ b0 0| 2 0,71 m2)

j=m-—2

m—1
m _ _ .
<C (j > (1 +cy) 1“L9(R+; Lo ([0,T]xR,)) [ 2¢£1A£/333”HL00(R+; L2([0,T]xRy))
j=m-—2
m—1

m _ A
=¢ ) (] > ”A6 2¢£1A£/36]UHL°°(R+; L2([0,T]xRz))"
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Similarly, we have, by virtue of Lemma 4.3.1,

m—1

(7?) [ @y fn—3)s AGZAP] (Ut ev) ™ 60| a0 e )
2

Jj=m—
m—1
e (7) |+ )™ 6070 o oy
j=m-—2
m—1
m )
< C <j)H@f)ﬁqf\f/?’aijLoo(RJr;LQ([O,T]XRI))'
j=m-—2

Thus combining these inequalities, we obtain

m—1

( )HA 208 WA (00)0y fn-i| 1 10 1152

J —2
< C Z ( >HA “Grm AZ/g@JU“LOO(R+;L2([0,T]><Rx))
j=m-—2
< Cm|[Ay (banE/gam_lvHLOO(R+;LZ([O,T]XRx))

+Cm2HA6_2¢£YLAZ/38m72UHL°°(R+; L2([0,T]xRx))"

Moreover, observe
“A52¢£1AZ/38m—2
HA(S_2¢7€’LA£/38m_1

”HLOO(RJr; L2([0,T]xR,))

AE/Bam 3

”HLO@ (Ry; L2([0,T]xR,)) HA “Grm UHLOO(R+; L2([0,T]xRy))"

and thus
m?(| A5 20k, AP0 20| oo, 12 (0.1 x )
SmHAEQ¢£nAZ/38m—1
SmHAEZ(banZ/?)am—l

+ m3H¢9n—1am_2

+ m3HAE%&AZ/Sam_SUHLw(R% L2((0,T] X Ry))

,UHLOO(RJr; L2([0,T]xRz))
Ul oo s 2o micrey) T N0m-20" "0 o s 12(0,71xR0)
UHLOO(R_,_; L2([0,T]xRg))"

Then we have, combining the above inequalities,

m—1
3 (T) €% (Dy frn- ) A5 2N (1t €)™ b0 0| 2 0 772

j=m-—2

=< CmHAE%QAz/gam_l”HLw(R% L2([0,T]xR,)) T Cmg“¢m—2am_3v||Loo(R+; L2([0,T] X Ry))
+Cm3H¢9n—1am_QUHL°°(R+; L2([0,T]xR,))
< CmHAEQQSﬁmmemeLw(M; L2(0,7)xR,)) T Cm3Hgbg@_QWT?l—Qfm*2HL°°(R+; L2([0,T]xRy))

+Cm3H¢9n—1Wm—1fm*1HLOO(R+; L2([0,T]xRz))’

the last inequality following from (4.4.8). This, along with the estimate

m3H¢)9n—2WT?l—2fm*2HL°°(R+; L2([0.T]xRz)) T || @ W,
< C A6 ((m _ 5)!)3(1+J)

1fm*1HL°°(R+; L2([0,T]xRz))
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due to the inductive assumption (4.2.9), gives the desired estimate (4.5.4).

(b) We will estimate in this step the second and the third terms on the right hand
side of (4.5.3), and prove that

m—3

Z < > ‘QSK WO aj ) yfm—jHLQ([o,T]xRi)

J=1

T Z < > 65 W (07 0) Dy fin JHL2 ([0,T1xR%)

< CAm 6 ((m - 5)!)3(1+o') )

(4.5.5)

For this purpose we write, denoting by [m/2] the largest integer less than or equal to
m/2,

m—3

< >H¢’Z Wi (07 0)Dy fo - JHL2 ([0,7]xR2)

7j=1
m/2
m .
= (5 )@ 00l @56)
m—3
+ Z <7;L> “¢£1W791(aj+lv)ayfm*jHLQ([O,T]XR?'_)
i=[m/2] 11
=51+ So.
We first treat S;. Using the inequality
¢£ < ¢m < ¢]+3¢m —jo W'r?z < WT(I)“L—j fOI‘j > 17
gives
(/2]
D Sl (A [ T W ey
j=1
4.5.7)
2]
3 (L PR A W AT e

By Sobolev inequality, we have

H¢9+35j+1”HL°°([0,T]XRi)

