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Chapter 1

Introduction

With the gradual advent of science and technology over the centuries, engineers all over the

world, at different times have deciphered and relied on the individual and distinct nature of

matter in order to control the deformation of materials during their use. The most commonly

used materials, without an ounce of doubt are the metals owing to their strong structural and

mechanical properties. Iron is the most widely used of all the metals, accounting for over 90% of

worldwide metal production. Since pure Iron is quite soft, it is most commonly combined with

carbon and some other alloying elements to make steel. The addition of other elements can

provide steel with other useful qualities. For instance, nickel increases its durability and makes

it more resistant to heat and acids, manganese makes it more durable, whereas tungsten helps it

maintain hardness at high temperatures. Its low cost and high strength make it indispensable in

industrial and engineering applications like structural components for buildings, construction

of machinery and machine tools, heavy industries like shipping, automobile and aeronautics

and so on. Thus in order to safely predict the structural integrity of components, an accurate

understanding of the plastic behaviour of iron is of utmost importance. Thence it has been

a popular field of investigation and research for different individuals and scientific teams all

over the world. The most common way in which deformation [1-3] takes place is due to the

presence and movement of crystal defects called dislocations. Iron has a body centered cubic

(bcc) structure and it has been established over the years that the laws governing the plastic

1



2 Chapter 1. Introduction

behaviour of bcc metals are quite different compared to the laws applicable for face-centered

cubic (fcc) and hexagonal close packed (hcp) materials. A detailed overview of the above

mentioned laws and the gradual advances in research pertaining to explaining the structure

and deformation behaviour of Fe and other bcc metals is provided in the following section.

1.1 Historical background and related terminologies

From around the early part of the 20th century, the first studies [4-6] of single crystals in order

to determine their mechanical properties were made for the hexagonal close packed (hcp) and

face-centered cubic (fcc) metals. The main outcomes of such studies established an athermal

nature of the deformation by crystallographical slip and a governing law for slip known as the

Schmids law [4]. This law predicted that for a certain material, the yield on the slip plane takes

place at a constant value of the shear stress acting on the plane known as the critical resolved

shear stress (CRSS). The CRSS value is independent of the slip system or the slip sense and it

is assumed that the resolved shear stress on the activated slip system in the direction of slip is

the only stress component responsible for the plastic deformation. However the research work

of G.I. Taylor and his collaborators on α-iron [7] and β-brass [8] predicted a very different slip

behaviour in body-centered cubic (bcc) materials as compared to hcp and fcp structures, thus

limiting the universality of Schmid’s law.

The most important features of the plastic behaviour of bcc materials relating to properties

of screw dislocations are the dependence of the flow stress on temperature and strain-rate i.e.

there is quite a brisk increase of the yield and flow stresses with decrease in temperature and

increase in the strain rate; and the variation of the CRSS with the sense of shear called the

twinning-antitwinning asymmetry of the yield and flow stresses [9-11]. These features have been

found in a variety of transition metals [12-20], alkali metals [21-24] and even in the molecular

crystal hexamine that crystallizes in the bcc structure [25]. In the year 1960, Basinski and

Christian [26] made the extremely precious observation, that the sensitivities of the flow and

yield stresses to strain rate and temperature do not vary in an orderly manner with the strain.
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This means that the increase in the energy barriers that are being overcome with the help of

thermal activation is not monotonic with respect to straining. Whereas on the contrary in fcc

metals it increases monotonically with increasing strain [27, 28]. This is one of the prime findings

that led to the belief that some other intrinsic factor is the driving force for temperature and

strain-rate dependence of the flow stress in bcc metals. This intrinsic factor was later found

to be the core of a0
2
< 111 > screw dislocations that may spread into several planes of the

< 111 > region. This was first proposed by Hirsch in 1960 [29] and later affirmed strongly by

many experimental and theoretical research performed thereafter. Thence the dislocation core

is responsible not only for the high lattice friction stress but also for the rest of the intriguing

features of the slip geometry and dependency of the yield stress on orientation [9, 11, 30-32].

This basic characteristic of screw dislocations relates to the crystallography of the bcc lattice

and hence is common for all bcc crystals.

1.1.1 Dislocation glide mechanism

The thermally activated glide of screw dislocations in body-centered-cubic (bcc) crystals pro-

ceeds through the formation and propagation of kink pairs by means of the Peierls’ mechanism’

[9] named after Peierls for his early work on dislocation theory. The motion of screw disloca-

tions occurs in and is controlled by a periodic potential originating from their non-planar core

structure which is commonly known as the Peierls’ potential [9]. Peierls also proposed the stan-

dard Peierls Nabarro mechanism [9] which is accepted as the standard process of dislocation

glide. Herein, the dislocation moves in steps from one Peierls’ valley [9] to the adjacent and so

on, resulting in an overall glide from one part of the crystal to another. Such a step involves

first the formation of a pair of kinks on the dislocation by the movement of some of the atoms

to the next Peierls valley [9]. This is followed by the propagation of the kinks outwards along

the dislocation line, i.e. the atoms move along the direction of the burger’s vector parallel to

the dislocation line and more atoms start moving in the crystal rows contiguous to the dislo-

cation line. Finally the entire dislocation moves to the next Peierls valley [9] when the kinks

have traversed the entire length of the dislocation. For this process, the dislocations need to
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overcome an energetic barrier called Peierls’ barrier [9]. Both the applied shear stress along the

dislocation glide plane and temperature in the crystal play a part in this process by providing

the necessary forces and energies to the atoms, first for the formation of kink pairs and then

for the propagation of kinks along the dislocation line, which leads to the glide of the entire

dislocation in a direction perpendicular to the motion of kinks.

This phenomenon has been schematically represented in Fig. 1.1 for clarity, where we have

reduced the extension of a kink to one interatomic distance along the line. In Fig. 1.1 (a), we

can see the plan view of a perfect crystal plane where atoms and their positions are represented

by small circles. A perfect crystal has no dislocations and there is perfect registry of the atoms

along the atomic rows. The next figure, Fig. 1.1 (b), shows the plan view of a crystal with some

lattice distortion, enough to create a straight screw dislocation (shown more or less at the center

of the crystal). The dislocation is created due to the de-registry between two parts of the crystal

resulting from lattice distortion. This de-registry is visible along the atomic rows in the form

of slight perpendicular displacement of atoms in one part with respect to the original atomic

directions. The next step is shown in Fig. 1.1 (c), where a kink pair is formed at the center of

the screw dislocation along the dislocation line. This proceeds by the movement of the central

pair (vertically) of atoms of the de-registered part (right part in the figure) at the interface

with the perfect part, to new atomic positions. These movements have been shown with arrows

and the old positions of the atoms are represented by striped circles and new positions with

the usual circles. The new atomic positions are perfect lattice positions of the original perfect

crystal and hence this small central portion of the crystal has perfect registry with the left

part. As a result, the top portion of the crystal experiences some tension in the surroundings of

the atoms moving apart. However in the bottom portion of the crystal, the atoms move closer

to each other resulting in a compression of the crystal around these atoms. The next step is

shown in Fig. 1.1 (d). It shows the first step of the propagation of the kink pair, which occurs

outward along the dislocation line. The pair of atoms just next to the central kink pair on both

sides then move to new atomic positions, which again correspond to perfect lattice positions

of the original perfect crystal (left part). Thus there is further re-registry of this portion of

the crystal with the portion on the left. Thus the kinks continue to propagate further along



1.1. Historical background and related terminologies 5

Figure 1.1: Sketch of the plan view of a (1 1 0) crystal plane (glide plane) showing the process
of kink pair formation along a screw dislocation and stages of kink propagation along the
dislocation line which finally results in the glide of the screw dislocation
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the dislocation in this step wise manner till it finally reaches the end of the dislocation line,

as shown in Fig. 1.1 (e). At this point, almost the entire dislocation has moved to the next

Peierls valley in the crystal. Finally the entire dislocation is in the next Peierls valley and in

the form of a straight screw dislocation once again. This step is shown in Fig. 1.1 (f). At this

point, the interface of de-registry between the two crystal portions has moved to the right, i.e.

a portion of the crystal on the right has now re-registered with perfect lattice positions of the

original crystal on the left. The whole process repeats again with the formation of a new kink

pair and this is how the dislocation glides along a crystal plane in a step-wise manner.

1.1.2 Experimental and Computational observations of the past years

Numerous experimental studies in order to examine the elementary characteristics of slip de-

formation in iron at low temperatures have been performed over the years [26, 33-43]. However

it was only in 1981 that the fundamental aspects of dislocation plasticity, such as the yield

stress for slip or the operating slip systems, were examined in the entire range of temperature.

Aono and his collaborators [44] carried out a thoroughly planned study of deformation in single

crystals of Fe to temperatures as low as 4.2 K. They succeeded in showing that the deformation

mode depended on the size of the specimen being tested and were able to plastically deform

specimens of relatively small sizes and study the elementary properties of deformation by slip.

They also observed the twinning-antitwinning effect during the course of their research.

In the pioneering work of Seeger, the variation of the yield stress as a function of temperature

and orientation showed that the deformation behavior of bcc crystals can be divided into

three temperature ranges: T < 100K, 100K < T < 250K, and 250K < T < 340 K [45-46].

Above 340 K lies the athermal region in which the value of yield stress was around 15 MPa

independent of loading orientation. The regime between 250 K and 340 K is assigned to the

fully developed kink-pairs governed by the elastic-interaction (EI) approximation [47]. Below

100 K it is governed by the formation of kink-pairs in a manner of bow-out on the primary

(110) slip plane according to the line-tension (LT) approximation [48]. In the temperature zone

between 100 K and 250 K, there is a discrepancy in the basic slip mechanism. Seeger, from
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his dedicated studies came upon the conclusion that the kink-pair formation takes place on the

(112) planes [47] whereas Diehl and Brunner [49] were of the opinion that the glide takes place

on the (110) planes. The pioneering efforts to establish the basic slip mechanisms of the screw

dislocation are however attributed to the research work of Taylor and Elam [7], who proposed

something known as the pencil glide mechanism. Herein it was supposed that the slip occurs

along the < 111 > direction but the mean slip occured along the plane with the maximum

value of resolved shear stress.

Following these first attempts, several contradicting observations have been reported about the

orientation and directions of active slip planes in bcc crystals [50]. Gough [51] and Barrett et al.

[52] stated that the slip takes place on the (110), (112), and (123) families of crystallographic

planes. More recent studies suggest that the elementary slip at the microscopic level takes place

exclusively on the (110) planes, and the apparent slip on both the (112) and (123) planes is

actually composed of multiple elementary slip steps on two non-parallel (110) planes [53]. A

systematic observation of the slip planes in single crystal iron was also presented by Aono et al

[44]. According to their results, the deformation below 200 K is clearly governed by the screw

dislocations whose slip plane is exclusively the (101) plane at liquid He temperature for any

loading orientation with straight slip lines parallel to each other. However, as temperature being

increased, the macroscopically observed slip plane approaches the maximum shear stress plane.

Another interesting feature observed in experiments was the phenomenon of anomalous slip

[54,55]. The anomalous slip occurs in bcc crystals at low and moderate plastic strains when the

deformation proceeds on a set of (110) planes on which the resolved shear stress is substantially

lower than that on the primary, i.e. with the highest Schmid factor, (110) slip plane. All

these experimentally observed phenomena can not be fully understood without knowledge of

microscopic processes associated with the glide of the screw dislocations. In order to establish

a link between the macroscopic mechanical properties and the dislocation core structure, our

first task is to determine the elementary slip behavior of the a0
2
< 111 > screw dislocation in

iron at the atomic scale. Unfortunately, direct observations of the atomic core structures of

the a0
2
< 111 > screw dislocation in bcc metals are difficult and only very few attempts have

been made so far [56,57]. This is because the atoms around a screw dislocation are displaced
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primarily along the dislocation line direction while their displacements perpendicular to the

dislocation line, which can be detected by the modern high-resolution transmission electronic

microscopy (HRTEM), are usually very small (their magnitude is given by the elastic anisotropy

of the material). Thus, the understanding of the screw dislocation behaviour at the atomic level

relies ultimately on the modelling and simulation techniques.

Different atomistic scale studies have been carried out for a0
2
< 111 > screw dislocation in bcc

metals. A variety of methods and techniques have been employed over the years like : pair

potentials [22, 58, 59-63], many-body central force potentials [30, 32, 64], tight-binding and

other approaches that include explicitly the electronic structure [65-70] and most recently by

ab-initio density functional theory (DFT)-based methods [71-74]. All these studies revealed

non-planar cores and the twinning-antitwinning asymmetry of the critical stress at which the

dislocation starts to move. However, two distinct core configurations were found in different

studies of nominally the same materials. In both cases the core spreads into three (110) planes

of the [111] zone but, in one case, it is unique and invariant with respect to the [101̄] diad, a

symmetry operation of the bcc lattice and, in the second case, two distinct configurations exist

that are related by the diad operation [10,30]. Depending on the details of atomic interactions,

either of these two structures can be found. Significant advances have been recently established

towards describing the dislocation core structures under stress, by Duesberry and Vitek [30],

Domain and Monnet [75], Chaussidon et al. [76], Ventelon and Willaime [77], Groger et al.

[78-80] , Clouet et al. [81], and Ventelon [82]. Using density functional theory (DFT) based

calculations, some important facts that were previously debatable have recently been laid to

rest. These include the nondegenerate dislocation core structure [83], the (110) glide plane

and the single-hump Peierls barrier [77]. Another significant step in the field of atomistic

simulations has been the prediction of the kink-pair formation enthalpy on screw dislocations

for α − iron by Proville et al. [84]. They employed a line tension model parametrized by

using EAM interatomic potentials and derived the kink-pair formation enthalpies using DFT

calculations. However, the entire link to predict accurately the mechanical properties based on

the dislocation core structure are yet to be established.

In the following section, we describe in brief the experiments performed by D. Caillard and the



1.2. Motivation behind the thesis: experimental observations of D. Caillard 9

corresponding interesting observations that lay the foundation for this thesis work.

1.2 Motivation behind the thesis: experimental obser-

vations of D. Caillard

In spite of all the experimental and simulation work carried out over the years, some important

questions about the dislocation core structure remained unanswered. D. Caillard identified some

very important points [85] that remained unsolved. The first was regarding the exact elementary

slip plane of screw dislocations. It was still not established exactly if it was the (110) plane as

predicted by recent atomistic calculations yielding non-degenerate compact cores, or (112), in

agreement with previous conclusions based on the existence of two types of degenerate cores. It

was also still unknown if there is a change of elementary slip plane at 200-250 K as postulated

by Brunner and Diehl in Fe [49]. Secondly Dr. Caillard identified the obscurity regarding the

origin of the discontinuity observed in the temperature dependence of the activation area of

several bcc metals. In Fe, this discontinuity had been observed at 200-250 K by Quenel et al.

[86], Kuramoto et al. [87], Aono et al. [44], and Brunner and Diehl [88]. It was still unclear if it

was due to a specific shape of the Peierls potential profile, as suggested by Takeuchi [89], Aono

et al. [44], and Koizumi et al. [90] ; or due to a change of kink nucleation plane as proposed by

Brunner and Diehl [49]; or due to another change of dislocation mechanism [91]. The third basic

mystery was regarding the explanation that could be proposed for the large difference between

the Peierls stress deduced from atomistic calculations, and the flow stress extrapolated to 0 K.

It could probably be due to pile-up effects, as suggested recently by Gröger and Vitek [92], or

some other unexpected softening mechanism at low temperature. Fourthly there was a need to

find some simple explanations for the various effects of interstitial and substitutional alloying

elements. For instance, the origin of the complex effect of carbon atoms in iron, i.e. hardening

below 150 K, and softening between 150 K and 250 K [87]. Answers to these questions require

a good knowledge of the dynamic properties of dislocations, which can be deduced from in situ

observations. Several in situ experiments were carried out in the 1970s, in Fe and Fe alloys,
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by Furubayashi [93], Kubin and Louchet [94], and in Nb by Ikeno and Furubayashi [95] and

Louchet et al. [96]. However, the resolution of the high-voltage electron microscopes used at

that time was too poor to reveal all the details of the dislocation glide mechanism.

Hence Dr. Caillard planned a series of experiments with the aim to re-investigate the dynamic

properties of dislocations in Fe and Fe alloys, at various temperatures, and as a function of stress.

He performed two sets of experiments wherein in the first part, the properties of dislocations

in pure Fe were investigated at room temperature, and described in terms of the kink-pair

mechanism. In the second part their evolution upon decreasing the temperature to 100 K were

studied and the results, thoroughly analysed. Using the obtained results, explanations were

given to answer the four problems identified above. For carrying out the experiments, Dr.

Caillard obtained a large-grain polycrystal of pure iron from J. Le Coze, Ecole des Mines of St.

Etienne, France. This sample was of very high purity with the amount of residual C, N, O and

Si atoms between 2.5-4 ppm-wt respectively and 15 ppm-wt when accounted as a whole. Other

elements combined were less than 2 ppm-wt.The initial dislocation density was quite low: ρd

= 107cm−2. A number of rectangles of size 3 mm by 1 mm and thickness 50 µm were cut by

spark erosion to be used as specimens. Then they were polished mechanically followed by a

process wherein they were electrochemically polished to perforation at their centre. A GATAN

room temperature straining holder was emloyed for the specimens to be glued on, and a JEOL

2010 HC transmission electron microscope was utilised to observe them. A Megaview III video

camera that operated at 25 images per second was employed to record the sequence of unfolding

events during the experimentation. The deformation of the microsamples were carried out in

the microscope by a series of deformations and relaxations carried out at constant strain-rates.

