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Titre : Optimisation d’un réseau ferroviaire à l’aide de solutions smart-grids 
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Résumé : L'amélioration de l'efficacité 
énergétique est devenue aujourd'hui une 
nécessité dans tous les domaines 
techniques. La réduction de la 
consommation, et donc du bilan carbone, 
est placée parmi les priorités mondiales tel 
que le paquet énergie-climat 2020 de 
l'Union Européenne. Les systèmes 
ferroviaires font partie des plus grands 
consommateurs d'énergie. Des solutions 
électriques sont développées pour réduire 
les pertes dans ces systèmes, optimiser la 
consommation et donc réduire la facture 
énergétique globale. Étant donné la 
diversité de ces systèmes, deux catégories 
principales sont considérées. La première 
regroupe les lignes urbaines caractérisées 
par une électrification en mode DC et un 
trafic relativement dense. Dans ce cas, 
l'énergie de freinage brûlée dans les 
rhéostats des trains constitue une perte 
considérable. La solution proposée 
consiste à récupérer cette énergie à l'aide 
d'un DC micro-grid installé dans une station 
passager. Elle permettra une interaction 
avec son environnement non-ferroviaire 
comme par exemple réutiliser cette énergie 
pour charger des bus électriques hybrides 
stationnant à proximité. Ce micro-grid 
contient un premier convertisseur DC/DC 
qui récupère l’excès d'énergie de freinage 
d'un train et l'injecte dans un DC busbar. 
Un deuxième convertisseur DC/DC va 
ensuite la stocker dans un système de 
stockage hybride pour que le bus électrique 
puisse se charger une fois branché au DC 
busbar.  

Le micro-grid est relié au réseau par un 
onduleur réversible AC/DC de faible 
puissance. L'ensemble est géré localement 
par un système gestion de puissance. Une 
évaluation énergétique montre que cette 
solution est intéressante lorsqu’un 
investissement, station de charge, est 
nécessaire pour charger les bus. En plus, 
dans le cas du DC micro-grid, aucun 
contrat avec le fournisseur d’électricité n’est 
nécessaire. La stabilité du système est 
aussi étudiée et une commande de 
stabilisation, le backstepping, est 
appliquée. Ce nouveau concept d’une 
future station intelligente permettra au 
système ferroviaire de communiquer avec 
son environnement qui est en pleine 
évolution. La deuxième catégorie est 
constituée par les lignes régionales et les 
lignes à grandes vitesses fonctionnant en 
mode AC. Contrairement au cas précédent, 
l’excès d’énergie de freinage est renvoyé à 
travers les sous-stations d’alimentation. Par 
conséquence, une deuxième solution 
propose la réduction de la consommation 
totale par l’optimisation du profile de vitesse 
de chaque train et la synchronisation de la 
grille horaire. Ceci est réalisé à l’aide d’un 
algorithme d’évolution différentielle. 
Chaque profil de vitesse est découpé en 
zones auxquelles sont attribuées des 
paramètres de conduite. L'optimisation de 
ces derniers permet de générer un 
nouveau profile de conduite optimal. Les 
résultats montrent la possibilité de faire des 
économies d’énergie tout en respectant la 
ponctualité des trains.  
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Title : Optimization of railway network using smart-grid solutions 

Keywords : energy efficiency, railway, electric braking, timetable, DC micro-grid 

Abstract : Increasing energy efficiency is 
nowadays a requirement in all technical 
fields. The reduction of global 
consumption, thus carbon footprint, has 
become the world's priority, as for 
example, the climate and energy package 
of the European Union. Railways' share of 
energy consumption is one of the highest. 
Electrical solutions are developed in order 
to reduce these systems' losses, optimize 
their consumption and reduce global 
energy bill. Given their diversity, two main 
categories are considered in this study. 
The first one consists of urban lines that 
are characterized by a DC electrification 
and a relatively dense traffic. In this case, 
braking energy burned in trains' rheostats 
represents the main share of losses. The 
proposed solution is to recuperate this 
energy using a DC micro-grid implemented 
in a passengers' station. It allows an 
interaction with the non-railway electrical 
environment, for example, re-using this 
energy in charging electric hybrid buses 
parked nearby. The excess of braking 
energy is recuperated using a DC/DC 
converter and injected into a DC busbar. A 
second DC/DC converter will store it in a 
hybrid storage system. It will then serve to 
charge the buses connected to the DC 
busbar.  

The micro-grid is also connected to the grid 
using a low power AC/DC converter. A 
power management system ensures 
optimizing power flow between different 
components. An energy evaluation showed 
that this solution is a good Investment 
especially because no contract is needed 
with the energy provider. The system's 
stability is studied and a stabilizing 
command, the backstepping, is applied. 
This new smart station allows railways to 
communicate, energetically, with its 
evolving environment. The second 
category is suburban and high speed lines 
that are AC electrified. Contrarily to the 
previous case, braking energy is reinjected 
to the upper grid through substations. 
Therefore, a second solution is to reduce 
global energy consumption by optimizing 
trains' speed profiles and timetable's 
synchronization. It is done using a 
differential evolution algorithm. Each speed 
profile is divided into zones to which are 
associated driving parameters. The 
optimization of the latter allowed 
generating new optimal speed profiles and 
a less-consuming timetable. Simulation 
results showed that it is possible to make 
important energy savings while respecting 
train's punctuality. 
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Introduction 

De nos jours, le monde fait face à des enjeux écologiques et économiques majeurs. La 

réduction de la pollution ainsi que l’optimisation de la consommation des ressources énergétiques 

épuisables s’avèrent une urgence. Etant donné que les systèmes ferroviaires font partie des plus 

grands consommateurs d’énergie, leur optimisation demeure pertinente. De point de vue émission du 

CO2 en Europe, la part du ferroviaire est négligeable par rapport aux autres moyens de transport tel 

que l’aérien et le routier. Ceci peut être expliqué par le fait qu’aujourd’hui la plupart des lignes sont 

électrifiées. Cependant, la production de l’énergie électrique consommée par le ferroviaire est souvent 

polluante (exemple : charbon, fuel..) et les sources renouvelables ne constituent qu’une petite partie. 

D’où l’importance d’améliorer l’efficacité de ces systèmes. Dans ce contexte, l’Union Européenne a 

adopté en 2007 le plan 20-20-20  qui vise d’ici 2020 d’atteindre :  

 20% de réduction des émissions de gaz à effet de serre par rapport à l’année 1990 

 20% d’augmentation de la part des énergies renouvelables  

 20% d’augmentation de l’efficacité énergétique globale 

Par conséquence, l’UE a lancé depuis 2007 plusieurs projets européens pour améliorer les 

différents secteurs dont le ferroviaire. Cette thèse s’inscrit dans le cadre de deux projets européens : 

d’une part, OSIRIS pour les réseaux ferroviaires urbains, d’autre part, MERLIN pour les lignes à 

grande vitesse. Les deux ont pour objectif commun la proposition de nouvelles solutions 

technologiques, pour l’amélioration de l’efficacité énergétique de ces systèmes. 

Ce rapport est donc divisé en trois parties principales. D’abord, afin de mieux comprendre ses 

particularités et ses contraintes, une première section A, expliquera de point de vue historique 

l’évolution du secteur ferroviaire à travers le siècle dernier. Elle présentera les différentes décisions, 

politiques et techniques, qui ont abouti au système actuel. Un ’focus’ sera fait sur les sous-systèmes 

principaux impactant la consommation d’énergie. Les technologies de traction électrique seront 

présentées ainsi que leurs caractéristiques (tension, stations d’alimentation, caténaire et 3ième rail…). 

Ensuite, les statistiques montreront l’impact du ferroviaire sur l’environnement et son évolution à 

travers les dernières décennies suite à l’augmentation du taux d’électrification des lignes. Après ce 

résumé d’histoire, le système de freinage sera détaillé vue son impact sur le bilan énergétique. 

Aujourd’hui, la plupart des trains sont équipés de deux types de freinage : électrique et mécanique. Le 

premier, le freinage régénératif, utilise les moteurs électriques de traction pour freiner en inversant le 

sens du champ tournant à l’intérieur de la machine. Ce dernier, en s’opposant au mouvement 

mécanique, permet de ralentir la vitesse en convertissant la différence d’énergie cinétique en énergie 

électrique. Dans les systèmes AC, comme les lignes à grandes vitesses, cette énergie est soit 

consommée par un autre train qui accélère à proximité soit réinjectée vers le réseau à travers les 

stations d’alimentation. Dans les systèmes DC, et selon la réceptivité de la ligne, cette énergie est soit 

échangée avec un autre train soit brûlée dans les rhéostats du train et donc perdue. La quantité de 
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cette perte d’énergie dépend directement de la ligne étudiée (métro, tramway) et de la fréquence des 

trains. Dans certains cas défavorables, cette énergie peut atteindre 40% de l’énergie totale 

consommée. Face à l’augmentation des prix de l’énergie,  les opérateurs commencent à s’intéresser  

à la réduction de leur consommation et donc de leur facture énergétique. Plusieurs solutions existent 

aujourd’hui. Certaines sont déjà commercialisées alors que d’autres sont encore en phase de 

développement. Ces solutions peuvent être séparées en deux catégories ; la première regroupe les 

solutions ‘intrusives’ qui viennent modifier le système existant en remplaçant des équipements tandis 

que la deuxième, les ‘non-intrusives’, vient simplement se connecter au système tel que les systèmes 

de stockage et les onduleurs. Ces différentes solutions sont listées dans cette section. Malgré le fait 

qu’elles soient efficaces, ces solutions sont destinées à être utilisées en ‘interne’ dans un système 

ferroviaire. Autrement dit, le système reste isolé de son environnement énergétique. Ce choix est 

justifié par le fait que, dans certains pays, les opérateurs n’ont pas le droit d’être un fournisseur 

d’énergie. Par contre, dans le cas contraire, et lorsque le prix de revente de l’énergie est supérieur à 

celui de son achat, il est intéressant de proposer des solutions pour qu’au sein d’une ville, un système 

ferroviaire devient aussi une source d’énergie électrique. 

 La deuxième partie, section B,  présente un nouveau concept, la station DC intelligente, qui 

permet de réduire les pertes en récupérant l’énergie de freinage des trains. Cette solution s’inspire 

des systèmes de transport multimodaux, dans lesquels le flux de passagers évolue entre le système 

ferré (métro, tramway…) et le système routier (bus, voitures…).  La question qui se pose la suivante : 

pourquoi ne pas permettre à ces systèmes d’interagir énergétiquement ? Aujourd’hui, les voitures et 

les bus électriques sont de plus en plus nombreux dans les zones urbaines denses. Ceci permet de 

réduire le taux de pollution dans les grandes villes.  Par exemple, à Paris, la RATP est entrain de 

remplacer ses bus diesel par des bus électriques hybrides dans une phase intermédiaire vers un 

transport 100% électrique [RTP00]. En plus, les stations modernes donnent de plus en plus 

d’importance au confort des passagers. Des charges comme les escalators, ascenseurs… se trouvent 

aujourd’hui dans presque toutes les gares urbaines. Ces charges particulières sont capables de 

régénérer de l’énergie en freinant. Cette énergie est actuellement brûlée dans des résistances. Par 

conséquence, en parallèle à ces évolutions,  cette section propose une station DC intelligente 

permettant l’échange énergétique entre les différents sous-systèmes d’une gare (trains, bus et 

voitures électriques, escalators…). Elle est constituée d’un ‘DC micro-grid’ permettant un flux 

énergétique bidirectionnel entre les différents composants à travers un ‘DC busbar’ auquel sont 

raccordés des convertisseurs DC/DC. Le concept sera détaillé dans le chapitre V. Le chapitre VI 

étudiera la stabilité de ce système et proposera une commande de stabilisation, le backstepping. A la 

fin de cette section, et après avoir détaillé chaque sous-système, des recommandations techniques 

seront données pour un éventuel développement futur.  
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Après l’étude de la solution urbaine, une troisième section C proposera une solution software 

pour les lignes à grande vitesse où  des consignes de vitesse permettront d’optimiser 

énergétiquement une grille horaire. En fait, pendant que l’énergie de freinage constitue l’élément clé 

pour une optimisation énergétique d’un système urbain DC, les lignes AC à grandes vitesses sont 

impactées par leurs profiles de vitesse et leur synchronisation. Par exemple, des trains accélérant 

simultanément sur une même zone électrique impliquent un pic de puissance au niveau de la station 

d’alimentation qui pourrait dépasser le maximum de puissance souscrite. Ce problème sera donc 

détaillé et un algorithme d’optimisation sera développé dans cette section. Il sera constitué de deux 

étapes successives : la première consiste à optimiser, à l’aide d’un algorithme d’évolution différentiel, 

le profil de vitesse de chaque train dans une grille horaire donnée. Le résultat est un train 

consommant moins d’énergie tout en respectant les contraintes de temps. La deuxième étape 

consistera à améliorer la synchronisation de ces trains afin de réduire le pic de puissance au niveau 

des stations d’alimentation. Elle agira sur le temps d’arrêt des trains dans les gares. 

Pour résumer, l’objectif de cette thèse est donc d’améliorer l’efficacité énergétique des 

différents systèmes ferroviaires électrifiés, AC et DC. Les particularités de chacun de ces systèmes 

imposent l’étude de deux solutions différentes adaptées à chaque cas. La première propose une 

solution hardware, la station DC intelligente, qui permet de récupérer l’énergie de freinage des trains 

et l’utiliser dans des applications non-ferroviaires, dans notre cas il s’agit des bus hybrides électriques. 

Ceci permet de faire un pont énergétique entre une ligne ferrée et son environnement. Cette solution 

entre dans le cadre de l’évolution des grandes villes et permet de réduire les pertes d’énergie. La 

deuxième propose une solution pour les lignes à grandes vitesses. Elle optimise d’abord le profil de 

vitesse de chaque train individuellement puis réajuste les temps d’arrêt dans les stations pour 

optimiser leur synchronisation. Cette stratégie permettra de réduire à la fois le bilan énergétique global 

ainsi que l’appel de puissance au niveau des sous-stations. 
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Station DC intelligente : une solution urbaine 

Un réseau ferroviaire urbain est un système largement distribué. Dans les grandes villes 

denses, l’étude de ces lignes constitue une tâche complexe vu le grand nombre d’interconnections et 

d’échanges énergétiques sous différentes formes. Par conséquent, au lieu de chercher à optimiser le 

système complet, une solution ‘locale’ est proposée. Elle peut être multipliée tout au long d’une ligne 

pour augmenter l’efficacité énergétique globale. D’autre part, la consommation d’énergie d’un système 

ferroviaire est caractérisée par un grand nombre de paramètres interdépendants au niveau de la 

transmission, de l’utilisation et de l’échange énergétique sous ses différentes formes (mécanique, 

électrique, thermique). Dans cette étude, on s’intéresse à l’aspect électrique. De plus, vue que le 

freinage/accélération est très fréquent et que les stations sont proches, la quantité d’énergie de 

freinage pouvant être récupérée dans un système urbain est beaucoup plus importante que dans les 

lignes à grande vitesse. Enfin, pour optimiser la consommation d’énergie dans un système urbain DC, 

l’action principale est la réduction des pertes en énergie de freinage qui constituent une part 

importante du bilan énergétique globale. 

 

Figure I. Le concept général du DC micro-grid 

 

 La solution ainsi proposée est d’utiliser un DC micro-grid pour connecter le métro/tramway, les 

stations de charge des bus électriques et le réseau public avec ses différents consommateurs (Figure 

I). Le flux d’énergie sera optimisé à l’aide un gestionnaire de puissance. Un système de stockage 

introduira de la flexibilité au micro-grid. 

La Figure II présente l’architecture du DC micro-grid et son principe de fonctionnement. 

Lorsqu’un train freine, il converti son énergie mécanique en électrique et la tension au niveau de son 

pantographe augmente.  Si un autre train accélère à proximité, l’énergie sera échangée naturellement 

entre les deux trains. Dans le cas contraire, cette énergie est brûlée dans des résistances 

embarquées pour empêcher d’avoir des surtensions au niveau de la caténaire (ou 3ième  rail). Au lieu 



11 | P a g e  

de perdre cette énergie, la solution consiste à installer un DC micro-grid dans une station de 

passagers. L’excès d’énergie de freinage sera donc récupérer par un convertisseur DC/DC qui va 

l’injecter sur un busbar DC. Elle est ensuite stockée dans un système de stockage hybride. Lorsqu’un 

bus électrique vient se brancher sur le DC busbar, elle sera restituée pour le charger. Le DC busbar 

est relié au réseau interne de la station à l’aide d’un convertisseur AC/DC bidirectionnel qui va garder 

la tension du busbar autour de 900V. L’ensemble est géré par un PMS (Power Management System).  

 

Figure II. Architecture du DC micro-grid 

1. Modélisation des sous-systèmes 

Dans cette étude, deux milieux différents doivent être étudiés : d’une part, le système 

ferroviaire avec ses contraintes électriques, mécaniques, trafic… et d’autre part le DC micro-grid avec 

ses convertisseurs et leurs boucles de régulation. Par conséquent, deux outils de simulation sont 

nécessaires. Pour simuler une ligne de métro, nous utiliserons Elbas Sinanet, simulateur multi-train 

destiné au dimensionnement de l’infrastructure électrique. Le reste sera modélisé et simulé dans 

Matlab-Simulink et plus précisément, Matlab sera utilisé pour l’approche énergétique, Simulink pour la 

modélisation des composants du DC micro-grid et enfin, Matlab-Simulink pour l’étude de stabilité. 

Malheureusement, aucun lien ne peut être établi entre Sinanet et Matlab-Simulink ce qui empêche 

toute co-simulation. Par conséquent, les courbes de puissance seront extraites de Sinanet sous forme 

de fichier csv et injectées dans les modèles Matlab-Simulink. 
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 Convertisseur DC/DC côté ferroviaire 

La connexion avec le réseau ferroviaire se fait par un convertisseur DC/DC bidirectionnel. La 

figure ci-dessous montre l’architecture de ce module. T1 représente un train qui freine et donc injecte 

de l’énergie de freinage, quant à T2 un train à proximité qui commence à accélérer à t=0,4s. La 

résistance ‘R’ représente la caténaire/3ième rail séparant les deux trains. La station d’alimentation est 

représentée par une source de tension idéale et une diode indiquant le flux de puissance 

unidirectionnel.  

 

Figure III. Convertisseur DC/DC raccordé au réseau ferroviaire 

Le convertisseur DC/DC va récupérer l’énergie de freinage, en fonctionnant comme boost, et 

l’injecter sur le DC busbar de 900V. Il doit respecter l’échange entre les trains et ne récupérer que 

l’excès d’énergie. La figure ci-dessous montre les courants de T1 (en bleu) et T2 (en violet).  

 

Figure IV. Profiles des courants de T1 et T2 

Lorsque la tension Vcat du convertisseur est régulée à une valeur constante, le courant 

mesuré dans la diode est non nul et donc l’échange entre trains n’est pas respecté. 

La régulation ci-dessous permet de respecter cet échange. Elle consiste à varier la tension de 

référence Vcat en fonction de la variation de courant mesuré dans Lcat. Si ce dernier augmente, le 

convertisseur va baisser la tension Vcat pour augmenter l’appel de puissance et inversement. 
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Figure V. Variation de la tension de référence du convertisseur DC/DC côté ferroviaire 

 Module de stockage 

La puissance de freinage à récupérer est constituée de pics de puissance qui peuvent 

dépasser les 3 MW en quelques secondes. Afin de pouvoir l’absorber, on a besoin d’un système 

hybride contenant à la fois un module avec une densité de puissance élevée et un module de 

stockage d’énergie. Par conséquence, on propose d’utiliser des supercapacités (SCs) et des batteries 

Li-ion montés en cascade selon la figure VI. Un premier convertisseur DC/DC va récupérer l’énergie 

de freinage du busbar DC et la stocker dans des SCs.  

 

Figure VI. Architecture du module de stockage hybride 

Ensuite, les batteries vont essayer de garder l’état de charge des SCs autour de 50%. Lorsque 

ce dernier dépasse ce seuil, la batterie va consommer de l’énergie fournie par la SC. Inversement, 

lorsqu’il chute au-dessous de 50%, la batterie va injecter du courant dans les SCs.  

 Convertisseur AC/DC côté réseau publique 

Le micro-grid est relié au réseau de la station par un convertisseur AC/DC bidirectionnel qui 

garde la tension du DC busbar autour de 900V. C’est un onduleur à deux niveaux contrôlé par une 

boucle de tension suivie d’une boucle de courant. La régulation du courant iq (et donc de la puissance 

réactive) à une valeur nulle permet l’utilisation de l’onduleur en question comme un correcteur de 

facteur de puissance. 



14 | P a g e  

La tension du busbar n’est pas régulée à une valeur fixe de 900V. La figure ci-dessous montre 

le principe de fonctionnement de ce convertisseur. Lorsque la tension dépasse 940V, il va agir en tant 

qu’onduleur et donc ramener la tension jusqu’à 920V en injectant de la puissance au réseau. 

Inversement, lorsque la tension chute en dessous de 860V, il va agir comme redresseur et donc 

consommer de la puissance du réseau pour ramener la tension à 880V. Une zone morte de 40V est 

imposée pour donner la priorité au module de stockage pour qu’il absorbe l’énergie injectée sur le 

busbar. 

 

Figure VII. Principe de fonctionnement du convertisseur AC/DC 

 Système de gestion du flux de puissance 

Afin d’optimiser le flux énergétique entre les différents composants, un gestionnaire de 

puissance communique avec ces derniers selon des scénarios préprogrammés. Le tableau suivant 

montre la logique à suivre pour les cas fonctionnels principaux. 
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Les quatre modes de récupération (RM) correspondent à des cas où l’énergie de freinage est 

récupérée du réseau ferroviaire et injectée dans le micro-grid. Selon la disponibilité du système de 

stockage et le raccordement ou non des bus hybride, le gestionnaire va donner des ordres de priorité 

aux différents sous-systèmes. Le mode ‘SM’ est le ‘Standby Mode’ pour lequel il n’y a pas de flux de 

puissance dans le système.  Le mode ‘FM’, ou Feeding Mode, permet de charger des bus hybrides 

connectés au micro-grid alors qu’il n’y a pas d’énergie de freinage disponible et donc l’énergie 

nécessaire vient uniquement du système de stockage. Enfin, étant donné qu’un grand module de 

stockage sera installé dans une station passager, le mode ‘EM’, ou ‘Emergency Mode’, sert en cas de 

défaut électrique côté ferroviaire, à alimenter un train pour qu’il puisse évacuer les passagers en toute 

sécurité. 

2. Application : ligne 13 du métro parisien 

Etant donné que la RATP était partenaire d’Alstom dans le projet européen Osiris, la ligne 13 

de paris est  choisie pour tester le système et évaluer énergétiquement son efficacité. Cette ligne est 

modélisée et simulée dans Elbas. Un convertisseur est placé à la station « Porte de Saint-Ouen » 

pour récupérer l’énergie de freinage des trains. La courbe de puissance résultante est ensuite injectée 

dans Matlab.  

 

Figure VIII. Ligne 13 de Paris simulée 

Les résultats d’énergie montre que plus l’intervalle entre les trains augmente plus il y a 

d’énergie à récupérer. Ceci peut être expliqué par le fait que lorsque les trains sont proches, la plupart 

de l’énergie de freinage est échangée entre les trains et il n’en reste pas beaucoup à récupérer. 

 

Figure IX. Energie de freinage récupérée par le DC micro-grid 
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La quantité d’énergie qui peut être récupérée sur une année est de 300 MWh tandis que 

l’énergie nécessaire pour charger un bus hybride électrique chaque heure (cas d’usage étudié dans 

notre cas) est de 160 MWh.  

En conclusion, le DC miro-grid est capable de récupérer l’énergie de freinage des trains 

malgré le fait qu’elle est aléatoire et constituée de pics de puissance de grande amplitude et courte 

durée. 

3. Etude de stabilité du DC micro-grid 

Un circuit résonnant, contenant donc au moins un élément inductif et un autre capacitif, 

devient instable s’il présente une charge de puissance constante. En effet, son modèle linéaire se 

comporte comme une résistance négative et donc amplifie les variations dynamiques du circuit. Dans 

le cas du DC micro-grid, le circuit résonant est constitué des filtres des différents convertisseurs 

raccordés au même busbar DC. L’amplification de leurs régimes dynamiques par une consommation 

constante de puissance (par exemple les bus hybrides qui se chargent à 200 kW) peut entrainer 

l’instabilité du système. Afin d’éviter ce problème, une commande de stabilisation, basé sur le concept 

du « Backstepping », peut être ajoutée à la commande du module du stockage. Cette stratégie est 

testée sur un modèle simplifié (figure X) où les convertisseurs sont remplacés par des 

sources/charges de courant/tension idéales.  

 

Figure X. Modèle simplifié pour l'étude de stabilité 

Le principe du backstepping est de modéliser le système de ‘N’ variables, grâce à un 

changement de variable, sous forme de ‘N’ équations en cascade c.à.d. la sortie de l’une est l’entrée 

de l’autre. Cette approche permet de diviser un système complexe en des sous-systèmes de façon à 

ce que la stabilisation de chacun par la sortie du précédent amène à la stabilisation du système 

complet. Il faut noter que cette méthode nécessite une linéarisation autour d’un point de 
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fonctionnement. Etant donné que dans notre application le système n’a pas de mode nominal vue la 

variation de la puissance de freinage, cette étape doit être faite en dynamique et donc elle suivra 

l’évolution du flux énergétique. Dans notre cas, la méthode de  Newton-Raphson es utilisée. La figure 

ci-dessous présente la mise en équation et le changement de variables qui a été fait pour aboutir à la 

commande backstepping ‘u’. 

 

Figure XI. Calcul de la commande du backstepping 

Le scénario suivant est simulé. Pendant que le micro-grid récupère l’énergie de freinage et à 

t=4s, un bus se branche au DC busbar et consomme 200 kW. Avant l’introduction de la commande de 

stabilisation ‘u’, la tension du bus est instable. En ajoutant ‘u’ à la puissance de référence du module 

de stockage, la tension du busbar reste stable. 
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Figure XII. Simulation de l'approche Backsteping 

4. Conclusion sur la station DC intelligente 

Cette thèse présente une solution pour l’amélioration de l’efficacité énergétique des systèmes 

ferroviaires urbains. Elle consiste à intégrer dans une station de passagers un DC micro-grid pour 

récupérer l’énergie de freinage des trains qui est aujourd’hui brûlée dans les rhéostats des trains. Un 

système de stockage hybride a permis d’absorber les pics de puissance renvoyés par les trains. De 

plus, grâce à une régulation évolutive, le convertisseur côté ferroviaire a respecté les échanges entre 

les trains. D’autre part, aucune perturbation n’est constatée côté réseau publique. Enfin, la quantité 

d’énergie stockée était suffisante pour charger plusieurs bus électriques hybrides toutes les heures.  
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Optimisation énergétique de la grille horaire: 

 Solution pour les grandes vitesses 

Dans cette partie, il s’agit d’une solution pour les lignes à grandes vitesses. Ces dernières 

étant électrifiées en mode AC, ne présentent pas de pertes d’énergie de freinage électrique qui est 

renvoyée à travers les sous-stations. En plus, elles sont divisées en zones électriques alimentées 

chacune par une phase électrique différente pour ne pas déstabiliser le réseau public. Par 

conséquence, l’optimisation énergétique doit être faite pour chaque zone séparément tout en prenant 

en compte l’influence de l’une sur l’autre.  

Il faut aussi prendre en compte le fait que ces lignes ne sont pas automatiques et donc, toute 

solution qui consiste à communiquer des consignes au conducteur doit prendre en compte son temps 

de réflexe et son imprécision. Autrement dit, il ne faut pas chercher à descendre au-dessous de 5s  

entre deux consignes consécutives ou à calculer un profil de vitesse très précis. L’idée est d’envoyé 

des consignes faciles à interpréter.  

En plus les lignes à grande vitesse s’étendent sur des longues distances avec un petit nombre 

de stations. Ceci ajoute plus de flexibilité au profil de vitesse à optimiser. Cependant, pour chaque 

mission, il existe des points opérationnels auxquels il faut passer à des temps précis (à la minute 

près). Ces contraintes seront prises en compte lors de l’optimisation. 

Afin de pouvoir optimiser une grille horaire, deux étapes sont nécessaires. D’abord, chaque 

train (ou mission) doit être étudié seul indépendamment des autres. Cela consiste à lui calculer le 

profil de vitesse qui consomme le moins d’énergie tout en respectant les différentes contraintes 

(d’exploitation, électriques, mécaniques…). Cette étape d’optimisation est une approche énergétique. 

Mais optimiser la grille énergétiquement ne suffit pas car la puissance totale consommée est un 

élément très important vue l’amplitude des pics qui peuvent dépassés le maximum de puissance 

souscrite. Par conséquence, après avoir optimiser chaque train indépendamment, une deuxième 

étape consiste à réduire le pic de puissance des sous-stations en agissant sur le temps d’arrêt des 

trains dans les gares. 

5. Optimisation du profile de vitesse 

En général, le profil de vitesse d’un train est constitué de quatre types différents de conduite : 

la phase de traction (1) qui utilise les moteurs des trains pour accélérer, la phase de ‘maintien de 

vitesse’ (2) pendant laquelle le conducteur va accélérer/freiner pour garder sa vitesse constante, la 

phase de la ‘marche sur l’erre’ où l’alimentation est coupée et le train avance par inertie, et enfin la 

phase de freinage où le train réduit sa vitesse à l’aide du freinage mécanique ou électrique.  
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Il faut aussi noter que dans une grille horaire, le temps accordé à une mission contient une 

détente ou marge ajoutée au temps de parcours minimal possible. Cette marge rend la mission plus 

flexible et permet par exemple au conducteur de rattraper son retard en cas de perturbations et donc 

arriver à temps. En plus du temps d’arrivée, les points opérationnels sont définis pour chaque mission 

et auxquels un train doit passer à une heure bien précise (à la minute près). Dans cette étude, une 

mission est découpée en zones de vitesse qui prennent en compte ces points opérationnels et les 

changements des vitesses limites. Une mission est donc caractérisée par les paramètres suivants 

définis pour chaque zone de vitesse :  

 Vmax : la vitesse maximale à partir de laquelle la marche sur l’erre est activée 

 Vmin : la vitesse minimale à partir de laquelle le train accélère 

 Coef : le coefficient de traction maximal. Il représente les performances mécaniques 

maximales du moteur. 

Les contraintes suivant sont appliquées dans chaque zone de vitesse : 

 
𝑉𝑙𝑖𝑚𝑖𝑡(𝑧)

2
≤ 𝑉𝑚𝑎𝑥(𝑧) ≤ 𝑉𝑙𝑖𝑚𝑖𝑡(𝑧) 

 
𝑉max(𝑧)

2
≤  𝑉𝑚𝑖𝑛(𝑧) ≤ 𝑉𝑚𝑎𝑥(𝑧) 

 0.5 ≤ 𝐶𝑜𝑒𝑓 ≤  1 

Vmax doit être inférieure à la vitesse limite et supérieure à la moitié de cette dernière. Vmin ne 

doit pas dépasser Vmax et doit être supérieure à Vmax/2. Coef est compris entre 1 et 0.5. Les limites 

inférieures des trois paramètres permettent d’éviter des retards considérables.  

L’algorithme d’optimisation est basé sur le principe de l’évolution différentielle où un individu 

correspond à une mission : 

 

Le concept est le suivant : la population initiale est générée aléatoirement tout en respectant 

les contraintes de chaque paramètre ainsi que les contraintes de temps. Ensuite, deux opérations, la 

mutation puis le croisement, sont appliquées sur chaque individu afin d’obtenir une nouvelle 

génération provisoire. Chaque individu de cette dernière est comparé à son correspondant de la 

génération initiale en utilisant une fonction ‘fitness’ qui prend en compte les différentes contraintes et 

la consommation de l’énergie. La nouvelle génération contiendra les meilleurs individus. Ce processus 

est répété jusqu’à la convergence. La fonction fitness utilisée est la suivante :  

Vmax Vmin Coef Vmax Vmin Coef Vmax Vmin Coef

Zone 2

Individu i

PK1 PK2 PK3 PK4

Zone 1 Zone 3
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Où : 

- la partie jaune pénalise la consommation des trains 

- la partie bleue pénalise les trains en avance à chaque point opérationnel  

- la partie rouge pénalise les trains en retard à chaque point opérationnel. 

 

6. Application de l’algorithme d’optimisation du profil de vitesse 

Pour tester l’algorithme, et étant donné que la SNCF était le partenaire d’Alstom dans le projet 

européen MERLIN, la ligne à grande vitesse entre Paris et Lyon (la LGV1) est choisie pour cette 

application. Elle est modélisée et simulée dans un simulateur de mouvement de train développé en 

interne chez Alstom. Les caractéristiques principales suivantes sont donc prises en compte lors de la 

simulation : 

 Caractéristiques de la ligne : topologie, limitations de vitesses… 

 Caractéristiques du train : courbes de traction et de freinage, masse, longueur, résistance à 

l’avancement… 

 Caractéristiques de la conduite : les arrêts marqués, le temps d’arrêt en station, la marche sur 

l’erre… 

La grille horaire à optimiser est celle du vendredi 21/02/2014 entre 16h et 18h. Elle correspond 

à un jour de départ en vacances de ski avec 34 trains allant de Paris à Lyon et 10 missions 

différentes. Voici les résultats d’optimisation de la mission la plus longue allant de Crisenoy à 

Montanay, contenant 11 zones de vitesses et donc 33 paramètres à optimiser. L’algorithm a convergé 

au bout de 580 générations. 

 

Paramètres des 8 

Individus de la génération finale

Ecarts de temps à chaque 

point opérationnel 

Consommation

d’énergie
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Le tableau suivant résume ces résultats. La solution optimale est la troisième (en rouge). Elle 

permet d’économiser 36% d’énergie par rapport à une marche tendue tout en respectant le la 

ponctualité à ± 30s.  

 

 

7. Optimisation de la synchronisation des trains 

Après avoir optimisé chaque mission de la grille horaire indépendamment, cette étape consiste 

à améliorer la synchronisation des trains (phases d’accélération et de freinage) pour réduire le pic de 

puissance dans les sous-stations. Le concept général est présenté dans la figure ci-dessous. Elle 

montre que le décalage d’un train peut réduire la consommation de puissance en favorisant l’échange 

entre trains. En plus de cet échange, l’optimisation peut consister à désynchroniser deux 

accélérations simultanées. 

 

Figure XIII. Modification du temps d’arrêt et son impact sur l’échange énergétique entre trains [CHE14] 

Vu que dans cette étape on étudie l’interaction entre les trains, il faut prendre en compte la 

particularité du réseau électrique ferroviaire AC. Ce dernier étant découpé en zones électriques 
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séparées par des zones neutres et alimentées par des sous-stations différentes, la consommation en 

puissance de la mission de chaque train doit être distribuée sur les différentes zones. De plus, cette 

étape doit prendre en compte les écarts du temps de passage aux points opérationnels déjà introduits 

par la première optimisation pour ne pas dépasser les ± 30s. Ceci a un grand impact sur la marge 

d’optimisation restant. A noter que dans cette phase, un train peut toujours être retardé mais ne peut 

pas être avancé. 

Les étapes de cet algorithme sont les suivantes : 

1. Sélectionner une sous-stations non-optimisée avec le plus haute puissance moyenne sur 10 

minutes. 