< CH¢J+30]+1UHL°°([O,T}XR+; L2R,) T CH¢?+3aj+2vl|L°°([0,T]><R+; L2(R,))
= C|’¢j+2aJ+IUHL°°([O,T}><]R+; L2®R.) T CH¢?+38]+2UHL°°([U,T]><R+; L2(R,))
<

CH¢?+2WJQ+2fJ+2HL‘X’([O,T}; L2(R%)) + CH¢?+3WJQ+3fj+3HLOO([O,T}; L2(R%))’

the secomd inequality using (4.4.1) and the last inequlaity following from (4.4.8).
As a result, we use the hypothesis of induction (4.2.9) and the initial hypothesis of
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induction (4.2.7) to conclude that if 4 < j < [m/2] then
16950710 o oz y < € (A7 (G = 3DYHD 4+ 4772 (G — 2)° )
< CAI72((j —2))30Ho)
andif1 <j <3
69250 0] e 1182 ) < -

Moreover, using (4.4.4) and also the inductive assumption (4.2.9), we calculate, for
any 1 < j < [m/2],

“¢21—j —jOyfm— JHL2(OT]><]R2
= Hayﬁﬁgz fm JHL2(0T]XR2 + H¢ [8 Wof']fm—jup ([0,T1xR%)
< Hay gb me JHL?(OT]xR2 +C||¢m —Jj me JHL°° ([0,17, L*(R2))
< CA™T (=g = 5P

Putting these inequalities into (4.5.7) gives

S1<C Z .L'AJ 2 ((j 2>!)3(1+a) (Am—j—5 (m—j— 5)!)3(14_0))

O30 (4 (- 5 )

— jl(m — j)!
(4.5.8)

SO Y o AT (= T 0 (= 50
j=4

< O(m —5)A™ T ((m — 7))L L 0Am=6 (m — 5)1)30+9)
< CA™ 8 ((m —5)1)30+a)
We now treat Sy. Using the inequality
¢€ < QSO < ¢9+2¢2n—j+1a WO < W i1 forj > 1,

and thus
m—3
- 3 (?)“¢fnwgl(aj+lv)ayfmJ’HLQ([O,T]xRi)
i=[m/2] 11
m—3
N (4.5.9)
< Z j H¢9’+2W]Q+2fj+2HLOO([O,T];L2(Ri))
i=[m/2]+1

x H‘bgn—ﬁlwr%—jﬂayfm—j ||L2([O,T]><R+; L>*(Ry))’
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the last inequality using (4.4.8). As for the last factor in the above inequality, we use
Sobolev inequality, (4.4.1) and (4.4.2) to compute

09— i1 Win—j 410y Frn—i | L2((0,7) xR s o0 (Ro))
<C||pm—jr1 Wi jr10y frn JHL2 (10,7]xR2)
+CH¢9n—j+1WT(7)1—j+1a Oy fmﬂ‘“p ([0,T)x®2 )
<CH¢ yfm JHL2 ([0,7]xR2) +CH¢m J+1W J+18 Oz fin— JHL2 ([0,7T]xR2 )"

On the other hand, in view of the definition of f,,,, we have

[ fm—jsr W, g+18 O frm— J||L2(0T]><R2)

<H¢m —j+1 W J+1a Jm— J+1HL2 ([0,T]xR2)
+ H¢m W, g+1(5m W) ((Oyw) /w) HL%[O,T}xRi)
A D0 1 W1 (0 1) 0,0y ((Oyw) Jw) HL2 [OT}XIRQ)

<CH¢m J+1W0 —j+10y fm— J+1HL2 ([0,T1xR2%) +CH ¢m -iW am JWHL2 ([0,T1xR2)
+C ()™ m—ijS]@—ja;n “HL?([O,T]xRi)’

the last inequality using (4.4.1) and (4.4.2). Combining these inequalities, we con-

clude

HﬁbngjJrlwngjJrlayfm_jHL2([0,T]><]R+; L (Ry))
CH‘b(rJn—er%—jayfm—jHL2([07T]XR3L) + CH‘Z’?nfj#lw JJrla Jm— ]‘HHL2 ([0,T]xR2)
+C|| ()~ Y _-WO_-O?_j

IN

WHL?([O,T}xRi)

+O| ()~ Wr?z 3% j“HL2 ([0,7]xR2)

IN

CHay 9n —jfm— JHL2 ([0,T1xR%) +CHay m— J+1W0 —jr1fm— J+1HL2 ([0,T1xR2%)

