
HAL Id: tel-02100861
https://theses.hal.science/tel-02100861v1

Submitted on 16 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatial Query Optimization and Distributed Data
Server - Application in the Management of Big

Astronomical Surveys
Mariem Brahem

To cite this version:
Mariem Brahem. Spatial Query Optimization and Distributed Data Server - Application in the
Management of Big Astronomical Surveys. Databases [cs.DB]. Université Paris Saclay (COmUE),
2019. English. �NNT : 2019SACLV009�. �tel-02100861�

https://theses.hal.science/tel-02100861v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LV
00

9

Optimisation de requêtes spatiales et
serveur de données distribué -

Application à la gestion de masses de
données en astronomie

Thèse de doctorat de l’Université Paris-Saclay
préparée à l’Université de Versailles-Saint-Quentin-en-Yvelines

Ecole doctorale n◦580 sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Versailles, le 31 Janvier 2019, par

MARIEM BRAHEM

Composition du Jury :

Bernd AMANN
Professeur, Sorbonne Université Président

Farouk TOUMANI
Professeur, Université Clermont Auvergne Rapporteur

Laurent D’ORAZIO
Professeur, Université de Rennes Rapporteur

Bruno DEFUDE
Professeur, Telecom SudParis Examinateur

Karine ZEITOUNI
Professeur, UVSQ Directrice de thèse

Laurent YEH
Maı̂tre de Conférences, UVSQ Co-encadrant de thèse

Véronique VALETTE
Chef de Projet, CNES Invitée

Titre : Optimisation de requêtes spatiales et serveur de données distribué - Application à la
gestion de masses de données en astronomie

Mots clés : Bases de données astronomiques, Big Data, Optimisation de requêtes,
Systèmes distribués, Partitionnement, Spark

Résumé : Les masses de données scienti-
fiques générées par les moyens d’observa-
tion modernes, dont l’observation spatiale,
soulèvent des problèmes de performances
récurrents, et ce malgré les avancées des
systèmes distribués de gestion de données.
Ceci est souvent lié à la complexité des
systèmes et des paramètres qui impactent
les performances et la difficulté d’adapter les
méthodes d’accès au flot de données et de
traitement. Cette thèse propose de nouvelles
techniques d’optimisations logiques et phy-
siques pour optimiser les plans d’exécution
des requêtes astronomiques en utilisant des
règles d’optimisation. Ces méthodes sont
intégrées dans ASTROIDE, un système dis-
tribué pour le traitement de données astro-
nomiques à grande échelle. ASTROIDE al-
lie la scalabilité et l’efficacité en combinant

les avantages du traitement distribué en uti-
lisant Spark avec la pertinence d’un opti-
miseur de requêtes astronomiques. Il per-
met l’accès aux données à l’aide du lan-
gage de requêtes ADQL, couramment utilisé.
Il implémente des algorithmes de requêtes
astronomiques (cone search, kNN search,
cross-match, et kNN join) en exploitant l’or-
ganisation physique des données proposée.
En effet, ASTROIDE propose une méthode
de partitionnement des données permettant
un traitement efficace de ces requêtes grâce
à l’équilibrage de la répartition des données
et à l’élimination des partitions non perti-
nentes. Ce partitionnement utilise une tech-
nique d’indexation adaptée aux données as-
tronomiques, afin de réduire le temps de trai-
tement des requêtes.

Title : Spatial Query Optimization and Distributed Data Server - Application in the Manage-
ment of Big Astronomical Surveys

Keywords : Astronomical Databases, Big Data, Query optimization, Distributed systems,
Data partitioning, Spark

Abstract : The big scientific data generated
by modern observation telescopes, raises re-
curring problems of performances, in spite
of the advances in distributed data mana-
gement systems. The main reasons are the
complexity of the systems and the difficulty
to adapt the access methods to the data.
This thesis proposes new physical and logi-
cal optimizations to optimize execution plans
of astronomical queries using transformation
rules. These methods are integrated in AS-
TROIDE, a distributed system for large-scale
astronomical data processing. ASTROIDE
achieves scalability and efficiency by com-
bining the benefits of distributed processing

using Spark with the relevance of an astro-
nomical query optimizer. It supports the data
access using the query language ADQL that
is commonly used. It implements astrono-
mical query algorithms (cone search, kNN
search, cross-match, and kNN join) tailored
to the proposed physical data organization.
Indeed, ASTROIDE offers a data partitioning
technique that allows efficient processing of
these queries by ensuring load balancing and
eliminating irrelevant partitions. This partitio-
ning uses an indexing technique adapted to
astronomical data, in order to reduce query
processing time.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Characteristics of Astronomical Applications 4

1.2.1 Large Sky Surveys . 4

1.2.2 Compute Intensive Queries 4

1.2.3 Complex Astronomical Queries 4

1.2.4 Use of Spherical Coordinates 5

1.2.5 Use of Spherical Distance 5

1.3 Problem Statement . 6

1.4 Objectives and Contributions . 8

1.5 Dissertation Outline . 10

2 State of the Art 12

2.1 Introduction . 13

2.2 Big Data Management . 13

2.2.1 Relational DBMSs . 14

2.2.2 Hadoop MapReduce . 14

2.2.3 NoSQL-on-Hadoop systems 17

2.2.4 SQL-on-Hadoop Systems 19

2.2.5 Apache Spark . 20

2.2.6 Discussion . 26

i

2.3 Astronomical Servers . 27

2.3.1 SkyServer Project . 28

2.3.2 VizieR Service . 28

2.3.3 Q3C in PostgreSQL . 29

2.3.4 Open SkyQuery . 30

2.3.5 MonetDB/SkyServer . 31

2.3.6 AscotDB . 31

2.3.7 Qserv . 32

2.3.8 Tools for Cross-matching 33

2.3.9 Discussion . 34

2.4 Spatial Systems . 35

2.4.1 Hadoop-GIS . 36

2.4.2 SpatialHadoop . 37

2.4.3 Pigeon . 38

2.4.4 MD-HBase . 39

2.4.5 GeoSpark . 40

2.4.6 LocationSpark . 41

2.4.7 SIMBA . 42

2.4.8 Discussion . 43

2.5 Summary . 44

3 General Presentation of ASTROIDE 45

3.1 Introduction . 46

3.2 Background . 46

3.2.1 Query Processing . 46

3.2.2 Astronomical Queries . 52

3.2.3 ADQL . 54

3.2.4 DataFrames . 55

ii

3.2.5 Parquet Format . 55

3.3 Overview of the Proposed Framework 56

3.4 Data Partitioning . 57

3.5 Query Processing . 59

3.5.1 Query Interface Levels . 59

3.5.2 ASTROIDE Parser . 60

3.5.3 Query Optimizer . 60

3.6 Summary . 61

4 Data Partitioning and Indexing 62

4.1 Introduction . 63

4.2 Importance of Partitioning . 63

4.3 Challenges in Astronomical Data Partitioning 64

4.3.1 Data Skew . 64

4.3.2 Objects on the Boundaries 64

4.3.3 Partitioning Cost . 65

4.4 Sky Indexing . 65

4.4.1 HTM . 66

4.4.2 HEALPix . 68

4.5 Related Approaches . 71

4.5.1 Astronomical Partitioning 71

4.5.2 Spatial Partitioning and Indexing 73

4.6 Spark Partitioning Approaches . 76

4.7 ASTROIDE Partitioning . 77

4.8 Partitions Visualization . 81

4.9 Summary . 82

iii

5 Optimization of Astronomical Queries 83

5.1 Introduction . 84

5.2 Query Processing . 84

5.2.1 Query Parsing . 85

5.2.2 Query Optimization . 85

5.3 Query Optimization Worflow . 86

5.3.1 Extended Analysis . 86

5.3.2 Extended Logical-Physical Optimizations 87

5.3.3 Physical Planning . 88

5.4 Rule-based Optimization in ASTROIDE 88

5.4.1 Partitions Pruning . 89

5.4.2 HEALPix Pushdown . 89

5.4.3 Merge non-spatial and geometrical Filters 90

5.4.4 Avoid Cartesian Product . 90

5.5 Cone Search . 90

5.5.1 Baseline Approach . 91

5.5.2 Optimization with Query Rewriting 91

5.5.3 Optimization with Transformation Rules 92

5.6 kNN Search . 93

5.6.1 Baseline Approach . 93

5.6.2 Optimization with Query Rewriting 93

5.6.3 Optimization with Transformation Rules 94

5.7 Cross Match . 95

5.7.1 Baseline Approach . 96

5.7.2 Optimization with Query Rewriting 96

5.7.3 Optimization with Transformation Rules 96

5.8 kNN Join . 98

5.9 Combination with other Attributes 102

5.9.1 Scenario 1 . 103

5.9.2 Scenario 2 & 3 . 103

5.10 Summary . 105

iv

6 Experimental Study and Graphical Interface 106

6.1 Introduction . 107

6.2 Experimental Setup . 107

6.2.1 Local Cluster Description 107

6.2.2 Cloud Cluster Description 108

6.2.3 Datasets Description . 109

6.3 Result Analysis using a Local Cluster 110

6.3.1 Partitioning . 110

6.3.2 Cone Search Query . 112

6.3.3 Cross-Matching Query . 113

6.3.4 kNN Search Query . 117

6.3.5 kNN Join Query . 118

6.4 Cloud Based Implementation and Tests 119

6.5 ASTROIDE GUI . 121

6.5.1 Querying Module . 122

6.5.2 Visualization Module . 122

6.6 Summary . 124

7 Conclusions and Perspectives 126

7.1 Summary of our Contributions . 126

7.2 Perspectives . 127

List of Abbreviations 131

Publications 132

Bibliography 143

v

vi

List of Figures

1.1 Spherical Coordinates. 6

1.2 Organization of the Dissertation. 11

2.1 Workflow of a MapReduce Job. 15

2.2 HDFS Architecture. 17

2.3 HBase Table. 19

2.4 Spark Ecosystem. 21

2.5 Spark Architecture. 22

2.6 Types of Transformation in Spark. 23

2.7 DAGScheduler . 24

2.8 Spatial Join Query Plan in HadoopGIS. 37

3.1 Query Processing. 47

3.2 Query Optimization. 50

3.3 Cone Search Definition . 53

3.4 Structure of Parquet File . 56

3.5 ASTROIDE Architecture . 57

4.1 Objects on the Boundaries . 65

4.2 HTM Partition . 66

4.3 HTM Procedure . 67

4.4 HEALPix Procedure . 69

4.5 HEALPix Partition with Nside = 1,2,4,8 70

vii

4.6 Zones Partitioning . 71

4.7 kd-tree Partitioning . 73

4.8 Space Filling Curve . 75

4.9 Example of R-tree . 76

4.10 ASTROIDE Partitioner. 80

4.11 Two-level Partitioning. 81

4.12 Partitions Visualization with Aladin. 82

5.1 Query Optimization Worflow . 87

5.2 Plan Transformation of Query 5.2 92

5.3 kNN Cases . 94

5.4 Plan Transformation of Query 5.4 95

5.5 Plan Transformation of Query 5.6 98

5.6 3NN Join Query. 100

5.7 Plan Transformation of Query 5.11 101

5.8 Plan Transformation of Query 5.9 104

5.9 Plan Transformation of Query 5.10 104

6.1 Cluster Architectures . 109

6.2 Effect of Data Size on Partitioning (GAIA DR1). 111

6.3 Partitioning with Different Datasets 111

6.4 Cone Search Performance . 112

6.5 Cross-Match Performance . 114

6.6 More Cross-Match Performance 115

6.7 Effect of Use of Intermediate Dataset (GAIA DR1/IGSL). 116

6.8 kNN Performance . 118

6.9 kNN Join Performance . 119

6.10 Performance Comparison using ASTROIDE 121

6.11 ASTROIDE GUI . 122

6.12 Cone Search Visualization . 123

6.13 2NN Join Visualization . 124

viii

List of Tables

2.1 Features of Astronomical Servers. 34

3.1 Used Notations. 52

6.1 Configuration Details . 108

6.2 Main Characteristics of the Datasets. 110

6.3 Average Number of Matching Pairs. 117

6.4 Cluster Performances . 121

ix

List of Queries

2.1 Cone Search (Q3C) . 30

2.2 Cross-Match (Q3C) . 30

2.3 Spatially-restricted filter (Qserv) . 32

2.4 Example of a Spatial Join query . 36

3.1 Example of an Astronomical Query 47

3.2 Cone Search (ADQL) . 54

3.3 Example with DataFrame . 55

3.4 Cross-Match using DataFrames . 59

5.1 Query 3.2 after Parsing . 85

5.2 Cone Search with Filter (ADQL) . 90

5.3 Query 5.2 after Rewriting . 91

5.4 kNN (ADQL) . 93

5.5 Query 5.4 after rewriting . 93

5.6 CrossMatch (ADQL) . 95

5.7 Query 5.6 after rewriting . 96

5.8 kNN Join (ADQL) . 98

5.9 kNN with Filter (ADQL) . 102

5.10 CrossMatch with Filter (ADQL) . 102

5.11 kNN Join with Filter (ADQL) . 103

x

Acknowledgments

First, I would like to express my sincere gratitude to my advisor Prof. Karine

Zeitouni for her motivation, enthusiasm and immense knowledge. I have been

extremely lucky to have such a tremendous mentor. On the academic level, she

helped me to grow as a scientific researcher in the database systems area. With-

out her advice, intelligent ideas and solid experience, I may not have ever pursued

this challenging work. On the personal level, she inspired me by her determina-

tion and hard-working. Since my master internship, she believed in me and en-

couraged me to strive for excellence. I am indebted to her for her confidence and

assistance.

My special words of thanks should also go to my co-advisor Associate Prof.

Laurent Yeh for always being so helpful and motivating. His constant guidance

and cooperation have always kept me going ahead.

I would also like to acknowledge all my thesis committee members (Prof.

Bernd Amann, Prof. Bruno Defude, Prof. Laurent D’Orazio, Prof. Farouk

Toumani) for their guidance. I am thankful to Prof. Laurent D’Orazio and Prof.

Farouk Toumani for reviewing my dissertation and the time they gave me to build

constructive feed-backs. I greatly acknowledge Prof. Bruno Defude for examin-

ing my work. I am quite appreciative of Prof. Bernd Amann for agreeing to be

part of my dissertation committee on such a short notice as a replacement for

Prof. Christine Collet. Prof. Christine is a brilliant teacher and a pioneer in the

database systems area, who unfortunately passed away a few days before the

dissertation defense.

I express my heartfelt gratitude to Mme Véronique Vallette who was honorably

invited to participate in my thesis committee. I appreciate her friendly nature and

constant motivation. She offered me a great opportunity to collaborate with the

Centre National d’Etudes Spatiales (CNES), a major player in Europe’s space

endeavours who co-funded my thesis.

xi

My acknowledgement will never be complete without the special mention of

all the members of the DAVID Lab, and in particular the ADAM team. My deep

appreciation goes to Associate Prof. Stéphane Lopez for his invaluable feedback

on my research and for always being so supportive of my work. I am also thankful

to Associate Prof. Zoubida Kedad for her endless support and motivation. I am

also thankful to Associate Prof. Yehia Taher and Associate Prof. Nicoleta Preda

for their encouragement and advice. I would like to thank my lab mates (Livia,

Redouane, Souheir, Jingwei, Ahmed, Mohammed, Alaa, Alexandros, Hafsa) for

always being there and for supporting me. I am proud to say that my experience in

the David lab was exciting and fun, and has energized me to continue in academic

research.

Last but not least, I want to thank my precious family: my parents who encour-

aged me to have confidence in my abilities and for their constant support through

the ups and downs, my sister Sarra and my brother Salmen for their endless mo-

tivation and emotional support. My most heartfelt thanks go to my dear husband

for his unconditional love. And Finally, I dedicate this thesis to my children Essia

and Elyes, my champions, who blessed me with a life of joy and happiness, who

inspired me and have made me stronger.

Mariem Brahem

xii

CHAPTER 1

Introduction

Contents
1.1 Motivation . 2

1.2 Characteristics of Astronomical Applications 4

1.3 Problem Statement . 6

1.4 Objectives and Contributions . 8

1.5 Dissertation Outline . 10

Do not look at stars as bright

spots only. Try to take in the

vastness of the universe.

Maria Mitchell

1

Chapter 1 - Introduction

Astronomy is undergoing a large and unprecedented growth of astronomi-

cal data in both of volume and complexity. Advances in new instruments and

extremely large sky surveys are creating massive datasets including billions of

objects and Terabytes of data. This will enable new discoveries by identifying

rare or new astronomical objects, exploring the universe and thus empowering

astronomers. Analyzing these vast amounts of data, making new scientific dis-

coveries and extracting knowledge from this data effectively pose a considerable

challenge. Traditional astronomical analysis techniques are no longer adequate,

not only because of data explosion, but also because of computational complexity

of astronomical queries. In this chapter, we briefly present the nature of astro-

nomical data and the complexity of queries. We also discuss the main research

challenges in this dissertation and provide an overview of our contributions.

1.1 Motivation

Humans throughout History have looked up to the sky to answer fundamental

questions of where we came from, navigate vast oceans, measure time and mark

seasons. The sky inspired ancient civilizations and reshaped their view of the

world. Early cultures believed that gods dictated their motions with celestial ob-

jects and tried to unveil these messages. Today, our understanding of the uni-

verse has progressed. New telescopes and detectors have led to ambitious and

well-organized surveys of star positions. Advances in new instruments have of-

fered more powerful telescopes than ever to astronomers. Thus, these surveys

are moving into a petascale regime and creating massive datasets including bil-

lions of objects.

The Sloan Digital Sky Survey (SDSS) [1], the Large Synoptic Survey Tele-

scope (LSST) [2] and the GAIA mission [3] by the European Space Agency (ESA)

are the largest and most accurate three-dimensional maps of our Galaxy ever ob-

tained in the history of astronomy.

The SDSS project was designed in the 1990s by James Gunn and his col-

leagues, it produces each night about 200 GB of data. The scientific impact of

SDSS has been remarkable, it has dramatically enhanced our image of the milky

way and has led to discoveries that revolutionized astronomy. Another important

ongoing space observatory is the ESA mission called GAIA that observed the po-

sitions, distances and movements of more than 1 billion stars with unprecedented

2

1.1. Motivation

precision. The mission is expected to last until December 2020 and has already

produced several data releases.

Another promising project is the future LSST project, it is expected to pro-

duce a massive photometric and astrometric dataset of about 37 billion stars and

galaxies. LSST will produce about 15 TB per night, leading to a total catalog size

of 15 PB. The objective of this enormous data archive is to provide super-deeps

views and discoveries of the universe. Such powerful project will produce data

sizes that have never been handled by astronomers.

The National Academy of Sciences discussed the New Worlds and New Hori-

zons in Astronomy [4] and recognized the growing scale of astronomical data. It

defined Cyber-Discovery as an important aspect for giving meaning to the data. It

remembered that many of the most far-reaching and revolutionary discoveries in

astronomy were not solely the direct result of observations with telescopes. But,

they also depend on the ways about how to analyze and process the data, and

make testable predictions. How will astronomy archives survive the data tsunami,

a question raised by Berriman et al. [5] and recognized the needs to engage and

partner with computer scientists to support distributed processing of data and use

optimization techniques.

Meanwhile, the analysis of such surveys is the basis of subsequent astronom-

ical discoveries. Astronomers will be able to understand much more about the

structure, properties and evolution of our Galaxy. Analyzing large amounts of

astronomical data has been high on the list of priorities for astronomy develop-

ment, it forms a vital constituent in the future success of any telescope program.

The data generated from these projects need to be analyzed so that interesting

phenomena can be identified for further scientific studies. Large volumes of data

from highly productive space missions have to be efficiently stored and analyzed

in such a way that astronomers maximize their scientific return from these mis-

sions. For example, cross-matching is a fundamental operation in astronomical

data processing. Cross-matching allows correlating two catalogs, matching newly

extracted set of objects with an existing catalog, or even tracking transients from a

series of observations. This query, in a nutshell, is a join on a distance condition.

It enables astronomers to identify and correlate objects belonging to different ob-

servations in order to make new scientific achievements by studying the temporal

evolution of the sources or combining physical properties (such as the brightness

of the stars). Astronomers will observe the same sky in other wavelengths and

3

Chapter 1 - Introduction

combine the available observations. This would immensely help in making new

explorations faster and easier and formulate new theories to plan further obser-

vations. Moreover, the competitiveness of these surveys strongly depends on the

quality of the survey data management.

1.2 Characteristics of Astronomical Applications

1.2.1 Large Sky Surveys

A data avalanche is occurring in astronomy with datasets measured in Terabytes
[6]. The sky is being surveyed with billions of stars giving their positions, magni-

tudes, and other properties. The large sky surveys presented above have become

the principal data source in astronomy, leading to a new golden era of astronom-

ical discoveries. The important increase in data volume is based on the great

progress in technology including advanced telescopes which follow an exponen-

tial growth and fulfill the Moore’s law in their data-generation. Most sky surveys

are generated in digital form and make either spectroscopic, astrometric or pho-

tometric observations.

1.2.2 Compute Intensive Queries

Astronomical queries are potentially computational intensive. They involve costly

geometric computation. For example, kNN join queries (which combine each

object in a dataset R with the k closest objects in another dataset S) need to com-

pute the distance between each pair of objects from R and S, this usually lead to a

cross product between billion-scale catalogs of complexity of O(|R|.|S|). The cross

product and the spatial refinement operation to check distance between pairs of

stars are very expensive to process, due to the pairwise distance computation

costs, along with the communication and I/O costs incurred. Thus, the design of

an efficient and scalable querying system is needed for astronomical missions.

1.2.3 Complex Astronomical Queries

Astronomical queries are hard to express in current DBMSs. It is highly desir-

able that a given astronomical data management system provides an interface

4

1.2. Characteristics of Astronomical Applications

language that integrates both astronomical and relational queries. At present, the

Astronomical Data Query Language (ADQL) [7] is defined by the International

Virtual Observatory Alliance (IVOA) as a standard to query astronomical data.

ADQL can express cross-matching between tables and complex search criteria

with geometric functions (such as DISTANCE, CONTAINS ...) and geometry data

types (such as POINT, CIRCLE ...). ADQL supports both geometric and con-

ventional non-spatial predicates. Therefore, it is needed to provide an efficient

query processing engine with a simple, clear and unified interface for accessing

astronomical data using ADQL.

1.2.4 Use of Spherical Coordinates

There are different kinds of spherical coordinate systems that are used in astron-

omy to uniquely determine the position of the stars on the sky including horizon

system, celestial system, ecliptic system, galactic system and super galactic sys-

tem. However, the most used one is the celestial equatorial system. The current

standard celestial reference system adopted by the International Astronomical

Union (IAU) is the International Celestial Reference System (ICRS) where the

sky is projected on a celestial sphere with the earth in the center (see Figure

1.1). Using ICRS, the position of a star is recorded as two-dimensional coordi-

nates, namely the right ascension ra and the declination dec. The ranges of

ra and dec are [0°,360°] and [−90°,90°] respectively. ra is the celestial equiva-

lent of terrestrial longitude. It measures the angular distance eastward along the

celestial equator. While dec is the latitude-like coordinate, it measures the angu-

lar distance of a celestial object north or south of the celestial equator. Spatial

queries are typically optimized using spatial indices in a Cartesian space. But

these indices do not cope well with the spherical coordinates.

1.2.5 Use of Spherical Distance

Common astronomical queries use spherical distance as a spatial filtering step.

Some astronomical queries involve spatial joins according to a spherical distance,

which can be a very expensive and complex operation to process.

The spherical distance (see Definition 3.2.2) reflects the distance of the short-

est path between two points along the surface of the sphere. It uses trigonometric

5

Chapter 1 - Introduction

Celestial
Equator

Figure 1.1 Spherical Coordinates.

functions for calculating the distance between two celestial objects. This subrou-

tine consumes more time when compared with the euclidean distance that uses

multiplications and additions.

1.3 Problem Statement

The growing scale of astronomical data and the increased accuracy of observa-

tion tools bring a change of paradigm for data processing. Also, most astronomi-

cal operations are very expensive to process because of their compute-intensive

nature [6] especially for complex and costly operations. The cross-match of astro-

nomical catalogs is a typical example commonly used by astronomers to correlate

objects belonging to different observations. Through this operation, they can in-

tegrate catalogs from several instruments observed at different points in time,

combine physical properties, or study the temporal evolution of the sources.

In this respect, the growing scale of observed surveys coupled with the

compute-intensive nature of astronomical operations require a scalable solution

that provides full-fledged spatial data exploration.

However, the specific context of astronomical data handling brings up many

questions:

6

1.3. Problem Statement

• What is the state-of-the-art on the handling of astronomical data ?

• How to exploit big data technologies to pursue astronomical data challenges

?

• How to build a scalable architecture for astronomical data analytics ?

• How to interact with petabytes of astronomical data?

• How to reduce the computational complexity of astronomical operations ?

• How to provide the astronomers with an efficient support of astronomical

queries, i.e. combining several operations, without worrying about query

optimization ?

To resolve some of the difficulties mentioned above, a common admitted

solution is to apply data partitioning to parallelize query computation by dis-

tributing the data on different worker nodes. Astronomical data partition-

ing is particularly challenging due data skewness. It also necessitates the

use of techniques that support the multi-dimensional nature of astronomical

data. This raises new questions:

• How to efficiently partition astronomical data ?

• Which data indexing technique should be utilized ?

Traditional relational database systems are no longer adequate, not only be-

cause of data explosion, but also because of computational complexity of astro-

nomical queries. They do not have the power to process or even store these large

datasets.

Recently, the shared-nothing [8] type of parallel architecture, which uses com-

modity hardware, is becoming a de facto standard in massive data handling. In

this context, the distributed in-memory computing framework Apache Spark [9]

has emerged as a fast and general purpose engine for large-scale data process-

ing in memory.

While Spark fits well the large scale nature of astronomical data, it does not

provide native support of astronomical queries. Yet, users can rely on UDFs

to process astronomical data. For instance, implementing a UDF to execute a

spatial filtering or a cross-matching query is possible. However, this leads to an

expensive query execution time because Spark considers UDFs as black boxes.

7

Chapter 1 - Introduction

It is not able to optimize spatial search or cross-matching queries. Thus, Spark

system invariably applies a full scan for the former, and a Cartesian product when

matching collections, because they both involve UDFs. Therefore, advanced

physical and logical query optimization techniques are needed in order to query

astronomical data seamlessly and efficiently.

In the literature, many existing systems [10; 11; 12; 13] support spatial data

and queries over distributed frameworks. These systems allow complex spatial

queries and implement spatial indices such as R-tree and R+-tree. However, they

suffer from several limitations with respect to our needs.

• The main issue is the lack of an expressive query language adapted to the

astronomical context.

• The proposed built-in functions are not adapted to the spherical coordinate

system, which lead to erroneous query results. This is due to the differ-

ence between the spherical distance and the euclidean distance i.e., the

difference between the length of the great circle arc and of the straight line

between two points.

• The query performances remain limited due to unsuitable data partitioning

scheme. This issue will be discussed in Chapter 6.

Therefore, there is a need to redesign astronomical operations while taking

advantage of the steady progress in big data technologies and tools. The target

system should provide an effective, fast and linearly scalable data management

for sky surveys.

Indeed, there is a gap between existing distributed systems and astronomical

data handling using astronomical query language. Our goal is to fill this gap and

introduce a new framework for the management of large volume of astronomical

data. Efficient optimization techniques to reduce search space and lighten the

cost of distance computation are necessary.

1.4 Objectives and Contributions

This work has been motivated and supported by the DAVID lab of the University

of Versailles SQY 1 and the Centre National d’Etudes Spatiales (CNES) 2.
1http://www.uvsq.fr/
2https://cnes.fr/

8

1.4. Objectives and Contributions

The main objective of this dissertation is to explore the research challenges for

providing a high performance engine for querying astronomical data, to propose

novel methods for high level query support and optimization, and to implement

the proposal in a framework that provides support for these queries. Our contri-

bution lies in the implementation of the ADQL language and its optimization within

ASTROIDE, an open source framework that we developed based on modern big

data technology. Our design takes full advantage of the extensibility features of

Spark [9], without changing its source code, which allows more flexibility and

portability on new versions of the underlying system. Precisely, the support of

astronomical data involves extending several levels of Spark. At the language

level, the query language is extended to enable astronomical functions. We also

extend the Dataframe API with the same functions at the programming level. In

ASTROIDE, queries are expressed using ADQL [7], an SQL-Like language with

astronomical functions. At the storage level, more appropriate techniques are

needed for organizing and accessing astronomical data. ASTROIDE implements

a data partitioner that achieves both spatial locality and load balancing. It also

adopts a well-known sky pixelization technique, combined with a spherical space

filling curve scheme, namely HEALPix [14], to achieve high performance query

execution. At the intermediate level, the query language is parsed and optimized

seamlessly. Various logical and physical optimization techniques for the ADQL

execution are proposed, and integrated into Spark SQL [15] thanks to the extensi-

bility of its optimizer. This includes the control of the data partitioning mechanism

and spatial indexing as well as the customization of the query plan. Our query

optimizer is responsible for generating an efficient execution plan for the given

ADQL query; it injects spatial-aware optimization, which avoids reading unnec-

essary data as much as possible; it evaluates and selects the best plan. There-

fore, the optimizer has been extended with various rules tailored for astronomical

queries.