2. Sélectionner le train qui consomme le plus aux extrémités de cette fenêtre de 10 minutes. 

3. Décaler le train avec un pas de 5s tant que : 

 La puissance moyenne de la sous-stations n’augmente pas 

 La puissance moyenne des autres sous-stations déjà optimisées n’augmente pas 

 Le retard maximal n’est pas dépassé 

Une fois terminé, le train optimisé ne peut plus être décalé dans la prochaine étape. 

L’optimisation se termine lorsqu’il n’y a plus de trains qui peuvent être décalés. 

8. Application de l’algorithme de synchronisation des trains 

L’algorithme est appliqué sur la même grille horaire que l’étape précédente. Afin de voir 

l’impact de la marge d’optimisation, deux cas sont simulés pour 30s puis 45s de retard maximal. Les 

résultats sont les suivants : 

 

Les sous-stations les plus chargées sont marquées en gris. Pour un retard maximal de 45s, 

une réduction moyenne de 2% des pics de puissance est obtenue. Par contre pour 30s, l’amélioration 

de la situation de la sous-station de SARRY a dégradé celle de COMMUNE. Mais dans ce cas, un 

retard de plus que 10 s était introduit par la première optimisation. 

9. Conclusion sur l’optimisation énergétique de la grille horaire 

L’optimisation énergétique de la grille horaire permet de réduire grâce à ses deux étapes, le 

bilan énergétique ainsi que les pics de puissance à l’aide de consignes de conduite transmises au 

conducteur. Cette optimisation respecte la ponctualité des trains à ± 30s. Enfin, ces deux étapes 
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optimisent une grille horaire ‘offline’ d’où l’intérêt d’ajouter une troisième étape qui a pour but de 

réduire l’écart entre les grilles réelles et celles théoriques à travers des consignes de vitesses 

transitoires. 
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Conclusion générale 

Cette thèse a pour but l’amélioration de l’efficacité énergétique des systèmes ferroviaires 

urbains et à grande vitesse. La première partie a proposé une solution ‘hardware’ qui peut être 

intégrée dans une gare. Cette station intelligente a permis de récupérer l’énergie de freinage des 

trains et de la stocker dans un système de stockage hybride pour l’utiliser après dans des applications 

« non-ferroviaire ». Dans cette étude, le cas d’usage étudié était la recharge des bus électriques 

hybrides chaque heure. La simulation énergétique de la ligne 13 du métro de Paris a montré qu’il y 

avait assez d’énergie pour charger plusieurs bus par heure. La stabilité du système a été ensuite 

étudiée et une commande de stabilisation basée sur l’approche du Backstepping a été détaillée. De 

point de vue technique, cette solution utilise des technologies qui sont aujourd’hui suffisamment 

matures. Par contre, de point de vue économique, il faudrait attendre encore pour que le prix des 

convertisseurs DC/DC et des batteries diminue. Ceci est très probable vue l’augmentation 

considérable de la demande ces dernières années. 

La deuxième partie est consacrée aux lignes à grandes vitesses. Contrairement au cas urbain, 

c’est une solution ‘software’ qui est proposée. Elle consiste à réduire la consommation, en énergie et 

en puissance, d’une grille horaire. Un algorithme basé sur l’évolution différentielle a été détaillé. Il est 

constitué de deux phases : la première optimise chaque mission à part en calculant des paramètres 

caractérisant la conduite sur différentes zones de vitesses. Une réduction moyenne de 35% est 

obtenue par rapport à une marche tendue tout en respectant la ponctualité des trains à ± 30s. La 

deuxième étape optimise l’interaction entre trains afin de diminuer les pics de puissance des sous-

stations. Cette seconde étape prend en compte les retards/avances déjà introduites par la première. 

Ceci a limité la marge d’optimisation restante. Des meilleurs résultats sont obtenus pour un retard max 

de 45s. Enfin, contrairement au cas urbain, cette solution nécessite moins d’investissement et peut 

être facilement appliquée.  

Pour plus d’information sur ces sujets, un rapport détaillé en anglais suivra ce résumé.  
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Today, our world is facing crucial problems: water, food and energy security is raised by 

UNESCO because they form a complex web of inter-linkages. Energy is now an essential factor for 

ensuring the continuance of human life. For example, agriculture is an energy consumer with 70% of 

global water use and 6% of global energy use [UNE00]. On the other hand, fighting climate change 

becomes a universal concern. Unfortunately, pollution has considerably increased in the last century 

due to greenhouse gas emissions and deforestation. In addition, energy resources such as fossil fuels 

(oil, coal, gas and nuclear) have various impacts on water quantity (for cooling) and quality (water 

acidification). Therefore, with continuous population increase, energy’s price is expected to increase 

dramatically in next decades. European Union (EU), same as other unions and countries, launched 

series of projects to improve energy efficiency and reduce environmental impact. In particular, in 2007, 

EU leaders set three key targets to be enacted in legislation in 2009. They are known as 20-20-20 

plan: reducing by 20% greenhouse gas emissions from 1990 levels, increasing by 20% renewables 

energy share and improving by 20% EU’s energy efficiency. This plan covers several areas (energy 

production, transportation, waste, agriculture...). EU set many Framework Programs for Research 

(FP). For example, FP7 includes all projects launched between 2007 and 2013. It is followed by 

Horizon 2020, EU’s biggest Research and Innovation program ever with nearly 80 billion euros of 

funding available over 7 years (2014 to 2020) [EUR01]. 

Given the fact that transport sector represents an important share when coming to gas 

emissions and energy consumption, EU gives particular attention to railway sector, one of the biggest 

energy consumers. In fact, with overall demographic increase and population shift to urban areas, 

electric railways (tramways, metros, trolleybus) become a solution reducing pollution peaks in large 

cities. The work presented in this thesis is done in the framework of two FP7 European projects, 

OSIRIS and MERLIN (Appendices A and B). Both projects’ aim is to make railways more efficient by 

introducing new energy solutions (storage, heat pumps, hybrid substations…) and more intelligence to 

the system (on-board and wayside energy management, passengers and trains fluidity…). While 

OSIRIS focused on urban systems, MERLIN was more dedicated for suburban and high speed lines 

(HSL). They are collaborative projects; companies from around Europe, sometimes even competitors, 

are working together with universities and research institutes. The common objective is to study new 

concepts and evaluate their results from different angles (operators, constructors, universities…). 

European collaborative projects consist an opportunity to remove barriers (competitiveness, 

confidentiality, multi-culture…) and work together for global interest.  

 

In order to better understand their particularities and challenges, Section A will be dedicated to 

railway systems. An historical overview will show the evolution of this sector over the last century 

because it is important to understand different decisions, political and technical, which led to today’s 

systems’ variety. Nevertheless, a focus will be done on different subsystems that impact energy 
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consumption since it is the subject of this study. Electric traction technologies are detailed starting 

from current collectors to voltage levels and types. AC and DC electrification systems are presented 

showing each one’s characteristics (voltage, substations, catenary and 3rd rails). Then, some statistics 

will explain concretely railways’ impact on environment and its changing during last decade due to 

increasing number of electrified lines. After going through this historic survey, a closer look to the train 

and how it interacts with its entourage will be done. More precisely, braking system will be detailed 

because it represents the main share of energy losses. In fact, almost all trains today include two 

kinds of brakes: electrical and mechanical. The first one, also called regenerative braking, uses 

electric traction machines to brake by reversing the direction of their rotating electro-magnetic field. 

This allows converting mechanical power into electrical power. In AC systems, this power is either 

used by other trains accelerating nearby or reinjected to the upper grid through substations. In DC 

systems and depending on the receptivity of the line, this power may be either exchanged with other 

trains or burned in on-board resistors. In the latter case, the energy is lost into heat. Its quantity 

depends on the line (metro, tramway…) and trains’ frequency. In some cases, it could even reach 

40% of the total energy consumption. With increasing energy prices, operators start to get interested 

in saving this energy and reducing their electricity bill. Thus, many solutions already exist on the 

market and some are still being developed. Some solutions are intrusive and requires replacing old 

equipment (mainly wayside) or installing new ones on-board the train. Others will be only connected to 

the catenary/3rd rail, this is the case of wayside storage systems and inverters. These different 

technologies will be also detailed in Section A. Even though they are efficient, most of these solutions 

are designed to be used internally in railways. In other words, the sector is kept isolated from its 

environment and the energy is reused internally. This choice is politically correct especially when, in 

some countries, operators are not allowed to sell energy directly to consumers. The only seller should 

be the energy provider. Thus, if re-selling energy price is lower than purchase price, it is more 

interesting to re-use braking energy internally. 

 

For DC railway systems, Section B presents the “smart DC station”, a new concept connecting 

railway to its environment. It is inspired from multimodal transport: passengers flow between railway 

(metro, tram…) and road transportation (buses, cars…). Yet, why not also make these two sectors 

interact energetically? As a matter of fact, electric buses and cars are more and more numerous 

especially in big cities where pollution rate is higher. For example, in Paris, RATP is replacing its 

diesel buses with electric hybrid buses as an intermediary step towards 100% electric transportation 

[RTP00]. In addition, more comfort is now requested in passengers’ stations. Specific loads such as 

escalators and lifts are capable of braking electrically and regenerating energy that is today simply 

burned in resistors. Thus, with the evolution of all these surrounding systems, from simple energy 

consumers to possible producers (also called prosumers), future stations should allow electrical 
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interaction between them (trains, electric buses and cars, escalators…). The smart DC station is a DC 

Micro-grid with bidirectional energy flow connecting different components with a common DC busbar 

through DC/DC converters. The concept will be detailed in paragraph V. Then, chapter VI will study 

the stability of the system and a stabilization command will be described. At the end of this section, 

after going through each detail, technical recommendations will be given for eventual future 

development.  

 

After studying micro-grid solution for DC urban railways, Section C is dedicated to HSL. In 

fact, both systems are quite different in terms of energy. While DC powered systems’ main key is 

braking power saving, AC systems are more impacted by the timetable and trains synchronization. For 

example, one of unfavorable cases is when many trains are accelerating simultaneously on an electric 

zone, fed by one substation, because it generates power peaks that may exceed maximum 

subscribed power. This problem will be detailed in this section and an energy optimization algorithm 

will be developed. It is divided into two main parts: Chapter IX will present an algorithm based on 

differential evolution. Its objective is to optimize, according to a theoretical predefined timetable, the 

speed profile of each train separately so they consume less energy while respecting time constraints.  

After this step is done, in chapter X, a more macro optimization should be done including results of the 

previous one. A full timetable will be studied and power peaks at substation will be reduced by shifting 

trains within a certain margin. At the end, simulation results will be presented to evaluate both steps’ 

efficiency. 

 

To summarize, the thesis aim is to enhance energy efficiency of railways, both AC and DC 

electrified lines. Particularities and challenges of this sector will be presented, starting from the first 

beginning of railways till today. Then, because of the difference between urban and HSL, the study is 

divided into two main parts. The first one will propose a hardware solution, the “DC smart station”, to 

recover braking energy and reuse it for non-railway applications (in our case electric hybrid buses) 

making by that a bridge between a sector, historically energetically isolated, with its environment. This 

solution meets tomorrow’s big cities evolution in terms of reducing pollution and energy losses. The 

second part is dedicated to HSL with a software solution due to their large scale and AC powered 

infrastructure. Thus, an optimization algorithm will act on trains’ speed profile to reduce energy 

consumption and then on their synchronization in order to avoid power peaks at substations’ level. 

This software solution is more adapted to HSL’s case due to their flexibility, when compared to urban 

lines, and their need for wide area coverage solution.  
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I – Historical railway evolution 

Railways invention goes back well before steam engine’s discovery. The need to carry heavy 

loads gave the idea of creating a guided transport system. It was pulled by horses or humans on 

wooden then iron tracks. This system was mainly developed in mining environment. In Europe, during 

middle age, it was noticed that heavy carts were easier to move on rails which reduced friction 

resistance. In 1738, with the development of metallurgy, the English coal mining of Whitehaven was 

the first to cover wooden rails with cast-iron plates in order to reduce premature wear. In 1765, James 

Watt built the first steam machine with separate condensation chamber. In 1769, Nicolas Cugnot built 

the first three wheeled steam-driven vehicle. Then, for the first time in the world, a steam train ran on 

the 21st of February 1804, in Pen-y-Darren, a mining region in Wales, next to Merthyr Tydfil. The 

locomotive was designed by the engineer Richard Trevithick, a passionate about steam motorization. 

It carried 10 tons of iron, 5 wagons and 70 men on the full distance of 16 km in 4 hours and 5 minutes 

with an average speed of approximately 2.4 mph (3.9 km/h) [RAT04]. Then, in 1828, Marc Seguin 

invented the tubular boiler [COM91]. This new invention was applied directly on railway locomotives 

that ran, since 1831, on the first French railway line between Saint-Etienne and Andrézieux. Finally, 

steam trains started to be developed and in 1838, Schneider factory in Creusot built the first series of 

steam locomotives “Gironde” for the line connecting Paris to Versailles. In the same period, the 

company Koechlin in Mulhouse built the “Napoléon” for the line of Thann. After that, the world 

witnessed fast railway progress. Private investors and public support helped developing these new 

means of transportation. The figure below shows railways evolution in France: 

 

Figure 14.Railway evolution in France 

We had to wait till 1879 to introduce electrical motorization in railway systems. That’s when 

Siemens & Halske built a small electrical train which was presented at the industrial exposition in 

Berlin. Later in 1881, the first electrical tramway was installed in the same city (Figure 15). 



38 | P a g e  

 

Figure 15. Siemens & Halske first electrical tramway in Berlin 

Urban railway systems were electrified well before high speed lines (HSL) due to many 

reasons. In fact, at that time, transportation was mainly based on animal-drawn sledges and carts 

(horses, donkeys, dogs…) which caused hygiene problems. In addition, electronics existed only for 

low power applications while steam engines were capable of attending high speeds with important 

traction efforts. The first metropolitan line in Paris was inaugurated the 19th of July 1900 [PAR00]. In 

the same year, the line Paris-Austerlitz/Paris-Orsay was electrified using a 3rd rail of 600 volts, same 

technology as metros. It was run by the first French electrical train E1 nicknamed “Boîte à sel” or box 

of salt due to its physical shape (figure 3). Its maximum speed was 70 km/h. It started to get removed 

from service in 1970 [CIT00]. 

 

Figure 16. first French electrical train « Boîte à sel »  

The first high speed achievement came from Germany. In 1903, a three-phase express railcar 

from Siemens and AEG attained a sensational maximum speed of 206.7 km/h on the Marienfelde-

Zossen test route near Berlin. The operating voltage was set at 14 kV with a frequency of 50 Hz 

[UIC12]. The three-phase technology was used because, at that time, there was still no powerful DC 

motors. Therefore three-phase AC asynchronous motor had to be used and supplied directly from 

contact wires (Figure 17). 
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Figure 17. Three-phase railcar “A” of Siemens and AEG 

The 750 V-AC electrification system, with a lowered frequency of 40 Hz, constituted the first 

true AC railway electrification system. It was first used in Switzerland then converted to 15 kV ~16⅔ 

Hz in 1933. The reason of using this frequency was to protect the universal motor used at that time 

from the electric arc generated at the collector’s level. In northern Italy, the three-phase electrification 

at 3 kV or 3.6 kV ~ 16⅔ Hz spread until 1976. But with two contact wires above each track ( the third 

phase was then connected to the rails), this technology required expensive investment and was 

complicated to install due to voltage and frequency conversion stage because the railway network 

could not be directly connected to the public grid. Therefore, this system was replaced later by single-

phase AC systems and high voltage DC systems. 

In France, electrical traction progressed quickly after the end of World War two. The first high 

speed line Paris-Lyon was inaugurated in 1952 with 1500 V DC electrification [CIT01]. Then came the 

usage of single-phase 25 kV ~ 50 Hz (beginning with the line of Valenciennes Thionville) with 

increasing commercial speeds. Two speed records were achieved: the first in February 1954 with 243 

km/h between Dijon and Beaune using the CC7121, the second in March 1955 with 331 km/h on the 

line of Landes using the CC7107 and BB9004. Since then, many speed records were reached. The 

last one was in April 2007 when Rail speed record of 574.8 km/h was reached by Alstom, SNCF and 

RFF with a test train on the East-European high-speed line [ALS00]. Recently, a new technology 

tested in Japan, the magnetic levitation train, is starting to attract the world’s attention. In April 2015, it 

has broken the world speed record, hitting 603km/h (374mph) in a test run near Mount Fuji [BBC15].  

In summary, railway can be divided into three main categories: 

 Urban and suburban lines 

During the 20th century, urban (metro/tramway) and suburban lines were extended and 

modernized to meet the increasing demand. For example, Paris metro has 214 km of lines, 

used by almost 1.4 billion travelers every year [FRA00]. 

 High speed lines 

Since high-speed lines were introduced, the number of passengers opting for this mode 



40 | P a g e  

of transport has constantly increased. The number of passengers on all French, German, 

Belgian, Spanish, Italian and British lines increased from 15.2 billion passenger-kilometers in 

1990 to 92.33 billion in 2008 [EUR09]. 

 Freight lines 

Unlike other categories, freight lines weren’t subject to strong development. In fact, 

road transport occupies the largest part due to its flexibility and door-to-door services. 

Nevertheless, freight lines remain more punctual (no traffic), cause less pollution and are more 

secured. In addition, many European projects try to improve this sector such as e-freight 

[FRE00]. 
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II – Railway electric traction systems  

Today, there are no unified electric traction systems. A large variety can be listed due to 

historical, security and safety reasons. Nevertheless, in Europe, there is a growing trend towards a single 

European rail area with trains easily crossing state borders. This will increase the competitiveness, the 

robustness and the interoperability of European railways.  

In this chapter, we will focus on the most popular traction power supply systems used in the 

world. Historically, as seen in chapter I, railways were built progressively in the last century while 

different technologies were evolving very quickly. This explains the variety we have today because 

each line was based on the newest technology available at its time. Some solutions were abandoned 

(e.g. aerotrain), other were progressively replaced (e.g. three-phase power supply) and some are still 

being used (e.g. 750 VDC). In addition to technological reason, the voltage choice for high speed lines 

was also political. Changing the type of traction power supply from one country to another helped also 

protecting from potential offensive attacks.  

To begin, electric trains need a power supply system available during whole operation period. 

Its main characteristics are: safety, reliability and sustainability. It could be through an AC or DC 

overhead contact line (catenary), or through a rail at ground level (3rd rail supply, 4th rail supply, 

ground-level power supply). The latter can only be supplied in DC mode for safety reasons. The 

contact with overhead lines requires a current collector called “pantograph” due to its initial shape 

used until 30 years ago. 

 

Figure 18. Old pantograph (left) vs new pantograph (right) 

When supplied through rails, the train collects the current using a “shoe”. There are a variety of 

designs for the 3rd rail current collection. The figure below shows the different modes of 3rd rails. The 

simplest one is the “top contact” where the shoe slides upon the rail. Unfortunately, this mode has 

many drawbacks because the contact rail is not protected which on one hand raises safety issues 

(human contact) and on the other hand exposes the rail to weather degradations (ice, snow…). Side 

contact is less exposed but is not the most efficient. The best mode is the bottom contact where the 

contact rail is more protected. 
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Figure 19. Different types of 3
rd

 rail current collection [NET00] 

For all traction power systems, except the 4th rail power supply, the return current goes through 

the rails using wheels, made of steel. In the 4th rail’s case, as in London, the 3rd rail is subject to 

electric positive voltage (+420 VDC) and the 4th rail, placed in the center between rails, is subject to 

electric negative voltage (-210 VDC) which makes a difference of 630 V DC. 

Nowadays, the most common electrification voltages are: 

 In DC mode (urban/suburban):  

 600V and 750 V usually used for tramways and metros 

 1500V and 3000V usually used for suburban lines 

 In AC mode (mainlines):  

 15 kV ~ 16⅔ Hz that is still used in many countries such as Germany, Switzerland, 

Austria… 

 25 kV ~ 50 Hz is now considered as a standard for high speed lines around the world, it 

is used in France, Denmark, UK… 

 2×25 kV ~ 50 Hz that helps boosting the voltage and by that reducing the number of 

substations. In this case, the supply current is distributed between the 25 kV contact 

line and a feeder of 25 kV with a 180° phase shift due to auto-transformers (see Figure 

20). 
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Figure 20. 2×25 kV electrification system 

A classic DC traction power supply station, also called substation, consists of a wye-delta 

/wye-wye (Y-Δ/Y-Y) transformer followed by two three-phase diode rectifiers connected in series 

(Figure 21). This type of transformers helps reducing harmonic currents on grid’s side. This 

architecture imposes unidirectional power flow (from public grid to the catenary). 

 

Figure 21. DC electrification system 

In AC mode, the substation consists of a single-phase transformer which allows a bidirectional 

power flow. Yet, in order to maintain three-phase equilibrium, a phase alternation is done from one 

substation to another. The catenary is then divided in electrical zones. Each zone is connected to a 

different phase and separated from the others by neutral zones that are sufficiently long (30 meters in 

general) to avoid short-circuits through the pantograph. When a train crosses these zones, its power 

should be cut by opening the circuit breaker. In addition, the train should enter this zone with a 

minimum speed to be able to cross it with its mechanical inertia. Therefore, no power exchange is 

possible between two trains running in different electrical zones. 
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Due to heterogeneity of railway electrification system, some lines require trains operating on 

more than one type of current, voltage and collector. In cities such as London, New York City and 

Boston, trains are equipped with pantograph and 3rd rail current collector so they can run under 

overhead wires on one part of the line and use the 3rd rail on the remaining part. In Europe, some 

locomotives can operate under four voltages:  25 kV AC, 15 kV AC, 3000 V DC and 1500 V DC. This 

is nowadays possible due to power electronics and specific control strategies. Same as in AC mode, 

neutral zones separate these different types of power supply (60 meters long in general). 
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III – Environmental impact and existing solutions 

III.a. ENVIRONMENTAL IMPACT 

Despite their diversity, railways common objective is to transport passengers and goods. 

Safety, punctuality and fluidity remain their essential targets. But recently, due to increasing energy 

prices and environmental impact of electricity production, many studies aim to improve the efficiency 

of electrical systems by reducing energy losses. 

In March 2007, the European Union fixed what is known as “20-20-20” targets which are 

expected to be achieved by 2020. The first target is to reduce by 20% EU greenhouse gas emissions 

from 1990 levels. The second one is to raise the share of EU energy consumption produced from 

renewable resources to 20%. The third is to improve EU’s energy efficiency by 20%. For the 2030 

horizon, the EU has agreed on a more ambitious target which is attending 40% reduction of 

greenhouse gas emissions, 27% increase of renewable’s share and 27% increase of energy 

efficiency. In particular, the EU launched many projects in railway sector because it is one of the 

largest energy consumers. Their aim is to improve the efficiency at different levels (trains, substations, 

catenary…) and for all types of lines (urban, suburban, HSL…). 

The figure below shows the share of CO2 emissions from fuel combustion by sector in 2011. 

Emissions from rail electrical traction are reallocated from electricity, heat and other energy industries 

to the transport sector. 

 

Figure 22. CO2 gas emission of different sectors in 2011 [SUS11] 

The transport sector was responsible for 22.7% of the total energy-related CO2 emissions, of 

which 3.3% was due to rail activity. Railways therefore generated less than 1% of total energy-related 

CO2 emissions (Figure 22). At the same time, railways transported more than 9% of the world’s 

passengers and freight activity [IEA14]. In Europe, total transport emissions increased by 25% 

between 1990 and 2011, while rail emissions dropped by 42% (Figure 23). 
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Figure 23. Transport sector CO2 emissions by mode, 1990-2011  

(left: million tCO2, right: share of rail over total) 

In Europe, the share of rail electric traction increased to 86% of train-km for freight and 81% for 

passenger service between 2005 and 2011 (Figure 24). The European rail was back then responsible 

only of 0.6% of the total energy consumed [IEA14]. 

 

Figure 24. Passenger and freight railway activity (train-km), 2005 inside – 2011 outside [IEA14] 

In addition, in 2011, 14% of railways energy sources, for electric and diesel tractions, came 

from renewable sources [IEA14] meaning that railways have already met the 2020 EU target for 

transport sector (10% share of renewables) [EUR00].  
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Figure 25. EU27 railway energy sources mix evolution, 1990-2011 

III.b. TRAIN BRAKING SYSTEM 

Braking is reducing train’s kinetic energy in order to: 

 maintain speed when descending a slope 

 reduce running speed 

 stop or held stopping 

The train’s braking system is designed to: 

 respect the stopping distance indicated by the signalization and the distance between two 

successive trains 

 respect  passengers’ comfort (acceptable deceleration: 1.3 m/s2) 

 respect train’s materials: most braking systems produce heat (due to friction for mechanical 

braking and energy burned in resistors for electrical braking). Excessive heating can cause 

materials degradation. 

 

Trains, railways first pro-consumers, consume energy when accelerating and regenerate 

energy when braking. In fact, braking process is divided into electrical and mechanical braking. The 

latter is used for low speeds to ensure stopping at the station’s platform. It is also used for emergency 

braking that can be employed for safety reasons. In general, we can consider two main types of 

braking: friction braking and dynamic braking. 
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III.b.1. Friction braking 

Friction braking is the oldest and most common system. It can be applied to all kinds of 

vehicles (motorized and trailer cars). The principal ones are shoe brake and disc brake (Figure 26). 

 

 

 

 

(a) (b) 

Figure 26. Shoe braking vs disc braking [EUR01] [NET01] 

The pneumatic brake was invented by George Westinghouse. As soon as the driver transmits the braking 

order, it is executed thanks to brake shoes (Figure 26.a) acting directly on the wheels. Brake shoes are made in a 

variety of materials (cast iron, composite, sintered), all of which have their own drawbacks (hard on the wheels, 

a low friction coefficient, cost…). 

The disk brake (Figure 26.b) appeared in the 60’s – 70’s with the speed increase. It became 

then necessary to find ways to improve thermal dissipation. It is similar to the one used on road 

vehicles but may take the form of a pair of discs mounted on either side of the wheel web or a double-

sided self-ventilating disc mounted on the axle. Very high speed trains, such as the French TGV, have 

up to four sets of double discs per axle. The design and number of discs is critical to train safety as 

they must be capable of dissipating the maximum amount of heat generated during emergency brake 

application from the highest speed attainable by the train [NET01]. 

III.b.2. Dynamic braking 

The dynamic braking does not rely on friction. Alternative resistant efforts are generated by the 

system itself. There are two types of dynamic braking: the hydrodynamic brake and the 

electrodynamic brake. 

The hydrodynamic brake is applied when engines use a hydraulic transmission box, also called 

a torque convertor (e.g. the diesel-electric locomotive BB 67400). The particularity of these machines 

is that they can use the transmission to brake, a sort of engine braking.  

The electrodynamic brake is possible due to reversible electrical motors. Figure 27 shows the 

energy flow in the passenger electric train with regenerative braking. When the train brakes, motors 
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become generators and convert the kinetic energy into electric energy. When the latter is burned in 

on-board resistors, it is called rheostatic braking. In this case, the motors are disconnected from the 

power line and connected to one or several air cooled resistors, generally placed at the top of the 

train. The regulation of the resistive torque is done by changing the resistors’ value. When the braking 

power is injected to the catenary/3rd rail, it is called recuperative braking. In this case, the injected 

power causes voltage increase. If another train is accelerating nearby, the power is exchanged else, it 

is burned in on-board resistors in order to avoid over-voltages and consequent damages. 

 

 

Figure 27. Energy flow diagram for a passenger train with regenerative braking (source: IZT) 

The figure below shows the on-board electrical circuit in both DC and AC power supply: 

 

Figure 28. On-board electrical circuit 
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inverter resistor 



50 | P a g e  

 In addition to the DC electric chain, the AC chain contains a transformer, connected to the 

pantograph through a breaker, followed by a bidirectional converter (rectifier in traction phase and 

inverter in recuperative braking phase). When the train brakes electrically, the motor becomes 

generator and injects power through the bidirectional inverter operating as rectifier. This will increase 

the voltage in the capacitor. In AC mode, the braking energy will be fed directly through the converter 

and the transformer into the catenary even if no other train is accelerating in the same electric zone 

due to substations’ reversibility. In DC mode, in case no power exchange is possible with another 

train, the capacitor’s voltage will increase until a certain threshold (e.g. 900 V for 750 VDC, 1800 V for 

1500 VDC). Once the voltage limit is reached, the energy will be dissipated in the resistor through a 

chopper that will regulate the voltage to its maximum value and prevent over-voltages and material 

damage. 

The share of recoverable energy in railway system depends on one hand on trains’ speed 

profiles (traction and braking frequency, effort, duration…) and on the other hand on the timetable and 

trains’ synchronization. The list below shows the typical values of recovery rates for different DC rail 

systems [RAI00]: 

 Main lines: 15%  

 Regional lines: 35 % 

 Suburban lines: 45% 

 Freight lines: 20% 

Note that these recovery rates are limited first by the efficiency of the traction chain (~ 90%), 

second, in the case of DC power supply, by the receptivity of the catenary that is directly related to the 

timetable (no receptivity when no other train is close enough to use braking energy) and third, by the 

braking power that sometimes is not sufficient requiring a simultaneous usage of mechanical brakes 

(especially in freight operation). The Table 1 below gives some estimated recovery rates for DC 

system. Since the main obstacle is limited receptivity of catenary, the table gives the theoretical 

potential, the potential to be exploited with new technologies such as reversible substation, storage 

and optimized automatic train operation, and the potential to be exploited without these technologies:  

 

Theoretical 

potential 

Correction due 

to traction 

efficiency 

Correction due 

to blended 

braking 

Potential if 

additional 

technologies are 

used 

Correction due 

to non-receptive 

catenary 

Potential without 

additional 

technology 

Main lines 15% 0,9 0,8 11% 0,2 2% 

Regional 

lines 
35% 0,9 0,8 25% 0,4 10% 
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Local lines 45% 0,9 0,8 32% 0,5 16% 

Freight 

lines 
20% 0,9 0,5 14% 0,2 3% 

Table 1.  Potential recovery rates for different types of DC lines [RAI00] 

III.b.3. Other braking systems 

The electromagnetic brake consists of large electromagnets fixed under the vehicle at a short 

distance from the rail. When there’s a braking order, a current passes through electromagnets which 

induces a strong electromagnetic force and the attraction with the rail will stop the vehicle. The 

electromagnetic brake, also called track brake, is generally used for emergency braking. There’s also 

the parking brake that is intended to block the movement of an unpowered vehicle. It is a manually 

applied friction brake (also called handbrake) applied to the wheel tread or disc.  

III.c. SOLUTIONS FOR REDUCING ENERGY CONSUMPTION 

Today, different solutions are developed for reducing rail energy consumption and increasing 

system’s efficiency. We find software and hardware solutions that operate at various levels: 

infrastructure, traction chain, on-board auxiliaries…  

III.c.1. Software solutions: 

Software solutions are cheap when compared to heavy hardware solutions that require high 

investment. Here are some solutions that are already employed: 

 Optimization of energy purchase: when the infrastructure manager has access to the energy 

market, energy price is more flexible and could be optimized by adjusting the pre-estimated 

power consumption and selling/buying energy. For example, SNCF, National Society of French 

rails, created in 2012 a subsidiary called “SNCF Energie” that is in charge of optimizing energy 

purchase for traction and buildings (stations, administrative office…). 

 Eco-driving: energy consumption could be reduced through speed instructions implemented in 

the control algorithm of automatic trains or suggested to the driver for classic trains. This part 

will be detailed in Section C. 

III.c.2. Hardware solutions: 

Today, lots of works have been done to increase the traction chain’s efficiency. Improvements 

were achieved in electronics as well as motors. For example, in new trains, thyristors and GTOs (Gate 

Turn-Off thyristor) are replaced by IGBTs (Insulated Gate Bipolar Transistor) that are voltage 

controlled. Therefore, unlike thyristors, they don’t need high currents to turn off. In fact, until very 

recently, IGBTs were capable of handling only low currents and were used in low power applications. 
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Nowadays, they can handle high currents up to thousands of amps which make it possible to integrate 

these new components in traction converters. The main benefit of using IGBTs is that they are much 

faster than GTOs. This reduces heat losses and gives lighter units (e.g. passive filters, DC 

capacitor…).  

New technologies also appeared in order to reduce energy losses in DC railway systems. They 

focused mostly on braking energy that is burned in resistors. In most lines, this energy’s share is 

important and could sometimes reach 30% of consumed energy. 

1. Inverters: 

A power inverter is an electronic device that converts Direct Current (DC) to Alternative Current 

(AC). It can be based on IGBT, GTOs or Thysristor technologies. In a DC railway system, train’s 

braking energy is burned when there’s no other train powering close enough. When an inverter is 

connected to the power line (catenary/3rd rail), it can recuperate the excess of braking energy and that 

will stop voltage increase and on-board resistors activation. The energy will be then injected into the 

upper grid. The inverter could be placed in a substation, in passengers’ station or sometimes, it could 

be connected at a specific point along the line. A substation that is capable of feeding power from the 

catenary to the grid is called “reversible substation”. Different architectures are proposed by 

companies. HESOP, Alstom Transport’s reversible substation consists of a bidirectional IGBT inverter. 

HESOP optimizes the power required for traction and captures more than 99% of recoverable energy 

during braking mode which can be re-injected into the electricity network [ALS01]. Furthermore, the 

optimization of energy usage in traction mode means that the distance between each sub-station can 

be increased and their number decreased by 20%, so limiting infrastructure costs (equipment, civil 

engineering and urban real estate) [ALS01].  Today, Alstom provides two products; HESOP 750LP 

and HESOP 1500HP. Figure 29-17 show HESOPs architectures.  

 

Figure 29. Power Circuit Schematic representation of HESOP 750LP 
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Figure 30. Power Circuit Schematic representation of HESOP 1500HP 

Another constructor, ABB, suggests connecting an inverter in parallel to the classic diode 

rectifier substation. The solution is called ENVILINE-ERS. The main benefit of this architecture is that 

it can be applied on both existing and new substations. Figure 31 represents ABB’s solution: 

 

Figure 31. ABB’s ENVILINE-ERS reversible substation [ABB00] 

The same architecture was also adopted by ADIF (Spanish administrator of railway 

infrastructure) who has developed the first 3kV DC reversible substation in its conventional network. A 

prototype was installed in Substation La Comba, Málaga – Fuengirola suburban Line [ADF00]. Note 

that this new technology, the reversible substation, is still at R&D level for other constructors such as 

CAF (Spanish railway constructor). However, recuperating trains braking energy through an inverter 

directly up to the public grid has also some drawbacks.  In fact, auxiliary station’s power supply is 

usually independent of the traction network. Therefore, in the majority of cases, the only solution is to 

sell the energy to the grid operator. But, there is no obligation for the electricity provider to buy back 

the intermittent braking energy (few MWs in seconds). Moreover, in weak grid areas, injecting 
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instantaneous power peaks causes grid’s perturbation which will force some electricity providers to 

refuse connecting such power sources to their network. Therefore, other solutions are to recuperate 

braking energy in storage systems. 

2. Storage system: 

An alternative is to store trains’ braking power. In order to absorb high power peaks in few 

seconds, technologies with high power density are employed such as supercapacitors and flywheels. 

Batteries, with high energy density, may be used but in a second step. Storage systems can be 

divided into two types: on-board storage and wayside storage. 