+C/| ¢y m*jfm_JHLQ([O,T]XRi)+0H¢m*j+lw —jrrfm—gill 2o mixe2 )

where the last inequality follows from (4.4.9) and (4.4.4). This, along with the induc-
tive assumptions (4.2.9), yields, if [m/2] +1 < j < m — 4 then

[ ém—js1 W10y fn— JHL2 ([0,T)xR4; L=(R,))
CAm_]_5 ((m _] _ )')3(14-0') + CAm 7j—4 ((m _] _ 4)')3(1+0')

<
< CAm—j—4 ((m _ ] _ 4)!)3(1+U) 7
and if j = m — 3 then

quﬁ?n_jHW —j+10y fm— JHL2(0T]xR+, L (Rz)) <0

due to the initial hypothesis of induction (4.2.7). On the other hand, the inductive
assumptions (4.2.9) yields, for any [m/2] +1 < j <m — 3,

j— . 3140
H¢2+2W]Q+2fj+2HL‘X’([O,T]; r2gz)) < A7 (G =3P,
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Putting these estimates into (4.5.9), we have

Sy < C Z jl(mij)A] 3(( 3)!)3(1+a) <Am—j—4 (m—j— 4)!)3(1+g) >
j=[m/2]+1
m—3 |
M 483 3(1+0)
+Cj:%:—3ﬂ(m—J) A6 =9
m—4
< C Z j3(anLJ)Am (G 3)1)3(1+")—1 (m — j — 4))30Fo)-1
[m/2] +1
+CA™ 6 ((m, — 5)1)30+)
< C(m _ 3)|Amf7 ((m _ 7)!)3(1+U)—1 + CAmf6((m . 5)!)3(1+G)

< CAm_6 ((m - 5)!)3(1+cr) )

This along with (4.5.8) and (4.5.6) yields

Z ( )H‘W WO 8J+1 )0 y fn— JHL2 (0T]%R2) <oA™ 6 ((m—5)!)3(1+")_

Similarly, we have

m—3
Z < > Hgbz WO a] ) yfm*jHLz([O,T]XRi) < CAm_G ((’I?’L _ 5)!)3(14-0) )

j=1
Then the desired estimate (4.5.5) follows.

(c) It remains to prove that

Z ( >W WA0) @y )| 201182 ) < CA™ 7 ((m = 5))* ) (4.5.10)

The proof is quite similar as in the previous step. To do so we first write

m—3
Z < )HQ% WO aj )(ayaxfm—j)HL2([0,T}xRi)

J=1

m/2
_ (?)}Iqsfnw,%(aﬂ'v)(ayaxfm—ﬂHLZUO,WM)

m—3

+ ) (7)!\¢aw,%<ajv><8y8xfm—j>”w(mxﬁ)
j=[m/2] 41

For the term 5’1, we use

¢fn < ¢9n < ¢?+2¢2ﬂ—j+la WO < Wm —Jj+1 fOI'j > 2,
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to obtain
i [m/?] m A
S1 = Z <j>H¢2+28]UHLOO([0,T]xRi)H‘b?n—jHW —j+19y 0z fn— JHL2 ([0,T1xR% )"
j=1

Then repeating the arguments used to estimate S; and S in the previous step, we
can deduce that

S1 < CA™ O ((m — 6)1)° )
As for Sy, using the inequality

By < B0, < ¢?+1¢2~b—j+27 wo < wyp, _joforj>2,

gives
m—3
S < Z <7;L)”¢?+1ajv“L°°([0,T}><R+;LQ(RI))
i=[m/2] 1
x| —j+2W, g+23 O frn— JHLQ(OT]XR+ L (Ry))"

Then repeating the arguments used to estimate S, in the previous step, we have
Sy < CA™ 6 ((m — 5)1)30+9)

This along with the estimate on S yields (4.5.10). Finally, combining (4.5.3), (4.5.4),
(4.5.5) and (4.5.10) gives the desired estimate in Lemma 4.5.3, and thus the proof is
complete. O

Lemma 4.5.4. Under the same assumption as in Proposition 4.2.3, we have

m

> (") IA 26 W@
j=1
¥ Z ( V152601710, 00/ 7)™ )] 71
< mC’HA5 2¢fn mmeLQ([O,T]XRﬁ_) + CA™6 ((m B 5)!)3(1+0) .

The proof of this Lemma is quite similar as in Lemma 4.5.3, so we omit it.