The average strain rate was around, ε̇ = 10−6 − 10−5s−1. The plane normals for the grain

was [1̄ 2 3], and the direction of straining was along [1 4̄ 3]. The diffraction vector for all the

images taken was [220] and the angle of tilt was set to −8 deg. Next, in order to analyze the

motion of dislocations, the intensities of two superimposed images were substracted because of

which there is disappearance of the background and the immobile dislocations. The moving

dislocations appeared in positive (previous position) and negative (latest position) contrasts

and the dislocations moving very swiftly demonstrated fuzzy images. The widths of these
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images were equal to the displacement undergone during the time of exposure. With these

conditions, a fuzzy contrast with homogeneity signified a constant velocity, whereas a contrast

with inhomogeneity implied a varying instantaneous velocity [97].

From the first set of experiments conducted at room temperature, Dr. Caillard was able to

draw a number of conclusions [85] from the analysis of the results. With regards to the screw

dislocations, it was observed that the velocities of screw dislocations are proportional to their

lengths. Dr. Caillard was able to infer the elemental slip planes to be (110). He also measured

a microscopic activation area of 23b2 on a single dislocation, a value slightly lower than the

macroscopic value. More importantly, all the results were consistent with a kink-pair mechanism

wherein the critical separation of kinks was too short to be described by a Coulombic elastic

interaction as proposed in theory.

The second set of experiments were carried out at low temperatures in between 100 K and 300

K in order to investigate the mechanism change observed at around 250 K. By plotting the

temperature variation of the yield stress τ for pure Fe single crystal (measured by Kuramoto et

al. [87] and Brunner and Diehl [49]), the discontinuity in temperature variation of yield stress

and a huge difference between the theoretical Peierls stress and the yield stress extrapolated

to O K can be noticed as seen in Fig. 1.2 [85]. The yield stress increases from very low values

at 330 K (athermal regime) to about 370 MPa at 0 K, whereas the theoretical Peierls stress

deduced from atomistic calculations available in literature at that point of time were much

higher : 1200-1800 MPa [76] and 1300-1900 MPa [82]. However, different works independent

of Dr. Caillards observations but published at a later time have deduced much lower Peierls

stresses : 400 MPa [98] , 800 MPa [99] and 300-500 MPa [101]). Still, all these values are much

higher compared to experimental values. A change of slope is observed in the plot at a stress

τyz = 50 MPa and temperature T = 250 K. This corresponds to a local minima in the stress

dependence of the respective activation areas represented by A. Such discontinuity basically

indicates a possible change in the dislocation mechanism that needed to be explained. The only

difference in the set-up of the second set of experiments in comparison with the first was the

use of a low-temperature straining holder. This device was also constructed by GATAN, and

was borrowed from the Paul Sherrer Institute of Willigen in Switzerland. Using this device, one
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Figure 1.2: Temperature dependence of the yield stress τ (projected on the most stressed (110)
plane) of pure Fe. Tensile tests by Kuramoto et al. [86] (crosses) and Brunner and Diehl [49,
88] (circles), straining axis close to < 148 >. The corresponding activation areas, A, are shown
in large dashed lines [87] and dotted lines [88].
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could strain microsamples from 100 K to 300 K. Most results were obtained in three samples,

each strained at various temperatures. The Schmid law was approximately verified in the

microsamples, i.e. all mobile dislocations had high Schmid factors, when the local stress axis

was considered to be parallel to the applied one. As in the first set of experiments, difference-

images were largely employed to improve the resolution of the measurements. It was observed

that in the lower temperature range, straight screw segments have a jerky type of motion in

(110) planes, quite different from the classical Peierls mechanism seen at room temperatures.

The jerky motion refers to an observed phenomenon during experiments wherein the dislocation

instead of gliding gradually from one peierls valley to the adjacent, makes a long jump of several

Peierls valleys. Each jump is followed by a waiting time during which the dislocation is pinned

more or less to the same position, followed by another long jump and so on. The distributions

of waiting times in locked positions, jump distances, the temperature variation of the average

jump distance, and the stress/temperature variation of the macroscopic activation areas were

inconsistent with the kink-pair mechanism observed above 250 K. Dr. Caillard explains this

phenomenon in terms of a locking-unlocking mechanism, that has previously been proposed for

hexagonal closed packed (hcp) metals. This change of mechanism is able to account for the

extremely low flow stress when extrapolated to 0 K. The jerky motion can be understood well

from Fig. 1.2 which has reproduced from Dr. Caillard’s work [100].

Fig. 1.3 (a) shows various stages of the jerky motion of a dislocation at 110 K. In between

the first two and the last two frames reproduced from the video recording, we can observe

some instantaneous jumps equivalent to the distance between several Peierls valleys, whereas

we observe no motion whatsoever during the 21 intermediate frames as visible from the corre-

sponding difference-images in Fig. 1.3 (a). The average values of jump lengths were found to

be k = 0.85 nm (almost 4 Peierls valleys) at 110 K, and k = 0.45 nm (almost 2 Peierls valleys)

at 160 K (another sample). In addition, a sharp contrast is observed between the initial and

final positions of a jump (which has been enlarged and reproduced in Fig. 1.3). This conveys

that the dislocation remains immobile for the majority of the time separating the two images.

A comparison is drawn with the images of a steady motion at room temperature, shown in

Fig. 1.3 (b). Here it can be seen that the image of the dislocation is blurred giving us an
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Figure 1.3: Comparison of dislocation kinetics at 110 K and 300 K. (a) At 110 K, dislocation
d jumps between t = 0 and t = 0.04 s, and between t = 0.88 s and t = 0.92 s, whereas
no motion occurs between t = 0.04 s and t = 0.88 s (seen in difference-images). The inset
shows that the black/white contrasts of the difference-image are sharp and widely separated,
in agreement with a jerky motion with no acceleration/deceleration phases. (b) At 300 K, the
moving dislocation has a fuzzy contrast and the black/white contrasts of the difference-image
are adjacent, in agreement with a steady motion.
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idea about it’s motion during the time of exposure. It can also be observed that the difference

between two successive frames shows a pair of adjacent black and white fuzzy contrasts. It was

established in previous works [97] that the images like in Fig. 1.3 (a) conveys that there is a

variation in the instantaneous velocity by a factor of around 40,000. This implies that even by

considering quite large variations in the local stress, the phenomenon can’t be explained by a

kink-pair mechanism. After detailed analysis of the experimental results, Dr. Caillard arrived

at a number of conclusions. It was found that the motion of screw dislocations become jerkier

and jerkier as the temperature decreases. An extensive amount of cross-slip was observed, but

single jumps were found to pertain exactly to the (110) planes (at least the longest jumps).

Hence as also observed in the first set of experiments, the elementary glide planes are of the

(110) type in the entire range of temperature considered. Dr. Caillard also found that the

waiting times in the locked positions are in accordance with an exponential distribution which

agrees with a constant probability of unlocking per unit time. The transition between the jerky

motion and the classical kink-pair mechanism was found to occur around 250 K as previously

found by others and reported in Fig. 1.2. Dr. Caillard explained the screw motion as a se-

ries of locking and unlocking thermally activated events. Thus it can be inferred that there

exists a metastable-glissile configuration responsible for such phenomena. The configuration

that control the motion of screws above 250 K is thus a kink-pair and below 250 K it follows

the bulge mechanism. Dr. Caillard reproduced correctly the peak of the activation area at 75

MPa and 250 K with only one adjustable parameter; the increase of core energy ∆E, between

sessile screws and mobile near screw dislocations. The values were found to be in the range of

26-37 meV per b above 250 K, and 11 meV per b below that. The first values are consistent

with DFT calculations and the second one is considered to be the difference between the core

energy of sessile screws, and the core energy of the hypothetical metastable-glissile configura-

tion. Under such conditions, Dr. Caillard infers that the smaller than expected yield stress

extrapolated to 0 K is the result of an energy barrier smaller than the depth of Peierls valleys.

This highly interesting and new phenomenon of the occurence of jerky motion of screw dis-

locations at low temperatures inspired us to investigate the same at the atomistic scale. As

the classical theory fails to explain or predict this phenomena, we have dedicated our energies
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during the course of the thesis, in the direction of predicting a new generalized theory that

can predict the behaviour of screw dislocations with acceptable accuracy over the entire range

of temperatures. We have paid close attention to the finding of Dr. Caillard and tried to

implement them wherever possible, in our codes during the course of all our simulations. In

the following chapters we have explained in a systematic way the tools and techniques we have

employed, mixed with our scientific intuition and also the results and findings of our work.



Chapter 2

Description of Computations

2.1 Description of the model for interaction between

atoms

In order to analyze the mobility of dislocations, it is important to study the relative motion of

atoms that constitute the dislocation core. This can be done with the help of atomistic scale

simulations where the motion of atoms is integrated numerically. There are numerous models

and methods that are employed to calculate the interaction between atoms.

Density Functional Theory (DFT) [102, 103] based ab-initio calculations are known to be the

most accurate for calculating the time evolving atomic positions and energies because they

take into account the electronic structures of the atoms in many body systems. This theory

uses functionals, i.e. functions of another function to calculate the forces between atoms.

For our case the function is the electron density that depends on spatial positions of atoms.

DFT calculations have helped to confirm some important features of dislocation studies like

the non-degenerate dislocation core structure [104] the 110 glide plane and the single-hump

nature [77] of Peierls barrier for BCC crystals. But the major drawback of DFT based methods

when applied to extended defects like dislocations is the extremely limited number of atoms

that can be considered in the simulation cell which is of the order of a few hundreds only.

17
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The reason being that ab-initio calculations are computationally very demanding as a large

number of Schrodinger’s equations need to be solved for the electrons corresponding to the

atoms considered. However it proves enough to study straight dislocations which don’t have

any translational variance along the dislocation line thus allowing us to limit the length in

this direction to that of the Burgers vector i.e. |b| = a0

√
3/2 and apply periodic boundary

conditions in the direction. However at low temperatures, the motion of screw dislocations

proceeds through the formation of kink pairs which breaks the translational invariance along

this direction. Thus we have to consider a long 3D dislocation to simulate this process at the

atomic scale which is beyond DFT capabilities for the present time [105].

Another possibility is the use of inter-atomic potentials wherein the potential energy of each

atom and the forces between them are computed. For the case of metals, pair-potentials [106]

were traditionally used to determine the total energy but later on they were found to give

erroneous results as they ignored the coordination dependent many body interactions. This led

to the development of the Embedded Atom Method (EAM) [98, 99, 107] interatomic potentials

which offer a simple and dependable tool to describe bonding in metallic systems based on

local density, the spatial co-ordinates of which are known. It incorporated an approximation of

the many-atom interactions which is neglected by the traditional pair-potential scheme. The

potential energy of individual atoms are obtained by embedding an atom into the local electron

density collectively provided by the other atoms of the system. Using them, the dependence of

the strength of individual bonds on the local environment can be accounted for. EAM potentials

can be applied to systems involving a large number of atoms. EAM potentials are less accurate

than DFT calculations but they can be applied to systems involving a large number of atoms. In

order to better simulate the glide of screw dislocations, it is imperative to consider dislocations

whose sizes are comparable to those observed in experiments i.e. consisting of a large number

of atoms. Thus we have chosen to perform Molecular Dynamics (MD) simulations where the

atomic motions are integrated classically according to Newton’s laws as they are able to handle

very large number of atoms, and coupled them with EAM potentials in order to calculate the

atomic energies. We have chosen to work with three different EAM potentials [98, 99, 107] in

order to determine the common trends observed with them and thereby reduce tentatively the
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uncertainty of our analysis.

LAMMPS [108] is another very common tool employed to calculate interatomic forces. It is a

classical molecular dynamics (MD) code. Molecular dynamics (MD) is a computer simulation

method for studying the physical movements of atoms and molecules. LAMMPS codes can be

employed to study the interactions and evolution of a variety of entities like atoms, granular

materials, organic molecules, proteins, DNA, metals, point dipole particles and also a hybrid

combinations of these. It can be employed to compute a wide variety of force fields like pairwise

potentials, coulombic and long-range interactions between charged entities, polarization models,

charge equilibration, coarse-grained potentials, electron force fields and so on. In order to

calculate the forces between atoms it employs a large number of EAMs and MEAMs (Modified

Embedded Atom Method) [109] interatomic potentials. MEAM is an extension to the original

EAM potentials with the addition of a term to calculate the angular forces. Hence it is suitable

for modeling metals and alloys with fcc, bcc, hcp and diamond cubic structures, as well as

covalently bonded materials like silicon and carbon. MEAM interatomic potentials consider

the scalar product of simultaneous interactions of two pairs of atoms centred on one common

atom and the spatial angle between the three atoms at each step. As a result, they are much

more complex and difficult to handle.

Considering all the above facts, figures and limitations in mind, we chose to work with EAM

potentials to predict and model the crystal energies via atomistic scale simulations. EAM

potentials allow us to work with a large number of atoms and also allow for a direct calculation

of the kink pair formation enthalpy of 3D screw dislocations. As it is difficult to modify the

LAMMPS code, we have chosen to work with our own code integrated with the ability to

employ the EAM potentials. In the following section, we describe in details how the EAM

potentials work.

2.1.1 EAM : Embedded Atom Method interatomic potentials

Daw and Baskes [110] were among the pioneers who proposed the embedded-atom method.

They viewed the energy of the metal as the energy obtained by embedding an atom into the
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local electron density collectively provided by the other atoms of the system. In addition to it,

there is also an electrostatic interaction. They derived the following equation for the cohesive

energy.

Ecoh = G(
∑
j 6=i

ρj(rij)) +
1

2

∑
i,j(j 6=i)

φ(rij) (2.1)

where G is the embedding energy which is a function of the atomic electron density ρ, φ is the

electrostatic pair potential interaction between any two atoms. The multi-body nature of the

EAM potential is a result of the embedding energy term. Both summations in the formula are

over all neighbors j of atoms i within the cutoff distance.

The embedding energy is basically the interaction between the atom and the background elec-

tron gas. The background density for the individual atoms in the above equation is predicted

by analyzing the superposition of atomic-density tails from all the other atoms at the nucleus.

EAM potentials provide a kind of physical picture of metallic bondings wherein every atom is

embedded in a gas of electrons generated by the neighboring atoms. The embedding function

incorporates important many-atom interactions in the equation, making it much more accu-

rate than traditional pair potentials. The EAM is presently the most preferred method for

performing semi-empirical calculations in close-packed metals as it provides the combination

of the simplicity of computations required for large systems while providing a physical picture

that accounts for many atom effects.

EAM potentials are constructed by fitting a lot of parameters in analytical expressions to

best suit the materials for which they are meant. However, in order to obtain an accurate

and realistic potential, elaborate analytic expressions involving a lot of terms like density-

dependent terms, angular forces, moment expansions etc. are necessary for most materials

under different conditions (geometries, structures, phases). Hence these potentials constitute

complex combination of a number of functions nested into one another. This makes fitting of

a potential to a certain material a daunting task. A set of experimental quantities that occur

in an analytical expression can be fitted in numerous different ways and usually very arbitrary
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assumptions have to be made to reduce the number of parameters to a manageable level. This

is the main reason why potentials that work well at T = 0 K may fail at finite temperature, or

for geometries or local conditions not considered when the fit was made e.g. failing at surfaces,

defects. The reason being that atoms near surfaces and other defects are embedded into an

electron gas of density profile quite different from that of atoms in the bulk.

In this regard, significant progresses have been made in the accuracy of EAMs. This can

be attributed to its adjustment with a data basis built from ab initio calculations, involving

dislocation configurations. In order to overcome the problem of transferability, F. Ercolessi

and J.B. Adams [111] devised a new method wherein they processed a large amount of output

of first-principles calculations for positions and forces and combined this information with

traditional fitting on experimental quantities, thereby obtaining a potential by a numerical

optimization procedure. They named this technique ’the force matching method’. In this

framework, the entire set of parameters used to characterize the functions are identified. After

that efforts are made to match the forces supplied by first-principles calculations for a large set

of different configurations with those predicted by the classical potential, by minimizing the

objective function. The various configurations do not need to be related to each other and on

the contrary it is desirable to include data relative to different geometries and physical situations

in order to achieve a good transferablity for the potential. It is useful to use samples from high

temperature ab initio MD trajectories in order to obtain a good representation of the regions

of configuration space that is explored at finite temperature. In order to check the utility and

realism of the potential, preliminary tests using MD trajectories generated by classical potentials

are made. If the potential is able to reconstruct exactly the original potentials without any

further assumption beyond the analytic form, within acceptable precision and within the range

of the function arguments sampled by the input data we can conclude that the EAM potential

is accurate and transferable. Thus one can perform calculations of complex metallic structures

within the approximate embedding-energy structure. The EAMs based on Force-Matching

Method are thus a significant improvement in simplified total-energy calculations for metallic

systems and can be extensively and accurately used.

We have carried out our simulations using three different EAMs. EAM1 is developed by
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Chamati et al. [107], EAM2 by Gordon et al. [99] and EAM3 by Marinica et al [98]. The

values of the lattice parameter, a0 and the cohesive forces between the atoms, Ecoh for all three

EAMs are listed in the table below along with the experimental values.

EAM1 EAM2 EAM3 Exp.

a0 (Å) 2.8665 2.8552 2.814781 2.8665
Ecoh (eV/atom) -4.28 -4.21 -4.1224897 -4.28

Table 2.1: Values of the lattice parameter, a0 and the cohesive forces between the atoms, Ecoh
for different EAMs and as obtained in experiments

2.2 Construction of Simulation Cells

The unit simulation cells used for the study of dislocations consist of atoms placed in symmetric

configurations of the perfect crystal that is being modeled. Different methods have been devel-

oped over the years to model dislocations. The difference is usually in the boundary conditions

that are applied to the simulation cell. Here, we describe some of the methods that have been

commonly used over the years to study dislocation motion.

