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Résumé et mots clés

Laser à semi-conducteur pour modéliser et con-

trôler des cellules et des réseaux excitables

Résumé

Les systèmes “excitables” sont omniprésents dans la nature, le plus paradig-
matique d’entre eux étant le neurone, qui répond de façon “tout ou rien” aux
perturbations externes. Cette particularité étant clairement établie comme l’un
des points clé pour le fonctionnement des systèmes nerveux, son analyse dans
des systèmes modèles (mathématiques ou physiques) peut d’une part aider à
la compréhension de la dynamique d’ensembles de neurones couplés et d’autre
part ouvrir des voies pour un traitement neuromimétique de l’information.
C’est dans cette logique que s’inscrit la préparation de cette thèse de doctorat.

Dans ce mémoire, nous utilisons des systèmes basés sur des lasers à semicon-
ducteur pour d’une part modéliser des systèmes excitables ou des ensembles
de systèmes neuromimétiques couplés et d’autre part pour contrôler (grâce à
l’optogénétique) des canaux ioniques impliqués dans l’émission de potentiels
d’action par des neurones de mammifères.

Le long du premier chapitre, nous présentons de manière synthétique les con-
cepts dynamiques sur lesquels nous nous appuierons dans la suite du manuscrit.
Par la suite, nous décrivons brièvement le contexte de ce travail du point de
vue de la synchronisation, notamment de cellules excitables. Enfin, nous dis-
cutons le contexte applicatif potentiel de ces travaux, c’est à dire l’utilisation
de systèmes photoniques dits “neuromimétiques” dans le but de traiter de
l’information.

Dans le chapitre 2, nous analysons tout d’abord du point de vue théorique
et bibliographique le caractère excitable d’un laser à semiconducteur sous
l’influence d’un forçage optique cohérent. Par la suite, nous détaillons nos
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travaux expérimentaux d’abord, puis numériques et théoriques, sur la réponse
de ce système “neuromimétique” à des perturbations répétées dans le temps.
Tandis que le modèle mathématique simplifié prévoit un comportement de
type intégrateur en réponse à des perturbations répétées, nous montrons que
le comportement est en fait souvent résonateur, ce qui confère à ce système la
propriété étonnante d’émettre une impulsion seulement s’il reçoit deux pertur-
bations séparées d’un intervalle de temps bien précis. Nous montrons également
que ce système peut convertir des perturbations de différente intensité en une
série d’impulsions toutes identiques mais dont le nombre dépend de l’intensité
de la perturbation incidente.

Dans le chapitre 3, nous analysons (de nouveau expérimentalement, puis
numériquement et théoriquement) le comportement dynamique d’un réseau
de lasers à semiconducteur couplés dans un régime de chaos lent-rapide. Nous
nous basons sur une étude antérieure montrant qu’un seul de ces éléments peut
présenter une dynamique neuromimétique (en particulier l’émission chaotique
d’impulsions originant du phénomène de canard). De façon surprenante pour
un système ayant un si grand nombre de degrés de liberté, nous observons une
dynamique qui semble chaotique de basse dimension. Nous examinons l’impact
des propriétés statistiques de la population considérée sur la dynamique et re-
lions nos observations expérimentales et numériques à l’existence d’une variété
critique calculable analytiquement pour le champ moyen et près duquel con-
verge la dynamique grâce au caractère lent-rapide du système.

Dans le chapitre 4 enfin, nous présentons une brève étude expérimentale de
la réponse de cellules biologiques à des perturbations lumineuses. En effet, les
techniques optogénétiques permettent de rendre des cellules (en particulier des
neurones) sensibles à la lumière grâce au contrôle optique de l’ouverture et de
la fermeture de canaux ioniques. Ainsi, après avoir étudié dans les chapitres
précédents des systèmes optiques sur la base de considérations provenant de
systèmes biologiques, nous amenons matériellement un système laser vers un
système biologique. Nous posons ici les bases d’un système photonique simple
permettant avec une complexité très modérée de réaliser des mesures de la
réponse de cellules à des perturbations optiques spatialement localisées.

Mots clés

Excitabilité, laser a semiconducteur, laser avec injection, période réfractaire,
excitabilité multiple, comportement résonateur, réseau neuromorphique, oscil-
lateurs couples par impulsions, synchronisation, impulsions chaotiques, syn-
chronisation du chaos, mixed mode oscillations, photo switch, canaux TREK1,
optogénétique.



Abstract and keywords

Semiconductor laser for modelling and control-

ling spiking cells and networks

Abstract

Excitable systems are everywhere in Nature, and among them the neuron,
which responds to an external stimulus with an all-or-none type of response,
is often regarded as the most typical example. This excitability behaviour is
clearly established as to be one of the underlying operating mechanisms of the
nervous system and its analysis in model systems (being them mathematical
of physical) can, from one hand, shed some light on the dynamics of neural
networks, and from the other, open novel ways for a neuro-mimetic treatment
of information. The work presented in this PhD thesis was realized in this
perspective.

In this dissertation we will consider systems based on semiconductor lasers
both for modelling excitable systems or coupled neuromorphic networks and
for controlling (in an optogenetic outlook) ionic channels that are involved in
the emission of action potentials of neurons in mammals.

During the first chapter, we will briefly present the dynamical concepts on
which we will build our understanding for the rest of the manuscript. There-
after, we will describe the context of this work from the point of view of
synchronized systems, in particular excitable cells. Finally, we will discuss in
this context the applications potential of this work, namely the possibility of
using “neuromimetic” photonic systems as a was to treat information.

In chapter 2 we will firstly analyse from a theoretical and bibliographical stand-
point the excitable character of a laser with coherent injection. Later, we will
firstly detail our results, firstly experimental and subsequently numerical and
theoretical, on the response of this “neuromimetic” system to perturbations
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repeated in time. Whereas the simplified mathematical model envisions an in-
tegrator behaviour in response to repeated perturbations, we will show that
the system often acts as a resonator, thus imparting the remarkable property
of being able to emit a single pulse only if it receives two perturbations that
are separated by a specific time interval. We will also illustrate how this system
can convert perturbations of different intensity in a series of all identical pulses
whose number depends on the intensity of the incoming perturbation.

In the third chapter we will analyse, first experimentally and later numerically
and theoretically, the dynamical behaviour of a network of coupled semicon-
ductor lasers in a slow-fast chaotic regime. We will rely on a previous study
documenting that a single such element can present a neuromimetic dynamics
(in particular, the emission of chaotic pulses originating from a canard phe-
nomenon). Surprisingly for a system having such a large number of degrees of
freedom, we observe a dynamics which seems low dimensional chaotic. We will
examine the impact of statistical properties of the selected population on the
dynamics, and we will link our experimental and numerical observations to the
existence of a slow manifold for the mean field, computable analytically, and
towards whom the dynamics converges thanks to the slow-fact nature of the
system.

Finally in chapter 4 we will present a short experimental study on the response
of biological cells to light perturbations. Indeed, optogenetic techniques enables
to render the cells (in particular neurons) sensitive to light due to the optical
control of the opening and closing of ionic channels. Hence, after having studied
in the previous chapters optical systems on the basis of observations derived
from biological systems, we will physically transfer an optical system towards
a biological one. Here we lay the groundwork of a photonic system which
allows, with a moderate complexity, to realize cell measurements in response
to spatially localized optical perturbations.

Keywords

Excitability, semiconductor laser, laser with injection, refractory period, multi-
pulse excitability, resonator behavior, neuromorphic network, pulse-coupled os-
cillators, synchronization, chaotic spiking, chaos synchronization, mixed mode
oscillations, photoswitch, TREK1 channels, optogenetics.
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Preface

In this dissertation we will explore the behaviour of dynamical systems which
can be made to be excitable, that is, that will respond to a stimulus by an
all-or-none type of response. Excitable systems can be found in many shapes
and forms in Nature, from biological to chemical to physical settings. The most
famous example of an excitable system is that of a neuron, where an action
potential is generated if the stimulus overcomes a certain threshold, which then
travels across the axon.

In our case we will consider excitable optical systems, where the excitable
response will be in the form of light pulses. However the neuron model will
often be taken as a reference with whom we have to confront. The connection
between the optical systems and its biological counterparts will in fact be a
source of insight into the type of properties that we can expect to observe.
Furthermore the two different worlds, the biological one and the optical one,
are also strongly connected by a wealth of mathematical models and techniques
which underlay the behaviour of both.

Starting from the case of a single excitable optical element, we will describe
in detail its properties and dynamical behaviour, both experimentally and
numerically. Later, we will expand our study to encompass a network of coupled
elements, in order to get an understanding on the behaviour of many chaotically
spiking units as a crude optical model of a network of spiking neurons. Finally,
we will probe the excitable behaviour of actual biological cells in an experiment
which employs a novel technique based on the optical control of ion channel
activity.
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Chapter 1
General introduction

The aim of this manuscript is to report the results obtained when studying
the dynamical behaviour of semiconductor laser systems in the regime where
they act in ways that are similar to that of excitable cells, as in the case
of neurons. In particular, we will explore the controllable excitable nature
of a single semiconductor laser with injection, and the synchronization and
dynamical properties of a network of coupled semiconductor lasers. We will
also probe the excitable properties of actual photo-active biological cells in an
experiment in collaboration with a biology research group.

Before going into the details of the work, we will briefly introduce the concepts
of oscillator systems, excitability and network of coupled oscillators which will
constitute a valuable background for the following description of the experi-
ments and their results. Later in section 1.3 we will introduce the content of
the various chapters of this thesis in a nutshell.

1.1 Oscillator and excitable systems in Nature

Let us now begin with an introduction on oscillator systems, with a particular
interest on excitable systems. It is worth mentioning that not every oscillator
system is excitable and not every excitable system can oscillate with a limit
cycle. However in many cases a system can switch from an excitable behaviour
to an oscillatory behaviour by increasing the parameter which represents the
strength of the external perturbation. This switch is usually related to a bifur-
cation in the model, as in the case of Class 1 and Class 2 of neural excitability
[Izhikevich 1999], which we will describe later. In the former case the oscilla-
tions appear due to a saddle-nose bifurcation on a limit cycle, while in the
latter due to an Andronov-Hopf bifurcation.

21



1.1 Oscillator and excitable systems in Nature 22
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Figure 1.1: Schematic example of a 2D self-sustained oscillator with a stable limit
cycle. φ(t) is called the phase of the oscillator.

1.1.1 Self-sustained oscillator systems

Periodic phenomena are abundant in Nature in an impressive variety, and
as humans we are sensitive to these various rhythms probably because our
own perception of time depends on the periodic oscillations of our biological
clocks [Groos 1985]. While in some cases these oscillatory processes may come
from the mutual synchronization of myriads of individual processes, in other
cases these oscillations are the result of the intrinsic dynamics of isolated and
simple oscillatory elements that can oscillate at their natural frequency without
interacting with the outside world. Examples of these self-sustained oscillator
systems can be found in biology (like in the case of the Circadian rhythms
that govern the behavior and methabolic processes of many different living
organisms), in chemistry (as in the Malonic acid reaction), in physics (as in
the case of a laser with optoelectronic feedback [Al-Naimee 2009], a case which
will be studied in detail later in this thesis), in electronic circuits (as in the
famous Van der Pol circuit with non-linear resistance [van der Pol 1927]) and
in many other contexts [Winfree 1967, Winfree 2001].

When observing the dynamics of these processes in the space of their dynamical
variables (phase space), one can usually observe that their periodic oscillations
describe a closed curve, called a limit cycle. Figure 1.1 shows a schematic
representation of such a limit cycle in the case of a 2D system. This limit cycle
attracts phase trajectories that starts close to it, and is therefore called an
attractor of the dynamical system. Given that this cycle repeats itself after each
loop, we can define an angle variable φ(t) (called phase), such that, starting at
t = t0 from an arbitrary point on the cycle, it will increase monotonically along
the trajectory, and each rotation of the point around the cycle will correspond
to a 2π gain in phase. In many models it is possible to reduce the motion
of the system along the limit cycle to a dynamical equation regarding the
phase (a phase model). Here we will not dwell on the study of such oscillator
systems, so for a further description of their properties we refer the reader to
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[Pikovsky 2003].

1.1.2 Excitability phenomenon and classes of neural ex-
citability

Excitability is a typical feature of neural and muscle cells, and is defined by
an all-or-none type of response to a stimulus. The main properties of excitable
systems are the following:

• given a perturbation whose strength is under a certain threshold, the
system only relaxes following a response which is linearly dependent to
the strength of the perturbation,

• given a perturbation whose amplitude is higher than the threshold, the
system reacts with a large-amplitude nonlinear response, whose shape
and amplitude are almost independent from the input perturbation.

The system is then either mostly unaffected (for under-threshold perturba-
tions) or it generates a large response always similar to itself (when the per-
turbation overcomes the threshold).

Historically one of the first documented examples of this phenomenon appeared
in 1952 in [Hodgkin 1952a, Hodgkin 1952b], where the authors, Hodgkin and
Huxley, were able to measure the current-voltage relations in the of a giant axon
of loligo, a type of squid. They remarked that the membrane potential of the
axon behaved in an excitable manner with respect to voltage perturbations,
and they were able to reproduce their results by introducing an equivalent
electrical circuit that could model the membrane potential dynamics. They
received the 1963 Nobel prize in Physiology or Medicine for their work.

From this point onwards, neurons have always been regarded as the epitome
of an excitable system. Figure 1.2(a) shows a schematic depiction of a typical
neuron, consisting of a cell body (soma), thin structure that arises from the
body (dendrites), and a long slender extension of the cell body called axon.
Panel (b) shows instead the response of the membrane potential to a stimulus
perturbation as it would be measured at a point on the axon. At rest, the mem-
brane potential (the voltage difference between the interior and the exterior of
the cell) is around −70 mV. Then, given a stimulus, the potential either relaxes
back to the resting state (for stimuli lower than the threshold), or it quickly
rises to a peak of around 40 mV (for stimuli higher than the threshold). After
the rise, the potential quickly drops and overshoots at around -90 mV, before
relaxing back again to the resting state. These types of spikes, also called action
potentials can quickly travel along the axon until the end, where the neuron
connect with other neurons at synapses, or to motor cells or glands. This type
of spike communication is widely accepted as the mechanism underlying the
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(b) Approximate plot of the excitable re-
sponse of a neuron to external stimuli. If the
stimulus is over-threshold, a typical action
potential is observed; otherwise, the voltage
only relaxes to the resting state2.

Figure 1.2: Representation of the shape of a typical neuron (a), and of its action
potential response to a stimulus (b). Reprinted from [Alpha3031 2018].

exchange of information between the various neurons in the brain.

Beyond the original biological setting, excitable systems have been stud-
ied for many years and in many different contexts such as chemistry
[Belousov 1958]3 and [Neumann 1977, Kuhnert 1989], specialized plant move-
ments [Trebacz 2006, Noblin 2012, Brownlee 2013], human “mexican waves”
(when rows of spectators rise up in a stadium) [Farkas 2002] and in op-
tics and optoelectronics in the case of lasers with saturable absorber
[Dubbeldam 1999, Larotonda 2002], laser with optical feedback [Giudici 1997],
laser with injection [Coullet 1998, Barland 2003, Goulding 2007, Kelleher 2011]
and resonant tunnelling diodes [Romeira 2013]. For an extended overview of
excitable optoelectronic devices we refer to the review paper [Prucnal 2016].

Classes of Neural excitability Neural excitability is a very broad sub-
ject in mathematical neuroscience, and many different models have been
proposed to describe the generation and propagation of action potentials in
excitable membranes. The most prominent and ubiquitous in this field are
Hodgkin-Huxley [Hodgkin 1952a], FitzHugh-Nagumo [FitzHugh 1955], Con-

1Original in the public domain, redrawn in SVG by User:Dhp1080, CC BY-SA 3.0,
https://commons.wikimedia.org/wiki/File:Neuron.svg

2Original by en:User:Chris 73, updated by en:User:Diberri, converted to SVG by tiZom
- Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2241513

3For an historical perspective on this reaction, see [Winfree 1984, Pechenkin 2009]

https://commons.wikimedia.org/w/index.php?title=User:Dhp1080&action=edit&redlink=1
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Neuron.svg
https://en.wikipedia.org/wiki/User:Chris_73
https://en.wikipedia.org/wiki/User:Diberri
https://en.wikipedia.org/wiki/User:Tomtheman5?rdfrom=commons:User:Tomtheman5
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/w/index.php?curid=2241513
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nor [Connor 1977], Morris-Lecar [Morris 1981] and the more recent Izhikevich
model [Izhikevich 2007]. These models have been widely studied with bifurca-
tion theory tools and other mathematical techniques. Two relevant references
on the subject are [Hoppensteadt 1997, Izhikevich 2000b].

The fact that these models are excitable suggests that their activity is close
to a bifurcation point where the perturbation strength plays the role of the
bifurcation parameter: if the perturbation is lower than a certain threshold, the
system just returns to the equilibrium, while if the threshold is overcome, there
is a sudden change in dynamics and a spike can be generated. A classification of
the type of excitability depending on the transition between equilibrium state
and spiking state has been proposed by Hodgkin [Hodgkin 1948] and goes as
follow:

• Class 1 Neural excitability: When action potentials can be generated
with arbitrarily low frequency as the strength of the applied current
increases;

• Class 2 Neural excitability: When action potentials can be generated
in a certain frequency band that is relatively insensitive to changes in
the applied current. In particular, at the transition between resting state
and periodic spiking, the spike trains appear with a finite frequency.

Class 1 neurons fire with a frequency that varies smoothly over a range of
about 5-150 Hz, while the frequency band of Class 2 neurons is usually 75-
150 Hz, but it can vary from neuron to neuron [Hoppensteadt 1997]. Figure
1.3(ii) shows a schematic depiction of the spiking frequency dependence from
the applied current near the bifurcation point for the two excitability classes.

This type of behaviour can be explained by many types of bifurcations, however
two typical examples are usually introduced as the most representative case
for the two classes, which are displayed in Figure 1.3(i). They are:

• Saddle-node on invariant circle (SNIC) bifurcation - Class 1: This bifur-
cation is characterized by the collision and disappearance of two equi-
libria, a saddle and a node, that lie on a limit circle. In the case of the
plotted figure, an unstable focus is also present in the center of the invari-
ant circle. As the applied current increases, the saddle and node points
come closer to each other, and when they merge only a limit cycle remain
with a frequency that can be arbitrarily low the closer is the current to
the bifurcation point.

• Subcritical Andronov-Hopf bifurcation - Class 2: This bifurcation is char-
acterized by the birth of an unstable limit cycle around an equilibrium
point. Even though the limit cycle is unstable, the system can oscillate
one or more times around the limit cycle attractor before going back to
the stable point. Note that the cycle is born with a finite frequency, which
explains the fact that the frequency of oscillations cannot be arbitrarily
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Figure 1.3: Class 1 and Class 2 neural excitability: most typical bifurcation example
and empirical definition. (i) Depiction of the two bifurcation examples (SNIC bifur-
cation and subcritical Andronov-Hopf bifurcation), which are also characterized by
an integrator and resonator behaviour respectively when perturbed with a double
consecutive subthreshold perturbation. (ii) Empirical definition of the excitability
Class (Class 1 can display arbitrarily low spiking frequency, while Class 2 transitions
from the resting state to a finite spiking frequency as the applied current increases).

low.

These two bifurcations can then describe very well the empirical behaviour
of Class 1 and Class 2 type of neurons. Class 1 excitability can be ob-
served with the Morris-Lecar and Connor models, while Class 2 can be ob-
served with the Morrix-Lecar, FitzHugh-Nagumo, Hodgking-Huxley models.
Other differences between the two classes of excitability are summarized in
the table of Figure 2.50 of [Hoppensteadt 1997]. Other references include
[Izhikevich 1999, Izhikevich 2000b, Izhikevich 2007].

Integrator and resonator behaviour A particularly important difference
between the two classes of neurons for the purpose of this thesis is their be-
haviour as either integrators or resonators. Neuronal models are defined as
resonators if they display subthreshold oscillations (small oscillations around
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the resting state that do not trigger an excitable response), while they are
integrators otherwise [Izhikevich 2007]. An important consequence of this dis-
tinction, which is where the two categories get their name, is the following:

• Integrators: These are type of neurons that, given two or more succes-
sive subthreshold perturbation, will integrate (possible with some leak)
all of the incoming perturbation, and if the sum of the perturbations is
greater than the threshold, a spike will be generated. The basic model
that can reproduce this dynamics is that of a circuit where a resistor and
a capacitance are arranged in parallel, which is called leaky integrate-
and-fire (LIF) model.

• Resonators: These neurons are characterized by subthreshold oscilla-
tions, and they will respond with a higher efficiency to an input pertur-
bation with a definite frequency, which is the one where the period of
the perturbation matches the period of their subthreshold oscillations.

Again, we can introduce two bifurcations as typical examples that can explain
these two different types of behaviours. They are again the SNIC bifurcation
and the subcritical Andronov-Hopf bifurcation, and their integrator/resonator
behaviour can be explained as follows:

• Saddle-node on invariant circle (SNIC) bifurcation - Integrator: Figure
1.3(a)(i) shows the case where two perturbations with equal strength are
applied to the resting system. Here the first perturbation will displace the
system towards the unstable saddle, which plays the role of the thresh-
old, but not enough to overcome it. Then after some time the second
perturbation will be applied. In this case the sum the consecutive under-
threshold perturbations will be enough to overcome the threshold and
therefore generate a spike, which in this case is the attracting trajectory
that goes from the saddle to the node. Note that the timing of the two
perturbations is not relevant: they just need to be close enough in time
so that the sum of the two can overcome the threshold (the closer they
are, the higher the efficiency of generating a spike).

• Subcritical Andronov-Hopf bifurcation - Resonator: Figure 1.3(b)(i)
shows again the case where we apply two perturbations with equal
strength to the resting system. After the first perturbation (1), the system
starts to oscillate around the stable focus. What happens next depends
on the timings of the second perturbation. If the second perturbation is
applied at (2), the system is displaced inside the attracting region of the
focus (the gray shaded region), so it will just relax back to the stable
node. However, if instead the perturbation is applied at (3), the system
will escape from this attracting region and follow the limit cycle attrac-
tor around the focus, which will constitute a spike. Note that in this
case the timing is important: one needs to wait exactly one subthreshold
oscillation period in order to have a higher efficiency to generate a spike.
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As we have seen, the bifurcation example that belonged to the Class 1 neural
excitability (SNIC bifurcation) was also an integrator-type of system, while
the bifurcation example that belonged to the Class 2 neural excitability (sub-
critical Andronov-Hopf bifurcation) was also a resonator-type of system. This
equivalence (Class 1 as integrators and Class 2 as resonators) is generally valid
even for other types of bifurcations, so one can usually consider the resonator
and integrator behaviour as a property of the respective excitability Class.
However, this is not strictly the case 100% of the times. As an example, the
saddle-node bifurcation can also display an integrator behaviour, while its type
of excitability is mostly of Class 2. A summary of neurocomputational prop-
erties for integrators and resonators system are displayed in Figure 7.15 of
[Izhikevich 2007].

1.2 Complex networks and synchronization

In the previous section we have introduced the concepts of oscillator and of
excitable system. Even though they are somewhat separate concepts, the study
of networks of oscillators and of networks of excitable elements (as in the case
of pulse-coupled theta neurons) are linked together by a wealth of multidis-
ciplinary studies and papers that could go under the broad umbrella topic of
complex networks and synchronization. In what follows we will introduce the
case of networks of coupled phase oscillators, which can be thought of as the
first step necessary in understanding more complex types of coupled elements.
However one should not be fooled by the apparent simplicity of the topic which,
by itself, could (and is) the subject of many research papers and books. Here
we will just introduce the main issues along with some photonic applications
and refer to the bibliography for a deeper exploration of the subject.

1.2.1 Synchronization in networks of coupled phase os-
cillators

Historically the scientific interest in the synchronization of coupled oscillators
can be traced back to the famous “clock experiment” by Christiaan Huygens
(1629-1695), the famous Dutch mathematician, astronomer and physicist. In
a letter to his father in 1665, he writes4

While I was forced to stay in bed for a few days and made observa-
tions on my two clocks of the new workshop, I noticed a wonderful
effect that nobody could have thought of before. The two clocks,
while hanging [on the wall] side by side with a distance of one or
two feet between, kept in pace relative to each other with a preci-
sion so high that the two pendulums always swung together, and

4English translation from French by Carsten Henkel, reprinted in Appendix A1 of
[Pikovsky 2003].
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never varied. [...] here we have found two clocks that never come
to disagree, which seems unbelievable and yet is very true.

This “odd kind of sympathy” between the two clocks was explained by
Huygens by the interaction between the two clocks through the vibra-
tions of the wall or the beam where they were hanged. The same type
of mutual influence resulting in synchronization was later observed for or-
gan pipes [Rayleigh 1894], locking phenomena in circuits and radio technol-
ogy [Appleton 1922, van der Pol 1927, Adler 1946], pacemaker cells in the
heart [Michaels 1987], animal behaviour like flashing fireflies [Buck 1988,
Ermentrout 1991] or chirping crickets [Walker 1969], coupled cortical neurons
[Crook 1997] and brain networks [Varela 2001], to name a few. We refer to
[Pikovsky 2003] for a detailed historical account of these studies.

The most notorious phase-coupled model: the Kuramoto model
Phase-coupled models have been studied intensively in recent years. However,
one model in particular is stands out as a reference model in the literature:
the Kuramoto model [Kuramoto 1975, Kuramoto 1984]. Inspired by an ear-
lier work by Winfree [Winfree 1967], Kuramoto proposed the phase-coupled
oscillator model:

θ̇i = ωi −
n∑
j=1

Kij sin(θi − θj), i ∈ {1, . . . , n} (1.1)

He also showed that, in the case of mean field coupling (Kij = K/n), synchro-
nization in this model can occur if the coupling K exceeds a certain threshold
value, which is a function of the distribution of the natural frequencies ωi. If
instead the coupling is too week, the oscillators will be desynchronized.

For intermediate couplings, part of the oscillators are phase locked (θ̇i = 0)
and part are rotating out of synchrony with the locked oscillators. This par-
tial synchronization case that emerges directly from the Kuramoto model
can also be found in other coupled oscillators models, as in the Ginzburg-
Landau equation [Kuramoto 2002], a ring of phase oscillators [Abrams 2004],
identical oscillators with group coupling [Abrams 2008] or the case of cou-
pled Kuramoto oscillators with inertia [Olmi 2015]. Given their incongruous
nature, these states have been called chimera states and have been later ob-
served experimentally in liquid crystals [Hagerstrom 2012], chemical oscillators
[Tinsley 2012, Nkomo 2013], optoelectronic systems [Larger 2015] and many
other systems (see the introduction of [Rakshit 2017] for other examples).

Other important properties of this model include the possibility of deriving a
mean-field model in the large n limit (a Fokker-Planck equation), including
the case of white-noise forces (a nonlinear Fokker-Planck equation) and the
existence of stable standing waves and stable travelling waves solutions transi-
tions organized around a codimension-two Takens-Bogdanov bifurcation point
[Acebrón 2005].
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Figure 1.4: Mechanical analogue of a coupled oscillator network. Reprinted from
[Dörfler 2014], with permission from Elsevier.

Mathematically, the Kuramoto model is one of the simplest way that one can
employ to describe a system of n oscillators, each characterized by a phase
angle θi and a natural rotation frequency ωi that interact in an addictive, anti-
symmetric, diffusive interaction [Dörfler 2014]. Recently published surveys on
this topic, with an emphasis on the history and applications of this type of
models throughout science and engineering are [Acebrón 2005, Arenas 2008,
Dorogovtsev 2008, Dörfler 2014].

A mechanical analogue of a coupled oscillator network A particularly
useful mechanical analogue of this coupled oscillator model is that of a spring
network, as shown in Figure 1.4 (as described in [Dörfler 2014]). The system
consists on a group of particles that are constrained to move on a unit circle
without colliding, each with its inertial and damping coefficients Mi > 0 and
Di > 0 respectively and driven by an external driving torque τi. The system
of spring-interconnected particles obeys the model [Dörfler 2013]:

Miθ̈i +Diθ̇i = τi −
n∑
j=1

kij sin(θi − θj), i ∈ {1, . . . , n} (1.2)

where the coupling strengths between two particles are given by the positive
stiffness coefficients of the various springs, such that kij = kji. Note how in the
limit of small masses Mi and uniformly-high viscous damping we recover the
Kuramoto model. Intuitively, one can then imagine that, if the neighbouring
coupling is weak and the network strongly heterogeneous (i.e. with strongly
dissimilar natural frequencies), each particle will travel at their natural fre-
quency ωi = τi/D and the system will not display any coherent behaviour. On
the other hand, if the enforced coupling is strong and the network is sufficiently
homogeneous, the network could synchronize such that the frequencies, or even
all the phases, can become aligned.
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1.2.2 Neural oscillations and complex network dynam-
ics in neuroscience

As already mentioned, neural excitability and neural oscillations are very
broad subjects in mathematical neuroscience. We already introduced the prin-
cipal oscillator models for single neurons (e.g. Hodgkin-Huxley, FitzHugh-
Nagumo) and in order to understand what are the mechanisms that under-
lay various forms of rhythmic behaviour (e.g. spiking and bursting) in the
case of complex networks, a wealth of dynamical systems techniques have
been employed. Among them, we can cite reduction techniques, such as the
separation of time scales reviewed in [Rinzel 2013, Kuehn 2015], various ap-
plications of synchrony of neural models [Arenas 2008, Pikovsky 2003], or of
group networks [Sorrentino 2007], the clustering of different groups of oscilla-
tors [Boccaletti 2006, Nekorkin 1999], symmetric dynamics [Golubitsky 1988,
Golubitsky 2002], and continuous spatially-extended models like neural mass
models [Wilson 1972, Touboul 2011, Spiegler 2011], used to describe meso-
scopic brain oscillations and epileptic patterns, and neural field equations
[Wilson 1972, Wilson 1973, Amari 1977, Veltz 2011, Faye 2018] which support
travelling waves, spatially periodic patterns, oscillatory dynamics and localized
activity [Bressloff 2012].

In the case of weakly coupled phase oscillators (as in the case of the Ku-
ramoto model), a mathematical tool in particular has had a profound im-
pact on the study of oscillator networks: the theory of weakly coupled oscil-
lators [Kuramoto 1984, Ermentrout 1984], already introduced in the previ-
ous subsection. It is now a standard tool in the study of oscillatory networks
[Ermentrout 1984, Van Vreeswijk 1994, Chow 1998, Lewis 2003, Corinto 2007]
and in networks of relaxation oscillators [Coombes 2001, Izhikevich 2000a]. For
a comprehensive review of this framework, we refer to [Hoppensteadt 1997],
and for a review of oscillatory network dynamics and weakly coupled oscilla-
tor theory we refer to [Strogatz 2000, Ashwin 2016], along with the surveys
mentioned in the previous subsection 1.2.1.

1.2.3 Neuro-inspired photonic networks and applica-
tions

So far we have explored many types of mathematical models and physi-
cal applications that claim to model the behaviour of a single neuron or
that of a neural network. However, there is another approach towards neu-
romorphic networks that aims to exploit their properties to code and com-
pute information. This is more or less the same difference between trying
to understand the mechanics and aerodynamics of a flying bird, and actu-
ally constructing a functioning airplane. The underlying assumption is that
the most complex and powerful computation machine in the universe, i.e.
the human brain, operates thanks to a decentralised interconnected neu-
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ral architecture that exploits spike communication in order to analyse sen-
sory information and transform them into a sensible interpretation of real-
ity [Diesmann 1999, Borst 1999, Kumar 2010, Ostojic 2014]. This architecture
has then become an inspiration to build technological applications that could
surpass the good old von Neumann processors, without forgetting that each
system has its own properties and limitations. To paraphrase Yann LeCun, “if
we modelled airplanes to imitate Nature, they would have feathers instead of
metal wings”5.

One of the favourable properties that are credited for the performance ad-
vantages of neural network is the ability of each neuron to operate on in-
formation encoded as spikes. This type of spiking signal processing, which
is neither analog nor digital and process information using both space and
time [Thorpe 2001, Maass 2002], has been found to be both expressive and
resistent to noise [Sarpeshkar 1998, Tait 2013], and such that it could solve
unconventional computing problems and outperform current technology in
both power efficiency and complexity [Tononi 2008, Ananthanarayanan 2009,
Modha 2011]. As an order of magnitude estimation, the enormous compu-
tational performance of modern supercomputers comes at a cost of around
∼ 10 MW in power consumption, while the human brain suffice with a mere
∼ 20 W [Van der Sande 2017].

In the case of photonic devices, neuromorphic properties have been exploited to
achieve: a synchronization state between many coupled oscillator laser arrays in
Kuramoto-like networks [York 1991, Kozyreff 2000, Oliva 2001]; excitable de-
vices realized with semiconductor lasers with optical or electrical feedback (see
[Prucnal 2016], section 3 for a complete list) that can display typical features
of excitable system such as a refractory period [Selmi 2014, Garbin 2017a] and
computational properties such as temporal pattern recognition [Shastri 2016]
and stable recurrent memory [Garbin 2014, Garbin 2015b, Shastri 2016]. For
an overview on excitable lasers and spike processing, we refer to [Prucnal 2016].

A special mention has to be given to one of the more promising applications of
neuro-inspired optical networks: reservoir computing. This novel computational
paradigm currently employed in the field of machine learning consists in a col-
lection of connected units that are trained in order to generate a desired output.
Typically, an input sequence drives the complex dynamics of a reservoir that
non-linearly encodes the input. The output is then obtained by a linear combi-
nation of the reservoir state. The system is trained in order to find the best set
of output coefficients usually through a linear regression. The characteristic of
the reservoir computing is that the training is only performed on the readout
layer, that is, the last layer of units before the output is calculated. Realizations
of photonic reservoir computing have been realized on a passive silicon chip
[Vandoorne 2014], in diffractively coupled VCSELs [Brunner 2015] and delay-

5https://www.youtube.com/watch?v=RgUcQceqC Y

https://www.youtube.com/watch?v=RgUcQceqC_Y
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based optical or optoelectronic systems [Duport 2016, Brunner 2013]. A review
on the recent advances in this field can be found in [Van der Sande 2017].

1.3 Content of this thesis

Chapter 2 will be devoted to the study of a single semiconductor laser device
with injection. We will demonstrate its excitable nature by using dynamical
models of increasing complexity, from the simple Adler model to a Class B
laser-with-injection formulation. Probing the system with different types of
perturbation, we will describe how a refractory period can be detected; how
a shift from an integrator to a resonator behaviour can been observed when
changing the model parameters and the possibility of controllable multipulse
excitability.

In Chapter 3 we will introduce a setup consisting of a network of coupled laser
devices in an all-to-all configuration. Groups of coupled lasers of different sizes
can be studied in this way, and we will record their behaviour as the bifurcation
parameter driving the mean field dynamics is varied. The dynamics that we
can expect from the mean field of the population will be related to a property
of the selected population (the average output-power threshold). A reduction
in the complexity of the mean field dynamics will be reported and explained
through an analytical study and numerical simulations.

Finally Chapter 4 will contain a short investigation into the property of bi-
ological cells in collaboration with a biology group in Nice. In particular, we
will observe how the laser light coming from an optical fiber can be used to
optically control the activation of potassium channels in the membrane of sin-
gle cells, which lead to a flow of current across the membrane that can be
measured in a voltage-clamped experiment.





Chapter 2
Single semiconductor laser device with
injection as an excitable spiking element

2.1 Introduction to the chapter

In this chapter we will describe an experiment which consists in a semiconduc-
tor laser with injected signal. The basic elements of this setup are two separate
lasers: a master laser, in this case an edge-emitting tunable laser, and a slave
laser, in this case a VCSEL. The signal coming from the master laser is injected
into the slave laser, and this allows for an interaction between the two signals.

Given that with this configuration we are coupling two periodic systems to-
gether, it can be expected that the two laser frequencies can synchronize, in
much the same way as the famous 17th century observation of the synchroniza-
tion of two heavy pendulum clocks hanging from a wall by Huygens, recently
reproduced in [Oliveira 2015]. This synchronization phenomenon is very com-
mon in many other oscillator systems in Nature, from biology to chemistry to
neuroscience. In the case of electrical oscillators, a modelling equation for the
evolution of the phase difference φ of two oscillators was introduced by Adler
[Adler 1946], and reads:

φ̇ = ω − sinφ (2.1)

where ω is a parameter that represents the detuning in frequency between the
two oscillators. Even though it is seemingly very simple, this model can be
considered as the first order approximation of our experiment for low levels
of injected signal and small detuning. Furthermore, it can describe to first
order two of the most important features that characterize our system: the
locking region and the excitability behaviour. In fact, it turns out that, at
lower injection, the frequency of the slave laser is locked to the frequency of
the master laser when the bifurcation parameter ω is in the range −1 < ω < 1.

35
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At the boundary values of ±1 a Saddle-Node on a limit circle bifurcation
is present, so that inside the locking region the dynamics is governed by a
Saddle-Node pair of fixed points. The existence of these two points allows for
the system to be excitable when displaced from its stable state by a phase
perturbation.

Our experiment is designed so that we are capable, when inside the locking
region, to perturb the system with phase perturbations of different shapes and
sizes, and to record the response of the system on a fraction of nanosecond
time-scale. By carefully probing the system with these different perturbations,
we have been able to observe different properties of the system, such as:

• A single excitable response following a single perturbation of different
amplitudes, where each response is associated with a 2π phase rotation
and a spike in intensity;

• The refractory period that follows from a first perturbation;

• A resonator property for couples of perturbations at different delays;

• Controllable multipulse excitability.

Many of these properties, like the excitability and refractory period, can be
qualitatively explained using the Adler model, while others, like the resonator
property and the multipulse excitability, cannot. In both cases, the study of a
theoretical model of a Class B laser with injection will allow us to make analyt-
ical and numerical observations which will be able to bridge our experimental
observations with the theory.

The rest of the chapter is then organized as follows: we will firstly introduce the
system of a laser with injected signal in Section 2.2, while later we will describe
in detail the experimental setup and results of the experiment in Section 2.3.
These results will be divided into subsections, each of which will explain a
different property of the system between the ones that we listed earlier. Then
Section 2.4 will take care of the theory starting from a physical model of the
system, and describing all of the aforementioned properties from a theoretical
and numerical side. Finally, we will summarize our results in the Conclusions
and perspectives 2.5.

The experimental and numerical results reported in this chapter have been
published or are being published in:
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• Bruno Garbin1, Axel Dolcemascolo2, Franco Prati3, Julien Javaloyes4,
Giovanna Tissoni2, and Stéphane Barland2. “Refractory Period of an Ex-
citable Semiconductor Laser with Optical Injection.” , Physical Review E
95, no. 1 (2017) - [Garbin 2017a];

• Axel Dolcemascolo2, Bruno Garbin1, Betrand Peyce2, Romain Veltz5,
and Stéphane Barland2. “Resonator neuron and triggering multipulse ex-
citability in laser with injected signal.” , Physical Review E 98, no. 6
(2018) - [Dolcemascolo 2018].

and are the outcome of the collaboration of all the people mentioned above.

1The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of
Physics, The University of Auckland, Auckland, New Zealand.

2Université Côte d’Azur, CNRS UMR 7335, Institut de Physique de Nice, 1361 Route
des Lucioles, F-06560 Valbonne, France

3Department of Science and High Technology, University of Insubria, Via Valleggio 11,
22100 Como, Italy

4Departament de F́ısica, Universitat de les Illes Balears, C/ Valldemossa km 7.5, 07122
Palma de Mallorca, Spain

5Inria Sophia Antipolis, MathNeuro Team, 2004 route des Lucioles - BP93, 06902 Sophia
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2.2 Introduction on the laser with injected sig-

nal (LIS)

2.2.1 Laser with injected signal (LIS)

Laser systems in general can be very complex since the phenomena that ac-
counts for the dynamics in these systems can span from electromagnetic theory
to quantum theory to atomic physics. Furthermore, there are many different
active media that can be used for a laser that can be implemented in a variety
of designs of optical cavities, which increases the difficulty of an uniform model
to describe their dynamics.

A limited (but very broad) topic in the study of the dynamics of laser systems
is that of lasers with optical injection (LIS for short). These are systems where
the light coming from another light source is injected into the laser cavity, and
the result is usually a substantial modification of the dynamical properties
of the system. One of the first (and most famous) attempts to influence the
laser properties of a semiconductor laser using an external optical feedback
dates back to [Lang 1980], where they observed how the injection assured a
single-mode operation under high-speed modulation and the appearance of
multi-stable and hysteresis phenomena. Later other theoretical and experi-
mental studies followed, which outlined the injection locking properties of the
laser system [Lang 1982, Mogensen 1985], with the inclusion of the linewidth
enhancement factor α in the theory [Lang 1982, Henry 1982], and the locking
bandwidth and relaxation oscillations [Petitbon 1986]. For a more complete
history on the subject, we refer the interested reader to [Tartwijk 1995].

One could argue that the fundamental effect that underlies much of the dynamics
of lasers with injection is the locking of the frequency of the injected laser to
the frequency of the injected light. This means that the laser emits light with
a frequency which is dictated by the external source. In order to observe this
effect, two conditions must be satisfied:

1. The detuning between the frequency of the injected laser and the natural
frequency of the laser oscillator must be small;

2. The injection power should not be too small.

This synchronization phenomenon between two coupled oscillators (such as two
lasers) is very common in many other oscillator systems in Nature. It happens in
biology [Winfree 2001, Glass 1988] as in the case of fireflies that have been ob-
served to flash in unison in some south Asia forests, chemistry [Kuramoto 1984],
electrical circuits [Lee 2003] and even in neurons [Timofeev 2012]. Theoreti-
cally, the first treatment of the locking of electrical oscillators was presented
by van der Pol in 1927 [van der Pol 1927] and then further developed by Adler
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Figure 2.1: Adler model as in Equation 2.2. (a) Representation of the dynamics of
the system on the circle for three different values of ω, corresponding to the positions
A, B and C marked on the right. (b) Plot of the two fixed points (the dashed one
corresponds to the unstable point) as a function of the detuning parameter ω. The
locked region exists for small detuning (−1 < ω < 1). At values of ω = ±1 the birth of
a saddle-node bifurcation is clearly visible. (c) Mechanical example of an overdamped
pendulum with constant torque, that in the limit of high viscosity follows the Adler
equation.

[Adler 1946], who also introduced the Adler equation:

dφ

dt
= ω − sinφ (2.2)

which is a one-dimensional phase equation that describes the evolution of the
phase difference φ between the two oscillators, while the parameter ω represents
the detuning (difference in frequency) between them. Figure 2.1(b) shows a
representation of the fixed points of the equation when changing the detuning
parameter. For small detuning (−1 < ω < 1) the dynamics of the system is
determined by a stable fixed point and an unstable fixed point that are born
from a saddle-node bifurcation on a limit cycle in phase space. The system will
then be attracted towards the stable point which means that there will be a
stable phase difference between the two oscillators (this is the locked region of
the model). For bigger values of the detuning (ω < −1 and ω > 1) there is
no fixed point, and the phase difference will either always increase or always
decrease, depending on the sign of ω (this is the unlocked region of the model).

This simple model is the basis of the locking mechanism for two coupled oscilla-
tors, and many complex models for coupled oscillators in different fields can be
ultimately reduced to this equation. An example of such a reduction emerges
from the LIS model: in the paper from [Coullet 1998] it is demonstrated how
the dynamical model for the LIS can be reduced to the phase equation:

∂Θ

∂t
= ∆− sin(Θ) +

∂2Θ

∂x2
−Υ

(
∂Θ

∂x

)2

(2.3)
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where Θ represents the relative phase of the laser and the external field, ∆ is
the external detuning normalised to the strength of the injected laser and the
coefficient Υ measures the dispersive-diffusive character of the medium. If we
ignore the evolution along the transverse spatial direction x, we then obtain
an Adler-like equation for the evolution of the phase difference.

Given its importance in understanding the behaviour of many systems and
in order to build an empirical intuition on the dynamics, it is also interesting
to consider a mechanical example of the Adler model, namely an overdamped
pendulum with constant torque, as is depicted in Figure 2.1(c). Starting from
an equation for the angular momentum, in [Coullet 2005] it is shown that the
equation of motion of the pendulum reads:

θ′′ + βθ′ + sin θ = γ (2.4)

where β is a normalised parameter proportional to the viscous torque and
inversely proportional to the square root of the inertia, γ is proportional to the
strength of the forcing, and the time has been normalised to the free oscillating
period of the pendulum. In the limit of high viscosity (β large), we can drop
the inertial term θ′′ so that the equation of motion reduces to:

θ′ =
1

β
(γ − sin θ) (2.5)

which is just the Adler equation after we apply another normalization of the
time to get rid of the β parameter. For a small forcing, there will then be two
fixed points on the circle, a stable posisition (the blue line in Figure 2.1(c))
and an unstable position (the red line), and after a monotonic motion the
pendulum will alight on the stable position. If the forcing is instead too small
or too large, there will be periodic oscillations of the pendulum, either clockwise
or anti-clockwise.

Even though the Adler model is a simple explanation of the dynamic of the
LIS under some parameter range, that does not mean that it is able to de-
scribe the whole range of dynamical behaviours that can be observed fron the
LIS model, among which we can cite stationary states (steady states and limit
cycles), bifurcations of stationary points (saddle-node and Hopf bifurcations),
dynamics of limit cycles (period-doubling bifurcations, saddle-node of limit cy-
cle, torus bifurcation), chaos dynamics (series of period-doublings leading into
chaos, sudden chaotic transitions), multistability of different solutions giving
rise to hysteresis cycles and even pulse excitability or multipulse excitability.
A detailed description of these dynamical effects and more can be found in
[Wieczorek 2005a].

The model that is used in order to study the broad LIS dynamics is usually a
system of nonlinear differential equations that comes from a rearrangement of
the so called Maxwell-Bloch equations [Arecchi 1965], a system of equations for
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the system of two-level atoms that are combined with the Maxwell equations for
the electric field inside a cavity. An example of such a model is [Hachair 2006,
Prati 2010] 

∂E

∂t
= ε [EI + P − (1 + iθ)E + i∇2

⊥E]

∂P

∂t
= ΓD(1 + i∆D) [(1− iα)DE − P ]

∂D

∂t
= b

[
µ−D − 1

2
(EP ∗ + E∗P ) + d∇2

⊥D

] (2.6)

where E is the slowly varying envelope of the electric field, P is the effective
macroscopic polarization and D is a population variable proportional to the
excess of carriers with respect to transparency. EI is the amplitude of the
injected field while µ is a parameter related to the pump current normalized
so that the threshold for the solitary laser is µth = 1 when it emits on axis.
Three important parameters are θ, Γ and ∆ where:

θ =
ωC − ω
κ

=
detuning between the cavity longitudinal mode
frequency and the frequency of the injected field

(2.7)

and ΓD = Γ(D) and ∆D = ∆(D) are two real functions of D that determine the
shape of the susceptibility curve. In the cited papers [Hachair 2006, Prati 2010]
they set Γ(D) = 0.276+1.016D and ∆(D) = −α+2δ(D)/Γ(D), where δ(D) =
−0.169 + 0.216D, as the best fit of gain curves calculated with a microscopic
model. There are three different time scales in the system, namely:

τp = photon lifetime inside the cavity

τd = dephasing time of the microscopic dipoles (typically 100 fs)

τc = carrier nonradiative recombination time

(2.8)

that are taken into accounts in the parameters ε = τd/τp and b = τd/τc, while
the time is already scaled to the dephasing rate τd. Finally, α is the linewidth
enhancement factor of the laser and d is the diffusion coefficient for the carriers.

We should also mention that the formulation of this model is not unique and
there are examples of different models that are mentioned in the literature. A
non-exhaustive overview of such models can be found in Figure 2.2. They can
differ between one another based on the inclusion or exclusion of diffraction
terms in the E and D variables, time scale re-normalizations, changes in the
reference frequency and redefinition of physical parameters (sometimes redefin-
ing existing parameters in other models) depending on the context and on the
needs of the model. What is common between the various formulations is the
classifications of the dynamical properties of the different models in three dif-
ferent classes: A, B and C. They were proposed by [Tredicce 1985] in order to
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make sense of the possible different assumptions that one can make to simplify
the system. Indeed the fact that there are three different time scales allows
for the possibility of an adiabatic elimination of the rate equations of the fast
variables if the time scales are widely different. In particular, if we introduce
the relaxation rates:

κ = 1/τp = cavity dumping constant

γ⊥ = 1/τd = relaxation rate of the atomic polarization P

γ‖ = 1/τc = relaxation rate of the population difference D

(2.9)

we can distinguish the three classes as:

Class A characterized by the condition:

κ << γ⊥, γ‖ (2.10)

The lasers in this class are the ones where the loss rate for the field (σ)
is much less than the other two timescales, namely the polarization loss
rate (τp) and the population inversion loss (b). Because of this difference,
it is possible to perform an adiabatic elimination of the atomic variables
so that we are left with one equation for the field. Starting from a LIS
model which includes diffraction in the transverse plane for the electric
field, one can obtain the equation [Coullet 1989]:

∂A

∂T
= A− (1 + iα)|A|2A+ (1 + iβ)∇2A (2.11)

where A is the first order expansion term of the electric field close to
threshold, α is the linewidth enhancement factor and β is a parameter
related to the cavity detuning. This equation is also known as the com-
plex Ginzburg-Landau equation, which was first postulated as a model
for the theory of superconductivity, but also describes a vast variety of
phenomena, from superfluidity and Bose-Einstein condensation to liquid
crystals and strings in field theory [Aranson 2002]. There can also be
slightly different formulations of this Class A equation for the field, as
the one which is thoroughly studied in [Mayol 2002].