In a nutshell, this dissertation includes the following contributions:

• Support of astronomical query processing over Spark. This work is

the first study that explores the extension of Spark to process astronomical

queries. It provides a detailed system architecture and its evaluation on real

data in order to show its efficiency and its scalability.

• A comprehensive study of big data management frameworks. This dis-

sertation discusses the ability of existing big data management frameworks

9

Chapter 1 - Introduction

to support astronomical data and presents new systems that have been

implemented to support geo-spatial data.

• Index and partitioning support for astronomical data. Our system com-

bines data partitioning with an indexing technique adapted to astronomical

data (HEALPix pixelization), in order to speed-up query processing time.

• Support of the most representative astronomical operators. We design

efficient and scalable cone search, kNN search, cross-match, and kNN join

algorithms tailored to our physical data organization.

• High-level data access. Our framework supports the data access and

query using the astronomical query language ADQL that is recommended

by the IVOA.

• Astronomical query optimization. We extend the Spark Catalyst [16] opti-

mizer and exploit partition pruning for astronomical operators. We introduce

new physical and logical optimizations to optimize query execution plans

using transformation rules and strategies.

1.5 Dissertation Outline

This dissertation is composed of seven chapters. Figure 1.2 outlines the orga-

nization of this dissertation. The current chapter introduces the general context,

describes the motivations and summarizes our contributions. Chapter 2 studies

the state-of-the-art. We present existing technologies for performing distributed

processing on big data and discuss their ability to deal with huge volume of as-

tronomical data. We also describe the state-of-the-art approaches for distributed

spatial query processing. Inspired by the challenges presented in this Chapter

and the limitations of existing systems, we present in Chapter 3 the overall ar-

chitecture of our proposal called ASTROIDE from the physical level to the high

level language. We also tackle some important background and definitions that

are used in this dissertation. Chapter 4 and Chapter 5 are dedicated to explain

more details about ASTROIDE. In Chapter 4, we study partitioning and indexing

methods for astronomical query processing. Then, we present our partitioning

approach based on HEALPix, a sky indexing scheme tailored for astronomical

10

1.5. Dissertation Outline

data. In Chapter 5, we present our query processing module that exploits par-

tition pruning for astronomical operators. We introduce transformations rules to

optimize astronomical query execution. Chapter 6 provides an experimental study

of ASTROIDE performances in details. We compare the effectiveness and the ef-

ficiency of ASTROIDE with the closest prototype in the state-of-the-art. Finally,

we conclude this thesis in Chapter 7 by summarizing our main contributions and

indicating some interesting perspectives.

Ch. 1: Introduction

Ch. 2: State of the art

Ch. 3: General
presentation of

ASTROIDE

Ch. 4: Data partitioning
and indexing

Ch. 5: Optimization of
astronomical queries

Ch. 6: Experimental
Study and Graphical

Interface

Ch. 7: Conclusion and
Perspectives

Figure 1.2 Organization of the Dissertation.

11

CHAPTER 2

State of the Art

Contents
2.1 Introduction . 13

2.2 Big Data Management . 13

2.3 Astronomical Servers . 27

2.4 Spatial Systems . 35

2.5 Summary . 44

The world is one big data problem.

Andrew McAfee

12

2.2. Introduction

2.1 Introduction

Over the past few years, data deluge has become a reality. The amount of data

generated is astonished, resulting in what is called big data. Big data refers

to large amounts of data for which traditional database management tools have

become inefficient in terms of storage, processing and analysis. The International

Data Corporation (IDC), a pioneer in studying big data defines big data in 2011

report [17] as:

Big data describes a new generation of technologies and architectures, de-

signed to economically extract value from very large volumes of a wide variety of

data, by enabling high-velocity capture, discovery, and/or analysis.

This definition announces that big data is characterized by 4V’s: Volume, Ve-

locity, Variety and Value. Volume refers to the vast amounts of data that are being

generated whereas Velocity is the rate of growth and how fast the data is gath-

ered. Variety provides information about the types of data such as structured, un-

structured and semi-structured. However, Value refers to the outcome and added-

value that the collected data can bring. Given its popularity, many definitions [18;

19; 20] are found for big data and reaching a consensus is difficult. The above

definition of big data allows us to compare big data management with traditional

data management. First, traditional data management tools are not designed to

manage such large volume of data. Second, big data comes with different types

whereas traditional data is typically structured and can be easily stored and pro-

cessed.

Thus, the management of big data has revealed new techniques and tech-

nologies to handle the characteristics of big data. In this chapter, we study the

existing big-data systems which include a set of tools and mechanisms to load,

extract and perform parallel query processing. We also evaluate the ability of

these systems to support huge volume of astronomical data and describe the

state-of-the-art approaches for spatial query processing.

2.2 Big Data Management

Big data management is a broad practice that encompasses the policies, proce-

dures and technology used for the collection, storage, organization, administra-

tion and delivery of large repositories of data. In particular, The National Institute

13

Chapter 2 - State of the Art

of Standards and Technology (NIST) categorized big data management into big

data science and big data frameworks [21]. Big data science is the study of tech-

niques covering the acquisition, conditioning, and evaluation of big data, whereas

big data frameworks are software libraries along with their associated algorithms

that enable distributed processing and analysis of big data problems across clus-

ters of computer units. It concerns the convenient organization of data for the

efficient process of large volume. In the following subsections, we describe rela-

tional DBMSs and discuss their limitations to cope with big data challenges and

present the most popular big data frameworks.

2.2.1 Relational DBMSs

Since they were invented by Edgar Codd in 1970, Relational Database Manage-

ment Systems (RDBMSs) have been the dominant model for managing, organiz-

ing, and retrieving data. They are based on a relational model that stores data in

form of relational tables and queries structured data. The main focus of Transac-

tional RDBMS is on ACID properties [22]:

• Atomicity - Transaction is either completely done or it is completely rolled

back.

• Consistency - Every transaction is subject to a consistent set of rules.

• Isolation - No transaction should interfere with another transaction.

• Durability - Committed changes are never lost.

The main issue of RDBMSs is that they cannot address the variety and scalability

required by big data. The volumes of data generated cannot be managed by

a RDBMS. The Relational Data Model defines only tabular data structure and it

does not allow representing new needs such as graph. In addition, RDBMSs are

increasingly utilizing more and more expensive hardware [23]. Hence, several

solutions to manage big data came into existence to satisfy these challenges.

Distributed systems provide the basis of those technologies [24].

2.2.2 Hadoop MapReduce

MapReduce was invented by Google to index the large volume of data on the

web. MapReduce [25] is the dominant model for batch processing. The key

14

2.2. Big Data Management

idea is that data is divided into partitions and these partitions are processed in

parallel, assuming that data is stored in a distributed file system. MapReduce

refers to two separate steps: map and reduce. The map phase takes an input

pair and produces a set of intermediate key/value pairs:

map : (K1,V1)→ list(K2,V2)

The intermediate values associated with the same key K2 are grouped to-

gether and passed to the reduce function. The reduce is called for each key K2

and a list of values for that key to merge these values and generate a possibly

smaller list of values:

reduce : (K2, list(V2))→ list(K3,V3)

The process of transferring data from the map task to the reduce task is known

as the shuffle. Figure 2.1 describes a workflow of a common MapReduce job.

Input OuputMap Reduce

k0 V0

k2 V2

k1 V1

k3 V3

k5 V5

k4 V4

k6 V6

k7 V7

k’0 V’0

k’4 V’2

k’1 V’1

k’0 V’3

k’2 V’5

k’3 V’4

k’2 V’6

k’3 V’7

k’0
V’0

k’1 V’1

V’3

k’4 V’2

k’2
V’5

V’4

V’6

k’3
V’7

K’’0 V’’0

K’’1 V’’1

K’’2 V’’2

K’’3 V’’3

K’’4 V’’4

Shuffle

Figure 2.1 Workflow of a MapReduce Job.

One of the most used implementation of the MapReduce model is Apache

Hadoop [26]. Hadoop has long been the mainstay of the big data movement.

15

Chapter 2 - State of the Art

Apache Hadoop is an open-source software framework that supports large data

storage and processing. Hadoop is suitable for big data management because of

the following advantages:

• Scalability. This is the major force that drives Hadoop to popularity. It is pos-

sible to scale out a Hadoop cluster by adding more nodes. Indeed, adding

commodity servers allows Hadoop to scale computation and storage capac-

ities. Hadoop is also able to ensure data locality by pushing operations to

nodes on which data resides.

• Cost efficiency. Hadoop uses commodity hardware as a node, this can

decrease costs and makes the process of massive data affordable. Hadoop

is also able to adapt the processing load according to the power of each

node.

• Fault tolerance. If any node goes down, data retrieval can be done through

other nodes due to data replication.

Moreover, the Apache Hadoop software is composed of additional modules:

Hadoop Distributed File System (HDFS) [27] and Hadoop YARN as the resource’s

manager. HDFS is the primary data storage system of Hadoop applications.

However, other data storage systems can be integrated into the Hadoop frame-

work such as Amazon S3 [28].

HDFS is designed to reliably store very large files across machines in a large

cluster. HDFS adopts a master-slave architecture as shown in Figure 2.2 in which

the NameNode manages the file system metadata and many DataNodes store

the data. The NameNode is a central part as it is responsible for the coordination

in the cluster. It allocates resource storage and splits each file into blocks. These

blocks are stored in a set of DataNodes. HDFS creates multiple replicas of data

blocks in different DataNodes. This increases availability because even if some

nodes fail, data can still be accessed by retrieving one of the copies stored in

other nodes. HDFS achieves efficiency by distributing data which allows parallel

processing on the nodes where the data is located. DataNodes creates, deletes

or replicates the actual data blocks based on the instructions received from the

NameNode. By default, a HDFS block size is 64 MB and HDFS stores three

copies of each data block. Thus, Hadoop provides a reliable shared storage and

16

2.2. Big Data Management

Metadata
(Name/Replicas…)

NameNodeMetadata ops

Read

Replication

Write Write

Blocks

Block ops
DataNodes DataNodes

Figure 2.2 HDFS Architecture.

analysis system. The storage is provided by HDFS, and analysis by MapReduce
[29].

There are multiple open source projects built on top of Hadoop such as HBase
[30], Hive [31] and Pig [32] that we present in the following subsections. These

systems are an overlay of Hadoop Map-Reduce, they inherit its main character-

istic of scalability to handle massive datasets.

2.2.3 NoSQL-on-Hadoop systems

NoSQL is short for Not Only SQL, it addresses several issues that the relational

model is not designed to address. NoSQL systems are designed for large-scale

data storage and massively-parallel data processing. They are able to horizon-

tally scale, to replicate and distribute data over many servers and to offer a flexible

data schema. Besides, they give up some of the ACID constraints to improve per-

formances. When talking about NoSQL, three basic requirements are involved:

Consistency, Availability, Partition Tolerance, known as CAP properties.

• Consistency - Different from the definition of ACID properties. It means that

17

Chapter 2 - State of the Art

all nodes see the same data at the same time.

• Availability - Guarantees an answer for each query.

• Partition Tolerance - Operations will complete, even if individual components

are unavailable.

However, it is impossible to fulfill all three requirements. Thus, Brewer’s CAP

theorem [33] states that a NoSQL system has to follow two of these three re-

quirements.

NoSQL systems were classified by Leavitt into four categories [34]:

• Key-value stores. A system that stores values indexed for retrieval by keys

(e.g., SimpleDB [35]).

• Column-oriented databases. A system that stores data in a structured table

of columns and rows with uniform sized fields for each record (e.g., HBase
[30]).

• Document-based stores. A system that stores data as collections of docu-

ments (e.g., MongoDB [36]).

• Graph databases. A system that stores data as a graph. A graph data

structure consists of a finite set of ordered pairs, called edges, and entities

called nodes. (e.g., Neo4j [37])

Here, we give details about HBase as we are interested in the combination of

NoSQL databases and Hadoop in this subsection. HBase is considered as the

Hadoop database, it is one of the most popular NoSQL systems that combines

the scalability of Hadoop with real-time data access. But, there are many other

popular NoSQL databases such as Cassandra [38].

HBase

HBase [30] is a non-relational, distributed database that runs on top of Hadoop

and HDFS. HBase is designed to support high table-update rates and to scale

out horizontally in distributed computing environment. HBase supports mas-

sively parallelized processing via MapReduce for using HBase as both source

and sink. It is known for providing strict consistency on reads and writes, which

18

2.2. Big Data Management

distinguishes it from other NoSQL databases. In addition, it provides pushdown

predicates which improves query performances.

Each HBase table (see Figure 2.3) is stored as a sparse multidimensional

sorted map, with rows and columns, different from the structure of tables in con-

ventional relational DBMSs. Each row has a unique row key and an arbitrary

number of columns denoted as table cells.

Column A
Value

Column B
Value

Column B
Value

Column B
Value

Row A

Row B

Row C

Figure 2.3 HBase Table.

2.2.4 SQL-on-Hadoop Systems

Hive

Hive [31] is a data warehouse system that enables reading, writing, and manag-

ing large datasets in distributed storage. It is an SQL-to-MapReduce translator

with an SQL dialect. Hive is designed to exploit the scalability of Hadoop while

presenting a familiar SQL abstraction. It allows maximizing scalability, perfor-

mance, extensibility and fault-tolerance. Hive’s SQL can be extended via user

defined functions (UDFs), user defined aggregates (UDAFs), and user defined

table functions (UDTFs). Hive provides the following features:

• Easy access to data via SQL, thus enabling data warehousing tasks such

as reporting, and data analysis.

• Access to files stored either directly in HDFS or in other data storage sys-

tems such as HBase.

19

Chapter 2 - State of the Art

• Query execution via Apache Tez, Apache Spark, or MapReduce procedural

language.

Pig

Apache Pig [32] is an open-source platform for analyzing large datasets and rep-

resenting them as data flows. It consists of a high-level language for express-

ing data analysis programs, coupled with an infrastructure for evaluating these

programs. It enables complex data transformations, aggregations, and analysis

using a command language called Pig Latin that are compiled into MapReduce

jobs and executed on Hadoop. Pig combines a command based language that is

close to a relational algebraic language with operators that are oriented to data

analysis (e.g., coGroup).

The main features of Pig are:

• Rich set of operators. Pig has a rich set of built-in operators like join, filter ...

• Optimization. Pig optimizes queries before submitting them to Hadoop

MapReduce for execution. This allows users to concentrate on semantics

rather than creating mapper and reducer functions.

• Extensibility. Pig allows users to write UDFs.

• Lazy evaluation. Pig runs commands only when the output is requested by

the user.

2.2.5 Apache Spark

Spark Core

Apache Spark is a new generation tool for big data processing. It was devel-

oped by researchers at the University of California at Berkeley in 2009 and open

sourced in 2010. Spark [9] is rising in popularity as an alternative to disk oriented

processing, due to its ability for executing computations in memory and its expres-

sive API for data processing. It was designed to overcome the disk I/O limitations

and to improve the performance of earlier systems. Rather than specifying map

and reduce steps, Spark applies an entire series of data flow transformations

20

2.2. Big Data Management

Apache Spark Core

Spark SQL
MLlib

(machine
learning)

GraphX
Spark

 Streaming

Figure 2.4 Spark Ecosystem.

on the input data. Apache Spark is a fast and general purpose engine for large

scale data processing. It combines MapReduce-like capabilities for batch pro-

gramming, real-time data-processing functions, SQL-like handling for structured

data, graph algorithms, and machine learning in a single framework. Spark can

run on an existing Hadoop cluster and access any Hadoop data source, includ-

ing HDFS or HBase. Apache Spark system introduces new upper-level libraries

including Spark’s MLlib for machine learning, GraphX for graph analysis, Spark

Streaming for stream processing and Spark SQL for structured data processing

(Figure 2.4).

The entry point to all applications in Spark is the SparkContext (see Figure

2.5). The driver is the host of the SparkContext, it is the workload coordinator in a

Spark application, it communicates with each node in the cluster through a cluster

manager. The cluster manager analyzes the workload defined by the user, allo-

cate resources and subsequently distributes tasks between the nodes of cluster.

Several types of cluster managers: Spark Standalone mode, Mesos or YARN.

Once a cluster manager is connected, Spark can begin acquiring executors on

the nodes in the cluster. Executors are the processes that do the actual work and

run the computations.

Spark mainly offers an immutable distributed collection of objects for in-

memory cluster computing called Resilient Distributed Dataset (RDD) [39], which

provides an efficient data sharing between computations. An RDD is a read-

only, partitioned collection of records. RDDs provide fault-tolerant, parallel data

structures that let users store data explicitly on disk or in memory, control its parti-

tioning and manipulate it using a rich set of operators. RDDs are split into multiple

21

Chapter 2 - State of the Art

Spark
Context

Cluster
Manager

Driver
Program

Worker Node

Task

Task

TaskWorker Node

Task

Task

Task

Task

Figure 2.5 Spark Architecture.

partitions and operated on in parallel across processing nodes.

In addition to RDDs, Spark supports two types of operations: transforma-

tions and actions. Transformations (e.g., filter or map) are operations that define

(virtually produce) a new RDD by performing some useful data manipulation on

another RDD. Actions (e.g., count or foreach) launch the computation on an RDD

by applying the specified set of transformations. Transformations are evaluated

lazily, meaning that computation does not take place until an action is invoked.

This design enhances the power of Apache Spark since it combines similar trans-

formations into a single operation during query execution.

Once an action is called, Spark builds a Directed Acyclic Graph (DAG) of

stages that need to be executed in order to compute the action. A DAG con-

sists of vertices (nodes) and edges (lines). Vertices represent the RDDs and the

edges represent the dependencies. Next, it splits the DAG into stages that con-

tain pipelined transformations. Further, it divides each stage into tasks to run in

parallel on separate machines. Spark executes all tasks within a stage before

moving on to the next stage. With transformations and actions, computations can

be organized into multiple stages of a processing pipeline. Every time a transfor-

22

2.2. Big Data Management

Stage 1

Parallelize

Stage 2

Stage 3

Map Filter

groupBy

join

Figure 2.6 Types of Transformation in Spark.

mation is performed on an RDD, a new vertex (a new RDD) and a new edge (a

dependency) are created. The DAG can be optimized by re-arranging and com-

bining some operations in a stage when it is possible. This model allows Spark

to form consecutive computation stages. Thus, query execution is optimized by

minimizing data shuffling. There are two kinds of transformations (as shown in

Figure 2.6) that can be applied in Spark: narrow transformations (e.g., map, fil-

ter) and wide transformations (e.g., groupBy). They determine whether a shuffle

will be performed. If no data transfer between partitions is required, a narrow de-

pendency is created. A wide dependency is created in the opposite case, which

means a shuffle is performed [40] which requires the data to be redistributed

across the partitions.

DAGScheduler (Figure 2.7) is the scheduling layer of Apache Spark that imple-

ments stage-oriented scheduling [41]. The fundamental concepts of DAGSched-

uler are jobs and stages. A job is a top-level work item submitted to DAGSched-

uler to compute the result of an action. Each Spark job corresponds to one action,

and each action is called by the driver program of a Spark application. Every job

23

Chapter 2 - State of the Art

Partition

Partition

Partition

Partition

Driver

RDD

Partition

Partition

Partition

Partition

ResultStage

ActiveJob

DAGScheduler

Action

rdd

Figure 2.7 DAGScheduler

requires computation of multiple stages to produce the final result. A stage is a

physical unit of execution. Each stage is a set of parallel tasks, that correspond

to a parallelizable unit of computation done in each stage. There is one task for

each partition in the resulting RDD of that stage.

Spark SQL

Spark SQL [15], a component on top of Spark Core, enables the support of re-

lational processing within Spark programs (on native RDDs). Shark [42] was an

older SQL-on-Spark project that modified Apache Hive to run on Spark. It has

now been replaced by Spark SQL to provide better integration with the Spark

engine and language APIs.

Spark SQL introduces new data abstractions called Dataset (a distributed col-

lection of data) and DataFrame. A Dataset provides the benefits of RDDs and

Spark SQL’s optimized execution engine. A DataFrame represents a Dataset

organized into named columns, unlike RDDs. This provides Spark with more in-

24

2.2. Big Data Management

formation about the structure of both the data and the computation. Spark SQL is

part of the Apache Spark framework, it allows to run SQL queries on Spark data.

The Spark SQL module supports multiple input data formats including Parquet

and JSON to allow data to be stored in formats that better represent data. This

offers more options to integrate with external systems [43].

Spark SQL provides also an extensible query optimizer called Catalyst [16],

which makes adding new optimization techniques easy. Catalyst can be extended

in two ways: by defining custom rules, and by adding optimization strategies.

Most of the rules are heuristics-based. For example, predicate pushdown is a rule

to reduce the number of the qualified records before performing a join operation

and project pruning is a rule to reduce the number of the participating columns

before further processing.

Spark SQL is agnostic of astronomical query dialect and optimization tech-

niques. Nevertheless, it offers many advantages:

• Queries are integrated with Spark programs. Spark SQL allows to query

structured data inside Spark programs, using SQL or a DataFrame API.

• A superior performance compared to other distributed systems

• Its optimizer is powerful and easily extensible.

• It comes with higher-level libraries for advanced analytics.

Catalyst

Catalyst is the optimizer used by Spark SQL. It optimizes all the queries written

in SQL and DataFrames using Spark. Catalyst [16] mainly represents the logical

plans as trees and sequentially applies a number of optimization rules to manip-

ulate them. Recently, a cost based optimization module (CBO) [44] has been

introduced in Catalyst. This module analyzes all execution plans, assigns a cost

to each plan and chooses the lowest cost for the physical execution.

The Catalyst process consists of several steps: Analysis, Logical Optimiza-

tion, Physical Planning and Code Generation.

• Analysis: Catalyst starts from a relation to be computed, either from an

abstract syntax tree (AST) returned by the SQL parser, or from a DataFrame

object constructed using the API. Analysis allows to:

25

Chapter 2 - State of the Art

– Search relations by names.

– Map named attributes to the input.

– Assign a uniqueID to attributes matching the same value.

• Logical Optimization: The logical optimization phase applies standard rule-

based optimizations to the logical plan including predicate pushdown, pro-

jection pruning, Boolean expression simplification, and other rules. For ex-

ample, Catalyst can push operations from the logical plan into data sources

so that subsequent operations work on smallest datasets.

• Physical Planning: In this step, Catalyst takes a logical plan as input and

generates one or more physical plans. After that, it chooses a plan using a

cost model. Being a new technology, cost-based optimization is very limited

in Catalyst. It is only used to select join algorithms. For example, Cata-

lyst uses broadcast join instead of hash join to optimize join queries when

the size of one side data is small. Richer cost based optimization will be

implemented in future Spark SQL versions.

• Code Generation: The code generation represents the final point of query

optimization where tasks are executed on RDDs. This phase involves gen-

erating Java bytecode to run on each machine using a feature of the Scala

language, quasiquotes [45]. These quasiquotes allow the programmatic

construction of Abstract Syntax Rrees (ASTs) in the Scala language.

2.2.6 Discussion

In this section, we presented the MapReduce framework that offers a powerful

programming model and enables easy development of scalable parallel applica-

tions to process vast amounts of data on large clusters of commodity machines.

We also introduced tools that allow high-level abstractions of MapReduce with

Hive and Pig. Hive provides a declarative SQL based language to query data.

Pig provides a procedural interface for writing queries. However, Spark SQL al-

lows the combination of procedural programming and declarative query language.

The DataFrame API offers rich relational/procedural integration within Spark pro-

grams. Spark SQL introduces also an extensible query optimizer (Catalyst) that

allows optimization rules integration.

26

2.3. Astronomical Servers

Spark has drawn a great potential due to its in-memory computing capabilities.

However, it is not optimized for astronomical queries that involve geometric com-

putations. It lacks effective partitioning techniques adapted to the spherical space

to avoid data skew and balance tasks across nodes. Furthermore, Spark allows

to express queries using an SQL interface which is not convenient to express

astronomical queries.

In [46], the authors designed a benchmark to report the ability of existing

MapReduce based systems to support large scale declarative queries in the area

of cosmology. They defined a set of SQL queries and evaluated the performances

of these systems in the management (e.g., storage, loading) of astronomical data

and their capabilities (i.e., indexing, compression, buffering, and partitioning) to

optimize queries. They used datasets simulated in the context of the LSST project

and investigated two systems as use cases: Hive and HadoopDB, a Hadoop/

PostgreSQL based system. The aforementioned benchmark highlighted the need

for new techniques for astronomical query optimization and partitioning in exist-

ing systems. However, the query cases differ from our context, they do not cover

queries involving geometrical predicates, which are typical in astronomical appli-

cations. In addition, the benchmark does not incorporate any memory oriented

distributed computing solution, like Spark.

2.3 Astronomical Servers

Over time, the methods used to collect astronomical data have substantially

changed, from hand-drawn illustrations to massive data collected from advanced

telescopes. Thus, astronomy was transformed from an observational science

into a digital and computational science [47] due breakthroughs in instruments,

detectors and computer technologies.

The urgency for new tools to enable data-intensive research has been raised

by Jim Gray in 2007. He pointed out that experimental, theoretical, and compu-

tational science were all being affected by the data deluge, and a fourth “data-

intensive” science paradigm was emerging. He believed that these large volumes

of data represent a fourth paradigm [48] within various scientific discipline includ-

ing astronomy. Even though this problem was early announced by Gray, there

have been little researches that address these issues due a general lack of un-

derstanding of these topics by the scientific community as discussed in [49]. In

27

Chapter 2 - State of the Art

the following subsections, we describe some of the existing researches that stud-

ied the management of astronomical data, and we highlight their limitations to

cope with this data deluge.

2.3.1 SkyServer Project

Linking database and astronomy has been introduced in the SkyServer project
[50; 51]. SkyServer is the primary public interface to interact with data from the

Sloan Digital Sky Survey (SDSS) using SQL Server as the backend database

storage system. It consists of an extensive web application developed in C# and

ASP.NET. SkyServer allows interactive navigation through the sky and sophisti-

cated techniques to query SDSS data.

The SkyServer defines 20 typical queries in astronomy that can be expressed

using SQL. These queries correspond to typical tasks astronomers would exe-

cute to extract and analyze data from astronomical archives. For example, an

astronomer is interested in finding all objects that correspond to asteroids. Such

query necessitates a table scan, it needs to select objects that have high (but

reasonable) velocity. Even if the idea of using databases was not usual to most

astronomers, they grew quickly accustomed to SQL and appreciate the language

expressivity for astronomical queries. Since 2001, the project has attracted a

wide range of users [52; 53] with more than 70% of visits coming from non-

astronomers. It has made it possible for anyone to navigate through the sky. Sky-

Server has revolutionized the interaction between telescopes, its data and user

communities. However, complex SQL involving spatial joins and spatial queries

were not part of the SkyServer project. This was the main barrier to the wider use

of the SkyServer by the astronomy community.

2.3.2 VizieR Service

The VizieR service [54] developed by the Centre de Données de Strasbourg

(CDS) is an on-line database for accessing astronomical data listed in a large

number of published catalogs. This database was created in 1997 and improved

in 2012 to provide better ergonomy and more interactions with users and external

applications. The VizieR database allows searching data by content and provides

a tool for cross-matching catalog tables from their coordinates. VizieR is based

28

2.3. Astronomical Servers

on the usage of a relational DBMS. Data is stored in relational tables and a set of

Meta tables are available to describe tables stored in VizieR such as the number

of rows, how to access the actual data ...

To improve query execution, the VizieR service integrates a compression

method [55] that stores data into binary files. It groups the objects of the ta-

bles by their positions, thus, contiguous records have quite similar values for ra

and dec. It defines a reference position as the header of a group of records. This

mechanism allows to index compressed binary files by positions and to reduce I/O

costs. It also allows faster response time. To handle queries based on celestial

positions, VizieR needs only to scan necessary data files. Several interfaces are

currently available to query data stored in VizieR: directly from a Web browser,

via a construction of the query using a standardized way of specifying queries in

terms of HTTP requests defined by the Astronomical Standardized URL (ASU)

conventions, or the developing of XML documents 1.

2.3.3 Q3C in PostgreSQL

Q3C [56], standing for Quad Tree Cube, provides a new sky indexing scheme that

overcomes the limitations of HTM sky pixelization scheme in terms of complexity

and open source project. The idea is similar to other sky-indexing schemes that

we introduce in Section 4.4. However, the individual pixels of Q3C do not have

equal areas (as HEALPix). The base of Q3C is the cube inscribed in the sphere,

on each face of the cube a quad-tree is constructed. The quad-tree structure

allows to create a mapping of the 2D coordinates in the square to an integer

number. Since there are six faces, three bits indicating the face number are

appended to establish a mapping between the cubes and integer numbers.

Q3C provides the mapping of each point of the sphere to an integer num-

ber called IPIX ensuring that nearby points on the sphere have nearby values.