The first method that we are going to describe is the cluster approach where we use a cylinder

that has an axis parallel to the dislocation line along which we enforce periodicity. In order to

create the dislocation, we displace all the atoms according to the Volterra solution of anisotropic

elasticity [112-114]. The atoms on the surface of the cylinder are kept fixed at the respective

initial positions whereas the atoms inside the cylinder are relaxed. However, with this process

if the cylinder radius is small, the calculation of the Peierls stress needs to be corrected because

when the dislocation moves, the boundary conditions are not compatible with the dislocation

position anymore. The back stress that results can be computed and corrected from the Peierls

stress calculation [115, 116] but it adds to the computational cost. Also the presence of vacuum

results in discontinuity in the electronic density which induces oscillations in metals effecting

the core properties [117]. This problem vanishes with a large enough radius of the cylinder but

then the calculations are no more feasible with ab initio method. In such case EAM potentials

could be employed instead.
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The second approach that we are going to describe comprises the use of flexible boundary

conditions, which in some ways is an improvement of the rigid boundary conditions in the cluster

approach. They can be based either on a lattice Green’s function [118] or they can be coupled

with an empirical potential [119, 120]. Here the atoms inside the cylinder are first relaxed

keeping the atoms on the cylinder surface, as well as those in the region outside the cylinder

fixed. The resulting atomic forces on the surface are then relaxed using the lattice Green’s

function such that atoms in all the three zones are displaced. This process is repeated until

all forces inside and on the surface of the cylinder converge below a predetermined threshold.

The atoms in the outer zone can be regarded as a buffer that prevents forces on the atoms

on the cylindrical surface to be influenced by the external boundary. The outer zone can

be cylindrical with fixed boundaries or it could be surrounded by periodic boundaries [117].

However in order to ensure the minimize perturbations in the inner regions [121] in metallic

crystals, the outer zone needs to be quite large. The lattice Green’s function is not that

straightforward to implement but it adapts well under applied deformation which allows to

determine the core configuration under finite stresses and to compute the Peierls stress [72].

The primary disadvantage of flexible boundary conditions is the difficulty in partioning the

excess energy between the dislocation and the external boundary. For example, it is possible

to predict the Peierls stress, but not the Peierls energy when we employ this method to study

dislocation glide.

The third approach that we have studied comprises the introduction of a single dislocation in

a unit cell with periodic boundary conditions along the dislocation line and surfaces in the

remaining directions. The surface atoms are displaced according to the long range elastic field

i.e. the Volterra elastic field [113] of the dislocation and may be kept fixed or relaxed according

to lattice Green functions [118]. The main disadvantage of this approach as in the case of

the previous approach, is that it is not possible to separate the energy contribution of the

dislocation from that of the surface.

The fourth approach that was considered involves the use of periodic boundaries in all three

spatial directions [74, 112, 122, 123-125] to simulate the dislocation glide. However this is

possible only when the total Burgers vector in the unit cell is zero. Thus a dipole of dislocations
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having opposite Burgers vectors are introduced in order to produce a zero global Burgers vector.

Using elasticity theory, it is possible to calculate the interaction between the two dislocations of

the dipole as well as with their periodic images [125] allowing us to isolate the intrinsic properties

of the dislocation. However under the action of an applied stress, the two dislocations of the

dipole glide in opposite directions. The relative distance and the mutual interactions thus vary

with time resulting in periodically oscillating dislocation velocities as they cross the simulation

cell.

The fifth approach involves the use of a slab geometry [101] with a single dislocation in the

simulation cell. To start with, a perfect crystal geometry is considered and a screw dislocation

is introduced by displacing all the atoms as per the isotropic elastic solution [113]. In order

to replicate an infinite glide plane, periodic boundary condition (PBC) is used along the direc-

tions constituting the glide plane. An additional shift of b/2 is introduced along the direction

corresponding to the line of the dislocation in order to account for the plastic strain associated

with the screw dislocation and also to reconnect the left and right surfaces perpendicular to

the dislocation line. This ensures the existence of the screw dislocation at all times during

the computation process. The presence of the non-zero Burgers vector doesn’t allow periodic

boundary conditions in the remaining direction and hence two free or fixed surfaces are created

instead to form a slab [101].

Thus we have described the methods that have been popularly used over the recent years. While

weighting all the options, the fifth type of simulation cell proved to best suit our requirements.

It provides the flexibility to account for the plastic strain introduced by the screw location

as described earlier. Moreover, the problem of periodically oscillating dislocation velocities as

seen with periodic boundary conditions doesn’t arise in this case. The slab boundary also helps

to avoid misleading interaction with periodic images by choosing dimensions that are large

enough along the direction perpendicular to the dislocation line. However the most important

feature of this approach is that it allows to treat a much larger number of atoms per dislocation.

This corresponds to the smallest density of dislocations that can be attained with atomistic

scale simulations which is usually very high compared to experimental samples. The spatial

details and orientation of the simulation cell used for our computations have been described
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Figure 2.1: Snapshots of all the essential elements of the simulation cell we used for simulating
a a0/2[111](1̄10) screw dislocation in BCC Fe as considered in [126]

in an easy and step wise manner using Fig. 1.1 [10]. It consists of atoms placed in symmetric

Body Centred Cubic (BCC) configuration of a perfect crystal. The simulation cell is oriented

in a way that the glide plane corresponds to the horizontal plane of the cell. The XY plane is

chosen as the glide plane and hence there is Periodic Boundary Condition (PBC) along X and Y

directions. The assigned cell directions are X = [1̄1̄2], Y = [111] and Z = [1̄10] respectively. The

lattice parameter of perfect crystal is represented by a0 and the Burgers vector b = a0/2[111]

corresponds to the line direction (Y) of the screw dislocation. The direction Z is perpendicular

to the glide plane and refers to the direction along which the simulation cell ends with free

surfaces. We took proper care to choose these surface sufficiently far away to avoid interactions

of the atoms in the dislocation core with the surface atoms. The simulation cell dimensions have

been fixed as x = 14 b , y = 160 b and z = 20 b respectively (b = 2.48 Å for α-Fe). We have

ensured that the dimensions along the glide directions are large enough to avoid misleading

interactions with the periodic images. A screw dislocation is introduced by displacing all the
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atoms as per the isotropic elastic solution [113]. Such simulation cells have been described in

earlier works [127-130] too. An additional shift of b/2 is introduced along the Y direction in

the computation of the distance between two atoms forming a bond. The boundary conditions

are thus no longer periodic, but this trick stabilizes the simulation cell with a single screw

dislocation [131]. It accounts for the plastic strain associated with the screw dislocation and

ensures the existence of the screw dislocation at all stages of our computations by reconnecting

the left and right surfaces perpendicular to the dislocation line. A shear stress τyz is applied

to the 110[111] slip system by adding external forces to the atoms in the top and bottom z

surfaces. The magnitude of the external force is Sτyz/Nsurf where Nsurf is the number of atoms

in the surface of area S. The atomic forces on the top surface are equal in magnitude but

opposite in direction to those on the bottom surface. We relax the atomic positions by a fast

quench method or by adding a simple Langevin damping into the dynamical equation of motion

integrated with a standard velocity Verlet algorithm [132]. Finally, when we have a maximum

atomic force of 10−5 eV/Å we consider that the simulation cell has reached an equilibrium.

In Fig. 1.1, the atoms are colored as per the deviation of the perfect crystal (in the absence

of dislocations) cohesive energy per atom. For the atom i, the reference energy is denoted by

E0
i , which can be computed easily before introducing the dislocation in the simulation cell.

Denoting the potential energy of atom i by Ei , the potential energy deviation is given by

∆i = Ei − E0
i . The atomic energies are computed by models for interaction between atoms as

described in the following section.

2.3 Algorithms used for our computations

Introduction

In the field of condensed matter physics, some methods have been developed over the years in

order to calculate the rate of reaction or transition from one system configuration to another.

The general logic involves searching for an optimum transition state [133, 134] through which

the system will pass between the initial and final states. This transition state is a saddle point
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at the edge of the potential energy basin corresponding to the starting state. By following the

gradient of energy in both directions from a saddle point, the minimum energy path (MEP)

[133, 134] can be traced. In our case, we are interested in studying the process of glide of a screw

dislocation in a BCC Fe crystal. With this purpose in mind we first perform a quenching of our

simulation cell loaded with an applied shear stress for an initial and final position of a straight

dislocation along the glide plane. Quenching relaxes the atomic forces till the simulation cell

reaches a mechanical equilibrium. Using these initial and final relaxed positions of the screw

dislocation, the Nudged ELastic Band (NEB) [133, 134] computations are then performed to

compute the minimum energy path (MEP) for the screw dislocation as it glides from the initial

to the final position. After that we use a saddle state of the dislocation derived from the

profiles of the NEB simulations to construct a long dislocation in an extended simulation cell

and perform the Molecular Dynamics (MD) simulations to study the evolution of the kink

pairs as they propagate along the dislocation line and the overall atomic interactions with the

hope that they provide some answers towards a proper explanation for the occurence of ’jerky

motions’ of dislocations as observed experimentally by D. Caillard [9]

2.3.1 Quenching - Relaxation of the simulation cell

Quenching is a process of relaxation of the simulation cell which provides us the most stable

atomic configurations. For our case we start with a straight dislocation in our simulation cell,

the initial position of which has been defined by it’s x,y and z co-ordinates. The simulation cell

is loaded with an applied shear stress on the yz-surfaces above and below the cell. The resulting

force initiates movement of the dislocation which is restricted by coupling the Newton’s equation

of motion for the individual atoms with a simple Langevin damping. We consider that the cell

has reached equilibrium when the atomic forces have diminished to around 10−5 eV/Å . This

results in a lowest energy static equilibrium starting dislocation configuration. Similarly we can

obtain the lowest energy final configuration of the dislocation under the applied shear stress

by defining the final position (by changing the x co-ordinate i.e. the direction along which

glide occurs) and repeating the quenching process. The distance between the initial and final
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positions is equal to a0

√
2/3 i.e. the distance between two Peierls valleys which corresponds

to the distance between two nearest atomic rows. Here the atomic rows are considered along

the dislocation line i.e. Y <1 1 1> direction and the distance between them is along the

perpendicular Z <1 1 2> direction.

2.3.2 Molecular Dynamics - Verlet and Velocity Verlet algorithm

Molecular dynamics (MD) simulations are performed to predict as accurately as possible what

atoms do in real life i.e. how they interact with other atoms, how their parameters of motion

change as a result of these interactions and how a system evolves with time consequently.

By knowing a starting configuration of all the atoms in the system we are able to predict

simultaneously the new positions and velocities at every time step by providing an algorithm for

change and integrating with Newton’s laws of motion. It is possible to perform MD simulations

up to time scales of the order of nano seconds 10−9s with time steps of the order of femto-seconds

10−15s.

Verlet algorithm

For our simulations we use the EAM inter-atomic potentials that provide the force field for the

inter-atomic interactions. The same relaxed starting configuration from the quenching process

is used to initiate the simulations. The verlet algorithm is employed for estimating the new

position and velocity of atoms at every time increment of the MD simulation. The force is

the sum of the forces due to the EAM field and the applied external stress. F = FEAM + Fτ .

Newton’s equation of motion gives: F = ma = FEAM +Fτ = − δU
δr

+Fτ (where ’r’ is the position

at time ’t’ and ’m’ is the atomic mass). The force due to the external stress Fτ acts only at

the surfaces of the simulation cell i.e. only on the surface atoms.

By employing the Taylor series expansion, the position at t+∆t is given by the equation.
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r(t+ ∆t) = r(t) + v(t)∆t+
1

2!
a(t)∆t2 +

1

3!
b(t)∆t3 +O∆t4 (2.2)

Similarly, the position at t-∆t is given by the equation.

r(t−∆t) = r(t)− v(t)∆t+
1

2!
a(t)∆t2 − 1

3!
b(t)∆t3 +O∆t4 (2.3)

By adding the two equations we get :

r(t+ ∆t) = 2r(t)− r(t−∆t) + a(t)∆t2 +O(∆t4) (2.4)

In this way, the position of the atom as it evolves by a time step of ∆t can be predicted.

This method is however very popular among people who perform MD simulations due to it’s

simplicity, accuracy and stability. However it requires more computational effort as we have

to save the values of positions at two previous time steps i.e. ’t’ and t − ∆t. The associated

truncation errors with this method are of the order of ∆t4. Another limitation with this method

is that it cannot generate the velocities directly. The velocity can however be estimated as:

v(t−∆t) = r(t)−r(t−∆t)
∆t

. The verlet algorithm thus conserves the total energy of the system very

well at all stages. However it comes at the cost of accuracy and stability. This problem can

be overcome by employing the ’Velocity Verlet Algorithm’ which can predict both the position

and velocity synchronously i.e. at the same time steps and require only the initial positions

and velocities to initiate. This algorithm is explained in details in the following subsection.

Velocity Verlet Algorithm

In this method a smart ploy is employed to calculate accurately the velocities. Instead of

calculating the velocities every time step, the calculation is made every half step using values

of position and acceleration at the previous step.
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v(t+
∆t

2
) = v(t) +

1

2
a(t)∆t (2.5)

Following that we calculate the position and acceleration at the next full time step.

r(t+ ∆t) = r(t) + v(t)∆t+
1

2!
a(t)∆t2 (2.6)

a(t+ ∆t) = − 1

m

δU

δr
r(t+ ∆t) (2.7)

Then using all these values, the velocity after another half-step (which essentially is a full step)

is predicted as follows :

v(t+ ∆t) = v(t+
∆t

2
) +

1

2
a(t+ ∆t)∆t (2.8)

Next in order to calculate more accurately the dynamics such as to represent a real world

system, it is important to introduce a Langevin damping in these equations. So the Eqn. 1.6

can we re-written as :

r(t+ ∆t) = r(t) + v(t)∆t+
1

2!
(a(t)− λv(t))∆t2. (2.9)

In this way the dynamical evolution of the atoms in the dislocation along the kink propagation

and thus the corresponding configurations can be estimated.

2.3.3 NEB method to estimate the MEP

In the Nudged Elastic Band (NEB) [133, 134] method, numerous images or replicas of the

system are created and connected together by springs such as to represent a discrete path

from an initial configuration I to a final configuration F. A NEB calculation can be started by
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assuming a linear pathway between I and F and later an optimization algorithm can be applied

to relax the images till they converge with the MEP. For our simulations, we apply the NEB

to compute the MEP of the glide of the screw dislocation introduced in the simulation cell

between an initial and a final state, both of which are states of local minima on the potential

energy surface produced by the application of an EAM.

We can represent the string of images as [R0, R1, R2, .....RN ] with fixed end points I = R0 and

F = RN . The N-1 intermediate replicas can be adjusted by the optimization algorithm. An

object function can be used to define the whole process :

S(R1, R2, .....RN) =
N−1∑
i=1

E(Ri) +
N∑
i=1

k

2
(Ri −Ri−1)2 (2.10)

This represents an elastic band made up of N-1 beads and N springs with the same spring

constant k. The band is made to string between the two fixed endpoints. However a couple of

problems are encountered. Firstly, the elastic band gets pulled away from the curved regions

of the MEP due to the component of the spring force perpendicular to the path. Secondly the

replicas slide down towards the endpoint resulting in lowest resolution around the saddle point

where it should ideally be maximum. This down sliding happens due to the parallel component

of the real force arising from the interaction between the atoms [133, 134].

The technique of ’Nudging’

Both the problems of corner-cutting and sliding-down, mentioned in the previous sub-section

can be countered by a force projection technique or ’nudging’. The force on each image is

adjusted to comprise of only the parallel component of the spring force and perpendicular

component of the true force.

F = −∇E(Ri)|⊥ + F s
i .τ̂iτ̂i (2.11)
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where ∇E(Ri) is the gradient of energy corresponding to the atomic configuration of atoms in

image ’i’ and F s
i , the spring force acting on image i. The perpendicular component may be

seperated out by subtracting the parallel component as follows:

∇E(Ri)|⊥ = ∇E(Ri)−∇E(Ri).τ̂‖τ̂‖ (2.12)

It is also essential to ensure equal spacing between the replicas as the same spring constant k is

used for all the springs. Even in high curvature regions where the angle between Ri and Ri−1

deviates quite a bit from 0, this spacing can be maintained by evaluating the spring force as:

F s
i |‖ = k(|Ri+1 −Ri| − |Ri −Ri−1|)τ̂i (2.13)

Estimation of the path tangent

The simplest way to estimate the tangent at the image i is by using the adjacent images Ri+1

and Ri−1 along the pathway of the NEB as follows:

τ̂i =
Ri+1 −Ri−1

|Ri+1 −Ri−1|
(2.14)

But a more accurate way is to bisect the two unit vectors

τ̂i =
Ri −Ri−1

|Ri −Ri−1|
+

Ri+1 −Ri

|Ri+1 −Ri|
(2.15)

and then normalize τ̂i = τ/|τ | in order to ensure the equi-spacing of images even in large

curvature regions. The computation of tangents is performed periodically every 5 to 10 steps

in order to avoid some artefacts that appear when the correction is performed too frequently.
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The NEB applied to our simulation cell

The value of the spring constant is chosen as 10 N/Å and the number of system replicas is

fixed at 50. We then run the NEB code with an applied stress below the Peierls stress such

that the minimum energy path (MEP) is computed when the dislocation motion is hindered by

a barrier. In the case of the formation of kink pair on long dislocation below the Peierls stress

we need to construct the initial dislocation path such as to break the translational symmetry

of the straight dislocation which is due to thermal fluctuations. To obtain the intermediary

states of the dislocation along the NEB path we combine the atom coordinates of starting and

final states along the dislocation line. The coordinates are those of starting state along the

dislocation line except in a central segment where the length depends of the rank in the NEB

path, where the coordinates are those of final state. The successive NEB images correspond

to dislocation profiles which are presented in Fig.1.2(a). The precise MEP which is plotted

according to dislocation position is shown in Fig.1.2(b)

Figure 2.2: a)Profile of the dislocation in different NEB images. b) Minimum energy path
(MEP) between the initial and final dislocation states with the corresponding saddle state.