The advantage of on-board storage devices is that they can detect easier the braking phase 

and then recuperate directly braking power with less energy losses (e.g. heat losses in the catenary). 

It also can provide autonomy (catenary-free zones).  However, all trains should be equipped instead of 

aggregating the energy along the line. In addition, on-board storage means also on-board additional 

weight which will increase traction power consumption. Based on supercapacitor technology, Alstom 

developed in conjunction with the RATP the “Citadis Ecopack system”. It allows a tram to operate 

without overhead catenary lines and increase tramway systems energy efficiency. It consists of 

independent supercapacitors installed on the roof of the tram that are recharged in 20 seconds during 

tram station stops and with regenerated energy during braking. Siemens also proposes a range of 

storage systems that consist of Sitras modules [SIE00]. Concerning on-board flywheels, Alstom has 

teamed up with Williams Hybrid Power to try its composite MLC flywheel energy storage technology 

which will save braking energy and re-use it to add more power to the tram while reducing energy use 

and CO2 emissions [ALS02]. 

On the other hand, wayside energy storage becomes more interesting when it comes to 

specific applications: the stored energy can be used for regulating the catenary’s voltage or reinforce a 

substation. It could be also used to regulate frequency which is a good deal in some countries. Some 

drawbacks although exist: location especially in dense urban areas, power losses in catenary and the 

difficulty of respecting power exchange between trains. Different types of batteries are employed today 

for braking energy storage. For example, Hitachi developed B-CHOP, a wayside storage system 

based on lithium-ion batteries technology that stores trains braking energy. Two devices were installed 

in November 2015 on two lines in HONG KONG and will start operation after February 2016. On the 

other hand, Toshiba proposes a Traction Energy Storage System with SciB (lithium-titanate batteries). 

Supercapacitors are also used as a wayside storage, for example, NeoGreen by ADETEL, ESS by 

Sécheron, Sitras SES by Siemens, EnerGstor by Bombardier and Envistore by ABB. Concerning 

flywheels, Alstom Transport, in cooperation with INFRABEL and other Belgian companies, is 

developing a new wayside high power flywheel solution (3 MW) dedicated to DC railway applications. 

Other flywheels with lower power rate already exist on the market, for example: Powerbridge by Piller 

(1 MW), blueprint’s flywheel (120 kW), VYCON’s REGEN (500 kW). 
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3. Renewable energy sources: 

Distributed energy resources (DERs) are also a possible solution for reducing total energy 

consumption. Local electricity production, especially when coupled with a storage system, could help 

smoothing power demand’s profile. Some operators are studying the benefit of a hybrid substation 

integrating renewables such as wind turbines, PVs and even hydraulic power generation.  For 

example, SNCF developed a tool called “CONIFER” to study and design a hybrid railway power 

substation including electric network connection, storage system and production system. This concept 

is particularly interesting when a substation should be installed in an area where there is no grid 

connection (e.g. near a forest in the case of high speed rail) [CON00]. DERs could also be 

implemented at stations’ level. For example, in India, Delhi Metro Rail Corporation Ltd. (DMRC) 

installed 500 kW of solar energy on the roof of Dwarka Sector-21 metro Station. DMRC is willing to 

replicate similar projects up to 10 MW of capacity on other stations and buildings. 
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IV – Conclusion 

Rail sector was well developed through the three last centuries. It was first developed in mining 

environment then, due to the discovery of steam machine, the first steam-driven train was designed. 

Seventy years after, electrical motorization was introduced into railways. Many technologies were 

tested. Some have been directly eliminated at prototype level, other were employed during a limited 

period and few are still being used until today (e.g. 750 VDC power supply). This fast evolution 

resulted in a large diversity worldwide and even at regional scale. This section has presented the 

different electric traction systems that existed and a focus was done on the ones being used today 

(AC and DC power supply). Then, the environmental impact of transportation, especially railways, was 

detailed by giving the latest statistics done worldwide and in Europe. It was showed that this 

transportation mode is becoming greener by reducing its CO2 emissions and using more renewable 

energy. Furthermore, trains’ braking system was detailed because it represents the main source of 

energy losses. The difference between mechanical and electrical braking was explained and some 

braking energy-related solutions were listed. 

In conclusion, electric railways remain an eco-friendly means of transportation. Many ideas for 

enhancing the energy efficiency are being studied and some solutions already exist on the market 

such as reversible substation, energy storage devices… The European commission is particularly 

interested in improving this sector in order to meet its 20-20-20 plan. Therefore, several European 

projects were dedicated to the improvement of rail’s energy efficiency: RailEnergy, OSIRIS, MERLIN, 

In2Rail… The following sections present two studies that were done in the scope of OSIRIS and 

MERLIN which aim is to increase the energy efficiency of respectively urban and high speed lines.  
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V – DC Micro-grid integration in railway system 

V.a.  INTRODUCTION 

In 2011, the transport sector’s share of the total energy-related CO2 emissions was 22.7%. 

Particular attention has been drawn to urban areas where 80 % of European citizens live and where 

40 % of all transport related GHG emissions are produced. A new target was then fixed: decarbonize 

transport sector and increase its efficiency. One of the possible solutions is to develop public electric 

transportation. Statistics show that in London, in 2006, the energy cost of buses was 32 kWh per 

100 pkm (passenger km) and the total energy cost of underground trains (traction and auxiliaries) was 

15 kWh per 100 pkm which is four times better than a fuel car average consumption (6 liters – 

60 kWh– per 100 km). In addition, in London, a passenger emits 151 g of GHG per km if travelling by 

car, 102.8 g of GHG per km if travelling by bus and 83.3 g of GHG per km if travelling by metro. Yet by 

2025, the number of daily trips made in urban areas worldwide is expected to rise by 50 % compared 

to 2005. The associated energy consumption already represents a high share of the total national 

consumption. In France for example, the transport sector consumes 31 % of the total national energy 

consumption. The energy price is expected to rise by 100 % in 10 years which make the improvement 

of transport’s energy efficiency an essential need. 

In DC railway systems used in almost all urban transportation systems, there are relatively low 

energy conversion losses, no gas emission in urban areas (emissions depend on electricity generation 

mix) and the capability to regenerate braking energy and to exchange it between trains. But due to 

unidirectional power flow of diode DC substations, there is no energy exchange with surrounding 

energy network and little possibility to integrate smart energy management systems. Besides, with the 

emergence of smart grid concept, it became imminent to also introduce innovations in railway sector. 

It is unlikely to stay away from the technological development observed worldwide in different fields 

such as communication, information, electronics… Smart railway electrification can provide energy 

savings by accommodating all distributed generations (braking trains, renewable energy...) and 

storage systems (batteries, supercapacitors, flywheel…). It dynamically optimizes the total power 

consumption and enhances power quality and system’s efficiency. Railway system will no longer be a 

passive load consuming energy from the grid. It will be part of a larger smart grid and communicate 

with “non-railway” systems such as smart buildings, electrical vehicles charging station, distributed 

energy resources… In addition, operators encounter daily service disruption due to various failures, 

especially electrical equipment breakdowns. This can be avoided by integrating Smart Grid 

technologies with its self-healing property. It can anticipate system failures by performing continuous 

self-assessments to detect possible disturbances and take corrective actions. Its intelligence consists 

in handling problems too large and too fast for human intervention. To achieve its goals, the smart 

grid’s structure is based on the following components: 
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• Smart sensing and metering technologies: nowadays, information transmitted to the 

control room is basically related to signaling and train operation. No real-time data is collected in order 

to optimize energy signature of the global system.  It is now possible to receive the dynamic state of 

the energy system thanks to communicating measurement tools, some could be integrated in the 

trains (speed, real position, regenerated power…) and other could be distributed along the 

infrastructure (voltage and current measurement...). 

• Two-way standardized communication infrastructure: a fast and reliable connection 

should be established between different railway components including trains, metering equipment, 

electronics… The control center should be able to reach each point of the system. 

• Robust software able to control critical situations quickly and efficiently: it should also 

be configured to operate in a self-healing manner. It will then perform system’s diagnosis and take 

suitable decisions autonomously. 

• Flexible and controllable infrastructure: a smart grid is before anything else a flexible 

grid. Therefore, it is important to ensure that the system is able to control operations from distance. 

Instantaneous modification of the electrical equipment’s status is thus possible. The railway 

infrastructure and especially converters should also be bidirectional allowing bidirectional power flow. 

In this section, an innovative solution is proposed. It is a first step towards the future smart 

station that is capable of interacting with its surroundings. It allows reducing braking energy losses by 

reusing this energy in an eco-friendly application by charging electric hybrid buses.  

V.b.  CONTEXT AND CONCEPT  

Nowadays, cities are encouraging green transportation (electric and hybrid vehicles, bikes and 

electric bikes…) in order to reduce pollution in dense urban zones. Yet, a charging station for electric 

hybrid buses is a critical load consuming high powers (200 kW in our case) in a short period of time (4-

5 minutes). It requires a particular subscription contract in order to be connected to the grid and tariffs 

will be probably expensive. Therefore, given the fact that buses’ stops usually coincide with metro 

stations, the braking energy wasted in the metros rheostats could be used to charge these buses. 

However, the braking energy is an unpredictable and discontinuous source of power with large 

instantaneous peaks (Figure 32) which make it difficult to use it directly without local storage 

implementation to overcome the intermittency of braking energy and time mismatch between 

production (braking energy recuperation) and consumption (electric buses charging). Additional 

energy can be sold back to the grid depending on the status and capacity of the energy storage unit.  
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Figure 32. Braking power at a reversible traction substation 

The use case is defined in cooperation with RATP, partner in OSIRIS project. It considers an 

electric hybrid bus which terminal stop will be close to “Porte de Saint-Ouen” station on metro line 13. 

Therefore, a fast charging station is needed. The classic solution is to buy a pre-fabricated HV/LV 

charging station containing: 

 a 20 kV/400 V transformer 

 one stage rectifier (400 V AC/ 700 V DC) 

 filters 

 a chopper for limiting short-circuit current 

The station output voltage is 700 V DC connected to the catenary. The charging power is 

200 kW. The figure below represents the conventional charger’s architecture: 

 

Figure 33. Pre-fabricated charging station architecture 

The bus’s round-trip is 10 km (5 km going and 5 km returning) and the duration is estimated to 

54 minutes. The charging frequency is then 1 bus/hour and the charging time duration is 4 minutes. 

The expected energy subscription for this type of charging stations is a regulated tariff known as “vert 

A5 courtes utilisations” with a maximum power of 750 kW. 
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Instead of consuming more energy, the braking power of metros can be used to charge the 

electric hybrid buses. Trains, buses and energy storage devices can be connected using a Smart 

Micro-grid that will manage the energy flow. It is a DC based concept where the main focus is set on 

achieving better power quality by aggregating sources and loads and connecting them through a DC 

busbar to the grid through a DC/AC converter. Because both loads and sources can interface to a 

common DC busbar with fewer redundant stages of power conversion, the result is less wasted heat 

and potentially lower cost than the pre-fabricated charging station. In addition, a “smart energy 

management system” will accommodate both intermittent generations as well as loads and optimize 

power flow between different terminals. It will allow saving metro’s wasted energy and make it 

available for charging the electric hybrid buses parked at a metro station. As the energy is mainly 

managed locally, a small amount of power is solicited from the grid and thus, less harmonic currents 

are injected on the AC side. In this case, transformerless operation and usage of a two-level inverter 

(as considered here) are possible in spite of the highly intermittent nature of the metro braking energy 

and the electric bus charging.  

Moreover, no additional contract with the electricity provider needs to be signed for the bus 

charging station because it uses a low power AC/DC inverter. In fact, the power exchange between 

the railway system and the loads is done through the storage system. The AC/DC inverter serves only 

to regulate the DC bus bar voltage to avoid over or under voltages. For example, it could be 

connected directly to the LV power supply grid already existing in the metro station. The proposed 

architecture of the Smart DC Micro-grid is shown in Figure 34. 

 

Figure 34. Smart DC micro-grid architecture 

The DC micro-grid architecture consists of the following components: 

 900V DC Busbar  
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 DC/DC converters connecting the railway system (1), the energy storage (2) and the 

hybrid buses (3) to the common DC Busbar  

 Two-level bidirectional inverter (4) connected to the LV power supply already available 

in the metro station 

 Hybrid energy storage device (5) containing supercapacitors (SC) and batteries. 

As shown in Figure 34, the DC micro-grid is connected to auxiliary low voltage grid. Therefore, 

a connection between both auxiliary and traction grids, usually separated for safety reasons, is 

possible through the DC micro-grid. When a train brakes, the catenary (or third rail) voltage increases. 

Once the voltage exceeds a specific threshold, the converter (1) will recuperate the braking energy 

and inject it into the DC bus. This converter should be regulated in a way that gives priority to energy 

exchanging between trains. In this study, the converter is regulated to 820V at railway side. The 

second DC/DC converter (2) will store the energy and reduce the DC bus voltage. The AC/DC 

bidirectional inverter is used to regulate the DC bus voltage to avoid voltage peaks or drops. 

In the following, each component will be detailed then a stability study of the system will be 

done. 

V.c. SMART GRID REFERENCE ARCHITECTURE  

Railway DC Micro-grid is a small scale smart grid. Thus, it should respect the Smart Grid 

Reference Architecture (SGAM) specified by “CEN-CENELEC-ETSI Smart Grid Coordination Group”. 

The use case’s components, functions, data flow and communication should be classified into layers, 

zones and domains to organize the system and ensure interoperability.  

 

Figure 35. Railway micro-grid integration in SGAM 

Interoperability is the main key of a smart micro-grid. According to IEC 61850-2010: 

“Interoperability refers to the ability of two or more devices from the same vendor, or different vendors, 

to exchange information and use that information for correct co-operation.”  
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Therefore, the GridWise Architecture Council (GWAC, 2008) defined interoperability categories 

describing requirement and methodology in order to achieve this mutual understanding within a micro-

grid. For each interoperable function, all categories have to be covered, by means of standards or 

specifications. 

 

Figure 36. Interoperability categories defined by GWAC (2008) [CEN00] 

To simplify the task, the interoperability categories were aggregated into five abstract layers: 

Business, Function, Information, Communication and Component [CEN00]. They are presented in 

Figure 37. 

 

Figure 37. Interoperability layers [CEN00] 
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According to the Smart DC micro-grid architecture, the PMS should be able to communicate 

with the distributed control units. Therefore, it should contain more or less the five layers listed in 

Figure 37. 

V.c.1. Business Layer 

The business layer defines the objectives of the system based on a specific business model. 

It’s where policies are decided. It includes the business processes, services and organizations that are 

related to the defined use case. 

In this use case, the railway DC Micro-grid is mainly intended to: 

 Recuperate trains’ braking energy 

 Charge electrical hybrid buses  

V.c.2. Function Layer 

The Function layer describes functions needed to fulfil objectives and roles defined by the 

business layer. Functions and their relationships are independent of the physical implementation of 

the system (applied technology or assigned actor). They represent the use case functionality. In the 

DC Micro-grid, the PMS main functions are to: 

 recuperate the trains braking energy while respecting power exchange between trains, 

 store the maximum of trains braking power in the hybrid storage system, 

 regulate the DC Busbar voltage to avoid over or under voltages. 

V.c.3. Information Layer 

The information layer describes the information that is being used and exchanged between 

functions, services and components [CEN00]. In this use case, information is mainly exchanged 

between the PMS and the control units. 

Below some examples on the information that could be exchanged: 

 Authorisation to the AC/DC inverter unit control to interfere and regulate the DC busbar 

voltage. 

 The power to be absorbed/delivered by the storage system based on its SOE. 

 Authorization to the railway DC/DC converter unit control to inject power into DC busbar 

voltage. 

The information is transferred according to a data model. It’s an abstract model that documents 

and organizes data communication between different actors. Annex 6.2 of the JWG-SG Report on 

Smart Grid Standardization provides a thorough overview on the most important data models which 

have to be seen in context with the smart grid standardization [CEN00]. 
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V.c.4. Communication Layer 

This layer defines communication protocols within the smart micro-grid. In order to choose the 

type of communication, it is first required to define what type of networks will be used in this 

application. Figure 38 shows an example of different communication networks in communication layer. 

The micro-grid mainly covers from the Process domain up to the Operation domain. Therefore, 

the selected networks should also cover these domains and be able to communicate (same 

communication technologies). For example, based on Table 2, the “Low-end intra substation” and the 

“field area” networks could be chosen.  

It is recommended to use the IP for the communication because it is a well-known open 

standard that fits smart grid’s new requirements. It also offers migration path for some non-IP 

protocols and implementations like DNP, Modbus and KNX. 

 

 

 

Figure 38. Mapping of communication networks on SGAM Communication Layer [CEN00] 



66 | P a g e  

 

Table 2. Applicability statement of the communication technologies to the smart grid sub-networks [CEN00] 

V.c.5. Component Layer 

It consists of the physical components of the smart micro-grid. This includes measurement 

devices, power system equipment (converters, storage…), protection and remote-control devices 

(programmable logic controllers, network infrastructure (wired / wireless communication connections, 

routers, switches, servers) and any kind of computers (in case there is an interface). For IP 

communication technologies, Ethernet or Wi-Fi could be used because the micro-grid is considered as 

a small area network. 

V.d.  STORAGE SYSTEM TECHNOLOGIES 

As Katie Fehrenbacher said, “a next-generation smart grid without energy storage is like a 

computer without a hard drive: severely limited” [ENS02]. Therefore, the DC Micro-grid should contain 

a storage system to ensure flexibility and better energy management. A hybrid storage system stores 

the braking energy coming from the railway network. Primary energy sources, such as batteries, are 

usually used as a continuous source of low power. However, they cannot efficiently handle peak 

power demands because of their charging/discharging low power density. Power sources are needed 

to complement these energy sources in order to meet today’s applications. They consist together a 

hybrid storage system providing both high power and energy density (Figure 39).  
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Figure 39. Hybrid storage system [MAX00] 

There are many types of storage systems. Figure 40 below shows their classification based on 

their physical characteristics:  

 

Figure 40. Classification of electrical energy storage systems according to energy form [ELC11] 

Pumped hydroelectric storage facilities (PHS) store energy by pumping water from a lower 

reservoir to an upper reservoir. Power is then restored by releasing stored water through turbines the 

same as a conventional hydropower plant. The energy’s round-trip efficiency (pumping/generating) is 

greater than 80%. However, this technology requires a large volume which is not compatible with 

urban applications. Compressed air energy storage (CAES) is an alternative to PHS but instead of 

pumping water, ambient air is compressed and stored under pressure in an underground cavern. 

When electricity is required, the pressurized air is heated and expanded in an expansion turbine 

driving a generator for power production [ENS00]. It can be employed in small-scale on-site energy 

storage solutions as well as in a very large storage with big energy reserve. CAES power-to-power 

efficiency varies between 40% (Diabatic Method) and 70% (Adiabatic Method). Thermal storage 

presents three main categories: Pumped heat electrical storage (PHES), hydrogen energy storage 
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(HES) and liquid air energy storage (LAES). PHES stores energy by pumping heat form the “cold 

store” to the “hot store” like in a refrigerator.  To restore this energy, the engine takes heat from the hot 

store, delivers waste heat to the cold store and produces mechanical work which will drive an electric 

generator. The expected AC to AC around trip efficiency is 75-80% [ENS01]. HES is where electricity 

is converted to hydrogen by electrolysis. The produced hydrogen can be stored and burned later to 

produce electricity. Unfortunately, HES’s efficiency today is low (30-40%) but the interest in this 

technology is growing due to its storage capacity that is much higher than batteries (small scale) or 

PHS and CAES (large scale). LAES uses electricity to cool air until it liquefies. The liquid is then 

stored in a tank. Energy production is done by bringing back the air to its gaseous state using ambient 

air or waste heat from industrial process. The gas turns the turbines driving electric generators. This 

technology is usually used for large-scale and long duration energy storage. 

 Concerning batteries, they can be classified in two categories: solid state batteries 

(conventional batteries) and flow batteries. Conventional batteries consist of electrochemical cells that 

convert stored chemical energy into electrical energy. Each cell contains a positive terminal (cathode) 

and a negative terminal (anode). Ions move between terminals through electrolytes. New technologies 

such as electrochemical supercapacitors can be charged and discharged instantly and provide almost 

“unlimited” life cycles (commercially up to 1 Million cycles). The most common rechargeable batteries 

are: lead-acid battery the oldest, Nickel Cadium (Ni-Cd) battery and lithium-ion (Li-ion) battery. The 

latter is the most promising battery chemistry. It is replacing the others in many applications. A flow 

battery is an electrical storage device that is a cross between a conventional battery and a fuel cell. 

Mechanically activated by pumps, flow batteries perform best at a size above 20kWh which make 

them suitable for bulk energy storage. For example, a flow battery for frequency regulation is being 

installed in Japan that will deliver a whooping 60MWh. The figure below compares the energy density 

of main battery technologies: 

 

Figure 41. Energy density of different types of batteries [TAR01] 
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Lithium-ion batteries represent higher energy density than Lead-acid and Nickel based 

batteries. Yet, they have higher capital cost (see Figure 44) but also high number of cycles and low 

maintenance. This will reduce the cost per cycle which can become lower than lead batteries (Figure 

42). In addition, their price is expected to drop with the increasing demand for Electric Vehicles (EV). 

The figure below shows the capital cost per cycle of different types of storage systems: 

 

Figure 42. Capital cost per cycle for storage systems (source: ESA) 

The table below lists the advantages/drawbacks of the batteries mentioned above: 

 Lead-Acid batteries Nickel based batteries Lithium-ion batteries 

Advantages 

 High maturity 

 Adequacy to all 

applications 

 Low cost 

 Recycling at 95% 

 Safety 

 Medium to high efficiency 

 Long life cycle 

 High power density 

 No maintenance 

 Long life cycle 

 High power density 

 High efficiency 

 No maintenance 

 Adapted to all 

applications 

Drawbacks 

 Environmental impact of 

lead 

 Sensitive to operating 

conditions 

 Sensitive to management 

strategy 

 Difficult prediction of state 

of charge, state of health 

and failure 

 Cost 

 Environmental impact of 

Cadmium 

 « Memory effect » of Ni-

Cd 

 Self-discharge 

 Poor energy efficiency 

 Safety 

 Cost (decreasing) 

 Recycling 

 Need of single cell 

monitoring 

 Need of power and 

thermal 

management 

Table 3. Batteries advantages and drawbacks 
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Flywheels and Supercapacitors (SCs) are mostly used for high power applications. They are 

comparable in terms of energy density and power density (see Figure 43).  The supercapacitor, also 

known as ultracapacitor or double-layer capacitor, differs from a regular capacitor in that it has very 

high capacitance. A capacitor stores energy by means of a static charge instead of electrochemical 

reaction. SCs can be bought in cells or modules. Modules incorporate balancing, monitoring and 

thermal management capabilities to ensure industry-leading charge/discharge performance, high 

reliability and long operational life. As a result, modules are more expensive than the equivalent 

quantity of cells. Nevertheless, choosing to buy cells requires from the buyer having skills and 

experience in assembling and controlling storage systems. The final cost depends on the produced 

quantity. 

A flywheel stores electrical energy through mechanical rotational energy: a spinning mass 

driven by an electric motor. According to their power and energy density, these different technologies 

are compared in the figure below: 

 

Figure 43. Storage technologies comparison (source : CEA) 

Nevertheless, SCs are more reliable, require no maintenance (no moving parts nor chemical 

reaction), have a more predictable failure mechanism, and have lower capital cost (Figure 44). In 

addition, given the fact that the Micro-grid will be installed in the station, there’s only a limited volume 

available and flywheels are larger than SCs. Therefore, it is recommended to use SCs in the DC 

micro-grid to store trains braking energy. Meanwhile, the battery should be able to discharge the 

supercapacitor as soon as possible to allow storing the next train’s braking power peaks. 

Consequently, the technology used should have high power density: when charging the hybrid electric 

buses, the battery should be able to provide a 200 kW constant power during 4 minutes. In addition, 
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high efficiency and no “memory effect” are needed because of the incomplete charging/discharging 

cycles. It is then recommended, for this application, to use Lithium-ion technology. 

 

Figure 44. Capital cost vs. runtime for energy storage systems [APC65] 

V.e.  POWER CONVERTERS 

V.e.1. Storage system’s DC/DC converters 

In order to adapt an unpredictable source of power to a short time constant charge, energy 

storage systems need to be integrated. Currently, the most commonly used device is the Lithium-ion 

battery. But even though it has high energy density, its power density is relatively low. Besides, its 

number of charging/discharging cycles is small and the battery’s characteristics will degrade quickly 

over time. It is then unlikely to use only batteries to store braking energy. An intermediate storage 

system is needed to adapt the instantaneous braking power peaks to the battery’s limited power. As 

mentioned before, supercapacitors are the most suitable for this application. They can last for a million 

of charge/discharge cycles without losing energy storage capability. Therefore, a hybrid storage 

system is used to store the braking energy. It consists of two cascaded stages. The first one 

(transistors T1 &T2) is a bidirectional converter controlled to charge the supercapacitor with the 

recuperated braking power and to discharge it when a hybrid bus is connected to the station. The 

second is also a bidirectional converter controlled to charge/discharge the battery with a constant 

current. The figure below shows the hybrid storage system modelled using Simulink: 



72 | P a g e  

 

Figure 45. Hybrid storage system’s architecture 

 

This model is controlled with two control loops, one for each converter. The control signals of 

IGBTs T1 and T2 ensures that the power absorbed/delivered by the supercapacitor is equal to the 

reference power Pref (Table 4). Pref depends on the supercapacitor state of energy (SOE) calculated 

as follow: 

100(%)
2

max_

2


SC

SC

V

V
SOE  (V-1) 

Figure 46 shows the control loop of the SC’s converter. It is a current regulation which reference 

is calculated based on the reference power in Table 4. To protect the supercapacitor, a current 

limitation is imposed when SOE exceeds 95% or goes under 30%. The discharging mode is stopped at 

25%, that is when 𝑉𝑠𝑐 = 𝑉𝑠𝑐_𝑚𝑎𝑥/2. In addition an anti-windup is added to the loop to avoid divergence. 

When a train brakes, T1 switches on and off in a manner that will make the current in L1 equal to the 

reference current. In this case, T2’s diode is an anti-parallel diode. It is the buck mode. Contrarily, when 

power needs to be injected into the DC busbar, T2 switches on and stores energy in L1. When T2 turns 

off, this energy is fed into the Busbar through T1’s diode. This is boost mode. 

 

 

Figure 46. Supercapacitor control loop 

The equivalent linear system of the SC’s converter is represented in Figure 47. 
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Figure 47. System’s linear control loop 

C(s) is the corrector that will ensure that system’s response meets the following specifications:  

1. 10% step response overshoot  

2. Rise time tr=0.02 ms 

3. Cancellation of static error 

The first specification is directly related to the damping ratio: 

𝐷% = 100𝑒−𝜋𝜉/√1−𝜉2
 ( V-2) 

→ 𝜉 =
−ln⁡(𝐷% 100⁄ )

√𝜋2+(ln(𝐷% 100⁄ ))2
 = 0.59 

The undamped natural frequency 𝑤𝑛 can be calculated from the second specification: 

𝑡𝑟 =
1

𝑤𝑛√(1 − 𝜉2)
(𝜋 − 𝑎𝑟𝑐𝑐𝑜𝑠⁡(𝜉)) (V-3) 

→ 𝑤𝑛 = 1.3635 ∗ 105𝑟𝑎𝑑/𝑠  

The third specification is already satisfied by the system’s transfer function that contains an integrator. 

A proportional correction will not be able to respect the three constraints. Therefore, we propose a first 

order corrector:  𝐶(𝑠) =
𝑘

(1+𝜏.𝑠)
 

The system’s open-loop transfer function is then:  

𝐻(𝑝) =
𝑘. 𝑉𝑑𝑐

(1 + 𝜏. 𝑠)(𝑅1 + 𝐿1. 𝑠)
 (V-4) 

The new closed-loop transfer function can be written in the standard form of a second-order system: 

𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐼𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
=

𝐻(𝑝)

1 + 𝐻(𝑝)
=

𝑘. 𝑉𝑑𝑐

𝑘. 𝑉𝑑𝑐 + 𝑅1 + (𝜏𝑅1 + 𝐿1). 𝑠 + 𝜏𝐿1. 𝑠
2
 (V-5) 

𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐼𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
≡

𝐾

1 +
2𝜉
𝑤𝑛

. 𝑠 +
1

𝑤𝑛
2 . 𝑠2

⁡⁡ , 𝑤ℎ𝑒𝑟𝑒⁡ 
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1

𝑤𝑛
2 =

𝜏𝐿1

(𝑘𝑉𝑑𝑐 + 𝑅1)
 (V-6) 

2𝜉

𝑤𝑛
=

𝜏𝑅1 + 𝐿1

(𝑘𝑉𝑑𝑐 + 𝑅1)
 (V-7) 

(V-6) and (V-7) are two equations with two unknowns. By solving them, we obtain: 

𝜏 =
𝐿1

2𝜉𝑤𝑛𝐿1 − 𝑅1
 (V-8) 

𝑘 =
𝐿1𝜏⁡𝑤𝑛

2 − 𝑅1

𝑉𝑑𝑐
 (V-9) 

The dimensioning of the converter’s inductance depends on voltage and current variation amplitudes, 

of the switching frequency⁡𝐹𝑠𝑤 and the duty cycle. L1 can be calculated as follows: 

𝐿1 = (𝑉𝑑𝑐 − 𝑉𝑠𝑐)𝑚𝑎𝑥 × (
𝐷

𝐹𝑠𝑤∆𝐼𝐿1

) (V-10) 

𝐿1 = 46.6⁡µ𝐻 → ⁡𝜏 = 6.215 × 10−7,⁡⁡⁡𝑘 = 0.0598 

The Bode diagram of the SC converter’s open-loop regulation is: 

 

Figure 48. Bode diagram of the SC converter’s open-loop regulation 

The control loop below ensures that the battery is charged and discharged with a constant 

nominal current (Ibat = In). The charging/discharging modes are shown in Table 4. The battery’s 

reference current (I_bat_ref) depends on the SOE of the supercapacitor.  Both modes attempt to bring 
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back the supercapacitor’s SOE to 50%. In fact, if we consider that discharging and charging modes 

are equiprobable, the optimal case is to have around 50% of usable energy in the SC, which 

corresponds to a SOE of 62.5% (Table 4). But given the fact that braking energy is more frequent, the 

SOE will be set to 50% to give priority to the braking energy. Thus, the system will still be able to 

respond quickly to the operation mode selected by the PMS. Figure 49 shows the corresponding 

control loop. Same as the SC’s control loop, an anti-windup is added to avoid unexpected divergence. 

The corrector’s parameters were got by tuning: 𝑘𝑝𝑏 = 0.084⁡and 𝑘𝑖𝑏 = 9.7. 

 

 

Figure 49. Battery’s control loop 

Table 4 represents how the PMS controls the hybrid storage system. Two modes can be 

distinguished: charging mode and discharging mode. 

 Charging mode 

When the SOE is below 50%, the supercapacitor absorbs all the recuperated braking power (Prec) 

injected into the DC busbar. The reference power (Pref), for calculating the reference current for 

the SC, is then equal to Prec. However, the battery’s reference current (Ibat) is set to zero giving 

by that the priority to SC’s charging. 

When the SOE is between 50% and 95%, Pref is kept equal to Prec but the battery is allowed to 

charge. Ibat is then set equal to the battery’s nominal current (In). 

When the SOE exceeds 95%, a power limitation is applied to Pref. the battery keeps charging. 

 Discharging mode 

When the SOE is below 25% and one hybrid electric bus is connected to the DC Micro-grid, the 

power is provided by the battery. Pref is then equal to the battery’s maximum power (Pbmax). In 

general, this case should be avoided in order to protect the SC. 

When SOE is between 25% and 30%, a power limitation is introduced to protect the SC. The 

battery is also supporting the SC and Ibat is set to (-In). 

When SOE is between 30% and 50%, Pref is equal to P_dis and the battery is also discharging 

with a nominal current. 

When SOE is above 50%, the SC is discharging normally and the battery is in standby mode 

(Ibat=0). 
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Charging mode 

Supercapacitor SOE Supercapacitor Pref Battery current 

SOE < 50% Pref=Prec* Ibat** = 0 

50% < SOE < 95% Pref=Prec* Ibat** = In 

95% < SOE <100% Pref = (-20*SOE+20).Prec* Ibat** = In 

Discharging mode 

Supercapacitor SOE Supercapacitor Pref Battery current 

SOE < 25% Pref = Pbmax Ibat = - Imax 

25% < SOE < 30% 
Pref = (20*SOE-5).(P_dis+Pbmax)-

Pbmax 
Ibat = - Imax 

30% < SOE < 50% Pref=P_dis Ibat = - In 

50% < SOE < 100% Pref=P_dis Ibat = 0 

*Recuperated braking power absorbed by the SC 

** Battery’s reference current 

Table 4. Hybrid storage power management 

 Simulation 

The hybrid storage system model on Simulink is based on SC and battery products already 

existing on the market. The SC is based on Maxwell’s 125V module. According to the product 

description, each module incorporates balancing, monitoring and thermal management capabilities to 

ensure industry-leading charge/discharge performance, high reliability and long operational life. In 

addition, the low equivalent series resistance provides the highest power capability required for heavy 

machinery such as trucks, light rail, mining… [MAX01]. Table 5 shows the main characteristics of 

Maxwell’s 125 V modules. 

Rated Capacitance 63 F Usable Power 1700 W/kg 

Rated voltage 125 V Stored Energy 140 Wh 

Absolute maximum voltage 136 V Maximum ESRDC 18 mΩ 

Absolute Maximum Current 1900 A Weight 61 kg 

Table 5. Maxwell’s 125 V module characteristics [MAX01] 

To recuperate trains’ braking energy, seven parallel rows of 6 modules in series are used 

giving 735 kW of total continuous power and 9.46 MW of maximum total power.  

The battery model is based on A123 systems’ AMP20 energy module. It is a Nanophosphate 

lithium ion chemistry that has superior life cycle, high usable energy over a wide state of charge range 

and very low cost per watt-hour. It has high power density compared to other technologies. It is 

composed by three parallel rows of 28 cells in series. For our use case, we considered three parallel 

rows of three AMP20 modules in series. In Table 6, the main specifications of AMP20 Cell are listed. 
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Nominal Energy Content 65 Wh Standard Charge Current   20 A 

Nominal Voltage (50% SOC) 3.3 V Maximum Charge Current 100 A 

Minimum Cell Capacity 20 Ah Pulse 10s Charge Current 200 A 

Nominal Specific Power 2400 W/kg Maximum Discharge 
continuous Current 

200 A 

Cell Weight 496 g Pulse 10s Discharge 
Current 

600 A 

Table 6. A123’s AMP20 module characteristics [AMP00] 

Note that it is normal that the Specific Power of a cell is higher than Maxwell’s 12 V module 

because a module includes also power electronics, ventilations, case, etc… which increase notably 

the module’s total weight. To avoid batteries’ fast deterioration, in normal mode, the batteries are 

charged / discharged with their standard low charging current (≈720A).  

In order to test previous regulations, a constant voltage source is connected to the DC/DC 

converter from the busbar’s side and a varying power profile is injected to the SC’s current regulation 

loop. This power, first positive then negative, is divided by the SC’s voltage to give the reference 

current. The figure below shows the reference power of the control loop.  