The IPIX values allow to create indices on astronomical tables that enable fast

searches on the sphere. Every astronomical query is segmented on different

pixels, each pixel represents a continuous range of IPIX. This allows to retrieve

easily and quickly some regions of the sky with Q3C indices and reduce I/O costs.

Q3C with PostreSQL is an open source database for complex astronomical

queries on the sphere for large data. It offers an SQL-Like interface for the main
1http://vizier.u-strasbg.fr/cgi-bin/asu-xml

29

Chapter 2 - State of the Art

astronomical queries: cone search, spatial searches on the sphere and cross-

matches.

Q3C defines a set of specific functions such as q3c_radial_query, q3c_join,

q3c_dist ... for the main astronomical queries. For example, the following query

returns all objects within radius of 0.1° around the position (ra,dec) = (11,12) in

the gaia table:

Query 2.1 Cone Search (Q3C)

SELECT *
FROM gaia

WHERE q3c_rad ia l_query (ra , dec , 11 , 12 , 0 . 1) ;

or, to execute the cross-match of gaia with a second table igsl with a radius

of 2 arc-seconds:

Query 2.2 Cross-Match (Q3C)

SELECT *
FROM gaia , i g s l

WHERE q3c_ jo in (gaia . ra , gaia . dec , i g s l . ra , i g s l . dec , 2 /3600) ;

2.3.4 Open SkyQuery

Open SkyQuery [57; 58] is a web portal that allows querying and cross-matching

distributed astronomical datasets using RDBMS technologies. Using Open Sky-

Query, users can express their queries in ADQL. The authors propose zoning

and partitioning algorithms for parallel query execution using RDBMS technolo-

gies. The basic idea is to map the sphere into stripes of a certain height called

zones. Then, objects within a zone are stored on disk ordered by zoneID and right

ascension using a traditional B-tree index to minimize the number of I/O opera-

tions. In order to process spatial searches, Open SkyQuery computes bounding

boxes (B-tree ranges), followed by a distance test to discard false positives.

Open SkyQuery aims to provide individual access to astronomical data but

the primary goal is to offer cross-matching service. It also introduces a simple

optimization process that consists of ordering the cross-match workflow from the

service hosting the smallest catalog to the service with the biggest catalog.

30

2.3. Astronomical Servers

2.3.5 MonetDB/SkyServer

Ivanova et al. [59] extend MonetDB [60] to manage astronomical data. Mon-

etDB is an open source database system based on a column store approach

where relational tables are broken vertically. MonetDB reduces disk space and

offers data compression which improves performance by spending less time in

I/O. MonetDB/SkyServer retains the vertical fragmentation of MonetDB and opti-

mizes astronomical queries by fetching only relevant columns from disk. It also

offers a horizontal partitioning of data.

The goal of this project is to optimize a column-oriented database to enable

the support of large-scale surveys. MonetDB/SkyServer has proven the great po-

tential of MonetDB for the management of scientific databases. The SkyServer

functions related to query capabilities were integrated into MonetDB. As a spatial

access method, it uses the Zones algorithm because of its simple implemen-

tation in SQL. MonetDB/SkyServer enables also the use of the MonetDB/SQL’s

optimizer. It allows the front-end compiler to activate specific optimization tech-

niques.

2.3.6 AscotDB

AscotDB [61] is build on the combination of three pieces of technology

• SciDB [62], a shared-nothing DBMS that stores data in distributed and mul-

tidimensional arrays. SciDB is designed for efficient computing over array

data. It was adapted to support the spherical coordinates gathered by as-

tronomical surveys.

• AStronomical COllaborative Toolkit (ASCOT) [63], developed in the astron-

omy community for graphical data exploration. ASCOT is a web based

framework that facilitates collaboration among astronomers. It defines a

dashboard of small tools, called gadgets, to share, explore and interact with

large astronomical datasets.

• Python, for easy programmatic access.

AscotDB reuses the important features of ASCOT such as data visualization

with gadgets and data sharing. However, it introduces new data analysis capabil-

ities that enable users to manipulate raw pixel data. AscotDB stores astronomical

31

Chapter 2 - State of the Art

data inside SciDB and translates the queries defined in the graphical interface

into operations over SciDB’s arrays. SciDB transforms a query into a parse tree

defined as a collection of operators in a tree structure, where data is divided into

chunks and distributed across nodes of a cluster. To allow the management of

spherical coordinates on SciDB, AscotDB adds a middleware layer that maps

the spherical coordinates to HEALPix indices. AscotDB proposes also a spe-

cific mapping schema between the spherical grid introduced by HEALPix and the

multidimensional array data structure on which SciDB is based.

2.3.7 Qserv

Qserv [64] is a distributed shared-nothing SQL database designed to manage the

future LSST’s data. It was developed during the R&D phase of LSST. Qserv re-

lies on two open-source technologies: MySQL as an SQL execution engine and

Xrootd [65] as a distributed file system. It allows to partition data into material-

ized chunks that are distributed across nodes. Each chunk is further divided into

sub-chunks with overlaps. This overlapping data represent the partition’s borders

defined by a preset spatial distance. This creates a two-level partitioning struc-

ture and allows to compute spatial joins correctly, at the condition that the border

margin is sufficient.

Qserv offers a query processing module that generates a distributed execu-

tion plan. It rewrites user queries for execution on chunk and sub-chunk tables on

worker nodes. It splits the query representation into a plan composed of multiple

phases of execution, each phase is executed per-data-chunk. The query pro-

cessing module combines the distributed results to answer the user query. For

queries involving spatial restriction (e.g., Query 2.3 asks how many objects within

a square degree box in the sky), Qserv does not need to dispatch the execution

on all chunks. This enables such queries to be executed on relevant chunks and

avoids full-sky queries.

Query 2.3 Spatially-restricted filter (Qserv)

SELECT COUNT(*)

FROM Object

WHERE ra BETWEEN 1 AND 2 AND dec BETWEEN 3 AND 4;

32

2.3. Astronomical Servers

Qserv defines a set of astronomical queries including queries for object re-

trieval, time-series measurements on a desired object, full sky filter, spatially-

restricted filter, near neighbor and sources not near objects.

2.3.8 Tools for Cross-matching

Investigation of the structure and evolution of the Galaxy through cross-matching

queries is one of the main queries in astronomy. Directly after the release of

electronic versions of large sky surveys, astronomers started to cross identify

catalogs. An early cross-match algorithm [66] uses a zoning algorithm to im-

plement of points-near-point, spatial cross-match, and self-match queries. The

basic idea is to map the celestial sphere into zones, each zone is a declination

stripe of the sphere. The implementation of the zoneMatch algorithm is integrated

with Microsoft SQL server where each object is associated to a zoneID and the

cross-match is done through SQL statements using predicates on zoneID. Using

the zoning algorithm, the zoneMatch algorithm allows to parallelize cross-match

computations by distributing the data and workload among a cluster of database

servers.

Pineau et al. [67] employ HEALPix to split the cross-match task into pieces to

be processed in parallel. They also use a multithreaded two-dimensional kd-trees

(Euclidean space-partitioning data structures) adapted to equatorial coordinates

in order to enable efficient neighbors search. However, the large-scale problem

is still far from being completely resolved using such algorithms.

Besides, some recent works [68; 56; 57] propose customized solutions to ex-

ecute cross-matching queries. In [68], the authors introduce a cross-matching

function using two partitioning approaches. In the baseline approach, the authors

use an algorithm called the Simple Gridding Function that divides the ra axes

and dec axes into equal intervals. However, the limitation of this approach is data

skewness. The requirement of creating blocks of approximately the same size

could not be ensured. For this reason, they propose a new alternative based on

HEALPix by mapping the 2-dimensional space to a line space and use a B-tree

index function. Indeed, HEALPix allows to overcome the problem of the spherical-

polar distortion. They also propose a solution for the objects on the edge of the

computation blocks by expanding the scope of each block.

Furthermore, there are other tools that have to operate with local data. For

33

Chapter 2 - State of the Art

example, the Topcat data analysis application 2 that has built-in features for cross-

matching data stored locally and Aladin 3 that allows to match a list of objects with

a catalog.

2.3.9 Discussion

DBMS Language Indexing Queries

SkyServer SQL Server SQL HTM, Zones

20 SQL queries
defined in a
technical report
[50]

VizierR N.A ADQL HEALPix
Cone, kNN,
Cross-match

Q3C PostgreSQL Q3C Q3C
Cone, kNN
Cross-match

Open Sky-
Query N.A ADQL Zones Cross-match

MonetDB/ Sky-
Server MonetDB SQL Zones SQL queries

AscotDB SciDB ADQL HEALPix N.A.

Qserv MySQL SQL

Rectangular
fragmentation
in right as-
cension and
declination

SQL queries
(detailed in
Section 2.3.7)

Table 2.1 Features of Astronomical Servers.

In the above sub-sections, we described the different aspects of the most

used astronomical servers for the management of astronomical data. Table 2.1

resumes the main features of these servers. Bridging the gap between DBMS
2http://www.star.bris.ac.uk/ mbt/topcat/
3https://aladin.u-strasbg.fr/

34

2.4. Spatial Systems

technologies and astronomy has been finalized by these servers. A number of

RDBMSs (SQL Server, PostreSQL, MonetDB) have been extended to process

astronomical data. However, their performances are still limited because they are

mainly based on centralized or rigid server architecture style. These systems

could not face the challenges required for handling large astronomical data and

could not provide the scalability, the availability and the performance required by

big data applications.

Furthermore, SciDB, an array-based parallel oriented toward science applica-

tions has been also extended by AscotDB to manage data from large sky surveys.

However, AscotDB does not propose any solution to handle data skew. Another

work, Qserv offers a model that distributes and parallelizes computation among

worker nodes. However, the rectangular fragmentation in right ascension and

declination causes a distortion problem near the poles. The partitioning approach

in Qserv does not use any sky indexing scheme adapted to the spherical space

(such as HEALPix or HTM). Moreover, the choice for a shared nothing architec-

ture using MySQL nodes was motivated by the fact that astronomical catalogs

are well-defined in a relational model and the lack of indexing support in other

existing systems (e.g., Hadoop or NoSQL). However, such implementation incurs

significant overhead in dispatching queries and collecting results. Such specific

architecture does not allow to take advantages of technological advances in big

data management. Moreover, the LSST project has launched other projects [69]

based on big data tools like Spark.

Spark provides an alternative solution that offers computational scalability and

great flexibility in the management of scientific applications through data partition-

ing and in-memory computation. Thus, it is useful to determine methods to exploit

such big data solutions for the management of data generated by modern tele-

scopes to achieve high level query performances. This idea has been already

concluded in the field of geo-spatial data, therefore, we have been interested in

studying existing systems in the geo-spatial context.

2.4 Spatial Systems

Recent works have addressed the support of spatial data and queries using a

distributed data server. Their architectures have followed the development of the

Hadoop ecosystem. We divide these works into seven representative proposals.

35

Chapter 2 - State of the Art

2.4.1 Hadoop-GIS

Hadoop-GIS [70; 71] is a scalable and high performance spatial query system

over MapReduce. It was the first big data spatial analytics system based on

Hadoop that has been proposed in the literature. Hadoop-GIS employs an effi-

cient partitioning approach (SATO) [72] represented by the following steps:

• Sample. It samples a small fraction (1~3%) of input data for analysis. The

objective is to evaluate the density distribution of datasets.

• Analyze. It analyzes using the Minimum Bounding Rectangle (MBR) of spa-

tial objects in the sampled dataset to find a global partition strategy.

• Tear. Each global partition is divided into local partitions using the partition-

ing algorithm that was designated in the analyze step. This allows to further

refine the partition

• Optimize. It collects succinct partition statistics (such as the number of ob-

jects and the number of objects in the boundaries) to construct a multi-level

partition index. The space is partitioned into independent regions and each

region is further partitioned into smaller regions so that each small region

would fit into a single HDFS file chunk.

Hadoop-GIS extends HiveQL to provide an expressive spatial query language.

Users interact with the system using SQL queries with spatial extensions (such as

ST_INTERSECTS, ST_DISTANCE ...). Then, the spatial query translator parses

and translates these into operator trees. This translator is an extension of the

HiveQL translator to support spatial query operators, spatial functions, and spatial

data types. The query optimizer applies rules based optimizations (predicate

pushdown or index-only query processing) to generate an optimized query plan.

The spatial query engine generates the corresponding MapReduce jobs that are

submitted to the Hive engine for execution using spatial data partitioning.

Example of queries

Query 2.4 Example of a Spatial Join query

SELECT ST_DISTANCE(ST_CENTROID(tb . polygon) ,

ST_CENTROID(ta . polygon)) AS distance ,

36

2.4. Spatial Systems

FROM polygons ta , polygons tb

WHERE ST_INTERSECTS(ta . polygon , tb . polygon) = 1 ;

Query processing in Hadoop-GIS follows a three-step process: query transla-

tion, logical plan generation, and physical plan generation. Query 2.4 is a spatial

join query that is translated into a query tree as represented in Figure 2.8. It gen-

erates the table scan operators in the first step. Then, it applies filter predicates

on required tiles (partitions). The query translator creates a tile based join pro-

cessing workflow (each tile represents a simple join task). Each task is executed

on Hadoop. Finally, Hive execution engine continues the processing task.

TableScanOperator
ta

TableScanOperator
tb

ReduceSinkOperator
Partition col: tile_id

ReduceSinkOperator
Partition col: tile_id

SpatialJoinOperator
ST_INTERECTS

SelectOperator
col[0], col[1]...

Figure 2.8 Spatial Join Query Plan in HadoopGIS.

2.4.2 SpatialHadoop

SpatialHadoop [10] is an extension of Hadoop that supports spatial data types

and operations. It improves each Hadoop layer by adding spatial primitives. Spa-

tialHadoop adopts a layered design composed of four layers: language, storage,

MapReduce, and operations layers. For the language layer, it adds a spatial high

level query language for spatial data types and spatial operations. In the stor-

age layer, SpatialHadoop adopts traditional spatial index structures (Grid, R-tree
[73] and R+-tree [74]), to form a two-level index structure, called global and local

indexing. SpatialHadoop rewrites functions of the Hadoop MapReduce frame-

work by integrating two new components, SpatialFileSplitter and SpatialRecor-

37

Chapter 2 - State of the Art

dReader. SpatialFileSplitter exploits the global index to select blocks that con-

tribute to the query result. For example, for range queries, the blocks that are

completely outside the query area are not considered in the output result and

blocks that are partially or completely overlapping are sent for further processing.

SpatialRecordReader exploits the local index in the partitions received from the

SpatialFileSplitter to return exact output records

In the operations layer, SpatialHadoop focuses on three operations: range

query, spatial join, and k nearest neighbor (kNN).

Example of queries

A spatial join query takes as input two sets of spatial records R and S and a

spatial join predicate (e.g., overlaps), and returns the set of all pairs that belong

to R and S while satisfying the spatial predicate. In SpatialHadoop, the spatial join

algorithm is composed of two steps:

• Global join: The SpatialFileSplitter exploits the two spatially indexed files

and uses the overlapping filter function to identify the overlapping pairs of

blocks that could contribute to the final result. Then, a spatial join algorithm

is applied over the two global indexes to produce the overlapping pairs of

partitions and the SpatialFileSplitter creates a combined split for each pair

of overlapping blocks

• Local join: In this step, the SpatialRecordReader reads the combined split,

extracts the records and local indexes from its two blocks, and sends all of

them to the map function for processing. The map function uses the two

local indexes to make the process of joining the two datasets faster.

2.4.3 Pigeon

Pigeon [75] is an extension of Pig to support spatial data processing in Hadoop.

It is implemented through user defined functions (UDFs) and is compatible with

all Pig versions. Pigeon supports spatial data types (Point, Linestring, Multi-

Linestring, Polygon, MultiPolygon, and GeometryCollection) and spatial functions

grouped into four categories:

38

2.4. Spatial Systems

• Basic Spatial Functions: retrieve basic information about a single spatial

object (e.g., the perimeter length or area). These functions take as input a

Well-Known Text (WKT) or a Well-Known Binary (WKB) object and convert

it into a spatial object.

• Spatial Predicates : return a Boolean value based on the relationship of the

input object(s) (e.g., IsClosed or Touches), these functions are implemented

as simple UDFs, the input objects are also converted from WKB or WKT.

• Spatial Analysis : performs spatial transformation on spatial objects. It sup-

ports unary functions such as Centroid and binary functions such as Inter-

section.

• Aggregate Functions : return a single value that summarizes the input ob-

jects (e.g., the function ConvexHull returns one polygon representing the

minimal convex hull of all input spatial objects). These functions are imple-

mented as algebraic aggregate functions. A given function starts by com-

puting partial results in each machine in the cluster, then the partial results

are merged to produce the final answer. For example, multiple local con-

vex hulls are first computed in each machine, then the global convex hull is

computed by combining all local hulls.

Example of queries

Spatial join: This query finds the overlapping records in two datasets, it starts by

computing the cross product of two relations and then applying a spatial predicate

(e.g., overlap) as a post processing filter. Notice the implementation of such query

is very basic and does not include any optimization.

2.4.4 MD-HBase

MD-HBase [12] is a scalable multi-dimensional data store for Location Based

Services (LBSs), built as an extension of HBase. MD-HBase supports a multi-

dimensional index structure over a range partitioned Key-value store. MD-HBase

uses a linearization techniques (Z-ordering) [76] to transform a multi-dimensional

location into a one dimensional space and uses HBase as a storage back-end.

39

Chapter 2 - State of the Art

MD-HBase combines Z-ordering with trie-based quad-trees and k-d trees. It

partitions the space into subspaces using trie-based k-d trees and quad-trees.

Then, it names each subspace by the longest common prefix of the z-values of

points contained in the subspace. This naming scheme was called the longest

common prefix naming. MD-HBase builds spatial index structures to support

range and kNN queries. It introduces an efficient query processing technique that

accesses only the index and storage level entries that intersect with the query

region.

Example of queries

A spatial range query in MD-HBase is decomposed into several linearized sub-

queries. MD-HBase splits the multi-dimensional space recursively into subspaces

and organize these subspaces as a search tree. It calculates the z-value range for

the query and defines the potential candidate subspaces. Points in a subspace

are scanned only if the range of the subspace intersects with the query range.

This prunes out all the subspaces that are not relevant.

2.4.5 GeoSpark

GeoSpark [13] extends the core of Apache Spark to support spatial data types,

indexes and operations. In other words, the system extends the Resilient Dis-

tributed Datasets (RDDs) to support spatial RDDs (SRDDs).

GeoSpark provides the support of spatial data indexing (R-Tree and quad-

tree) and query processing algorithms (range queries, kNN queries, and spatial

joins over SRDDs). GeoSpark has three main layers:

• Apache Spark Layer: this layer provides the basic Apache Spark features.

It consists of loading, saving data from, to persistent storage (e.g., stored

on local disk or HDFS)

• Spatial Resilient Distributed Dataset (SRDD) Layer: this layer extends the

regular RDD to support geometrical objects (i.e., points, rectangles, and

polygons) as well as geometrical operations on these objects. Three new

spatial RDDs are proposed: PointRDD, RectangleRDD and PolygonRDD

40

2.4. Spatial Systems

• Spatial Query Processing Layer: this layer harnesses and extends the

SRDD layer to execute spatial queries (e.g., range query, kNN queries and

join queries) on large-scale spatial datasets

Example of queries

Spatial join: GeoSpark starts by partitioning the data from the two input SRDDs

based on grid partitioning and creates local spatial indexes for the SRDD. Then,

it joins the two datasets based on their grid IDs (Grids that have the same ID

cover the same space region). For the spatial objects that have the same grid ID,

GeoSpark calculates their spatial relations. If two elements from two SRDDS are

overlapped, they are kept in the final results. The algorithm continues to group

the results for each rectangle and saves the final result to disk.

2.4.6 LocationSpark

LocationSpark [77] is a spatial data processing system built on top of Apache

Spark. LocationSpark offers a rich set of spatial query operators, e.g., range

search, kNN, spatial-join, and kNN-join. It introduces a new layer, termed the

query scheduler, to deal with query skew. This query scheduler identifies po-

tential hotspot data partitions by collecting statistical information from each parti-

tion (such as number of data points). LocationSpark employs a cost model that

evaluates the overhead of repartitioning the hotspot partitions and therefore re-

allocates these partitions to workers. After data partitioning, the query executor

chooses and executes the better execution plan on each slave node. Similar to

SpatialHadoop and GeoSpark, LocationSpark employs two layers of spatial in-

dexes (global and local). It offers multiple types of local indices e.g., a grid index,

R-tree or quad-tree. It also uses a Spatial Bloom Filter (sFilter). sFilter is em-

bedded into the global spatial index of LocationSpark to check whether a spatial

point is contained inside a spatial range or not.

Example of queries

We choose to describe the kNN join algorithm employed by LocationSpark. It

starts by identifying the partitions of each point ri in R using the global index.

Then, the kNN join is executed locally inside each partition to produce the kNN

41

Chapter 2 - State of the Art

candidates for each point ri in R. After that, it calculates the maximum distance

from ri to its kNN candidates. If the calculated radius is overlapping more than one

partition, then, the query point ri is replicated and another set of kNN candidates

is identified. To get the final result, LocationSpark merges all the kNN candidates

from the identified partitions.

2.4.7 SIMBA

SIMBA [11] has been proposed as an extension of Spark SQL to support spatial

queries and analytics over big spatial data. SIMBA builds spatial indexes over

RDDs. SIMBA offers an SQL-like interface for spatial queries by adding spa-

tial keywords and grammar (e.g., POINT, RANGE, KNN, KNN JOIN, DISTANCE

JOIN) in Spark SQL’s query parser. In addition to SQL, users can also perform

spatial operations over DataFrames. It offers a programming interface to execute

spatial queries (range queries, circle range queries, kNN, distance join, kNN join),

and uses cost based optimization.

Similar to SpatialHadoop, SIMBA uses the concept of global and local indexing.

SIMBA implements several classic index structures including hash maps, tree

maps, and R-trees over RDDs. The global index collects statistics from each RDD

partition in order to prune out irrelevant partitions. Local indexing is used to accel-

erate local query processing inside each RDD partition. SIMBA is able to optimize

complex spatial queries using indexes and statistics. The logical optimizer applies

standard rule-based optimization, such as constant folding, predicate pushdown,

to optimize the logical plan. Indeed, predicate and projection pushdown in SIMBA

allow to push operations from the logical plan into data sources. In the physical

planning phase, SIMBA takes a logical plan as input and generates one or more

physical plans based on the spatial operation. Then, it applies cost-based op-

timizations based on existing indexes and statistics to select the most efficient

plan.

Example of queries

Distance join is a θ -join between two tables, it runs in three steps: data partition,

global join, and local join.

• Data partition: Simba starts by partitioning the two input tables using R-tree

partitioning which ensures load balancing and preserves data locality. It

42

2.4. Spatial Systems

uses the STR algorithm to get the first level of the tree that represents the

partition boundaries.

• Global join: SIMBA generates a list of candidate pairs (Ri, S j) of partition

IDs, and produces a combined partition P =
{

Ri,S j
}

for each pair (i, j). After

that, the combined partitions are sent to workers for local joins processing.

• Local join: Local join builds a local index over S j on the fly to find all pairs of

points where the euclidean distance is lower than a threshold.

2.4.8 Discussion

In [78], the authors provide a comprehensive tutorial that reviews all existing re-

search efforts in the era of big spatial data and classify existing works according to

their implementation approach, underlying architecture, and system components.

Pandey et al. [79] have surveyed the big spatial data analytics systems listed

above in a recent paper. They announced that Spark based spatial analytics sys-

tems have consistently shown superior performance compared to Hadoop based

systems like SpatialHadoop and HadoopGIS. For this reason, they have chosen

to evaluate the performance of Spark based systems. They explored in deep

these systems and compared them based on features and queries they support,

using real-world datasets.

The aforementioned systems are designed for the geo-spatial context that dif-

fers from the astronomical context in its data types and operations. Our work

considers celestial objects as points in a spherical coordinate system, whereas

these systems process other spatial data types (polygons, rectangles ...) in quad-

rant plane.

These systems do not provide a high level query language adapted to the as-

tronomical context like ADQL. They do not offer astronomical functions tailored

for the spherical coordinate system. Common astronomical constructs (notably

spherical polar coordinate systems and geometries) can not be expressed in

standard SQL. Since ADQL standardizes astronomical queries, the use of ADQL

for astronomical query processing is needed.

These systems use conventional spatial indexing techniques while we adopt

specialized indexing method for astronomical data using HEALPix. We also

demonstrate in Section 4.8 the limitations of these systems in astronomical data

43

Chapter 2 - State of the Art

partitioning. They may cause a problem of distortion around the poles. Thus, the

partitioning approaches used in these systems are limited to small areas, where

the sphere can be projected onto a plane with negligible distortion. Moreover,

these systems lead to erroneous results when querying data because of the dif-

ference between the spherical distance and the euclidean distance (see Section

1.3). We also deal with specific astronomical operations such as cone search

queries, and cross-match queries that are not supported by these systems. As a

result, these spatial big data frameworks are not suitable for astronomical appli-

cations.

2.5 Summary

The need for astronomical query processing has motivated many projects to ex-

tend existing DBMSs. Among these, the SkyServer project, the VizieR service,

Q3C, Open SkyQuery ... However, these systems inherit the performance of ex-

isting DBMSs and do not allow to take advantages of the technological advances

in big data management.

Another category of systems, based on existing big data technologies, adds

support for spatial data. These systems include Hadoop-GIS, SpatialHadoop,

MD-HBase, GeoSpark, LocationSpark, SIMBA ... However, these systems have

focused on the development of techniques that take into consideration the char-

acteristics of geo-spatial data and do not consider the specificities of astronomical

queries. Our goal is to provide astronomical query processing, by offering a high

performance query processing framework that takes advantages of Spark, a dis-

tributed in-memory query processing engine.

44

CHAPTER 3

General Presentation of ASTROIDE

Contents

3.1 Introduction . 46

3.2 Background . 46

3.3 Overview of the Proposed Framework 56

3.4 Data Partitioning . 57

3.5 Query Processing . 59

3.6 Summary . 61

The goal is to turn data into

information, and information into

insight.

Carly Fiorina

45

Chapter 3 - General Presentation of ASTROIDE

3.1 Introduction

As discussed in the state-of-the-art chapter, Apache Spark has become one of

the top big data distributed processing framework in the world. It has the advan-

tage of memory computing compared to traditional MapReduce based technolo-

gies. In this chapter, we present ASTROIDE, a distributed data server tailored for

the management of large volume of astronomical data and concentrate on query

processing and optimization. ASTROIDE stands for ASTROnomical In-memory

Distributed Engine. It is designed as an extension of Apache Spark, and takes into

account the peculiarities of the data and the queries related to astronomical sky

surveys. ASTROIDE introduces effective methods for astronomical query execu-

tion on Spark through data partitioning with HEALPix and customized optimizer.

Although our current architecture is built on Spark framework, it is necessary to

mention that the concepts and algorithms described in this work can be ported to

other big data frameworks. This chapter describes the overall architecture of our

system from the physical level to the high level language. Before starting to detail

our proposal, we will tackle some important background and definitions that are

used in this dissertation.

3.2 Background

3.2.1 Query Processing

The objective of query processing is to transform a high-level query (such SQL)

into an equivalent lower-level query that implements the execution strategy for the

query with efficiency and correctness [80]. The query processor receives a query

as input, translates and optimizes this query in several phases into a physical

query plan. This physical plan is executed by the query execution engine in order

to obtain the results of the query.

Query Processing is divided into three major steps as shown in Figure 3.1.

This architecture can be used for any kind of database system including central-

ized, distributed, or parallel systems. The first phase, the parsing phase, checks

the query for syntactic and semantic correctness, performs view resolution, and

generates a parse tree that represents the structure of the query in a useful way.

During the second phase, the optimization phase, the optimizer chooses the best

46

3.2. Background

plan for the user-submitted query according to statistics (e.g., the histogram of

the value distributions in each column), heuristics to reduce disk I/O, CPU ...

Query Parsing

Query Optimization

Query Execution

Input query

Query expression tree

Query execution plan

Query output

Figure 3.1 Query Processing.

Query optimization is often divided into two phases [81]:

• The logical optimization, which allows to rewrite the parse tree into an initial

plan representing an algebraic representation of the query. This plan is

transformed into an equivalent plan that is expected to require less time to

execute. The goal is to produce the best logical query plan.

• Physical optimization, which transforms a logical query plan into a physical

query plan by selecting the best algorithms to implement the operators of

the logical plan and an order of execution of these operators. The physical

plan includes details such as how the queried relations are accessed, and

when and if a relation should be sorted.

Based on the information about data representation and its location for dis-

tributed systems, the optimizer generates a physical plan. The third phase, called

the Execution, executes this physical plan in the query processing engine.