The position of the dislocation is determined as the barycenter of the atomic positions weighted

by ∆i. For the screw dislocation the position along Y axis i.e. the dislocation line is given by:

YD =
1∑
i ∆i

∑
i

yi∆i, (2.16)
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whereas its position along z axis is given by :

ZD =
1∑
i ∆i

∑
i

zi∆i, (2.17)

where yi and zi are the coordinates of atom i along Y and Z axis, respectively. These compu-

tations are performed in the regions excluding the surfaces or very close to the surfaces. The

saddle point of the first NEB profile corresponds to the originating point of the nucleation of a

kink pair on the dislocation , which propagates both ways along the dislocation line and finally

leads the dislocation to cross the Peierls barrier and move into the next Peierls valley.

2.4 Simulation cell extension

The simulation cell used for the NEB computations is limited in length along the dislocation

line ; 160 b in length which is equivalent to 400 Å or 0.04 µm. The reason being that numerous

system replicas are needed to compute accurately the MEP, thus limiting the number of atoms

that can be handled computationally. This could lead to the exclusion of appearance of some

phenomena that could probably occur as the kinks propagate further along the dislocation line

beyond the length considered in our simulations. Also the kinks require to traverse much longer

distances in order to reach steady velocity.

In order to overcome this, we first extended our simulation cell by considering periodic boundary

conditions along the y direction i.e. by taking a simulation cell (same as for performing NEB

computations) and extending it twice each in positive and negative y-directions. In this way

we constructed a new simulation cell which is five times as long as the original cell. The

length of the extended simulation cell is 2000 Å or 0.2 µm which is comparable to the length

of dislocations observed by D. Caillard in his experiments. In order to be as close as possible

to the experimental set-up, we fixed the atoms on the end surfaces of the long simulation cell

along the dislocation line. As described in Fig.1.3, we then picked up the first saddle state

configuration of the dislocation from the NEB computation and placed it in the central cell of
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Figure 2.3: a) Typical NEB simulation cell used to compute the saddle state of the dislocation
and b) Extended simulation cell with NEB saddle state placed at the center and straight
dislocation segments placed on both sides several times.

the extended cell. We then placed 2 straight dislocation segments each on either side of the

central cell which leads to a final extended cell, 5 times larger than the NEB one, with a kink

pair right at the middle along the dislocation line.
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This trick allows us to relaunch new MD simulations from a saddle state without having to wait

infinitely for the occurence of a rare event like kink pair nucleation whose time scales are of the

order of milli-seconds whereas MD can be performed only upto nano-seconds. It is important

also to note that we are not interested in viewing the process of how the kink pair nucleation

took place in the first place. What concerns us is what happens after i.e. once the kink pair is

formed, how it propagates along the dislocation line and how finally the dislocation glides to

the next Peierls valley and so on.

Figure 2.4: Left and right kinks attaining steady state velocity at positions that justify the
simulation cell extension.

In Fig. 1.4, we have plotted the velocity of left and right kinks with respect to their positions in

the extended simulation cell. The results plotted are from test simulations that were performed

to investigate the required length of the extended simulation cell. It can be seen that both the

left and right kinks reach steady state velocities after propagating with gradually increasing
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velocity initially. This leads to the conclusion that the chosen length of the extended simulation

cell is quite good to proceed with further simulations. In order to be sure, we chose to repeat

our simulations with a longer extended simulation cell (7 times the NEB cell). But the analysis

didn’t yield any changes in the end results as obtained with the first extended simulation cell.

This led to the conclusion that the dislocation length of 5 times the NEB cell is good enough

to accurately simulate the phenomenon we are interested in. The kink velocities in Fig. 1.4,

are calculated from the time integrated MD profiles of the screw dislocation that indicate the

successive positions of both the left and right kinks along the dislocation line with respect to

the time. By knowing the change in position with respect to the time, we are able to trace

the velocities at all stages. Here too the velocities are computed every 5 or 10 steps to avoid

artefacts resulting from a too frequent determination of velocities.
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Atomic scale study of the screw

dislocation glide in bcc Iron

We performed Molecular Dynamics (MD) simulations using the extended simulation cell that

we created as detailed in the previous chapter. Starting from a long straight dislocation with a

kink pair at the center of the dislocation, the simulations were launched with combinations of

different levels of applied shear stresses, different temperatures and using different EAM inter

atomic potentials EAM1 [107], EAM2 [99] and EAM3 [98].

3.1 Kink propagation in standard Peierls Nabarro mech-

anism

In this section we examine the different cases where we observed the standard Peierls Nabarro

mechanism [9] in our simulations. This mechanism refers to the standard process of dislocation

glide wherein the dislocation moves in steps from one Peierls’ valley [9] to the adjacent and so

on, resulting in an overall glide from one part of the crystal to another. Such a step involves

first the formation of a pair of kinks on the dislocation by the movement of some of the atoms

to the next Peierls valley [9]. This is followed by the propagation of the kinks outwards along

38
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the dislocation line, i.e. the atoms move along the direction of the burger’s vector parallel

to the dislocation line and more atoms start moving in the crystal rows contiguous to the

dislocation line. Finally the entire dislocation moves to the next Peierls valley [9] when the

kinks have traversed the entire length of the dislocation. For this process, the dislocations

need to overcome an energetic barrier called Peierls’ barrier [9]. Both the applied shear stress

along the dislocation glide plane and temperature in the crystal play a part in this process by

providing the necessary forces and energies to the atoms, first for the formation of kink pairs

and then for the propagation of kinks along the dislocation line, which leads to the glide of the

entire dislocation in a direction perpendicular to the motion of kinks.

As a result of the applied stress, a force known as the Peach-Koehler [135] force τyzb starts

acting per unit length of the dislocation. The temperature provides the necessary impetus for

the formation and propagation of kink pairs. By knowing the distance traversed by the kinks

i.e. the distance between the two kinks at all times, we can assert the distance by which the

entire dislocation has progressed. Denoting by Lk, the instantaneous distance between the two

kinks, the distance progressed by the dislocation can be expressed as Lk

L
a , a (a =

√
2/3 a0)

being the distance between two adjacent Peierls valleys and L the dislocation length. Thus the

work done by the Peach-Koehler force to cause the dislocation motion can be expressed as :

W = τyzb
Lk

L
aL = τyzbLka. (3.1)

3.1.1 Simulations for T = (0 + ε) K

In this section we describe the simulations carried out close to 0 K. It means that initially we

did not apply any kinetic energy to the atoms in the simulation cell representing the crystal.

However, as we have considered our system a NVE microcanonical ensemble (fixed number of

atoms, total volume and total energy of the system at all times) and started our simulations from

a transition state (one of the local enthalpy maximas) corresponding to the kinked dislocation

at the unstable equilibrium state, there exists an initial potential energy δE and hence an
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Figure 3.1: Plot of temperature per unit atom as a function of time for two different extended
simulation cells i.e. 5 and 7 times the original cell, at different applied shear stresses, τyz = 100
MPa, τyz = 200 MPa and τyz = 300 MPa respectively for temperature close to 0 K i.e. T =
(0 + ε) K, for EAM1 [107].

additional minimal initial temperature ε at all times arising from the conservation of energy.

It can be expressed as :

ε =
2δE

3kBNat

. (3.2)

As a result it can be said that the simulations were carried out at a temperature, T = (0 + ε)

K. The kinks gradually start to propagate along the dislocation line due to the action of the

applied stress manifesting as the Peach-Koehler [135] force τyzb described earlier. The work

done by this Peach-Koehler [135] force τyzb, is dissipated in atomic vibrations. Denoting the

total number of atoms in the simulation cell by Nat, the total kinetic energy of the system, Ec

can be expressed as :
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Ec = Nat
3

2
kBε1, (3.3)

where ε1 is the increase in temperature of the system as a whole due to the applied stress.

Equating the kinetic energy of the system with the equivalent work done by the Peach-Koehler

force we have :

Nat
3

2
kBε1 = τyzbLka. (3.4)

.

By re-arranging the terms, we get an equation in terms of ε1 :

ε1 =
2τyzbaLk

3kBNat

. (3.5)

.

So from equation 3.2 and equation 3.5, the overall temperature εtotal of the simulation cell at

all stages can be estimated :

εtotal = ε+ ε1 =
2

3kBNat

(δE + τyzbaLk). (3.6)

Thus from equation 3.6, we can conclude that the effective temperature in the system increases

with increase in the distance Lk between kinks i.e. with passage of time and also with the applied

stress τyz. However it decreases if we increase the total number of atoms in the simulation cell.

In order to verify this, we performed simulations starting from a temperature close to 0 K

(i.e. (0+ε) K) for different lengths (thus varying the total number of atoms) of the extended

simulation cell. Two different lengths of the extended simulation cell along y, i.e. 5 and 7 times

the NEB simulation cell (described in the previous chapter) respectively were used for the same

level of applied stress. The simulations were carried out for three different stress levels: 100

MPa, 200 MPa and 300 MPa respectively for both lengths of the extended simulation cell.
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Figure 3.2: MD profiles of simulations
of kink propagation for temperature
close to 0 K, i.e. T = (0 + ε) K for
(a) EAM1 [107] performed at an ap-
plied shear stress, τyz = 300 MPa (b)
EAM2 [99] performed at an applied
shear stress, τyz = 500 MPa and (c)
EAM3 [98] performed at an applied
shear stress, τyz = 800 MPa respec-
tively.

The effective temperature per atom in the simulation cell as a function of time has been plotted

for EAM1 [107] in Fig. 3.1. Here we observe that for the case of 100 MPa, the temperature

per atom increases with the passage of time for both lengths of the extended simulation cell.

For the length 5 times the NEB simulation cell (black line in figure), the temperature per atom

increases to 0.019 K during the length of the simulation possible and for the length 7 times the

NEB simulation cell (red dashed line in figure), the temperature per atom increases to 0.013

K/atom. For the case of 200 MPa, these values are 0.042 K (Blue line) and 0.031 K (magenta

dashed line) respectively and for the case of 300 MPa, these values are 0.071 K (Green line)

and 0.051 K (orange dashed line) respectively. For all the three stress levels, we see that the

temperature decreases when the number of atoms in the simulation cell increases, i.e. for the

longer extended simulation cell. The temperature is also higher for the case of higher applied

stress (for same lengths of extended simulation cell) which is in accordance with the prediction

of Eqn. 3.5.

We also see that among all the different individual cases in Fig. 3.1, the highest value of
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temperature increase i.e. 0.071 K is almost negligible in comparison to 1 K (0.071¡¡¡¡1K).

Hence we could infer that our simulations were carried out almost at 0 K, or as stated very

close to 0 K. In Fig. 3.2, we have plotted the MD profiles of the dislocation at definite intervals

of time evolution for simulations performed with EAM1 [107] at an applied shear stress τyz =

300 MPa, with EAM2 [99] at an applied shear stress τyz = 500 MPa and with EAM3 [98] at

an applied shear stress, τyz = 800 MPa respectively. We can see for all the three cases that the

kink pair initially grows in size gradually from the saddle state till it is in the adjacent Peierls

valley [9] and then it propagates along the dislocation line as expected in standard theory. Here

we note that for all the three EAMs, the simulations were carried out at stress levels lower than

the Peierls stresses [9], i.e. the stress needed to overcome the crystal resistance in the absence of

thermal fluctuations. The Peierls stress [9] values predicted by atomistic simulations for EAMs:

EAM1 [107], EAM2 [99] and EAM3 [98] are 600 MPa, 900 MPa and 1000 MPa respectively.

Following these simple set of simulations to verify our calculations with standard theory, we

proceeded to test our simulations again, this time with the application of temperature to the

crystal lattice. The results have been described and discussed in the following section.

3.1.2 Simulations at T = 5 K and T = 10 K

In order to introduce temperature in our simulations, we designed our code to attain the

desired temperature by designating the initial velocities of the atoms according to a Maxwell-

Boltzmann random distribution. This process has a stronger statistical basis than using a

thermostat because it relies on the real atomistic heat bath of a larger system rather than any

particular thermostat algorithm.

Referring once more to Fig. 3.1, we observe that the increase of effective temperature per atom

ε0 along MD time steps is much smaller compared to the applied temperatures 5 K and 10 K

(ε0 = 0.071K <<<< 5K, 10K). Hence the effect of the initial temperature in the system can

be neglected. We have considered the same three cases as in the previous section (simulations

close to 0 K), with the only difference being that small temperatures, T = 5 K and T = 10

K have been applied to the simulation cell in two different sets of simulations. The profiles of
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Figure 3.3: MD profiles of simulations
of kink propagation for temperature, T
= 5 K for (a) EAM1 [107] performed
at an applied shear stress, τyz = 300
MPa and (b) EAM2 [99] performed at
an applied shear stress, τyz = 500 MPa
and (c) EAM3 [98] performed at an ap-
plied shear stress, τyz = 800 MPa re-
spectively.

dislocation along with the kink propagation are very crude and unclear to the naked eye when

plotted at the same time interval as in the previous case of zero applied temperature. This can

be attributed to the fact that the application of temperature significantly increases the initial

velocities and gradually the kinetic energies of the atoms causing larger local vibrations of all

the atoms along the dislocation. Therefore we averaged the dislocation profile over 1000 time

steps in order to have a more clear view. These results have been plotted in Fig. 3.3 (for T =

5K) and Fig. 3.4 (for T = 10 K) respectively.

For both sets of simulations, again the standard Peierls Nabarro mechanism was observed every

time. The profiles also appeared quite similar to the respective profiles in the case without

any applied temperature. However, it is not visually possible to know if the application of

temperature has any effect on the velocities of the propagating kinks, which in turn could effect

the glide velocity of the entire dislocation. Hence we proceeded to analyse the kink velocities

with and without the application of temperature for all the three EAMs : EAM1 [107], EAM2

[99] and EAM3 [98].
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Figure 3.4: MD profiles of simulations
of kink propagation for temperature, T
= 10 K for (a) EAM1 [107] performed
at an applied shear stress, τyz = 300
MPa and (b) EAM2 [99] performed at
an applied shear stress, τyz = 500 MPa
and (c) EAM3 [98] performed at an ap-
plied shear stress, τyz = 800 MPa re-
spectively.

3.1.3 Plot of kink velocity as a function of time

Although there wasn’t any significant visible difference in the profiles of kink propagation by

the introduction of small temperatures in our simulations, we proceeded to investigate closely

the effect of temperature on the velocities of the propagating kink pairs. Previous studies have

established some effects of temperature on the velocities of propagating kinks. For decades,

after Leibfried [136] predicted that temperature decreases the velocity of kinks, it began to be

widely accepted. However recently in 2013, Swinburne contradicted this and predicted that the

friction parameter, hence the velocity of kinks is temperature independent. The main findings

and predictions of these two theories are described in a detailed manner before comparing our

simulation results with such predictions.

G. Leibfried, in one of the earliest atomistic scale works [136] on dislocation velocities had

predicted that the kink velocities in screw dislocations are temperature dependent and they de-

crease with increasing temperature. At temperatures above one fifth of the Debye temperature,

the drag due to the interaction of dislocations with phonons starts to be significant and is quite
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Figure 3.5: Plot of kink velocity as a
function of time for three different tem-
peratures, T = (0 + ε) K, T = 5 K and
T = 10 K for (a) EAM1 [107] at an ap-
plied shear stress, τyz = 300 MPa, (b)
EAM2 [99] at an applied shear stress,
τyz = 500 MPa and (c) EAM3 [98] at
an applied shear stress, τyz = 800 MPa.
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prominent in the regime of practical temperatures. The findings of Leibfried was employed and

confirmed by E. Bitzek and P. Gumbsch [137] while studying the dynamics of dislocations in a

face centred cubic (FCC) metal. They employed two different embedded atom method (EAM)

potentials by Angelo et al. [138] and Mishin’s potential [139] to study FCC Nickel and used a

simple slab geometry to carry out atomistic scale simulations in order to estimate the Peierls

stress, the effective mass, the line tension (described in the previous chapter) and the phonon

drag coefficient Bph for both edge and screw dislocations. They studied the dislocation-obstacle

interactions for a dislocation intersecting an array of voids and found a noticeable effect caused

due to inertial overshooting. To study this effect, they developed a dynamic line tension model

(described in the previous chapter) which could be used to estimate the magnum of inertial

effects when dislocations interact with localized obstacles depending on obstacle strength, spac-

ing and temperature. Leibfried [136] had proposed the damping coefficient or the phonon drag

coefficient Bph to quantify the deceleration by viscous drag. According to Leibfried [136], the

phonon drag coefficient Bph at temperature T, is expressed as :

Bph =
3kTz

20ctb2
. (3.7)

,

where k is the Boltzmann’s constant and z is the number of atoms per unit cell, ct is the speed

of transverse waves and b is the Burger’s vector. In the regime where inertia can be neglected,

the work of the Peach-Koehler force is dissipated through dislocation damping by phonons,

which leads to the equation: Bphv = τyzb. Thus it can be inferred from equation 3.7, that

according to Leibfried, the phonon drag coefficient increases with increasing temperature. It is

also evident that as v is inversely proportional to Bph, the corresponding velocity decreases with

temperature. Bitzek and Gumbsch [137] utilized the steady state velocity vss reached after an

acceleration period to determine the drag coefficient B = τyzb/vss for different temperatures T

for non relativistic motion of dislocations i.e. for vss ≤ ct/3. The temperature dependence of B

for edge dislocations was found to be in good agreement with Leibfried’s estimate. Whereas for

the case of non-linear photon scattering in screw dislocations, the drag coefficients were found
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to be higher as expected.