Class B characterized by the condition:

γ‖ << κ << γ⊥ (2.12)

In this case the atomic polarization can be adiabatically eliminated so
that the dynamic behaviour of this class of laser can be described by the
coupled equations for the electric field and for the population inversion.

While in absence of injection the Class B model is fully equivalent to the
motion in a Toda potential with intensity dependent losses [Oppo 1985]



2.2 Introduction on the laser with injected signal (LIS) 43

and therefore does not show chaotic behaviour, when adding the injected
field the number of degrees of freedom is enlarged and the dynamics can
become very complicated, as shown in [Wieczorek 2005a].

Class C where the relaxations rates κ, γ⊥ and γ‖ have the same order
of magnitude and therefore no adiabatic elimination is possible. We then
have to rely on the full Maxwell-Bloch equations in order to describe
their dynamics.

In our case, we will mostly deal with a Class B model since our injected laser is
a semiconductor laser. We will then use a model with two coupled equations:
one for the electric field and one for the carriers.
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2.2.2 Excitability of injection-locked semiconductor
lasers with optical injection

Definition of excitability As was pointed out in the general introduction,
excitability is a very general property that is shared by many nonlinear systems
in various contexts, from biology, to chemistry to optics. Most notably, it plays
a fundamental role in neuroscience where the elementary element, the neuron,
is often taken as the epitome of an excitable system.

We remind here the definition of excitability: a system is said to be excitable
if:

• given a perturbation whose strength is under a certain threshold, the
system only relaxes following a response which is linearly dependent to
the strength of the perturbation,

• given a perturbation whose amplitude is higher than the threshold, the
system reacts with a large-amplitude nonlinear response, whose shape
and amplitude are almost independent from the input perturbation.

This can be summarized as an all-or-none type of response to an input pertur-
bation: the system is either mostly unaffected or it generates a large response
when the perturbation overcomes the threshold.

We have also already described how this property is shared by
many different optical systems: from lasers with saturable absorbers
[Dubbeldam 1999, Larotonda 2002], to semiconductor ring and microdisk
lasers [Campenhout 2007, Alexander 2013], to photonic crystal nanocav-
ities [Yacomotti 2006, Brunstein 2012] and lasers with optical feedback
[Fischer 1996, Giudici 1997, Garbin 2015b] or injection-locked semiconductor
lasers [Goulding 2007, Kelleher 2009, Turconi 2013] and injected semiconduc-
tor amplifiers [Barland 2003]. For an extensive overview on the subject, we
refer the reader to the review article [Prucnal 2016]. In the rest of this section
we will introduce the case of injection-locked semiconductor lasers with optical
injection, along with a brief historical survey on the subjection.

Excitability of locked LIS systems The optical excitability of injection-
locked semiconductor lasers with optical injection is widely studied theoreti-
cally and experimentally. The first theoretical intuition that, under some ap-
proximations (namely, small detuning between slave and master and small in-
jected power) a laser with injected signal could behave as an excitable medium
was proposed by [Coullet 1998]. Under the aforementioned approximations,
the authors are able to reduce the dynamics of a Class C semiconductor laser
with injection to the phase equation

∂Θ

∂t
= ∆− sin(Θ) +

∂2Θ

∂x2
−Υ

(
∂Θ

∂x

)2

(2.13)
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Figure 2.3: Excitability of the Adler model. Given a perturbation under threshold
(blue long-dashed arrow), the system will just relax back to the stable point. If
instead the perturbation is over the threshold (red short-dashed arrow), the system
will perform a 2π phase rotation (an excitable event), before relaxing back to the
stable point.

where Θ represents the relative phase of the laser with respect to the external
field, ∆ is the detuning and Υ is the ratio between diffraction and diffusion.
If we ignore the evolution on the transverse direction we recover the Adler
equation:

dΘ

dt
= ∆− sin Θ (2.14)

We have already shown how the dynamics of this equation is governed by a
saddle-node bifurcation on a circle as depicted in Figure 2.1. What we have
not emphasized is that this very simple model also behaves in an excitable
way when inside the locking region. In fact, starting from the stable point and
applying a positive phase-displacement perturbation on the system (as shown
in Figure 2.3) then the system reacts in two possible ways:

• If the angle is small, the system gets displaced between the saddle and
the node, so it will just relax back to the stable node. Note that the
response is linear with respect to the perturbation in this case.

• If instead the angle is greater than the angular distance between the
saddle and the node, the system will overcome the position of the saddle
and it will complete a 2π phase rotation (the excitable event) before
reaching the node.

The Adler model can then be viewed as an excitable one, and given its simplic-
ity it is often taken as an example when describing excitable systems. More-
over, there is a strong connection between this model and the so-called θ-model
[Ermentrout 1986, Izhikevich 2007]6:

dθ

dt
= (1− cos θ) + (1 + cos θ) I(t) (2.15)

6The θ-model is actually just the same as the Adler model when I(t) is considered as a
constant. See Appendix A for a derivation of the Adler model from the θ-model.
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Figure 2.4: Saddle-node on a limit cycle bifurcation (SNIC) for the θ-model 2.15.
Reprinted from [Ermentrout 2008]7.

which is a popular biological neuron model used in many fields of computa-
tional neuroscience. The angle variable θ represents the state of the neuron in
radiants, and the input function I(t) (often taken to be periodic) is the pa-
rameters which controls the bifurcation. The dynamics of this model also takes
place on a circle where it is governed by a saddle-node bifurcation, where the
parameter I is the bifurcation parameter. The bifurcation point is located at
I = 0, while when I < 0 the system is excitable and when I > 0 the system
gives rise to a limit cycle (as shown in Figure 2.4). The neuron is said to spike
when θ = π.

The theta model is also the locally canonical model for the saddle-node on a
limit cycle bifurcation (SNIC), which means that every system that undergoes
a SNIC bifurcation can be locally transformed (often with a change of variable)
into this canonical model [Hoppensteadt 1997, Izhikevich 1999]. As an exam-
ple, in Appendix A we derive the Adler model from the θ-model by applying a
change of variable and of timescale. Near the transition, it can also be shown
that the local dynamics follows the quadratic integrate-and-fire neuron which
has the form [Ermentrout 1996, Ermentrout 2008]:

dx

dt
= x2 + I (2.16)

In the case of I > 0, the solutions to this differential equation “blows up” in
finite time and supposing that we reset x(t) to −∞ when it blows up at +∞,
then the total transit time is:

Tper =
π√
I

(2.17)

This means that the frequency goes to zero as the I parameter approaches zero
from the right. If we now recall the distinction between Class 1 and Class 2
neurons, as already explained in subsection 1.1.2, we remark that this property
(the fact that action potentials can be generated with arbitrary low frequency)
is the defining feature of Class 1 neurons. In fact, it was this observation
that led Rinzel Ermentrout to remark that this bifurcation corresponded to
Hodgkin’s Class 1 excitable membranes while the more familiar Andronov-
Hopf bifurcation corresponded to Class 2 excitability.

7Licensed under CC BY-NC-SA 3.0

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
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This canonical model is then very useful as it can then shed some light on any
neuronal model that displays Class 1 excitability. Nevertheless, one must be
cautious when comparing other neuronal models to the canonical one because
the transformation that converts a particular model into the canonical is guar-
anteed to exist only near the SNIC bifurcation: that is, when frequency of the
action potential approaches zero, so that the periods of the interspikes become
very large.

Given the strong connection between the LIS system, the Adler equation and
the θ-model, it is reasonable to expect that a laser with injection can behave
in an excitable way. Furthermore if we go back to the phase equation 2.13 that
can be derived from the LIS system and we set ∆ = Υ = 0 (weak detuning
and weak dispersion), we can reduce it to the sine-Gordon equation:

∂Θ

∂t
= − sin(Θ) +

∂2Θ

∂x2
(2.18)

that possesses a particular stationary 2π kink solution:

ΘK± = ±4 arctan(ex) (2.19)

As explained in the [Coullet 1998] article, this phase kink appears as a pulse
when one looks to physical quantities such as the light intensity and for small
detuning and dispersion this solution behaves as a travelling pulse of the form:

Θ(x, t) = ΘK(x− ct) + ... (2.20)

where the ellipses represent higher order corrections and the velocity c is given
by:

c =
π

4
(∆− 2Υ) (2.21)

It is then possible to obtain excitable pulse solutions of the Maxwell-Bloch
equations in the LIS system. These phase kinks will appear as discrete pulses
in the circulating optical intensity.

Starting from this and other theoretical insight where it was suggested the
possibility of excitability in other optical systems other than the LIS, as in
the semiconductor élon [Rzhanov 1993] and the two-level Lorenz-Haken laser
[Yu 1999], a lot of work has been carried out in search of the experimental
realization of these excitable pulses.

In the case of semiconductor optical devices, an excitable behaviour that fol-
low the van der Pol–Fitzhugh–Nagumo (VPFN) model has been observed in
Semiconductor Optical Amplifiers (SOA) [Barland 2003, Marino 2004] and in
Semiconductor Microcavities (a 2D excitable medium) [Marino 2005] where
they observed self-confined optical waves. The VPFN model is one of the fun-
damental paradigms of for an excitable behaviour in many biological, chemical
or electronic systems and it displays a firing activity that can be regulated
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by noise when operating slightly beyond the supercritical Hopf bifurcation
[Makarov 2001]. In these systems the excitable events were in fact triggered
either by noise or thermal oscillations.

A first experimental realization of excitability in a LIS system of a quantum
dot semiconductor laser was demonstrated in [Goulding 2007], and again in
this case the excitable intensity pulses were noise-triggered. Later a first step
towards the control of these pulses was made when it was realized how these
excitable pulses could be triggered by perturbing the system with an external
incoherent injected laser [Garbin 2014]. It was also later realized how each in-
tensity pulse was accompanied by a 2π phase slip [Kelleher 2009] that could
by either positive or negative depending on the sign of the detuning. This
discovery has led to a clearer understanding of the nature of the excitable
pulses as primarily phase phenomena, where the coupling between phase and
amplitude comes into play due to the non-zero value of the α parameter (the
linewidth-enhancement factor). A further development of an interferometric
phase measurement technique used to construct phasor plots has again con-
firmed the phase-amplitude dynamics of these excitable events [Kelleher 2010].

A first demonstration of the control of the excitable pulses in an injection-
locked semiconductor laser has been achieved by [Turconi 2013], where they
managed to apply a phase perturbation to the master signal with variable
amplitude in order to get an excitable response. This technique has an efficiency
that reaches almost 100% when increasing the amplitude of the perturbation,
while the shape of the pulses remains constant. The same type of technique
has been used in our experiment, with different types of phase-perturbations.
Furthermore, it was shown in [Garbin 2015b] how these excitable responses
could be regenerated by the system when a delayed feedback loop is added to
the optical injection system. Given the nature of these pulses as phase-slips of
2π that propagate in a spatio-temporal system without distortion, they have
also been called topological solitons, as they bear a close resemblance to the
Sine-Gordon solitons. In the same paper it was also demonstrated how these
solitons can be individually nucleated and cancelled, thus opening their use as
phase information units in next-generation coherent communication systems.

At the same time, a clearer theoretical understanding of the dynamics present
in the LIS system has been achieved through a thorough theoretical and bifur-
cation analysis [Krauskopf 2003, Erneux 2010, Olejniczak 2010, Kovanis 2010,
Kelleher 2011], usually separating the case of quantum dot and quantum
well devices. The most complete theoretical report of the complex non-
linear behaviour of a semiconductor laser with injection can be found in
[Wieczorek 2005a].
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Figure 2.5: Experimental setup of a laser with injected signal. The electrical per-
turbation setup allows us to apply a double-pulse phase perturbation to the master
signal with arbitrary delay.

2.3 Experimental results

This section will describe more in detail the experimental setup that we have
used to probe the excitability properties of the LIS laser. After that, we will
discuss and examine the experimental results that we obtained from the ex-
periment.

2.3.1 Experimental setup

The experimental setup is shown in figure 2.5 and it basically consists on a
laser with injected signal. A more schematic and visually pleasing version of
the same setup is shown in 2.6. It is the same setup used in [Turconi 2013],
with the addiction of a new electrical perturbation setup. The backbone of
the experiment consists of two lasers which are coupled together in an unidi-
rectional way. The master laser is the one whose signal we inject inside the
other laser, called a slave laser. Before being injected, the master signal passes
through an EOM (Electro-Optic Modulator) that allows us to apply a phase
perturbation to the master signal.

The particular shape of this perturbation is determined by the settings of the
electrical perturbation setup shown in the figure, which include two pulse gen-
erators. We then analyse the output of the system via a real-time oscilloscope
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Figure 2.6: Schematic of the experimental set-up. MASTER: in- jection laser,
SLAVE: injected laser, EOM: electro-optic mod- ulator, O.I.: Optical isolator,FP:
Fabry-Pérot interferometer. Reprinted with permission from [Garbin 2017a].

and a Fabry-Pérot. We will now explain more in detail the different parts of
the setup.

Electrical perturbation setup This section of the setup is needed in order
to generate an electrical perturbation with a particular shape which will then
be converted into a phase perturbation by the EOM. During this work we
focused on double pulse perturbations, as the one which is depicted in figure
2.8(a), although we also used other types of pertubation, usually a combination
of step-up or step down perturbations, either by themselves or in addition with
pulse perturbations. In that case, the perturbation setup would be slightly
different, but the overall structure would be very similar. Here we describe in
particular the case for a double-pulse perturbation. A more detailed description
of the electrical perturbation setup in this case is shown in Figure 2.7.

To generate the two pulses we employ two pulse generators: the Alnair Labs
EPG-200B-0050-0250 (first pulse generator) and the Alnair Labs EPG-210B-
0050-S-P-T-A (second pulse generator). The two pulse generators have a very
similar use and they only differ in the fact that the second generator has a
built in amplifier, so that we need to reduce the amplitude of the second pulse
using attenuators in order to be able to combine the two pulses with similar
amplitudes. They both respond to an input raising front with an amplitude of
400 mVpp by generating a pulse with constant amplitude and tunable width.
The duration of the pulses can be set between 30 - 350 ps, with a rising/falling
time of 30 ps. The amplitude of the signal for the first generator is 300-400
mVpp, while for the second is 5-7 Vpp, where the actual amplitude varies
slightly depending on the chosen time duration.
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Figure 2.7: Detailed representation of the electrical perturbation setup (as in Figure
2.5) used in order to generate a two-pulses perturbation with arbitrary delay. The
amplitude of the signals shown here represent an approximate typical experimental
value.

The trigger signal for the two pulse generators is produced by a signal genera-
tor (Keysight 33600A) with two channels. We trigger the first pulse generator
with a 50 MHz square wave with 400 mVpp amplitude, and the second pulse
generator with another 50 MHz square wave. Since the two channels are syn-
chronized, the two pulses are created at the same time. We can then control
the delay between the two pulses by applying a phase delay (or a phase mod-
ulation) to one of the channels. Using this technique we can generate two very
narrow pulses with arbitrary delay with a repetition frequency of 50 MHz.

In order to join the two pulses together and to amplify them close to the value
of operation of the EOM, we employ a series of power splitter in addiction
with two amplifiers as depicted in Figure 2.7. The power splitters that we
used (either in a summing configuration or a splitting configuration) are Mini-
Circuits power splitters ZFRSC-183-S+DC18000 MHz or DC12000 MHz. We
also used power attenuators as to level the voltage between the two pulses from
the two pulse generators to be almost equal. After the two pulses are joined, we
obtain a signal which is of order 70-150 mVpp, that we need to amplify up to
6-9 Vpp to be in an useful range for the operation of the EOM. The apparatus
that we use to achieve this consists of two amplifiers: the Photline DR-AN-
20-MO wideband RF amplifier module designed (cut-off frequency of 20 GHz)
and the Photline DR-DG-10-MO-NRZ Medium Output Voltage Driver Module
(cut-off frequency of 28 GHz). We had to resort to use two amplifiers instead
of one because the DR-DG-10 amplifier needs a signal of 100-300 mVpp if we
want an output signal of the order of 6-9 Vpp.

The end result of this process is a double-pulse signal as shown in Figure 2.8(a).
In the (b) panel of the same figure we also show the amplitude of the output
signal when changing the gain control voltage, and in panel (c) we plot the full
width at half maximum of one pulse as we increase the gain control voltage for
three different experimental realization.
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three different experimental realizations (changing parameters of the
pulse generator and the amplifiers).

Figure 2.8: Shape and amplitude of the input-output signals of the DR-DG-10 am-
plifier for a double-pulse perturbation, before being injected into the EOM.



2.3 Experimental results 54

Substrate

n-Bragg re�ector

p-Bragg re�ector

p-ring contact
Laser emission

n-ring contact

Active region

Figure 2.9: Schematic representation of a typical vertical-cavity surface-emitting
laser (VCSEL) consisting of an active layer sandwiched between Bragg mirrors.
Reprinted with permission from [Dolcemascolo 2015].

Injection setup This part of the setup is at the heart of the experiment and
it includes two lasers, a master laser and a slave laser, which are coupled to-
gether in an unidirectional way. The master laser is an external grating tunable
laser which emits on a single mode of its external cavity, and its frequency can
be set by discrete steps through the alignment of the diffraction grating. The
slave laser is a VCSEL, a Vertical-cavity Surface-emitting Laser (ULM980-03-
TN-S46) that consists of an active layer sandwiched between Bragg mirrors,
as shown in figure 2.9. The signal coming from the master laser is injected into
the slave laser after having applied a phase perturbation through the EOM
(Electro-Optic modulator).

The EOM is a Photline (polarization preserving) fiber coupled Lithium Nio-
bate phase modulator with 10-GHz bandwidth. The phase perturbation of the
EOM itself is controlled by an electrical signal that comes from the electri-
cal perturbation setup, which is generated by the procedure that we already
discussed in the previous section. Figure 2.10 shows a calibration curve of the
EOM when applying phase perturbations with a square impulse shape of dif-
ferent amplitude and then measuring the intensity of the output light of the
master. From a sinusoidal fit we calculate that in order to obtain a phase
perturbation that corresponds to π radians, we need an electrical signal with
amplitude 11.34 V.

The unidirectionality of the injection is insured by an optical isolator placed
in the path of the master. The injection is performed through a 10% reflection
beam splitter and the beam is collimated using a high numerical aperture
4.5-mm focal length lens with suitable antireflection coating. The same lens
is used for the collimation of the output beam of the VCSEL laser. Before
the injection, a polarizer aligned with the vertical axis is used to align the
polarization of the master signal with that of the slave laser, and a zero-order
half-wave plate allows to rotate the polarization axis of the master in order to
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Figure 2.10: Intensity of the laser light coming out of the slave when we apply phase
perturbations of different amplitudes to the master signal. From a sinusoidal fit, we
obtain a value of the volt amplitude that corresponds to a π phase perturbation to
be ∆Vπ = 11.34V .

control the intensity of the injection.

Detection The output signal coming out of the slave laser (which comprises
a combination of the slave signal and the master signal) is analysed using a
Fabry-Pérot interferometer and a real time oscilloscope. We also employ an
optical isolator in order to avoid any unwanted reflection on the measurement
instruments. The Fabry-Pérot, which is used to reconstruct the spectrum of
the signal, has a free spectral range of 72 GHz and a finesse which is usu-
ally greater than 100. The real time detection is performed via a fiber-coupled
photodetector, with a bandwidth greater then 9.5 GHz, and a real time oscil-
loscope (either a Tektronix DPO71254C with a bandwidth of 12.5 GHz or a
Teledyne Lecroy HDO4024 with a bandwidth of 200 MHz). If needed, an RF
amplifier (mini-circuit, ZX60-14012L-S+ with bandwidth 300 kHz - 14 GHz)
that removes the DC component of the signal will be added to amplify the
amplitude of the electrical signal after the photodetector.

2.3.2 Characterization of the VCSEL laser with injec-
tion

Let us now describe more in detail the characteristics of our injection setup in
the context of the laser with injected signal. The main characteristics of the
slave VCSEL laser are summarised in Figure 2.11.

The first (A) panel shows the emission power for the two axes of polariza-
tion. In this type of laser it is known that the output power is distributed on
two polarization axes [Martin-Regalado 1997]. In the case of the polarization
axis with higher power (blue line), we observe the appearance of a threshold
at I = 0.21A. This laser threshold corresponds to a Hopf bifurcation of the



2.3 Experimental results 56

0

1.4

0.01

0

I (mA)

Po
w

e
r 

(m
W

)

A
m

p
lit

u
d

e
 (

A
rb

.U
.)

F.S.R.

Frequency detuning (GHz)
0 72

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
978.8

978.9

979

979.1

979.2

979.3

979.4

979.5

979.6

I (mA)

W
a
v
e
le

n
g

th
 (

n
m

)

(A) (B)

(C) (D)

978 978.5 979 979.5 980 980.5
0

2

4

6

8

10

12

Wavelength (nm)

A
m

pl
it

ud
e 

(A
rb

. 
U

.)

Figure 2.11: Characterization of the VCSEL slave laser. (A) Plot of the power
emission as a function of the pumping current for the two axes of polarization. The
inset shows a zoom of the weak polarization. (B) Optical spectrum obtained from
the Fabry-Pérot interferometer (72 GHz of free spectral range). (C) Evolution of the
wavelength of the laser emission as a function of the pumping current. The different
spectra are shown in the inset, while the position of their maxima is fitted with
a quadratic function. (D) Evolution of the frequence of the relaxation oscillations
with pumping. The red line represents a square root fit of the blue points obtained
experimentally. Reprinted with permission from [Garbin 2015a].

electric field and it appears when the laser output is dominated by stimulated
emission rather than by spontaneous emission. After the threshold, the power
evolves linearly when increasing the current. The inset shows instead a zoom
of the lower power polarization axis, that is insignificant up to 1.8mA.
The (B) panel shows the optic spectrum as seen from the Fabry-perot inter-
ferometer. We can clearly distinguish a single peak, which shows that the laser
is monomode, that repeat itself every free spectral range (here of 72 GHz).
In the (C) panel we can then observe the evolution of the wavelength of the
laser for different pumping currents above threshold, which exhibits a quadratic
trend towards the red part of the spectrum. This behaviour is principally due
to a Joule effect.
Finally the (D) panel displays the evolution of the frequency of the relaxation
oscillations of the laser as a function of the pumping current. These oscillations
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arise from the different characteristic relaxation times of the carriers and the
field, and they are characteristic of many slow-fast systems. Here they follow
a square root law as predicted theoretically.

The laser with injection has three control parameters:

1. The detuning ∆ between the two lasers, defined as the frequency differ-
ence between the slave (the VCSEL) and the master (the external grating
tunable laser):

∆ = νS − νM (2.22)

We can control this parameter either by changing the master frequency
via the alignment of the external diffraction grating, or by changing the
slave pumping current, since the frequency of the slave changes when
changing the current (as already shown in Figure 2.11(C))

2. The injection strength of the master Pinj, that can be controlled by
rotating the λ/2 waveplate placed before the polarizer in the master
path,

3. The slave pumping current Isl, which is set by a current controller.

When the detuning is weak enough the two lasers are locked in frequency with
a constant relative phase. In the case of low power, for a large detuning the
system will exit from the locking region via a saddle-node (SN) bifurcation.
Both the size of the locking region and the kind of unlocking bifurcation de-
pend on the injection strength [Wieczorek 2005a]. It is convenient to map the
locking region in the Injected Power - Detuning (Pinj −∆) plane, as shown in
Figure 2.12. The left part (a) shows the experimental points that corresponds
to the transition from locking to unlocking for different injection powers when
changing the detuning. We can see how the locking region has a “v” shape that
starts from zero detuning and then opens up as the injected power increases.
This is coherent with theory: starting from the rate equations for injection
when spontaneous emission is disregarded one can show that [Tartwijk 1995]
[Mogensen 1985] a necessary condition for locking to occur reads:

|∆| ≤ ∆L = κ
√

1 + α2

√
Pinj
Psl

(2.23)

where κ is the feed-in rate, α is the linewidth enhancement factor, and Pinj/Psl
is the ratio of the injected power over the slave laser output power. This rela-
tionship would give us a square root function for the boundary of the locking-
unlocking transition in the Pinj − ∆ plane, with a vertex at ∆ = 0. This is
only a first approximation, since both experimentally and theoretically the SN
boundary depends on all the other physical parameters [Wieczorek 2005a].

To compare the experimental results with the theory, we can plot a numerical
bifurcation diagram of the same plane. The right part (b) of Figure 2.12 shows
the bifurcation diagram obtained via numerical continuation performed on the
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Figure 2.12: Experimental and numerical bifurcation diagram of principal codi-
mension 1 bifurcations. The red region represents the approximate parameter range
where the system is excitable when perturbed by a phase perturbation. (a) Exper-
imental bifurcation diagram for Isl ≈ 6.5 Ith. Modified from [Garbin 2015a]. The
Hopf curve is not shown here. (b) Numerical bifurcation diagram calculated from
the model of Equation 2.24, with α = 4, µ = 15, σ = 50 using the Knut software
[Szalai 2013].

Knut software [Szalai 2013] for the injected laser. In particular, the model that
we used to reproduce the dynamics of the system with injection is a Class B
laser model (the same used in [Garbin 2017a]) that is a simplified version of the
[Hachair 2006, Prati 2010] model after the adiabatic elimination of the atomic
polarization variable:

dE

dt
= σ [EI + (1 + iα)DE − (1 + iθ)E]

dD

dt
= µ− (1 + |E|2)D

(2.24)

where E is the slowly varying envelope of the electric field and D is the popula-
tion variable proportional to the excess of carriers with respect to transparency.
The physical parameters are as follows:

α = 4 (linewidth-enhancement factor)

µ = 15 (injected current)

|EI | ∈ [0.0, 3.2] (amplitude of the injected field)

(2.25)

where EI is the dimensionless complex amplitude of the externally applied
field and µ is the pump parameter of the slave laser proportional to the excess
of injected current Isl with respect to the threshold Ith. The timescale is set
by the σ parameter, defined as the ratio of the non-radiative interaction time
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Figure 2.13: Evolution of the experimental spectrum acquired from the Fabry-Pérot
in the proximity of the locked region, with injected power Pinj ≈ 5 µW . Each curve
is collected for a different value of the slave current. Same experimental realization
as in Figure 2.14

(τc ≈ 1ns) and the mean lifetime of a photon inside the cavity (τp ≈ 20 ps),
that is σ = κ/γnr = τc/τp = 50. The detuning between slave ad master is taken
into account by the θ parameter, defined as:

θ = −α + 2π∆ τp = −α +
2π∆′

σ
(2.26)

assuming τc = 1 ns, where ∆′ is just the detuning measured in GHz.

Looking at the bifurcation diagram we notice that we recover the general v-
shape of the locking region, which is delimited by two saddle-node branches
that intersect at zero detuning. We also observe a Hopf bifurcation that starts
from a point on the SN branch (which is a Bogdanov-Takens codimension 2
bifurcation point) and then extends inside the locking region. Even though
this Hopf bifurcation is not plotted in the experimental plot, it is still present
in the system, as shown in Figure 2.13. This figure represents the different
experimental spectra that are measured by the Fabry-Perot when we change
the detuning of the system by changing the slave current. Since we keep the
injection power constant and all of the other physical parameters are fixed,
we are basically scanning the system along an horizontal line in the Pinj −∆
plane.



2.3 Experimental results 60

Starting from left to right, we can observe how the two peaks of the master
(the small peak centered at zero frequency) and the slave (the big peak) are
separated at first. When we then increase the detuning (by decreasing the
slave current), we observe the first appearance of another frequency which is
due to the presence of an invariant limit cycle of the saddle-node on a circle
bifurcation. Later we enter into locking region and we cross almost immedi-
ately a Hopf bifurcation. We can identify this bifurcation by the birth of two
symmetric peaks that are born and die at a finite frequency which does not
change with the detuning. We then exit the cycle region with another Hopf
bifurcation, and we are well inside the stable locking region. Here we observe
only one peak, as the frequency of the slave is locked to the frequency of the
master. Increasing the detuning again, we exit from the locking region with
another SN bifurcation. A more detailed view of the spectra and time traces
that are visible during this scan is shown in Figure 2.14.

Apart from allowing us to understand the dynamics of the system, having
in mind the shape of the bifurcations on the Pinj − ∆ plane is greatly useful
experimentally. This is because when we want to excite the locked system with
a positive-slope phase perturbation in order to generate a pulse, we need to
be in a region of parameters which is close to the saddle-node bifurcation that
is present at positive detuning (inside the red region in Figure 2.12). With a
negative-slope phase perturbation we should instead place ourselves close the
bifurcation but at negative detuning. We then need to “navigate” this diagram
by changing the injection power and the slave current in order to place the
system in this region. We will explain this procedure more in detail in the
following sections.

Finally it is also important to note that the shape of the bifurcations that are
present on a Pinj −∆ plane in general can be very complicated, and depends
substantially on the physical parameters of the system (especially the value
of α). [Wieczorek 2005a] has a huge collection of such diagrams for different
parameter ranges.
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Figure 2.14: Examples of experimental spectra (left) and time traces (right) when
changing the Slave laser current S (same as Isl) in the vicinity of the locked region,
with injected power Pinj ≈ 5 µW . Here S is measured in mA. The zero is set on
the frequency of the master laser (the smaller peak). From top to bottom, one can
observe:
i) The appearance of a first saddle-node bifurcation (with the rise of a new peak at
the negative sum of the two frequencies) around Isl = 1.126 mA.
ii) There is a small period doubling region at Isl = 1.123 mA.
iii) We then we enter into the locked region, from Isl = 1.119 mA to Isl = 1.033 mA.
iii) From Isl = 1.112 mA to Isl = 1.087 mA (still inside the locked region) there is
a limit cycle, which is born and dies with a Hopf bifurcation.
iv) Finally, we exit from the locked region with another saddle-node bifurcation
around Isl = 1.025 mA.
A global view of the evolution of the spectra can be seen in Figure 2.13
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2.3.3 Single perturbation: excitable response

In the previous sections we have introduced the concepts of excitability in
the case of a locked LIS system. In our case, the excitability is best apparent
when we perturb the system with a phase-perturbation. In the experimental
section we have already shown how we constructed the setup in order to probe
the system with different phase-perturbations in the master signal. These per-
turbations can be of various shapes but in our case they are usually in the
form of series of step-up functions or pulses. In this section, we will describe
in particular how the system reacts to a single perturbation, that is, a single
positive-slope phase-perturbation that is capable of producing a response.

Phase dynamics and triggering of excitable pulses In section 2.2.2 we
explained how in the case of the locked LIS in the limit of small detuning,
small injected power and weak dispersion the dynamics could be simplified to
that of the Adler equation, as stated in equation 2.14. The system can then be
thought to be one-dimensional where the dynamics is only present in the phase
difference between the master and the slave and is completely confined to a
circle. The control parameter is the detuning ∆ (frequency difference between
the slave and the master), which will determine the position of a saddle and
a node on the circle, as depicted in Figure 2.1. The behaviour of the system
is then very simple to predict: it will either oscillate when ∆ is large and
there are no fixed points, or converge toward the stable point when ∆ is small.
In addition, when the system is perturbed from its stable point by a phase
perturbation, in can either relax to the stable point or exhibit a 2π phase
rotation that is interpreted as an excitable event, as shown in Figure 2.3.

This simple picture is obviously a simplification of the real system, but it can
help understand the basic behaviour of the locked LIS system. We will later
describe in detail a more complex dynamic starting from an analytical and
numerical study of the LIS model in section 2.4, but for the moment this
simple model will suffice. One thing to keep in mind though is that, in the
case of the real excitable events, each 2π phase slip will be associated with a
pulse in the output intensity of the slave laser because of the coupling between
phase and amplitude. In our experiment we will always detect the excitable
responses as intensity pulses since it is an easier and more versatile method to
detect these responses. A detection of the phase dynamics is however possible
using the technique described in [Kelleher 2010].

With this picture in mind, it seems almost obvious that the system would
respond most efficiently to phase-perturbations, as the dynamics is mostly
related to the phase. This is indeed the case, and in this study we only per-
turbed the system using phase-perturbations applied to the master signal, as
explained in the setup section 2.3.1. However, other types of perturbations are
possible. In [Garbin 2014] and [Garbin 2015a] they showed how it was possible
to trigger excitable pulses when applying an incoherent perturbation coming
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from an external laser that is injected into the slave laser. Furthermore still
in [Garbin 2015a] they managed to observe excitable responses by applying
perturbations in the pumping current of the slave laser and in the power of the
injected master laser. We refer the interested reader to this last reference for
more details on the setup and on the efficiency of these alternative techniques.

Imaging of the saddle and node points on phaser plots The fact that
the dynamics at small detuning and injection is basically governed by a saddle
and a node points in the phase space can actually be verified experimentally.
Using the technique previously mentioned, described in [Kelleher 2010], it is
possible to image the evolution of the phase difference between the slave and
the master and to plot the evolution in 2D phasor plots in the complex plane
of the electric field.

In Figure 2.15 it is shown how it is possible to image indirectly the position
of the saddle and the node point in the complex electric field plane using such
technique. The procedure is the following: by switching on and off the master
laser sufficiently fast and recording the evolution during the transient time
before the locking between the master and laser occurs, one can trace many
different trajectories of the evolution of the phase of the master with respect of
the phase of the slave on the complex plane, as shown in Figure 2.15(A). Since
each time the initial condition of the master laser is chosen at random by the
system, this basically consists in watching the evolution of the phase of the
master from a large number of randomly chosen initial conditions. The space
of possible initial conditions consists of a circle whose radius is determined by
the power of the master laser, which is set to be constant for each realization.

During each realization, the system will try to converge towards the stable
point following a phase dynamic along the circle. By plotting all of the real-
izations at once, it is then possible to see the node point on the complex plane
where all of the trajectories try to converge to (marked in Figure 2.15(A) by a
red dot) and the saddle point, where all of the trajectories try to escape from
(marked with a black arrow). It is also possible to follow the evolution of the
saddle-node bifurcation by following the position of these points when chang-
ing the detuning. By plotting the difference in phase between the positions of
the stable and unstable points as shown in Figure 2.15(B) as a function of the
detuning, we get Figure 2.15(C). The phase difference is calculated supposing
that the stable point remains fixed at angle zero.

We observe that this phase difference is mostly negative for negative detuning
and positive for positive detuning. This can be seen qualitatively from the
Adler model. If the system actually followed a dynamic strictly determined by
the Adler equation 2.14, the evolution of the stable and unstable points would
be given by:

Θ+ = arcsin(∆), Θ− = − arcsin(∆) + π (2.27)
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Figure 2.15: Experimental imaging of the saddle-node points. (A) Evolution of a
large number of trajectories starting at different initial positions on a circle centered
on zero in the Argand plane of the electric field; each panel at a different detuning.
The trajectories are repelled from the saddle (marked with an arrow) and converge
towards the node (the red point). (B) Summary of many different positions of the
saddle-node points at different detunings. The stable node point is fixed at angle
zero, and the saddle points are plotted at different positions on the circle, along
with their error bar. (C) Evolution of the phase difference between the two points
as a function of the detuning, supposing that the stable node is fixed at angle zero.
Reprinted with permission from [Garbin 2015a].

where Θ+ is the stable point and Θ− the unstable one. Figure 2.1(b) repre-
sents a schematic plot of these two solutions as function of ∆. Starting instead
from a Class B model for an optically injected laser, it is possible to show
[Kelleher 2012b] that the relationship between phase and detuning for the sta-
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ble point is given by:

∆ =
−K
R

√
1 + α2 sin(Θ+ + arctanα) (2.28)

where K is the injection rate, R is the slave field amplitude and α is the
linewidth enhancement factor which represents the coupling strength between
the amplitude and the phase of the electric field. Notice how this expression
reduces to the Adler model 2.27 when α = 0, K/R = 1. In any case, both
models are consistent with the experimental trend seen in Figure 2.15(C).

Triggering of excitable pulses We have seen how the dynamics of the
unperturbed system follows to a first approximation the Adler model. We will
now describe more in detail how to trigger the excitable responses.

The first thing we need to do is to place the system in the parameters regime
where it is excitable. From a theoretical point of view, the system is excitable
when we are inside the locked region, so that the dynamics is governed by the
two fixed points as in Figure 2.3. Furthermore, we need to be close enough to
the locking-unlocking transition so that the angle between the two fixed points
will be small, and a phase perturbation will then be capable of triggering a
2π phase rotation. Practically, we need to be in the red region of Figure 2.12.
Experimentally, we then have to change the value of the injected signal by
changing the angle of the half-wave plate in the path of the master signal,
and the value of the detuning by changing either the frequency of the master
using the diffraction grating or the pumping current of the slave Isl (we remind
that the frequency of the slave depends on the pumping current as in Figure
2.11(C)). By looking at the experimental spectra and at the time traces from
the photodetector as in Figure 2.14, we are able to determine the approximate
position of the system in the Pinj − ∆ plane, and to place it in the excitable
parameter range.

One thing to note is that, depending on the sign of the detuning, the relative
position of the fixed points will change. For a positive detuning there will be
a positive angle between the stable point and the node, so that in order to
trigger a response, the phase of the perturbation will have to increase (we will
refer to this as a positive-slope perturbation). For a negative detuning instead,
the angle between the stable point and the node will be negative, so that the
perturbation will have to decrease in phase (a negative-slope perturbation). The
shape of the perturbation itself is not very important, and we can trigger a
response both with a pulse-perturbation and with a step-perturbation.

Figure 2.16 represents the efficiency curve for the generation of a response when
we perturb the system with a step-up or a step-down perturbation, depending
on the sign of the detuning. The shape of the step-up perturbation can be
seen in Figure 2.20, panel (a), following the pulse perturbation. A step-down
perturbation would have the same shape but with a negative phase-jump.
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Figure 2.16: Efficiency curves for the generation of an excitable response given a
step-up or step-down perturbation with increasing amplitude, calculated for the two
cases of positive and negative detuning. The efficiency percentage is computed over
more than 3000 events, and the time traces are acquired with a sample rate of 10 ps
per points or more.
(Top) case ∆ > 0, applying a step-up perturbation, with parameters Isl ≈ Ith, Pinj ≈
2.5µW . The inset panel shows the intensity response of the system corresponding to
the amplitudes A ≈ 48◦, B ≈ 48◦, C ≈ 65◦, D ≈ 160◦. We can observe the excitable
response as a positive intensity pulse for amplitudes B, C and D.
(Bottom) case ∆ < 0, applying a step-down perturbation, with parameters Isl =
1.714mA, Pinj = 12.8µW . The inset panel shows the intensity response of the
system corresponding to the amplitudes A ≈ 32◦, B ≈ 32◦, C ≈ 48◦, D ≈ 66◦. We
can observe the excitable response as a negative intensity pulse for amplitudes B, C
and D. Reprinted with permission from [Garbin 2015a].

The perturbations are generated by a signal generator (HP8133a) with 31.2
MHz repetition rate and 100 ps rise/fall time. Its output is amplified by a
RF amplifier (photline DR-DG-10MO-NRZ), to get high perturbations (8 V
max). This electrical perturbation is then sent to the EOM as in Figure 2.5
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Figure 2.17: Histograms of the time-traces of the responses, traced from 350 to
600 excitable responses. The color scale is logarithmic. The black line represent the
average of the histogram. (A) ∆ = 6.6 GHz. (B) ∆ = 9.2 GHz. (C) ∆ = 12.5 GHz.
(D) ∆ = 25.5 GHz. Reprinted with permission from [Garbin 2015a].

that converts the electrical perturbation into a phase perturbation.

In order to construct this figure, we have increased the amplitude of the step-
perturbation for both detuning, and we have recorded the number of trial where
we get an excitable response over the total number of trials, for more than 3000
events. Converting this number into a percentage, we get the efficiency for the
generation of a response for each amplitude. To detect a response, we set
an appropriate threshold on the power of the response signal, and we detect
signals that overcome this threshold as an excitable response. As we can see,
for both cases the efficiency curve starts at zero for a small amplitude, and
then increases following a sigmoid-like shape until reaching 100% efficiency.
We can define in both cases a threshold for the generation of a response as
the phase-jump value where the efficiency reaches 50%, which is around 60◦

in the case of ∆ > 0 and step-up perturbations and around 48◦ in the case of
∆ < 0 and step-down perturbations. In the insets of the figure we report the
shape of the excitable responses, which remains more or less constant for each
perturbation strength. In the case of ∆ > 0 the response appears as positive
pulse in the intensity, while in the case of ∆ < 0, it appears as a negative
intensity pulse.

To better appreciate the shape of the responses in the ∆ > 0 case, we can aver-
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Figure 2.18: Superposition of 20 excitable responses for different perturbation with
Isl = 5 Ith, Pinj = 2.5µW , and ∆ = 5.8GHz. (a) Perturbation amplitude of about
60◦, triggered on the perturbations. Inset: same as (a), triggered on the maximum
of the responses. (b) Perturbation amplitude of about 160◦, triggered on the pertur-
bations. Reprinted with permission from [Garbin 2017a].

age them over a great number of realizations. Figure 2.17 shows the histograms
of the time-traces of the responses, along with the average of the response for
different values of ∆. We can observe how the average shape changes slightly
both in amplitude (due to the increased forcing) and in shape. In particular,
the subplot (D) shows a response that presents a high second peak, which is
the sign of a modified trajectory in phase space with respect to the trajecto-
ries at lower detuning. This is coherent with the fact that the Adler model is
only valid for small injection values, and for higher values the dynamics of the
excitable pulse can become more complicated.

Distribution of the delay times As our system is excitable, when we in-
crease the strength of the perturbation the shape of the response will remain
almost unaffected. However, what can change is the delay that we can expect
from the onset of the perturbation and the appearance of the response. In par-
ticular, for perturbations of higher amplitudes the response will arrive quicker
with respect to lower amplitude perturbations. This is a general property of
excitable systems, and it was already observed in 1952 by Hodgkin and Huxley
[Hodgkin 1952a] in the case of membrane action potentials from a giant nerve
fibre of the squid.

Figure 2.18 shows a superposition of 20 excitable responses in the case of a
low-amplitude perturbation (a) and a high-amplitude perturbation (b), both
triggered on the onset of the perturbation. In the case of a low-amplitude per-
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Figure 2.19: Perturbation efficiency and response time to external perturbations.
Same parameters as in Figure 2.18. (a) Efficiency curve of the perturbation for
more than 3000 events, defined as the number of excitable responses over the num-
ber of perturbations. (b) Associated evolution of the delay time histogram between
the pulse and the trigger of the perturbation. Reprinted with permission from
[Garbin 2017a].

turbation, we clearly see how the distribution of the responses is spread out in
time and with a higher delay, while in the case of high-amplitude perturbation
the distribution is much narrower, so that all of the responses neatly overlap.

A more quantitative study of the distribution of the delay times is visible
in Figure 2.19. Plot (b) shows the histogram of the delay time between the
onset of the response and the trigger of the perturbation when varying the
strength of the perturbation (here a step-up perturbation with variable phase-
jump amplitude). We can observe how the average of the delay time decreases
(meaning a faster response) and also how the perturbation becomes narrower
and narrower when increasing the strength of the perturbation. This is the
typical histogram that one can expect from an excitable system, and it will be
reproduced numerically from the simulations, as we will show in Figure 2.43.
Plot (a) shows instead the efficiency curve for the generation of the excitable
response, which is similar to what we have already shown in Figure 2.16 for
the case of ∆ > 0. Also in this case, the efficiency curve has a sigmoid-like
shape going from 0% efficiency to 100% efficiency, with a threshold at around
60◦ phase jump.
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Figure 2.20: Temporal traces of the perturbation and excitable responses (only when
two responses are observed) for Isl = 1.344mA, Pinj = 6.3µW , ∆ = 6.4GHz.
(a) Shape of the perturbation for the maximum delay used, 1.81 ns. (b) Superpo-
sition of 20 excitable events for a perturbation delay of about 0.34 ns, triggered
on the perturbations. Inset: same pulses as (b), triggered on the maximum of the
second responses. (c) Superposition of 20 excitable events for a perturbation delay
of about 1.2 ns, triggered on the perturbations. Reprinted with permission from
[Garbin 2017a].

2.3.4 Double perturbation: Refractory period

In this section we will describe how the system reacts to a double perturbation.
In particular, we are interested in understanding if the system may display a
refractory period after a first excitation.

The refractory period is a common property of an excitable medium, and it is
defined as the period of time after a first excitable response where the system
cannot be excited again. It is most commonly known in physiology in the case
of neurons, where this period corresponds to the time that it takes for the
membrane potential to depolarize and then repolarize during the formation of
an action potential. It generally lasts one millisecond.

In the case of the LIS system, we can also expect to observe a refractory period.
If we go back to the Adler excitability vision as in Figure 2.3, we can imagine
how, after a first perturbation pushes the system over the threshold of the
unstable saddle, the system will need some time to reach the stable point.
During this time, a second phase perturbation in the same direction will not
necessarily generate another excitable response as the system is now far away
from the threshold. If we perturb the system with a double phase-perturbation
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with two successive raising edges with an arbitrary delay between them, we
can expect the efficiency of the response to go to zero when decreasing the
delay between the two perturbations.

In order to measure the refractory period, we have then probed the system
with a double phase-perturbation that consisted of a pulse, followed by a step-
up as shown in Figure 2.20(a). The first pulse perturbation is generated by an
electrical pulse generator (Alnair Labs, EPG-200B-0050-0250) with approxi-
mately 100 ps of duration. The second is the same step-up perturbation that
was described in the previous section, which is generated by the signal genera-
tor HP8133a (31.2 MHz of repetition rate, 100 ps or raising/falling time). The
sum of these electrical perturbations is then sent to the EOM, and the rest of
the setup is (as always) the same of Figure 2.5.

When the delay between the two perturbations is large (about 1.2 ns) as in
the case of Figure 2.20(c), then each perturbation will generate a response. By
superimposing 20 excitable events we can see the responses that correspond
to the first pulse, which overlap on the same spot, and later the ones that
correspond to the step-up perturbation. In this second case, since the strength
of the perturbation is lower, there will be a small spread of the distribution of
the arrival times, so that the responses will not overlap perfectly. In this case
we can suppose that the two perturbation are independent from one another,
and each response is just the sum of the two independent perturbations.

However, when reduce the delay between the two perturbations, they will start
to interact so that the response to the second perturbation will be affected by
the presence of the first. This is visible in Figure 2.20(b), where in this case
the delay between perturbations is small (about 0.34 ns). The distribution
of the arrival times of the second responses is more spread out in this case.
Furthermore, not in all cases we obtain 2 responses, as the efficiency for the
generation of the second response starts to decrease when decreasing the delay.

This is more visible in Figure 2.21. This figure is composed of 4 panels, which
correspond to 4 different experimental realizations of the same type of pertur-
bation for different experimental parameters. What is important in particular,
is that the value of the detuning is increasing when going from panel (a) to
(d), as the detuning goes from (a) 6.4 GHz, to (b) 8.3 GHz, to (c) 9.2 GHz to
(d) 10.6 GHz. The gray line with circles in each panel represents the efficiency
for the generation of the second response, assuming that the first has been
triggered. The horizontal white lines indicates 100% efficiency. As we decrease
the delay between the two perturbations, we see how the efficiency starts to
decrease and then goes to zero, at least for panels (a), (b) and (c). This means
that, for a delay lower than a certain value (around 0.20 ns), a second response
cannot be generated when perturbing the system with a double perturbation
of this type. This is an experimental observation of the refractory system for
our system.
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Figure 2.21: Evolution of the histograms of the interval delay times between the two
responses (only when 2 responses are obtained) in logarithmic color scale, normalized
to the delay times of the perturbations. In each panel about 1600 events for each
of 163 values of the delay are shown, for different values of parameters. Solid black
line: mean of the distribution. Black dashed thick line: time normalized to the delay
between perturbations. Grey line with circles: efficiency curve of the second pulse
added as a guide, assuming the first has been triggered, the horizontal white lines
indicate 100% efficiency. (a) Isl = 1.344 mA, Pinj = 6.3 µW, ∆ = 6.4 GHz. (b)
Isl = 1.338 mA, Pinj = 8 µW, ∆ = 8.3 GHz. (c) Isl = 1.329 mA, Pinj = 10.2 µW,
∆ = 9.2 GHz. (d) Isl = 1.321 mA, Pinj = 12.7 µW, ∆ = 10.6 GHz. Reprinted with
permission from [Garbin 2017a].

The colourful histograms in each panel represent instead the distribution of
the arrival times of the second response, normalized to the delay time between
the two perturbations. The black dashed thick line represents the value of 1,
which corresponds to the time between the responses equal to the time of
the delay between the perturbations. A value higher than 1 means that the
second response is generated some time later than the second perturbation,
due to the interaction with the first response. By looking at the average of the
distribution (the solid black line) we notice that for long delays (more than 0.8
ns) the average converges towards the value of 1, which means that the two
perturbations are independent. When the delay gets closer, the presence of the
first perturbation induces the second (when it is present) to be generated later
in time. This is because we are entering into the refractory period, and in the
Adler vision, the system needs more time to reach the threshold represented
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as the saddle point as it is still travelling along the phase excursion caused by
the first perturbation.