For illustration, let’s consider the following SQL query expressing an astro-

nomical query to find the number of stars for each galaxy:

Query 3.1 Example of an Astronomical Query

SELECT G. ObjID , COUNT(S . ob j ID)

47

Chapter 3 - General Presentation of ASTROIDE

FROM galaxy G, s t a r S

WHERE G. parent ID = S. parent ID

GROUP BY G. ObjID

This can be translated into a relational algebra expression using γ to express

the grouping and aggregation:

γG.Ob jID,COUNT (S.ob jID)(ΠG.Ob jID,S.Ob jID(σG.parentID=S.parentID(G×S)))

We can combine the selection and cross-product into an equi-join and gener-

ate a projection on G.objID and S.objID which are the only attributes relevant for

the γ operation:

γG.Ob jID,COUNT (S.ob jID)(ΠG.Ob jID,S.Ob jID(S ./parentID G))

We can also push the projection below the join as follows:

γG.Ob jID,COUNT (S.ob jID)(ΠS.Ob jID,G.Ob jID((ΠparentID,Ob jID(S)) ./parentID (ΠparentID,Ob jID(G))))

The last expression avoids the expensive Cartesian product and pushes pro-

jections. Therefore, it is typically better and should be retained. For a given query,

multiple relational algebra expressions representing different orders or combina-

tions of operators are possible as shown in the above example. The objective is

to choose the best relational algebra expression that is likely to result ultimately

in the cheapest physical plan. The relational algebra expression is represented

as a query tree, that can be handled by the query optimizer.

The main components of a query tree are as follows [82]:

• Leaf nodes representing input relations of the query.

• Internal nodes representing intermediate relation that is the output of apply-

ing an operations in the relational algebra.

• Root of tree representing the result of the query

48

3.2. Background

• The sequence of operations (data flow) is directed from leaves to the root

node.

Below is a brief description of each component of query processing:

Query Parsing.

During this step, the query is parsed, validated and translated into an internal rep-

resentation from a human readable form to a form easily usable by the query pro-

cessing engine called parse tree. Query parsing identifies the language tokens

such as keywords, attribute names and relation names. It is used for checking

syntax and also for relations verification, resolving attributes and checking types.

The same parser can be used in centralized or distributed systems. As dis-

cussed in Chapter 1, astronomical queries are difficult to express using SQL. The

standard used language for querying astronomical data is ADQL. However, exist-

ing big data systems do not provide support for ADQL. Thus, a custom parser is

required while taking advantages of built-in query processors of existing systems.

For example, the ADQL library [83] developed by the CDS provides parsing and

translation of ADQL queries into Postgresql/Q3C or Postgres/pgSphere.

Query Optimization

Selecting the optimal execution strategy for a query is NP-hard in the number of

relations [84]. The main focus of query optimization is to minimize the query ex-

ecution time for a given query and reduce the system resources required to fulfill

a query [85]. The role of query optimization is to estimate the cost of alternative

query evaluation plans (QEPs) to execute the query, and chooses the cheapest.

All plans are equivalent in terms of final output but may be widely different in their

costs, i.e. the query execution times.

There are two other major elements which are necessary to completely deter-

mine all aspects of query optimization. On the one hand, we need to describe

how to search through the set of all possible QEPs. On the other hand, we need

to compare different QEPs and decide which one is the best. In general, the

decision is based on the costs of various resources, such as CPU, disk I/O ...

The query optimizer is represented by three components as shown in Figure

3.2: search space, cost model and search strategy [80].

49

Chapter 3 - General Presentation of ASTROIDE

Query

Search Space
Generation

Equivalent QEPs

Search Strategy

Best QEP

Customized
Rules

Cost Model

Figure 3.2 Query Optimization.

• Search Space. It is defined as a set of equivalent QEPs for a given query

that can be generated using transformation rules [86]. The objective is to

reduce the search space by applying heuristics. Typical examples are pred-

icate pushdown, in which predicates are applied as early as possible in

the query, commutative (e.g., R ./ S = S ./ R) and associative laws (e.g.,

(R ./ S) ./ T = R ./ (S ./ T)), duplicate elimination... Such rules can signifi-

cantly improve query execution time.

• Search Strategy. It is also called the enumeration algorithm, it determines

the algorithms applied to explore the search space. The most popular strat-

egy is dynamic optimization which works in a bottom-up way and builds

execution plans starting from base relations and joining one more relation

at each step till the complete plans are obtained. Other alternative enumer-

ation algorithms have been proposed, Steinbrunn et al. [87] presents an

overview of these algorithms and Kossmann [88] describes the most impor-

tant approaches in the literature.

• Cost Model. This module requires analytical formula to estimate the size

of intermediate data and cost functions to predict the cost of operators. It

assigns an estimated cost to each possible QEPs. This cost model relies

on [89]:

– Statistics on the relations which include various metadata (e.g. the

number of rows, the number of disk pages of the relations, histogram

50

3.2. Background

of distributions of column values ...) and indexes.

– Formulas to estimate the selectivity of various predicates and the sizes

of the output for each operator in the query plan.

– Formulas to estimate the CPU and I/O costs for every operator in query

plan.

In distributed systems, cost functions can be expressed with respect to local

processing time (CPU time, I/O time) and communication time (time to initi-

ate a transmission, time to transmit the data) [80]. The communication cost

is a key factor of distributed systems performances, it is a linear function

of the amount of data to be transmitted. Thus, an optimizer has to reduce

the amount of data transmitted. In our context, we can take into account

partitioning approaches to retrieve only relevant partitions. This allows to

reduce the amount of data transmitted. Thus, accessing unnecessary par-

titions incurs useless communication costs. The role of the cost model is

to make the best use of existing indices and statistics in order to select the

most efficient QEP. The objective in astronomical systems is to leverage the

index and partitioning support.

About big data technologies introduced in the state-of-the-art, Hive intro-

duces a cost model using Calcite’s [90]. Calcite is currently the most widely

adopted optimizer for big-data analytics in the Hadoop ecosystem. Calcite

is adopted by Hive, Drill, Storm, and many other query processing engines
[91], providing them with advanced query optimizations. Calcite applies var-

ious optimizations such as query rewrite, join reordering and join algorithm

selection. Calcite has a plan pruner that can choose the cheapest query

plan. The chosen logical plan is then converted by Hive into a physical op-

erator tree, optimized and converted into jobs, and then executed on the

Hadoop cluster.

About the Spark optimizer, Catalyst introduces rule and cost based opti-

mization but very little work has been devoted to cost model, it uses a sim-

ple cost model. Cost based optimization was added in recent Spark version

2.0 and focused on cardinality estimation, broadcast vs. shuffled join, join

reordering. Thus, future Spark versions 1 are continuously evolving to finish

with a robust cost model. A recent research [92] proposes a cost model

1https://issues.apache.org/jira/browse/SPARK-17129

51

Chapter 3 - General Presentation of ASTROIDE

for Spark SQL that covers the class of queries composed of joins, selec-

tion predicates and aggregations. It keeps into account the network and I/O

costs as well as CPU costs.

Execution Engine.

The query-execution engine takes the QEP generated by the query optimizer,

executes that plan, and returns the answers to the user. Query execution provides

generic implementations for every operator (e.g., send, scan, or Nested Loop Join

...) and generates the code for the selected QEP.

3.2.2 Astronomical Queries

ASTROIDE focuses on four main basic astronomical queries (cone Search, kNN

Search, cross-match, kNN Join), that could not be, or too costly executed directly

on existing systems.

For a sake of consistency, we introduce the notations listed in Table 3.1.

Notation Description
R, S Catalogs of stars
r (resp. s) A star r ∈ R (resp. s ∈ S)
c Circle with c.p as center and

c.sr as a radius
ε Threshold of spherical dis-

tance
SD(r,s) Spherical distance between

r and s

Table 3.1 Used Notations.

Definition 1: The Spherical distance is calculated with the harvesine formula
[93] as the length of the great circle arc between two points on a sphere. For

two celestial objects r, s in spherical coordinates (ra1, dec1) and (ra2, dec2), the

spherical distance between these two objects is:

SD(r,s) = 2arcsin
√

sin2(d/2)+ cos(dec1)cos(dec2)sin2(a/2)

52

3.2. Background

Where:

d = dec2 - dec1 = Difference in declination between r and s

a = ra2 - ra1 = Difference in right ascension between r and s

Definition 2: Cone Search [94] returns a set of stars whose positions lie within

a circular region of the sky (see Figure 3.3).

sr

p

Figure 3.3 Cone Search Definition

Given a dataset R and a circle c defined by a sky position p and a radius sr

around that position, a cone search query returns all pairs of points r ∈ R within

c. According to [94] from the IVOA, the Simple Cone Search (SCS) assumes

the observer geocentric. We can imagine this in three dimensions as a cone

stretching from an observer (such as a telescope) to a circle defined by a point p

and a radius sr. Formally :

Cone-Search(R, c) = {r | r ∈ R, SD(r,c.p)≤ c.sr}

Definition 3: Cross-matching query aims at identifying and comparing as-

tronomical objects belonging to different observations of the same sky region.

Cross-matching takes two datasets R, S and a radius ε as inputs and returns all

pairs of points (r,s) such as their spherical distance is lower than ε.

53

Chapter 3 - General Presentation of ASTROIDE

XMATCH(R,S,ε) ={(r,s) | (r,s) ∈ R×S, SD(r,s)≤ ε}

Cross-Matching is equivalent to a spatial distance join on two datasets R and S

(R onε S) in database terms.

Definition 4: Given a query point p, a dataset S and an integer k > 0, the k

nearest neighbors from S denoted kNN(p,S) is a set of k objects such that:

∀o ∈ kNN(p,S),∀s ∈ S− kNN(p,S), SD(o, p)≤ SD(s, p)

Definition 5: kNN Join takes two datastes R,S and an integer k > 0 and returns

each object r ∈ R with each of its kNNs from S.

kNN-Join(R,S) = {(r,s) | r ∈ R,s ∈ kNN(r,S)}

3.2.3 ADQL

Astronomical queries are commonly expressed using the Astronomical Data

Query Language (ADQL) [7]. ADQL is a well-known language adapted to query

astronomical data, and is promoted by the International Virtual Observatory

Alliance (IVOA) [95]. It is an SQL-Like language improved with geometrical

functions which allows users to express astronomical queries with alphanumeric

properties. ADQL provides a set of geometrical functions: AREA, BOX, CEN-

TROID, CIRCLE, CONTAINS, etc. For example, CIRCLE expresses a circular

region of the sky, which corresponds to a cone in space. The ADQL expression

of cone search is illustrated in the following example. Given that ra and dec

are the spherical coordinates in the gaia catalog, it returns all stars in the cone

centered at the point (266,−29) having a radius 0.0833 in the ICRS coordinate

system:

Query 3.2 Cone Search (ADQL)

SELECT *
FROM gaia

WHERE 1=CONTAINS(POINT (’ ICRS ’ , ra , dec) ,

CIRCLE (’ ICRS ’ , 266 , −29, 0 .0833))

54

3.2. Background

3.2.4 DataFrames

Spark SQL employs a programming abstraction called DataFrame. It is concep-

tually equivalent to a table in a relational database. DataFrame is a distributed

collection of data organized into named columns.

DataFrame supports reading data from various data sources, including JSON

files, Parquet files, Hive tables. It can read data from local file systems, distributed

file systems (HDFS), cloud storage (S3), and external relational database sys-

tems via JDBC.

Similar to RDDs, DataFrames are evaluated lazily. This means that computa-

tion only occurs when an action (e.g., count, save) is required. With DataFrames,

users can perform relational operations using a domain-specific language (DSL).

Below, we include a basic Scala example to create a DataFrame from a Parquet

file and to apply a filter operation over the loaded DataFrame.

Query 3.3 Example with DataFrame

val df = spark . read . parquet (" examples / gaia . parquet ")

d f . f i l t e r ($ " magnitude " > 18) . show ()

The main reason for processing data using DataFrames in ASTROIDE is that

the Catalyst optimizer allows the optimization of operations that are used to build

a DataFrame. Catalyst can apply physical and logical optimizations to speed

up computation. In case of Parquet files, entire blocks can be skipped, such

optimization allows to improve performance.

3.2.5 Parquet Format

Parquet is a popular columnar storage format, used as a back-end for AS-

TROIDE. It supports nested data structures and different compression and en-

coding schemes. We have chosen Parquet format in ASTROIDE because of the

following advantages:

• Columns are efficiently compressed which leads to save storage space

• Only required data is scanned, thereby reducing I/O and increasing perfor-

mance

55

Chapter 3 - General Presentation of ASTROIDE

Parquet File

…

Column 1 Chunk 0

Column 2 Chunk 0

Column N Chunk 0

…

Page 1

Page M

…

Row group 0

Row group N

Figure 3.4 Structure of Parquet File

Parquet is represented by a three-level hierarchical structure to organize data.

It starts by a horizontal partitioning of the data into rows called row groups which

are distributed across a cluster and processed in parallel. These row groups are

subsequently divided into column chunks which refers to data in a column within

a row group (vertical partitioning). The third level is a page. Each column chunk

is in turn split into one or more pages.

Parquet makes queries both fast and light. It stores useful statistics to allow

early data filtering. These statistics includes the count and minimum/maximum

values. Parquet only pulls data that is filtered for a row group, column chunks,

and selected partitions. For example, for a query with a range predicate, we can

reference the min and max values and decide whether to read or skip the row

group, column chunk or page. This will reduce the amount of data to be load and

to be processed during query execution.

3.3 Overview of the Proposed Framework

The primary goal of ASTROIDE [96; 97; 98] is to provide a scalable and efficient

query processing system for astronomical data. In view of the foregoing, we

have based ASTROIDE on Spark framework. Our design takes full advantages

56

3.4. Data Partitioning

of Spark features.

Figure 3.5 shows the architectural components of ASTROIDE, available as

open-source 2. Our framework is composed of two modules: data partitioning and

query processing. The data partitioning module is responsible for managing the

partitions in a way that ensures data locality, load balancing and task paralleliza-

tion. On the right of the Figure 3.5 is the query processing module. ASTROIDE

allows to execute astronomical queries using ADQL or DataFrames. The query

parser translates ADQL queries into SQL queries with UDFs which are in turn

transformed into Abstract Syntax Trees (ASTs). The query optimizer integrates

specific logical and physical optimization techniques to generate an efficient QEP

that is executed by the Spark engine.

D
at

a
P

ar
ti

ti
o

n
in

g

Input Data

Storage
(HDFS)

ADQL Parser

SQL Parser

Query Optimizer

Spark Core

HEALPix
library

ADQL

SQL + UDF

AST

QEP

ASTROIDE
parser

DataFrame

Figure 3.5 ASTROIDE Architecture

3.4 Data Partitioning

Astronomical queries as described in chapter 1 are expensive to process and

may lead to computation skew in some nodes of a cluster. Data skew is observed

in distributed systems when certain data partitions are overloaded during query

processing. In the astronomical context, a deep knowledge about data distribution

is necessary to provide efficient algorithms for query processing.

2https://github.com/MBrahem/ASTROIDE

57

Chapter 3 - General Presentation of ASTROIDE

Partitioning is a fundamental component for parallel data processing. It re-

duces computing resources when only a sub-part of relevant data are involved in

a query, and distributes tasks evenly when the query concerns a large number of

partitions. Hence, partitioning globally improves the query performances.

Spark partitioning methods are only applicable when the partition key is a

scalar one dimensional value. In order to make use of partitioning techniques in

our case, we need first to adapt it for the 2D coordinates as they are intensively

used in typical astronomical queries. With this regard, we establish two main

requirements:

• Data locality: points that are located close to each other should likely fall in

the same partition, that is a partition has to represent a portion of the sky.

• Load balancing: the partitions should be roughly of the same size to avoid

data skewness and efficiently distribute tasks between nodes of the cluster.

A poor load balancing leads to imbalance among workers in a cluster, which

globally slows down the execution time.

To achieve the first requirement, a spatial grouping of the data is necessary. Nev-

ertheless, a basic spatial partitioning may lead to imbalanced partitions due to

the typical skewness of astronomical data. Therefore, the partitioning should be

also adaptive to the data distribution. ASTROIDE partitions astronomical data in

a way that partitions are balanced while favoring data locality. To this end, we

employ HEALPix as an indexing scheme to map the two-dimensional spherical

coordinates into a single dimensional ID, this ensures the data locality require-

ment, i.e., close stars in the sky are likely to have close HEALPix IDs. To achieve

load balancing, we leverage the Spark range partitioner, which yields data par-

titions with roughly equal sizes. In the final step, the partitions are stored using

Parquet format (Section 3.2.5) in HDFS [27] to amortize the construction costs for

future queries. We structure partitioned files in such a way that each partition is

divided further into buckets. The bucketed column is the HEALPix index so that

rows in the same cell are always stored in the same bucket. We also determine

partition boundaries and store them as metadata.

58

3.5. Query Processing

3.5 Query Processing

In this section, we provide an overview of query processing in ASTROIDE. Query

processing in our context is the transformation of the query from an ADQL dialect

into an execution plan that performs the required manipulations within Spark.

When ASTROIDE receives an ADQL query, it goes through a series of steps

as shown in the right part of Figure 3.5. In the first phase, the system parses the

query, verifies the ADQL syntax rules and performs appropriate query rewriting by

translating geometrical functions into equivalent internal UDFs. Then, it matches

the translated SQL query to an abstract syntax tree generated by the Spark SQL

parser. In the third phase, the query optimizer takes this tree as input and per-

forms optimization on the query by using customized rules and strategies. The

query optimizer returns an execution plan that minimizes the query processing

time.

3.5.1 Query Interface Levels

ASTROIDE allows the extension of Spark to deal with astronomical queries using

ADQL and DataFrames. We have proposed and evaluated two alternatives as a

query interface. The idea is to follow the same Spark interaction ways including

SQL and direct DataFrame API:

• DataFrame API. If the query is written using the DataFrame API, we pro-

vide a query interface by extending this API with the astronomical operations

listed in Section 3.2.2. Each DataFrame is internally represented as a logi-

cal plan that describes the computation required to produce the data. In this

case, no data parsing is required. For example, a cross-matching between

two DataFrames df1 and df2 is expressed with the following Scala code in

ASTROIDE. This produces a new DataFrame called output which is the

result of cross-matching.

Query 3.4 Cross-Match using DataFrames

val output = df1 . XMatch (SparkSession , df2 , 0.002)

• ADQL Queries. If the query is written using ADQL, ASTROIDE parser

transforms the ADQL query into an abstract syntax tree as explained in

Section 3.5.2.

59

Chapter 3 - General Presentation of ASTROIDE

Internally, there is no difference between using the DataFrame API or ADQL as

the same execution engine will be used for both. However, the ADQL option

remains more expressive with an easier syntax. ADQL queries can be also exe-

cuted without any modifications in the program.

3.5.2 ASTROIDE Parser

ASTROIDE parser is divided into two steps: ADQL parser and SQL parser. In

the first step, the parser verifies that the query is syntactically correct. Then, it

extracts tables names, columns names and some keywords such as CONTAINS,

JOIN, POINT, CIRCLE from the input query. This extraction helps ASTROIDE to

fetch the query types described in Section 3.2.2. The query parser translates the

ADQL query into a valid SQL query understandable by the spark SQL parser. In

the second step, the Spark SQL parser transforms the translated SQL query into

the corresponding AST.

3.5.3 Query Optimizer

This module is an extension of the Spark Catalyst optimizer. We integrate new

rules and strategies for converting Spark non optimized logical plans to optimized

physical plans. The decision to exploit Catalyst [15] as a backbone for our opti-

mizer was driven by the fact that astronomical databases contain both astronom-

ical and relational queries, as opposed to developing a new optimizer. Building

a new optimizer is a complex engineering task. Instead, Catalyst allows execut-

ing relational queries and enables adding new optimization rules as explained in

Section 2.2.5. Our optimizer still leverages all the benefits of Spark’s optimizer

like predicate pushdown, projection pruning and join reordering. We distinguish

two types of operators: traditional algebraic operators, and astronomical opera-

tors. Here, we integrate optimizations for astronomical operators and let Catalyst

performs traditional operators.

The input of this module is an abstract syntax tree generated after query pars-

ing from an ADQL expression. The query optimizer transforms this tree into an

equivalent query tree, but with optimized form by rewriting costly operators or by

adding filter operator on our data structure. This query tree is represented by a

60

3.6. Summary

logical plan, we distinguish three types of plans: analyzed logical plan, optimized

logical plan, physical plan. The parsed plan goes through a series of analyzer

rules to produce the analyzed logical plan. The analyzed plan is converted in

turn into an optimized logical plan using optimization rules. The optimized plan

is transformed into a physical plan using strategies. The output physical plan is

the actual plan which ASTROIDE executes for the final data processing. To opti-

mize astronomical queries, we inject a set of optimization rules, analyzer rules or

strategies to produce the final QEP. We demonstrate these rules and strategies

by giving examples in Chapter 5.

Rule based optimization in our context exploits spatial partitioning to access

the smallest possible number of partitions, avoiding cartesian product or perform-

ing projection on spatial indices as early as possible ... Indeed, our query opti-

mizer injects transformation rules to avoid scanning all records. It uses indices

to prune out partitions that do not contribute to the query result and scans only

relevant partitions.

3.6 Summary

In this chapter, we presented ASTROIDE, a solution that combines the scalability

of distributed data processing engines using Spark with the expressiveness of as-

tronomical data servers using ADQL. ASTROIDE achieves this objective through

efficient partitioning, customized rules and strategies in the Catalyst optimizer

and an expressive query interface. We proposed an approach that builds indices

using HEALPix combined with data partitioning to support astronomical queries.

We presented a query processing module that improves the execution of astro-

nomical queries through dynamic query rewriting and efficient optimizer.

61

CHAPTER 4

Data Partitioning and Indexing

Contents
4.1 Introduction . 63

4.2 Importance of Partitioning . 63

4.3 Challenges in Astronomical Data Partitioning 64

4.4 Sky Indexing . 65

4.5 Related Approaches . 71

4.6 Spark Partitioning Approaches . 76

4.7 ASTROIDE Partitioning . 77

4.8 Partitions Visualization . 81

4.9 Summary . 82

Numbers have an important story

to tell. They rely on you to give

them a voice.

Stephen Few

62

4.3. Introduction

4.1 Introduction

Data partitioning is a key feature for efficient query processing in distributed sys-

tems. It is even more crucial in astronomical big data management. Data parti-

tioning is based on dividing data into smaller subsets and processing partitions

in parallel on multiple nodes. Partition pruning can also speed up query perfor-

mance drastically by eliminating unnecessary and enabling index scans as well

as reducing memory needs, disk I/O ... Partitioning is a powerful mechanism to

improve the overall manageability of big data systems [99]. It aims to reduce

query execution time and facilitates the parallel execution of queries. Therefore,

partitioning plays an essential role for achieving optimal system performance. It

can efficiently simplify the complexity of managing massive data.

In this chapter, we discuss the importance of partitioning in distributed systems

and present the challenges related to the partitioning of astronomical data. We

study existing approaches for sky indexing and partitioning. We also detail the

partitioning approach in ASTROIDE.

4.2 Importance of Partitioning

Performance, scalability, and manageability are critical in any computing environ-

ment. Partitioning is one of the most efficient features to address these require-

ments. It enhances the manageability of data by dividing large tasks into small

tasks. It improves scalability and performance by pruning unneeded data. This

enables to access only the partitions that contains the necessary data and not the

whole table, only one or few partitions are scanned. It eliminates, or ignores par-

titions that are irrelevant to the criteria that we have set in the input query. Hence,

it can significantly reduce the amount of data scanned to return results, provides

faster data loading and limits the communication costs. It offers a fine-grained

control over the physical design for performance tuning. It also enables parallel

query execution, and allows to control parallelism which leads to better cluster

utilization (fewer costs and better execution time).

63

Chapter 4 - Data Partitioning and Indexing

4.3 Challenges in Astronomical Data Partitioning

Partitioning of astronomical data poses several challenges related to their char-

acteristics as exposed in Chapter 1.

4.3.1 Data Skew

Data skew in distributed systems occurs when a node or a set of nodes have to

deal with larger partitions or more complex computations. Unbalanced partitions

can have a very negative impact on query performance, resource usage and

scalability. It could lead to serious overload across tasks, which would eventually

result in some tasks taking longer time to complete than others and increase the

overall job latency. In general, distributed systems use a hash function to partition

data. This function is expected to generate equal structure of partitions. However,

in some cases (e.g., regions with high density of stars), the hash function fails to

achieve equal partitioning, resulting in unbalanced partition sizes.

There are many reasons why skew may arise in astronomical parallel query

processing. When some sky regions contain significantly more data objects than

others, this could lead to the overload of some nodes while others can remain idle.

Thus, sophisticated partitioning approaches have become necessary to achieve

load balancing and avoid data skew. Load balancing is fundamental in order to

affect a similar amount of data to nodes of the cluster.

4.3.2 Objects on the Boundaries

In distributed systems, partitioning of astronomical data can generate multiple

objects around the borders of partitions (e.g., the object surrounded in Figure

4.1). However, those objects of different HEALPix cells could match with objects

from adjacent partitions. Thus, to get a correct cross-matching result, we need to

deal with the matched objects along the borders, i.e., those having an ε-distance

but belonging to different (neighbor) partitions. So, join should be extended to

neighbors by replicating objects on the borders to multiple neighbor partitions.

This process adds extra query processing overhead which increases with the

volume of boundary objects and data volume.

64

4.4. Sky Indexing

P1

Figure 4.1 Objects on the Boundaries

4.3.3 Partitioning Cost

Partitioning algorithms of multi-dimensional data are expensive to process. This

is not only driven by the massive volume of data, but also with the high compu-

tational complexity. Most of the existing partitioning approaches are designed for

a centralized paradigm where query processing is performed on a single server.

Among these the SkyServer [51], the VizieR service [54], Q3C/PostreSQL [56]

where communication cost is not taken into consideration. Such servers simply

employ horizontal or vertical partitioning approaches using sky indexing scheme

which are significantly differentiated from partitioning techniques in a distributed

context because of the skewed distribution and the large volume of astronomical

data.

To the best of our knowledge, there is no astronomical system that provides a

partitioning approach based on big data technologies that is able to handle data

skew and distortion problems around the poles.

4.4 Sky Indexing

Data describing an astronomical object are represented by a celestial location

right ascension and declination as well as other information related to the obser-

65

Chapter 4 - Data Partitioning and Indexing

vation such as magnitude or spectral type. Sky indexing transforms data asso-

ciated to these locations into cells (also known as pixels). It provides a single

identifier for each cell on the sky. It is a simple way to represent the sky coverage

of a catalog. Different data structures were designed to store spherically mapped

data, they differ in their way to divide the sphere’s surface. HTM and HEALPix

are the most mature data structures that are widely used as indexing schemes

for astronomical data. They have been put forward to meet different needs of

astronomical applications for the following reasons:

• Uniform coverage of the sky with no singularities around the poles.

• Fast algorithm to compute the corresponding indices.

4.4.1 HTM

Figure 4.2 HTM Partition

Szalay et al. developed the Hierarchical Triangular Mesh (HTM) [100] and

applied it to index the Sloan Digital Sky Survey (SDSS) [101]. HTM is a multi-level,

recursive decomposition of the sphere. HTM starts with a spherical octahedron,

which identifies 8 spherical triangles of equal sizes. Each octahedron has six

vertices, given by the intersection points of the x, y, z axes, enumerated from v0

to v5:

66

4.4. Sky Indexing

v0 : (0,0,1) v3 : (−1,0,0)

v1 : (1,0,0) v4 : (0,−1,0)

v2 : (0,1,0) v5 : (0,0,−1)

The first 8 triangular surfaces at level 0 are defined as:

S0 : (v1,v5,v2) N0 : (v1,v0,v4)

S1 : (v2,v5,v3) N1 : (v4,v0,v3)

S2 : (v3,v5,v4) N2 : (v3,v0,v2)

S3 : (v4,v5,v1) N3 : (v2,v0,v1)

These spherical triangles N0 - N3 and S0 - S3 represent respectively the 4

northern and southern spherical triangles (called level 0 trixels). Further, each

trixel is recursively subdivided into four children by bisecting the parent’s edges

(4 x 8 triangular surfaces are generated at level 1). The process is repetitive

as depicted in Figure 4.2. The name of a trixel (e.g., N20351) uniquely defines

its depth (number of digits in the name) and its location on the sky. A spheri-

cal triangle is given by three points on the unit sphere connected by great circle

segments.

S13

S10 S11

S12

S111

S110
S113

S112

Figure 4.3 HTM Procedure

67

Chapter 4 - Data Partitioning and Indexing

This indexing scheme leads to efficient mapping of triangular regions of the

sphere to unique identifiers while keeping data locality. The number of triangles

N at a given depth d > 0 is equal to:

N = 8×4d−1 (4.1)

4.4.2 HEALPix

The Hierarchical Equal Area isoLatitude Pixelization (HEALPix) [14; 102; 103] is

one of the most popular indexing methods for astronomical data, and is commonly

used to index the catalogs. In our context, we used HEALPix as a linearization

technique to transform the two-dimensional data points (represented by spher-

ical coordinates) into a single dimension value represented by a pixel identifier

(HEALPix ID). HEALPix allows spatial splitting of the sky into 12 base pixels

(cells). HEALPix nested numbering scheme has a hierarchical design, where

the base pixels are recursively subdivided over the spherical coordinate system

into four equal size pixels. These subspaces are organized as a tree and the

amount of subdivisions (i.e., the height of the tree) is given by the Nside parame-

ter, which controls the desired resolution (see Figure 4.5). The total number of

cells per level of resolution is:

Nnested = 12× (Nside)
2 (4.2)

Where Nside ∈ {1,2,4,8, ...,2k}

The order or the level of resolution in HEALPix is given by k (the limit is 29).