 

Figure 50. Reference Power to be absorbed by the storage system 

The -200 kW corresponds to the power needed to charge the hybrid electric bus connected to 

the DC Micro-grid. Figure 51 shows reference and measured currents in the SC’s corresponding 

inductance L1 (see Figure 45. Hybrid storage system’s architecture). We can see that the currents 

almost overlap.  
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Figure 51. Reference current (dashed blue line) and measured current (continuous red line) in the SC’s 

converter 

Figure 52 shows the battery’s input current evolving according to the SC’s SOE. In order to 

avoid oscillating around SOE=50%, relays are introduced in the command. On one hand, the charging 

mode starts when SOE>53% and stops when SOE=51%. On the other hand, the discharging mode 

starts when SOE<47% and stops when SOE=49%.  

The SOE represents ripples because of the SC’s internal resistance. 

 

Figure 52. Battery’s input current and SC’s SOE 
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In Figure 53, the SC’s initial SOE is set high enough that the reference power is limited. When 

the SOE exceeds 95%, a power limitation is applied according to Table 4. At time=0.8s, the power 

becomes negative. The storage system is discharging. No power limitation is then applied. 

  

Figure 53. Charging power limitation 

Contrarily to the previous case, in Figure 54, the SC’s initial SOE is low enough to activate 

discharging power limitation. When the reference power is negative and the SOE is between 30% and 

25%, the power is limited according to Table 4. But when the power is reversed (becomes positive) at 

t=5s, the charging mode begins and the power limitation is thus stopped. 

 

Figure 54. Discharging power limitation 
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To test the SC’s protection through discharging power limitation, the initial SOE is set to 25% 

and a reference power of 200 kW is applied. Figure 55 shows that the reference current was reduced 

significantly to keep the SOE around 25%. The power is then delivered mainly by the battery. 

 

Figure 55. Test of SC’s power protection 

V.e.2. AC/DC bidirectional converter 

An AC/DC bidirectional converter is a power electronic device that is able to transfer active power 

from AC side to DC side and conversely. It is based on IGBT technology which allows faster switching. 

Thus, harmonics with higher order are generated especially when applying Pulse Width Modulation 

(PWM). It is a modulation technique used to encode a message into a pulsing signal. These signals 

will then command the IGBTs. The simplest way to generate a PWM signal is the intersective method, 

which requires only a sawtooth or a triangle waveform (easily generated using a simple oscillator) and 

a comparator. When the value of the reference signal (the red sine wave in Figure 56) is more than 

the modulation waveform (blue), the PWM signal (magenta) is in the high state, otherwise it is in the 

low state. The PWM bloc can be considered as an amplifier of the modulated signal. The equation 

below can be applied in the case of under-modulation. 

𝑉̂𝑜𝑢𝑡 =⁡
𝑉𝑑𝑐

2⁡𝑉̂𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒

× 𝑉̂𝑐𝑜𝑛𝑠𝑖𝑔𝑛𝑒 when   
𝑉𝑑𝑐

2
≥

√2

√3
𝑉𝐿𝐿,𝑅𝑀𝑆                                    (V-11) 

This well-known technique is not only used for controlling power electronics but also in other 

domains such as communication.  
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Figure 56. Pulse width intesective modulation 

In our case, the AC/DC converter is a classic two-level converter consisting of 6 switching IGBTs 

with anti-parallel diodes. Each branch is connected to a different phase through an inductance that 

serves as a filter connecting the converter’s shopped voltage to the grid’s sinusoidal low voltage. The 

three inductances are sized to reduce current ripples injected into the grid. The capacitor serves also 

as a filter. It is sized to reduce the DC Busbar voltage ripples. 

 

Figure 57. 2-level AC/DC bidirectional converter 

The inverter is used to regulate the DC busbar voltage. Contrarily to classic regulations, the 

inverter’s role is not to fix its output DC voltage. It rather operates in floating mode: it feeds back 
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energy into the grid when the voltage is higher than 940V, the DC Busbar voltage is then decreased 

down to 920V; it consumes energy from the grid when the voltage is lower than 860V, the DC Busbar 

voltage is then increased up to 880V. A 80V dead-zone gives the priority to the storage system (Figure 

58). 

 

 

Figure 58. Bidirectional inverter ON/OFF command 

The inverter’s regulation consists of two cascaded control loops [BAR08]. The outer loop regulates 

the DC Busbar voltage. It generates the reference current on AC side. The inner loop regulates the AC 

current to match the reference current of the previous loop. It generates the inverter’s three phase 

control voltages that are converted into six pulses, using intersective PWM, that command the IGBTs. 

The pulses controlling IGBTs of a same branch are opposite. In real implementation, a dead zone is 

kept between the two commands to avoid short-circuit risks due to turn-off and turn-on delays.  

 

Figure 59. Inverter control loop 

In order to control a three-phase converter, direct–quadrature–zero (or dq0 or dqo) transform is 

a mathematical transform that rotates the reference frame of three-phase systems to simplify the 

analysis of three-phase circuits. It is essentially an extension of the Clarke transform, applying an 

angle transformation to convert from a stationary reference frame to a synchronously rotating frame. 

The synchronous reference frame can be aligned to rotate with the voltage (e.g. used in voltage 
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source converters) or with the current (e.g. used in current source converters). This transformation is 

referred to as Park transformation for Robert H. Park who first proposed it in 1929 [RHP29]. This 

transformation simplifies the regulation because simple PI correctors can be therefore used on DC 

quantities without worrying about regulators’ additive phase-shift. It is although possible to do it with 

AC quantities but special correctors with zero-phase shift should be then used, such as resonant 

correctors. Park’s transformation matrix is shown below: 

 

(V-10) 

where 𝜃 = 𝑤𝑡 + 𝛿𝑎 is the angle between the rotating and fixed coordinate system at each time t and 𝛿𝑎 

is an initial phase shift of the voltage. 

 Phase Locked Loop 

In general, in order to connect a power electronic device to the grid, we need to have the exact 

position of grid’s voltage vector at the coupling point. Sometimes, especially in industrial areas, the 

grid’s 3-phase voltages are not perfectly balanced and present distortions. Therefore, different types of 

Phase Locked Loops (PLL) exist and are used depending on the particularity of each case [LIM00].  

We list some of these solutions: 

 Synchronous Reference Frame PLL (SFR-PLL): this technique is simple and is used for almost 

all classic three-phase systems. 

 Double Synchronous Reference frame (DSRF-PLL): this technique is based on the separation 

of positive and negative sequences of the grid and is an optimal solution for unbalanced three-

phase systems. 

 Synchronous Reference Frame PLL with Positive Sequence Filter (PSF-PLL): this solution 

uses sinusoidal signal integrators (SSI) as a positive sequence filter. 

 Synchronous Reference Frame PLL with Sinusoidal Signal Integrators (SSI-PLL): this solution 

uses different strategies of SSI filters to avoid distortions. 

 Double Second Order Generalized Integrator PLL (DSOGI-PLL): this is another solution that 

also uses SSI filters for finding the fundamental of voltages’ positive sequence. 

In the following, the angle θ is obtained using DSOGI-QSG-PLL shown in Figure 60 . This 

solution consists of two SOGI filters applied on the in-phase and quadrature signals. Its particularity is 

that it can be used independently of the perturbations that may occur on the grid’s side.  
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Figure 60. Rotation angle extraction using DSOGI-QSG-PLL 

Clarke transform (or abc/αβ transform) allows the passage from a three-dimension system to a 

bi-dimension one. Xα and Xβ are also time variants with the same rotation angle as Xabc.  Xα and Xβ 

are then filtered using the DSOGI-QSG filter. Figure 61 shows the details of this filter. It is a selective 

filter at 𝑤 = 𝑤0 that gives in-phase and quadrature filtered signals.  

 

Figure 61. DSOGI-QSG filter 

The equivalent transfer function of one filter loop: 

𝑇(𝑠) =
𝑋𝑓(𝑠)

𝑋(𝑠)
=

𝑘.𝑤0. 𝑠

𝑠2 + 𝑘.𝑤0. 𝑠 + 𝑤0
2 (V-11) 

For 𝑠 = 𝑗𝑤0, 𝑇(𝑗𝑤0) = 1. Therefore, it is a selective filter that for 𝑤 = 𝑤0 gives 𝑋𝑓(𝑠) = 𝑋(𝑠). 

In addition, 

𝐺(𝑠) =
𝑞. 𝑋𝑓(𝑠)

𝑋(𝑠)
= ⁡

𝑤0

𝑠
𝑇(𝑠) =

𝑘.𝑤0
2

𝑠2 + 𝑘.𝑤0. 𝑠 + 𝑤0
2 (V-12) 

For 𝑠 = 𝑗𝑤0, 𝐺(𝑗𝑤0) =
1

𝑗
= −𝑗. Therefore, it is a selective filter that for 𝑤 = 𝑤0 gives the in-quadrature 

signal⁡𝑞. 𝑋𝑓(𝑠) = −𝑗⁡. 𝑋(𝑠). 
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The four output signals (𝑋𝛼 , 𝑞. 𝑋𝛼 , 𝑋𝛽 , 𝑞. 𝑋𝛽) are the inputs of a Positive Sequence Calculation 

(PSC) in order to synchronize with the grid’s positive sequence with the following equation: 

 

 with 𝑞 = 𝑒−𝑗
𝜋

2                         (V-13) 

 

The positive sequence calculated in (V-11) is then transformed in (d, q) frame. Only Xq is used 

in the SRF-PLL showed in the following block diagram: 

 

Figure 62. SRF-PLL concept 

If we consider that the grid is well balanced and there’s no distortion, we have the following: 

 

(V-14) 

 

(V-15) 

 

With θ* the PLL’s output         (V-16) 

We then obtain: 

 

(V-17) 

The SRF-PLL will cancel 𝑉𝑞 and thus the phase error⁡∆𝜃. The PLL’s output angle θ* will be then equal 

to the grid’s rotation angle θ. 
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Now that the rotation angle is calculated from the grid’s three phase voltages, it is possible to 

apply Park transform to the measured three phase currents. Id and Iq will be regulated using the 

current loops (see Figure 59). The reference value of Id is the output of the voltage loop. Id corresponds 

to the active power to be injected to or consumed from the grid.  In fact, when the synchronous frame 

is aligned with voltage, Vq is equal to zero. The instantaneous active power can be calculated as 

follow: 

𝑃 = 𝑉𝑑𝐼𝑑 + 𝑉𝑞𝐼𝑞 = 𝑉𝑑𝐼𝑑 (V-18) 

The reactive power is then determined by Iq. It can be calculated as follow: 

𝑄 = 𝑉𝑞𝐼𝑑 − 𝑉𝑑𝐼𝑞 = −𝑉𝑑𝐼𝑞 (V-19) 

Depending on the application, the AC/DC converter can operate in leading mode (consuming reactive 

power from the grid) or in lagging mode (injecting reactive power to the grid). A third mode is possible 

it’s when the converter is a power factor corrector with zero reactive power. It is then seen by the grid 

as a pure resistor. The latter case is considered in our use case.  

 Current Control Loop 

As mentioned before, the AC/DC converter is controlled using two cascaded regulations: an 

internal current control loop and an external voltage control loop. In this paragraph, a focus is done on 

the current regulation. As we can see in Figure 59, this loop operates in the rotating frame (d,q). The 

transfer function of the physical system can be calculated from the system’s equations: 

 𝑉𝑑
∗ − 𝑉𝑔𝑑 = 𝑅𝐿𝐼𝐿𝑑 + 𝐿𝑔

𝑑𝐼𝐿𝑑

𝑑𝑡
− 𝐿𝑔𝑤𝐼𝐿𝑞 

𝑉𝑞
∗ − 𝑉𝑔𝑞 = 𝑅𝐿𝐼𝐿𝑞 + 𝐿𝑔

𝑑𝐼𝐿𝑞

𝑑𝑡
+ 𝐿𝑔𝑤𝐼𝐿𝑑 

(V-20) 

where 𝑅𝐿 and 𝐿𝑔 represent the inductance connecting the AC/DC converter to the grid. 

These equations show that the behaviour of in-phase and in-quadrature components is quite similar. 

Therefore, it is possible to apply the same corrector to both control loops. Thus, in the following, the 

study will be based on the in-phase current⁡𝐼𝐿𝑑. 

The corrector’s output is added to the grid’s in-phase voltage 𝑉𝑔𝑑⁡and the inductance 

perturbation⁡(−𝐿𝑔𝑤𝐼𝐿𝑞). The result is the voltage reference that is injected to the PWM generator. The 

latter can be considered as a signal amplifier with a time delay 𝑇𝑠 = 1 (2𝑓𝑠⁄ ) with 𝑓𝑠 the converter’s 

switching frequency. The feedback measured current can be then calculated using equations (V-20). 
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Figure 63. Current control loops of the AC/DC converter connected to the grid 

To calculate the corrector’s parameters, a simplified control loop is considered without 

perturbations. Using the tuning function in Simulink for a rise time tr = 0.002s and a damping ratio 

ξ=0.87, we find: 

𝐶(𝑠) = 𝑘𝑝𝑖 + 𝑘𝑖𝑖 𝑠⁄  with 𝑘𝑝𝑖 = 37.68⁡and 𝑘𝑖𝑖 = 685.7 (V-21) 

 

Figure 64. Simplified Current control loop 

The system’s Bode diagram is given in Figure 65. 
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Figure 65. Bode diagram of the current control open loop 

 Voltage control loop 

The external voltage control loop should be at least 10 times slower than the inner current 

control loop. The output of the voltage corrector is the reference current that is injected in the current 

loop previously studied. The corresponding block diagram is shown in Figure 66. 

 

Figure 66. The simplified control loop of the AC/DC converter connected to the grid 

We consider the currents’ directions in Figure 57. The converter’s output current on DC side is 

calculated using the current loop’s output, the measured current, according to the law of power 

conservation: 

𝑃𝐴𝐶 = −𝑃𝐷𝐶 =>⁡𝑉𝑑𝐼𝑑 = −𝑉𝑑𝑐𝑖𝑑𝑐 

𝑖𝑑𝑐 = −
𝑉𝑑

𝑉𝑑𝑐
× 𝐼𝑑 

(V-22) 
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Note that the corrector’s tuning is done on a linearized system. Therefore, 𝑉𝑑 and 𝑉𝑑𝑐 are considered 

as constants respectively equal to 320V and 900V. Once  𝑖𝑑𝑐 is calculated, the output DC voltage 𝑉𝑑𝑐 

is obtained as follows: 

𝐶𝑑𝑐

𝑑𝑉𝑑𝑐

𝑑𝑡
= 𝑖𝑑𝑐 − 𝑖𝑐ℎ (V-23) 

Using the tuning function in Simulink for a rise time t’r = 0.01s and a damping ratio ξ’=0.87, we find: 

𝐶′(𝑠) = 𝑘𝑝𝑣 + 𝑘𝑖𝑣 𝑠⁄  with 𝑘𝑝𝑣 = −0.517⁡and 𝑘𝑖𝑣 = −1.83 (V-21) 

The Bode diagram of the global system is thereby presented in Figure 67. 

  

Figure 67. Bode Diagram of the system’s open loop 

 Simulation 

To test the control loops calculated above, a constant current load is connected at converter’s 

DC side. It starts consuming 5A (equivalent to 4.5 kW) at t = 0.15 s. Figure 68 shows the DC output 

voltage of the AC/DC converter when operating as a rectifier. It is regulated to 900V. The voltage drop 

at t = 0.15 s is due to the fact that the resistor is connected directly to the output capacitor through a 

breaker with a very short response time.  
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Figure 68. DC output voltage of the AC/DC converter in rectifier mode 

In Figure 69, a zoom on the AC voltage and current of a single phase shows that PWM gives 

low distortion in rectifier mode. In addition, the converter acts as a power factor corrector because the 

current is in phase with the voltage. No reactive power is then injected or consumed from the grid. 

 

Figure 69. Zoom on AC Voltage and current in rectifier mode 

As mentioned before, the AC/DC converter should be bidirectional. Therefore the same 

previous test is repeated but this time with a constant current source. The converter is thus in inverter 

mode. Figure 70 shows the DC output voltage regulated to 900V.  



91 | P a g e  

 

Figure 70. DC output voltage of the AC/DC converter in inverter mode 

In Figure 71, a zoom on the AC voltage and current of a single phase shows that PWM also 

gives low distortion in rectifier mode and as before, the power factor is equal to 1. 

 

Figure 71. Zoom on AC Voltage and current in inverter mode 

V.e.3. Railway converter 

The railway converter recuperates the braking energy from railway side and injects it into the 

DC busbar. Its control depends on the catenary/3rd rail’s DC voltage. It should detect trains braking 

phase, recuperate its regenerated energy and stop when the braking phase ends or a close train 

starts consuming energy. That means power exchanging between trains should be respected or more 

power will be absorbed from substations and the energy bill will increase.  
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Figure 72. DC/DC converter connected to railway 

A voltage loop is used to control the DC/DC converter. Figure 73 below shows the employed 

regulation. The voltage regulation at railway side should be fast enough to recuperate the braking 

energy before the activation of the rheostat braking. 

 

Figure 73.  Regulation loop of the DC/DC converter connected to railway 

The corrector’s parameters were found by tuning: 𝑘𝑝𝑟 = −0.7⁡⁡and 𝑘𝑖𝑟 = −0.7 

When applying a constant reference voltage, there’s a risk that if another train accelerates 

while the converter is recuperating the braking energy of the first train, the energy exchange between 

trains won’t be respected. In this case, more energy will be absorbed from the substation nearby. 

Therefore, another strategy should be adopted. In Figure 74, the controlled current loads represent 

two trains T1 and T2. T1 starts braking at t=0.1s and T2 accelerates at t=0.4s (see Figure 75). The DC 

voltage source and its associated diode represent the diode rectifier substation (SST). VSST is equal to 

SST’s no-load voltage (780 V). The resistor “R” represents the catenary between T1 and T2.  

 

Figure 74. DC/DC converter connected to trains and a SST 
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Figure 75. Braking current injected by T1 (Blue) and Traction current absorbed by T2 (Pink) 

First, a constant reference voltage of 800V is injected in the voltage regulation loop. If power 

exchange is respected, no current should be absorbed from the SST because T1 is regenerating 

enough energy. The Figure 76 shows the current absorbed from the SST. It is not null therefore this 

solution is not effective. Figure 77 shows the regulated voltage at railway side. 

 

Figure 76. Current consumed from the Substation 

        

Figure 77. DC/DC converter output voltage Vcat at railway side 
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Now, another solution is based on the variation of the recuperated current. The flow chart in 

Figure 78 describes this strategy. 

 

Figure 78. Reference voltage calculation 

The same simulation is run with the new reference voltage calculation. Figure 79 shows that no 

current is consumed from the SST. The power exchange is thus respected. Figure 80 shows the 

regulated voltage variation at railway side. 

 

Figure 79. Current consumed from the Substation 

 

Figure 80. DC/DC converter output voltage at railway side 
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Note that the recuperated power is calculated in the converter’s unit controller and is 

communicated instantaneously (response time between 500 µs and 1 ms depending on employed 

controllers) to the PMS in order to send the necessary information to the Micro-grid’s different 

components.  

V.f. POWER MANAGEMENT SYSTEM 

The Power Management system (PMS) is an energy router that manages the micro-grid by 

directing power flows. A decentralized control is applied for the micro-grid. Control units can be 

installed at subsystem’s level. They are in charge of controlling locally each device. Their control 

functions consist of independent tasks that don’t need to communicate with other devices nor have a 

global overview of the micro-grid such as voltage regulation. Controls units are then connected to a 

central unit, the PMS. It ensures coherence between subsystems’ behavior and the scenario selected 

by the operator. It allows also respecting the micro-grid’s constraints. For example, it supervises the 

storage’s capacity and current limitations.  

 

Figure 81. Decentralized control of the DC micro-grid 

The system operates in four different modes: Recovery Mode (RM), Feeding Mode (FM), 

Standby Mode (SM) and emergency mode (EM). Table 7 describes the PMS behavior for each one of 

these modes selected depending on different possible scenarios. Functions are tagged with the letter 

“P” followed by a number that indicates the decreasing priority order (Top priority = 1). 

 

 

 



96 | P a g e  

OM Railway SC Battery Hybrid buses Auxiliary Loads Inverter 

RM 1 

Braking 

energy 

available 

SOE (SC) < 1 

(Charging) 

P1 

SOE (Bat) ≤ 1 

(Charging ) 

P2 

Not connected 

Connected 

(consuming) 

P3 

Feeding power to 

the AC grid 

P4 

RM 2 

Braking 

energy 

available 

SOE (SC) = 1 

(fully charged) 

SOE (Bat) = 1 

(fully charged) 
Not connected 

Connected 

(consuming) 

P1 

Feeding power to 

the AC grid 

P2 

RM 3 

Braking 

energy 

available 

SOE (SC) = 1 

(fully charged) 

SOE (Bat) = 1 

(fully charged) 
Not connected Not connected 

Feeding power to 

the AC grid 

P1 

RM 4 

Braking 

energy 

available 

SOE (SC) < 1 

(charging ) 

P2 

SOE (Bat) ≤ 1 

(charging) 

P3 

Connected 

(Charging) 

P1 

Connected 

(consuming) 

P4 

Feeding power to 

the AC grid 

P5 

SM 
No braking 

energy 
Standby Standby Not connected Not connected Standby 

FM 
No braking 

energy 

SOE (SC) > 25% 

(discharging) 

P1 

SOE>30% 

(discharging) 

P2 

Connected 

(charging) 

P1 

To be 

disconnected 

Consuming power 

from the AC grid 

P3 

EM 
Fault case* 

 

SOE>25% 

(discharging) 

P1 

SOE>30% 

(discharging) 

P2 

To be 

disconnected 

To be 

disconnected 

Consuming power 

from the AC grid 

P3 

* a need to feed power into the catenary or 3
rd

 rail after fault detection in railway system 

Table 7. PMS different scenarios 

Four recovery modes are considered when braking energy is detected at railway side (see 

paragraph V.d.3) and injected into the Micro-grid. The energy is managed by the PMS according to 

the following: 

 If no electric hybrid bus is connected to the Micro-grid: Priority P1 is given to 

supercapacitor (SC) while it is still not full (SOE (SC) < 1). Batteries come as a second 

priority (P2). They are charged with their nominal current (720A). In case auxiliary loads are 

connected, the excess of energy will serve to feed them as they are considered as a third 

priority (P3). The last one (P4) is given to injecting energy to AC grid; the inverter should 

operate only to ensure DC busbar’s voltage stays in an acceptable ±40 V range. 

 If an electric hybrid bus is connected to the Micro-grid: the highest priority (P1) is for 

charging the bus. If there’s energy left, it will go for SC (P2) then batteries (P3). Auxiliary 

loads when connected and AC grid come with least priorities (P4 and P5). 
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Standby mode (SM) represents the case where there’s no energy flow within the Micro-grid. Feeding 

mode (FM) represents the case where no braking energy is available and a bus is connected. The 

hybrid storage system should then provide needed energy. Power exchange happens in priority 

between the bus and SC (P1). Batteries (P2) step in when SC’s SOE goes below 50% (see Table 4). 

As in previous modes, energy can be absorbed from the AC grid for stabilizing the busbar’s voltage 

(P3). Last but not least, given the fact that a large storage system is installed in the station and that 

now, through the micro-grid, a power bridge exists between the station’s grid and the traction grid, an 

additional mode, emergency mode (EM), can be configured. EM allows in traction fault cases injecting 

power into the catenary/3rd rail to help trains reaching the station and evacuating passengers. In 

addition, in every station, an emergency storage system exists to supply emergency exits, lights… It 

could be also replaced by the micro-grid storage system.  

The micro-grid can also be connected to particular loads in the station (e.g. escalators, 

elevators…) that are also capable of regenerating electrical energy. In fact, when an escalators is 

going down in rush hours, the motor brakes to maintain its speed even with passenger’s weight. 

Hence, instead of dissipating this braking energy into heat, it could be recuperated, stored and re-

injected when needed. This is an interesting application especially in modern passengers’ station with 

high energy consumption. 

V.g. USE CASE: APPLICATION ON PARIS METRO LINE 13 

In order to demonstrate the efficiency of the DC micro-grid concept, separate simulations 

should be done using ELBAS, a multi-train simulator used by Alstom Transport (see Appendices-C), 

and Matlab-Simulink because it is not possible to create a direct link between ELBAS and Simulink 

allowing a simultaneous simulation. Therefore, the railway system is first simulated using ELBAS. The 

output of this simulation is the recuperated power as function of time. It is given in an Excel file format 

and then saved in Matlab variables to be used in the Simulink model. 

V.g.1. ELBAS simulation 

In this study, the simulation is based on RATP metro line 13 in Paris to evaluate the amount of 

braking energy that can be stored. It is considered that DC micro-grid with the hybrid buses charging 

station will be located in “Porte de Saint-Ouen” metro station (Figure 82). Only the left part, starting 

from “Invalides” station, was simulated because in normal mode, this part can be considered 

electrically independent from the right part. More precisely, braking energy recuperation at “Porte de 

Saint-Ouen” is not impacted by trains running on the right side of “Invalides”. In addition, a power 

substation is connected at this station and thus, it separates electrically both sections. 
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Figure 82. Paris metro line 13 simulated in ELBAS 

 Four scenarios have been simulated (Table 8), each one corresponding to a different headway 

(time delay between two consecutive trains). The simulated timetables were calculated in a way that 

takes into consideration all possible trains’ crossings (worst case for power consumption): 

 

Table 8. Simulation time calculated for each headway 

When trains brake, the line’s voltage increases. To protect the line from over-voltages, the on-

board rheostats are activated once the voltage reaches 900V. Therefore, the input voltage of the 

converter should be less than 900V and higher than the no load voltage of the nearest substation to 

avoid consuming energy from it. In this use case, the nearest substation has a 750V no-load voltage. 

The converter’s input voltage was then set to a value of 820V. The simulations were done with a 1 

second time step and a 10 meters KP (Kilometric point) step. ELBAS calculated the converter’s 

recuperated power at each time step. Figure 83 shows the profile of the power recuperated by the 

DC/DC converter connected to the railway system. It is extracted in an Excel file to be used as an input 

to Matlab-Simulink model. 

 

Figure 83. Extract of Converter’s time function power curve calculated by ELBAS for 95s headway 

 Headway (s) Simulation time 

95 2 h 23 min 

100 2 h 38 min 

175 5 h 08 min 

290 5 h 50 min 
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The power pulses are intermittent and depend on trains speed profile and relative position. 

More power is recuperated when trains are braking at the same time closely enough to the DC/DC 

converter. The duration of these power peaks is generally shorter than ten seconds which justifies the 

usage of supercapacitors. 

V.g.2. Simulink model simulation 

All converters described earlier are now connected through a DC micro-grid (Figure 81). In 

addition, passive RLC filters are added to avoid interaction between chopped currents and cables’ 

inductance. This could cause undesired voltage peaks that may cause equipment damage. 

At t=0.1s, a train starts to brake. The railway DC/DC converter starts injecting into the DC 

busbar a power increasing gradually up to 400 kW. At t=0.4s, the bus consumes 200 kW with a 0.1s of 

rising time. Figure 84 shows the braking power injected into the system through the DC/DC railway 

converter. 

 

Figure 84. Braking power injected into the Micro-grid through railway DC/DC converter 

This power is communicated to the PMS in order to calculate SC’s reference current 

(IscL_cons). Figure 85 shows how the SC’s measured current follows its reference value. Reference 

current’s drop at t=0.4s is due to charging the hybrid bus. This scenario was chosen because it 

requires all converters working at the same time. 

 

Figure 85. Reference and measured currents of SC’s DC/DC converter 
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 Figure 86 shows current at AC side variation according to DC busbar voltage. The AC/DC 

converter does not work permanently. It interferes according to the concept presented in Figure 58. 

When DC voltage reaches 940 V (as at t=0.31s), the converter injects energy to the AC grid until it is 

reduced to 920 V. In the opposite case, when voltage drops to 860 V (as at t=6.55s), the converter will 

consume energy from the AC grid to boost the voltage up to 880 V. 

 

Figure 86. Measured current at AC side and DC busbar voltage 

Even though the voltage is stable, 20V ripples (peak) are also measured. In order to see whether they 

impact current’s quality at AC side, the FFT of a single phase current is done on an operational period 

of the converter. Figure 87 shows that harmonics are negligible. 

 

Figure 87. FFT of current injected into AC grid during converter’s operational period 
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Figure 88 also shows that the current injected into the AC grid is in phase with the voltage which 

confirms the PFC function of the AC/DC converter.  

 

Figure 88. Zoom on AC current and voltage 

V.g.3. Simplified model simulation in Matlab 

As mentioned before, 4 scenarios were simulated using ELBAS. Each scenario corresponds to 

a different headway. The simulation’s timetable varies also from one scenario to another. It is 

calculated to include as many as possible different trains crossing positions. Given the fact that this 

duration is longer than an hour, simulating the electronic detailed model will be difficult because the 

time step of this simulation is too small and a very large memory is needed. Therefore, an energetic 

model was simulated in Matlab in order to evaluate the energy flow and thus a preliminary 

dimensioning. It is based on the flow chart showed in Figure 89. It is sufficient to evaluate the amount 

of braking energy that can be stored. 

 For each time step (Ts = 0.1s), recuperated energy Er is imported from ELBAS simulation’s 

results. The next SC voltage (Vsc_next) needed to absorb this energy is calculated. If it’s higher than 

SC’s maximum voltage (Vscmax), it is set equal to the latter. Duty cycle ‘τ’ is then calculated. It 

represents the SC DC/DC converter’s command. ‘τ’ should be less or equal to 1. A higher value is not 

physically feasible during Ts. Thus, Vsc_next should be recalculated to its realistic value. If its SOE is 

higher than 50%, the battery steps in and Ibat is set to the battery’s nominal charging current (In). The 

final value of Vsc can now be evaluated and the energy left from Er will serve to calculate next 

busbar’s voltage (Vdc_next). Based on AC/DC converter’s control (see paragraph V.d.2), the energy 

sent to the grid is evaluated and Vdc is set to its new value. These steps are repeated every time step 

Ts. 
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Figure 89. Average model’s flow chart  

Table 9 shows the amount of recuperated energy (input from ELBAS) and its distribution 

between the energy storage system and the grid. Note that the simplified model does not take into 

consideration energy losses. Therefore, it would be more realistic to multiply presented energy values 

by the system’s energy efficiency. In addition, it is important to remind that the simulated timetable is 

not an extracted real timetable because there was no possibility to get it. Therefore we took a 

timetable, the must constraining energetically, that is normally used for infrastructure dimensioning. 

Thus, these energy values are theoretical. Real values cannot be predicted especially for Metro 13 

which traffic is not automatic and depends directly on drivers’ behavior.  
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Headway (s) Timetable 

duration 

Recuperated 

braking energy 

(kWh) 

Energy stored in the 

hybrid storage system 

(kWh) 

Energy sent back to the 

grid 

(kWh) 

95 2h 23min 13.4 13.4 0 

100 2h 38min 60.33 60.1 0.23 

175 5h 8min 284.7 254.46 30.29 

290 5h 50min 336.4 324.3 12.1 

Table 9. Energy flow evaluation 

Figure 90 (a) and (b) show an extract of energies evolution stored in the battery and fed back 

to the AC LV grid during first two hours when no hybrid buses are connected. In the present case, the 

lowest energy is recuperated for the headway 95s corresponding to peak hours. In fact, trains are too 

close favoring energy exchange and reducing energy lost in on-board resistors. The more headway 

increases, the more trains are far from each other. Thus, more energy will be burned due to catenary’s 

low receptivity. It is then recuperated by the DC/DC converter connected at railway side. The highest 

amount of energy is registered for headway 290s. 

 

(a) 

 

(b) 

Figure 90. Energy stored in the battery (a) and the energy sent back to the grid (b) for different headways 
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As mentioned earlier, the defined use case, in collaboration with RATP, considers a hybrid 

electric bus charging every one hour. In order to calculate the total amount of energy per day, Table 

10 presents the energy flow in the DC micro-grid brought back to one hour with the number of hours 

during which different headways are applied. For a 95s headway, trains are too close and the traffic is 

very dense. Therefore, the line’s receptivity is efficiently high and the majority of braking energy is 

exchanged between trains. The more headways increase, the more trains are distant and the line’s 

receptivity decreases. This explains the increasing recuperated energy when headway increases. In 

this case study, charging an electric hybrid bus needs 13.33 kWh (200kW during 4 minutes) available 

each hour. For 95s headway, the recuperated energy is not enough. But, just before this headway, 

there’s two hours of 175s which allows storing 99 kWh. After charging three buses (at 5h30, 6h30 and 

7h30), the excess of energy (59 kWh) will compensate the lack of next three hours with 95s headway. 

Headway 

(s) 

Recuperated 

braking energy 

per hour 

(kWh) 

Energy stored in 

the hybrid storage 

system per hour 

(kWh) 

Energy sent back 

to the grid per 

hour 

(kWh) 

Time range 
Total number 

of hours 

95 5.62 5.62 0 7h30-10h30 3 

100 22.91 22.82 0.09 16h30-19h30 3 

175 55.46 49.57 5.9 

5h30-7h30 

10h30-16h30 

19h30-21h30 

10 

290 57.67 55.59 2.07 21h30-1h00 3.5 

Total  

per day 

842.035 775.585 66.515   

Table 10. Energy flow per hour 

V.g.4. Economic evaluation 

RATP estimates the energy consumption for charging hybrid buses between 800 and 1000 

hours a year with an average power of 200 kW. As mentioned before, the expected energy 

subscription is a regulated tariff known as “104ptimi vert A5 courte 104ptimizatio”, or green tariff A5 

short usage, with a maximum power of 750 kW. Table 11 shows EDF’s tariff: 
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  Energy Price (c€/kWh) 

 
Annual fix 

prime (€/kW) 

Winter Summer 

                             Version Peak 
Peak 

hours 

Off-Peak 

hours 

Peak 

hours 

Off-Peak 

hours 

 Very long usage 74,16 7,154 5,820 4,452 4,458 2,820 

 Long usage 54,60 10,421 6,667 4,606 4,525 2,881 

 Moderate usage 43,20 14,210 7,772 4,934 4,600 2,877 

 Short usage 30,24 21,387 9,782 5,305 4,600 2,727 

Reduced power 

coefficient 

Very long usage  1,00 0,67 0,27 0,23 0,23 

Long usage  1,00 0,76 0,40 0,37 0,34 

Moderate usage  1,00 0,75 0,36 0,33 0,28 

Short usage  1,00 0,78 0,52 0,46 0,42 

Overtaking 

computation 

Count Electronic KN (PMAX-P) K (PMAX-P) 

(k3, k2, k1) 4,39 €/kW 1,46 €/kW 36,59 €/kW 

Coefficients per 

poste 

 
1,00 0,67 0,27 0,23 0,23 

Table 11. EDF tariff for an A5 base contract to be applied from 01/01/2014 [TAR02] 

Peak hours Winter rush  hours Winter off-peak 

hours 

Summer rush 

hours 

Summer off-peak 

hours 

N/10 7N/20 N/10 7N/20 N/10 

Table 12. Distribution of consumption hours (N) 

Considering the hours distribution in Table 12, the cost of the consumed energy is calculated below: 

 For N=800 h: 

𝐶𝑜𝑠𝑡 = 200 × 800 × (
1

10
× 21.387 +

7

20
× 9.782 +

1

10
× 5.305 +

7

20
× 4.6 +

1

10
× 2.727) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= 1⁡276⁡096⁡𝑐€ = 12⁡760.96⁡€ 

 For N=1000 h: 

𝐶𝑜𝑠𝑡 = 200 × 1000 × (
1

10
× 21.387 +

7

20
× 9.782 +

1

10
× 5.305 +

7

20
× 4.6 +

1

10
× 2.727) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= 1⁡595⁡120⁡𝑐€ = 15⁡951.2⁡€ 

In addition to this cost, an annual fixed tax is added. It is calculated for a short usage based on 

reduced power coefficients (see Table 11). In fact, the maximum subscribed power depends on tariff 

periods. For example, in peak hours, it is better to reduce the maximum power because its coefficient 

is equal to 1 (it is most penalized). In general, maximum power increases when going from peak hours 

to summer’s off-peak hours (see Figure 91). 
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Figure 91. Maximal subscribed power variation for an A5 base contract with EDF 

Based on Figure 91 and Table 11, the reduced annual fixed prime is calculated as follows: 

𝑃𝑟 = 𝑃1 + 0.78 × (𝑃2 − 𝑃1) + 0.52 × (𝑃3 − 𝑃2) + 0.46 × (𝑃4 − 𝑃3) + 0.42 × (𝑃5 − 𝑃4) (V-22) 

In this use case, the information we had is that maximum power is 750 kW. No other indication on 

power variation was given. Therefore, in order to reduce the prime a little, we consider P1=250 kW 

and P2=P3=P4=P5=750 kW. Table 13 shows additional costs calculated based on previous 

assumptions.  