From these four panels we can extract some interesting properties about the
system when we increase the detuning ∆ (and consequently the injection power
Pinj):

1. The refractory period becomes shorter. If we look at the efficiency curves,
we note that the period where the curve stays at zero becomes shorter
and shorter. We can explain this by the fact that the duration of the
excitable pulses also decreases when increasing ∆ [Garbin 2015a], so that
the excursion in phase space that corresponds to the excitable event takes
less time to complete and it is then possible to generate a second response
faster.

2. The interaction time between the perturbations is limited to around 0.8
ns. Both the efficiency curve and the response time histogram in all four
panels become almost constant after a delay between the two perturba-
tions of around 0.8 ns. This is an indication that, after this time, the
system has had the time to reach the stable point again after the first
perturbation, so that the second perturbation is basically independent
from the first.

3. For high detuning we depart from the Adler model. Panel (D) shows an
efficiency curve which presents an unexpected increase when the delay
goes towards the minimum value experimentally possible of 0.19 ns. This
implies that is it not really possible to define a refractory period in this
case. We can explain this behaviour by noting that in this case the value
of the detuning and of injection is high enough for the Adler approx-
imation not to be completely valid any more. This could be due to a
richer dynamics where relaxation oscillations around the stable point
are involved, which can determine a modification of the efficiency curve.
We will describe this different behaviour more in detail in the numerical
section on the Resonator property (subsection 2.4.5).
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2.3.5 Double perturbation: Resonator property

In the previous sections we described the presence of a refractory period in the
behaviour of our system. This is a property that is shared by many excitable
systems, most notably neurons, and it can still be explained in the simple
view of the Adler model as the time that it is needed by the system to reach
the stable fixed point after a first excitation. In this section we investigate
instead a property which is shared by Class 2 neurons (see subsection 1.1.2),
that goes beyond the Adler-type of dynamics. For this class of neurons there
is a preferred frequency of the perturbation pulses for the generation of an
excitable response. As already explained, a possible dynamical explanation of
such a behaviour can be found in the presence of a supercritical Andronov-
Hopf bifurcation where, due to the presence of relaxation oscillations around
the stable point, there is a preferred timing for the generation of an excitable
response.

By choosing the right parameter range, we find that even in our system we
can observe the presence of a resonator property. Since this property cannot
be explained in the framework of the Adler-model, we will propose later a
possible ad hoc phenomenological modelling that could describe this effect,
namely adding a small inertial term to the Adler equation. We postpone this
discussion to the section on the analytical and numerical study of the model
(section 2.4), while here we will just describe the experimental results that
were found.

The perturbation that we applied to probe the system is, again, a double per-
turbation which consists of two independent perturbations at different delays,
but in this case it is composed by two successive pulses as shown in Figure
2.8(a). In order to obtain this kind of perturbation we have assembled an elec-
trical setup that consists of two pulse generators: the Alnair Labs EPG-200B-
0050-0250 (first pulse generator) and an Alnair Labs EPG-210B- 0050-S-P-T-A
(second pulse generator) which respond to an input raising front by generat-
ing a pulse with constant amplitude and tunable width. Figure 2.7 shows in
particular the electrical setup that we employed to obtain a sequence of two
pulses with arbitrary delay and with approximately the same amplitude.

Since we wanted to probe the system with many double-pulse perturbations
at different delays all at once, we devised a periodic electrical perturbation
made of couples of pulses with increasing delay between them, as depicted in
Figure 2.22. The couples are separated with a repetition time of 20 ns, and the
delay between the pulses of each couple goes from a minimum of 0.10 ns to a
maximum of 1.05 ns, with increasing steps of approximately 8 ps. The same
electrical perturbation is repeated again after completion in a periodic manner.
Practically we achieve this by triggering the first pulse generator with a 50 MHz
square wave, and the second pulse generator by a second 50 MHz square wave
with a 800 kHz phase modulation in the shape of a down-ramp. Since the two
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Figure 2.22: Simplified depiction of the shape of the periodic electrical perturbation
sent to the EOM. Each couple of pulses is separated by its neighbours by a delay
of 20 ns. The delay times between the couples increases gradually from a minimum
of 0.10 ns to a maximum of 1.05 ns. The same perturbation is repeated periodically
after completion, where each period takes 2.5 µs.
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Figure 2.23: Example of how the long time traces of the periodic electrical perturba-
tion (top trace) and the relative response (bottom trace) were analysed. Each trace
is cut in many frames, each of 20 ns, each containing only one perturbation couple
with a definite delay and the relative response. The statistics on one specific delay
is performed on all the different frames with the same delay.

square waves are synchronized, this created a periodic shift between the two
channels that translates into a delay between the creation of the two pulses by
the pulse generators.

Once we acquire a long trace of many successive perturbations as previously
described, we analyse the output power of the systems by bunching together
the perturbation couples with the same delay. We do this as follows: we cut
each perturbation and output trace in many successive “frames” of 20 ns each,
as shown in Figure 2.23. Each frame contains a perturbation with a certain
delay and the relative response. When making a statistic about a precise delay
(let’s say, to get an efficiency estimate), we will then consider only the frames
with a perturbation with that particular delay.

Each pulse of the double-pulse perturbations that we are sending it’s by itself
under-threshold, which means that it’s not able to trigger a response. This is
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Figure 2.24: Experimentally measured time traces of the response of the system
when the two perturbations are separated by 0.10 ns (top) and 0.50 ns (bottom).
Insets: shape of the perturbations. The emitted power (dc level) is about 500 µW, the
injected power is 4.6 µW and the pumping current is 1.023 mA. 40 realizations are
superimposed and show that, on the bottom trace, no excitable pulse was observed.
One example realization is shown as the black trace.

visible in the bottom plot of Figure 2.24, where the delay between the two-pulse
perturbation was of 0.50 ns. Here we plot 40 responses of the system for the
same type of perturbation as a color-coded persistence histogram and we see
that each pulse is only able to produce a linear response. However, when the
delay between the two-pulse perturbation becomes shorter, as in the top plot
of the same figure, the sum of the two perturbations is capable of generating an
excitable response. This would be coherent with an integrate-and-fire type of
model, such as the Adler model, where the sum of two perturbations is capable
of generating a response while a single perturbation is not. What cannot be
explained by this model is that, for delays that are shorter than 0.12 ns, the
efficiency for the generation of an excitable response actually decreases.

Figure 2.25 shows three efficiency curves for three different slave pumping
currents for a delay between the pulses that goes from a minimum of 0.07 ns
to a maximum of 1.05 ns, with increasing steps of 0.01 ns. We note that for long
delays (more than 0.4-0.5 ns) the efficiency goes to zero, so that almost not
response is observed. This means that the two perturbations, by themselves,
are under-threshold. When the delay gets shorter than that, the efficiency rises
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Figure 2.25: Experimental efficiency curves of the perturbation for around 1000
events for each delay. Taken at three different slave pumping currents S (same as
Isl). The efficiency is defined as the number of excitable responses over the number
of perturbations applied.

to higher values, but then it decreases again for the very short delays. In all
three curves, we observe a maximum of efficiency at around 0.12 ns. This
type of behaviour can be explained by assuming that our system possesses a
resonance time at around 0.12, which is able to trigger a response with a higher
efficiency than if the timing is shorter or larger than that. Note that the height
of the efficiency curves is not the same: this is due to the fact that the efficiency
for a given experimental realizations depends strongly on how close we are to
the saddle-node bifurcation (without crossing it), which is something that is
difficult to estimate between different realizations. Furthermore, the amplitude
in power of the excitable responses depends on the slave pumping current of
the experimental realization, so that they have an higher amplitude for higher
currents than for lower currents. Since we detect the excitable responses by
setting a threshold, this means that in the case of lower-amplitude responses we
could lose the responses with an amplitude comparable to the noise oscillations
that are lower than our threshold, and this would reduce the efficiency curve. In
any case, this is clear evidence that our system can display a resonator property,
as is the case with Class 2 type of neurons. In the case of neurons, this property
is related to the fact that there are membrane potential oscillations (or MPOs)
[Bland 1988, Leung 1991] around the fixed point of the system, that have a
definite frequency which is related to the resonance frequency. We will see later
that this is analogous to what happens in this system, where the period of the
resonance of 0.12 ns is related with the period of the relaxations oscillations of
the laser system around its stable fixed point. This will be discussed more in
detail in the analytical and numerical study (section 2.4).

Other interesting observations about the resonator property can be made if
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Figure 2.26: Experimental response time histogram and efficiency curve of the per-
turbation for around 4000 events for each delay. (S = 1.023A). The histogram is
normalized so that each vertical slice for a single delay sums up to the correspond-
ing efficiency value. For high delays, the dashed blue line (horizontal) is the average
arrival time of an excitable response generated by the first pulse of the perturba-
tion (which is constant), while the black dashed line is the average arrival time of a
response created by the second pulse (which moves away as the delay increases).

we study more in detail the histogram of the response time of the excitable
responses, as shown in Figure 2.26:

1. The interaction time between the perturbations is limited to around 0.8
ns. A first observation is that, for long delays (more than 0.8 ns), the two
perturbations are independent. This is visible in the response histogram:
since there is a slight chance that each perturbation will trigger a re-
sponse, we can see that the response histogram is concentrated in two
spots: around the blue line, which is the average time that one would ex-
pect to see a response from the first perturbation, and around the black
line, which is the average time that one would expect to see a response
from the second perturbation. Since for an arbitrary delay the first per-
turbation stays “in place” for each frame, while the second one “moves”
according to the delay (as in Figure 2.23), the black line is slanted while
the blue line is horizontal. The fact that the two perturbations do not
interact after around 0.8 ns is coherent with a similar observations that
we made in the case of Figure 2.20 where the perturbation was given by
a pulse-plus-a-step.

2. In the range of 0.4-0.6 ns, there is still a weak interaction. Another ob-
servation is that, even though it is not visible in the efficiency curve,
there is still some interaction between the two responses for delays be-
tween 0.4 and 0.6 ns. For this range, the response time histogram shows
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gaps and lines that are not coherent with a single sum of the two pertur-
bations as with longer delays. Although present, this interaction is not
strong enough to generate efficiently a response, so that the efficiency
stays almost flat in this range.

3. The responses generated by the resonance of the two perturbations are
created faster than with a single perturbation. Finally for small delays
we see a narrow range with a big spread in time for the arrival times
of the response. This means that most of the responses arrive with a
definite delay from the first perturbation. We note that the core of the
distribution is at lower response times than the blue line (the average
response time for the first perturbation). Therefore the excitable response
that is generated by the resonance of the two perturbation pulses is
created faster (with a lower delay from the perturbation) than in the case
of a single perturbation. This is coherent with the general observation
that a stronger perturbation can generate a response faster than a weaker
perturbation, as already observed with a single perturbation such as in
Figure 2.19.
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2.3.6 Multipulse excitability

When perturbing the system with a single perturbation, it can happen that
the response that follows is not a single pulse in intensity, but is instead com-
posed of two or more consecutive pulses. In the Adler vision, this consists
of performing two or more rotations in phase space before returning to the
stable point. We will describe a more detailed dynamic of these response in
the Analytical and Numerical section 2.4 after having introduced the physical
model used in the simulations. While these multiple spikes have been already
predicted theoretically [Wieczorek 2002] and generally observed in systems of
semiconductor laser with optical injection, they have not been seen in response
to controlled perturbations. Here we demonstrate that a single phase pertur-
bation can nucleate multiple pulses, and that the probability to emit one, two
or more consecutive spikes is controlled by the strength of the perturbation.

Figure 2.27 displays the different responses that one can obtain when per-
turbing the system with a single step-up phase perturbation with increasing
amplitude. The panel on top shows the efficiency (i.e. the number of events
where a condition is satisfied over the number of trials) for the generation of
0, 1, ... up to 5 pulses for a single perturbation, calculated over a total of 3800
perturbations with increasing amplitude. Looking at the efficiency for the gen-
eration of any pulse (the blue curve, labelled by “all”) we notice how it displays
a sigmoid shape when increasing the amplitude of the perturbation, which is
similar to the efficiency curve of Figure 2.19. However, if we “decompose” the
responses into groups of only 1, only 2, or more spikes, we see that the related
efficiencies have peaks and lows at different strengths values. For instance, the
efficiency of only 1 spike is higher at around 125◦ but it decreases after that.
The efficiency of 2 spikes stays stable after 130◦, while the efficiency of 3 spikes
has instead a maximum at around 150◦, while never reaching the value of the
double spike. This shows that the number of pulses that one can expect for a
given perturbation strength is different and varies depending on the amplitude
of the perturbation.

The middle panel in Figure 2.27 shows at a glance the probability of the number
of spikes that one can expect for a given amplitude. We observe here that
the average of the distribution starts at 0 spikes for lower amplitudes, and
then jumps to 1 and then rapidly to 2 for amplitudes greater than 130◦. It is
interesting to note that, even increasing the amplitude of the perturbation, the
2-spike response has the greater chance of being produced for higher amplitude
perturbation. We also note that the distribution becomes wider, so that even
8- or 9-spike responses can be visible.

Finally the bottom panel displays an example of a multipulse response, which
is overlaid on a background that reflects a two-dimentional histogram of the
many possible responses of the system for the total of 3800 perturbations
applied.
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Figure 2.27: Multipulse response obtained when applying strong perturbations out-
side the integrator regime, constructed from 3800 perturbations. (Top) Efficiency
curves for the generation of 0, 1, ... up to 5 spikes given a single step-up phase-
perturbation of different amplitude. (Middle) Probability histogram of the number
of responses that can be generated for a given amplitude. (Bottom) Example of a
multiple response, overlaid over a background that display a two-dimensional his-
togram of all of the possible responses of the system. Note that larger perturbations
cause larger number of spikes, but there is a clear stochastic component in the phe-
nomenon. Beyond 140◦ all perturbations elicit a response but already at 120 ◦ the
double-spike response is the most probable one.
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2.4 Analytical and numerical study

In this section we will describe the system of the semiconductor laser with
injection going beyond the simple Adler model description. In particular, we
will introduce a proper model that comes from a reformulation of the Maxwell-
Bloch equations, and we will make use of theoretical insight and of numerical
simulations in order to explain all of the important features that were observed
in the experiment, like the existence of a refractory period and the resonator
property.

As we have already stated in the introduction on the laser with injection, this
system has been studied theoretically intensely, both recently and in the past.
While the first theoretical studies concentrated in determining the region of
locking in parameter space [Petitbon 1986], especially in the plane of the in-
jected field vs detuning (the one that we called Pinj −∆ plane), later studies
revealed the amazingly complexity of the dynamics of the system. It was indeed
shown how this system could display period doubling cascades [Lugiato 1984,
Tredicce 1985, Politi 1986], quasiperiodicity [Tredicce 1985, Braza 1990], ho-
moclinic orbits [Wieczorek 2002, Wieczorek 2005b], saddle-node bifurcations
[Tredicce 1985, Politi 1986, Solari 1994], subcritical and supercritical Hopf bi-
furcation [Baugher 1989, Holzner 1987, Zehnlé 1992, Solari 1994] and chaos
[Arecchi 1984, Brun 1985, Tredicce 1985].

In order to make sense of the effect of the different time-scales present in
the system, a classification in three classes was proposed in [Tredicce 1985]
Class A (fast atomic variables), Class B (fast polarization) and Class C. This
and other parameters differences were exploited consistently to simplify the
description of the system under study via such techniques as adiabatic elimi-
nation [Lugiato 1984, Oppo 1986], perturbative approach [Oppo 1986], multi-
scale analysis [Lugiato 1984] or averaging methods [Solari 1994, Jagher 1996,
Krauskopf 1997, Zimmermann 2001, Mayol 2001].

In the following, we will mostly restrict our field of interest to the already
mentioned [Hachair 2006, Prati 2010] model (which we will call [Prati 2010]
model from now on), as in equation 2.6. We will then firstly review very quickly
the most important features of this model in the next subsection 2.4.1, while
in the following one we will move to the study of a simplified Class B version
of this model, which is the one used in all of the numerical simulations.

2.4.1 Quick review of the [Prati 2010] model

Let us recap very briefly in this subsection the features of the [Prati 2010]
model which are of most interest to us in this context. The model is the one
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already described in 2.6, which we will rewrite here for convenience:

∂E

∂t
= ε [EI + P − (1 + iθ)E + i∇2

⊥E]

∂P

∂t
= ΓD(1 + i∆D) [(1− iα)DE − P ]

∂D

∂t
= b

[
µ−D − 1

2
(EP ∗ + E∗P ) + d∇2

⊥D

] (2.29)

We also remind the reader of the meaning of each variable:

1. E ∈ C, P ∈ C and D ∈ R are the dynamical variables: E being the
slowly varying envelope of the electric field, P the effective macroscopic
polarization and D the normalized carrier density.

2. The physical parameters are given by (all Reals otherwise stated):

• EI ∈ C is the amplitude of the injected field;

• µ is the normalized pumping current;

• α is the linewidth enhancement factor;

• d is the diffusion coefficient for the carriers;

• ΓD = Γ(D) and ∆D = ∆(D) are two real functions of D that
determine the shape of the susceptibility curve, which are set as
Γ(D) = 0.276 + 1.016D and ∆(D) = −α + 2δ(D)/Γ(D), where
δ(D) = −0.169 + 0.216D, as the best fit of gain curves calculated
with a microscopic model.

• θ = (ωC−ω)τp =
detuning between the cavity longitudinal mode
frequency and the frequency of the injected field

3. The different timescales are taken into account in the parameters:

• ε = τd/τp = κ/γ⊥ (dephasing rate of the microscopic dipoles /
photon lifetime );

• b = τd/τc = γ‖/γ⊥ (dephasing rate of the microscopit dipoles /
carrier nonradiative recombination time);

while the time is scaled to the dephasing rate τd.

It will be useful for later to introduce the timescale parameter σ, defined as:

σ =
ε

b
=
τc
τp

=
κ

γ‖
(2.30)

and it is also convenient to explicit the experimental detuning ∆, defined as
the difference of frequency between the slave and the master as in Equation
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2.22, by rewriting the θ parameter as:

θ = (ωC − ω)τp =
ωC − ω
κ

= −ω0 − ωC
κ

+
ω0 − ω
k

= −α +
2π∆

k
= −α + 2π∆τp

(2.31)

where we have made use of:

k =
1

τp
, α =

ω0 − ωC
κ

, ∆ =
ω0 − ω

2π
(2.32)

which are, respectively, the definition of the relaxation rate κ as in 2.9,
the equation for the linewidth enhancement factor (see Section 16.5 of
[Lugiato 2015] for a derivation), and the definition of the detuning. Assum-
ing τc = 1 ns, we can rewrite this expression as:

θ = −α +
2π∆′

σ
(2.33)

where ∆′ is just the detuning measured in GHz.

Stationary solution The system of equations 2.29 admits a plane wave
stationary solution that we will denote as E = Es, P = Ps, D = Ds. This can
be found by setting ∂E/∂t = ∂P/∂t = ∂D/∂t = 0, and introducing the new
notation:

x ≡ |Es|2

y ≡ |EI |2
(2.34)

the equation that links the output intensity x to the input intensity y is given
by:

y = x

[(
1− µ

1 + x

)2

+

(
θ +

αµ

1 + x

)2
]

(2.35)

Figure 2.28 shows some examples of stationary solutions plotted for the pa-
rameters α = 4, µ = 15, σ = 50 at varying ∆ values, which is equivalent to
varying θ values. The parameters used here are the same that will be used for
the numerical simulations.

This figure makes the most sense when looked sideways: given a value of y
(the injected field), we can recover the corresponding value of the output in-
tensity x that is stationary for the system. Most of these curves display an
“S-shape”, where given an horizontal line at a specific y value, there is more
than one crossing point with the stationary curve. This means that the system
is bistable, and in the case of the parameters selected here, this happens for
−315 GHz < ∆ < 94 GHz. When the curve is bistable, there exists a negative
slope branch which extends between two turning points xA and xB. Given a
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Figure 2.28: Stationary curves for α = 4, µ = 15, σ = 50, plotted for different ∆
values, increasing from violet to red. The black curves represent the ∆ values corre-
sponding to the boundaries of the bistability. (Left) Stationary curves for negative
∆ values equal to: -360, -315, -270, -225, -180, -135, -90, -45, 0 GHz. The black curve
represents the value of ∆ = −315 GHz. (Right) Stationary curves for positive ∆
values equal to: 0, 16, 31, 47, 63, 78, 94, 119, 125, 141, 157 GHz. The black curve
represents the value of ∆ = 94 GHz.

value of θ, one can find the corresponding turning points coordinates with this
expression:

θ±(x, α, µ) = − µα

(1 + x)2
±

√
µ2x2(1 + α2)− [(1 + x2)− µ]2

(1 + x)2
(2.36)

Making use of this expression, we plot in Figure 2.29 the bistability curve for
the same parameter range as Figure 2.28. Given that during the experiments
we were always operating with a detuning in the range −20 GHz < ∆ < 20
GHz, we observe how we are clearly well inside the bistability range.

In the [Prati 2010] paper, the authors perform a study on the Turing instability
and the Hopf instability of the system, and they give analytical expressions for
the results. While for the case of the Turing instability the expression that
is found is the same that would be found for the simplified model that we
are going to introduce, in the case of the Hopf instability the features that are
found cannot be reproduced by the simplified model. In any case, we will study
separately the stability of the stationary solution for the simplified model in
the next subsection.
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Figure 2.29: Bistability domains for α = 4, µ = 15 and σ = 50, as determined
by Equation 2.36. Given these parameters, the bistability region exists for a detun-
ing range of −315 GHz < ∆ < 94 GHz (the range delimited by the black dashed
horizontal lines).

2.4.2 Simplified Class-B [Prati 2010] model

In this subsection we will introduce the system of equations that were actually
used in the numerical simulations. They are a Class-B model of a semiconductor
laser with injection that comes from the standard adiabatic elimination of the
P variable in the system of equation 2.29. Here we will firstly introduce the
model, and then describe its dynamical features. We will also show how this
system is basically equal to the ones already studied in References [Solari 1994,
Tredicce 1985, Zimmermann 2001] and [Mayol 2001], and we will report some
of the observations highlighted in these papers.

As shown in the [Prati 2010] paper, we can perform an adiabatic elimina-
tion of the P variable supposing that it is a fast variable (see Chapter 10
of [Lugiato 2015] for more details on the procedure), which consists of setting
∂P/∂t = 0, so that the polarization is“slaved”to the other dynamical variables
as:

P = (1− iα)DE (2.37)

By substituting this equation back into the system, we get the simplified
Class-B system:

∂E

∂t
= ε [EI + (1− iα)DE − (1 + iθ)E + i∇2

⊥E]

∂D

∂t
= b [µ−D(1 + |E|2) + d∇2

⊥D]

(2.38)

Some last few modifications are needed to arrive at the final form. Firstly, we
will neglect the spacial terms i∇2

⊥E and d∇2
⊥D, since in the experiment we

are not measuring any spacial dependence of the field. Secondly, we introduce
the new timescale τ :

τ =
t

b
(2.39)
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such that, setting the dot notation to represent the derivative with respect of
the new time τ , we can rewrite the simplified Class-B system as:{

Ė = σ [−(1 + iθ)E + (1− iα)DE + EI ]

Ḋ = µ−D(1 + |E|2)
(2.40)

where we introduced the timescale parameter σ = ε/b. All of the numerical
simulations in this chapter will be performed using the model8 as in Equation
2.40. Here we have changed the font of the electric fields as a blackboard
bold font (mathbb style in LATEX) to represent the fact that they are complex
variables.

Typical parameters range The values of the parameters used in the sim-
ulation were selected so to be physically plausible and analogous to the exper-
imental conditions. Some parameters, representing physical fixed quantities
related to the system, were rarely changed, if at all. These are:

α = 4 (linewidth-enhancement factor)

µ = 15 (normalized pumping current)

σ ≡ k

γ‖
=
τc
τp

= 50 (timescale of the system)

(2.41)

The choice of α is consistent with the experimental values that normally range
from 1 to 5. For the timescale parameter σ, we suppose that the time of a non-
radiative interaction is τc = 1 ns, and that the mean lifetime of a photon inside
a cavity is τp = 20 ps. These values are coherent with [Barland 2005]. The
value of the pumping current may seem high if compared to the experimental
ratio J/Jth of the pump current to the threshold current, which is around 2-6.
However, the injected current µ can be expressed in terms of the ratios J/Jth
of the pump current to the threshold current and J0/Jth of the transparency
current to the threshold current as [Lugiato 2015], Equation (16.54):

µ =
g̃L

T

(
J

J0

− 1

)
= η

(
J/Jth − J0/Jth

J0/Jth

)
(2.42)

where we introduced the gain-to-loss constant:

η ≡ g̃L

T
(2.43)

with g̃ the unsaturated gain per unit length, L the total length of the active
region, i.e. L = nwLw if the active region is made of nw quantum wells of
thickness Lw, and T the effective mirror transmittivity of the VCSEL, T =

8A/N: On a personal note, I’m thinking that I should tattoo this seemingly simple model
on my arm as a memento of all the pain that it caused me during the last few years.
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1 −
√
R1R2, being R1,2 the reflectivities of the two Bragg mirrors. We can

estimate the value of η knowing that the VCSEL used in the experiment has
nw = 3 QW’s of length Lw = 80 nm, and the active material is In0.2Ga0.8As,
for which a good estimation of the gain is g̃ ≈ 2× 105 m−1. Assuming that the
effective transmissivity is T ≈ 5× 10−3, we obtain the gain-to-loss ratio η:

η ≈ 2× 105 m−1 × 3× 80× 10−9 m

5× 10−3
' 10 (2.44)

From the fact that µ = 1 for J = Jth we also know that:

η =
J0/Jth

1− J0/Jth
,

J0

Jth
=

η

1 + η
(2.45)

The second equation tells us that the value of η is connected to the value of
the ratio J0/Jth, so that for η = 10 we get J0/Jth = 10/11 ' 0.91. Using the
first equation we can also rewrite the pump as:

µ =
J/Jth − J0/Jth

1− J0/Jth
(2.46)

so that µ = 15 for the experimental value J/Jth = 2.26. This justifies the
large value of µ adopted in the numerical simulations, with respect to the
experimental value J/Jth of the injected current.

The control parameter which are most often varied are the ones that relate
to the Pinj − ∆ diagram: that is, the strength of the injected field EI and
the detuning parameter ∆. These were usually set so to be inside the locking
region as shown in Figure 2.12, with the amplitude of the injected field which
should be higher than the minimum of the stationary curve as displayed in
Figure 2.31. Typical ranges are ∆ ∈ [−10, 10] GHz and |EI | ∈ [0, 1].

Stationary curve The stationary solution of the system 2.35 can again be
calculated by setting Ė = Ḋ. Doing so, one gets the same equation as for the
stationary curve of the full model 2.29, which we report here along with the
expressions for Ds:

y = x

[(
1− µ

1 + x

)2

+

(
θ +

αµ

1 + x

)2
]

x =
µ−Ds

Ds

y =
µ−Ds

Ds

[(1−Ds)
2 + (αDs + θ)2]

(2.47)

Some plots of the stationary curve in the y−x plane for the range of parameters
used in the simulations at different detunings are visible in Figure 2.28. The
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numerical simulations will be performed for a detuning which is inside the
bistability range. Given a value of the injected field which is in between the
two turning points xA and xB, there will then be three intersection of the
horizontal line at the injected field value and the stationary curve. These three
points, called A, B and C, are the points around which all of the dynamics is
organized. We will describe later their role and their position in the Argand
plane after a study of the stability of the stationary curve.

Stability of the stationary curve Let us now analyse the stability of the
stationary curve as in Equation 2.47. Here we will follow the same analysis
that was already performed in the master’s thesis [Dolcemascolo 2015]. A sim-
ilar analysis can be found in [Tredicce 1985], where in this case the authors
have derived analytical expressions in order to identify the stable and unsta-
ble branches of the stationary curve. However, we will not refer as much to
this study if not for some final remarks. This is because we think that our
formulation is easier to follow in this context, even though it is less general as
it relies on numerics for a specific set of parameters. Furthermore, due to an
approximation which is not valid in our case, the [Tredicce 1985] study fails
to identify a crucial Hopf bifurcation point which is very important for the
dynamics. In any case, we refer the interested reader to the [Tredicce 1985]
paper for an alternative study, along with Appendix C for a “translation table”
that allows to translate the results of this paper to our model.

To find the stability of the stationary curve 2.47, we first rewrite the system
2.40 by separating the real and the imaginary parts of the field:

Ė1 = σ[−E1 + θE2 + (E1 + αE2)D + Einj cosφI ]

Ė2 = σ[−E2 − θE1 + (E2 − αE1)D + Einj sinφI ]

Ḋ = µ−D(1 + E2
1 + E2

2)

(2.48)

where E = E1 + iE2 and EI = Einje
iφI . The Jacobian of the system can then

be written as:

J =


σ(D − 1) σ(αD + θ) σ(E1 + αE2)

−σ(αD + θ) σ(D − 1) σ(E2 − αE1)

−2DE1 −2DE2 −(1 + E2
1 + E2

2)

 (2.49)

The stability of the stationary solution is then given by the roots of the char-
acteristic polynomial of the Jacobian matrix evaluated on the stability curve
(that is, by substituting D → Ds, |E|2 → |Es|2 = x), which can be written as:

det(J− λI) = λ3 + c1λ
2 + c2λ+ c3 = 0 (2.50)
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where the three coefficients c1, c2 and c3 are given by:

c1 = (1 + x) + 2σ

(
1− µ

1 + x

)

c2 = σ2

(
µ

1 + x
− 1

)2

+ σ2

(
αµ

1 + x
+ θ

)2

+ 2σ

(
1 + x− µ

1 + x

)

c3 = σ2

{
(1 + x)

[(
µ

1 + x
− 1

)2

+

(
αµ

1 + x
+ θ

)2
]

+
2µx

1 + x

[(
1− µ

1 + x

)
− α

(
αµ

1 + x
+ θ

)]}
(2.51)

We will now find the conditions for when the stability curve is stable. According
to Routh-Hurwitz stability criterion, a system with characteristic equation
given by the third order polynomial P (λ) = λ3 + c1λ

2 + c2λ+ c3 is stable (i.e.
all the roots have real part less than zero) when the three following conditions
are satisfied:

i) c1 > 0

ii) c3 > 0

iii) c1c2 − c3 > 0

Note that i), ii) and iii) imply c2 > 0. Let us discuss them one by one in the
case of the stationary solution.

i) c1 > 0 If we apply this condition we get a closed inequality for x:

c1(x) = (1 + x) + 2σ

(
1− µ

1 + x

)
> 0 (2.52)

which, assuming that σ > 0 and µ > 0, can be solved as:

−
√

2µσ + σ2 − σ − 1 < x < −1 ∨ x >
√

2µσ + σ2 − σ − 1 (2.53)

Since x cannot be negative, the only possible solution is:

x >
√

2µσ + σ2 − σ − 1 ' µ− 1 (2.54)

where the last approximation is valid whenever σ >> 1, as it is in our case.
For the parameters σ = 50, µ = 15, the exact condition is always satisfied for
x > 12.2, while the approximated solution would be x > 14.

ii) c3 > 0 It is easy to verify that the coefficient c3 is related to the third
equation of the stationary curve 2.47 by:

c3 = − σ
2

Ds

dy

dDs

(2.55)
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Figure 2.30: Plot of condition iii), expressed as f3(x) > 0, with the same parameters
as in Figure 2.31. Note the intersection of the f3 function with the x-axis at x=9.33,
x=17.1 and x=26.4 which are respectively the X, W and Z points in Figure 2.31.

The second condition therefore implies that:

c3 > 0 ⇒ dy

dx
=

dy

dDs

dDs

dx
= − µ

(1 + x)2

dy

dDs

> 0 (2.56)

This means that when the derivative of y in the y − x plane is negative (the
curve is decreasing), the stationary state is unstable.

iii) c1c2 − c3 > 0 When this condition goes from being false to being true
(with c2 > 0) a Hopf bifurcation will appear. This is when the real part of the
eigenvalues λ of the characteristic equation goes from being negative to being
positive.

In Figure 2.30 we can see a plot of the function:

f3(x) ≡ c1(x) c2(x)− c3(x) (2.57)

for the parameters α = 4, σ = 50, µ = 15 and ∆ = 4 GHz (so that θ = −3.4973.
We can observe that the condition f3 > 0 is satisfied for 9.33 < x < 17.1 and
for x > 26.4.

All these observations are summarized in Figure 2.31. In this Figure we have
sketched the shape of the stationary curve, and we have plotted with different
colors the different conditions of instability. We note that the stationary curve
is unstable according to the three conditions i), ii) and iii):

i) For |Es|2 < 12.2 (green dashed line);

ii) In the negative-derivative branch (red dashed line);

iii) In the region 17.1 < |Es|2 < 26.4 (blue dashed line) via a Hopf bifurcation.

We note that, even though we have truly evaluated the stability of the station-
ary solution only for a particular set of parameters, the observations that we
have drawn remain valid in all of the set of parameters that we considered in
the simulations. Furthermore, since the observations for the conditions i) and
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Figure 2.31: Sketch of the stationary curve, where it is shown where the curve is
unstable according to the three conditions i), ii) and iii) (not to scale). The values
on the |E|2 axis and the E2

inj axis are evaluated for the set of parameters α = 4,
σ = 50, µ = 15 and ∆ = 4 GHz (so that θ = −3.4973). Green dashed line: the
curve is unstable according to i) (i.e. f1 < 0). Blue dashed line: the curve is unstable
according to iii) (i.e. f3 < 0). Red dashed line: the derivative of the curve is negative,
so that it is unstable according to ii). Black solid line: stable stationary solution.
X, Y , W and Z represent the limit points of the instabilities, and A, B and C
represent the intersection of the line E2

inj = 0.317. As we can see, for this choice of
injected field C is the only stable point of the dynamics. Note that increasing the
injection value to E2

inj = 1.06, the stable point C enters inside the Hopf instability.
A numerical evidence of that is shown in Figure 2.32. Reprinted with permission
from [Dolcemascolo 2015].

ii) are valid regardless of the parameters that are chosen, the only considera-
tion that is not as general is the one regarding the Hopf bifurcation determined
by the condition iii). In our particular case, the parameters for the Hopf bi-
furcation can be determined via a bifurcation analysis, which we will describe
in the next paragraph. This study will remain valid for the set of parameters
α = 4, µ = 15 and σ = 50, which have not been changed in the numerical
simulations.

By comparison, in the [Tredicce 1985] paper they studied the stability of the
stationary curve starting from the same characteristic polynomial as in Equa-
tion 2.50 (equation (15) of the paper) and, as in our case, they deduced that the
system was unstable in the negative-derivative branch. However when study-
ing the Hopf bifurcation, they first simplified the characteristic polynomial by
assuming that α2 << 1 (which is not a valid approximation for our set of
parameters), and then proceeded in analysing the reduced polynomial in the
three branches of the stationary curve that one can obtain by cutting the sta-
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Figure 2.32: Numerical evidence of the Hopf bifurcation defined by condition iii), in
the same set of parameters as Figure 2.31. Each Figure (a), (b) and (c) represent a
single numerical simulation, starting close to the point C of Figure 2.31, for different
values of the injected field Einj = |EI |. The blue, red and green point are respectively
the A, B and C points of Figure 2.31. The black triangle represents the initial
condition of the simulations. The black dashed curve is the Slow Manifold. (Left
panels) Time evolution of the output intensity |E|2, the output phase, and the carriers
D. (Middle panels) Simulation in the Argand plane. (Right panels) Simulation in the
D-<e(E) plane.
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tionary curve at the turning points (the minimum and maximum points as
shown in Figure 2.31). They then deduced that in the region of high output
field, defined by:

|Es|2 & µ− 1

0 < Ds . 1
(2.58)

for µ > 2 and small detuning, there was no Hopf bifurcation possible. This is in
contradiction with the Hopf bifurcation that was found in our study (condition
iii)). A numerical evidence of such a bifurcation for the same set of parameters
as in Figure 2.31 can be found in Figure 2.32, where we show how the stable
C point (the green point in the simulations) becomes unstable when crossing
the injection value of E2

inj = 1.06, as expected.

Bifurcation diagram in the Pinj − ∆ plane and averaged equations
As already mentioned in the section on the characterization of the VCSEL laser
(section 2.3.2), it is useful both for the experimental realizations and for the
numerical simulations to be able to locate oneself on the Pinj −∆ plane. This
plane scans two of the most used control parameters, the injection strength and
the detuning, and is one of the best ways to capture visually the extension of the
locking region and the saddle-node bifurcation which lies at its boundary. In the
case of our particular model, Figure 2.33(a) shows again the same bifurcation
diagram of Figure 2.12(b), which is calculated for the parameters α = 4, µ =
15, σ = 50 using the simplified [Prati 2010] model of equation 2.40 via the
Knut software [Szalai 2013]. We can observe the extension of the locking region
inside the saddle-node bifurcation, and also the existence of an Hopf bifurcation
which lies inside the locking region. This Hopf bifurcation corresponds to what
we called condition iii) in the previous paragraph. As already observed, the
effect of increasing the injected field strength and entering the Hopf region is
to make the stable C point defined in Figure 2.31 unstable.

The dynamics of the system for different regions of this diagram has been
studied intensively in [Solari 1994]. Starting from a model of a Class B laser
with injection which can be transformed in the same form as our model (see
Appendix D), the authors performed an averaging method on the system of the
rate equations by introducing a set of slow and fast variables, and by averaging
the motion over the fast variable during a full period of the fast variables. Using
this procedure, they derived the two-dimensional system of equations (3.4) in
the paper, which can be rewritten in terms of our parameters as:

r′ = −r
2

(
µ√
σ

+ K
sin(ψ + 2β)

sin β

)
ψ′ = −2π∆′√

σ
−K

cos(ψ)

sin β
−K

r2

4 sin3 β
(cosψ − 2 cos(ψ + 2β))

(2.59)

with errors of order O(r3,K2, 1/σ), where the time in this case is measured in
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Figure 2.33: Numerical and analytical bifurcation diagrams of principal codimension
one bifurcations for the simplified [Prati 2010] model as in Equation 2.40. Both dia-
grams are calculated for α = 4, µ = 15, σ = 50. (a) Numerical bifurcation diagram,
evaluated using the Knut software [Szalai 2013]. (b) Analytical bifurcation diagram,
evaluated using expression 2.64 for the saddle-node boundary and expression 2.65
for the Hopf bifurcation line. The red point when the two curves meet corresponds
to a codimension two Hopf-saddle-node point, whose coordinates are given by 2.66.

units of time τ equal to:

τ =

√
1 + α2

γ‖

(
1

κ
+

1

γ⊥

)
(2.60)

r is a new dynamical variable which describe the evolution of the slow envelopes
of the V , U variables as:

V (t) = r(t) cos(ζ)

U(t) = r(t) sin(ζ)
(2.61)

where ζ(t) =
√

2(µ− 1) t is the fast variable which disappears after the aver-

aging procedure during a full period 2π/
√

2(µ− 1), and V, U are related to the
old dynamical variables E, D of the system 2.40 by the change of coordinates:

ln

(
ρ√
µ− 1

)
= V − V 2

3
− 2

3
U2

D =

√
2(µ− 1)

σ

(
U +

2

3
UV

)
+ 1

φ = ψ − α ln

(
ρ√
µ− 1

)
+ β

(2.62)

where ρ and φ are the amplitude and phase of the electric field (i.e. E = ρeiφ)
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and we have introduced the new parameters9:

K ≡
√
σ EI√
µ− 1

β ≡ − arctan

(
1

α

) (2.63)

The last equation of the system 2.62 also describe the definition of the new
phase variable ψ. In the paper, the authors later analysed the bidimensional
system 2.59 using bifurcation analysis. The results are strikingly similar to the
numerical bifurcation analysis performed on the full system 2.40. In particular,
they derived an analytical equation for the saddle-boundary in the Pinj −
∆ plane (equation (3.10) of the paper), which can be expressed using our
parameters as:

|EI |SN(∆) =
2π|∆′|

√
µ− 1

σ
√
α2 + 1

(2.64)

and also an analytical expression for the line of the Hopf bifurcation (equation
(3.11) of the paper):

|EI |H(∆) =

√
µ− 1

√
4π∆′µ sin

(
2 tan−1

(
1
α

))
+ 4π2(∆′)2 + µ2√

(α2 + 1)σ2 cos2
(
2 tan−1

(
1
α

)) (2.65)

Plotting these two conditions for the same set of parameters of the numerical
bifurcation analysis of Figure 2.33(a) gives us the bifurcation diagram of Figure
2.33(b). As we can see, there is a very good qualitative agreement between
the two diagrams, even though they somewhat differ quantitatively. We can
attribute this difference to the effect of the averaging procedure, and to the
approximations of small injection and detuning which are required for the
procedure to be valid.

As visible in both diagrams, the saddle-node line and the Hopf bifurcation line
are tangent on one point (the red point). This is not a coincidence but instead
the evidence that the touching point corresponds to a codimension two Hopf-
saddle-node bifurcation. The coordinates of this point are given by (equation

9One note of caution on the definition of the K parameter as in 2.63. In the paper
[Solari 1994] the equivalent version of this parameter, written as κ, is set as κ = ε/A2

(equation (3.9) of the paper). During the conversion process to get equations 2.64 and 2.65,
we have instead always set κ = ε/A. Given that all of our observations, both numerical
and theoretical, matches the equations here derived, and given that in the successive paper
[Zimmermann 2001] they reviewed again the same bidimensional system 2.59 derived by the
same procedure but setting κ = ε/A, we believe that this may just be a typo in the paper
[Solari 1994]. In any case, all the equations here reported should be correct for the system
2.40.
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(3.12) of [Solari 1994], revisited):

∆′ = −
µ csc

(
2 tan−1

(
1
α

))
2π

|EI | =
µ
√
µ− 1 csc

(
2 tan−1

(
1
α

))
ασ
√

1
α2 + 1

(2.66)

The dynamics is organized around this point, in such a way that by turning
around it one can experience many different flow types and attractors. The
type of flows that one can obtain are different depending on the sign of α:

• For α < −
√

3, the codimension two bifurcation will be of type II;

• For −
√

3 < α < −1, the codimension two bifurcation will be of type I;

• For α > −1, the codimension two bifurcation will be of type III;

The study of the different flow type and attractors that one can experience is
well explained in the rest of the paper. In our case, since we have a positive
value of α, the flow will be of type II as in Figure 2 of the paper. In particular,
as we will consider a set of parameters which is inside the locking region but
outside the Hopf region, the flow type will be as in region A, where the attractor
is a fixed point born in a saddle-node bifurcation with a companion saddle.
We will describe more in detail the flow type of our system when describing
the position of the three fixed points A, B and C in the Argand plane.

The system of averaged equations 2.59 has been further studied numerically in
[Mayol 2001]. This study shows the complexity that can arise from this system,
and describes the existence of a secondary Hopf bifurcation to a transversal
and longitudinal periodic orbit, homoclinic orbits to the “off”-state of the laser,
period doublings and other types of Hopf bifurcations. In our case, the main
two bifurcations shown in Figure 2.33 will suffice to explain the dynamics.

Relaxation oscillations When the system is close to the Hopf bifurcation,
but still in the stable locking region, the C point will still be stable, and
the system will relax towards it with damped oscillation, as shown in Figure
2.32(a). Note that these oscillations, even though they are called “relaxation
oscillations” in laser physics, do not show the typical features of what are called
“relaxation oscillations” in slow-fast relaxation oscillators. See Appendix B for
a discussion on the terminology. The damping rate and frequency of these
oscillations at the steady-state solution (point C) for a Class B laser (so that
κ >> γ‖) have been derived in the [Tredicce 1985] paper in both the case of
a Class B laser and in the case of a Class B laser with injection. Written in
terms of our parameters, the dumping rate ΓRO and the frequency ΩRO are
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given by:

ΓRO =
γ‖µ

2
=

µ

2τc

ΩRO =
√

2κγ‖(µ− 1) =

√
2σ

τ 2
c

(µ− 1)

(2.67)

while adding the injection term, the expression for the relaxation frequency is
modified as:

ΩI
RO =

√
2κγ‖(µ− 1) + κ2(θ + α)2√
2σ

τ 2
c

(µ− 1) +
(2π∆′)2

τ 2
c

(2.68)

where we have made use of the fact that κγ‖ = 1/(τcτp) = σ/τ 2
c , κ = σ/τc and

Equation 2.33. The dumping rate ΓIRO for the laser with injection is the same
as without injection ΓRO.

By comparing Equations 2.67 and 2.68, we notice that the effect of adding
an injected field is that of increasing the oscillation frequency, no matter the
sign of the detuning. Since in our range of parameters 2σ(µ − 1) > (2π∆′)2,
the additional term for the injection can be considered as a (not insignificant)
perturbation term to the frequency without injection. To make an example, for
the parameters used in Figure 2.32, the values of ΓRO, ΩRO and ΩI

RO (assuming
that τc = 1 ns) are:

ΓRO = 7.5 ns−1

ΩRO = 37.41 ns−1

ΩI
RO = 45.07 ns−1

(2.69)

It’s clear that since ΩRO,Ω
I
RO > ΓRO the oscillations undergo a slow damping,

and the period of the relaxation oscillation is equal to TRO = 2π/ΩRO = 0.17
ns without injection and to T IRO = 2π/ΩI

RO = 0.14 ns when considering the
injection term, which is consistent with the oscillation period of T = 0.14 ns
observed numerically.

An extensive analysis of the dumping rate of the relaxation oscillations along
with numerical and experimental evidence can be found in [Kelleher 2012b].
It is shown how the dumping is modified through a nonlinear term so that it
displays a higher dumping in the positive detuning side of the Pinj−∆ diagram
as in Figure 2.33 and a lower dumping for similar level of detuning but on the
negative side. The experiments and numerical simulations are performed at
the positive-detuning side, so that the dumping will be relatively high and we
do not see more that 4-5 oscillations following the spike in intensity.

Argand plane portrait As stated before, when we choose an injection value
which is inside the bistability region and close to the turning point at the edge
of the high output power branch, we obtain three fixed stationary points A, B
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Figure 2.34: Argand plane portrait of the flow types and attractors. A is an ustable
focus, B is a saddle and C is a stable node. Each small black point represents the
initial condition of a numerical simulation, which has been let evolve for a small
amount of time (the same for every point) on the plane D = 1. The red lines
represent the simulations starting at those point. Same parameters as in Figure
2.31.

and C as described in Figure 2.31. Point A and B are always unstable, while
point C is stable until the injection power is high enough to enter inside the
Hopf region. It can be useful to visualize the position of these three points in
the Argand plane, as the dynamics is organized around them.

Figure 2.34 shows a portrait of the flow type in the same parameter range as
Figure 2.31. We have also plotted here the position of the stationary points A,
B and C on the same plot. The phases of the three points can be calculated
using the expression:

φI − φs = atan2

(
θ +

αµ

1 + |Es|2
, 1− µ

1 + |Es|2

)
(2.70)

where we have written the fields in polar coordinates as Es = |Es|eiφs and
EI = Einje

iφI , which comes directly from the first equation of the stationary
system 2.47. Atan2 is the four-quadrant inverse tangent that produces results
in the range [−π, π] that can be expressed in terms of the standard arctan
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function with range (−π/2, π/2) as follows:

atan2(y, x) ≡



arctan(y/x) x > 0

arctan(y/x) + π y ≥ 0, x < 0

arctan(y/x)− π y < 0, x < 0

+π/2 y > 0, x = 0

−π/2 y < 0, x = 0

undefined y = 0, x = 0

(2.71)

The A point belongs to the branch of the stationary curve of high carrier
density and low output field, and has coordinates approximately equal to:

|EA| ' 0

DA ' µ
(2.72)

It acts as an unstable focus, so if the system is place near it, it will try to
repel it following a spiral. In the <e(E)−=m(E)−D phase space, this point
is placed at a very high D value, and very close to the origin. In our plots, it
is marked as a blue dot. Even though it lives at high D values, its effect can
be felt even at lower D values, as the system will be often pushed away from
the origin.

The B and C points are born from a saddle-node bifurcation on a limit cycle.
The B point is the saddle, while the C point is a stable node, at least for low
injection powers. They appear in the system whenever we cross the saddle-node
boundary described in Figure 2.33, and they disappear again when exiting the
locking region. Their output field value is close to the local minimum of the
stationary curve as in Figure 2.31, so their coordinates are approximately equal
to:

|EB| ' |EC | '
√
µ− 1

DB ' DC ' 1
(2.73)

When changing the detuning for a fixed injection value, these two points move
around the limit cycle in different directions, as one might expect from a SNIC
bifurcation. It is possible to find an approximate analytical formula for the
angles of the points B and C as a function of the bifurcation parameter z
defined as:

z ≡ (α + θ)
√
µ− 1

Einj
√

1 + α2
=

(
2π∆′

Einj

) √
µ− 1

σ
√
α2 + 1

(2.74)

z represents a normalized detuning with respect to the injected power, so that
the Saddle-Node bifurcation happens at z = ±1, and −1 < z < 1 inside the
locking region. In the approximation of small injected field (which, as we will
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Figure 2.35: Half phase difference between the B and C points, as a function of the
detuning, same parameters as Figure 2.33. The three curves are calculated for three
different injection values |EI | equal to 0.1, 0.5 and 1.0 respectively for the blue, green
and red curve. The detuning range for each curve can be calculated with expression
2.64.

see in the last paragraph, corresponds to an Adler limit), we can write the
phases of the B and C points as:

φB ' arcsin z + arctanα− π (2.75)

and
φC ' − arcsin z + arctanα (2.76)

See Appendix F for a full derivation. The half phase difference ∆φ/2 = (φB −
φC)/2 then follows an arcsin function with argument z. By plotting it as a
function of ∆ for different injection values, we obtain Figure 2.35. We recognize
the typical phase evolution of a stable node for a SNIC bifurcation, where the
boundaries for the detuning for each injected field value are determined by
Equation 2.64.