Each pixel area is equal to:

areapixel =
π

3N2
side

(4.3)

The HEALPix angular resolution is defined by:

θpixel =
√

areapixel (4.4)

68

4.4. Sky Indexing

The HEALPix nested scheme follows a “Z” pattern to spatially label sequence

in a specific sequence (a similar methodology of Z-ordering [104]). The details to

increase the resolution are represented in Figure 4.4. Every pixel is split into 4

daughter pixels, these daughters inherit the pixel index of their parent and acquire

two new bits. This nested scheme allows to represent data using a hierarchical

structure and to give unique identifiers to each pixel in the map.

11 01

10 00

1111 1101

1110 1100

0111 0101

0110 0100

1011 1001

1010 1000

0011 0001

0010 0000

Figure 4.4 HEALPix Procedure

HEALPix offers also a second ordering scheme with rings. Ring scheme has

not a hierarchical structure but it allows to align pixels on rings. It provides tech-

niques to count the pixels moving down from the north to the south poles along

each iso-latitude ring. The number of iso-latitude rings is:

Nring = 4(Nside−1)

Both the ring and the nested indexing schemes map the two-dimensional dis-

tribution of discrete cells to a one dimensional array of size Ncell.

As presented above, prior work has proposed other spatial indices that are

suitable for celestial objects, including Hierarchical Triangular Mesh (HTM) [100].

Comparison between the two indexing techniques is detailed in [105]. Both HTM

and HEALPix hierarchically partition the sky using a fixed number of cells, and

each object is associated to the index of the cell that contains the object.

In this work, we choose HEALPix as our indexing scheme, but another scheme

like HTM can be applied on the same principle. Compared to the astronomical

servers presented in the state-of-art, AscotDB [61] and the VizieR service [54]

use HEALPix as an indexing scheme, whereas the SkyServer project [51] uses

HTM.

69

Chapter 4 - Data Partitioning and Indexing

To summarize, HEALPix has the following characteristics:

• HEALPix is a mapping technique adapted to the spherical space, with equal

areas per cell all over the sky, a unique identifier is associated to each cell

of the sky. This id allows us to index and retrieve the data according to the

spatial position efficiently.

• Data linearization with HEALPix ensures preserving data locality, neighbor-

ing points in the two-dimensional space are likely to be close in the corre-

sponding one dimensional space. Data locality helps us to organize spatially

close points in the same partition or in consecutive partitions, and thus op-

timizes query execution by grouping access to close objects and avoiding

access to irrelevant partitions.

• There exist a ready for use library for HEALPIX [106], provided as open

source by NASA. It contains many features that are useful in our context

such as filtering neighbor pixels or those in a cone.

Figure 4.5 HEALPix Partition with Nside = 1,2,4,8

70

4.5. Related Approaches

4.5 Related Approaches

4.5.1 Astronomical Partitioning

A logical approach for speeding up astronomical queries within large datasets

is to apply partitioning algorithms. This had been issued by Jim Gray in 2006
[107] by the zoning algorithm. Other partitioning algorithms were proposed in the

literature:

Zones Algorithm

Jim Gray proposes a zones algorithm [107; 66] that maps the celestial sphere

into stripes called zones. Each object at position (ra, dec) is assigned into a zone

using this formula:

ZoneID = f loor(
dec+90

h
) (4.5)

Where h is the zone height (see Figure 4.6), and f loor(x) gives the largest

integer less than or equal to x.

h

Figure 4.6 Zones Partitioning

Nieto-Santisteban et al. [107] used the zones algorithm for cross-matching

queries with multiple SQL servers. It allows query execution in parallel by dis-

71

Chapter 4 - Data Partitioning and Indexing

tributing data among a cluster of database servers. The zone algorithm helps to

speed up neighborhood searches by discarding objects beyond some radius.

To look for objects within a certain radius (θ) of point (ra, dec), we need to

consider zones such as:

dec−θ

h
≤ zoneID≤ dec+θ

h

However, when the radius is much larger than the zone height, many zones

are included in the computation. Thus, the zones algorithm become less efficient.

kd-tree Algorithm

A k-dimensional tree (kd-tree) (Figure 4.7) is a space-partitioning data structure

for organizing points in a k-dimensional space [108], in such a way that once

built, whenever a query arrives requesting a list of all points in a neighborhood,

the query can be answered quickly without needing to scan every single point.

It splits the multi-dimensional space recursively into subspaces in a systematic

manner and organizes these subspaces as a search tree.

This structure is suitable for spatial data partitioning. But, it was also used to

partition astronomical data in the literature. Gao et al. [109] propose an algorithm

based on kd-trees using HTM [100] as a spatial index. The idea is to divide the

sky into small equal triangles by HTM. They map each object (ra,dec) of the

dataset to a HTM index, and for each triangle, they build a kd-tree. The use of

HTM with kd-trees was also proposed by Kunszt et al. [101] to execute queries

on data from the SDSS archive.

Pineau et al. [67] use also kd-trees to partition data. They divide the sky into

HEALPix pixels that can be processed independently, one by one on a single

machine and simultaneously on a cluster of machines. They propose an inde-

pendent pixel cross-match. For example, to cross-match the sources contained

in a cell of a catalog A with a catalog B, they load only the sources of the catalog

B which are overlapping this cell. To overcome the border issue, they also load an

extra border around this cell. Then, they build a 2d-tree containing the sources

retrieved from the catalog B. For each source in the catalog A, they perform a

cone search query in the 2d-tree. The process is multi-threaded and stops when

all sources are processed.

72

4.5. Related Approaches

Figure 4.7 kd-tree Partitioning

4.5.2 Spatial Partitioning and Indexing

Many spatial indexing algorithms were proposed in the literature such as grid,

R-tree, and R+-tree, Z-curve, Hilbert curve, quad-tree, and k-d tree. They were

presented in details in [110; 111; 112]. It is not simple to apply such algorithms

in a distributed context because of the granularity of data management. A unique

index is not suitable. Thus, the general idea (as discussed in Chapter 2), is to

define a two level indexing approach of global and local index.

• The global index partitions data at node level, contributes in the organization

of partitions, and helps to identify the partitions that are relevant for the

query range.

• The local index organizes data inside each node and limits the access to

blocks within each partition to accelerate range filtering.

HadoopGIS [71], GeoSpark [13], SpatialHadoop [10] and SIMBA [11] employ

R-trees global and local indexing. The partitioning approach in ASTROIDE is

inspired from this idea. ASTROIDE adopts a similar approach by using range

partitioning to organize partitions at the node level and HEALPix indexing to or-

ganize data inside each partition.

73

Chapter 4 - Data Partitioning and Indexing

Grid Indexing

Grid indexing [113] is a simple space-oriented, in which the spatial universe is

partitioned into n equal sized grids. It is a fast and easy to implement technique.

However, it cannot handle the spatial data skewness. If the data distribution is not

uniform, it fails at balancing the workload among the nodes of the cluster. Grid

indexing is reserved for applications that have uniform data distribution or if the

choice of a cell size gives an approximate equal density that absorbs the skew.

Space Filling Curve

A Space Filling Curve (SFC) is a way of mapping the multi-dimensional space

to the one-dimension space. It passes through every cell element in the D-

dimensional space so that every cell is visited exactly once [114]. Different SFC

techniques were proposed in the literature. The difference between such curves

is in their ways of mapping to the one dimensional space (Figure 4.8).

One of the most desired properties of such mapping techniques is data lo-

cality, it means that the locality between objects in the multidimensional space

is being preserved in the linear space. The transformed data can be stored in

a traditional one-dimensional database, allowing the efficient process of spatial

queries, such as range query [115] or kNN query [116]. Sophisticated mapping

functions have been proposed in the literature such as:

• Z-curve: Based on interleaving bits from coordinates values [104]

• Hilbert Curve: A continuous fractal space-filling curve, introduced by David

Hilbert in 1891 [117]. It is represented by a sequence of curves defined

iteratively. [118].

Yao et al. [116] propose efficient algorithms using Z-curve space filling curve

techniques to implement kNN queries with SQL operators in relational databases.

Lawder et al. [115] employ the Hilbert Curve to index multi-dimensional data and

execute range queries. In MD-HBase [12], a Z-curve is used for data partitioning.

The data storage layer stores the items sorted by their keys that correspond to

the Z-values of the dimensions being indexed and range-partitions the key space.

MD-HBASE proposes also efficient range queries algorithms using Z-curve de-

tailed in Section 2.4.4.

74

4.5. Related Approaches

(a) Z-curve (b) Hilbert Curve

Figure 4.8 Space Filling Curve

R-trees

R-trees are hierarchical data structures derived from the B-trees, originally intro-

duced by Guttman [119]. R-tree is the preferred method of spatial data indexing

in which each geometric object is represented by its minimum bounding rectangle

(MBR). Leaf nodes contain entries of the form (id, R) where id is the identifier of

the spatial object being indexed, and R is the MBR of the object. Non-leaf nodes

contain entries of the form (ptr, R) where ptr is a pointer to a child node in the

R-tree; R is the MBR that covers all rectangles in the child node. R-tree follows a

height-balanced tree, all leaves of the R-tree are at the same level.

Figure 4.9 depicts some objects on the left and the corresponding R-tree on

the right. Data rectangles D,E,F,G are stored in leaf nodes. Whereas MBRs A, B

and C are the root nodes. A, for instance, covers child nodes D, E, F and G.

A Sort-Tile-Recursive (STR) algorithm is used to build an R-tree. The general

method is similar to building a B-tree where we start by creating the leaf level

nodes and then creating each successively higher level until the root node is cre-

ated. Considering N the number of rectangles in the two-dimensional space, the

idea is to tile the space using vertical slices, so that each slice contains enough

rectangles to create roughly
√

(N/M) nodes, where M is the R-tree node capacity.

Then, we sort the rectangles by x-coordinate and S slices are created (P = dN/Me
and S = dPe). A slice consists of S.M rectangles. In each slice, objects are sorted

by y-coordinate and packed into nodes. This procedure continued recursively.

75

Chapter 4 - Data Partitioning and Indexing

A

B

C

D

E

F

G

H

N

L

M

K

J

I

A B C

D E F G H I J K L M N

Figure 4.9 Example of R-tree

It should be noted that the MBRs of different nodes may be overlapping. This

means that a spatial search may visit many nodes. R+-trees [120] were proposed

as a structure to overcome this limitation. They improve retrieval performance by

avoiding visiting multiple paths. This is achieved by using the clipping technique.

The MBRs of the nodes at the same level are disjoints. So, inserted objects have

to be divided into two or more MBRs, causing duplication of some object’s entries.

SpatialHadoop [10] and SIMBA [11] use R-Tree and R+-Tree for data parti-

tioning and indexing. These methods have been proven to be efficient for spatial

data processing compared to other spatial partitioning algorithms.

The main problem of applying these algorithms in our context is that the po-

sitions of astronomical objects are given in spherical coordinates. Their use is

restricted to tasks inside small areas, where the sphere can be projected onto a

plane with negligible distortion. Thus, most of the systems operating with astro-

nomical data use sky indexing techniques by subdividing the sky into numbered

small fragments.

4.6 Spark Partitioning Approaches

Because we have chosen Spark as our back-end framework, we started by study-

ing the partitioning approaches offered by such framework. Our objective is to

76

4.7. ASTROIDE Partitioning

extend the built-in partitioning methods in Spark to support astronomical data

partitioning.

To support data partitioning, Spark divides the input RDD into a collection of

partitions. Each machine allows the process of many partitions. The number of

launched Spark tasks is equal to the number of the Spark partitions.

Spark provides two data partitioning schemes, namely hash partitioner and

range partitioner that can be executed over RDDs or DataFrames.

• Hash partitioner. The default partitioner in Spark. It calculates a parti-

tion index based on an element’s Java hash code, and puts the keys that

have the same hash index in the same partition. Hash partitioning does not

necessarily distribute data uniformly. Consequently, it can end up with few

partitions containing most of the records.

• Range partitioner. It divides data into roughly equal partitions. Range

partitioner sorts the input records based on their keys and splits the RDD

into a defined number of partitions, each of which contains data with keys

within a specific range. Range partitioner provides better workload balance.

However, it does not support the two-dimensional nature of astronomical

data. It also lacks of mechanisms to determine the best number of partitions

for a specific job.

4.7 ASTROIDE Partitioning

Our partitioning approach follows a similar approach of the two level partitioning

model used in the geo-spatial context (global and local indexing). The general

idea is to leverage the spark range partitioning algorithm to efficiently distribute

data across nodes and avoid accessing unnecessary partitions. We have also

adopted HEALPix sky indexing scheme as a linearization technique to organize

data inside each partition into buckets.

In ASTROIDE, it is important to determine how many partitions are needed.

The partitioning algorithm has to ensure that all the created partitions would fit

into memory. In Spark, the number of partitions determines the level of paral-

lelism. Currently, Spark uses a defined number of partitions. Large partitions

leads to long task execution. Therefore, a heuristic calculation must be used in

77

Chapter 4 - Data Partitioning and Indexing

ASTROIDE. The number of partitions is automatically determined based on the

dataset size, which adjusts also the number of Spark tasks. The number of par-

titions can be obtained by dividing the total dataset size by the target partition

size. However, a variation in the sizes among the partitions can occur. This may

happen when the density of the first or the last cell, i.e., corresponding to the first

or the HEALPix ID in the partition is dense. Thus, we allow a margin with m fac-

tor in order to absorb such unpredictable cases. In the experiments, it has been

empirically fixed to 0.3. We compute the number of partitions using this formula:

n = |IS|/PS∗ (1+m)

Where |IS| is the input size.

PS is the partition size.

m is an adjustment factor.

Algorithm 1 Data partitioning and indexing
Input: InFile: Input File, PS: Partition size
Output: OutFile: Partitioned output file, boundaryList: Partition boundaries

1: dataFrame = Load(InFile)
/* Index creation using the HEALPix Library */

2: IndexedDF ← /0
3: for each row in dataFrame do
4: ipix=toHealpix(ra,dec)
5: IndexedDF = IndexedDF ∪{row+(ipix) }
6: end for

7: n← Size(InputF)

PS
∗1.3

8: partitionedDF = RangePartitioning(IndexedDF , ipix, n)

9: Out putDF ← /0
10: for each partition P in partitionedDF do
11: nump = getPartitionId(P)
12: Out putDF = Out putDF ∪{P+(nump) }
13: end for

14: OutFile = Save(Out putDF)

15: /* Partition boundaries creation */
16: boundaryList = getBoundaries(Out putDF)

78

4.7. ASTROIDE Partitioning

The data partitioning and indexing processes are shown in Algorithm 1. In-

put files are stored using parquet format, a column-oriented binary file format.

Parquet with compression reduces data storage, it allows reading only records of

interest through selected columns. Input files are loaded as DataFrames (Line

1), equivalent to relational tables (see Section 3.2.4 for more details). The two-

dimensional coordinates are mapped to a single dimensional ID represented by

the HEALPix value (Line 2-6). This library helps us to linearize data since the par-

titioning key in Spark should be in one dimension. So, a new Healpix column is

added to the input DataFrame. Then, we apply a range partitioner that divides the

input DataFrame into n partitions (Line 8). The records are partitioned by ranges

into roughly equal partitions. Since Spark is an in-memory analytical engine, this

efficient organization is only accessible in-memory. So, our solution is to asso-

ciate a partition number nump to each partition in memory (Line 9-13) and pack

each partition with this number in HDFS. The function getPartitionId tracks the

partition number in memory. This allows to ensure a correspondence between

the partitions created in memory and the partitions that are physically created in

HDFS. The output DataFrame is saved using Parquet format in HDFS. The func-

tion save (Line 14) divides each partition of partitionedDF into buckets and uses

ipix as the bucketing column (the values of HEALPIx cells inside each partition

are hashed by a user-defined number into buckets). This function creates a file in

HDFS with nump as the top-level partition and ipix as the second-level partition.

Finally, a sorted list of the range boundaries for each partition is created (Line

15).

Figure 4.10 shows ASTROIDE’s partitioner. For partitioning an input data into

a set of partitions R0,R1,R2, ASTROIDE builds HEALPix indices over raws inside

each partition Ri. We apply range partitioning on partitions Ri to create sorted

partitions P0,P1, ...,Pn given the number of partitions n. This causes a shuffling and

distributes evenly the data among partitions. We store partitioned data in HDFS to

amortize the construction cost for future queries. The DataFrame is partitioned by

nump using a Spark existing function partitionBy. So, ASTROIDE stores the data

in such a way that each partition is saved in a separate subdirectory containing

records with the same partition number nump. Each partition is further divided into

buckets using the spark function bucketBy using HEALPix index as the bucketing

column. This structure provides a two-level partitioning structure as shown in

Figure 4.11. Astronomical datasets are partitioned into independent partitions.

79

Chapter 4 - Data Partitioning and Indexing

R

R0

R1

R2

Add HEALPix
indices

P0

P1

P2

Range
Partitioning

Add nump

HDFS

PartitionBy

Partitioned data
&

Partitions
boundaries

P3

P’0

P’1

P’2

P’3

Figure 4.10 ASTROIDE Partitioner.

For simplicity, the space is partitioned into three regions in Figure 4.11. The sizes

of these regions are decided such that each region would fit into a partition size

PS. Each region can be further divided into even smaller regions called buckets.

In Figure 4.11, a single partition is split into 3 tiles (green, yellow, red). Such

two-level partitioning could save large I/O cost and improve query performance.

This technique optimizes query execution in a way that makes it efficient to re-

trieve the contents of a bucket and obviate scanning irrelevant partitions. Records

with the same HEALPix indices will be stored in the same bucket. This structure

is very useful, for example, if a query limits for a catalog GAIA only records lo-

cated in cell ipix=114571, ASTROIDE will scan the contents of one bucket in

one subdirectory (e.g., gaia.parquet/nump=20/ipix=114570-114575).

In the final step, ASTROIDE determines partition boundaries and stores them as

metadata. Note that in our case, all we need to store are the three values (np,

l, u) where np is the partition number, l is the first HEALPix cell of the partition

number np and u is the last HEALPix cell of the partition number np.

80

4.9. Partitions Visualization

NUMP 0 NUMP 1 NUMP 2

20 <= ipix <30

Partitions

Figure 4.11 Two-level Partitioning.

4.8 Partitions Visualization

We visualized the created partitions in ASTROIDE using Aladin [121], a tool for

viewing astronomical data and acquiring sky maps. As shown in Figure 4.12a,

each partition is represented by a color, a partition corresponds to a region of the

sky and all created partitions cover all the sky. An approximate balance between

different partitions is considered. Our partitioning algorithm preserves spatial lo-

cality which means that nearby objects are assigned to the same partition. For

each object of a given partition, the corresponding HEALPix value is assigned

to a specific range, and when a data entry fits that range, it is assigned to that

partition; otherwise it is placed in another partition where it fits. Thus, partitions

are contiguous but not overlapping, each partition has an exclusive upper bound

HEALPix value.

Figure 4.12b illustrates partitioning in SIMBA. It uses an R-tree based on

STR partitioning [122]. This data structure groups nearby objects and represents

them with their minimum bounding rectangles. We can observe that the bound-

ing boxes become very elongated around the poles. This may hinder the query

performances, due to the increase of the objects along the border, which entails

multiple partitions access.

81

Chapter 4 - Data Partitioning and Indexing

(a) Partitioning in ASTROIDE. (b) Partitioning in SIMBA.

Figure 4.12 Partitions Visualization with Aladin.

4.9 Summary

In this chapter, we presented a study of different partitioning and indexing algo-

rithms for astronomical data. Our study reveals the important challenges that

should be considered for effective partitioning algorithms for astronomical data.

We also discussed the most important partitioning algorithms in the context of

geo-spatial big data. We described our new partitioning algorithm based on

HEALPix indexing scheme to achieve efficient astronomical query processing.

82

CHAPTER 5

Optimization of Astronomical Queries

Contents
5.1 Introduction . 84

5.2 Query Processing . 84

5.3 Query Optimization Worflow . 86

5.4 Rule-based Optimization in ASTROIDE 88

5.5 Cone Search . 90

5.6 kNN Search . 93

5.7 Cross Match . 95

5.8 kNN Join . 98

5.9 Combination with other Attributes 102

5.10 Summary . 105

Information is the oil of the 21st

century, and analytics is the

combustion engine.

Peter Sondergaard

83

Chapter 5 - Optimization of Astronomical Queries

5.1 Introduction

In Spark SQL, a user expresses a query that the final response must satisfy

without describing the computation. The optimizer responsibility is to translate

this query into a query execution plan that returns the requested result efficiently.

However, the application of standard query optimization techniques in the con-

text of astronomical query processing is not sufficient due to astronomical data

challenges (see Section 1.2). Furthermore, very little attention was devoted to

astronomical query processing using big data systems. Existing astronomical

servers discussed in Section 2.3 are not able to handle the colossal increase of

large scale data and neglect the optimization issues. This chapter presents our

query optimization module which allows to produce an optimized query execution

plan for the most frequent and challenging astronomical queries.

5.2 Query Processing

Query processing in our context focuses on the design of efficient algorithms for

astronomical operators. The performance enhancement provided by these algo-

rithms includes access methods using sky indexing techniques and partitioning

algorithms.

Query processing in ASTROIDE follows a two-step process comprised of fil-

tering and refinement steps [123]:

• Filtering step. It does not return the exact result for the original query but a

set of candidates objects that is a superset of the result objects. This step

takes advantages of our partitioning and indexing model to obtain candi-

dates objects. It reduces not only I/O time but also CPU time and commu-

nication costs.

• Refinement step. The output of the filter step is fed into the refinement

step. The refinement step finds exact answer to the original query where

candidate objects are processed using spherical distance filtering.

The objective is to discard as early as possible unnecessary data to optimize

query execution. We do not need to call the refinement step on non candidates

objects as we are certain that they definitely do not belong to the query result.

84

5.2. Query Processing

5.2.1 Query Parsing

ASTROIDE begins query processing either from an ADQL query or from a

DataFrame object. The ADQL query is analyzed in order to identify geometri-

cal and traditional algebraic predicates. The query parser checks input queries

for syntactic correctness and translates them into SQL queries with UDFs. The

transformations performed depend on the type of the query and substitute parts

of the query matching ADQL’s geometrical terms with replacement SQL terms

using UDFs that are already defined in ASTROIDE. This substitution is based on

an existing library [83] developed by the CDS. We extend this library to integrate

ASTROIDE UDFs.

For example, the ADQL query 3.2 used to express a cone search query is

transformed into a Spark SQL-compliant query by replacing the CONTAINS func-

tion with a UDF expressing a spherical distance as follows:

Query 5.1 Query 3.2 after Parsing

SELECT *
FROM gaia

WHERE Spher ica lD is tance (ra , dec , 266 , −29) < 0.0833;

5.2.2 Query Optimization

Our query optimizer uses different methods to optimize astronomical queries: with

query rewriting or with transformation rules.

Optimization with Query Rewriting

In this subsection, we consider the case of query rewriting with the integration of

transformations that optimize the query. The first step is to check whether query

rewriting is needed. After that, the optimizer must determine how it will rewrite the

query. It makes this type of determination by defining the type of the query. This is

accomplished by individually checking the content of various clauses (SELECT,

FROM, WHERE, ORDER BY, or LIMIT). Depending on the type of the query, the

query optimizer adds to the query expression new optimization clauses.

This approach consists in rewriting astronomical queries into optimized SQL

queries with UDFs. The basic idea is to apply a number of transformations on

85

Chapter 5 - Optimization of Astronomical Queries

the query expression to produce a new equivalent, but optimized query compliant

with the syntax of Spark SQL. We incorporate filters into the optimized query in

order to avoid scanning irrelevant partitions and buckets (see Query 5.3 & Query

5.5). We also transform the cross-match query into an SQL query that uses an

equi-join on HEALPix indices (see Query 5.7).

Query rewriting performed in ASTROIDE is completely transparent to the user.

It does not require any change inside the Catalyst optimizer and executes exactly

the same execution plans of those generated by the second approach (using

transformation rules) that we present in the next section.

Optimization with Transformation Rules

In ASTROIDE, the second approach for query optimization makes use of the Cat-

alyst optimizer as a back-end and introduces new features that extend its base

components. Once the AST is generated from the ASTROIDE parser, the query

optimizer performs several operations on the query tree by applying transforma-

tion rules and strategies. Using Catalyst, we take advantages of existing tech-

niques for non spatial query optimization and provide an efficient implementation

for astronomical queries using indexing and partitioning techniques.

5.3 Query Optimization Worflow

The workflow of query optimization in ASTROIDE is represented in Figure 5.1.

Our query optimizer consists of four major steps: Extended Analysis, Extended

logical-physical optimizations, Physical planning and Code Generation.

5.3.1 Extended Analysis

Spark SQL begins with a relation to be computed, the relation may contain un-

resolved attribute references. An attribute is called unresolved if we do not know

its type or have not matched it to an input table. In addition to analyzing the

compatibility with metadata, Spark SQL allows to overcome some current limita-

tions by injecting resolution rules. For example, the kNN join query (see Query

5.11) uses correlated sub-queries to select data from the table R referenced in the

outer query. However, the current version of Spark SQL does not support such

86

5.3. Query Optimization Worflow

Extended Logical-
Physical

Optimization

Extended Analysis

ADQL query DataFrame

ASTROIDE
parser

Logical Plan

Optimized
Logical-Physical

Plan

Selected
Physical Plan

RDDs

Code generation

Physical Planning

Query
Optimizer

Figure 5.1 Query Optimization Worflow

sub-queries with UDFs. Thus, attributes R.ra and R.dec can not be resolved. An

“unresolved logical plan” tree is built, then, we apply a special type of rules called

analyzer resolution rules using the method injectResolutionRule to transform an

impossible-to-solve plan into an analyzed logical plan.

5.3.2 Extended Logical-Physical Optimizations

The logical optimization applies rules based optimization to the logical plan. In

our context, we exploit this feature, not only for a pure logical optimization, but

also to transform the logical plan. The logical plan is transformed into an op-

timized logical-physical plan using indexing and partitioning metadata. In fact,

using these rules allow us to solve the filtering phase of most queries by either

transforming the spatial predicates and join to scalar counterparts (efficiently pro-

cessed in Spark SQL), and/or filtering the relevant partitions by using HEALPix

87

Chapter 5 - Optimization of Astronomical Queries

and the metadata. This will be illustrated for each query type in Section 5.5,

Section 5.6, Section 5.7 and Section 5.8. We identify sub-trees that match as-

tronomical predicates and let ASTROIDE applying multiple optimization rules as

explained in Section 5.4. Each rule focuses on a specific optimization to opti-

mize astronomical queries and allows to map one query plan to another seman-

tically equivalent plan. Sub-trees corresponding to non-spatial predicates are

processed by Catalyst. This step is essential to benefit from this back-end as

much as possible.

5.3.3 Physical Planning

In the physical planning phase, ASTROIDE takes an output query plan and gen-

erates a physical plan. The logical plans that are usually ineffective are pruned by

heuristics, the use of a cost model, or both. Physical operators used in the phys-

ical plan are selected in ASTROIDE using Catalyst. At the moment, we didn’t

implement any cost model. We rely on Catalyst to select the best operators for

the physical plan. For example, the actual proposed cost model in Catalyst can be

used to select equi-join algorithms: for small relations, Spark SQL uses a broad-

cast join on Spark. The selected physical plan is executed on Spark RDDs and

required information is generated to the user.

5.4 Rule-based Optimization in ASTROIDE

Ramakrishnan et al. [124] states query optimization as the process of selecting

the most efficient query evaluation plan for a query. The optimizer considers

multiple query plans for a given input query. These plans are equivalent in the

sense that they generate the same result but differ in the execution order of the

operators and therefore on performances. The query optimizer identifies which

of those plans will be the most efficient.

Our query optimizer uses rule-based optimization that utilizes transformation

rules to transform an initial query tree into an optimized query tree. Beyond inher-

iting Catalyst rules, it injects new customized rules. It introduces relevant methods

that triggers the new rules to optimize astronomical queries. Indeed, we propose

88

5.4. Rule-based Optimization in ASTROIDE

a partition-aware optimizer that uses laws for improving query plans as listed be-

low. We show how to apply rules to improve the query tree. This section presents

the rules that turn one query tree into another query tree that may have a more

efficient physical query plan. The result of applying these transformations is rep-

resented by the QEP.

5.4.1 Partitions Pruning

This optimization consists in pruning unnecessary partitions from consideration.

This limits the number of partitions that ASTROIDE has to load into memory. AS-

TROIDE only reads the records in the partitions that satisfy the ADQL query and

performs operations only on those partitions. Partitions pruning can reduce the

amount of data retrieved from HDFS, shortens the query execution time, improves

query performance and optimizes resource utilization. We inject new optimization

rules which determine partitions that need to be scanned, and hence partitions

that can be pruned, to satisfy the astronomical query.