Leibfried’s model was also used and illustrated by D.L. Olmsted et al. [140] in their studies on

dislocation mobility. Molecular Dynamics simulations were employed to study the velocities of

edge and screw dislocations in pure Al and Ni, both of which have face centred cubic (FCC)

crystal structures unlike Fe. The velocities of the dislocations were plotted as a function of σ
T

keeping σ constant and varying the temperature. In most cases a regime was observed where

the velocity is linear in σ
T

. Thus for a given material, the behaviour in this linear regime could

be captured by a single parameter B
T

, the values of which were obtained and tabulated. For both

the cases of screw dislocation in pure Al and pure Ni, the B
T

value decreased with the decrease

in σ
T

values. Now as σ is constant a decrease in σ
T

value implies an increase in temperature

and the corresponding decrease in B
T

value implies an increase in the value of B. This is in

accordance with the theoretical prediction of Leibfried’s model.

A contrasting behaviour has however been predicted by T.D. Swinburne et al [10]. with regards

to the velocity of kinks. They concluded that the kink velocity is independent of temperature

which has been explained in the following part of this paragraph. For the case of Body Centred

Cubic (BCC) Iron (Fe), the formation energy of kink pairs is much larger compared to the

thermal energy. The time scales attainable in MD depends on the stress level close to τP

(Peierls stress) for which the barrier for kink pair propagation is smaller than kT. Hence it is

impossible to get statistically significant data on the simulated kink nucleation. This is why

researches resort to the use of very high deformation rates (6 orders of magnitude [136]) in

simulations as compared to experiments in order to induce the formation of a kink pair. But on

the other hand it has also been established that the dislocation core structure [129] and Peierls

barrier change with applied stress. The possibility of a degenerate dislocation core structure

had however been ruled out by DFT based calculations [74]. In order to avoid a degenerate

core structure, Swinburne applied the well known discrete Frenkel-Kontorova-Langevin (FKL)

[141-144] model with a coarse graining approach that treats the dislocation line as an elastic

string sitting in a periodic substrate potential [145]. He fixed the nodes as per the spacing of

the atomic planes normal to the dislocation line, essentially assigning a core position in each

such plane essential to reproduce the structure and dynamics of the dislocations that were
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Figure 3.6: Asymptotic Kink velocity plotted as a function of increasing applied shear stress
for EAM1 [107]. (EAM Chamati et al.)



50 Chapter 3. Atomic scale study of the screw dislocation glide in bcc Iron

being simulated. Discreteness effects had previously been theoretically examined in covalent

materials by Boós and Duesbery [143], but this was the first attempt ever to investigate the

dynamic behaviour they predict. In the simulation results, kinks were identifiable quite clearly

and a kink diffusion constant could be derived from statistical analysis. It was observed that

for screw dislocations, the kink diffusivity varied linearly with temperature meaning that the

migration barrier is extremely small. This wide range of diffusive behavior was rationalized

by analytical study which led to the conclusion that frictional forces on a kink, hence the

kink velocity is independent of temperature. Many substrate potentials were tested but only

a sinusoidal substrate potential function was consistent with the approximation of taking a

dislocation line to be a string of constant internal structure restricted to the slip plane. The

model was able to reproduce the thermally activated dynamics of dislocations seen in atomistic

scale MD simulations (coupled to a thermostat) at around 10−7 of the computational cost

by simulating a line of only 500 nodes on a coarse time step of 10 ps instead of the entire

atomistic system of 700,000 atoms on a very fine time step of 1 fs. This efficiency was employed

to investigate dislocation motion under experimental stress levels inaccesible to MD. A clear

length dependence was observed for screw dislocations that could be attributed to the negligible

kink migration barrier seen earlier.

In Fig. 3.5, we have plotted the velocities of kinks as a function of evolving time for three

different temperature regimes T = (0+ε) K, T = 5 K and T = 10 K for the three EAM potentials

EAM1, EAM2 and EAM3 respectively. The velocities are derived from our simulation results,

from the change in position of the kinks as they propagate along the dislocation line with

evolving time. It is seen that for all the cases, the kink velocities finally attain an asymptotic

value. The asymptotic velocities of kinks obtained in our simulations are fitted to the asymptotic

velocities predicted by the widely accepted Soliton’s law [146]. These adjustments allow us to

compute kink velocities and temperatures without repeating our simulations every time, for

each case.

The Soliton’s law has been described in details in the following text. The expression for kink

velocity in Solitons law [146] is derived from the Frenkel-Kontorova model as the one used by

Swinburne et al [145]. It has been dubbed as ’line tension model’ in ref. [84] in reference to
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the seminal work from Dorn, Rajnak and Guyot [147, 148] done way back in the 1960s. The

line tension [84] refers to the restoring force associated with the increase in dislocation length

when the dislocation bows out to form a kink pair. In the model used in [84], the dislocation

line tension is first calculated by performing atomic scale simulations in a cell that is small

enough to be accessible to DFT calculations. The calculated line tension value is then used

as a parameter in a line tension model to predict the kink-pair formation enthalpy on screw

dislocations as a function of applied stress.

The expression for the velocity is derived by starting from the Lagrangian for the line tension

model for dislocations :

LLT(x, τyz) =

∫
dy[

ρ

2
(
∂x

∂t
)2 − (VP (x(y, t))− τyzbx(y, t) +

T

2
(
∂x

∂y
)2)], (3.8)

where y is the position of the segment along the dislocation line and x is the displacement along

the glide direction for the line segment situated at y position along glide direction at time t.

VP and T are the substrate potential and line tension coefficient respectively, both having

dimensions of energy per unit length. τyzb is the Peach-Koehler force and ρ is the dislocation

mass per unit length. Extremalizing the action for the Lagrangian in Eq. 1.9 leads to the

dynamical equation :

ρxtt = −V ′P (x(y)) + τyzb+ Txyy. (3.9)

In order to account for the energy dissipation through crystal vibrations we add a term pro-

portional to xt the velocity :

ρxtt = −V ′P (x) + τyzb+ Txyy − ρλxt. (3.10)

A simple form for VP ,VP = αx2(a−x)2

a4
is considered in order to derive an analytic expression for

kink velocity. For this form of the potential and in the absence of external applied stress, (τyz
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= 0) , the static solution of Eq. 3.10, has the simple form: y = a
2

(1+tanh(k0y)), where k0 =√
α

2Ta2

The dynamical solution in the absence of damping is given as a soliton solution [9] :

x =
a

4
(1 + tanh(

k0√
1− v2

c2

(y − vt))), (3.11)

where v is the velocity of the kink solution and c =
√

T
ρ

is the velocity of small amplitude

waves along the line.

It has been numerically verified that the applied stress and damping have no effect on the main

form of the dynamical solution and hence we use the same equation to treat our case.

We then estimate the work done per unit time from the applied stress along the trajectory of

one kink : W = τyzb
∞∫
∞
xtdy, which gives W = τyzbav

Next we determine the expression for the heat per unit time dissipated through the damping

term : Q = ρλ
∞∫
∞
x2
tdy which is simplified as : Q = ρλa2v2 k0

3

√
1− v2

c2

In the stationary regime of the kink propagation, W and Q are equal which leads to the following

deduction of the expression for kink velocity :

vk =

3τyzb

λρ

√
2T
α√

1 + (3τyzb

λρc

√
2T
α

)2

(3.12)

The value of T is taken from the calculated values in [84]. Then we substitute the constant

part of the equation derivable by using proper values and units as, ζ = 3b
λρ

√
2T
α

, and re-write

the final equation as :

vk =
ζτyz√

1 + ( ζτyz
c

)2

(3.13)



3.1. Kink propagation in standard Peierls Nabarro mechanism 53

The parameters c and ζ were adjusted for the cases of each of the two EAM potentials [107,

98] in order to reproduce the MD data ( at T = (0+ε) K ) plotted in Fig. 3.5. The values

obtained for EAM1 [107] are ζ = 0.5 Å ps−1 MPa−1 and c = 5800 ms−1.

In Fig. 3.5 (a), we have plotted the kink velocity profiles for EAM1 [107] at an applied shear

stress, τyz = 300 MPa. It is seen that the velocity profiles are similar for all three tempera-

ture regimes. The asymptotic velocity is fairly constant, around 50-52 Å/ps for the different

temperatures in the simulations. This figure leads us to conclude that for EAM1 [107], tem-

perature does not have any effect on the velocity of kink propagation. This is in accordance

with the prediction by Swinburne [145] which had also been seen in a few other investigations

of dislocations [149-151]. In Fig. 3.5 (b), we have plotted the kink velocity profiles for EAM2

[99] at an applied shear stress, τyz = 500 MPa. Even here, it can be seen that the velocity

profiles for all the cases of temperature are almost exactly similar. The asymptotic velocity

in this case is also around 50-52 Å/ps, as in the case with EAM1. Here too, we can conclude

that there is no effect of temperature on the velocity of kink propagation. Finally in Fig. 3.5

(C), we have plotted the kink velocity profiles for EAM3 [98] at an applied shear stress, τyz =

800 MPa. Here too the velocity profiles for all the cases of temperature are more or less same

indicating yet again that the application of temperature has no effect on the velocity of kink

propagation. However, unlike for the case of EAM1 and EAM2, the asymptotic velocity in

this case is around 35 Å/ps, which is much lower than the previously observed value of 50-52

Å/ps observed for EAM1 and EAM2. Such differences can be attributed to the fact that each

EAM inter-atomic potential is constructed based on a number of assumptions and fitting of

parameters with previous experimental or DFT data for a specific species or compound and

for a specific range of properties, usually at 0 K. The various effects like that of temperature

range, composition and structure and also the applied fitting model are the major factors that

could have led to the discrepancies observed with the different EAM potentials.

Thus, from our simulations we can conclude that the prediction of the Swinburne theory about

kink velocities is correct and hence we can state that temperature has no effect on the velocity

of kinks. In the next section we have reported the results obtained at higher stress levels using

the same three EAM potentials, not far off from the Peierls stresses predicted for each.
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Figure 3.7: MD profiles of simulations
for kink propagation with EAM1 [107]
showing: (a) Secondary kink pair nu-
cleation at an applied shear stress, τyz

= 450 MPa and temperature, T =
(0 + ε) K (b) Jerky motion at an ap-
plied shear stress, τyz = 450 MPa and
temperature, T = 5 K (c) Jerky mo-
tion at an applied shear stress, τyz =
400 MPa and temperature, T = 30 K.

3.2 Kink propagation at high stress level

We proceeded with performing simulations at higher stress levels and also tested the effects of

temperature in this regime. At stresses high enough, above a certain threshold we saw that

along the propagation of primary kinks, nucleation of additional kink pairs takes place. The

accumulation of these additional kinks leads to the formation a macro-kink which extends from

the first Peierls valley to another one, far beyond the closest Peierls valley. This phenomenon

was observed with all three EAM potentials EAM1 [107], EAM2 [99] and EAM3 [98] and at

different combinations of applied shear stress and temperature. It is an interesting observation

which seems like the ’jerky motion’ observed in Caillard’s experiments.

In Fig. 3.7, we have shown the different cases of appearance of jerky motion with EAM1 [107]

(Chamati et al.) As mentioned earlier, the Peierls stress of EAM1 as attained with atomistic

simulations is 600 MPa. The jerky motion appeared every time at stress levels much below the

Peierls stress level. Fig. 3.7 (a) shows the MD profiles of the dislocation at an applied shear
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stress, τyz = 450 MPa and temperature T = (0 + ε) K. It is seen that after the initial kink pair

nucleates in the first Peierls valley and propagates along the simulation cell, at some point the

atoms in the left kink jump to the next Peierls valley with respect to the initial and a secondary

kink pair is now nucleated here. Further kink nucleation takes place along the dislocation line.

In order to see the effect of temperature on such phenomena we repeated our simulations at

the same stress level but with an applied temperature of 5 K. It was observed that for the same

number of MD time steps, the secondary kinks reach the fifth Peierls valley as compared to the

fourth Peierls valley in the previous case. This has been plotted in Fig. 3.7 (b). This would

suggest that temperature aids this secondary nucleation process. In order to further verify

this, we performed the simulations again at a lower stress level of 400 MPa while gradually

increasing the applied temperature in different simulations. We were able to see the similar

nucleation of multiple kink pairs at an applied temperature of 30 K (Fig. 3.7 (c)), which leads

us to conclude that temperature aids the process of secondary kink pair nucleation. It can also

be observed that the MD profiles of the dislocation are not very smooth for this particularly

case. It may be attributed to the fact that temperature increases the atomic vibrations of the

individual atoms constituting the dislocation.

Next In Fig. 3.8, we have shown the different cases of appearance of jerky motion with EAM2

[99]. Fig. 3.8 (a) shows the MD profiles of the dislocation at an applied shear stress, τyz = 600

MPa and temperature T = (0 + ε) K. It is seen that the initial kink pair (starting configuration

taken from NEB computations) instantly grows in size reaching the second Peierls valley. After

that the kink pair just keeps growing further in size and jumping to other Peierls valleys centred

around the same position i.e. the center of the simulation cell. Finally the kink pair grows into

a very large macro-kink extending several Peierls valleys with the rest of the dislocation still in

the initial Peierls valley. The same exact trend is seen in Fig. 3.8 (b). Here the instantaneous

formation of the macro-kink is observed at a lower applied shear stress level, τyz = 550 MPa

but with applied temperature T = 5 K. Similar instantaneous nucleation is seen again for even

lower applied shear stress, τyz = 500 MPa but with higher applied temperature T = 20 K,

as evident from Fig. 3.8 (c). However it seems that the source of energy that causes such

instantaneous nucleations is the inertial energy in the initial kinked dislocation profile taken
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Figure 3.8: MD profiles of simulations
for kink propagation with EAM2 [99]
showing Jerky motion (a) at an applied
shear stress, τyz = 600 MPa and tem-
perature, T = (0 + ε) K (b) at an ap-
plied shear stress, τyz = 550 MPa and
temperature, T = 5 K and (c) at an ap-
plied shear stress, τyz = 500 MPa and
temperature, T = 20 K.

from the NEB computations.

In order to mitigate this inertial effect, we proceeded to perform relaxation of the isolated

kinked profile from NEB in a simulation cell. This ensures the gradual size growth of the kink

pair after successive MD steps and after a while it reaches the next Peierls valley and the kinks

then begin to propagate along the dislocation line as per standard theory. We utilize the first

kinked profile that is seen to be fully formed in the adjacent Peierls valley and then repeat our

computations using EAM2 [99]. The results have been reported in Fig. 3.9.

In Fig. 3.9 (a), we can see that the starting profile is that of a kink pair fully nucleated in the

next Peierls valley. Here we see that with the same parameters (τyz = 600 MPa and T = (0+ ε)

K) as used in Fig. 3.8 (a), the results are not the same. Instead of a instantaneous macro-kink,

we observe the occurence of the standard Peierls process. This is due to the initial relaxation

of the starting dislocation profile. So we proceeded to perform more simulations at a higher

applied stress level. In Fig. 3.9 (b), there is reappearance of the Jerky motion of kinks. The

parameters used for this set of simulations are τyz = 650 MPa and T = (0 + ε) K and the jerky
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Figure 3.9: MD profiles of simulations for kink propagation with EAM2 [99] after proper
relaxation of the starting unstable profile taken from NEB computations showing: (a) Standard
Peierls [9] process at an applied shear stress, τyz = 600 MPa and T = (0 + ε) K (previously
Jerky motion was observed instead with these same parameters) (b) Jerky motion at an applied
shear stress, τyz = 650 MPa (instead of 600 MPa as previously seen) and temperature, T =
(0 + ε) K (c) Jerky motion at an applied shear stress, τyz = 600 MPa and temperature, T = 30
K and (d) Jerky motion at an applied shear stress, τyz = 550 MPa and temperature, T = 30
K.
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Figure 3.10: MD profiles of simulations for kink propagation with EAM3 [98] showing Jerky
motion (a) at an applied shear stress τyz = 920 MPa and temperature T = (0 + ε) K; b) at an
applied shear stress τyz = 875 MPa and temperature T = 25 K; c) at an applied shear stress
τyz = 850 MPa and temperature T = 30 K and (d) at an applied shear stress τyz = 800 MPa
and temperature T = 40 K

motion no longer constitutes an instantaneous macro kink formation. Proceeding futher, we

introduced temperature in our simulations and in accordance with previous trends, the Jerky

motion was observed at lower stress levels as the temperature was gradually increased. In

Fig. 3.9 (c), the Jerky motion was observed at an applied shear stress, τyz = 600 MPa and

temperature, T = 25 K whereas in Fig. 3.9 (d), the same was observed at further lower applied

shear stress level, τyz = 550 MPa but slightly higher temperature, T = 30 K.

However we must emphasize that EAM2 has negative coefficient of thermal expansion, which

may result in the unphysical behaviour during kink propagation. We may argue that the

thermal energy dissipation around the propagating kink could yield spurious contractions of

the crystal region situated around the kinks.