Figure 2.34 shows the position of the three points in the Argand plane, for the
same parameters as in Figure 2.31. For this and future plots the B point will
be marked in red and the C point will be marked in green, while the A dot
will be marked in blue. We can see that in this plane the A point is very close
to the origin, while the other two points B and C lie on a circle centred at zero
with a radius '

√
µ− 1 = 3.74. The C point is the only stable point. Note

that the flow from B to C can be either clockwise (the long blue trajectory) or
counter-clockwise (the short blue trajectory).

Another observation concerns the the rotation direction of the electric field,
which we report here from [Rimoldi 2017]. When we recast the system of equa-
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tions 2.40 into polar coordinates, we obtain the following system:
ρ̇ = σ [ρ(D − 1) + ρI cos(φI − φ)]

φ̇ = −σ
[
θ + αD − ρI

ρ
sin(φI − φ)

]
Ḋ = µ−D(1 + ρ2)

(2.77)

where E = ρeiφ and EI = ρIe
iφI . Setting φI = 0, we get the following equation

for the phase of the output field:

φ̇ = −σ
[
θ + αD +

ρI
ρ

sin(φ)

]
(2.78)

which is an Adler-like equation as in 2.2. The ratio ρI/ρ in front of the sine is
usually small, because of the A point near the origin that acts as a repeller.
Then the dominant therm is θ + αD, so that we can mark the boundary
when this term goes from negative to positive, which is correlated with the
rotation direction that the field will follow. We can then define the critical
value of Dc = −θ/α, which in our case is D = 0.87. Furthermore, if the
D variable is fast enough to follow the electric field, we can also define a
critical amplitude of the electric field through the stationary solution as Dc =
µ/(1 + ρ2

C), which in our case gives ρc = 4.02. This is coherent with the
flow plotted in Figure 2.34. We can observe that, for the black points that
are outside a circle of radius approximately equal to 4, the rotation direction
changes from clockwise to anticlockwise. In this study however we will not
concern ourselves too much about the rotation direction of the field, as all of
the excitable response will happen at D values greater than Dc, and they will
all follow a clockwise trajectory which corresponds to a negative phase slip.

Slow Manifold The system of equations 2.40 is composed of two equations
which in general can have two very different timescales. It is possible to exploit
this difference in order to simplify the system by rewriting our model as a slow-
fast system: {

Ė = −(1 + iθ)E + (1− iα)DE + EI ≡ f(E, D)

Ḋ = ε [µ−D(1 + |E|2)] ≡ g(E, D, ε)
(2.79)

where ε ≡ 1/σ = 0.02 is a small parameter with our choice of parameters,
and the dot derivatives now represents the derivatives with respect to the fast
time s = t/ε. In particular, it is known from Geometric Singular Perturbation
Theory [Fenichel 1979, Berglund 2006], that whenever the slow manifold is
stable (i.e. all of the eivenvalues of the Jacobian calculated on the manifold
have negative real part), the system will asymptotically converge toward the
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Figure 2.36: Numerical plot of the real parts of the eigenvalues along the slow man-
ifold as in Equation 2.80 as a function of D for the same parameters as Figure 2.37.
Two of the three eigenvalues are superimposed. Note that the points where the man-
ifold changes stability occur at D = 0.7684, D = 0.8298 and D = 0.8764. fsymmlog
is the function defined by fsymmlog(x) ≡ {If x ≤ 0 : − log(−x+ 1), else: log(x+ 1)}

slow manifold. In our case, the critical manifold is defined by the parametric
curve:

f(E, D) = 0 → E(D) =
EI

(1 + iθ)− (1− iα)D
, (2.80)

The critical manifold here expressed can be considered as a zero-th order ap-
proximation in ε of the slow manifold, so in the following we will consider this
expression as the one defining the slow manifold. For our usual choice of param-
eters, the slow manifold has the shape of a string going from negative values
of D towards positive values of D close to the origin, that develops a circular
loop for D ' 1. Figure 2.37 displays both a 3D plot of the slow manifold in
the <e(E)−=m(E)−D space, and in the Argand plane.

Although the slow manifold is usually used in slow fast systems as a way to
simplify the dynamics to a lower dimensionality, the same cannot be realized in
our case. This is because it is mostly unstable, and the regions where it is stable
(as for low D values) are far from the stable C point, which is were most of the
dynamics takes place. In any case, it will be useful to plot this structure in the
numerical simulation firstly because of its relationship with the fixed points A,
B and C, as all of the points have to lie on the slow manifold (f(E, D) = 0
implies that Ė = 0); and secondly because, in the region were it is stable
as near the stable point, the system will try to converge towards it possibly
following some relaxation oscillations.

When plotting the slow manifold, its stability will be calculated numerically
by calculating the Jacobian of the system as in equation 2.49 on the critical
manifold, and then observing when the real parts of the eigenvalues are positive
or negative. Figure 2.36 represent such a study for the same parameters as
Figure 2.37. This stability analysis can then be directly translated to the slow
manifold as, for small ε, the slow manifold will be stable provided that the
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Figure 2.37: Slow manifold and two numerical simulations without noise, starting
close to the B saddle point (red point in the Figure). The parameters are α = 4,
σ = 50, µ = 15 as usual, and ∆ = 4.2 GHz, |EI | = 0.8. The blue simulation represents
the phase excursion of an excitable response, while the magenta simulation represents
the linear relaxation towards the stable C point (green point). The slow manifold
is unstable whenever it’s red dashed, according to the observations of Figure 2.36.
(top) Plot in the 3D <e(E)−=m(E)−D space. (bottom) Plot in the Argand plane.

critical manifold is stable.
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Towards the Adler model and beyond When describing the bifurcation
diagram, we introduced a bidimensional system of equations 2.59 which can
be derived from the Class B model 2.40 by employing an averaging procedure.
In the paper [Zimmermann 2001] they performed an order-by-order analysis of
the averaging procedure that results in this system, so that by including terms
of increasingly higher order, one can increase the complexity of the dynamics
step by step with a perturbation approach. The results are the following:

1. Retaining only the first order terms in the expansion parameters K,
1/
√
σ, U and V and then performing the averaging, one obtains a decou-

pled system consisting of an oscillator plus a phase equation in the form
of an Adler equation:

ψ′ = −2π∆′√
σ
−K

cos(ψ)

sin β
(2.81)

The system displays a saddle-node bifurcation for:

2π∆′ sin β√
σK

= ±1 −→ |EI |SN(∆) =
2π|∆′|

√
µ− 1

σ
√
α2 + 1

(2.82)

which is what we already knew from [Solari 1994], as in Equation 2.64.
This means that, to first approximation, the dynamics of this system
is equal to the Adler model. This confirms the theoretical observation
in [Coullet 1998] which derived an Adler-like equation for the phase-
difference of master and slave for a Class C model of a laser with injection.

2. If we include the second-order term proportional to 1/
√
σ (assuming

hence |EI | �
√
µ− 1/σ) we obtain an equation for r as:

r′ ≈ − µ r

2
√
σ

(2.83)

so that the dynamics of r goes asymptotically to r = 0 after a short tran-
sient, and the Adler equation describes the motion in this submanifold.

3. For injection rate of the order of |EI | = O(
√
µ− 1/σ), one has to consider

the full equation for r′ as in 2.59, so that the system becomes:
r′ = −r

2

(
µ√
σ

+ K
sin(ψ + 2β)

sin β

)
ψ′ = −2π∆′√

σ
−K

cos(ψ)

sin β

(2.84)

Which means that the shape of the submanifold where the dynamics
take place is no more r = 0 and now depends on the phase ψ. The Adler
equation still describes the motion in this submanifold.

4. Finally the last step of this procedure would be to include the terms up
to second order in U and V and first order in |EI | and 1/

√
σ, recovering

the full equations 2.59. Normal form analysis reveals that these terms
are necessary un unfold the most important bifurcations.
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Simple explicit connection with the Adler model In the previous para-
graph we have shown how the averaged model as in 2.59 has a clear connection
with the Adler model. Let us now try to make a simpler explicit connection be-
tween the simplified Class B model used in the simulations 2.40 and the Adler
model, without requiring an averaging procedure. As far as we are aware, this
observation is an original work of this thesis. As discussed in the paragraph on
the Argand plane portrait, the evolution of the phase of the output field can
be written as:

φ̇ = −σ
[
θ + αD +

ρI
ρ

sin(φ)

]
(2.85)

It is clear from this equation that the evolution must be Adler-like, and we
will show how to derive exactly an Adler model. We will use the same ap-
proximation used in Appendix F, which consists in considering a low injected
field, so that the B and C points have amplitudes approximately equal to
ρB,C '

√
µ− 1. We also suppose that the motion happens on a circle centred

on zero in the Argand plane, so that for all points ρ '
√
µ− 1. This require-

ment seems justified by looking at Figure 2.40 which shows that, for the full
system with low injection, the dynamics does happen on a circle-like manifold
in three dimensions10.

Given this requirement, Equation 2.85 for the phase dynamics of the field can
be written as: (√

µ− 1

σEinj

)
φ̇ = −

√
µ− 1(θ + αD)

Einj
− sin(φ) (2.86)

where we have just renamed ρI = Einj. Now, we will use an ansatz on the
possible form of the Adler equation resulting from this phase equation. The
Adler model should be of the form:

φ̇ ∼ −z − sin (φ− arctanα) (2.87)

apart from global factors that can be taken into account in the time evolution.
This is because we know that the Saddle-Node bifurcation parameter is the
variable z defined as:

z ≡ (α + θ)
√
µ− 1

Einj
√

1 + α2
=

(
2π∆′

Einj

) √
µ− 1

σ
√
α2 + 1

(2.88)

so that with this choice the bifurcation would happen at z = ±1, as expected.
Furthermore, from Appendix F we know that, in the same limit of small in-
jected field, the phases of the B and C points can be written as:

φB = arcsin z + arctanα− π

φC = − arcsin z + arctanα
(2.89)

10Apart in the first row, where the evolution is not as linear. We think this is an effect
of the initial conditions, which were chosen with a D value equal to the B (red) point, but
slightly shifted in phase.
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which means that the frame of reference of the phases is shifted by arctanα,
in the sense that the B, C pair is born and dies at angles arctanα − π/2 and
arctanα+π/2. This suggests that the final Adler model should be of the form
2.87. We will also suppose that the dynamics of the D variable only depends
on the phase φ, and that it will be sinusoidal, as is it a projection of an Adler
motion in 3D. We will come back on this assumption later. For the moment,
let assume that:

D(φ) = A cosφ+ B (2.90)

Putting together Equation 2.86 with the ansatz 2.87, we obtain the following
equation that has to be satisfied:

−
√
µ− 1(θ + αD(φ))

Einj
− sin(φ) = C [−z − sin (φ− arctanα)] (2.91)

where A, B and C are constants to be determined. By simplifying the right
sinus function as:

sin (φ− arctanα) =
1√

α2 + 1
sinφ− α√

α2 + 1
cosφ (2.92)

and replacing the expression for z and D(φ), one can easily find that this
equation can be satisfied if:

A = − Einj√
µ− 1

B = 1

C =
√
α2 + 1

(2.93)

which means that the equation for the phase 2.85 can be written as the Adler
model: ( √

µ− 1

σEinj
√
α2 + 1

)
φ̇ = −z − sin (φ− arctanα) (2.94)

as long as we can consider ρ to remain constant and equal to
√
µ− 1, and

supposing that the evolution for the D variable is given by:

D(φ) = − Einj√
µ− 1

cosφ+ 1 (2.95)

Figure 2.38 shows all of the possible locations of the saddle-node pair of the B,
C points for the same parameters as the top row of Figure 2.40. It is constructed
using the expressions 2.89 for the phases, and 2.95 for the related D value, at
distance

√
µ− 1 from the origin. Notice the shape of the bifurcation, which

ends at begins at the angles − arctanα and − arctanα + π.

Figure 2.39 shows instead a numerical simulation using the Adler model from
Equation 2.94 for the phases, and the related D value again from equation 2.95.
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By comparing these simulations with the top row of Figure 2.40, we notice that,
as long that we consider the Argand plane, the two types of simulations are
almost indistinguishable. Only looking at the D− |E|2 plane one can see that,
for the Adler model, the distance from the origin is fixed at

√
µ− 1, while

for the full model in Figure 2.40, there seems to be a clear linear-like relation
between the D evolution and the ρ2 = |E|2 evolution which means that the
dynamics happen on a slanted deformed circle which is farther away from the
origin for lower D values and closer to the origin for higher D value.

Given these observations, the equations:

ρ =
√
µ− 1( √

µ− 1

σEinj
√
α2 + 1

)
φ̇ = −z − sin (φ− arctanα)

D(φ) = − Einj√
µ− 1

cosφ+ 1

(2.96)

where:

z =
(α + θ)

√
µ− 1

Einj
√

1 + α2
(2.97)

can be considered as a first order analysis for the simplified [Prati 2010] model
for low injection that results in the Adler model, in a very similar way to
what was already done in the [Zimmermann 2001] paper in the case of the
averaged equations. Also in this case, it could be interesting to extend this
analysis to increasing orders, to find what are the correcting terms that further
approximate the full model.

One first step could be to find what is the function D(φ, |E|2) were most of the
dynamics seems to take place in Figures 2.40, thereby relaxing the condition
of fixed amplitude ρ that was employed for the first order here shown. Alas,
we have not managed yet to find other approximating terms of this equation,
which may be a future task to be undertaken.
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Figure 2.38: Representation of the location of the Saddle-Node pair of points B and
C in the same parameters of Figure 2.40 when varying the bifurcation parameter z
from −1 to +1, in the Adler limit. The points shown here represent the position of
the B and C points for ∆ = −0.010 GHz, the same as the top row of Figure 2.40.
Notice how the birth and death angles of the bifurcation happen at arctanα− π/2
and arctanα+ π/2.
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Figure 2.39: Numerical simulation of the system in the Adler limit, same parameters
as the top row of Figure 2.40. The φ and D evolution is governed by the system 2.96.
Note how in this case the distance from the origin is fixed and equal to

√
µ− 1.
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Figure 2.40: Evolution of the slow manifold and of the saddle-node pair for different
∆′ values, with parameters α = 4, σ = 50, µ = 15 and |EI | = 0.1 (low injection),
with numerical simulations of the full 2.40 model. Same type of plot as in Figure
2.37, with an added rightmost panel for the evolution in the D − |E|2 plane. In the
last row, the black point is the start of the simulations (there are no saddle-node
points).
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2.4.3 Single perturbation: excitable response

In the previous section we have introduced and described in detail the model
2.40 of a Class B injected laser, and now it’s time to use it for good. In this
section, we will show how it is possible to trigger an excitable response from
this system by applying a phase perturbation to the injected field, in exactly
the same way as in the experiment.

During the description of the experiment, in Figure 2.15 we already introduced
experimental phasor plots that describe the evolution of the system towards
a stable point on a circle. The two points that determine the dynamics, the
repeller and the attractor, can now be clearly identified with the B and C
points that we described in the model section. In the experiment the plan to
trigger an excitable response was the following: by letting the system converge
to the stable point, and then applying a phase-perturbation capable of pushing
the system over the unstable point, the system would then be forced to reach
the stable point from the other direction, as shown schematically in Figure 2.3.
Given that the phase excursion is not exactly circular, each excitable response
will be characterized by a pulse in intensity, whose shapes can be seen in Figure
2.17.

In the following numerical simulations we will reproduce the same scheme: we
will apply a phase perturbation to the phase of the injected field by modifying
the first equation of system 2.40 as follows:

Ė = σ
[
EIeiγ(t) + (1− iα)DE− (1 + iθ)E

]
+ ξ(t) , (2.98)

where γ(t) is a real function which will take the temporal shape of the per-
turbation (mostly step-functions and pulses), and ξ(t) is a Gaussian source of
noise with 〈ξ(t)〉 = 0 and 〈ξ∗(t)ξ(t′)〉 = βσ(t− t′). We will not add any noise to
the carrier variable as we have checked numerically that adding a noise term
to the population inversion D is not useful for the modelling of the specific
experiment, which agrees with the experimental observation that the excitable
dynamics happens mostly in the phase, as demonstrated by the fact that a
phase-perturbation is the most suitable type of perturbation in order to trig-
ger a response [Garbin 2014]. Most of the figures and considerations in this
section can be found in the paper [Garbin 2017a].

Step-up perturbation: efficiency and delay times The first perturba-
tion γ(t) we will use are step-up perturbations with different phase jump am-
plitudes, created using sigmoid functions with about 50 ps rise time. Two
examples of such a perturbation are visible in Figure 2.42. They will mimic
the same type of step-up phase perturbations used in the experiment. As ob-
served experimentally and described in Figure 2.19, there is a threshold on the
amplitude of the perturbation that is needed in order to obtain an excitable
response. This can be now understood from the model as related to the phase
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Figure 2.41: Effect of the perturbation amplitude on the efficiency for the generation
of an excitable response and on the time delay between the perturbation and the
excitable response, according to numerical simulations. The parameters are α = 4,
σ = 50, µ = 15, ∆ = 4 GHz, |EI | =

√
0.317 (as in Figures 2.31, 2.34) and noise

β = 6.4×10−3. (Top): Delay time histogram. (Bottom): Associated efficiency curve,
defined as the number of excitable responses over the number of perturbations.
Reprinted with permission from [Garbin 2017a].

angle between the B and C points. A perturbation which is able to push the
system over the B saddle point, which represents the threshold, will trigger a
response.

This is captured by Figure 2.41, which is the esperimental analogue of the
experimental Figure 2.19. It is the result of 460 800 simulations with phase
perturbations of different amplitudes uniformly distributed between 60◦ and
160◦. Looking at the efficiency curve, we note that both the numerical and
experimental figures jump from 0 efficiency to 100% efficiency when increasing
the phase jump of the step-up perturbation, even though the threshold value,
which we can define roughly as the phase jump at 50% efficiency, is about
80◦ in the numerical simulations and 65◦ in the experiment. If we now look
at the delay distribution, we note how they are both greatly spread out for
lower perturbation amplitudes, with a spread of around 1 ns, and then con-
verges towards a narrow asymptotic value for large amplitudes. Here the delay
is defined as the time between the middle of the rising edge of the step-up
perturbation, and the maximum of the excitable response.

Figure 2.42 shows an example of 20 superimposed numerical simulations for the
same parameters as Figure 2.41, in the cases of a lower-amplitude perturbation
of 90◦ and a higher-amplitude perturbation of 160◦. As we can see, while for a
low amplitude perturbation the distribution of the arrival times of the excitable
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(a) Step-up perturbation amplitude of 90◦
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(b) Step-up perturbation amplitude of 160◦

Figure 2.42: Superposition of 20 excitable responses for two different step-up per-
turbation amplitudes. The parameters are α = 4, σ = 50, µ = 15, ∆ = 4 GHz and
|EI | =

√
0.3172, with noise β = 6.4 × 10−3. (a) In the case of a low perturbation,

the distribution of the arrival times of the impulses is broad. (b) In the case of a
high perturbation, all the impulses are generated at almost the same time. Reprinted
with permission from [Dolcemascolo 2015].

response is spread out, it is much narrower in the case of a high amplitude
perturbation, so that all of the responses nicely superimpose.

We also show here Figure 2.43, which represents the superposition of 10 differ-
ent excitable responses for phase amplitudes going from 90◦ to 160◦, without
noise. The different responses evolve with the amplitude of the perturbation, so
that for a higher perturbation the response is faster. This is a clear feature of an
excitable system, and it is interesting to note how this figure reminds us of the
famous figures of the membrane action potentials at different depolarization
values found in [Hodgkin 1952a].

Before passing on, we make a final remark on the definition of an excitable
response in the numerical simulations: note that the detection of an excitable
response in a given simulation has been performed, unlike in the experimen-
tal analysis, by setting a threshold on the phase evolution. This means that
an excitable response is detected whenever there is a 2π phase slip (or ap-
proximate) between the initial condition and the final state of the simulation.
This is slightly different than the experimental case, where the threshold was
an amplitude threshold of suitable value on the intensity trace. We employed
this different method because in the simulations we have access to the phase
evolution of the output electric field, which is not the case in the experiment,
and the phase-threshold detection is a clearer evidence of an excitable response
that doesn’t suffer as much from intensity noise.

Effect of the phase-perturbation on the A, B, C points in the Argand
plane The type of dynamics that we can observe from the numerical simu-
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Figure 2.43: Superposition of 10 different excitable responses computed for 10 dif-
ferent phase amplitudes (in the case of a step-up perturbation), from a minimum of
90◦ to a maximum of 160◦, evenly spaced. Same parameters as Figure 2.42, with-
out noise. As the phase amplitude increases, the delay of the response from the
perturbation decreases. Reprinted with permission from [Dolcemascolo 2015].

lations can be neatly interpreted by looking at the evolution of the position of
the A, B, C points on the Argand plane over the course of the perturbation.
The effect of the phase-perturbation on the phases of these points is to rotate
them counteclockwise according to:

φA,B,C(t) = φ0
A,B,C + γ(t) (2.99)

where φ0
A,B,C is the phase of the stationary points before the onset of the

phase perturbation that one can obtain from 2.70 for φI = 0. Given a step-
up perturbation, these points will then be moved to a new position A’, B’
and C’ at the end of the perturbation, where this position will depend on the
amplitude of the phase jump.

Figure 2.44(a) shows the trajectory in the complex plane when we apply a 40◦

phase perturbation. During the onset of the perturbation, the three point will
move toward their final position at the end of the perturbation, marked as A’,
B’ and C’ on the figure. Given that this phase jump is less than the angular
difference between the B and C points, the new position of the B point (B’)
will happen to be in between the B and C position. This means that the system
will not feel the effect of the threshold that corresponds to the saddle B point,
but instead will just move from the C position to the C’ position, following the
movement of the stable C point. Since the motion happens along a circle, the
intensity remains essentially constant as the phase jumps to the new stationary
value, as shown in the lower panels of the figure. In this case, the system will
not experience an excitable response.

Figure 2.44(b) shows instead the case of a higher amplitude perturbation, of
110◦. In this case, this angle is greater than the angular separation between
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node and saddle, and the new position of the B saddle (B’) will be over (coun-
terclockwise speaking) the C position. As the movement between the old and
new positions happens faster than the system has time to follow, during its
trajectory the B point will overcome the position of the system, which will be
then pushed away in the other direction. This explains the “U-turn” that the
red trajectory performs in between the C and B’ positions in the figure. Once
the new primes positions have been reached, the system will try to converge
towards the new position of the stable C node (C’) going clockwise, and per-
forming in this way a phase negative phase jump. In this case, the phase jump
will be lower than 2π since the new C’ position doesn’t coincide with the old
C position. Before reaching its final destination in C’, the system will perform
some relaxation oscillations. This trajectory is translated in the intensity trace
as an intensity pulse followed by some oscillations, with a shape mush similar
to the experimental one, and with a negative phase jump for the evolution of
the phase of the electric field. This is the trajectory that corresponds to an
excitable response for our system given our step-up phase perturbation.
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2.4.4 Double perturbation: Refractory period

In the experimental part (see Figure 2.20) we observed the existence of a
refractory period when perturbing the system with a double perturbation.
This is the period of time after a first perturbation where the system cannot
be excited again, and in the experiment it was found to be of the order of 0.20
ns. In the Adler model vision, this was the time that was needed to complete
the excitable orbit in phase space, before coming back to the stable point. In
this subsection we will describe how such a refractory period can emerge from
our system following the evolution of the fixed A, B and C points in the Argand
plane during the phase perturbation. By performing numerical simulations, we
will observe a refractory period for our usual choice of parameters which is of
the order of 0.22 ns, in accordance with the experiment.

Double perturbation: Efficiency and Response time Evidence for the
refractory period was obtained by performing the same type of numerical sim-
ulations as described in the last subsection, but with a phase perturbation γ(t)
which is composed by a pulse, followed by a step up perturbation, as it was
done in the experiment. The pulse is a short Gaussian impulse with 100 ps
full width at half maximum and height ∆φ = 150◦, while the step-up function
is the same sigmoid function used before, with a fixed height of ∆φ = 105◦,
which is well inside the region were the efficiency reaches 100% for a single
perturbation. Two examples of the phase-perturbation used are visible in the
phase-perturbation time-trace panels of Figure 2.47.

Figure 2.45 is the analogue of the experimental Figure 2.20, and it shows both
the efficiency curve for the generation of the second excitable response (note
that the response to the first pulse perturbation is always present in all of
the simulations), and the distribution of the response time, normalized to the
delay time. The delay time is the time between the two perturbation, while the
response time is the time between the two responses. A definition of the two
times is visible in Figure 2.46. This figure is the result of 460 800 numerical
simulations with noise, with a delay time spanning from 0.1 to 1.2 ns.

Looking at the efficiency, we note that, also in this case, the efficiency reaches
the value of 1 for higher values of the delays, where there is no more inter-
action between the two perturbations. This means that, by themselves, each
perturbation is capable of generating a response 100% of the time. However,
when the delay between the two perturbations approaches the value of 0.22 ns,
the efficiency of the generation of the second pulse goes to zero, which means
that only one pulse is generated in this case. This is the effect of the refractory
period which follows from the first excitable response. It is also interesting to
note that the efficiency has a small bump at 0.1 ns: this is similar to what was
also observed in the experimental efficiencies of Figure 2.20, and we attribute
it to the effect of relaxation oscillations around the stable point after the first
excitation. We will study the effect of these oscillations in more detail in the
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Figure 2.45: Efficiency and response time histogram of the second excitable re-
sponse (the one triggered by the step-up function) varying the delay time, according
to numerical simulations. The parameters are α = 4, σ = 50, µ = 15, ∆ = 4 GHz,
|EI | =

√
0.317 (as in Figures 2.31, 2.34) and noise β = 6.4×10−3. For a delay smaller

than 0.22, a refractory time is clearly visible. (Top): Normalized response time his-
togram. The response time is normalized to the delay time. (Bottom): Associated
efficiency curve for the generation of the second response, defined as the number
of excitable responses over the number of perturbations. Reprinted with permission
from [Garbin 2017a].

next subsections.

Regarding the response time histogram, its distribution starts broad for a small
delay, and then becomes narrower for larger delays, as seen experimentally. For
large delays, it reaches the normalized value of 1, which means that the delay
time and the response time become almost the same. It is also interesting to
note that, even though the efficiency curve reaches 100% around a delay of 0.25
ns, the response time histogram actually shows some other small bumps and
oscillations up to 0.4 ns, and it reaches its final asymptotic state around 0.8
ns. This is the same interaction time between two consecutive perturbations
that has been inferred from the experiments.

Effect of the double-phase-perturbation on the A, B, C points in the
Argand plane The existance of a refractory period can be understood from
the motion of the the fixed points A, B, and C on the Argand plane due to
the phase perturbation. We already demonstrated how the effect of the phase
perturbation is to rotate the fixed points counterclockwise around the origin.
Let us now describe in detail the two cases represented in Figure 2.47, which
are calculated for a delay which is smaller (a) and larger (b) than the refractory
period. We remark that in both cases, A, B, and C mark the position of the
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Delay time

Time (ns)
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Figure 2.46: Definition of the delay time and of the response time. The delay time is
the time interval between the middle of the rising edge of the pulse and the middle
of the rising edge of the sigmoid function. The response time is the time interval
between the two maxima of the excitable responses.

fixed points before the start of the perturbation; A′′, B′′ and C ′′ mark the
position of the fixed point at the maximum of the first pulse perturbation, and
A′, B′ and C ′ mark their final position at the end of the step-up perturbation.
The movement of the fixed point is then as follows:

1. They start at their A,B,C position at the beginning of the simulation;

2. The first pulse perturbation moves them to the A′′, B′′, C ′′ position
counterclockwise for the first half of the pulse, before going back to the
A,B,C position at the end of the pulse;

3. The step-up perturbation moves them again from the A,B,C position to
the final A′,B′,C ′ position counterclockwise.

The dynamics will be as follows:

• Time delay larger than the refractory period, Figure 2.47 (b) The dy-
namics in this case can be separated into two separate trajectories corre-
sponding to the two perturbations. During the first trajectory, the system
starts at the stable C point and then, as in the case of a single pertur-
bation described before, it is overcome by the movement of the unstable
B saddle which makes it make and “U-turn”, followed by a clockwise
excitable response which brings it back to the C point with a couple of
large relaxation oscillations. Here the system rests for a few moments,
before the start of the second perturbation. When it comes, the system is
overcome again by the B saddle, makes a “U-turn” and performs another
clockwise excitable response, ending this time at the new stable position
C ′, following some oscillations. In this case, the two perturbations are
separated enough that there is time for the system to reach the stable C
point again after the first perturbation, before being perturbed again.



2.4 Analytical and numerical study 120

• Time delay shorter than the refractory period, Figure 2.47 (a) In this case
the dynamics in the Argand plane displays only one excitable response,
which brings the system from the initial C point to the final C ′ point.
The difference in this case with respect to figure (b) is that, during the
large first relaxation oscillations that follows the first excitable response,
the system finds itself “captured” in between the moving saddle-node pair
B,C, which escort the system to the final position C ′. In this case, there
is not enough time for the system to reach again the C position after the
first pulse as in was in case (b).

In conclusion, the refractory time stems from the fact that the system needs
some time to reach the stable point C after a first perturbation, during which
it cannot be excited again with another phase perturbation.
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2.4.5 Double perturbation: Resonator property

In the experimental section we described how the system, when perturbed with
a double pulse perturbation under-threshold, can actually generate a single
response with an efficiency that shows a maximum for a value of around 0.12
ns. We hypothesised that this resonator effect could be due to the relaxation
oscillations that the system performs before reaching its stable state. In the
Adler model vision, this is because if the system oscillates around the stable
point, there will be times when a second perturbation would be more efficient
than others, namely, when the system is oscillating towards the unstable point.

In this section we will explore more in detail the relationship between these
oscillations and the resonator period by analysing in detail the dynamical prop-
erties of the simplified Class B model 2.40, and we will propose a simple ad hoc
modification of the Adler model that displays a resonator property as observed
in the experiment. By choosing the right parameter range, we can also show
numerically that our system can transition from an integrator type of system
(as in Class 1 type of neurons) to a resonator type of system (as in Class 2 type
of neurons), which displays the resonator property. We will propose a dynam-
ical explanation of this transition by describing the separatrix for the system,
which is the surface that separated the excitable regions of phase space from
the non-excitable regions.

The integration algorithm is the Euler-Maruyama method with Gaussian white
noise 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t− τ)〉 = βδ(τ) with β = 0.01 as the weight parameter
of the random variables.

Integrator behaviour We start by choosing a range of parameters where
the Adler approximation is more appropriate: that is, at lower injection values.
Looking at Figure 2.48, we set |EI | = 0.3 and ∆ = 2.45 GHz, so as to be close to
the saddle-node boundary at positive detuning. The result is visible in Figure
2.50.

In all of these simulations, we perturb the system with a double-pulse per-
turbation with a delay between the two pulses that varies from 0.2 ns to 0.8
ns, in a similar way as it was done in the experiment. The top two rows of
this figure represent two different numerical simulations at two different delay
times between the two pulses of the perturbation: the first row at 0.2 ns and
the second row at 0.6 ns. For each simulation, the first column shows the time
traces of: the phase perturbation γ(t), the intensity of the output field |E|2,
the phase evolution of the field, and the population inversion D; the middle
column represent the trajectory in the Argand plane, and the third column the
trajectory in the D −<e(E) plane.

Looking at the efficiency curve we note that, for large delays, there is no ex-
citable response in the system. This means that the two perturbations, by
themselves, are underthreshold. However, when reducing the delay, the two
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Figure 2.48: Numerical bifurcation diagram of principal codimension 1 bifurcations
for the model 2.40, with α = 4, σ = 50 and µ = 15, evaluated with the Knut software
[Szalai 2013]. The diagram shows a Fold-Hopf bifurcation, where a saddle-node and
a Hopf bifurcation collide on a single point. The parameters for the simulations are
chosen in the region in between the Hopf and SN bifurcation.

perturbations get integrated by the system, which is able to generate an ex-
citable response, as with the first simulation with a delay of 0.2 ns. The ef-
ficiency curve increases almost monotonically from larger delays to shorter
delays, which indicates that the closer the two perturbations are in time, the
more efficient is the generation of the response, reaching 100% for delay shorter
than 0.35 ns. This type of efficiency curve is the same that one would get from
an integrate-and-fire type of neuron, and is a clear evidence of an integrator
behaviour.

Since in this case the phase perturbations are two pulses, the trajectory of an
excitable response in the Argand plane is that of a clockwise phase excursion
which starts from the stable C point and ends at the same point after a negative
2π phase slip.

Resonator behaviour We now change the parameter range in order to
excite more prominently some relaxation oscillations. To do that, we place
ourselves at |EI | = 0.3 and ∆ = 4.20 or ∆ = 4.80 GHz, as shown in Figure
2.48, so that we are closer to the Hopf bifurcation. We perturb the system with
a double-phase perturbation in exactly the same way as before. The results are
visible in Figures 2.51 and 2.52.

Also in the case of ∆ = 4.20 (Figure 2.51), the efficiency goes to zero at larger
delays, which means that the two pulse-perturbations are underthreshold by
themselves. However in this case the efficiency curve shows 3 different bumps
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Figure 2.49: Display of the right timings that are required after the first pulse pertur-
bation in order to trigger an excitable response, parameters as in 2.51, without noise.
The magenta triangles represent the spots where a second perturbation triggered on
that spot would result in an excitable response. The yellow triangles represent in-
stead the spots where a response would not be seen. Looking at the D−<e(E) plane,
the magenta triangles correspond to the places where the relaxation oscillations bring
the system closer to the unstable B saddle point (red point).

with centers that are equally spaced in the Delay time, with a fourth one barely
visible at around 0.75 ns. The spacing between them is around 0.13-0.14 ns. If
we now look at the two numerical simulations of the first two rows, we notice
that, even though there is no excitable response for a smaller delay of 0.35
ns, there is an excitable response for a larger delay of 0.42. The explanation
for this difference comes from the relaxation oscillations around the stable C
point after the first pulse-perturbation, as visible in the Argand plane and
more clearly in the D − <e(E) plane. Even though the first perturbation is
not enough to trigger a response, it displaces the system away from the stable
C point and sets in motion some relaxation oscillations. Depending on the
timing of the second pulse, the efficiency to reach the threshold either increase
or decreases, which gives rise to those equally spaced bumps in the efficiency
curve. To make a comparison, the period of these oscillations according to
expression 2.68 should be:

T IRO =
2π

ΩI
RO

=
2π√

2σ

τ 2
c

(µ− 1) +
(2π∆′)2

τ 2
c

= 0.137 ns (2.100)

which is consistent with the spacing of the bumps.

Another proof that the timing to get an excitable response is related to the
relaxation oscillation period comes from Figure 2.49. Here we have performed
the same simulations as in Figure 2.51 (without noise in this case), and we have
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marked both on the time-traces and on the phase planes with magenta triangles
all of the spots where a second pulse perturbation starting on that spot would
have produced an excitable response, and in yellow triangles the spots were it
would not have produced a response. As visible in the time-traces, the magenta
triangles seem to“ride the wave”of the relaxation oscillations, in the sense that,
for instance in the phase trace, they always happen close to the peaks of the
relaxation oscillations. Looking at the D − <e(E) plane, we also notice that
we could draw a diagonal line that separates the magenta triangles from the
yellow ones, which indicates that the spots where the system is brought closer
to the B saddle (red) point by the relaxation oscillation “wave”, are the ones
that have a higher chance of producing an excitable response.

Figure 2.52 shows the same type of study, but with a detuning parameter
which is a bit farther apart from the Hopf bifurcation, as with ∆ = 4.80. If
we look at the efficiency curve, we only notice one bump because in this case
the amplitude of the relaxation oscillations doesn’t allow for more than one
“wave-front” for the system, using the same surfing analogy as before. However,
even in this case, the fact that the efficiency starts closer to zero for smaller
delays and then rises again at 100% for larger delays is the evidence of an
underlying resonator effect in the system. This case is actually closer to what
we can observe in the experiment, as also in that case the efficiency displayed
just one efficiency bump with one maximum at a delay of around 0.12 ns.

One note on the values of the efficiency greater than one: when adding the
noise in the numerical simulations, is turns out that there are cases were the
system performs more than one excitable response for a single perturbation.
These multipulse events can increase the efficiency since they increase the total
counting of the excitable responses for a given number of perturbations. We
will describe more in detail those events in subsection 2.4.6.
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Figure 2.50: Example of an integrator behaviour, numerical simulations, with pa-
rameters |EI | = 0.3 and ∆ = 2.45 GHz (the others are as in Figure 2.48). The first
two rows of figures represent two different numerical simulations at different delays
(without noise), while the last row represents the efficiency curve for the genera-
tion of an excitable response, and the related response time histogram (with noise
β = 0.01). For each of the two numerical simulations, the first column represents
the time-traces of: the phase perturbation γ(t), the intensity of the output field |E|2,
the phase evolution of the field, and the population inversion D; the middle column
represent the trajectory in the Argand plane, and the third column the trajectory
in the D − <e(E) plane (black line). The black triangle is the onset of the second
perturbation, and the blue, red and green points are the A, B and C points respec-
tively. The slow manifold is shown as a green line when stable and as a dashed red
line when unstable. Note that while for a delay of 0.2 ns the system displays an
excitable response, this is not the case for a delay of 0.6 ns.
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Figure 2.51: Example of an resonator behaviour, numerical simulations, with param-
eters |EI | = 0.8 and ∆ = 4.20 GHz (the others are as in Figure 2.48). The first two
rows are numerical simulations, while the last row represent the efficiency curve and
response time histogram, as in Figure 2.50. Note that while for a smaller delay of
0.35 ns the system doesn’t displays an excitable response, it does for a larger delay
of 0.42 ns.
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Figure 2.52: Example of an resonator behaviour, numerical simulations, with param-
eters |EI | = 0.8 and ∆ = 4.80 GHz (the others are as in Figure 2.48). The first two
rows are numerical simulations, while the last row represent the efficiency curve and
response time histogram, as in Figure 2.50. Note that while for a smaller delay of
0.26 ns the system doesn’t displays an excitable response, it does for a larger delay
of 0.40 ns.
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Figure 2.53: 3D-plot of the slow manifold, saddle-node pair and the separatrix in
phase space <e(E)−=m(E)−D for the integrator (a) and resonator (b) regime of
parameters. Bottom figures are a top-down view of top figures. The other parameters
are as in Figure 2.48. The color coding of the surface is proportional to D to improve
readability in the <e(E)−=m(E) plane.

Separatrix We have seen in Figure 2.49 how there seem to be a clear dis-
tinction in phase space from the regions where a perturbation can lead to
an excitable response from the regions where it cannot. In this paragraph we
take this spacial analysis a step further by introducing the numerical shape of
the separatrix, which in this context is the 2D-surface in the 3D phase space
<e(E) − =m(E) − D that separates the excited regions from the not excited
ones. Note that in this case we define a region of phase space as excited if
the system, starting from inside the region, converges naturally to an excitable
response. In particular, whenever the system starts from a not-excited region
and then crosses the separatrix, soon after it will emit one or more excitable
responses.
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Figure 2.54: Visual description of the procedure to find the separatrix. Starting from
a grid of initial conditions, we separate the excited ones (red triangles) from the not
excited (black triangles). By employing a Marching Cubes algorithm, we extract the
polygonal mesh of the isosurface that separates the two sets and plot is as a magenta
surface. Note that, due to a known issue of the Matplotlib library which is used here
for the 3D plot, the plot does not render appropriately the intersections and the
overlap of different structures, so that some of the black triangles seem to be behind
the magenta surface while in fact they should be in front.

Figure 2.53 displays the part of the separatrix structure which is close to the
saddle-node pair where most of the dynamics takes place. The separatrix here
shown are calculated for the integrator (a) and the resonator (b) set of param-
eters. It is computed by following the evolution of a large number of initial
conditions (in this case 853 = 614 125 initial conditions) arranged in a 3D-grid.
We refer to Figure 2.54 for a visual clue of the procedure, which is applied
here for a much smaller grid of 103 = 1 000 initial conditions. After running
the numerical simulations from each point on the grid (without perturbation
or noise), we separate the ones that display at least an excitable response from
the ones that don’t. In the example of Figure 2.54, they correspond to the red
triangles and the black triangles respectively. Each point of the grid will then
be labelled with either a 1 or a 0 depending on the result, so that by the end of
this procedure we obtain a 3D discrete scalar field. By employing a Marching
Cubes algorithm11 [Lorensen 1987], we can extract the polygonal mesh of the

11This is an algorithm which is commonly used in Computer Graphics in order to recon-
struct polygonal meshes of isosurfaces in 3D data. It is usually employed to plot 3D medical
data as with computed tomography (CT), magnetic resonance (MR), and single-photon
emission computed tomography (SPECT).

https://matplotlib.org/mpl_toolkits/mplot3d/faq.html
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(a) Delay of 0.35 ns (b) Delay of 0.42 ns

Figure 2.55: 3D-plot of the slow manifold, saddle-node pair and the separatrix in
phase space <e(E) − =m(E) − D for the resonator regime (|EI | = 0.8, ∆ = 4.20
GHz). The color coding of the surface is proportional to D to improve readability.
(a) Numerical simulation with delay 0.35 ns between the two pulses of the pertur-
bation while (b) Simulation with delay of 0.42 ns. These are the same two numerical
simulations as in the two top rows of Figure 2.51. In the (b) case the trajectory
crosses the separatrix and an excitable response follows.

isosurface that separates the two sets, and plot it as a 2D surface. This is the
magenta surface of Figure 2.54. We finally process geometrically the obtained
polygonal mesh and we remesh it into a simpler shape using the Python mod-
ule PyMesh [Zhou 2018] in order to obtain the the surfaces plotted in Figure
2.53.

If we compare the shape of the separatrix of Figure 2.53 with respect to the
saddle-node pair, we can better interpret the behaviour of the system as an
integrator or a resonator. For both cases, the separatrix has the shape of an
open tube that envelops the slow manifold, at least close to the saddle-node
pair (the red and green points). Since the system will stay on the stable point
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when unperturbed ans it does not travel too far from the slow manifold when
perturbed, the most important part of the separatrix is the surface near the
stable point, which can be approximated by a curved section of a cylinder with
an axis oriented along the D direction. In the case of the integrator regime (a)
this section is very close to the stable node, so that a perturbation in the
right direction can easily push the system over the separatrix and generate an
excitable response. Furthermore, the relaxation oscillations have a very small
amplitude, so that, given two perturbations, they will not add more efficiently
for a particular delay.

By comparison in the resonator regime, the part of the separatrix closest to the
stable point is slightly far from the point itself. Figure 2.55 shows in particular
the effect of a double-pulse perturbation with respect to the position of the
separatrix in the resonator case. The left (a) part of this Figure and the right
(b) part display exactly the same two numerical simulations for a delay of 0.35
ns and 0.42 ns that were already plotted in Figure 2.51, but here in 3D and
with the separatrix.

In the case of a smaller delay of 0.35, we can see the the blue relaxation oscil-
lations after the first pulse-perturbation happen outside of the excited region
that is enveloped by the separatrix. Then when the second pulse-perturbation
kicks in (the black point here is the same as the black triangle in Figure 2.51),
the system is displaced from the relaxation oscillation plane away from the
separatrix, before relaxing again to the stable point. We see that in this case,
the system trajectory does not cross the separatrix, and as a consequence we
do not observe an excitable response in this case.

In the case instead of a larger delay of 0.42 ns, the second pulse perturbations
is instead able to push the system towards the separatrix, and by crossing it,
an excitable response is triggered. We can clearly see from these two examples
that the role of this structure is indeed as a separatrix between the trajectories
that display an excitable response from the trajectories that don’t.

This idea is confermed by the study of Figure 2.56. Here we reproduced the
same type of numerical simulations as in Figure 2.51 but without noise, and
for each simulation we measured weather or not it displayed an excitable re-
sponse, and we also recorded what was the minimum distance in 3D space
<e(E) − =m(E) − D that the trajectory ever got to with respect to the sep-
aratrix structure. We can see that the number of responses oscillates between
0 and 1 (red curve) following the same behaviour as the efficiency curve of
Figure 2.51 but without noise. And if we look at the minimal distance (black
curve), we notice how the delay times that correspond to an excitable response
correlates pretty well with the delay times when the minimal distance between
the trajectory and the separatrix goes to zero, meaning that the trajectory has
crossed the separatrix. We can further note that, for a delay between 0.7 ns
and 0.8 ns, the trajectories do get closer again to the separatrix, but since they
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Figure 2.56: Distance between the separatrix and the trajectories in the 3D <e(E)−
=m(E)−D space, and number of excitable responses observed, for different delays.
Same type of simulations and parameters of Figure 2.51, without noise. Notice that
when the distance reaches zero (the trajectory crosses the separatrix), an excitable
response follows.

do not cross it in this case, there is no excitable response present.

To conclude, the separatrix structure showed in Figure 2.53, along with the
amplitude and spatial extension of the relaxation oscillations, can explain why
for some choice of parameters it is possible to observe a resonator behaviour,
while for similar others it is possible to observe an integrator behaviour.

Ad hoc modelling: beyond the overdamped pendulum. In the previ-
ous sections we have referred multiple times to the Adler model (as expressed
in equation 2.2) as a simple explanation for many dynamical properties of the
system. Features like the presence of a saddle-node pair of fixed points, the
locking range for the detuning parameter, the excitability of the system and
the refractory period could all be explained qualitatively starting from the
simple dynamical picture of an overdamped pendulum with constant torque
subject to a phase perturbation. The connection between a laser with injec-
tion and the Adler model comes, from one side, from the observations in the
[Coullet 1998] paper where they demonstrated that a Class C model of a laser
with injection can be reduced to the Adler equation for low injection and de-
tuning; and from another side, from our observations reported in the last two
paragraphs of subsection 2.4.2.

Given its connection to the θ-model, the Adler model should behave as an
integrate-and-fire type of neuron which is typical of Class 1 neurons. However,
in this paragraph we propose an extension to the Adler model which is able
to reproduce the resonator property as observed in the experiment. By intro-
ducing a small inertial term to the Adler model we will be able to observe an
oscillation in the efficiency curve as evidence of a resonator behaviour, which
is typical of Class 2 type of neurons. In the pendulum analogy explained in
[Coullet 2005], this consists in considering a pendulum which is damped but
not overdamped, so that we cannot drop the second derivative of θ in equation
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2.4. It has already been shown in [Eguia 2000] that adding this term corre-
sponds to increasing the dimension of the phase space from that of a circle to
an infinite cylinder, where oscillations around the stable focus can take place.
In the paper they showed how the broadening of the phase space has the effect
of to heavily impact the interspike time distribution in the case of an excitable
system with noise. In the pendulum analogy, we are modelling the fact that
the pendulum, after a first pulse perturbation, does not simply relax to the
stable fixed point but instead oscillates around it a few times. If we can time
the second perturbation so that it kicks the pendulum when it oscillates closer
to the unstable point, then it is more likely that an excitable response will be
triggered. This will influence the efficiency curve for the generation of a sec-
ond response, which will result in the same shape with repetitive and equally
spaced bumps as seen in the modelling (see Figure 2.51).

Let us now turn to the numerical simulations for a confirmation of these hy-
potheses. As a first step, we check numerically that the Adler model acts as
an integrate-and-fire type of system by perturbing it with a double pulse per-
turbation. The integrated equation can be written as:

φ̇ = ω + ∆ω(t)− sinφ+ ξ(t) (2.101)

where φ is the dynamical variable, ∆ω(t) is the applied perturbation in the
shape of two Gaussian with different delays and ξ(t) is the added noise. Each of
the two Gaussians has an amplitude of 2.8 Hz and standard deviation of 0.35.
Note that in this case the perturbation is applied to the detuning parameter
ω which, in a similar way as the phase-perturbations used in the full model
2.98, has the effect of moving the position of the saddle-node pair along the
limit circle. All the simulations shown in this paragraph are performed using
the Euler-Maruyama method of integration with Gaussian noise 〈ξ(t)〉 = 0,
〈ξ(t)ξ(t− τ)〉 = βδ(τ) with β = 0.08 as the weight parameter of the random
variables.

Figure 2.59 shows different realizations of the simulations at different delays,
with ω = 0.01. For each simulation, the top panel represents the time-trace
of the perturbation, while the bottom panel represents the histogram of the
results of 20 000 simulations with the same delay. The black lines correspond
to the position of the stable node while the red lines to that of the unstable
saddle, which for this value of the detuning are almost π radiants apart. If we
first consider a long delay of 3.0, we note that all the simulations start from
the stable node, and they they get perturbed by the phase perturbation which
has the effect of displacing the system towards the threshold of excitability
represented by the saddle point. In this case the two perturbation are too far
apart in time, and after each pulse the system relaxes monotonically towards
the stable state. By decreasing the delay time, we can add the effect of the
two perturbations. If with a delay of 2.0 the system has almost reached the
threshold, by lowering it further the system can finally overcome it, first only
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Figure 2.57: Numerical response time histogram and efficiency curve of the Adler
model with noise 2.101 with added detuning-perturbation ∆ω(t). Same type of sim-
ulations and parameters as in Figure 2.59, constructed from 10 000 events for each
delay. (Inset) Shape of the perturbation for a delay of 1.3 (at approximately 50%
efficiency).

in a few simulations as with a delay of 1.5, and then for all of the simulations
as with a delay of 1.0. In this final case all of the simulations experience an
excitable response that consists of a 2π phase rotation.