5.4.2 HEALPix Pushdown

Predicate pushdown is a logical optimization that consists in pushing down filter-

ing operations into the data source. In ASTROIDE, we add new rules that use

indices defined on HEALPix values to eliminate loading cells that do not con-

tribute to the query result. We inject new filters in the operator tree that aim to

remove extraneous objects and reducing the amount of loaded data at the data

source level. This is a great optimization that increases the performance of as-

tronomical queries since the new filters on HEALPix cells are performed at the

low level rather than dealing with the entire dataset which can help to avoid mem-

ory issues. Pruning data reduces I/O, communication and CPU costs to optimize

ASTROIDE’s performance. This optimization is possible thanks to Catalyst. The

injection of such rules in the logical plan allows the use of parquet metadata in

the physical plan. This provides a way to skip row groups based on the min/max

values. Parquet can store statistics, in particular the min/max values in the row

group metadata. This can be used to filter out the rows that do not match the

condition.

89

Chapter 5 - Optimization of Astronomical Queries

5.4.3 Merge non-spatial and geometrical Filters

This optimization occurs when a query has multiple predicates including a geo-

metrical predicate. ASTROIDE can efficiently handle ADQL clauses with multiple

filters that are separated by an operator such AND, OR. The idea is to combine the

refinement step on spherical distance and the non-spatial predicates in the same

filter operation (see second operation in Figure 5.2b). In other terms, non-spatial

operators can be merged with the refinement step into one physical operator.

5.4.4 Avoid Cartesian Product

Complex astronomical queries may involve spatial joins with spherical distance

functions. These functions are expressed as UDFs that are considered as black

boxes. Thus, complex queries can be conceptually formulated as Cartesian prod-

ucts. Avoiding a Cartesian product is a common heuristic to reduce the search

space. Our optimizer utilizes this optimization and replaces the Cartesian product

with an equi-join on HEALPix indices. For instance, for cross-matching queries,

our optimizer do not consider the query execution plan represented in Figure 5.5a

as part of the search space.

We demonstrate the rules presented above by giving examples of the main

astronomical queries in the following sections.

5.5 Cone Search

The cone search query is written using the following ADQL expression. Query 5.2

allows to select sources within a certain angular distance from a specified center

position. It also uses a predicate to filter objects fitting a certain magnitude range

[10,18].

Query 5.2 Cone Search with Filter (ADQL)

SELECT *
FROM gaia

WHERE magnitude >=10 AND magnitude <=18

AND 1=CONTAINS(POINT (’ ICRS ’ , ra , dec) ,

CIRCLE (’ ICRS’ ,266 ,−29 , 0 .0 8 3 3)) ;

90

5.5. Cone Search

5.5.1 Baseline Approach

A plan without optimization requires traversing all the data in R and collecting the

objects that lie inside the specified circle with the specified magnitude range. It

has to scan the entire input table to execute a cone search query without any

accelerating data structure (e.g., index). A baseline plan is represented by the

QEP presented in Figure 5.2a.

5.5.2 Optimization with Query Rewriting

By leveraging the proposed data organization, such query can be processed us-

ing the filter-refine paradigm. In the filtering step, partitions that are disjoint from

the query cone can be filtered out. In the refinement step, exact candidates ob-

jects can be returned with accurate geometry test.

If we apply query rewriting, Query 5.2 is transformed into Query 5.3. Notice

that we integrate in the transformed query the filtering of relevant partitions and

buckets which are programmatically computed using our query optimizer.

Query 5.3 Query 5.2 after Rewriting

SELECT *
FROM gaia

WHERE (magnitude >=10 AND magnitude <=18

AND nump IN (100)

AND i p i x IN (114571 ,114572 ,114580)

AND Spher ica lD is tance (ra , dec ,266 ,−29)

<0.0833)) ;

The filtering condition on nump ensures that only partition number 100 is

loaded into memory, the filtering condition on ipix uses our partitioning model

based on buckets to push the predicate down into the data source rather than

dealing with the entire partition. The two filtering conditions ensure that only the

sky region intersecting the cone is loaded into memory. Finally, another filtering

step is required to select exact objects’ harvesine distance using the registered

UDF called SphericalDistance.

91

Chapter 5 - Optimization of Astronomical Queries

5.5.3 Optimization with Transformation Rules

Given a cone search query, the second alternative is to use transformation rules

by Catalyst. Our optimizer first identifies the pixels without accessing the data,

then uses the indexing and partitioning scheme to retrieve the actual data having

these HEALPix IDs, and finally applies the harvesine distance with the candidates

to get the result. We leverage the facility offered by Spark to only access the data

belonging to some given partitions. Thus, we inject optimizer rules to:

• Find all pixels (i.e. cells) within the query cone using the HEALPix library,

• Group these cells by range and use the partition metadata to obtain IDs of

partitions which overlap these ranges,

• Filter only required partition(s)

• Use our local indexing over HEALPix IDs, based on buckets, to push the

predicate down into the data source rather than dealing with the entire par-

tition(s).

• Select exact objects inside the cone according to the harvesine distance.

These optimizations consist in using both pushed filters (Section 5.4.2) and

partition filters (Section 5.4.1) to prune the search space, as shown in Figure

5.2b.

Scan : gaia

Filter
(magnitude)

Project
(all attributes)

Filter
(SphericalDistance)

(a) Without Optimization

Optimized Scan: gaia
with Pushed Filters and

Partitions Filters

Filter
(magnitude and

SphericalDistance)

Project
(all attributes)

(b) After Optimization

Figure 5.2 Plan Transformation of Query 5.2

92

5.6. kNN Search

5.6 kNN Search

We considered an example of a kNN query that aims to find the 10 closest

sources to a star represented by a position p=(44.97, 0.09) in the gaia catalog .

Query 5.4 kNN (ADQL)

SELECT TOP 10 ra , dec , DISTANCE(POINT (’ ICRS ’ , ra , dec) ,

POINT (’ ICRS ’ , 44.97 , 0 . 0 9)) AS d i s t

FROM gaia

ORDER BY d i s t ;

5.6.1 Baseline Approach

In general, the baseline approach to execute a kNN query requires to scan all

objects in R, to calculate their distances to p, to order them by distance, and finally

to take the top-k objects. Such query requires at least a sort with a complexity in

O(n∗ logn).

5.6.2 Optimization with Query Rewriting

Similar to spatial selection queries, the filtering phase for relevant partitions can

be also applied to avoid scanning the entire input dataset. But, unlike the cone

search, the identification of the required HEALPix cells and the concerned parti-

tion is far from being obvious (see Section 5.6.3).

The kNN search query is rewrote into an equivalent SQL query as:

Query 5.5 Query 5.4 after rewriting

SELECT ra , dec , Spher ica lD is tance (ra , dec ,44 .97 ,0 .09) AS d i s t

FROM gaia

WHERE nump = 120

ORDER BY d i s t

LIMIT 10

For this query, we replace the TOP keyword of ADQL with LIMIT keyword to

make the query comprehensible by the Spark SQL parser. After that, we add

a filtering condition to the query that is programmatically calculated. This filter

93

Chapter 5 - Optimization of Astronomical Queries

discards unnecessary partitions before calculating the distance function, leading

to an overall improved run-time.

5.6.3 Optimization with Transformation Rules

We propose an algorithm, which, first, identifies the cell that includes the point

p using the HEALPix library. Then, it locates the partition that intersects this

cell using the partition metadata that we created using our partitioner. The initial

result is set as kNN objects restricted to the partition of p. For objects close to the

borders of the partition, the obtained answer can not be considered final since

potential neighbors from other partitions might be closer than the kth one in the

current partition. Therefore, in our approach, we consider the distance to the kth

neighbor of p from the initial answer as a search radius (it is determined by the

farthest point from p). Then, we draw a cone centered at p with the calculated

radius. If all the cells in the cone belong to the target partition (Case 1 in Figure

5.3a), then the algorithm considers the initial answer as final. If not (Case 2 in

Figure 5.3b), we execute a cone search query using the calculated radius, and

we take the top-k records. Figures 5.3a and 5.3b illustrate the two cases of a kNN

query with k = 6.

(a) Case 1 (b) Case 2

Figure 5.3 kNN Cases

The physical plan of a kNN query is represented in Figure 5.4b. It starts by

applying the partition filter early. By the time the candidates objects are fetched

by the optimizer, it projects data on columns (ra, dec, dist). It reads only

the columns that the query needs to process and skips the rest of the data. The

94

5.7. Cross Match

column projection is implemented using the Parquet format. Thus, ASTROIDE

and Parquet can optimize I/O costs and reduce the amount of data read from

storage. Finally, ASTROIDE uses the takeOrderedAndProject API to select the

top-k records based on their distance to p. This API is equivalent to having a limit

operator after a sort operator.

Scan : gaia

OrderBy (dist)

Project
(ra, dec, dist)

Limit (k)

(a) Without Optimization

Optimized Scan: gaia
with Partitions Filters

Project
(ra,dec,dist)

TakeOrderedAndProject
(limit k, orderBy dist)

(b) After Optimization

Figure 5.4 Plan Transformation of Query 5.4

To recapitulate, this section shows two QEPs of kNN queries with ASTROIDE.

The first example (Figure 5.4a) is the baseline workload, performing a full scan of

the entire table, the second example (Figure 5.4b) shows partitions pruning when

a filter on the partitioning key is injected.

5.7 Cross Match

In this subsection, we considered an example of a cross-matching that takes two

catalogs gaia and igsl, and returns the set of all pairs (r, s) where r ∈ gaia,

s ∈ igsl and the spherical distance between r and s is lower than a radius of 2

arc-seconds.

Query 5.6 CrossMatch (ADQL)

SELECT * FROM gaia R JOIN i g s l S

ON 1=CONTAINS(POINT (’ ICRS ’ , R. ra , R. dec) ,

CIRCLE (’ ICRS ’ , S . ra , S . dec , 2 / 3 6 0 0)) ;

95

Chapter 5 - Optimization of Astronomical Queries

5.7.1 Baseline Approach

Cross-match is one of the most imperative operations in processing astronomical

data. In practice, it involves a cartesian product, which leads to a highly expensive

query execution. For large catalogs, this execution becomes intractable.

5.7.2 Optimization with Query Rewriting

This query can be programmatically rewritten by our optimizer into a Spark SQL

expression as follows:

Query 5.7 Query 5.6 after rewriting

SELECT *
FROM gaia R JOIN

(SELECT * , explode (Ip ixNe ighbors (S . i p i x))

AS i p i x _ n e i

FROM i g s l S) AS SA

ON (R. i p i x =SA. i p i x _ n e i)

WHERE Spher ica lD is tance (R. ra ,R. dec ,

SA. ra ,SA. dec) < 2/3600

Notice that this query uses explode, a built-in Spark function that flattens the

array containing each HEALPix cell with its neighbors and outputs the elements

of the array as separate rows. IpixNeighbors refers to a user-defined function that

takes as input a HEALPix value and creates an array composed of this value and

its neighbors. The original table has been replaced by an extended table with

neighbors and the ADQL θ -join predicate has been substituted by an equi-join on

HEALPix IDs and a filter predicate on spherical distance. More details about this

query transformation are discussed in the next subsection.

5.7.3 Optimization with Transformation Rules

Our solution consists, first, to limit the distance computation to pairs belonging

either to the same cell or to neighboring cells, based on HEALPix indices, thus

generating matching candidates. Then, a refinement step computes their exact

distance and filters the actual matching pairs.

96

5.7. Cross Match

In the first step, to force the matching between the data in the same cell or in

neighboring cells, we use a trick: we augment one of the datasets by replicating

all objects on the fly. In order to facilitate their matching with objects from different

cells of the second dataset, we substitute the HEALPix value of the replicates

by those of the neighboring cells. Thus, a simple equi-join query on HEALPix

value (by far more efficient than the original query) suffices to generate all the

candidate pairs. Furthermore, the fact that the datasets are partitioned according

to HEALPix order contributes to improve the performances of this operation. The

second step computes the distance and removes the false positives to get the

final result.

Algorithm 2 : HX-MATCH(R,S)

Require: Input datasets R and S, search radius ε

Ensure: Result of HX-MATCH Matching pairs of stars that satisfy the predicate
sphericalDistance(r,s)< ε

1: S+ ← /0
2: for t ∈ S do
3: for N ∈ IpixNeighbors(t.ipix) do

. IpixNeighbors is a user defined function which returns the current cell
and all the neighboring cells.

4: S+ = S+ ∪ { t⊕ ipix = n | ∀n ∈ N}
. Clone each object in S and assign it the HEALPix number of its

neighbor cells
5: end for
6: end for
7: c = Join(R, S+, R.ipix= S+.ipix)
8: return Filter(c, sphericalDistance(c.R,c.S+)≤ ε) . sphericalDistance is

a user defined function which computes the harvesine distance between two
data points

The pseudo-code of cross-matching (HX-MATCH) [125] is explained in Algo-

rithm 2. It takes as inputs two partitioned files and a search radius ε and returns

all matching points that satisfy a distance criteria. The algorithm runs as follows:

1. Since the reference dataset need to be duplicated, we chose the smallest

dataset as a reference, let say S. We augment S (into S+), by creating for

each object as many replicates as the number of neighboring cells (Line 4),

where we substitute the HEALPix value (here ipix) by the current cell and

the one of each neighbor cell (Line 4). Here, IpixNeighbors is a user defined

function which returns the current cell and all the neighboring cells.

97

Chapter 5 - Optimization of Astronomical Queries

2. We apply an equi-join query between R and this augmented dataset S+ to

get the candidate pairs (Line 7). At last, the refinement step checks the

exact objects’ harvesine distance and returns the cross-match results (Line

8).

To execute the cross-matching query, ASTROIDE integrates strategies to limit

pairwise computations. It starts by scanning the two input files. Then, it applies

the Generate logical operator which is internally defined in catalyst to calculate

the list N of neighboring cells for each row in S and generate a new row for each

element in N. This operator duplicates all objects of the reference catalog in the

neighboring cells, runs a sort merge join algorithm on HEALPix indices, and fi-

nally, filters the output result according to the spherical distance predicate (see

physical plan in figure 5.5b).

Scan: gaia Scan: igsl

Cartesian Product

Filter
(SphericalDistance < radius)

(a) Without Optimization

Scan: gaia

Scan: igsl

Generate Explode
(UDF Neighbors)

Sort Merge Join
(On HEALPix cells, condition=
SphericalDistance < radius)

(b) After Optimization

Figure 5.5 Plan Transformation of Query 5.6

5.8 kNN Join

The objective of this query is to associate each star in a dataset R with its k

nearest neighbors stars from a dataset S:

Query 5.8 kNN Join (ADQL)

SELECT R. id , S . i d FROM gaia R, i g s l S

WHERE S. i d IN (SELECT Top 10 SI . i d FROM i g s l SI

98

5.8. kNN Join

ORDER by DISTANCE(POINT (’ ICRS ’ , R. ra , R. dec) ,

POINT (’ ICRS ’ , SI . ra , SI . dec))) ;

Efficient process of kNN join queries is challenging since it involves both the

join and the kNN query. It’s worth noticing that the query expression generated

by the ADQL parser is not supported by Spark SQL (Spark V2.2), because it

involves a correlated subquery that uses attributes from the outer query (R.ra,

R.dec) in a UDF, which is not allowed in the current version of Spark SQL. How-

ever, ASTROIDE provides a way to cope with this limitation by injecting resolution

rules.

In this work, we propose a novel kNN join algorithm tailored for astronomical

queries. The most trivial approach would be to execute a kNN query for each

element ri ∈ R. However, this is not efficient because it ignores the shared neigh-

bors in S among close objects of R and entails multiple scans of the partitions.

A possible solution could be to minimize the search space by defining a pruning

area where all pairs (r,s) can be considered as candidates. However, due to data

skewness, predicting a distance threshold is difficult in real astronomical applica-

tions, and a uniform distance is inappropriate for effective pruning. Hence, we

need a specific approach to support such complex query.

Algorithm 3 : kNN-Join(R,S,k)

Input: R, S datasets, and k
Output: L: result of kNN-Join

1: R+ ← /0; L={}
2: for each t ∈ R do
3: Res = {};nb = 0
4: PrevNeighbors = {t.ipix}
5: while nb < k do
6: V = I pixNeighbor(PrevNeighbors)−Res
7: nb = nb+ count(S, ipix), ∀ipix ∈V
8: PrevNeighbors =V
9: Res = Res∪V

10: end while
11: R+ = R+ ∪ { t⊕ ipix = n | ∀n ∈ Res}
12: end for
13: c = Join(R+, S, R+.ipix= S.ipix)
14: XM=OrderBy(c, c.R.id,c.sphericalDistance (c.R, c.S))
15: return = L∪{g1, ..,gk|∀g1, ..,gn ∈ Group(XM,XM.R.id)}

99

Chapter 5 - Optimization of Astronomical Queries

Algorithm 3 outlines our kNN join approach. The first phase is a preprocessing

step to calculate the neighboring cells of each ipix (i.e., HEALPix value) belonging

to R allowing to reach k objects in S. For each cell ipixR in R, we examine whether

it contains k objects in S. If not, this means that we need to look in the neighboring

cells. Lines 3-10 allow to retrieve the list of neighboring cells for each cell in R in

order to filter the kNN candidates. To this end, we maintain a histogram of S con-

taining the number of objects for each cell. For illustration, Figure 5.6 represents

a 3NN join where R is defined by 3 objects (P1,P2,P3). In the preprocessing step,

we look for these 3NN candidates in the 8 direct neighboring cells for each object

in R. For P2 and P3, the first level of neighborhood (colored in yellow) is sufficient

to get the 3 closest neighboring points. However, for P1, we need to check the

second level of neighborhood (colored in red). A similar procedure is repeated

until we find the k points.

P1

P2

P3

Figure 5.6 3NN Join Query.

In the second step, we associate each object in R with the calculated neighbor-

ing cells and clone objects of R in these cells (Line 11) (similarly to our process

in cross-matching algorithm). A traditional equi-join is then performed between

the extended objects of R and S (Line 13). The result is table c containing pairs

of objects as possible candidates. To take the top-k records in S, we partition c

100

5.8. kNN Join

into independent groups of source identifier. Within each partition, the rows are

ordered by the spherical distance between objects of R and S (Line 14). Finally,

a rank function is computed with respect to this order to take no more than k

objects.

Scan R

Scan S

Generate Explode
(UDF kNeighbors)

Sort Merge Join
(On HEALPix cells)

Sort
(Source id, dist)

Window
(rank(dist))

Filter
(rank < k)

Figure 5.7 Plan Transformation of Query 5.11

The idea is to generate a completely new physical plan (Figure 5.7) for the

kNN join query with the following operations:

• Scan both datasets R and S.

• Extend each cell of R with a list of neighboring cells. This is done by main-

taining a histogram of S that is broadcast to every node of the cluster. The

UDF kNeighbors uses this histogram to calculate the cells allowing to reach

k objects in S. Then, the operator Generate Explode replicates each object

of R in these cells.

• Execute a sort merge join on HEALPix indices.

• Add a window operator which is based on two base concepts: partitioning

and ordering. The first concept logically partitions tuples into groups of

101

Chapter 5 - Optimization of Astronomical Queries

sourceid and ordering defines how the tuples of the table (after the join)

are ordered by distance during window function evaluation.

• Add a filter operator to take no more than k objects in S (using a rank func-

tion).

Even though Catalyst can be simply extended, astronomical rules implemen-

tation is complex. This complexity arises from the fact that we need to find and

replace subtrees with specific logical operators. We have chosen this solution to

allow optimization for both relational and astronomical operations indistinctly. Cat-

alyst identifies which part of the tree can be optimized using ASTROIDE’s rules

and automatically skips over subtrees that do not match.

5.9 Combination with other Attributes

In this section, the objective is to show that ASTROIDE benefits from Spark SQL

while allowing the combination of astronomical queries with other attributes, and

their integration in the query optimizer. We describe the behavior of our frame-

work in the management of several scenarios. We consider three scenarios:

• Scenario 1. kNN with a filter on a certain magnitude range.

Query 5.9 kNN with Filter (ADQL)

SELECT TOP 10 ra , dec , DISTANCE(POINT (’ ICRS ’ , ra , dec) ,

POINT (’ ICRS ’ , 44.97 , 0 . 0 9)) AS d i s t

FROM gaia

WHERE magnitude >= 18

ORDER BY d i s t ;

• Scenario 2. Cross-matching with a filter on a certain magnitude range.

Query 5.10 CrossMatch with Filter (ADQL)

SELECT * FROM gaia R JOIN i g s l S

ON 1=CONTAINS(POINT (’ ICRS ’ , R. ra , R. dec) ,

CIRCLE (’ ICRS ’ , S . ra , S . dec , 2 / 3 6 0 0)) ;

WHERE R. magnitude >= 18;

102

5.9. Combination with other Attributes

• Scenario 3. kNN Join with a filter on a certain magnitude range.

Query 5.11 kNN Join with Filter (ADQL)

SELECT R. id , S . i d FROM gaia R, i g s l S

WHERE S. i d IN (SELECT Top 10 SI . i d FROM i g s l SI

ORDER by DISTANCE(POINT (’ ICRS ’ , R. ra , R. dec) ,

POINT (’ ICRS ’ , SI . ra , SI . dec)))

AND R. magnitude >= 18;

5.9.1 Scenario 1

ASTROIDE takes advantage of Catalyst optimizations to execute these scenar-

ios. It uses a general set of guidelines to choose the best method for accessing

data in each table.

As showed in Figure 5.8a, kNN queries involve the use of a relatively expen-

sive operation in the plan, particularly CPU-consuming with sorting (orderBy).

Combining sorting and filtering predicates in ASTROIDE causes a reorganization

in the plan to reorder operations in order to reduce the amount of data required

for sort. In other terms, the filtering operator is applied early in the plan to reduce

the size of the input size before executing the sorting operation (Figure 5.8b). The

predicate that filters out rows on magnitude is applied as soon as possible. The

goal is to choose the best plan from all the plans examined and to minimize CPU,

I/O resources and communication costs as much as possible.

5.9.2 Scenario 2 & 3

In the case of the combined cross-matching and filtering query, the expected

execution (left side in Figure 5.9) calculates the matching result between the two

tables and then computes a filter on magnitude. In the alternative scheme of

Figure 5.9, the conditional statement is evaluated before the join occurs. We first

eliminate sources that do not satisfy the predicate on magnitude range before

joining the input tables. The predicate filter is pushed below the join as it reduces

the input size of the join. It is important to reduce record numbers from large

tables as much as possible before performing the SortMergeJoin operation.

103

Chapter 5 - Optimization of Astronomical Queries

Optimized Scan: gaia
with Partitions Filters

Project
(ra,dec,dist,magnitude)

TakeOrderedAndProject
(limit k, orderBy dist)

Filter
(magnitude)

(a) Before Optimization

Optimized Scan: gaia
with Partitions Filters

Project
(ra,dec,dist,magnitude)

TakeOrderedAndProject
(limit k, orderBy dist)

Filter
(magnitude)

(b) After Optimization

Figure 5.8 Plan Transformation of Query 5.9

Because data is filtered out in early stages of query processing, subsequent

joins will be faster. This transformation improves significantly the query execution

time because joins are applied on smaller tables. The same idea is applied in

Scenario 3, that is the kNN-join is applied after filtering the input.

Scan: gaia Scan: igsl

Generate Explode
(UDF Neighbors)

Sort Merge Join
(On HEALPix cells, condition=
SphericalDistance < radius)

Filter
(magnitude)

Scan: gaia

Scan: igsl

Generate Explode
(UDF Neighbors)

Sort Merge Join
(On HEALPix cells, condition=
SphericalDistance < radius)

Filter
(magnitude)

Figure 5.9 Plan Transformation of Query 5.10

104

5.10. Summary

5.10 Summary

As discussed in Chapter 2, existing big data technologies such as Spark are

unsuitable for astronomical applications. In this chapter, we presented our query

processing module and highlighted its differences with the query processing mod-

ule in conventional distributed systems. Our main contribution is the implemen-

tation of an astronomical query optimizer as an extension of an existing query

optimizer (Catalyst). We have shown how standard query processing and opti-

mization rules can be adapted to astronomical query processing. We introduced

an ADQL parser that accommodates astronomical operators. Our query optimizer

uses HEALPix indexing structure and partitioning to facilitate the query retrieval.

Future research will include building a cost model for analyzing the suggested

query execution plans.

105

CHAPTER 6

Experimental Study and Graphical Interface

Contents
6.1 Introduction . 107

6.2 Experimental Setup . 107

6.3 Result Analysis using a Local Cluster 110

6.4 Cloud Based Implementation and Tests 119

6.5 ASTROIDE GUI . 121

6.6 Summary . 124

Data is the new science. Big Data

holds the answers.

Pat Gelsinger

106

6.2. Introduction

6.1 Introduction

In the state-of-the-art chapter, we studied existing DBMSs technologies that sup-

port astronomical data management. We compared their main features and high-

lighted their limits in big data processing. The overwhelming flow of astronomical

data has made DBMSs technologies no longer adequate for extremely large scale

astronomical data. As a result, researchers worldwide have started to take ad-

vantages of big data technologies to cope with the challenges related to data

processing problems on massive datasets.

To the best of our knowledge, there is no system based on big data tech-

nologies that can process large astronomical data. For this reason, we were

interested in a similar context that is the geo-spatial domain in order to find a

reference for performance evaluation. SIMBA [11] is the most complete and re-

cent work in the geo-spatial context. It offers better performances compared to

all existing spatial systems. It also presents a query optimizer adapted to the

geo-spatial context.

Thus, in this chapter, we compare the effectiveness and the efficiency of AS-

TROIDE with the closest prototypes in the state-of-the-art, i.e. SIMBA. We also

compare ASTROIDE with Spark SQL as a baseline in order to illustrate the gain

in performance provided by the proposed optimizations. This chapter provides

an experimental study of ASTROIDE. The tests are based on three real world

datasets, with a set of astronomical queries presented in Chapter 5. We also

present and analyze the results of our comparisons in two different infrastruc-

tures: real system cluster and cloud cluster to evaluate the ability of ASTROIDE

to perform complex and large scale data processing using a cloud infrastructure.

We describe also our GUI that enable easily visualization and manipulation of

astronomical data.

6.2 Experimental Setup

6.2.1 Local Cluster Description

Experiments were performed over a distributed system composed of 6 nodes

having the following characteristics:

107

Chapter 6 - Experimental Study and Graphical Interface

• 4 workers, each worker with:

– CPU. 8 cores

– RAM. 30 GB

• Two other nodes, each node with:

– CPU. 24 cores

– RAM. 46 GB

In total, 80 cores are used with one Gigabit network for node communication.

The main memory reserved for Spark is 213.7 GB in total. We used Spark V2.2.1

with a spark driver memory of 10 GB and kept other configurations parameters

as their default values. Input datasets are uploaded in HDFS with a replication

factor of 3 on each DataNode.

6.2.2 Cloud Cluster Description

In Section 6.4, we compare the execution of ASTROIDE on a conventional (local)

cluster and an OpenStack platform. For this, we created two clusters with the

same configurations, one as an OpenStack cluster using the Galactica platform
[126] and other as a conventional cluster. Each cluster is composed of 6 nodes,

Figure 6.1 shows the common master/slave architecture of the deployed clusters.

We tried to have similar configurations in both clusters in terms of number of

nodes, RAM and number of cores:

Table 6.1 Configuration Details
Property Conventional cluster & Cloud Cluster
Number of nodes 6
Node characteristics 28 GB RAM | 6 cores
Spark version 2.2.1
HDFS replication factor 3
Driver memory 10 GB

108

6.2. Experimental Setup

Spark Driver Spark Master Spark Slave

Node 1

Node 2

Spark Slave

Node 3

Spark Slave

Node 4

Spark Slave

Node 5

Spark Slave

Node 6

Spark Slave

HDFS HDFS HDFS HDFS HDFS

Figure 6.1 Cluster Architectures

6.2.3 Datasets Description

We used three datasets in our experiments: Each record contains a sourceId,

a two-dimensional coordinate (ra and dec) representing the star position on the

sky and other attributes including magnitude, metalicity.

• GAIA. The public GAIA DR1 dataset [3] [127] describes the positions of

more one billion sources and represents the most detailed all-sky map in

the optical to date.

• IGSL. Short of the Initial GAIA Source List [128], it is a compilation catalog

produced for the GAIA mission.

• Tycho-2. An astrometric reference catalog related to prior surveys contain-

ing positions and proper motions of more than two million brightest stars in

the sky.

The characteristics of these datasets are resumed in the following table:

In all experiments, since we focus on the query processing cost, and not the

result materialization cost, we use COUNT(*) to return the total number of rows

in each output DataFrame. The objective of our experiments is to provide an

109

Chapter 6 - Experimental Study and Graphical Interface

Dataset # of Objects File Size # attributes
GAIA DR1 1,142,461,316 498.5 G 57
IGSL 1,222,598,530 323.2 G 43
Tycho-2 2,539,893 501.4 M 32

Table 6.2 Main Characteristics of the Datasets.

experimental study of ASTROIDE using the query execution time for partitioning,

cone search, kNN, cross-matching and kNN Join queries. By default, the partition

size is 256 MB, the HEALPix order is 12. A cone search query is characterized

by the radius of its cone, which is set to 2 arc-second. The default cross-match

distance threshold is 2 arc-second. For kNN queries, k is set to 10. For kNN join

queries, k is equal to 5. The default data size is 225 million records.