The results of the simulations performed with the last EAM that we have studied i.e. EAM3
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[98] have been plotted in Fig. 3.10. In Fig. 3.10 (a), we see the appearance of the Jerky motion

with parameters applied shear stress τyz = 920 MPa and temperature T = (0+ε) K. Continuing

with the trend of introducing temperature and trying at lower stress levels, we were able to

see the Jerky motion again with the parameters τyz = 875 MPa and temperature, T = 25 K,

plotted in Fig. 3.10 (b). The Jerky motion occurred again at further lower stress level τyz =

850 MPa and slightly higher temperature, T = 30 K. This is shown in Fig. 3.10 (c). We were

able to observe the Jerky motion again with much lower applied shear stress level τyz = 800

MPa and a slightly higher temperature, T = 40 K. This has been plotted in Fig. 3.10 (d).

There are a few common trends observed with all the three EAMs. We have seen that the

jerky motion has occured at stress values well below the Peierls stress levels attributed to each

EAM. With the application of temperature, the jerky motion has been observed at further lower

applied shear stress levels. The associated energetics causing the occurence of such phenomenon

have been analyzed and described in details in the following section.

3.3 Investigation of the energetics responsible for jerky

motion

For our simulations with EAM1 [107] at T = (0 + ε) K, although we observed a jerky motion of

the screw dislocation at τyz = 450 MPa, we wanted to investigate what happens if the applied

shear stress is increased further. We performed another set of simulations at τyz = 550 MPa

and as expected there was the appearance of a macro-kink once again. On closer observation

of the time integrated MD profiles, we found some differences which we have reported in Fig.

3.11. Comparing the profiles in Fig. 3.11 (a) and Fig. 3.11 (b), we observe that in the first

figure, for τyz = 450 MPa, the nucleation of the secondary kink-pair ocuurs after the primary

kink has travelled a distance of 600 Å from the starting position whereas for the second case

at τyz = 550 MPa, the secondary kink-pair ocuurs after the primary kink has travelled a much

smaller distance of 250 Å. This leads to the inference that the time period for occurence of

jerky motion decreases with increasing applied shear stress levels. This also means that some
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Figure 3.11: MD profiles of simulations for kink propagation with EAM1 [107] showing Jerky
motion at temperature T = (0 + ε) K ;(a) at an applied shear stress τyz = 450 MPa and (b) at
an applied shear stress τyz = 550 MPa. The initial state of MD is represented by the kinked
profile in red, computed by the NEB method. Dashed arrows indicate the distance between
the primary kink pair and the second kink pair nucleation. The black arrows are used to point
out the instant of occurence of secondary kink pairs.
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type of energy gets accumulated in the screw dislocation because of which nucleation of more

kink pairs occurs.

From the previously performed NEB computations, we got an idea of the variation of the kink

pair formation enthalpy with varying applied shear stress. In Fig. 3.12 we have plotted some

results from NEB computations carried out with EAM1 [107]. In Fig. 3.12 (a), we have plotted

a view of all 50 NEB images as they travel along a MEP from the initial state of the screw

dislocation to the final state. The top of the hill refers to the saddle state where the kink pair

nucleates. The corresponding energy along the Y axis is the measure of the kink pair formation

enthalpy at a particular stress level for the screw dislocation. In Fig. 3.12 (b), we have shown

the profiles of the MEP at some regular intervals of applied shear stress. A zoomed in version

of the same has been plotted in Fig. 3.12 (c) and the kink-pair formation enthalpies along with

the corresponding applied shear stress levels have been pointed out. In the last figure, Fig. 3.12

(d), these kink-pair formation enthalpies have been plotted as a function of the applied shear

stress over it’s entire working range in our simulations. It can be observed that the kink pair

formation enthalpy gradually decreases as the applied shear stress value increases.

Next in order to compute the energy built up in the screw dislocation responsible for formation

of secondary kinks, we divided the entire length of the screw dislocation into segments, each of

length b. Following this we computed the combined kinetic energies of all the atoms associated

with a kink located at b along the dislocation line for different values of the applied shear stress.

We then plotted the same as a function of the increasing applied shear stress for EAM1 [107].

This has been plotted in Fig. 3.13. We can see that the kinetic energy increases gradually with

the applied shear stress. On the same figure, we plot again the enthalpy of kink pair formation

for EAM1 [107] at different levels of applied shear stress. By linearly expanding the curve for

kinetic energy, we observed that this curve intersects the plot of kink pair formation enthalpy

at a point and the corresponding shear stress level is very close to the shear stress at which the

jerky motion was observed. So we can conclude that at this applied shear stress level, the kinetic

energy accumulated because of the travelling kinks becomes sufficient for the nucleation of new

kink pairs, which ultimately leads to the formation of a macro-kink comprising of multiple kink

pairs and extending over several Peierls valleys [9].
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Figure 3.12: Results from NEB computations at different levels of applied shear stresses using
EAM1 [107] showing: (a) The MEP undertaken by the 50 NEB images between the initial and
the final straight screw dislocation states (b) Different MEPs of the NEB images at different
levels of applied shear stress, τyz (c) zoomed in view of (b) showing also the corresponding
values of kink-pair formation energies for different values of the applied shear stress, τyz (d)
Variation of the kink pair formation energy over the entire range of the applied shear stress for
our simulations
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Figure 3.13: Kinetic energy transfer from kink motion and kink pair activation enthalpy against
the applied shear stress τyz. The symbols represent values from atomistic simulations and the
curves are according to analytical fits. Blue line : activation enthalpy for the nucleation of a
kink pair Hkp ; Red line : steady value of the kinetic energy transfer Qkp. The analytical fit for

the kink pair formation enthalpy is : Hkp = H0[1− ( τyz
τP

)
0.95

]
1.96

and that for the kinetic energy

along the dislocation segments is : Qkp = 0.03 τyz
τP

.



Chapter 4

Atomistic scale study of the screw

dislocation glide in bcc Tungsten

4.1 Introduction

Tungsten has a bcc crystal structure and is one of the most important metals of the present

day, owing to excellent properties that make it useful for a wide variety of applications. It has

the highest melting point amongst all the metals, around 3100 ◦K and the lowest coefficient of

thermal expansion. The melting point of tungsten is 5400 ◦C and it is also one of the heaviest

metals having a density of around 19.2 g/cm3. Tungsten in it’s pure form appears as a shiny

white metal and and can be yielded and processed easily. The presence of little amounts

of carbon and oxygen gives it significant hardness and brittleness. The most common use

of tungsten is in the form of cemented carbides (WC) or hardmetals. Tungsten monocarbide

(WC) has hardness comparable to that of diamond and by combining it with the toughness and

plasticity of metallic alloy binders like Co, Ni or Fe, a variety of product tools are manufactured

like cutting and mining tools, tools for shaping, moulding and surface finish of metals and their

alloys like drill bits, high speed cutting tools, lathe tools and milling cutters. It is also extensive

used in the shipping, mining and construction industries. Other significant properties that make

tungsten popular are high modulus elasticity and compression, high resistance to thermal creep,

64
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high conductivity of electricity and heat. The first industrial use of tungsten was in the of steels

towards the end of the 19th century finally leading to the development of high speed steels. Later

on the development of tungsten powder metallurgy led to the development of the lamp industry.

Products like magnetrons for microwave ovens, filaments of lights, contacts, wires and rods are

all milled from tungsten and used extensively throughout the world. Another aspect of the use

of tungsten is in the field of nuclear power. It is a good candidate for the claddings of nuclear fuel

rods in advanced fission reactors and as a plasma facing component in fusion reactors. Hence it

is of utmost importance to study the evolution of the microstructure of tungsten and tungsten

based alloys under irradiation which depends to a large extent on the properties of point defects

like vacancies and interstitials and also other defects like dislocations. The structural properties

of tungsten are quite similar to body centered cubic iron, e.g. a prominent decrease of the yield

stress with the increase in temperature in the range of low temperatures and they too don’t

follow the Schmid law. Like iron, their plastic deformation depends on the low mobility of

screw dislocations arising from a frictional force, in the planes associated with the < 111 >

direction. They too exhibit a large difference between the deformation stress extrapolated to

zero K in tests and the theoretical Peierls stress obtained from DFT calculations [153]. With

the experimental results of D. Caillard and our own simulation results for bcc Fe, where we saw

the occurence of jerky motion instead of the standard Peierls mechanism at low temperatures,

we proceeded to investigate if such phenomenon pertains only to Fe or other bcc metals also.

We performed atomistic scale MD simulations for tungsten using the interatomic potential,

EAM4 [154] developed by Marinica et al. specifically for modelling the defects and dislocations

in bcc tungsten.
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4.2 Details of the simulation cell, algorithms, and the

different steps of simulations

4.2.1 Simulation cell

The simulation cell used is similar to the one used for Fe with just changes in the dimensions in

order to facilitate the computations for tungsten. Like in the case of iron, here too the simulation

cell comprises of atoms placed in symmetric Body Centred Cubic (bcc) configuration of a perfect

crystal. The XY plane is again chosen as the glide plane corresponding to the horizontal plane

of the cell and with Periodic Boundary Condition (PBC) along X and Y directions. Again, like

in the case of iron the assigned cell directions are X = [112], Y = [111] and Z = [110] and the

Burgers vector b = a0
2

[111] corresponds to the line direction (Y) of the screw dislocation. For the

case of iron, the simulation cell dimensions were x = 14 b , y = 160 b and z = 20 b respectively

(b = 2.48 Å for α-Fe). However this dimensions did not suit the simulations for tungsten owing

to the fact that the lattice parameter and hence the distance between successive Pierls valleys

is larger in W compared to Fe. This meant that we needed to increase the dimension along X

= [112] and adjust the other dimensions so that the total number of atoms is not compromised.

The dimensions compatible with our simulations were finally chosen were x = 22 b , y = 104

b and z = 20 b respectively (b = 3.14 Å for W). A screw dislocation is introduced in the saw

manner as for iron and an additional shift of b/2 is introduced along the Y direction to stabilize

the simulation cell with a single screw dislocation.

4.2.2 Quenching and NEB calculations

Like for the case of iron, we perform a quenching of our simulation cell loaded with an applied

shear stress on two different occasions, first for the initial position and then for the final po-

sition of a straight dislocation along the glide plane. These two positions can be defined by

providing the co-ordinates in the code. Quenching relaxes the simulation cell till the atomic

forces gradually decrease to 10−5 eV/Å and a mechanical equilibrium is reached. Then we use
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these initial and final relaxed positions to compute the minimum energy path (MEP) for the

screw dislocation using the Nudged ELastic Band (NEB) method at the same value of applied

shear stress. The quenching process is performed for all the values of applied shear at which

we want to perform the NEB computations. As in the case of iron, the value of the spring

constant is chosen as 10 N

Å
and the number of system replicas is fixed at 50. The NEB codes

are run for applied stress values below the Peierls stress in order to ensure that the minimum

energy path (MEP) is computed when the dislocation motion is hindered by a barrier.

In Fig. 4.1 (a), we have plotted the enthalpy along the minimum energy path of screw disloca-

tions obtained from NEB calculations at regular intervals of applied shear stresses, τyz i.e. at

100 MPa, 500 MPa, 900 MPa, 1.2 GPa and 1.5 GPa respectively. The local maximas corre-

sponding to the kink nucleation can be seen for different stress levels. In Fig. 4.2 (b), we show

a zoomed in view of Fig. 4.1 (a) wherein the kink nucleation enthalpies have been specified

for each value of the applied shear stress τyz. Lastly in Fig. 4.1 (c), the kink pair nucleation

enthalpies have been plotted against the different values of the applied shear stress τyz. It can

be observed that the enthalpy of kink pair formation decreases gradually as the applied shear

stress increases, indicating that the dislocation glide becomes easier at higher applied stress

levels.

4.2.3 The extended simulation cell

The length of the simulation cell used to perform the NEB computations is much shorter for

the case of tungsten as compared to that for iron. For iron we used a simulation cell with

dimension y = 160 b along the dislocation line whereas for tungsten, we had to contain with

a much shorter length of y = 104 b. However in chapter 3, we had seen that for the case

of extended simulation cells there is a negligible difference between the temperature per atom

when we considered extended simulation cells which are 5 and 7 times the NEB cell respectively.

It is important to recall that this temperature arises from the kinked dislocation profile placed

in the central cell derived from NEB computations which corresponds to a transition state i.e.

one of the local enthalpy maximas. For the case of iron, it was sufficient to proceed with just 5
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Figure 4.1: Plot of enthalpy along the
minimum energy path for screw dislo-
cations obtained with NEB computa-
tions showing : (a) the local maximas
corresponding to the kink nucleation
at different applied shear stress levels,
τyz (b) Zoomed in version of the pro-
files plotted in (a) specifying the en-
ergy associated with the kink pair nu-
cleation at different levels of applied
shear stress, τyz (c) A plot of the vari-
ation of the kink-pair energies with the
applied shear stress, τyz.
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times the extension. However, for tungsten, as the NEB cell is quite shorter, we have chosen to

use an extended simulation cell which is 7 times the NEB cell in length. Thus we end up with

a simulation cell having a length of 728 b (7*104 b) which is equivalent to 2300 Å or 0.23 µm.

After the NEB computations are done and the extended simulation cell has been created we

perform molecular dynamics simulations wherein the atomic motions are integrated classically

according to Newtons laws and coupled them with an EAM potentials in order to calculate the

atomic energies. The EAM potential (EAM4) [154] that we have utilised has been developed

by Marinica et al. and we have described it in details in the following subsection.

4.2.4 The EAM potential used for our simulations

Unlike for BCC iron, very few EAM potentials are available in the literature compatible for

modeling tungsten. The first many-body potential for tungsten was developed by Finnis and

Sinclair [155]. Ackland and Thetford [156] improved upon this potential by creating a larger

fitting database and including the electron gas calculations. It was used to predict bulk prop-

erties, radiation damage and energy landscapes of defects. Subsequently some other EAM

potentials have been developed over the years by Juslin and Wirth [157], Wang et al [158], Der-

let et al [159] etc. However these potentials had some shortcomings when it comes to serving

our purpose of studying the screw dislocation glide in BCC tungsten. For example the EAM

in [157] was specifically designed to study helium-vacancy clustering in tungsten, the EAM in

[158] described very inaccurately the energy landscape of defects in simulations carried out at

finite temperature whereas the EAM in [159] did not correctly predict the degenerate core for

screw dislocations.

The potentials (we call them EAM4a-EAM4d instead of EAM1-EAM4 in the original work)

developed by Marinica et al [154] use the embedded atom method algorithm fitted to a diverse

database comprising of experimentally determined parameters for tungsten, formation energies

and atomic forces based on DFT calculations. A lot configurations for point and extended

defects were tested for the transferability of the potentials. All important properties related

to the < 111 > screw dislocations were computed such as the Peierls barrier, the Peierls
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stress, the glide plane,the enthalpy of formation of kink pairs, the dislocation core structure

and polarisation of the core. A quadrupolar periodic array of dislocation dipoles [77, 160] was

considered and a study was carried out to find out the stability of the degenerate and non-

degenerate core configurations. by computing the dependence of the dislocation core energy

on its polarization. They concluded that a stable dislocation core is completely unpolarized.

They also estimated the Peierls barrier for the < 111 > screw dislocation by simultaneous

displacement of the two dislocations along the (110) plane such that a constant seperation is

maintained between them at all stages. A NEB calculation was then performed and the elastic

contributions of the associated strain rates of the initial and final states were subtracted. A

single-humped Peierls barrier was obtained complying with DFT results with a barrier height

agreeing very well with DFT calculations enabling quantitative comparison of the predicted

kink-pair formation energies with experimental data.

Next, in order to determine the Peierls stress, the simulation cell was subjected to shear stress

till the point when the dislocation began to glide. Two different types of simulation cells were

employed : with free surfaces parallel to the (110) plane as employed by Rodney et al [129] and

using a quadrupolar arrangement of dislocation dipoles having periodic boundary conditions

in all three directions. It was seen that only EAM4c predicted a (110) glide plane as observed

in experimental tests [161, 162] and DFT computations [163]. The Peierls stress predicted by

this potential is around 1.1 GPa. EAM4b and EAM4d are able to predict much more precisely

the Peierls barrier but the glide plane predicted by them is (211) . The EAM4c potential

seems like the lone potential for tungsten that reproduces the single-humped Peierls barrier

and also predicts a (110) glide plane. Overall, we can conclude that EAM4(a-d) are the first

EAM potentials for tungsten that agree qualitatively with DFT computations regarding screw

dislocations. These potentials are able to proffer agreeable EAM parametrizations that are

adept to motion of screw dislocations in tungsten, a problem that was previously not addressed

to such an acceptable extent in the methods available in the literature. For our simulations, we

have chosen to work with EAM4d because the magnitude of the Peierls potential and the kink-

pair energy are the closest to the experimental and DFT values. The Peierls stress associated

with this EAM potential is 2.03 GPa and hence our simulations were carried out at stress levels
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Figure 4.2: MD profiles of simulations of kink propagation for temperature close to 0 K, i.e. T
= (0 + ε) K for EAM4 [1] performed at an applied shear stress, τyz = 1 GPa.

lower than this value.

4.3 MD simulation results

Starting from a long straight dislocation with a kink pair at the center of the dislocation,

the simulations were launched with combinations of different levels of applied shear stresses,

different temperatures using the EAM inter atomic potential EAM4. The results have been

reported and discussed in the following sub sections.
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Figure 4.3: MD profiles of simulations of kink propagation for temperature close to 0 K, i.e. T
= (0 + ε) K for EAM4 [1] performed at an applied shear stress, τyz = 1.54 GPa.