 

 
Annual fixed cost 

for 750 kW 

TVA 

(19.6 % of total 

cost) 

TICFE 

0.5 c€/ kwh 

CSPE 

0.9 c€ / kWh 

Short utilization 

(< 2000 h) 19021 € 

 800h: 6215 € 

1000h: 6855 € 

   800h: 800 € 

1000h: 1000 € 

  800h: 1440 € 

1000h: 1800 € 

Table 13. Additional Costs 

Based on the tables above, the calculation of the annual energy bill shows that charging the 

electric hybrid buses from the national grid (EDF) will cost RATP between 40 237 € and 44 627€ 

without taking into consideration the cost of connection to the grid which costs more than 11 000 € and 

the price of the charging station (transformer, converters, filters, building…) which is estimated to 

400 k€. Therefore, for 10 years, this solution costs between 800 k€ and 1 million euros. 

Concerning the DC Micro-grid, the investment cost does not exceed 500 k€ (estimated cost 

based on the market). It remains less expensive than the alternative pre-fabricated solution because 

no energy contract is needed. 
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V.g.5. Conclusion 

The figure below represents the braking energy distribution per hour: 

 

Figure 92. Braking energy distribution per hour 

The hybrid storage system is capable to store a big amount of the recuperated energy. This energy 

is enough to charge every 1 hour a hybrid bus with a constant power of 200 kW during 4 minutes. For 

the headway 95s where the energy stored is relatively low, the excess of energy provided by the rest 

of headways will compensate the difference. In addition, the energy sent back to the grid will be used 

by the loads in the station (light, screens, escalators...) which will reduce the total energy bill. 

The advantage of this solution is that the charging station will be connected at station’s low voltage 

level (220 V-320 V). No additional contract is needed in contrary, the excess of braking energy will be 

used internally in the station. The table below compares the pre-fabricated charging station connected 

to MV grid and Alstom’s solution using LV connection. 

 
Charging station connected to ERDF MV 

(20 kV) 

Braking energy recuperation 

connected to RATP LV  

(220 V-320 V) 

 

Harmonics 

Penalty if RATP generates an 

harmonics rate exceeding the 

maximum rate 

Due to the DC concept, less 

harmonics are generated. 

Connection Cost 

If ERDF’s station is closer than a 

RATP HV branch, the solution can be 

more economical but ERDF power 

supply is more expensive. 

RATP grid is distributed in almost 

all Paris, hence it is easy to 

connect. However, for sub-urban 

applications, more cost will be 

needed because of the cables 

brought from RATP’s branches 

while there may exist closer 
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ERDF stations. 

Operating Cost 

The power consumption requests a 

regulated tariff called “108ptimi vert 

A5”. The market prices show that an 

ERDF supply with regulated tariff is 

better in summer (April to October). 

But these tariffs are likely to be 

stopped by 31st December 2015. In 

this case this comparison won’t be 

valid. In addition, the tariffs “Bleu”, 

“Jaune” and “Vert” are regulated and 

increase each year in August (2 % to 

8 % depending on the years and the 

contracts). 

When using RATP’s grid, the 

prices will be defined by the 

market (price not fixed in the 

contract). 1 MWh costs between 

40 € and 80.90 €. Between 2007 

and 2011, the average cost of 

1 MWh paid by RATP for this kind 

of contracts has increased by 

26 %. 

 

Multiplication of 

delivery points 

 

RATP can optimize these contracts by adjusting the choice of the 

subscribed power and by grouping the contracts. Yet by multiplying 

delivery points the cost may increase because of the subscription and the 

risk of power excess. 

Table 14.Comparision between the common charging station and the DC micro-grid 
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VI – Stability of DC Micro-grid 

In all sectors, a system should be stable in order to be used. Therefore, a stability study should 

always be done before system’s physical implementation. Else, serious damages can be caused. For 

example, in robotics, an unstable robot can be dangerous and in chemistry, instability can cause 

unexpected reactions leading sometimes to explosions. The same problem exists in electricity. An AC 

grid stability is indicated by its frequency and its voltage. On one hand, frequency represents balance 

between power generation and demand. If production is higher than consumption, the frequency 

increases. The stability in this case is ensured by regulations implemented at power plants’ level. For 

example, in steam power plant, power production can be reduced by closing valves to lower steam 

flow into turbines. In contrast, if production is lower than consumption, the grid’s frequency decreases. 

The power plant will increase its generation until its maximum capacity. On the other hand, voltage 

stability of an AC or DC grid consists in keeping the voltage around its nominal value in spite of power 

flow variation (active and reactive powers for AC mode). Same as before, special regulations are 

implemented at power generation level. For example, when a voltage drop is detected, generators will 

switch to lagging mode and inject reactive power into the grid. In both cases, if the frequency or the 

voltage does not return to its nominal value, the grid is stable. Instability will cause materials damages 

and possible blackouts.  

Nowadays, the electrical grid is facing fundamental changes. With the emergence of 

distributed energy resources such as renewable energy sources (wind, solar…), storage systems (fuel 

cells, batteries…) and active loads (electric vehicles, railway substations…) which are capable of 

producing and consuming electric power, the grid’s stability becomes more complex and it will no 

longer be managed exclusively by power plants. This task is now responsibility of many actors. Today, 

studies are also investigating the advantage of using electric cars’ batteries to help regulating 

frequency locally. 

In railway DC micro-grid, the system’s stability has some particularities. In classic non-isolated 

DC micro-grids, the main power supply remains the grid (or the power generator in case of isolated 

micro-grid). Therefore, the stability of the DC busbar is maintained by the AC/DC converter connected 

to the AC grid. In our case, the AC/DC converter is a low power device that is connected to the 

station’s LV grid. Thus, its power capacity is rather limited. Another actor should be involved. As 

explained earlier, the AC grid’s stability is maintained by power plants’ generators and more precisely 

by their mechanical inertia. Hence, the latter can be replaced by a chemical inertia which is the 

storage system.  

In the following, the instability risks in a DC micro-grid will be first described. Then, a small 

signal stability study is done on the system before filters’ insertion. After that, a stabilization control 



110 | P a g e  

strategy is presented, the backstepping approach, which allows stabilizing the system using the hybrid 

storage system. 

VI.a. INSTABILITY OF LOW DAMPED SYSTEMS 

In general, a control system is stable, from automation point of view, if in absence of any 

disturbance or input, the output stays in the same state. This is called the absolute stability of the 

system’s dynamic behavior. According to [OGA00], a linear time-invariant control system is: 

 Stable or asymptotically stable if the output eventually comes back to its equilibrium state 

when the system is subjected to a small perturbation 

 stable if the output is subject of a  small deviation when a small perturbation is applied 

 critically stable if oscillations of the output continue forever 

 unstable if the output diverges without bound from its equilibrium state when the system is 

subjected to an initial condition 

Figure 93 explains schematically when a system can be considered stable around a 

operational point. 

 

Figure 93. System’s stability illustration  

The most important thing in a dynamic behavior of a control system is its absolute stability 

which means whether the system is stable or not. A system is in an equilibrium position (or point) if it 

stays in the same state as long as no input or disturbance is applied. In practice, the transient 

response of a system often presents damped oscillations before reaching a steady state. In addition, 

when multi-sources and constant power loads (CPL) are connected to a DC Busbar, stability issues 

are faced. In the literature, this problem is usually analysed by small signal stability study which 

linearize the system around an operating point and makes it possible to use linear tools such as Bode 

and Nyquist diagrams, Routh-Hurwitz criterion [MID00], [REG00], [BAR05]. However, railway braking 

energy is in the shape of unpredictable power peaks that can go up to 3MW in few seconds which 

make it not possible to define only one operating point to the system. Therefore, it is necessary to 

study the Micro-grid in its non-linear form. On the other hand, some have chosen damping filters with 

passive elements [REG00], [ERI99]. This solution will increase the cost by over-sizing components 

(resistors, capacitors) which will also increase losses. In this study, trains’ braking energy is stored 

and then used to charge the electric hybrid buses. These buses consume a constant power of 200 kW 

during 4-5 minutes. The problem of connecting a CPL is that its linear model behaves as a negative 
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resistance (Figure 94). It will then cause instability because it amplifies filters’ dynamics in a resonant 

circuit. In the opposite case of constant power source (CPS), its linear model behaves as positive 

resistance. It will damp the system dynamics caused by the input filter. The figures below show the 

behaviour of CPL and CPS [HAM00]. 

 

 

(a) (b) 

Figure 94. Linear model of a constant power load: (a) DC electrical network with CPL/CPS and (b) Negative and 

positive impedance of CPL/CPS [HAM00] 

VI.b. SMALL SIGNAL STABILITY OF THE DC MICRO-GRID 

The micro-grid connects different converters that are non-linear systems. A first stability study 

consists in linearizing system’s equations around an operational point X0.  A new equivalent linear 

model is then obtained. It represents the system’s behavior around X0 when it’s subject to small 

variations. If the linear model is stable, the non-linear system is stable around X0. This method is 

called “small signal stability”. Figure 95 shows the system’s simplified architecture. In the following, the 

state-space representation will be done for each converter with its regulation. It is representing the 

physical model with a mathematical model consisting of a set of input (U), output (Y) and state 

variables (X) related by first-order differential equations. “State space” refers to the space which axes 

are the state variables. The state of the system can be then represented as a vector within that space 

with the following equations: 

𝑋̇ = 𝐴. 𝑋 + 𝐵.𝑈 (VI-1) 

𝑌 = 𝐶. 𝑋 + 𝐷.𝑈 (VI-2) 

Where A is called “state matrix”, B is called “input matrix”, C is called “output matrix” and D is the 

“feedthrough (or feedforward) matrix”. The eigenvalues of matrix A are the system’s poles. If their real 

part is negative, the linear system is stable.   
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Figure 95. Architecture of DC Micro-Grid 

VI.b.1. State-space representation of SC’s DC/DC converter 

First, the state-space representation of the SC’s DC/DC converter is done. Then, the regulation 

loop is inserted in the representation to replace the control variable which is the loop’s output. 

 Without regulation loop: 

 

Figure 96. SC’s DC/DC converter 

The system’s equations are presented below:  

⁡⁡⁡⁡𝑉𝑠𝑐𝐻 = 𝑉𝑠𝑐 + 𝐿𝑠𝑐 ×
𝑑𝑖𝑠𝑐𝐿

𝑑𝑡
+ 𝑅𝑠𝑐 × (𝑖𝑠𝑐𝐿 − 𝐼𝑏𝑎𝑡𝐻) (VI-3) 

⁡⁡⁡(𝑖𝑠𝑐𝐿 − 𝐼𝑏𝑎𝑡𝐻) = 𝐶𝑠𝑐 ×
𝑑𝑉𝑠𝑐

𝑑𝑡
 (VI-4) 

The state-space representation of the SC’s DC/DC converter is: 
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 (VI-5) 

and the output is obtain by:  
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iscL
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Y

10

01
 (VI-6) 

VscH and IbatH are un-measured values. They can be obtained respectively through the SC and 

battery regulation loop’s output. 

 Insertion of SC current’s regulation loop 

In converter’s buck mode, T2 is always open and T1 is switching. VscH  is equal to Vdc when 

T1 is closed. When it opens, T2’s flyback diode is active to ensure current’s continuity. VscH is then 

null. Thus, VscH’s mean value over one switching period is equal to duty cycle x3 × Vdc.  

 

 

Figure 97. Control loop of the SC’s DC/DC converter 

𝑥3̇ = 𝐾𝑖. (𝑖𝑠𝑐𝑐𝑜𝑛𝑠 − 𝑖𝑠𝑐𝐿 − 𝑘𝑝. 𝑥3) (VI-7) 

𝑉𝑠𝑐𝐻 = 𝑉𝑑𝑐 × 𝑥3 (VI-8) 

After replacing VscH in (VI-5), we obtain:  

[
 
 
 
 
 
𝑑𝑉𝑠𝑐
𝑑𝑡

𝑑𝑖𝑠𝑐𝐿
𝑑𝑡
𝑑𝑥3

𝑑𝑡 ]
 
 
 
 
 

=

[
 
 
 
 
 0

1

𝐶𝑠𝑐
0

−
1

𝐿𝑠𝑐
−

𝑅𝑠𝑐

𝐿𝑠𝑐

𝑉𝑑𝑐

𝐿𝑠𝑐

0 −𝑘𝑖 −𝑘𝑖. 𝑘𝑝]
 
 
 
 
 

[
𝑉𝑠𝑐
𝑖𝑠𝑐𝐿

𝑥3
] +

[
 
 
 
 
 0

−1

𝐶𝑠𝑐

(𝑘𝑖. 𝑉𝑑𝑐
2 )

𝐿𝑠𝑐𝑉𝑠𝑐

𝑅𝑠𝑐

𝐿𝑠𝑐

𝑘𝑖 𝑉𝑑𝑐 𝑉𝑠𝑐⁄ 0 ]
 
 
 
 
 

[
𝑖𝑟𝑒𝑐

𝐼𝑏𝑎𝑡𝐻
] (VI-9) 

Hence, we obtain state-space representation of the DC/DC converter including its current’s 

regulation loop. “irec”, railway braking current, is an input value coming from PMS  and IbatH  can be 

obtained once the state-space representation of  battery’s DC/DC converter is done. 
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VI.b.2. State-space representation of battery’s DC/DC converter 

The same thing is done for the battery’s DC/DC converter. The state-space representation is 

done first for the converter in open-loop then the regulation is integrated. 

 Without regulation loop: 

 

Figure 98. Battery’s DC/DC converter 

We consider that Ebat is approximately constant around an operational point. Therefore, the 

system can be represented by only one equation: 

𝑉𝑏𝑎𝑡𝐻 = 𝑅𝑏𝑎𝑡 × 𝑖𝑏𝑎𝑡 + 𝐿𝑏𝑎𝑡
𝑑𝑖𝑏𝑎𝑡

𝑑𝑡
+ 𝐸𝑏𝑎𝑡 (VI-10) 

 

𝑖𝑏𝑎𝑡̇ = −
𝑅𝑏𝑎𝑡

𝐿𝑏𝑎𝑡
⁡𝑖𝑏𝑎𝑡 + [

1

𝐿𝑏𝑎𝑡

−1

𝐿𝑏𝑎𝑡
] [

𝑉𝑏𝑎𝑡𝐻
𝐸𝑏𝑎𝑡

] (VI-11) 

where VbatH can be obtained from the battery’s current regulation loop. 

 With regulation loop: 

Figure 99 shows the battery’s control loop. Its output (s4) is the converter’s duty cycle. 
 

 

Figure 99. Battery’s control loop 

A new variable x4 is added to the system due to the corrector’s integrator: 

𝑥4̇ = 𝐾𝑝𝑏 . 𝐾𝑖𝑏(𝑖𝑏𝑎𝑡𝑟𝑒𝑓 − 𝑖𝑏𝑎𝑡) (VI-12) 

𝑉𝑏𝑎𝑡𝐻 = 𝑉𝑠𝑐 × 𝑠4 = 𝑉𝑠𝑐 × 𝑥4 + 𝐾𝑝𝑏𝑉𝑠𝑐(𝑖𝑏𝑎𝑡𝑟𝑒𝑓 − 𝑖𝑏𝑎𝑡) (VI-13) 

𝐼𝑏𝑎𝑡𝐻 = 𝑖𝑏𝑎𝑡 × 𝑠4 = 𝑖𝑏𝑎𝑡 × 𝑥4 + 𝐾𝑝𝑏𝑖𝑏𝑎𝑡(𝑖𝑏𝑎𝑡𝑟𝑒𝑓 − 𝑖𝑏𝑎𝑡) (VI-14) 
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The state-space representation is then: 

[

𝑑𝑖𝑏𝑎𝑡

𝑑𝑡
𝑑𝑥4

𝑑𝑡

] = [
(−

𝑅𝑏𝑎𝑡

𝐿𝑏𝑎𝑡
−

𝐾𝑝𝑏𝑉𝑠𝑐

𝐿𝑏𝑎𝑡
)

𝑉𝑠𝑐

𝐿𝑏𝑎𝑡
−𝐾𝑝𝑏𝐾𝑖𝑏 0

] [
𝑖𝑏𝑎𝑡
𝑥4

] + [

𝐾𝑝𝑏𝑉𝑠𝑐

𝐿𝑏𝑎𝑡
−

1

𝐿𝑏𝑎𝑡
𝐾𝑝𝑏𝐾𝑖𝑏 0

] [
𝑖𝑏𝑎𝑡𝑟𝑒𝑓

𝐸𝑏𝑎𝑡
] (VI-15) 

VI.b.3. State-space representation of the AC/DC converter 

 Without regulation loop 

 

Figure 100. AC/DC converter 

The AC/DC converter can be represented by the following three equations: 

𝑣𝐿𝑑 − 𝑣𝑑 = 𝑅𝐿𝑖𝐿𝑑 + 𝐿𝑔
𝑑𝑖𝐿𝑑

𝑑𝑡
− 𝐿𝑔𝑤𝑖𝐿𝑞 (VI-16) 

𝑣𝐿𝑞 − 𝑣𝑞 = 𝑅𝐿𝑖𝐿𝑞 + 𝐿𝑔

𝑑𝑖𝐿𝑞

𝑑𝑡
+ 𝐿𝑔𝑤𝑖𝐿𝑑 (VI-17) 

𝐶𝑑𝑐

𝑑𝑉𝑑𝑐

𝑑𝑡
= 𝑖 − 𝑖𝑥 (VI-18) 

If we consider that the system is ideal and that the active power is conserved when going from 

AC side to DC side, the following equation allows the power to cross from the grid to the DC busbar:  

𝑃 = 𝑉𝑑𝑐 × 𝑖 = (𝑣𝑑𝑖𝐿𝑑 + 𝑣𝑞𝑖𝐿𝑞) → 𝑖 =
𝑃

𝑉𝑑𝑐
=

1

𝑉𝑑𝑐
(𝑣𝑑𝑖𝐿𝑑 + 𝑣𝑞𝑖𝐿𝑞) (VI-19) 

𝑑𝑉𝑑𝑐

𝑑𝑡
=

1

𝐶𝑑𝑐
[

1

𝑉𝑑𝑐
(𝑣𝑑𝑖𝐿𝑑 + 𝑣𝑞𝑖𝐿𝑞) − 𝑖𝑥] (VI-20) 

The system’s state-space representation is then: 
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] (VI-21) 

 Insertion of  𝐢𝐋𝐪 regulation loop: 

The input 𝑣𝑞⁡is calculated from the output of the regulation loop of the in-quadrature current 

𝑖𝐿𝑞. In this study, the AC/DC converter operates as a power factor corrector (PFC) by injecting only 

active power. Ilq_ref is then set to zero. 

 

Figure 101. iLq regulation loop 

𝑥𝑖𝑞̇ = 𝐾𝑖𝑖. 𝐾𝑝𝑖(𝑖𝐿𝑞𝑟𝑒𝑓 − 𝑖𝐿𝑞) (VI-22) 

𝑣𝑞 = 𝑥𝑖𝑞 + 𝐾𝑝𝑖(𝑖𝐿𝑞𝑟𝑒𝑓 − 𝑖𝐿𝑞) + 𝑣𝐿𝑞 − 𝐿𝑔𝑤𝑖𝐿𝑑 (VI-23) 

After replacing 𝑣𝑞 in (VI-20), we obtain: 
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] + [

1

𝐿𝑔

0
0

] [𝑣𝐿𝑑] (VI-24) 

 Insertion of  𝐢𝐋𝐝 regulation loop: 

The input 𝑣𝑑 ⁡ in (VI-21) is calculated from the output of the regulation loop of the in-quadrature 

current 𝑖𝐿𝑑. This current regulation is the inner loop of the voltage regulation. Thus,  𝑖𝐿𝑑𝑟𝑒𝑓 is the 

output of DC voltage regulation (see Figure 103). 

 

Figure 102. iLd regulation loop 



117 | P a g e  

𝑥𝑖𝑑̇ = 𝐾𝑖𝑖. 𝐾𝑝𝑖(𝑖𝐿𝑑𝑟𝑒𝑓 − 𝑖𝐿𝑑) (VI-25) 

𝑣𝑑 = 𝑥𝑖𝑑 + 𝐾𝑝𝑖(𝑖𝐿𝑑𝑟𝑒𝑓 − 𝑖𝐿𝑑) + 𝑣𝐿𝑑 + 𝐿𝑔𝑤𝑖𝐿𝑞 (VI-26) 

When replacing 𝑣𝑑⁡in (V-20), we obtain: 

[
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[

𝑖𝐿𝑑𝑟𝑒𝑓

𝑖𝐿𝑞𝑟𝑒𝑓

𝑖𝑥

] (VI-27) 

  

 

 Insertion of the DC voltage’s regulation loop: 

The replacement of 𝑣𝑑 by the expression given in (VI-26) introduced to the system a new 

unknown input 𝑖𝐿𝑑𝑟𝑒𝑓. As explained in previous chapter, the AC/DC converter is controlled by two 

cascaded loops. Thus, the reference direct current 𝑖𝐿𝑑𝑟𝑒𝑓 is the output of the voltage loop (Figure 

103). 

 

Figure 103. DC voltage regulation loop 

𝑥𝑣̇ = 𝐾𝑖𝑣. 𝐾𝑝𝑣(𝑉𝑑𝑐𝑟𝑒𝑓 − 𝑉𝑑𝑐) (VI-28) 

𝑖𝐿𝑑𝑟𝑒𝑓 = 𝑥𝑣 + 𝐾𝑝𝑣(𝑉𝑑𝑐𝑟𝑒𝑓 − 𝑉𝑑𝑐) (VI-29) 

When replacing 𝑖𝐿𝑑𝑟𝑒𝑓⁡in (VI-27), we obtain the state-space representation of the AC/DC converter 

where all the inputs are known. 
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𝐶𝑑𝑐

0 𝐾𝑖𝑖. 𝐾𝑝𝑖 0
𝐾𝑖𝑖. 𝐾𝑝𝑖. 𝐾𝑝𝑣 0 0

𝐾𝑖𝑣. 𝐾𝑝𝑣 0 0 ]
 
 
 
 
 
 
 
 
 

[

𝑉𝑑𝑐𝑟𝑒𝑓

𝑖𝐿𝑞𝑟𝑒𝑓

𝑖𝑥

] 

(VI-30) 

With 𝑖𝑥 = 𝑖𝑠𝑐𝐻 − 𝑖𝑟𝑒𝑐, where 𝑖𝑟𝑒𝑐 is the current injected from the railway’s converter. 

VI.b.4. State-space representation of the railway DC/DC converter 

 

Figure 104. Railway DC/DC converter 

𝑉𝑐𝑎𝑡 − 𝑉𝑐𝑎𝑡𝐻 = 𝐿𝑐𝑎𝑡

𝑑𝑖𝑟𝑐𝑎𝑡

𝑑𝑡
+ 𝑅𝑐𝑎𝑡. 𝑖𝑟𝑐𝑎𝑡 (VI-31) 

𝑑𝑖𝑟𝑐𝑎𝑡

𝑑𝑡
=

1

𝐿𝑐𝑎𝑡
𝑉𝑐𝑎𝑡 −

1

𝐿𝑐𝑎𝑡
𝑉𝑐𝑎𝑡𝐻 −

𝑅𝑐𝑎𝑡

𝐿𝑐𝑎𝑡
𝑖𝑟𝑐𝑎𝑡 (VI-32) 

 

The input 𝑉𝑐𝑎𝑡𝐻 is obtained from the voltage regulation loop. 𝑉𝑐𝑎𝑡⁡is an input voltage measured at 

railway side. 
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Figure 105. Railway voltage’s regulation loop 

From Figure 105, we obtain the following expression: 

𝑉𝑐𝑎𝑡𝐻 = [1 − ((𝑉𝑐𝑎𝑡⁡𝑟𝑒𝑓 − 𝑉𝑐𝑎𝑡).𝐾𝑝𝑐 + 𝑥5)]. 𝑉𝑜𝑢𝑡 (VI-33) 

𝑥5̇ = (𝑉𝑐𝑎𝑡⁡𝑟𝑒𝑓 − 𝑉𝑐𝑎𝑡).𝐾𝑝𝑐. 𝐾𝑖𝑐 (VI-34) 

𝑉̇𝑐𝑎𝑡 = (𝑖𝑇 − 𝑖𝑟𝑐𝑎𝑡)/𝐶𝑐𝑎𝑡 , with   𝑖𝑇 = 𝑃𝑟𝑒𝑔/𝑉𝑐𝑎𝑡 (VI-35) 

The state-space representation is then: 

[
𝑖𝑟𝑐𝑎𝑡̇

𝑥5
𝑉𝑐𝑎𝑡

̇
̇ ] = [

−
𝑅𝑐𝑎𝑡

𝐿𝑐𝑎𝑡
−

1

𝐿𝑐𝑎𝑡
𝑉𝑜𝑢𝑡 (

1

𝐿𝑐𝑎𝑡
+

𝐾𝑝𝑐

𝐿𝑐𝑎𝑡
𝑉𝑜𝑢𝑡)

0 0 −𝐾𝑝𝑐. 𝐾𝑖𝑐

−1 𝐶𝑐𝑎𝑡⁄ 0 0

] [
𝑖𝑟𝑐𝑎𝑡
𝑥5
𝑉𝑐𝑎𝑡

] 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+ [
0 −

𝐾𝑝𝑐

𝐿𝑐𝑎𝑡
𝑉𝑜𝑢𝑡 −

1

𝐿𝑐𝑎𝑡
0 𝐾𝑝𝑐. 𝐾𝑖𝑐 0

1 𝐶𝑐𝑎𝑡⁄ 0 0

] [

𝑖𝑇
𝑉𝑐𝑎𝑡𝑟𝑒𝑓

𝑉𝑜𝑢𝑡

] 

 

(VI-36) 

In (VI-22), 𝑖𝑥 is calculated as follows: 

𝑖𝑥 = 𝑖𝑠𝑐𝐻 − 𝑖𝑟𝑒𝑐 + 𝑖𝑏𝑢𝑠 (VI-37) 

With: 
𝑖𝑟𝑒𝑐 = [(𝑉𝑐𝑎𝑡⁡𝑟𝑒𝑓 − 𝑉𝑐𝑎𝑡). 𝐾𝑝𝑐 + 𝑥5]. 𝑖𝑟𝑐𝑎𝑡 (VI-38) 

𝑖𝑠𝑐𝐻 = 𝑖𝑠𝑐𝐿 × 𝑥3 = 𝑖𝑠𝑐𝐿 . 𝐾𝑖. (𝑖𝑠𝑐𝑐𝑜𝑛𝑠 − 𝑖𝑠𝑐𝐿 − 𝐾𝑝. 𝑥3) (VI-39) 

𝑖𝑏𝑢𝑠 = 𝑃𝑏𝑢𝑠/𝑉𝑜𝑢𝑡 (VI-40) 

VI.b.5. Stability study of the DC micro-grid around an operational point without filters at DC 

side 

The state-space representation of the DC micro-grid consists in regrouping previous matrixes 

into one equivalent system (𝑋̇ = 𝐴. 𝑋 + 𝐵.𝑈) with 12 state variables. As we can notice, the system is 

not linear because matrixes A and B contain state variables (A(X) and B(X)). Therefore, a linearization 

process should be done around an operational point in order to calculate the system’s poles. This 
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process is called small signals stability analysis. A small variation is thus introduced around the 

operational point (𝑋̅, 𝑈̅). Using Taylor series limited to first order, we obtain: 

𝑋̇(𝑡) = 𝑋̇̅(𝑡) + 𝑥̇(𝑡) ≈ 𝑓(𝑋̅, 𝑈̅) + 𝐹𝑋. 𝑥(𝑡) + 𝐹𝑈. 𝑢(𝑡) 
(VI-40) 

𝑌(𝑡) = 𝑌̅(𝑡) + 𝑦(𝑡) ≈ 𝑔(𝑋̅, 𝑈̅) + 𝐺𝑋 . 𝑥(𝑡) + 𝐺𝑈. 𝑢(𝑡) 

The state-space linearized model for small variations around (𝑋̅, 𝑈̅) will be then: 

𝑥̇(𝑡) = 𝐹𝑋 . 𝑥(𝑡) + 𝐹𝑈. 𝑢(𝑡) 
(VI-41) 

𝑦(𝑡) = 𝐺𝑋. 𝑥(𝑡) + 𝐺𝑈. 𝑢(𝑡) 

Where 𝐹𝑋 , 𝐹𝑈, 𝐺𝑋,⁡and 𝐺𝑈 are the Jacobian matrixes containing partial derivatives of 𝑓 and 𝑔 with 

respect to 𝑋 and 𝑈 respectively.  

𝐹𝑋 =

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

⁡…
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋮
𝜕𝑓𝑛
𝜕𝑥1

⁡⁡…
𝜕𝑓𝑛
𝜕𝑥𝑛]

 
 
 
 

(𝑋̅,𝑈̅)

 𝐹𝑈 =

[
 
 
 
 
𝜕𝑓1
𝜕𝑢1

⁡…
𝜕𝑓1
𝜕𝑢𝑛

⋮ ⋮
𝜕𝑓𝑛
𝜕𝑢1

⁡⁡…
𝜕𝑓𝑛
𝜕𝑢𝑛]

 
 
 
 

(𝑋̅,𝑈̅)

 (VI-42) 

𝐺𝑋 =

[
 
 
 
 
𝜕𝑔1

𝜕𝑥1
⁡…

𝜕𝑔1

𝜕𝑥𝑛

⋮ ⋮
𝜕𝑔𝑛

𝜕𝑥1
⁡⁡…

𝜕𝑔𝑛

𝜕𝑥𝑛]
 
 
 
 

(𝑋̅,𝑈̅)

 𝐺𝑈 =

[
 
 
 
 
𝜕𝑔1

𝜕𝑢1
⁡…

𝜕𝑔1

𝜕𝑢𝑛

⋮ ⋮
𝜕𝑔𝑛

𝜕𝑢1
⁡⁡…

𝜕𝑔𝑛

𝜕𝑢𝑛]
 
 
 
 

(𝑋̅,𝑈̅)

 (VI-43) 

 Choosing the operational point (𝑿̅, 𝑼̅) 

First, the stability of the system is studied around one operational point. The DC Micro-grid is 

simulated using Simulink in order to get the point (𝑋̅, 𝑈̅) around which the state-space matrix is 

linearized. It corresponds to the steady-state after injecting 100 kW braking power to the system. The 

linearization is done around the following operational point:  

𝑋̅ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐼𝐿𝑑

𝐼𝐿𝑞

𝑉𝑑𝑐

𝑋𝑖𝑞

𝑋𝑖𝑑

𝑋𝑣

𝑉𝑠𝑐
𝐼𝑠𝑐𝐿
𝑋3

𝐼𝑏𝑎𝑡

𝑋4

𝐼𝑐𝑎𝑡

𝑋5

𝑉𝑐𝑎𝑡]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

−0.2529
0.0192
899.56

−0.1407
−0.2156
−0.0333
578.991
226.548
0.4859
0.0058

4.39 × 10−4

164.295
8.1497
818.883 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

 ,     and  𝑈̅ =

[
 
 
 
 
 
 
 
 
𝐼𝑏𝑎𝑡𝑟𝑒𝑓

𝐸𝑏𝑎𝑡

𝐼𝐿𝑞𝑟𝑒𝑓

𝑉𝑑𝑐𝑟𝑒𝑓

𝑉𝑐𝑎𝑡𝑟𝑒𝑓

𝑃𝑟𝑒𝑔

𝑉𝐿𝑑

𝑉𝐿𝑞 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

0
227.2

0
900
820

9.983 × 104

320
0 ]

 
 
 
 
 
 
 

 (VI-44) 
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As explained before, eigenvalues of matrix ‘A’ correspond to the system’s closed-loop poles. 

The system is stable if its closed-loop poles are located in the left of the imaginary axes of the 

complex plane (Real (Zn) < 0). The matrix A has 14 eigenvalues, 12 reals and 2 complex conjugates: 

𝑒𝑖𝑔𝑣 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

−4.483 × 108

−1.161 × 106

−1.863 × 104

−1.617 × 104

−1.887 × 104

−238.72
−115.59
−0.0043

−0.1
−18.2

−18.167
−187.82 + 1.06 × 105𝑖
−187.82 − 1.06 × 105𝑖

−3.515 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (VI-45) 

 

The system’s response is then the sum of 12 first-order systems’ responses and one second-

order system’s response. Poles that are relatively far from the imaginary axes have the less impact on 

the system’s transient state because their responses last a very short time. Thus, they can be 

eventually neglected in order to simplify the system’s study. All poles are located on the left side of 

imaginary axe. The system is then stable. Yet, the pole 𝑧8 = −0.0043 is close to zero which may 

cause marginal stability. In addition, according to Figure 106, the second-order system is not well 

damped because a high value of angle ‘β’ entails low damping ratio ‘ζ’. This may cause, in real 

conditions, instability risks. 