6.3 Result Analysis using a Local Cluster

6.3.1 Partitioning

Figure 6.2 measures the partitioning time in ASTROIDE using both hash parti-

tioner and range partitioner on GAIA DR1 dataset. The difference between the

two partitioners is explained in Section 3.4. The time for reading data from HDFS

and writing data to HDFS is included in the performance measurement. We also

included the time for deriving the partitions boundaries. The two partitioners show

a linear growth when the data size increases, the hash partitioner is slightly faster

as it partitions data quasi-randomly without keeping data locality. However, the

range partitioner is more efficient in querying data. It divides the dataset into ap-

proximately equal-sized partitions, each of which contains records with HEALPix

indices within a specified range. For these reasons, we choose to use the range

partitioner in our experiments.

We have also investigated the impact of the HEALPix resolution parameter on

the partitioning, given that Nside = 2order and the maximum value of order speci-

fied by the HEALPix library is 29. We have found that the costs are equivalents

with the increase in the HEALPix order, the reason is that the computation costs

associated to HEALPix indices is kept constant while varying the resolution. The

partitioning time is about 20mn for a file of 225 million of records. Thus, the perfor-

mance of our partitioning algorithm does not depend on the HEALPix granularity.

110

6.3. Result Analysis using a Local Cluster

0 200 400 600 800 1000 1200

#Records (Millions)

0

20

40

60

80

100

120

140

Ti
m

e
(m

n)

Range Partitioner
Hash Partitioner

Figure 6.2 Effect of Data Size on Partitioning (GAIA DR1).

However, a finer resolution entails more CPU cycles. For following experiments,

we fixed the HEALPix resolution to 12, experiments have demonstrated that this

value makes query execution more efficient without losing cells in output result

(see Section 6.3.3 for more details).

Tycho-2 GAIA IGSL
0

100

200

300

1.
1

13
0

10
2

1.
2

27
0

19
6

Ti
m

e
(m

n)

ASTROIDE SIMBA

Figure 6.3 Partitioning with Different Datasets

We have also compared the performance of partitioning across three datasets

(Tycho-2, GAIA, IGSL) using ASTROIDE and SIMBA. Figure 6.3 shows the effi-

ciency of our partitioning algorithm. Partitioning of massive astronomical data is

111

Chapter 6 - Experimental Study and Graphical Interface

a time-consuming process that can take hours as discussed in Section 4.3.3. We

developed a HEALPix based partitioning algorithm to improve the performance of

astronomical queries. Our approach is based on data indexing to create a spatial

value that keeps data locality and then sorting data on these values. We have

shown that such approach is efficient for astronomical data partitioning. We can

see that the execution time is reduced roughly by half using ASTROIDE com-

pared to SIMBA. Later, we will demonstrate the importance of our partitioning

algorithm for scalable query processing.

Note that the partitions construction is a one shot process, since we chose to

store the partitioned files in HDFS and use them for future queries.

6.3.2 Cone Search Query

0 200 400 600 800 1000 1200
#Records (Millions)

0

100

200

300

400

500

600

Ti
m

e
(s

)

ASTROIDE
Spark SQL
SIMBA

r = 2
arc-sec

(a) Effect of Data Size on Cone Search.

0 10 20 30 40 50
Radius

0

5

10

15

20

25

30

35

40

45

50

55

Ti
m

e
(s

)

ASTROIDE
Spark SQL
SIMBA

#records =
225 Millions

(b) Effect of Radius on Cone Search.

Figure 6.4 Cone Search Performance

Figure 6.4a presents how the data size affects the performance of cone search

queries. The horizontal axis represents the number of objects in the GAIA dataset

(DR1), and the vertical axis represents the query execution time.

The query execution time increases when the data size increases, this is due

to the processing of more partitions when increasing the data size. ASTROIDE

112

6.3. Result Analysis using a Local Cluster

and SIMBA exhibit good scalability because they need to scan only few partitions

to execute the query. Indeed, ASTROIDE requires less access to partitions than

SIMBA but Spark SQL has to scan all objects in the dataset. It is noticeable that

the query runtime in ASTROIDE increases linearly as the data size increases.

Figure 6.4b studies the impact of query radius on execution time, we in-

creased the radius from 2 arc-seconds to 50 arc-seconds. The performance of

ASTROIDE, SIMBA and Spark SQL remains constant. ASTROIDE is 2x faster

than SIMBA and 5x faster than Spark SQL. This is due to partition pruning in

ASTROIDE. If a reasonably large radius is intersecting only one partition, we do

not need to scan more partitions. However, enlarging much more the query ra-

dius can deprive ASTROIDE from optimization opportunities, reduce the power

of partition pruning and lead to performance deterioration.

6.3.3 Cross-Matching Query

The default search radius is set to 2 arc-seconds, a value that is significant for an

astronomer.

We started by comparing the performance of the cross-matching using parti-

tioned files with different HEALPix resolution. For this test, input files are indexed

using HEALPix and organized using range partitioning. Then, we run the cross-

match query on these files. Figure 6.5a shows how the cross-matching time

is influenced by the HEALPix resolution. As the HEALPix order increases, it is

interesting to observe that the performance of cross-matching becomes almost

constant. Besides, for values greater than 16, some records are lost in the output

result, the reason is that the search circle defined by ε becomes bigger than the

HEALPix cell area. Indeed, for order less or equal to 15, the HEALPix angular

resolution (defined in Formula 4.4) is lower than 6,44 arc-second and for order

equal to 16, the HEALPix angular resolution is 3,22 arc-second. However, the

square root of the area of the search radius is 3,544 arc-second. In a previous

work, we explained the cross-matching algorithm [125] using the HEALPix order

value 8. In this dissertation, we improved the execution time of our algorithm

using a different HEALPix resolution based on new experiments. The HEALPix

order value 12 is the best choice according to several measurements, it ensures

the fastest query as well as the correctness of the result.

113

Chapter 6 - Experimental Study and Graphical Interface

5 10 15 20 25 30
ORDER

100

101

102

103

104

Ti
m

e
(m

n)

AstroSpark
Spark SQL

(a) Effect of HEALPix Resolution on HX-
Match.

0 200 400 600 800 1000 1200
#Records (Millions)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ti
m

e
(s

)

ASTROIDE
SIMBAr = 2

arc-sec

(b) Effect of Data Size on Cross-Match.

Figure 6.5 Cross-Match Performance

Next, we compared the performance of ASTROIDE, SIMBA and Spark SQL

for executing cross-matching queries. As shown in Figure 6.5b, ASTROIDE is

scalable and efficient. The performance shows a linear trend. Our approach

shows the best performance compared to SIMBA because it requires less ac-

cess to partitions and fewer objects along the borders. Since ASTROIDE is using

the HEALPix library for its indexing module, a sky partitioning technique adapted

to astronomical data, experiments show that ASTROIDE outperforms SIMBA for

astronomical queries. Furthermore, SIMBA only implements the Euclidean dis-

tance, which leads to erroneous result when cross-matching. For instance, the

difference in terms of number of outputs for a file of 55 million is 3367 objects.

Spark SQL is worse, because it performs a cartesian product. As an example, the

execution time of a cross-match between 200,000 records of GAIA and Tycho-2

takes 13,6 hours.

We have also studied the performance of the cross-matching algorithm as the

search radius increases. Figure 6.6a shows that ASTROIDE is 6x faster than

SIMBA and the performance gap remains constant with bigger radius.

We have also validated our choice of materializing partitioned files on HDFS.

114

6.3. Result Analysis using a Local Cluster

0 10 20 30 40 50
Radius

0

2

4

6

8

10

12

14
Ti

m
e

(s
)

ASTROIDE
SIMBA

#records =
225 Millions

(a) Effect of Radius on Cross-match.

0 200 400 600 800 1000 1200
#Records (Millions)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ti
m

e
(s

)

HX-MATCH using stored partitions
HX-MATCH & materialization on HDFS
HX-MATCH using on the fly partitioning

(b) Effect of Partitioning on HX-MATCH.

Figure 6.6 More Cross-Match Performance

We show three different costs.

• Option 1: Cost of cross-matching and materializing partitioned files on

HDFS.

• Option 2: Cost of partitioning and cross-matching using on the fly partition-

ing (without materializing on HDFS).

• Option 3: Cost of cross-matching when reading already partitioned files

from HDFS.

Figure 6.6b represents the performance of the cross-matching algorithm with

different approaches. Option 2 is slightly faster than the option 1 because of the

write overhead of the partition. However, the former solution obliges to repartition

the data at each query execution. In contrast, the option 3 that reuses an existing

partition (in blue in Figure 6.6b) is extremely fast. This shows how the cost of

partitioning is immediately amortized by the subsequent queries.

Next, we continue to investigate the cost of our HX-MATCH algorithm by pre-

computing the cross-matching with a relatively large radius lr. We thus build an

intermediary DataFrame M which contains the IDs of the matched records from R

115

Chapter 6 - Experimental Study and Graphical Interface

and S according to lr along with their distance and store it in HDFS. The dataset

schema is represented by the following attributes (sourceID1,sourceID2,dist)

where sourceID1 and sourceID2 correspond to source identifier in Rand S respec-

tively and dist is the spherical distance between the actual objects identified by

sourceID1 and sourceID2. Thus, the subsequent cross-matching queries can be

replaced by a simple selection on M and equi-join queries, which is much more

efficient than the initial computation of a distance matching. Precisely, all needed

is to filter M on dist ≤ ε where ε is the requested radius in the cross-matching

query, and to retrieve other attributes from R and/or S to make a join with R and/or

S on respective sourceIDs. This can be expressed as follows:

R onR.sourceId1=M.sourceId1 (σdist<ε (M))onM.sourceId2=S.sourceId2 (S)

To study the impact of this pre-computing technique on our algorithm, we

matched the two biggest catalogs GAIA DR1 and IGSL with a radius of 7 arc-

seconds. We first used HX-MATCH to build the intermediary dataset M. This

tooks 3 hours, including the materialization of M on HDFS. Although this seems

high compared to a one shot cross-matching with a smaller radius, it will be amor-

tized when it comes to repeated queries with various distance criteria, as long as

this distance is lower than the one used to build M.

0 200 400 600 800 1000 1200
#Records (Millions)

0

10

20

30

40

50

60

70

80

90

Ti
m

e
(m

n)

HX-MATCH
HX-MATCH using an intermediate dataset

Figure 6.7 Effect of Use of Intermediate Dataset (GAIA DR1/IGSL).

116

6.3. Result Analysis using a Local Cluster

Figure 6.7 shows the overall speedups of this optimization. The comparison

between the two options shows that using the intermediary dataset, the cross-

matching computation achieves 4x speedups. However, this optimization incurs

a storage overhead, and is limited with the chosen maximum radius.

The average number of matching pairs produced after cross-Matching is re-

ported in Table 6.3:

Dataset1 Dataset2 # of matches radius
GAIA DR1 Tycho-2 2,421,938 2"
GAIA DR1 IGSL 2,661,125 2"

Table 6.3 Average Number of Matching Pairs.

6.3.4 kNN Search Query

Figure 6.8a shows the performance of the kNN query on GAIA datasets in AS-

TROIDE, Spark SQL and SIMBA. We select a random point from the input

dataset, fix k to 10 and measure the execution time of the query. In Figure 6.8a,

we study the effect of increasing the data size from 50 millions to 1.2 billions. AS-

TROIDE outperforms Spark SQL since Spark SQL requires scanning the whole

dataset to execute a kNN query. ASTROIDE achieves better performance than

SIMBA, because it scans fewer partitions. ASTROIDE brings more optimization

opportunities by pruning more partitions. In general, one or two partitions are

sufficient to cover the kNN result. In addition, we study the effect of increasing k,

we varied k from 10 to 100 and fixed the data size to about 50 million of objects.

Figure 6.8b shows that the performance of ASTROIDE, SIMBA and Spark SQL

are not affected by k. Spark SQL scans all the objects regardless of k values.

For ASTROIDE and SIMBA, the change of k does not affect the number of parti-

tions read, they maintain a constant speed. Besides, ASTROIDE is 2x faster than

SIMBA.

ASTROIDE is able to effectively reduce the number of partitions scanned by

partition pruning. This is very efficient for relatively small value of k (when the

number of records involved in the query is small). However, for larger values

of k, ASTROIDE has to scan more partitions, so that there are less optimizaton

opportunities for our optimizer. Thus, the performance gain from using partition

pruning is not as significant as represented in Figure 6.8b.

117

Chapter 6 - Experimental Study and Graphical Interface

0 200 400 600 800 1000 1200
#Records (Millions)

0

50

100

150

200

250

300

350

400

450

Ti
m

e
(s

)

ASTROIDE
Spark SQL
SIMBA

k = 10

(a) Effect of Data Size on kNN queries.

0 20 40 60 80 100
k

0

5

10

15

20

25

30

35

40

45

Ti
m

e
(s

)

ASTROIDE
Spark SQL
SIMBA

#records =
225 Millions

(b) Effect of k on kNN queries.

Figure 6.8 kNN Performance

6.3.5 kNN Join Query

The kNN join query is impossible to execute with Spark SQL. That’s why we

choose to compare the performance of kNN join in ASTROIDE with SIMBA. We

tested the performance of this operator when increasing the number of objects

of IGSL catalog while having the number of object fixed to 1 million for GAIA

dataset. The results are presented in figure 6.9a. Both ASTROIDE and SIMBA

show a linear scale up, but ASTROIDE outperforms SIMBA for k = 5.

The result of varying k on kNN join are illustrated in figure 6.9b. As we can

see, when k increases, the performance of SIMBA remains nearly the same.

Thus, SIMBA exhibits better scalability when scaled out with larger value of k.

This is because SIMBA partitions the dataset and applies a sampling technique

to compute a distance bound for each partition. For ASTROIDE, the execution

time increases linearly, which indicates that data replication is sensitive to k. With

increase of k, there is a continuous increase in the query execution time. This is

mainly due to data replication that involves much more records in query process-

ing. It is unavoidable that retrieving neighboring cells of certain cells with larger

k values could have significantly larger number of duplication level. However, it

118

6.4. Cloud Based Implementation and Tests

0 0.5 1 1.5 2 2.5
#Records (Millions)

100

200

300

400

500

600

700

800

900

Ti
m

e
(s

)

ASTROIDE
SIMBAk = 5

(a) Effect of Data Size on kNN Join.

0 10 20 30 40 50
k

250

300

350

400

450

500

550

600

650

700

750

800

Ti
m

e
(s

)

ASTROIDE
SIMBA#records = 1

Million

(b) Effect of k on kNN Join.

Figure 6.9 kNN Join Performance

should be noted that in most astronomical applications, the common value used

to execute kNN join is k = 5, for which ASTROIDE provides better performance.

6.4 Cloud Based Implementation and Tests

Addressing big data challenges discussed in Section 1.2 requires a large compu-

tational infrastructure to perform complex and compute intensive queries on large

sky surveys. Cloud computing is an emerging trend for performing large-scale

computing. It eliminates the need to maintain expensive computing hardware,

dedicated space, and software [129]. This section focuses on the integration of

ASTROIDE with cloud computing.

The objective of this section is to study the effectiveness of ASTROIDE in a

cloud computing platform, to compare the trends of performances when moving

to a cloud infrastructure and to evaluate the cost of this move. To this end, we

deployed ASTROIDE in two clusters: a virtual system using a cloud infrastruc-

ture and a real system cluster. We evaluated the ability of ASTROIDE to perform

complex and large scale astronomical data processing using OpenStack platform
[130]. OpenStack is one of the most widely used open source platform for build-

119

Chapter 6 - Experimental Study and Graphical Interface

ing and managing cloud computing platforms for public and private clouds. Open-

Stack is revolutionizing the cloud computing landscape in order to provide a cloud

operating system that controls large pools of compute, storage, and networking

resources.

In order to evaluate the performance of ASTROIDE in both infrastructures, we

have focused on the most complex and used operation in astronomy which is

cross-matching. We have also studied the performance of our partitioning algo-

rithm. After the successful creation of the clusters, we run two types of jobs on

the clusters:

• The first job partitions samples of the GAIA dataset using our partitioning

algorithm. It consists of indexing data using HEALPix, and applying a range

partitioning to ensure load balancing while keeping data locality. The exe-

cution time includes the materialization of partitioned files, along with the

metadata, on HDFS to use them for subsequent queries.

• The second job executes our cross-matching algorithm HX-MATCH be-

tween partitioned samples of GAIA DR1 and Tycho2 catalogs. Indeed,

HX-MATCH astutely combines HEALPix based indexing and partitioning,

to achieve an efficient pruning and to remedy the potential skew of celestial

objects. It maps the original predicate into an equi-join on HEALPix indices

(which is much faster than a distance join) in order to generate candidate

pairs sharing the same cell.

Figure 6.10 shows the outcomes of these experiments using both clusters.

When ASTROIDE is deployed on OpenStack, it shows a promising outcome

compared to a conventional cluster. The partitioning algorithm maintains a lin-

ear trend, similar results can be also observed in Figure 6.10b for cross-matching

queries.

Equivalent clusters in terms of number of nodes, RAM and number of cores

(see Table 6.1) were configured in two environments to evaluate ASTROIDE per-

formance. Our experiments demonstrate that ASTROIDE on cloud is faster than

its implementation on real system cluster. However, this is due to the fact that

the cloud infrastructure is more powerful. Table 6.4 shows data that describes

the cluster performances in terms of CPU, memory and I/O. Besides, deploying

120

6.5. ASTROIDE GUI

0 200 400 600 800
#Records (Millions)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ti
m

e
(s

)

Cloud Cluster
Conventional ClusterOrder = 12

(a) Data Partitioning on OpenStack.

0 200 400 600 800
#Records (Millions)

0

500

1000

1500

2000

2500

3000

Ti
m

e
(s

)

Cloud Cluster
Conventional Clusterr = 2"

(b) HX-MATCH on OpenStack.

Figure 6.10 Performance Comparison using ASTROIDE

ASTROIDE on a cloud platform could be a promising alternative that provides

different advantages compared to traditional clusters including lower costs, ease

of deployment and flexibility.

Table 6.4 Cluster Performances
Property Conventional cluster Cloud Cluster
CPU (s) 44,56 60,18
Memory (MB/sec) 2589,62 1928,69
File I/O (Mb/sec) 11,09 27,47

6.5 ASTROIDE GUI

While astronomical big data analysis is a vital task, another important component

is the ability after analysis to visually interact and explore data result. In this

section, we focus on the Graphical User Interface (GUI) offered by ASTROIDE

to enable easily visualization and manipulation of astronomical data. The GUI of

ASTROIDE receives two kinds of tasks : data partitioning or astronomical queries.

The partitioning task goes through our partitioning module to create partitioned

121

Chapter 6 - Experimental Study and Graphical Interface

files in HDFS, while, astronomical queries passes through two modules: querying

and visualization.

6.5.1 Querying Module

The querying module supports ADQL queries (see Figure 6.11) and allows their

execution on ASTROIDE query processing module. It allows the processing of

astronomical queries by exploiting our query optimization module and query al-

gorithms described in Chapter 5. Figure 6.11 is a screen-shot of our graphical

interface that enables users to easily express ADQL queries and hides the com-

plexity of the system. The querying module answers user queries using parti-

tioned files in HDFS. It uses ASTROIDE engine to process astronomical queries.

Figure 6.11 ASTROIDE GUI

6.5.2 Visualization Module

Visualization is a desirable feature for data management in general, and for astro-

nomical data in particular. We propose a visualization module that runs on top of

our querying module and enables users to visualize data using TOPCAT [131], a

Tool for OPerations on Catalogues And Tables 1. TOPCAT is a GUI application for
1http://www.star.bris.ac.uk/ mbt/topcat/

122

6.5. ASTROIDE GUI

retrieval, analysis, and manipulation of tables. It has been developed to provide a

toolkit for astronomers to enable interactive exploration of tables in the context of

astronomy. The results returned by our querying system are loaded on TOPCAT

in order to overview and explore their contents. In our visualization module, we

use STILTS [132] (STIL Tool Set) 2, a scriptable access to most of the features

available in TOPCAT. We use this library to represent query results using a visual

form that is intuitive and easily comprehensible by the user. Our visualization

module supports both sky map visualization and data list visualization.

Figure 6.12 Cone Search Visualization

Figure 6.12 allows the visualization of the cone search result, when a user

query looks for stars within a circular region of the sky. The map shows in blue the

position of stars within the given circular region, while, the red points represent

the accompanied partition(s) to which the result belongs. Users can get more

detailed information about the location of the stars when the mouse hovers over

a sky position.

For cross-matching and kNN join queries, ASTROIDE GUI allows to visualize

the matching pairs, in different colors for each dataset, along with a matching line

between each pair. For example, a zoom-in visualization of a 2NN join query is

represented in Figure 6.13. We notice that, every red point is connected to two

2http://www.star.bris.ac.uk/ mbt/stilts/

123

Chapter 6 - Experimental Study and Graphical Interface

blue points, its two nearest neighbors from the second dataset, as required by

the query. The blue points are not clear due to the enormous number of green

lines, but their location is clear, where all the green lines coming from different red

points join.

Figure 6.13 2NN Join Visualization

Although the proposed GUI is a simple and efficient tool to express astronom-

ical queries and visualize query results, it suffers from some limitations caused by

the limitations of the TOPCAT tool. The huge size of astronomical dataset makes

it too difficult to be processed by a desktop application not designed for a dis-

tributed context. The actual version represents visually only a sample of output

data and does not allow the visualization of the entire output result. The vision is

to run ASTROIDE as a web application, where everything happens on the side of

the server while using a more powerful tool for data visualization.

6.6 Summary

Experiments on real datasets from the ongoing spatial mission GAIA demonstrate

that ASTROIDE is obviously much faster than Spark SQL. It also outperforms

SIMBA (which is not specialized in astronomical data) thanks to the use of a

HEALPix based partitioning approach and efficient query algorithms.

124

6.6. Summary

ASTROIDE extends Spark to support main astronomical queries. It achieves

scalability through astronomical indexing and partitioning, dynamic query rewrit-

ing and efficient optimizer based on customized rules and strategies.

125

CHAPTER 7

Conclusions and Perspectives

In this chapter we review the work presented in this thesis with an emphasis

on achieved contributions, the lessons learned and the future works. In partic-

ular, Section 7.1 summarizes the main research achievements, and Section 7.2

presents the future directions of our research.

7.1 Summary of our Contributions

At present, the continuous progress in telescopes, detectors, and computer tech-

nologies has given birth to large sky surveys with information measured in Per-

abytes and billions of detected sources. This data avalanche brings astronomy

into the big data era. However, the traditional astronomical data analysis method-

ologies using DBMSs technologies are inadequate to cope with the big data char-

acteristics. Thus, this new digital sky necessitates changes to the means and

methods used for handling and exploring large amounts of astronomical data. To

cope with the challenges related to the data explosion in the amounts of astro-

nomical data and the computational complexity of the astronomical operations,

we address four main contributions in this thesis:

• We proposed ASTROIDE, a unified astronomical big data processing en-

gine over Spark. The goal is to provide a scalable, efficient and expressive

astronomical query processing system. ASTROIDE achieves scalability and

efficiency by combining the benefits of cost-effective data processing with

Spark and customized astronomical query engine. ASTROIDE provides

126

7.2. Perspectives

an expressive query interface by unifying the data interaction method with

ADQL. We automated ADQL queries parsing, rewriting and execution. AS-

TRODE supports spatial selection queries (Cone Search and kNN) and join

queries (Cross-match and kNN Join). ASTROIDE exposes also a visual-

ization module capable of exploring the query result returned by our query

processing system.

• We proposed an approach for astronomical data partitioning combined with

building indices using HEALPix. Our partitioning module is allows to im-

prove query performances by enabling query processing in parallel, avoid-

ing data skewness and pruning out irrelevant partitions. Besides, it reduces

the amount of data scanned to get the query result and limits the commu-

nication costs. To reach the above goals, we use HEALPix as an indexing

scheme to map the two-dimensional spherical coordinates into a single di-

mensional ID. We also leverage a range partitioner to achieve load balanc-

ing. We use a hierarchical structure to organize partitions in HDFS in order

to reduce I/O, CPU and communication costs.

• We implemented a query optimizer that extends the Catalyst optimizer to

handle astronomical data. We presented a variety of transformation rules

for answering astronomical queries in the ASTROIDE querying engine. The

objective of our optimizer is to bridge the gap between the high level query

language required by astronomical applications (ADQL) and the low-level

operators required by the Spark execution engine. This has the advantage

to benefit from the expressiveness of ADQL, but necessitates the integration

of customized rules and strategies inside the Spark’s optimizer.

• We conducted an extensive experimental study, and demonstrated the ef-

fectiveness and the efficiency of our framework. We compared our solution

to the state-of-the-art, and showed its superior performance for the main

astronomical queries using real datasets.

7.2 Perspectives

In this thesis, we have addressed the problem of large scale astronomical data

processing using Spark, a distributed in-memory computing engine. We have

developed a spatial-aware query optimization module that leverages the index

127

Chapter 7 - Conclusions and Perspectives

support in ASTROIDE and make the best use of ASTROIDE’s partitioning ap-

proach.

For future work, we would like to integrate a cost model to estimate the run

time of astronomical queries in ASTROIDE. For example:

• We could define a selectivity parameter to decide whether we need to use

HEALPix indexing or not. If a cone search query is not selective and re-

turns a large fraction of data, we may decide to skip the filtering step and

perform a full table scan. Such optimization [133] was recently included in

GeoSpark.

• A second interesting approach could be to better handle data skew. For

kNN join queries, some data partitions could be overwhelmed using big k

values. To optimize such queries, we would like to integrate a cost model

that takes into consideration the skewness of data partitions by supporting

two types of partitions: skewed partitions and non skewed partitions. Given

the estimated run-time over skewed partitions, the optimizer could split the

skewed partitions into sub-partitions. A similar approach was integrated in

the query optimizer of LocationSpark [134].

We would also like to test further the scalability by increasing both the data

size using the second release of GAIA DR2 and the cluster size to verify that AS-

TROIDE inherits from the scalability of the underlying framework, Apache Spark.

This could be done once we get access to a larger size cluster.

Another potential perspective could be to extend the benchmark designed in
[46] to a complete benchmark that includes performance evaluation of other sys-

tems including Qserv.

It would be also interesting to replace the Catalyst optimizer in Spark with a

more portable optimizer such as the Apache Calcite 1 optimizer [90]. The inte-

gration of Calcite in Spark SQL could improve the query execution time. Catalyst

is essentially a heuristic optimizer, very little work has been devoted to the cost

model. While Calcite combines heuristic and cost-based optimization. A bench-

mark [135] on TPC-DS data demonstrated that Calcite on Spark SQL could help

to achieve performance improvements of two orders of magnitude.

1https://calcite.apache.org/

128

7.2. Perspectives

A promising idea could be to integrate Spark-fits [136] in ASTROIDE. Spark-

fits was recently developed by the LAL lab of the university of Paris-Sud and

offers a native Spark connector to manipulate FITS data in a distributed environ-

ment. FITS is a well-established format for exchanging and archiving astronomi-

cal data. It stands for ’Flexible Image Transport System’ supported by NASA and

was brought under the auspices of the International Astronomical Union (IAU).

It would be also interesting to explore new systems as a back-end such as

Hops 2. Hops is a new trend of Apache Hadoop Distribution, which offers a dis-

tributed metadata service built on a NewSQL database and ensures consistency

for concurrent updates. In Hops, metadata is stored in MySQL Cluster and can

scale out to many tens of nodes and tens of TBs of RAM. A promising approach

could be to integrate astronomical query processing in such platform.

Finally, there is a great interest in the support of other types of astronomical

data such as photometric and spectral data. This will lead to revisit our model

and the framework. For instance, transients are mainly represented by multi-

variate time series and require advanced data manipulation for preprocessing

and analytics tasks.

2http://www.hops.io/

129

—————————————————————–

130

List of Abbreviations

SDSS Sloan Digital Sky Survey

LSST Large Synoptic Survey Telescope

IVOA International Virtual Observatory Alliance

ADQL Astronomical Data Query Language

ICRS International Celestial Reference System

UDF User Defined Function

SQL Structured Query Language

IDC International Data Corporation

NIST National Institute of Standards and Technology

DBMS Database Management System

HDFS Hadoop Distributed File System

CDS Centre de Données de Strasbourg

RDD Resilient Distributed Dataset

QEP Query Execution Plan

ESA European Space Agency

Q3C Quad Tree Cube

FITS Flexible Image Transport System

IGSL Initial Gaia Source List

131

Publications

• M. Brahem, K. Zeitouni, and L. Yeh. ASTROIDE: A unified astronomical big data

processing engine over spark. IEEE Transactions on Big Data, 2018.

• M. Brahem, K. Zeitouni, and L. Yeh. Efficient astronomical query processing using

spark. In 26th ACM SIGSPATIAL International Conference on Advances in Geo-

graphic Information Systems, SIGSPATIAL, 2018.