4.3.1 Simulations at T = (0 + ε) K

In Fig. 4.2, we have reported the time integrated MD profiles of the screw dislocation in bcc

tungsten as it starts to glide from it’s initial position. These simulations were carried out at

an applied shear stress, τyz = 1 GPa and at a temperature close to 0 K i.e. T = (0 + ε) K.

This stress level is lower than all the Peierls stress values predicted by the four EAM potentials

developed by Marinica et al i.e. EAM4a-EAM4d. In this case, we see that the standard Peierls

mechanism is observed as the initial central kink develops into a full grown kink in the next

Peierls valley and continues to propagate outwards along this Peierls valley on both the sides.

After that we performed more simulations by gradually increasing the value of the applied shear

stress. At an applied shear stress of τyz = 1.54 GPa, we saw the appearance of a macro-kink as
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Figure 4.4: MD profiles of simulations of kink propagation for temperature close to 0 K, i.e. T
= 50 K for EAM4 [1] performed at an applied shear stress, τyz = 1.48 GPa.

in the case of iron. This has been shown in Fig. 4.3. We observe that there were two additional

kink pair nucleations constituting the macro kink, thus leading to a long jump extending over

3 Peierls valleys. So as per our observations in the case of bcc iron, we proceeded to examine

the effect of temperature on the jerky motion of the screw dislocation. Previously for iron, we

would like to recall that it was found that temperature aids the phenomenon of jerky motion

and the application of temperature resulted in the occurence of jerky motion at lower stress

levels compared to the case where no external temperature was provided.
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4.3.2 Simulations with the application of temperature

We performed a number of simulations at stress levels lower than the stress level of occurence of

jerky motion without the application of temperature. Simulations were carried out at intervals

of applied stress levels 20 MPa lower each time. For each stress level, different simulations

were performed increasing the applied temperature on each occasion. Finally, at an applied

shear stress, τyz = 1480 MPa and at a temperature of T = 50 K, we were able to observe

the appearance of a macro-kink yet again, confirming our earlier observation for bcc iron that

temperature aids the process of jerky motion. The same has been plotted in Fig. 4.4. This

is an important observation in our simulation as we can conclude that temperature aids the

process of jerky motion for bcc metals in general.

4.4 Plot of kink pair formation enthalpy and kinetic en-

ergy of traveling kinks against applied stress

In Fig. 4.5, the enthalpy of formation of kink pairs for each level of τyz computed with NEB

and the variation of the sum of kinetic energies of all atoms associated with each dislocation

line segment of length b have been plotted. They are represented by the blue line and the red

line respectively. We see that the enthalpy of kink pair formation keeps decreasing with the

applied shear stress and the kinetic energy of kinks keeps increasing during the same time. By

extending the red curve linearly, we observe that the two lines intersect at a point, implying

that the kinetic energy of the kinks is sufficient enough for the nucleation of a secondary kink

pair. This explains the energetics of the occurence of additional kink pairs in our simulations.

In the following section we draw a comparison between the jerky motion observed in iron with

the jerky motion observed in the case of tungsten.
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Figure 4.5: Kinetic energy transfer from kink motion against τyz. Black line : activation
enthalpy for the nucleation of a kink pair Hkp ; Red line : steady value of the kinetic energy
transfer Qkp. The symbols represent values from atomistic simulations and the curves are
according to analytical fits. Blue line : activation enthalpy for the nucleation of a kink pair
Hkp ; Red line : steady value of the kinetic energy transfer Qkp. The analytical fit for the kink

pair formation enthalpy is : Hkp = H0[1− ( τyz
τP

)
0.78

]
1.42

and that for the kinetic energy along

the dislocation segments is : Qkp = 0.06 τyz
τP

.
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4.5 Comparison of the jerky motions observed in bcc

iron and tungsten

Here we recall from chapter 3 that for bcc iron, the jerky motion was observed at applied shear

stress levels of τyz = 450 MPa, τyz = 650 MPa and τyz = 920 MPa for EAM1, EAM2 and

EAM3, respectively for the simulations carried out at T = (0 + ε) K. Following this, for all the

three EAMs the jerky motion was observed again at applied shear stresses 50 MPa lower than

these values when the temperature was applied to our simulations. The temperatures required

were T = 30 K for EAM1, T = 25 K for EAM2 and T = 25 K for EAM3. For the case of

tungsten too, the jerky motion was observed at around 50 MPa lower with the application of

temperature, but the temperature required was much higher i.e. T = 50 K. Even with a higher

temperature being applied, we observed that the macro-kink extends over 2 Peierls valleys only

i.e. it extends from the first (initial) Peierls valley up to the third Peierls valley (Fig. 5.3).

For the case of bcc iron we had observed that the macro-kink extended over a distance of 4,

10 and 5 Peierls valleys respectively for the EAMs, EAM1, EAM2 and EAM3, although the

applied temperatures were around half of what was applied for the case of tungsten. Thus we

can conclude that the effect of temperature is much more pronounced in the case of iron when

compared to tungsten. We can also state that the phenomenon of jerky motion is easier to

occur in iron when compared to tungsten.

4.6 Experimental observations of Dr. Caillard for Tung-

sten

Recently Dr. Caillard has published his experimental results for in-situ straining experiments

carried out for pure tungsten to study the geometry and kinetics of glide of dislocations with

respect to applied stress and temperature [153]. Experiments were carried out on a single

crystal of pure tungsten procureed from P. Gumbsch and D. Weygand. This material had

previously been analysed by Brunner and his colleagues [164] and contained less than 1 ppm
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of O, C, N, and Si, and less than 0.1 ppm at of other elements. Like in the case of iron 3

mm by 1 mm rectangular specimens were cut along different orientations by spark cutting and

mechanically polished to a thickness of 10 mm. A thin edged hole was created at the center

of each specimen by the process of electropolishing. After that the specimens were glued on

a copper grid fixed on a Gatan low-temperature straining holder for experiments carried out

between 95 K and 300 K. For the experiments in the excess of 300 K, the samples were glued

on a home-made high-temperature straining device utilising a high-temperature cement. The

entire experimental procedures were recorded using a Megawiew III camera and subsequently

all the frames were analyzed.

Dr. Caillard arrived at a number of conclusions from the observations during his experiments.

With regards to the glide of the screw dislocations which concerns our study, he found that

the plasticity of tungsten depends on the motion of straight screw dislocations in the temper-

ature range between 95 K and 573 K. Breaking down this temperature regime Dr. Caillard

observed jerky type of motion at 300 K and 473 K. However interestingly it was found that the

dislocations are not entirely mobile in the intermediate time between two consecutive jumps

where they move quite slowly and steadily as per the classical theory. The movement is highly

jerky at around 473 K and the jerky motion is visible at temperatures lower than it. On the

other hand, the steady classical motion becomes extremely slow at 300 K and around 200 K

the motion becomes too slow and limited in number for a proper analysis. Further experiments

show that at 573 K, there is a recurrence of purely steady motion of the screw dislocations (as

per the standard Peierls mechanism) but this motion is quite fast compared to the observations

at lower temperatures. With regards to the tensile axes, Dr. Caillard concluded that for tensile

axes other than the < 110 > screw dislocations move by a combination of steady and jerky

motion in planes which cannot be identified unambiguously. For a tensile axis close to < 110 >,

however, screw dislocations have a much jerkier motion with jumps over large distances, exactly

in the (112) planes (only in the twinning direction) and in addition, in the (123) planes also. All

these observations were found to be in excellent agreement with previous results of Argon and

Maloof [165]. The conclusions of the research work was that the jerky motion and the steady

motion are quite different in nature. The stress and temperature dependences of the steady
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motion follow the classical laws of thermodynamics but the same can not be said for the jerky

motion. The stress discrepancy is evidently due to a change of dislocation mechanism, from

the standard Peierls mechanism at high temperature to the jerky motion at low temperature.

4.7 Comparison of our simulations with Dr. Caillards

experimental observations

From our computational observations, there is agreement with the experimental observations

that for the case of tungsten, the motion of screw dislocations is more difficult in comparison

with the screw dislocation mobility in bcc Fe with regards to sensitivities to applied shear stress

and temperature. In the experiments, the jerky motion was observed at higher temperatures

(compared to bcc Fe) i.e. > 300 K whereas in our simulations we observed jerky motion at 50 K

which is still twice the temperature which we employed for the case of Fe. Moreover the macro-

kink was seen to extend over 2 Peierls valleys only indicating that much more temperature has

to be applied in order to observe a large macro-kink extending over several Peierls valleys. In

our simulations, it becomes difficult to observe clearly the dislocation profiles if we apply larger

temperatures. This is due to the fact that the energies and vibrations of individual atoms that

comprise the screw dislocation increases drastically with the application of larger temperatures

which result in the profiles being too haphazard to be identified clearly when plotted. Thus it is

difficult to verify exactly what happens at very large temperatures employed in the experiments,

but the general observation in the simulations are in agreement with the experimental trends.



Chapter 5

Conclusion

In the concluding section, we would like to summarize the goals of the thesis, the motivation

behind them and the extent to which they have been realized. The methods that have been

employed to reach our goals and their effectiveness are highlighted here and the applications of

our work are discussed. We also discuss the perspectives of our work, how it may be improved

upon and how it can benefit the scientific research community in the future.

5.1 Summary of results

We started off our work motivated by some very interesting and new experimental observations

that could not be explained by existing classical theory of disclocation mechanism. These

observations were the jerky motion or long jumps (extending several Peierls valleys) undergone

by the screw dislocations at low temperatures, instead of the conventional Peierls mechanism in

the experiments performed by Dr. D. Caillard for pure iron. The aim was to find out the facts

that provide an explanation for such occurence at the atomistic scale. We chose to work with

MD simulations to study the motion of the entire screw dislocation by tracking the motion of

the individual atoms that constitute the dislocation.

We identified two limitations with the traditional MD simulation process that needed to be

addressed in order to simulate the motion of a screw dislocation. The first was the limited
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length of the simulation cell and hence the screw dislocation that MD could handle. These

sizes were not at all comparable to the dislocation sizes that were observed in the experiments.

The next limitation was that MD simulations can be carried out only upto the time scale of

pico seconds. This time scale is much smaller compared to the time required for the nucleation

of a pair of kinks on a straight screw dislocation which is of the order of seconds. Hence we

performed NEB calculations with 50 images to find out the MEP between an initial and final

straight states of a screw dislocation. Since the NEB uses 50 system replicas, the simulation cell

size was limited in size. We picked up the saddle state kinked profile of the screw dislocation

and placed it in a central simulation cell of the same size. Then on both sides of this central cell

we employed PBC conditions to place extensions of the same central cell. In these extensions

we placed staright screw dislocation segments. Thus at the end, we had a very long extended

simulation cell with a long screw dislocation (comparable to the sizes observed in experiments)

having a kink pair right at the centre of the dislocation. We had thus solved both the problems

that we had identified at the beginning and we then proceeded to perform MD simulations

using different EAM potentials.

The results with all the three EAM potentials showed that as we kept on gradually increasing

the applied shear stress in successive simulations, the recorded dislocation profiles showed a

change of mechanism at sufficiently high shear stresses but below the corresponding Peierls

stresses. It was seen that the dislocations moved as per the standard Peierls process at lower

stresses i.e. from one Peierls valley to the adjacent as the kink grew in size initially reaching the

adjacent valley and continued to propagate outward along the dislocation while being in this

new valley. At stress levels high enough, the recorded profiles that we plotted show that a new

kink pair nucleates from the primary ones at a certain point along their outward propagation

and these secondary kinks grow in size and reach the next valley and start to propagate outward

giving rise to more kink pairs till the original kink pair extends over several Peierls valleys.

This was a very interesting observation comparable to the sudden long jumps of screw dislo-

cations observed by Dr. Caillard. Such mechanism occur very fast i.e. at the time scale of

pico-seconds whereas in the experiments the observations were made for 25 frames per second.

So this huge difference of time scale appears to be the reason why the gradual extension of the
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kinks over multiple Peierls valleys appeared to be just a simple jump extending several valleys

in the experiments.

Next in order to find out the reason behind such phenomena, we identified that there has to

be a source of some energy responsible for such jumps. As the kinks are in motion along the

dislocation line, we proceeded to measure the associated kinetic energies of the travelling kinks.

For this purpose, we divided the entire dislocation line into segments each of length b, and

measured the total kinetic energies of all the atoms in each kink located at b. These kinetic

energies were found to increase gradually with increasing levels of applied shear stress. On the

other hand, from our NEB computations we had the information about the enthalpy of kink

pair nucleation for different values of applied shear stresses. When plotted, these enthalpies

were found to decrease significantly with increasing levels of applied shear stress. By plotting

both the kinetic energies and kink nucleation enthalpies against the applied shear stress, it was

observed that the two curves intersect at some point below the Peierls stress level, implying that

the kinks have sufficient energies at this point for the nucleation of new kink pairs which can

explain the nucleation of secondary kinks previously observed in our simulations. The point of

intersection of the two curves is very close to the stress levels at which we observed the macro-

kinks in our simulations leading us to believe more that the kinetic energies of the travelling

kinks are the reason for jerky motion because at higher stress levels the energy required for

nucleation of new kink pairs are significantly low.

We also observed that for stress levels sufficient for the formation of macro kinks in our simula-

tions, the nucleation of the secondary kinks takes place quicker for higher stress levels i.e. the

primary kinks travel much lesser distance along the dislocation line till the point of nucleation

of secondary kinks, for higher values of applied shear stresses. We also studied the effect of

temperature on these phenomena and were able to conclude that temperature aids the process

of jerky motion i.e. the first seen macro kink nucleation can occur at a lower stress level with

the application of temperature. Similar trends were also observed in the case of bcc tungsten,

although we found that the jerky motion takes place much easier for bcc iron i.e. the jumps

are longer and the effect of temperature is more prominent in the case of iron.
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Figure 5.1: MD profiles of simulations for kink propagation with EAM2 [99] showing: (a) Jerky
motion at an applied shear stress, τyz = 600 MPa and T = (0+ ε) K (b) Orientation A [87, 101]
of the crystal. (c) Jerky motion at an applied principal stress τ = 999.24 MPa, resolved shear
stress component, τyz = 500 MPa, and resolved compressive stress component, τzz = 482.18
MPa at temperature, T = (0 + ε) K and (d) Jerky motion at an applied principal stress τ =
899.31 MPa, resolved shear stress component, τyz = 450 MPa, and resolved compressive stress
component, τzz = 434 MPa at temperature, T = (0 + ε) K.

5.2 Future perspective

We recently made some studies on the efects of non-glide/compressive stresses on the motion

of screw dislocations. The reason being that in the experiments and also in our simulations

reported in the previous chapters, we had considered only pure shear stresses acting along the

glide plane of the screw dislocation. In practical applications, there are different components of

stresses acting on these materials depending on their orientation and hence the effects of such

stresses should also be studied and deciphered.

In Fig. 5, using EAM2, we have plotted the effects of compressive stresses, using a crystallo-
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graphic orientation A [87, 101] wherein the principal stress acts at an angle to the simulation

cell. The angle made with the Z-dirction and the angle between the projection of the principal

stress on the XY glide plane and the line direction Y are fixed according to the Orientation A.

It was found that compressive stresses aid the process of jerky motion just like the addition of

temperature, which too was found to aid the process of jerky motion. The shear component

of the stress was first chosen in order to be able to compare with previous simulations. From

the shear stress value, the values of the principal stress and the compressive component were

derived. The combined effect of compressive stress and temperature led to further decrease of

the applied shear stress level at which the jerky motion was observed. For the case of pure

shear stress, as previously reported, the jerky motion was observed at 600 MPa, whereas after

considering the compressive stress effect, the jerky motion was observed at 500 MPa. Then

repeating the simulations at an applied temperature of 20 K in the presence of compressive

component of the stress, the jerky motion was observed at an even lower shear stress level of

450 MPa. Thus the jerky motion is observed at stress values, much below the Peierls stress

value of 800 MPa for EAM2.

By continuing further into this work we could quantify different aspects associated with the

jerky motion. Knowing the applied shear and compressive stresses and temperature levels, one

could predict the extent of the jerky motion i.e. parameters like the number of Peierls valleys

over which the jump extends, the time required for such a long jump to occur, the waiting time

between jumps and so on. This will enable a much deeper understanding of bcc metals at very

low temperature ranges which can help in the safe design of devices and equipments operating

at such low temperatures and built using these bcc metals.

This knowledge could also be gradually extended for the case of all bcc metals and even some

binary alloys, thus allowing for the research and development of a wide range of materials that

can be potentially used for different low temperature applications in the field of science and

technology.
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Resumé

Le glissement activé thermiquement de dislocations de vis dans des cristaux de symétrie cu-

biques centrés (bcc) se poursuit par la formation et la propagation de paires de décrochement

au moyen du mécanisme de Peierls [9], nommé d'aprés Peierls pour ses premiers travaux sur la

théorie de la dislocation. Le mouvement des dislocations des vis est contrôlé par un potentiel

périodique provenant de leur structure centrale non planaire, connu sous le nom de potentiel de

Peierls [9]. Le mécanisme [9], accepté comme processus standard de glissement de dislocation,

explique que les dislocations se déplace par étapes d'une vallée de Peierls [9] à une vallée ad-

jacente, etc., entrâınant un glissement général d'une partie du cristal à une autre. Cependant,

une série d'expériences in situ sur du Fe ultra-pur de symétrie cubiques centrés (bcc), réalisées

par le Dr D. Caillard à diverses températures, et en fonction du contrainte, ont permis de faire

des observations intéressantes. On a constaté que dans le régime à basse température de 100 à

300 K, les segments de vis droits ont un mouvement saccadé dans les plans (110), ce qui est très

différent du mécanisme classique de Peierls observé à température ambiante. Le mouvement

saccadé fait référence à un phénomène observé lors d'expériences dans lequel la dislocation, au

lieu de glisser progressivement d'une vallée de Peierls à celle adjacente, fait un saut en longueur

de plusieurs vallées de Peierls. Comme la théorie classique n'arrivait ni à expliquer ni à prévoir

ce phénomène, nous avons consacré notre énergie à prévoir une nouvelle théorie généralisée à

l'échelle atomique capable de prédire le comportement des dislocations de vis avec une précision
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acceptable sur toute la plage de températures.