 

Figure 106. Damping ratio ξ of a second-order system’s pole 

 

 Operational point variation  

The same analysis is repeated for different operational points in order to study the variation of 

system’s eigenvalues. The following scenario in Figure 107 is simulated: 
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Figure 107. Simulated power flow scenario for operational points extraction 

Four operational points are extracted corresponding to the static state of each power step: 

 

 𝑋1
̅̅ ̅ (t=0.8 s) 𝑋2

̅̅ ̅ (t=0.28 s) 𝑋3
̅̅ ̅ (t=1 s) 𝑋4

̅̅ ̅ (t=1.6 s) 

𝐼𝐿𝑑 −0.2529 −0.5769 5.7243 −3.4797 

𝐼𝐿𝑞 0.0192 0.0212 0.0233 −0.0164 

𝑉𝑑𝑐 899.56 899.12 897.962 896.564 

𝑋𝑖𝑞 −0.1407 −1.6268 35.7472 −17.142 

𝑋𝑖𝑑 −0.2156 −0.2741 −1.4421 6.988 

𝑋𝑣 −0.0333 −0.1267 6.778 −1.876 

𝑉𝑠𝑐 578.991 580.675 579.997 584.316 

𝐼𝑠𝑐𝐿 226.548 333.253 156.461 305.087 

𝑋3 0.4859 0.6458 0.6307 0.649 

𝐼𝑏𝑎𝑡 0.0058 0.0058 0.0058 0.0058 

𝑋4 4.39 × 10−4 4.40 × 10−4 4.39 × 10−4 4.43 × 10−4 

𝐼𝑐𝑎𝑡 164.295 243.498 366.113 488.123 

𝑋5 8.1497 7.8566 3.3985 3.3992 

𝑉𝑐𝑎𝑡 818.883 818.894 819.532 819.461 

Table 15. Selected operational points 

The spate space matrixes are then linearized around each point of Table 15. Calculated eigenvalues 

in Table 16 are valid for linearization operational points and for small variations around them. 
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𝑒𝑖𝑔𝑣1 𝑒𝑖𝑔𝑣2 𝑒𝑖𝑔𝑣3 𝑒𝑖𝑔𝑣4 

−4.483 × 108 −4.482 × 108 −4.483 × 108 −4.483 × 108 

−1.161 × 106 −1.167 × 106 −1.158 × 106 −1.162 × 106 

−187.8 + 1.05 × 105⁡𝑖 −225.1 + 1.05 × 105⁡𝑖 −269.2 + 1.05 × 105⁡𝑖 −335.2 + 1.04 × 105⁡𝑖 

−187.8 − 1.05 × 105⁡𝑖 −225.1 − 1.05 × 105⁡𝑖 −269.2 − 1.05 × 105⁡𝑖 −335.2 − 1.04 × 105⁡𝑖 

−1.863 × 104 −1.862 × 104 −1.879 × 104 −1.853 × 104 

−1.617 × 104 −1.622 × 104 −1.620 × 104 −1.633 × 104 

−1.887 × 104 −1.887 × 104 −1.887 × 104 −1.887 × 104 

−238.7 −243.2 −247.7 −246.6 

−115.59 −115.6 −115.59 −115.59 

−3.515 −3.451 −3.372 −3.463 

−0.0043 −0.008 −0.0039 −0.0073 

−0.1 −0.1 −0.1 −0.1 

−18.20 −18.19 −18.198 −18.2 

−18.17 −18.17 −18.167 −18.167 

Table 16. System’s eigenvalues around each operational point 

Table 16 shows that varying the operational point doesn’t impact all eigenvalues. This depends 

on the state vector X’s values.  Although the system is stable in all four cases, this doesn’t ensure that 

is will remain stable when considerable signal variations are applied. In addition, different converters 

are connected to the DC busbar through filters. In the case where the latter is not well damped, to 

reduce energy losses, oscillations may occur between filters especially when their undamped natural 

frequencies 𝑤𝑛 are close. Therefore, in the following subchapter, a stabilization control technique, 

backstepping, is introduced and tested on a low damped equivalent system. 

VI.c. BACKSTEPPING APPROACH 

VI.c.1. Concept 

Backstepping is a technique developed by Petar V. Kokotovic and others in the 90s. It is a stabilizing 

control of non-linear dynamical systems that are built from subsystems evolving in a recursive 

structure. It is based on starting with stabilizing the know-stable subsystem and “back-out” new 

controllers that progressively stabilize each following subsystem. Figure 108 shows the backstepping 

process for a system made up of six subsystems Si. For each one, Lyapunov function is calculated in 

order to find the stabilizing command zi. This will lead to the command 𝑢 that will ensure all 

subsystems’ stability and thus the global system’s stability.  
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Figure 108. Backstepping stabilizing process 

In this study, the backstepping approach will act on the control of the hybrid storage system and 

more precisely on the supercapacitor. It will stabilize the Micro-grid taking into consideration the 

dynamic evolution of the system. 

VI.c.2. Application to Micro-grid simplified model 

In order to simplify the problem, the converters are represented by current sources operating in 

consumption/generation modes. In figure 1.b, the studied system is presented where Vinv represents 

the inverter’s output voltage (Vinv=900V), Psc the power absorbed by the hybrid storage system, Pt 

the braking power recovered by the trains and Pbus the constant power absorbed by the electric 

hybrid bus. The set of equations representing the system is given below. Note that Vinv and Pbus are 

constant, Pt is also considered as a constant because the system dynamics are much faster than the 

braking power variation. Psc is the control input of the storage. 

invinvdcinv
inv

inv IRVV
dt

dI
L .  

dc

bus
ftfinv

dc
inv V

P
III

dt

dV
C  .  

 

fffdc

f

f IRVV
dt

dI
L .  

f

sc
f

f

f V
P

I
dt

dV
C                                            

(VI-46) 

ftftftdc

ft

ft IRVV
dt

dI
L .  

ft

t
ft

ft

ft V
P

I
dt

dV
C   

 

Considering the vector X0=[ Iinv0 , If0 , Ift0 , Vdc0 , Vf0 , Vft0 ] as an equilibrium point, equations (VI-

46) can be centered round X0 with the following  variable changes: 

01 invinv IIx   04 dcdc VVx   
 

02 ff IIx   05 ff VVx                                                          (VI-47) 

03 ftft IIx   06 ftft VVx    
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After replacing (VI-47) in (VI-46), the new equivalent system is given in (VI-48) where the 

equilibrium point X0 is the system’s origin: 

411 xxRxL invinv   
004

4
3214

).(

.

dcdc

bus
inv

VVx

xP
xxxxC


  

 

5422 xxxRxL ff   

005

5

25
).(

.

ff

sc

f
VVx

xP
xxC


                             (VI-48) 

6433 xxxRxL ftft   
006

6

36
).(

.

ftft

t

ft
VVx

xP
xxC


   

1.1. System stabilization  

After modelling the DC Micro-grid and centring the equations round the equilibrium point X0, 

the backstepping control technique requires equations describing the dynamics of system (VI-48) to 

be presented in cascaded form. To achieve that, a change of variables is done as follows: 
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
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After applying (VI-49), equations (VI-48) can be expressed in the following cascaded form 

presented in Figure 108 where ‘u’ is the backstepping command that will be added to the classic 

command Psc0 to ensure a global asymptotic stability (see VI.a): 

21111 )( zzz    54432144 ),,,( zzzzzz     

322122 ),( zzzz    655432155 ),,,,( zzzzzzz                             (VI-50) 
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)(

1
),,,,,(
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6
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where finvftftffinvinv CCLRLRLR ,,,,,,, and ftC are constants characterizing the system; busP and tP

are measurable, 0scP  is the classic command of the storage system and it is equal to: bustsc PPP 0 . 

 The state vector presentation (VI-50) will allow calculating the command ‘u’ by dividing the 

system into six cascaded subsystems Si defined by the state vector [ 1z … iz ].  The backstepping 

method consists of calculating a positive-definite Lyapunov function iV  for each subsystem Si. The 

global stability is then achieved by stabilizing each subsystem. The subsystem S6 corresponds to the 

full system. Detailed calculus will be done for the first two subsystems; the rest can be done in the 

same manner. The command value of each Si will be then directly given. 

 Stabilization of subsystem S1: { 1z } 

For S1, 2z represents the input command of the subsystem. The command value 
*

1z of 1z  is 

considered equal to zero. The state error 1 is given by: 

*

12111

*

111

*

111 )( zzzzzzz                       (VI-51) 

We consider the positive-definite Lyapunov function: 
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                   (VI-52) 

S1 is asymptotically stable if the derivation of  1V  is negative-definite. This condition is fulfilled by the 

following equation: 

0)( 2

11111

*

12111  ekVekzzz                    (VI-53) 

where 1k >0 is a parameter to be defined depending on the dynamic behaviour of S1. 

In order to insure convergence to X0, the command value *

2z of 2z should be equal to: 
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                    (VI-54) 

 Stabilization of subsystem S2: { 21 , zz  } 

For S2, 3z is the input command that will let the output 2z equal to
*

2z .  The state error vector is 

then: 
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222 ),( zzzzzzzz         (VI-55) 

We consider the positive-definite Lyapunov function: 
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S2 is asymptotically stable if the derivation of  2V  is negative-definite. This condition is fulfilled by the 

following equation: 
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The input command of S2 is then: 
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 Stabilization of subsystem S3: { 321 ,, zzz  } 

As for the previous subsystems, the input command 
*

4z  that will insure stability of S3 is:  
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 Stabilization of subsystem S4: { 4321 ,,, zzzz  } 

The input command 
*

5z  that will insure stability of S4 is:  
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 Stabilization of subsystem S5: { 54321 ,,,, zzzzz  } 

The input command 
*

6z  that will insure stability of S4 is:  
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 Stabilization of subsystem S6: { 654321 ,,,,, zzzzzz  } 

S6 represents the Micro-grid. The input command ‘u’ that will insure the global stability of the system 

is:  
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The Lyapunov function V of the system is: 
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The derivative of V is: 
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Equations (VI-63) and (VI-64) ensure asymptotic stability of the system around the origin X0 which is 

calculated dynamically using Newton-Raphson method. 

VI.c.3. Simulation of the simplified model 

 

Figure 109. Simplified model on which backstepping control is tested 

The simplified model of the DC Micro-grid shown in Figure 109 is simulated using Matlab-

Simulink. The control command (VI-62) is applied to the storage system. The ki parameters used are: 

k1=50, k2=30, k3=13, k4=8, k5=300, k6=10-5. These values gave the better step response when 

simulating each subsystem using Matlab-Simulink In fact, S1 is first simulated. Once finding a value 

for k1 giving a good step response, S2 is simulated to tune k2. This process is repeated until we 

define all parameters ki giving the global system a good step response (quick, stable, small 

overshoot…).  The values of the electrical components of the DC Micro-grid are: Cf =0,041 F, 

Cft=0,011 F, Cinv=3.532.10-4 F, Lf =10.12 µH, Lft =9.45 µH, Linv =11.9 µH, Rf =0.25 mΩ, Rft=0.23mΩ, Rinv 

=0.29mΩ. Figure 110 shows profiles of the recovered braking power and the electric hybrid bus 

charging power. The first one increases from zero up to 1MW. The second one is 200kW constant 

power. 
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Figure 110.  Recovered power and bus charging power simulated profile 

Figure 111 compares between the classic storage reference power ( bustsc PPP 0 ) and the 

one with backstepping control (Psc=Psc0+u). Note that the simulation with the classic control stops at 

time=4,035s for divergence reason. The backstepping control allowed stabilizing the system and thus 

the DC busbar voltage ( VVdc 900 ). 

 

  

Figure 111. DC busbar voltages for classic and backstepping controls 

VI.c.4. Conclusion 

The problem of instability that can be caused by a constant power load was then explained. A 

solution called backstepping approach was detailed and a comparison of simulation results between 

classic and backstepping controls proved that the backstepping control is capable of converging and 

stabilizing a low-damped system. In the future, it would be interesting to simulate backstepping control 

on the complete DC Micro-grid with all the converters. 
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VII - Technical recommendations 

VII.a. INVERTER’S SPECIFICATIONS 

VII.a.1. Station’s low voltage grid constraints 

The voltage quality in railway stations is slightly different from the one in ordinary LV grids due 

to some specific railway equipment. Taking into consideration this particularity and based on 

EN 50160 and EN 61000-3-12 standards, the micro-grid should be able to operate properly in the 

following conditions: 

 Voltage RMS value fluctuation reaching ±10% of the nominal value 230/400 V  

 Frequency equals to 50 Hz ± 4% 

 Voltage drops of: 

o 40% during 250 ms 

o 20% during 5 s 

 Voltage interruption period less than 300 ms 

 Transitional induced overvoltage in common or differential mode, with the following general 

characteristics: 

o Amplitude: ±1500 V 

o Rise time: 2 to 3 µs 

o Duration: 15 ms 

 Voltage harmonics: THD < 8% 

 Current harmonics: limits defined in EN 61000-3-12  (see Table 17) 

In addition to the constraints listed above, the equipment should respect the electromagnetic 

compatibility standard EN 50121. In terms of environmental constraints and according to EN 50123-1 

annex B, the air’s maximum temperature in the electrical room is 40°C with a hygrometry that can 

reach 90% at 20°C and probably high dust levels due to natural non-filtered ventilation. Thus, 

converters should be able to operate normally in these particular conditions. 

VII.a.2. Inverter’s general characteristics  

The 2-level AC/DC converter operates in two different modes: 

 Rectifier mode: it consumes energy from the grid when the DC Busbar’s voltage increases 

 Inverter mode: it injects power into the grid when the DC Busbar’s voltage decreases 

In general, when the inverter consumes energy from the LV grid, its power is limited to the one 

allowed within the station. For example, if the station’s transformer is 50% charged, the inverter can 

consume until 20% of the transformer’s nominal power and let 30% of the transformer’s power for 

future possible loads. In the other cases, when the inverter feeds back energy to the grid, the 

recuperated power will compensate the loads consumption in the station. The inverter’s maximum 

allowed power is then equal to the transformer’s permanent load. But, for cost reasons, this power 
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could be reduced and set to minimum power needed for stabilizing the DC busbar. The list below 

shows the inverter’s main characteristics to be defined: 

 Supply Frequency 

 DC rated voltage 

 AC rated voltage 

 Rated Power (2h) 

 Rated Power (1min) 

 Rated Power (5s) 

 Power Factor 

 Voltage THD: < 8% 

 THC, PWHC: Respecting EN 61000-3-12 (see Table 17) 

The Total Harmonic Current (THC) is the RMS value of the current harmonics from order 2 to 

40. It is calculated as follow: 

 

The Partial Weighted Harmonic Current (PWHC) is the total RMS value of the current 

harmonics, from order 14 to 40 according to the EN 61000-3-12, weighted by the harmonic order h. it 

is calculated as follow: 

 

Minimum 

RSCE* 

Individual harmonic current accepted 

( Ih / Iref 
 
)**  % 

Harmonic parameters 

accepted  % 

I5 I7 I11 I13 THC / IREF PWHC / IREF 

33 10,7 7,2 3,1 2 13 22 

66 14 9 5 3 16 25 

120 19 12 7 4 22 28 

250 31 20 12 7 37 38 

≥ 350 40 25 15 10 48 46 

The relative values of the even harmonics which order (h) is lower or equal to 12 should not exceed 16/h %. 

The even harmonics which order is higher than 12 are considered in the THC and the PWHC in the same manner as 
the odd orders. 

The linear interpolation between successive values of RSCE  is authorized. 

* Short Circuit Ratio: Rsce = Ssc / Sequ , with Ssc = Short Circuit Power at connection point, Sequ = equipment 
nominal power 

** Iref =reference current; Ih = Current’s harmonic component of order (h) 

Table 17. Current emission limits for a three phase balanced equipment [EN61000-3-12] 
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VII.a.3. Paris Metro line 13 application  

After simulating RATP’s Metro line 13 in Paris with the Smart DC Micro-grid connected at 

“Porte de Saint-Ouen” station, the following characteristics have been specified for the AC/DC 

inverter: 

Supply Frequency 50 Hz 

DC rated voltage 900 V 

AC rated voltage 230 V / 400 V 

Rated Power (1h)* 3 kW 

Rated Power (1min)* 7 kW 

Rated Power (5s)* 10 kW 

Power Factor > 0.98 

Table 18. Electrical characteristics of the AC/DC Converter 

VII.b. STORAGE CONVERTER’S SPECIFICATIONS 

There are different kinds of SCs modules in the market. The following main characteristics 

should be specified: 

 Rated capacitance (F) 

 Rated voltage (V) 

 Maximum voltage (V) 

 Maximum repetitive dv/dt (V/µs) 

 Usable power (W) 

 Absolute maximum current (A) 

 Max current ripple (A peak to peak) 

 Internal series resistance ESR (Ω) 

 Thermal resistance Rth depending of the cooling air speed. 

 Thermal stresses, the maximum absolute hot spot temperature (THS) to not exceed 

 Lifetime: at least 10 years at 25°C 

After simulating RATP’s Metro line 13, the following characteristics have been specified for the 

SC module, based on Maxwell’s 125V ultracapacitors module, such as it is able to absorb maximum 

power peak measured for 290s headway: 

Rated voltage 750 V 

Maximum voltage 816 V 
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Absolute maximum current 13 300 A 

Maximum ESR 15.4 mΩ 

Usable specific power 4.35 MW 

Table 19. Electrical characteristics for supercapacitors modules 

The DC/DC converter connecting the SC to the DC Busbar is dimensioned based on the 

electrical characteristics of the SC indicated in the table above. 

Concerning battery storage, Li-ion technology is quite promising and its price is decreasing 

with the emergence of electric vehicles and electric hybrid vehicles. The DC/DC converter is sized to 

support the permanent charging power of one hybrid bus (200kW). 

VII.c. RAILWAY CONVERTER SPECIFICATION 

The railway DC/DC converter connects railway electrical grid to the DC busbar of the micro-

grid. Its basic function is to recuperate trains’ braking energy. Therefore, its dimensioning depends 

directly on the studied railway line. Based on Metro line 13 simulations in ELBAS, the converter’s 

maximum RMS power on increasing time window is shown in Figure 112. It represents, for each 

headway, maximum RMS power of the converter over 1 second, 2 seconds till all simulations’ 

duration. We can see that the highest power is for 175s headway (blue curve). Thus, it will be 

considered for dimensioning the converter. 

 

Figure 112. Railway converter maximum RMS power over increasing time window 

EN 50328-2003 requires values over 2 hours (permanent), 1 minute and 15 seconds. We 

choose to add a fourth value, over 5s, because it is much higher than the value over 15s which can be 

constraining especially from thermal point of view. It should be dimensioned for headway 175s where 

maximum power is absorbed: 
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DC Busbar rated voltage 900 V 

DC 3
rd

 rail rated voltage 750 V 

Rated Power (2h) 300 kW 

Rated Power (1min) 1 MW 

Rated Power (15s) 2 MW 

Rated Power (5s) 3 MW 

Table 20. Electrical characteristics of the railway DC/DC Converter 

The DC/DC converter could be partially compliant with the standard EN 50328 2003 related to 

“Railway applications — Fixed installations — Electronic power convertors for substations”. However, 

the high power capability required for a short time exceeds that of usual duty cycles for railway 

applications. For example, the Class VII specified in EN 50328-table 5 indicates a current capability of 

4.5 p.u. during 15 s. The table above shows a ratio is higher between 2h power and 15s power (6.67 

p.u.). Therefore, the converter’s power could be limited in order to correspond to common existing 

products.  

Note that this dimensioning is for recuperating all braking power’s excess. From economical 

point of view, reducing converter’s maximum power may be interesting if the amount of lost energy is 

not considerable while the price of the converter is lower.  A simple test was done using Matlab’s 

simplified model (see V.f.3) in order to study the impact of limiting the converter’s power. We 

considered headway 290s where recuperated energy over one hour is the highest. When limiting the 

power to 2MW, 333 kWh are saved instead of 336 kWh. For 1.5 MW, the energy is 317 kWh but 

limiting the power to 1 MW is less interesting because in this case, only 279 kWh are recuperated. 

This can be explained by the fact that high power peaks exceeding 1.5 MW are short and thus do not 

impact the total energy assessment. 
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To conclude, Section B presented an urban solution that increased a line’s efficiency by 

recuperating trains’ braking energy when no exchange was possible. It is a new concept based on DC 

micro-grids that allowed a passengers’ station to become an intelligent actor in its energy 

environment.  Recuperated braking energy was stored in a hybrid storage system and then used in 

“non-railway” applications, for example, charging electrical hybrid buses. The energy simulation of 

Paris metro line 13 showed that there was enough energy to charge more than one bus per hour. The 

stability of the micro-grid was also studied. A stabilization control was proposed based on 

Backstepping approach. Unfortunately, this solution cannot be applied on high speed lines where 

braking energy can be sent back to the upper grid through substations. In addition, these lines cover 

long distances which require using a global optimization approach instead of a local one. The following 

section will propose a ‘software’ solution for optimizing both energy and power consumption of HSL’s 

timetable. 

  



136 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECTION C:  ENERGY OPTIMIZATION FOR SUBURBAN AND 

HIGH SPEED LINES 
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VIII - Introduction 

As shown in section A, High Speed Lines (HSL) are AC powered systems. Thus, contrarily to 

urban DC railways, regenerated braking energy can be directly fed back into the grid through 

substations (SST). The DC Micro-grid solution for reducing braking energy losses is no longer 

applicable. Nevertheless, HSL have other particularities. Long distances between stations give more 

driving flexibility. In addition, High Speed Trains (HST) consume high powers compared to urban 

trains. Consequently, if many trains accelerate simultaneously in the same electric zone, power peaks 

can be observed at SSTs level. When exceeding maximum subscribed power, penalties should be 

paid. Based on that, another solution is more appropriate for HSL: optimizing the traffic in order to 

reduce total energy and power consumptions.  

In high speed lines, a theoretical timetable contains all planned journeys consisting of 

departure and arrival times, served stations, etc. Operators try to respect it by adjusting manually 

trains’ run in order to reduce the gap (delays / advances) between theoretical and real timetables. 

Thus, it is important to have a Traffic Management System (TMS) because real timetables reflect 

what’s really happening on the ground. It allows forecasting future timetable (next trains movements, 

resources to be used…), helps the operator taking appropriate decisions and avoiding conflicts. 

Nowadays, TMS priority is to ensure security and fluidity by avoiding future perturbations. The 

proposed solutions don’t necessarily take into consideration the energy consumption or possible 

power optimization. A traffic solution can then cause energetic conflicts. Hence, energy savings can 

be achieved with traffic operation strategies such as eco-driving, timetable optimization, etc. In 

literature, energy efficiency optimization has been widely studied in the last decade. The main 

contributions were for urban and suburban railways. Indeed, these lines operate today with a high 

degree of automation which allows better operational control and implementation of energy-efficient 

driving strategies. In [DOM12], automatic train operation (ATO) system is used for applying optimal 

speed profiles to metro trains taking into account the energy recovered from regenerative brake. In 

[MIY10], predefined speed profiles are uploaded and then selected according to the departure and 

running time. Railway simulations tools were also integrated in optimization procedure. They allowed a 

parallel computing approach in the optimization loop and thus reducing considerably computing time 

[QUA11]. Concerning interaction between the driver and the train, [ALB10] proposed to apply an 

energy-optimal train control to driver’s advisory system using the minimum necessary number of 

regime changes. In [SIC10], eco-driving was designed for high speed lines in partnership with RENFE, 

Spanish national railway operator. It was tested in collaboration with ADIF, Spanish national 

infrastructure manager, in commercial high speed trains and it showed that it is possible to reach an 

average energy saving of 20 %.    
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Train commercial timetables consist of inter-stations running time and commercial dwell times 

(station’s parking time). A slack time is also added to the flat-out time 𝑇𝑓𝑙𝑎𝑡⁡𝑜𝑢𝑡 (minimum running time 

corresponding to a tight run). According to the UIC Code 451-1, the slack time is expressed with a 

percentage of the flat-out time [CUC12]. When a delay arises, it will serve to recover this delay and will 

allow arriving on time to the next station. When a train is on time, the slack time can be used for 

coasting and reducing a run’s total energy consumption. if a conflict is detected by the TMS, the DSS 

(Decision Support System) will try to solve it in different ways (train retention, changing speed limits, 

changing slack time distribution, etc.) depending on its cause. The selection is made by affecting to 

each solution an index that takes into consideration systems’ priorities, delays, new generated 

conflicts and other pre-configured constraints. Each proposed solution will have an energetic impact 

and may cause undesired power peaks if the energetic criteria was not taken into consideration. 

Therefore, regulation process should integrate an energy evaluation that helps taking more efficient 

decisions as shown in  

Figure 113: 

 

 

Figure 113. Energy and traffic regulation flow chart 

Additional Energy Solution 
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Inspired from previous works found in literature, this Section will present cascaded energy and 

power optimizations. High speed lines’ particularities will be taken into consideration to ensure 

respecting their operational constraints. The Section is then divided into two main parts. First, an 

algorithm for optimizing a train’s speed profile is presented. It is a single train optimization that will 

calculate a less energy consuming speed profile.  The second part is dedicated to trains 

synchronization; Substations power peaks will be reduced by acting on dwell time, in order to avoid 

exceeding maximum subscribed power. Finally, simulations will be done for both optimization steps 

based on a real high speed line case. 

  



140 | P a g e  

 

IX - Speed profile and energy optimization 

IX.a. INTRODUCTION 

For the same slack time, there is large variety of speed profiles. Some are more energy 

efficient than others. In order to evaluate their consumption and make the right choice, these profiles 

are compared to the Pareto curve defined for each interstation. Figure 114 shows an example for a 

run time-consumption graph where each point represents a specific driving in a given inter-station 

[CUC12]. For each interstation’s runtime, the Pareto curve represents speed profiles with minimum 

energy consumption. If the line contains X stations, then (X-1) interstation, there will be (X-1) Pareto 

curves to consider when proposing new slack time distribution. They will serve as an input to the DSS 

which will evaluate the energetic impact of proposed traffic solutions. Pareto curve can be calculated 

using a train motion simulator and an iterative process called Differential Evolution Algorithm (DEA) 

[CUC12]. The train motion simulator will generate different speed profiles, simulate them in railway 

conditions and give the associated energy consumption. The DEA will then help selecting the optimal 

driving style.   

 

Figure 114: Run time-energy consumption and Pareto curve [CUC12] 

For a given run trip time, the train motion simulator used in our study, developed internally within 

Alstom, can generate speed profiles with: 

 Coasting zones before each station arrival. 

 Economical speeds for each section, the first to trigger coasting and the other to 

resume traction (speed regulation without braking). 

 Speed holding below the maximum speed limits for each section. 
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 Coasting before each braking maintain at maximum speed to avoid this maintain to 

happen. 

The efficiency of each solution depends strongly of the line’s topology. When a coasting could 

be the best way to save energy in a line, speed limitations could be better in another. Once speed 

curves are generated, they constitute a “random population” of driving profiles that will be analysed by 

the DEA. In a given iteration, each profile is considered as an “individual” belonging to a “generation” 

of population. In each generation, the fitness of every individual is evaluated. The fitness "f" is the 

objective function to optimize. In this case, it should evaluate the energy consumption and the running 

time of each speed profile. It is considered as the cost of the solution and thus it should be minimized. 

In [CUC12], the following fitness function was considered: 

𝑓 = 𝑤𝐸

𝐸

𝐸𝑓𝑙𝑎𝑡𝑜𝑢𝑡

+ 𝑤𝑡

𝑇𝑡𝑎𝑟𝑔𝑒𝑡

𝑇𝑓𝑙𝑎𝑡𝑜𝑢𝑡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑇 ≤ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 (IX-1) 

𝑓 = 𝑤𝐸

𝐸

𝐸𝑓𝑙𝑎𝑡𝑜𝑢𝑡

+ 𝑤𝑡

𝑇2

𝑇𝑓𝑙𝑎𝑡𝑜𝑢𝑡
× 𝑇𝑡𝑎𝑟𝑔𝑒𝑡

⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑇 > 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 (IX-2) 

where wE and wt are weighting factors and 𝐸𝑓𝑙𝑎𝑡𝑜𝑢𝑡
 consumed energy during a flat-out run. 

Equation (IX-2) penalizes the speed curves whose runtime exceeds the target time (Ttarget) by 

a factor equal to the run time (T) divided by⁡Ttarget. This fitness doesn’t include any penalty for trains 

arriving in advance.  The new generation in the next iteration consists of the elite group, individuals 

with minimum fitness. Combinations and crossovers and mutations are done to complete the size of 

the generation. The size of the elite group and the number of iterations are configurable. Note that the 

consumption of different speed profiles can be analysed offline in order to have a database that can 

accelerate real-time decision making process. 

IX.b. METHODOLOGY GENERAL SPECIFICATIONS 

There are 4 different modes to run a train: 

 Traction : consuming energy to accelerate the train 

 Cruising: running at a constant speed 

 Coasting: cutting off engines to run only on train’s inertia.  In the case of a positive 

slope, the train will slow down without braking 

 Braking: the train decelerates using mechanical or electrical brakes 

Figure 115 shows a simplified representation of different modes. It is important to remind that 

these curves depend directly on line’s profile and can be much more variating. This figure is presented 

only to help readers understand. 
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Figure 115: The four different modes for a train’s run 

Between two stops with a constant speed limitation, the minimum travelling time is obtained by 

the following pattern: first the train will accelerate until it reaches the maximum speed. Then, it will 

maintain its speed and finally brake as late as possible. This driving method is called a flat-out run and 

requires the minimum running time (the flat-out time). However, a flat-out run is not energy-friendly. 

Moreover, in a theoretical timetable, the drivers always have a margin on the flat-out time (the slack-

time). It is the difference between the running time of the timetable and the flat-out time and is 

expressed as a percentage of the flat-out time. 

 

Figure 116. Slack-time representation 

For urban and suburban trains, literature can be found on optimizing the speed profile between 

two stops by taking the slack-time as an input and applying coasting only at the end of the journey. 

However, in the case of mainlines between cities, there are few stops and some intermediary 

constraints: the train must pass through some points at a given time to avoid delays and possible 

conflicts with other trains. These points will be named “operational points” and often correspond to 

unmarked stations (where the train doesn’t necessary stop) and junctions. Therefore, the slack-time 

will be considered between each two successive operational points because coasting will be applied 

many times between two stops and not only at the end before stopping. 

1) Traction 

2) Cruising 

3) Coasting 

4) Braking 

1 2 3 4 
Speed 

Speed limit 

KP 

Power 

KP 
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In order to optimize the energy consumption, metaheuristic stochastic processes is used such 

as differential evolution algorithm [PRI00]. It generates an initial random population that will be 

improved generation after generation. 

IX.b.1. Initialization: 

The first step computes a random population of individuals. The size of the population 

generated, NP, is an input parameter to the algorithm. Therefore, we end up with a matrix X(NP,D) 

where D represents the number of parameters used to characterize an individual. The matrix will be 

named  X0 as it represents the initial population (generation 0). 

X0 = (xi,j)i⁡∈⁡⟦1⁡;⁡NP⟧,j⁡∈⁡⟦1⁡;⁡D⟧ =⁡(

x1,1 ⋯ x1,D

⋮ ⋱ ⋮
xNP,1 ⋯ xNP,NP

) (IX-3) 

x𝑖 represents the individual ‘i’ and xi,j the parameter ‘j’ of the individual ‘i’. Each parameter x𝑖,j is 

subject to boundary constraints that depend of the parameter ‘j’: 

blower(j) ≤ ⁡x𝑖,j ≤ bupper(j)⁡⁡⁡⁡⁡for⁡⁡i = 1. . NP, j = 1. . D (IX-4) 

Therefore, the initial population X0 is generated by the following expression: 

⁡x𝑖,j = blower⁡(j) + rand([0,1[) ∗ (bupper(j) − blower(j)) (IX-5) 

IX.b.2. Heredity: 

From the population of generation ‘g’, the differential evolution algorithm will produce a new 

generation ‘g+1’ using successively the following processes: 

 Mutation 

The mutation consists in modifying randomly some parameters of a selected individual in order 

to form a new one as shown in Figure 116. 

 

Figure 117. Description of mutation. Parameters are changed randomly 

Usually, the mutation is done by modifying the value of parameters randomly as done in the 

“initialization” step in equation (IX-5). The specificity of the DEA algorithm is to mutate the parameter 

of an individual according to a differential scheme. The mutated individual vi is generated by randomly 
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selecting three other individuals different from one another and from x𝑖 named xr0, xr1 and xr2 as it is 

shown in Figure 118. 

𝑣𝑖 =⁡𝑥𝑟0 + 𝐹𝑠𝑐𝑎𝑙𝑖𝑛𝑔(𝑥𝑟1 − 𝑥𝑟2) (IX-6) 

𝑣i corresponds to the mutated individual i. Fscaling is an input parameter of the DE algorithm. The scale 

factor, 𝐹𝑠𝑐𝑎𝑙𝑖𝑛𝑔 ∈ (0,1+), is a positive real number that controls the rate at which the population evolves. 

While there is no upper limit on F, effective values are seldom greater than 1.0. This parameter 

impacts directly the search area of the solution and the convergence of the algorithm.  

 

Figure 118. Differential mutation: the weighted differential,  𝑭𝒔𝒄𝒂𝒍𝒊𝒏𝒈(𝒙𝒓𝟏 − 𝒙𝒓𝟐), is added to the base vector 

𝒙𝒓𝟎 to create the mutant 𝒗𝐢 [PRI00] 

 Crossover 

The crossover process crosses randomly parameters of the original individual x𝑖 and the ones 

of the mutated individual v𝑖 with a probability of Cr ∈ [0; 1]. Two types of crossovers are possible: block 

and uniform crossovers (see Figure 119). In the first type, the new individual is composed by two 

parts: the first one corresponds to either the initial or the mutated individual and the second part by the 

other. In uniform crossover, also known as discrete recombination and used by DEA algorithm, each 

parameter is chosen independently from the initial individual or the mutated one. 

 

Figure 119. Crossover of two individuals 

 

                                       

       ’     ’     ’     ’     ’     ’ 

I                  

M                               ’     ’           ’        

                  

                ’     ’     ’     ’ 

                



145 | P a g e  

To ensure at least one crossover per individual, jrand is added. It is generated randomly for each 

individual: the trial parameter ‘jrand’ is taken from the mutant to ensure that the trial vector does not 

duplicate⁡⁡𝑥𝑖,𝑗. Because of this additional demand, Cr only approximates the true probability, PCr, that a 

trial parameter will be inherited from the mutant.  The scheme of the crossover in the differential 

evolution algorithm is the following: 

𝑢𝑖,𝑗 = {
⁡𝑣𝑖,𝑗⁡𝑖𝑓⁡(𝑟𝑎𝑛𝑑𝑗(0,1) ≤ 𝐶𝑟⁡𝑜𝑟⁡𝑗 = 𝑗𝑟𝑎𝑛𝑑)
⁡⁡𝑥𝑖,𝑗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 (IX-7) 

with 𝑢𝑖 is the trial individual ‘i’. A specificity of the DEA algorithm compared to the genetic 

algorithm (GE) is that mutation and crossover operation are not separate: crossovers are made 

between the mutated individual and the original one, whereas in genetic algorithm they are done 

between different individuals of the original population. In addition, DEA is often used when 

parameters are scalar and not Boolean as in GE. 

IX.b.3. Selection: 

To each individual⁡𝑥𝑖,𝑗, a fitness value f(xi) is associated. This fitness value contains the 

information about the criterion to optimize. Therefore, we are going to select the individuals with the 

best fitness values (the lowest one). The selection operation compares for each individual the fitness 

value of the original 𝑥𝑖 and the trial one 𝑢𝑖 as shown in the following expression: 

𝑥𝑖,𝑔+1 = {
⁡⁡𝑢𝑖,𝑔⁡⁡⁡𝑖𝑓⁡⁡𝑓(𝑢𝐼,𝑔) ≤ 𝑓(𝑥𝐼,𝑔)

⁡⁡𝑥𝑖,𝑔⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
 (IX-8) 

𝑥𝑖,𝑔 represents the individual ‘i’ of the generation ‘g’;⁡𝑢𝑖,𝑔⁡represents the trial individual ‘i’ of 𝑥𝑖,𝑔 

generated thanks to mutation and crossover processes. 𝑥𝑖,𝑔+1 represents the new individual ‘i’ of the 

next generation. Mutation, crossover and selection processes are done on the new generation and so 

on until the stop criterion is reached: for example attending maximum number of generation or a 

convergence criterion. A pseudo C-code of the algorithm is given as an illustration in Figure 120 and a 

flow-chart describing different steps of the DEA can be found in Figure 121.  