All of these results are summarized in the efficiency curve of Figure 2.57,
which is constructed from 10 000 simulations for each delay with the same
parameters as before. The efficiency curve starts off at zero for long delays,
and then increases monotonically towards 100% for shorter delays. This shape
is the typical feature of an integrate-and-fire type of system. Looking at the
histogram of the response time of the excitable response, we note how the
response is generated quicker and with less dispersion for a lower delay (which
means a stronger overall perturbation), as expected from an excitable system.
Both the efficiency curve and the response time histogram are very similar to
the results displayed in Figure 2.50 obtained with the full model, confirming
that this simple model can explain most of the dynamical features of the system
with integrator parameters.

We now extend the Adler model by adding an inertial term I to the equation
2.101, which basically means that we cannot drop the second derivative of θ
in equation 2.4. We can write the model as:

Iφ̈+ φ̇ = ω + ∆ω(t)− sinφ+ ξ(t) (2.102)

where ∆ω(t) is the same type of detuning-perturbation as before in the shape
of two pulses. In this case, the amplitude of the two Gaussians is 0.96 Hz and
their standard deviation is 5.65.
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Figure 2.58: Numerical response time histogram and efficiency curve of the modified
Adler model with noise 2.102 with added detuning-perturbation ∆ω(t) and inertial
term I. Same type of simulations and parameters as in Figure 2.60, constructed from
10 000 events for each delay. (Inset) Shape of the perturbation for a delay of 20.

We perform also in this case different simulations at different delays, as shown
in Figure 2.60, with ω = 0.01 and I = 10. As before, for each delay the
top panel represent the time-trace of the detuning-perturbation, while the the
bottom panel represents the histogram of the results of 20 000 simulations
with the same delay. Looking at the case of a long delay of 80, we note that
each perturbation displaces the system from the stable the stable node, and
then returns towards it when the perturbation stops following some relaxation
oscillations around the stable node. Depending on the choice of the delay, the
system can then either “ride” the relaxation oscillations, as with a delay of 48
or 27, so that it has an higher chance of producing an excitable response; or be
opposed to them, as with a delay of 40 and 20, thereby reducing the number
of excitable responses.

These observations are summarized in the efficiency curve of Figure 2.58, which
is constructed from 10 000 simulations for each delay with the same parameters
as before. The efficiency curve shows a series of bumps which corresponds to
the delay times where the relaxation oscillations bring the system closer to
the threshold. The response time histogram shows instead that, while some
of the excitable responses are generated by the first pulse perturbations (the
distribution around the horizontal blue line), most of the responses happen due
to the second pulse (the distribution around the slanted black line) and are
concentrated around the local maxima of the efficiency. Again, we can compare
this Figure with the results displayed in Figure 2.51 which were obtained with
the full model. We note that, by only adding an inertial term to the Adler
model, we have recovered most of the features of the resonator behaviour that
the full system exhibit.
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Figure 2.59: Numerical simulations of the Adler model with noise 2.101 with added
detuning-perturbation in the shape of two pulses, with ω = 0.01 and β = 0.08. The
delay between the two pulses are 1.0, 1.5, 2.0 and 3.0 from top to bottom. For each
delay, we show the time-trace of the perturbation (top panels) and the histogram
of 20 000 simulations with the same delay (bottom panels). Note that, while no
excitable response is present for a delay of 3.0 and 2.0, some are present for a delay
of 1.5 and for a delay of 1.0 all of the simulations display an excitable response.
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Figure 2.60: Numerical simulations of the modified Adler model with noise 2.102
with added detuning-perturbation ∆ω(t) in the shape of two pulses and inertial
term I, with ω = 0.01, I = 10 and β = 0.08. The delay between the two pulses are
20, 27, 40, 48 and 80 from top to bottom. For each delay, we show the time-trace
of the perturbation (top panels) and the histogram of 20 000 simulations with the
same delay (bottom panels). Note that, while few excitable responses are present for
delays of 80, 40 and 20, much more are present for delays of 48 and 27.
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2.4.6 Multipulse excitability

In the experimental section we have shown that the system can respond to a
single perturbation with more than one spike in intensity. If we refer to our
physical model as in Equation 2.40, this means that for a single perturbation
there will be more than one full-rotation-excursion in the Argand plane (as
in Figure 2.34), and each of these excursion will be associated with a spike in
intensity and a 2π phase rotation, before going back to the stable C point.

In the paper [Wieczorek 2002] they show how the regions in the Pinj − ∆
plane where multipulse responses can be found are located inside what are
called homoclinic teeth that are placed inside the locking region and touch the
saddle-node bifurcation at the negative ω detuning boundary. By crossing the
boundaries of different bifurcation tongues, one can observe one, two or more
spikes following a single perturbation.

Figure 2.61 shows instead the case of multipulse responses that are generated
from a double-perturbation. Here we are in the same condition as Figure 2.51,
so that we are perturbing the system with a double-pulse phase perturbation
with a fixed delay of 0.27 ns, which corresponds to the delay in Figure 2.51
where the efficiency curve is greater than one. We show in Figure 2.61 three
different simulations (a), (b) and (c). In the case of simulation (a), we can ob-
serve only one excitable response, while we can see two responses for simulation
(b) and three responses for simulation (c). Even if the only thing that changes
between these simulations is the randomness in the noise we can still observe
two or more excitable responses instead than only one. This means that we
are perturbing the system to be close to a region where multiple responses are
possible, so that just the noise level can bring the system to experience two or
more pulses.

These types of multiple responses are a further evidence that the system can
depart from an Adler-type dynamics (in the integrator regime) and go towards
a more complex type of dynamics which can display a resonator property (in
the resonator regime) or multipulse excitability.
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Figure 2.61: Multiple responses consiting of 6π phase rotation in response to a
double-pulse perturbation. Same type of simulations and parameters as in Figure
2.51, with noise β = 0.01. (a) One response. (b) Two responses. (c) Three responses.
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2.5 Conclusions and perspectives

The system under study in this chapter was that of a quantum-well semicon-
ductor laser with injection. Under certain conditions, this system can be made
to be excitable, so that it responds to an input phase perturbation in the mas-
ter signal with an excitable response which consists of a 2π phase rotation and
a corresponding spike in intensity. The excitability shown by this system is
analogous to the one displayed by the most famous excitable system, i.e. the
neuron. Furthermore, the formulation of the Adler model, which is the first or-
der approximation of the behaviour of our system for low injection and small
detuning, is the same as the neuronal θ-model, which is a popular biological
neuron model used in neuroscience, and is a typical Class 1 type of neuron.

Following this analogy, we have probed our system with different types of phase
perturbations, either single or double, in order to understand the limit of the
Adler description, and to find what other properties this system shares with
neuronal systems. The following properties were observed experimentally:

• A refractory period of around 0.20 ns which follows from a first excitation;

• A resonator property when perturbing the system with a double pertur-
bation under-threshold with delay of 0.12 ns;

• Controllable multipulse excitability, where the number of responses (from
1 to around 10) depends on the strength of the single perturbation.

While the Adler model suffice to explain qualitatively the existence of a re-
fractory period, this is not the case for the resonator property and multipulse
excitability. In this case, we have to go beyond the simple Adler description
and instead rely on the full physical model which comes from a rearrange-
ment of the Maxweel-Bloch equations [Arecchi 1965]. In particular, the Class
B model that can be derived from the [Prati 2010] system of equations is able
to reproduce qualitatively and quantitatively the experimental observations,
and to give some insight on each property. It was found that the regime where
these properties are more noticeable is the same as where the relaxation oscil-
lations are more prominent. These oscillations are due to the proximity to a
Hopf bifurcation, and their frequency depends on the pumping value and the
detuning [Tredicce 1985, Kelleher 2012b]. An ad hoc extension of the Adler
model, namely by adding an inertia term as in the case of a simple pendulum
with torque [Eguia 2000], is capable of reproducing a comparable efficiency fig-
ures as in the full Class B model in the case of two successive under-threshold
perturbations. It has been recently shown that adding the same inertial term
to a network of Kuramoto oscillators can lead to complex hysteretic transitions
from synchronized to desynchronized states [Olmi 2014].

Going back to the neuroscience analogy point of view, this means that the
quantum-well semiconductor laser under study can behave more like a Class 2



2.5 Conclusions and perspectives 142

neuron than a Class 1 [Izhikevich 2007]. They are a class of neurons where the
transition between non-spiking and spiking, when increasing the perturbation
strength, happen at a finite frequency, so that there exists a discontinuity in the
frequency-current curve. This point also matches the experimental observations
reported in [Turconi 2013] where they showed that the unlocking transition for
the laser with injection happen at a non-strictly zero frequency. The models
that are usually used in order to reproduce the behaviour of a Class 2 neuron
are those which exhibit a Hopf bifurcation, as in the case of the Fitzhugh-
Nagumo model. The existence of a discontinuity in this type of model comes
from the fact that fact that, at the bifurcation point, there is a change in
dynamics from a stable point to a spiking limit cycle, which is born with a finite
frequency. Common types of resonator neurons include most cortical inhibitory
interneurons, including the FS type, and brainstem mesencephalic V neurons
and stellate neurons of the entorhinal cortex [Izhikevich 2007]. Following the
emission of an excitable spike, such systems relax back to their stable point
via oscillations which allow for a resonance effect. In biology, this type of
oscillations can be observed experimentally as Membrane Potential Oscillations
[Leung 1991, Bland 1988].

In this work we observed that both integrator and resonator dynamics can
be obtained depending on the parameters. When looking at the bifurcation
diagram in the injection strength-detuning plane (Pinj −∆), we observe that
the dynamics is in fact organized around a Saddle-Node-Hopf bifurcation of
codimention 2 [Solari 1994], and the type of dynamics depends on the selected
parameters. The same type of switch from an integrator to a resonator has also
been observed in neurons. For example in [Prescott 2008] it has been observed
how pyramidal neurons can switch from being integrators in vitro to resonators
under in vivo-like conditions, and in [Zeberg 2015] it has been shown how a
particular parameter (the density of voltage-gated potassium channels) was
able to shift the dynamics of the model of the same neurons from a Class 1
to a Class 2. It has been proposed that the transition between Class 1 and
Class 2 can be explained by the existence of important codimention-2 bifurca-
tion points (Bautin, Bogdanov-Takens, resonant homoclinic and saddle-node
homoclinic) which organize the bifurcation landscape [De Maesschalck 2015].

The long term vision of this study would be to detect the properties of this sys-
tem that may be relevant to their application in spike processing. We know that
spike encoding, apart from being widely accepted as the information medium
underlying the brain, is a type of processing of information that can be ro-
bust to errors, expressive and power efficient [Paugam-Moisy 2012, Tait 2013].
It could then be possible to combine these advantages with the possibility of
a scalable photonic network able to process information in an ultrafast and
adaptive way as a way of reaching high processing speeds and capability. For
instance, the integrator property may be used to provide temporal summation
[Selmi 2015] for phase encoded data and the resonator effect may be used to
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provide advanced coincidence detection feature while multipulse excitability
may be employed for analog to spike signal conversion. As a further example,
when an excitable system is coupled to itself after a long delay [Garbin 2015b],
we expect a pure refractory time to give rise to repulsive interactions between
spikes [Terrien 2018], while a resonator feature may be at the origin of clusters
[Garbin 2017b].

In the following chapter we will go beyond the study of a single element and
instead we will explore a first attempt at constructing an optical spiking net-
work of many coupled laser elements, with size ranging from 1 to around 500
elements. We will observe how a large number of laser systems can interact via
an all-to-all opto-electronic type of coupling, and we will describe the role of
the selected population on the observed dynamics.





Chapter 3
System of many lasers with
optoelectronic coupling as a network of
spiking elements

3.1 Introduction to the chapter

As mentioned in the general introduction, there is great interest in the scientific
community in studying physical systems that can implement a network of
coupled spiking elements, both as a model of neuronal dynamics and for neuro-
inspired applications. However, in the case of optical systems, realizing a large
and scalable systems that can be easily manipulated (e.g. by changing the
coupling strengths) is still quite challenging.

In this chapter we will introduce a system of many lasers (up to 451) that
can be coupled in an all-to-all configuration thanks to an optoelectronic type
of feedback. The basic idea consists in realizing an optical mean field of a
matrix of lasers onto a detector, and then translating the optical signal into an
electrical one and transforming it through a nonlinear function before injecting
it back into the pumping current of the laser matrix itself.

The dynamics that results from this setup can be a stable stationary dynamics,
or it can be periodically oscillating, or display chaotic spiking. Throughout
the different types of dynamics, all of the lasers will be synchronized when
following the slow manifold, so that only small amplitude deviations in the
output power of single lasers can be observed. By studying the dynamics of
different populations of lasers, we will be able to relate the type of dynamics
observed in different populations to a property of the selected population (i.e.
the average threshold of the LI curves of the selected lasers), and we will
test this hypothesis for populations of many different sizes. Furthermore, as
the population size increases, the type of dynamics will converge towards a

145
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simplified case which will depend on the statistical properties of the whole
population (the average threshold).

The chapter is then organized as follows: we will firstly introduce the reader
in section 3.2 to the concepts of dimensionality reduction and collective phe-
nomena in networks of oscillators and also to the type of optoelectronic system
here employed, which is a generalization from [Al-Naimee 2009]. Then we will
report the experimental results, both in the case of this setup in section 3.3
and in the case of similar ones in section 3.4. Later in 3.5 we will describe the-
oretically and numerically the system by using a (2N + 1)-dimensional model
of N coupled lasers, which will fit our experimental observations very nicely.
Finally, we will draw our conclusions in section 3.6.

The experimental and numerical results reported in this chapter are envisioned
to be the subject of a paper:

• Axel Dolcemascolo1, Romain Veltz2, Francesco Marino3 and Stéphane
Barland1. “Mean field dimensionality reduction of coupled lasers” (Title
subject to change), (2019) [Dolcemascolo 2019]

which will be submitted to publication soon (expected to appear in print in
2019).

1Université Côte d’Azur, CNRS UMR 7335, Institut de Physique de Nice, 1361 Route
des Lucioles, F-06560 Valbonne, France

2Inria Sophia Antipolis, MathNeuro Team, 2004 route des Lucioles - BP93, 06902 Sophia
Antipolis, France

3Dipartimento di Fisica, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino,
Firenze, Italy
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3.2 Introduction to networks of oscillators

3.2.1 Networks of pulse-coupled oscillators, dimension-
ality reduction and collective chaos

In the general introduction we already mentioned a part of the great wealth
of studies on the topic of synchronization of coupled oscillators, which can be
thought of as a first step towards the study of networks of more biologically-
oriented spiking elements. The field of spiking neural networks is indeed of great
interest in neuroscience, and among the many studies on the subject we can cite
[Brunel 2000, Roxin 2005, Fournier 2016, Schwalger 2017, Rosenbaum 2017,
Pyle 2017].

However in order to achieve a first understanding on such networks, here we
will restrict our studies to the simpler case of coupled oscillators. The Ku-
ramoto model in particular has been extensively studied as one of the simplest
models that can describe the dynamics of globally coupled networks. Even
though the study of these networks is vast and ongoing (e.g. a first proof of
the synchronization of pulse-coupled oscillators is as old as the author of this
manuscript [Mirollo 1990]), given the high complexity of the problem it would
be useful to find a way to obtain a reduction in the dimensionality of the sys-
tem. Many attempts to achieve this reduction have been successful, as in the
case of N identical Josephson junctions [Watanabe 1994], a macroscopic field
version of a network of modified theta-model neurons [Kotani 2014], and a pair
of coupled oscillating networks of FitzHugh-Nagumo elements [Nakao 2018].

The Ott-Antonsen ansatz and its applications A major breakthrough
in this sense has come from what is now commonly referred to in the literature
as the “Ott-Antonsen” ansatz, or manifold (OA for short) [Ott 2008, Ott 2009,
Ott 2011]. This ansatz allows to cast the system of Kuramoto oscillators in
the thermodynamic limit (n→∞) into a reduced, low dimensional system of
ordinary differential equations that define a reduced manifold towards whom
the system is attracted.

The gist of the argument is as follows (reduced version from [Pietras 2016]):
adopting the notation as in [Montbrió 2015], one can write the kuramoto-like
models as:

θ̇j = ωj + =m
[
He−iθj

]
j ∈ {1, . . . , n} (3.1)

where ωj is the natural frequency of the j-th oscillator, and H is a driving
complex-valued field, which represent the coupling, that can depend on pa-
rameters such as the time t, the mean field or other auxiliary variables. In the
thermodynamics limit, one can introduce the quantity ρ(θ, ω, t) dθ dω which
represents the fraction of oscillators whose phases are in the range [θ, θ + dθ]
and have natural frequencies in [ω, ω+dω] at time t. The OA ansatz consists in
assuming that the form of the distribution of the density-of-oscillators variable
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ρ is of the type:

ρ(θ, ω, t) =
g(ω)

2π

{
1 +

[
∞∑
n=1

α(ω, t)neinθ + c.c.

]}
(3.2)

where g(ω) is a continuous frequency distribution function of non-zero width;
c.c. stands for complex conjugate and an = α(ω, t)n is the n-th coefficient of
a restricted Fourier representation. Note that with this ansatz the problem
is shifted from finding the right evolution of the density function ρ(θ, ω, t)
to finding the function α(ω, t) that determines all of the Fourier coefficients
an. Inserting this expression back into a continuous version of the Kuramoto
equation 3.1, we obtain a set of ordinary differential equations for α:

∂α(ω, t)

∂t
+ iωα(ω, t) +

1

2

[
H α(ω, t)2 −H∗

]
= 0 (3.3)

which can be readily analysed using numerical bifurcation analysis. As an
example of application, in [Panaggio 2015], section 3, for a network with two
clusters of N identical oscillators, they derive a 2D dynamical system (equation
10) that is capable of displaying chimera states.

The low-dimensional manifold described by this procedure has been shown to
be globally attracting for a broad class of Kuramoto oscillators [Ott 2009,
Ott 2011]. Later, even for parameter-dependent systems (where the natu-
ral frequency may deviate from ωj and depend on another parameter η
and where H may also depend on the same parameter) the OA manifold
was also conjectured to be attractive [Montbrió 2015]. The case of “weak”
parameter-dependence has been recently proved in [Pietras 2016]. Note that
the parameter-dependent case is analogous to a network of theta neurons, which
is a model of spiking elements described by equation 2.15. This extends the OA
ansatz to networks of quadratic integrate-and-fire (QIF) neurons, as described
in [Luke 2013, Montbrió 2015, Pietras 2016], and including gap-junction cou-
pling in [Laing 2015]. Finally, the same ansatz has been applied to the bio-
logically realistic Winfree model [Winfree 1967], as described in section 9.1
of [Ashwin 2016], and more recently in networks of recurrently coupled spik-
ing neurons [Schmidt 2018]. A recent overview on this topic can be found in
[Pietras 2016].

Chaos synchronization and collective chaos The issue of the emergence
of chaotic phenomena is of great interest in the study of networks of coupled
elements. Broadly speaking, we can divide this topic into two categories: chaos
synchronization and collective behaviour.

Chaos synchronization deals with coupled elements that by themselves can
exhibit a chaotic behaviour, as in the case of a Lorentz oscillator or a Rössler
oscillator, but as they are coupled together they can display more complicated
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types of dynamics. In particular, they can become synchronized between each
other, display coherence resonance or even suppress their chaotic behaviour.
A seminal study in the coupling of two chaotic oscillator is [Pecora 1990],
where it was shown how two chaotic systems linked with a common signal
can become synchronized. This condition was analysed through sub-Lyapunov
exponents. In [Zhou 2002] the authors studied a lattice network of 100x100
Rössler oscillators, and they found that local weak coupling and global noise
could induce phase synchronization and coherence resonance in the system.
On the other hand, in [Masoller 2005] it was shown how an array of coupled
chaotic logistic maps with time-delayed coupling can display a synchronized
state which is a homogeneous steady state, so that the chaotic dynamics of
each element is suppressed. A similar result of chaos suppression was found
in [Gonzalez-Miranda 2002] in the case of two Rössler oscillators coupled by a
bidirectional diffusive link with weak periodic forcing.

In the case of simpler types of oscillators, as with theta-neurons or Kuramoto-
like oscillators, a chaotic macroscopic or collective dynamics can be a result of
the increase in the dimensionality of the system induced by the coupling, even
if the single oscillators are not chaotic by themselves. In this case one usu-
ally talks of collective chaos. In the case of a network of Kuramoto oscillators,
collective chaos via period-doubling cascades has been shown to occur in a pop-
ulation subjected to global coupling with periodic time variations [So 2011],
and in the case of identical oscillators with a symmetric natural frequency dis-
tribution [Bick 2011], thereby disclaiming the fact that either inhomogeneities
or asymmetries are necessary for collective chaotic dynamics to appear. Collec-
tive chaos was also observed in the case of theta-neurons with global pulse-like
coupling [So 2014], two symmetrically coupled populations of identical leaky
integrate-and-fire neurons [Olmi 2010], identical inhibitory integrate-and-fire
neurons with time-delayed coupling [Pazó 2016], and Ginzbourg-Landau oscil-
lators [Hakim 1992, Nakagawa 1994].

3.2.2 Coupled semiconductor laser arrays

Semiconductor laser arrays have been studied and utilized in coupled config-
urations for the last 30 years or so. The interest around these types of de-
vices initially rose thanks to the idea of constructing arrays of phase-locked
lasers that could deliver high coherent powers in narrow, diffraction-limited
beams for applications such as free space optical communications [bot 1994].
As an example of a “back of the envelope” calculation, it is well known that,
given N individual mutually coherent lasers, the power density at the cen-
tral spot can be proportional to N2, thus rapidly increasing the spot power
[Golubentsev 1987].

Historically, one of the first attempted techniques for the implementation of
global coupling within an array of lasers has been by employing Talbot self
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imaging [Antyukhov 1986, Latimer 1993], which consists in placing a normal
partly-reflecting mirror at d2/λ distance from the face of the array, where d
is the period of the array lattice and λ is the wavelength of the lasers. This
distance is such that the Fraunhofer diffraction pattern generated by the laser
array lattice is imaged onto the face of the array. In doing so, each diffrac-
tion spot is imaged on each laser element, hence creating an all-to-all type
of coupling. Other methods include using adaptive optics (optical resonator,
coherent optical recombination, beam steering, and beam focusing) to coher-
ently recombine many multiline laser beams [Wang 1978] and the use of a
common injected signal into each of the lasers in order to achieve phase lock-
ing [Dunn 1983, Bourdet 1987]. A review of these techniques can be found
in [Likhanskĭı 1990, bot 1994] while a theoretical treatment of this subject is
described in [Oliva 2001] and all the references therein.

Despite these earlier investigations, few experimental studies have managed to
implement a large, scalable network of optical emitters where the parameters
of the network, such as its coupling topology, can be easily controlled. Recent
works in this direction include [Trela 2013], where gratings are used to lock the
wavelengths of all elements within an array of lasers; [Nixon 2011, Nixon 2012]
where chains of 7 and 16 laser in a loop have been coupled through their far
field; [Nixon 2013], where up to 1700 lasers have been coupled through far field
diffraction in a nearest-neighbour configuration and [Brunner 2015], where a
network based on a 8x8 laser array is coupled through a novel optical diffractive
scheme which allows for self- and neighbour coupling.

3.2.3 Single laser with optoelectronic feedback as a
chaotic spiking element

As mentioned in the previous subsection, it is not experimentally easy to con-
struct a network of locally or globally connected lasers. The setup that we
employed in order to achieve this goal is that of a laser matrix with op-
toelectronic feedback, as it will be described later. This type of setup al-
lows us to realize an all-to-all type of coupling in a population of N lasers,
where N that can go from 1 to 451. This setup is a generalization of a
very similar optoelectronic setup already utilized in the study of a single
semiconductor laser by the group of Kais Al-Naimee1,2, Francesco Marino3,
Marzena Ciszak1, Sora F. Abdalah1,4, Riccardo Meucci1 and F. Tito Arec-
chi1,3 based in Florence and Baghdad and in the following we will compare
both the experimental observations and the modelling introduced in the pa-
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Figure 3.1: Schematic setup of a single semiconductor laser with optoelectronic feed-
back. The signal coming from the laser is firstly converted into an electrical signal
by the detector and then transformed through a high pass filter and a nonlinear
function before being injected back into the power supply.

pers [Al-Naimee 2009, Al-Naimee 2010, Marino 2011].

Chaotic spiking and excitability Let us then describe briefly the exper-
iment in question and its results. It consists of a semiconductor laser with
optoelectronic feedback, as shown in the schematic of Figure 3.1. Here the
output laser light is sent to a photodetector which produces a current propor-
tional to the optical density. This current is then filtered by a high-pass filter
with a cut-off frequency that can be varied between 1 Hz and 100 Hz. Then the
signal is sent to a variable gain amplifier characterized by a nonlinear transfer
function of the form f(w) = Aw/(1 + sw), where A is the amplifier gain and
s a saturation coefficient, and then fed back to the injection current of the
laser. Note that this injected current will be added on top of a stable DC value
of the pumping current that can be set by a DC current adjuster (a function
generator, not shown in the Figure for simplicity and for coherence with the
following setups schematics in this chapter).

The dynamics of the photon density S, the carrier density N and the high-pass-
filtered feedback current I (before the nonlinear amplifier) can be described by
the usual single-mode semiconductor laser rate equations [Chow 1994]:

Ṡ = [g(N −Nt)− γ0]S

Ṅ =
I0 + fF (I)

e V
− γcN − g(N −Nt)S

İ = −γfI + kṠ

(3.4)

which are appropriately modified in order to include ac-coupled feedback loop.
As the pumping current I0 is varied, a transition between a stationary state and

1Consiglio Nazionale delle Ricerche (CNR), Istituto Nazionale di Ottica, Largo E. Fermi
6, I-50125 Firenze, Italy

2Department of Physics, College of Science,University of Baghdad, Al Jadiriah, Baghdad,
Iraq

3Dipartimento di Fisica, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino,
Firenze, Italy

4High Institute of Telecommunications and Post, Al Salihiya, Baghdad, Iraq
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Figure 3.2: Homoclinic loop of a saddle-focus in the case of a Shilnikov bifurcation.
Reprinted from [Shilnikov 2007]5.

a periodic self-oscillation state in the dynamics of the light intensity measured
at the photo-detector can be observed both experimentally and numerically
[Al-Naimee 2009]. At the transition point between the two states, the system
displays a chaotic spiking regime, which consists in a series of erratic spikes on
top of small-amplitude chaotic oscillations. Notice that as the model is three di-
mensional, all three variables S, N and I are required in order to observe chaos.
These dynamics has been explained as the result of an incomplete homoclinic
Shilnikov scenario, which can mimic trajectories close to a Shilnikov bifurca-
tion. This bifurcation consists in a homoclinic bifurcation of a saddle-focus
equilibrium state that can elicit the onset of complex dynamics near homo-
clinicity whenever the saddle-focus, with linearized eigenvalues (µ,−ρ ± iω),
(ρ, µ > 0), satisfies the condition |ρ/µ| < 1 [Shilnikov 2007]. Figure 3.2 shows a
homoclinic loop of a saddle focus. This bifurcation can lead to the formation of
a spiral chaotic attractor characterized by large pulses separated by time inter-
vals in which the system displays small-amplitude chaotic oscillations, as can
be seen in the case of the Lorentz model [Shil’nikov 1995, Afraimovich 2014].

However, the original Shilkinov scenario does not explain in general the ap-
pearance of chaotic spiking. In particular, each spike could be generated not
only by a homoclinic orbit, but also by other types of reinjection mechanism
that, in particular in slow-fast systems, could include a Hops bifurcation fol-
lowed by a period doubling cascade producing a sequence of small-periodic
and chaotic excitable attractors, that develops before relaxation oscillations
arise. As the mean amplitude of the chaotic attractors grows, some fluctu-
ations of the chaotic background spontaneously trigger spikes in an erratic

5Licensed under CC BY-NC-SA 3.0

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
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Figure 3.3: Example of periodic Mixed Mode Oscillations (MMOs) consisting of a
switch between small and large amplitude oscillations. The MMOs here shown are re-
alized via a generalized canard phenomenon. Reprinted from [Wechselberger 2007]6.

but deterministic sequence [Marino 2007, Al-Naimee 2009]. Furthermore, these
spikes are excitable as it is possible to generate one at will by applying an
external perturbation to the pumping current in the shape of a sharp pulse
[Al-Naimee 2010].

Mixed-mode oscillations The dynamics of the optoelectronic system here
described displays an alternation between oscillations of distinct large am-
plitude (i.e. the spikes) and of small amplitude (i.e. the small-amplitude
chaotic oscillations). These type of oscillations are called mixed-mode oscil-
lations (MMOs) and they were first discovered in the van der Pol equa-
tions [Benôıt 1981, Eckhaus 1983]. Figure 3.3 displays an example of MMOs.
Such MMOs have been observed in a large variety of chemical, biological and
physical systems as in the case of surface chemical reactions, electrochem-
ical systems, neural systems, electrocardiac dynamics, laser dynamics and
more [Brøns 2008]. They can usually be found in slow-fast systems, where
there is a switch between a slow and small type of motion and a fast and
large type of motion. Other mathematical mechanisms that can produce
MMOs include slow passage through a Hopf bifurcation, breakup of an in-
variant torus, loss of stability of a Shilnikov homoclinic orbit and subcritical
Hopf-homoclinic bifurcation. A review on experimental system that display
MMOs can be found in [Brøns 2008], while a more mathematical description
of their characteristic features in the context of multiple time scales include
[Krupa 2008, Desroches 2012].

In the case of the system of a laser with optoelectronic feedback, in
[Marino 2011] the authors demonstrate experimentally and theoretically the
occurrence of complex sequences of periodic mixed-mode oscillations, and they
construct the complete transition diagram between periodic and chaotic mixed-
mode states, and study the role of the noise on the experimental transition
diagram.

6Licensed under CC BY-NC-SA 3.0

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
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Figure 3.4: Simplified setup of a laser matrix with optoelectronic feedback. (a) Sim-
plified setup with the most important elements for the dynamics. (b) Picture of
the laser array, with 451 laser VCSELs inside the active area. (c) Type of popula-
tion coupling employed with this setup: some-to-all coupling. The population size is
selected by the aperture of the iris.

3.3 Experimental results

Let us now describe in detail the experimental setup that we have employed in
order to study a newtwork of spiking laser elements. After that, we will discuss
and examine the experimental results that we obtained from the experiment.

3.3.1 Experimental setup

In order to construct a network of coupled spiking elements, we employed a
setup as shown in Figure 3.4, which is a similar type of optoelectronic-feedback
setup that was used in [Al-Naimee 2009], described in the previous subsection
3.2.3. It consists on a laser matrix whose pumping current is controlled by an
optoelectronic feedback loop, where the signal from the matrix itself is firstly
converted into an electrical signal, transformed, and then injected back into
the power supply.

At the heart of the experiment is a Philips VCSEL array visible in Figure
3.4(b). The laser matrix is mounted on a ceramic substrate and this assembly
is mounted on Metal Core Printed Circuit Board. Inside its active area of 1080
µm × 590 µm there are 451 VCSEL lasers manufactured in a semiconductor
process on GaAs wafers and arranged in an hexagonal-lattice matrix structure.
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(a) Near field (NF) (b) Far field (FF)

Figure 3.5: Imaging of the Near field and Far field of the light output from the laser
matrix.

The typical emission wavelength of the total light emitted by the device is of
about 980 nm, with a total emitted power that can go up to 2 Watts. We
will study more in detail the optical properties of the population of lasers in
the next subsection 3.3.3. This device is pumped by a Thorlabs Laser Diode
Current Controller LDC220C, ±2 A (from now on, the “power supply”) and is
mounted on a Thorlabs Temperature Controlled, Laser Diode Mount TCLDM9
in order to control its temperature. The near field of this laser matrix is an
imaging of its hexagonal-lattice structure, as seen in Figure 3.5(a), while the
far field is an almost perfectly Gaussian intensity distribution, as seen in same
Figure, (b) panel.

A schematic of the complete setup is visible in Figure 3.6. The signal com-
ing from the laser matrix is split into two main branches by a beam splitter:
a detection branch and a feedback branch (the one that participates to the
optoelectronic feedback loop). Let us describe them individually.

Detection branch This is the part of the signal coming down from the
beam splitter in Figure 3.6. The series of lenses 1 and 2 allows to realize the
Near Field, and in this plane (or close to it) we select the ouput of single lasers
with an iris. We also split this branch in two, so as to be able to monitor two
separate lasers at the same time. The two signals are later collected by two
photo-detectors whose electrical response will be recorded onto an oscilloscope
(Teledyne Lecroy HDO4024 with a band-width of 200 MHz).

Optical feedback branch This is the part of the signal going right from
the beam splitter in Figure 3.6. The series of lenses 1 and 3 allows to realize
the Near Field at the position where an iris is placed, to be able to select only a
portion of the laser population. It is in fact the aperture of this iris that controls
the number of lasers that are selected to participate in the feedback loop, while
the others will be excluded. After the selection, a flip mirror allows us to switch
to a secondary branch that realizes the Near Field again (now after the iris
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Figure 3.6: Complete setup of a laser matrix with optoelectronic feedback. NF is the
location where the Near Field is realized, while FF is the location of the Far Field.

selection) onto a rotating screen. During the experiment, we take pictures of
this screen with a fixed camera equipped with an objective so that we can
image and later reconstruct what exactly is the population of lasers selected
by the iris. When the flip mirror is down, the optical signal goes instead to
a photodetector, after possibly being filtered by neutral density filters. The
photodector is placed at a position where the Far Field is realized thanks to
lenses 4 and 6, so that the spatially extended Near Field after the iris, with
extension of a few cm2, gets reduces to a spot of a few mm2 that can all fit
inside of the sensor area of the photodetector. This photodetector also has a
in-built amplifier, with 4 available configuration which we will call Dpos in the
following, characterized by the following conversion factor of the light signal
into an electrical signal:

• Dpos = 1: 0.466 mV/µW;

• Dpos = 2: 2.47 mV/µW;

• Dpos = 3: 21.8 mV/µW;

• Dpos = 4: 211 mV/µW;

The rest of the electronic feedback loop will be described in the next paragraph.

Electrical feedback branch From this point on, a series of devices are
charged with the task of applying specific transformations to the electrical
signal, before it is injected back into the power supply by a feedback loop.
The overall effect of these tranformation is to first apply a nonlinear transfer
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function of the type fF (I) = B ln(1 + βI), followed by an high pass filter of
the current, as shown in Figure 3.4(a). These transformations will be taken
into account when constructing the physical model for the system, as it will be
shown later. The actual devices that are used for this purpose are: a logarithmic
amplifier, followed by a fractional-gain amplifier and an high pass filter, as
displayed in Figure 3.6. We will characterize their behaviour in particular in
the following paragraphs.

After the transformation, the electrical signal is injected as an external analog
modulation of the power supply. The current modulation formula depending
on the external voltage Umod that arrives at the power supply is given by:

I = IMX +
Umod
2.5 Ω

(3.5)

where I is the pumping current of the laser matrix and IMX is the DC value
of the current (which in the following we will also call just “MX”) that can
be set manually by turning the knob of the power supply. As an example, for
an external modulating voltage with peak-to-peak amplitude of 100 mV, the
oscillations of the pumping current around its DC value IMX will be of 40 mA.

Type of population coupling The size of the population of lasers that are
allowed to participate to the opto-electronic feedback loop is determined by
the size of the aperture of the iris placed in the optical feedback branch. The
total signal of the selected population is later collected onto the photodetector
that participates to the electronic feedback loop. This signal can be interpreted
as the mean field of the population, as all of the lasers participate equally, and
as it will be normalized to the size of the population by a procedure which
we will describe later. The mean field electrical signal is later transformed and
then injected into the pumping current of the whole laser matrix device. This
means that each laser will feel the effect of the change in intensity of all of the
lasers that are selected by the iris through a change in the pumping current.
The type of coupling realized here is then an all-to-all type of coupling for the
population of selected lasers. The lasers outside of the selected population still
feel the same mean field but they are not part of the mean field themselves,
and furthermore their dynamics can be measured by the detection branch
independently from the population selection. The whole system can then be
described as having a some-to-all type of coupling, as depicted in Figure 3.4(c),
where a selected population (with all-to-all coupling) is also coupled to the rest
of the population, but not vice versa.
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3.3.2 Characterization of the electrical feedback loop

Let us now characterize more in detail the properties of the electronic elements
used in the electronic feedback branch.

Characterization of the logarithmic amplifier Let us now describe more
in detail the practical usage of the logarithmic amplifier. This device applies a
transfer function on the input current of the type fF (I) = B ln(1 +βI), where
the β value can be modified by turning a knob on the device. The knob is
graduated on a scale that goes from 0 to 2 with the possibility of reading up
to two decimal places. We will call this experimental variable L.

Figure 3.9 shows the effect of changing the L variable on the output signal
for the same type of input signal. Here the input signal has pulse-like periodic
shape with a frequency of 20 kHz and amplitude of around 150 mV. This signal
comes from the photodetector, and it has this shape because it is detecting
the light coming from the laser matrix (iris all open) when the power supply
is modulated by an external sinusoidal signal with frequency of 20 kHz and a
peak-to-peak amplitude of 400 mVpp and the base current of the power supply
is MX = 180 mA (no feedback loop is present in this case). The fact that on
the detector the signal is no more sinusoidal is an effect of the global threshold
for the output power of the laser matrix. We have chosen this modulation to
reproduce what a posteriori will be the amplitude of the modulations observed
on the photodetector when closing the optoelectronic loop, which will be of
the order of 100-200 mV, and a frequency which is inside the band of relevant
frequencies for the system (more on that in the following paragraph). Given
this amplitude range, we can observe the different IN-OUT curves of the device
when changing the L variable in the panels from (b) to (e). Note how the output
is amplified 40-70 times (depending on L), but also modified in the shape of a
logarithmic function. During the the experiment, we will usually work in the
regime of L ∈ [0.10, 0.30] where the logarithmic curve is more pronounced for
our range of oscillations. We also notice that for L > 1, the IN-OUT curve
“opens-up”, because of a low pass filter effect in addition to the logarithmic
function. We will avoid working at these values.

Characterization of the fractional-gain amplifier The fractional-gain
amplifier is placed after the logarithmic amplifier and, as its name suggests, its
purpose is to reduce the signal coming from the logarithmic amplifier. One can
change the amplification factor for the voltage by rotating a graduated knob
on the device on a scale that goes from 0 (which means 0 amplification) to 10
(which means around 1/2 amplification). We will call this control variable A.

Figure 3.10 shows the IN-OUT curves of the amplifier for signals in the range
of relevant frequencies from 10 kHz to 80 kHz when A = 10 (the maximum
value). As we can see, the IN-OUT relationship stays linear for all frequencies,
with an amplification factor of around 1/2.
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Figure 3.7: Cutoff frequency of the high pass filter, depending on the control variable
F , top and bottom scale.

Characterization of the high-pass filter The high pass filter is placed at
the end of the electronic branch and it applies an high pass filter to the electric
signal that comes from the fractional-gain amplifier. It has a cutoff frequency
which can be changed by varying a graduated knob with two different scales
that go from 0 to 10. One can change between the two scales by flipping a
switch up or down, so that we will refer to these two scales by “top position”
and “bottom position”. We will call this control variable F top position and F
bottom position respectively.

Figure 3.7 shows the cutoff frequency (defined as the half-power point) for
the high-pass filter when changing this control variable. For the top scale, the
cutoff frequency goes from 6.1 kHz to 196 Hz, while for the bottom scale it
goes from 590 Hz to 18 Hz. During the experiment, we will often use position
F = 5 top, which corresponds to a cutoff frequency of 380 Hz.

Characterization of the total electrical feedback branch Let us now
try to have a general idea on the type of transformations that one can apply
to the electrical signal coming from the photodetector. This is visible in Figure
3.11 which shows the IN-OUT curves of the logarithmic amplifier, fractional-
gain amplifier and high pass filter, for the same type of input used for the
logarithmic amplifier and L = 0.15, F = 5 top and variable A. We can see
that the effect of the high-pass filter at a cutoff of 380 Hz is to slightly open
the IN-OUT curves. By changing the value of A one can therefore amplify or
deamplify the amplitude of the output, while by changing the L variable one
can modify the shape of the logarithmic curve to be more or less pronounced.

Summary: control parameters We will now summarize the control pa-
rameters for this optoelectronic system:

1. The DC baseline of the power supply IMX or just MX, which is either
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Figure 3.8: Simplified setup, with all of the control paramters specified. MX is the
base value of the power supply, Dpos is the level of amplification of the photodetector,
DCriv is the DC level when the feedback loop is not present, L and A are two
variables that determine the shape and amplitude of the transfer function fF (I) =
B ln(1 + βI) and F is related to the cutoff frequency of the high pass filter.

set by hand by turning the knob on the power supply, or by changing the
offset of the external modulation that is injected into the power supply;

2. The amplification factor of the photo-detector of the feedback loop, de-
termined by the position Dpos ∈ {1, 2, 3, 4};

3. The DC value registered on the photodetector when the feedback loop
is not present for a fixed MX value. This is related to the amount of
light that arrives on the photodetector, which can be changed by either
changing the iris size or by changing the neutral density filters in front
of the detector;

4. The shape of the logarithmic transfer function fF (I) = B ln(1 + βI),
which depends on the value of L ∈ [0, 2];

5. The amplitude of the transfer function, which depends on the value of
A ∈ [0, 10];

6. The cutoff frequency of the highpass filter, which is determined by the
value of F ∈ [0, 10] top/bottom.

A depiction of the different control paramters is visible in Figure 3.8.

An observation on the relevant frequencies at play An important ob-
servation on the type of oscillations that we can expect from this optoelec-
tronic feedback setup comes from the extension of the frequency range that
this system can support. We know that low frequencies will not contribute to
the dynamics of the current, as the high-pass filter will eliminate them. How-
ever, at some point there will be an electronic limit on how fast the devices
can oscillate, which will result in a low-pass filter. In particular, we find that
the bottleneck that determines the highest supported frequency is the power
supply, which displays a low-pass filter at around 150 kHz. This means that,
supposing that we set the high pass filter at 380 Hz, the range of frequency
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that can enter the dynamics will be in the range 380 Hz − 150 kHz, which
corresponds to oscillations in the range 6 µs − 2.5 ms. All the dynamics out-
side this range will not come into play in the description of the current in the
electronic branch.

Note however that this discussion is valid only for the electronic branch of the
setup, as in the case of light/matter dynamics, their characteristic time-scale
is much faster than the frequencies here considered. Remarkably, one cannot
eliminate adiabatically the faster variables, as doing so would render the system
bi-dimensional and therefore unable to generate chaos. All three timescales are
therefore needed for a proper description of the dynamics.
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Figure 3.9: IN-OUT curves of the logarithmic amplifier, changing the experimental
control variable L. (a) Setup employed in the recording of the IN and OUT signals,
where the IN signal comes from the photodector when the power supply of the laser
matrix (iris all open) is modulated by a 400 mVpp - 20 kHz sinusoidal signal at a
base value of MX=180 mA (no feedback loop present). (b)(c)(d)(e) IN-OUT curves
at different L values for the same type on input.
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Figure 3.10: IN-OUT curves of the fractional-gain amplifier, changing the frequency
of the input signal. (a) Setup employed in the recording of the IN and OUT signals,
where the IN signal is a 400 mVpp sinusoidal at different frequencies. (b)(c)(d)
IN-OUT curves at different frequencies of the input, with A = 10.
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Figure 3.11: IN-OUT curves of the electrical branch of the setup. (a) Setup employed
in the recording of the IN and OUT signals, where the IN signal comes from the
photodector when the power supply of the laser matrix (iris all open) is modulated
by a 400 mVpp - 20 kHz sinusoidal signal at a base value of MX=180 mA (no
feedback loop present). (b)(c)(d)(e) IN-OUT curves at different A values for the
same type on input, with L = 0.15, F = 5 top.
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Figure 3.12: Coordinate system for the laser matrix, superimposed on a picture of
the far field of the matrix reproduced on a NIR Detector Card when only employing
the collimating lens (Lens 1 in Figure 3.6), at DC-pumping current MX=279 mA.
The “laggard laser” L05 (circled in red) is not yet visible by eye.

3.3.3 Characterization of the population of laser devices

The laser matrix that we are using in the experiments contains 451 VCSEL
lasers on a GaAs substrate. Even though they are all pumped at the same
current, there can be differences between one laser and the next (for instance
in the wavelength, polarization and threshold) which can ultimately affect the
dynamics of each laser. Since, for what the current in the electrical branch is
concerned, the only thing that distinguishes one laser from its neighbour is
its intensity as recorded on the photodetector, the threshold distribution of
the selected population will be the only characteristic that can influence the
current dynamics. There can however still be dynamical differences between
the different device in the carrier density and fast oscillations in the emitted
electric field. In the following, we will describe more in detail the different
characteristics of the population of lasers devices, with a special interest in the
threshold distribution.

Coordinate system for the laser matrix Before starting with the study
of the population of laser devices, it is convenient to introduce a coordinate
system for the laser matrix in order to be able to specify each element individ-
ually if necessary. We therefore introduce the coordinate system as in Figure
3.12. This is a picture of the near field of the laser matrix reproduced on a NIR
Detector Card when only employing the C240 collimating lens. On this picture
we have superimposed a series of 17 rows, from A to Q, and 26/27 columns
(depending if the row is even or odd respectively) labelled from 1 to 26/27.
We have chosen this arrangement because this was one of the first pictures of
the near field of the laser matrix that we took, and later measurements were
calibrated according to this reference. It is easy experimentally to verify the
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orientation of the near field according to this reference frame when reproduced
on other screens. It suffice to look for the laser L05 (circled on the Figure),
which is the last laser that can be seen to light up by eye (looking on the Detec-
tor Card) when increasing the pumping current. The location of this “laggard
laser” can tell us quickly if the reference coordinate frame has been flipped due
to the lenses or camera imaging. Note that the laggard laser is not necessarily
the one with the highest threshold, since this picture is taken at MX=279 mA,
which is far higher than the global threshold at 183 mA that we will calculate
later. This is just a transition from “insibile by eye” to “visible by eye” that
happens at higher values of pumping currents than the actual threshold.

Wavelength distribution The wavelength distribution for the whole pop-
ulation of lasers is broad, going from 980 nm to 984 nm approximately. Figure
3.13 shows the distribution for different population sizes at the same pump-
ing current of MX=400 mA. We can observe a reduction of the wavelength
distribution when decreasing the size, which suggests that each laser has a
wavelength that differs slightly from the one of its neighbours.

This is even clearer when looking at Figures 3.14 and 3.15, which represent
the wavelength distribution of all of the lasers that belong to the Q row at
MX=400 mA, when measured individually. We can see that each laser emits
at different modes, and that the principal mode differs in wavelength from the
other lasers of the same row. This is what ultimately limits our ability to couple
the different lasers coherently, which is why we have employed an optoelectronic
type of feedback that does not depend on the wavelength distribution of the
population.

Figure 3.16 shows a test of a coherent interaction between different lasers and
an injected monomode laser field coming from an external grating tunable laser
(the Master laser of the previous chapter). Here the black curve represents the
spectrum of the single element, the blue curve the spectrum of the injected
master laser and the red curve the spectrum of the device when the master
laser is injected into the whole matrix. We can observe that the red curve
is slightly different than the sum of the blue and black curves, with certain
parts of the black spectrum that rises or decreases when the injected signal
is present. This is evidence of a coherent interaction. However, in order to
see the interaction of one element with the injected field one has to tune the
frequency of the master laser on a particular value, which is not the same
for neighbouring elements on the matrix. Given this and other preliminary
tests of possible coherent types of coupling of the laser device, we have opted
for an optoelectronic type of coupling which is indifferent to the wavelength
distribution.
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Figure 3.13: Wavelength distribution of lasers populations of different sizes, for
MX=400 mA. (Left) Imaging of the population selected by the iris. (Right) Wave-
length distribution of the selected population on the left.
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Figure 3.14: Wavelength distributions of different separate lasers, for MX=400 mA.
(Top) Representation of the selected lasers, which are the ones that belong to the Q
row. (Bottom) Wavelength distribution, from Q01 to Q14 in natural reading order.
Continued in Figure 3.15
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Figure 3.15: Continuation of Figure 3.14. Wavelength distribution, from Q15 to Q27
in natural reading order.
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Figure 3.16: Wavelength distribution for selected lasers, with and without injection
of an external field. (Top) Representation of the selected lasers, which are K27,
M01, M27, O27, Q27 with pumping currents MX equal to 170, 170, 170, 132, 147
mA respectively. (Bottom) Wawelength distribution for the isolated laser (black),
the injected field (blue) and when the external field is injected in the device (red).
Notice how the red curve is different than the simple sum of the black and blue
curves, meaning an interaction is taking place.
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(a) (b)

(c) (d)

Figure 3.17: Imaging of the near field of the laser matrix for an imaging setup which
includes the collimating lens C240, a half-wave plate and a polarizing beam splitter.
(a), (b), (c), (d) correspond to different rotation angles of the half-wave plate, which
are respectively 0◦, 22.5◦, 45◦ and 67.5◦. Black pixels correspond to high intensity.