Lemma 4.5.5. Under the same assumption as in Proposition 4.2.3, we have
2(|A5 281 Wi [0y (8y) /)] meL2 (10,T)xR2 ) < CllAy 26 Wy, meL%[O,T}xRi)'
Proof. This is a just direct verification. Indeed, Lemma 4.3.1 gives

1052 85, Wina 19 ((9y) /)] Fin| 210, 77x22)
| 10y ((8yw) /w)] As 2G5 W fn

IN

HL2([0,T]xR2+)
+[|[0y (Byw) /w) , AEQWm(bﬁnmeL?([o,T]xRi)
o A |

IA

L2([0,T]xR2 )"
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Then the desired estimate follows and thus the proof of Lemma 4.5.5 is complete. []

Proof of Proposition 4.5.2. Inview of (4.5.2), we combine the estimates in Lemma 4.5.3-
Lemma 4.5.5, to get the first estimate in Proposition 4.5.2. The second one can be
treated quite similarly and the main difference is that we will use here additionally
the inductive estimates on the terms of the following form

HaZA_Q/ggb?W]ijHL2([0,T]><R1)’ 6=j=m,

while in the proof of Lemma 4.5.3, we only used the estimates on the following two
forms

Hqﬁ?WjO Hay¢2Wj0 6<j7<m.

fjHLOO([O,T]; L2(R2))’ fjHB([o,T]xRiy

So we omit the treatment of the second estimate for brevity, and thus the proof of
Proposition 4.5.2 is complete. O

Completeness of the proof of Proposition 4.2.3. The estimates (4.2.15) follows from
the combination of Propostion 4.5.1 and the first estimate in Proposition 4.5.2, while
the estimate (4.2.16) in Proposition 4.2.3 follows from Propostion 4.5.1 and the sec-
ond estimate in Proposition 4.5.2. The treatment of (4.2.15) is exactly the same as
(4.2.15). The proof of Proposition 4.2.3 is thus complete. O

4.6 Appendix

Here we deduce the equation fulfilled by f,, (cf. [21]). Recall that

0
fm = 00w — LW@;”U, m>1,
w

where u is a smooth solution to Prandtl equation (4.1.1) and w = J,u. We will verify
that

Ot fm + UD fry + VOy frr — O frn = Zim, (4.6.1)

where

PR o ()@ i1 5 ()@ )@t

j=1 j=1

[ Grarofa ()]

J

To do so, we firstly notice that
Ut + Uy + VUy — Uyy = 0, (4.6.2)
and

Wi + Uz + Vwy — Wyy = 0.



132 Chapter 4. Gevrey class smoothing effect for the Prandtl equation

Thus by Leibniz’s formula, 0™wu, 0)'w satisfy, respectively, the following equation

0™ u + udO™u + v0, 0™ u — ;0™

=3 (et -y ey wsa

i( ) )OIty nil )(0,0™ I u) — (8™0)(Dyu)

Jj=1 Jj=1

.

and

0,0 w 4+ ud0"w + v0, 0" w — 828’"

S

j=1 (4.6.4)

__Z< ) )(@m—itly mzl )(0,0™ T w) — (™) (Dyw).

J=1

In order to eliminate the last terms on the right sides of the above two equations, we

observe dyu = w > 0 and thus multiply (4.6.3) by —£%, and then add the resulting
equation to (4.6.4); this gives

8tfm + Uafm + 'Uayfm - azfm = Zm

where

On the other hand we notice that

(1) v () v () -4 (%)

= ( 1Oyw + uddyw + vy Oyw — O 0yw)

8 (Btw + ulw + vOyw — 32 )+ 8yw8y (%)
- wa (Ou) (Oyw )+2ayway <(9yw>
w w w
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Therefore we have

z, = f: (Z”) () fns1 s — m}j (Z’) (970)(3y fn)

m—1

B E oo ()

J
Next we will give the boundary value of 9, f,,, and 0, f,, — 85 fm- Inview of (4.6.2),
we infer, recalling u|y—o = v|y—o = 0,
8yw‘y:0 = 8§u‘y:0 =0.

As a result, observing

Oy fom = B0 w — [ay (ay“ﬂ o™y — (%") 0,0™u,

w
we have
Oy fmly=0 = 0. (4.6.5)

Direct verification shows

Oyw
o= 2o (5] ],

and thus

(8tfm - a;fm) |y:0 = Zm|y:0 =-2 |:8y <8yw>:| fm‘y:d (4.6.6)

w

due to the equation fulfilled by f,,.
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