• M. Brahem, K. Zeitouni, and L. Yeh. HX-MATCH: In-memory cross-matching algo-

rithm for astronomical big data. In Advances in Spatial and Temporal Databases -

15th International Symposium, SSTD, 2017

• M. Brahem, K. Zeitouni, and L. Yeh. Large scale data management of astronomical

surveys with astrospark. In 10th Extremely Large Databases Conference, XLDB,

2017.

• K. Zeitouni, M. Brahem, and L. Yeh, Large Scale Data Management of Astronom-

ical Surveys with AstroSpark, European Week of Astronomy and Space Science,

EWASS, 2017.

• M. Brahem, K. Zeitouni, and L. Yeh. Astrospark: towards a distributed data server

for big data in astronomy. In Proceedings of the 3rd ACM SIGSPATIAL PhD Sym-

posium, ACM, 2016.

• M. Brahem, K. Zeitouni, and L. Yeh. Large scale data management of astronomical

surveys with astrospark. In Conference on Big Data from Space, BIDS, 2017.

• M. Brahem. Adaptative performance optimization for distributed big data server. In

Journées CNES Jeunes chercheurs, JC2, 2017.

• M. Brahem, K. Zeitouni, and L. Yeh. Astrospark: towards a distributed data server

for big data in astronomy. In National Conference, Doctoral Session BDA, 2016.

• M. Brahem. Astrospark: towards a distributed data server for big data in astronomy.

In Junior Conference on Data Science and Engineering of University Paris Saclay,

2016.

132

Bibliography

[1] D. G. York, J. Adelman, J. E. Anderson Jr, S. F. Anderson, J. Annis, N. A. Bahcall,

J. Bakken, R. Barkhouser, S. Bastian, E. Berman, et al., “The sloan digital sky

survey: Technical summary,” The Astronomical Journal, vol. 120, no. 3, p. 1579,

2000.

[2] “LSST.” https://www.lsst.org/.

[3] “GAIA.” http://sci.esa.int/gaia/.

[4] N. Astronomy, “New worlds, new horizons in astronomy and astrophysics,” 2010.

[5] G. B. Berriman and S. L. Groom, “How will astronomy archives survive the data

tsunami?,” Communications of the ACM, vol. 54, no. 12, pp. 52–56, 2011.

[6] A. S. Szalay, J. Gray, P. Kunszt, A. Thakar, and D. Slutz, “Large Databases in

Astronomy,” in Mining the Sky, pp. 99–116, Springer, 2001.

[7] “ADQL.” http://www.ivoa.net/documents/latest/ADQL.html.

[8] M. Stonebraker, “The case for shared nothing,” IEEE Database Eng. Bull., vol. 9,

no. 1, pp. 4–9, 1986.

[9] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Clus-

ter computing with working sets.,” HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[10] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework for spatial

data,” in Data Engineering (ICDE), 2015 IEEE 31st International Conference on,

pp. 1352–1363, IEEE, 2015.

[11] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient in-memory spatial

analytics,” in Proceedings of the 2016 International Conference on Management of

Data, pp. 1071–1085, ACM, 2016.

[12] S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi, “MD-HBase: design and im-

plementation of an elastic data infrastructure for cloud-scale location services,” Dis-

tributed and Parallel Databases, vol. 31, no. 2, pp. 289–319, 2013.

133

https://www.lsst.org/
http://sci.esa.int/gaia/
http://www.ivoa.net/documents/latest/ADQL.html

[13] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster computing framework for pro-

cessing large-scale spatial data,” in Proceedings of the 23rd SIGSPATIAL Interna-

tional Conference on Advances in Geographic Information Systems, p. 70, ACM,

2015.

[14] K. M. Gorski, E. Hivon, A. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and

M. Bartelmann, “HEALPix: A framework for high-resolution discretization and fast

analysis of data distributed on the sphere,” The Astrophysical Journal, vol. 622,

no. 2, p. 759, 2005.

[15] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M. J. Franklin, A. Ghodsi, et al., “Spark sql: Relational data processing in spark,” in

Proceedings of the 2015 ACM SIGMOD International Conference on Management

of Data, pp. 1383–1394, ACM, 2015.

[16] “Catalyst.” https://databricks.com/session/

catalyst-a-query-optimization-framework-for-spark-and-shark.

[17] J. Gantz and D. Reinsel, “Extracting value from chaos,” IDC iview, vol. 1142,

no. 2011, pp. 1–12, 2011.

[18] P. Zikopoulos, C. Eaton, et al., Understanding big data: Analytics for enterprise

class hadoop and streaming data. McGraw-Hill Osborne Media, 2011.

[19] D. Laney, “3d data management: Controlling data volume, velocity and variety,”

META group research note, vol. 6, no. 70, p. 1, 2001.

[20] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges, techniques

and technologies: A survey on big data,” Information Sciences, vol. 275, pp. 314–

347, 2014.

[21] “M. Cooper and P. Mell. (2012). Tackling Big Data.” https://bigdatawg.nist.

gov/_uploadfiles/M0065_v1_4451775754.pdf.

[22] E. F. Codd, The relational model for database management: version 2. Addison-

Wesley Longman Publishing Co., Inc., 1990.

[23] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile networks and applica-

tions, vol. 19, no. 2, pp. 171–209, 2014.

[24] S. Mazumder, R. S. Bhadoria, and G. C. Deka, Distributed Computing in Big Data

Analytics: Concepts, Technologies and Applications. Springer, 2017.

[25] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clus-

ters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

134

https://databricks.com/session/catalyst-a-query-optimization-framework-for-spark-and-shark
https://databricks.com/session/catalyst-a-query-optimization-framework-for-spark-and-shark
https://bigdatawg.nist.gov/_uploadfiles/M0065_v1_4451775754.pdf
https://bigdatawg.nist.gov/_uploadfiles/M0065_v1_4451775754.pdf

[26] “Hadoop.” http://hadoop.apache.org/.

[27] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file

system,” in Mass storage systems and technologies (MSST), 2010 IEEE 26th sym-

posium on, pp. 1–10, Ieee, 2010.

[28] “Amazon S3.” https://aws.amazon.com/fr/s3/.

[29] T. White, Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.

[30] “Hbase.” https://hbase.apache.org/.

[31] “Hive.” https://hive.apache.org/.

[32] “Pig.” https://pig.apache.org/.

[33] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent, avail-

able, partition-tolerant web services,” Acm Sigact News, vol. 33, no. 2, pp. 51–59,

2002.

[34] N. Leavitt, “Will nosql databases live up to their promise?,” Computer, vol. 43, no. 2,

2010.

[35] “SimpleDB.” https://aws.amazon.com/fr/simpledb/.

[36] “MongoDB.” https://www.mongodb.com/.

[37] “Neo4j.” https://neo4j.com/.

[38] “Cassandra.” http://cassandra.apache.org/.

[39] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstrac-

tion for in-memory cluster computing,” in Proceedings of the 9th USENIX confer-

ence on Networked Systems Design and Implementation, pp. 2–2, USENIX Asso-

ciation, 2012.

[40] P. Zecevic and M. Bonaci, Spark in Action. Manning Publications Co., 2016.

[41] H. Karau and R. Warren, High Performance Spark: Best Practices for Scaling and

Optimizing Apache Spark. " O’Reilly Media, Inc.", 2017.

[42] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica, “Shark:

Sql and rich analytics at scale,” in Proceedings of the 2013 ACM SIGMOD Interna-

tional Conference on Management of data, pp. 13–24, ACM, 2013.

[43] M. Frampton, Mastering Apache Spark. Packt Publishing Ltd, 2015.

135

http://hadoop.apache.org/
https://aws.amazon.com/fr/s3/
https://hbase.apache.org/
https://hive.apache.org/
https://pig.apache.org/
https://aws.amazon.com/fr/simpledb/
https://www.mongodb.com/
https://neo4j.com/
http://cassandra.apache.org/

[44] “Cost based optimizer in Apache Spark.” https://spark-summit.org/2017/

events/cost-based-optimizer-in-apache-spark-22/, 2017.

[45] D. Shabalin, E. Burmako, and M. Odersky, “Quasiquotes for scala,” tech. rep., 2013.

[46] A. Mesmoudi, M.-S. Hacid, and F. Toumani, “Benchmarking SQL on MapReduce

systems using large astronomy databases,” Distributed and Parallel Databases,

vol. 34, no. 3, pp. 347–378, 2016.

[47] A. A. Goodman and C. G. Wong, “Bringing the night sky closer: Discoveries in the

data deluge,” The Fourth Paradigm: Data-Intensive Scientific Discovery, pp. 39–44,

2009.

[48] T. Hey, S. Tansley, K. M. Tolle, et al., The fourth paradigm: data-intensive scientific

discovery, vol. 1. Microsoft research Redmond, WA, 2009.

[49] G. Bell, T. Hey, and A. Szalay, “Beyond the data deluge,” Science, vol. 323,

no. 5919, pp. 1297–1298, 2009.

[50] J. Gray, D. Slutz, A. Szalay, and A. Thakar, “Jan vandenberg, peter kunszt, and

chris stoughton. data mining the sdss skyserver database,” tech. rep., Technical

Report MSR-TR-2002-01, MSR, 2002.

[51] “SkyServer.” http://skyserver.sdss.org/dr6/en/proj/.

[52] V. Singh, J. Gray, A. Thakar, A. S. Szalay, J. Raddick, B. Boroski, S. Lebedeva, and

B. Yanny, “Skyserver traffic report - the first five years,” CoRR, vol. abs/cs/0701173,

2006.

[53] “SkyServer Traffic.” http://skyserver.sdss.org/log/en/traffic/.

[54] F. Ochsenbein, P. Bauer, and J. Marcout, “The VizieR database of astronomical cat-

alogues,” Astronomy and Astrophysics Supplement Series, vol. 143, no. 1, pp. 23–

32, 2000.

[55] S. Derriere, F. Ochsenbein, and D. Egret, “On-line access to very large catalogues,”

in Astronomical Data Analysis Software and Systems IX, vol. 216, p. 235, 2000.

[56] S. Koposov and O. Bartunov, “Q3C, Quad Tree Cube–the new sky-indexing concept

for huge astronomical catalogues and its realization for main astronomical queries

(cone search and Xmatch) in open source database PostgreSQL,” in Astronomical

Data Analysis Software and Systems XV, vol. 351, p. 735, 2006.

[57] M. A. Nieto-Santisteban, A. R. Thakar, and A. S. Szalay, “Cross-matching very

large datasets,” in National Science and Technology Council (NSTC) NASA Con-

ference, 2007.

136

https://spark-summit.org/2017/events/cost-based-optimizer-in-apache-spark-22/
https://spark-summit.org/2017/events/cost-based-optimizer-in-apache-spark-22/
http://skyserver.sdss.org/dr6/en/proj/
http://skyserver.sdss.org/log/en/traffic/

[58] T. Budavári, A. Szalay, J. Gray, W. O’Mullane, R. Williams, A. Thakar, T. Ma-

lik, N. Yasuda, and R. Mann, “Open skyquery–vo compliant dynamic federation

of astronomical archives,” in Astronomical Data Analysis Software and Systems

(ADASS) XIII, vol. 314, p. 177, 2004.

[59] M. Ivanova, N. Nes, R. Goncalves, and M. Kersten, “Monetdb/sql meets skyserver:

the challenges of a scientific database,” in Scientific and Statistical Database Man-

agement, 2007. SSBDM’07. 19th International Conference on, pp. 13–13, IEEE,

2007.

[60] S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, and M. Kersten, “Mon-

etdb: Two decades of research in column-oriented database,” 2012.

[61] J. VanderPlas, E. Soroush, K. S. Krughoff, M. Balazinska, and A. Connolly,

“Squeezing a Big Orange into Little Boxes: The AscotDB System for Parallel Pro-

cessing of Data on a Sphere.,” IEEE Data Eng. Bull., vol. 36, no. 4, pp. 11–20,

2013.

[62] “SciDB.” https://www.paradigm4.com/try_scidb/.

[63] D. Marcos, A. Connolly, K. Krughoff, I. Smith, and S. Wallace, “Ascot: a collabo-

rative platform for the virtual observatory,” in Astronomical Data Analysis Software

and Systems XXI, vol. 461, p. 901, 2012.

[64] D. L. Wang, S. M. Monkewitz, K.-T. Lim, and J. Becla, “Qserv: A distributed shared-

nothing database for the lsst catalog,” in State of the Practice Reports, p. 12, ACM,

2011.

[65] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, “Xrootd-a highly scalable ar-

chitecture for data access,” WSEAS Transactions on Computers, vol. 1, no. 4.3,

2005.

[66] J. Gray, M. A. Nieto-Santisteban, and A. S. Szalay, “The zones algorithm for

finding points-near-a-point or cross-matching spatial datasets,” CoRR, vol. ab-

s/cs/0701171, 2006.

[67] F.-X. Pineau, T. Boch, and S. Derriere, “Efficient and scalable cross-matching of

(very) large catalogs,” in Astronomical Data Analysis Software and Systems XX,

vol. 442, p. 85, 2011.

[68] Q. Zhao, J. Sun, C. Yu, C. Cui, L. Lv, and J. Xiao, “A paralleled large-scale astro-

nomical cross-matching function,” in International Conference on Algorithms and

Architectures for Parallel Processing, pp. 604–614, Springer, 2009.

137

https://www.paradigm4.com/try_scidb/

[69] “AstroLab Software.” https://astrolabsoftware.github.io/.

[70] A. Aji, X. Sun, H. Vo, Q. Liu, R. Lee, X. Zhang, J. Saltz, and F. Wang, “Demon-

stration of hadoop-gis: a spatial data warehousing system over mapreduce,” in

Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances

in Geographic Information Systems, pp. 528–531, ACM, 2013.

[71] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz, “Hadoop gis: a high

performance spatial data warehousing system over mapreduce,” Proceedings of

the VLDB Endowment, vol. 6, no. 11, pp. 1009–1020, 2013.

[72] H. Vo, A. Aji, and F. Wang, “Sato: a spatial data partitioning framework for scal-

able query processing,” in Proceedings of the 22nd ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, pp. 545–548, ACM,

2014.

[73] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: an effi-

cient and robust access method for points and rectangles,” in Acm Sigmod Record,

vol. 19, pp. 322–331, Acm, 1990.

[74] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-Tree: A Dynamic Index for

Multi-Dimensional Objects.,” tech. rep., 1987.

[75] A. Eldawy and M. F. Mokbel, “Pigeon: A spatial mapreduce language,” in 2014

IEEE 30th International Conference on Data Engineering (ICDE), pp. 1242–1245,

IEEE, 2014.

[76] G. M. Morton, “A computer oriented geodetic data base and a new technique in file

sequencing,” 1966.

[77] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G. Aref, “Locationspark: a

distributed in-memory data management system for big spatial data,” Proceedings

of the VLDB Endowment, vol. 9, no. 13, pp. 1565–1568, 2016.

[78] A. Eldawy and M. F. Mokbel, “The Era of Big Spatial Data,” Proc. VLDB Endow.,

vol. 10, no. 12, pp. 1992–1995, 2017.

[79] V. Pandey, A. Kipf, T. Neumann, and A. Kemper, “How good are modern spatial an-

alytics systems?,” Proceedings of the VLDB Endowment, vol. 11, no. 11, pp. 1661–

1673, 2018.

[80] M. T. Özsu and P. Valduriez, Principles of distributed database systems. Springer

Science & Business Media, 2011.

138

https://astrolabsoftware.github.io/

[81] J. Widom, H. Garcia-Molina, and J. D. Ullman, “Database systems the complete

book,” 2009.

[82] S. K. Singh, Database systems: Concepts, design and applications. Pearson Edu-

cation India, 2011.

[83] G. Mantelet, “ADQL library.” https://github.com/gmantele/taplib.

[84] T. Ibaraki and T. Kameda, “On the optimal nesting order for computing n-relational

joins,” ACM Transactions on Database Systems (TODS), vol. 9, no. 3, pp. 482–502,

1984.

[85] S. T. Shenoy and Z. M. Ozsoyoglu, “Design and implementation of a semantic

query optimizer,” IEEE transactions on Knowledge and data Engineering, vol. 1,

no. 3, pp. 344–361, 1989.

[86] R. Elmasri and S. Navathe, Fundamentals of database systems. Addison-Wesley

Publishing Company, 2010.

[87] M. Steinbrunn, G. Moerkotte, and A. Kemper, “Heuristic and randomized optimiza-

tion for the join ordering problem,” The VLDB Journal—The International Journal

on Very Large Data Bases, vol. 6, no. 3, pp. 191–208, 1997.

[88] D. Kossmann, “The state of the art in distributed query processing,” ACM Comput-

ing Surveys (CSUR), vol. 32, no. 4, pp. 422–469, 2000.

[89] S. Chaudhuri, “An overview of query optimization in relational systems,” in Proceed-

ings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles

of database systems, pp. 34–43, ACM, 1998.

[90] E. Begoli, J. Camacho-Rodríguez, J. Hyde, M. J. Mior, and D. Lemire, “Apache cal-

cite: A foundational framework for optimized query processing over heterogeneous

data sources,” in Proceedings of the 2018 International Conference on Manage-

ment of Data, pp. 221–230, ACM, 2018.

[91] “Calcite.” http://calcite.apache.org/docs/powered_by.

[92] M. Golfarelli and L. Baldacci, “A cost model for spark sql,” IEEE Transactions on

Knowledge and Data Engineering, 2018.

[93] J. J. Mwemezi and Y. Huang, “Optimal facility location on spherical surfaces: algo-

rithm and application,” New York Science Journal, vol. 4, no. 7, pp. 21–28, 2011.

[94] R. Plante, R. Williams, R. Hanisch, and A. Szalay, “Simple cone search version

1.03,” IVOA Recommendation 22 February 2008, 2008.

139

https://github.com/gmantele/taplib
http://calcite.apache.org/docs/powered_by

[95] “IVOA.” http://www.ivoa.net/.

[96] M. Brahem, S. Lopes, L. Yeh, and K. Zeitouni, “AstroSpark: towards a distributed

data server for big data in astronomy,” in Proceedings of the 3rd ACM SIGSPATIAL

PhD Symposium, ACM, 2016.

[97] M. BRAHEM, K. Zeitouni, and L. Yeh, “Astroide: A unified astronomical big data

processing engine over spark,” IEEE Transactions on Big Data, 2018.

[98] M. Brahem, , K. Zeitouni, and L. Yeh, “Efficient astronomical query processing

using spark,” in In 26th ACM SIGSPATIAL International Conference on Advances

in Geographic Information Systems, ACM, 2018.

[99] H. Herodotou, N. Borisov, and S. Babu, “Query optimization techniques for parti-

tioned tables,” in Proceedings of the 2011 ACM SIGMOD International Conference

on Management of data, pp. 49–60, ACM, 2011.

[100] A. S. Szalay, J. Gray, G. Fekete, P. Z. Kunszt, P. Kukol, and A. Thakar, “Indexing the

sphere with the hierarchical triangular mesh,” CoRR, vol. abs/cs/0701164, 2005.

[101] P. Kunszt, A. Szalay, I. Csabai, and A. Thakar, “The indexing of the sdss science

archive,” in Astronomical Data Analysis Software and Systems IX, vol. 216, p. 141,

2000.

[102] R. W. Youngren and M. D. Petty, “A multi-resolution HEALPix data structure for

spherically mapped point data,” Heliyon, vol. 3, no. 6, p. e00332, 2017.

[103] P. Fernique, M. Allen, T. Boch, A. Oberto, F. Pineau, D. Durand, C. Bot, L. Cam-

bresy, S. Derriere, F. Genova, et al., “Hierarchical progressive surveys-Multi-

resolution HEALPix data structures for astronomical images, catalogues, and 3-

dimensional data cubes,” Astronomy & Astrophysics, vol. 578, p. A114, 2015.

[104] J. A. Orenstein, “Spatial query processing in an object-oriented database system,”

in ACM Sigmod Record, vol. 15, pp. 326–336, ACM, 1986.

[105] W. O’Mullane, A. Banday, K. Gorski, P. Kunszt, and A. Szalay, “Splitting the sky-htm

and healpix,” in Mining the Sky, pp. 638–648, Springer, 2000.

[106] “HEALPix Softaware.” http://healpix.sourceforge.net/.

[107] M. A. Nieto-Santisteban, A. R. Thakar, A. S. Szalay, and J. Gray, “Large-scale query

and xmatch, entering the parallel zone,” in Astronomical Data Analysis Software

and Systems XV, vol. 351, p. 493, 2006.

140

http://www.ivoa.net/
http://healpix.sourceforge.net/

[108] J. L. Bentley, “Multidimensional binary search trees used for associative searching,”

Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[109] D. Gao, Y. Zhang, and Y. Zhao, “The Application of kd-tree in Astronomy,” in As-

tronomical Data Analysis Software and Systems XVII, Astronomical Society of the

Pacific Conference Series, 2008.

[110] A. Eldawy, L. Alarabi, and M. F. Mokbel, “Spatial partitioning techniques in spa-

tialhadoop,” Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1602–1605,

2015.

[111] H. Vo, A. Aji, and F. Wang, “Sato: A spatial data partitioning framework for scal-

able query processing,” in Proceedings of the 22Nd ACM SIGSPATIAL Interna-

tional Conference on Advances in Geographic Information Systems, SIGSPATIAL

’14, (New York, NY, USA), ACM, 2014.

[112] H. Singh and S. Bawa, “A survey of traditional and mapreducebased spatial query

processing approaches,” ACM SIGMOD Record, vol. 46, no. 2, pp. 18–29, 2017.

[113] W. Wang, J. Yang, R. Muntz, et al., “Sting: A statistical information grid approach

to spatial data mining,” in VLDB, vol. 97, pp. 186–195, 1997.

[114] M. F. Mokbel, W. G. Aref, and I. Kamel, “Performance of multi-dimensional space-

filling curves,” in Proceedings of the 10th ACM international symposium on Ad-

vances in geographic information systems, pp. 149–154, ACM, 2002.

[115] J. K. Lawder and P. J. H. King, “Querying multi-dimensional data indexed using the

hilbert space-filling curve,” ACM Sigmod Record, vol. 30, no. 1, pp. 19–24, 2001.

[116] B. Yao, F. Li, and P. Kumar, “K nearest neighbor queries and knn-joins in large

relational databases (almost) for free,” in Data engineering (ICDE), 2010 IEEE 26th

international conference on, pp. 4–15, IEEE, 2010.

[117] D. Hilbert, “Über die stetige abbildung einer linie auf ein flächenstück,” in Drit-

ter Band: Analysis· Grundlagen der Mathematik· Physik Verschiedenes, pp. 1–2,

Springer, 1935.

[118] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of the clustering

properties of the hilbert space-filling curve,” IEEE Transactions on knowledge and

data engineering, vol. 13, no. 1, pp. 124–141, 2001.

[119] A. Guttman, R-trees: A dynamic index structure for spatial searching, vol. 14. ACM,

1984.

141

[120] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The r+-tree: A dynamic index for

multi-dimensional objects.,” tech. rep., 1987.

[121] “Aladin.” http://aladin.u-strasbg.fr/.

[122] S. T. Leutenegger, M. A. Lopez, and J. Edgington, “STR: A simple and efficient

algorithm for R-tree packing,” in Data Engineering, 1997. Proceedings. 13th inter-

national conference on, pp. 497–506, IEEE, 1997.

[123] J. A. Orenstein and F. A. Manola, “Probe spatial data modeling and query process-

ing in an image database application,” IEEE transactions on Software Engineering,

vol. 14, no. 5, pp. 611–629, 1988.

[124] R. Ramakrishnan and J. Gehrke, Database management systems. McGraw Hill,

2000.

[125] M. Brahem, K. Zeitouni, and L. Yeh, “HX-MATCH: In-Memory Cross-Matching Algo-

rithm for Astronomical Big Data,” in International Symposium on Spatial and Tem-

poral Databases, pp. 411–415, Springer, 2017.

[126] “Galactica.” https://galactica.isima.fr//.

[127] A. G. Brown, A. Vallenari, T. Prusti, J. De Bruijne, F. Mignard, R. Drimmel, C. Babu-

siaux, C. Bailer-Jones, U. Bastian, M. Biermann, et al., “Gaia Data Release 1-

Summary of the astrometric, photometric, and survey properties,” Astronomy &

Astrophysics, vol. 595, p. A2, 2016.

[128] “IGSL.” http://cdsarc.u-strasbg.fr/viz-bin/Cat?I/324.

[129] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan,

“The rise of “big data” on cloud computing: Review and open research issues,”

Information Systems, vol. 47, pp. 98–115, 2015.

[130] “OpenStack.” https://www.openstack.org/.

[131] M. Taylor, “Topcat: Desktop exploration of tabular data for astronomy and beyond,”

in Informatics, vol. 4, p. 18, Multidisciplinary Digital Publishing Institute, 2017.

[132] M. B. Taylor, “Stilts-a package for command-line processing of tabular data,” in

Astronomical Data Analysis Software and Systems XV, vol. 351, p. 666, 2006.

[133] J. Yu, Z. Zhang, and M. Sarwat, “Spatial data management in apache spark: the

geospark perspective and beyond,” GeoInformatica, pp. 1–42, 2018.

142

http://aladin.u-strasbg.fr/
https://galactica.isima.fr//
http://cdsarc.u-strasbg.fr/viz-bin/Cat?I/324
https://www.openstack.org/

[134] M. Tang, Y. Yu, W. Aref, A. Mahmood, Q. Malluhi, and M. Ouzzani, “In-memory

distributed spatial query processing and optimization,” tech. rep., Purdue technical

report, 2016.

[135] “Grunion.” https://www.datascience.com/blog/

grunion-data-science-tools-query-optimizer-apache-spark/.

[136] J. Peloton, C. Arnault, and S. Plaszczynski, “Fits data source for apache spark,”

Computing and Software for Big Science, vol. 2, no. 1, p. 7, 2018.

143

https://www.datascience.com/blog/grunion-data-science-tools-query-optimizer-apache-spark/
https://www.datascience.com/blog/grunion-data-science-tools-query-optimizer-apache-spark/

	Introduction
	Motivation
	Characteristics of Astronomical Applications
	Large Sky Surveys
	Compute Intensive Queries
	Complex Astronomical Queries
	Use of Spherical Coordinates
	Use of Spherical Distance

	Problem Statement
	Objectives and Contributions
	Dissertation Outline

	State of the Art
	Introduction
	Big Data Management
	Relational DBMSs
	Hadoop MapReduce
	NoSQL-on-Hadoop systems
	SQL-on-Hadoop Systems
	Apache Spark
	Discussion

	Astronomical Servers
	SkyServer Project
	VizieR Service
	Q3C in PostgreSQL
	Open SkyQuery
	MonetDB/SkyServer
	AscotDB
	Qserv
	Tools for Cross-matching
	Discussion

	Spatial Systems
	Hadoop-GIS
	SpatialHadoop
	Pigeon
	MD-HBase
	GeoSpark
	LocationSpark
	SIMBA
	Discussion

	Summary

	General Presentation of ASTROIDE
	Introduction
	Background
	Query Processing
	Astronomical Queries
	ADQL
	DataFrames
	Parquet Format

	Overview of the Proposed Framework
	Data Partitioning
	Query Processing
	Query Interface Levels
	ASTROIDE Parser
	Query Optimizer

	Summary

	Data Partitioning and Indexing
	Introduction
	Importance of Partitioning
	Challenges in Astronomical Data Partitioning
	Data Skew
	Objects on the Boundaries
	Partitioning Cost

	Sky Indexing
	HTM
	HEALPix

	Related Approaches
	Astronomical Partitioning
	Spatial Partitioning and Indexing

	Spark Partitioning Approaches
	ASTROIDE Partitioning
	Partitions Visualization
	Summary

	Optimization of Astronomical Queries
	Introduction
	Query Processing
	Query Parsing
	Query Optimization

	Query Optimization Worflow
	Extended Analysis
	Extended Logical-Physical Optimizations
	Physical Planning

	Rule-based Optimization in ASTROIDE
	Partitions Pruning
	HEALPix Pushdown
	Merge non-spatial and geometrical Filters
	Avoid Cartesian Product

	Cone Search
	Baseline Approach
	Optimization with Query Rewriting
	Optimization with Transformation Rules

	kNN Search
	Baseline Approach
	Optimization with Query Rewriting
	Optimization with Transformation Rules

	Cross Match
	Baseline Approach
	Optimization with Query Rewriting
	Optimization with Transformation Rules

	kNN Join
	Combination with other Attributes
	Scenario 1
	Scenario 2 & 3

	Summary

	Experimental Study and Graphical Interface
	Introduction
	Experimental Setup
	Local Cluster Description
	Cloud Cluster Description
	Datasets Description

	Result Analysis using a Local Cluster
	Partitioning
	Cone Search Query
	Cross-Matching Query
	kNN Search Query
	kNN Join Query

	Cloud Based Implementation and Tests
	ASTROIDE GUI
	Querying Module
	Visualization Module

	Summary

	Conclusions and Perspectives
	Summary of our Contributions
	Perspectives

	List of Abbreviations
	Publications
	Bibliography