Polarization distribution Let us now describe qualitatively the polariza-
tion distribution of the laser population. In order to observe the laser intensity
emitted at different polarization angle, we have employed a simple imaging
setup which consists of the collimating lens C240, a rotating half-wave plate,
a polarizing beam splitter and a screen. By imaging the near field of the laser
matrix onto the screen at different rotation angles of the half-wave plate while
maintaining fixed the polarization angle of the beam splitter, we can have a
qualitatively idea of what is the polarization distribution of the matrix. Figure
3.17 represents four different angles of the half-wave plate, going from 0◦ to
67.5◦. We note how most of the devices seem to have a similar principal axis of
polarization, even though case (b) clearly shows that this is not the case for all
of the population. This would be another obstacle in trying to couple these de-
vices in a coherent way by injecting their output lights into themselves, as the
polarization angle would need to be taken into account. Another advantage of
employing an optoelectric type of feedback is that in this case the polarization
distribution is irrelevant.

Threshold distribution The threshold distribution of the laser population
has been studied thoroughly, as it will be relevant for the dynamics. This
distribution has been analysed starting from different near field images of the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: Imaging of the near field of the laser matrix for different pumping
currents. From (a) to (f), the pumping currents are 157, 206, 255, 304, 352, 402 mA.
Black pixels correspond to high intensity.

laser matrix at different pumping currents, as shown in Figure 3.18. This figure
represents the near field image taken at 6 different pumping currents, from 157
mA to 402 mA. We note that the intensity of the different elements increases
with increasing pumping, but the intensity is not uniform for all of the devices,
meaning that each laser will have a different intensity threshold, defined as the
transition from the “off” state to the “on” state. These pictures represent a
sample of a dataset of 930 pictures with pumping ranging from 0.3 mA to
402.0 mA.

From this data, we can analyse the intensity of each device. Figure 3.19 displays
an home-made application where one can load a sample picture in order to align
a grid of 451 circles on top of the picture. By this procedure, we can easily
generate a grid of identical circles where each circle includes the output light
of one laser device. By recording the average pixel intensity inside the various
circles for all the dataset, we can construct an L-I curve (laser intensity vs
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Figure 3.19: Screenshot of the home-made application used to align a grid of 451
circles onto one sample picture of the near field of the laser matrix for the dataset.

pumping current) for all of the devices at once.

Figure 3.20 shows 4 different L-I curves of 4 lasers (A01, A27, L05, Q27)
constructed in this way. For each curve we have defined a threshold corrent
using the following procedure:

1. We fit the data of the L-I curve that belongs to the range [10, 100] mA
with a linear fit (red dashed line in the figure);

2. We find the kink point at current x0 of the curve as the first point where
the first derivative overcomes a well-defined threshold;

3. We then fit the L-I curve in the range [x0+8.6, x0+51.6] with another
linear fit (magenta dashed line in the figure);

4. Finally we define the threshold as the current coordinate of the intersec-
tion point (green triangle) between the two lines.

We had to employ this sort of elaborate procedure because, as seen in the
figure, the L-I curves of the different devices can have slightly different types
of shapes, with more than one kink point as in the “laggard”L05 laser, or with
intensities that are not exactly linear after the first kink point.

In order to see at a glance all the distribution of all of the different L-I curves,
we constructed Figure 3.21. Here we have created a 2D histogram dividing
the plane into different “pixels” and counting the number of L-I curves pass-
ing through the pixels (in a similar way to a persistence figure). The black
curve represents the mean of the distribution, while the red curves represent
the limit of ±1 stddev/2 from the mean, stddev being the standard deviation
of the curves, as shown in the bottom panel of the figure. Looking at the
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Figure 3.20: L-I curves of four different lasers: A01, A27, L05, Q27 shown in natural
reading order. The red points mark the current range [10, 100] mA, the magenta
points mark the current range [x0 + 8.6, x0 + 51.6] mA, where x0 is the first kink
point of the L-I curve. The respective red and magenta lines are the best linear fit of
the L-I curve in those ranges. The intersection between the two lines (green triangle)
defines the laser threshold for our analysis.

mean of the distribution, we can recognize a general threshold for the whole
device that takes place between 170 and 190 mA, and then a linear-like trend
after that. However, even if the distribution remains very narrow below the
general threshold, it starts to widen more and more as the pumping current
increases. When performing the experiment, we will operate the laser matrix in
the neighbourhood of the global threshold, so that the only difference between
the different L-I curves that will be taken into account for the dynamics to
first approximation will be the position of the threshold current point.

Going back to the threshold distribution, the two figures that can summarize
our analysis are Figure 3.22 and 3.23. Figure 3.22 shows the spatial distribution
of the threshold of each laser, plotted on an hexagonal grid of 451 circles,
each representing a different laser element. The laser thresholds are distributed
approximately from 160 to 200 mA, and what is interesting is that we cannot
see any clear pattern for the distribution, which means that the threshold
spatial distribution can be considered as specially random. When selecting
a certain population of lasers with the iris, one can then expect an average
threshold for the selected population that can span between 160 to 200 mA.
Figure 3.23 shows instead the histogram of the different thresholds currents.
We can note that the distribution is more or less Gaussian-shaped, with an
average global value of I451 = 183.3 mA, and a standard deviation of 5.8 mA.
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Figure 3.21: L-I curve of the laser matrix. (Top) 2D histogram of the L-I curves
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Figure 3.23: Histogram of the distribution of the pumping currents at threshold. The
black dashed curve represent the mean of the distribution at I451=183.3 mA and
the two red dashed curves represent the two limits at ±1 stddev distance from the
mean, where stddev = 5.8 mA.
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3.3.4 Type of dynamics observed

After having described the properties of the population, we will now show
what is the type of dynamics that we have observed when closing the opto-
electronic feedback loop as in Figure 3.4(a). This system has 6 different control
parameters that we can change, the ones shown in Figure 3.8, plus one if we also
consider the size of the population selected by the iris. 4 of these parameters
(DCriv, Dpos, L and A) determine the shape of the transfer function fF (S) ≡
A ln(1 + α′S) that transforms the optical power S as seen from the detector
into the feedback current as measured just before the high-pass filter, while
one parameter (F ) determines the cutoff frequency of the high-pass filter (γf ).
Finally the last parameter MX is the base value of the current of the power
supply as defined in Equation 3.5, which will be often varied in a range close
to the global threshold of the device at I451 = 183.3 mA.

Varying these parameters, one can usually observe in the dynamics measured
at the detector of the feedback loop either a stable condition, characterized
by a flat value; or an oscillating condition, characterized by non-sinusoidal
oscillations with amplitude of 50-200 mV and with a timescale of the order of
ms; or, in rare cases, a chaotic spiking dynamics where each single spikes has the
same time and amplitude orders as one period of the periodic oscillations. This
was not unexpected as we know from [Al-Naimee 2009] that a similar opto-
electronic feedback applied on a single semiconductor laser can result in these
types of dynamics. Other more exotic types of dynamics have been observed
with this setup for sets of control parameters that have not been explored
in depth. For simplicity, in this section we will restrict ourselves to the set
of control parameters where mostly the three types of dynamics consisting of
stationary state, periodic oscillations and chaotic spiking were observed and
characterized. We refer to section 3.4 for an overview of different types of
observed dynamics.

Our goal was to be able to observe a full transition between the different
dynamics when varying the DC value of the pumping current MX, which
will be considered as our bifurcation parameter when fixing all of the other
parameters as constant. To do so, we have been guided by the shapes of the
IN-OUT curves of the electric feedback as in Figure 3.11. We selected the
right parameters in order to have a reasonably logarithmic response and with
an amplitude that would allow for oscillations of the order or 30-60 mA of the
pumping current when operating with a DC value MX close to the threshold
value of around 183 mA. The cutoff frequency was instead varied between 20
Hz and 200 kHz, as done in the [Al-Naimee 2009] paper.

By following a trial and error process, we arrived at specific parameters val-
ues where we managed to observe the whole range of the bifurcation when
changing MX. In table 3.1 we report the selected parameters used to acquire
different datasets, which we have named from “m01” to “m07” (the “m” stands
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Name Date Parameters Selected population

m01

18 Gen
2018

1. MX variable
2. Dpos = 2
3. DCriv@220 mA= 22.70 mV
4. L = 0.15
5. A = 1.68
6. F = 8.00 Top

Laser J16

m02

19 Gen
2018

All lasers

m03

22 Gen
2018

1. MX variable
2. Dpos = 3
3. DCriv@220 mA= 196.5 mV
4. L = 0.14
5. A = 0.68
6. F = 5.00 Top

Laser J16

m04

22 Gen
2018

All lasers

m05
30 Gen

2018 1. MX variable
2. Dpos = 3
3. DCriv@220 mA= 252.0 mV
4. L = 0.14
5. A = 0.68
6. F = 5.00 Top

16 single lasers

m06
06 Feb
2018

19 groups of
increasing size, from 1

to 451

m07
07 Feb
2018

25 groups of 7 lasers

m08

09 May
2018

1. MX variable
2. Dpos = 3
3. DCriv@220 mA= 167.9 mV
4. L = 0.14
5. A = 0.68
6. F = 5.00 Top

Laser J16

m09

09 May
2018

All lasers

Table 3.1: Experimental parameters for the different datasets of acquired data.

for measurement). For all the data, we have scanned the value of the base
current MX and recorded the corresponding dynamics, when selecting laser
populations of different sizes with the iris. Note that, experimentally, if we
want to keep all of the control parameters the same when changing the size of
the selected population (i.e. when opening or closing the iris), we need to keep
constant as well the value of DCriv, that is, the DC offset set on the feedback
detector. This is because the value of this parameters, which is measured when
the feedback loop is not present, depends on the intensity of the light that the
detector receives at a fixed pumping current value. Only changing the popu-
lation selected by the iris would inevitably change the total ouput power and
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therefore its DC value and correspondingly the shape of the transfer function
fF would be different. Each time we change the selected population, we also
need to adjust the intensity of the light that arrives at the detector so that its
DC value at a particular pumping current (usually 220 mA) is kept constant.
We do this by applying or removing a combination of neutral density filters in
order to reach the desired power.

Because of this re-normalization process, the signal that comes from the feed-
back detector can be considered as a mean field of the selected population,
as it collects all of the different power signals of the lasers selected by the iris
normalized to the DCriv value. This will allow us to compare different mean
field values for different population sizes but similar control parameters.

Dynamics of single lasers Let us first consider the case when only a sin-
gle laser is selected by the iris. This case is the closest to what was already
described in [Al-Naimee 2009], with the possibility of observing a transition
between a stable state, a chaotic state and an oscillating state when chang-
ing the pumping current. Figure 3.25 shows some examples from dataset m05,
where 16 single lasers were measured, one after the other, by keeping all of the
control parameters the same. We note that, for currents in the range [175, 210]
mA, we can observe different types of dynamics, which are the ones represented
in panels (i) to (v) in the Figure 3.25. Figure 3.24 represents similar dynamics
in case of dataset m03. In these cases, increasing the DC-pumping current we
observe:

(i) A stationary steady state with small oscillations of order of 2 mV prin-
cipally due to electronic noise;

(ii) A first bifurcation, which lasts around 1 mA, where the dynamics resem-
bles that of a 2D excitable system with noise-triggered spikes, similar to
a 2D FitzHugh-Nagumo system with noise. The DC-pumping value MX
where this dynamics take place will be called lower-bound bifurcation
current, and denoted with I l.

(iii) Periodic self-oscillations with increasing amplitude;

(iv) Another bifurcation which lasts around 1 mA or less, where a chaotic
spiking regime can be observed. It is characterized by mixed-mode os-
cillations, where the large oscillations have an amplitude and timescale
which is comparable with the self-oscillations just before the bifurcation
point. The DC-pumping value MX where this dynamics take place will
be called upper-bound bifurcation current, and denoted with Iu.

(v) Finally at higher currents we observe another stationary steady state,
which is at higher values of the mean field and increases when increasing
the DC-pumping current as this value now follows the L − I curve for
the laser.
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Figure 3.24: Examples of timetraces showing the different types of observed dynam-
ics. Data from dataset m03, with only laser M02 in the feedback. In natural reading
order, the DC-pumping current values are 182.9 mA (stationary steady state), 184.8
mA (2D FitzHugh-Nagumo-like with noise), 187.4 mA (periodic self-oscillations),
195.4 mA (periodic self-oscillations), 196.5 mA (chaotic spiking regime) and 198.5
mA (stationary steady state).

Even though here we described only few cases with single lasers participating to
the feedback, the same type of dynamics can be observed with any other single
laser selected, apart from small differences in the amplitude of the oscillations.
In particular, the general behaviour of a double bifurcation which follows dy-
namics (i) to (v) stays the same for any laser. The most important difference
between two different lasers is the exact location of the lower (I l) and up-
per (Iu) bound bifurcation DC-pumping currents. Figure 3.25(a)(b)(c)(right)
shows the 2D histogram of the extrema (maxima and minima) of the mean
field traces when changing the DC-pumping current for three different lasers:
(a) O21, (b) O20 and (c) L18. This type of figure allows us to see at a glance
the whole bifurcation, and it can also be used to identify I l and Iu (the verti-
cal black dashed lines). What we can observe is that, even though the general
shape of the bifurcation is the same, I l and Iu happen at very different DC-
pumping current values, from 175 to 185 mA for I l and from 190 to 205 mA
for Iu.

The fact that these current values can vary from one laser to the next is a
consequence of the slightly different L−I curve of each laser, and in particular
of its threshold values. We will see later how these values are correlated to the
threshold, so that lasers with similar values of I l and Iu, also have a similar
threshold value.



3.3 Experimental results 181

0 5 10 15 20 25 30 35 40
20
60

100

0 5 10 15 20 25 30 35 40
20
60

100

0 5 10 15 20 25 30 35 40
20
60

100

Dataset m05

(a)

(b)

(c)

1 3 5 7 9 11 13 15 17 19 21 23 25 27

A
C
E
G
I
K
M
O
Q

100
101
102
103

175 180 185 190 195 200
Pumping current (mA)

10

50

90

M
e
a
n
 f
ie

ld
e
xt

re
m

a
 (

m
V
)

100
101
102
103
104

175 180 185 190 195 200
Pumping current (mA)

10

50

90

130

M
e
a
n
 f
ie

ld
e
xt

re
m

a
 (

m
V
)

1 3 5 7 9 11 13 15 17 19 21 23 25 27

A
C
E
G
I
K
M
O
Q

100
101
102
103

175 180 185 190 195 200
Pumping current (mA)

10

50

90

130
M

e
a
n
 f
ie

ld
e
xt

re
m

a
 (

m
V
)

1 3 5 7 9 11 13 15 17 19 21 23 25 27

A
C
E
G
I
K
M
O
Q

(i)

0 5 10 15 20 25 30 35 40
20
60

100
(ii)

0 5 10 15 20 25 30 35 40
20
60

100
(iii)

(iv)

(v)

Time (ms)

M
ea

n
 f

ie
ld

 (
m

V
)

Figure 3.25: Dynamics of single lasers. Selected results from dataset m05. The ex-
perimental parameters are described in Table 3.1. The panels represent: (a)(b)(c)
Left: Representation of the selected laser (O21, O20 and L18 respectively). Right:
2D histogram of the mean field extrema when varying the DC-pumping current.
The vertical black dashed lines mark the lower and upper bound bifurcation cur-
rents. (i)(ii)(iii)(iv)(v) Examples of Mean field traces for laser L18 (case (c)) at
DC-pumping currents MX equal to 185, 187, 195, 202, 204 mA top to bottom.
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Comparison between the dynamics of only one selected laser and the
dynamics of a large population of lasers As already explained, the size
of the population of lasers under study can be varied by changing the aperture
of the iris placed before the feedback detector. When a certain population is
selected, the lasers that belong to the selected population are coupled with the
mean field as they are all driven by the current that comes from the electric
feedback loop that starts with the feedback detector, where the mean field is
realized. This means that each laser is coupled with the power that comes from
all of the other lasers inside of the population selected by the iris, in an all-to-
all type of coupling. The lasers outside of the selected population still feel the
same mean field but they are not part of the mean field themselves, so that
the whole system can be described as having a some-to-all type of coupling as
depicted in Figure 3.4(c).

Figure 3.26 shows the comparison for the dynamics displayed by a single ele-
ment and the dynamics of the whole population, when keeping all the control
parameters the same. Figure 3.27 shows again the same type of comparison
but for a different set of parameters (namely, with DCriv greatly increased).
Panels (i) and (ii) display the imaging of the selected population by the iris,
while panels (iv)(v)(vi) are examples of mean field traces and intensity traces
of a particular laser. Finally, panels (iii) show the same type of 2D histogram
of the mean field extrema as described before. What we can observe in both
cases is that there is not much difference in the type of dynamics that we can
observe, be it for the FitzHugh-Nagumo-like type of regime, for the periodic
self-oscillations regime or for the chaotic spiking regime. The most clear dif-
ference between the two cases (one laser vs all of the lasers) seem to be in the
2D histogram of the mean field extrema, which can change in amplitude, but
most importantly, can display an upper an lower bound bifurcations currents
at different DC-pumping current values.

Starting from these and other similar experimental realizations, whenever we
change the selected population from one single laser to a group of lasers, we
notice the following observations:

1. The mean field dynamics remains similar, so that we still observe the
double bifurcation with dynamics going from (i) to (v) of Figure 3.25
when increasing the DC-pumping current;

2. When measuring the intensity traces individually of each laser, they all
display a dynamics with is almost identical to the mean field, both for
the ones inside and the ones outside the selected population. In short:
they are all synchronized between themselves and to the mean field.

3. The value of the lower (I l) and upper (Iu) bound bifurcation currents are
proportional to the average threshold value of the population selected by
the iris.
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Observations 1. and 2. tell us that the dynamics of the mean field can be
reduced to that of a single laser, even though in this case the dimensionality
of the system has greatly increased. Furthermore, each laser has a dynamics
in the emitted power which is basically identical to the mean field. We can
explain these experimental facts empirically by the following considerations:

• The type of coupling at the moment does not allow for a partial de-
synchronization of the population due to the opto-electronic setup. This
is because the coupling is mediated by the mean field which is then
translated into oscillations of the pumping current for the whole matrix,
so that all of the lasers are affected by the current in the same amount.
The coupling between the different elements can then only be set to be so
weak so that the population is not affected, or so strong so that it doesn’t
allow for any partial or total de-synchronization of the population.

• The slower possible dynamics detectable in the system is of the order of
6 µs. This comes from the band-pass limitation on the feedback current
dynamics. The lower boundary of the band-pass filter comes from the
cutoff frequency of the high-pass filter, while the higher boundary comes
from the maximum response of the slower electronics, which is around 150
kHz. This means that fluctuations shorter then around 6 µs are averaged
by the system, and as a result the output power of the laser is slaved to
the slower current dynamics.

• We do not have access to the fast evolution of the output power, nor to
the carrier dynamics.

In summary, the strong coupling constant doesn’t allow for a de-
synchronization of the population, and even if the lasers may be de-
synchronized in the faster oscillations of the electric field or carrier dynamics,
these are averaged out in the opto-electronic feedback and in the detection so
that they are not visible to us.

Nevertheless there can still be examples of de-synchronization effects in the
shape of the output intensity of individual lasers. As we will see after, even
though in the chaotic regime the spike events are recognizable in each single
laser, their shape can be different depending on the laser under consideration.
This is the evidence of a possible de-synchronization of the fast variables of the
system. Furthermore, in Section 3.4 we will present slightly different realiza-
tions of the same type of opto-electronic setup where the differences of different
intensity traces for different elements can be more pronounced. In any case,
a possible theoretical reasoning behind the synchronization of the population
will be put forward in the theoretical section 3.5.

In the case of Observation 3., the proportionality between the upper and lower
bound bifurcation currents and the average value of the threshold for a popu-
lation with be explored more in detail in subsection 3.3.5, while a theoretical
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explaination will be put forward in the analytical and numerical section 3.5.
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Figure 3.26: Summary results from datasets (a) m01, population size 1, and (b) m02,
population size 451. The experimental parameters are described in Table 3.1. For
each dataset the panels represent: (i) Image of the near field after the iris, MX=220
mA. (ii) Representation of the selected laser population. Laser M02 whose intensity
is detected is highlighted in green. (iii) 2D histogram of the mean field extrema
when varying the DC-pumping current. (iv)(v)(vi) Examples of Mean field traces
and intensity traces of laser M02 at DC-pumping currents MX equal to (a) 192, 221,
251 mA and (b) 187, 218, 249 mA, top to bottom.
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Figure 3.27: Summary results from datasets (a) m03, population size 1, and (b) m04,
population size 451. The experimental parameters are described in Table 3.1. For
each dataset the panels represent: (i) Image of the near field after the iris, MX=220
mA. (ii) Representation of the selected laser population. Laser M02 whose intensity
is detected is highlighted in green. (iii) 2D histogram of the mean field extrema
when varying the DC-pumping current. (iv)(v)(vi) Examples of Mean field traces
and intensity traces of laser M02 at DC-pumping currents MX equal to (a) 185, 191,
196 mA and (b) 176, 183, 190 mA, top to bottom.
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Figure 3.28: Comparison between similar chaotic dynamics when selecting only 1
laser VS many lasers. Selected data from datasets m05 (a)(i) and m06 (b)(ii). (Top
Images) Imaging of two populations with sizes 1 (a) and 216 (b). (i) Mean field
dynamics corresponding to case (a), MX=194.52 mA. (ii) Mean field dynamics cor-
responding to case (b), MX=192.09 mA.

Chaotic spiking regime In this paragraph we will concentrate on the de-
scription of the chaotic spiking regime, which for our choices of parameters
always happen at transition between the periodic self-oscillations regime and
the stationary steady state at higher currents. Figures 3.33 and 3.34 show the
transition between periodic self-oscillations and chaotic spikes when increas-
ing the DC-pumping current. It is the same type or chaotic spiking already
observed in [Al-Naimee 2009] for a single quantum-well laser diode with opto-
electronic feedback. This regime happens for any population size selected by
the iris: from one laser (as in Figure 3.33) to all lasers (as in Figure 3.34).

Figure 3.28 shows two examples of this chaotic spiking regime for the same
control parameter but laser populations of different sizes. Case (a)(i) displays
the mean field trace for a single laser, while case (b)(ii) displays the mean field
trace for a population of around 200 lasers. We can observe in both cases a
dynamics which exhibit mixed-mode oscillations: small oscillation of varying
amplitude around a fixed DC value, and big oscillations (the spikes) that hap-
pen at random times, all with the same shape and amplitude. This type of
dynamics will be explained and reproduced in the Analytical and numerical
section 3.5 by a 3D dynamical model that takes into account the evolution of
the field, the carriers and the current.

Even though it seems clear from the modelling (as we will see) that this type
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Figure 3.29: Analysis of the fraction of false neighbours (FN) depending on the
embedding dimension, using the false nearest program of the TISEAN software
[Hegger 1999]. Data from dataset (a) m08, single laser J16 and (b) m09, all lasers.
(Top) Evolution of the fraction of FN for a 3-dimensional embedding, as a function
of the DC-pumping current, superimposed on the 2D histogram of the mean field
extrema. (Bottom) Fraction of FN at different embedding dimensions as a function
of the DC-pumping current.

of oscillations is indeed the result of a deterministic 3-dimensional chaotic
process, it would be useful nevertheless to characterize the dimensionaliy of
the dynamics. To do so, we analyse the spiking chaotic traces by employ-
ing the false nearest neighbours program provided by the TISEAN software
[Hegger 1999]. This program is an implementation of the algorithm described
in [Kennel 1992] that allows to determine the proper embedding dimension
when applying the Ruelle–Takens embedding technique on a timetrace. Given
a data point in an m-dimensional embedding, the program will look for all of
its nearest neighbours and it will iterate their position one delay-step into the
future. If the new distance between one of the neighbours becomes smaller than
the standard deviation of the data divided by a given threshold, the point is
marked as a false neighbour (FN). The output of the program is the fraction of
the FN over the whole data. We apply this algorithm with a delay of τ = 40µs
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Figure 3.30: Single laser case. From left to right: mean field timetraces, attractor
reconstruction in 3D embedding space with τ = 40 µs and fraction of false neighbours
(FN) at different embedding dimensions. Each row corresponds to a different DC-
pumping current value MX. Same data as in Figure 3.29(a).

on the timetraces of the mean field, after filtering the data with a Gaussian
filter with σ = 10 (σ is the standard deviation for the Gaussian kernel). Figure
3.29 shows the results of the analysis for a limited range of DC-pumping cur-
rents in the vicinity of the transition from periodic oscillations to stationary
state, in the case of a population composed by a single laser (a) and all the
lasers (b). The top panels represent in both cases the evolution of the fraction
of false neighbours (FN) in the case of a 3-dimensional embedding.

In both cases, we observe an increase in the number of FN for a 3-dimensional
embedding when crossing the transition between the periodic self-oscillations
regime and the stationary state. This means that, even though there is an in-
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Figure 3.31: All lasers case. From left to right: mean field timetraces, attractor
reconstruction in 3D embedding space with τ = 40 µs and fraction of false neighbours
(FN) at different embedding dimensions. Each row corresponds to a different DC-
pumping current value MX. Same data as in Figure 3.29(b).

crease in the dimensionality of the system when going from the self-oscillations
to the chaotic regime, the final stationary state seems to have an even higher
dimensionality than the chaotic spiking regime. We can conclude that we are
unable to observe exactly the transition from the periodic self-oscillations to
the chaotic regime from the fraction of FN due to the effects of the noise in
the stationary state which increases the FN value.

We can nevertheless check the randomness of the spike sequences in the
chaotic spiking regime by looking at the distribution of the interspike inter-
val for the traces, in a similar way to what was done in the now notorious
[Al-Naimee 2009] paper. Figure 3.32 reports this type of study in the case of
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all lasers selected, but a similar result can be found in the case of a single
laser. Here we consider two traces, one in the periodic self-oscillations regime
(a), and one in the chaotic spiking regime (b). We then detect all of the maxima
of the timetraces (the red points) and we consider the distribution of the time
differences between the maximum of one spike and the next. In the case of the
periodic self-oscillations, we observe a distribution which is highly peaked at
around 0.5 ms, which is the average distance between two spikes in this periodic
trace. In the case of the chaotic spiking timetrace, the distribution displays a
long exponential tail, as evidence of the erratic nature of the sequence, but
with also a sequence of sharp peaks and gaps that repeats periodically after
the first peak at 0.5 ms with a period of around 0.24 ms. As explained in the
paper, this reveals the existence of unstable periodic orbits embedded in the
chaotic attractor.
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(b) MX=191.856 mA

Figure 3.32: Interspike distribution, all lasers case, at two DC-pumping current
values corresponding to (a) Periodic self-oscillations, and (b) Chaotic spiking regime.
The top panels represent the mean field timetrace while the bottom panels represent
the interspike distribution frequency. Same data as in Figure 3.29(b) and as the first
two rows of Figure 3.31.
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Figure 3.33: Example of chaotic traces close to the upper bound bifurcation when
only one laser is selected. Selected data from dataset m03. The DC-pumping current
MX ranges from 196.36 mA to 196.52 mA, equally spaced, top to bottom.
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Figure 3.34: Example of chaotic traces close to the upper bound bifurcation when all
451 lasers are selected. Selected data from dataset m04. The DC-pumping current
MX ranges from 190.21 mA to 190.38 mA, equally spaced, top to bottom.
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Detection of multiple lasers and synchronization In the previous Fig-
ures, we have always shown the mean field timetraces as a characterization of
the dynamics of the whole system, as we have already stated in observation
2. that the dynamics of any laser under consideration follows the same slow
dynamics as the mean field.

This was observed in all of the experimental realizations, where, most of the
times, the full detection system on the oscilloscope included the mean field
traces, the traces of two chosen single lasers and the output monitoring signal
that comes from the power supply, which is proportional to its pumping current
value. An example of such a complete detection can be seen in Figure 3.35.
Here we show the same data already displayed in Figure 3.27 but with the
addition of an intensity trace for the laser J16 and the output monitoring
signal from the power supply.

Comparing the mean field with the intensities of M02 and J16, we notice that
the timetraces are fully synchronized, both in the small oscillations and in the
big spikes. However, looking at the shape of the traces, one can observe that,
while in the case of a single-laser population (i) the shape is almost identical
to the mean field, in the case of an all-laser population (ii), the intensities
of the single detections are slightly different. Notice how the proportion of
the downwards “foot” which precedes each maximum of the spikes and the
amplitude of the maximum of the spike with respect to the base DC value is
different between the single detection traces and the mean field trace.

This was observed in many different realizations, and it stems from the fact
that, even though the dynamics of each laser is driven by the same signal,
namely the feedback current (which is proportional to the output monitoring
signal), each laser will translate these oscillations into a different laser output
due to their slight differences in the L− I curves. This means that a laser with
an higher threshold will experience a lower amplitude of intensity oscillations
than a laser with a lower threshold, given the same feedback current signal.
These differences are usually not very marked in the realizations described in
this section; however, we will show in section 3.4 how they can be become very
important for slightly different realizations of the same type of optoelectronic
setup.
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Figure 3.35: Example of detection of multiple lasers at the same time, along with
the mean field, in the chaotic regime. Selected data from datasets m03 (a)(i) and
m04 (b)(ii). (Top Images) Matrix representation of the the selected population,
consisting laser J16 for (a)(i) and of all 451 lasers for (b)(ii). We detect in both
cases the intensities of lasers M02 (green dot) and J16 (magenta dot). (i) and (ii)
Dynamics of the selected population, with MX=196.49 mA for (i) and MX=190.30
mA for (ii). The panels represent, from top to bottom: the mean field intensity, the
intensity of laser M02, the intensity of laser J16 and the output monitoring signal
from the power supply. All of the timetraces are synchronized and look similar, apart
from small amplitude differences.
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3.3.5 Dependence of the dynamics on the selected pop-
ulation

In the previous section we remarked how the most visible difference between
the type of dynamics of different populations has been found in the shift in
the boundaries of the 2D histogram of the mean field extrema. That is, the
location of the upper (Iu) and lower (I l) bound bifurcation currents seem to
depend on the selected population, and we also already foreshadowed that their
value seems to be proportional to the average threshold value of the selected
population.

The fact that the particular shape of the L− I curves must be related to the
location of Iu and I l can be explained by observing that, as far as the current
in the electrical feedback loop is concerned, the only difference between one
laser and the next is only the amount of light that the particular laser can
emit given a certain pumping value. This is due to the nature of the opto-
electronic feedback, which realizes an intensity mean field on the feedback
photo-detector, therefore ignoring all other coherent properties of the various
lasers. When changing a population, we are therefore changing the “effective
L − I curve” of the whole system, since the total light output will depend on
the L−I curves of only the lasers that have been selected for the feedback. And
as it turns out, there is one parameter of the L− I curves of the selected laser
that is capable of describing most of their shape, and that is the threshold
value. As we are operating close to the global threshold value of the whole
population at 183.3 mA, the threshold of each laser will be highly correlated
with the amount of light that a laser can produce given a certain oscillation
range. As an example, for an oscillation range centered on 183.3 mA, a laser
with a lower threshold than the average will contribute much more strongly
to the mean field than a laser with a higher threshold than the average, which
will still be in the “off” part of its L − I curve. What we will show here, and
later in the Analitical and numerical section 3.5, is that the average threshold
value is enough to predict the type of dynamics that can be expected from a
certain population.

Given that in the following we will refer many times to different types of
pumping current values (for the upper and lower bound of the bifurcations
and for the thresholds), we introduce the following notation:

Iu = Upper bound bifurcation current

I l = Lower bound bifurcation current

Ith = 〈I th〉 = Average threshold of a certain population

(3.6)

The average threshold of a population will be calculated from the threshold
distribution of the single lasers I th acquired during the characterization of the
laser matrix, as shown in Figures 3.22 and 3.23. An equivalent notation with
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a subscript s will be used when we specify the size s of the population under
study:

Ius = Upper bound current of a population of size s

I ls = Lower bound current of a population of size s

Iths = 〈I ths 〉 = Average threshold of a population of size s

Ith451 = 〈I th451〉 = 183.3 mA = Global average threshold of all 451 lasers
(3.7)

Different groups of the same size but different threshold values A
first experimental observation of the relationship between the average threshold
of the population and the observed dynamics can be seen in Figure 3.36. Here
we fix all of the control parameters, including the DC-pumping current at
193.50 mA, and we record the different types of dynamics that we can observe
from different groups of size 7. In the figure, we have selected three of those
groups, group A, B and C, which are the ones represented in the panel on the
top. Looking at their mean fields, we observe that group A is in the periodic-
self oscillation regime; group C is in the stationary state and group B is in the
regime in-between the two: the chaotic spiking regime.

Furthermore, looking at the L − I curves of the selected populations (the
panels on the right), we note how group A has a higher average threshold of
Ith7 = 185.63 mA, while group B has a lower value of Ith7 = 182.88 mA and
group C has an even lower value of Ith7 = 180.81 mA. The type of dynamics
observed in these groups is then correlated to their average threshold value,
so that to higher threshold corresponds an dynamics of higher DC-pumping
current in the bifurcation diagram of a single laser.

However these three groups have been arbitrary chosen between the 25 possible
measurements of 7 lasers performed for this dataset. In any case, we will show
later how this relationships emerges from all of the data taken with the same
control parameters, so this figure has to be considered only as a “proof of
concept” of our observation.
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Figure 3.36: Dynamics of small populations of size 7. Selected results from dataset
m07, fixing the value of the DC-pumping current. All the other parameters (fixed
for all population samplings) are described in Table 3.1. (Top image) Imaging of
three different populations A, B and C. (A, B, C)(Left) Respective dynamics associ-
ated with the selected popultaion. (Right) Superimposed L-I curves of all the lasers
belonging to the population. The black dashed lines show the average threshold for
each population (A: 185.63 mA, B: 182.88 mA, C: 180.81 mA) and the dash-dotted
lines show the constant current value MX here selected of 193.50 mA.
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Dynamics of populations with increasing size at fixed control param-
eters Let us now consider the dynamics of a population of increasing size,
when keeping all the control parameters the same. The figures here reported
all come from measurement m06, where we acquired data from 19 groups of
different sizes, from 1 to 451 (the whole population). Given what we know
about the relationship between the average threshold and the type of dynam-
ics, we expect to see that, as the average threshold of the population gradually
reaches its global average value of Ith451 = 183.3 mA, so does the dynamics of
the mean field.

Figure 3.37 shows the result from three different groups from this dataset called
D, E and F with populations of increasing sizes of 19, 251 and 451 lasers re-
spectively. The top panel represents an image of the selected populations on
the Near field. Note how they are all centred on the same laser, so the popu-
lation can only add new members when increasing the size but not eliminate
old ones. The 2D histogram of the mean field extrema for the three popula-
tions show that, even though the general shape of the bifurcation stays the
same, the value of the lower (I l) and upper (Iu) bifurcation bounds are shifted
towards lower values when increasing the population size. The corresponding
values of the average threshold, visible in the L− I curves in the right panels,
also shifts towards lower values, from Ith19 = 185.32 mA for the D population,
to Ith451 = 183.29 mA for the F population.

This type of measurement between the lower and upper bifurcation bounds and
the average threshold of the selected population is better quantified in Figure
3.38. Here we plot the difference in value between the upper (Ius ) and lower
bound currents (I ls) at different sizes and their value for the whole population
(I l451 and Iu451), as the size of the population increases. The same is done for the
difference of the average threshold Iths and the global average threshold Ith451.
What we observe is that the three curves closely follow each other, which means
that the average value of the threshold determines what is the corresponding
I l and Iu value of the population. Hence, as the threshold reaches its global
average when increasing the size from 1 to 451, I l and Iu closely follow.

Figure 3.38 also shows that, for this particular realization, the average value of
the threshold reaches a maximum at around size 25 and then slowly decreases.
This decrease will be the same that we can expect from a deviation to the mean
that slowly converges towards the global average, which will go as ∼ s−1/2, s
being the number of lasers. Figure 3.39 shows a fit of such a type of function
for the upper bound current data with s ≥ 75, and we find that the fit closely
follows the data. We propose this inverse-square-root function convergence
based on how the empirical mean converges to the true statistical mean due
to the central limit theorem.
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Figure 3.37: Dynamics of populations with increasing size. Selected results from
dataset m06. The experimental parameters are described in Table 3.1. (Top image)
Imaging of three different sample populations D, E, F with populations sizes of 19,
251 and 451 respectively. (D, E, F)(Left) Respective 2D histogram of the mean field
extrema when varying the DC-pumping current. (Right) Superimposed L-I curves of
all the lasers belonging to the population. The black dashed lines show the average
threshold for each population (D: 185.32 mA, E: 183.70, F: 183.29 mA).
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Figure 3.38: Evolution of the current values of the upper bound and lower bound of
the bifurcation, along with the average threshold of the population, as the number
of selected lasers increases. All data from dataset m06. Note how the trends of all
three curves is correlated, and as the threshold naturally reaches its global average
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Figure 3.39: Decay of the upper bound current value as the number of selected lasers
increases. Same data as in Figure 3.38. The points to the right of the vertical red
dashed line (≥ 75) are fitted with a function of the type Ius (s) = a s−1/2 + b, which
gives as best fit parameters a = 26.5 and b = −0.284, with R2 = 0.924. The two red
point-dashed curves represent the two limits at ±1 stddev from the fit parameters.
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Figure 3.40: Linear fit of the value of the current corresponding to the upper bound
of the bifurcation Iu for populations of laser of different sizes, from 1 to 451, as a
function of the average threshold of the population Ith. The size and color of the
scatter points is logarithmically scaled to the group sizes. All data from datasets
m05, m06 and m07 (same parameters). The linear fit of the type Iu(Ith) = a Ith + b
gives as best fit parameters a = 0.740 and b = 56.9 mA, with R2 = 0.673.

Linear dependence of the upper bound bifurcation current on the
average threshold for all populations sizes and mean field conver-
gence In all of the previous figures we remarked how the average threshold
was correlated with the observed dynamics in the mean field, when looking
at individual cases. Here we present a figure which tests and quantifies this
relationship.

Figure 3.40 collects all of the data from datasets m05, m06 and m07 for a
total of 60 different groups of variable population size, from 1 to 451. For each
group, we plot their upper bound bifurcation value Iu as a function of their
average threshold value Ith. The size and color of the different scatter points
is scaled as the size of each group, so that bigger group sizes will be shown as
bigger and darker blue.

We note that, independently on the size of the group, the threshold and upper
bound values are linearly dependent, as they are well fitted by a function of the
type Iu(Ith) = a Ith+b. This confirms our observation 3. on the proportionality
of the upper bound bifurcation to the average threshold. This experimental
finding will be explained in the Analytical and numerical 3.5 section as a
consequence of the model.

Furthermore notice how, the bigger the size, the closer the groups get toward
the global average value represented by the biggest point. This also means
that, as the size of group increases, the type of dynamics converges towards
a stable condition which is the one that characterizes the global average. As
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another example, looking again at Figure 3.38, we notice that after around 275
lasers, the type of dynamics stays the same and equal to the global average.
We therefore observe a convergence of the dynamics towards a simplified case
which corresponds to the one having as a bifurcation parameter the global
average of the bifurcation parameters of the population. This simplification
of the dynamics will be reproduced numerically when studying the physical
model.
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3.4 Alternative setups, miscellaneous mean

field traces and results

In the previous section we described the results obtained when employing the
opto-electronic feedback loop composed of a logarithmic amplifier, a fractional-
gain amplifier and an high-pass filter as in Figure 3.8. Before turning to the
theoretical side of the story on this setup, we present here some additional re-
sults that have been acquired using similar but slightly different opto-electronic
setups, or in regimes of control parameters that have not been explored in
depth. The main difference between these alternative setups and the usual one
consists in the fact that in these preliminary versions the electronic feedback
loop was not entirely composed of active elements, but also of passive ones.
Changing the amplification (or attenuation) also implied a change in the high
frequency cut-off. This problem has been later solved by employing all active
elements (featuring operation amplifier).

The purpose of this section is to document the work that has been done on
these alternative setups, which will also give us some insight on the general
properties that one can expect from an opto-electronic type of system. In
particular, we will concentrate on possible differences between the dynamics of
single elements and that of the main field. We will show that, even if they are
always seemingly synchronized, small or even large amplitude differences can
be observed in the intensity timetraces of different laser elements.

3.4.1 Setup with variable resistance and high-pass filter

An alternative type of opto-electronic setup that has been employed in the
experiment is the one shown in Figure 3.41, which employs a variable resistance
(composed of a 100 kΩ fixed resistance in series with a variable [0-100] kΩ
resistor) and a high-pass filter.

Dynamics of two lasers: the up-laser and the down-laser When letting
all of the lasers participate to the feedback loop and looking at the dynamics
of the mean field and of other single lasers at the same time, some differences
between different lasers dynamics can be spotted. Figures 3.42 and 3.43 show
the simultaneous detection of the mean field and another laser: in the case
of Figure 3.42 the “up-laser”, and in the case of Figure 3.43 the “down-laser”.
These two lasers are two out of the 451 lasers of the matrix, and they have
only been identified by their relative vertical position, “up” and “down”, in the
sense that, to go from the “down” laser to the “up” laser experimentally, one
has to move up the iris selecting the near field in the vertical position using
micrometer screws.

In the case of the up-laser, we notice how the mean field dynamics displays
some mixed-mode chaotic spiking, and so does the intensity of the up-laser.
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Figure 3.41: Alternative opto-electronic setup, with a variable resistance and a high-
pass filter in the feedback loop.

By reconstructing the attractor in 2D with a time delay of τ = 40 µm, we
note that, apart from small differences, the two attractors look the same, with
a small-oscillations core near the origin, and large excursions that corresponds
to the chaotic spikes. The small differences that we can observe are either due
to the slightly different response of the photo-detectors, or to small intensity-
response differences of the up-laser to the pumping current oscillations.

Instead in the case of the down-laser, given the same experimental condition
and the same photo-detectors, we observe that the intensity of the down-laser
doesn’t display the small amplitude oscillations, or at least not with the same
relative amplitude to the peak value of the chaotic spikes, as before. These
differences, which can be seen directly from the intensity timetraces, are even
more evident if looking at the 2D attractor reconstruction. While the attractor
for the mean field looks identical, in the case of the down-laser the core of
small amplitude oscillations near the origin has collapsed into a single point.

Another example of the disappearance of the small amplitude oscillations can
be visible in Figure 3.44. Here we detect at the same time the down-laser, as
before, and another reference-laser which is far from the up and down lasers
in the near field. Looking at the timetraces or at the attractors we note that,
while the reference laser does show the same small amplitude oscillations as
the mean field, the down-laser does not, and the oscillations are reduced to a
point in the attractor.

These differences are most certainly due to the threshold value of the down-
laser, which must be higher than the up-laser and the reference-laser, as the
maximum amplitude of the chaotic spikes is also lower for this laser. Given
the same pumping current oscillations from the power supply, its intensity
response is lower and, while it stays mostly in the “off” state of the L − I
curve for the small oscillations, it spikes along with the mean field for the large
current oscillations corresponding to the chaotic spikes.

This type of dynamics suggests that the down-laser only participates to the
mean field during the big spikes, and it may even be de-synchronized in the
fast variables during the small oscillations.
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(a) 2D attractor reconstruction with τ = 40 µs.
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(b) Timetraces of the mean field and the up-laser.

Figure 3.42: Dynamics of the mean field vs the up-laser with the alternative setup
that includes a variable resistance as in Figure 3.41. Parameters as follows: size=all
lasers; MX = 189.9 mA; Dpos=3; Variable resistor ∈ [0− 100] kΩ and filter cut-off
frequency ∈ [20 − 5000] Hz (data of 11/09/17). In both cases the small amplitude
oscillations are visible, both in the timetraces and in the attractors.

(a) 2D attractor reconstruction with τ = 40 µs.
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(b) Timetraces of the mean field and the down-laser.

Figure 3.43: Dynamics of the mean field vs the down-laser with the alternative
setup as in Figure 3.41. Same parameters as in Figure 3.42. In this case only the
mean field show the small amplitude oscillations, both in the timetraces and in the
attractors.
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(a) 2D attractor reconstruction with τ = 40 µs for the Mean field (left),
the down-laser intensity (middle) and the reference-laser intensity (right).
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(b) Timetraces of the mean field, the down-laser intensity and the reference-laser intensity.

Figure 3.44: Dynamics of the mean field vs the down-laser and a reference-laser with
the alternative setup that includes a variable resistance as in Figure 3.41. Similar
parameters as in Figure 3.42 (data of 12/09/17). Notice how, apart from differences
in the photo-detectors responses, the down-laser doesn’t show the small amplitude
oscillations, while the reference-laser does.
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Figure 3.45: Small noisy dynamics as the pumping current is increased. The traces
represent the mean field (measured with AC coupling) for a small group of lasers (less
than 50), when there is no feedback loop present (we only detect the global intensity
at the photo-detector). From top to bottom, the panels represent a pumping current
value equal to 0, 170, 180, 210, 220 mA (data of 6/10/17). The small noisy dynamics
amplitude increases as the pumping increases, and depends on the threshold value
of the selected lasers.

Small noisy dynamics Another type of dynamics that was observed in the
mean field does not come from the opto-electronic system, but from the lasers
themselves. Even when the opto-electronic feedback is not present (that is,
when we only register the global intensity of the lasers onto the photo-detector)
there appears to be a small noisy dynamics which gets added to the DC value
of the mean field. Figure 3.45 shows some examples of this noisy dynamics at
different pumping currents when detecting the light intensity of a small group
of lasers (less than 50). This dynamics, which is not present in the system for
zero pumping current, gets amplified as soon as we surpass the global threshold
value of around 183 mA for the laser matrix. In fact, even though every laser
displays the same synchronous noise, the amplitude of the noise depends on
the threshold of the particular laser, so the lower the threshold, the higher the
amplitude of this noise.

We suspect that this is an electrical noise which comes from the current inside
the Circuit Board of the laser matrix. Each laser would then be subjected
to the same noise, which is translated into light intensity noise with different
amplitudes due to the different L− I response of each laser. Even though this
noise is not visible for opto-electronic feedback loops where the amplitude of
the current oscillations is large, it will be visible for small current oscillations
as we will see later.
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Figure 3.46: Alternative opto-electronic setup, with a logarithmic amplifier, a voltage
divider and a high-pass filter in the feedback loop.

3.4.2 Setup with a logarithmic amplifier, a voltage di-
vider and high-pass filter

Here we present another alternative opto-electronic setup composed of a log-
arithmic amplifier, a voltage divider and a high-pass filter. The logarithmic
amplifier is the same as in the usual setup of Figure 3.8, while the voltage
divider allows us to transform the output signal with a gain ∈ [0, 1].

Mean field dynamics and detection of three single lasers: A27, A26
and A25, where only the first two participate to the feedback Figure
3.47 shows the simultaneous detection of the mean field and of three other
single lasers: A27 (a), A26 (b) and A25 (c). The control parameters between
the three different cases remain the same and the only thing that is changed
is the current laser under detection. The only lasers selected by the iris for the
feedback are A27 and A26, while laser A25 is outside of the feedback loop but
still feels the pumping current oscillations determined by the mean field.

The top panels in each case represent the 2D attractor reconstruction of the
mean field, the 2D attractor reconstruction of the current laser under detection
and the laser intensity vs mean field plot of the current laser. The last plot
can be thought of as a representation of the L − I curve of the current laser
that is being explored by the pumping current oscillations. This is because the
pumping current of the lasers is just a non-linear transformation of the mean
field realized at the feedback photo-detector. The different colors represent
different DC-pumping current values, from 168.9 mA (red) to 171.0 mA (blue).
The bottom panels represent instead the timetraces of the mean field and of
the intensity of the current laser.

Comparing the different detections we note that, even though the mean field is
the same, the dynamics of the different lasers is quite different. In particular,
laser A27 is the only one that participates to the mean field dynamics, while
laser A26 stays basically at zero intensity the whole time. Looking at the 2D
attractor reconstruction of lasers A27 we note that it resembles the mean field,
while in the case of laser A26 the attractor resembles a point at the origin.
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Finally when looking at the laser intensity vs mean field plot (the transformed
L − I plot), in the case of laser A27 we are staying completely on the “on”
branch of the L− I, while we are completely on the “off” branch for laser A26.

If we now compare them to laser A25, which is outside of the feedback, we
notice that he is in an intermediate condition: its dynamics does resemble the
one of the mean field, but with a smaller amplitude and only during the higher
part of the oscillation spikes. Looking at the transformed L− I plot, we note
how we are on the “on” branch near a second kink point as the one shown for
laser L05 in Figure 3.20, probably closer to the threshold, which explains the
lower intensity. Consequently, the 2D attractor is smaller and contracted into
a point for small DC-pumping currents.

This figure shows that, for current oscillations that are in the vicinity of the
global threshold of 183 mA, some lasers may not participate to the mean
field dynamics, while others may be the principal actors, and others may only
participate during the high amplitude spikes.
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(a) Dynamics of the mean field vs laser A27 (inside the feedback).
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(b) Dynamics of the mean field vs laser A26 (inside the feedback).
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(c) Dynamics of the mean field vs laser A25 (outside the feedback).