The following Table 21 represents an application of differential evolution algorithm to our case: 

Notations Description 

Individual 𝒙𝒊 Vector of driving instruction defining a train’s profile 

Parameter 𝒙𝒊,𝒋 Driving instruction 

Fitness f Function of energy consumption and time constraints 

Selection criteria lowest value of f 

Table 21: Connection between the differential evolution algorithm and the optimization of high-speed lines 
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Figure 120: Pseudo C-code of the differential evolution algorithm [PRI00] 

 

Figure 121: Flow chart of the differential evolution algorithm [PRI00] 
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IX.c. DEFINITION OF THE ALGORITHM 

In order to implement the differential evolution algorithm in high speed line application, a speed 

profile should be defined by the few parameters (in genetic algorithm these parameters are referred as 

“genes”). Taking into consideration the long distance of a high speed line and its varying profile, the 

journey can be cut into Nz zones. Each zone is characterized by a number of parameters. Therefore, 

the problem consists in choosing the criteria for cutting the line into zones and defining the 

characteristics of each zone. In our study, each zone is characterized with the following three 

parameters: 

 Vmax : speed at which coasting is applied when reached 

 Vmin : speed at which traction is applied again after coasting 

 Coef : maximum traction coefficient applied in the selected zone. Motors full power is 

applied when Coef=1. Else it will be limited. 

The total number of parameters per individual ‘D’, mentioned in (IX-3), will be then: 3×Nz. In 

the following, these three parameters will represent the driving instructions in each zone. For the 

geographic division, we can choose inter-operational zones, speed zones, or a combination of both. 

An inter-operational zone is a zone between two operational points; a speed zone corresponds to one 

speed limit. In this study, a combination of both zones is applied. 

IX.c.1. Constraints handling: 

 Time constraints 

As explained previously, for HSL, there are strong constraints related to passage times at each 

operational point (OP). They should be respected by each train in order to avoid collisions or traffic 

perturbations. Any delay or advance may cause troubles to the traffic. An operational point is typically 

a train station or a junction. To take into account those constraints, a penalty is added in the fitness 

function depending if the train is late or ahead. This will bias the fitness function in favour of the 

solutions that respect the constraints. The fitness function (IX-1,2) used in [CUC12] penalizes explicitly 

the arrival time constraint. We observe that the more the train is late, the more it is penalized. 

However, if the train is ahead, the penalty does not depend on the time of advance as 
Ttarget

Tflat−out
 does not 

depend of the running time ‘T’. In fact, the penalty is implicit: the more the train is ahead, the more 

energy it will consume. Thus, it is penalized by the energy factor. However, in our case, we have 

several time constraints along the journey. When taking the same fitness function, we observed that 

the train was always ahead, for the first operational points of the journey. Thus, the energy does not 

cover effectively this case and this function does not completely fit our problem: we need to have an 

explicit time penalty for trains in advance. The choice of a new function will be done later in the 

chapter.  
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 Boundary constraints 

When generating a new individual, boundary tests should be done on each parameter. 

Parameters ‘Coef’, ‘Vmax’ and ‘Vmin’ should belong to a pre-defined interval (IX-9) or to an 

evolutionary changing interval (IX-10) (IX-11) that depends of the selected zone. In (IX-9), ‘Coef’ can 

evolve between 0.5 and 1. At its lower bound, the train will accelerate with half of its maximum effort. 

A lower value will be too much penalizing and may cause severe impact on the traffic. Thus, an 

individual with a ‘Coef’ less than 0.5 or more than 1 will be automatically corrected using (IX-16). 

0.5 ≤ Coef ≤ 1 (IX-9) 

0 ≤ Vmin ≤ Vmax ≤ Vlimit (IX-10) 

In order to avoid that the trains run too slowly, more restrictive constraints were made on Vmax 

and Vmin. In (IX-11), a train’s maximum speed should not exceed the speed limitation in the selected 

zone. It should neither go under 𝑉𝑙𝑖𝑚𝑖𝑡 2⁄  else the train will run too slowly and the solution won’t be 

interesting because of its big delay. In (IX-12), Vmin should not exceed the maximum speed. As in (IX-

11), the lower bound is set to half of the upper bound, i.e. 𝑉𝑚𝑎𝑥 2⁄ , to avoid long coasting range 

causing high delays.  

Vlimit

2
≤ ⁡Vmax ≤⁡Vlimit (IX-11) 

Vmax

2
≤ ⁡Vmin ≤⁡Vmax 

(IX-12) 

As Vlimit depends on the considered zone “z”, Vmax and Vmin also depends on the zone. 

Hence:  

Vlimit(z)

2
≤ ⁡Vmax(z) ≤ ⁡Vlimit(z) (IX-14) 

Vmax(z)

2
≤ ⁡Vmin(z) ≤ ⁡Vmax(z) (IX-15) 

The problem with differential mutation is that the new values of v𝑖,j can be out of bounds. 

Therefore, the bounced-back method described in [PRI00] is used to handle those cases. 

For the parameter Coef, this method is rather simple as the upper and the lower bounds are 

constants: 

If⁡vI,j < blower = 0.5,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡vi,j =
(blower +⁡xi,j)

2
 (IX-16) 
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If⁡vI,j > bupper = 0.5,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡vi,j =
(bupper + xi,j)

2
 

where xi,j is the parameter’s value before the mutation which already respects the constraints. 

For Vmax, the situation is the same except that blower and bupper depend on the zone z but they 

remain constant between two generations. However, for Vmin, the situation is much more complex as 

blower and bupper depend on the zone and the generation: the value before mutation x𝑖,j might not 

respect the new boundaries blower and bupper as they both depends on Vmax which changes between 

two generations. Two situations are possible; each one present many eventual evolution cases 

(Figure 122) that were detected and solved while developing the algorithm. 

 

Figure 122: Flow chart of the handling of the constraints for Vmin 

 

Situation 1: Vmin(old) belongs to the new interval allowed for Vmin 

Situation 2: Vmin(old) does not belong to the new interval allowed for Vmin 
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In situation 1, we cope with the same situation as for Vmax and the classic bounced-back 

method is applied when Vmin is below Vmax/2. The new value is set midway between the old Vmin (value 

of Vmin at the previous generation), and the closest bound (Vmax/2). 

In situation 2, the problem is more complicated as Vmin(old) does not belong to the new 

interval allowed. Therefore, three cases emerge depending on the value of the new Vmin. If Vmin 

belongs to the new interval, nothing is done as it respects the constraints (Case 1). If Vmin is out of 

bounds on the same side as Vmin(old), we set Vmin to be equal to the closest limit of the interval (Case 

2). If Vmin and Vmin(old) are both outside the interval on opposite side, we calculate the value of Vmiddle. 

If it is within the bounds, then the new Vmin is equal to Vmiddle. Otherwise, we set Vmin equal to the 

closest boundary of the interval to Vmiddle (Case 3).  

IX.c.2. Fitness function definition 

We are looking for a fitness function expression that ensures that the time constraints are 

respected with a margin of +/- 30 seconds while selecting the less consuming solutions. All the target 

times are given in seconds and correspond to the time elapsed since the starting point of the section 

of study. An individual’s energy consumption should be evaluated based on a reference value. 

Therefore, for a given journey, we consider as reference energy consumption the flat-out run’s energy.  

In the following, we will start by studying the fitness function defined in equations (IX-1, 2), then, it will 

be improved to meet our application’s specificity.  

 Parametric study of convergence parameters 

Before starting to study the fitness function, initial parameters Fscaling, Cr and NP should be 

defined. 

According to [PRI00], the stated range for Fscaling is [0,1]. On one hand, 1 is an empirically 

derived upper limit because no function successfully optimized has required Fscaling > 1. This is not to 

say that solutions are not possible when Fscaling > 1, but only that they tend to be both more time 

consuming and less reliable than if Fscaling < 1. On the other hand, a small value of Fscaling causes 

premature convergence (toward a local minimum) due to crucial selection process and limited 

population diversity. Therefore, and based on examples presented in [PRI00], Fscaling is set to 0.9 in 

order to explore a large searching area. 

Concerning Cr, the crossover rate, it can be considered “approximately” equal to the probability 

that a parameter is inherited from a mutated individual. When it’s near Cr=1, exploration is favoured 

and algorithms take longer time to converge due to high diversity. For this study, we set Cr=0.7.  

The choice of the population size (NP) is very strategic as the computation time is linearly 

dependent of this parameter. Therefore, by doubling the value of NP, the computation time is twice 

longer. However, it is also important not to choose this input data too small as the research area of the 

optimal solution will be more restricted. Moreover, knowing that for each individual, three other 
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individuals (r0, r1 and r2) are chosen randomly for the mutation, a minimum of 4 individuals is 

required. For this study, we set NP=8 that seems to be an acceptable compromise. 

 Ponderation 

For the ponderation, the number of weights depends on the number of operational points 

(NbOp). There is always one weight for the energy and (NbOp -1) weights for the time (as the first 

operational point corresponds to the beginning of the section where there is no time constraints). 

Moreover, the sum of the weights must be equal to one. Therefore: 

we +⁡ ∑ wt(𝑜𝑝)

NbOp−1

op=1

= 1 (IX-17) 

The convergence is observed on a simple case: 1 speed zone and 2 operational points which 

is the minimum required with a slack-time of 5%. Therefore, there are only two weights, one for the 

energy and one for the time. Setting wt = we = ½, the time was not sufficiently penalized. Then setting 

wt= 2/3 ; we=1/3, this restriction was a little too strict. Therefore, by dichotomy, wt=7/12; we=5/12 are 

set. The results are shown in the Table 22. 

  Ponderation Delay (s) Energy savings (%) 

  we Wt average std dev average std dev 

Case 1 1/2 1/2 170 2 93 0.6 

Case 2 1/3 2/3 0 0 46 0.0 

Case 3 5/12 7/12 12 4 49 1.2 

Table 22: Average delay and average energy savings on 1 speed zone and 2 operational points for the final 

population and for different ponderations  

In this simple case, the optimal weight factor between time and energy ponderation is: 

WF =
wt

we
=

7

5
 (IX-18) 

This ponderation is tested first on a case with two speed zones and then on a case with several 

operational points and thus several time constraints. We consider that all time weights   (wt (op)) are 

equal and the weight factor (WF) of each one is kept to 7/5. Therefore: 

wt(op) =
7

5
we, op ∈ ⁡ ⟦1; NbOp − 1⟧  

we =
1

1 +⁡
7
5

(NbOp − 1)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (IX-19) 

The results can be found in Table 23. We observe that they confirm our preliminary ponderation 

system. 
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Table 23: Average delay and average energy savings on 2 speed zones and many operational points for the final 

population and for selected ponderations 

A comparison is done between two runs, between station A and station B, with a 5% slack-time 

and containing many OP; in the first case, the train stops at station A then at station B, in the second, 

the train passes without stopping at both stations. Even though in both cases the train always finishes 

its journey around the given target time (see column “Time 3” in Table 24), it tends to be early at the 

first operational point (see column “Time 1” in Table 24). This phenomenon can be explained by the 

fact that the fitness penalizes implicitly ahead trains through consumed energy. Indeed, this works 

when the train has only one time constraint (case of urban systems) and thus, when it is ahead, the 

train has certainly consumed more energy when running faster. However, in the case of several time 

constraints, if the fitness does not depend explicitly of the ahead duration (T(op)), the train tends to run 

faster in the beginning of its journey and will coast and cut power in the end.  Then, all of the slack-

time is kept for the end of the trip to avoid braking and the energy consumption is then considerably 

reduced.  For example, the energy saved by coasting when going from 300 km/h to 150 km/h 

corresponds to the three quarter of the kinetic energy of the train (
1

2
m⁡

(3002−(300
2⁄ )⁡2)

3.62 =⁡
3

4
.
1

2
m⁡

(300)2

3.62 ). 

Thus, the consumption does not anymore penalize sufficiently trains ahead and the expression of the 

fitness function has to be changed in order to avoid this kind of situations (HSL and suburban 

applications).  

Stations Time 1 (s) Time 2 (s) Time 3 (s) 
Energy Savings 

(%) 

A B average std dev average std dev average std dev average std dev 

Stop Stop -28.4 8.3 -8.7 9.7 3.7 6.5 20.7 0.5 

Pass Pass -32.4 4.8 -3.3 2.8 2.7 4.9 22.5 0.3 

Table 24: Average delay and average energy savings of the final population for different runs showing that trains are 

ahead in the 1
st

 OP and keep coasting for the end 

o Time penalty expression 

As mentioned before, the fitness expression (IX-1, 2) does not penalize sufficiently trains 

passing ahead. To find a new efficient expression of the time penalty, the previous weight distribution 

described in Equation (IX-19) is kept. The following solutions in Table 25 will be studied, first on simple 

  
Time 1 (s) Time 2 (s) Energy savings (%) 

speed 

zones 
operational pts average std dev average std dev average std dev 

2 2 9.0 4.7 - - 30 1.1 

2 3 1.0 1.4 -1.7 2.9 42 0.6 
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cases then on more complex ones and finally on real scenarios (note that solution n°1 corresponds to 

the expression used so far): 

Time Penalty 𝑇 ≤ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 𝑇 > 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 

1 
𝑇𝑡𝑎𝑟𝑔𝑒𝑡

𝑇𝑓𝑙𝑎𝑡_𝑜𝑢𝑡
 

𝑇2

𝑇𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑓𝑙𝑎𝑡_𝑜𝑢𝑡
 

2 TtargetTflat_out

T2
 

T2

TtargetTflat_out
 

3 Ttarget

T
 

T2

TtargetTflat_out
 

4 Ttarget

T
 

T

Ttarget
 

5 Ttarget
2

T2
 

T2

Ttarget
2 

Table 25. Different time penalties tested for the fitness expressions  

First, different time penalty expressions (Table 25) are tested on a simple section with two 

operational points, one speed zone and 5% slack-time. Results immediately show that time penalty 

N°4 is not adequate because the train is too delayed (see Table 26).  

Time Penalty 
Time (s) Energy savings (%) 

average std dev average std dev 

1 0.5 0.6 26 0.2 

2 -0.8 0.8 25 0.7 

3 -1.7 1.2 25 0.7 

4 73.5 10.3 41 1.5 

5 1.5 0.0 26 0.0 

Table 26: Average time and energy savings of the final population for different time penalties  

In the case of three operational points, simulation results are given in Table 27. For time 

penalty N°2, the train is always ahead everywhere. Moreover, the results show that it takes less into 

account energy savings. Therefore, this solution can also be eliminated.  

Time Penalty 
Time 1 (s) Time 2 (s) Energy savings (%) 

average std dev average std dev average std dev 

1 5 16 28 20 27 2 

2 -2 1 -10 5 22 1 

3 19 8 15 22 24 3 

5 -9 12 16 11 26 1 

Table 27: Average time and energy savings of the final population for different time penalties applied on a run with 

3 OPs 
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Finally, the study is done for four operational points, first with 5% slack-time, then with 2% 

slack-time. The results are given respectively in Table 28 and Table 29. The first table confirms the 

fact that penalty N°2 is not good. The train arrives at the end point with 87 seconds average delay, 

exceeding the 30 seconds allowed.   

Time Penalty 
Time 1 (s) Time 2 (s) Time 3 (s) Energy savings (%) 

average std dev average std dev average std dev average std dev 

1 -39 15 -12 16 16 18 20 1 

2 -36 13 -6 15 87 76 22 3 

3 -16 14 -8 5 -6 7 18 1 

5 -4 6 17 8 12 10 19 1 

Table 28: Average time and energy savings of the final population for different time penalties 

 (NP = 8 ; Gen = 50 ; slack-time: 5%) 

The 2% slack-time is a very constraining case as the flexibility is very limited. The penalty N°1 

is also eliminated because the train is always ahead in the beginning of the run and late at the end. 

Therefore, the convergence time is longer (Gen=100 generations). The two solutions that remain 

possible are N°3 and N°5. The latter is chosen because time penalty’s expressions between advance 

and delay are “symmetric”.  To validate this choice, three different real trains’ scenarios are tested. 

The three of them with respectively one, two and three operational points, converged to a final 

population respecting punctuality within ±30s and good energy savings. 

Scenario 1 Scenario 2 Scenario 3 

Energy savings (%) ΔT1 Energy savings (%) ΔT1 ΔT2 Energy savings (%) ΔT1 ΔT2 ΔT3 

34 27 26 -1 10 35 -1 -6 -15 

31 5 27 1 23 35 -6 2 1 

32 2 26 0 12 36 4 -4 18 

33 15 25 0 5 36 -5 4 32 

32 11 25 1 9 34 12 -5 -5 

32 2 26 0 12 35 -4 -10 0 

31 -1 27 2 22 36 0 6 -4 

31 4 27 -2 25 35 -7 -19 14 

Table 29. Time differences with target times and energy savings for three real scenarios using penalty N°5 

The results of the simulations for function fitness n°5 on four different real trains are shown in 

Table 29. Solution N°5 is finally retained. The fitness function is then: 
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𝒇(𝒙) = 𝒘𝒆

𝑬(𝒙)

𝑬𝒇𝒍𝒂𝒕−𝒐𝒖𝒕

+⁡ ∑ ⁡⁡⁡𝒘𝒕(𝒐𝒑) (
𝑻𝒕𝒂𝒓𝒈𝒆𝒕(𝒐𝒑)

𝑻(𝒙, 𝒐𝒑)
)

𝟐

+ ∑ 𝒘𝒕(𝒐𝒑) (
𝑻(𝒙, 𝒐𝒑)

𝑻𝒕𝒂𝒓𝒈𝒆𝒕(𝒐𝒑)
)

𝟐

⁡

𝑵𝒃𝑶𝑷⁡–𝟏

𝒐𝒑=𝟏
𝑻𝒓é𝒆𝒍≥𝑻𝒕𝒂𝒓𝒈𝒆𝒕

⁡

𝑵𝒃𝑶𝑷⁡–𝟏

𝒐𝒑=𝟏
𝑻𝒓é𝒆𝒍≤𝑻𝒕𝒂𝒓𝒈𝒆𝒕

  

With: 

 

𝑤𝑡(𝑜𝑝) =
7

5
𝑤𝑒 , 𝑜𝑝 ∈ ⁡ ⟦1;𝑁𝑏𝑟𝑒𝑝𝑡𝑠𝑜𝑝

− 1⟧ 

𝑤𝑒 =
1

1 +⁡
7
5

(𝑁𝑏𝑟𝑒_𝑝𝑡𝑠_𝑜𝑝 − 1)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

(IX-20) 

 Energy penalty expression 

In the case where the speed profile of a service begins and/or ends with speeds different than 

zero (for example a train disappearing from a timetable due to bifurcation), the difference of kinetic 

energy between reference speeds and actual ones should be considered. Thus, in order to compare 

the energy consumption of two individuals belonging to a same service, we need to take into account 

this kinetic energy. In most cases, the entry speed is fixed in simulations and therefore, there are no 

differences between both individuals at the entry of the service. However, the exit speed can be quite 

different and it is clear that a train that exits at a lower speed has normally consumed less energy that 

the one who exits with a higher speed. Nevertheless, the latter has a higher kinetic energy and will 

thus consume less on the next section. This is the case of trains disappearing from timetable at 

bifurcations. 

 

Figure 123. Comparison between two solutions with different exit speeds 

 Therefore, we correct the energy consumption with the difference of kinetic energy between 

the target exit speed and the actual one obtained by simulation for each individual x. The fitness 

function chosen for our study is: 
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(IX-21) 

With: 

- we: ponderation of the energy expression in fitness function 

- E(x): traction energy consumed by the individual x 

- ΔEkinetic: difference of kinetic energy between the reference exit speed and the actual exit 

speed of individual x 

- Eflat-out: traction energy consumed by a flat-out run 

- wt (op): ponderation of the time penalty expression in fitness function at operational point 

n°(op+1) 

- Ttarget(op): target time given by the timetable that the train must respect at operational point 

n°(op+1) 

- T(x,op): Time when the individual x reaches the operational point n°(op+1)  

- NbOP: number of operational points 

 Initial parameters backward validation 

In order to study the fitness function, some assumptions were considered concerning 

algorithm’s parameters (Fscaling, NP, Cr, wt/we). Therefore, after defining the fitness to be used (IX-21), 

a test is done to validate or modify these values. 

A small correction has been made to the ponderation system after some trials on real 

timetables with the new fitness function. Therefore, the new ponderation system described in Equation 

(IX-22) will be used. 

𝑤𝑡(𝑜𝑝) =
8

5
∗ 𝑤𝑒 , 𝑜𝑝 = 1…𝑁𝑏_𝑂𝑃 − 1 

𝑤𝑒 =
1

1 +⁡
8
5

∗ (𝑁𝑏_𝑂𝑃 − 1)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

(IX-22) 

In addition, Fscaling=0.7 gave better results as the algorithm converged faster to a satisfying solution 

while NP=8 and Cr=0.7. 

IX.d. CONCLUSION 

In conclusion, speed profile optimization is applied to each train service separately. Its aim is to 

find a solution that consumes the less energy while respecting time passage at each operational point 

within a margin of ±30s. For HSL use case, an algorithm is proposed based on differential evolution 

algorithm. Solutions were compiled using a mono-train simulator developed internally in ALSTOM. The 

algorithm associated for each individual a vector of input parameters that were injected into the 
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simulator. The latter calculated energy and speed profile taking into account trains and line’s 

characteristics. A new fitness function specific for HSL and suburban lines was also defined and 

tested. Different railway constraints were also handled.  

Now that trains are optimized from energy point of view, power peaks that may occur due to 

unfavourable timetable synchronisation should be avoided. Therefore, a second optimization step will 

be detailed in the following chapter. 

  



158 | P a g e  

X - Trains synchronization  

Electrical bills are calculated based on the energy consumed by a system while its average 

power over ‘T’ minutes (T depends on each country: in France T=10 min while in Belgium T=15 min) 

doesn’t exceed the maximum subscribed power. In the opposite case, an additional cost is added 

because the consumer didn’t respect his contract and perturbed grid’s equilibrium. Railways are no 

exception. Operators try to reduce their energy consumption while ensuring the respect of maximum 

substations’ power. As explained in section A, HSL are AC powered system. Substations are simply 

composed of transformers which allow re-injecting braking power into the upper grid. However, today, 

the average power over ‘T’ minutes is calculated only from the consumed power value at substation’s 

level and doesn’t take into consideration later braking power peaks. Therefore, trains synchronization 

objective is to coincide braking and accelerating powers in order to reduce the consumed average 

power at SST’s level. 

In general, Traffic Management System (TMS) is centralized. The control center receives data 

on a wide predefined territory. Trains’ run within this zone are supervised and controlled by the TMS 

through the associated train dispatcher. The objective of a TMS is not only to solve traffic problems 

and avoid conflicts; a main task is to restore the stopped traffic operations as soon as possible. 

Therefore, when retention solution is selected by TMS to solve a detected problem, a power constraint 

should be added to avoid simultaneous trains’ acceleration in the same electric zone. This will prevent 

power peaks and voltage drops in this zone. Trains synchronization’s objective is to optimize the 

energetic interaction between trains in order to favour braking power exchange and avoid power 

peaks at substations. It should also respect fundamental constraints such as security, punctuality and 

fluidity. Global energy consumption optimization should not oppose to the traffic regulation’s rules. 

The previous sub-paragraph presented energy optimization solution for trains driving profile. 

The output is then a timetable with defined departure times, dwell times and running time. Each train’s 

journey is energetically optimised by selecting the most efficient speed profile. Nevertheless, it does 

not mean that the timetable is optimised. A first step, dwells time modification, will be done offline. It 

acts on dwell times in order to increase the amount of braking power exchanged between trains and 

eliminate simultaneous accelerations. This will reduce power peaks and the total energy consumption. 

The second step “delay compensation” will be rather done online. It takes into consideration the time 

delays encountered when the trains are in service. In real operation conditions, there are a variety of 

random disturbances that will keep trains off the pre-calculated energy-efficient timetable such as 

doors reopen/reclose for safety issues. Only short disturbances that can be fixed automatically are 

taken into consideration. The flowchart below summarises the methodology: 
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Figure 124: Energy optimization flowchart 

In the following paragraphs, both steps, dwell time modification and delay compensation, will be 

detailed. 

X.a. DWELL TIMES MODIFICATION 

In high speed AC networks, the track is divided into electric zones in order to alternate the 

connection of railway grid to the AC 3-phase grid (connection A-B, B-C and C-A), and thus to ensure a 

better load balancing. Therefore, the study can be split geographically into zones given the fact that 

two trains in different electric zones cannot interact energetically. In addition, in most cases, each 

zone is fed by one substation. Thus, by extracting trains’ power curve in this area and after time 

rescaling, SST’s power consumption is simply equal to the sum of these curves. This optimization step 

can be resumed as following: 



160 | P a g e  

- Objective : minimize the maximal average power calculated with ‘T’ minutes sliding window at 

each substation 

- Variables : dwell-time at each station for each train 

- Constraints : 

 Trains can only be delayed (without exceeding the maximum limit allowed) 

 Dwell-time increase must be an integer and bigger than 5 (even a multiple of 5) 

 If a train’s service is delayed, all the following services belonging to the same train must 

be also delayed 

This can be expressed mathematically as follows: 𝑃𝑡(𝑡) = ∑ 𝑃𝑖(𝑡) + ∑ 𝑃𝑗(𝑡 + 𝑇𝑗)𝑗𝑖               (X-1) 

 

P1 represents the total power of trains that are not shifted. P2 represents the total power of shifted 

trains. 𝑇𝑗 is the integer parameter to optimize while respecting the following constraints: 

 𝑃𝑡 < 𝑃𝑚𝑎𝑥 ; with 𝑃𝑚𝑎𝑥 the maximum allowed power defined in the contract between the operator 

and the energy provider 

 𝑇𝑗 ≥ 0⁡ 

The objective function is then: min𝑇𝑗
(𝑃𝑡). The optimization process is then repeated for the other 

selected electric zones. 

 

Figure 125: Dwell time modification and braking energy exchange [CHE14] 

Figure 125 shows two trains’ power profiles. Positive values correspond to acceleration mode 

and negative values represent braking mode. Extending second train’s dwell time allows increasing 

power exchange between trains and reducing by that the total consumed power.  

From operational point of view and to be more realistic, the time step of a train’s shift should be 

higher than 5 seconds because high speed lines are not automatic. Thus, we included the response 

time of the driver. The shift should also be limited as a train too much delayed is unacceptable. 

Therefore, we chose a maximal 30 seconds value for a train’s total shift. This time shift limitation 

P1 P2 
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should include previous delays already introduced by the speed profile optimization (eco-driving 

module). Even though these constraints are very important, they are also quite severe and reduce the 

algorithm’s flexibility. The latter can be increased by increasing time delay tolerance. 

X.a.1. Algorithm definition 

In order to solve optimization problem, Mixed Integer Programming (MIP) is suggested by 

[KYU10]. It is a heuristic method consisting in choosing the substation to optimize and the train to 

delay and try if shift this train increases or decreases the power peak. The user enters the following 

information in the algorithm: 

- 𝑆ℎ𝑖𝑓𝑡𝑀𝑎𝑥: corresponds to the maximum train’s shifting time 

- T: time over which the average power is computed (In our case: T=10 min) 

- MaxIteration: maximal number of train shifts allowed by the user 

The main steps of the algorithm are: 

• Select the non-optimized substation (SST) with the highest 10 minutes average power  

• Select the train with the highest instantaneous power at the end of the corresponding 10 

minutes window 

• Shift the train with 5s time step while: the average powers of the selected SST and the ones 

already optimized do not increase; the maximum time shift is not exceeded. Once finished, it is 

not allowed to re-shift the train. 

The algorithm stops when: 

• maximum time shifts is reached 

• all SSTs were optimized 

• no train can be shifted anymore 

In order to calculate the remaining maximum time shift after speed profile optimization for a 

service n°I, the following system of inequalities (X-2) should be solved where 𝛿𝑗 ⁡represents the 

algebraic value of the delay introduced in the eco-driving step applied on service n°j, 𝑇𝑗 represents the 

new shift added before service n°j (∀𝑗, 𝑇𝑗 ≥ 0), 𝑆ℎ𝑖𝑓𝑡𝑀𝑎𝑥 the total maximal delay allowed for each 

service and N the number of services for a given run: 

 

𝑇1 +⁡𝛿1 ≤ 𝑆ℎ𝑖𝑓𝑡𝑀𝑎𝑥

⋮
⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑇1 +⁡𝛿1 + …+ 𝑇𝑖 +⁡𝛿𝑖 ⁡≤ 𝑆ℎ𝑖𝑓𝑡𝑀𝑎𝑥

⁡⋮
⁡⁡⁡𝑇1 +⁡𝛿1 + …+ 𝑇𝑁 +⁡𝛿𝑁 ≤ 𝑆ℎ𝑖𝑓𝑡𝑀𝑎𝑥

 (X-2) 

Figure 126 shows the different time shifts introduced by both optimizations. Grey lines indicate 

the reference time at which the train should stop. 
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Figure 126. Different delays introduced by the two-step optimization 

The total dwell time shift of service n°I is: 

𝑆ℎ𝑖𝑓𝑡𝑆𝑖
=⁡∑𝑇𝑗

𝑖

𝑗=1

 (X-3) 

Hence, the system of inequalities (X-2) can be written as follows: 

 

𝑆ℎ𝑖𝑓𝑡𝑆1
+⁡𝛿1 ≤ 𝑆ℎ𝑖𝑓𝑡𝑀𝑎𝑥

⋮
⁡⁡⁡⁡𝑆ℎ𝑖𝑓𝑡𝑆𝑖

+⁡∑ 𝛿𝑗
𝑖
𝑗=1 ≤ 𝑆ℎ𝑖𝑓𝑡𝑀𝑎𝑥

⁡⁡⋮
⁡⁡𝑆ℎ𝑖𝑓𝑡𝑆𝑁

+⁡∑ 𝛿𝑗
𝑁
𝑗=1 ≤ 𝑆ℎ𝑖𝑓𝑡𝑀𝑎𝑥

 (X-4) 

 

with 0 ≤ 𝑆ℎ𝑖𝑓𝑡𝑆𝑖
≤ ⁡𝑆ℎ𝑖𝑓𝑡𝑆𝑖+1

≤ ⋯ ≤ ⁡𝑆ℎ𝑖𝑓𝑡𝑆𝑁
⁡and 𝛿𝑗 ≷ 0 

Finally, we obtain: 

𝑆ℎ𝑖𝑓𝑡𝑆𝑖
= 𝑆ℎ𝑖𝑓𝑡𝑀𝑎𝑥 − max

𝑝⁡∈⟦𝑖∶𝑁⟧
(∑𝛿𝑗 − ∑ 𝑇𝑘

𝑝

𝑘=𝑖+1

)

𝑝

𝑗=1

 (X-5) 

X.b. DELAY COMPENSATION 

Now that the first step is executed, a theoretical energy-efficient timetable is calculated. When 

trains are in operation, different perturbations can cause unexpected time delays. The new delayed 
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timetable is not necessarily energy efficient because of the reduction of braking energy exchange. In 

this step, delay compensation will be executed on the speed zone following the detected time delay. If 

the delay is completely caught up, the timetable will re-match the pre-calculated energy-efficient 

timetable. In the opposite case, remaining time delay will be treated in the next speed zone. A speed 

zone is defined for every speed limitation. In a given speed zone, four types of possible driving phases 

can be considered: acceleration, speed maintain, coasting, braking. Depending on speed limitations 

before and after the selected zone, it is not mandatory to have the 4 types in a same zone. In Figure 

127, different speed profile possibilities depending on speed limitations are presented. 

 

  

  

Figure 127. Different speed profile variations depending on speed limitations 

We consider the case where the limit speed in the selected zone is higher than the surrounding 

speed zones (Figure 128). Only this case, which is the most complicated one, will be detailed. The 

rest can be done in the same manner. The speed profile consists of the 4 driving phases. The target is 

to calculate the new value of V2 that will allow compensating the detected time delay. 
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Figure 128: Speed profile containing the 4 driving phases 

In the selected zone, the distance “L” crossed by the train is: 

 

𝐿 = ∫ (𝑎1𝑡 + 𝑉1). 𝑑𝑡 + ∫ 𝑉2. 𝑑𝑡⁡ +
𝑡0+𝑡1+𝑡2

𝑡0+𝑡1

𝑡0+𝑡1

𝑡0

⁡∫ (𝑎2(𝑡 − 𝑡0 − 𝑡1 − 𝑡2) + 𝑉2). 𝑑𝑡
𝑡0+𝑡1+𝑡2+𝑡3

𝑡0+𝑡1+𝑡2

+ ∫ (𝑎3(𝑡 − 𝑡0 − 𝑡1 − 𝑡2 − 𝑡3) + 𝑉3). 𝑑𝑡⁡
𝑡0+𝑡1+𝑡2+𝑡3+𝑡4

𝑡0+𝑡1+𝑡2+𝑡3

⁡⁡ 

In addition: 

 𝑉2 = 𝑎1𝑡1 + 𝑉1 

 𝑉3 = 𝑎2𝑡3 + 𝑉2 

 𝑉4 = 𝑎3𝑡4 + 𝑉3 

Replacing⁡V2, 𝑉3 and 𝑉4 in L: 

𝐿 = (
𝑎3 − 𝑎1

2𝑎3𝑎1
)𝑉2

2 + (𝑡2 −
𝑎3 − 𝑎2

𝑎3
𝑡3)𝑉2 +

1

2
𝑎2

𝑎3 − 𝑎2

𝑎3
𝑡3
2 +

1

2𝑎3
𝑉4

2 −
1

2𝑎1
𝑉1

2 

As mentioned earlier, the target is the new value of V2 that will compensate the delay. Therefore, all 

parameters except V2 and t3 are considered as a constant. In order to calculate the new V2
′ we need to 

calculate the new t3
′ . If we consider “T” the new time needed to cross the speed zone, it is calculated 

as follows: 

𝑇 = 𝑡1 + 𝑡2 + 𝑡3 + 𝑡4 − 𝑡𝑑𝑒𝑙𝑎𝑦 

𝑇 =
𝑉2

𝑎1
−

𝑉2

𝑎3
+ 𝑡2 − 𝑡𝑑𝑒𝑙𝑎𝑦 + (

𝑎3 − 𝑎2

𝑎3
) 𝑡3 +

𝑉4

𝑎3
−

𝑉1

𝑎1
 

𝑇 =
𝑉2′

𝑎1
−

𝑉2′

𝑎3
+ 𝑡2 + (

𝑎3 − 𝑎2

𝑎3
) 𝑡3

′ +
𝑉4

𝑎3
−

𝑉1

𝑎1
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𝑡3′ = (
(𝑉2 − 𝑉2′)

𝑎1
−

(𝑉2 − 𝑉2′)

𝑎3
− 𝑡𝑑𝑒𝑙𝑎𝑦 + (

𝑎3 − 𝑎2

𝑎3
) 𝑡3) × (

𝑎3

𝑎3 − 𝑎2
) 

By replacing t3 by t3′ in L and solving the new equation of second order, the new value 𝑉2′ is obtained. 