Nous avons choisi de réaliser des simulations de dynamique moléculaire (MD) permettant de

prédire comment les atomes interagissent avec d'autres atomes, c'est-à-dire comment leurs

paramètres de mouvement changent et comment un système évolue avec le temps. En con-

naissant une configuration de départ de tous les atomes du système, nous sommes capables de

prédire simultanément les nouvelles positions et vitesses à chaque etape de temps en fournissant

un algorithme (algorithme de vélocité standard par Verlet [132]), qui permet le changement et

en intégrant les lois du mouvement de Newton. Nous avons choisi de travailler avec les potentiels

EAM pour prédire et modéliser les énergies des cristaux, car ils nous permettent de travailler

avec un grand nombre d'atomes et de permettre également un calcul direct de l'enthalpie de

formation de paires de décrochements de dislocations de vis en 3D.

La cellule de simulation, était considérée comme une géométrie cristalline parfaite et une dis-

location de vis est introduite en déplaant tous les atomes selon la solution élastique isotrope

[113]. Afin de reproduire un plan de glissement infini, la condition de limite périodique (PBC)

est utilisée dans les directions X = [1 1 2] et Y = [1 1 1], constituant le plan de glissement

XY. Un décalage supplémentaire de b/2 est introduit le long de la ligne de dislocation (Y),

afin de prendre en compte la déformation plastique associée à la dislocation de la vis et de

reconnecter les surfaces gauche et droite perpendiculairement à la ligne de dislocation. Cela

garantit l'existence de la dislocation de la vis pendant le processus de calcul à tout moment.

La présence de ce vecteur de Burgers différent de zéro n'autorise pas les conditions aux limites

périodiques dans la direction restante Z = [1 1 0] ; deux surfaces libres sont donc créées pour

former une dalle [101]. Le paramètre réseau du cristal parfait est représenté par a0 et le vecteur

de Burgers b = (a0/2) [111] correspond au sens de la ligne (Y) de la dislocation de la vis. Nous

nous sommes assurés que les dimensions le long des directions de glissement (x = 14b, y =

160b, z = 20b où b = 2,48 Å pour α-Fe) sont suffisamment grandes pour éviter des interactions

trompeuses avec les images périodiques.

Nous effectuons d'abord une trempe de notre cellule de simulation chargée d'une contrainte de

cisaillement appliquée sur les surfaces yz situées au-dessus et au-dessous de la cellule pour une
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position initiale et finale d'une dislocation rectiligne le long du plan de glissement. Les forces

résultant de telles contraintes initient le mouvement de la dislocation qui est limité en couplant

l'équation du mouvement de Newton des atomes individuels à un simple amortissement de

Langevin. Nous considérons que la cellule a atteint l'équilibre lorsque les forces atomiques

ont diminué pour se situer autour de 10−5 eV/Å. En utilisant ces positions initiale et finale

relâchées de la dislocation de la vis, les calculs de la bande élastique Nudged (NEB) [133, 134]

sont ensuite effectués pour calculer le chemin d'énergie minimal (MEP) de la dislocation de la

vis lorsqu'elle glisse de la position initiale à la position finale. Cependant, dans la méthode

NEB, de nombreuses images ou répliques du système (50 dans notre cas) sont créées et reliées

entre elles par des ressorts de manière à représenter un chemin discret d'une configuration

initiale I à une configuration finale F. Par conséquent, la cellule de simulation a une longueur

limitée et les dislocations sont très courtes comparées aux longueurs observées par le Dr Caillard

dans les expériences. Cela pourrait entrâıner l'exclusion de certains phénomènes susceptibles

de se produire lorsque les décrochements se propagent le long de la ligne de dislocation au-

delà de la longueur considérée dans nos simulations. De plus, les décrochements nécessitent de

parcourir des distances beaucoup plus longues pour atteindre une vitesse constante. Afin de

remédier à cela, nous avons d'abord étendu notre cellule de simulation en prenant en compte les

conditions aux limites périodiques le long de la direction Y, c'est-à-dire en prenant une cellule

de simulation (identique à celle utilisée pour les calculs NEB) et en l'étendant deux fois dans les

directions Y positive et négative. De cette façon, nous avons construit une nouvelle cellule de

simulation cinq fois plus longue que la cellule d'origine. La longueur de la cellule de simulation

étendue est de 2000 Å ou 0.2 µm, ce qui est comparable à la longueur des dislocations observées

par D. Caillard dans ses expériences. Afin de nous rapprocher du montage expérimental, nous

avons gelé les surfaces d'extrémité Y de la cellule de simulation étendue le long de la ligne de

dislocation, c'est-à-dire que nous avons fixé les atomes sur les surfaces d'extrémité. Nous avons

ensuite relevé la première configuration de la dislocation à l'état de selle dans le calcul de NEB

et nous l'avons placée dans la cellule centrale de la cellule étendue. Nous avons ensuite placé

2 segments droite de dislocation dans chaque côté de la cellule centrale, ce qui aboutit à une

dernière cellule étendue, 5 fois plus longue que celle de NEB. La dislocation comporte une petite
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paire de décrochement au milieu de la ligne de dislocation. Cet astuce nous permet de relancer

de nouvelles simulations MD à partir d'un état de selle sans attendre infiniment la survenue

d'un événement rare tel que la nucléation de paires de décrochements (dont les échelles de temps

sont de l'ordre du milli-seconde alors que MD ne peut être exécuté que jusqu'à nano-secondes).

Les simulations ont été lancées avec des combinaisons de différents niveaux de contraintes de

cisaillement appliquées, de températures différentes et en utilisant différents potentiels inter-

atomiques: EAM1 [107], EAM2 [99] et EAM3 [98] afin de déterminer les tendances communes

observées avec les trois EAMs. Les premières simulations ont été réalisées sans application de

température et à des niveaux de contrainte inférieurs aux contraintes de Peierls [9] (contrainte

nécessaire pour vaincre la résistance des cristaux en absence de fluctuations thermiques). Les

valeurs de contrainte de Peierls prédites par les simulations atomistiques pour EAM1 [107],

EAM2 [99] et EAM3 [98] sont respectivement de 600 MPa, 900 MPa et 1000 MPa. Nous avons

tracé les profils MD de la dislocation à des intervalles définis dans le temps pour les simula-

tions effectuées avec EAM1 [107] à une contrainte de cisaillement appliquée τyz = 300 MPa,

avec EAM2 [99] à une contrainte de cisaillement appliquée τyz = 500 MPa et avec EAM3 [98]

à une contrainte de cisaillement appliquée τyz = 800 MPa. Nous avons constaté que, dans

les trois cas, la paire de décrochement initialement grossissait progressivement de l’etat selle

jusqu'à ce qu'elle se trouve dans la vallée adjacente de Peierls [9], puis se propagent le long de

la ligne de dislocation comme prévu dans la théorie standard. Ensuite, afin d'étudier l'effet

de la température, nous avons considéré les trois mêmes cas que dans le premier ensemble

de simulations, la seule différence était que de petites températures (T = 5 K et T = 10 K)

ont été appliquées à la cellule de simulation pour deux séries différentes de simulations. Afin

d'introduire la température dans nos simulations, nous avons conçu notre code pour atteindre

la température souhaitée en désignant les vitesses initiales des atomes selon une distribution

aléatoire de Maxwell-Boltzmann. Ce processus repose sur une base statistique plus solide que

l'utilisation d'un thermostat, car il repose sur le bain de chaleur atomistique réel d'un système

plus grand plutôt que sur un algorithme de thermostat particulier.

Pour les deux séries de simulations, le mécanisme de Peierls Nabarro standard a de nouveau été

observé à chaque fois. Les profils sont également apparus assez similaires aux profils respectifs
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dans le cas sans aucune température appliquée. Cependant, il n'est visuellement pas possible

de savoir si l'application de la température a un effet sur les vitesses des décrochements qui se

propagent, ce qui pourrait à son tour affecter la vitesse de glissement de toute la dislocation.

Nous avons donc commencé à tracer les vitesses de décrochement en fonction de l'évolution

du temps pour trois régimes de température différents T = 0 K, T = 5 K et T = 10 K

pour les trois potentiels EAM1, EAM2 et EAM3 respectivement. Les vitesses proviennent des

résultats de notre simulation, c'est-à-dire du changement de position des décrochements qui se

propagent le long de la ligne de dislocation avec l'évolution du temps. On voit que dans tous les

cas, les vitesses de décrochement atteignent finalement une valeur asymptotique. Nous avons

observé que la température n'a pas d'effet sur la vitesse des décrochements, en accord avec les

prédictions précédentes de T.D. Swinburne et al. [10].

Nous avons ensuite procédé à des simulations à des niveaux de contrainte plus élevés et avons

également testé les effets de la température dans ce régime. À des contraintes suffisamment

élevées, au-dessus d'un certain seuil, nous avons constaté que, tout au long de la propaga-

tion des décrochements primaires, se produisaient la nucléation de paires de décrochements

supplémentaires. L'accumulation de ces décrochements supplémentaires conduit à la formation

d'un macro-décrochement qui s'étend de la première vallée de Peierls à une autre, bien au-delà

de la vallée de Peierls la plus proche. Ce phénomène a été observé avec les trois potentiels

EAM1, EAM1 [107], EAM2 [99] et EAM3 [98], et différentes combinaisons de contrainte de

cisaillement et de température. C'est une observation intéressante qui ressemble au mouvement

saccadé observé dans les expériences du Dr Caillard. Il était également intéressant d’observer

que, pour les trois EAM, le niveau de contrainte de cisaillement appliqué auquel le mouvement

saccadé était observé continuait à diminuer à mesure que la température appliquée augmen-

tait. On peut donc en conclure que la température facilite le processus de mouvement saccadé.

L'autre tendance commune observée avec les trois EAM est que le mouvement saccadé s'est pro-

duit à des valeurs de contrainte bien inférieures aux niveaux de contrainte de Peierls attribués

à chaque EAM. En outre, avec l'application de la température, le mouvement saccadé a été

observé à des niveaux de contrainte de cisaillement appliqués plus bas pour les trois potentiels

d'EAM.
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Ensuite, nous voulions examiner ce qui se produirait si la contrainte de cisaillement appliquée

était encore augmentée, au-delà du point d'apparition primaire du mouvement saccadé. En

prenant comme exemple le cas de EAM1, un autre ensemble de simulations a été réalisé à τyz =

550 MPa, à un niveau de contrainte supérieur de 100 MPa au niveau principal d'occurrence du

mouvement saccadé, à savoir 450 MPa. Comme prévu, un macro-décrochement a été observé à

nouveau.. En observant de plus près les profils MD intégrés dans le temps, nous avons constaté

que, dans le premier cas, la nucléation de la paire de décrochement secondaires se produit après

la primaire décrochement a parcouru une distance de 600 Å de la position de départ alors que

dans le deuxième cas, ce phénomène s'est produit après une distance beaucoup plus petite

de 250 Å. Cela conduit à déduire que la période de temps pour la survenue d'un mouvement

saccadé diminue avec l'augmentation des niveaux de contrainte de cisaillement appliqués. Cela

signifie également qu'un certain type d'énergie est accumulé dans la dislocation de la vis en

raison de la nucléation de plusieurs paires de décrochements.

À partir des calculs NEB précédemment effectués, nous avons eu une idée de la variation de

l'enthalpie de formation de paires de décrochements avec différentes contraintes de cisaillement

appliquées en la tracant en fonction de la contrainte de cisaillement appliquée sur toute la

plage de travail de nos simulations. Il a été observé que l'enthalpie de la formation de paires

de décrochement diminue progressivement à mesure que la valeur de contrainte de cisaillement

appliquée augmente. Ensuite, afin de calculer lénergie accumulée dans la dislocation de la vis

responsable de la formation de décrochements secondaires, nous avons divisé toute la longueur

de la dislocation de la vis en segments de longueur b chacun. Ensuite, nous avons calculé

les énergies cinétiques combinées de tous les atomes associés à un décrochements situé en

b le long de la ligne de dislocation pour différentes valeurs de la contrainte de cisaillement

appliquée. Sur le même graphique pour l'enthalpie de formation de paires de décrochements,

nous avons ensuite tracé ces énergies cinétiques en fonction de l'augmentation de la contrainte de

cisaillement appliquée. En prenant comme exemple le cas avec EAM1 [107], il a été observé que

lénergie cinétique augmente progressivement avec la contrainte de cisaillement appliquée et en

prolongeant la courbe pour l'énergie cinétique, nous avons observé que cette courbe intersecte

le tracé de l'enthalpie de formation de paires de décrochements en un point. Et le niveau
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de contrainte de cisaillement correspondant est très proche de la contrainte de cisaillement à

laquelle le mouvement saccadé a été observé dans nos simulations. Nous pouvons donc en

conclure qu'à ce niveau de contrainte de cisaillement appliqué, l'énergie cinétique accumulée

à cause des décrochements en déplacement, devient suffisante pour la nucléation de nouvelles

paires de décrochements, ce qui conduit finalement à la formation d'un macro-décrochement,

comprenant plusieurs paires de décrochements et s'étendant sur plusieurs vallées du Peierls.

Des tendances similaires ont également été observées avec EAM2 et EAM3.

Ensuite, afin d'étudier si le mouvement saccadé se produit dans d'autres cristaux de BCC,

nous avons effectué des simulations pour le tungstène (W) en utilisant le seul potentiel EAM

approprié que nous avons trouvé dans la littérature, à savoir EAM4 ([154]). Des tendances

similaires, telles que la diminution de la période d’apparition du mouvement saccadé avec

l'augmentation des niveaux de contrainte de cisaillement appliquée, et la température aidant

le processus du mouvement saccadé ont été observées, conformément à nos observations pour

bcc Fe. Cependant, l'effet de la température est beaucoup plus marqué dans le cas du fer que

dans celui du tungstène. Dans le cas du tungstène, le mouvement des dislocations de vis est

plus difficile comparé à la mobilité des dislocations de vis dans bcc Fe en ce qui concerne les

sensibilités à la contrainte de cisaillement appliquée et à la temprature.

Pour les perspectives futures, en continuant plus loin dans ce travail, nous pourrions quantifier

différents aspects associés au mouvement saccadé. Connaissant les contraintes de cisaillement

appliquées et les niveaux de température, il est possible de prédire l'ampleur du mouvement

saccadé, c'est-à-dire des paramètres tels que le nombre de vallées de Peierls sur lesquelles le

saut s'étend, le temps requis pour qu'un saut aussi long se produise, le temps d'attente entre

les sauts, etc. Cela permettra une compréhension beaucoup plus approfondie des métaux bcc

à très basses températures, ce qui peut aider à la conception en toute sécurité d'appareils et

d'équipements fonctionnant à des températures basses et construits à l'aide de ces métaux bcc.
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        Titre : Statistiques du glissement des dislocations à basse température dans les métaux de symétrie 

                   cubique centrée.

Mots clés : Plasticité cristalline, mouvement saccadé, basse température, déformation plastique

Résumé : Les  observations  de  microscopie
électronique  in  situ  effectuées  par  Daniel  Caillard
(CEMES,  Toulouse)  au cours de la déformation de
cristaux de symétrie cubique centrée ont montré que
les dislocations vis effectuaient des sauts de plusieurs
distances  inter-atomiques  alors  que  la  théorie
standard  de  Peierls  prédit  des  sauts  de  une  seul
distance  inter-atomique.  Nous  avons  étudié  par
simulation atomique le glissement d’une dislocation
vis dans un cristal de fer pure. 

Nous  montrons  que  la  propagation  de
décrochement  le  long de  la  dislocation  induit  un
échauffement  local  qui  favorise  la  nucleation  de
décrochements supplémentaires. L’accumulation de
ces  décrochements  permet  à  la  dislocation  de
parcourir  plusieurs  distances  inter-atomiques.  Ces
simulations  nous  permettent  de  proposer  une
théorie  pour  l’explication  des  observations  de  D.
Caillard.

  Title : Statistics of dislocations at low temperature in pure metals with body centered cubic symmetry. 

Keywords : Crystal plasticity, jerky motion, low temperature, plastic deformation

Abstract :  In situ straining tests in high purity α-
Fe  thin-foils  at  low  temperatures  have
demonstrated  that  crystalline  defects,  called
dislocations, have a jerky type of motion made of
intermittent  long  jumps  of  several  nanometers.
Such an observation is in conflict with the standard
Peierls  mechanism for  plastic  deformation in  bcc
crystals,  where  the  screw  dislocation  jumps  are
limited  by  inter-reticular  distances,  i.e.  of  a  few
Angstroms.  Employing  atomic-scale  simulations,
we show that although the short jumps are initially
more 

favorable,  their  realization  requires  the  propagation
of a kinked profile along the dislocation line which
yields coherent atomic vibrations acting as traveling
thermal  spikes.  Such  local  heat  bursts  favor  the
thermally  assisted  nucleation  of  new  kinks  in  the
wake  of  primary  ones.  The  accumulation  of  new
kinks  leads  to  long  dislocation  jumps  like  those
observed  experimentally.  Our  study  constitutes  an
important step toward predictive atomic-scale theory
for materials deformation.
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