Figure 3.47: Dynamics of the mean field vs the intensities of lasers A25, A26,
A27 with the alternative setup that includes a voltage divider as in Figure 3.46.
Parameters as follows: size=only lasers A27 and A26; Dpos=3; L ∈ [0, 2]; filter cut-
off frequency ∈ [20−5000] Hz and variable MX (from red to blue: 168.9, 169.5, 170.0,
171.0 mA) (data of 2/11/17). The main contributor to the mean field dynamics is
laser A27. (Top panels) 2D attractors reconstruction with τ = 10 µs, and Laser
intensities - mean field plot for MX=170.0 mA (green plots). (Bottom panels) Mean
field and lasers intensities timetraces for MX=170.0 mA (green plots).
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Dynamics of the mean field and three other lasers: the up-laser,
the down-laser and the reference laser In the previous examples we
where exploring the cases of large mean field values, which were of the order
of hundreds or thousands of mV when measured on the photo-detector. By
carefully chosing the control parameters, one can also observe small mean field
values, of the order of tens of mV on the photo-detector. For these parameters,
the noisy dynamics shown in Figure 3.45 become relevant, and one can see its
effects on the single laser intensities.

Figures 3.48 and 3.49 show the simultaneous detection of the mean field and
two other lasers, one of which is a fixed reference-laser, and the other is one
of the two up- or down-lasers, which are another couple of lasers that are
vertically aligned in the near field. The two figures only differ between each for
the DCriv and DC-pumping parameters. The feedback selects only one single
laser (not one of the detected lasers), so the mean field is just the intensity of
this laser.

In both figures, the top panels represent the 2D attractor reconstruction of
the mean field and two other lasers, while the top panels shows their traces.
Both figures show some type of chaotic spiking regime for the mean field with
the same type of noisy dynamics of Figure 3.45 added to the DC value. How-
ever, even though the up-laser does show prominently the noisy dynamics, the
reference-laser and down-laser do not for the same experimental realization. In
particular, one can clearly see a difference in the attractor of the up-laser and
the down-laser: while the up-laser displays a noisy dynamics near the origin,
the down-laser does not (or at least is not as relevant).

These figures show that the noisy dynamics can be present in the mean field
so that it can be felt by all of the lasers, but with an amplitude that depends
on the threshold value of each lasers: while for some lasers this can be of small
amplitude, for others it can be of higher amplitude.



3.4 Alternative setups, miscellaneous mean field traces and results 213

4
7

10

M
.f
.

(m
V
)

Time (ms)
0

15
30

r-
la

s.
(m

V
)

0
40
80

u
-l
a
s.

(m
V
)

0 1 2 3 4 5
Time (ms)

750
900

1050

O
u
t 

p
.s

.
(m

V
)

(a) Dynamics of the mean field vs reference-laser and up-laser.
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(b) Dynamics of the mean field vs reference-laser and down-laser

Figure 3.48: Dynamics of the mean field vs the intensities of lasers reference-laser,
up-laser and down-laser with the alternative setup that includes a voltage divider
as in Figure 3.46. Parameters as follows: size=only one laser; Dpos=3; DCriv@182.4
mA= 6.6 mV; L ∈ [0, 2]; filter cut-off frequency ∈ [20 − 5000] Hz and MX=176.2
mA (data of 23/11/17). There is a clear difference in the dynamics of the up-laser
and the down-laser for the same control parameters. (Top panels) 2D attractors
reconstruction with τ = 5 µs. (Bottom panels) Timetraces of the mean field, the
lasers intensities and the output monitoring signal of the power supply.
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(a) Dynamics of the mean field vs reference-laser and up-laser.
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(b) Dynamics of the mean field vs reference-laser and down-laser

Figure 3.49: Dynamics of the mean field vs the intensities of lasers reference-laser,
up-laser and down-laser with the alternative setup that includes a voltage divider as
in Figure 3.46. Same parameters as in Figure 3.48, apart from DCriv@182.4 mA= 8.0
mV and MX=182.4 mA. There is a clear difference in the dynamics of the up-laser
and the down-laser for the same control parameters. (Top panels) 2D attractors
reconstruction with τ = 5 µs. (Bottom panels) Timetraces of the mean field, the
lasers intensities and the output monitoring signal of the power supply.
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3.4.3 Miscellaneous traces of the usual opto-electronic
feedback with logarithmic amplifier, fractional-
gain amplifier and high-pass filter.

In the previous subsections 3.3.4 and 3.3.5 we reported the results that were
obtained by employing the usual opto-electronic feedback loop with a logarith-
mic amplifier, fractional-gain amplifier and high-pass filter as in Figure 3.8.
For the range of selected control parameters, we described a type of dynam-
ics that ranged from stationary steady state, to periodic self-oscillations, to
another stationary steady state, with the possibility of observing mixed-mode
chaotic-spiking regimes or 2D FitzHugh-Nagumo-like system with noise at the
bifurcation boundaries, as shown in Figure 3.24.

However, other types of dynamics were observed for different ranges of param-
eters, namely: mixed-mode oscillations with different winding number (very
similar to the ones observed in [Marino 2011]), a beating-dynamics with vari-
able amplitude (similar to the one that origins from interacting oscillators with
close natural frequencies, as studied in [Pilipchuk 2008], found in vibro-impact
processes [Manevitch 2009] or in an elastic system with a strong local stiffness
nonlinearity [Kurt 2014]), and a noisy dynamics probably caused by electrical
noise, as already reported in Figure 3.45.

Figures 3.50, 3.51, 3.52, 3.53 and 3.54 display some examples of the different
types of observed dynamics for the mean field and their transition as the DC-
pumping current is increased for different experimental parameters.
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Figure 3.50: Mean field timetraces with the usual opto-electronic feedback as in
Figure 3.8, increasing the DC-pumping current. Parameters as follows: size=all
lasers; Dpos=2; DCriv@180.0 mA=200 mV; A=2; L ∈ [0, 1]; filter cut-off frequency
∈ [20 − 200] Hz. From top to bottom, the DC-pumping current is reported on the
table on the right (data of 20/12/17). There is a first sudden transition from a noisy
dynamics (ND) to periodic self-oscillations (PO), and then again to noisy dynamics.
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Figure 3.51: Mean field timetraces with the usual opto-electronic feedback as in
Figure 3.8, increasing the DC-pumping current. Same parameters as Figure 3.50,
apart from DCriv@180.0 mA=80 mV. From top to bottom, the DC-pumping current
is reported on the table on the right. One can observe: beating dynamics (BD),
mixed-mode oscillations (MMOs), periodic self-oscillations (PO) and noisy dynamics
(ND).
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Figure 3.52: Mean field timetraces with the usual opto-electronic feedback as in Fig-
ure 3.8, increasing the DC-pumping current. Same parameters as Figure 3.50, apart
from DCriv@180.0 mA=60 mV. From top to bottom, the DC-pumping current is
reported on the table on the right. One can observe: noisy dynamics (ND), beat-
ing dynamics (BD), mixed-mode oscillations (MMOs) and periodic self-oscillations
(PO).
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Figure 3.53: Mean field timetraces with the usual opto-electronic feedback as in
Figure 3.8, increasing the DC-pumping current. Same parameters as Figure 3.50,
apart from DCriv@180.0 mA=70 mV and the cutoff frequency ∼ 5 kHz. From top
to bottom, the DC-pumping current is reported on the table on the right. One
can observe: noisy dynamics (ND), beating dynamics (BD), mixed-mode oscillations
(MMOs) and periodic self-oscillations (PO).
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Figure 3.54: Mean field timetraces with the usual opto-electronic feedback as in
Figure 3.8, increasing the DC-pumping current. Same parameters as Figure 3.50,
apart from DCriv@180.0 mA=80 mV and the cutoff frequency ∼ 5 kHz. From top
to bottom, the DC-pumping current is reported on the table on the right. One can
observe: beating dynamics (BD), mixed-mode oscillations (MMOs), periodic self-
oscillations (PO) and noisy dynamics (ND).
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3.5 Analytical and numerical study

We will now introduce the 3D theoretical model of a single laser with opto-
electronic feedback, and later its (2N + 1)-dimensional counterpart in the case
of N coupled lasers with the same feedback. Both will be studied analytically
and through numerical simulations.

3.5.1 Dynamical model for a single laser with opto-
electronic feedback

Let us now introduce the dynamical model for the case of a single laser with
the type of opto-electronic feedback that comprises a logarithmic amplifier, a
fractional gain amplifier and a high-pass filter as shown in Figures 3.4 and 3.8.

It consists of a 3D model that takes into account the dynamics of the photon
density S, the carrier density N and the high-pass filtered current I that is
reinjected into the laser though the pump current. It is very similar to the one
described in [Al-Naimee 2009], and it differs from it in of the shape of the non-
linearity transfer function (which is a logarithmic function in this case) and in
the order of application of the non-linearity and high-pass filter (first high-pass
filter, then non-linearity), which is switched in our case (first the non-linearity,
then the high-pass filter). Remarkably, one can obtain very similar results with
this model to the one used in [Al-Naimee 2009] despite of these discrepancies,
as we will see later.

The evolution of the dynamical variables S, N and I can be described by the
usual single-mode semiconductor laser rate equations [Chow 1994], appropri-
ately modified in order to include the AC-coupled feedback loop:

Ṡ = [g(N −Nt)− γ0]S

Ṅ =
I0 + kI

e V
− γcN − g(N −Nt)S

İ = −γfI + ˙fF (S)

(3.8)

where:

• I is the high-pass filtered feedback current;

• fF ≡ A ln(1 +α′S) is the nonlinear transfer function that transforms the
intensity power S seen from the photo-detector into the current before
the high-pass filter;

• I0 is the bias current;

• e the electron charge;

• V is the active layer volume;
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• g is the differential gain;

• Nt is the carrier density at transparency;

• γ0 and γc are the photon damping (' 1012 Hz) and population relaxation
rates (' 109 Hz), respectively;

• γf is the cutoff frequency of the high-pass filer;

• k is a coupling coefficient proportional to the photo-detector responsitiv-
ity.

Note that in the third equation of system 3.8 the transfer function appears as a
derivative due to the fact that the high-pass filter is applied after the nonlinear
amplification.

Slow-fast three-time-scale system It is useful both for numerical and
analytical purposes to rewrite system 3.8 in the form of a 3D slow-fast system
(that is, in the form of three equations with very different characteristic time-
scales). By introducing the new variables:

x ≡ g

γc
S

y ≡ g

γ0

(N −Nt)

w ≡ I − fF
(
γc
g
x

) (3.9)

and rescaling the time to the new time scale t′ = γ0 t, we can rewrite the
system 3.8 as:

ẋ = x(y − 1) (fast)

ẏ = γ [δ0 − y + k1w + k2 ln(1 + αx)− xy] (intermediate)

ẇ = −ε [w + A ln(1 + αx)] (slow)

(3.10)

where:

• δ0 ≡
I0 − It
Ith − It

is the normalized pump current, It being the transparency

current;

• Ith = e V γc

(
γ0

g
+Nt

)
is the definition of the solitary laser threshold

current;

• k1 ≡
kg

e V γ0γc
, k2 ≡ Ak1, α ≡ γcα

′

g
are redefined parameters;

• γ ≡ γc
γ0

∼ 10−3 determines the intermediate timescale;
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• ε ≡ γf
γ0

∼ 10−4 ∼ 10−4 determines the slow timescale;

Note how there are three different timescales in the system 3.10 which are
defined by the timescale parameters γ and ε. Physically plausible values of
these parameters are γ = 4.0× 10−3 and ε = 10−4 [Barland 2005].

Slow-manifold Given that the system 3.10 is a slow-fast system, the dynam-
ics will converge towards the slow manifold in the regions where it is stable.
Let us now find first the expression of the slow manifold. We will suppose that,
as ε is small, the zero-th order approximation of the slow manifold in ε can be
simply obtained from the critical manifold. In the following we will therefore
consider the expression for the critical manifold as the slow manifold of the
system. We define for convenience the functions f , g and h as:

f(x, y) ≡ x(y − 1)

g(x, y, w, γ) ≡ γ [δ0 − y + k1w + k2 ln(1 + αx)− xy]

h(x,w) ≡ − [w + A ln(1 + αx)]

(3.11)

so that the system 3.10 can be written as:
ẋ = f(x, y) (fast)

ẏ = g(x, y, w, γ) (intermediate)

ẇ = ε h(x,w) (slow)

(3.12)

The slow manifold is then defined by the condition f(x, y) = 0, g(x, y, w, γ) =
0. This is satisfied for two cases:

(i) x = 0, g(x, y, w, γ) = 0, which gives:

yw = δ0 + k1w (3.13)

(ii) y = 1, g(x, y, w, γ) = 0, which gives:

wx =
x− k2 ln(1 + αx) + 1− δ0

k1

(3.14)

The slow manifold is then given by Σ ≡ Σx ∪Σy, where Σx and Σy are defined
as:

Σx ≡ {(x = 0, yw, w)}

Σy ≡ {(x, y = 1, wx)}
(3.15)

While the Σx branch belongs to the x = 0 plane and is simply a line in the
w− y plane, the Σy branch belongs to the y = 1 plane and has a parabola-like
shape in the w−x plane. The two branches intersect exactly on the point with
coordinates {x = 0, y = 1, w = (1− δ0)/k1}, which we will call point I.
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Stability of the slow-manifold Now let’s evaluate the stability of the slow-
manifold. For small ε, the slow manifold will be stable provided that the critical
manifold is stable. The slow-manifold will then be stable where the Jacobian
calculated on the critical manifold has all negative eigenvalues. The Jacobian
of system 3.10 can be written as:

J =


y − 1 x 0

γ

(
αk2

αx+ 1
− y
)
−γ(x+ 1) γk1

− αAε

αx+ 1
0 −ε

 (3.16)

We can evaluate it on the two branches of the critical-manifold Σx and Σy

(setting ε = 0).

(i) Stability of Σx: The Jacobian on Σx can be written as:

Jx =


δ0 + k1w − 1 0 0

γ(αk2 − δ0 − k1w) −γ γk1

0 0 0

 (3.17)

The eigenvalues of the top left 2x2 matrix are:

λx1 = −γ

λx2 = δ0 + k1w − 1
(3.18)

and they govern the stability of the critical manifold. Given that γ > 0,
this branch of the slow-manifold is stable for:

w <
1− δ0

k1

(3.19)

Note that this corresponds to the intersection point I between the two
branches Σx and Σy. The Σx manifold is then stable for all the values
with w value lower than the intersection point.

(ii) Stability of Σy: The Jacobian on the critical-manifold branch Σy can be
written as:

Jy =


0 x 0

γB −γ(x+ 1) γk1

0 0 0

 (3.20)

where B ≡ αk2/(αx+ 1)− 1. The eigenvalues are then:

λy1,2 =
1

2

(
−γ(x+ 1)±√γ

√
4Bx+ γ(x+ 1)2

)
' ±√γ

√
Bx (3.21)
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where we discard the 0 eigenvalue, and we suppose that γ is small. Given
that x is limited to x > 0 for physical reasons (it comes from a photon
density), the eigenvalues have then real part ≤ 0 when B < 0. , i.e.:

B < 0 −→ αk2 − αx− 1

αx+ 1
< 0 −→ x >

k2α− 1

α
(3.22)

where we also suppose α > 0. Note also that, if we calculate the derivative
of the parametric function wx that describes the Σy branch in the w− x
plane, we obtain:

dwx
dx

=
−αk2 + αx+ 1

αk1x+ k1

= −B ·
(

αx+ 1

αk1x+ k1

)
(3.23)

which means that the derivative of the wx has the same sign as −B
(supposing that k1 > 0). Given that we just found that Σy is stable
for B < 0, this means that Σy is stable when the derivative dwx/dx is
positive, and unstable otherwise.
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(a) Plot of Σy for δ0 equally spaced from 1.2 to 1.6 (blue corre-
sponds to 1.2, green to 1.6). The curve is dashed when unstable.
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Figure 3.55: Stability of the Σy branch of the slow-manifold. Σy is plotted in the
w − x plane for parameters α = 2, k1 = 0.7, k2 = 1, γ = 4.0 × 10−3, ε = 10−4

(with A = k2/k1) and variable δ0. Panel (b) represent the numerical eigenvalues for
the full Jacobian, while an approximation for when the curve is unstable is given by
x < (k2α − 1)/α = 0.5, which is quite close to the value of 0.516 calculated for the
full system.

Motion on the slow-manifold Let’ now calculate what is the reduced
motion of the system on the two branches of the slow manifold. We have
already established that Σx is unstable for values of w that are lower than the
intersection point with Σy, while Σy is unstable when the derivative dwx/dx
is negative. The system will not follow the slow-manifold in these regions. On
the stable parts, the evolution will go as follows:

(i) Motion on Σx: The motion will be governed by the third equation of the
system 3.10, that is:

ẇ = ε h(x = 0, w) −→ ẇ = −εw (3.24)

which means that the system will always try to converge towards the
point with coordinates {x = 0, y = δ0, w = 0}, which we will call Sx.
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(ii) Motion on Σy: The motion will again be governed by the third equation
of the system 3.10, that is:

ẇ = ε h(x,wx) −→ ẇ = −ε [wx + A ln(1 + αx)] (3.25)

By substituting the expression for wx and remembering that A = k2/k1,
one can simplify this equation as:

ẇ = −ε
[
x+ 1− δ0

k1

]
(3.26)

which means that, supposing that k1 > 0, the system will always try to
converge towards the point with coordinates {x = δ0 − 1, y = 1,
w = −A ln (1 + α(δ0 − 1))}, which we will call Sy.

Summary of the 3D-dynamics In summary, supposing that the parame-
ters are physically plausible (i.e., k1, K2, A, α, γ, ε, δ0 > 0), and also supposing
that k2 > 1/α (as is the case of our numerical simulations, a similar analysis
can be done otherwise), the dynamics will be as follows:

(i) For δ0 < 1: The point Sx will be stable, while the point Sy will be unstable.
After a first transient, the dynamics will converge towards Sx on the Σx

branch of the manifold.

(ii) For 1 < δ0 < δV0 : Both Sx and Sy will be unstable. The dynamics will
either settle into periodic self-oscillations or chaotic spiking (when close
to δV0 ).

(iii) For δ0 > δV0 : The point Sx will be unstable, while the point Sy will be
stable. After a first transient, the dynamics will converge towards Sy on
the Σy branch of the manifold.

The value of δV0 is:

δV0 ≡
k2α− 1

α
+ 1 (3.27)

and corresponds to the condition where the V point (the minimum of the wx
function) coincides with the Sy point. The relevant points have coordinates:

I =

{
x = 0, y = 1, w =

1− δ0

k1

}
(Intersection point between Σx and Σy)

V =

{
x =

k2α− 1

α
, y = 1, w =

1

k1

(
k2α− 1

α
− k2 ln(k2α) + 1− δ0

)}
(Minimum of wx. Determines the boundary of stability for Σy )

Sx = {x = 0, y = δ0, w = 0} (Attractor on Σx )

Sy = {x = δ0 − 1, y = 1, w = −A ln (1 + α(δ0 − 1))} (Attractor on Σy )
(3.28)
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(a) Motion on Σy for δ0 equal to 1, 1.25, 1.5, 1.75 and 2 (blue to green).
The system is attracted towards Sy, which is stable for δ0 > (k2α −
1)/α+ 1 = 1.5 and unstable otherwise. V represents the minimum of
wx as in Eq. 3.38, while I is the intersection point between Σx and
Σy.
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(b) Motion on Σx for δ0 equal to 0.5, 0.75, 1, 1.25 and 1.5 (blue to
green). The system is attracted towards Sx, which is stable for δ0 < 1
and unstable otherwise. I is the intersection point between Σx and
Σy.

Figure 3.56: Motion of the system on the two branches of the slow-manifold Σx

and Σy. Σy is plotted in the w − x plane for parameters α = 2, k1 = 0.7, k2 = 1,
γ = 4.0 × 10−3, ε = 10−4 (with A = k2/k1) and variable δ0, while Σx is plotted in
the w − y plane for the same parameters and variable δ0.

Figure 3.56 shows a summary of the motion on the two branches of the slow-
manifold for the same parameter range used in the numerical simulations, when
changing the δ0 parameter.
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3.5.2 Numerical simulations of a single laser with opto-
electronic feedback

Here we will show that the analytical predictions obtained in the previous sub-
section 3.5.1 about the dynamics of a single laser with opto-electronic feedback,
as described by the 3D slow-fast system 3.10, are confirmed by the numerical
simulations.

The numerical simulations in this subsection have been performed using the
Euler integration method, with an integration step of ∆t = 0.1 (units of γ−1

0 ).

Some of the Figures here reported come from a study by Alexandre Miazek7

during his Master 1 stage at the Inphyni lab, under the supervision of Stéphane
Barland.

3D dynamics as the bifurcation parameter δ0 increases. The dynam-
ics basically follows the observations reported in the summary of the 3D dy-
namics described in the last subsection. Figure 3.57 shows three different sim-
ulations for the same parameters but different δ0. For all simulations, we plot
the two branches of the slow-manifold, i.e. Σx (green, the line in the x = 0
plane, unstable when dashed) and Σy (black, the parabola-like function in the
y = 1 plane, unstable when dashed), along with the relevant points for the
dynamics, i.e. I (red, the intersection point between Σx and Σy), V (magenta,
the minimum of Σy), Sx (green, the attractor on Σx) and Sy (black, the at-
tractor on Σy. The blue triangle represents the initial start of the numerical
simulation (placed on the Σy branch at x = 1). The dynamics is as follows:

• First row (δ0 = 0.75, δ0 < 1): Starting from the initial condition, the sys-
tem is attracted towards the unstable Sy on the parabola-like Σy branch.
However, after passing the vertices V of the branch, this branch becomes
unstable. The system then crosses over to the line Σx, and from here it
is attracted towards the stable Sx, where it rests.

• Second row (δ0 = 1.25, 1 < δ0 < δV0 = 1.5): Starting from the ini-
tial condition, the system is attracted towards the unstable Sy on the
parabola-like Σy branch. However, after passing the vertices V of the
branch, this branch becomes unstable. The system then crosses over to
the line Σx, and from here it is attracted towards the unstable Sx. Once
it surpasses the intersection point I, Σx becomes unstable too. The sys-
tem continues to follow it a little while longer, before it is expelled from
it towards the Σy branch again, where it settles following some spiral
relaxation oscillations. Once on this branch, the system is back where it
started, and the loop starts over again. This motion generates periodic
self-oscillations. Figure 3.58 shows again this dynamics in phase space in
a more visible plot.

7From Université de Lille, alexandre.miazek@gmail.com
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• Third row (δ0 = 1.75, δ0 > δV0 = 1.5): Starting from the initial condition,
the system is attracted towards the stable Sy on the parabola-like Σy

branch. After a first transient, it will just settle on this stable point.
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Figure 3.57: Numerical simulations of a single laser with optoelectronic feedback,
same parameters as Figure 3.58 with variable δ0 (without noise). The black curve is
the branch Σy and the green curve is the branch Σx of the slow manifold (unstable
when dashed). The plotted points are I (red, intersection point between Σx and
Σy), V (magenta, the minimum of Σy), Sx (green, the attractor on Σx) and Sy
(black, the attractor on Σy). The blue point is the initial start of the simulation.
δ0 = 0.75: Sy is unstable while Sx is stable. After a first transient, the system relaxes
on Sx. δ0 = 1.25: both Sx and Sy are unstable. The system performs periodic self-
oscillations going from one brach to the other of the slow-manifold. δ0 = 1.75: Sx is
unstable while Sy is stable. After a first transient, the system relaxes on Sy.
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Figure 3.58: Numerical simulation of a single laser with optoelectronic feedback as
in system 3.10. The parameters are α = 2, k1 = 0.7, k2 = 1, γ = 4.0×10−3, ε = 10−4

(with A = k2/k1) and δ0 = 1.25 (without noise). The black curve is the branch Σy

and the green curve is the branch Σx of the slow manifold (unstable when dashed).
The plotted points are I (red, intersection point between Σx and Σy), V (magenta,
the minimum of Σy), Sx (green, the attractor on Σx) and Sy (black, the attractor
on Σy). The blue point is the initial start of the simulation. The two attractors are
unstable, so the system performs periodic self-oscillations going from one branch to
the other of the slow-manifold.
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Figure 3.59: Shape of the chaotic attractor near the V point on the Σy branch of the
slow-manifold. Same parameters as Figure 3.58, with δ0 = 1.5074. Modified from
[Miazek 2018].

Chaotic spiking dynamics When varying the bifurcation parameter δ0

from the periodic self-oscillation regime to the stable stationary state on Sy
(around the value of δV0 = (k2α − 1)/α + 1), the system passes through a
cascade of period doubling and chaotic attractors of small amplitude. This is
very similar to what was observed in [Al-Naimee 2009].

Figure 3.61 shows a numerical example of suck transition when close to δV0 .
As displayed in Figure 3.56(a), when close to δV0 the position of Sy almost
coincides with that of V , the minimum of Σy. Near V , the dynamics follows
that of a chaotic attractor (visible in Figure 3.59), which makes the system
oscillates around this point. If this erratic but deterministic motion pushes the
system over a certain threshold, then it will be attracted towards the branch Σx

where it will perform a loop similar to the one of the periodic self-oscillations,
before going back towards the V point. This dynamics will result in chaotic
spikes, as the ones in row (b) of the figure.

Numerical bifurcation diagram Figure 3.60 shows a numerical bifurca-
tion diagram when changing δ0, constructed by plotting the superposition of
the extrema of the timetraces for the x variable (the emitted power). The (a)
panel of this figure looks very similar to the experimental bifurcation diagrams
for a single laser as shown for instance in Figure 3.25. In both cases, we can
observe that the system goes through a stationary state, then a periodic self-
oscillations state and then another stationary state, with two bifurcation points
in between the two transitions. Note that the multiple lines visible during the
periodic self-oscillations regime comes from the detection of the local minima
of the timetraces during the relaxation oscillations. This fast dynamics (of the
order of GHz) is not accessible to us experimentally due to band limitation of
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Figure 3.60: Numerical bifurcation diagram contructed when changing the δ0 pa-
rameter, same parameters as Figure 3.58. The (a) panel shows double transition from
a stationary state to periodic self-oscillations to another stationary state, which is
very similar to the experimental bifurcation diagrams of Figure 3.25. The (b) panel
shows a zoom of the bifurcation diagram at the second bifurcation point (the anal-
ogous of Iu experimentally) where one can observe a transition towards chaos by
period doublings. Modified from [Miazek 2018].

our detection system (of the order of MHz), and is therefore not visible in the
experimental traces.

The fact that the δ0 parameters plays the same role as the DC-pumping current
MX comes from the definition of δ0 from the model, which is:

δ0 ≡
I0 − It
Ith − It

(3.29)

where I0 is the bias current (same as MX), Ith is the solitary laser threshold
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current and It is the transparency current. This means that δ0 is basically
the pumping current MX normalized to the threshold value, and is such that
δ0 = 1 at threshold while δ0 > 1 above threshold.

Panel (b) of Figure 3.60 shows a zoom of the same bifurcation diagram in
panel (a) when close to the second bifurcation point, which we called Iu in the
experimental section. Notice the series of period doublings that lead to chaotic
windows, in a diagram that resembles an inverted version of the bifurcation
diagram of the logistic map.
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(c) δ0 = 1.507285

Figure 3.61: Single laser simulations for parameters close to the chaotic spiking
regime. Same parameters as Figure 3.58 with variable δ0 close to δV0 = (k2α−1)/α+
1 = 1.5 (without noise). The system experiences, from top to bottom: periodic self-
oscillations, chaotic spiking and small chaotic oscillations around the stable point.
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3.5.3 Dynamical model for N coupled lasers with opto-
electronic feedback

We now extend the 3D slow-fast model in order to consider a population of
N lasers, which are globally coupled through their common opto-electronic
feedback loop, as it is realized in the experiment. Each laser is then governed
by the following rate equations:

ẋi = xi(yi − 1)

ẏi = γ
[
δi − yi + k1w + k2 ln

(
1 +

α

N

∑N
i=1 xi

)
− xiyi

]
ẇ = −ε

[
w + A ln

(
1 +

α

N

∑N
i=1 xi

)] (3.30)

Note that the argument of the logarithmic function now takes into account
the normalized sum of all of the xi, as the nonlinear transfer function that
transforms the power seen from the photo-detector into the current before the
high-pass filter is modified as:

fF = A ln

(
1 +

α′

N

N∑
i=1

xi

)
(3.31)

since the photo-detector collects the power from all of the lasers. The pumping
parameter for each laser δi for a fixed pumping current I0 now follows a certain
peaked distribution (whose exact shape will be discussed later), which comes
from the fact that the thresholds of the different lasers follow a Gaussian
distribution centered on 183.3 mA with standard deviation of 5.8 mA, as shown
in the measurements in Figure 3.23. We can then define the mean field variables
X and Y , and the average control parameter ∆ as:

X ≡ 1

N

N∑
i=1

xi

Y ≡ 1

N

N∑
i=1

yi

∆ ≡ 1

N

N∑
i=1

δi

(3.32)
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so that the dynamical evolution for these mean field variables can be written
as: 

Ẋ = −X +
1

N

N∑
i=1

xiyi

Ẏ = γ

[
∆− Y + k1w + k2 ln (1 + αX)− 1

N

N∑
i=1

xiyi

]
ẇ = −ε [w + A ln (1 + αX)]

(3.33)

The variable X represents the mean field variable for the intensity output of
all the selected lasers (as detected by the photo-detector of the feedback loop),
while the variable Y represents the mean field variable for the carrier density.

Slow-manifold for N coupled lasers Before showing some results from
numerical simulations for many coupled lasers, let’s try to understand how the
slow-manifold is modified in the case of N coupled lasers with respect of a
single element. Following the same steps as before, we define the functions f̃ ,
g̃ and h̃ as:

f̃(X, xi, yi) ≡ −X +
1

N

N∑
i=1

xiyi

g̃(X, Y, xi, yi, w, γ) ≡ γ

[
∆− Y + k1w + k2 ln (1 + αX)− 1

N

N∑
i=1

xiyi

]
h̃(X,w) ≡ − [w + A ln (1 + αX)]

(3.34)
The critical manifold is then defined by the condition f̃(X, xi, yi) =
0, g̃(X, Y, xi, yi, w, γ) = 0, and we will consider these expressions as a zero-
th order approximation in ε of the slow manifold. This is satisfied for the
following cases (supposing that xi, yi ≥ 0):

(i) xi = 0 ∀i, so that X = 0, and g̃(X, Y, xi, yi, w, γ) = 0, which gives:

Yw = ∆ + k1w (3.35)

Which is the same type of equation that defined Σx in the case of a single
laser. In this case, the slow-manifold of a single laser of the population
will be:

yi(w) = δi + k1w (3.36)

(ii) yi = 1 ∀i, so that Y = 1, and g̃(X, Y, xi, yi, w, γ) = 0, which gives:

wX =
X − k2 ln(1 + αX) + 1−∆

k1

(3.37)
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Which is the same type of equation that defined Σy in the case of a single
laser. In this case, the slow-manifold of a single laser of the population
will be:

w(xi, X) =
xi − k2 ln(1 + αX) + 1− δi

k1

(3.38)

(iii) Note that there are other cases for which f̃(X, xi, yi) = 0, that are defined
by:

N∑
i=1

xi(yi − 1) = 0 (3.39)

In particular it could be possible that only N+ lasers are on, while the
rest (N −N+) are off (so that xi = 0 for those laser). However since this
condition has not been observed in the experiment, we will not consider
it here.

Discussion on the 3D dynamics of N coupled lasers Given what we
already know for the stability and motion of a single laser, we can now extend
our observations to the case of N couples lasers. In the previous paragraph, we
noted that the two principal branches for the slow-manifold of the mean field
were given by:

Σ∆
X ≡ {(X = 0, Yw, w)} (line in the w − Y plane)

Σ∆
Y ≡ {(X, Y = 1, wX)} (parabola-like in the w −X plane)

(3.40)

which are exactly the same type of structures already described in the case of
a single laser. In the X − Y −w space, they correspond to a line in the w− Y
plane that belongs to the X = 0 plane, and to a parabola-like curve in the
w − Y plane that belong to the Y = 1 plane. The superscript ∆ is introduced
to remind ourselves that the bifurcation parameter that governs these curves
is now the mean control parameter ∆. If we now look at the motion of the
single lasers, their “personal” slow-manifold curves will be given by:

Σδi
xi
≡ {(xi = 0, yi(w), w)} (line in the w − yi plane)

Σδi
yi
≡ {(xi, yi = 1, w(xi, X))} (parabola-like in the w − xi plane)

(3.41)
Here yi(w) is the same line structure as in the case of a single laser, governed
by the parameter δi, while w(xi, X) is similar to the parabola-like structure of
the single laser case, but with the difference that now the logarithmic function
is written as ln(1 + αX), so it is now a function of X. Note also that, since
the δi belong to a peaked distribution, the position of the Σδi

xi
and of the Σδi

yi

manifolds in a common x − y − w space of reference will be slightly shifted
between each other due to the δi distribution.

In summary, the slow-manifold for the N coupled laser is composed of the
two branches Σ∆

X and Σ∆
Y , which represent a line and a parabola-like structure
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in the x − y − w space defined by the same expression for the single laser,
but with control bifurcation parameters given by ∆ (i.e. the average of the
bifurcation parameters δi for the single lasers). Furthermore, supposing that
the δi are distributed according to a sufficiently peaked distribution, the slow-
manifolds for the single lasers Σδi

xi
and Σδi

yi
can be thought of as two“bundles”of

lines and parabola-like structures that are distributed around the Σ∆
X and Σ∆

Y

structures, so that the slow-manifold for the mean field represent the average
of these structures.

So even though the motion of the mean field will follow the slow-manifolds Σ∆
X

and Σ∆
Y where stable, the single lasers may follow slightly different trajectories

due to their peculiar δi value. We will see in the following simulations the type
of dynamics that this system will follow. In any case, the system mostly follows
the slow-manifolds Σ∆

X and Σ∆
Y , apart during the fast relaxation oscillations,

where the lasers can get desynchronized (as we will observe in the numerical
simulations). This means that the (2N+1)-dimensional system will spend most
of its time onto the 1D branches of the slow manifold, thus greatly simplifying
its dynamics.

Sketch of a mean field description In the previous chapter we identified
the slow manifold as a structure that the system will converge to, reducing its
dynamical complexity. However a proper mean field description of the coupled
system of N lasers could results in a reduced-manifold mean-field description,
attracting as N →∞, in an analogous way to the OA ansatz. In this paragraph
we will sketch some steps towards a possible mean field description of the
system, which could be a task to be undertaken in the future.

Let us first define our starting point. Here we are dealing with a random
(2N + 1)-dimensional variable that evolves with time, e.g. a random process:

xNi (δi)

yNi (δi)

wN(δi)

 (3.42)

which is quenched, in the sense that, once we set the δi taken randomly from
a Gaussian distribution and the initial condition, the evolution will be devoid
of noise. We now introduce the empirical mean field variables simply defined
as:

SNx =
1

N

∑N
i x

N
i

SNy =
1

N

∑N
i y

N
i

(3.43)

What we would like to affirm is that, supposing that one laser inside of the pop-
ulation (they are exchangeable), for example the first one, converges towards
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its limit value as N →∞, i.e.:

xN1 (t)→ x∞(t), as N →∞ (3.44)

this would imply that the dynamics of the empirical mean field also converges
towards its limit:

SNx (t)→ E (x∞(t)) , as N →∞ (3.45)

where E (x∞(t)) is the expected value of the empirical mean field according to
a known distribution p (x∞(t)), that is:

E (x∞(t)) =

∫
p (x∞(t)) x∞(t) dx∞ (3.46)

However, knowing or the p (x∞(t)), or affirming that the convergence of one
laser implies the convergence of the empirical mean field would require the
knowledge of the evolution of the whole (2N+1)-dimensional variable a priori,
and this is a knowledge that we do not have.

We can then employ two strategies in an attempt to compute the mean field
dynamics:

• Mean field PDE: We can consider a PDE description of the coupled
system as follows. Let us examine the coupled system of the form:

ẋi = xi(yi − 1)
ẏi = γ(δi0 − yi + k1w + k2 log(1 + S)− xiyi)
ẇ = −ε(w + A log(1 + S))

(3.47)

where S = 1
N

N∑
i=1

xi. The parameters δi0 follow some distribution p∆. They

are independent realisations of the random variable δ. As a guess, the
system should converge to the limit system:

dx = x(y − 1)dt
dy = γ(δ − y + k1w + k2 log(1 + E(x))− xy)dt
dw = −ε(w + A log(1 + E(x))

(3.48)

where δ is a random variable describing the disorder. This limit system
can be put in PDE form as:

∂t g(t, x, y, w, δ) = −∂x(x(y − 1)g)
−γ∂y[(δ − y + k1w + k2 log(1 + S(t))− xy)g]
+ε∂w((w + A log(1 + S(t)))g)

(3.49)
where S(t) =

∫
x · g(t, x, y, w, δ) p∆(δ) dx dy dw dδ.
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• Moment expansion: Another possibility to obtain equations for the
mean field that are closed in Sx and Sy would be to approximate the
coupling terms using a reduced moment expansion. As an example, let
us consider the simplified coupled system of the form:

˙xNi = xNi (yNi − 1)

˙yNi = δNi + log(1 + SNx )
(3.50)

In this case, the coupling between the x and y variables is limited to the
empirical mean field SNx that appears in the second equation. We now
introduce the notation:

〈“ ”〉 =
1

N

N∑
i

“ ” (3.51)

to indicate the average, so that for the averaged system it holds that:
˙〈x〉 = 〈xy〉 − 〈x〉

˙〈y〉 = 〈δ〉+ log(1 + 〈x〉)
(3.52)

We can also express the evolution of the term ˙〈xy〉 as:

˙〈xy〉 =
1

N

∑N
i (xiẏi + ẋiyi)

=
1

N

∑N
i [xiδi + xi log(1 + 〈x〉) + xiy

2
i − xiyi]

= 〈δ〉〈x〉+ 〈x〉 log(1 + 〈x〉) + 〈xy2〉 − 〈xy〉

(3.53)

Now supposing that the term in 〈xy2〉 is approximate 〈x〉 (as y ' 1), and
introducing the notation:

mx = 〈x〉, my = 〈y〉, mxy = 〈xy〉 (3.54)

we can write a closed system for mx, my and mxy as:
ṁx = mxy −mx

ṁy = 〈δ〉+ log(1 +mx)

ṁxy = 〈δ〉mx +mx log(1 +mx) +mx −mxy

(3.55)

This procedure can be repeated with an increasing number of moments
variables in order to obtain a better approximation of the full system. In
this way we can obtain a system for the mean field which has a greatly
reduced dimensionality. Also in this case, presently we cannot guarantee
that the full system will converge towards this reduced system as N →
∞.
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3.5.4 Numerical simulations of N coupled lasers

Let us not turn again to numerical simulations for a confirmation of the type of
dynamics expected for N coupled lasers. The numerical simulations here shown
have been performed by applying the Euler integration method on system 3.30,
with an integration step of ∆t = 0.1 (units of γ−1

0 ). The figures here reported
are an updated version of similar figures reported in [Miazek 2018].

2 coupled lasers Figure 3.62 shows two numerical simulations in the case
of two coupled lasers. The parameters are the same as all of the previous
simulations for the single laser case (as in 3.58), with the value of the δ1,2

parameters given by (a) δ1,2 = 1.25±5.0×10−3 and (b) δ1,2 = 1.25±5.0×10−5.
This value of ∆ corrisponds to the regime of periodic-self oscillations in the
case of a single laser. Note that the two lasers are always synchronized during
the lower part of the Σ∆

Y manifold going down and when going up the Σ∆
X

manifold (with respect to w), but they can get de-synchronized during the fast
relaxation oscillations around Σ∆

X .

100 and 500 coupled lasers Figures 3.63 and 3.64 show numerical simula-
tions in the case of 100 and 500 coupled lasers. Again the parameters are the
same as before (as in 3.58), with the value of the δi distributed according to
a Gaussian distribution centred around 1.25 and variable standard deviation.
The lasers are always synchronized during the lower part of the Σ∆

Y manifold
going down and when going up the Σ∆

X manifold (with respect to w), but they
can get de-synchronized during the fast relaxation oscillations around Σ∆

X .

Figure 3.65 shows again the case of 500 coupled lasers where the Gaussian
distribution of the δ parameter is now centred around 1.507277, so as to be
in the chaotic spiking regime. Notice how all of the laser spike together in an
erratic manner. A clearly chaotic background dynamics is also visible before
and after the spikes. While the amplitude of all the lasers remain the same
when following the slow manifold, they can display different amplitudes in the
output power during the fast relaxation oscillations. We believe that this case
is closest to the experimental condition. A greater degree of de-synchronization
would be possible by increasing the spread of the Gaussian distribution of the
δ parameters.
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(a) δ1,2 = 1.25± 5.0× 10−3. The two lasers are mostly de-synchronized during the relaxation
oscillations but synchronized elsewhere.
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(b) δ1,2 = 1.25±5.0×10−5. The two lasers are mostly synchronized throughout the simulation.

Figure 3.62: Numerical simulations of 2 coupled lasers with optoelectronic feedback
as described by system 3.30. The parameters are the same as Figure 3.58, with
δ1,2 centred around 1.25. The black curve is the branch Σ∆

Y and the green curve is
the branch Σ∆

X of the mean field slow manifold (unstable when dashed). The plotted
points are I (red, intersection point between Σ∆

X and Σ∆
Y ), V (magenta, the minimum

of Σ∆
X), Sx (green, the attractor on Σ∆

X) and Sy (black, the attractor on Σ∆
Y ). The

blue and red triangle points are the initial start of the simulations. The two lasers
are always synchronized on the Σ∆

X manifold, but they can de-synchronize during
the fast relaxation oscillations on the Σ∆

Y manifold.
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(a) Standard deviation of the Gaussian distribution of δi equal to 1.0× 10−3
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(b) Standard deviation of the Gaussian distribution of δi equal to 1.0× 10−4

Figure 3.63: Numerical simulations of 100 coupled lasers with optoelectronic feed-
back as described by system 3.30. The parameters are the same as Figure 3.58, with
δi distributed according to a Gaussian distribution centred around 1.25 and variable
standard deviation. The curves and points here plotted are as in Figure 3.62. The
100 lasers are always synchronized on the Σ∆

X manifold, but they can de-synchronize
during the fast relaxation oscillations on the Σ∆

Y manifold.
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Figure 3.64: Numerical simulations of 500 coupled lasers with optoelectronic feed-
back as described by system 3.30. The parameters are the same as Figure 3.58, with
δi distributed according to a Gaussian distribution centred around 1.25 and variable
standard deviation. The curves and points here plotted are as in Figure 3.62. The
500 lasers are always synchronized on the Σ∆

X manifold, but they can de-synchronize
during the fast relaxation oscillations on the Σ∆

Y manifold.
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(d) Relaxation oscillations of the second spike

Figure 3.65: Numerical simulations of 500 coupled lasers with optoelectronic feed-
back as described by system 3.30. The parameters are the same as Figure 3.58, with
δi distributed according to a Gaussian distribution centred around 1.507277 and
standard deviation 1.013462× 10−4. Only 10 lasers out of 500 are plotted. The 500
lasers show slightly different amplitudes only during the relaxation oscillations.
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Discussion on the distribution of the δi In the previous numerical simu-
lations when deciding on the distribution of the δi parameter for each laser, we
have always chosen a very narrow Gaussian distribution peaked around 1.25.
Here we will explain why the distribution must be peaked, and we will give
some remarks on its broadness.

If we fix the value of the pumping current I0, as done in the experiment for
each acquisition, the relationship between the δi parameter and the threshold
I ith of each laser is given by the definition of δi:

δi =
I0 − It
I ith − It

(3.56)

From an experimental characterization of the laser population, we know that
the laser thresholds are distributed according to an almost Gaussian distribu-
tion centered on 183.3 mA and with standard deviation equal to 5.8, as shown
in Figure 3.23. We can then assume the Probability Density Function (PDF)
of the thresholds to be of the form:

PDF(Ith) =

exp

(
−(Ith − µ)2

2σ2

)
√

2πσ
≡ f(Ith) (3.57)

with µ = 183.3 mA and σ = 5.8 mA. We can then calculate the PDF for the
δ parameters at fixed I0 by the following change-of-variable technique:

PDF(δ) = f(Ith(δ))

∣∣∣∣dIth(δ)dδ

∣∣∣∣
=

1√
2πσ

∣∣∣∣Itδ − I0 − It + Itδ

δ2

∣∣∣∣ exp

−
(
I0 + δIt − It

δ
− µ

)2

2σ2


(3.58)

where Ith(δ) is just the inverse relation between Ith and δ from Equation 3.56.
Supposing that I0 = 224.125 mA, It = 20 mA, µ = 183.3 mA and σ = 5.8 mA
as the physically plausible values which corresponds to a periodic-self oscillat-
ing regime for the whole matrix population (so that δ = 1.25 when calculated
for global average threshold µ), we obtain the two PDF as in Figure 3.66. Panel
(a) shows the probability distribution of the thresholds, centered around 183.3
mA, while panel (b) shows the probability distribution of the δ paramters,
centered around 1.25. Note that the standard deviation of the δ distribution
is around 4.5 × 10−2, and is such that most of the distribution stays in the
interval 1 < δ < 1.5, which is the range of periodic self-oscillations for the
range of parameters used in the numerical simulations. However the width of
the distribution is around one or two order or magnitude greater than what
was used in the numerical simulations. This is because for values much greater
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Figure 3.66: Probability Density Distribution function for the laser thresholds (a)
and the δ parameters (b), supposing that I0 = 224.125 mA, It = 20 mA, µ = 183.3
mA and σ = 5.8 mA. Note that PDF(Ith) is centred around 183.3 mA (the global
average threshold for the matrix), while PDF(δ) is centred around 1.25 (the middle
value of the periodic self-oscillation regime for α = 2 and k2 = 1 as in the numerical
simulations).

than 10−3 we start to see effects that were not observed in the experiment:
namely, the possibility of having a very large spread in the different output
powers of the various lasers, and the possibility of having some lasers which
will stay in the stable stationary regime (δ < 1) while all of the rest are in the
periodic self-oscillations regime. We can explain this difference between numer-
ical simulations and experiment by the fact that the α and k2 parameters in
the simulations (which determine the value of δV0 = (k2α− 1)/α+ 1) were not
optimised to model the experiment, so that we could push the value of δV0 far-
ther from 1.5 and a greater spread in the δ distribution could be compensated
by a greater range of the periodic self-oscillation dynamics which happen for
1 < δ < δV0 .

Comparison with the experimental results We now want to compare
our numerical simulations with the experimental results in the case of many
coupled lasers. If we look at the case of 500 coupled lasers as in Figure 3.64,
we notice how the condition which is closer to the experimental one is case
(b), with a smaller Gaussian distribution of the δi parameters. This is because
all of the lasers are almost always synchronized even during the fast relaxation
oscillations, and the only discernible difference between one laser and the next
is the amplitude of the emitted power. This is similar to what we remarked in
the experimental section as in Figure 3.35, where the only detectable differ-
ences between two lasers were very small intensity differences. Note however
that in the experiment we are not able to observe the fast relaxation oscilla-
tions, which are just averaged by the photo-detectors with MHz band. In any
case, a broader distribution as in case (a) would imply a much larger intensity
difference between the different lasers, and this was not observed in our range
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Figure 3.67: Numerical dependence of the upper bound bifurcation current Iu with
respect to the average threshold of the population, when considering I0 as the bifur-
cation parameter (as in the experiment), for populations of lasers of different size.
The thresholds of each population are chosen randomly from a Gaussian distribu-
tion with Ith = 183.28 mA and standard deviation 5.8 mA as in Figure 3.66(a), with
It = 20. There is a clear linear dependence of Iu from the average threshold value,
and as the population size increases, the value of the upper bound converges towards
a point. The linear fit of the type Iu(Ith) = a Ith + b gives as best fit parameters
a = 1.51 and b = −10.6 mA. Modified from [Miazek 2018].

of control parameters.

Linear dependence of the upper bound bifurcation current on the av-
erage threshold for all populations sizes and mean field convergence
If we now consider the dynamics of N lasers as the DC-pumping current is
increased, in the case of the experiments we observed a linear dependence of
the value of the upper bound of the bifurcation Iu with respect to the average
threshold for populations of different sized, as summarized in Figure 3.40. A
similar figure can be constructed starting from numerical simulations, where
one can consider the I0 DC-pumping current as the bifurcation parameter for
a fixed population of size N . Each population is characterized by different
thresholds value that are chosen randomly from a Gaussian distribution with
Ith = 183.28 mA and standard deviation 5.8 mA, as was measured in the ex-
periment (see Figure 3.23). By changing the I0 value, one can observe the 2D
histogram of the extrema for the mean field timetrace and determine the up-
per bound bifurcation value Iu for that population. Plotting these values as a
function of the average threshold, we obtain Figure 3.67. This is the numerical
analogue of Figure 3.40, and we note that:

• There is again a linear dependence of the upper bound bifurcation value
and the average threshold of the population;

• As the population size increases, the upper bound converges towards a
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point at Ith = 183.28 mA (the global average threshold).

This means that, as the number of coupled lasers increases, the type of dy-
namics converges towards a simplified case that does not depend any more on
the number of lasers that participate to the feedback, but is instead analogous
to the dynamics of a single laser having as bifurcation value δ the average
bifurcation value ∆ of the population.