It is important to note that the maximum delay that can be compensated correspond to the flat_out 

speed profile. If tdelay > tmax, the delay left (tl = tdelay − tmax) will be reported to the next speed zone. 

The delay compensation methodology is summarized in the following flow chart: 

 

Figure 129: Delay compensation flow chart 
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XI - Simulations: Application on Paris-Lyon high speed line 

This study is done in the frame of the European collaborative project Merlin [MER00]. Alstom is 

the leader of task 4.1 where new smart technologies are studied in collaboration with SNCF and ADIF. 

Thus, in order to test the both optimization algorithms, it is applied on SNCF’s 25 kV French High 

Speed line LGV1 connecting Paris to Lyon. It was inaugurated in 1981 and marked the beginning of 

French passenger high-speed rail service. Currently, a maximum of 13 trains per hour and per 

direction are running at peak hours on this line. Trains are coming from Paris, Massy, Marne-la-Vallée 

and Lille on one side and from Lyon, Dijon, Geneva and Milano among others on the other side. SNCF 

is planning to have up to 16 trains running per hour and per direction by 2025. However, this traffic 

increase would entail new costly investments (increasing substation power, adding a new 

substation…) due to expensive connection costs to the grid as the upstream electrical network around 

the Morvan is weak (see Figure 130). The problem gets also more complicated by the increasing 

traffic density and thus perturbations frequency. Therefore, there is overload risk at the two 

substations located near this area, Commune and Sarry (Figure 131). This would entail a voltage drop 

on the line, decreasing the traction efficiency of the trains, and power penalties due to consumption 

higher than the subscripted one. Thus, an intelligent traffic management solution taking into account 

the energy consumption could reduce these investments.   

 

Figure 130. Map of  RTE power grid on the left (400kV in red, 250kV in green) and map of the high-speed line 

between Paris and Lyon on the right (line in white and blue) [RTE00][TGV00] 

The line is modelled in a train simulator, used internally in Alstom, that is configured with the 

characteristics of the line and trains (slopes, stations, train mechanical parameters, speed limits…). A 

theoretical timetable for the line during rush hours is also provided by SNCF (see appendix A1). To 
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achieve the traffic and energy studies and simulations, Alstom has received from SNCF necessary 

input data. LGV1 modelling allows traffic and energy optimization simulation in order to see the 

influence of the speed profile on the energy consumption especially when a conflict is foreseen and 

avoided. 

XI.a. CONTEXT 

In 2014, the LGV1 Paris-Lyon line allows maximum 13 trains per hour and per direction. From 

Paris to Lyon, 11 trains comes from Paris downtown “Paris Gare de Lyon” station and 2 trains come 

from Paris suburb “Massy TGV” station and join the LGV by the junction of Yerres (bifurcation). An 

operational objective is to increase the line capacity to 16 trains per hour by 2025. It is necessary to 

optimize both traffic and power consumption in order to allow such high capacity. 

XI.a.1. Topology 

The line includes several junctions with conventional lines (not high speed) between Paris and Lyon, 

according to the following: 

 Pompadour at the beginning of the LGV at an equivalent LGV1 KP -23.000, where there is a 

possible deviation to conventional line Paris-Lyon (South). 

 Yerres at equivalent LGV1 KP -18.881, where there is the junction to Massy. 

 Triangle of Coubert at equivalent LGV1 KP 4.085. 

 Crisenoy at LGV1 KP 16.982, where there is the junction to the conventional line Paris-Lyon 

(North). 

 Pasilly at LGV1 KP 162.108, where there is trains from/to Dijon. 

 Mâcon at LGV1 KP 337.888, where there is trains from/to Bourg-en-Bresse. 

 Montany at LGV1 KP 380.500, where there is the junction to Lyon Part-Dieu station and to 

Lyon Saint-Exupéry station. 

Junctions are speed limited according to the following: 

 Pompadour: 160 km/h. 

 Yerres: 160 km/h. 

 Triangle of Coubert, Crisenoy, Pasilly, Mâcon and Montanay: 300 km/h. 

Trains coming from other lines and entering to the LGV1 are speed limited according to the following: 

 Yerres: 90 km/h. 

 Triangle of Coubert, Crisenoy, Pasilly and Montanay: 220 km/h. 

 Mâcon: 160 km/h. 

In Paris region, power supply is 1500 VDC. In the South of Yerres junction, at equivalent LGV1 KP -

19,000, the power supply changes to 25 kVAC. The power supply in Lyon downtown (Lyon Part-Dieu 

station) is also 1500 VDC. 
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The following figure shows the line with all useful details considered in the study.

 

Figure 131: Topology of the LGV1 line Paris-Lyon 

Passenger station
Sectionning post
Power substation

*    KP equivalent LGV1

Bourg-en-Bresse

Chalon-sur-Saône

Dijon

333,133 Macon

333,977 Macon Loché

296,132 Curtil

273,816 Le Creusot

257,034 Commune

164,020 Sarry

Coubert 24,500 (-4,085*)

Poste 66 Crisenoy 17,099

Les Ecrennes 28,201

La Voulzie 39,420

Vinneuf 54,971

Villechétive 95,547
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Pompadour

9,352 0,000 (-23,000*)
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Limeil 6,026 (-16,974*)

Servon

13,653 (–9,347*)

Lieusaint 0,000

LGV1

Moisenay

17,040

Melun

KP19 KP17

Les Meunières 377,266

Bif Montanay 380,500

LGV4

Sathonay-Rilieux

389,3

Lyon 

Part Dieu
Lyon

Saint Exupéry 

409,705

Lyon Perrache

Bif Yerres 4,025 (-18,881*)

DC/AC 4,144 (-19,000*)

Valenton
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XI.b. RESULTS OF SPEED PROFILE OPTMIZATION 

As an application of the algorithm, simulations are run for every train within a 2 hours timeslot 

of a timetable that is given by SNCF (see Appendices-D). The chosen date and timeslot was Friday 

February 21st 2014 between 4pm and 6pm as it is a very critical case: it corresponds to a peak period 

due to departure on ski holidays. First, only the outward journeys have been simulated which 

correspond to 34 trains (all trains running between Crisenoy and Montanay between 4pm and 6pm are 

taken into account). These trains can be classified into 10 services corresponding to a run between 2 

stops. The different services are listed below (“P” corresponds to a train that “passes” at the given 

operational point, “S” to a train that “stops”). 

- Crisenoy (P) – Pasilly (P) 

- Crisenoy (P) – Le Creusot (S) 

- Le Creusot (S) – Montanay (P) 

- Crisenoy (P) – Mâcon (S) 

- Mâcon (S) – Mâcon2 (P) (Mâcon corresponds to the train station, Mâcon2 to the junction) 

- Mâcon (S) – Cesseins 

- Mâcon (S) – Montanay (P) 

- Crisenoy (P) – Mâcon2 (P) 

- Crisenoy (P) – Cesseins (P) 

- Crisenoy (P) – Montanay (P) 

XI.b.1. Example 1 : Train A5135 Crisenoy (P) – Montanay (P) 

After 110 generations, the differential evolution algorithm has converged. The final population 

is shown in Figure 132. 

 

Figure 132. Final population and associated values after 580 generations for the train A5135 

The target times given on the timetable are: 

 𝑇𝑡𝑎𝑟𝑔𝑒𝑡(1) = 1890s 

 𝑇𝑡𝑎𝑟𝑔𝑒𝑡(2) = 3420s 

 𝑇𝑡𝑎𝑟𝑔𝑒𝑡(3) = 4470s 

 𝑇𝑡𝑎𝑟𝑔𝑒𝑡(4) = 4530s 

 𝑇𝑡𝑎𝑟𝑔𝑒𝑡(5) = 4830s 

 𝑇𝑡𝑎𝑟𝑔𝑒𝑡(6) = 5130s 
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Table 30 shows that almost all time constraints are respected for each operational point and 

the average energy savings in regard to a flat-out run is about 37%. 

 

Table 30. Time difference in seconds between the target time and the time observed for each individual of the final 

population at each operational point and their associated energy savings 

The best fitness value 0.969733 corresponds to the individual 𝑖 = 3. Its speed profile is shown 

in Figure 133. According to Table 30, the train arrives with 3 sec delay at T1 and T3, 25 sec at T2, 1 

sec early at T4, 4 sec delay at T5 and 13 sec at T6. The train consumes then 6631 kWh which 

corresponds to an energy saving of 36% in comparison to a flat-out run. The average slack-time of the 

run is 12.9%. 

 

Figure 133. Speed profile of the optimal solution 

XI.b.2. Example 2 : Train A6759 Crisenoy (P) – Pasilly (P) 

In this case, the convergence is much quicker as the running distance is shorter, thus leading 

to fewer zones: there are only two operational points, Crisenoy and Pasilly which correspond to the 

beginning and the end of the section, and one shift in the speed limit. Therefore, only 30 generations 

are needed to converge. Again, all the time constraints are respected as shown in Table 31. The 
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optimal solution correspond to individual i = 5. The associated speed profile is shown on Figure 134. 

The 16.4% slack-time enables us to save 27% of energy compared to a flat-out run. 

 

 
 

Table 31 : Time difference in seconds 

between the target time and the time 

observed for each individual of the final 

population and their associated energy 

savings 

Figure 134: speed profile of the optimal solution for train A6759 

 

XI.b.3. Example 3 : Train A6621 Crisenoy (P) – Le Creusot (S) 

This example differs from the previous ones as the end of the service is marked by a stop “S”. The 

algorithm converged in 30 generations. All the solutions respect the time constraints with a precision 

of ±⁡10 seconds except individual 3 (see Table 32). The optimal speed profile is shown in Figure 135 

and corresponds to the individual 𝑖 = 6. Even if the average slack-time is smaller than in the previous 

cases with only 8.4%, the energy savings compared to a flat-out run are 28%. 

 

Table 32. Time difference between the target time and the time observed for each individual of the final 

population and their associated energy savings 
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Figure 135. Speed profile of the optimal solution for A6621 

XI.b.4. Pareto curves 

All the energy savings previously mentioned are given in comparison to the flat-out run. 

However, as drivers must respect the timetable, he will never run a flat-out run; thus, he will consume 

less energy and the energy savings computed by the algorithm might be much smaller. To answer to 

this question, a comparison is done between the energy consumptions of random speed profiles 

respecting same constraints. The driver’s real behaviour should be close to one of them and then can 

be compared to the optimal computed solution. Figure 136 represents all the individuals that were 

simulated during the whole calculation of the algorithm for A6215 from Crisenoy (P) to Cesseins (P). 

The number of generations required was 90. Therefore, 90x8 individuals (generation x NP) are 

represented. For the same final running time, the energy consumption can vary by 6% between an 

eco-friendly and a non-eco-friendly drive. Then the Pareto curve can be plotted (red curve in Figure 

136) which is a curve that passes by all the optimal couples (energy consumption, running time). 

Afterwards, we are able for a new slack-time to compute the optimal energy consumption thanks to 

this curve. 
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Figure 136. Energy consumption vs final running time for all the individuals simulated by the algorithm and Pareto 

curve  

Another example corresponds to the train A6759 shown in Figure 137 (generation =20; NP = 8; 

total of individuals = 20x8). This train runs between Crisenoy (P) and Pasilly (P). Again, we observe a 

big dispersion of energy consumption for the same running time, enabling to save 9% between an 

eco-friendly and a non-eco-friendly drive. We observe that the algorithm converge to the most eco-

friendly solutions as wanted. 

 

Figure 137. Energy consumption vs final running time for all the individuals simulated by the algorithm 

(blue) and solutions of the final population (in red) for the train A6759 

Finally, in Figure 138, points represent all simulated trains running between Crisenoy (P) and 

Pasilly (P): A6755, A6741, A9273, A9219, A6759 and A9589. The associated slack-times are 

respectively 18%, 13%, 16%, 13%, 16% and 10%. We observe that in each case, the algorithm 

converges towards the Pareto curve (red triangles). For a given slack-time, a great disparity of energy 

consumption can again be observed, emphasizing the savings that can be made thanks to eco-

driving. 
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Figure 138. Energy consumption vs final running time for all the individuals simulated by the algorithm 

(blue) and solutions of the final population (in red) for all the trains going from Crisenoy (P) to Pasilly (P) 

XI.c. RESULTS OF SUBSTATIONS POWER OPTIMIZATION 

Optimizations are done for 𝑆ℎ𝑖𝑓𝑡𝑀𝑎𝑥 = 30 seconds and 𝑆ℎ𝑖𝑓𝑡𝑀𝑎𝑥 = 45 seconds, for an average 

period T=10 minutes for computing the power. The shift’s step is 5 seconds in both cases. Results are 

given in Table 33 where the three most loaded power substations are highlighted in grey. We observe 

that we can reduce of around 2 % the power peak on the three power substations if we take 

𝑆ℎ𝑖𝑓𝑡𝑀𝑎𝑥 = 45 seconds. However, for 𝑆ℎ𝑖𝑓𝑡𝑀𝑎𝑥 = 30 seconds, the improvement made on SARRY 

leads to worsen the situation of COMMUNE, thus the optimization is less interesting. However, in this 

case, the shift is very limited for each train as most of them have more than 10 seconds delay after the 

eco-driving step.  

 

Table 33.  Comparison before and after optimization for ShiftMax = 30 sec and ShiftMax = 45 sec 

To summarize, eco-driving showed that it is possible to make significant energy savings by 

acting on coasting speed (Vmax, Vmin) and the traction coefficient. Solutions were evaluated using a 
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fitness function that included energy and time constraints. Three examples were presented and 

confirmed the algorithm’s convergence. Pareto curve was drawn for different services. It highlighted 

the impact of the driver’s random behavior on the energy consumption. Therefore, giving speed 

indications can help improving the driving’s efficiency while respecting time constraints. The second 

power optimization step was more constraining because it takes into consideration the delays already 

introduced in the first step. Results were not too much promising but this can be improved by 

increasing time tolerance. 

 Note that these optimizations were done off-line. In real-time operation, a third step, delay 

compensation, should be developed to readjust dynamically trains hence they respect the optimized 

theoretical timetable and speed profiles. This online step was not tested because it needs to be 

implemented in a traffic simulator. In addition, it is important to remind that this energy module should 

work in coordination with traffic optimization modules already existing. These two points would be 

subject of a future study. 

  



176 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSION AND PERSPECTIVES 

 

  



177 | P a g e  

To resume, electric railways are more and more expending all around countries. In big cities, 

they are presented as a green solution for reducing pollution because of zero gas emission. However, 

other road transportations are becoming electrical such as buses and cars. These new technologies 

are presented today as railway’s competitors especially in urban areas where no dedicated 

infrastructure is possible. However, railways, electric cars and electric buses are also complementary 

in a multi-modality approach. Increasing energy efficiency of urban, suburban and high speed lines will 

reduce energy cost and improve competitiveness. In addition, European Commission is giving a lot of 

attention for climate. In particular, the 20-20-20 plan declared in 2007 set three targets: reducing by 

20% greenhouse gas emissions from 1990 levels, increasing by 20% renewables energy share and 

improving by 20% EU’s energy efficiency. This thesis tried to find solutions for increasing railways’ 

efficiency in the framework of two collaborative European projects, OSIRIS and MERLIN, which 

consist one of many steps towards meeting the 3rd target. Yet, railways are very various depending on 

their location (urban or not) and used technologies. In order to understand this diversity, an overview 

on railway systems was first done. It explained this sector’s evolution through last two centuries 

starting from steam engines till electric motorized trains we see today. It shows how technologies 

varied from one country to another and even in the same one. Some were eliminated shortly after 

employment; others are still being used today. Many past choices were taken after experiences; some 

were also political and strategic, but all of them led to the system we have today. Effort is now being 

done to unify and standardize railway solutions. This is very important in a world where globalization 

affects almost all sectors: energy connections between countries (cables, pipes), road 

connections…etc. Railway sector should be a link between different regions and cultures especially for 

freights exchanges where it is still very competitive. 

After this overview, a focus was done on the existing types of electrification. The difference 

between AC and DC modes was highlighted showing the particularity of each one. It showed that in 

DC railways (urban and suburban applications), classic substations consist of diode rectifiers allowing 

unidirectional power flow (from the AC grid to the catenary/3rd rail). Thus, when a train brakes, if no 

other one is accelerating nearby, braking energy is burned in resistors onboard the train because it 

cannot be reinjected into the upper AC grid. On the other hand, in AC mode, substations are mainly 

consisted of a transformer allowing reinjection of the excess of braking power into the main grid. No 

energy is then burned. Different braking systems were detailed in chapter III and the environmental 

impact of railways was presented. Existing solutions, same as the ones under development, were also 

listed in this chapter such as onboard and wayside storage systems, reversible substations, etc. The 

difference between AC and DC modes showed that it was not possible to propose one common 

solution for both and that each one should be studied alone. Section B was dedicated for DC urban 

lines while Section C is more adapted to suburban and high speed lines. 
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For urban lines where main losses were measured in braking resistors, the “Smart DC station” 

was proposed as a solution for recuperating trains braking energy when no exchange is possible. It is 

a new concept based on DC micro-grids that made, for the first time, a bridge between railways and 

their energy environment. Instead of reusing this energy internally, this solution suggested to use it for 

non-railway loads that need specific power supply. In our use case, we considered recuperating the 

excess of braking energy form railway side through a DC/DC converter that respects energy exchange 

between trains, storing the energy in a hybrid storage system and reusing it to charge electric hybrid 

buses parked next to a metro station. Power flew through a DC busbar. A low power AC/DC converter 

was also connected to the latter to avoid over and under voltages. First, each component was studied 

separately. In order to choose which storage technology is the most adapted to this application, an 

overview on storage systems was done. It distinguished two categories: energy storage and power 

storage. After listing advantages and drawbacks of different technologies, the better choice seemed 

supercapacitors and Li-ion batteries. Then, power converters were studied. For storage, a cascaded 

architecture was proposed and current regulations were used. Limitations were also introduced to 

protect the supercapacitor from charging and discharging excess. Concerning the AC/DC converter, a  

2-level architecture was proposed. It was controlled by two cascaded loops: the outer loop regulated 

DC busbar voltage. Its output gave the reference value to the inner loop regulating the direct current at 

AC grid’s side. For railway DC/DC converter, a bidirectional converter was studied with a voltage 

regulation where the reference voltage varies to ensure giving priority to power exchange between 

trains. All these converters were managed by a “power management system” that optimized power 

flow within the micro-grid according to pre-defined scenarios. Each subsystem was first simulated 

separately then the whole system was simulated using Simulink. 

As RATP was ALSTOM’s partner in Task 4.1 of OSIRIS, Paris metro line 13 was chosen as an 

application. But given the fact that Simulink simulations were too long due to small time step, a 

simplified model was developed using Matlab allowing energy evaluation for different scenarios 

corresponding to 95s, 100s, 175s and 290s headways. This model used the braking power profile, 

calculated in the multi-train simulator ELBAS, to estimate the amount of recovered energy to store and 

the one sent to the AC grid. Results were satisfying and showed that there was more than enough 

energy for charging one electrical hybrid bus per hour. To study the competiveness of this solution 

compared to the alternative one (fast charging station), an economic evaluation was done to evaluate 

the cost. It showed that both solutions require investment, but the advantage of the Smart DC station 

is that no electric contract is needed and thus, no energy bill.  

In chapter VI, the stability of the DC micro-grid was studied. First, instability risks that may 

cause low damped systems were explained. Then state-space representation of the whole system 

was done. It showed that it was a non-linear system because the state matrix contained state 

variables. Therefore, in order to calculate system’s poles, a small signal stability study was done. It 
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consisted in linearizing the system around an operational point. The calculated poles, showing 

whether it is stable or not, were valid only for small variations around the selected point. The four 

different points that were studied have shown that the system is stable. Unfortunately, this does not 

guarantee that it will remain stable for large variations. To avoid this risk, the next subchapter VI.c 

introduced a stabilizing control, backstepping, acting on the SC module’s command to avoid 

oscillations in the case of low damped systems. It consisted on dividing the system into cascaded 

subsystems so that stabilizing one will ensure the stability of the ones beneath.  

To conclude, Section B studied a new concept that allows increasing energy efficiency of 

urban railway systems by saving braking energy before it burns in trains’ resistors. We tried to cover 

different aspects: power electronics, control, stability…etc. Technical recommendations were also 

given at the end for pre-dimensioning different converters and integrating the micro-grid into the 

SGAM defined by CENELEC. This solution is quite interesting for future stations especially when the 

price of batteries same as DC/DC converters is expected to drop due increasing demand especially in 

transport sector.  

After presenting a hardware solution for urban DC railways, Section C proposed for high speed 

lines (HSL) a software solution that intends to optimize HSL’s timetable. As explained through this 

document, AC electrified mainlines are quite different from DC urban systems. While the latter arises 

braking energy saving problems, AC mainlines are more impacted by timetable synchronization. In 

fact, high speed trains are much more powerful than metros and thus, when many trains are 

accelerating in a same electric zone, power peaks can be caused at SST’s level. From protection point 

of view, this is not a problem because the system is dimensioned for worst cases. The question that 

should arise is whether this power peak exceeds the maximum subscribed power. In this case, 

penalties are paid to energy provider. Therefore, we decided to study this problem from two different 

angles: energy and power. 

The first part of this solution was to optimize trains’ energy consumption while respecting time 

constraints. Thus, an algorithm based on differential evolution algorithm was developed. It started with 

an initial population generated randomly. Every iteration, new individuals were generated from 

previous ones using mutation and crossing processes. Then, a selection was done based on a fitness 

function that is directly related to both energy and time. In a first step, we considered a fitness found in 

literature that was more dedicated to metro application. Given the fact that speed profiles in HSL are 

quite different from urbans, the fitness was adapted to our application by improving time penalties so 

the train respects time passage at operational points. An additional term was also added to the energy 

which is the difference of kinetic energy compared to the reference exit speed. This term was 

important in cases where train went out of the timetable (bifurcation) at none-zero speed. On the other 

hand, mutations may give out of boundary values. Therefore, this was handled using bounce-back 

method where these values were brought back into each parameter’s interval. The algorithm was 
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tested and results were satisfying: up to 30% energy reduction, compared to a flat-out run, and trains 

passing at time with ±30s variance. 

The second step was to reduce power peaks at SST’s level by shifting trains. Another 

algorithm was then developed. It selected the SST with highest power peak and detected trains 

present on its electric zone during the measured peak. While taking into account delays/advance 

already introduced by the first optimization, we tried to shift trains consuming the most within 

acceptable total time margin (first 30s then 45s). This process is repeated until no trains can be 

shifted. 

After both steps were developed, they had to be tested on a real HSL. In MERLIN, SNCF was 

ALSTOM’s partner in this task. Therefore, HSL Paris-Lyon was chosen as application. A theoretical 

timetable was introduced in the algorithms. They proved that it is possible to make significant energy 

savings on this line without bringing big changes to the timetable applied today. 

To resume, this thesis intended to propose energy solutions for DC and AC railways. Urban 

lines were seen as a new component of future smart grids or smart neighborhoods. Instead of solving 

the problem locally, a more global approach was proposed. A hardware solution was proposed locally 

at passengers’ station that seemed to be the best location to make an electric bridge from railways to 

surrounding environment. While HSL cover long distances and generally non-urban areas, it was more 

reasonable to propose an “internal” optimization for these systems where time flexibility is a main 

advantage. Thus, timetable was optimized so that trains consume less energy while respecting 

punctuality.  

Maybe we will need to wait a while before seeing solutions as the Smart DC station emerging 

in railway because it remains a very conservative sector. This is due to security and safety reasons 

because any mistake, even small ones, may put a person’s life into danger. A progressive 

implementation can be done starting with simple storage until we get a true DC grid within the station. 

This work was based on integrating one DC smart station in a metro line while it would be interesting, 

in future studies, to evaluate the interest of multiplying this solution along the line. This would allow 

saving all braking energy lost in trains’ resistors. In addition, prices of DC/DC converters and Li-ion 

batteries are expected to drop due to increasing demand in different applications such as photovoltaic 

micro-grids, electric cars and electric buses. This will reduce the cost of the DC smart station in case 

of future implementation. An energy strategy for electric buses’ charging should also be studied 

especially in big cities like Paris if all diesel buses will be replaced by electric ones. A possible solution 

is to make a full principal charge during night (off-peak hours) and only complete with short charges 

along the day. In the latter case, recuperated braking energy will allow more frequent bus charging. 

Concerning the second solution, we can expect a fast development because many efforts are 

being done on this subject. It is a software solution that costs less than hardware components 

(storage, converters…) and is capable of reducing considerably energy consumption. But we have to 
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remind that today HSL are not driverless trains. Thus, an eco-speed instruction will be communicated 

to the driver who will try to follow it. Note that no energy module can be applied alone. It should be 

coupled by a traffic management module to ensure the feasibility of the solution and that it does not 

generate traffic perturbations because in railways, punctuality and fluidity remain the main objectives.   

Finally, today, even sectors as conservative as railways are starting to open their doors to new 

ideas and new technologies. Economic and climate crises should push them towards accepting 

changes. We are now living in a more connected world where information is everywhere: in our 

laptops, smartphones and even watches. This is finally starting to change minds towards a better 

thinking ready to communicate with other domains and from my point of view, the only way to improve 

our world today is by working together, people from different competences, regions… because 

diversity is source of strength…     
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A- OSIRIS Project 

Reference: FP7 Nr. 284868 “OSIRIS” Description of work 

 

Title: Optimal Strategy to Innovate and Reduce energy consumption In urban rail Systems 

 

OSIRIS project is a way to innovate and achieve the 20-20-20 plan. It is a 3-year European 

project started on the 1st of January 2012 and it will finish in December 2014. It aims at enabling a 

reduction of the overall energy consumption within Europe’s urban rail systems of 10% compared to 

current levels by 2020.  

Seventeen partners are taking part in the project: public transport operators, railway 

manufacturers and universities work together in order to improve railways with a global vision 

including the infrastructure to the trains. This global vision is necessary in railways because urban rail 

systems are complex environments and their energy consumption is characterized by a wide range of 

inter-dependent factors. That’s why the development of energy reduction can’t be studied only at the 

level of the train. In fact, the vehicle has to be integrated into the infrastructure and improvements on 

the vehicle can create decrease of the infrastructure’s performance. Finally the global performance 

won’t be as well as planned. 

Benefits which are expected from OSIRIS are: 

 For the community: 

 Energy and CO2 savings thanks to progress in real tested technologies and solutions. 

 For operators: 

 Common understanding with the manufacturers on energy savings and related innovative 

technologies (Key Performance Indicators, duty cycles, Technical Recommendations) 

 Decision Support Tool methodology: selecting optimum combinations of technical and 

operational solutions 

 Real experimental results from the field of innovative technologies to save energy (RS, 

Infrastructure & operational measures / thermal & electric energy) 

 For manufacturers: 

 Clearly defined and harmonized requirements by operators 

 Extended electrical system simulations tools to integrate the new smart grid concept and new 

thermal simulation tool 

The realization of OSIRIS is divided into 8 work packages: 
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Figure 139. OSIRIS Organization  

WP4 studies the impact on energy saving and CO2 emission of infrastructure recovery 

technologies in mass transit systems (i.e. LRV, Subway, Suburban systems). The above defined 

objectives will be reached realizing different technical solutions. The technical objectives will be in the 

electrical and thermal domains and will include an eco-design approach in the whole system lifecycle. 

It is divided into 3 tasks: 

 Task 4.1 : “Smart grid solutions study and related simulations” 

 Task 4.2 : “Heat gaps evaluation and heat pump solutions to reduce the energy 

consumption of station and tunnel auxiliaries” 

 Task 4.3 : “Thermal simulation and thermal management of infrastructure” 

Section B is related to task 1 of work package 4. Its objectives are the following: 

 Defining a smart grid management will allow to optimize the energy management of plants 

(including traction supply system, on ground auxiliaries and energy storage equipment) defining an 

optimized power supply architecture. In particular, ground plants, seen as intelligent nodes, will 

dynamically be considered to optimize the energy flow among loads and generators, such as 

several energy storage systems and renewable energy generators installed along a railway line. A 

smart management approach will consider plant operational cycles. Smart grid includes an 

intelligent monitoring system (including different types of sensors) to real-time monitor and 

manages the different intelligent nodes of the grid. The smart grid energy architecture will be used 

to manage the energy flow among upstream network, line feeders, storage systems, substations 

and auxiliaries to reach energy saving goals. 
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 Pushing the recovery of braking energy to its maximum potential (potentially 100% of receptivity of 

the line for DC systems) by recovery of energy braking on trackside for subway and suburban 

trains, running in what’s called “close systems”. Different technologies will be evaluated: line side 

energy storage systems such as batteries, super capacitors, fuel cells, etc. and DC reversible 

substations. A comparison among different technologies to recover and re-use braking energy will 

be done through the holistic model developed in WP2. 

The final goal is to apply the concept of smart grid for electrical networks in the suburban and 

tramway network and to give a vision of what a smart grid should be. The improvements that a smart 

grid should achieve will be defined in terms of quality (perturbation or failure recovery, flexibility and 

interconnection) and quantity (energy savings, intelligent load sharing, lower impact on environment in 

terms of CO2 emissions). 

It should treat of the following questions: 

 Gap analysis: what are the goals to be achieved by a smart grid in the future compared to the 

current technologies, processes, regulations? The desired future state is compared to the current 

one and gap statements will be identified. Specific solutions that integrate new technologies and 

applications are identified 

 Mass transit energy configuration and load profiles: The mass transit system engineering 

evaluation will be set up in order to give the appropriate energetic profile specific to different 

transportation systems (tramway/metro, etc.) 

 Smart grid available technologies evaluation and component studies. 

 

Simulations of urban rail systems based on different operational conditions and a sensitive 

analysis, concerning electrical characteristics, will be carried out to evaluate a preferred topology of a 

future smart grid for the different transportation systems. Electrical transportation systems are 

enabling the use of regenerative energy sources as a substitution of fossil energy use. Every measure 

increasing the acceptance of public transport is therefore welcome in order to reduce GHG emissions 

and other disadvantages of individual transport like noise space and dust. The acceptance can be 

increased by providing fast and comfortable transport. All measures to improve the reliability of 

traction networks and increase the speed and the comfort are welcome. The power supply has to 

serve these requirements beneath the need for permanent increase of efficiency. Better ambient 

conditions, faster transportation and higher reliability with same energy consumption are also 

welcome. Efficiency is only one point. 
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B- MERLIN Project  

Reference: FP7 Nr.314125 “MERLIN” Description of work 

Title: sustainable and intelligent management of energy for smarter railway systems in Europe: an 

integrated optimization approach 

MERLIN’s main aim and purpose is to investigate and demonstrate the viability of an 

integrated management system to achieve a more sustainable and optimized energy usage in 

European electric mainline railway systems. MERLIN provides an integrated optimization approach 

that includes multiple elements, dynamic forecasting supply-demand scenarios and cost 

considerations to support operational decisions leading to a cost-effective intelligent management of 

energy and resources through: 

• Improved design of existing and new railway distribution networks and electrical systems as 

well as their interfaces with the public grid and considering network interconnections 

• Better understanding of the influence on energy demand of operations and operational 

procedures of the different elements of the railway system 

• Identification of technologies and solutions able to further contribute to the optimization of 

energy usage  

• More efficient traction energy supply based on optimized use of resources 

• Understanding of the cross-dependency between these different technological solutions to 

define optimum combinations for optimized energy usage 

• Improving cost effectiveness of the overall railway system 

• Contribution to European standardization (TecRec) 

MERLIN also delivers the interface protocol and the architecture for energy management 

systems in the railway domain, combining the technical development with new business model that 

would enable and foster their application.  

The overall approach of this project is based on the definition, understanding, assessment and 

optimization of the interfaces and relations between the railway network, the vehicles, the public grid 

and rail operations. Market constraints and dynamic forecast of immediate supply-demand operational 

conditions over a period of time are essential unique characteristics of this approach. The work begins 

with the identification and definition of the sub-systems and elements of the railway networks, the 

analysis of the requirements coming from the operators and infrastructure managers and the 

elaboration of a global consumption map in order to realize where the critical problems are (WP1). The 

sub-systems and elements identified are then used to define the modules required for the global 

energy model (railway smart grid) as well as specifying and developing its architecture and interfaces 

(WP2). 



192 | P a g e  

 

Figure 140. Interface diagram 

The most suitable real scenarios (high-speed, mainline, mixed passenger & freight lines) are 

defined (WP3) by train operating companies and infrastructure managers, supported by UIC and the 

Rail Reference Group organized by the latter. Technological developments are divided into strategic 

and operational. From the strategic point of view specific optimization tools (decision making oriented) 

are created (WP5) based on the results of the previously defined architecture in WP2 (modules and 

interfaces). These tools and models aim the strategic investment in new energy saving technologies 

for new lines or retrofitting of existing ones. From the operational side studies targets the development 

of new controllable components, modules and applications and protocols of the railway smart grid 

(WP4) as defined in the global architecture in WP2. An evaluation exercise of the strategic tool is 

carried out in WP6, amongst other several simulations of the predefined scenarios in WP3, leading to 

recommendations for implementation (WP7). In addition, some new components of the Railway 

Energy Management (i.e. the railway smart grid) will be deployed in a real environment to evaluate the 

feasibility and performance of the concept. 
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Figure 141. Project Structure 
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C- ELBAS software used for energy simulations 

Areas of application 

The program system ELBAS-Webanet® is a simulation system for simulating the running of 

AC operated short-distance and long-distance railways. Furthermore, the system makes it possible to 

simulate the running of tractive units that are independent of a contact wire. The system allows the 

simulation of one or several routes and their meshing to build line networks. The program system has 

been designed to handle the following problems: 

 New development of railway power supply equipment. 

 Optimization of existing railway power supply equipment. 

 Determining optimum and alternative power supply concepts. 

 Calculation of short-circuits currents. 

 Stray current corrosion and track-to-earth voltage. 

 Vehicle design, vehicle component design. 

 Calculation and optimization of timetables. 

Program structure 

The following initial data are used for calculations in the program system: 

 Line data (kilometer stationing, maximum speed, low-speed sections, operating control points, 

conditional stops, gradients, curve radii, single-track sections, tunnel sections). 

 Timetable data. 

 Vehicle data. 

 Network data (substations, feeder cables, contact wires, tracks, connectors, sectioning points). 

 On-board and wayside energy storage system Data (Power, charge/discharge curves, 

capacity, efficiency...). 

The initial data are stored and edited in a database. For calculation the data are checked and 

made available by the database system. 
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Figure 142: ELBAS Program Structure 

 

Below some results given by ELBAS: 

 Energy balance in substations. 

 Energy losses. 

 Results of train running simulation (timetable, train running chart, tractive effort, transport work, 

vehicle-specific results). 

 Results of network calculation (power levels, currents, voltages in substations, feeder cables, 

contact wires, connectors, stray current, track-to-earth voltage, energy storage system voltage, 

current, energy content…). 

Interfaces 

Results can be displayed using ELBAS graphic tool. All results can be extracted in Excel files.  

Special features 

In addition to the dimensioning, ELBAS allows to:  

 Achieve energy balances: for each scenario it is possible to assess criteria such as energy 

consumptions, receptivity and losses on a given line, which allows calculating the system’s 

efficiency. 

 Evaluate the impact of integrating new technologies: It is possible to simulate new technologies 

such as on-board and wayside energy storage systems, reversible substation, etc. 
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D- Timetable of Paris-Lyon High Speed Line   

 

 