We can explain the linear dependence of the upper bound bifurcation from the
average threshold directly from the model as follows. From the relationship
between the δi parameter and the threshold I ith of each laser as in equation
3.56, ∆ it follows for the mean variable that:

∆ =
I0 − It
〈I ith〉 − It

=
I0 − It
Ith − It

(3.59)

where in the last step we use the same notation as in Equation 3.7. Let us now
consider the current corresponding to the upper bound bifurcation and call ∆u

the relative ∆ value, so that:

∆u =
Iu − It
Ith − It

(3.60)

Rearranging the terms of this equation, one can write it as:

Iu = ∆u(Ith − It) + It (3.61)

which is a linear dependence of Iu from the average threshold of the selected
populations, as found experimentally in Figure 3.40 and numerically in Figure
3.67.

Comment on the experimental and numerical fit parameters of
Iu(Ith) Given that the linear dependence of Iu from Ith is as in Equation
3.61, the a and b parameters of the linear fit in Figures 3.40 and 3.67 can be
interpreted as:

a = ∆u

b = It(1−∆u)
(3.62)

so that we can estimate ∆u and It from the fit parameters. What we obtain is:

∆u|exp = 0.74 ∆u|num = 1.51

It|exp = 218 mA It|num = 20.7 mA
(3.63)

where the subscripts exp and num stand for experimental and numerical re-
spectively. There seem to be some discrepancies between the two measure-
ments. Between the two sets, the more credible values are the numerical ones:
note how the ∆u value is close to 1.5, which is the second bifurcation point
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corresponding to δV0 as in Equation 3.27 for a single laser, and confirmed by
the numerical bifurcation diagram of Figure 3.60. This means that the value of
the average bifurcation parameter ∆ that corresponds to the upper bound bi-
furcations is close to the value expected for a single laser. Moreover we recover
the value of the transparency current It which is equal to our hypothesised
value of 20 mA.

In the case of the experiment, two observations can explain the discrepancy
with the numerical values: firstly, as noted before in the discussion on the
distribution of the δi, the values of the α and k2 parameters that determine the
width of the periodic self-oscillations range through the parameter δV0 was not
optimised in the numerical simulations. This means that there is not a complete
correspondence between the ∆ values used in the numerical simulations and
the ∆ values that we can obtain from the experimental data. Secondly, the
detection of the thresholds and their distribution has been obtained through
the procedure explained in Figure 3.20. We also observed that the LI curves
of different lasers may have different inclinations in the “on” state, and more
than one turning point. This is different to what is assumed by the model as in
Equations 3.10, where the transition between the “off” state and the “on” state
is expected to be sharp and to occur precisely at threshold, as can be verified
directly from the model (see Appendix G for a derivation). Furthermore, the
distribution of the thresholds could be slightly shifted up or down if we defined
the threshold transition in a slightly different way. These variations would
change the threshold distribution and therefore the It value obtained by the
experimental fit.

To summarize, the fit parameters obtained in the experimental fit cannot be
interpreted “as is” to find the values of ∆u and It. A thorough investigations on
the discrepancies mentioned above would be a good way to find quantitative
relevant results, but this goes beyond the scope of this measurement. The
relevant point is the linear dependence of the upper bound from the average
threshold with a convergence towards a single point in the scatter plot both in
the experiment and in the numerical simulations.
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3.6 Conclusions and perspectives

In this chapter we have introduced a system composed of a laser matrix of
451 semiconductor VCSEL lasers which is coupled to itself through an opto-
electronic nonlinear feedback loop. Such feedback allows to realize the mean
field of the output power of all the lasers and feed this information back to
the pumping current of the lasers themselves, thus allowing an all-to-all type
of coupling. Moreover, an iris in the setup allows to select a population of
N lasers belonging to the matrix, so that its dynamics can be analysed and
compared with similar populations of different sizes.

Given this configuration, the dynamics of the different populations has been
as follows:

• Dynamics of the mean field: When observing the mean field real-
ized onto the photodetector that participates to the feedback loop, the
dynamics consists mainly in either a stationary stable point, a periodic
self-oscillation regime or a chaotic spiking regime displaying MMOs. By
increasing the pumping current, two bifurcation currents can be identi-
fied: one at lower current between a stable point and the periodic self-
oscillations and one at a higher current between the self-oscillations and
another stable point. Each population of any size displays the same type
of bifurcations, even though the current at which they occur can be
shifted at lower or higher currents with respect to the global case of 451
lasers.

• Global synchronization of the output power: When detecting the
light output of single lasers, either inside or outside the selected pop-
ulations, all lasers behave synchronously, so that only small amplitude
variations in the output power can be detected. However it could be pos-
sible for the various lasers to be de-synchronized in the fast evolution of
the output power (as observed in the numerical simulations) or in the
carrier dynamics (to whom we do not have direct access).

• Average threshold as the defining feature of a selected popula-
tion: Comparing the dynamics of populations of different sizes, a single
characteristic of the laser population is the defining factor in deciding the
type of dynamics that can be expected from the population, and that is
the average threshold current of the population. We have observed that
both the upper and lower bound of the bifurcation currents are propor-
tional to the average threshold value, and this proportionality has been
measured quantitatively in the case of the upper bound bifurcation.

• Bifurcation-diagram convergence Increasing the population size, as
the average threshold converges towards its global average value for the
whole population of 451 laser, so the type of dynamics converges towards
a stable condition regarding the bifurcation diagram. As far as the bi-
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furcation is concerned, the dynamics of the full model is then similar to
that of a single laser element with a bifurcation parameter δ which is the
global average of the δ parameters for the whole population.

To conclude, we have managed to observe a complex dynamics in a network of
up to 451 coupled laser in an all-to-all coupling configuration. This type of work
belongs to the study of networks of coupled elements, being them phase oscil-
lators (as in the Kuramoto model) or more biologically oriented pulse-coupled
oscillators (as with theta-neurons [Luke 2013, Montbrió 2015, Pietras 2016]).
As in the case of many of these models, we have observed a synchronized state,
where all of the laser elements spike together, being that periodically or chaot-
ically. This last chaotic spiking regime is particularly interesting as the lasers
synchronously and collectively spike in an erratic manner. This can be seen
as a case of chaos synchronization, where many chaotic oscillators are made
to become synchronized through a common signal, as in the seminal study
of two coupled chaotic oscillators in [Pecora 1990]. Furthermore, the coupled
system can be made to be excitable if perturbed by a pulse in the pump-
ing current, as already verified experimentally in the case of a single element
[Al-Naimee 2010]. This last point has not been described nor reported in this
thesis, as it was observed in late measurements in collaboration with Erwan
Gaymard8. We hope that the reader will trust us on this for the moment, as a
report on the excitability of the system will hopefully be published soon.

Finally, the dynamics of the (2N +1)-dimensional system is mostly reduced to
the slow-manifold 1D branches. A future further investigation of the mean field
model through a PDE approach or moment expansion could possibly allow us
to find an OA-inspired reduced-manifold mean-field convergence of the full
model.

8Student at the Ecole Universitaire Polytech Nice-Sophia, stagiaire at the INPHYNI lab,
erwan.gaymard@etu.unice.fr







Chapter 4
Optical photoswitch of TREK1
channels in HEK293 cells through
fibered laser light

4.1 Introduction

In this chapter we will describe the results of a study on the control of actual
biological cells using pulses of laser light. This work has been carried out in
collaboration with Pierre Walczak1 and the biology research group in Nice
composed by Olena Butenko2 and Guillaume Sandoz2 at the iBV (institut de
Biologie Valrose).

The goal of this study is to control the behaviour of a two-pore domain potas-
sium channel called TREK1 channel. The well known role of this channel
is to allow the flow of leak currents (also called background currents) that
are able to stabilize the negative resting membrane potential and counterbal-
ance depolarizations. They are not very active under basal conditions but can
be dynamically stimulated by a wide range of stimuli, including mechanical
stretch, heat, phospholipids, and polyunsaturated fatty acids. Human TREK-
1 is highly expressed in the brain, TREK-1 is also expressed in the prefrontal
cortex, hippocampus, hypothalamus, midbrain serotonergic neurons of the dor-
sal raphé nucleus and sensory neurons of the dorsal root ganglia. They are also
expressed in astroglial cells in normal condition as well as in pathological states
such as cerebral Hypoxia ischemia [Enyedi 2010].

1Université Côte d’Azur, CNRS UMR 7335, Institut de Physique de Nice, 1361 Route
des Lucioles, F-06560 Valbonne, France

2Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et
de la Recherche Medicale, iBV, Université Côte d’Azur, Valbonne, France Laboratory of
Excellence, Ion Channel Science and Therapeutics, Nice, France
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Figure 4.1: (A) Structure of the MAQ molecule (Maleimide, photoisomerizable
Azobenzene linker, Quaternary ammonium group) which acts as a photoswitch-
able tethered ligands on the TREK1 channel. (B) Schematic representation of light-
gated TREK1 channel. MAQ blocks the pore in the cis configuration (when ex-
posed to UV 380 nm light), and it un-blocks it in the trans state (when exposed to
green 500 nm light). (C and D) Whole-cell recording from HEK293T cell express-
ing TREK1(S121C) and labeled with MAQ. Current was elicited by voltage-ramps
(from -100 mV to 50 mV, 1 s in duration). (D) The alternating illumination at
500 nm (green) and 380 nm (magenta) reversibly blocks and unblocks the constant
outward current, as seen at different holding potentials. Reprinted with permission
from [Sandoz 2012].

It has been demonstrated in a recent article [Sandoz 2012] that this channel
can be modified in order to render it photoswitchable, that is, able to react
with light. Photoswitchable tethered ligands (PTLs) are very sought after in
biological engineering as they allow for a fast and reversible control of specific
proteins though light manipulation, which is a first step toward optogenetics :
the ability to regulate electrical activity in living cells through optical control.

The control on this channel has been achieved through the MAQ molecule,
whose structure and behaviour are shown in Figure 4.1. It consists of a
maleimide (M) that tethers the molecule on the channel via an engineered
cysteine, a photoisomerizable azobenzene (A) linker and a pore-blocking qua-
ternary ammonium group (Q). This molecule can exist in two states: a cis
state which blocks the TREK1 channel and a trans state which relieves pore
blockage and allows ion conduction. Exposure of this molecule to visible green-
ish light (500 nm) favours the trans state, while exposure to UV light (380 nm)
favours the cis state. In the [Sandoz 2012] article, it was demonstrated how a
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periodic switch between open and closed configuration induced by green and
UV light can be measured as a current flowing though the cell, so that one can
observe the typical photoswitch traces shown in panel (D) of the figure.

The purpose of this work is to reproduce similar photoswitch traces using a
laser UV light coming from a single mode optical fiber instead of the usual
LED illumination. The reason for using laser fibered light is that it can be
made to be highly localised, instead of being diffused onto the whole sample
uniformly. In particular, we aim at operating only onto a part of a cell, or a
group of cells, so that we could possibly observe a partial blocking of potassium
channels. This mode of operation is innovative and rarely used in biological
settings, and it could open the possibility of local optical manipulations of
excitable cells based on simple off-the-shelf components.

4.2 Setup

The setup used during this experiment integrates biological voltage-clamping
technique equipment with laser and optical elements.

As usual in patch-clamping, a sample containing a culture of cells is placed
onto the support and imaging platform, which is visible in picture 4.4. The cells
used in this experiment are HEK293 cells (Human embryonic kidney 293 cells)
which are transfected with TREKLight plasmid and incubated with MAQ. An
apparatus consisting of a patch-clamping probe connected to a data acquisition
system allows to perform the whole-cell patch-clamp of a selected cell in the
sample, while a microscope overhead allows for imaging of the sample. During
voltage-clamping, the voltage difference between the inside and the outside of a
cell is kept constant, while the current is recorded by the apparatus. An output
monitoring signal proportional to this current is sent to the oscilloscope.

On the optical side, a 70 mW diode laser (Thorlabs L375P70MLD) mounted on
a laser diode mounts is pumped though a Thorlabs laser diode controller (here,
the “power supply”). This diode can emit UV light at around 375 nm, with a
typical LI curve as shown in the right panel of Figure 4.3. The UV laser light
is guided through a collimator inside a single mode fiber (P1-305A-FC), with a
coating diameter of around 245 µm, a cladding diameter of 125 µm and a core
4 µm. The end of this fiber has been stripped from its coating, so that only the
cladding and the core remain, and it has been mounted onto a support which
is fixed on a micrometer translation stage, which allows us to move the fiber
end and bring it close to the sample. A signal generator with two synchronized
channels (Keysight 33600A) is in charge of modulating the pumping current
of both a green LED (shining at 500 nm uniformly onto the sample from
below) and the laser diode, thus controlling their output power. Both of these
two control signals, along with the current response from the patch-clamped
cell are acquired with a 200 MHz band-width oscilloscope (Teledyne Lecroy
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Figure 4.2: Schematic setup for the acquisition of photoswitch traces. While a cell
is voltage-clamped through a clamp probe, a stripped fiber is brought close to the
sample using a micrometer translation stage so that the laser light is guided onto
the clamped cell. A signal generator controls both the LED and the laser intensity.
Both traces, along with the current signal of the clamped cell, are acquired on the
oscilloscope.

Figure 4.3: Wavelength and LI specification of the Thorlabs L375P70MLD 70 mW
diode laser. Taken from the manufacturer specification sheet.

HDO4024).

A microscope apparatus allows us to image the sample in real time at different
magnifications. Figure 4.5 shows two of such imaging after a successful clamp-
ing of a HEK cell. The picture on the right shows the clamped cell that is
being illuminated with the laser light exiting from the fiber core.
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(a) Microscope and support platform for the
sample.

(b) Close-up of the sample and the fiber end.

Figure 4.4: Pictures of the setup, close to the cell sample. On the support platform
for the sample one can see the clamping probe to the left, and the stripped fiber and
its micrometer translation stage on the right.

Figure 4.5: Microscope imaging of the sample after a successful clamping of a HEK
cell, at two magnifications. The clamping probe in on the left, while the stripped
fiber is on the right. In the picture on the right, the cell is being illuminated with
the laser light.

4.3 Experimental results

The first stage of the experiment consisted in reproducing a similar photoswitch
trace when employing the laser than when employing the LED light. To this
end, after their preparation we used both techniques on the same cells, we will
describe in the next subsection.

4.3.1 Sample preparation procedure and LED and laser
protocol

Sample preparation procedure Firstly, HEK293 cells are transfected with
TREKLight plasmid. Then the sample is incubated with MAQ. At this point it
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is ready for the manipulation. We then place the cell into the recording cham-
ber, and we patch-clamp in whole-cell configuration. Once the cell is patch-
clamped, we apply either the LED or the laser protocol.

LED protocol Here the sample is illuminated with alternated light at 500
nm and 380 nm coming from the LED system underneath the support platform.
The full period is of around 10 seconds, with 5 seconds for each of the two
wavelength. The photoswitch current is measured from the clamp probe and
sent to the data acquisition system.

Laser protocol In this case, the sample is illuminated from below by a
500 nm LED, and from above by 375 nm laser flashes coming from the fiber.
In order to illuminate the clamped cell, an additional step is needed which
consists in moving the translation stage support of the fiber end and positioning
carefully onto the cell. A few flashes of laser light are usually performed to
check that the laser light hits the cell, and to image what part of the cell
is illuminated. After this, we send two anti-phase square waves at the LED
controller and the power supply of the laser so that the LED and laser light
are alternated. The periods of illuminations have been chosen to be shorter
than the LED protocol, usually of around 2 seconds. A signal proportional to
the photoswitch current and the two pumping signals (of the LED and of the
laser) are recorded onto the oscilloscope.

In both cases, the clamping has the effect of destroying a part of the cell
membrane, so that it will not be possible to observe the photoswitch effect
if not for 5 to 10 minutes at maximum. After this, the cell will die and the
channels will become inactive. Furthermore, the sample population on the glass
cover slip can stay alive for around 1 or 2 hours, after which the cells will die
and a new sample has to be prepared.

4.3.2 Comparison between the LED protocol and the
laser protocol

Both protocols have been tested, and as a general result, we have always found
that the LED protocol performed better than the laser one. Figure 4.6 shows
two representative traces of photoswitch using the two protocols. While with
the LED protocol the photoswitch current is of the order of 100 pA, with the
laser protocol the photoswitch current was always 2 to 10 times smaller. It is
hard to explain this difference in amplitude, especially because from a “back
of the envelope” calculation, the light intensity reaching the cell should be of
the order of 1-2 µW at 100 mA pumping current, concentrated on a region
of around 100 µm2, and at higher pumping currents the laser light has been
definitely been observed to be high enough to kill the cells in the sample.

In any case, not all cells are similar, so to eliminate the cell variability and
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Figure 4.6: Representative traces of photoswitch when using the diode protocol and
the laser protocol. (A) Recorded photoswitch during the LED protocol with a 10
seconds period. The TREK1 specific current is blocked during UV light (lasting
5 seconds). (B) Recorded photoswitch during the laser protocol with a 2 seconds
period. The TREK1 specific current is blocked during the laser pulses (lasting 1
second). In this case the photoswitch is 5 to 10 times less visible than in the LED
protocol.

only check the efficiency of the LED and laser protocols, we have tested both
on the same clamped cell, one shortly after another. This is shown in Figure
4.8. The clamping on this cell was successful, with measured resting membrane
potential Vm equal to -30 mV, membrane capacitance Cm equal to 35 pF and
input resistance IR equal to 100 MΩ. Panel (a) shows a microscope imaging
of the sample, with and without laser light. After a successful clamping, we
have first recorded the photoswitch current using the LED protocol, as shown in
panel (b). The photoswitch trace has been cutted into 10 seconds periods which
have been averaged (normalizing the offset to zero) to produce the averaged
response visible in the right figure. The response resembles a square wave, with
around 40 pA amplitude.

After this, the laser protocol has been applied. Panel (c) shows the laser signal
sent to the power supply (calibrated so that -10 V corresponds to 0 mA and
2 V corresponds to 70 mA pumping current) and a signal proportional to
the photoswitch current. Also in this case we have cutted the photoswitch
trace in equal segments of 2 seconds to produce the averaged response visible
in panel (d). Notice the the step-up of the laser signal corresponds to the
down-switch of the current, as the laser has the effect of blocking the TREK1
channels. While the cell signal is not calibrated in this case, as it comes from
an output monitoring signal (not calibrated) of the data acquisition system,
later measurements with already calibrated traces allows us to estimate its
amplitude to around 20 pA, so at least half the amplitude of the response in
the LED case.

Given the two averaged responses for the two protocols, we have measured the
decay times of the photoswitch when either the 380 nm LED light or the 375
nm laser light are switched on. The two decays are visible in Figure 4.7, and
both are congruent with an exponential decay, as compatible with ion channel
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Figure 4.7: Photoswitch decay, comparison between the LED protocol and the laser
protocol. The decay is fitted with the function f(x) = a exp(b(x − c)) + d. The
exponential decay times τexp = −1/b ' 33 ms are comparable between the two
protocols.

dynamics [Sigg 2014]. The exponential decay time is similar for both cases at
around 33 ms.
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(a) Microscope 40X imaging of the sample. Left is control picture, right is
during laser illumination.
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(b) Photoswitch current during LED protocol, 10 seconds period. The av-
eraged response is shown on the right.

(c) Photoswitch current during laser protocol, 2 seconds period. The top trace rep-
resents the laser intensity (min. is 0 mA and max. is 70 mA pumping current), while
the bottom trace represents the photoswitch current. The cuts used to calculate the
averaged response (d) are shown as green vertical lines.
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(d) Averaged response for the laser protocol.

Figure 4.8: Photoswitch efficiency comparison between the LED and laser protocol
when applied to the same cell in short succession. Data from Cell n. 1 of 22/06/2018,
with Vm = −30 mV, Cm = 35 pF and IR = 100 MΩ.
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4.3.3 Part vs whole cell illumination

In the second stage of the experiment, we tested if we could observe some
amplitude or decay-time changes in the photoswitch current when illuminating
the cell either partially or totally. The reasoning behind this is that only the
channels that are illuminated will be blocked by the laser light, while the
others will not, thus changing the photoswitch response. In order to perform
more than one trial on the came cell, after a successful clamping, we tested
different laser light intensities at different illuminating positions in the same
run.

Figure 4.13 shows the case of Cell n.2 of 10/07/2018. In this case we performed
8 trials, each one consisting in a periodic illumination of the cell with LED
and laser light (they can be identified by the periodic square trains in the laser
signal), 2 of which where performed while illuminating the cell totally, and 6
of which while illuminating the cell partially, as shown in Figure 4.13. The
laser light intensity of each trial can be reconstructed from the laser signal:
1 V corresponds to 75 mA and 2V corresponds to 95 mA pumping current.
Each trial has been analysed separately in order to reconstruct the averaged
response, which was then fitted with an exponential function. Figure 4.11 shows
an example of this analysis in the case of the second trial, which corresponds to
whole cell illumination and high laser intensity. Panel (a) shows the timetraces
corresponding to this trial, while panel (b) shown the corresponding averaged
response.

The averaged response has been constructed in two ways: firstly by following
the usual technique of cutting the trace, offsetting each frame by their average
value and then averaging the result and secondly by applying an additional
normalization which consists in dividing each off-setted frame by its offset
value as a way to normalize it in order to keep the frames consistent. The
reasoning behind this is that, as time passes, the cell signal slowly decreases,
which is a sign that the cell membrane is losing stability so that less current
will flow through the channels. This effect is called rundown (see [Horn 1992])
and as the cell signal will decrease, so will the amplitude of the photoswitch,
hence the renormalization. Note that, due to a calibrating error of the signal
generator, the LED and laser signals are not exactly in anti-phase. This does
not affect the decay times as the fit has been limited to the interval between
the laser switch-on time and the LED switch-on time.

From the plot of the averaged response, for each trial we define three indicators:

• The amplitude ∆V , which is the vertical distance between the two hori-
zontal yellow lines as in Figure 4.11. The top line is defined as the average
of the cell signal during the last 0.5 seconds before the laser switch-on
time, while the bottom line is defined as the offset of the exponential fit.

• The amplitude ∆Vnorm, which is the amplitude of the normalized re-
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sponse defined as before;

• The exponential decay time τexp, which is calculated from the exponential
fit as τ = −1/b.

These three parameters are plotted for each trial in the laser three panels of
Figure 4.13.

The same type of measurement and analysis has been performed again for
Cell n.3 of 10/07/2018, as shown in Figure 4.14. The only difference with the
previous case is that here we started with partial illumination and then moved
to total illumination, as shown in Figure 4.10; and in this case the LED and
laser signal are in anti-phase as shown in Figure 4.12.

Comment on the averaged responses analysis Looking at the amplitude
and decay times of Figures 4.13 and 4.14, we observe the following:

• It does not seem evident that whole-cell illumination produces higher
responses that part-cell illumination. Instead in both cases, the rundown
effect seems to dictate the amplitude, so that higher responses are ob-
served in the trial at the beginning of the run with respect to the one at
the end of the run, even in the case of normalized responses.

• In the case of the decay times, for both cases they seem to be shorter in
the whole-cell illumination than in the part-cell illumination. This could
be a first recorded effect of the different illumination conditions.

• The laser power does not seem to be correlated with either amplitude nor
decay times, even though a somewhat oscillatory up-and-down pattern
is visible in the indicators of Figure 4.13.

In both cases, cell variability is large enough so that it is not possible to
compare the indicators of different cells with each other. As an example, while
for Cell n.2 the response is of the order of 30 mV and the decay times of the
order of 0.4 s, in the case of Cell n.3 the response is of order 8 mV and the
decay times are of order 0.12 s.
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(a) Whole-cell illumination (b) Part-cell illumination

Figure 4.9: Microscope imaging of Cell n.2 of 10/07/2018 at 40X magnification. The
photoswitch trials on this cell are divided in two sets: two with whole-cell illumination
(a) and six with part-cell illumination (b). All the trials are visible in Figure 4.13.

(a) Part-cell illumination (b) Whole-cell illumination

Figure 4.10: Microscope imaging of Cell n.3 of 10/07/2018 at 40X magnification. The
photoswitch trials on this cell are divided in two sets: two with part-cell illumination
(a) and two with whole-cell illumination (b). All the trials are visible in Figure 4.14.
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(a) Part of the photoswitch trace corresponding to the second trial in Figure 4.13 (whole cell
illuminated - high laser intensity)
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(b) Averaged response, along with LED and laser signals

Figure 4.11: Analysis of the photoswitch trace shown in Figure 4.13 for the sec-
ond trial (whole cell illuminated - high laser intensity). The averaged response and
normalized averaged response are fitted with an exponential function of the type:
f(x) = a exp(b(x− c)) + d, with best b fit parameters equal to b = −2.715 s−1 and
bnorm = −2.719 s−1. The two horizontal yellow lines determine the amplitude of
the response. The red trace is the Butterworth-filtered version of the response, with
cutoff 20 Hz. Note that, due to a calibrating error, the LED and laser signals are
not in anti-phase. However this does not affect the decay times here measured.
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(a) Part of the photoswitch trace corresponding to the first trial in Figure 4.14 (part cell
illuminated - high laser intensity)
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(b) Averaged response, along with LED and laser signals

Figure 4.12: Analysis of the photoswitch trace shown in Figure 4.14 for the first
trial (part cell illuminated - high laser intensity). The averaged response and nor-
malized averaged response are fitted with an exponential function of the type:
f(x) = a exp(b(x − c)) + d, with best b fit parameters equal to b = −7.813 s−1

and bnorm = −7.675 s−1. The two horizontal yellow lines determine the amplitude
of the response. The red trace is the Butterworth-filtered version of the response,
with cutoff 20 Hz.
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4.4 Conclusion

In this experiment we tested the efficiency of using the light coming from
a laser source through an optical fiber as a substitute for LED illumination
in generating photoswitch currents. These currents are the result of periodic
activation and deactivation of potassium TREK1 channels through periodic
illumination at 500 nm and 380 nm. We found that, even though the efficiency
of this technique was 2 to 10 times less than in the LED case, we were still able
to observe a photoswitch with an exponential time decay which is consistent
with the LED protocol. Furthermore, there seemed to be a slight change in
amplitude and decay times when employing an whole-cell illumination with
respect to part-cell illumination.

The type of manipulation technique here presented based on optical control
of ion channel activity could provide additional information about functional
localization of single active channel in cell membrane and may have important
functional implications in the field of optogenetics. Furthermore this novel tech-
nique is extendible to hippocampal neurons generated from knock-in mouse
where the WT TREK1 channel gene is replaced by TREKLight in the same
place in the genome. In this case it could be possible to excite these neurons at
different localised positions, and thus opening the possibility of local excitabil-
ity through light manipulation based on off-the-shelf components. Following
the validation of the basic operating principle here described, the next step is
to use microlensed fibers which will allow for an even smaller spot size of 2
µm.





Chapter 5
Final conclusion

The work here presented lies at the interface between neuro-inspired biolog-
ical models and optical laser systems. In the first chapter we have presented
how a single laser with injection shares many of the properties that charac-
terize the behaviour of a single neuron: namely, its excitable behaviour, the
existence of a refractory period and a resonator property and controllable mul-
tipulse excitability. Furthermore, at their most basic levels, both systems can
be described by an Adler-like model, which can be further modified in order
to display an increasing dynamical complexity.

The strong connection between neuronal systems and optical ones is apparent
both in their underlying dynamics and their mathematical modelling. How-
ever the rate equations of photonics devises operates at approximately eight
orders of magnitude faster than biological time scales. Furthermore photonic
neurons could operate in a low-power, spike-encoding hybrid scheme which
can open a new way of processing information. For this reason, many stud-
ies have attempted to recreate a photonic excitable model as close as possible
to neuronal dynamics (as in [Shastri 2015]), which could be very soon imple-
mented in elementary spike computing logical gates, as in the case of ultrafast
spatiotemporal pattern recognition circuits [Motoike 2003, Nahmias 2013].

However the real future challenge in the construction of neuro-inspired com-
puting architectures lies in the possibility of parallel photonic information pro-
cessing that can be implemented through systems of many coupled neuron-like
elements. To this end, here we have presented the study of a network of globally
coupled lasers, and we have investigated the resulting dynamics with respect to
the modification of bifurcation parameters and the selected population of cou-
pled lasers. While for this system we still lack the proper control for performing
computational tasks on the network, this work is a first stage exploration of a
fully-connected chaotic-spiking opto-electronical network.

This and other types of optical neural networks are currently undergoing a
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computational revolution which is parallel to the one that is revolutionizing
the field of machine learning and artificial intelligence [LeCun 2015]. The po-
tential in parallel computation with similar networks is already showing some
very promising results as in the case of spoken digit, speaker recognition and
chaotic time-series prediction [Brunner 2013], or the prediction of a Mackey-
Glass equation [Dong 2016], only to name two examples. Future research in
this topic will surely bring many surprises in the years to come.
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Appendix A
Derivation of the Adler model from the
θ-model

Here we show how it is possible to derive the Adler model:

dφ

dt
= ω − sinφ (A.1)

starting from the θ-model:

dθ

dt
= (1− cos θ) + (1 + cos θ) I(t) (A.2)

assuming that I(t) = I0 is a constant.

Derivation Starting from the θ-model, we make the substitution:

I0 =
ω + 1

ω − 1
=

2

ω − 1
+ 1 (A.3)

so that:
dθ

dt
= (1− cos θ) + (1 + cos θ)I0

= 2 +
2

ω − 1
+

2

ω − 1
cos θ

=
2

ω − 1
(ω + cos θ)

(A.4)

We now introduce the scaled time:

τ =

(
2

ω − 1

)
t (A.5)

so that the evolution according to the new timescale become:

dθ

dτ
=
dθ

dt

dt

dτ
= ω + cos θ (A.6)
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And finally introducing the new variable φ = π/2 + θ we get:

dφ

dτ
=
dθ

dτ
= ω + cos

(π
2

+ θ
)

= ω − sinφ (A.7)

which is just the Adler model in the new timescale.



Appendix B
A note on relaxation oscillations

In most dynamical settings, as in electronic oscillators or slow-fast systems,
“relaxation oscillations” refers to the non-sinusoidal repetitive output signal
typically observed in the Van Der Pol oscillator (see [Ginoux 2012] for an
interesting historical perspective on the subject). An example of such type
of oscillations can also be found in laser systems, as with the thermo-optical
pulsing of a semiconductor amplifier [Barland 2003, Marino 2004].

However, in laser physics the term “relaxation oscillations” has come to de-
scribe the relaxation process of an unperturbed semiconductor laser towards
its stable lasing solution. This relaxation is generally associated with damped
oscillations due to the very different time scales of the electric field and car-
riers (see e.g. [Lugiato 2015] and [Lippi 2000]). Thus this term is widely used
in the laser physics community even when the dynamics takes place very
close to the stable fixed point, where the oscillations typically do not display
prominently the distinctive features of slow-fast systems. The type of oscilla-
tions here described have been studied in the case of semiconductor lasers in
[Tredicce 1985, Jagher 1996, Erneux 2007, Krauskopf 1997, Kelleher 2012b].
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Appendix C
Derivation of the the simplified Class B
[Prati 2010] model from the
[Tredicce 1985] LIS model

Here we will show how to go from the [Tredicce 1985] model of a Class B laser
to the simplified Class B [Prati 2010] model described in Equation 2.40 and
what are the necessary parameter identifications.

We start from the [Tredicce 1985] model written using adimensional variables
as in equation (10) of the paper:

x′ = (z − 1)x+ (θ − δz)y + A

y′ = −(θ − δz)x+ (z − 1)y

κ

γ‖
z′ = −zx

2 + y2

1 + δ2
− z + z0

(C.1)

where the prime denotes the derivative with respect to the dimensionless time
s = κ t. Rewriting the first two equations as:

x′ = −x+ θy + (x− δy)z + A cosφI

y′ = −y − θx+ (y + δx)z + A sinφI
(C.2)

where we have introduced the phase of the injected field φI , which in the case
of C.1 is set to zero, we recognize that we can rewrite these two equations as:

Ẽ′ = −(1 + iθ)Ẽ + (1− iα)zẼ + A (C.3)

where Ẽ is the complex number with real and imaginary parts given by x and
y (i.e. Ẽ = x+ iy) and we have set δ = −α, A = AeiφI . The third equation for
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z can instead be recast as:

σz′ = −z |Ẽ|
2

1 + α2
− z + z0 (C.4)

where we have introduced the timescale parameter σ = κ/γ‖. We now apply
the following change of variable:

E ≡ Ẽ√
1 + α2

−→ Ẽ′ = E′
√

1 + α2 (C.5)

So that, by identifying z = D and z0 = µ, we can recast the system of equations
for (E, D) as: {

E′ = −(1 + iθ)E + (1− iα)DE + EI

σD′ = −D|E|2 −D + µ
(C.6)

where we have introduced EI = A/
√

1 + α2. By employing the timescale
change τ = (1/σ) s and by denoting with the dot the derivative with respect
to τ , this system can be written in the same form as Equation 2.40, i.e.:{

Ė = σ [−(1 + iθ)E + (1− iα)DE + EI ]

Ḋ = µ−D(1 + |E|2)
(C.7)

Summary We can identify the [Tredicce 1985] system with the simplified
Class B [Prati 2010] model by the parameter identification:

δ = −α

z0 = µ

A√
1 + α2

= |EI | (with φI = arg(EI) = 0)

(C.8)

and by changing the dynamical variables (x, y, z) to the variables (E, D) by:

x+ iy√
1 + α2

= E

z = D

(C.9)

and the timescale to the time τ = (1/σ) s = (γ‖/κ) s.



Appendix D
Derivation of the the simplified Class B
[Prati 2010] model from the
[Solari 1994] LIS model

Here we will show how to go from the [Solari 1994] model of a Class B laser
to the simplified Class B [Prati 2010] model described in Equation 2.40 and
what are the necessary parameter identifications.

We start from the system as in equation (2.2) of the paper:{
E ′ = EW + i(θ̄ W + η)E + ε

W ′ = A2 − µ̄W (1 + g|E|2)− |E|2
(D.1)

where the prime denotes the derivative with respect to the dimensionless time
s equal to:

s =

√
1 + α2

γ‖

(
1

κ
+

1

γ⊥

)
(D.2)

and we introduce the new variables:

E ≡ √gE

D ≡ µ̄gW + 1
(D.3)

so that we can rewrite this system as:
E′ =

1

µ̄g

[
DE(1 + iθ̄)− E(1 + iθ̄ − iηµ̄g) + εµ̄g

√
g
]

D′ = µ̄ [(1 + gA2)−D(1 + |E|2)]

(D.4)
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By setting θ̄ = −α, −α − ηµ̄g = θ, EI = εµ̄g
√
g and (1 + gA2) = µ, we can

further recast it into:
E′ =

1

µ̄g
[DE(1− iα)− E(1 + iθ) + EI ]

D′ = µ̄ [µ−D(1 + |E|2)]

(D.5)

so that, by employing the timescale change τ = µ̄ s, by denoting with the dot
the derivative with respect to τ and by introducing the timescale parameter
σ = 1/(gµ̄2), we arrive at the system in the form 2.40:{

Ė = σ [−(1 + iθ)E + (1− iα)DE + EI ]

Ḋ = µ−D(1 + |E|2)
(D.6)

Summary We can identify the [Solari 1994] system with the simplified Class
B [Prati 2010] model by the parameter identification:

A =

√
µ− 1
√
g

θ̄ = −α

η = −
√
σ (α + θ)
√
g

−→ η = − 2π∆′
√
g
√
σ

µ̄ =
1

√
g
√
σ

ε =

√
σ EI
g

(D.7)

Note that since the [Solari 1994] system has one parameter more than the
[Prati 2010] system, the g parameter is a free parameter that gets simplified in
the system 2.40. The dynamical variables (E,W ) are changed into the (E, D)
variables by:

E =
E
√
g

W =

√
σ(D − 1)
√
g

(D.8)

and the time is changed to the new τ = (1/
√
σ) s.



Appendix E
Derivation of the the simplified Class B
[Prati 2010] model from the
[Wieczorek 1999] LIS model

Here we will show how to go from the [Wieczorek 1999] model of a Class B laser,
also studied in [Wieczorek 2002] and [Wieczorek 2005a], to the simplified Class
B [Prati 2010] model described in Equation 2.40 and what are the necessary
parameter identifications.

We start from the system as in equation (1) of [Wieczorek 2002]:
E ′ = K +

[
1

2
(1 + iα)n− iω

]
E

n′ = −2Γn− (1 + 2Bn)(|E|2 − 1)

(E.1)

where the prime denotes the derivative with respect of the dimensionless time s
scaled in units of the relaxation oscillations. If we introduce the new variables:

Ẽ ≡ E√
Γ

B
− 1

D ≡ 2Bn+ 1

(E.2)

after some algebra, we can rewrite the system as: Ẽ′ =
√

B

Γ−B
K +

(1 + iα)DẼ− Ẽ [1 + i(α + 4ωB)]

4B

D′ = 2Γ−D(2Γ− 2B)(1 + |Ẽ|2)

(E.3)

285



286

We now consider the complex conjugate equation of the field equation for E.3,
that we can write as:

E′ =
√

B

Γ−B
K† +

(1− iα)DE− E [1− i(α + 4ωB)]

4B
(E.4)

where we suppose that Γ > B, and we introduced the new variable E = Ẽ†. If
we now set:

4B
√
B√

Γ−B
K† = EI

−α− 4ωB = θ

Γ

Γ−B
= µ

(E.5)

the system can be recast into: E′ =
1

4B
[DE(1− iα)− E(1 + iθ) + EI ]

D′ = (2Γ− 2B) [µ−D(1 + |E|2)]

(E.6)

If we now employ the timescale change τ = (2Γ− 2B) s, by denoting with the
dot the derivative with respect to τ and by introducing the timescale parameter
σ = (8B(Γ−B))−1, we arrive at the system in the form 2.40:{

Ė = σ [−(1 + iθ)E + (1− iα)DE + EI ]

Ḋ = µ−D(1 + |E|2)
(E.7)

Summary We can identify the [Wieczorek 1999] system with the simplified
Class B [Prati 2010] model by the parameter identification:

Γ =
µ

2
√

2
√
σ
√
µ− 1

K =
E†I
√
σ√

2 (µ− 1)

ω = −(α + θ)
√
σ√

2
√
µ− 1

−→ ω = − 2π∆′√
2
√
σ
√
µ− 1

B =

√
µ− 1

2
√

2
√
σ

(E.8)

The dynamical variables (E, n) are changed into the (E, D) variables by:

E =
E†√
µ− 1

n =

√
2
√
σ(D − 1)√
µ− 1

(E.9)

and the time is changed to the new τ = (2Γ− 2B) s.



Appendix F
Approximate formula for the phases of
the saddle-node pair (points B, C) of
the simplified [Prati 2010] model, in the
limit of the Adler model.

In this appendix we will derive an approximate equation to find the phases (the
angle with respect to the x-axis in the Argand plane) of the stationary B and
C points, as defined in Figure 2.31. To do so, we notice that these two points
belong to the intersection between the slow manifold, and the circle centered
at zero with radius equal to the value of |E| for the two points, which is
approximately ρB,C '

√
µ− 1. Note that this is correct only for small injected

value, as for higher value the two points will move away from the minimum in
Figure 2.31.

From the equation for the slow manfold 2.80, we find that the distance squared
ρ2
mani as a function of D of a point on the manifold is given by:

ρ2
mani(D) =

E2
inj

(α2 + 1)D2 + 2D(αθ − 1) + θ2 + 1
(F.1)

where Einj = |EI |. If we set this distance equal to the distance squared ρ2
B,C ,

we will find the two values of D which correspond to the B and C points, which
are:

DB,C =
(µ− 1)(1− αθ)±

√
(µ− 1) (α2 + 1)E2

inj − (µ− 1)2(α + θ)2

(α2 + 1) (µ− 1)
(F.2)

where B is the point with higher D value, and C the point with lower D value.
By substituting this values back into the equation for the slow manifold 2.80
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we get the real and imaginary parts of the two points as:
<e(EB,C) =

α(µ− 1)(α + θ)∓
√

(µ− 1) (α2 + 1)E2
inj − (µ− 1)2(α + θ)2

(α2 + 1)Einj

=m(EB,C) = −
(µ− 1)(α + θ)± α

√
(µ− 1) (α2 + 1)E2

inj − (µ− 1)2(α + θ)2

(α2 + 1)Einj
(F.3)

Note that we can rewrite these expressions in a more compact form as:
<e(EB,C) =

√
µ− 1√
1 + α2

(αz ∓
√

1− z2)

=m(EB,C) = −
√
µ− 1√
1 + α2

(z ± α
√

1− z2)

(F.4)

Where we have introduced the new variable:

z ≡ (α + θ)
√
µ− 1

Einj
√

1 + α2
(F.5)

which represents the strength of the detuning, normalized to the injection, so
that the Saddle-Node boundary can be written as z = ±1. In the following
derivation we suppose to be inside the locking region, so that −1 < z < 1.

We can then find the phase of these points as:

φB,C = atan2 (=m(EB,C),<e(EB,C)) (F.6)

where we can write the arguments of the arctan functions as:

=m(EB,C)

<e(EB,C)
=

z ± α
√

1− z2

−αz ±
√

1− z2
(F.7)

We now notice that the arctan of this quotient could be simplified by the
following procedure:

atan2 (=m(EB,C),<e(EB,C))
(1)
' arctan

(
z ± α

√
1− z2

−zα±
√

1− z2

)
(2)
' arctan

(
±z√
1− z2

)
+ arctan(α)

= arcsin(±z) + arctan(α)

(F.8)

where we have used the following relationship regarding the sum of arctan
functions:

arctan

(
u+ v

1− uv

)
(2)
' arctan(u) + arctan(v) (F.9)
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with u = ±z/
√

1− z2, v = α, and the relationship between arctan and arcsin
function written as:

arctan

(
x√

1− x2

)
= arcsin(x) (F.10)

However, this is now exactly right, as we have been sloppy with the two equal

signs
(1)
' and

(2)
'. In the first case, we have not considered the fact that the atan2

function is only equal to the arctan function when <e(EB,C) > 0, as seen from
the definition of Equation 2.71. For the second equal sign, this equation is only
valid when u · v < 1, while the complete relationship1 should read:

arctan

(
u+ v

1− uv

)
=


arctanu+ arctan v u · v < 1

arctanu+ arctan v − π u · v > 1; u, v > 0

arctanu+ arctan v + π u · v > 1; u, v < 0

(F.11)

Dotting all the i’s and crossing all the t’s and calculating all the angles mod
2π, we can derive the correct value for the two phases φB,C to be:

φB = arcsin z + arctanα− π (F.12)

and
φC = − arcsin z + arctanα (F.13)

Notice how the half difference between the two points follows an arcsin function
with argument z:

∆φ

2
= arcsin z − π/2 (F.14)

which is the same as one would expect from an Adler model, with z as the bi-
furcation parameter, so that the Saddle-Node bifurcation happens for z = ±1,
as expected from [Solari 1994] in equation 2.64, and from [Zimmermann 2001]
in equation 2.82.

1Which is extremely difficult to find a reference for online.



Appendix G
Derivation of the LI curve from the
model of a single laser with
optoelectronic feedback as in Eq. 3.8

Here we will show that the model of a single laser with optoelectronic feed-
back as in Equations 3.8 in the absence of the feedback loop assumes a sharp
transition at threshold between an “off” state and an “on” state in the LI
(Light-Intensity) curve of the laser.

Without the AC-coupled feedback loop, these equations reduce to:
Ṡ = [g(N −Nt)− γ0]S

Ṅ =
I0

e V
− γcN − g(N −Nt)S

(G.1)

The steady states of the system can be found by setting Ṡ = Ṅ = 0, which
gives:

(i) S = 0, N =
I0

eV γc
, which is the “off” state of the laser;

(ii) S =
I0 − Ith
eV γ0

, N =
γ0

g
+Nt, where:

Ith ≡ eV γc

(
γ0

g
+Nt

)
(G.2)

which is the “on” state of the laser.

Let us now estimate the LI curve in the case of a VCSEL laser. Supposing
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that:

τc = 1/γc = 0.37 ns (carrier lifetime)

τp = 1/γ0 = 12 ps (photon lifetime)

vG = 0.88× 108 m/s (group velocity)

D = 9.4 µm (output window diameter)

V = 0.3 µm3 (effective mode volume)

Le = 24 nm (active region thickness)

ηi = 1 (internal quantum efficiency)

λ = 770 nm (emission wavelength)

T2 = 1× 10−3 (output mirror transmittion coefficient)

Nth = 1.28× 1018 cm−3 (carrier density at threshold)

(G.3)

as in [Barland 2005], we can calculate the output power from S (the photon
density, in units of m−3) as (Equation 7.2.18 [Svelto 2010]):

Pout =

(
γ2 vG
2Le

)
(hν)φ =

(
γ2 vG h c

2Le λ

)
SV (G.4)

where φ is the number of cavity photons, c the light speed, h Planck’s constant
and γ2 = − ln(1− T2). In the “on” state, the output power is then:

Pout =

(
γ2 vG h c

2Le λ e γ0

)
(I0 − Ith)

' 32.42 mW/mA× (I0 − Ith)
(G.5)

where the value of the threshold current can be calculated from Nth as (Equa-
tions 9.4.3 [Svelto 2010] and Ith = (πD2/4)Jth):

Ith =

(
πD2

4

)(
eLe
ηiτp

)
Nth ' 0.993 mA (G.6)

Figure G.1 shows a plot of the LI curve and of the carrier density with the
parameters here assumed.
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Figure G.1: LI curve calculated from the model of a single laser with optoelectronic
feedback 3.8 (without feedback). The parameters of the VCSEL laser are assumed to
be as in Equation G.3. The top panel represents the output power, while the bottom
panel represents the carrier density, both as function of the pumping current I0.
Note the sharp transition between “off” state and “on” state at I0 = Ith ' 0.993 mA.
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Antipolis, France, 2015.

[Garbin 2015b] B. Garbin, J. Javaloyes, G. Tissoni, and S. Barland. Topological
solitons as addressable phase bits in a driven laser. Nature Communi-
cations Vol. 6, p. 5915, Jan. 2015.

[Garbin 2017a] B. Garbin, A. Dolcemascolo, F. Prati, J. Javaloyes, G. Tissoni,
and S. Barland. Refractory period of an excitable semiconductor laser
with optical injection. Physical Review E Vol. 95, No. 1, p. 012214,
Jan. 2017.

[Garbin 2017b] B. Garbin, J. Javaloyes, S. Barland, and G. Tissoni. Interac-
tions and collisions of topological solitons in a semiconductor laser with
optical injection and feedback. Chaos: An Interdisciplinary Journal of
Nonlinear Science Vol. 27, No. 11, p. 114308, Oct. 2017.

[Gavrielides 1997] A. Gavrielides, V. Kovanis, and T. Erneux. Analytical sta-
bility boundaries for a semiconductor laser subject to optical injection.
Optics Communications Vol. 136, No. 3, p. 253–256, Mar. 1997.

[Ginoux 2012] J.-M. Ginoux and C. Letellier. Van der Pol and the history of
relaxation oscillations: Toward the emergence of a concept. Chaos: An
Interdisciplinary Journal of Nonlinear Science Vol. 22, No. 2, p. 023120,
Apr. 2012.

[Giudici 1997] M. Giudici, C. Green, G. Giacomelli, U. Nespolo, and J. R.
Tredicce. Andronov bifurcation and excitability in semiconductor lasers
with optical feedback. Physical Review E Vol. 55, No. 6, p. 6414–6418,
Jun. 1997.

[Glass 1988] L. Glass and M. Mackey, From Clocks to Chaos. Princeton Uni-
versity Press, 1988.

[Golubentsev 1987] A. A. Golubentsev, V. V. Likhanskii, and A. P. Na-
partovich. Theory of phase locking of an array of lasers. Sov. Phys.
JETP Vol. 44, No. 4, p. 676–682, 1987.

[Golubitsky 1988] M. Golubitsky, I. Stewart, and d. schaeffer, Singularities and
Groups in Bifurcation Theory: Volume I. Applied Mathematical Sci-

https://projecteuclid.org:443/euclid.aihp/1479373251
https://projecteuclid.org:443/euclid.aihp/1479373251
http://www.osapublishing.org/abstract.cfm?uri=ol-39-5-1254
http://www.osapublishing.org/abstract.cfm?uri=ol-39-5-1254
http://www.nature.com/ncomms/2015/150105/ncomms6915/full/ncomms6915.html
http://www.nature.com/ncomms/2015/150105/ncomms6915/full/ncomms6915.html
https://link.aps.org/doi/10.1103/PhysRevE.95.012214
https://link.aps.org/doi/10.1103/PhysRevE.95.012214
https://aip.scitation.org/doi/abs/10.1063/1.5006751
https://aip.scitation.org/doi/abs/10.1063/1.5006751
http://www.sciencedirect.com/science/article/pii/S0030401896007055
https://aip.scitation.org/doi/10.1063/1.3670008
https://aip.scitation.org/doi/10.1063/1.3670008
https://aip.scitation.org/doi/10.1063/1.3670008
https://link.aps.org/doi/10.1103/PhysRevE.55.6414
https://link.aps.org/doi/10.1103/PhysRevE.55.6414
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=948771
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=948771


BIBLIOGRAPHY 302

ences, Singularities and Groups in Bifurcation Theory. Springer-Verlag,
New York, 1988, ISBN 978-0-387-96652-6.

[Golubitsky 2002] M. Golubitsky and I. Stewart, The Symmetry Perspec-
tive: From Equilibrium to Chaos in Phase Space and Physical Space.
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